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SUMMARY 

This thesis is divided into six chapters. The first chapter 

provides a brief introduction concerning the behaviour of brittle 

materials. It also contains the justification for the undertaking of 

the study as well as a brief description of the method of approach 

adopted, and thesis layout. Chapter two provides a critical review of 
the current literature available at present in the failure prediction 

of brittle materials. Both theoretical and experimental studies are 
discussed and the relevance to the present work is justified. 

Chapter three deals with the numerical analyses adopted within 
the thesis. Five different failure criteria were utilized in the 

initial analysis of the results presented. Among them, the empirical 

model using the Principle of Independent Action satisfactorily 

represents the biaxial fracture behaviour of brittle materials in 

both tension-tension and tension-compression quadrants. Its validity 
has never been tested before. Various statistical fracture models 

were used to analyze the failure of brittle materials under multiaxial 
states of stress, the experimental failure data for simple tension 
being a starting point for their calculation. It was shown that the 

Energy Density theory led to a better agreement with the experiments 
than any other well-known fracture criterion. The study investigates 

methods of evaluating the Weibull parameters which were crucial in the 

failure prediction of brittle materials. Monte Carlo simulation 
techniques are also presented as a method of evaluating the data 

ranking for the failure probability of brittle materials. 

Chapter four is devoted to the description of experimental 
techniques adopted in the study, using specially designed rigs. Six 
different tests were conducted to evaluate the performance of brittle 

materials in static loading and also to enable comparisons with the 
theoretical predictions. Attention was given to specimen casting, 
loading frames, alignment, measurement techniques and other relevant 
parameters. The use of the linear elastic fracture mechanics method 
to predict the behaviour of cracks in bodies, which are subjected to 
steady stresses, is discussed. The compliance function for the 
three-point notch bend specimen is presented in addition to the 
determination of the fracture toughness of Herculite LX plaster. The 
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work was also supplemented by the use of scanning electron microscopy 
(SEM) to failure analysis of plaster material. This is an extremely 
important tool in the study of brittle materials since the dimensions 

of small defects and fracture features on individual grains are often 

pertinent information to the failure analysis. 

Chapter five details the analysis of the theoretical results as 

well as the experimental findings. Based upon the previously 

mentioned approaches, a comparison was made between theoretically 

predicted and experimentally observed data. The comparison indicates 

that discrepancies exist between the observed and predicted results, 
the reasons for the discrepancies have been justified in this work. 

Chapter six provides a brief summary of conclusions derived from 

the complete study, together with recommendations for future work. 
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CHAPTER 1 
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1.1 THE NEED FOR BRITTLE MATERIALS 

1.1.1 Brittle Materials 

In a world where competition is a vital factor for the 
survival of industry, the search for better and cheaper products is a 
must for industrial nations. With the current depletion of energy 
resources, industry has made every attempt to reduce its energy 
consumption. In a future which will presumably be short of fossil 
fuels and raw materials, the emphasis will continue to favour the 
choice of cheap and plentiful material whenever alternatives are 
considered. Take for example the gas turbine, it has the capacity for 
continued development to reach thermal efficiencies in the order of 60 
per cent. But to do so, requires the hot parts to be made from exotic 
metals, many of which are in short supply, expensive, and come 
predominantly from regions of the world of somewhat uncertain 
political future. Alternatively, we could use components made from, 

say, ceramics, which in contrast are plentiful, indigeneous, and as 
raw materials are inexpensive. Brittle materials, particularly 
ceramics, have gradually been introduced to the manufacturing 
industries and are currently used in a wide range of applications. 

The term brittle material, usually refers to materials which 
cannot accommodate large plastic deformations (less than, say 3 per 
cent) and commonly fail by brittle fracture. They include primarily 
the following classes of materials: 

- Cast iron 

- Glass 
- Ceramic 

- Carbon and graphite 

- Cement and concrete 

Of all the materials made by man, brittle materials have the longest 
history. Natural ceramics were selected by early man to make flint 
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arrow-heads and axes. The miller relied on abrasion resistance and 

chemical inertness of the granite mill wheel. Also, the high 

temperature resistance of fired clays was exploited in the early days 

of metal casting. 

It is these same raw materials which the scientist and 

engineer of today and tomorrow uses and will use, to provide much more 

sophisticated and sometimes surprising end products. 

The growing use of brittle materials arises from their basic 

material structure, i. e., strong chemical bonds and the ionic or 

covalent nature of these bonds. This results in exciting properties 

as follows: 

- High hardness 

- High stiffness 

- High corrosion resistance 

- High temperature resistance 

- High strength 

- Low specific gravity 

- Low thermal expansion 

- Low friction 

- Low toughness 

- Wide range of thermal conductivity 

Because they possess a number of specialized properties, 
brittle material, particularly engineering ceramics are expected to be 

used increasingly in a number of commercial applications, ranging from 

components which must resist heat and wear, to electronic and optical 
devices. 

There has been great interest shown in the design of brittle 

materials around the world in recent years. A recent Green paper (The 

Collyear Report) (1], prepared for the Department of Trade and 
Industry (DTI) outlined the areas of material technology that are 
likely to undergo revolutionary change in the coming decade. The 

report predicts developments which would have a major impact in three 
fields of mechanical and structural engineering: the base materials, 
fibres used to reinforce them, and the method of forming finished 
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shape. Leaving aside the development of electronic components, the 

report concluded that there are two major types of new material that 

will be responsible for transforming both traditional and high- 

technology industries: composites and ceramics. Accordingly, a UK 

Technical Ceramics Register was compiled jointly by the Science and 
Engineering Research Council (SERC) and the DTI as a reference source 
for academics and industrialists seeking expertise in design of 
brittle materials [2]. 

In the financial year 1985/86, about £50m has been channelled 
through the DTI, the Ministry of Defence, and the SERC for materials 

research and development. The expenditure on ceramics was about 7 per 

cent of the materials allocation [3]. In the USA, a committee of the 

National Materials Advisory Board of the National Academy of Science 

and Engineering (4] also encouraged the use of brittle materials in 

structural applications. A recent study for the US National Bureau of 
Standards (NBS) estimates that US shipments of engineering ceramic 

materials and components were $1.5 billion in 1980, then reached $7 

billion in 1985, and would reach approximately $10 billion by the year 
2000 if this growth rate continues (5]. In Japan, the 10-year 

programme initiated by the ministry of International Trade and 
Industry (MITI), regarding brittle materials research and development, 

has been in progress since 1981 [6]. A research centre on non- 
destructive testing of ceramics has been set up in may 1985 (7). West 

Germany is also budgeting large sums to finance research in this field 

[8]. 

1.1.2 Industrial Applications 

of Brittle Materials 

We have grown accustomed to products made from traditional 
brittle materials such as glass (91 for lighting ware, optical 
applications, cement for construction, carbon for liquid sealing [101. 
Another relatively recent area of material development is ceramics. 
This group of material can be assigned to three broad application 
categories. 
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ELECTRICAL OR MAGNETIC APPLICATIONS 

Electrical insulation is one of the major applications of 
ceramics. Railway insulators, underground and overhead, controlling 
400 KV from the generating station to the transmission lines, are 
duties handled primarily with high strength porcelain (11-14]. Other 

electrical applications include resistor discs for high power circuit 
breakers (15], radiant heating element formers [16], induction coil 

and arc-welding nozzles and shrouds [17]. Ceramic materials are also 

used as substrates or mounting fixtures for electrical circuits and 
devices such as the development of ceramic multi-layer capacitors 
(5,18], or ceramic barrier-layer capacitors (19]. These ceramic 

capacitors have a high capacitance per unit volume, and their 

construction makes them very suitable for automatic mounting. 

Another unique property of ferroelectric ceramics is their 

ability to change shape in the presence of an applied electrical 
field. This conversion of electrical energy to mechanical energy is 

characteristic of piezoelectric materials which are used as 
transducers in microphones, phonograph record players [20], rotor 
electrodes to improve the electromagnetic interference (EMI) control 
over the current production rotors (21), ultrasonic equipment as x-ray 
tubes used in medical diagnostic (22], and in non-destructive 
examination of opaque materials (23). 

Ceramic sensors are important in many manufacturing processes 
for detecting temperature, gases, humidity, and pressure [21,24,25]. 

Ceramic thermistors with a large positive temperature coefficient 
(PTC), of electrical resistance, are already being used in self- 
regulating heaters for automotive control. This positive temperature 

coefficient quality has led to applications ranging from locking the 
doors of front-loading washing machines [26] to helping engines run 
more efficiently by vapourising condensed fuel droplets to achieve 
more efficient combustion [27,28]. 

Ceramic materials with magnetic properties are important in 
many applications which include permanent magnets, memory units with 
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rapid switching times in digital computers, and circuit elements in 

radio, television, microwave (16,29]. 

The transparency of the wavelengths of electromagnetic 
radiation of ceramics have made them invaluable for applications in 

radomes to house and protect radar antennae [30] or radome nose cones 
for use on military missiles [16,31,32]. 

Ceramics are also required for a variety of applications in 

magnetically-confined fusion devices [33,34]. These include magnetic 

coil insulators, windows for heating systems, and structural uses such 

as first wall and blanket components in nuclear applications, armour 
limiters, and heat sinks. 

MODERATE TEMPERATURE HARDNESS AND 

WEAR RESISTANCE APPLICATIONS 

Their hardness and wear resistance allows novel applications 
in manufacturing ceramic cutting tools [13,35-46], dies for metal 

extrusion (17,47], roller bearings (48,49], drawing pens [50], 

scissors [51], artificial bones and dental implants [8,52-54], 

cement-free hip joint replacements (55], impellers for industrial 
blowers (56,57], gun barrel liners [32], and anti-ballistic personnel 
armour [32,58,60]. 

Compared with most metals, ceramics are generally resistant 
to corrosion. Components such as bearings, valve seals, sleeving pump 
shafts, and powder spraying nozzles, can successfully handle hot acids 
and sea water mixtures [13,36,39,611 as well as molten metal 
[17,62,631. 

HIGH TEMPERATURE APPLICATIONS 

Some effort was devoted to brittle material design for the 
use of ceramics as gas turbine blades in the 1940's, reactor fuel 
elements in the 1950's. In the 1960's, the interest in the structural 
use of brittle materials in aerospace vehicles arose as a result of 
interest in re-entry vehicles and the continuing need for propulsion 
systems of increased performance. Ceramic components for heat engines 
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of both reciprocating and turbine type are now creating immense 

interest around the world [13,64]. 

Ceramic materials have been applied to diesel engine 

components in the three major areas. The first area is the mass 

production of ceramic turbochargers to provide a useful decrease in 

rotor inertia and improvement in turbocharger response [65,67]. The 

second area of application is that of attempting to divert most of the 

energy extracted by the cooling system into useful mechanical energy. 

To do that, the cooling system should be either reduced or cut out 

completely, and parts such as pistons, cylinder liners, valves, 

cylinder heads, etc., must be insulated so that they do not experience 

the high temperatures [11,25,58,68-71]. The third potential 

application of ceramics to reciprocating engines lies in the area of 

materials substitution [71]. Ceramics appear to be the favoured 

material for glow plugs and pre-combustion chambers [6,65,72,76], and 

a variety of other components such as cam followers, valve seat 
inserts [77], positive gas seals between the monolith and container in 

automobile catalytic converters for exhaust emission control [78]. 

Ceramics are also used in turbine technology. Earlier 

programmes have been funded to incorporate ceramics into existing gas 
turbines and to design new gas turbines based upon the specific 

properties of the various high temperature ceramic materials. The 

potential applications include heat generators (79-81], rotor blades 

[82,83], nozzle vanes [84] and other parts of gas turbines [85,86]. 

Recent promising results come from the research work for the Ceramic 

Applications in Turbine Engines (CATE) at Massachusettes [75] and 
Rolls-Royce at Leavesden, Watford [87]. Apart from the production of 

consistently reliable turbine components, ceramics play an important, 

and even a critical role as solid electrolytes, electrodes and other 
components in vehicular batteries and load-levelling batteries, 

electrodes and insulators in magneto-hydrodynamic (MHD) conversion 
systems (88], 

Ceramic materials are used increasingly in a number of high- 
temperature commercial applications ranging from jigs and fixtures for 
heat treatment, brazing, soldering and welding operations (89,901, 
high temperature thermal insulation uses in aerospace applications, 
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petrochemical and nuclear power plants (78,91], lock hopper valves in 

coal conversion industry [92] to ceramic foam filter used for moulds 
to cast automobile parts, increasing the quality and reducing the 
defective parts rate (93], and recently developed refractory sheet 

products which can be used in an unlimited variety of high temperature 

applications, particularly as a replacement for the medically unsafe 

asbestos [94-961. 

Other applications which have also been developed recently 

are thermal barrier coatings [25,97] and integrated optical circuits 
[98]. The former serves as a means of increasing the system operating 
temperature and also provides protection to the surface of an alloy. 
The latter is used in fibre optic communication systems, including 

commercial telecommunications, military communications, and computer- 
to-computer data communication links. 

Table 1.1 summarizes some of the most common applications of 

ceramic materials in industry. 

1.1.3 Design Approach 

Experience shows that structural design techniques which have 

been developed and used successfully for structures fabricated from 

ductile metallic materials cannot be used without modification when 
dealing with completely brittle materials, if the same degree of 

structural reliability is required. - All of the considerations 
involved in brittle material design result from the condition that the 

material shows no, or insignificant, yielding prior to failure. But 
due to their lack of ductility, or lack of yielding, three main 
aspects of their characteristics must be considered by the designer. 

These are: the limited strain to failure, low fracture toughness, and 
the material inhomogeneity as exhibited by variation in strength of a 
given test population. 

The main problem, that of the large amount of data scatter in 
fracture strength, precludes the use of normal design methods. To 
overcome this problem, designers have proposed a probabilistic 
approach to the design of brittle structures based, for example, on 
the Weibull statistical model which uses a distribution function to 
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TABLE 1.1 SOME APPLICATIONS OF CERAMICS 

APPLICATIONS MATERIAL REFERENCES 

Electrical or Magnetic Applications 

Insulators Porcelain [11,14] 

Capacitors BaTiO3 [17,19] 

Heat exchangers Si 3N4, sic [67] 

Radomes Si 3N4, Mg0, A1203 [30,32] 

MgF2, ZnS, fused Si02 [21,24,25] 
Sensors A12 03 , LiTa03 , PbTi03 

Tribological Applications 

Cutting tools Al 203 
[13,29,30,35-46] 

Metallurgical polishing Mg0, A1203 [13,39,69,97] 

Sandstone and glass paper Silica particles [97] 

Emery paper and grinding wheels SiC [97] 

Roller bearings Si3N4 [48,49,65,66] 

Cylinder liners and cam followers Si3N4 [48,49,65,66] 
for internal combustion engines 

Artificial bones A1203 [16] 
Impellers for blowers A1203, Si3N4, SIC [56,57] 
Armour for personnel B4C [32,58-60,97] 

Hi h Temperature Applications 

Diesel engines 
Turbocharger rotors Si3N4 [65,67] 

Piston, piston pin and cylinder Hot pressed SiC and [58,59,68,70] 
liner Sintered SiC 

Glow plug, pre-chamber parts Si3N4 [6,65,72,75] 

Gas Turbines 

Housing, regenerators Lithium [39,67,69,74,81] 

aluminosilicate 
Rotors, stators Sintered Si3N4 [75,87] 



-9- 

characterise the fracture strength. The inherent variability in 

brittle materials is too great: exact stresses must be determined 

statistically and parts are then designed not to exceed a specified 

probability of failure [99,100]. 

Because brittle materials cannot deform plastically, 
interfaces which transfer load must be highly conforming to avoid 

excessive local load at asperities. Extreme contact stresses, 

resulting from inadequate design or manufacturing processes, can cause 

catastrophic component failures [101]. It has been shown that if 

small dust particles are wedged between the undersurface of a specimen 

and the surface on which it is placed, the resulting stresses are 

sufficient to cause failure [102]. The relative motion of this 

interface under temperature and stress variations will introduce 

friction stresses, which further compound the designer's task 

[103,104]. In these complicated cases, simplified models may give 

some valuable information, especially if they use bounds on the 

stresses in the critical regions of the brittle component. 

Apart from statistical variations in strength, another 
factor of major importance is the time dependence of strength [1051. 

such time dependent strength properties can be explained by the 
fracture mechanics approach to brittle fracture [106,107]. Unlike the 

usual stresses analysis approach, fracture mechanics consider the 

amount of energy needed to form new fracture surface and allow 
initially stable crack growth from existing flaws until sufficient 

growth causes instability and component failure. This theory provides 
a means of characterizing the stress field in the vicinity of a crack 
tip and thus the driving force for crack growth. Using the theories 

of fracture mechanics, the conditions for both crack growth and 
critical crack size can be established [108]. 

Modern design aspects also include proof testing and 
appropriate non-destructive evaluation (NDE) methodology. In proof- 
testing, the components are exposed to selected stress levels which 
exceed those anticipated in service to assure a minimum strength for 
the component [99,107,109,110]. Proof-testing of individual 

components offers a valuable method of quality control such that the 
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inherently weaker components of a batch may be identified before they 

are used in service. The use of proof-testing and NDE procedures for 
finished components are necessary means of assuring some degree of 
reliability, but the approach to reliability improvements must be far 

more fundamental than reliance on these procedures. Instead, it must 
depend on total process control to ensure the avoidance of defect 

production [111). 

1.2 JUSTIFICATION FOR THE STUDY 

In view of the growing interest in the use of brittle 

materials for structural purposes, as pointed out in section 1.1.2, 

this requires new approaches to- design. This brittle material 
technology is new and will be unfamiliar to most designers who have 

occasion to use this class of material. Because of this, the designer 

usually follows the classical process of structural analysis 
associated with metallic materials. Ductile materials, however, flow 

or yield to some degree around flaws to redistribute stresses and 
reduce the danger of fracture. Brittle materials, on the other hand, 

cannot change shape. Flaws remain just as they were formed in the 

part, and concentrated stresses cannot be redistributed. The lack of 
ductility of brittle materials means that the local effects can no 
longer be tolerated. The second brittle characteristic is a wide 
scatter of strength values between nominally identical specimens due 
to the variation of defects. 

The design process with brittle materials has not been fully 

exploited. Numerous references on brittle materials, have paid much 
attention to strength variability, and some only to the fracture 

mechanics aspect. In addition to these techniques, the need for 

statistical strength data requires simulation modelling and analysis. 
A design engineer requires another tool that provides additional 
evidence of expected system productivity and efficiency in order to 
add to their intuitive feel. This approach has not been taken 
seriously by engineers before now. Engineers frequently have 
difficulty obtaining information that is both pertinent to the problem 
at hand and understandable to someone with limited statistical 
training (112). The crucial point in ceramics design is when the 
statistical analysis of the material is matched with stress analysis 
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of the design. The combined application of fracture mechanics and the 

empirical probabilistic method has recently been considered very 

sparse (102]. 

1.3 OBJECTIVES OF THE WORK 

The main objectives of this thesis are to give the designer 

a better understanding of the probabilistic approach and how it can be 

used to predict fracture strength of brittle materials and show the 

problems associated with such use. Two approaches have been taken in 

order to serve the above-mentioned purposes. Figure 1.1 shows a block 

diagram of the method of approach adopted for the thesis. 

1.3.1 Theoretical 

Some of the theories proposed for brittle materials are 

discussed in order to verify which should be used. Such 

considerations were evolved using stress determination. 

Since a most important principle of successful design with 

brittle materials is believed to be the use of stress analysis methods 

[113], finite element studies and analytical techniques in stress 
determination have been used extensively in this thesis. 

The problem of extensive data of extrapolation on the basis 

of the Weibull statistical analysis may be resolved by using the Monte 

Carlo method. This study is conducted to compare different techniques 

for the estimation of the parameters of probability distributions. 

1.3.2 Experimental 

An experimental programme which supports the theoretical 

approach has been carried out. This involved measuring the mean 
fracture strength and its variability in plaster specimens under 
various multiaxial stress systems at room temperature. Different 

shapes. of specimen and types of mechanical loading were used to 

achieve specimen failure as a result of well-defined stressing. 
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These tests are divided into two main groups. Group 1 

consists of failure tests. Group 2 is the fracture mechanics tests. 

1.4 LAYOUT OF THESIS 

The thesis is divided into six chapters. Chapter 1 gives an 
introduction to brittle materials, particularly ceramics. Chapter 2 

reviews literature which is available at this time on brittle 

materials. Considerations were given to the failure theories, 

probabilistic approaches to design and reliability. Chapter 3 

presents the theoretical and numerical analysis. Chapter 4 presents 
the experimental work. The analysis of results and discussion are 

presented in Chapter 5 while Chapter 6 presents the final conclusions. 

Numerical calculations, proofs and related matters are 
provided in Appendices at the end of this thesis. 
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CHAPTER 2 

LITERATURE SURVEY 

2.1 FAILURE THEORIES 

At present any discussion of material failure can take one of 
two forms; fracture mechanics, which attempts to explain in physical 
terms the details of the initiation and progression of failure in the 

material, or the failure theories, which define material strength 

under complex stress conditions, but which are based on gross 

considerations. 

The failure theories provide a quantitative statement of the 

stress conditions which will result in material failure, whether it be 

yielding or fracture. Such theories are based on overall 

considerations which are assumed to control material behaviour. These 

failure theories require empirical verification but they do provide 

quantitative data which can be used in design. This subject is 

therefore discussed here. 

2.1.1 Classical Theories 

Maximum Normal Stress Theory 

This theory assumes that the material will fracture when one 
of the principal stresses becomes equal to the uniaxial strength. 
With this theory the strength is not affected by principal stresses 
other than the maximum. The criterion makes no prediction of 
compression strength in terms of tensile sttength and both values must 
be determined experimentally from uniaxial tests. 

Coulomb-Mohr Theory 

The Coulomb-Mohr theory, sometimes called the internal 
friction theory, is based on the observations of slip lines, which are 
detectable on the surface of deformed metals. Mohr neglects the 
intermediate principal stress a2. A failure condition is represented 
by the major principal stress circle corresponding to cl and c3 and 
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plotted on r-a axes. A_ number of major principal stress circles, 

corresponding to failure determined experimentally for various 
combinations of a1 and a3, can be drawn and Mohr postulates that the 

envelope of all of these maximum principal stress circles is the 
limiting curve describing failure (Fig. 2.1). 

The simplest solution is to approximate the limiting envelope 
by a tangent to the tension and compression circles (Fig. 2.2). If we 

arrange the principal stresses so that v1>Q2>Q3, then the largest 

circle will be formed by aj and a3. These two stresses and the 

strength are related by the equation. 

ý1 a3 
+=1 

vt a 

where at = the uniaxial tensile strength 
ac - the uniaxial compressive strength. 

Griffith's Crack Theory 

Griffiths (1141 in 1924 proposed a theory of rupture for 

brittle solids in biaxial stress condition. He used the idea, derived 

from Inglis's work, by assuming a small crack whose surface has the 

form of an elliptic cylinder and that failure occurs when a critical 
tensile stress is reached on the boundary of the crack. 

The relationships between applied principal stresses ci and 

c2 and the uniaxial tensile strength are as follows: 

If 3vi + a2 is positive 

a1 m cr t 

If 3a + a2 is negative 

i Q1 Q2 Q1 C2 

- + 8 + 0 

at at at at 
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From the above expressions the uniaxial compression strength 
is predicted as eight times the uniaxial tensile strength. Comparing 
the prediction with the results of tests on brittle solids, he found 

that the compressive strength of cast iron is about 7 times the 

tensile strength. In tests on stone, the compressive strength is from 

7 to 11 times the tensile strength. 

2.1.2 Other Theories 

I Fisher Theory 

Fisher [115) proposed a criterion by modifying the distortion 

energy criterion. He assumed that graphite flakes could transmit 

compressive stresses and act as stress concentrating cavities with 

respect to tensile stresses. 

For tension-tension 

Ka1 aa 

For tension-compression 

(Ka1 )2- Kvl c2 + c2 2- Qc 2 

For compression-compression 
a12 - al Q2 + Q2 

iQ 
QC 

i 

where al : the maximum stress 
a2 : the minimum stress 
cý : the uniaxial compressive strength 

a 
K= the uniaxial compressive/tensile strength ratio. 

at 

The results show that his criterion can be made to fit the 
experimental evidence quite well, particularly in the first and fourth 
quadrant. By comparing different theories using his own data, Mair 
[116] concluded that Fisher's theory is simple and in general the most 
satisfactory, so did Clough and Shank [117]. 
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I Grassi and Cornet Theory 

Grassi and Cornet (118,119] investigated the fracture of grey 
cast iron using thin wall tubes, for various ratios of axial to 

tangential stress ranging from pure tension to pure compression. They 

proposed for the tension-compression quadrant 

vl vl c2 Cl 
-+-=1 

at ýt °c c 

In the tension-tension quadrant, the maximum-Normal Stress 

theory still apply. 

I Frishmuth and McLaughlin Theory 

Frishmuth and McLaughlin [120] have used the plastic limit 

load to analyse the failure of cast irons under three-dimensional 

stress states. They proposed the lower and upper bounds theory, based 

on the observations that considerable plastic flow occurs between 

microflaws prior to rupture. Good agreement is obtained with the 

results of other researchers in both the first and second quadrants. 

Shigley Theory 

Shigley [1211 found that both the Maximum-Normal Stress 
theory and the Coulomb-Mohr theory are identical in the first 

quadrant. He then modified the Mohr theory to predict failure of cast 
iron in the fourth quadrant. The tension cut-off point in this 

quadrant is at the point where the o2/ci ratio equals -1. The data 
from literature were plotted in the first quadrant with good 
agreement, but much better results were achieved in the tension- 
compression quadrant using his modification. 

I Shaw Theory 

Shaw et al. [122-1241 in their investigations on a number of 
brittle materials, found that their results are in good qualitative 
agreement with Griffith's results, but in poor quantitative agreement. 
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The main difference is the lack of agreement between theoretical and 

experimental values of the uniaxial compression tension ratio. Their 
tests showed that this ratio is within a range of 2.51 - 5.26 while 
the theoretical value is B. They proposed a new theory which assumes 
that the voids are circular in shapes and that the uniaxial 
compression-tension ratio will be 3. A better result is obtained 

using this theory. However, a wide range of the ratio of nominal 
fracture stress in uniaxial compression to that in uniaxial tension 

showed that this ratio is not predicted exactly by the theory. 

I Babel and Sines Theory 

Babel and Sines [1251 have extended the Griffith analysis to 

cracks of finite sharpness. Their theory can now predict a 
compressive strength of any value from three to eight times the 

tensile strength depending on the sharpness of the crack. 

For the first, and part of the fourth, quadrant: 

K-8 
ý1 a at a2 

K+4+4 

For the fourth quadrant: 

a=2 [2v2 -a+( a2 -8c. a2 )1/Z ] 
1 c 

The cross-over point between the above curves is given by: 

a2 3r +1 

cl r-1 

where a -K +2-2 
r$-_ 

b K-8 

c 
e Kc 

at 

aý: uniaxial compressive strength 

at: uniaxial tensile strength 
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I McClintock and Walsh Theory 

The variability of the strength ratio has also been studied 
by McClintock and Walsh [126). They modified the Griffith theory by 

proposing that it is possible for the cracks to close, these cracks 

then can carry normal stresses and also shear stresses due to 

friction. 

The condition for fracture after the cracks have closed is 

found to be 

cr 

,u (a3 + al -2 u) + (a, - a3) 1+ p2 4 at 

/1- 

Clt 

where al, c3 -: the principal stresses 

ýr the critical value of applied stress at which the 
crack closes 

at : the uniaxial tensile strength 

p: the friction coefficient for crack surface. 

This theory predicts a ratio of strength in simple 

compression to strength in simple tension of about ten. 

1 Paul and Mirandy Theory 

Paul and Mirandy [127) recently developed 'a fracture 

criterion which takes into account the three dimensional states of 

applied stress. The flaw is described as a flat triaxial ellipsoidal 
cavity. The initial fracture criterion in principal stress space, for 
isotropic brittle materials containing randomly oriented flaws, is 
developed: 

Ql - 

at 

Q3 
z+ 

2N12 
a1 + 

at 

a3 
+ N12 (N12 - 4) -0 

where N1 - 2(1-v) +A 
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2vd (F-E) 

E 1-d2 

b 
da - 

a 

cl, c3 : principal stresses 

v: Poisson's ratio 

a, b : principal semi-diameters of ellipsoid 

F, E : complete elliptic integrals of the 1st and 2nd 

kinds, respectively, having modulus n- (1-d2)1/2 

frt/2 
_ F- [1-n2 sin2 ']1/2 d+ 

0 

E-[ 1-n2 sin2 +] 1/2 d+ 

0 

I Others 

The results from tests on other materials have shown 
different behaviour from those obtained from tests on cast iron. Ely 
[128] used a modified maximum strain energy theory to fit his data on 
tubular graphite and magnesium silicate. The results show a weakening 
effect in the tension-tension quadrant. The ratios of compression to 
tension are approximately four for graphite and six for magnesium 
silicate. Tubular specimens made of reaction-sintered silicon carbide 
were also tested by Priddle [129], again his results show that the 
biaxial tension is smaller than the uniaxial tension. The work on 
graphite by Jortner (130] was in accordance with Ely's results. The 
average tensile stress at failure in the biaxial tension quadrant is 
less than that in uniaxial tension. 

There are other theories proposed for brittle failure, such 
as the Coffin theory [131], the modified Tsai Wu theory [1321, the 
Sato biaxial failure theory [133], the mode II fracture theory [134] 
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but they are not discussed here either because the resultant 

relationship is too complex and difficult to use, or because they are 

seen to be questionable on the basis of the available experimental 
data. 

2.2 STATISTICAL ANALYSIS 

Weibull Analysis 

According to Freudenthal (135], three models of the 

distribution function of brittle fracture can be formulated: 

(1) The uniform defect model produces a gamma distribution. 

(2) The classical bundle model produces a Gaussian 

distribution. 

(3) The weakest link model produces the third asymptotic 
distribution of smallest values. 

The first and second asymptotic distributions are described 

in references [136,137]. The third asymptotic distribution for 

minimum values is the Weibull distribution which is explained in 

detail elsewhere [138,139]. 

In most cases of fracture of truly brittle materials, 
(ceramic, glass, etc., ) the third asymptotic distribution of smallest 
values will provide the best representation of the test results and 
the most reliable basis for extrapolation. 

The Weibull theory [140-1421 proposed that there is a certain 

probability of fracture associated with every unit volume in a body. 

This probability is a function of the state of stress in the element. 
It is important to point out that the Weibull theory assumes that 
fracture will take place under the action of tensile stresses. 
Furthermore the theory postulates that the fracture of a body occurs 
simultaneously with the fracture of any of its elements. This 
assumption is based on the idea of the weakest link concept, i. e., the 
failure of one link leads to total failure. 
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Consider a brittle material having N links in the sense of 
the weakest link theory. Let F1 (a) denote the probability of failure 

of a single link under a stress a. The corresponding probability of 

survival is therefore 1-F1(Q). 

For N links, the overall probability of survival is 1-FN(c) 

(1-F1(c)]N = exp [-NF1(a)] for N»0. This follows from the standard 

result Lim (1-x/n)" = exp (-x) when n-. For an isotropic material, N 

will be directly proportional to the volume of the structure, so that 

1- FN(a) = exp [-Vn(v)] 

where n(a) _ 
NF, (c) 

V 

Therefore, the probability of failure can be expressed as 

Pf = FN(Q) =1- exp [-V. n(a)1 (2.1) 

Weibull suggested the following form for n(a) for failure 

under uniform tension: 

m Q-Q 
u 

n(Q) Ci Qu 

(2.2) 

_Q CV 

where vu is the stress at which there is zero probability of 
fracture and is called the location parameter or 
the threshold stress. 

ö is the characteristic value and is called the scale 
parameter. 

m is the Weibull modulus or the shape parameter. It is 

a measure of the variability of the fracture stress of 
the specimens about the mean value c. A low value of 
m implies a high spread of fracture stress about the 
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mean value. It can also be related to the width of 
the probability density curve and the steepness of 
this curve. 

Equations (2.1) and (2.2) yield 

a-a 
Pr exp 

I-V (Q 

°m (2.3) 

=o Qü 

or, more generally, in the case of non-uniform uniaxial tensile 
stresses, 

- 
Pt = 1-exp -TV 

QQ°m 
dV 

0 

(2.4) 

Equation (2.3) is commonly referred as the three-parameter Weibull 

cumulative distribution function (cdf) and it has been shown that this 

satisfies all the necessary physical and statistical conditions. 

The probability density function (pdf) of a random variable a 
having the three-parameter Weibull distribution is: 

(Q-a)m-1 Q- m 

f(v) = M. °m exp -V 
" (2.5) 

Qv 00 

The three-parameter Weibull distribution function is not used 
frequently because a lot of samples are required to obtain good 
accuracy. 

Other commonly used forms of the Weibull function are the 
two-parameter forms which are shown as equations (2.6) and (2.7). The 
probability density function (pdf) of a random variable a having the 
two-parameter Weibull distribution is: 

m-1 v 
f(c) a m. exp -V 

Qm 
(2.6) m Qo Qa 
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and the cumulative distribution function (cdf) is: 

Q 

0m 

Pf a F(v) -1- exp 
[_v ( 

(2.7) 
00)a 

It is convenient to express the probability of failure in 

terms of non-dimensional parameters. In order to do that, a mean 

uniaxial strength c is defined as the arithmetic mean of the sample 

strengths. 

a1 
QsQ+ I' i 

V 

O-1 

um /m 

where r is the gamma function. 

when Q-0, equation (2.3) can be written as 
mc 

P! -1 -exp -t 1+1-m-, c>0 (2.8) 
mv 

0 , v<0 

The Weibull distribution is very flexible, and by appropriate 
selection of the parameters, the distribution can assume a wide 

variety of shapes. Several Weibu]. l distributions are shown in Figures 
2.3 and 2.4. Figure 2.3(a) shows the cdf curves with ö-l and 

m-1,2,3,4 while Figure 2.3(b) shows the cdf curves with m-2 and 

v -1,2,3,4. Figure 2.4 shows the probability distribution function 
0 

curves, i. e., equation (2.6). Figure 2.4(a) shows the pdf curves with 

ä-1 and m-1,2,3,4. Figure 2.4(b) shows the pdf curves with m-2 and 

ö-1,2,3,4. 

The Weibull distribution has been suggested as a time-to- 
failure model on empirical grounds, and satisfactory representations 
have been obtained for electron tubes, relays, ball bearings and other 
types of failure data (137,143). 
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I Dukes Model 

From the original work by Weibull (140-142) the probability 

of failure of a structural component is given by: 

Pt a1- exp (-B) 

where B is the risk of rupture. 

Dukes (144) gives an integral formulation of the Weibull 

approach which is limited to the area where the stress is positive 
(Fig. 2.5(a)). 

B VC1 mI- IC 
I 

0 

1 
where K 

m 
a 0 

m: Weibull modulus 

ö: characteristic strength 

mi -m-1 

cu : threshold stress 

V: volume of the element 

Qccl 
if cosy ¢ cost `Y +? cost + sine `Y + -' sine +-m= G1 

a1 a1 

. cost d+ dY 

I=I 
0 

C2 F C3 ü=0 

I Batdorf Model 

A shortcoming of the Weibull approach to the concept of 
probability of failure is the assumption of the Principle of 
Independent Action as a criterion to describe the failure mechanism of 
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a brittle material under a multiaxial state of stress. His theory 

made no explicit assumption about the nature of the flaws. 

Batdorf and Crose [145] and Batdorf and Heinisch [146] have 

proposed an alternative model in which principal stresses interact and 
specific types of cracks can explicitly be considered. According to 

this model, if one knows the type of flaw predominant in the material 

of interest and the most likely failure mechanism, the probability of 
failure expression for a particular stress state can be written taking 
into account these characteristics. 

Consider a body in which the predominant failure-causing 
flaws are distributed throughout its volume. The probability of 
failure of a uniformly stressed material element of volume AV can be 

written as 

Pf : Pi . P2 

where P1 is the probability of existence in AV of a crack 
having a critical stress in the range of ccr to 

act + dcý 
r. 

P2 is the probability that a crack of critical stress 
vor will be oriented in a direction such that an 
effective stress a. equals or exceeds fit. 

Qr is defined as the remote, uniaxial, normal fracture 

stress of a given crack. 

Fracture will occur when the effective stress (a function of 
chosen crack configuration and fracture criterion) exceeds ocr for a 
particular crack. P1 has the form: 

dN 
P - AV -( do l cr 

dc cr 
cr 

and 

W 
P2 _- 

4n 
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where N(ac) is the crack density function 

w is the solid angle in principal stress 

space containing all the crack 

orientations for which a>a 

Using the weakest link theory, the overall failure probability of a 

structure of volume V can be calculated from: 

W dN 
Pf -1-exp dV -" - dar 

4n dc 
V0 `_ 

The crack density function N(ccr) is a material constant and 
is independent of stress state. It is usually expressed as a power 
function of a, that is, N(ccr) aK Vii, where the parameters K and m 

can be evaluated from experimental data using uniaxial or equibiaxial 
tension specimens. 

I Matthews and Evans Model 

Uniaxial Fracture of Brittle Material 

Matthews et al. [147] and Evans and Jones [148] presented an 

alternative technique for the treatment of failure under uniaxial 
tension based on the same Weakest Link Theory. This approach does not 

require prior assumption about the form of the flaw strength 
distribution term of the probability of failure 

M Q- Q 
(For example, in the Weibull Model of Section 2.2) 

c 0 
This approach was pioneered by Matthews et al. [147] in their 

statistical analysis of three-point flexure test failure data. Evans 
and Jones [148] have established a theory that allows a probability of 
failure analysis to be carried out on a structure starting from four- 

point bend test failure data. For brevity, it is referred to here as 
the Matthews-Evans Model. 
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The probability of fracture of a body of volume V can be 

determined 

c 

Pt = 1-P5 = 1-exp - 

ldV Jg 
(a) dQ 

vo 

where g(a)da is the number of flaws per unit volume having a strength 

between a and a+ da. Note that in uniaxial tension, 

m Q-ýu 

g(c)dc for the Weibull model is 

00 

In the case of four-point bending, assuming volume- 

distributed flaws (see Figure 2.6), the resultant expression for g( m) 
is: 

1 
Cý(a )s 2&'(a )+m ýýý( m) 

2bL1 d 

where m is the maximum tensile stress 

&' and E. " denote the first and second derivatives of ý( m) 

with respect to m, respectively. 

The fracture probability term &(cm) is 

ý(%) - -Ln (1-Pf ) 

Similarly, for surface-distributed flaws, 

ý'(am) 

9(m) 
2bL1 

Multiaxial State of Stress 

Evans [149,150] has derived a theory to predict the 
probability of failure of brittle structures subjected to multiaxial 
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states of stress, starting from basic principles of fracture mechanics 

and using some of the elements of the Matthews-Evans model. His 

theory is based on the criterion of Coplanar Strain Energy Release 

Rate. Crack extension (and hence, failure) occurs when the maximum 
Coplanar Strain Energy Release Rate, G, reaches a critical value, G. 

(1-v2) 122 
aE+ %11 +G KI 

1-v 
Ks zz 

where E is the Young's modulus 

v is the Poisson's ratio 

Ki is the stress intensity factor 

I: opening mode 

II : Sliding mode 

III : Tearing mode 

According to the present theory, propagation will occur when 

4 (1-v2) 4T2 
G-G-a v2 + '° (2.9) 

nE 2-v)21 

where a is the penny-shaped flaw radius 

is the stress component normal to the crack plane 

is the maximum in-plane shear 

The crack extension criterion is used to obtain three basic 
tensile fracture conditions of practical importance in the tension- 
tension quadrant (equitriaxial, equibiaxial, and uniaxial). 

According to Evans, the triaxial strength distribution 
function is 

mm 
g(aT` = 1T_au) 

' 

CTT 

. 1- um 

% 1ö QT 
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where cT is the strength in equitriaxial tension 

ü is the lower bound pertinent to the flaw population 

c is the scale factor 
0 

m is the Weibull modulus 

The biaxial distribution is 

TV2 
vH ]n, 

2a 
4sir 2a 

QB 
cu 

()-- (cos a� COs +-- g$ 
ö (2-v) Z Cß 

0 

4sin2 a (Cosa 
Costa + 

(2-v) 2" cosy da (2.10) 

i. e., o 
g3(ce) -B IH m, -' ,v (2.11) 

ö 

where oe is the strength in biaxial tension 

v is the Poisson's ratio 

« is the angle between the plane containing 

the two principal orientations and the 

flaw normal (Figure 2.7). 

A similar functional distribution can be obtained for uniaxial tension 

Qt s1A2 ß Cu 

gt (ct) cosß + 

/cos2 

ß4- 
(2-v) 2 ö ce 

4sin2 ß 
cosß 

/O2ß 

+ sinßdß (2.12) 
(2-v)2 

ýt pü 

gt (ct) m-" It m, -v (2.13) 
co of 
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where at is the strength in uniaxial tension 

13 is the angle between the stress axis and the 

element (Figure 2.8). 

For failure stresses much greater than the threshold stress ü, the 

relative survival probabilities at a given strength level, for samples 

of equivalent stressed volume, are: 

1-Pf (VT) - [1-Pf (oB) ]111B (m) - [1-Pf (at) ]', 'It (m) (2.14) 

I Matsuo Model 

Matsuo (151,152] has extended the Weibull distribution 
function which takes into account both volumetric and surface cracks. 
The surface cracks are assumed to be semi-elliptical cracks and the 

penny-shaped cracks are within the material. 

The multiaxial distribution function having the three- 

pararameter Weibull distribution is (Figure 2.5(a) and (b)). 

Pf - 1-exp - 
J(K JA%, 

m1 dA) dV- 
B(K* J:: ' 

m2 dl )d 

where n, - sine p (a cost 8) + a2 sin2 e) + a3 cos2 p 

2m1 +1 
K 

2 na01" 

R* s ýB(Ilt2 + 21 
1) 

ý02M2 

B(, ) is a Beta function 

dA - sinp dp dA 

dA* = dir 

ö and m are Weibull parameters 



-31- 

It is found that the Strain Energy Release Rate criterion is 
better than the Maximum-Normal Stress criterion for calculating the 
fracture loci. 

By taking the shear stress into consideration [153,154] 

Matsuo also showed that the expected fracture stresses are higher for 

shear sensitive cracks than those of shear insensitive ones. This was 
confirmed by the work of Alpa [155]. 

Jayatilaka and Trustrum Model 

Jayatilaka and Trustrum [156-160] developed a theory for the 
failure of brittle materials using the properties of the flaw size 
distribution and the stress necessary to fracture an inclined crack. 

The strength, a, of a brittle material is given by 

2 

a2 a- K1 U(y) 
R 

where a is the semi-crack length 

y is the crack angle 

KIC is the critical stress intensity factor. 

For brittle materials under tensile loading, the fracture 
strength follows the Weibull analysis while in compression a normal 
distribution is more appropriate, based on the assumption that a 
certain proportion of cracks must fail prior to final fracture. 

I Hunt and McCartney Model 

Hunt and McCartney [161,162] have recently developed a 
statistical theory which predicts the probability of structural 
failure, at a given stress, from the knowledge of the expected defect 
population and other material properties. The probability of failure 
is given by: 
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Pt p(L)dL = 1-exp (-U(L)} 
0 

where p(L) is the probability of failure at a nominal applied stress 

in the range L4L+ SL, and 

co 

U(L) - 
I[ J 

q(x) dV 

V x(o(r)) 

where a(r) defines the maximum principal stress at a position r in the 
body. q(x)dx is the number of defects having size in the range x4x 
+ 8x. 

The theory has been studied extensively by both theoretical 
(163] and experimental approaches [164-166]. It is shown that the 
theory offers significant advantages for tool design [165) and failure 
rate prediction [167]. 

2.3 C ow3micx 

2.3.1 Failure Theories 

Some of the theories proposed for brittle failure are 
discussed in section 2.1. They are summarized in Figs. 2.9 to 2.11 
for biaxial stress states. Fig. 2.9 shows a comparison of most of the 
currently used failure theories [125]. Experimental data of Mair 
[116] for grey cast iron with some failure criteria [120] is shown in 
Fig. 2.10. Fig. 2.11 illustrates results obtained by Broutman and 
Cornish [169] on ceramics. 

For biaxial tension, all of the theories except that of Babel 
and Sines give results identical with those obtained from the maximum 
normal stress concept, which slightly overestimates the fracture 
stress for equi-biaxial tension. 
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For tension-compression, two theories, one of Frishmuth and 
the other of Paul appear to fit the experimental data well. All other 
theories underestimate the fracture stress. 

None of the theories agrees with all of the data in the 

compression-compression quadrant. This may be explained by Mair's 
difficulty in experimentally ascertaining exact failure loads under 
biaxial compression [116]. 

Further results of various investigators are given in Figs. 

2.12 and 2.13. Fig. 2.12 shows the results which have been collected 
from reference [1681 for ceramics in the range 1.0 ý a2/cl >-4. Fig. 

2.13 summarizes the biaxial strength data for graphite. Most 

researchers report weakening in the tension-tension quadrant, while 

neither strengthening nor weakening predominate among results reported 
for the tension-compression quadrant. The biaxial weakening observed 
in the tension-tension quadrant by most investigators is consistent 

with statistical fracture theory. 

2.3.2 Statistical Analysis 

As a result of the significant degree of variability in the 

strength of most brittle materials, it is necessary to analyze 
fracture of these materials from a statistical point of view. Various 

statistical models for the analysis of failure of brittle materials 
have been reviewed. 

Attempts to specify the strength of brittle materials, as a 
function of failure probability, were made by Weibull in 1939, and a 
great deal of additional work has been conducted since. Weibull 
established a model to describe a material containing flaws of random 
size and distribution. His model has a very simple form, and it 

generally provides an accurate characterization of failure under 
uniaxial tension. He assumed, further, that compressive stresses and 
shear stresses do not contribute to the probability of failure. The 
two assumptions are the drawbacks of the Weibull theory. The 
asymptotic forms which had previously been proposed do not necessarily 
characterize the real distributions for various materials. The latter 
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approach is inherently not conservative due to the fact that not only 
the contributions to failure from each individual principal stress 

component are considered, neglecting the effects of combined principal 

stresses. Recently, other approaches have been suggested by Batdorf 

et al. [145,146]. Evans [148-150), and Matsuo [151-154] marking a 

significant step forward in the statistical theory of brittle fracture 

under multiaxial stress states. 
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NUMERICAL ANALYSIS 

3.1 FAILURE THEORIES 

It has long been observed that the nature of a stress state 

in a brittle body is as significant as its magnitude in so far as 

fracture is concerned. 

Consideration is given in this section to the correlation of 

fracture data with different failure theories. 

3.1.1 Maximum Normal Stress Theory 

The phenomenological theory most commonly applied to brittle 

materials, the maximum Normal Stress Theory, postulates that fracture 

will occur when the maximum principal stress in a body is equal to the 

uniaxial strength. This theory has been found to agree qualitatively 

with fracture data on brittle materials at normal temperatures and 

pressures. 

3.1.2 Coulomb-Mohr Theory 

This criterion of failure has been reviewed in Chapter Two. 

For simplicity, only the two-dimensional stress system will be 

considered, i. e., c3=0. It can be shown that cl can be related by 

means of the expression: 

1 a2 
1 

at CIe 

Where at and cý are the uniaxial tensile and uniaxial 

compressive strengths, respectively. 

It must be noted that a2 is the minimum principal stress in 

this case. When a, and a2 are both tensile stresses, the minimum 
principal stress is a3, which is equal to zero. Therefore fracture 

occurs when the larger of the two principal stresses reaches the value 
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ct .A similar analysis can be carried out when both vl and c2 are 

compressive. The failure diagram is given in Fig. 3.1. 

3.1.3 Griffith Theory 

Griffith's theory is based on the fact that rupture occurs 

when the stress at any point on the surface of the crack reaches a 

specific tensile stress. The effects of other cracks and of the 

distribution of these cracks in a body are neglected. In a biaxial 

stress system, his theory is based on the formula: 

(a1-c2 )2 +8 ct (a1 + c2) a0 

Fig. 3.1 shows the failure diagram according to Griffith's 

theory. 

3.1.4 Weibull Theory 

Weibull proposed that there is a certain probability of 
fracture associated with every unit volume in a body, and that this 

probability is a function of the state of stress in the element. 
Furthermore, fracture may occur on one of an infinite number of planes 
in the element. The probability function is therefore associated with 
all possible modes of failure of the element. 

It was pointed out that the fracture strength of a body can 
be defined in terms of B', the risk of fracture at each point in the 
body, and that B' can be of the form: 

B' - jj ni(a) cos+. d+. dY 

where nl(a) is the material function, a denotes the stress state at 
the point at which B' is to be evaluated, and + and Y are defined in 
Fig. 2.5(a). If each point in a body is subjected to a system of 
biaxial stresses, the normal stress, a, in a particular direction may 
be defined in terms of the principal stresses, of and a2 by the 
relation: 

C= cost $ (a1 cos2 T+ C2 sin2 ýY) 
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Furthermore, if nl(a) is assumed to be of the form 

ni(a) - Klc 

then the risk of fracture, B', becomes 

it/ ö 

2Ki Cost m+1 $. dý (ci cost Y+ c2 sin2 `Y)m . dT 

C Ir 
0 

where 2m +1 
K1 K 

2n 

K constant 

m Weibull modulus 

If cl and a2 are both tensile stresses 

R 

T0 2 

If one of the principal stresses is negative or compressive. 

tan ö- 
al 

Z 

If the ratio of the principal stresses is defined as 

2 
Q2 

C -- 
a1 

then 
n/2 To 

B' - 2K1 cl" cost 2m+1 +dý (cos2 V+ C2 sin2 `Y)" d`Y 
10 

-YO 

The total risk of rupture, B of a body of a volume, V, becomes 
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B- 

V 

B'dV - B'V 

The Weibull Theory was analysed in this work and a computer 

programme was developed for predicting the failure of plaster under 

combined stresses. The results of this analysis are presented in 

Table 3.1 and Fig. 3.1. The methods used in the determination of the 

theory for biaxial stresses on plaster are described in detail in 

Appendix A. 

3.1.5 Stanley Theory 

Stanley and Sivill[171] have recently proposed a theory which 

is based on the Independent Action Criterion, i. e., the effect of any 

one of the principal stresses is independent of the other. They then 

defined an equivalent stress function for the biaxial stress state in 

the form: 

K 

"qs 

CT 1 
a 

(at) 

K 
Q2 

H(Q2i 

where H(a) is a step function equal to 1 for a tensile (positive), 

and to minus the ratio of the compressive to the tensile 

strengths, for a compressive (negative). 

K is a material parameter. 

This theory was proposed as a satisfactory mathematical 
description of experimental biaxial failure data in the tension- 
tension quadrant. Its validity in other quadrants has not been tested 
[171]. 

This function is plotted in Fig. 3.1 for values of K-m-6.6727 

and H(a)-ac/ot - -2.3111. In the tension-tension quadrant, the theory 

conforms with the experimental results of ring-on-ring disc tests. In 
the tension-compression quadrant, the usefulness of the theory as a 



-39- 

TABLE 3.1 RISK OF ER11C1 JRE FOR PLASTER SUBJECT! ) 

'10 BIAXIAL STRESSES. M-7 

Principal Stress 
Ratio 

C' s a2 /Cl 

Risk 
of Fracture 

B 

vl 
- 
Qt 

c2 
- 
Qt 

1.0 4.7739 1.25 1.25 
0.8 2.5839 1.15 0.92 
0.667 1.9213 1.10 0.73 
0.333 1.2512 1.03 0.34 
0.0 1.0000 1.00 0.00 

-0.333 0.8582 0.98 -0.33 
-0.667 0.7634 0.96 -0.64 
-0.8 0.7336 0.96 -0.77 
-1.0 0.6947 0.95 -0.95 
-2.0 0.5641 0.92 -1.84 
-3.0 0.4873 0.90 -2.71 
-4.0 0.4352 0.89 -3.55 
-5.0 0.3969 0.88 -4.38 
-6.0 0.3672 0.87 -5.20 
-7.0 0.3432 0.86 -6.01 
-8.0 0.3235 0.85 -6.81 
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design tool was validated by the test data yielded by the Brazilian 
disc tests. Furthermore, with the aid of this theory a prediction of 
the compressive strength, in terms of the equivalent strength, can be 

made. This cut-off has never been predicted by other theories. 

3.2 TEE EFFECF OF STRESS STATE CK FAILURE 

3.2.1 Biaxial Tension 

*Weibull Analysis of Failure 

I Uniaxial State of Stress 

The primary purpose of a uniaxial test is to determine the 

value of distribution parameters which are material properties and 

which can later be used to predict the probability of failure of a 

structural component under different loading conditions. The Weibull 
distribution parameters can be obtained by calculating the closest 
Weibull distribution curve fit to the experimental results for 

uniaxial data (see section 3.3.3) 

From section 3.3.3 

m-6.6723 
co - 0.6461 

The two-parameter Weibull probability of failure expression 
is: 

P= = 1-exp (-6.9696 x 10- 6 Q6.6 
723 

The experimental results and the distribution function are 
shown in Fig. 4.12. 

I Multiaxial State of Stress 

The stress distribution in a ring-on-ring disc test is 
investigated in section 4.5. The next step in this analysis of 
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statistical failure prediction models for brittle materials is to 

compare the probability of failure corresponding to a multiaxial state 

of stress, based on uniaxial fracture data with experimental results 
for the same state of stress. For reasons of simplicity, a biaxial 

state of stress is a convenient choice. 

From the previous section, the probability of failure under 
biaxial stress can be written as: 

P= 1-exp [-B'] 

where 
ö 

B' - 2K1 
Jcos2m+1 

p (cl cost `Y + (72 sin2 `Y)m dp d! 

-70 0 

If cl and c2 are both tensile stresses 

n/2 n/2 
c 

B' - 4K1 a, Cost m+ 1 pdp (Cos 2T+? sine Y)m dY 

00 ai 

For equibiaxial tension with Weibull modulus m-6.6723, K1 - 
(2m+1)K/2n and K-6.9696 x 10-6, the probability of failure 
distribution function for the ring-on-ring disc test is: 

1 Pr - 1-exp [-3.3276 x 10-5 6.6723 

This equation is plotted in Fig. 3.2 together with the 
experimental results of section 4.5. 

* Freudenthal Analysis 

A frequently used approximate treatment of fracture 
statistics for a multiaxial stress state assumes that the probability 
of survival is the product of the probabilities of survival of the 
structure for the principal stresses applied individually (135], i. e., 
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PS(Q1,03 )= PS (a a2 )*pig (v3) 

where P. is the probability of survival 

Qi is the principal stress 

For the case of equibiaxial tension, the above equation 

reduces to 

PS (c, a) _[ P$ (c, 0)1 

or 
Ln P. (c, c) =2 Ln P8 (v º 0) 

From uniaxial failure data (section 3.2.2) 

Pf(a, O) - 1-P, (Q, 0) - 1-exp(-6.9696 x 1076 a 6.6723 ) 

Hence 

In P9(o, 0) - -6.9696 x 10-6 a 6.6723 

Ln P. (v, a) - -1.3939 x 10-5 a 6.6723 

The probability of failure for equibiaxial tension becomes 

Pf (Q, a) - 1-Pe (c, c) - 1-exp(-1.3939 x 10-5 a6 '6723) 

This approximation is plotted in Fig. 3.3 together with the 

experimental results of the ring-on-ring disc test of section 4.5. 

*Batdorf Analysis 

According to the Batdorf model (section 2.2), the probability 

of survival can be shown to be: 

dN(O` 
PB exp - dV -"r d" 

r 4n dvc 
r 
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where vý" is the critical stress, defined as the remote tensile 

stress that will cause fracture when applied normal 
to the crack plane. 

N(acr)is the crack density function 

is the solid angle in the principal stress space 

enclosing the normals to crack planes so that 

an effective stress, e, which is a function of 
the principal stresses and crack orientation, 
exceeds cc _. 

For analytical simplicity, the crack size distribution 

characterizing the volume flaws is assumed to be of the form 

N Qýr Ka in 
r 

then 

where 

Ps(v, c) - exp (-VKd j 

W 
PS (c, 0) - exp [-VKm - cý r' 1 doer a exp [ -VK' v] 

n 
0 

W 

Ký Km -x-l dx 
n C 

cr Xý 
C 

The relation between uniaxial and equibiaxial fracture 

statistics can thus be expressed in the form: 

Ln Ps(a, a) Kw 
[m -x -' CIX a-a 

Ln Ps (a, O) K' it 
0 
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and is shown in Fig. 3.4 for different fracture criteria (172]. 

Curves 1 to 3 represent the Normal Stress criterion. Curve 2 is for 

Griffith cracks while curve 3 is for penny-shaped cracks. Curves 4 

and 5 correspond to the Strain Energy Release Rate criterion with 

curve 4 for Griffith cracks and curve 5 for penny-shaped cracks. 

Curves 6 and 7 used the Energy Density theory while curve 8 is 

obtained from Griffith's stress criterion. Curves 6 and 7 are for 

Griffith and penny-shaped cracks, respectively. 

These curves can now be used to analyse the experimental 

results of ring-on-ring disc tests of section 4.5. The uniaxial data 

for four-point beam bend tests are taken as given (section 3.2.2). 

Pf (c, 0) a 1-Ps (v, 0) a 1-exp (-6.9696 x 10- 6 a6.6723 ) 

With the Weibull modulus ma6.6723, the K/K' ratios for 

various fracture criteria may be found. The corresponding equibiaxial 
fracture probability expressions are: 

curve 1: Pt = 1-exp(-3.2548 x 10-s a 6.6123) 

curve 2: Pt a 1-exp(-2.8227 x 10-5 Q6.6723 
) 

curve 3: P= - 1-exp(-2.6833 x 10-s a6.6723 

curve 4: P! a 1-exp(-2.3345 x 10-5 a6.6723) 

curve 5: Pf a 1-exp(-2.0560 x 10-5 a6 '6723 

curve 6: Pf = 1-exp(-2.0909 x 10-5 a6.6723) 

curve 7: P! a 1-exp(-1.6727 x 10-5 a6.6723) 

curve 8: P= = 1-exp(-1.2685 x 10-5 Q6.6723 ) 

These expressions are plotted in Figs. 3.5 and 3.6 with the 
experimental data on equibiaxial bending of plaster discs. As 
expected, the Energy Density criterion leads to fairly good agreement 
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with experiment for the case of penny-shaped cracks (curve 7). A 

similar result was also obtained by Batdorf himself in analysing 

various experimental results from the literature (172]. 

* Matthews and Evans Analysis 

Matthews and Evans' approach for the statistical analysis of 
fracture under a multiaxial state of stress (section 2.2) was used to 

analyse the fracture data of ring-on-ring disc tests. 

Two functional relations for g(a) are thus needed in order to 

proceed with the analysis. 

The biaxial distribution 

aB ü 
9B (aß) =" IB Im, -. V 

ao aB 

and the uniaxial distribution 

m 

gt ( Qt )a 
crt 

it iRý 
uV 

Ö at 

A computer programme was written which incorporates the 
subroutine D+1AKF of the NAG Library [170). This is an adaptive 
integrator, using the Gaussian quadrature which calculates an 
approximation to the integrals of IB (Equation 2.10) and It (Equation 
2.12). This subroutine is suitable for non-singular oscillating 
integrands. Values of IB obtained for a range of ü/a3 for v=0.2 with 
m as variable are plotted in Fig. 3.7. Similarly, values of It 
obtained for a range of ü/at are shown in Fig. 3.9. Values of IB and 
It for a range of m when Q /v8 and au/ot equal 0 are plotted in Fig. 
3.8. 

From uniaxial data 

Pt (Q, 0) a 1-Pa (Q, 0) - 1-exp(-6.9696 x 10- 6 a6 '6723) 
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with the values of IB and it obtained from Fig. 3.9 and equation 
(2.14) of section 2.2, the probability of failure expression for 

equibiaxial tension is 

Pf(Q, Q) = 1- [exp(-6.9696 x 10-6 Q6.6723) ]3.3559 

Similarly, for equitriaxial tension 

Pf (C, C, Q) = 1- (exp(-6.9696 x 10-6 06.6723) 17.5586 

These expressions are compared with the measured equibiaxial 

strengths of ring-on-ring disc tests in Fig. 3.10. This model under- 

estimates the equibiaxial strengths. 

'Matsuo Analysis 

By taking the shear stresses into account, Matsuo [1531 

obtained the expression for the probability of failure in equibiaxial 
tension 

Pt (v, o) - 1-exp (- V I2 
Qm 
-I 
c 0 

where ö is the total volume 

co is the scale parameter 

m is the Weibull modulus 

n/2 
4 ]M/2 

12 sine p+2 cost p "coe p sinp dp 

o 
(2-v) 

Where v is the Poisson's ratio 

p is the angle defined in Fig. 2.5 (p - 90°-+) 

From the experimental data of Chapter Four: 

m-6.6723 
%°0.6461 
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V 1.9635 x 10-6 m3 0 

The value of I was obtained for X0.2 from a similar 
computer programme to t? at described in the previous section. 

12 a 0.4761 

The equibiaxial probability of failure distribution function 

is given by: 

Pf(a, a) - 1-exp(-1.7248 x 10-5 a 6'6723) 

This equation is plotted in Fig. 3.11 together with the 

experimental results of ring-on-ring disc tests. 

3.2.2 Uniaxial Compression 

Stanley Analysis of Failure 

It is well known that brittle materials are often used as a 
structural material in compression, rather than in tension, since 
tension can give rise to catastrophic failure. The Weibull analysis 
has been extended by Stanley et al. [1731 to brittle materials 
subjected to uniaxial compression by defining a step function: 

H(o) -1 For positive (tensile) values of a. 

- -a For negative (compressive) values of c. 

where a is the ratio of compressive to tensile strength. 

V 
PL - 1-exp -r 1+ -1 

(-j 
- 

M cf.. v (c) 

where r is the gamma function 

m is the Weibull modulus 

cis is the mean tensile failure stress 
of unit volume of the material 
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V is the component volume 

v is the unit volume 

Using values of ms6.6723, nom - 5.5338 MPa, the 

probability of failure of a uniaxial compression test was obtained 

from Appendix B. 

PL -1 -exp[-1.4899 x 10-6 a6.67231 

Fig. 3.12 plots the above equation with the experimental data 

from the uniaxial compression tests of section 4.7. 

3.2.3 Tension-Compression 

Stanley et al. [171,173,176] have developed an equation to 

cover the case of a component subjected to non-uniform multiaxial 

stresses, which may include compressive stresses. 

P= 1-exp -I1I 
ncm V 

EýVý 
m of 

vV 

where 
()K m/K 1Qm1Q )K 02 

E(V)- -ý dV- -1 dV 
VV Gnom VV 

LnomH(Ql) 

nomH(Qi ) 

m is the Weibull modulus 

Qnom is a nominal stress 

Urv is the mean tensile fracture stress of unit volume 
of the material (i. e., the unit tensile strength) 

V is the volume of the component 

v is the unit volume 

E(V) is the stress integral 

a* is the equivalent stress 

al, a2, c3 are the principal stresses 
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An alternative assumption is that fracture always indicates 

on the surface of the component. This assumption leads to an equation 

of the form: 

Pt al -exp 
)3' 

--ý 
nom 

mA 

E(A) 
m afa a 

where 
1xQK m/K 

E(A) a-1+2 dA 
A norH(i1) nomý2 

A 

A is the surface of the component 

cta is the mean tensile fracture stress of unit 
surface area of the material 

Finite element stress calculations were performed using the 

PAFEC computing package (see section 4.6). Stress and model geometry 
data were stored in output files for subsequent stress integral 

calculations. A post-processing computer code was developed and 

employed to access the stored finite element results on an, element by 

element, basis. To improve the accuracy of the stress integral 

calculation, the integration was actually performed over the 

integration points of the model elements. 

The Brazilian disc test was selected for evaluating the 

accuracy of the failure prediction methodology described above. To 
determine specimen failure probabilities using the Stanley model, 
different parameters are required. These parameters were computed in 

Appendices C and D. 

The probability of failure assuming volume flaws can be 

expressed as: 

Pt - 1.0-exp 1-1.035 äom6.67231 

For surface-distributed flaws 
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Pf = 1-exp [-4.906 x 10-4 vnom6.6723 1 

Both equations are plotted in Fig. 3.13 together with the 

results of section 4.6.4. There is a substantial discrepancy between 

predicted results and experimental data. 

3.3 EVALU&TICN OF WEIBULL PARAMETERS 

It has been found that the distribution function that best 

describes the test results is that due to Weibull, as mentioned in 

Chapter Two. 

If flaws are volume distributed, the Weibull probability of 

failure equation can be written: 

-o 
Pt = 1-exp um 

-V 
cc 

0 

where V: volume of the structure under stress o 

cu : the threshold stress below which the 

probability of failure is zero 

%: a distribution parameter with unit of 

(stress) (volume)"" 

m: the Weibull modulus 

For simplification and a conservative design approach [177] 

the value of % will be assumed to be zero. 

From the experimental point-of-view, two important questions 
were raised. The first concerns the number of samples which is 

required for an accurate determination of the Weibull parameters. The 
second is how to estimate m and ö for a material, given a set of 
failure strengths for nominally identical specimens. 
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3.3.1 Sample Size 

It is well-known that the fracture stress of brittle 

materials shows a large variability. In order to obtain reliable 
information for structural purposes it is necessary to test more 

specimens than for ductile materials. The decision on the number of 

specimens used involves time and expense. Taking into consideration 
the ease of calculation of the parameters, specimen preparation as 

well as studies dealing with sample size (99,177-180], a sample size 

of at least 30 is chosen to be sufficient in obtaining both failure 

strengths and Weibull parameters. 

3.3.2 Weibull Paramater Estimation 

Flexure tests are often used to determine the material 

properties of brittle materials. They are commonly used in place of 
the preferred uniaxial tensile test because of the great difficulty 
involved in aligning specimens for tensile tests. The type of flexure 

test most often used is four-point bending (Fig. 3.14). 

The basic Weibull equation describing the probability of 
failure, Pt, as a function of fracture stress, c!, is: 

m 
Pf - 1-exp ( -V. Yv .-] 

c 0 

where Iv is a loading factor derived in Appendix E. 

m+3 
K_ s 

6(m+1)2 

Taking the natural logarithm of the inverse of both sides of 

the Weibull equation twice gives, 

i 
P. 

LnLn - mIn v= +LnK. V-mLnö 
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It can be seen that a plot of the distribution function will 
be linear in a system of rectangular coordinates in which LnLn(1/1-Pt) 
is the ordinate and Ln ct the abscissa. In addition, m and 
LnK V-mLna0 will be the slope and intercept of the distribution 

function in those coordinates, -respectively. 

To fit this equation, the strength observations (values of 
failure stresses) are ranked in increasing order. The failure 

probability Pf associated with the jth strength observation in a 

sample of N specimens is defined as the mean value or mean rank 

pi a7 

N+1 

Another value which was commonly used is the median value or 

median rank (181). An approximation to the median rank value is given 
by: 

j-0.3 
p= 

N+0.4 

The mean value is used because the mean is commonly taken as 
the representative value of a sample from a distribution. However, in 
highly skewed distributions, the median may be a better descriptor 
(182). 

To facilitate the evaluation of LnLn (1/1-Pf), a computer 
code was written to generate both mean and median ranks for any sample 
of N specimens. 

Several methods of estimating m have been proposed [183]. 
They include the least squares procedures and the method of maximum 
likelihood. 

3.3.3 The Least-Squares Procedures 

The model for obtaining the estimates is: 

Ln[-Ln(l-Pf)] amLn ct +LnKv V- mLn ö 

If m and % were chosen to minimize 
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E (Ln [ -Ln (1-P! ) ] -[m rin ct + Ln K V-m Ln 01}Z 

then the slope m and intercept Ln is V-m Ln co can be obtained. 
This was done for the four-point bending tests using the routine G02 
CAF of the NAG Library [184]. Table 3.2 lists results of the analysis 
of 50 fracture stresses of four-point beam bend tests. 

TABLE 3.2 LEAST-SQUARES ESTIMATES OF 
WEIBULL PARAMETERS 

MEAN RANK MEDIAN RANK 

m 6.4266 6.6723 

LnK V-mLnco -11.4445 -11.8735 

ö 0.5977 0.6461 

3.3.4 The Method of Maximum Likelihood 

The likelihood function [185] for the two-parameters Weibull 
distribution is: 

N 
L(ci,... " äºmºýoý 

i-i 

where d: fractu 

N: sample 

m '"-1 
Qm 

- exp -- 
co co Qo 

re stress 

size 

Differentiating L with respect to ö and m in turn and equating to 
zero 

8L mvm 
-- -N+r 

i 
80ö i-1 co 

aL 1Nmm 
N+ LI1 

-i 

- 

qi 
Ln 

j i 11.10 
am ß i-1 co Qo 0 
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on eliminating a between these two equations we obtain 

E ci'a Ln ci 1 E Ln vi 
-- - a 0 

E vim m N 

which may now be solved for an estimate of m, using a Newton-Raphson 
procedure: 

N 
NE vi in 

i= 

/ý 

1 

1h = 

NNN 
NEci" Lna1 - EQim ELnQi 

i=1 i=1 i=1 

Having estimated m, i is estimated by 

E 

Qm 
1/m 

i-1 1 

a- o 

3.3.5 Comparison Between the two methods 

The Weibull parameter estimation is illustrated for a data 

set of 25 observations which was generated from the Weibull 

distribution with m-2 and coy' - 4. 

4.1505 1.6173 0.6461 3.0466 1.3545 

1.8889 1.0509 0.6288 1.3592 3.0530 

0.7500 1.7708 0.5903 1.9310 1.8889 

0.7705 1.7172 1.5319 1.5700 0.3761 

1.3162 1.6560 1.7961 1.8802 1.8487 

Both the Least-squares and Maximum Likelihood methods are 
applicable. These parameter estimations are compared with their 
theoretical counterparts in Table 3.3 and provide some indication as 
to the accuracy of the methods used. 



-55- 

TABLE 3.3 OPARISODI OF WEIBULL PAR UI=KRS OBTAINED BY 

THE LEAST-SQUARES AND MAXIMUM LIKELIHOOD METHODS 

PARAMETER EXACT LS-ESTIMATION ML-ESTIMATION 

m 2 2.0555 2.0351 

c 2 1.8281 1.8194 
o 

4 3.4556 3.3820 
0 

3.3.6 Simulation method 

Another method for estimation of Weibull parameters is 

simulation using direct Monte-Carlo methods. Monte-Carlo methods 

comprise that part of experimental mathematics concerned with 

experiments on random numbers. 

With probabilistic problems, the simplest Monte-Carlo 

approach is to observe random numbers, selected in such a way that 
they directly simulate the physical random processes of the problem at 
hand, and to deduce the required solution from the behaviour of these 

numbers. 

The two-parameters Weibull distribution can be written in the 
form (186): 

Pt - 1-exp -r1+10-- 
mc 

where r is the gamma function 

m is the Weibull modulus 

a is the failure stress 

is the mean strength 
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As the gamma function is constant, this equation can be expressed in a 
simpler form: 

1Pt' " 
Qa 

1- 

1 
on putting a-r1+- 

m 

Random samples, ai, a2,..., n, were then generated and ranked in 

ascending order. The m estimate is computed by using the 

least-squares method. Random sample of sizes n=10,20,30,40 and 50 

were simulated, and for each n, KMAX = 1000,2000,3000,4000 samples 

were generated from a population in which m=7. Only small 

variation in the Weibull modulus and variance was observed for the 

range of KMAX values considered. Hence, it was deemed unnecessary to 

carry out calculations for higher values of KMAX. The following 

plotting positions [177,182,1861 were used: 

pt a 
N+1 

j-1/2 
Pr aN 

j-0.3 
Pf a 

N+0.4 

j-3/8 
p! 

N+1/4 

The RND function of the VAX computer was used in the 
simulation procedure to generate uniformly distributed random numbers. 
In addition, the RANDOMIZE statement was used to change the starting 
condition and generate a truly random number [187]. 

The Weibull modulus and the variance for each estimator were 
estimated. A flow chart for the simulation is shown in Fig. 3.15. 
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The performance of least-squares analysis for the Weibull 

modulus m was compared with the results of Bain and Antle (188], 

Thoman et al. [189], Jayatilaka [186], Jeryan [178], and Cohen and 
Whitten (183] in Tables 3.4-3.6 where appropriate. These tables show 
the mean calculated values of m/ m employing the different methods of 

estimating the Weibull modulus. The value of m is the average of m at 

several consecutive KMAX values while m was chosen arbitrarily. For 

an unbiased estimator the mean value should be close to 1. The 

results of the first two plotting positions of Table 3.6 agree closely 

with those reported by Jayatilaka [186] and those of the last two 

plotting positions are close to the results of Jeryan [178] in Table 
3.4. 

The variance of the Weibull modulus was derived as a function 

of sample size from statistical theory (179) as 
z 

S2 
mi 

N 

Where N is the number of samples. 

The coefficient of variance is given by: 
FN2 

S 
C. V. -- 

mm 

where is is the mean of m at a particular n and KMAX. 

Fig. 3.16 shows the dependency of Weibull modulus m on sample 
size where the coefficient of variation is defined as the standard 
deviation divided by the mean value of the parameters. The standard 
deviation is the square root of the variance [190]. There is a good 
agreement between the Monte Carlo technique and the equation derived 
from statistical theory. From this result, the choice of sample size 
of 50 specimens for each test of Chapter Four should give an 
acceptable degree of reproducibility. 

The difference between four plotting positions was better 
described by plotting &V, % versus sample size where Am - 11 -mj. 
It can be seen from Fig. 3.17 that the anomalous behaviour of the last 
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two plotting positions at small sample size makes the second one the 
best in the determination of the statistical reproducibility of the 

Weibull modulus. The same conclusion can be reached from examining 
Table 3.6 in which the second plotting position gives the smallest 
bias. 

TABLE 3.6 COMPARISONS OF MEAN (v n) FOR ESTIMATION 

OF WEIBULL MODULUS 

Pf j 

N+1 

j-1/2 

N 

j-0.3 

N+0.4 

j-3/8 

N+1/4 

10 0.866 1.057 0.969 1.001 

20 0.894 1.020 0.959 0.978 

30 0.905 1.010 0.960 0.976 

40 0.922 1.003 0.968 0.980 

50 0.931 0.999 0.973 0.979 

100 0.953 0.999 0.976 0.987 

3.4 SUMMARY 

None of the classical theories appears to fit the 
experimental data, particularly in the tension-compression quadrant. 
The reason lies in the fact that they ignored the shapes of existing 
defects and the contribution of each stress component in a stress 
state. 

A recent empirical theory proposed by Stanley and Sivill 
(171] has been shown to fit the experimental data quite well. 
Furthermore, only with this theory can the tension cut-off in the 
tension-compression quadrant be explained. 

An alternative approach is to consider separately each stress 
state. Two plaster configurations were experimentally tested, and the 
resulting failure distributions were compared with calculated 
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better results have been obtained by using Matsuo's equation [153]. 

Compared with other theories, these methods have been found to lead to 

a more accurate prediction because the shear stresses have been taken 

into account. The Brazilian disc test represented the tension- 

compression quadrant. Because analytical predictions of the failure 

characteristics of the test specimens could only be obtained with 
difficulty or were sometimes impossible for this quadrant, the 

numerical approach is an alternative. Stanley's model [171] deduced 

from the Principle of Independent Action has predicted the data 

conservatively. 

Finally, different methods for evaluating the Weibull 

parameters were assessed. The present results showed that the least- 

squares method procedure is adequate in obtaining these parameters. 
It can be seen in Fig. 4.12 that there is a good correspondence 
between the experimental data and the two-parameter Weibull curve. 

Additional simulation has been used to gain more confidence in 

choosing experimental data ranking. The ranking is not an important 

factor as long as the number of tests is greater than 30 in any one 
investigation. 
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EXPERIMENTAL WORK 

The objective of this chapter is to develop the engineering 
knowledge necessary to describe the mechanical behaviour of brittle 

materials. 

For ductile materials, such as most metals, the mean strength 

(yield or fracture) may be used reliably in the design of engineering 

structures. The strength of a brittle material, on the other hand is 

sensitive to local stress concentrations, i. e., flaw, voids, 

microcracks or inclusions. As a result, the fracture of a brittle 

material was found to be affected by size and state of stress to which 

it was subjected. 

Two main steps have been taken in these attempts to obtain 

the strength of brittle materials: 

(1) The selection of a material suitable for investigation. 

(2) The planning of experiments. 

4.1 SELECTIQ[d OF PWI'ERM 

4.1.1 Plaster as a Modelling material 

The material used in this investigation is Herculite LX 

plaster, which is manufactured by the British Gypsum Limited in 

Nottingham. This is a strong plaster designed for use when light 

strength, surface hardness, and accurate dimensions are essential: 
i. e., copy milling, checking fixtures, precision patterns, motor trade 
tooling, moulds for epoxy resin patterns. It is available in 50Kg 

sacks and costs about £13.80 for each sack. 

The selection of Herculite LX plaster as a modelling material 
has been considered by recognizing some of the following properties: 
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(1) The material must be representative of brittle 

materials. 

(2) Reproducibility from specimen to specimen is 

essential for proper control of the tests. 

(3) The ease of fabrication and the cost of the 

material. 

(4) It possesses a reasonably high strength and is 

therefore easy to handle and test. 

4.1.2 Microstructure 

The microstructure of hardened gypsum paste affects most of 

the physical and engineering properties of the material, and in 

particular its rigidity. The rigidity is due to the skeleton of 
interlocking crystals, and the strength will depend on: 

(1) The size and shape of the component crystals. 

(2) The strength of the bond between the crystals. 

(3) The possibility that impurities built into the 

crystals will harden them or predispose them 
to fracture. 

(4) The amount of empty space in the set mass which 
will in turn be determined by the water content 
of the mixture. 

Therefore the microstructure should be understood, as well as 
the physical properties of the material. The microstructure of set 
plasters were examined using scanning electron microscopy. 

Samples were prepared by taking a small portion of the 

specimen after casting and a thin section of the fracture surface of 
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the strength test specimen. They were then gold plated and examined 
using the 'Stereo Scan 250 MK3' scanning electron microscope. 

Set plaster consists of a mass of fine interlocking needles 

of CaSO4.2H2O. Figs. 4.1 and 4.2 show the microstructure of uniaxial 

compression and disc specimens which were allowed to fully set. There 
is a slight difference between the two surfaces shown, resulting from 

the relative movement occurring between the cast and mould surfaces 
during extraction. The surface of the uniaxial compresion specimen 

was flattened because the specimens were pushed along the mould 
surface during extraction (Fig. 4.1). For the case of the disc 

specimens, neither surface suffered from the sliding effect (Fig. 

4.2). 

The chemical elements of plaster specimens can simultaneously 
be analysed. This analysis was conducted using the Link System of 
Energy Dispersive Analysis of X-rays (EDAX) for the presence of major 
elements Ca and S, and trace elements K and Si. A typical result is 

shown in Fig. 4.3. The elements Au and Pd were from specimen surface 
coating. 

4.1.3 Properties 

Gypsum is a natural hydrated sulphate of calcium (CaSO4.2H20) 
(191J1 When gypsum is heated to a temperature of about 130°C, it 
loses a proportion of its water of crystallization and forms the 
quick setting cement known as Beta hemihydrate or plaster (CaSO4.2H2O) 
(192,193). When water is added again during processing as building 
material, a process of recrystallization takes place (194). This is 
an isothermic reaction with a maximum temperature rising up to 
approximately 45°C [195]. The chemical reaction of hydration required 
18.6 lb. of water for each 100 lb. of plaster; any excess of water 
above this makes the mixture more fluid and it eventually evaporates, 
leaving behind a porous structure. This porosity determines the major 
physico-mechanical properties such as mechanical strength, thermal 
conductivity, permeability, etc. 
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The specification of the present material was based on the 

data provided by the Industrial Products Division of British Gypsum 

Limited [1961 and was as follows: 

HERCULITE LX 

Plaster/water proportions by 100/40 
weight (for pourable mix) 2.49Kg/litre 

Vicat initial set 20-35 mins. 

Compressive strength (24 hrs) 17.2 MN/m 

Compressive strength (dry) 37.2 MN/m2 

Surface hardness (BS1191) 
Dropping ball penetration) 3.4 mm 

Net expansion on setting 0.05% 

Yield of set plaster per 50Kg approx. 0.035 m 
dry plaster 

The Young's moduli are also provided [197). The values relate to dry 

set plaster. 

PLASTER/WATER RATIO YOUNG'S MODULUS 
(p/w ratio) (MN/m2) 

100/40 1.38 x 10 ° 

100/50 1.10 x 10 4 

100/60 0.83 x 10 4 

100/70 0.69 x 10 4 

The Poisson's ratio is of the order of 0.2 and is little 
changed for varying pia ratio. This ratio is very close to that of 
concrete [198,199]. 
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4.1.4 Casting Preparation 

* Mixing Procedures 

Successful mixing of industrial plaster requires strict 

adherence to specific standards and procedures. The improvements in 

plaster formulations, made in recent years, have resulted in more 

uniform products, but to obtain the full benefit of these improved 

products, these procedures must be standardized. Mixing the plaster 

slurry can be considered the most important step in making the cast 
(2001. The following information covers the mixing process used in 

the investigation: 

- water purity: organic impurities in mixing water cause 

variations in setting time. Drinkable water is suitable 
for mixing plaster slurries (201,202]. 

- Water temperature: Gypsum has maximum solubility 
between 70° and 100°F (21° and 37°C). Therefore, 
crystallization should take place in a uniform 
temperature environment somewhere in this range. 
Further, variations in water temperature will 
produce variations in setting time, which can cause 
difficulty in the control of the mixing time. Hot 
and cold water were blended to ensure a constant 
water temperature between 65° and 80°F (18° and 27°C) 
(203]. 

- Plaster to water ratio (p/w ratio) :a plaster/water 
proportion of 100/66 (1.5Kg/litre) has been found to 
be suitable in practice. The plaster and water are 
always weighed carefully for every mix. 

- Mixing: mixing the plaster slurry is one of the most 
important steps in producing plaster casts with 
maximum strength, hardness and other important 

properties (202). Hand mixing is generally acceptable 
for small batches. However, since optimum physical 
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properties are in direct relation to energy input in 

mixing, hand mixing will not result in a plaster 

slurry with the best of properties [204-206]. 

A direct drive, propeller-type mixer with a speed of 900 rpm 

was used (Fig. 4.4). The propeller should be off centre from the 

bottom, 10-15° from the vertical, and 20-30° from the top diameter of 

the bucket. This mixer position creates a correct flow pattern of the 

slurry [207]. 

Also, the strength of the cast is practically determined by 

mixing time as it is well known that the strength increases with 

mixing time. However, the slurry would be too stiff to pour from the 

bucket if the mixing time is long. A mixing time of 4-5 minutes was 

found to be suitable for a p/w ratio of 100/66. The details of 

specimen casting procedure will be discussed in section 4.3.1. 

*Drying Plaster Casts 

Two methods were used in the drying of the plaster casts, 
both were aimed at controlling the free moisture content of the casts. 

The same drying action takes place whether the plaster cast dries in 

the workroom, outdoors or in a dryer. The use of a forced-hot-air 

dryer only speeds and controls the drying procedures. 

In the first case, the casts were dried in a drying chamber 
(Fig. 4.5). The main physical limitation in drying a plaster cast is 

the maximum temperature at which the dryer can operate and not calcine 
the cast. The recommended temperature is 40-45°C (195,196,201,208- 
211]. Operating much above this temperature range results in 

excessive calcination; that is, surfaces of the casts, especially 
those in front of hot-air ducts, become soft and powdery. 

A drying cabinet is specially designed to dry the casts at 
room temperature in the second case (Fig. 4.5). In both cases, the 

weight of the cast was carefully checked. 

Preliminary tests were carried out to determine the best 

method of drying the plaster casts. Two sets of beam specimens were 
prepared, one was placed in air for 24 hours then placed in an oven 
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provided with air circulation and adequate ventilation for removal of 

moisture, so that the air may be maintained at a temperature of 104 to 

110°F (40 to 43°C) and with a relative humidity not to exceed 50 per 

cent for 24 hours [196]. The humidity was monitored by using the 

psychrometer Therm 2246 of Texcel Limited (Hertfordshire) [212]. It 

was found that the relative weight reduction ratio, which is the ratio 

of weight reduction after drying for 24 hours over initial weight, was 

always in the range of 0.200 to 0.250. 

Another set of beam specimens was dried in air and the weight 

of the cast was checked daily. It took about 6 or 7 days until the 

relative weight reduction ratio of this set was within the limits 

shown. For both methods of drying, a further increase in drying time 

did not vary this ratio. The drying process was considered to be 

completed for both sets. 

The strength of the former set was found to be much less than 

that for the latter. Microscopic examination showed that there were 

many cracks which appeared on the surface of this set because of the 

drying process. This method of drying was consequently abandoned. 
Table 4.1 shows the results from two sets of beam cast under different 

drying processes and subjected to four point bending. 

TABLE 4.1 THE EFFECT OF DRYING PROCESS 

NO. OF 
SPECIMENS 

DRYING PROCESS MEANT STRENGTH 
(MPa) 

STANDARD 
DEVIATION 

21 7 days at room 3.7032 0.6292 
temperature 

35 24 hrs at room 3.3674 0.5706 
temperature 
then 24 hrs at 
40°C 

*Surface Finish 

It has been well known in the glass industry that an edge 
flaw and stress concentration often propagate until they become 
damaging cracks. Bevelling of the edges and at the same time 
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producing a smoothed or polished surface would be necessary to ensure 
a high survival probability. The surface finish has been the subject 

of practical interest in design with brittle materials [213,214]. 

The surface finish of plaster casts was measured using the 

Surface Texture Measuring Instrument Surfcour 300B. This system 
indicates integrated values of Centerline Average Roughness (Ra) and 

records in both forms: 

(1) An enlarged graph of real profiles, roughness profiles and 
waviness profiles. 

(2) By interfacing to a PET model 4032 computer, a hard copy 
containing additional information about the measurement of surface 
finish can be obtained (213,214). A sample is shown in Table 4.2. 

The Average Roughness (Ra) values are given in Table 4.3 

together with some expected values from common production processes 
[213). The meter cut-off of 0.25 mm and a magnification of 500 were 
chosen. It can be seen that the plaster casts had a good surface 
quality. 

4.2 PLANNING OF EXPERIMENTS 

The main difficulty in testing brittle materials is a wide 
scatter in results when apparently identical tests are conducted on 
identical specimens of the same material. The difficulty in relieving 
residual stresses and the presence of defects from the manufacturing 
process all contribute to the characteristic high variability in 
mechanical properties of brittle materials. 

At the present time the development of test methods for 
brittle materials has not reached the stage where completely 
satisfactory methods can be defined. Hence the approach adopted here 
is to consult the literature [144,164,186,215,216] and select the test 
technique on the basis of its relative simplicity, and accept a simple 
stress distribution within the specimen. Reliance is then placed on 
accuracy and reliability of the available analyses for converting the 
measurements into proper data. 
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TABLE 4.2 A TYPICAL PRINT-OUT FOR MEASUREMENT OF SURFACE ROUGHNESS 

SURFACE FINISH PARAMETERS 

SPECIMEN - DISK02 DATE - 2411 TIME - 14: 46 

CUT-OFF - . 25 M. M. RANGE- X 500 

AVERAGE ROUGHNESS (RA) 1.46 MICRONS 

RMS ROUGHNESS (RQ) s 1.87 MICRONS 

SKEWNESS (RSK) a -. 22 

KURTOSIS 2.95 

TEN POINT HEIGHT (RZ) 3.68 MICRONS 

AV PEAK TO VALLEY HEIGHT (RTM) - 3.86 MICRONS 

PEAK TO VALLEY HEIGHT (RT) = 14.28 MICRONS 

AVERAGE ROUGHNESS DEPTH (R3Z) - 3.39 MICRONS 

PEAK HEIGHT (RP) - 2.1 MICRONS 

AVERAGE WAVELENGTH (LA) = 78.4 MICRONS 

HIGH SPOT COUNT (HSC) - 14.15 PER M. M. 

MEAN SLOPE 6.78 DEGREES 

MEAN HIGH SPOT SPACING (SM) a 80.1 MICRONS 

MEAN PEAK RADIUS OF CURVATURE s 35.4 MICRONS 

MEAN VALLEY RADIUS OR CURVATURE - -42.23 MICRONS 
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TABLE 4.3 THE AVERAGE ROUGME SS PRODUCED BY PLASTER 
CAST AND COMPXE PROCESSES 

AVERAGE ROUGHNESS 
PROCESS Ra(pm) 

DISC 1.2 (Plate surface)$ 1 
2.3 (Mould surface)$ 

BEAM 1.6 (Plate surface)* 
2.2 (Mould surface)* 

PLASTER HOLLOW 2.0 (Outer surface) 
CAST CYLINDER 1.8 (Inner surface) 

1 2.6 (Wall surface, as cast) 
SOLID ! 2.8 (Wall surface, turning) 
CYLINDER ` 2.5 (End, surfacing) 

GRINDING 0.6 - 1.6 

TURNING 0.4 - 6.3 

BORING 0.4 - 6.3 

MILLING 1 0.8 - 6.3 

* Each value is an average of at least ten measurements 

# Plate surface is the surface of the specimen which is facing the 

separating plate between two moulds during casting. While the mould 

surface is the surface of the specimen facing the bottom of the mould. 

There have been two types of tests made in the attempts to 

obtain information on brittle materials. The first type are strength 
tests. The closest practical approximation to uniaxial testing is 

obtained in bend tests, cylinder burst tests and compression tests. 
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Biaxial stress fields are produced by testing the ring-on-ring disc 
test and the Brazilian disc test. Fig. 4.6 shows the allocation of 
tests before the testing was performed. 

The second type of test is the fracture mechanics test. To 

use the fracture mechanics analysis effectively, it is necessary to 

adopt a reliable procedure for introducing sharp precracks into 

specimens. The notch-beam technique was used to determine the 

toughness. 

4.3 FOUR POINT BEAM BEND TEST 

4.3.1 Introduction 

Because of its simplicity, the tensile strength of ductile 

materials is measured by uniaxial tensile testing. However, it is 

extremely difficult to perform a satisfactory tensile test on a 
brittle material (99,213,217,226). Gripping a brittle test piece in 
jaws, or using a screw thread or other clamping device leads to such 
stress concentration that failure is most likely at the grip, possibly 
before the test proper is under way. Furthermore, a slight misalign- 
ment of the axial load produces premature failure at the loading grip. 

A simple method for overcoming these difficulties is the use 
of flexure tests. The majority of strength data for various ceramic 
heat exchangers [227], adiabatic engines [228,229], and ceramic 
turbine programs (230-232] have been obtained by modulus of rupture 
(or flexure) tests in which simple shapes are subjected to three or 
four-point bending until fracture occurs. While the solutions for 
fibre stresses and elastic behaviour are more complicated than the 
simple tensile method, the relative ease in producing specimens and 
conducting the tests have made the bend tests extremely popular with 
both material researchers and product developers (229). The simplest 
configuration is in three-point bending but four-point bending gives a 
uniform stress field on the surface within the inner rollers. Also, 
the shear stresses for the three-point bending are developed over the 
full span, thus deviating from the ideally uniaxial stress state 
present in the four-point bending. A further term in use is third- 
point bending [186] which refers to the case where the distance 
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between adjacent support and loading point in four-point bending is 

one-third of the span between support points. A four-point bend test 

is shown in Fig. 4.7. 

Factors such as load mislocation, twisting of the specimen, 
friction at the knife edge, local stresses, contact point tangency 

shift, and specimen surface conditions can introduce errors, for which 
there are correction factors. In this regard, an overview of the 

sources of error arising from the method of load application in 

bending has been given by many reseachers [99,186,233,238]. 

4.3.2 Experimental Procedures 

A four-point bend fixture was designed for the testing of 

small plaster specimens with a squared cross section of b=d-10 mm. 
The length of L' is 46 mm and of the outer span L is 138 mm. The 
design of this fixture incorporates ideas presented in review 
literature [99,186,233-238]. Corner flaws resulting from chipping or 

cracking during the extracting operation are sources of low-strength 
failure [233,239]. Strength results obtained from edge-dominated 
failure would not be representative of the material as a whole and 
their use could lead to serious error in predictions of the failure 

probabilities for engineering components subject to complex stress 

states. 

Series of tests on both bevelled and unbevelled squared- 

section beams have been performed. The difference between the two 

sets is that the former set has its four corners bevelled with c-0.1 
mm, as depicted in Fig. 4.7. The data of the two sets are shown in 

Table 4.4 and there is a difference in strength for the two types of 
specimens. These results show the importance of edge-dominated 
failure. 
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TABLE 4.4 4-POINT BEAM BEND TEST RESULTS FOR 
BEVELLED AND UNBEVE. LED SPECIMENS 

Number of Mean Strength Standard Deviation 
Specimens (MPa) (MPa) 

Unbevelled 50 4.2349 0.8086 

Bevelled 50 5.53338 0.9460 

The beam specimens were cast with a mould as shown in Fig. 

4.8. Important aspects of the mould design include: 

(i) A controlled, constant rate of mould filling was achieved 
by using a specially designed pouring basin. 

(ii) Bottom feeding to the beam moulds was used to avoid 

agitation and to allow steady filling. 

(iii) Plasticine and rubber bands were used to seal and hold 

together the mould assembly while the plaster was 
setting. 

(iv) The test specimens were cast in a vertical position to 

ensure that rising air bubbles would not be trapped on 
principal surfaces thus impairing the surface finish. 

Various plaster/water ratios were considered in order to 

observe the effects on the cast specimens. It was found that a 

plaster/water ratio of 100/66 was ideal for obtaining a maximum number 
of perfect specimens from one cast. 

once the beams had been produced they were left for a short 
time before they were extracted from the mould using an extraction 
device shown in Fig. 4.9. This modified lathe slide allowed both the 

extraction of the beam and disc specimens. 
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The number of defective specimens were in the range of 8-10 

per cast. The perfect castings were left in the drying cabinet for 

seven days to allow the plaster to dry and harden. 

They were bevelled and tested using the four-point bend 

fixture shown in Fig. 4.10. Although this figure does not show the 

configuration usually used in a four-point bend test and is perhaps 

nearer to a value of 20 mm for the parameter L'. When the beam was in 

place, water was allowed to drain into the bottom container and hence 

loaded the beam. When fracture occurred the flow of water was stopped 

and the bottom container was weighed. 

Examples of perfect, flawed, and fractured specimens obtained 
from this test are shown in Fig. 4.11. From the weight of the water 
it was then possible to calculate the mean fracture load. 

4.3.3 Stress Distribution 

The extreme fibre stresses at failure were calculated from 

the usual equation for maximum bending stress (Fig. 4.7), af: 

3PL' 
Qs- 

2 bd 

where P is the total applied load at failure. 

Lý is the distance from the end of the bar to the 
load application points. 

b is the width of specimen. 

d is the depth of specimen. 

4.3.4 Results and Discussion 

The tests were performed in a dry environment, with short 
loading times, to minimize the influence of slow crack growth. Fig. 
4.12 shows a plot of failure probabilities, i. e., LnLn(1/1-Pf) versus 
stresss a, where Pf was defined by both mean ranking: 

P 
f 

n+l 
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and median ranking 

j-0.3 
Pt = 

N-0.4 

where j is the ranking number of a specimen in a sample size N in 

increasing order of fracture stress, a. 

From data of section 3.2.2 of Chapter 3, the Weibull modulus 

and the scale parameter are calculated as 6.6723 and 0.6461, 

respectively. 

Fig. 4.13 shows an example of the fracture surface obtained 

from four-point beam bending. The fracture feature that may be 

clearly observed is the concave crack front profile which shows the 

approximate origin of the crack from inside. The fracture origin is 

indicated by the arrow in the figure. Note also that the 

microstructure had a dual pore distribution, with small pores 

(1-100-120 pm) and large pores (1-200-300 Ncn). The large pores are 

roughly spherical and can result from air entrapment during casting. 

The small pores are capillary ones. 

Scanning electron micrographs of specimen surfaces after 

casting (Figs. 4.1 and 4.2) and the fracture surface (Fig. 4.14) gave 

evidence supporting the uniformity in plaster casting with different 

moulds. 

The fractographic examination for the origin of the cracks 

seems to show that fracture is caused by the pores in the bulk of the 

material on some specimens. The importance of edge dominated failure 
has also been shown. From these observations it can be seen that 
failure can be caused either by edge cracks or by volume flaws. 

Microscopic examination of the contact areas of specimens 
with both loading and support rollers showed no evidence of the effect 
of contact stresses. 
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4.4 CYLINDER BURST TESTS 

4.4.1 Introduction 

As mentioned in section 4.3.1, parasitic tensile stresses due 

to the gripping jaws and to specimen misalignment are not relaxed and 

can be of sufficient magnitude to distort seriously the form of the 

measured strength distribution. The expanded cylinder or cylinder 
burst test was developed by Sedlacek and Halden (218] to overcome 
these difficulties with regard to strength measurements in ceramics. 
Another advantage of this method is that, since tensile stress is 

applied to all parts of the specimen, a larger effective volume can be 

tested than with bend tests. 

Some information obtained from burst tests of brittle 

materials is summarized in Table 4.5. 

4.4.2 Experimental Procedures 

From the above information a suitable apparatus can be 
designed and built. Fig. 4.15 shows the arrangement of the cylinder 
burst test unit. Fig. 4.16 shows the specimen holder which consists 
of two annular steel plates. Hydraulic pressure is applied radially 
to the cylinder from the inside through a flexible rubber cylinder 
which is sealed by a conical plug at the upper end. Another conical 
plug in the lower steel plate seals the lower end and provides 
entrance for the air. Spacer blocks are provided to separate the 
steel plates, to prevent extrusion of the rubber cylinder between the 
specimen and the fixture, and finally to maintain the cavity 
alignment. 

Bursting pressure is recorded by monitoring the hydraulic 
pressure of the two gauges. One is on the pump, the other is a 
changeable test gauge. 
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TABLE 4.5 SUMMARY OF CYLINDER BURST TESTS 

SPECIMEN MATERIAL 
DIMENSIONS 

RESULTS REFERENCES 

O. D. 55.88 mm Acrylic Plastic Mean tensile burst strength 

I. D. 50.80 Alumina is two times smaller than 

ht. 6.35 (97.6% A1203) the mean bend strength 

12.70 
25.40 

[218] 

O. D. 27.90 Mean tensile burst strengths [221] 
I. D. 25.40 HPSN are up to - 2.3 times smaller 
ht. 7.60 than the mean bend strengths 

O. D. 28.45 
I. D. 25.40 CVDSiC 
ht. 12.70 

O. D. 30.50 
I. D. 25.40 RBSN 
ht. 7.60 

O. D. 50.80 Tungsten Carbide The fracture strength in 1240] 
I. D. 48.26 (16%C0,84% WC) the disc compression test 
ht. 12.70 (Indirect Tensile test) is 

higher than the tensile 
burst strength 

O. D. 37.00 Sintered Silicon Mean tensile burst strengths [241] 
I. D. 31.60 Nitride are 1.4 to 2.5 times smaller 
ht. 7.80 than the mean bend strengths 

O. D. 398.78 Slip Cast Fused The mean tensile burst (2421 
I. D. 379.73 Silica (SCFS) strength (4.145 KSI) is 
ht. 19.05 smaller than the mean bend 

strength (6.952 KSI) 

A mould for casting the cylinder is shown in Fig. 4.17. When the 

plaster began to set in the mould, the cores were turned slightly with 
a special tool to prevent the specimens sticking to the mould wall. 
The mould was inverted and supported by pillars from an extraction 
table. The plaster specimens were then pushed out by a press as shown 
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in Fig. 4.18, and left drying out in the cabinet for two days. This 
is the time required for the relative weight reduction ratio (see 

section 4.1.4) of the cylinder to be in the range 0.200 to 0.250. 

Fig. 4.19 shows a special device which was used for preparing the 

specimen by cutting and then sanding the cut faces flat and parallel, 
to the required dimensions. 

Fig. 4.20 shows three types of plaster specimens, specimens 

as cast with defects are shown on the left, specimens as cast without 
defects are in the centre and the prepared specimens are on the right. 
The measured dimensions of the specimen were within ±0.1 mm of the 

nominal dimensions for all casts (Fig. 4.21). 

4.4.3 Stress Distribution 

Data from the burst tests were analyzed using the elastic 
theory of thick-walled cylinders (2431. This theory indicates that 
the stresses at the inside surface are higher than those at the 

outside surface. According to this theory, the circumferential stress 

a., in the specimen is of the form: 

R2 RZ spo 
Oe s1+- 

Rö -Ri R2 

where Ri is the radius of the inside surface 

Ro is the radius of the outside surface 

p is the internal pressure 

R is the radius at which the stress is being determined. 

It can be seen that the circumferential stress at the inside 

surface, a., is (when R=Ri) : 

Rö + Ri 
v e R2 - R2 

0 i 
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4.4.4 Results and Discussion 

The burst test results are shown in Fig. 4.22. The results 

can be seen to follow a relatively smooth curve with either no 

outliers or very few as shown in the figure. The type of test and the 

geometry of the specimen probably contribute to this situation. 

Fractographic examination was performed on all specimens. 
The cylinders exhibited a noteworthy behaviour when subjected to the 

burst test. Forty-six cylinders fractured into numerous fragments 

which made it impossible to identify the primary failure site. 

However, fifteen cylinders generally ruptured into only a few 

fragments, as shown in Fig. 4.20. Optical examination indicated that 

fracture was invariably initiated at bulk sites in these specimens. 

The standard deviation which is a useful descriptor of the 
dispersion or spread of a sample of data was calculated for both four- 

point beam bend and cylinder burst tests. Table 4.6 shows the 

calculations for the two tests. Thus the standard deviation of the 
former test is greater than that of the latter. This indicates that 
the cylinder burst test method is well-suited to tensile strength 
determination of brittle materials. 

TABLE 4.6 RESULTS OF 4-POINT BEAM BED TESTS 

AND CYLINDER BURST TESTS 

NUMBER OF MEAN STRENGTH STANDARD 
TEST METHOD SPECIMENS (MPa) DEVIATION 

(MPa) 

4-point beam 50 5.5338 0.9460 
bend test 

cylinder 46 4.6693 0.5436 
burst test 

After fracture, the fracture surface was gold coated and 
examined. As shown photographically in Fig. 4.23, a similar 
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microstructure of set plaster was obtained. Fig. 4.24 of the same 

surface shows the dual pore distribution. The inside of a capillary 

pore was also shown in Fig. 4.23. 

Because of the dual pore distribution and because there could 
be other potential sources of inaccuracy in this test related to 

frictional forces and the development of parasitic stresses, the 

experimental results were used only as supplementary data for the 

four-point bend tests. 

4.5 RING-Ott-RING TESTS 

4.5.1 Introduction 

Uniaxial strength tests, such as three-or four-point bending 

tests, have been used extensively in the past to determine ceramic 

strength. On one hand, they are low cost test methods in terms of 

complexity of test technique, but on the other hand they have a 

significant disadvantage in that it is very difficult to eliminate 

undesirable edge failure (244-247). Furthermore, these flexure tests 

may provide only a partial characterization of load-bearing capacity 
since service applications of brittle materials generally involve 

multi-axial loads. 

The biaxial flexure test is becoming increasingly popular as 
a means of measuring the strength of glass [248-251] and ceramic 
materials [245,246,252-258]. This is due to the fact that the 

measured strength is free from edge condition and a relatively large 

area of the specimen is subjected to a uniform stress. 

4.5.2 Experimental Procedures 

The ring-on-ring test is based on an existing loading method 
which has been of considerable use in flexural strength testing of 
brittle materials [171,126,259,260). The test fixture consists of a 
loading ball, alignment pillars (Fig. 4.43), and a load cell. 

The test involves the creation of a state of uniform 
axisymmetric tension stress in the central portion of one of the faces 
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of a circular plate. This can be accomplished by placing the plate on 

a circular ring and by applying on its upper surface a load 

transmitted through a circular ring concentric with, and having a 

smaller diameter than, the support ring. The three guide pillars, 

integral with the lower ring, ensure this concentricity. The loading 

ball has only three short line contacts with the inserts to minimize 

friction. 

Force plate design 

A strain gauged load cell was designed to measure the applied 

load. The supported top plate consisted of a circular plate of 11 mm 

thickness. This plate was supported by three cantilever blocks. The 

top plate rested on rounded steel supports, machined hemispherically 

at one end, and screwed to the cantilever blocks. The cantilever 

support beams (machined from a single billet of high tensile steel 

alloy) were mounted to a steel base plate which was 240 mm square and 
11 mm thick. 

For force and weight measurements below 227 Kgs, the bending 

beam design is usually chosen [2611. 

Instrumentation 

The heart of the strain gauged load cell is the three 

cantilever beams to which the strain gauge Wheatstone bridge network, 

shown in Fig. 4.25, is bonded. In this design, two strain gauges were 

attached on top and two directly underneath, near the supported end of 

the cantilever. They were wired as shown in Fig. 4.26 for each 

cantilever beam to increase the sensitivity of the measuring system 
[262]. 

Following the criteria for foil gauge selection [263), it 

would appear that the most suitable gauge is one made by Welwyn Strain 

Measurement Limited of Basingstoke, Hampshire, designated 

EA-06-250BG-120, and costing £18.49 for a package of five. As the 

gauge can only perform as well as the installation will permit (264], 

the associated gauge installation procedure has been followed [265] 

with M-Bond 200 adhesive and M. coat A and C coating. 
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All experiments used a Strain Gauge Amplifier MK111 S/No. 122 

connected to a Fluke 8800A Digital multimeter. The applied force 

signal was outputted to an attached x-y recorder. The instrumentation 

is shown in Fig. 4.27. The top plate has been removed to expose the 

three supporting cantilever beams. The load cell was mounted on the 

hydraulic testing machine as shown in Fig. 4.28. 

Testing and calibration 

The weights were measured and then stacked on the platform 

while the voltage indicated by the voltmeter was recorded. The 

applied force signal was recorded simultaneously by the x-y recorder 

for each weight increment. The calibration results are given in Fig. 

4.29 for the voltage indicator showing the highly linear nature of the 

load cell calibration throughout the loading range. 

Specimen casting 

To produce a large number of discs quickly and efficiently a 

casting method was used similar to that discussed in section 4.3.2. 

The disc mould used the same pouring basin and bottom fixture 

as was used in the beam mould assembly. This is shown in Fig. 4.30. 

Using this assembly, it was possible to produce 28 disc specimens in 

one cast, and of these, approximately 20 were perfect and could be 

used for either ring-on-ring or diametral testing. The importance of 
the mould design, as discussed in section 4.3.2, still applies. 

Several casts were made in order to obtain enough specimens 
for use in each test. The same plaster/water ratio as described in 

section 4.3.2 was used. once the discs had been made in their moulds 
they were extracted using small steel pins, and using the modified 
lathe slide shown in Fig. 4.9. They werg then left exposed to air in 
the drying cabinet for two days. This is the time required for the 
relative weight reduction ratio (see section 4.3.1) of the disc 
specimen to be in the range 0.200 to 0.250. 
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Fig. 4.31 shows samples of the commonly obtained disc 

castings. on the left are specimens with casting defects. The 

perfect casts are on the right. The common deffects were either air 

bubbles on the surface or out-of-circularity of the disc caused by 

inherent setting effects. The specimens with defects were discarded. 

4.5.3 Stress Distribution 

In this test a circular plate specimen is supported on a 

coaxial ring and loaded at the centre with a smaller coaxial ring 
(Fig. 4.32). Equibiaxial tensile stress is developed on the bottom 

fibres in the central area of the disc. 

The test specimen is a disc, 25 mm diameter and of 4 mm 

thickness. It is supported on a ring of 20 mm in diameter. Load is 

applied to the specimen centre by a loading ring of 10 mm in diameter. 

For thin, rigid elastic 
stresses are given below (259]. 

discs, the frictionless bending 

If 0 <b 

3Pz a (1-v) (a2 - b2) 
ar ' ae ` 

[2(1+v)Ln 
-+ 

2 nt3 b RZ 

Ifb<r <a 

3Pz a (1-v) (a2 -b2) (1-v) (r2 -b2 ) 
at =- 2(1+v)Ln -+- `2 

1[t3 r R2 r2 

3Pz a (1-v) (a2 -b2) (1-v) (r2 -b2 ) 
ae 2(1+v)Ln -++ e2 rtt3 r R2 r2 

where P is applied load 

t is disc thickness 

a is radius of support ring 
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b, is radius of loading ring 

R is radius of the disc 

v is Poisson's ratio. 

The uniform maximum stress occurs within the centre region, 

bounded by the loading ring, and is given by [243,249,253]. 

3P a (1-v) (a2 -b2) 
v- 12(1+v)Ln -+ 

4 1tt2 b R2 

Two-dimensional finite element analysis of the ring-on-ring 

test and other tests is considered the valid basis for stress 

analysis. The finite element programme used was PAFEC which stands 
for 'Program for Automatic Finite Element Calculations', developed by 

Pafec Limited of Nottingham. This is a software package with the 

capability to solve a wide range of engineering problems ranging from 

static displacement and stress analysis, thermal analysis, dynamic 

and vibration calculations to non-linear static analysis (266,267). 

Two idealizations of the disc bending have been employed. 
They are shown in Figs. 4.33 and 4.34. Fig. 4.33 shows the first 
idealization with 64 eight-noded isoparametric curvilinear 
quadrilateral elements (268]. A fine mesh grid of elements is 

required for accurate calculations at the location of stress 
perturbations (269]. By virtue of symmetry only a half specimen need 
be considered. 

Fig. 4.34 shows the second idealization with 63 eight-noded 
facet shell elements [2681. Since the problem has symmetric geometry, 
properties, and boundary conditions, only one quarter of the region 
was utilized. The displaced shapes for both idealizations are shown 
in Fig. 4.35. 

Figs. 4.36 and 4.37 show the stress distribution at the 
tensile face of the disc of the present finite element analysis with 
the analytical solution [259) for both idealizations. The second 
idealization (Fig. 4.37) shows a better-agreement with the analytical 
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solution in the centre region of the disc where the stress state was 

assumed to be in equibiaxial tension. The stress uncertainty in the 

region around the support point in the first idealization disappeared 

in the second one. 

Only the stress contours of the first idealization were shown 
in Figs. 4.38,4.39, and 4.40. Here it can be seen that the most 

compressive stresses occur at the loading and support points. The 

equibiaxial stress state is also revealed. The combined effect of 
these stresses may be found by calculating the equivalent stress: 

_1 
1 

12 Qý 
Q- 

22 Iý Qx _Y f (a _ Crz 
2fý 

CL -a2f6ý T2 f T2 f 'Lax 1 

once the stresses have been determined it is possible to 

predict the failure initiation. The Failure Criterion module enables 
a failure code to be expressed graphically and in printed output. It 
is assumed that failure occurs when the maximum principal stress meets 
the failure criterion: 

a1 = Qt 

where at is the uniaxial tensile strength. 

The state of stress at each stressing point in an element is 

examined. If any of these points indicates a failure then the 

complete element is assumed to have failed. 

The failure is found to start in the vicinity of the loading 

ring on the tensile face. Thus the code C2 in Fig. 4.41 refers to the 
failure which has occurred. After initiation of the first crack, the 
fracture grows rapidly towards the centre of the disc. This is in 
absolute agreement with the fractographic examination. 

4.5.4 Results and Discussion 

All biaxial tests were conducted in air at room temperature 
with a crosshead speed of 5 nmt/min., conditions chosen to minimize the 
effect of slow crack growth on strength. Fig. 4.42 shows the test 
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results, both mean and median rankings were used. The loading system 

is shown in Fig. 4.43. Measured strength value is summarized in Table 

4.7. 

TABLE 4.7 FRACTURED STRENGTH OF RING-ON-RING TESTS 

NO. OF TESTS MEAN STRENGTH STANDARD DEVIATION 
(MPa) (MPa) 

69 4.9425 0.5997 

Fracture surfaces of all specimens were examined 

microscopically. Each disc specimen apparently had failure initiated 

within the loading ring. Crack branching was also observed, resulting 

in the fracture pattern shown in Fig. 4.44. This fracture morphology 

is similar to that observed in earlier investigations, on different 

materials, using the biaxial disc tests [245,255,257,270]. 

The fracture surface of a typical specimen is shown in Figs. 

4.45 and 4.46. Fig. 4.45 reveals the dual pore distribution. Fig. 

4.46 shows the same fracture surface with crack front profiles on the 

left side towards the boundary. Crack branching (Fig. 4.44) and crack 
front profiles (Fig. 4.46) suggest that the fracture origin is 

initiated from the inside of the specimen. 

The present results are consistent with the finite element 

analysis. The fracture morphology proved that the biaxial strength 
test described in this section will significantly contribute to the 

generation of reliable data. 

4.6 BRAZILIAN DISC TESTS 

4.6.1 Introduction 

It was shown in section 4.3.1 that the measurement of the 
tensile strength of brittle materials, using the conventional tension 
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test, presents difficulties both in the specimen preparation and in 

alignment during the test. As an alternative, bending tests are often 

made because they are comparatively simple to carry out and better 

suited to field conditions. However, the flexure test may give 

results considerably in excess of the true tensile strength [271-273] 

and true uniaxial tensile stressing occurs very rarely in components, 
hence a large number of less conventional specimens have been proposed 
for measurement of tensile strength [217,274,277]. One of the most 
interesting of these is the diametral compression of a solid disc 

shown in Fig. 4.47 which allows for easier specimen preparation and 
load application. It was developed independently in Japan by Akazawa 

and in Brazil by Carneiro and Barcellos [271,278], and is now known as 

the "splitting tensile", the "indirect tension" or the "Brazilian" 

disc test. It has been used to measure the tensile strength of 

concrete [219,272,278-284], rocks [285], coals [286], polymers 
(287-289], tungsten carbide (122], graphite [273], and ceramics 
[274,290,291]. 

4.6.2 Experimental Procedure 

A simple design test fixture, as shown in Fig. 4.64, was used 
in the Brazilian disc tests. The discs were compressed between two 
identical anvils which were ground with high accuracy. The top anvil 
was allowed to move freely in a linear bearing while the lower anvil 
was fixed in-situ by a6 mm screw. The base of the fixture was ground 
to ensure good contact with the testing machine during the test. The 

ground base surface was used as a reference in boring the locating 
holes for both the linear bearing and the lower anvil to ensure the 

alignment of the top and bottom anvils. The end of the top anvil was 
machined to a spherical shape to minimize the side forces during 
testing. A 'safety pin' was fitted through the top anvil to prevent 
it from dropping, after the fracture of the test specimen, and causing 
damage to the anvils. 

Two pairs of loading anvils with different contact profiles 
were made. One pair was machined with a loading arc of 12.5 mm 
radius, the other with a 16.0 mm radius. 
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A vertical block with an adjusting circular disc was used to 

ensure the positioning of the disc specimen between two anvils. 

To produce a large number of disc specimens quickly and 

efficiently, the same casting method and disc mould which were 
discussed in sections 4.3.2 and 4.5.2 were used. 

4.6.3 Stress Distribution 

* Elasticity solution 

An elastic analysis of the stresses within a circular disc 

with concentrated loads on the diameter (Fig. 4.47), gives the 
following expressions [2921: 

-2P (R-y)x2 (R+y)x2 
QX __ 

nt rl 4 r2 4D 

-2P Ry)3 (R+y) 3 

rtt r14 r24 D 
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where t is the disc thickness 

For points on the diameter perpendicular to the loads, the 
x-axis, 
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Therefore, the compressive strength needs to be at least three times 

the tensile strength in order to ensure a tensile failure. 

* Finite Element Analysis 

By virtue of symmetry only a simple quadrant of the disc need 
be considered. Figs. 4.48 and 4.49 show two idealizations which were 
employed. In Fig. 4.48 there are 63 eight-noded isoparametric 

curvilinear quadrilateral elements [268] while in Fig. 4.49 there are 
6 six-noded isoparametric curvilinear triangular elements and 52 

eight-noded isoparametric curvilinear quadrilateral elements. It is 
found that both idealizations give the . same results, hence only 
results of the former are presented. 
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The stresses obtained by the finite element method are 

plotted along both the x and y-axis. It is thus possible to compare 

the finite element solution with the analytical one when different 

finite element idealizations are employed. All stress distributions 

were calculated under constant loads which gave the same net section 

stress an=2P/ntD. 

Fig. 4.50 shows how the principal stresses vary with x/R 

position for both the classical theory and finite element solutions. 
Excellent agreement is obtained between the 63-element solution and 

the exact solution. 

Fig. 4.51 shows the variation of principal stresses along the 

y-axis. It is seen that the finite element analysis gives a very good 

agreement up to y/R - 0.8. 

The shear stresses along the x and y-axes were also shown in 

Figs. 4.52 and 4.53, respectively. Again, very good agreement with 
the analytical solution was obtained. 

These results have shown that the Pafec programme has been 

used successfully to produce reliable data for stress analysis. In 

practice, however, the applied load is transmitted to the disc through 

some finite area. Consequently a second run in which the applied load 

was modified to reflect the finite load distribution is needed. The 
load is now distributed on an arc of 30 degrees conforming with the 

experimental results (Fig. 4.54). 

The displaced shapes for both cases are shown in Fig. 4.55. 
It can be seen that the point load causes much more deformation at the 
loading point than does the distributed load. 

A comparison is shown in Figs. 4.56,4.57,4.58 and 4.59 of 
the stress distributions as obtained from the point load and 30-degree 
arc load. Stresses along the x-axis did not change except in the 
central region where they are smaller for the arc load case. A 
similar trend is observed along the y-axis. The principal stresses 
are also more uniformly distributed. So are the shear stresses. 
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The maximum principal, minimum principal and equivalent 

stress distributions are shown in Figs. 4.60 to 4.62 respectively. 

Notice a high tensile stress is located at the boundary in Fig. 4.60. 

This explains the additional fracture site which was also observed in 

the experiments. 

With the assumption that the maximum tensile stress is the 

cause of fracture, the state of stress at each stressing point in an 

element of the whole disc is examined. It is found in Fig. 4.63 that 

the fracture starts from the free boundary as well as from the centre 

of the disc. Thus the code C2 refers to the failures which have 

occurred. 

4.6.4 Results and Discussion 

Preliminary tests were performed using smaller pair of anvils 
(12.5 mm radius) and P. T. F. E. tape placed between the anvils and the 

disc. Although great care was exercised, local crushing was observed. 

During this preliminary experiment, 115 specimens were tested, but 

only 31 produced fracture due to tensile stresses. 

The anvils were replaced by those with the bigger loading 

arc. Each test was run with a sheet of white paper and carbon paper 

placed between the specimen and the anvil. These papers were used to 

obtain a measure of the contact width after the test. After testing, 

the padding was observed and the measurement of contact width was 

made. The mean result of contact width is 6.55 mm which results in a 

mean effective value for ß of 0.524 radian (30°). Crushing under 
platens was never observed. Typical fractures are shown in Fig. 4.65. 

Some specimens were fractured by the triple-cleft mode of 
tensile fracture. A typical fracture pattern with varying degress of 
fragmentaion is shown in Fig. 4.66. This secondary fracture has been 

observed on testing different materials [283,290,291,293]. 

Examination of the fracture surface reveals no particular 
features of fracture. Fig. 4.67 shows the microstructure of a typical 
fracture surface with short stubby needles. 
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Fig. 4.68 shows the distribution of strength, plotted as a 

cumulative probability of failure against nominal failure stress of 

disc specimens in diametral compression. Strength resultsfor plaster 

specimens is given in Table 4.8. 

TABLE 4.8 FRACTURED STRENGTH OF BRAZILIAN DISC TESTS 

NO. OF TESTS 
MEAN STRENGTH 

(MPa) 
STANDARD DEVIATION 

(MPa) 

77 3.8556 0.5754 

4.7 UNIAXIAL CX MPRE'SSICN TESTS 

4.7.1 Introduction 

It is well known that brittle materials are often used as 

structured materials in compression, rather than in tension, since 
tension gives rise to catastrophic failures. It was decided, 

therefore, to examine the materials in uniaxial compression. The 

uniaxial compression tests have long been studied to determine the 

strength of brittle materials, especially cement [294], concrete 
(186], rock and graphite (295]. It has also been used extensively for 

food texture investigations (296). 

4.7.2 Experimental Procedure 

The usual compression test is intended to obtain the strength 
of a material in a uniaxial-compressive-stress state. The word 
'uniaxial' implies that there is only one stress acting upon the body. 

This stress is compressive and has constant magnitude and direction 

throughout the body. 

The specimen usually chosen for the purpose of simulating 
this stress state is a right prism or a right circular cylinder. In 
practice, however, due to friction at the two loading platens, the 
stress distribution in the material is significantly altered near to 
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the loading platens. In fact, biaxial compressive stresses are built 

up in this region. The result is the conical region of severe 
destruction, shown in Fig. 4.69(b). 

If the friction at the ends is fairly low, then the specimen 

will fail by splitting across the centre, in a vertical plane (Fig. 

4.69(a)). Therefore, it is clear that the friction between the 
loading platens and the specimen end is an important factor which 
influences the measured compressive strength of a brittle material. 

A new mould was designed to cast the specimen (Fig. 4.70). 

Similar procedures of casting and extracting the cylinder to those 
described in section 4.4.2, were used. The diameter of specimen was 
24.0 ± 0.1 mm. The height of specimen was chosen to be twice the 

diameter in order to insure more uniform stress distribution in the 

gauge section. After casting, the specimens were left for four days 

to dry out. Both ends of the specimen were then machined by 

surfacing. Fig. 4.71 shows the specimens as cast and after machining. 

Compression of the plaster specimens was carried out using a 
universal tension-compression machine with a pair of specially 
designed platens. One method of reducing the frictional effect is by 
introducing a material with a very low coefficient of friction between 
the specimen end and the loading platen. A PTFE sheet of 0.9 mm 
thickness was used for this purpose. Fig. 4.72 shows the experimental 
set up. 

4.7.3 Results and Discussion 

Fig. 4.73(a) shows a cylinder in the testing machine prior to 
loading. The load was applied at the rate of 2 mn/min. When the 
cylinder failed it usually split axially with some shattering. A 
typical break is shown in Fig. 4.73(b) which illustrates the splitting 
action when the frictional effect is very low. 

Fig. 4.74 shows the test results, both mean and median 
rankings were used. The measured strength value is summarized in 
Table 4.9. 
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TABLE 4.9 FRACIURID STRENG'T'H OF UNIAXIAL OO PRFSSIM TESTS 

NO. OF TESTS 
MEAN STRENGTH 

(MPA) 
STANDARD DEVIATION 

(MPA) 

50 12.7891 1.2174 

4.8 NOTCH-BEAM TESTS 

4.8.1 Introduction 

By comparison with most ductile metals and alloys the 

toughness of brittle materials measured by a conventional impact 

testing machine is indeed very low, but nevertheless is measurable. 
Fracture toughness testing is a basic prerequisite of any effective 

assessment of a brittle material. Most of the commonly used 
techniques of toughness measurement were first developed for testing 

metals [297], but they can be applied equally, with a few 

modifications, to brittle materials. The usual technique for brittle 

materials is to put a notch in a test bar and load it slowly in a 
testing machine. Although several different specimen configurations 

are available, the most commonly used for brittle materials is the 

notched beam tested in bending, primarily because of its simplicity, 
the ease of machining samples and the economy of material. 

Recent literature evidence [298-302] supports the conclusion 
that accurate values of the fracture surface energy of brittle 

materials and hence the critical stress intensity factor of brittle 

materials can be obtained from bend tests on specimens containing 
saw-cut notches, provided that the notches are sufficiently narrow 
and deep (e. g., between 0.12 and 0.8 mm wide and deeper than 1 mm). 

4.8.2 Experimental Procedures 

Plaster specimens similar to those used in the beam bend 
tests of section 4.3 were employed. Notches were cut in the centre of 
the beam with a thin steel blade using a circular saw table shown in 
Fig. 4.75. The notch dimensions were checked by means of an optical 
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microscope. The major dimensions were within ±10, im, tool wear being 

very slight. Great care was taken to cut and sand both ends of the 

specimen flat and parallel to the required dimensions (Fig. 4.77) 

using a specially designed table shown in Fig. 4.76. The prenotched 
beams were loaded to failure in the three-point bending test rig shown 
in Fig. 4.78. More than twenty specimens were used for each 

experimental condition. 

The fracture surfaces of the toughness specimens were 

examined on a 'Stereo Scan 250 MK 3' scanning electron microscope. 
Plaster is a non-conductor and so surfaces were coated with a vacuum 
deposited gold-palladium alloy. 

4.8.3 The Determination of Fracture Toughness 

Using the specimen geometry and loading configuration shown 
in fig. 4.77, KID is calculated using the following form of the 

Griffith relation (2971: 

1 

6Mal 
K, c=Y. - 

bw2 

where m is the applied bending moment at fracture. Y is a 

dimensionless parameter which depends on a/cz and on the type of 

loading as follows: 

(aý) a2 a3 a4 
YA +A1 + A2 +A3 +A4 - 

wwww 

For three-point bending and s/w-8, the coefficients A have 

the following values: 

A 1.96 C 

Al --2.75 

A2 - 13.66 

A3 --23.98 

A4 - 25.22 
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and the K calibration is 

PS a1a 
3/2 

a 
5/2 

a 
1/2 

KIc = 3/2 
2.94 1-14.12 5- +20.49 - -35.97 - 

b(w) wwww 

a 9/2 

+ 37.83 I- 
w 

4.8.4 Results and Discussion 

Table 4.10 lists the average KIc values obtained for five 

groups of different a/ta ratios. The results of the KIc determination 

are shown in Fig. 4.79. Each point represents at least 21 specimens. 
Notch depth has a significant effect with a maximum at a/w=0.33. 
Anomalous notch weakening and strengthening at other a/w ratios were 

also observed. A comparison of fracture toughness of plaster with 

some engineering materials is given in Table 4.11. 

Although the general curve fits the data in Fig. 4.79 well, 
there is much scatter due to the small values of KIc. The standard 
deviation of KIc in Table 4.10 is much less than the standard 
deviation of the 4-point bend test in Table 4.4. The critical stress 
intensity factor is ideally a material constant, but a constant value 
is unlikely with flaw sizes comparable to microstructure features. 

Variation in the value of KIc is due to subcritical crack growth 
(105). Significant variation in the fracture toughness of cementous 
materials with crack length should be expected (106). Thus, for 
inherent flaws it is conceptually difficult to discuss strength in 
terms of an independent crack size and stress intensity factor. The 
KIc values obtained should be treated with some caution. 

The notch effect observations are in agreement with previous 
work. Simpson (300] has reported the same phenomenon in both single 
edge-notched (SEN) beam and double-cantilever-beam (DCB) specimens of 
SiC with a maximum fracture energy (r(1-v2)K=c/2E) at a/w=0.3. Brown 
(303] determined the fracture toughness of cement paste and mortar 
using similar specimens. The fracture toughness values increased with 
a/w ratio, up to a maximum at a/w around 0.3, then decreased. Cook 
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TABLE 4.10 Rj DATA FOR HERCULITE LX PLASTER 
OBTAINED c` WITH SPECIMENS al? M JING 

SAW-a NO'T'CHES 

SET NO. 
a 
- 
w 

NUMBER OF 
SPECIMENS 

MEAN VALUE 
OF K 
(NN/=m**1.5) 

STANDARD 
DEVIATION 

1 0.13 37 0.1374 0.0163 

2 0.23 35 0.1334 0.0230 

3 0.33 31 0.1527 0.0252 

4 0.43 30 0.1360 0.0278 

5 0.53 30 0.1322 0.0306 

6 0.63 21 0.1480 0.0302 

TABLE 4.11 FRACTURE TWRWESS VALUES FOR 
SEVERAL MATERIALS 

MATERIAL 
K 

(MN/mm*1.5) REFERENCES 

POLYESTER 0.5 [309] 

CONCRETE 0.2 [309] 

MARBLE 0.9 (309] 

EPOXIES 0.6 (310] 

GLASS 0.25 (305] 

PLASTER 0.15 

and Crookham [3041 used the notched beam technique to study the notch 
depth effect on polymer concrete. Their results showed that the 
fracture toughness increases with the notch-to-depth ratio and attains 
a limiting value at an a/'w ratio of between 0.35 to 0.42. It then 
decreases beyond this range. Carpinteri [305) also observed the same 
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phenomenon in SEN specimens of marble, mortar and concrete. The KIc 

values increased for small crack depth and decreased for large depth. 

The maximum K1c values were obtained at a/w=0.3. 

The variations in apparent fracture toughness with a/w ratios 

are not easily explained. Simpson [300] using a notch crack 

combination model from Bowie's solution showed that a maximum in 

fracture energy and hence in fracture toughness can be obtained at 

a/w=0.4, not far from present results. While Jenq and Shah [306] 

proposed a two-parameter fracture model, namely the critical stress 
intensity factor and crack tip opening displacement, to explain the 

size effect of notched beam specimens. Cotterel and Mai (307] used 
the crack growth resistance curve to predict the experimentally 

observed size effects. This size and geometry dependency may be 

attributed to slow crack growth and nonlinearity due to geometrical 
interlock effects (302]. 

Carpinteri (309) has studied the variability of RIc with 

geometry. Based on Dimensional Analysis, he deduced the brittleness 

number: 
Ki 

c S 
1 

ü .b2 

where KIC : fracture toughness 

Cý ultimate strength 

b specimen depth 

For an elastic brittle material, fracture data of three-point 
beam bending are valid only if s<0.5 [308]. It is possible to 
obtain the test brittleness number for the present study: 

0.1527 
s- 

1 

5.5338 x 0.012 

a 0.276 

The agreement with published data and the fact that the 
brittleness number s is less than 0.5 suggests that the notch-beam 
technique can be used for fracture toughness measurements on brittle 
materials. 
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Since the plaster surface was non-reflective and crack- 

opening displacements were so small, no direct observation or measure 

of crack length was possible during the tests. In addition, fracture 

surfaces were not different in appearance as they usually are for 

metals. Consequently, all crack lengths were determined during the 

testing by a compliance calibration. A general notch configuration is 

given in Fig. 4.80. In order to interpret the notch effect, two 

samples each at different a/'w ratios were examined using the scanning 

electron microscope. No mirror and related features can be 

distinguished on these fractures because of the roughness of the 

fracture topography on the microscale due to the large grain and pore 

size. The only feature tat can be clearly observed is the 

macroscopic pore structure (Fig. 4.81). 

In most materials it has been found necessary to introduce a 

fatigue crack into the material prior to testing in order to provide 

reliable crack initiation. This is unlikely to be necessary with 

plaster because the pores acted as cracks within the material. 
Subsequent fatigue damage will not improve on this crack initiator. 

4.9 STRESS INTENSITY FACTOR 

4.9.1 Introduction 

In the engineering application of the concepts of linear 

fracture mechanics to the prediction of strength and life of cracked 

structures, a knowledge of the crack tip stress intensity factor as a 
function of applied load and geometry of the structure is necessary. 

The importance of determining stress intensity factors in 

connection with fracture investigations has promoted the search for 

practical methods that can be used for this purpose. 

There are many methods of calculating stress intensity 
factors. These methods have been reviewed in the literature 
(311-314). Among them, the finite element method is suggested as the 
best candidate at the present time for obtaining approximate stress 
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intensity factors [315], particularly when exact solutions are not 

available. 

4.9.2 Computational Methods for Stress 

Intensity Factors 

The methods for determining stress intensity factors using 

finite elements can be grouped into the following three categories: 

(a) Direct methods 

(b) Indirectly by considering changes in energy due to the 

presence of a crack. 

(c) Method involving special crack tip elements. 

The stress field near to the crack tip can be divided into 

three basic types, each associated with a local mode of deformation as 
illustrated in Fig. 4.82. They are the opening, sliding and tearing 

mode and often referred to as mode I, II and III crack extensions, 

respectively. In isotropic materials under essentially elastic 

conditions cracks loaded both statically and cyclically, tend to grow 
in Mode I irrespective of initial orientation. The opening mode 

stress intensity factor, KI, is therefore of greatest importance in 

fracture investigations. Attention in this section is confined to 

this mode. As regards the determination of the mode II and mode III 

stress intensity factors, the procedure will generally be the same. 

The stress method correlates the stresses at the nodal points 
of the finite element mesh with those at the crack tip which are given 
by: 

ci j(r, 6) -' fii(6) 

Where r, 9 are polar coordinates centred at the crack tip and 
fij(0) is a known function of 0 (Fig. 4.83). For the opening mode 
(N-I) the full set of stress and displacement fields are [3161 
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Where v is the Poisson's ratio, G is the shear modulus of 

elasticity, u, v, w are the displacements in the x, y and z directions 

respectively. 

4.9.3 Finite Element Implementation 

A plane strain finite element program using a combination of 

six-noded isoparametric curvilinear triangular and eight-noded 
isoparametric curvilinear quadrilateral elements [268] were used to 

analyse the three-point notched beam specimen (Fig. 4.84). For the 

efficient numerical solution of fracture problems it is advantageous 
to employ special crack tip elements which directly model the near tip 

elastic strain field singularity. The crack tip module [268] is used 
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for this purpose. The program adapts any isoparametric elements in 

the region of the crack tip to produce an appropriate singularity. 

Due to symmetry only one half of the specimen of Fig. 4.84 

need be considered. Two idealizations were employed. In each case, 

the analysis was conducted over the range of notch to depth (a/w) 

ratios 0.2 to 0.8. Notches of different lengths were simulated by 

imposing appropriate boundary constraints in the plane of the cracks. 

Fig. 4.85 shows the mesh employed for an a/w ratio of 0.2 of the first 

case. A typical mesh of the second idealization with a/w = 0.8 is 

shown in Fig. 4.86. The former has a coarser mesh than the latter. 

Both displacement and stress extrapolation techniques were 

used. With the displacement extrapolation method, KI is found by 

extrapolating the displacement along the crack face. The analytical 

expressions for the displacement variation along radial lines 

emanating from the crack tip are given in section 4.9.2. Substituting 
the values of u or v and r for nodal points along a radial line 

emanating from the crack tip as shown in Fig. 4.87 allows a plot of KI 

against radial distance r to be drawn. The best straight line is 

found by linear regression. The regression constant will then be used 
as an estimate for K1. The stress extrapolation method for 
determining the crack tip stress intensity factor is similar to the 
displacement method. 

A Fortran computer program was written to evaluate the stress 
intensity factors. A finite element analysis was performed for each 
notch to depth ratio a/W. Nodal coordinates and either nodal 
displacements or nodal stresses were inputted to this computer 
program. The stress intensity factors were evaluated for each nodal 
point along the chosen radius according to the equations of section 
4.9.2. These values were then extrapolated to r=0 using the routine 
G02CAF of the NAG Library (164]. 

4.9.4 Results and Discussion 

The results obtained from the finite element solutions are 
compared to results given by the ASTM formula [297] in Figs. 4.88 and 
4.89. Fig. 4.88 shows the KI values obtained from the stress 
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extrapolation method while Fig. 4.89 shows the results from the 

displacement extrapolation technique. In general, a better agreement 

with the ASTM formula is obtained using the displacement extrapolation 

method. The reason is that the nodal stresses are less accurate than 

the displacements [317). It has also been shown that the most 

accurate results are given by using the first idealization. Remember 

that the crack tip elements were employed in both idealizations. 

Errors can arise in the evaluation of stress intensity factors by this 

approach, if the crack tip element is too small to fully capture the 

1/�r strain singularity behaviour. This is likely to be the case as 
the crack tip elements of the second idealization are much smaller 
than those in the first idealization (Fig. 4.85 and 4.86). The 

accuracy of the present procedure may also be judged from Fig. 4.90 

which compares the computed K1/a0 �a with those given in references 
[297,318,319). 

The experimental data points shown in Fig. 4.90 indicate a 

curve of the form y=f(x). A least-squares fit involving these four 

data points can be carried out with a computer program. The plot of 
data first suggests a quadratic curve having the form: 

jý a Cl + C2 x2 

Other polynomials of n-i degree are also used. They have the 
form: 

j/ s Cl f C2X f C3X2 + ... f CnX -1 

where the C1, C2... Cn are regression constants. They are listed in 

Table 4.12. The solution curves with the experimental data were 
plotted in Fig. 4.91. It can be seen that the 3rd, 4th and 5th degree 

polynomials equally fit the experimental data well. A comparison of 
Figs. 4.90 and 4.91 suggests that the best fit is obtained with the 
5th degree polynomial. 

An equation for estimating KI for the configuration shown in 
Fig. 4.84 was derived: 

Maa2a3a4a5 
A+B -+C -+D-+E-+F - 

F%l s 
b(w)3/2 wwwww 
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Where M is the moment. The constants A, B, C, D, E, F, are listed 

in Table 4.13. 

Thus in conclusion, it can be seen that the use of special 

crack tip elements is beneficial for stress intensity factors 

evaluation by displacement extrapolation. 

TABLE 4.12 REGRESSION CONSTANTS Ci (i=1,6 ) 

C1 C2 C3 C4 C5 C6 

QUADRATIC 0.9769 7.9844 - - -- 

2ND DEGREE 3.4332 -11.7356 19.3561 - -- 

3RD DEGREE 0.2342 13.7046 -37.7704 38.0844 -- 

4TH DEGREE 1.0264 5.4582 -8.9303 -3.0851 20.5714 - 

5TH DEGREE 1.6670 -0.4240 5.9957 -6.7374 -5.3333 21.333 

TABLE 4.13 Cct STANTS FOR STRESS INTENSITY FACTOR 
(KI ) FORMULA 

REGRESSION 
CONSTANT 

(x10**3) 

A 0.835 

B -0.212 

C 3.000 

D -3.370 

E -2.665 

F 10.650 
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CHAPTER FIVE 

ANALYSIS AND DISCUSSION OF RESULTS 

5.1 EXPERIMENTAL WORK 

5.1.1 Plaster Casting 

Two key practical points for the preparation and use of 

plaster specimens need to be emphasized. First, it is necessary to 

cast moulds in a logical, efficient way. Araldite and perspex were 

chosen for the present work because of their chemical inertness, ease 

of machining and availability. in addition, the preparation of 

specimens required for a test needed minimum machining. In the five 

failure tests, only the uniaxial compression specimens required 

workshop machining. The second important requirement is the casting 

technique, which includes the removal and drying of the plaster casts. 

A simple but effective procedure for casting plaster specimens as 

described in section 4.1.4 has been followed throughout. It is 

important to separate the cast from the mould at the correct time. 

Plaster becomes warm during setting and the final set is reached when 

the cast is at maximum temperature. Lifting should be effected just 

prior to this stage as separation is easy at that point. Various 

extraction devices have been designed and they proved to be very 

effective in minimizing the removal time. After setting, the cast 

should be dried correctly so as to prevent excessive loss from being 

too wet, too dry, and thermal shock. The drying of plaster specimens 

will obviously depend upon the sectional depth of the casts. As 

different types of specimens have been required, a method of weighing 

the specimens was devised (see section 4.1.4). Although cast at 
different times, control of the relative weight reduction ratio 

ensured a high degree of consistency among various sets of specimens. 

5.1.2 Mechanical Testing 

Fracture strengths of Herculite LX plaster were evaluated at 
room temperature in five tests. Four-point bend test, cylinder burst 

test, ring-on-ring test, Brazilian disc test and uniaxial compression 
test. In designing the mechanical tests, both the testing rig and the 
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specimen extraction device had to be considered. The latter must be 

considered to be as important as the former, especially in the case of 

brittle materials such as plaster which do not possess a very high 

strength. The weight of the rig must be reduced wherever possible. 

Another difficulty in testing brittle materials is the edge cracking 

and spalling phenomena. Experimental measurements using a specially 
designed anvil that permits a bigger applied-load angle have proved 

successful in the Brazilian disc tests. 

A method of reducing the frictional effect of the compression 
testing was also introduced by using a P. T. F. E. interlayer between the 

loading plates and the specimen ends. All of the specimens failed by 

splitting across the centre, in the vertical plane. 

5.2. THEORETICAL AND NL iICAL ANALYSIS 

5.2.1 Finite Element Analysis 

As indicated in Chapter Three, the probability of failure is 

a function of the applied state of stress. In many cases, a closed 
form solution for the stress distribution on the given structure does 

not exist and therefore an exact estimate for the probability of 
failure cannot be obtained. The Finite Element (F. E. ) method is a 

very common technique used to obtain an approximate solution for the 

stress distribution on the structure. 

Over the past ten years, probabilistic structural mechanics 

with the advent of modern digital computers and the F. E. method has 

begun to emerge as a tool for assessing the structural risk and 
reliability of a variety of components and structures in many 
industries (320,321]. In consequence, it is advantageous to have a 
probability to failure analysis formulation that can be readily 
incorporated in a finite element code. 

The F. E. method has proved to be very useful in the present 
work. Stress distributions show very good agreement with analytical 
solutions. The only drawback are the stress discontinuities at the 

support point, but this problem can be overcome by using a different 
type of element as shown in section 4.5. 
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The F. E. analysis also provides an estimate of the positional 

failure on certain assumed stress conditions. It can be seen that 

these failure predictions did occur in experiments. 

The usefulness of the F. E. method for the computation of 

crack tip stress intensity factors is demonstrated. Although several 

approaches have been developed for estimating the stress intensity 

factors for a single-edge-notch (SEN) beam subjected to three-point 

bending, the ASTM formula (297) is commonly used for comparison with 

the results of other solutions [318,319,322,323). However the 

assumptions made in this formula have limited its application to a 

certain range of span to depth (324). The results presented in 

section 4.9 and Fig. 4.92 agree fairly well with published results. 

5.2.2 Applicability of the Weibull Distribution 

Properties of brittle materials make it necessary to treat 

the failure in a statistical manner. A theory proposed by W. Weibull 

(140-142) does this. He proposed that failure of a structure will 

occur when the stress acting on the weakest flaw exceeds a critical 

value. This idea is comparable to the case of a loaded chain, where 
failure of an individual link produces total failure. The name 

Weakest Link Theory (WLT) is thus often used to denote this approach. 

The Weibull distribution function of section 2.2 has a very 

convenient analytical form and its parameters can be adjusted to 

closely fit experimental data. Fig. 4.12 illustrates this fact for 

the case of a two-parameter distribution. The results suggest that 

the two-parameter Weibull distribution is an adequate description of 
the experimental failure data. 

5.2.3 Shortcomings of the Weakest Link Concept 

A major limitation of the WLT is that it does not adequately 
model situations where compressive stresses are predominant, because 
in such situations crack growth is not an unstable phenomenon. Unlike 
the situation in tensile stress states, splitting of the structure by 

a single crack does not necessarily imply catastrophic failure. The 
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short-comings of the WLT presented in Fig. 3.12, shows that indeed the 

probability of failure equation based on this model underestimates the 
failure stress of the uniaxial compression tests. A more realistic 

approach to the problem has been suggested by Jayatilaka and Trustrum 
[159]. Catastophic failure of a brittle material under uniaxial 

compression can only take place after a proportion of the cracks 
present in the material have failed. McClintock and Zaverl [325] 

proposed a similar model assuming that the first crack is stable. 
Increases in applied stress are then required to cause further 

cracking. Instability occurs only after a number of cracks have 
developed. 

Batdorf (327] has suggested that the WLT should not be 

applied in cases where the principal compressive stress exceeds in 

magnitude the value of the principal tensile stress by a factor of 
about three. 

5.2.4 Limitations of the Principle of Independent Action 

The Weibull model is often used in conjunction with the 
Principle of Independent Action (PIA) to evaluate the probability of 
failure for the state of multiaxial stress. The PIA ignores the 
possibility of structural failure taking place under the combined 
actions of two or three principal stresses [145,171), but the 
Weibull-Principle of Independent Action approach to multiaxial 
fracture remains very much in use because it is a simple useful 
function, in which the dependency of strength on volume can be 
incorporated into a reliability analysis. 

5.2.5 Multiaxial Failure Criterion 

Among the numerous failure criteria reviewed, the one 
proposed by Stanley and Sivill [171] proved to fit quite well the 
multiaxial failure strengths in both the tension-tension and 
tension-compression quadrants. The WLT has some drawbacks as pointed 
out in section 5.2.3 but it does work in this case, since the largest 
compressive stresses are less than about three times the maximum 
tensile stress, allowing the method to be applied with confidence 
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[326]. The compressive/tensile strength ratio for Herculite LX 

plaster is 2.3. 

The Weibull theory, which is a statistical approach, 

described at length in the literature [140-142], also provides a basis 

for predicting material failure under multiaxial stress states. 

However, because the resultant relationships are complex and difficult 

to use, the theory has been misinterpreted. The results of section 

3.1.4 have shown that the Weibull theory could predict either 

weakening or strengthening relative to the uniaxial tensile strengths 

in both the tension-tension and tension-compression quadrants. This 

prediction depends on the Weibull modulus. If m is big, say 12, the 

theory would predict the biaxial tensile strength to be less than the 

uniaxial strength. Present results with m=7 show a reversed 

prediction in the tension-tension quadrant. 

one group of ceramics, typified by titania and magnesium 

silicate [327], exhibit weakening in the tension-tension stress state 

and strengthening in the tension-compression stress state. This 

pattern of behaviour is consistent with the statistical fracture 

theories. In contrast, reaction-sintered silicon carbide showed 
biaxial strengthening in the tension-tension stress state. A fracture 

mechanics analysis which was presented by Shetty et al. [327] 

indicated that the above trend can be expected in those ceramics that 

fail from spherical defects. There were still other materials such as 

alumina which showed a transition from an apparent biaxial 

strengthening to an expected biaxial weakening due to slow crack 

growth (328). Various theories which were proposed recently by Matsuo 

[152], Alpa [155], and Batdorf (172] can be used to explain the 

strengthening effect with increasing Weibull modulus. However, the 

reported data are insufficient to determine whether the Weibull 

modulus has a significant effect on the reported results (168]. 

5.2.6 Multiaxial Failure Strengths 

In biaxial tension, both the Freudenthal analysis, which is 
based on the Principle of Independent Action (PIA), and the Batdorf 
model, which includes the possibility of failure under combined 
principal stresses, can be used to predict the equibiaxial tension 
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tests (Figs. 3.3 and 3.6). Several versions of the Batdorf model 

exist for the treatment of fracture due to the presence of different 

criteria. Among them, the Energy Density criterion assuming penny- 

shaped cracks, leads to a quite good agreement with experiment. But 

the best agreement is the Matsuo model which takes into account the 

contribution of shear to crack propagation. There is not much 
difference whether the PIA was used or not, because the compressive- 
tensile strength is less than three. 

It was to be expected that of the two Energy Density 

solutions the one based on the use of penny-shaped cracks is in best 

agreement with experiment; since such cracks are more closely related 

to naturally occurring cracks than Griffith cracks. The SEM 

observations revealed the circular flaws which are probably the point 

of failure initiation. 

The Matthews-Evans model does not require any particular 
functional form for the strength distribution, and that makes it 

attractive in cases where a Weibull distribution may not adequately 

represent the fracture statistics. This formulation of the problem is 

not very useful, however, because equitriaxial tension is considered 
first, and then the results corresponding to equibiaxial and uniaxial 

states of stress are derived in terms of parameters associated with 

equitriaxial tension. The inverse would have been more appropriate, 
because material-dependent parameters are normally calculated from 

uniaxial results, and equitriaxial tension is a state of stress that 

cannot be obtained in practice. The latter approach has been taken to 

obtain the results which were presented in Fig. 3.10. There is a 
large discrepancy between the model and the experiment, and the model 
is more conservative (i. e., exhibits the lower failure stress). 

5.2.7 Estimation of Weibull Parameters 

Many techniques exist for the estimation of the parameters of 
probability distributions. The methods vary in their underlying 
assumptions and theoretical procedures and, in general, provide 
somewhat different results. Two methods currently used to estimate 
the Weibull parameters are discussed in the present work. These were 
the method of least-squares and the method of maximum likelihood. For 
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the two methods, both estimates of the normalizing factor ä and the 

Weibull modulus m were very close (see Tables 3.2 and 3.3). It is 

suggested that the maximum likelihood method is to be used since it is 

completely objective, simple, and involves no arbitrary assumptions. 
However, when computing time is not at a premium and other extra 

statistical data are required, then it is recommended that the method 

of least-squares be employed. 

A Monte Carlo study was conducted to compare the different 

methods of data ranking. The second plotting position was found to be 

the best in the determination of the Weibull modulus. However, an 

examination of Fig. 4.12 discloses that both the first and third 

plotting positions gave similar results with accuracy sufficient for 

engineering purposes. 
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CHAPTER SIX 

PAMPT T ICTMYC 

In view of the growing interest in the use of brittle 

materials for structural purposes, this work has been prepared to 

provide the designer with the best current practice. The theoretical 

work was carried out using a finite element analysis, and the 

experimental work using six types of tests on samples of Herculite LX 

plaster for the latter. The findings are summarized below: 

(1) Herculite LX plaster with the plaster/water ratio of 1.5 

Kg/litre can be used as a model material to study the influence of the 

main physical parameters on the fracture properties of brittle 

materials. 

(2) The casting technique was shown to be satisfactory in 

producing homogeneous casts and accurate dimensional specimens. A 

minimum of skill and equipment was required to handle the material. 

(3) For a tensile state of stress and for a limited range of 
stress ratio in the compression-tension quadrant (up to a ratio of 
principal compressive stress to principal tensile stress of 
approximately -3 according to section 3.2.1 and Appendix B) the 

Weakest Link theory adequately represents the statistical 
characteristics of the fracture of brittle materials. 

(4) The theory proposed by Stanley has been verified to 

accuracies acceptable in predicting the failure of brittle components. 

(5) The Principle of Independent Action ignores the possibility 
of structural failure taking place under the combined actions of 
different stresses. The validity of that approximation has been 

challenged by the model of Matsuo which combines both normal and shear 
stresses. 

(6) Simulating cracks can be produced in samples of Herculite LX 
plaster by sawing. 
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(7) Fracture toughness increases with the crack length and 

approaches a limiting value at crack-to-depth ratios of approximately 
0.3, and then decreases after this point. 

(8) Methods of deriving the stress intensity factors from finite 

element results have been discussed, and two different methods have 

been identified. In general it has been found that the displacement 

extrapolation method can give better stress intensity estimates, 

especially when used with quarter-point crack tip elements. 

(9) This work does demonstrate the depth to which analysis of 
failure of brittle materials is possible using a combination of the 

finite element method for stress analysis combined with statistical 
failure data for the material to give an estimate of reliability. 

(10) A technique for the prediction of the mean failure load of a 
Brazilian disc, derived from the above approach, should prove to be an 

extremely powerful tool in the analyisis of brittle structural 

components with all types of geometries when subjected to multiaxial 
stress states. 

(11) Experimental results and finite element analysis have been 

shown to give good agreement in predicting the positional failure for 
the ring-on-ring and Brazilian disc tests. 

(12) To measure the uniaxial strengths, the four-point bending 
tests are easy to perform. The results of section 3.2 and Fig. 3.1 

suggested that either the ring-on-ring or the Brazilian disc test 

could replace uniaxial tests as a means of evaluating probability of 
failure parameters for subsequent use. 

(13) The cylinder burst tests measure specimen strengths in the 
uniaxial stress state. It is not easy to perform and its success 
depends on the material strength, and on a careful experimental 
procedure. 

(14) The use of P. T. F. E. sheet placed between the platens and 
specimen ends has been shown to reduce the pressure concentrations due 
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to inevitable geometric mismatches of the contact surfaces of the 

uniaxial compression tests. 

(15) Fractography using the scanning electron microscope provides 

valuable information about the failure of brittle materials. 

(16) The two-parameter Weibull probablity distribution adequately 

describes all the test failure strength distributions. 

(17) Common methods of estimating the Weibull parameters are 

discussed. Either the method of Least-Squares or the method of 

Maximum Likelihood could be used. 

(18) Computer simulation is used to obtain the statistical 

properties of different estimators. It is recommended that the Least- 

Squares estimate with a sample size of about 30 and the plotting 

position P! -(j-1/2)/N be used. 

RE(70I 2 TICKS FOR FUTURE WORK 

The author believes that there exists three distinct areas 

related to this work for further improvement and investigation. 

(1) Further experimental work on other brittle materials with 
different ratios of principal compressive stress to principal tensile 

stress is necessary to establish a more general failure criterion for 

brittle materials. 

(2) Utilization of brittle materials in applications such as heat 

engines, bearings, cutting tools, where high contact loads can occur, 
requires a thorough understanding of contact stress distributions and 
their related effects on crack initiation and propagation. 

(3) The Weibull distribution is often employed to model the 
statistical variation of strength of brittle materials. It is assumed 
that a single distribution of flaws is present uniformly throughout 
the material. However, it is only a model, and extrapolations are 
only valid if the model is accurate. Different flaw populations may 
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be present in a set of specimens. Therefore, multiple flaw 

distributions should be studied in order to model the results more 

accurately. 
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APPENDIX A 

NUMERICAL CALCULATION OF THE WEIBULL THEORY FOR 
BIAXIAL STRESSES ON PLASTER 

The risk of rupture B' is defined by (section 3.1.4) : 

TL/2 fot22 
B' =4K, cos 2mýý 0 (cos ý+c sin Y )m d I 0 -YO 
A numerical example with m=3, c2 = 0.8 was 

performed in order to check the accuracy of the computer 
code in calculating the above integrals 

Zm*l d4 =r cos 7ý d4 = 
2.4.6 

_ 
48 

cos _ 0.4571 
3.5.7 105 

00 

With c2' 0.8 > 0, the second integral can be written as 

V2 

_(llO 

(cos2ti+c2sin24)"'dy =o 
/(1- 

k2sin2 Ui)"'di 

where k2 a 1-c2 ' 1-0.8- 0.2 

Using the binomial theorem, the integral can be expanded 
as 

(1-k2sin2dt = 
(TL[1-mk2sin2+m(m-1) 

k4sin4 
2! 

-1o 

_ 
m(m-1)(m-2) k6sin6 tý + """" l di 

3! 

With m=3 the integral becomes 

f 
T[/2 

t 1- 0.6 sin 2«0.12 sin4 tý - ßx1Ö3sin 6) dy = 1.1663 
0 
A computer code which called the subroutine D01AKF 

of the NAG Library (170) was developed to compute these 
two integrals. The results with m=3, c2= 0.8, and the 
relative accuracy of 1/1000 were outputted. 

f 
TC/2 

cos7ýdý = 04571 
TC/2 0 

(cos2 + 0.8 sin2 ý )3 dý=1.1663 

0 
It can be seen that a very good agreement was obtained. 
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The computer code was used to compute these two 
integrals with different values of c and m=7. The 
risk of fracture in the biaxial stress state was then 
computed. 

In assuming that both the biaxial and uniaxial 
stress states have the same total risk of fracture, we 
have 

BB 

Bt 

Tt/2 Y. 

4 k1QI V/ Cos2m. 1 d (cost + c2sin2 )m dtv 
jo 

-ýo 
k 6i V 

=1 

where k_2m+1k 1 2Tt 

Cis the maximum pricipal stress 

Q, is the fracture strength in simple tension 

With m and c2 are now known, the ratio of a-, /6-t can be 
obtained, so can the o-2/o-i ratio. These ratios were 
presented in Table 3.1. 
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APPENDIX B 

NUMERICAL CALCULATION OF THE PROBABILITY OF FAILURE 
FOR THE UNIAXIAL COMPRESSION TEST 

Stanley et al. (173) have proposed an equation for 
the failure probability distribution of specimens 
subjected to uniform uniaxial compressive stress. 

Pi =1- exp [- (m 
± 

)m ( 
fv1 

m (vý 
H(a))m 

The first function [(1/m): ] is associated with strength 
variability 

(1 ! )m =r (1 + 
L)' 

=r(1.1499 )6.6723 = 0.6296 
mm 

Where 

r is the Gamma function. The Gamma function can 
be read from table (174), graph (99), or can be computed 
by using a subroutine (175). The subroutine S14AAF of 
the NAG Library has been used to obtain the values of 
Gamma functions. 

m is the Weibull modulus obtained from 
least-squares analysis of section 3.2.2. 

The second function (1/ßi, )m is derived from a 
calibration test of the four-point beam bending (section 
4.3.2). 

Gnom = 5.5338 

CV(V) = 
m+3 

= 0.0274 
6(m+1)Z 

V=Lbd = 1.38X10-5 m3 

6fv = Gnom V 6(V) II/m = 0.6032 

Where 

Gnom is the mean value of the nominal failure 
stress. 

6(V) is the stress-volume integral. 

V is the volume of the beam. 

is is the mean tensile fracture stress of unit 
volume of the material. 
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The step function H(C) is determined by 

H(6) 12.7891 
= 2.3111 

ýý, 5- 5338 

Vc = 
nd ih=2.1715x 

105 m3 
4 

It follows that 

Pf = 1- exp (-1.4899 x 10 a6.6723 ) 
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APPENDIX C 

NUMERICAL CALCULATION OF THE PARAMETERS REQUIRED 
FOR STRESS INTEGRAL COMPUTATION 

The failure probability of brittle component 
depends on the mean strength and the variability of 
strength of the material, the shape and size of the 
component, as well as the type and magnitude of the 
loads. All these effects are incorporated in the 
four-function Weibull equation (173). 

Pf= 1-exp[-(m')m(om)m(Vs) ý(V)) 
iv 

Where 

m is the Weibull modulus. 

Gnom is the nominal stress. 

Crfv is the mean tensile fracture of unit volume of 
the material. 

Z(V) is the stress-volume integral. 

VB is the volume of the disc. 

VB - 
Tý ýz t=1.964 x 10-6 

An alternative approach is possible in which it is 
assumed that all fracture begins on the surface of the 
stressed body. With this assumption the general form of 
the four-function Weibull equation becomes 

Pi =1- exp I -(m ! )m ( ý°"' )m (Aa) Z: ( A) ] 
fa 

Where 

5 is the mean tensile fracture stress of unit 
surface area of the material. 

Z(A) is the stress-area integral. 

A. is the total surface of the disc. 
AB = 1.296 X 10-3 

With third point bending, m=3 

(A) _Ix1(1+ 
bm ), 4n + 2(m+1)(1-2n) 

4 (m+1)2 b+ d 



-146- 

T (A) = 5.1395 

A= 2L(b+d) = 5.52x10-3 

6= ß' [ A6(A)]i/m 
= 3-2445 

fa nom a 
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APPENDIX D 

STRESS INTEGRAL FOR A BRAZILIAN DISC 

The output files which contain the principal 
stresses and model geometry data for a Brazilian disc 
using the finite element package (PAFEC 75 - Level 6.1) 
were modified by inputting the Weibull modulus (m), step 
function [H(6 )], disc thickness (t), and material 
constant M. 

From Appendix B: 

H(6) = 2.3111 

The material constant k is computed from (171) 

(YB (1)1/k 
6t 2 

Where 

ýB is the mean fracture strength in equibiaxial 
stress state. 

Q't is the mean fracture strength in uniaxial 
tension. 

Hence 

4-9425 
-5 5338 

(2 )l/k or k=6.1395 

A post-processing computer code was used to access 
these files. Each averaged stress was divided by the 
appropriate value of the step function H(6), raised to 
the exponent k and multiplied by the Jacobian D to 
determine the stress at the Gauss point. 

0 (0ave )k D 
Gauss H(ß') 

The Gaussian stress was then substituted in 

I ýýý (6 jm/k 
m1 j-1 i=1 muss 

A similar procedure was followed for the 
stress-area integral except that the Gaussian stress was 
not multiplied by the disc thickness. 

10 6Gauss ým/k 
n_1 j=1 I=1 
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Where 

i is the number of Gaussian stresses. 

j is the sampling points. 

N is the number of elements. 

} is the disc thickness. 

A flow chart for the procedure to be used is shown 
in Fig. D. 1. The ouput of the programme, when run with 
the above data : 

I� = 4.7224 x 1020 

23 
IQ = 1.1806 x 10 

Because the stress analysis was performed on a quarter 
disc, the stress-volume integral is 

H(V) 
4Iv 

=m VB Qnom 

and the stress-area integral is 

Z: (A) 
4IQ 

m Aenom 

Where 

VB is the volume of the disc. 

AB is the surface of the disc. 

Gnom is the mean value of the nominal failure stress. 

m is the Weibull modulus. 

The failure probability of the Brazilian disc test can 
now be written as 

Pf =1- exp I -(m ! 
)m (ßß_°m )m (v ) z(V) I 

sv 

Pi = 1- exp [-1.035 Gn 6om 6723 1 

If the flaws were assumed surface-distributed : 

P=1- exp [-(1 0' (Cy-nom (A B) 5(A) ) im ýa a 

Pf = 1- exp [-4.906 x 10-4 Q-6.6723 
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-( START 

READ DATA 
Number of Elements N 

Number of Nodal points 

SUBROUTINE OAT 
Node Number 

Nodal Coordinates 
Element Number 

Topology 

SUBROUTINE SHAPES 
Shape Functions & Derivatives 

for Quadrilateral Elements 

IF YES 
K AE. 6 

NO 

N 

SUBROUTINE STIFF6 
Shape Functions & Derivatives 

for Triangular Elements 
Gaussian Stresses 

Stress Integral 

SUBROUTINE STIFGE 
Gaussian Stresses 

Stress Integral 

WRITE 
Stress Volume Integral 

Stress Area Integral 

STOP 

FIG. D. 1 FLOW CHART OF THE METHOD OF COMPUTING STRESS INTEGRAL 



-150- 

APPENDIX E 

DERIVATION OF THE LOAD FACTOR K. 

P/2 P/2 

2-y) Jd/2 

M2 (- 

oý 

M 

The Weibull distribution function relates the 
cumulative probability of failure (Pf) to the volume (V) 
under the tensile stress(6) with two parameters, the 
Weibull modulus (m), and a normalizing constant (moo) as 
follows 

Pi =1- exp (- (6 )mdV l= 1- exp (- Itotat 1 
0,0 

Where I total = I, + 212 

The bending stress is obtained from simple beam theory : 

II2 

Where 

I is the moment of inertia of the section of the 
beam with respect to the neutral axis. 

c is the distance from the neutral axis. 

1 
11 
111 

111 
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For L/3 >, x>0 

M= PL/6 V=bdL/3 

a-- PL/61(d/2 - y) dV = bdyL/3 

The maximum stress a-max occurs at y=0 

6max - PLd/121 

Hence 

cr 
_ 

PLC d 
_y) 

12I 
-Fmax 3I2 PLd d 

Qax m a' m cm 2y m I1(dV =()() dV=( ) (1- ) dV 
J ao ao 0-max 00 d 

VVV 

d/2 
b3 ((co- x )m (1- 

d 
)rn dy 

0 

Through the change of variable 

ua1- (2y/d) 

I1 becomes 
0 

I=_ bdL (Q'max )m um du = 
bdL (a-max )m 6 6(m+1) 

For 0>x>, -L/3 

M- P/2(L/3 - x) V= bdL/3 

Q= P/21(L/3 - x)(d/2 -y) dV = bdydx 

P lL-x)(d-y) 12I 
_ (1-3x)(1-) 

Amax 2I32 PL dLd 

I2 = (6 m dV = (0max )m ( a- 
)mdV 

ýo Go 6m ax 
VV 

d/2 L/3 

= (0mox )m (1 -Lm (1- dy 
)m b dx dy 

00 
m 

d/2 L/3 

b(ýx) ft-r (1- dy) dxdy 
0 

00 

With the change of variables 

u1- (3x/L) 

and 
V1- (2y/d) 
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12 is transformed into 

00 

12 = 
bd 

6I' 
(a' x )mý um vm du dv 

11 
bdL (Omax) 1 

6 ao (m+1)2 

The risk of fracture is finally obtained : 

Itotal = It +2 12 = bdL m+3(Cmax )m 
6(m+1)2 00 

and 

Pi = 1-exp [- Itotat 1= 1-exp[-V 

Hence the load factor 

Kv a m+3 / (6(m+1)2 ] 

m+3 
2 

(Omax )m 
(° 6(m+1) 

f 
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FIG. 2.1 MOHR STRENGTH ENVELOPE 

FIG. 2.2 SIMPLIFIED MOHR STRENGTH ENVELOPE 
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FIG. 2.5(b) GEOMETRIC VARIABLES DESCRIBING LOCATION 
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FIG. 3.1 COMPARISON OF FAILURE CRITERIA WITH EXPERIMENTAL 
RESULTS FOR HERCULITE LX PLASTER 
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FIG. 4.1 SCANNING ELECTRON MICROGRAPH OF THE MICROSTRUCTURE 
OF UNIAXIAL COMPRESSION SPECIMEN AFTER CASTING; 

x 2000 

FIG. 4.2 SCANNING ELECTRON MICROGRAPH OF THE 11ICROSTRUCTURE 
OF DISC SPECIMEN AFTER CASTING; x 2000 
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FIG. 4.8 BEAM MOULD ASSEMBLY 
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FIG. 4.9 BEAM AND DISC EXTRACTION DEVICE 
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FIG. 4.10 FOUR-POINT BEAM BEND TEST MIXTURE 



-190- 

FIG. 4.11 VARIOUS BEAM SPECIMENS OBTAINED BEFORE 
AND AFTER TESTING 
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FIG. 4.1.3 A TYP I CAL f'RACTUfRE SURFACE OF A FOUR-POINT BEAM 
BEND TEST WITH POROSITY; x6 
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OF A FOUR-POINT BFTi BEND TEST; x 2000 
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FIG. 4.15 CYLINDER RUFST TEST ASSEMBLY 
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FIG. 4.16 SCHEMATIC OF CYLINDER BURST TEST 
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FIG. 4.30 DISC MOULD ASSEMBLY 

FIG. 4.31 VARIOUS DISC SPECIMENS OBTAINED BEFORE TESTING 
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FIG. 4.43 RING-ON-RING LOADING JIG 

r'IG. 4.44 FRACTURE PATTERN IN RING-ON-RING DISC TEST SPECIMEN 
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FIG. 4.45 SCANNING ELECTRON MICROGRAPH OF A FRACTURE SURFACE 
OF A RING-ON-RING DISC TEST SHOWING THE DUAL PORE 
DISTRIBUTION; x 250 

FIG. 4.46 SCANNING ELECTRON MICROGRAPH OF THE SAME FRACTURE 
SURFACE; x7 
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FIG. 4.47 IDEALIZED DIAMETRAL COMPRESSION TEST 
UNDER POINT LOAD 
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FIG. 4.50 PRINCIPAL STRESS DISTRIBUTION ACROSS HORIZONTAL 
DIAMETER FOR A BRAZILIAN DISC SUBJECTED TO POINT 
LOAD 

Normalized Radial Distance x/ R 



-223- 

4 

` 16 
b 

N 
a 

N 

a N 

t0 

0 

FIG. 4.51 PRINCIPAL STRESS DISTRIBUTION ACROSS VERTICAL 
DIAMETER FOR A BRAZILIAN DISC SUBJECTED TO 
POINT LOAD 

0.2 0.4 0.6 0.8 1.0 
Normalized Radial Distance y1R 



-224- 

b' 
x m 
E 

N 
N 
w 
L 

N 

w 
N 

fC 
E 

0 
Z 

4 

Analytical (292) 

0 Finite Element 

3 

2 

1 

0 
0 

0 0.2 0.4 0.6 0.8 1 
Normalized Radial Distance x/R 

0 

FIG. 4.52 SHEAR STRESS DISTRIBUTION ACROSS HORIZONTAL DIAMETER 
FOR A BRAZILIAN DISC SUBJECTED TO POINT LOAD 

t 

bý 
v 

x 
'v 

N 
O! 

N 

N 
N 

fV 
E 

0 

FIG. 4.53 SHEAR STRESS DISTRIBUTION ACROSS VERTICAL DIAMETER 
FOR A BRAZILIAN DISC SUBJECTED TO POINT LOAD 

0 0"Z 0.4 0.6 0.8 1.0 
Normalized Radial Distance y1R 



-225- 

FIG. 4.54 DIAMETRAL COMPRESSION TEST UNDER 
ARC LOAD 
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FIG. 4.64 BRAZILIAN DISC TEST ASSEMBLY 

DISC TEST 
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FIG. 4.66 TRIPLE-CLEFT FRACTURE OBSERVED IN BRAZILIAN DISC SPECIMEN 
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FIG. 4.70 SOLID CYLINDER MOULD ASSEMBLY 

I;. "1 .71 \'A T, `1'S f'\ 1 \': T 1, 
AFTER MACHINING 



-239- 

FIG. 4.72 SPECIMEN PLACED IN TESTING 
MACHINE, READY FOR TEST 
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FIG. 4.78 THREE-POINT NOTCH BEND TEST FIXTURE 
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FIG. 4.87 STRESS INTENSITY FACTOR EVALUATION BY EXTRAPOLATION 
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