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Abstract

The research presented in this thesis is about a task of geolocation of radio frequency
emitters. In this research the problem of geolocation of non-collaborative emitter was
addressed. This thesis presents the novel algorithm for the RF emitter geolocation
based on the image process technique known as Hough Transform. The comparison
of this algorithm with traditional approaches to geolocation showed a number of
benefits, like robustness, accuracy and advanced fusion capability. The application
of the Hough Transform to data fusion allowed to use the modern concepts of agent-
based fusion and cluster level fusion, thus moving the solution of the problem of the
geolocation to upper level of fusion hierarchy. The work on Hough Transform lead
to a comparison of the Bayesian and non-Bayesian approaches in solving the task of
geolocation. Exploitation of the comparison lead to the derivation of a generalized
estimator. This estimator highlighted a number of mathematical functions which
can be exploited for geolocation and data fusion. These functions has been tested
for the purpose of data fusion in geolocation and it was found that Hough Transform
is a useful alternative approach for the data fusion for geolocation of RF emitter.
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Chapter 1

Introduction

1.1 Motivation

The problem of geolocation has received considerable attention over the past seven
decades. One of the forces defining the pursuit of the research in this area was ‘The
Report and Order’ issued by the U.S. Federal Communications Commission (FCC )
in July 1996 that requires all wireless service providers, including cellular, broadband
and wide-area licensees, to provide handset location information to Emergency 911
(E-911) public safety services. Another force driving the research in this area is the
requirement for ‘location aware’ services for third generation mobile radio (3G) [1].
The basic function of a location system is to gather information about the position of
a mobile station operating in a geographical area and to process that information to
form a location estimate [2]. However, location services for mobile communications
tend to exploit the features of a handset or base station’s waveforms that allow
precise time of arrival information which these geolocation systems use. Indeed,
such geolocation is often carried out entirely by multiple base stations that, as part
of the wireless interface, have information about the signal strength and timing from
each and every mobile station in their respective services areas. These base-stations
have the necessary network interconnectivity to exchange the required data from
which a position fix of a mobile station is made possible. This approach requires a
collaboration between mobile and base station for position estimation and can be
viewed as cooperative geolocation. However, in many applications, such a priori
information regarding the waveform is not available.

Geolocation of a wireless communications transmitter is of vital importance in
military operations. It is required for tracking military personnel and other re-
sources to enable effective co-ordination, command, and control. Radiolocation
devices (nodes) may be embedded in handheld or wearable radios carried by war-
fighters, they may be mounted on vehicles/aircraft, or contained in unattended sen-
sors distributed on the battlefield. Such applications may also utilise cooperative
geolocation if the assets being tracked are ‘friendly’.

In other situations, the transmission may represent enemy emissions, in which

6



CHAPTER 1. INTRODUCTION 7

case the geolocation method forms part of the Electronic Surveillance (ES ) operation
within the field of electronic warfare. The work in this thesis focusses largely on
non-cooperative geolocation of radio frequency (RF) emitters.

Military wireless networks may be ad-hoc in nature: the ability to form a robust,
dynamic communication network of soldiers, vehicles/aircraft, and sensors is highly
desirable. Furthermore, the propagation environment may be harsh and varied (e.g.,
urban canyons, inside buildings, forest/mountain, etc.) One of the objectives of this
research is to develop a robust and accurate geolocation system using wireless ad-
hoc networks, which can be formed from sensors, mounted, for example, on mobile
tactical unmanned aerial vehicles (UAV), operating in non-cooperative environments
[3]. Some parts of this thesis can also be applied to the task of radar geolocation.

Geolocation is also required in wireless sensor network applications for calcu-
lating sensor positions in cases where sensors do not have their own GPS (Global
Positioning System) devices [4]. At the same time, geolocation will play an impor-
tant role in the emerging technology called ‘cognitive radio’, where the knowledge
of the position of an RF emitter can be exploited for smart spectrum management
in both civilian and military applications. There is a potential for the proposed
emitter location techniques in this important new area.
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1.2 Original Contributions

The purpose of this research is to develop suitable algorithms for fast and accurate
geolocation of a RF emitter using passive sensors mounted on mobile platforms, for
example, on Unmanned Aerial Vehicles. The algorithms should be robust in order to
deal with non-line of sight propagation and the problem of multipath propagation
in the ‘urban canyon’ environment. The scientific challenge is that, usually, the
transformation from the measurement to the position estimate is non-linear, creating
problems for traditional algorithms such as the least mean square estimator. The
original contributions made to the field during the research are as follows:

• A Hough Transform (HT) based algorithm has been developed for emitter
geolocation, thus providing a connection from signal processing algorithms for
geolocation to an image processing algorithm, using a non-Bayesian estimator;

• The Hough Transform algorithm has been evaluated using the fusion of dif-
ferent type of measurements (angle of arrival, time difference of arrival and
frequency difference of arrival), together with higher level fusion with terrain
data;

• To reduce computational overhead, three variants of the Hough Transform
have been developed for this application: the Randomized Hough Transform
(RHT), the Multiresolution Hough Transform (MHT) and the Hybrid Hough
Transform (HHT);

• The performance of the Hough Transform based algorithm and the particle
filter have been compared and this has formed the basis for a comparison
of non-Bayesian and Bayesian type estimators with the Cramer-Rao Lower
Bound (CRLB), which is representative of the performance of classical esti-
mators;

• The performance of algorithms has been evaluated on common scenario in
presence of model mismatch - in a way where measurements noise assumed to
be Gaussian by the algorithm, but in simulation has been generated according
to Gaussian, Rayleigh or Uniform distributions;

• The model mismatch was explored further by changing the underlying assump-
tion in algorithms that measurements error have Rayleigh distribution, while
the simulated measurement noise was modelled using Gaussian, Rayleigh and
Uniform distributions;

• A generalized estimator has been developed, where by changing a single pa-
rameter, α, the estimator changes from a Bayesian type to a non-Bayesian
type. The analysis has been carried out on the results of this estimator;

• In addition, the fusion capability of the Hough Transform has been extended
to the development of the weighted fusion algorithm, which can be used to
self-weight the measurements from the sensors according to their GDOP;
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• Based on the weighted Hough Transform, an agent-based data fusion algo-
rithm for emitter geolocation has been proposed, thus moving the geolocation
problem to a higher level of the fusion hierarchy;

• Agent-based data fusion has been applied to an even higher level of fusion
between groups of agents, thus showing the possibility of using cluster level
fusion based on the Hough Transform approach to geolocation.

1.2.1 List of publications

1. A. Mikhalev and R.F. Ormondroyd, Multi-Cluster Agent-Based Emitter Ge-
olocation using Hough Transform Data Fusion. in Proc. The 11th Interna-
tional Conference on Information Fusion, July 2008, Cologne, Germany

2. A. Mikhalev and R.F. Ormondroyd, Passive Emitter Geolocation using Agent-
based Data Fusion of AOA, TDOA and FDOA Measurements. in Proc. The
10th International Conference on Information Fusion, July 2007, Quebec,
Canada

3. A. Mikhalev and R.F. Ormondroyd, Comparison of Hough Transform and
Particle Filter Methods of Emitter Geolocation using Fusion of TDOA Data,
in Proc. on 4th Workshop on Positioning, Navigation and Communication
2007, Hannover, Germany

4. A. Mikhalev and R.F. Ormondroyd, Comparison of Hough Transform and
Particle Filter Methods of Emitter Geolocation using Fusion of TDOA Data,
in Proc. on 22 International UAV Systems Conference , May 2007, Bristol,
UK

5. A. Mikhalev and R.F. Ormondroyd, Emitter Geolocation using fusion of TDOA
Data with a Particle Filter, in Student Papers. The International Conference
on Information Sciences, Signal Processing and its Applications February 2007,
Best Student Paper Award. Shardjah, UAE.

6. A. Mikhalev, None Line of Site Geolocation of emitters, in Proc. The 9th In-
ternational Conference Intelligent Systems And Computer Sciences, November
2006, Moscow, Russia

7. A. Mikhalev and R.F. Ormondroyd, Fusion of Sensor Data for Source Local-
ization using the Hough Transform, in Proc. The 9th International Conference
on Information Fusion, paper266, July 2006. Florence, Italy.

8. A. Mikhalev and R.F. Ormondroyd, UAV-based Non-line-of-sight geolocation
of emitter, in Proc. 21 International UAV Systems Conference, April 2006,
25.1-25.9, Bristol, UK

9. A. Mikhalev and R.F. Ormondroyd,Agent-based non-line of Site Geolocation
of emitters, DTC DIF Conference, September, 2004, Shrivenham, UK



CHAPTER 1. INTRODUCTION 10

1.3 The problem definition

In order to proceed further it is important to explain the differences between handset
location (mobile phone tracking), target tracking, localisation and emitter geoloca-
tion. These terms are often treated as being synonymous, whereas they are quite
different and require different algorithms.

Localisation is the term used when all sensors and the target are stationary,
the position of the sensors is assumed to be known and these sensors are not mobile.

Geolocation is the task of obtaining a position in the Cartesian coordinates
(x, y) of the RF emitter by means of appropriate measurements, which can be ex-
tracted from the radio signal using specific signal processing and hardware (also
known as sensors). In this task, the target (RF emitter) is assumed to be station-
ary, while the sensors can be stationary or mobile - when mounted on UAVs for
example. The position of the sensors is assumed to be known accurately, using GPS
or other positional techniques. If the geolocation algorithm does not exploit the
motion of the sensor platforms the problem is reduced to a localisation problem.

On the other hand, target tracking assumes that the target is moving with a
known or predictable trajectory. In general, the target trajectory can be defined in
terms of the transitional matrix P and thus relies on the assumption that there is
an underlying transitional process that relies on the measurements and the target
motion, such as the Hidden Markov Chain or Markov chain [5]. Mobile handset
location and tracking is a subset of target tracking in that the Base Stations are
stationary (receivers) while the mobile handset are moving [6],[7][8]. It is commonly
assumed that geolocation is a subset of the target tracking.

A major problem when attempting to geolocate a ground-based emitter using
low mounted sensors, as is often the case in electronic surveillance and cellphone
handset location, is that radio wave propagation is very complex, generally suffering
from multipath propagation due to reflection at buildings and the ground as well as
scattering from objects whose dimensions are of the order of the signal wavelength
(for a detailed explanation see [9]). Often, the signal arriving at the sensors is non-
line-of-sight with the emitter and in some environments this poor propagation may
be worsened in so-called ‘urban canyons’ due to the presence of straight streets lined
with high-rise buildings which act as ‘waveguides’ to the RF signal. This, and other
effects such as shadowing are assumed to provide the wireless environment between
the target emitter and the surveillance receiver.

However, in an attempt to ameliorate this severe problem, the sensors can be
mounted on autonomous unmanned aerial vehicles (UAV). As a result these sensors
are able to move and manoeuvre, allowing different types of measurements to be
taken. By raising the height of the platforms, this can often improve the radio wave
propagation environment from a non-line-of-sight scattering environment to free
space propagation, thereby allowing the sensor platforms to geolocate over greater
distances.

Another constraint of the scenario is that while the sensors mounted on the
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mobile platform are passive, the target RF emitter is not collaborative, in order
to avoid an early disclosure of geolocation activity and the position of the sensor
platforms and this has an impact on the type of measurements that are possible.
For example, time difference of arrival (TDOA) must be used rather than time of
arrival (TOA) Similarly frequency difference of arrival (FDOA) measurements must
be used instead of frequency of arrival. An important part of the work described in
this thesis is the use of sensor fusion to enhance the emitter position accuracy by
exploiting different type of measurements.

1.4 Fundamentals of emitter location

Algorithms for emitter location rely on the underlying methods of obtaining the
position estimate by transforming measurements from the signal to a position es-
timate. One of the first researched methods is called triangulation. In the next
section, triangulation will be described briefly and a recurring problem of emitter
location will be highlighted - namely the non-linearity of the transformation. Later,
hyperbolic location techniques will be described followed by a brief examination of
classical estimator algorithms.

1.4.1 Triangulation

Triangulation is the method of obtaining the position of the target emitter in two
or more coordinates within a known coordinate framework by measuring lines of
bearing from sensors located on a baseline, as shown in figure 1.1. In the absence
of measurement errors, the true emitter position corresponds to the intersection of
these lines of bearing. For the purposes of precisely calculating the position enemy
troops on the ground (two-dimensional plane) triangulation has been used since the
17th century, as seen in figure 1.2. This principle initiated work on RF emitter
geolocation in earlier years and received significant attention from mobile service
operators, once the requirement for location aware services grew.

According to [10] triangulation is a method applied to estimate position by cal-
culating the most likely point for the target, given the intersection of two or more
lines of bearings from sensors at known locations. For passive emitter location, the
line of bearing represents the Angle Of Arrival (AOA) of the waveform of the RF
emitter at each sensor. Triangulation can be implemented on all varieties of plat-
forms including aircraft, ships and ground vehicles. As pictured in figure 1.1, the
true Angle of Arrival, θi can be written as:

θi = tan−1

(
y − yi

x− xi

)
(1.1)

where (x, y) is the true position of the emitter, and (xi, yi) with i = 1, 2 are the
known positions of the mobile sensor platform at two time instants (for the case of
single platform location) or the fixed positions of the two separate platforms. If each
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sensor platform is able to measure the true AOA between itself and the emitter, θ1

and θ2, the target position can be obtained from the intersection of the two lines of
bearing to yield:

x =
x1 − x2 · tan(θ1)

tan(θ2) − y1 · tan(θ1) + y2 · tan(θ1)

1− tan(θ1)
tan(θ2)

(1.2)

and

y =
x1 − x2 · tan(θ1)

tan(θ2) − y1 · tan(θ1) + y2 · tan(θ1)

tan(θ2)− tan(θ1)
− x2

tan(θ2)
+ y2 (1.3)

In the absence of measurement noise this can be repeated for multiple lines of bear-
ing, and all should intersect at the same point - the true emitter position. However,
in the presence of measurement noise, the intersection of erroneous lines of bearing
(shown as a dashed lines in figure 1.1) gives rise to an erroneous position estimate. In
this case, more than two lines of bearing are unlikely to intersect at a single point and
some form of statistical estimator must be used to provide a position estimate. Ap-
propriate processing of multiple noisy measurements provides an improved estimate
of the emitter position if the measurement errors are zero mean. In the next chapter,
the overview of tradition estimators algorithms, such as the Maximum Likelihood
estimator and the Kalman filter will be given, and their performance evaluated.

!
1

!
2

(x , y )
1

2

(x, y)

(x , y )
1

2

RF emitter

RF sensor

RF sensor

baseline

!
1 !

2

Figure 1.1: Triangulation using two AOA measurement

1.4.2 Hyperbolic location systems

Another technique that can be used for calculating the position of the RF emitter
is based on processing the time of arrival (TOA)[11],[12],[13], or time-difference of
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Figure 1.2: Use of triangulation instrument designed by Jost Bürgi, from Benjamin
Bramin, Bericht zu M.Jobsten Burgi seligen geometricshen triangular Instruments,
(Kassel, 1648)

arrival (TDOA) of the RF signal to each of the RF sensors. If the initial start time for
the transmission is not known, then only the time-difference of arrival (TDOA ) that
the signal takes to arrive at the two sensors can be used, generally by correlating the
signal received at each RF sensor using a ‘sliding correlator’. This technique is often
referred to as hyperbolic location as in [14], [15], [4],[16]. Hyperbolic location systems
locate a transmitter by measuring the time of arrival of RF signal at three or more
platforms. The measurements at the various stations are sent to a station that is
designated as the master and does the processing. The arrival-time measurements at
any two platforms are used to produce an arrival time difference that, in the absence
of noise and interference, restricts the possible transmitter locations to lying on a
hyperbola called the iso-delay curve where the time difference of arrival between the
sensor platforms is the measured constant. The transmitter location is estimated
from the intersections of two independently generated iso-delay hyperbolas which
are determined from at least three sensor platforms for geolocation in 2-D Cartesian
coordinates as shown in figure 1.3. However, in the presence of noise this method
gives an error in the position estimation as the hyperbolas will not intersect at the
true emitter position. In this case, multiple TDOA measurements are taken and the
position of the emitter is estimated using a statistical estimator.

The hyperbolic equations for the TDOA method can be derived from the TOA
method as follows: The measured time of arrival at the ith platform is:

ti = t0 +
Di

c
+ εi (1.4)

where c is the velocity of light, t0 is the time the signal was transmitted, εi is the
arrival time measurement error and Di is the distance between the emitter and the
platform given by:

Di =
√

(xp − xi)2 + (yp − yi)2 (1.5)
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The ith TDOA measurement between the ithe platform and the (i+1)th platform
is:

τ = ti − ti+1 =
Di −Di+1

c
+ ni, i = 1, 2, . . . ,M − 1 (1.6)

where ni = εi − εi+1 is the measurement error due to the errors in measuring both
times of arrival. It should be noted that (M−1) TDOA measurements are generated
from M TOA measurements.

As these equations are non-linear, solving them for (x, y) is not a trivial op-
eration. Several algorithms have been proposed for this purpose having different
complexities and accuracies as proposed in [15],[17],[18] and [19]. In a later section
the mathematical model that is used by these algorithms, will be discussed. This
will be followed by a survey of the algorithms that can be used for solving hyperbolic
equations. A drawback of the TDOA method is that it requires a large bandwidth
to transmit the signals to a central site [20] for TDOA processing. The provision
of broadband wireless communications from UAVs to the central station is costly
and limits the application of this method. The bandwidth of the link needs to be
similar to the signal bandwidth of the emitter, since the accuracy of the timing
measurements is inversely proportional to the signal bandwidth. A commercial and
highly successful TDOA emitter geolocation system which is uses a mix of ground
based and airborne sensor platform is the VERA E system, developed by the Czech
company ERA [21].

If sufficient a priori information is provided in the signal, then the true time of
arrival of the signal at each sensor can be obtained. This means that the emitter
must lie on a circle of radius r1 = cτTOA1 = r2 = cτTOA2 around sensor 1. The emitter
position is the intersection of these range circles. This type of emitter location is
often referred as trilateration since the range rings give the length of the sides of the
triangle, rather than the bearing angles.

Frequency difference of arrival

Another technique, which can be used on its own, or frequently combined with
the TDOA techniques, uses the measurement of the frequency difference of arrival
(FDOA) at two remote sensors. The advantage of adding FDOA measurements
is that they produce emitter location estimates whose error ellipse may lie in a
different direction to the error ellipses of the other two methods. Consequently, it
is possible to minimize the effect of geometric dilution of precision (GDOP ) by
suitable fusion of the different types of measurement data and this will be shown in
later chapters. Assume that the FDOA measurement fdi between the two spatially
separated receivers can be obtained, receiver 1 and receiver i using a Doppler receiver
of bandwidth B. The individual Doppler shifts at r1 and ri are given by:

Fr1 = −f0

c

vxr1
(x− xr1) + vyr1

(y − yr1)√
(x− xr1)

2 + (y − yr1)
2

(1.7)
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Figure 1.3: Illustration of geolocation using TDOA measurements
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Figure 1.4: Illustration of geolocation using FDOA measurements

Fri = −f0

c

vxri
(x− xri) + vyri

(y − yri)√
(x− xri)

2 + (y − yri)
2

(1.8)
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where (x, y) is the emitter position, (xri , yri) is the known position of the ith re-
ceiver at some time instant when the measurement is made, vxi and vyi are the
components of the velocity of the platform in the x and y directions at the instant
the measurement is made and f0 is the frequency of the emitter signal of interest.
The frequency difference fd = Fri − Fr1 provides an iso-Doppler curve as shown on
figure 1.4. This curve corresponds to positions of the emitter that produce the same
value of frequency difference of arrival. For error free FDOA measurements, the
intersection of the two iso-Doppler curves (using three sensor platforms) provides
the position of the emitter. When the measurements contain errors, a statistical
estimator is used. In the next chapter, the use of classical estimators such as the
least mean squares estimator to minimise the effect of measurement errors on the
emitter position will be discussed.



Chapter 2

Overview of geolocation methods

In the previous chapter, three geolocation techniques: AOA, TDOA, FDOA were in-
troduced as potential candidates for passive emitter geolocation. In this chapter, the
use of an estimator algorithm to improve the emitter position estimate by optimally
combining measurement data is presented. Two general types of estimator have
been considered. The first is a batch estimator, where all measurements are taken
prior to applying the estimator algorithm. The second is a sequential estimator,
where the measurement data is collected and immediately applied to the estimation
algorithm. This latter type of estimator offers the possibility of providing the sensor
platform with a rough estimate of the emitter position after only few measurements
have been obtained, which is then progressively improved (assuming algorithm con-
vergence) as more measurements are supplied to the estimator. A number of batch
estimator algorithms are examined including: the least mean square error estimator,
a constrained least squares estimator and Brown’s estimator. An iterative approach
to position estimation based on Foy’s method [22] (described in Appendix 9.2) is
introduced and the methods are illustrated with the aid of simulation results that
show the range error of the estimated emitter position and, using the root mean
square error (RMSE) as a metric, the impact of the emitter/platform geometry
on the accuracy of the estimate. Several sequential estimators are also examined,
including the extended Kalman filter and the modified gain extended Kalman filter.

2.1 Batch Estimation

When measurements are made that contain errors, there are many ways of using
multiple measurements to mitigate the effect of the errors and provide an improved
estimate of the parameters of interest. In this section, details of the iterative least
mean squares estimator (LMS) are presented. This algorithm is also known as the
maximum likelihood estimator when the measurement errors are zero-mean Gaus-
sian distributed. It is then shown how this estimator can be used to fuse the mea-
surement data from a number of different geolocation techniques. The section begins
with an overview of the least mean square estimator used for geolocation.

17
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2.1.1 Least mean square estimation
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Figure 2.1: Geolocation using Angle of Arrival measurements

In this application, the least mean squares estimator is based on a Taylor series
linearisation of the various non-linear emitter location equations for each of the
techniques (i.e. AOA, TDOA, etc.) coupled to an iterative solution strategy to
minimise the error due to the non-linearities. This method is able to fuse sensor
data from the different geolocation measurement techniques mentioned above.

Mathematical Model for Mean Square Estimation

Assume that the ‘state’ of the emitter to be estimated is represented as an n di-
mensional vector, x. The components of this vector are the position coordinates in
two or three dimensions and it may also include the time of the emission. A set of
M measurements, mi = 1, 2..., M is collected in order to estimate the state x. The
measurements can be made either at various times from a single moving platform
(as in figure 2.1) or from M static platforms, or a combination of both. In the
absence of random measurement errors, the actual measurement is related to the
state of the emitter by a function, f(x), that is assumed to be known. The function
is defined by the measurement method being carried out at that time (e.g. AOA,
TDOA etc.). However, in practice, the measurement is corrupted by additive noise;
consequently the ith measurement can be represented as:

mi = fx + ni, i = 1, 2..., M. (2.1)

These M equations can be written as a single vector equation:

m = f(x) + n (2.2)

The measurement error n is assumed to be a multivariate random vector with M×M
positive definite covariance matrix

N = E[(n− E(n))(n− E(n))T )] (2.3)
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where E[ ] represents the expected value of the random vector and the superscript
T denotes the transpose operation. If x is regarded as an unknown but non-random
vector and n is assumed to have a zero mean and Gaussian distribution, then the
conditional density function of m given x is

p(x|m) =
1

(2π)N/2|N|1/2
exp(−(1/2)[m− f(x)]TN−1[m− f(x)]) (2.4)

where |N| denotes determinant of N and the superscript −1 denotes the inverse
operation. Because N is symmetric and positive definite, it’s inverse exists. The
maximum likelihood estimator [23] is that value of x that minimises the quadratic
form

Q(x) = [m− f(x)]TN−1[m− f(x)] (2.5)

The minimisation of Q(x) is a reasonable criterion for determining an estimate
even when the additive error cannot be assumed to be Gaussian. In this case,
the resulting estimator is called a least squares estimator, and N−1 is regarded as a
matrix of weighting coefficients. For the emitter geolocation problem described here,
f(x) is a nonlinear vector function representing either the triangulation equation
given by equation (1.1), the hyperbolic equation given by (1.6) or FDOA emitter
location described by equations (1.7) and (1.8). In order to simplify the problem,
it is common to linearise f(x) by expanding it in a Taylor series about a reference
point specified by the vector x0 and retaining the first two terms;

f(x) ! f(x0) + G(x− x0) (2.6)

where x and x0 are n× 1 column vectors and G is the M × n matrix of derivatives
evaluated at x0:

G =





∂f1

∂x1

∣∣∣
x=x0

· · · ∂f1

∂xn

∣∣∣
x=x0

...
...

∂fN

∂x1

∣∣∣
x=x0

· · · ∂fN

∂xn

∣∣∣
x=x0




(2.7)

Each row of this matrix is the gradient vector of one of the components of f(x).
The vector x0 could be an estimate of the wanted emitter state, x determined from
a previous iteration of the estimation procedure or based upon a priori information.
It is assumed in the subsequent analysis that x0 is sufficiently close to x that (2.5)
is an accurate approximation. Combining (2.6) and (2.5) gives

Q(x) = (r1 −Gx)TN−1(r1 −Gx) (2.8)

where
r1 = r− f(x0) + Gx0 (2.9)

To determine the necessary condition for the estimator, x̂, that minimises Q(x),
now calculate the gradient of Q(x), defined by

$xQ(x) =

[
∂Q

∂x1

∂Q

∂x2
· · · ∂Q

∂xn

]
(2.10)
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and then solve for x such that $xQ(x) = 0 where 0 is a null matrix. From its
definition, N is a symmetric matrix; that is, NT = N. Since (N−1)T = (NT )−1, it
follows that (N−1)T = N−1, which implies that N−1 is also symmetric. Therefore,

$xQ(x)|x=x̂0 = 2GTN−1Gx̂− 2GTN−1r1 = 0 (2.11)

There is an assumption that the matrix GTN−1G is nonsingular, but in practice,
as G depends on the scenario, it has a problem of singularity. Thus the solution of
(2.11) is

x̂ = (GTN−1G)−1GTN−1r1 = x0 + (GTN−1G)−1GTN−1(r− f(x0)) (2.12)

Substituting (2.2) into (2.12) and rearranging terms, the expression for x̂ can be
written in the form

x̂ = x + (GTN−1G)−1GTN−1[f(x)− f(x0)−G(x− x0) + n] (2.13)

which shows how the estimator error is affected by the linearization error and the
noise. The bias of the estimator x̂ is defined as b = E[x̂] − x. Using (2.13), the
following is obtained

b = (GTN−1G)−1GTN
−1

(f(x)− f(x0)−G(x− x0) + E[n]) (2.14)

If f(x) is linear, then E[n] = 0 and the least squares estimator is unbiased. However,
due to the non-linearity of the geolocation equation E[n] %= 0 and the estimator is
biased. The bias due to non-linearity of f(x) can be estimated by application of
equation (2.14). A very important metric of the estimator is the resulting positional
error in the x and y directions. What is required to obtain this metric is a covariance
matrix of x̂, called P. Equation (2.13) yields

P = E[(x̂]− E[x̂])(x̂− E[x̂])T ] = (GTN−1G)−1 (2.15)

For the situation where n = 2 and the state x represents the coordinates, x and y,
then P takes the form:

P =

[
σ2

1 σ12

σ12 σ2
2

]
(2.16)

The diagonal elements σ2
1 and σ2

2 of P give the variances of the errors in the estimated
components of x. Generally, because of the effect of GDOP, σ2

1 %= σ2
2 and the error

in the x coordinate differs from that of y coordinate. If n is zero mean Gaussian, the
maximum likelihood or least squares estimator for the linearized model is also the
same as the minimum variance unbiased estimator. The measurement error vector
n is assumed to encompass all the contributing errors, including uncertainties in
the system or physical parameters, such as the station coordinates or the speed of
propagation. The values of σ1 and σ2 are related to the dimensions of an ‘error
ellipse’, describing the positional error of x̂ by these two statistical parameters. The
parameter σ12 represents the rotation of the ellipse in the (x, y). This is discussed
in next section.
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Error ellipse of the estimate

The normalised dimensions of the error ellipse are given in terms of the quasi roots
of the eigenvalues of, λ1 and λ2 of the covariance matrix P. These eigenvalues are
given by:

λ1 =
1

2

[
σ2

1 + σ2
2 +

√
(σ2

1 − σ2
2)

2 + 4σ2
12

]
(2.17)

λ2 =
1

2

[
σ2

1 + σ2
2 −

√
(σ2

1 + σ2
2)

2 + 4σ2
12

]
(2.18)

where only the positive square root is used. It is possible to scale this ellipse to
reflect the probability of locating the emitter within the ellipse. The scale factor, k,
is given by:

k = −2ln(1− pe) (2.19)

where pe is the probability of locating the emitter within the ellipse. The semimajor
and semiminor lengths of the scaled error ellipse are given by a =

√
kλ1 and b =√

kλ2 respectively. In equation (2.16), P contains an off-diagonal element, σ12, as
well as diagonal elements σ1 and σ2. This causes the ellipse to be rotated relative
to the axes of the coordinate system. The angle of rotation of the major axis of the
ellipse in relation to the x axis of the coordinate system is given by:

θ =
1

2
tan−1

(
2σ12

σ2
1 − σ2

2

)
− π

4
≤ θ ≤ π

4
(2.20)

The diagram of the error ellipse relates its dimensions to the eigenvalues of the

!

y

x

CEP

b

a

Figure 2.2: Illustration of error ellipse defined by the covariance matrix P (2.16)
and CEP

covariance matrix. Setting pe = 10%, for example, in (2.19) will result in an el-
lipse whose dimensions enclose the 10% most likely position estimates of the target
emitter.
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2.1.2 Geometric dilution of precision (GDOP)

The geometric dilution of precision (GDOP ) is defined as the ratio of the RMS
position error to the RMS ranging error. It represents the factor by which the
fundamental ranging error is magnified by the geometrical relationship between the
emitter and each of the sensor platforms. However, the GDOP for each geolocation
technique (i.e. AOA, TDOA, FDOA etc.) is different and some platform/emitter
geometries that provide poor GDOP for one method of geolocation may well be
acceptable for a different geolocation method. Consequently, combining different
geolocation techniques in one algorithm through sensor level fusion will affect the
overall GDOP for the combined geolocation methods. The mean-square position
error of the estimate is given by:

ε2
r = E

[
n∑

i=1

(x̂i − xi)

]
(2.21)

Given that the covariance matrix of the estimate is given by (2.15), then

ε2
r = tr(P) +

n∑

i=1

b2
i (2.22)

where tr(P) is the trace of P and bi is the ith component of the bias vector, b =
E[x̂]−x. The mean-square ranging error is dependent upon the geolocation method
used. If a particular geolocation system has a mean-square ranging error σ2

r , then
the GDOP is:

GDOP =

√
tr[P]

σr
(2.23)

2.1.3 Circular Error Probability

Clearly, for two dimensional Gaussian measurement errors, the error ellipse is a
method of estimating the likely spread in the estimate of the emitter location. How-
ever, an alternative graphical method that is in common usage and which is easier
to draw on maps is the circular error probable (CEP). This is a much cruder rep-
resentation of the distribution of the errors. The CEP is defined as the radius of
a circle that has its centre at the mean and contains 50% of the realizations of the
random vector. If the target position estimator is unbiased, the CEP is a measure
of the estimator uncertainty relative to the true transmitter position. The CEP is a
measure of the uncertainty in the location estimator, x̂ relative to its mean, E(x̂).
Of course, what it does not accurately represent is the two-dimensional distribution
of the estimate. It can be shown [23] that the CEP is approximately related to
the eigenvalues of the covariance matrix P by the appropriate use of the following
equations:

CEP ≈ 0.563
√

λ1 + 0614
√

λ2 (2.24)

where λ1 ≥ λ2 and γ2 = λ2/λ1. This equation is accurate to 1% if γ ≥ 0.3, it under
estimates the CEP by less than 10% when 0.1 ≤ γ ≤ 0.3 and it underestimates
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the CEP by less than 20% for other conditions. In this latter condition, γ becomes
so small that the eccentricity of the ellipse is very large and the use of a circle to
represent an ellipse is probably inappropriate. An alternative form for CEP that is
accurate to within 10% for all γ is:

CEP ≈ 0.75
√

λ1 + λ2 = 0.75
√

σ1 + σ2 (2.25)

The advantage of using the CEP is that it reduces the estimator metric to a single
value and is thus widely used for comparison studies. In spite of the widespread
use of CEP, extreme care is needed when using it to interpret some of the results
because of the extreme eccentricity of some of the error ellipses for some geolocation
methods such as AOA.

2.1.4 Fundamental performance bounds
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Figure 2.3: Illustration of the relationship between CRLB, defining error ellipse,
CEP and trace of CRLB

The Fisher information matrix (FIM) as described in [24] provides a fundamental
estimation limit for unbiased estimators which is referred to as the Cramer-Rao
Lower Bound (CRLB) [25],[26]. This bound has been analyzed thoroughly in the
literature, primarily for AOA, TOA and TDOA [27], [28] The 2 × 2 FIM J(p) is
defined as

J(p) = E
(
∇T

p ln pE(m− f(p))∇p) ln pE(m− f(p))
)

(2.26)

∇p ln pE(m− f(p)) =
d ln pE(m− f(p))

dX

d ln pE(m− f(p))

dy
(2.27)

where x = (x, y) is two diminutional position vector of the emitter and pE(m−f(x))
is the likelihood given the error distribution. In the case of Gaussian measurement
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errors pE(e) = N(0,N(x)) the FIM equals

J(x) = QT (x)N(x)−1Q(x) (2.28)

Q(x) = ∇x(f(x)) (2.29)

where f(x) measurement function, for example for TDOA f(x) = Di − D1. In
the general case, numerical methods are needed to evaluate the CRLB. The larger
the gradient Q(x), or the smaller the measurement error, the more information is
provided from the measurement and the smaller the potential estimation error. In-
formation is additive, so if two measurements are independent, the corresponding in-
formation matrices can be added. This is easily seen from (2.28) for QT = (QT

1 ,QT
2 )

and N being block diagonal, in which case it is possible to write J = J1 + J2. Plau-
sible approximate scalar information measures are the trace of FIM or the smallest
eigenvalue of FIM

Jtr(p) " trJ(p), Jmin " min eigJ(p) (2.30)

The former information measure is additive as is FIM itself, while the latter is an
underestimation of the information that is useful when reasoning about whether or
not the available information is sufficient. It is worth noting that in the Gaussian
case with a diagonal measurement error covariance matrix, the trace of the FIM is
the squared gradient magnitude. The CRLB is given by

Cov(x̂) = E(x− x̂)(x− x̂)T ≥ J−1(x) (2.31)

where x denotes the true position and the x̂ estimated position. The CRLB holds
for any unbiased estimate of x̂, in particular the ones based on minimizing criteria
previously discussed. It is known that asymptotically, the ML estimate is x̂ ∼
N(x,J−1(x)) [29] and thus reaches this bound. Yet, this may not hold for a finite
amount of inaccurate data. The right-hand side of (2.31) gives an idea of how
suitable a given sensor configuration is for positioning. However, it should always
be kept in mind that this lower bound is quite conservative and relies on many
assumptions. Figure 2.3 illustrates the relationship between CRLB error ellipse, the
CEP circle and a circle defined by the trace of the CRLB matrix. In this work,
CRLB derived in [30] is used for TDOA-only measurement:

tr(J−1) = (cσTDOA)2tr
[
(GGT )−1

]
(2.32)

where

G = ∇RT
ij = [ḡij.....],

ḡij = ḡi − ḡj,

ḡi = ∇Ri(x) =
x− xri

||x− xri||

Here, x represents the emitter coordinates in vector form and xri represents
the coordinate vector of the ith receiver. Clearly, ḡi is a unit length vector with
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||ḡi|| = 1. It points from receiver i to the emitter. G is the Jacobian matrix found
in section 2.1.6. It clearly depends on: (i) the emitter position (ii) receiver position
and (iii) the set of receiver pairs which are used for geolocation.

In practice, the root mean square error (RMSE) is perhaps of more importance.
This can be interpreted as the achieved position error in meters. The CRLB implies
the following bound:

RMSE =
√

E[(x− x̂)2 + (y − ŷ)] ≥
√

trCov(x̂) ≥
√

trJ−1(x0) (2.33)

where (x, y) is the true target position and (x̂, ŷ) is the estimated position. The
first inequality becomes an inequality for unbiased estimates. The CEP defines
a circular region of for RMSE. As mentioned before, the GDOP is related to the
CRLB. Basically, the GDOP is the RMSE normalized by the measurement accuracy
(see (2.31) for example). The relation between the GDOP and CRLB has been
highlighted in [31]. Throughout this thesis the RMSE metric will be generally used,
however CRLB and CEP will be also used, where appropriate.
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2.1.5 Emitter location using the Maximum Likelihood Es-
timator with Angle of Arrival measurements only

Following introductory comments, it is assumed that the bearing measurements are
space- and time-stamped by the platform, so it is irrelevant whether the M mea-
surements are made by a p ≤ M stationary platforms or a single moving platform.
Assuming that the platform positions are known accurately, the actual AOA from
the platform to the target emitter given by:

θit = tan−1

(
y − ypi

x− xpi

)
(2.34)

where (x, y) position of the emitter and (xpi , ypi) is the position of the ith platform.
However, each bearing measurement has a measurement error ni associated with it,
giving rise to a position error. Assume that M measurements are made and that
the ith measurement has an associated error term, θi:

θi = θit + ni i = 1, 2, . . . ,M (2.35)

where θit true AOA given by (2.34). Rewriting f(x) = tan−1
(

y−ypi
x−xpi

)
and represent-

ing M measurements of θ as a column vector Θ, allows (2.35) to be expressed in
matrix form as:

Θ = f(x) + n (2.36)

Consequently, adopting the approach outlined in section 2.1.1, f(x) is linearized by a
first-order Taylor series expansion evaluated about an initial estimate of the emitter
location given by position vector x0:

θi = tan−1

(
yt − ypi

xt − xpi

)
+

∂ tan−1
(

yt−ypi
xt−xpi

)

∂x
|x=x0 +

∂ tan−1
(

yt−ypi
xt−xpi

)

∂y
|x=x0 + ni (2.37)

or:
Θ = f(x0) + GAOA(x− x0) + n (2.38)

where the Jacobian is given by:

GAOA =




− sin θ01

D01
· · · cos θ01

D01
...

...
− sin θ0M

D0M
· · · cos θ0M

D0M



 (2.39)

where

sin θ0i =
y0 − yi

D01
(2.40)

cos θ0i =
x0 − xi

D01
(2.41)

D0i =
√

(x0 − xi)2 + (y0 + yi)2 (2.42)
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The maximum likelihood estimation is thus:

x̂ = x0 + (GT
AOAN−1GAOA)−1GT

AOAN−1(Θ− f(x0)) (2.43)

The solution to this equation requires that a rough estimate of the emitter position
is made and this is used as x0. In order to demonstrate the performance of the
Maximum likelihood estimator (MLE) for geolocation using AOA measurements
the following scenario was set up:

• Two UAVs following the pre-defined flight paths as pictured by red
circles in figure 2.4 with constant speed v = 40m/s

• It was assumed, that each platform can obtain one AOA measurement
on each 10th second, which is correspond to one step in simulation,
with a standard deviation of the AOA measurements σθ = 0.02 radians

• Each UAV platform can obtain 55 measurements along the flight path

• MLE is used to fuse obtained measurements with an initial guess
x0 = (x + 3, y + 3). Estimates of the emitter position is plot-
ted as crosses in figure 2.5. The number of iterations for the
MLE was limited to 100 and another stopping criteria was used
‖(GT

AOAN−1GAOA)−1GT
AOAN−1(Θ− f(x0))‖ ≥ 2

• This simulation was repeated for 50 times for the fixed scenario and
the output of the MLE is plotted in figure 2.4, where each blues cross
represents one of the 50 MLE position estimates.
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Figure 2.4: Scenario of multiplatform
emitter geolocation using AOA measure-
ments and MLE showing the flight paths
of two UAV and the emitter of interest.
Crosses show the estimated emitter posi-
tion for 50 runs. Also shown is the CEP
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Figure 2.5: Results of the MLE for emit-
ter geolocation using AOA measurements.
Crosses show the estimated emitter posi-
tion for each of 50 runs

Although the performance of the MLE for this particular scenario was good,
it is important to recognize the fact that convergence of the MLE depends on the
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scenario. In order to demonstrate the convergence problem of MLE, the target was
placed on each point on the grid. The scenario as described above was repeated for
50 times for each target position and the output is shown in figure 2.6 in the form
of the three dimensional plot, where the z-axis corresponds to the average RMS
error for each target position. In this figure the maximum value of RMS error was

Figure 2.6: Three dimensional grid, demonstrating convergence and RMSE depen-
dance on GDOP using AOA with MLE

capped at 10 km and the RMS error value was set to zero when the MLE would
not converge. It will be noticed that the MLE estimator could not provide any
estimate for the target positioned in the North West quadrant relative to the UAV
flight paths. In order to illustrate the effect of the GDOP, the same scenario was
repeated, but in this case the target positions were placed on the search space with
an interval of 10 km, and the corresponding CRLB error ellipses are shown in figure
2.7. The error ellipse wasn’t plotted when the MLE was not able converge, or when
the trace of the ellipse is more than 20 km.

Figure 2.7 illustrates the bias introduced by the GDOP using triangulation: the
spread in the position estimate depends on the distance and the angle relative to
the platform. Zoomed parts of the figure 2.7 are plotted in figures 2.8, 2.9 and 2.10.
It is clear that the best estimates (smaller error ellipses) for this scenario are located
in the area in central part of figure 2.7, shown zoomed in figure 2.10.
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Figure 2.7: Illustration of GDOP. Ellipses
defined by CRLB for MLE using AOA
measurements only
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Figure 2.8: Zoomed CRLB ellipses for
MLE using AOA measurements only,
North from figure 2.7
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Figure 2.9: Zoomed CRLB ellipses for
MLE using AOA measurements only,
Eastern part of figure 2.7
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Figure 2.10: Zoomed CRLB ellipses for
MLE using AOA measurements only, Cen-
tral part of figure 2.7
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2.1.6 Emitter location using time difference of arrival mea-
surements (TDOA)

As described in section 1.4.2 the measured TOA at the ith platform is:

ti = t0 +
Di

c
+ ei (2.44)

where t0 is the time the signal was transmitted,Dj/c represents the actual transmit-
ted time of the RF signal to the ith receiver, Di is the true distance between the
emitter and the platform given by:

Di =
√

(x− xi)2 + (y − yi)2 (2.45)

and ei is the measurement error in the time of arrival. The measurements can be
expressed in vector form as:

t = t01 +
D

c
+ e (2.46)

where 1 is a column vector of M ones. The ith TDOA measurement between the
ithe platform and the (i + 1)th platform is:

τi = ti − ti+1 =
Di −Di+1

c
+ ni, i = 1, 2, . . . ,M − 1 (2.47)

where ni = ei − ei+1 is the measurement error due to the errors in measuring both
times of arrival. It should be noted that M − 1 TDOA measurements are generated
from M TOA measurements. In order to formulated the problem along the lines of
the vector representation of (2.36), it is necessary to account for the M − 1 TDOA
from M TOA measurements in order to ensure that there are M columns in the
measurement matrix. This is accomplished using an (M − 1) ×M transformation
matrix, H.

H =





1 −1 0 · · · 0
0 1 −1 · · · 0
...

...
...

...
...

0 0 · · · 1 −1




(2.48)

such that
Ht = HD/c + He (2.49)

where the measurement vector τ ≡ Ht and the non-linear function f(x) ≡ HD/c.
The estimate of the emitter position, x is required which is contained in the M
values of Di = ‖x− si‖, where si is the position vector of the ith measurement
platform and ‖ ‖ is the Euclidian norm. Assume that the non-linear measurement
equation is Taylor series expanded about the point x0 and that D0i = ‖x0 − si‖ is
the distance of the ith platform to this point. Defining:

F =




(x0 − s1)T /D01

...
(x0 − sM)T /D0M



 (2.50)
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then the Jacobian for the TDOA method is:

GTDOA =

[
1

F

c

]
(2.51)

and
GTDOA = HF/c (2.52)

The corresponding maximum likelihood estimator for the TDOA geolocation
method is thus:

x̂ = x0 + c
(
FTHTN−1

TDOAHF
)−1

FTHTN−1
TDOA(Ht−HD0/c) (2.53)

where NTDOA = HNHT is the covariance matrix for the TDOA measurements ob-
tained in terms of the original TOA measurement covariance matrix. The covariance
matrix of the estimate, P is given by:

P = c2
(
FTHTN−1

TDOAHF
)−1

(2.54)

so

NTDOA =

[
σ2

TDOA 0
0 σ2

TDOA

]
(2.55)

Similar to AOA, the following scenario has been set up as pictured on figure 2.11.
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Figure 2.11: Scenario of multiplatform
emitter geolocation using TDOA measure-
ments and MLE showing the flight paths
of two UAV and the emitter of interest.
Crosses shows the estimated emitter posi-
tion

60 80 100 120 140 160 180 200 220 240 260
20

30

40

50

60

70

80

90

 

 

x(km)

y(
km

)

MLE estimate
Initial guess
True position
CRLB ellipse
CEP

Figure 2.12: Results of the MLE estimates
for emitter geolocation using TDOA mea-
surements. Crosses indicate the estimated
emitter position

In this scenario it was assumed that both UAVs can obtain time of arrival mea-
surements from which TDOA measurement can be obtained. The standard deviation
of the TDOA measurement was assumed σTDOA = 7.4 × 10−7 seconds. Each UAV
was capable of obtaining 55 measurements along the flight path. The output of the
MLE estimator for 50 simulation is shown in figure 2.12. It can be noted that the
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error ellipse is much thiner for the case of TDOA geolocation, however the spread
of the MLE estimates is much larger.

The convergence problem of the MLE algorithm for the case of TDOA emitter
geolocation has been tested using the same approach as described before for the
AOA scenario, where the target was placed on each point on the grid and the MLE
estimator was run for 50 times, to obtain an average RMS error for the MLE, using
55 TDOA measurements for each target position. The output of these simulations
is shown in figure 2.13 in the form of a three dimensional plot, where the z-axis
corresponds to the average RMS error for each target position. In this figure, the
maximum value of the RMS positional error was capped at 10 km and the RMS error
value was set to zero when the MLE is not able to converge. It can be seen that
using TDOA-only measurements from two mobile platforms, the MLE algorithm
guarantees to converge in a smaller area. It will also be noted that the spread in
the position estimates is different than the one for AOA. As an illustration, consider
figure 2.14, where the CRLB error ellipses are plotted for each target, positioned
on each point of the grid. Zoomed versions of this plot are shown in figures 2.15,
2.16 and 2.17 and illustrate, that the CRLB for TDOA-only measurements is much
smaller, than for AOA, thus MLE provides more accurate estimates using TDOA
measurements, rather than AOA-only measurements, but only in the area where
MLE converge.

Figure 2.13: Three dimensional grid, demonstrating convergence and RMSE depen-
dance on GDOP using MLE with TDOA measurements



CHAPTER 2. OVERVIEW OF GEOLOCATION METHODS 33

20 40 60 80 100 120

20

40

60

80

100

120

x(km)

y
(k
m
)

Figure 2.14: Illustration of GDOP. El-
lipses defined by CRLB for MLE using
TDOA measurements only
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Figure 2.15: Zoomed CRLB ellipses for
MLE using TDOA measurements, North
part of figure 2.14
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Figure 2.16: Zoomed CRLB ellipses for
MLE using TDOA, East part of figure 2.14
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2.1.7 Geolocation fusing AOA and TDOA measurements
using MLE

Figure 2.18: Scenario for geolocation fus-
ing multiple AOA and TDOA measure-
ments obtained by two mobile platforms
denoted as circles
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Figure 2.19: Result of the MLE algo-
rithm fusing AOA and TDOA measure-
ments from two platforms from the sce-
nario 2.18. Crosses indicate MLE esti-
mates

It is possible to use the maximum likelihood estimator to fuse different types
of geolocation measurements. For example, to combine TDOA measurements with
AOA measurements, it is possible to augment the vector m−f(x) of (2.2) to include
both the AOA and TDOA. Then combining TDOA (2.49) and AOA (2.36) yields:

[
Ht
Θ

]
=

[
HD/c
f(x)

]
+

[
He
n

]
(2.56)

Then the (2.12) becomes:

x̂ = x0 + (GT
fusedN

−1
fusedGfused)−1GT

fusedN
−1
fused(m− f(x0)) (2.57)

where

Nfused =

[
NTDOA 0

0 NAOA

]
(2.58)

In this case the combined Jacobian derived in [32] would be:

Gfused =

[
GTDOA

GAOA

]
=





D02(x0−x1)−D01(x0−x2)
cD01D02

D02(y0−y1)−D01(y0−y2)
cD01D02

− sin(θ01)
D01

cos(θ01)

D01

− sin(θ02)
D02

cos(θ02)
D02



 (2.59)

for a two platforms scenario.

Figure 2.18 shows a simulation scenario for emitter location using combined
TDOA and AOA measurements. In this figure, the flight paths of two aircraft, the
target emitter and the estimated positions are shown. The standard deviation of
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the angle measurements is σθ = 0.02 radians and standard deviation of the TDOA
measurements is σTDOA = 7.4 × 10−7 seconds were used, as in previous sections.
The results of the fused MLE estimate are provided in figure 2.19. It can be seen
that the spread of the estimates in case of the fused geolocation is smaller than for
either TDOA or AOA alone. Another important point to make is that the fusion
algorithm improved the convergence of the MLE compared to using TDOA-only
measurements as shown in figure 2.20.

However the convergence of the MLE using fused measurements TDOA and
AOA is still worse than using pair of AOA-only measurements, as can be seen in
figures 2.6 and 2.7. Figure 2.21 illustrates the GDOP of the fused TDOA and AOA
measurements, in this figure, the CRLB ellipses were plotted, assuming that the
target was positioned on the vertices of a grid with a 10 km cell size. Only ellipses
with a trace of the CRLB smaller than 20 km were plotted. Figures 2.22, 2.23, 2.24
are zoomed versions of figure 2.21. It is clear that the fusion of TDOA and AOA
measurements increased the area, where the MLE algorithm converges and reduced
the size of the ellipse.

Figure 2.20: Three dimensional grid, demonstrating convergence and RMSE depen-
dance on GDOP using TDOA and AOA measurements with MLE
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Figure 2.21: Illustration of GDOP. El-
lipses defined by CRLB for MLE using fu-
sion of TDOA and AOA measurements
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Figure 2.22: Zoomed CRLB ellipses for
fused TDOA and AOA measurements us-
ing MLE, central part of figure 2.21
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Figure 2.23: Zoomed CRLB ellipses for
fused TDOA and AOA measurements us-
ing MLE, East part of figure 2.21
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Figure 2.24: Zoomed CRLB ellipses for
fused TDOA and AOA measurements us-
ing MLE, North part of figure 2.21
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Fusion of multiple measurements using the MLE

In order to test the accuracy of all three geolocation methods using the MLE esti-
mator as the fusing algorithm, the scenario shown in figure 2.4 has been modified
by moving the target to position (40, 12).

Also, it is in the interest of research to compare the performance of the each
method as the number of measurements taken along the flight path is increased.
Figure 2.26 shows the performance of the MLE algorithm as a function of the num-
ber of measurements taken, using a pair of AOA-only measurements, plotted to-
gether with the corresponding CRLB using the RMSE as a metric. When only
AoA-measurements are used in scenario in figure 2.25 the changes in GDOP of
the platforms after 40 measurements degrade the performance of the algorithm. It
should be noted that target is close to the platforms and for AoA-only measurements
overall performance of the algorithm is less than 1 km.

Figure 2.27 demonstrates the average RMSE error over 100 simulations for emit-
ter geolocation using the MLE with TDOA-only measurements, taken by the same
pair of platform, with corresponding CRLB. Figure 2.28 shows the average RMSE
over 100 simulations of the combined estimates, using the MLE to fuse AOA and
TDOA measurements in one batch estimate.
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Figure 2.25: Scenario for comparison of
the RMSE relative to a number of mea-
surements taken, using AOA, TDOA and
fused AOA and TDOA methods for geolo-
cation
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Figure 2.26: RMS error performance of
the MLE for moving platform scenario
from figure 2.25 as a function of num-
ber measurements (AOA-only) taken com-
pared with corresponding CRLB

Close exploration of the figure 2.28 reveals that fusion AOA and TDOA mea-
surement are not as beneficial as one might think.

The accuracy of geolocation is improved, compared with TDOA-only measure-
ment. However, for this GDOP in this geolocation scenario, the estimates obtained
by the fused measurements have lower accuracy, compared to AOA only measure-
ments. It is important to realise that the scenario in figure 2.25 presents a challenge
for TDOA-only geolocation, due to the small platform separation on initial states.
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Figure 2.27: RMS error performance of
the MLE for moving platform scenario
from figure 2.25 as a function of number
measurements (TDOA) taken compared
with corresponding CRLB
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Figure 2.28: RMS error performance of
the MLE for moving platform scenario
from figure 2.25 as a function of number
measurements (AOA and TDOA) taken
compared with corresponding CRLB

Thus, using only AOA measurements is more beneficial in this particular case. Such
behaviour of uncertainty when fusion of the different type of measurements lead to
unexpected degradation of accuracy rather then using estimation using single type
of measurements (for example AoA) is consistent, not only for MLE, but for other
algorithms presented in this thesis. It has been suggested that this problem may
be due to numerical problems when fusing data of different order (AOA - radians,
TDOA - seconds) represented in one matrix N . It tends to suggest that the MLE
estimator is more biased to one type of measurement than to another when fusing
different type of measurements.

It is important to realise that GDOP is dependent on scenario and target po-
sition which is unknown a priori, thus it not possible to predict which of the type
of measurements will lead to better estimate. The important point for use of the
fusion of the different type of measurements using MLE that such fusion improves
the convergence of the algorithm, however MLE may ignore some measurements if
they contribute with likelihood value which is much smaller than other type of mea-
surements. There is an attempt to address the problem of the fusion by introducing
the weighting fusion for the estimator and such results presented in chapter 7.

2.1.8 Convergence to minimum

In it of the interest of research to explore the problem of convergence of the MLE
algorithm. In the section 2.1.5 the stopping criteria was used

‖(GT
AOAN−1GAOA)−1GT

AOAN−1(Θ− f(x0))‖ ≥ 2 (2.60)

This criteria is a mathematical equivalent of the distance, on which new estimate is
moving and MLE will be stopped as soon as new estimate would not move to new
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position1.

In this section the impact of this stopping criteria on MLE will be demon-
strated. In order to do this, the scenario in figure 2.29 was set up, where two
platforms are moving with a speed 40 m/s and are capable of obtaining an AOA
measurement on each 10th second, which correspond to one simulation step, with
standard deviation of the measurement error σθ = 0.02 radians. The true target
location is (90, 40)km. The MLE algorithm, described above, was applied, without
‖(GT

AOAN−1GAOA)−1GT
AOAN−1(Θ− f(x0))‖ criteria.

In figure 2.30 the ‘convergence path’ is shown together with the corresponding
CRLB ellipse. This figure demonstrates how the MLE improves the initial guess
as the number of iterations increases. Figure 2.31 shows the RMS error on each
iteration and the corresponding CRLB trace for this scenario (fixed). It can be
noted that RMS error of MLE didn’t change after 3th or 4th iteration, so repeating
the MLE for another 95 iteration didn’t improve the estimate. Also, it will be
noted that, for this particular simulation, the MLE converges within CRLB the
error ellipse as indicated by the final estimate shown in figure 2.30 and RMS error
falls, less than the CRLB in figure 2.31. However, this is not always the case as can
be seen in figures 2.32 and 2.33. These figures are obtained by repeating exactly
the same simulation as plotted in figure 2.29. But the important point is that the
MLE converged to this value during the first several iterations. This is known as
convergence to a minimum [33]. This important observation demonstrates why MLE
estimate doesn’t necessarily improve with a increased number of iterations.
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Figure 2.29: Scenario for demonstration convergence to minimum. Geolocation
fusing AOA-only measurements from each platform using MLE

1See section 9.2.1 in Appendix for more details
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Figure 2.30: Convergence ‘walk’ of the
MLE with 20 measurements without stop-
ping criteria for a 100 iterations
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Figure 2.31: RMS error of the MLE with
20 measurements without stopping crite-
ria for a 100 iterations
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Figure 2.32: Convergence ‘walk’ of the
MLE with 20 measurements without stop-
ping criteria for a 100 iterations. Another
run of the simulation in 2.29
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Figure 2.33: RMS error of the MLE with
20 measurements without stopping crite-
ria for a 100 iterations. Another run of
the simulation in 2.29
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Impact of the stopping criteria

The simulation figure 2.29 was repeated with the previously mentioned stopping
criteria (2.60) and the results are plotted in figures 2.34, 2.35 and for a twice as
many measurements in figures 2.36, 2.37. It can be noted from this figures that
the stopping criteria didn’t allow MLE to iterate over more then 3 iterations, thus
indicating the convergence to the minimum. Another observation is that additional
measurements - twice as many (40), didn’t required any additional iterations in
order to be fused in MLE.
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Figure 2.34: Convergence ‘walk’ of the
MLE with 20 measurements taken with
stopping criteria for a 100 iterations
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Figure 2.35: RMS error of the MLE with
20 measurements with stopping criteria
for a 100 iterations
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Figure 2.36: Convergence ‘walk’ of the
MLE with 40 measurements taken with
stopping criteria for a 100 iterations
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Figure 2.37: RMS error of the MLE with
40 measurements with stopping criteria
for a 100 iterations
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2.1.9 Conclusion

It has been shown that irrespective of the measurement method, the position error
depends on the relative geometry of the transmitter location and the locations of the
sensor platforms. This effect, known as geometric dilution of precision (GDOP), de-
pends on the baseline between receivers and the nature of measurements. However, a
strange effect has been discovered using a combined estimator. The theoretical RMS
error is smaller, than the simulated one, when fusing measurements from multiple
platforms and multiple parameters. It has been suggested that this problem may
be due to numerical problems, when fusing data of different order (AOA - radians,
TDOA - seconds) represented in one matrix N. This problem has been highlighted
and addressed in the next chapters.

One of the major disadvantages of the MLE is the problem of convergence.
Although it is possible to predict the scenario for which MLE estimator would
not converge, its inability to provide an estimate may be crucial in military and
emergency applications. Another problem, namely the initial guess problem, an
unreliable initial guess can increase a number of iterations for the MLE and even
prevent the convergence.

Obtaining the initial guess by means of the appropriate transformation of the first
measurement (or pair of measurements) indicates that the RF emitter geolocation
depends on a sequence, in which measurements are processed. This may provide
a poor performance in a situation where geolocation performed in non-line of sight
environment, where the first measurement may wildly inaccurate. The following
table summarises the advantages and disadvantages of the non-linear maximum
likelihood estimator 2.1.9.
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Advantages Disadvantages
Multiple independent methods to a single
station are averaged naturally

The method is iterative, requires an initial
guess

Multiple measurements and mixed-mode
measurements are combined properly, that
is, with the correct geometric factors, and
can be weighted according to their a priori
accuracy

It is computationally complex compared to
simple plotting of lines of position

The statistical spread of the solution can
be found easily and naturally

Being a local correction, its convergence is
not assured

Experience indicates that the initial posi-
tion guess can be quite far off without pre-
venting good convergence. Failure to con-
verge can be detected

Fragile, altering the scenario (target posi-
tion) can prevent algorithm convergence

Simulation is easy so the convergence can
be easily tested

Difficult to fuse different types of measure-
ments (numerical problem)

Computational complexity is less than
Kalman filter

Problem of convergence

Table 2.1: Principal advantages and disadvantages of Maximum likelihood estimator
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2.2 Sequential Estimators

Recursive estimators can be used to perform three different type of functions, de-
pending upon the application:

• Filtering: estimate the state, X, at time t, given samples of Y at times previous
to, and including, t.

• Prediction: estimate X at some future time, t + K, given samples of Y at
times previous to, and including, t.

• Smoothing: estimate X at time t, given samples of Y at times both before
and after t

The Kalman filter [34] addresses the problem of estimating the state vector X ∈ .n

of a discrete time process that is governed by a linear stochastic difference equation:

Xk = AXk−1 + BUk + ωk−1 (2.61)

with a measurement vector, Z ∈ .m that is:

Zk = HXk + νk (2.62)

where A is an n×n matrix representing the process model relating the state vector,
Xk, at step k to the previous state vector, Xk−1, in the absence of either a driving
signal or process noise, B is an n × l matrix that relates the control input U ∈ .l

to the state vector Xk, the measurement model, H, is m×n matrix that relates the
kth measurement, Zk, to the state vector, Xk, and ωk and νk are the process and
measurement noise vectors respectively. The two types of noise are assumed to be
uncorrelated, white, zero mean and with normal probability distributions:

p(ω) ∼ N(0,Q) (2.63)

p(ν) ∼ N(0,R) (2.64)

The process noise covariance, Q, and the measurement noise covariance, R, need
not be time-invariant and in practice could change on each time step. Similarly, the
process model, A, and the measurement model, H, could also change with each
time step. For the two-dimensional geolocation problem, the state, Xk, represents
the estimate of the x and y coordinates of the RF emitter, (x̂t, ŷt) after the kth
measurement, Zk, has been included. Using the k − 1 measurements, an a priori
estimate of the state at step k is obtained. This predicted state is denoted X−

k . This
estimate of the state is then refined when the kth measurement has been taken. The
refined value of the state is the a posteriori state estimate X̂k. The a priori and a
posteriori estimate errors are given by:

e−k ≡ Xk − X̂−
k (2.65)
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ek ≡ Xk − X̂ (2.66)

The corresponding a priori and a posteriori estimate error covariances are, respec-
tively:

P−
k = E

[
e−k e−T

k

]
(2.67)

Pk = E
[
eke

T
k

]
(2.68)

In the Kalman filter, the a posteriori state estimate X̂k is obtained as a linear
combination of the a priori estimate, X−

k and a weighted difference between the
actual kth measurement, Zk and a prediction of the kth measurement, HX̂−

k :

X̂k = X̂−
k + K(Zk −HX̂−

k ) (2.69)

The difference (Zk −HX̂−
k ) is called the residual and it is a measure of the discrep-

ancy between the predicted measurement, HX̂−
k , and the actual measurement, Zk.

The blending factor, K, is an n×m matrix called the Kalman gain and the values
of its elements are chosen to minimise the a posteriori error covariance matrix given
by (2.68). The minimisation is carried out in the usual way by substituting (2.69)
into (2.68), performing the required expectation, taking the derivative of the trace
of the result with respect to K and then setting the result to zero, from which K
can be solved.

The justification for (2.69) is rooted in the probability of the a priori estimate
X̂−

k being conditional on all prior measurements according to Bayes Rule. The
Kalman filter maintains the first two moments of the state distribution:

E[Xk] = X̂k (2.70)

E[(Xk − X̂k)(Xk − X̂k)
T] = Pk (2.71)

The a posteriori state estimate given by (2.69) reflects the first moment of the state
distribution (assuming the noise distributions to be normally distributed) and the a
posteriori estimate error covariance equation reflects the second moment. One form
of K that minimises (2.68) is given by:

Kk = P−
kHT

(
HP−

kHT + R
) −1 (2.72)

The equations of the Kalman filter fall into two groups: the time update equations
and the measurement update equations. The time update equations project forward
in time the current state and error covariance estimates to obtain the a priori esti-
mates for the next time step. The measurement update equations provide feedback
and incorporate a new measurement into the a priori estimate to provide the im-
proved a posteriori estimate. The Kalman filter can be viewed as predictor-corrector
algorithm for solving numerical problems. The filter time update equations are:

X̂−
k = AX̂k−1 + BUk (2.73)
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P−
k = APk−1A

T + Q (2.74)

These equations show how the both the state and covariance estimates are projected
forward in time from k − 1 to k. A and B are from (2.61) and Q is from (2.63).
The first requirement during measurement update is to compute the Kalman gain,
Kk according to (2.72). The next step is to make a measurement, Zk and from this
generate the a posteriori state estimate by incorporating the new measurement in
(2.69). The final step is to obtain the a posteriori error covariance estimate using
the following equation:

Pk = (I−KkH)P−
k (2.75)

where I is the unit diagonal (identity) matrix. After each time and measurement
update pair, the process is repeated with the previous a posteriori estimates used to
project (or predict) the new a priori estimates in a recursive algorithm. In practice,
the accuracy or even stability of the Kalman filter depend quite critically on the
choices made for the initial estimate of the state vector, X̂0 and the error covariance
P0.

Extended Kalman filter

The Kalman filter described in the previous section addresses the problem of esti-
mating the state of a discrete-time process governed by a linear stochastic process.
In many circumstances, including the case of passive geolocation, either the process
equations defined by A or the measurement equations defined by H, or both, are
non-linear. In this case the extended Kalman filter (EKF) is the form of Kalman fil-
ter that linearises the state and/or measurement equations about the current mean
and covariance. It is this version of the Kalman filter that has tended to be applied
to the problem of passive geolocation following the earlier work of Aidala [35].

For the case of the extended Kalman filter, assume that the state vector is
governed by a non-linear stochastic differential equation:

Xk = f(Xk−1,Uk, ωk−1) (2.76)

and that the state vector is related to the measurement vector by a set of non-linear
measurement equations:

Zk = h(Xk, νk) (2.77)

where ωk and νk represent the process and measurement noise respectively. In this
case, the non-linear functions f relates the state vector at the previous time-stamp,
Xk−1, to the state at the current time step, Xk and the non-linear function h relates
the current state vector Xk to the measurement, Zk as before. A fundamental flow
of the EKF is that the distributions of the various random variables are no longer
normal after undergoing their respective non-linear transformations. The EKF is
an ad hoc state estimator that only approximates the optimality of Bayes rule by
linearisation. Linearising the process equation given by (2.76) yields:

Xk ≈ X̃k + A(Xk−1 − X̂k−1) + Wωk−1 (2.78)
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whilst linearising the measurement equations gives:

Zk ≈ Z̃k + H(Xk − X̃k) + Vνk (2.79)

where:

• Xk and Zk are the actual state and measurement vectors

• X̃k and Z̃k are the approximate state and measurement vectors obtained by
assuming zero process noise and measurement noise

• X̃ is the a posteriori estimate of the state at step k

• the random variables, ωk and νk represent the process and measurement noise
vectors

• A is the Jacobian matrix of partial derivatives of f by X

A[i,j] =
∂f[i]

∂X[j]

(
X̂k−1,Uk, 0

)
(2.80)

• W is the Jacobian matrix of partial derivatives of f by ω

W[i,j] =
∂f[i]

∂ω[j]

(
X̂k−1,Uk, 0

)
(2.81)

• H is the Jacobian matrix of partial derivatives of h by X

H[i,j] =
∂h[i]

∂X[j]

(
X̂k−1, 0

)
(2.82)

• V is the Jacobian matrix of partial derivatives of h by X

V[i,j] =
∂h[i]

∂ν[j]

(
X̂k−1, 0

)
(2.83)

where the time-step subscript k, has been dropped from A,W,H and V for sim-
plicity of notation, even though in practice all the Jacobians will change at each
time step. The complete set of equations for the EKF is now similar to those of the
Kalman filter, in which the Jacobians need to be computed and replace A,H,W
and V in (2.69)(2.68). The EKF time update equations can be written as:

X̂−
k = f(X̂k−1,Uk, 0) (2.84)

P0
k = AkPk−1A

T + WkQk−1W
T
k (2.85)

Similarly, the EKF measurement update equations are given by:

Kk =
P−

kHT
k

(HkP
−
kHT + VkRkVT

k )
(2.86)

X̂k = X̂−
k + Kk(Zk − h(X̂k, 0)) (2.87)

Pk = (I−KkHk)P
−
k (2.88)
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Iterated Extended Kalman filter

The estimate X̂k can be improved by means of a local iteration of the new mea-
surement [36]. In this method, the state vector, X̂k and the Kalman Gain K are
repeatedly calculated using the linearisation of h(X̂k) about the most recent esti-
mate. The sequential structure of the Kalman filter it otherwise unchanged. The
aim of the iterated EKF is to ensure that at each step k, the Taylor series expansion
of the non-linear function is centered on the state estimate, so that the effect of the
non linearity is minimised. The cost is the extra processing steps needed for each
new measurement value. The algorithm of the iterated EKF is given by:

• Take new measurement, Zk

X̂ki=0
= X̂−

k (2.89)

iterate for i = 1, 2, . . .

H(X̂ki
) =

∂h(X)

∂X
|X=X̂ki

(2.90)

Ki =
P−

kHT(X̂ki
)

(H(X̂ki
)P−

k (H(X̂ki
)T + R)

(2.91)

X̂ki+1 = X̂−
k + Ki(Zk − h(X̂ki

)−H(X̂ki
)(X̂−

k − X̂ki
)) (2.92)

Pki+1 = (I−KiH(X̂ki
))P−

k (2.93)

• end iteration, take next measurement Zk+1

2.2.1 Application of the EKF to geolocation

The non-linearity associated with the passive geolocation problem depends on the
method of geolocation used (AOA, TDOA, FDOA). Consequently, the EKF con-
vergence performance is dependent upon the geolocation method. A lot of papers
have assumed ‘bearing-only’ geolocation. One of the most referenced is Spingarn’s
paper [36], where he compares the performance of the EKF and iterated EKF with
the non-linear least-squares estimator when applied to the problem of ‘bearing-only’
passive position location. In his paper, he assumed that the sensor platform was
moving and the target emitter was stationary resulting in the following linear process
(state) equation:

X̂−
k = AX̂k−1 (2.94)

[
x̂−tk
ŷ−tk

]
=

[
1 0
0 1

] [
x̂tk−1

ŷtk−1

]
(2.95)
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where the state vector X represents by the emitter coordinates (xt, yt) and the state

equations represented by A in (2.61) are simply update equations given by

[
1 0
0 1

]
.

B of (2.61) is zero and it is assumed that there is no process noise. X̂k−1 represents
the smoothed position estimate of the emitter at time k−1 given k−1 measurements
and X̂−

k is the predicted position of the emitter at time k given k−1 measurements.
Spingarn’s measurement equation takes the form:

Zk = h(X̂k) + ν (2.96)

where νk is the measurement noise sequence of variance σ2
ν (which assumed to be

known) and the non-linear function for the bearings-only geolocation method is
given by:

h(xt, yt) = tan−1

(
yt − ypk

xt − xpk

)
(2.97)

where xpk
and ypk

are the x and y coordinates of the sensor platform at the kth time
step. This is, of cause, identical to the measurement equation used for the least
squares ‘bearing-only’ estimator given in 2.1.1.

The corresponding Jacobians are:

∂h(X)

∂X
|X=X̂−

k
= [H11 H12] (2.98)

where

H11 =
∂h

∂xt
|xt=x̂−tk

=
−u

1 + u2

1

x̂−tk − xpk

(2.99)

H12 =
∂h

∂yt
|yt=ŷ−tk

=
1

1 + u2

1

x̂−tk − xpk

(2.100)

and

u =
ŷ−tk − ypk

x̂−tk − xpk

(2.101)

Although it is assumed that there is no process noise for the case of linear process
and non-linear measurement, the updated error covariance matrix for Spingarn’s im-

plementation of the EFK is given by (2.85), with W =

[
1 0
0 1

]
and Q =

[
0 0
0 q22

]
.

In this case, the process noise term q22 is included but it is only a very small number
and is used to prevent the P matrix from becoming singular. This is a common
practice. In order to initialize the EKF, the a priori estimate of the state vector
and the error covariance matrix must be obtained for time step k = 0:

X̂0 =

[
x̂t0

ŷt0

]
(2.102)

P0 =

[
σ2

x 0
0 σ2

y

]
(2.103)
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Figure 2.38: Simulation scenario from Sp-
ingarn’s publication [36]. One aircraft ca-
pable to obtain AOA measurements. Ge-
olocation using EKF
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Figure 2.39: Simulation scenario from
[36], where EKF doesn’t converge. Sce-
nario in figure 2.38 with initial guessed
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Figure 2.40: Kalman gain for geolocation
using EKF for the scenario in figure 2.39
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Figure 2.41: Zoomed results from EKF
simulation, initial guess moved to 5 km
off the true target position

Based on the Spingarn publication [36], an EKF algorithm was adapted to the
geolocation problem and tested using a Matlab simulation. This method of sequen-
tial estimation has the advantage that emitter location estimates are obtained after
the first two measurements. These are then progressively refined as subsequent
measurements are incorporated. Figure 2.38 demonstrate a flight path of aircraft,
taking AOA measurements on each step. The emitter (target) is placed in different
quadrants in the positions (10, 40)km, (120, 120)km, (120, 40) and (40, 120)km.

Estimates corresponding to each target position are plotted on the same figure
as blue crosses. This estimates overlap true target position, indicating very small
distance from true target position.

Whilst it is possible to replicate published results of simple geolocation algo-



CHAPTER 2. OVERVIEW OF GEOLOCATION METHODS 51

rithms under the same conditions described in the forementioned publication as
plotted on figure 2.38, generally the algorithms are not robust. As soon as an
initial guess moves from a true target position for more than 2 km, the EKF can-
not converge to the true target position and will ignore provided measurements as
demonstrated in figure 2.39, where estimates obtained are always close to initial
guess, but not to true target position. Figure 2.41 shows zoomed Kalman filter es-
timates around true target located (10, 40)km. It this case initial guess was moved
to 5 km away from true target position, and Kalman gain plotted in figure 2.40
indicates that EFK doesn’t converge in this case.

The reason for this appears to be the extreme non-linearity of the measurement
equations that must be used to achieve geolocation. Two possible techniques that
may solve the problem are:

• to use direction cosines in place of the Cartesian coordinate system currently
being used;

• to use a coordinate transformation as proposed by Aidala and Hammel[35] for
bearings only tracking of submarines.

In addition, other approaches, described in the next chapters, are being considered
in which the EKF is replaced by other algorithms.
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2.2.2 Conclusion

The Kalman filtering approach to geolocation proved to be overly dependent on the
initial guess and therefore is not applicable for this research. Although maximum
likelihood algorithm showed a good performance, there are number of disadvantages.

• Initial guess required, although it is not so sensitive as Kalman filter.

• When measurement error increases, number of iteration before algorithm can
provide an estimate increases significantly

• It relies on approximation using Taylor series expansion

• Batch processing. This algorithm has to be processed after certain number of
measurements has been completed.

• Centralized.

• Iterative.

In order to continue research for Non-Line-Of-Sight (NLOS) geolocation, a ro-
bust and effective algorithm has to be developed, which should satisfy the following
criteria:

• be independent of an initial guess or should work without any a priori knowl-
edge of estimated position

• non-iterative

• should be able to provide a rough estimate at any step



Chapter 3

Geolocation using Particle Filter

The particle filter has been widely used for target tracking [7] and other applications,
such as state estimation, model estimation [37], mobile handset tracking in cellular
networks [13],[38] and in-door localisation [39],[40].

Here, the use of the particle filter for the geolocation of radio emitters will be
explored. Although this application appears to be similar to target tracking, there
is a significant difference - in the case of geolocation the conditions of the target
do not change with time, but the sensor positions do. The particle filter can be
viewed as a sequential estimator according to the classification presented in section
2.2. This chapter will first introduce the concept of perfect Monte-Carlo sampling ,
then importance resampling and later sequential importance sampling leading to the
particle filter. Then particle filter will be adapted to the problem of geolocation and
then highlight some problems of application the particle filter, namely convergence
particle degeneracy and random walk. In the later chapters, the particle filter will
be applied to geolocation of radio frequency emitter in non-line-of-sight conditions.

3.1 Introduction to particle filter

Problem statement

According to [6] and it is traditional in signal processing that signals can be modelled
as Markovian, nonlinear, non-Gaussian state space models. The unobserved signal
(hidden states) {xt; t ∈ N}, xt ∈ X is modelled as a Markov process of initial dis-
tribution p(x0) and transition equation p(xt|xt−1). The observations {yt; t ∈ N∗},
yt ∈ Y , are assumed to be conditionally independent given the process xt; t ∈ N
and of marginal distribution p(yt|xt). To sum up, the model is described by

p(x0) (3.1)

p(xt|xt−1) for t ≥ 1 (3.2)

p(yy|xt) for t ≥ 1. (3.3)

53
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where x0:t " {x0 . . . ,xt} and y1:t " {y1 . . . ,yt}, denote respectively, the signal and
the observation at the time t. The aim is to estimate recursively in time the posterior
distribution p(x0:t|y1:t), its associated features (including the marginal distribution
p(xt|y1:t), known as filtering distribution), and the expectations

I(ft) = Ep(x0:t|y1:t) [ft(x0:t)] "
∫

ft(x0:t)p(x0:t|y1:t)dx0:t (3.4)

for some function of interest ft : X (t+1) → Rnft integrable with respect to p(x0:t|y1:t).
Example of appropriate functions include the conditional mean, in which case ft(x0:t) =
x0:t, or the conditional covariance of xt where ft(x0:t) = xtxt

T−Ep(xt|y1:t)[xt]ET
p(xt|y1:t)

[xt]
At any time t, the posterior distribution is given by Bayes theorem

p(x0:t|y1:t) =
p(y1:t|x0:t)p(x0:t)∫

p(y1:t|x0:t)dx0:t
. (3.5)

It is possible to obtain straightforwardly a recursive formula for this joint distribution
p(x0:t|y1:t),

p(x0:t+1|y1:t+1) = p(x0:t|y1:t)
p(yt+1|xt+1)p(xt+1|xt)

p(yt+1|y1:t)
(3.6)

The marginal distribution p(xt|y1:t) also satisfies the following recursion.

Prediction : p(xt|y1:t−1) =

∫
p(xt|xt−1)p(xt−1|y1:t−1)dxt−1; (3.7)

Updating : p(xt|y1:t) =
p(yt|xt)p(xt|y1:t−1)∫
p(yt|xt)p(xt|y1:t−1)dxt

. (3.8)

These expressions and recursions are deceptively simple because one cannot typically
compute the normalizing constant p(y1:t), the marginals of the posterior p(x0:t|y1:t),
in particular p(xt|yt), and I (ft) since they require the evaluation of complex high di-
mensional integrals. This is why, from the mid-1960, a great many papers and books
have been devoted to obtaining approximations for this distributions, including, as
described in previous chapter, the extended-Kalman filter [41] [42], the Gaussian
sum filter [43] and grid-based methods [44]. The work in automatic control was
done during the 60s and 70s based on Sequential Monte Carlo methods [45]. Most
likely because of the modest computers available at the time, these last algorithms
were overlooked and forgotten. In the late 1980s, the great increase of computational
power made possible rapid advances in numerical integration methods for Bayesian
filtering [46]. To address the problems described above, many scientific and engi-
neering disciplines have recently devoted a considerable effort towards the study and
development of Monte Carlo(MC) integration methods. These methods have the
great advantage of not being subject to any linearity or Gaussian constraints on the
model, and they also have appealing convergence properties.

In this section it will be shown that, when one has a large number of samples
drawn from the required posterior distributions, it is not difficult to approximate
the intractable integrals appearing in equations (3.6)-(3.8). It is, however, seldom
possible to obtain samples from these distributions directly. One therefore has to
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resort to alternative MC methods, such as importance resampling. By making this
general MC techniques recursive, one obtains the sequential importance sampling
(SIS) method. Unfortunately, it can easily be shown that SIS is guaranteed to fail
as t increases. This problem can be summoned by including an additional selection
step. The introduction of this key step in [37] led to the first operationally effective
method.

Perfect Monte Carlo sampling

Assuming that it is possible to simulate N independent and identically distributed
random samples, also named particles, {x(i)

0:t; i = 1, . . . , N} according to p(x0:t|y1:t).
An empirical estimate of this distribution is given by

PN(dx0:t|y0:t) =
1

N

N∑

i=1

δ
x

(i)
0:t

(dx0:t) (3.9)

where δ
x

(i)
0:t

(dx0:t) denotes the delta-Dirac mass located in x(i)
0:t. One obtains the

following estimate of I(ft)

IN(ft) =

∫
ft(x0:t)PN(dx0:t|y1:t) =

1

N

N∑

i=1

ft(x
(i)
0:t). (3.10)

This estimate is unbiased and, if the posteriori variance of ft(x0:t) satisfies σ2
ft

"
Ep(x0:t)|y1:t [f

2
t (x0:t)]−I2(ft) ≤ +∞, then the variance of IN(ft) is equal to var(IN(ft)) =

σ2
ft
N . Clearly, from the strong law of large numbers,

IN(ft)
a.s.−−−−→

N→+∞
I(ft), (3.11)

where
a.s.−−−−→

N→+∞
denotes almost sure convergence. Moreover, if σ2

ft
≤ +∞, then a

central limit theorem holds
√

N [IN(ft)− I(ft)] =⇒
N→+∞

N (0, σ2
ft

) (3.12)

where =⇒
N→+∞

denotes convergence in distribution. The advantage of this perfect MC

method as follows: from the set of random samples
{
x(i)

0:t; i = 1, . . . , N
}

, one can

easily estimate any quantity I(ft) and the rate of convergence of this estimate is inde-
pendent of the dimension of the integrand. In contrast, any deterministic numerical
integration method has a rate of convergence that decreases as the dimension of the
integrand increases. Unfortunately, it is usually impossible to sample efficiently from
the posterior distribution p(x0:t|y1:t) at any time t, p(x0:t|y1:t) being multivariate,
non-standard, and only known up to a proportionality constant. In applied statis-
tics, Markov chain Monte Carlo (MCMC) are a popular approach to sampling from
such complex probability distributions [47]. However, MCMC methods are iterative
algorithms unsuited to recursive estimation problems, so, alternative methods were
developed.
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Importance sampling

An alternative classical solution consists of using the importance resampling method,
for example [48]. An arbitrary so-called importance sampling distribution (also often
referred to as the proposal distribution or the importance function) π(x0:t|y1:t) can
be introduced. Assuming that it is possible to evaluate I(ft), and provided that the
support of π(x0:t|y1:t) includes the support of p(x0:t|y1:t), yields to the identity

I(ft) =

∫
ft(x0:t)w(x0:t)π(x0:t|y1:t)dx0:t∫

w(x0:t)π(x0:t|y1:t)dx0:t
(3.13)

where w(x0:t) is known as the importance weight,

w(x0:t) =
p(x0:t|y1:t)

π(x0:t|y1:t)
(3.14)

Consequently, if one can simulate N i.i.d. particles
{
x(i)

0:t; i = 1, . . . , N
}

according

to π(x0:t|y1:t), a possible Monte Carlo estimate of I(ft) is

ÎN(ft) =
1
N

∑N
i=1 ft(x

(i)
0:t)w(x(i)

0:t)
1
N

∑N
j=1 w(x(i)

0:t)
=

N∑

i=1

ft(x
(i)
0:t)w̃

(i)
t (3.15)

where the normalised importance weights w̃(i)
t are given by

w̃(i)
t =

w(i)
t∑N

j=1 w(i)
t

(3.16)

For N is finite, ÎN(ft) is biased (ration of two estimates) but asymptotically, under
weak assumptions, the strong law of large numbers applies, that is, IN(ft)

a.s.−−−−→
N→+∞

I(ft). Under additional assumptions, a central limit theorem with a convergence
rate still independent of the dimension of the integrand can be obtained [48]. It is
clear that this integration method cab also be interpreted as a sampling method,
where the posterior distribution p(x0:t|y1:t) is approximated by:

P̂N(dx0:t|y1:t) =
N∑

i=1

w̃(i)
t δ

x
(i)
0:t

(dx0:t) (3.17)

and ÎN(ft) is nothing but the function ft(x0:t) integrated with respect to the empir-
ical measure P̂N(dx0:t|y1:t):

ÎN(ft) =

∫
ft(x0:t)P̂N(dx0:t|y1:t) (3.18)

Importance sampling is a general Monte Carlo integration method. However, there
is a problem with this method - one needs to get all the data y1:t before estimating
p(x0:t|y1:t). In general, each time new data yt+1 become available, one needs to re-
compute the importance weights over the entire state sequence. The computational
complexity of this operation increases with time. Next, the strategy to overcome
this problem is presented.
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Sequential Importance Sampling

The importance sampling method can be modified so that it becomes possible to
compute an estimate P̂N(dx0:t|y1:t) of p(x0:t|y1:t) without modifying the past sim-

ulated trajectories
{
x(i)

0:t; i = 1, . . . , N
}

. This means that the importance function

π(x0:t|y1:t) at time t admits as marginal distribution at time t − 1 the importance
function π(x0:t−1|y1:t−1), that is

π(x0:t|y1:t) = π(x0:t−1|y1:t−1)π(x0:t−1|y1:t) (3.19)

Iterating, one obtains

π(x0:t|y1:t) = π(x0)
t∏

k=1

π(xk,x0:k−1|y1:k) (3.20)

It is easy to see that the importance function allows to evaluate recursively in time
the importance weights (3.16). Indeed, one has

w̃(i)
t ∝ w̃(i)

t−1

p(y1:t|x(i)
t )p(x(i)

t |x(i)
t−1)

π(x0:t|x0:t−1,y1:t)
(3.21)

An important particular case for this framework arises when the prior distribution
as importance distribution is adopted

π(x0:t|y1:t) = p(x0:t) = p(x0)
t∏

k=1

p(xk|xk−1) (3.22)

In this case, the importance weights satisfy w̃(i)
t ∝ w̃(i)

t−1p(yt|x(i)
t ). In the next section

the use of the prior distribution will be restricted to the case of importance resam-
pling distribution, but it is important to keep in mind that the method is far more
general than this. SIS is an attractive method, but it is only constrained version of
importance resampling. Unfortunately, it is well known that importance resampling
is usually inefficient in high-dimensional spaces [47], so as t increases, this problem
will arise in SIS setting.

Particle filter

The problem encountered by the SIS method is that, as t increases, the distribution
of the importance weights w̃(i)

t becomes more and more skewed. Practically, after the
few steps only, only one particle has a non-zero importance weight. The algorithm,
consequently, fails to represent the posterior distributions of interest adequately. To
avoid this degeneracy, one needs to introduce an additional selection step.

The key idea of the particle (bootstrap) filter is to eliminate the particles having

low importance weights w̃(i)
t [37]. Formally, the weighted empirical distribution

P̂N(dx0:t|y1:t) =
∑N

i=1 w̃(i)
t δx0:t(dx0:t) is replaced by the unweighted measure:

P̂N(dx0:t|y1:t) =
1

N

N∑

i=1

N (i)
t δx0:t(dx0:t) (3.23)
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where N (
t i) is the number of offspring associated to particle x0:t; It is an integer

number such that
∑N

i=1 N (i)
t = N . If N (j)

t = 0, then the particle x(j)
0:t dies. The N (j)

t

are chosen such that PN(dx0:t|y1:t) is close to P̂N(dx0:t|y1:t) in the sense that, for
any function ft,

∫
ft(x0:t)PN(dx0:t|y1:t) ≈

∫
ft(x0:t)P̂N(dx0:t|y1:t) (3.24)

After the selection step, the surviving particles x(i)
0:t, that is the ones with N (i)

t ≥
0, are thus approximately distributed according to p(x0:t|y1:t). There are many

different ways to select the N (i)
i , the most popular being the one introduced in [37].

Here, one obtains the surviving particles by sampling N times from the discrete
distribution P̂ (dx0:t|y1:t); this is equivalent to sampling the number of offsprings

N (i)
t according to a multinomial distribution of parameters w̃(i)

t . Equation (3.24) is
satisfied in the sense that one can check easily that, for any bounded function ft

with ‖ft‖ = supx0:t
|ftx0:t|, there exists C such that

E

[(∫
ftx0:tPN(dx0:t|y1:t)−

∫
ft(x0:t)P̂N(x0:t|y1:t)

)2
]
≤ C‖ft‖2

N
(3.25)

Particle filter algorithm

Particle filter(PF) algorithm can be described in details as follows:

1. Initialization, t=0 :

• For i = 1, ...N , sample x(t)
0 # p(x0) and set t=1.

2. Importance sampling step:

• For i = 1, ...N , sample x̃(i)
t # p(xt|x(i)

t−1)

• Set x̃(i)
0:t =

(
x(i)

0:t−1, x̃
(i)t

)

• For i = 1, . . . N , evaluate the importance weights

w̃(i)
t = p(yt|x̃(i)

t ). (3.26)

• Normalise the importance weights.

3. Selection step

• Resample with replacement N particles
(
x(i)

0:t; i = 1, . . . , N
)

from

the set
(
x̃(i)

0:t; i = 1, . . . , N
)

according to importance weights

• Set t← t + 1 and go to step 2

Note that in equation (3.26), w̃(i)
t−1 does not appear because the propagated particles

x(i)
0:t−1 have uniform weights after the resampling step at time t − 1. Also it is not
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Figure 3.1: In this example, the particle filter starts at time t−1 with an unweighted
measure x̃(i)t−1, N−1, where N = 1, .., 9 particles. This provides an approximation
of p(xt−1, |y1:t−2). For each particle the importance weights are computed using the
information at time t − 1. This results in the weighted measure x̃(i)t−1, w̃(i)t−1,
which yields an approximation p(xt−1|y1:t−1). Subsequently, the resampling step se-
lects only the fittest particles to obtain the unweighted measure x̃(i)t−1, N−1, which
is still an approximation of p(xt−1|y1:t−1). Finally, the sampling (prediction) step
introduces variety, resulting in the measure x̃(i)t, N−1, which is an approximation
of p(xt|yy=1:t−1).

necessary to store the paths of the particles from 0 to time t if p(xt|y1:t) estimate
is of the interest. A graphic representation of the algorithm is shown in figure 3.1
which is similar to one in [37]. The particle filter algorithm has several attractive
properties. Firstly it is very quick and easy to implement. Secondly, it is to a large
extend modular. That is, when changing the problem one need only change the
expression for the importance distribution and the importance weight in the code.
Thirdly, it can be straightforwardly implemented on a parallel computer. Finally,
the resampling step is a black box routine that only requires as inputs the importance
weights and indices (both being one dimensional quantities). This enables one to
easily carry out sequential inference for very complex models.
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3.2 Adaptation of the Particle filter for
geolocation

In order to illustrate the application of the particle filter to the geolocation problem,
the scenario shown in figure 3.2 was considered. In this scenario, the platform moves
North according to a wavy path and is capable of obtaining one AOA measurement
on each step, with a standard deviation of the measurement error σθ = 0.02 radian.
Wavy path was chosen due to the experience from MLE and impact of the GDOP
on the estimator performance. It was observed that the worse performance for AoA
measurements when target located in the direction of the motion of the platform
as in figure 2.7, therefore wavy path was chosen as one which may provide better
accuracy of the estimation.

The platform positions at each time step are denoted as green circles. The target
is located at (60, 50)km. In order to apply the particle filter algorithm for geolocation
using AOA measurements, the conditional probability p(x, y|θi), of the target being
located at some point (x, y) within the search space given the measurement θi,
has been used in a weighting process. This conditional probability for the AOA
measurements has the form:

p(x, y|θi) =

exp

(
− (ξ−θi)2

2σ2
θi

)

√
2πσθi

(3.27)

where θi is the measured angle of arrival at the ith receiver and ξ is the calculated
angle from the ith receiver at point (xri , yri) to the point (x, y) using an equation of
the form given by (1.1). σθi defines the standard deviation of the AOA measurement
error for that receiver. In order to implement the particle filter to estimate the state
vector representing the emitter position, x̂, using AOA measurements, the following
algorithm was applied:

1. Initialization, t=0 :

• For i = 1, ...N , sample x(t)
0 # p(x0) and set t=1.

2. Importance sampling step:

• For i = 1, ...N , sample x̃(i)
t # p(xt|x(i)

t−1)

• Set x̃(i)
0:t =

(
x(i)

0:t−1, x̃
(i)t

)

• For i = 1, . . . N , evaluate the importance weights

w̃(i)
t = p(yt|x̃(i)

t ). (3.28)

• Normalise the importance weights.

3. Selection step
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• Resample with replacement N particles
(
x(i)

0:t; i = 1, . . . , N
)

from the set
(
x̃(i)

0:t; i = 1, . . . , N
)

according to importance weights using multinomial

resampling, described below

• Set t← t + 1 and go to step 2

The sampling of the particles x̃(i)
t # p(xt|x(i)

t−1) performed as a sampling from a
multivariate Gaussian distribution with a mean centred on the position, (xp, yp), of
the survivor particle from the previous step of after initialisation. The resampled
particle’s positions are generated using:

x = xp + N ; (3.29)

where x is the array of the particle position vectors, N is the array of zero-mean
normally distributed random values with standard deviation σjitter = 0.1569 km
(also known as jitter or system noise).

Multinomial Resampling

This is the simplest idea and widely used in bootstrap particle filter [49] that consist
of drawing, conditionally upon σ-field generated by the generations of particles and
weights up to time t, the new particles {ξ̂i}1≤i≤n independently from the point
mass distribution

∑m
j=1 ωjδξj . In practice, this is achieved by repeated uses of the

inversion method:

1. Draw n independent uniforms U i
1≤i≤n on the interval (0, 1];

2. Set Ii = Dinv
ω (U i) and ξ̂i = ξIi

, for i = 1, . . . n, where Dinv
ω is the inverse of

the cumulative distribution function associated with the normalised weights

{ωi}1≤i≤m, that is, Dinv
ω (u) = i for u ∈

(∑i−1
j=1 ωj,

∑i
j=1 ωj

]
.

This form of resampling is generally known as multinomial resampling since the
duplication counts N1, . . . , Nm are by definition distributed according to the multi-
nomial distribution Mult(n; ω1, . . . ,ωm).

After last measurement has been used in the particle filter, the two dimensional
vector x̂ obtained as a mean of the survived particles. It is also possible to gen-
erate or ”perturb” particles not only using multivariate Gaussian distribution but
also derive particle positions of the survived particles from two dimensional uniform
distribution throughout search space. The rationale behind the use of such large
distribution is to prevent convergence of the particles into one position and conse-
quently degradation. The equation 3.29 simplified into x = xp where xp ∈ 1 . . . 130
These two resampling methods has been tested for this implementation of the parti-
cle filter. Figure 3.6 shows the weighted particles after the Mth measurement using
multivariate Gaussian resampling. In this figure (x, y) corresponds to the position of
the particle and z-axis represents the weight. Next section presents the simulation
and the results for emitter geolocation using the particle filter.
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Figure 3.2: Illustration of geolocation us-
ing particle filter using AOA measure-
ments
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Figure 3.3: Initialisation step of the par-
ticle filter
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Figure 3.4: Illustration of the importance
sampling step step for the scenario on fig-
ure 3.2
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Figure 3.5: Illustration of the selection
and resampling step in particle filter

3.2.1 Geolocation with particle filter fusing AOA measure-
ments

In order to illustrate the performance of the particle filter, the scenario in figure
3.7 was simulated. In this scenario two platforms moving North with a speed 40
m/s and are capable of obtaining two AOA measurements, with standard deviation
error σtheta = 0.02 radians on each 10th second, corresponding to changes in a
baseline between platforms 0.4 km on each simulation step. The emitter of interest
is located at (42, 100)km. The particle filter algorithm was applied in order to obtain
an estimate. The resulting average RMS error, calculated over 50 simulations for
a different number of measurements are plotted in figure 3.8. It is clear that the
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Figure 3.6: Illustration of the application of the particle filter to geolocation. Re-
sampling step using multivariate Gaussian resampling

RMS error falls below 10 km for this simulation, but it doesn’t improve with an
increasing number of measurements as GDOP doesn’t improved with time (baseline
between platform remains constant). However, the CRLB for this scenario shows
a very small value for the same number of measurements. Altering the scenario,
as shown in figure 3.7, where the target has been changed to position (90, 40)km,
demonstrates a significant improvement in RMS positional error as can be seen in
figure 3.8. However, it raises a question whether it is possible to improve geolocation
accuracy by using a different resampling method - uniform, instead of the Gaussian
one used here.
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Figure 3.7: Scenario for geolocation using
particle filter by fusion of AOA measure-
ments from two platforms

Figure 3.8: Average RMS error with cor-
responding CRLB of the simulation sce-
nario in figure 3.7
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Figure 3.9: Scenario for geolocation using
particle filter by fusion of the AOA mea-
surements from two platforms

Figure 3.10: Average RMS error and cor-
responding CRLB value for scenario in fig-
ure 3.9
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3.2.2 Impact of resampling method on geolocation accuracy

The purpose of this section is to test the impact of the resampling distribution on
the geolocation accuracy. For this reason, the scenario shown in figure 3.11 was
simulated. In this scenario two platforms moving North are capable of obtaining
AOA measurement with standard deviation σθ = 0.02 radians. The target is located
at (70, 63)km. This simulation has a good GDOP due to the relative target posi-
tion to the sensor platforms and their long baseline. Two resampling methods has
been tested: multivariate Gaussian distribution, described earlier and uniform dis-
tribution, where the particles are derived randomly from two dimensional uniform
distribution throughout the search space as it was for initialisation step on figure
3.3. In case of sampling particles from uniform distribution the equation performed
as x = xp ∈ (1 . . . 130).

Average RMS error for different number of measurements are plotted in figure
3.12. In figure 3.12 it can seen that:

• Multivariate Gaussian distribution performs better for this scenario.

• RMS error of the particle filter estimate is larger, than corresponding CRLB.

Altering the target position, as shown in figure 3.13, where the target has been
moved to (90, 40)km and exploring RMS error corresponding to this simulation in
figure 3.14, it can be seen that although multivariate Gaussian resampling method
performed better than the uniform resampling method, the accuracy of the parti-
cle filter doesn’t depend on number of measurements in this scenario, although the
CRLB, also plotted in figure 3.14, suggests otherwise. It is possible that such be-
haviour is due to the fact that at a arbitrary time step, t, there are only two states,
the prediction state, simulated by a number of particles survived from a previous
update and an update state introduced by a new pair of measurements. Correlation
between these two states produces a new particle set, but it is clear that depend-
ing on the target position and thus GDOP, the particle filter occasionally fails to
improve an estimate using extra measurements.
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Figure 3.11: Scenario for geolocation us-
ing AOA measurements from two platform
using particle filter with different resam-
pling methods

Figure 3.12: Average RMS error and cor-
responding CRLB value for the scenario
in figure 3.11
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Figure 3.13: Scenario for geolocation us-
ing AOA measurements from two platform
using particle filter with different resam-
pling methods

Figure 3.14: Average RMS error with cor-
responding CRLB for the scenario in fig-
ure 3.13
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3.2.3 Geolocation using particle filter for TDOA measure-
ments only

In this section, particle filter was applied to the problem of geolocation using TDOA-
only measurements. The scenario in figure 3.15 was simulated, where two UAVs are
capable of obtaining TDOA measurement on each step of their flight paths (denoted
as green circles) notionally every 10 seconds along the flightpath. Standard deviation
of the measurement error was considered to be σTDOA = 7× 10−7 seconds, as before
in MLE simulations. Note, that this scenario has a good geometry for GDOP for
TDOA-measurements due to the fact that there is a long baseline between the
two UAVs. The target position chosen was (90, 40)km. The average RMS error,
calculated over 50 simulations are plotted in figure 3.16 for this scenario along with
the corresponding CRLB. It is clear from figure 3.16 that the particle filter quickly
obtains an estimate inside the circle defined by the CRLB, however it failed to
improve as more measurements were taken along the flight paths.

In figure 3.15, the same simulation as before was repeated, but the target was
moved to position (100, 100)km. The corresponding results for this simulation are
presented in figure 3.18. It is clear that there is a shown similarity between the
results in figure 3.16 and 3.18, however the estimate again failed to improve as the
number of measurements to make the estimate increases. It should be noted that
CRLB provide a conservative estimate and for small number of measurements it
defines large circle, however as number of measurements increase it falls for very
small value and it is clear that in this particular case CRLB provides lower bound
for the case when number of measurements more than 40.

The scenario in figure 3.19 was altered in a way, that the target was moved to
(42, 100)km. It is clear from the figure 3.21 that this scenario did not improve the
fusion capabilities of the particle filter either. In the next section an attempt was
made to improve the accuracy of the estimator using fusion of the different type of
the measurements and in the later section, the poor accuracy of the particle filter
with the chosen resampling method will be analysed.
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Figure 3.15: Scenario for geolocation us-
ing particle filter with TDOA-only mea-
surements

Figure 3.16: Results PF with TDOA-only
measurements for the scenario in figure
3.15
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Figure 3.17: Scenario for geolocation us-
ing particle filter with TDOA-only mea-
surements

Figure 3.18: Results PF with TDOA-only
measurements for the scenario in figure
3.17
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Figure 3.19: Scenario for geolocation us-
ing particle filter with TDOA-only mea-
surements

Figure 3.20: Resutls PF with TDOA-only
measurements for the scenario on figure
3.19
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Figure 3.21: Scenario for geolocation us-
ing particle filter with TDOA-only mea-
surements

Figure 3.22: Results PF with TDOA-only
measurements
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3.2.4 Fusion of different types of measurements using par-
ticle filter

In order to test the performance of the particle filter at fusing different types of
measurements, the scenario of figure 3.23 has been simulated. In this scenario, the
two platforms are capable of obtaining one TDOA measurement with a standard
deviation σTDOA = 7.4×10−7 seconds, and in addition, each platform is also capable
of obtaining one AOA measurement with a standard deviation σθ = 0.02 radians.
The true target position is (40km,10km).

Figure 3.24 demonstrates the performance of the particle filter obtained in terms
of the average RMS position error, as the number of measurements are accumu-
lated. To obtain the RMS position error, each test was repeated 50 times and the
corresponding RMS errors averaged. Comparing figures 3.24 and 3.22 it is clear that
fusion of AOA and TDOA measurements significantly improved an estimate.

However, repeating this simulation with the target located at (40km,100km)
as shown in figure 3.25 and (90km,40km) in figure 3.27 respectively, demonstrate
that there is a consistent problem with the particle filter. It is clear from the results
presented in figures 3.26 and 3.28, that the estimate doesn’t improve with the number
of measurements taken. In the next section this problem will be explored in details.
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Figure 3.23: Scenario for geolocation us-
ing particle filter by fusion of two AOA
and one TDOA measurement from two
mobile platforms

Figure 3.24: Average RMS error and cor-
responding CRLB value for the scenario
in figure 3.23, fusion of two AOA and one
TDOA measurement
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Figure 3.25: Scenario for geolocation us-
ing particle filter by fusion of two AOA
and one TDOA measurement from two
mobile platforms

Figure 3.26: Average RMS error and cor-
responding CRLB value for the scenario
in figure 3.25

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

120

140

 

 

x (km)

y 
(k

m
)

aircraft1
aircraft2
true target
results pf

Figure 3.27: Scenario for geolocation us-
ing particle filter by fusion of two AOA
and one TDOA measurement from two
mobile platforms

Figure 3.28: Average RMS error and cor-
responding CRLB value for the scenario
in figure 3.27
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3.2.5 Particle degradation

The aim of this section is to explore and to try to explain the behaviour of the particle
filter algorithm, when additional measurements didn’t improved an accuracy of the
final estimate. In order to address this problem, the scenario in figure 3.29 was
simulated. In this scenario two UAV are travelling North with speed 40 m/s, each
capable to obtain AOA measurement on each 10th second, corresponding to one
step of the simulation, with standard deviation of the measurement error σθ = 0.02
radians.

Figures 3.30 and 3.31 present the ‘convergence walk’ of the particle filter algo-
rithm together with the RMS error over a number of measurements. In this case,
10 measurements were used with resampling of the particle’s positions after selec-
tion step from a two-dimensional Gaussian distribution with standard deviation
σjitter = 0.2218.

Figure 3.29: Scenario for geolocation using particle filter 10 measurements AOA
measurements from each platform

This result demonstrates the problem of convergence to local point and particle
degradation as result. It is possible to see that the estimator ‘stuck’ on 6th measure-
ment and additional measurements are not able to overcome this problem, due to
the small spread in new particles, generated during the resampling step. Repeating
the same simulation for the same number of measurements only confirm the conver-
gence problem, as can be noted from figures 3.32 and 3.33. Increasing the number
of measurements to twenty didn’t improve the estimate as can be seen from figures
3.34 and 3.35, where the results for twenty measurements are presented.
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Figure 3.30: Particle filter convergence
‘walk’ with 10 measurements fused us-
ing small Gaussian resampling distribu-
tion spread
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ter estimator with 10 measurements fused.
Corresponds to convergence ‘walk’ in fig-
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deviation σjitter = 0.2218
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Figure 3.32: Particle filter convergence
‘walk’ with 10 measurements fused, us-
ing Gaussian distribution with σjitter =
0.2218 standard deviation for sampling
particle’s position. Second simulation
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Figure 3.33: RMS error of the particle fil-
ter estimator with 10 measurements fused.
Corresponds to convergence ‘walk’ in fig-
ure 3.32. Particles positions generated
from Gaussian distribution with standard
deviation σjitter = 0.2218. Second simula-
tion
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Figure 3.34: Particle filter convergence
‘walk’ with 20 AOA measurements fused.
Particles positions generated from Gaus-
sian distribution with standard deviation
σjitter = 0.2218
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Figure 3.35: RMS error of the particle fil-
ter estimator with 20 measurements fused.
Corresponds to convergence ‘walk’ in fig-
ure 3.34. Particles positions generated
from Gaussian distribution with standard
deviation σjitter = 0.2218
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Increased resampling spread for the Gaussian distribution
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Figure 3.36: Particle filter convergence
‘walk’ with 10 measurements fused using
Gaussian distribution σjitter = 5.2218 km
to generate particle’s positions
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Figure 3.37: RMS error of the particle fil-
ter estimator with 10 measurements fused.
Corresponds to convergence ‘walk’ in fig-
ure 3.36. Gaussian distribution σjitter =
5.2218 km used to generate particle’s po-
sitions

The attempt was made to increase the spread of the multivariate Gaussian dis-
tribution from which the particle’s positions are drawn on the resampling step. The
resampling method was altered in a way that the size of the two dimensional Gaus-
sian distribution was artificially increased in a way that the new particle’s positions
will be regenerated from a two dimensional distribution with standard deviation
σjitter = 5.2218 km radius. This gives a larger spread to a particle, after the re-
sampling step, therefore this can prevent convergence to one point on the grid and
particle degradation as the result.

The results of this simulations are shown in figures 3.36,3.37 and for 20 measure-
ments in figures 3.38, 3.39, where the simulation in figure 3.29 was repeated with
a new resampling method described above. It is clear that particle filter algorithm
doesn’t converge to one point, however it doesn’t converge closer to the true tar-
get position. From figure 3.37 that the RMS (distance) of the estimate increases
with time, although new measurements were added to particle filter on each step.
Increasing the number of measurements to twenty didn’t help in this case, as the
”random walk” drove the estimate further and further on each step, as demonstrated
in figures 3.38 and 3.39.

Again it is noticeable from figure 3.39 that additional measurements didn’t pro-
vide an improved estimate.

It is clear how increasing the spread in the multivariate Gaussian distribution
during resampling step can help to overcome the problem of convergence to local
minima, however there is a danger of initiating so-called ‘random walk’ [50] where
the estimate of the particle filter will walk further from true target position inde-
pendently of precision of added measurements.
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Figure 3.38: Particle filter convergence
‘walk’ with 20 measurements, fused us-
ing large Gaussian resampling distribution
spread
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Figure 3.39: RMS error of the particle fil-
ter estimator with 20 measurements fused.
Corresponds to convergence ‘walk’ in fig-
ure 3.38. Large Gaussian resampling dis-
tribution spread used
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3.2.6 Conclusions

In this chapter particle filter was introduced and applied for geolocation problem
using different type of measurements AOA and TDOA and fusion of both types of
measurements. Particle filter doesn’t require an initial guess as MLE or Kalman
filter, but instead rely on prior distribution, and it doesn’t require a linearised Ja-
cobian for estimation. However, although particle filter doesn’t have a problem of
convergence as MLE, there is a problem highlighted, namely the choice of the σjitter

standard deviation of the system noise is important, which can lead to particles
degradation, or to the condition when particles ”explode” over all search space.
Some improvement of the stability and accuracy of the particle filter will be demon-
strated in chapter 5. In the next chapter novel algorithm based on Hough Transform
will be presented and then compared with particle filter on one common scenario.



Chapter 4

Hough Transform Based estimator

4.1 Hough Transform approach to geolocation

4.1.1 Introduction

In order to find a better solution to the emitter geolocation problem in terms spec-
ified in 2.2.2, a robust and accurate algorithm of geolocation is needed, which is
suitable for dealing with the multipath non-line-of-site problem. The Hough Trans-
form, a robust clustering and fusion algorithm for state estimation (according to
[51]) has been used in image processing for line and arbitrary shape detection for a
number of years. Some researchers, such as Alexiev [52], have proposed it for multi-
sensor data fusion in target tracking for the elimination of ghost detections. Others
[53],[54], in robotics have proposed it for map matching and self positioning (loca-
tion) of robots. There is a related Radon Transform, which is more general integral
version of the Hough Transform. Hough Transform is viewed by some researchers
as discrete version of the Hough Transform. The comprehensive description of the
differences of the Hough and Radon transform can be found in [55]. Our research
shows that this algorithm can be adapted to the process of geolocation and displays
good performance for this task.

4.1.2 Original Hough Transform

The Hough Transform (HT) was patented in 1962 [56] as a mathematical transfor-
mation that could map points from an input space, referred to as the feature space
(FS) into curves in a special parameter space (PS). It is particularly well known
for straight line detection. The method is based on the fact that all points from a
straight line positioned in the FS can be mapped in a single point in the PS. Many
applications in image recognition use the HT for the detection of different types of
image features - straight lines, circles, ellipses, etc. [57].

The Hough Transform can be introduced using the traditional example of line

78



CHAPTER 4. HOUGH TRANSFORM BASED ESTIMATOR 79

Figure 4.1: Input image for Hough Trans-
form with three lines and the noise
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Figure 4.2: Line found in image 4.1, using
Hough Transform

detection in a noisy image. Consider the image in figure 4.1. This noisy image
contains three lines in order to illustrate the properties of the HT to detect these
lines. The ‘normal’ HT mapping equation [58] is used:

r = x cos (θ) + y sin (θ) (4.1)

The algorithm maps each point (x, y) from FS to a curve in the PS (r, θ). For
each value of the discrete parameter θ in (4.1) the corresponding values of parameter
r are calculated. If several points in FS lie on a straight line the corresponding curves
are intersected by a single point in PS. A simple ‘voting’ algorithm is used to locate
this point and this is represented by:

A(r, θ) =
360∑

θ=1

r(x, y|θ) (4.2)

The parameterized space for this example is plotted in figures 4.3 and 4.4. The peak
of the votes in figure 4.3 occur at values of the accumulator whose corresponding
template includes the most points that are lying on the line. It will be noted that
the PS in this example has three peaks. This is due to the fact that the image of
figure 4.1 has three lines. In this example, the algorithm returns only one line as it
was looking for one corresponding to the peak in PS space. The parameters (r, θ)
corresponding to peak 1 in the PS can be used to represent the equation of a straight
line using the parametric equation:

y = tan θ · x + r (4.3)

and this is used to draw the straight line corresponding to the largest peak in figure
4.3, which is shown in figure 4.2. The problem of RF emitter geolocation can be
adapted in terms of HT as a search not for a line, but for a point on a grid (x, y).
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Figure 4.3: Three dimensional plot of Accumulator array for traditional Hough
Transform
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Figure 4.4: Two dimensional accumulator array for traditional Hough Transform
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4.2 Adaptation of the Generalized Hough Trans-
form for Geolocation

In order to adapt the Hough Transform to the RF emitter geolocation problem,
let our sets of hypotheses exist in some coordinate framework (an N-dimensional
array). An event can occur within this coordinate system and can indicate with its
conditional probabilities a set of hypotheses whose parameters are fixed relative to
the event. The conditional probability table of the event can then also be considered
as an N-dimensional array centered on the event, where N is the dimensionality of
the hypothesis space. This array is called the voting array for the event. It contains
the values of the normalized conditional probabilities and so each event will simply
add its own voting array into the accumulator representing the hypothesis space.
For example, in the case of line detection, described above, the hypothesis was that
points in feature space lay on a straight line. The voting array determines the most
likely line that the points lay on.

Imagine that the hypothesis space is a particular point located in two dimensions.
In this case, the hypothesis space is then a 2D array of numbers representing the
conditional probability of the event. In the geolocation application, the events that
are of interest are the observations (i.e. the measurements of the parameters of the
source). Associated with each measurement is a probability that the source is located
at a particular point (x, y) within the search space. This is equivalent to assigning
the event to a particular part of the hypothesis space. The conditional probability
voting array can be obtained for each measurement by placing the source into each
position in turn and calculating the conditional probability and adding these values
to the voting array. This approach is described for different measurement techniques
in the following sections.

4.2.1 Angle of arrival measurements

Figure 4.5: An example of three-dimensional parameterised space for AOA-only
measurements

Consider a 2D scenario with M receivers (that may be mobile) and one stationary
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radio source. Assume that the receivers can obtain the Angle of Arrival (AOA) of
the source emission using an RF interferometer or an antenna array and also assume
that the measurement errors in the AOA are Gaussian (although other distributions
can be accommodated easily). The voting function can be defined in terms of the
likelihood, p(x, y|θi), of the target being located at some point (x, y) within the
search space given the measurement θi. This conditional probability for the AOA
measurements has the form:

p(x, y|θi) =

exp

(
− (ξ−θi)2

2σ2
θi

)

√
2πσθi

(4.4)

where θi is the measured angle of arrival at the ith receiver and ξ is the calculated
angle from the ith receiver at point (xri , yri) to the point (x, y) using an equation of
the form given by (1.1). σθi defines the standard deviation of the AOA measurement
error for that receiver. Clearly, the emitter position (x, y) is unknown and so p(x, y|θ)
is evaluated for all values x and y in the search space.

Although the point (x, y) could lie anywhere within the search space, in practice,
the search space is split into a regular grid and (x, y) is constrained to lie at one
of the grid points and (4.4) is evaluated at each of these grid points. Assuming
that multiple measurements are made at each receiver, in the usual way, the pdf is
evaluated for each measurement for all receivers. In this method, the pdfs due to
each measurement are accumulated as follows:

AAOA(x, y) =
1

M

M∑

m=1

p(x, y|θm) (4.5)

where M represents the total number of measurements made. This accumulated pdf
now represents the voting array for the Hough Transform.

As an example, consider two stationary receivers located at (20km,10km) and
(20km,30km) respectively and the emitter of interest is located at (60km,80km). At
each receiver, a single AOA measurement was taken and the standard deviation of
each measurement due to the effect of receiver noise was taken as σθ = 0.02 radians.
The corresponding Hough Transform space for these AOA measurements is shown
in figure 4.5. Note how the Hough Transform shows the likely lines of bearing and
the peak occurs where the likely lines of bearing intersect. The maximum of the
Hough Transform space corresponds to the most likely position of the source.

Now, consider a geolocation scenario in figure 4.6. In this scenario, one platform
moving North according to a wavy path and another moves East, with a target
located at (60, 70). Platforms speed is 40m/s and the the standard deviation of the
measurement error σθ = 0.02 radians. Figure 4.7 demonstrates the ability of the
Hough Transform to geolocate using AOA measurements from one platform only
(marked as UAV1 on figure 4.6). In this figure, the average RMS error calculated
over 50 simulations. The CRLB corresponding on this scenario is also plotted on
figure 4.7. It can be also noted, that the accuracy of geolocation using AOA mea-
surements from one platform is relatively poor compared to RMS error when fusion
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Figure 4.6: Scenario for geolocation fus-
ing pair of AOA measurements from each
platform using HT

Figure 4.7: Average RMS errror for geolo-
cation using AOA measurements from one
platform only

of each AOA measurement from both platforms performed. Figure 4.8 demonstrates
the performance of this fusion. In this case fused estimate obtained by summing like-
lihoods of the AOA measurements from both platform in one parameterised space.
It is clear, how additional AOA measurements improve geolocation accuracy: in this
case the RMS error of figure 4.8 half of the RMS error for figure 4.7 for the same
scenario.

Figure 4.8: Average RMS error fusing two AOA measurements from platform using
GHT for the scenario in figure 4.6
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4.2.2 Time difference of arrival measurements

The following illustrates the method for the case of geolocation using the time dif-
ference of arrival (TDOA) method. Assume that it is possible to obtain the TDOA
between two spatially separated receivers (using signal cross correlation or other
delay estimation technique, for example). Referring all TDOAs to the first receiver,
which is assumed to be the first to receive the transmitted signal, let the index
i = 2, 3, ...,M unless otherwise specified, (x, y) be the source location and (xri , yri)
be the known location of the ith receiver. The range of the source to the ith receiver
is:

Ri =
√

(xri − x)2 + (yri − y)2 (4.6)

and the range difference between receiver i and receiver 1 is:

cτi,1 = Ri −R1

=
√

(xri − x)2 + (yri − y)2

−
√

(xr1 − x)2 + (yr1 − y)2 (4.7)

where, τi,1 is the measured TDOA between the ith receiver and receiver 1 and c is
the velocity of light.

The likelihood of the source location for this case is given by:

p(x, y|τi,1) =
exp

(
R2

i,1−c2τ2
i,1

2σ2
r

)

√
2πσr

(4.8)

where Ri,1 is the difference between the range of a particular point on the grid to
receiver 1 and the range from the same grid point to receiver i, σr is the range error
for this measurement. As for the AOA method, Ri,1 is obtained for each point on
the search space grid from the known receiver positions, and p(x, y|τi,1) is calculated
at the point, given the measurement τi,1. This gives the probability of finding the
emitter due to that single measurement. The range error is dependent upon the error
in the time difference of arrival measurement, σTDOA, and the geometric dilution of
precision (GDOP). According to [19] the range error for a single TDOA measurement
is given by:

σr =
cσTDOA

2 sin(Θ
2 )

(4.9)

where the numerator represents the timing measurement error and the denominator
is the GDOP. Θ is the angle subtended between the two lines of position from receiver
1 to the source and receiver i to the source, respectively. There are a number of
different theoretical approximations for σTDOA depending upon the assumptions
made regarding the SNR of the received signal [10]. For good SNR conditions it is
common to assume that the standard deviation of the timing error is given by:

σTDOA ≈
1

W
√

SNR
(4.10)
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where W is the noise bandwidth of the receiver, whereas for low SNR the achievable
timing error is often given by [59]:

σTDOA ≥
√

3

8π2T

1

SNR

1√
f 3

2 − f 3
1

(4.11)

where T is the integration time used in the receiver and W = f2 − f1. Using, for
the sake of example, the high SNR case given by (4.10), the range error becomes:

σr =
c

2Wsin(Θ
2 )
√

SNR
(4.12)

Using the conditional pdf (4.8), the voting array can be built, as per the earlier case
for the AOA measurements (4.5) using:

ATDOA(x, y) =
1

L

L∑

l=1

p(x, y|τl,1) (4.13)

where L represents the number of TDOA measurements taken from the M receivers.

As an example, consider the case of geolocation using three stationary receivers.
These are located at: (20km, 10km), (20km, 75km), (60km, 10km). The emitter
of interest is located at (40km, 40km). In the simulation, it is assumed that the
bandwidth of the received signal is W = 1 MHz and the SNR = +3dB, leading to a
value for σTDOA = 7×10−7 seconds using (4.10). Only two TDOA measurements are
taken - between receiver 1 and receiver 2 and receiver 1 and receiver 3. The resulting
Hough Transform space due purely to the provided TDOA information is shown in
figure 4.10. Note how the Hough Transform appears to plot the two most likely
iso-delay curves for the two TDOA measurements and the emitter position is the
intersection of these two curves. Again, the dominant peak in the Hough Transform
space denotes the likely source position. By taking many measurements, the effect
of the noise on accumulated pdf is reduced and the peak representing the emitter
position is substantially sharpened. It is possible to geolocate using TDOA only

Figure 4.9: Scenario for geolocation using
TDOA-only measurements

Figure 4.10: HT 3d parameterized space
for one pair of TDOA measurements
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measurements between pairs of mobile platform. Consider the scenario in figure
4.11. In this scenario two platforms moving North are capable of obtaining one
TDOA measurement on each step, with σTDOA = 7 × 10−7 seconds. The resulting
average RMS error is plotted in figure 4.12 together with corresponding CRLB,
for comparison. As before, average RMS obtained over 50 simulations for different
number of measurements. It can be seen that for this particular scenario, the CRLB
predicts much worse performance for the estimator than the average RMS of the HT
estimator. The green line below CRLB indicates that all estimates were inside of
the circle, defined by the trace of the CRLB, as in figure 2.3. It should be noted that
this scenario have a good GDOP due to the directions of the motion of the platforms
and location of the target. Also, due to the fact that Hough Transform is grided
algorithm and target located on the grid, the RMS errors in position estimates are
limited to steps starting from ≈ 1.4 km, thus can be closer to the true target by
being on the closer grid cell.
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Figure 4.11: Scenario for geolocation with
TDOA-only measurements using Hough
Transform

Figure 4.12: Average RMS error for ge-
olocation using HT with TDOA-only mea-
surements for the scenario in figure 4.11



CHAPTER 4. HOUGH TRANSFORM BASED ESTIMATOR 87

4.2.3 Fusion of AOA with TDOA Measurements

Figure 4.13: 3D parameterised space for
one TDOA measurement

Figure 4.14: An example of 3D param-
eterised space fusing one AOA and one
TDOA measurements
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Figure 4.15: Scenario for geolocation us-
ing HT, fusion of TDOA and one AOA
measurement

Figure 4.16: Average RMS error, geolo-
cation using HT, fusing TDOA and AOA
measurements

Because the sensor data for either AOA or TDOA measurements has been trans-
formed into conditional probabilities and are now in a unified parameterized space,
irrespective of the type of measurement, it is possible to merge the TDOA sensor
data with the AOA sensor data very easily.

A(x, y) =
1

M

M∑

m=1

p(x, y|θm) +
1

L

L∑

l=1

p(x, y|τl,1) (4.14)

The results of fusing the two TDOA measurements, described in the previous section
and plotted in figure 4.13, with one AOA measurement, are shown in figure 4.14.
The strong single peak in the Hough transform space, coincides with the maximum
likelihood of the emitter position.
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Figure 4.15, shows the scenario as in figure 4.12 for TDOA-only measurements,
but with addition that one UAV (marked as UAV2) is capable to obtain additional
AOA measurement and pair of UAV is capable to obtain one TDOA measurement.
The purpose of this modification is to check fusion of AOA and TDOA measure-
ments. The standard deviation of the TDOA measurement error in this simulation
is set at σTDOA = 7 × 10−7 seconds and the standard deviation of the AOA error
is set at a value of 0.02 radians. It is clear how the additional AOA data has pro-
vided further information to improve the accuracy of localizing the target position
as shown in figure 4.16. Additional AOA measurements forced average RMS error to
fall below 3.5 km on initial 10 measurements, compared to 25 km using TDOA-only
measurements as shown in figure 4.12.
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Frequency difference of arrival

Figure 4.17: Hough Transform space for FDOA-only measurements

In the previous section, the Generalized Hough Transform was used for TDOA
and AOA measurements. In this section, this approach will be extended to using
frequency difference of arrival measurements. The advantage of adding FDOA mea-
surements is that they produce emitter location estimates whose error ellipse may lie
in a different direction to the error ellipses of the other two methods. Consequently,
it is possible to minimize the effect of geometric dilution of precision (GDOP) by
suitable fusion of the different types of measurement data. The following illustrates
the Hough Transform method for the case of emitter geolocation using frequency
difference of arrival (FDOA). Assume that the FDOA measurement fdi between the
two spatially separated receivers can be obtained, using a Doppler receiver of band-
width B. The individual Doppler shifts at receiver 1 and receiver i are given by:

Fr1 = −f0

c

vxr1
(x− xr1) + vyr1

(y − yr1)√
(x− xr1)

2 + (y − yr1)
2

(4.15)

Fri = −f0

c

vxri
(x− xri) + vyri

(y − yri)√
(x− xri)

2 + (y − yri)
2

(4.16)

where (x, y) is a point on the search space grid representing a possible emitter
position, (xri , yri) is the known position of the ith receiver at some time instant
when the measurement is made, vxi and vyi are the components of the velocity of
the platform in the x and y directions at the instant the measurement is made and f0

is the carrier frequency of emitter signal of interest. The pdf of the emitter location
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for this case is given by:

p (x, y|fdi) =

exp

(
− (Fri−Fr1−fdi

)2

σ2
fd

)

√
2πσfd

(4.17)

The resulting accumulator array for N measurements is given by:

AFDOA(x, y) =
1

N

N∑

m=1

p (x, y|fdi) (4.18)

Figure 4.17 shows the ability of two moving platforms to geolocate an emitter. In
this case, the two platforms were moving generally North at 40 m/s according to a
wavy path, as described in figure 4.18; where σfd

= 12mHz is taken from [10] as a
Cramer-Rao lower bound value for B = 25kHz with an integration time T = 1s and
SNR = +3dB. The measurements assumed to be taken each 10th second. Figure
4.17 represents the accumulation of 10 FDOA measurements. Note, how the Hough
Transform is able to accommodate the different receiver positions during the set of
measurements because it operates in a unified parameterised space. In figure 4.19
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Figure 4.18: Scenario for geolocation with
HT, using FDOA-only measurements

Figure 4.19: Effect of number of measure-
ments on the average RMS positional er-
ror, showing effect of fusion different num-
ber of measurements. FDOA-only mea-
surements used for the scenario in figure
4.18

average RMS error is noticeable high, starting from 35 km for 10 measurements.
This is due to the fact that Fr1 and Fri depend on the speed vectors (direction of
the movement) (vxr1

, vyr1
) and (vxr1

, vyri
) respectively, but both platforms moving in

the same direction as in TDOA-only scenario on figure 4.11. In the next section the
advantage of fusion of all three different type of measurements will be demonstrated.
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4.2.4 Fusion of AOA and TDOA with FDOA Measurements

Figure 4.20: Hough Transform space for fusion of AOA, TDOA and FDOA mea-
surements

Because the sensor data has been transformed into conditional probabilities and
are now in a unified parameterized space, irrespective of the type of measurement,
it is possible to merge the FDOA sensor data with TDOA and AOA sensor data as
in (4.14), using (4.18), (4.13) and (4.5):

A(x, y) =
1

L

L∑

l=1

p(x, y|τl,1) + (4.19)

1

M

M∑

m=1

p(x, y|θm) +

1

N

N∑

m=1

p(x, y|fdi)

Figure 4.20 shows the ability of three moving platforms to geolocate an emitter
according to the scenario shown in figure 4.21. In this case, the two platforms
moving North at 40 m/s according to a wavy path are able to take TDOA and
FDOA measurements, whereas the platform moving East at 40 m/s is able to take
AOA measurements only. The standard deviation of the TDOA measurement error
in this simulation is set at 7 × 10−7s and the standard deviation of the AOA error
was set at a realistic value of 0.02 radians and the standard deviation of the FDOA
measurement was set at 12mHz. This set of results shows how it is possible to fuse
three different measurement types using the Hough Transform. To obtain figure
4.20 a total of ten TDOA and FDOA measurements were taken along with ten
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Figure 4.21: Scenario for fusion of AOA,
TDOA and FDOA within HT

Figure 4.22: Effect of number of measure-
ments on the average RMS positional er-
ror, showing effect of fusion different type
measurements for the scenario in figure
4.21

AOA measurements. Figure 4.22 demonstrates the results of fusion all three types
of measurements, using the RMS positional error as the metric. This figure shows
quite clearly how fusion improves the positional accuracy of emitter location with an
additional FDOA measurements. In chapter 7 it will be shown how the geolocation
accuracy can be improved by weighting the contributions to the accumulator array
from the AOA, TDOA and FDOA measurements in (4.14).

4.2.5 Fusion of sensor data with terrain data

The new HT method is also very convenient for adding terrain data. In this case,
the terrain data is first processed to give a first order likelihood that the emitter can
be located at a particular map reference on the basis of a priori knowledge. This
terrain-based likelihood map is then transformed into the Hough transform space
where it is merged with the Hough transforms for the TDOA data and the AOA
data. For example, in figure 4.23 the likelihood that our target is not likely at a
particular point on the map is shown as the darkened areas. This area may be a
maritime area for a land-based target, thus it is assumed that the target cannot be
located in the water. Alternatively it may be known to be a naval target, where
the marked area is land. The influence of this additional information on the Hough
Transform space, and hence the likelihood of location the emitter is shown in figure
4.24. In this figure the Hough Transform for TDOA-only measurements was altered
by map-aided information. This can be written as

Afused(x, y) = A(x, y|τ) + Aterrain (4.20)

where A(x, y|τ) is the HT for TDOA only measurements as pictured in figure 4.10
and Aterrain is the transformed map data obtained as a emitter likelihood - a priori
information. In this modified parameterized space the peak of the likelihood will
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Figure 4.23: Illustration of map data showing regions where the emitter is unlikely
to be (increasing level of grey)

Figure 4.24: Fusion of TDOA data with map data

always be located within the possible conditions of target location, even if the noisy
measurements will point into the wrong region masked by a priory information. It
should be theoretically possible to add different a priori information with different
levels of confidence. This simple property may be used for target geolocation in
mixed environments like coastal areas. There is an ongoing work to use particle
filter for tracking with map-aided systems [60].

4.2.6 Conclusion

A new geolocation algorithm based on the Hough Transform has been presented. It
has the following advantages over traditional estimator algorithms: (i) the algorithm
does not require an initial guess of the emitter position, (ii) it is easy to fuse data
from different sensors, (iii) terrain data can be incorporated with the sensor data, (iv)
the method can have a flexible error model (e.g. the error model may be Gaussian or
other distribution), (v) it is robust. The results have shown that this new approach
provides average RMS errors that are close to the CRLB. Some results presented in
this section have raised many questions about the applicability Cramer-Rao lower
bound to the geolocation problem, and also about the proper method of calculation
of the CRLB for a given scenario. Although there are a number of papers about the
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use of CRLB in sensor localisation and geolocation they are based on Foy’s paper
[22] ”Position-Location Solutions by Taylor-Series Estimation” and it seems as if the
use of this approximation is not sufficiently due to non-linearity of the geolocation
problem. Moreover, CRLB defined in terms of the variance (mean) and although
incorporates geometry of the location as an ellipse may not be able to reflect the
true performance of the estimators in geolocation. As it was demonstrated before it
defines the circle out of error ellipse defined by Fisher information matrix as show in
figure 2.3. But CRLB is becoming lower bound as number of measurements increase.
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4.3 Geolocation in fading and NLOS conditions

4.3.1 Signal and channel model

Introduction

In order to test the performance of the algorithm in non-line of sight environments,
it is necessary to model the signal and channel of interest. The scenario was chosen,
where a number of small tactical UAVs are trying to geolocate an RF emitter in a
‘hilly’ terrain. The RF emitter can be a mobile handset or a rapidly deployable base
station. In this section, literature overview of the multipath propagation model and
the non-line-of-sight problem will be given, followed by a detailed description of the
simulated channel and finally simulations scenario and results will be presented.

Multipath Propagation

Multipath propagation occurs due to the reception of multiple delayed copies of the
same signal due to multiple reflections from the ground, building and other scatters.
These multiple signals can combine constructively or destructively at the antenna in
the receiver and this results in what is known as fading [61], [62], where the amplitude
of received signal can fluctuate by 20 or 30 dB in both spatial and temporal domain
and the phase of the receiver and the phase of the received carrier can vary randomly.
This fluctuation in signal level can seriously affect the accuracy of measuring AOAs,
TOAs and TDOAs. In AOA estimation, the multipath environment might cause the
AOA of the received paths to be different from the true AOA due to reflection and
scattering. In location algorithms that use AOA estimates to locate the sender, using
the AOA estimates that correspond to the multipath AOAs (not the true AOA) will
induce an error in the sender location estimate. Time-based location systems such as
TDOA most often use correlation techniques to obtain TDOA and these estimates
are affected by the presence of multipath [61], which smears the time of arrival of
the signal (the time-delay spread). If one arriving multipath ray has more power
than other such rays, the estimated delay using conventional delay estimators will
be biased towards the strong multipath ray which may be far from the true delay
estimate. Thus, for location algorithms that utilise delay estimates to locate the
emitter, an error will be induced into the estimate of the wanted emitter location.
The effect of multipath on code acquisition (for TOA estimation) is discussed in
[63],[64], and on delay locked loops (DLLs) in [65] where the multipath component
is seen to bias the tracking of the DLL. Methods that provide better resolution
for estimating TOA in multipaths include subspace techniques [66] and adaptive
techniques [67].

For time-based location systems, the extra propagation distance of the non-line-
of-sight (NLOS) path directly corresponds to a positive added error to the true range
between the sender and receiver. This kind of error occurs when the direct path
between the sender and the mobile emitter is blocked, for instance by a building, and
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a constant positive bias is added to the measurements due to the extra path length
of the scattered signal. A typical ranging error introduced by NLOS propagation
has been measured in the Global System for Mobile communications (GSM) system
which indicates that the NLOS spatial error can average between 500-700 meters
[68]. For direction finding location systems, the angle from which the signal arrives
at the receiver is not in the true direction to the emitter. The measured angle will be
the one corresponding to reflections from scatterers that surround the RF emitter.
NLOS analyse derived in [69] and [28]. There are also several methods to mitigate
the NLOS error for TOA signal for mobile networks proposed in [70]. Several simu-
lations described in the literature have found that the position error in the location
estimators increases linearly with the increase in the NLOS errors [71]. One of the
most common approaches to battle this problem consists of exploiting the fact that
the variance of the TOA measurements is significantly increased in NLOS scenarios
([72] and [71]). These algorithms try to detect the NLOS-receivers by comparing the
estimated variance of the measurements with an a priori known variance. This last
variance cannot normally be provided because it depends on environmental condi-
tions (rural, urban or suburban). Another approach is to use a fixed scatter model
to obtain an improved TOA estimate from a set of TOA measurements corrupted
by multipath errors [73]. Although these approaches can ameliorate the effect of the
multipath, they cannot detect constant NLOS errors in short observation windows.
Finally, another approach consists of exploiting the redundant information present
in the measurements to detect and drop the NLOS errors. The most relevant contri-
bution in this direction was presented in [74] where the problem was formulated in
terms of hypotheses, where each hypothesis corresponded to a set of receivers con-
sidered under NLOS scenarios. The algorithm presented was based on a weighted
combination of the partial position estimates associated to each hypothesis. Unfor-
tunately, this combination presents poor performance if the NLOS error presented
in the TOA measurement is high.

Transmitted signal of interest

At the outset, it was assumed that the signal of interest was a GSM cellular ra-
dio transmitter [75] that was either a mobile handset or a rapidly deployable base
station. Accordingly, this type of signal was modelled in Matlab as a Gaussian min-
imum shift keyed signal (GMSK) with a data rate of 271kb/s. The signal waveform
has the form:

s(t) = A cos

(
2πfct + a(t)

∫ t

0

fd(t) dt

)
(4.21)

where, A is the carrier amplitude, fc is the carrier frequency (typically 900MHz or
1800MHz), a(t) represents the binary data stream after it has been passed through
a Gaussian filter with a time-bandwidth product, BT = 0.3. In the usual way, this
signal was modelled as a complex-valued baseband equivalent model. The notional
carrier frequency used to define the channel parameters was chosen to be 1800MHz.

A standard 0.577ms GSM timeslot containing 156.25 data bits was generated for
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each user. A full eight user GSM time frame of 4.615ms duration was continuously
generated in which data was randomly generated for each user. Although the GSM
standard has a fixed training pattern within the middle of each time slot, these were
not used by the receivers in the UAVs to obtain timing as this would have implied
some form of cooperative emitter geolocation. Instead the preferred method was
to cross-correlate the signal at each UAV over the entire wanted user’s time slot to
obtain the relative time of arrival difference between those pair of platforms. The
reason for performing a full multi-user simulation is that timing errors due to the
different ranges of each UAV platform from the emitter of interest ensure signals from
users in adjacent time-slots may fall within the correlation window used to obtain
the time difference of arrival. This partially decorrelates the signal of interest and is
a potential source of timing error. However by performing correlations of the signal
between receivers on each UAVs this problem can be mitigated. Consequently, this
is an important feature to include in the model.

Channel Model

At the outset, it was assumed that tactical UAVs would be used to geolocate the
wanted, stationary emitter. It was further assumed that the environment in which
the UAVs flew ensured that there was no single direct line-of-sight path between each
UAV and the transmitter of interest (due to localised scattering of the signal near
the emitter). Consequently, it was assumed that propagation between the handset
and the UAVs suffered from multipath propagation in which each echo suffered from
Rayleigh fading at a rate dictated by the Doppler spread due to the motion of the
UAVs.

A Cooperation in the field of Scientific and Technical Research 207 (COST 207)
propagation channel model was used to represent the received signal at each UAV
[76][77]. This is a standard channel propagation model for GSM signals as recom-
mended by the International Telecommunication Union (ITU. In this model, it is
assumed that the channel impulse response may be represented by:

h(t, τ) =

Lp∑

l=0

cl expjφlt δ (t− τl(t)) (4.22)

where Lp is the number of multipath components (including the direct path if one
exists), cl(t) is a random time-varying path-loss coefficient for the lth path which
has Rayleigh statistics, φl(t) is a random time-varying phase shift associated with
the lth path which has a uniform distribution in the range (0, 2π) and τl is the time-
varying time-delay associated with the lth path due to the length of that path. All
these parameters are time varying due to the change in environment as the UAV
receiver platforms move. Consequently, the rate at which these parameters change
is determined by the speed of the receivers. The parameters of the impulse response
given by (4.22) can often be represented by generic channel environments, such as the
‘urban’, ‘suburban’ or ‘hilly’ channel models, in which the number of paths is fixed,
along with its delay profile and the mean path loss for each path, as defined by the
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‘standard’ for that model. These different models have been developed in response
to many years of experimental propagation studies in a wide variety of geographic
areas. In this work, a COST 207 ‘hilly’ model was used, as an example for the
possible applications of the selected scenario, for which the stationary characteristics
of the impulse response of (4.22) are represented by figure 4.25 below, where the
mean path loss values, ci , are relative to the direct component, c0. The hilly model
provides particular challenges due to very long delay spread out to 17µseconds which
is due to the time taken for the signal to reflect of distant hills which are typically
3− 4 km away. COST 207 ‘hilly’ model has a strong line-of-sight component and in
order to simulate non-line-of-sight this component was removed, as shown in figure
4.26

Figure 4.25: Impulse response for the COST 207 ‘Hilly’ channel model

Figure 4.26: Impulse response for the COST 207 ‘Hilly’ channel model, simulating
NLOS conditions, LOS component removed
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The actual mean path loss of the direct component of the received signal is
assumed to be given by one of two forms, depending used to represent model of
the propagation. For low-flying UAVs, where there is high probability of the signal
at the UAV receiver containing both a direct ray and a reflected signal from the
ground, a ‘plane-earth’ propagation model was used where the mean path loss is
given by:

Lpe =
(hthr)

2

d4
(4.23)

where ht and hr are the transmitter and receiver heights respectively and d is the
range between the transmitter and receiver. For the case of high flying UAVs, where
there is a line-of-sight component to the received signal, the path losses were modeled
by a free space propagation loss model of the form:

Lfree =
(4πd)2

λ2
(4.24)

where λ is the wavelength of the transmitted signal, d is the range between the
transmitter and receiver. The decision whether to use the plane-earth or free space
propagation equations is determined by the degree of ‘clearance’ that exists for the
signal of interest. This clearance is given in terms of the Fresnel zone clearance shown
in figure 4.27. In this work, it is assumed that the path has adequate clearance if the
first Fresnel zone clears any obstacles along the flight path. Other clearance criteria
are possible such as ‘0.7R1’, but the clearance used here is quite conservative. In
figure 4.27, UAV1 has a clear line of sight path for the transmitter of interest. Fur-
thermore, the first Fresnel zone ‘clears’ the building by the small margin, indicating
that there will be no diffraction effects. For this situation, free-space propagation
is assumed, with Rician random perturbations to account for localised scattering
along the path of interest. For the case of UAV2, the direct line of sight path clears
the obstruction but the first Fresnel zone does not clear the obstruction, indicating
either strong diffraction losses or scattering. In this case we assume that the propa-
gation model is LOS but with a scattered component that is Rician distributed and
which includes diffraction losses for the direct path. For the case of UAV3, it is
assumed that the signal arrives at the UAV receiver via non-line of sight scattering
and a plane-earth Rayleigh model is assumed for this case. This is the model used
most often in this work in order to simulate NLOS components.

In this scattering model, each of the L paths is assumed to be faded, due to
local scattering, with a Rayleigh distribution. This provides a random component
to the coefficient cl(t) which in figure 4.28, is given by c̃i(t). Figure 4.28 shows how
the multipath channel is modelled as a transversal filter, in which τ di represents
the relative path delay between the (i-1)th path and the ith path. The mean path
loss coefficient c̄i is obtained from figure 4.3.1 and each path loss coefficient, c̃i (t)
is independently generated from a Rayleigh distributed coefficient generator. How-
ever, in this Matlab model, since the data is complex valued baseband data, c̃i is
also complex valued and it is generated by random selection from two independent
Gaussian distributions, one for the real component of the signal, the other for the
imaginary term.

c̃i = c̃Ri + jc̃Ii (4.25)
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Figure 4.27: Fresnel zone clearance

Figure 4.28: Schematic of the channel model, based on a transversal filter.

The time variation of these coefficients is set by the Doppler velocity of the UAV
receiver platforms and this is achieved by filtering the samples of the Rayleigh dis-
tributed path coefficient, c̃i (n) with an appropriate digital realisation of a ‘Doppler
filter’. This filter represents the spectral characteristics of the Doppler spread that
occurs when a signal has been scattered and received over the full 360˚ azimuth,
provided by a moving omni-directional receiving antenna. A common digital rep-
resentation of the Doppler filter is to convolve the Rayleigh distributed path coeffi-
cients with the impulse response of the Doppler spread function.

Figure 4.25 shows a schematic diagram of how the time varying channel coeffi-
cients for the ith path are generated for complex valued data.

In this simulation, the maximum frequency of the Doppler filter is set at accord-
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Figure 4.29: Schematic showing how the time-varying channel coefficients are gen-
erated

ing to:

fD1 = −f0

c

vxr1
(x− xr1) + vyr1

(y − yr1)√
(x− xr1)

2 + (y − yr1)
2

(4.26)

as in section 1.4.2, although it is common in GSM mobile phone simulations to
simulate it with vmaxf/c, where vmax is the maximum velocity. The received signal
is the convolution of the transmitted signal with the channel impulse response:

r (t) =

Ts∫

0

h (t, τ)s (t− τ) dτ + n (t) (4.27)

where Ts is the total delay spread of the impulse response and n (t) is complex-valued
additive noise provided by the channel1.

One of the key aspects of this propagation model is that the overall propagation
loss is used to compute the instantaneous signal level of the emitter of interest at
the various UAV receivers as this plays an important part in determining the error
in the timing measurements needed to geolocate the emitter.

4.3.2 Receiver Model

In the context of the geolocation problem addressed here, the UAVs are not required
to intercept the GSM signal, merely to act as a remote antenna system which is
able to time-stamp the received signal and to append the precise location of the
UAV at the time the signal was received. It is assumed that this is accomplished
using GPS navigation and timing. Accordingly, the receiver used in each UAV is

1It is a complex valued process because the signal is modelled as complex valued baseband
signal
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assumed to have a bandwidth that accepts the GSM signal without adding further
distortion. Its bandwidth is defined by a root-raised cosine filter. The equivalent
noise bandwidth of the filter was set to W = 200kHz. The receiver model includes
the effect of additive Gaussian noise and for this was a typical value of the receiver
noise temperature Ts = 1300K, the antenna noise temperature Ta = 290K yielding
an equivalent noise temperature for the receiver of Te = Ts + Ta= 1590K. From this
the variance of the receiver noise signal is:

Nse = kTeW = 4.4× 10-15 W (4.28)

The carrier power to noise ratio at the receiver is given by:

SNR = 10 log10 (Pr/Nse) (4.29)

where Pr is the received power given by:

Pr = PeLtotal (4.30)

where Pe is the effective isotropic radiated power of the transmitter, and the path
loss, Ltotal, is total sum of all path losses. When a good path is assumed Ltotal

will include the free-space path loss term and when plane-earth propagation exists,
plane-earth loss is used in Ltotal. SNR is an important factor to include in the model
due to the fact that the accuracy of the estimation of AOA, TDOA and FDOA
directly depends on it. For example, there are a number of different theoretical
approximations for σTDOA depending upon the assumptions made regarding the
SNR of the received signal [10]. For good SNR conditions it is common to assume
that the standard deviation of the timing error is given by:

σTDOA ≈
1

W
√

SNR
(4.31)

where W is the noise bandwidth of the receiver, whereas for low SNR the achievable
timing error is often given by [59]:

σTDOA ≥
√

3

8π2T

1

SNR

1√
f 3

2 − f 3
1

(4.32)

where T is the integration time used in the receiver and W = f2 − f1. Whereas the
effect of SNR on the standard deviation of a AOA measurements is given by [23]:

σ2
θ ≥

(
c

2πf0d cos(θ)

)2 (
1

SNR

)
(4.33)

where f0 is the carrier frequency of the received signal, d is the maximum separation
between antenna elements of interferometer antennas, and θ is the true bearing
angle. There is a known problem with AOA measurements in multipath/NLOS
environment that in addition to σ2

θ multipath can add multipath error in the range
(0, 2π) thus rendering AOA measurements unreliable. This limits the application of
the AOA measurements to RF emitter geolocation problem in NLOS environment.
In this simulation it was also difficult to obtain reliable FDOA measurements due
to the relatively slow UAV speed and high fading. Consequently, the research has
concentrated on the application of TDOA measurements to RF emitter geolocation
in NLOS environment.
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4.3.3 TDOA Measurements

The measurement of the TDOA between two UAV platforms is obtained by corre-
lating the signal received at each of the platforms2. The cross-correlation between
a sampled signal x(n) and a sampled signal y(n) at a lag of m samples is given by:

Rxy(m) = E{x(n + m)y∗(n)} = E{x(n)y∗(n−m)} (4.34)

where where x(n) and y(n) are jointly stationary random sampled processes,−∞ <
n <∞ , and E is the expectation. This is carried out for all useful values of m that
cover the expected time difference of arrival of the signal. Figure 4.30 shows the
output of the cross-correlation function (CCF) of the received GSM signal one of
which is delayed relative to the other due to the path length difference. The x-axis
of 4.30 represent time-delay in terms of number of samples (Fast Fourier transform
bins). Bin number 13596 represent the CCF with the signal with no delay (τ = 0).
Time sampling rate for the signal ts = 1× 10−7 seconds. It is possible to obtain the
value τi,1 time-delay between two signals by obtaining maximum, than calculating
the off-set in bins of the CCF tbins of this maximum bin out of τ = 0 and then
multiplying it by sampling rate ts:

τi,1 = tbinsts (4.35)

Although 4.30 seems to have a sharp peak, zooming into it as in figure 4.31 demon-
strates that it consists of multiple peaks, thus maximum in this cross-correlation
function can shift due to the fading conditions.

Implicit in this method is that a data link exists between each platform and a
control centre, where the TDOA and emitter position are computed. It is assumed
that the bandwidth of the data links is sufficient so as not to distort the waveforms
prior to correlation. It is also assumed that the UAV platforms time-stamp the
signals prior to them being sent along the data links so that differential link delays
can be compensated for. A time-stamping precision of σT = 5ns is assumed, which
is known to be achievable by GPS. It is possible to include the a priori knowledge
about the model into the geolocation algorithm by altering the σTDOA. In this case

σTDOA = σT + σmultipath (4.36)

where σmultipath average multipath delay, selected empirically based on a fading
channel model.

Simulation Scenario and Results

Using the channel model described in section 4.3.1 a performance of the Hough
Transform algorithm was tested in NLOS conditions. Figure 4.32 shows a typical

2It is assumed that each UAV is able to exchange the raw signal that it has received via a
broadband RF link to allow this correlation to take place. This segment of raw signal will be space
and time stamped.
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Figure 4.30: Output of the cross-correlation of the two GSM signals

0 0.5 1 1.5 2 2.5 3

x 10
4

0

1

2

3

4

5

6

7

8
x 10

!11

bins

R

1.358 1.36 1.362 1.364 1.366 1.368

x 10
4

4.5

4.6

4.7

4.8

4.9

5

5.1

5.2

5.3

5.4

5.5

x 10
!11

Figure 4.31: Output of the cross-correlation of the two GSM signals with zoomed
peak

scenario in which three UAVs are used to geolocate a single handset, denoted as a
cross at (2664m, 3157m). The three UAVs, denoted as circles, can have arbitrary
flight paths and are shown here with wavy paths for two platforms and a straight
path for the other. The speed of the platforms is 40m/s and σTDOA = 5ns. It is
necessary to use three UAV because two platforms are not enough to provide an
estimate in NLOS conditions. Direct application of the Hough Transform algorithm
leads to the following results: figure 4.33 shows the effect on the RMS position
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error of increasing the number of TDOA measurements taken by the platform along
their respective flight paths. It is assumed that the position of the UAV is precisely
known during the estimation of the TDOA between pairs of platforms and does not
contribute to the RMS position error.

Figures 4.34 and 4.35 demonstrate the effect of number of measurements on
geolocation accuracy in line-of-sight COST 207 ‘hilly-terrain’ and additive white
gaussian noise channels (AWGN) respectively. It can be noted, that that the av-
erage RMS error for COST 207 model with line-of-sight component in figure 4.34
indistinguishable from 4.35. This is due to the fact that the method of obtaining
TDOA measurement chosen (cross-correlation) is capable to suppress the impact
of fading on the value of TDOA measurement and because of this additional sup-
pression the simulations were able to produce identical results as difference in the
channel models were suppressed by cross correlation. But it is clear, that the NLOS
component has made an impact on accuracy of TDOA measurements and thus on
average RMS geolocation error in figure 4.33, where average RMS error falls below
25 meters only after 20 measurements, while in figure 4.34 falls below 10 meters
most of the time.
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Figure 4.32: Scenario for geolocation us-
ing multiple UAV with COST 207 channel
model, showing flight paths of three UAV
platforms and emitter. The green circle
shows the estimated emitter position

Figure 4.33: Average RMS positional er-
ror of the emitter (meters) against num-
ber of measurements, used to provide an
estimate with NLOS model simulated by
COST 207 ‘hilly-terrain’ parameters. Av-
erage RMS error was calculated over 50
simulations
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Figure 4.34: Average RMS positional er-
ror of the emitter (meters) against number
of measurements, used to provide an esti-
mate with LOS fading model simulated by
COST 207 ‘hilly-terrain’ parameters. Av-
erage RMS error was calculated over 50
simulations

Figure 4.35: Average RMS positional er-
ror of the emitter (meters) against number
of measurements, used to provide an esti-
mate with additive white gaussian noise
channel model. Average RMS error was
calculated over 50 simulations
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Figure 4.36 shows 2D representation of the HT space for the scenario 4.32. Figure
4.37 shows zoomed parameterised space in the vicinity of the emitter. It was as-

Figure 4.36: Illustration of the 2D param-
eterised space for geolocation scenario in
figure 4.32 using NLOS COST207 model

Figure 4.37: Zoomed illustration of the 2D
parameterised space for geolocation sce-
nario in figure 4.32 using NLOS COST207
model

sumed that there is a model mismatch between likelihood used in Hough Transform
as NLOS channel model introduces additional delay as can be seen on figure 4.26,
therefore it is possible to ‘tune’ the HT algorithm by using equation 4.36, improv-
ing geolocation accuracy by using a priori knowledge about the NLOS conditions.
Assuming σTDOA = 50ns and reapplying HT algorithm to the same scenario leads
to the results presented in figure 4.38. It is clear that by collecting a minimum five
sets of TDOA measurements between three UAV platform causes the RMS position
to fall to values that are less than 10m and the value of the average RMS error less
variable, compared to initial results in figure 4.33. Figures 4.39 and 4.40 shows the
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Figure 4.38: Average RMS positional error of the emitter (meters) against num-
ber of measurements, used to provide an estimate with NLOS model simulated by
COST 207 ‘hilly-terrain’ parameters. Average RMS error was calculated over 50
simulations
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Figure 4.39: 2D Hough Transform space
for geolocation using COST 207 channel
model, illustrating the impact of the fad-
ing on HT

Figure 4.40: Three dimensional accumula-
tor plot of HT space for TDOA-only mea-
surements for the scenario given by 4.32.
In this case the area shown is limited to
a 150m × 150m around the true emitter
position

Hough Transform space, where 20 TDOA measurements from the moving platforms
were fused, as per the scenario of figure 4.32. This figures does not show the entire
search space but only a small area of (150m × 150m) in the vicinity of the target
emitter with standard deviation of the measurement error σTDOA = 50ns. The peak
of the HT space indicates the estimated emitter position, which is shown as the green
circle in figure 4.32. It can be noticed comparing two dimensional representation of
the parameterised space in figures 4.37 and 4.39 that ‘smoother’ curves lead to an
improved results in the case of NLOS conditions, due to their ability to incorporate
TDOA measurements altered by NLOS component.
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Conclusion

In this section the Hough Transform was applied to the problem of geolocation in
NLOS conditions. The simulations have shown how relatively few sets of TDOA
measurements are needed to obtain acceptable RMS position errors using Hough
Transform, even in NLOS conditions. Having established the methods utility for
emitter location, the further work is focussed on reducing the computational over-
head of the method using established techniques such as the Multi-resolution Hough
Transform and Randomized Hough Transform, described in the next section.
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4.3.4 Computational Complexity Reduction of the Hough
Transform

The computational complexity of the Hough transform depends on the grid size and
is of the order (n×m) where n and m are the grid dimensions. However, it is pos-
sible to perform a real-time Hough transform using real-time content-addressable
memory [78] or to use optimized Hough Transform algorithms, such as the Ran-
domized Generalized Hough Transform (RHT) [79]. It is also possible to reduce
the computational load by ‘divide and conquer’ optimization, by dividing the pa-
rameterized space into overlapping ‘tiles’ that provides a multi-resolution Hough
transform (MHT) [80], and this approach has been used here. In this method, the
parameterized space is first divided into a coarse grid and the likelihood function is
evaluated for this grid. The maximum for this coarse grid is then obtained and this
is used to refine the search space to a finer resolution tile containing the maximum.
For this new search space, the grid size is refined to provide a much higher reso-
lution. Clearly, this method can be iterated several times, achieving progressively
higher spatial resolution at each stage. For example, if the original parameterized
space had an n× n grid, the computational complexity of calculating the likelihood
is O(n2) for the standard Hough transform. However, for the multi-resolution Hough
Transform, let the number of grid points for the first iteration be scaled down by a

factor of p. In this case, the order of complexity for the first iteration is O
(

n×n
p

)
,

whilst the order of complexity for the second iteration O
(

n×n
p

)
. Consequently, for

just two iterations, the overall order of complexity is O
((

n×n
p

)
+

(
n×n

p

))
for the

same overall resolution. An example of the use of the multi-resolution Hough
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Figure 4.41: An example of the use of the Multi-resolution HT for emitter location
using TDOA measurements

transform method is shown in figure 4.41. In this case, the source is located at
(4.13km, 4.13km) (marked with a cross) within a search space of (10km, 10km) and
the platforms are located at (1km, 2km), (1km, 6km) and (2km, 7.5km) (marked
with circles). The number of grid points used for the first iteration was 100 × 100
(i.e 10,000 ‘tiles’ with a separation between grid points of 0.1km). For the second
iteration, an area equivalent to one tile centered on the grid with the maximum
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Figure 4.42: Scenario for geolocation us-
ing Multiresolution Hough Transform fus-
ing TDOA measurements with COST 207
NLOS channel model

Figure 4.43: Average RMS error, for
geolocation using multi-resolution Hough
Transform for the scenario on figure 4.42
with COST 207 NLOS channel model

Figure 4.44: 3D parameterised space for MHT on second iteration in the vicinity of
the emitter, illustrating one ‘tile’

in the accumulator was used, and this tile was split into 100 × 100 grid points
(corresponding to a separation between grid points of 1m).

Consider a scenario for geolocation pictured in figure 4.42. In this scenario three
UAV are trying to geolocate an emitter in NLOS conditions described earlier in
this chapter using TDOA measurements. Average RMS error, calculated over 50
simulations for this scenario, is shown in figure 4.43. The example of the param-
eterised space of MHT on a second step (fine resolution grid) is shown in figure
4.44. As in the previous examples of parameterised space for the HT, one can see
the strong peak, indicating an estimated emitter position. It is clear that on a fine
resolution grid size, the parameterised space for the MHT and HT indistinguishable
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from one another. It can be concluded that the performance of the Multiresolu-
tion Hough Transform is quite close to the performance of the Hough Transform in
COST 207 NLOS conditions, but this approach to optimization is known to have a
specific problem, when the emitter of interest is located on the edge of the ‘tiles’.
In this case zooming doesn’t improve the estimate and the obtained estimate will
always have an error, proportional to the size of the tile. The target position on
figure 4.42 and tile size are selected in a way, that it will always be inside a tile.
It is possible to use other techniques, such as the Randomized Hough Transform,
where the search space is not evaluated at a fixed point on the grid, but only at the
points, selected randomly.The RHT approach to grid evaluation helps to overcome
the problem of edges of the tiles, but at the expense of the accuracy of the estima-
tion. For the shown scenario in the figure 4.42 an attempt was made to implement
the Randomized Hough Transform by evaluating the likelihood of the emitter posi-
tion only on the points of the grid, which are randomly generated from the uniform
distribution. Figure 4.45 represents the accuracy of the RHT depending on the
number of measurements for a RHT evaluated on a 350× 350 = 122500 grid points,
whereas figure 4.46 demonstrate results for RHT using twice as many grid points
700× 700 = 490000. Exploring the figures 4.45 and 4.46 one can only conclude that
the accuracy of the RHT is randomized, thus leading to unpredictable results.
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Figure 4.45: Randomized Hough Transform evaluated over 350× 350 grid samples
for the scenario shown in figure 4.42

The idea of using the random points on the grid as in Randomized Hough Trans-
form is similar to the resampling method for the particle filter. In the next chapter
the optimized versions of the Hough Transform and particle filter will be compared
for a similarscenario and the differences and similarities between particle filter and
RHT will be highlighted. Before comparing the performance of the optimized ver-
sions of the Hough Transform with the Particle Filter, it is in the interest of research
to test the particle filter performance in NLOS conditions.



CHAPTER 4. HOUGH TRANSFORM BASED ESTIMATOR 113

0 20 40 60 80 100
0

50

100

150

200

250

R
M

S
 (

m
)

Number of measurements

Figure 4.46: Randomized Hough Transform evaluated over 700× 700 grid samples
for the scenario shown in figure 4.42
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Figure 4.47: Scenario of multi-platform emitter geolocation showing the flight paths
of 3 UAV platforms and the emitter of interest. The green circle shows the estimated
emitter position

4.4 Geolocation in NLOS conditions using Parti-
cle filter

In this section, the particle filter described in chapter 3, was applied to the problem
of emitter geolocation in an NLOS environment, using the channel and signal model
described earlier in this chapter.

Figure 4.47 shows a typical scenario in which three UAVs are used to geolocate a
single handset, denoted as a cross at (2664m, 3157m). The three UAVs, denoted as
circles, can have arbitrary flight paths and are shown here with wavy paths for two
platforms and a straight path for the other platform. The speed of the platforms is
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40m/s.
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Figure 4.48: Average RMS positional error obtained over 50 simulations for different
numbers of measurements with uniform and Gaussian resampling

Figure 4.48 shows the performance of the particle filter in the multipath condi-
tions described earlier in section 4.3.1. The y-axis shows an average root mean square
error calculated over 50 simulation, the x-axis represent the number of measure-
ments taken. Figure 4.48 shows the effect on the RMS position error of increasing
the number of TDOA measurements taken by the platforms along their respective
flight paths. It is assumed that the position of the UAV is precisely known during
the estimation of the TDOA between pairs of platforms and does not contribute to
the RMS position error. From the results presented in figure 4.48 it is clear that
the PF algorithm is capable of geolocating an emitter in the NLOS environment,
described in section 4.3.1. Exploring figures 4.48 and 4.33 or 4.48 and 4.38 it is
clear that in NLOS conditions the particle filter performed slightly worse than the
Hough Transform, in terms of RMS error over the same number of measurements in
NLOS conditions, especially, when uniform resampling is used. The accuracy of the
estimation raised a question whether the particle filter performed worse than the HT
due to the NLOS problem or due to some fundamental limit of the application of
the particle filter to geolocation. Also, the initial accuracy of the PF algorithm with
uniform resampling (when there were only a few measurements) raised a question
about the best resampling distribution for emitter geolocation using a particle filter.
This question remains unanswered, however in section 6.2 an attempt was made to
bring some light into it.
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4.5 Conclusion

In this chapter, a novel method of geolocation based on Hough Transform was pre-
sented. This method allows an easy fusion of the different type of the measurements
and also fusion with terrain data. It also doesn’t have a convergence problem and the
emitter estimate can be obtained at any point in time – it doesn’t require minimum
number of measurements. HT method was applied to a problem of geolocation using
a complex model of the signal and NLOS channel, and although computationally
intensive, the algorithm was capable to geolocate the RF emitter in such difficult
conditions. The particle filter, described earlier in section 3, has been applied to the
problem of geolocation in NLOS conditions and also was capable to geolocate the
emitter with reasonable accuracy - within 20 meters.

Several ways to optimize the performance of the Hough Transform were proposed:
the Multiresolution Hough Transform and the Randomized Hough Transform. There
is a similarity between the Randomized Hough Transform and the particle filter. In
some senses the RHT can be viewed as one of the steps of the particle filter, with
one major difference: that the HT variants use sum instead of the product of the
probabilities. Comparison of the Generalised Hough transform and Particle Filter
with Maximum Likelihood Estimator presented in Chapter 2 is impractical due to
the problem with convergence of the MLE estimator: it would be possible to choose
the scenario where MLE convergence, however changes in target position will render
estimator unreliable as it was highlighted before in Section 2.1.6.

In the next chapter the particle filter, the Hough Transform and the RHT will be
compared on a simpler geolocation scenario, and new variant of the Hough Trans-
form, inspired by the particle filter, called the Hybrid Hough Transform will be
introduced.



Chapter 5

Comparison of Hough Transform
and Particle Filter

5.1 Introduction

In this chapter, in order to reduce the computational workload and retain the ac-
curacy of the Generalized Hough Transform, two modifications of the Generalized
Hough Transform were tested: the Randomized Hough Transform (RHT) and the
Hybrid Hough Transform (HHT). And then the GHT variants were compared and
tested with particle filter in section 5.2.

The essence of this chapter is to compare whether the non-Bayesian approach
of the Generalized Hough Transform and its variants, can outperform the particle
filter in terms of RMS positional error and computational efficiency.

5.1.1 Use of the Hough Transform and its Variants for Emit-
ter Geolocation

Adaptation of the Generalized Hough Transform

The main description of the Hough Transform was done in section 4.1. From this
chapter onwards, Hough Transform will be referenced as Generalized Hough Trans-
form (GHT), in order to distinguish it from it’s variants. A brief review of the
Generalized Hough Transform for geolocation independent of the type of the mea-
surements:

1. A fixed grid representing the parameters (x, y) that need to be estimated is
created

2. At each point on the grid, the likelihood of the estimate being (x, y) given the
measurement β, p(x, y|β), is evaluated and accumulated in an array, A as in
(4.5) where βl is the lth measurement of a total L.

116
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3. The estimate is taken as the grid position corresponding to the peak accumu-
lated likelihood

Using the conditional pdf (4.8), the voting array (accumulator) for the Hough Trans-
form can be built using (4.13).

The Randomized Hough Transform

Whereas the Generalized Hough Transform considers every point on the grid of
possible emitter locations, the Randomized Hough Transform examines a smaller
subset of these points chosen statisitically. Our implementation of the Randomized
Hough Transform is as follows.

1. A number of samples representing points on the grid of the parameterized
space are generated randomly with a uniform distribution

2. At each selected point on the grid, the likelihood corresponding to each TDOA
measurement is evaluated and stored in an array as in (4.13)

3. The estimated emitter position is taken as the grid position corresponding to
the peak accumulated likelihood.

Because the likelihoods are evaluated at fewer grid positions than for the Generalized
Hough Transform the computational time and storage requirements are reduced.
However, because the effective grid spacing is increased (albeit in a statistical way),
the accuracy of the method can be compromised.

When viewed in this way, it will be immediately apparent that there are parallels
between the Randomized Hough Transform and the particle filter. However, it is
worthy of comment that whereas the particle filter uses a Bayesian approach, the
Randomized Hough Transform is non-Bayesian, as indicated by (4.13).

The particle filter algorithm using Gaussian multivariate resampling as described
in chapter 3 will be used for the comparison in this chapter.

The Hybrid Hough Transform

In this section, the use of a further variant of the Hough Transform is proposed,
named the Hybrid Hough Transform. It is inspired by the particle filter algorithm
and the multi-resolution Hough Transform [80]. The performance of this algorithm
will be shown in Section 5.2 to be much better than either the particle filter or the
Randomized Hough Transform, on which it is based. The Hybrid Hough Transform
algorithm is as follows. The first three steps are identical to those of the Randomized
Hough Transform.

1. A number of samples representing points on the grid of the parameterized
space are generated randomly with a uniform distribution
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2. At each selected point on the grid, the likelihood corresponding to each TDOA
measurement is evaluated and stored in an array, as in (4.13)

3. The grid position (x, y) of the parameterized space corresponding to the peak
accumulated likelihood is obtained

4. A fixed grid Generalized Hough Transform is performed around (x, y) using a
fixed tile size (for example 10× 10 points in our case)

5. The estimate corresponds to the maximum of the updated parameterized
space, as shown in figure 5.1

Figure 5.1: Parameterized space of the Hybrid Hough Transform

5.2 Simulation Scenario and Results

Figure 5.2 shows a simplified scenario in which two UAVs are used to geolocate a
single transmitter, denoted as a circle at (93km, 40km). The two UAVs can have
arbitrary flight paths, shown here with wavy paths. A new measurement is taken
at each point on the path. The speed of the platforms is 40 m/s.

Figure 5.3 shows the RMS error performance of: (i) the Generalized Hough
Transform, (ii) the Randomized Hough Transform and (iii) the particle filter from
section 3 as a function of the number of measurements taken. In this figure, the
x axis represents the number of measurements taken and the y axis is the average
value of the RMS emitter position error over 500 simulation runs for a given number
of measurements. For this particular set of simulations the number of particles for
the Randomized Hough Transform and particle filter were the same, N = 8450.
This corresponded to half the number of grid points used in the Generalized Hough
Transform.
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Figure 5.2: Scenario of multiplatform emitter geolocation showing the flight paths
of 2 UAV platforms and the emitter of interest. The crosses show the estimated
emitter position using PF algorithm

As expected, the RMS error tends to fall as the number of measurements taken
increases. It should be noted that the RMS error for the Generalized Hough Trans-
form and the particle filter are very close up to approximately 30 measurements,
even though the particle filter evaluates the position likelihood at half the number
of grid points than the Generalized Hough Transform. However, the average com-
putational time for the three methods, as shown in figure 5.4, shows quite clearly
that the Generalized Hough Transform has a much lower computational overhead
than the particle filter. Although the error performance of the Randomized Hough
Transform is worse than for the Generalized Hough Transform, it offers the lowest
computational overhead. Note that above 30 measurements, the error performance
of the particle filter starts to diverge slightly, which is not observed in the Hough
Transform methods. In figure 5.5, the number of particles was adjusted so that the

Figure 5.3: Average RMS positional error
obtained over 500 simulations for different
number of measurements. For the Ran-
domized Hough Transform and the PF,
the number of particles (N = 8450) was
50% of the total number of grid points
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Figure 5.4: Average computation time
over 500 simulations for different numbers
of measurements for the different estima-
tors
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RMS error performance of the particle filter, the Generalized Hough Transform and
the Randomized Hough Transform were approximately the same. In this case, the
number of particles used for the particle filter was 20% of the number of grid points
used for the Generalized Hough Transform and the Randomized Hough Transform
used 75% of the grid points. Figure 5.6 shows that the computational overhead for
the particle filter is still substantially more than for the Randomized Hough Trans-
form. In considering these results, it should be noted that the magnitude of the

Figure 5.5: Average RMS positional error
obtained over 20 simulations for different
number of measurements. For the particle
filter N = 3380 (corresponding to 20% of
the grid) and for the Randomized Hough
Transform N = 12675 (corresponding to
75% of the total number of grid points)
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Figure 5.6: Average computation time
over 20 simulations for different numbers
of measurements for the different estima-
tors
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Figure 5.7: Scenario for comparison of
GHT, RHT and PF algorithms using
TDOA measurements only

Figure 5.8: Average RMS error of the sim-
ulation scenario on figure 5.7

RMS position accuracy depends quite critically on the relative position of the emit-
ter to the platforms because of the effect of GDOP and different platform/target
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Figure 5.9: Average run time for each algorithm, for the scenario on figure 5.7

scenarios may produce better or worse RMS error, depending on the GDOP. This is
demonstrated in figure 5.7 with corresponding average RMSE and average run time
shown in figures 5.8 and 5.9 respectively, were target was moved to (92km,62km).
On this particular scenario GDOP for estimation using TDOA measurements was
perfect and thus all estimators performed within circle defined by CRLB, the be-
haviour always desired by rarely encounted in practice. Changing the scenario and
moving target will provide a different results in terms of RMS accuracy of the esti-
mators and CRLB. It should be noted that GHT is grided algorithm and although
CRLB can decrease to the numbers smaller than 1 km over large number of measure-
ments, GHT algorithm can’t provide estimate with such precision if target happens
to be off the grid. The comparison of the particle filter and GHT with target off the
grid will be explored in details in the next section.

But the trends across the three types of estimator remain the same - particle
filter has high computational overhead due to resampling on each step, whereas
RHT can be considered as one step of the particle filter in terms of complexity. The
foregoing has shown that the Randomized Hough Transform has a low computa-
tional overhead, but this is at the expense of accuracy. In contrast, the Generalized
Hough Transform has a high accuracy, but with a corresponding high computational
overhead. Repeating the simulation in figure 5.2 using Hybrid Hough transform for
comparison, instead of the particle filter leads to the results plotted in figures 5.10
and 5.11. The Hybrid Hough Transform provides the reduced computational over-
head of the Randomized Hough Transform with the accuracy of the Generalized
Hough Transform and this is clearly shown in figure 5.10, which compares the av-
erage RMS positional accuracy of the three Hough Transform methods and figure
5.11, which shows the average computation time for the three Hough Transform
variants.

The results show that the computational overhead of the Hybrid Hough Trans-
form is slightly higher then Randomized Hough Transform but accuracy of the al-
gorithm is almost indistinguishable from the Generalized Hough Transform.
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Figure 5.10: Average RMS error over 500
simulations, Hybrid Hough transform us-
ing fixed grid 10× 10 sizes

Figure 5.11: Average time obtained over
500 simulations for different numbers of
measurements for the same scenario. Hy-
brid Hough transform using 10× 10 fixed
grid



CHAPTER 5. COMPARISON OF HOUGH TRANSFORM AND PARTICLE FILTER123

5.2.1 Bayesian Randomized Estimator

It is possible to construct a Bayesian estimator using a similar approach to the Ran-
domized Hough Transform in which the accumulation of likelihoods by arithmetic
addition is replaced by taking the product. Such an estimator has been implemented
here for comparison with the Hough transform estimators. In this implementation of
the Bayesian Randomized estimator, no resampling is carried out on each measure-
ment update cycle. This must be contrasted with the particle filter, where resam-
pling is an important part of the algorithm to prevent degeneracy. The consequence
of this on the performance of the Bayesian Randomized estimator will be examined
in this section. An example of degeneracy is shown in figure 5.12, which shows the
parameterized space after 55 measurements have been used. The comparison of

Figure 5.12: Parameterized space of the Bayesian Randomized estimator after 55
measurements, showing degeneracy

results are presented in figure 5.13. As can be seen, the average RMS positional
error performance of the Randomized Hough Transform and the Bayesian estimator
are identical to about 20 measurements. The performance of the two algorithms in
terms of computation time are shown in figure 5.14 and again, the computational
overhead is identical. However, it is clear from figure 5.13 that the average RMS
positional error of the Bayesian Randomized estimator starts to diverge with an in-
creasing number of measurements, whereas the Randomized Hough Transform and
the Generalized Hough Transform continue to converge. Although not shown here,
other results for larger numbers of measurements confirm that the RMS error per-
formance of the Bayesian Randomized estimator diverges for this emitter location
scenario.

One of the advantages of the Hough Transform approach to dealing with the
accumulation of the likelihoods is that it does not require reinitialization of the
parameterized space on each measurement update cycle. Hence it can be used as
both a sequential and a batch estimator at the same time.

In the same way that the Randomized Hough Transform was modified to form
the Hybrid Hough Transform, an attempt was made to improve the accuracy of the
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Figure 5.13: Average RMS positional er-
ror over 500 simulations for the Random-
ized Hough Transform and the Bayesian
estimator using the same number of par-
ticles (75% of the grid size used for the
GHT)

Figure 5.14: Average computational time
over 500 simulation runs run for the Gen-
eralized Hough Transform, Randomized
Hough Transform and the Bayesian Ran-
domized estimator

Figure 5.15: Average RMS positional error obtained over 500 simulations for a dif-
ferent number of measurements for the Generalized Hough Transform, Randomized
Hough Transform, modified Bayesian Randomized estimator and the Hybrid Hough
Transform

Bayesian Randomized estimator using a similar hybrid approach whereby a fixed
grid search was incorporated with the Bayesian Randomized estimator. Figure 5.15
compares the performance of this modified Bayesian estimator with the three Hough
Transform variants. It is clear from this result that this approach does not lead to
improved results.

It is also possible to implement uniform resampling and reinitialization of the
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parameterized space before updating it with each measurement. However it will lead
to an algorithm that is very close to a particle filter, the performance of which has
already been presented earlier. In the next section the comparison of the particle
filter and Hough Transform variants will be presented on one common, but difficult
for geolocation scenario, and then methods for improving algorithms performance
will be discussed.

5.3 Comparison of the particle filter and Hough
transform variants on common scenario

It is important to compare previously presented algorithms in this thesis algorithms
on one scenario. For this purpose the following simulation has been generated:
figure 5.16 pictures the flight path and target location for all algorithms. Number
of measurements from 2 till 110, each measurement obtained once aircraft passes
0.4 km. Target located on (70.5, 60.5)km. Flight paths for the UAV were generated
according to:

x(t) = x0 + v sin θ(∆t) (5.1)

y(t) = y0 + v∆t (5.2)

where (x0, y0) is (10, 10)km the initial position of the first aircraft and (10, 40)km
for the second aircraft. θ(∆t) ∈ (0, 2π) is the angle changing on each time step up
with step ∆θ = 2π/Nm. Where Nm - duration in simulation, which is equivalent to
number of measurements taken during the simulation. v = 0.4 km is progression of
the UAV in space during ∆t.

Measurement noise assumed to be zero mean Gaussian noise with standard devi-
ation σAOA = 0.02 radians for Angle of Arrival measurements and σtime = 7.4×10−7

seconds for

This simulation presents challenge for TDOA-only based estimation as in this
particular case GDOP of TDOA doesn’t improve with the time because the aircraft
manoeuvre synchronously and TDOA baseline - distance between aircrafts remains
constant during simulation. This scenario is nearly worst case for the geolocation of
the emitter due to the poor GDOP, but the one which can be en-counted in prac-
tice. In this chapter we will start from exploring different algorithm performances
on a fixed scenario generated once with fixed number of measurements and those
measurement’s error assumed to be Gaussian and measurements, corrupted by mea-
surement’s noise were generated only once; then the comparison of the performance
of the algorithms has been performed on this one set of measurements and one type
of noise (Gaussian). Algorithms are programmed in such a way that number of
points of Particle filter N = 16900 is equal to number of grid points for Generalised
Hough Transform and also Randomized and Hybrid Hough Transform.
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Figure 5.16: Comparison scenario

Particle filter algorithm

Quick overview of the particle filter algorithm from chapter 3 which is later going
to be modified to increase accuracy:

1. Initialization, t=0 :

• For i = 1, ...N , sample x(t)
0 # p(x0) and set t=1.

2. Importance sampling step:

• For i = 1, ...N , sample x̃(i)
t # p(xt|x(i)

t−1)

• Set x̃(i)
0:t =

(
x(i)

0:t−1, x̃
(i)t

)

• For i = 1, . . . N , evaluate the importance weights

w̃(i)
t = p(yt|x̃(i)

t ). (5.3)

• Normalise the importance weights.

3. Selection step

• Resample with replacement N particles
(
x(i)

0:t; i = 1, . . . , N
)

from the set
(
x̃(i)

0:t; i = 1, . . . , N
)

according to importance weights using multinomial

resampling, described below

• Set t← t + 1 and go to step 2
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The sampling of the particles x̃(i)
t # p(xt|x(i)

t−1) performed as a sampling from a
multivariate Gaussian distribution with a mean centered on the position, (xp, yp),
of the survivor particle from the previous step of after initialisation. The resampled
particles are generated using:

x = xp + N ; (5.4)

where x is the array of the particle position vectors, N is the array of zero-mean
normally distributed random values with standard deviation σjitter = 0.1569 km
(also known as jitter or system noise).

Multinomial Resampling

This is the simplest idea and widely used in bootstrap particle filter [49] that consist
of drawing, conditionally upon σ-field generated by the generations of particles and
weights up to time t, the new particles {ξ̂i}1≤i≤n independently from the point
mass distribution

∑m
j=1 ωjδξj . In practice, this is achieved by repeated uses of the

inversion method:

1. Draw n independent uniforms U i
1≤i≤n on the interval (0, 1];

2. Set Ii = Dinv
ω (U i) and ξ̂i = ξIi

, for i = 1, . . . n, where Dinv
ω is the inverse of

the cumulative distribution function associated with the normalised weights

{ωi}1≤i≤m, that is, Dinv
ω (u) = i for u ∈

(∑i−1
j=1 ωj,

∑i
j=1 ωj

]
.

This form of resampling is generally known as multinomial resampling since the
duplication counts N1, . . . , Nm are by definition distributed according to the multi-
nomial distribution Mult(n; ω1, . . . ,ωm).

5.3.1 Ungrided Randomized and Hybrid Hough Transform

In order to make Randomised Hough Transform practically comparable with PF,
generation of the initial distribution for Randomized Hough Transform was changes
to ungrid-based float type values, generated uniformly within search space, which
is similar to initialisation step for the particle filter. Number of particles for RHT
N = 16900. Other steps of the Randomized Hough Transform remained unchanged
and as presented in previous chapter.

The following changes were made for Hybrid Hough Transform:

• Number of particles N = 16800 generated from uniform distribution as in
RHT and PF.

• Evaluation of the likelihood performed as in RHT

• Smaller grid with center on particle with maximum likelihood formed such as:
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– Lower left corner of the ”small” grid calculated as xmin = x̂rnd − (4.5σr)
ymin = ŷrnd−(4.5σr) where x̂rnd and ŷrnd are (x, y) estimates of the target
obtained on the previous step and σr = σtimec√

(2)

– Upper right corner of the grid calculated as xmax = x̂rnd +(4.5σr) ymax =
ŷrnd + (4.5σr) respectively

– Likelihood evaluated over each point of the minor grid with step size
equal σr

Such changes allowed HHT to become ungrided and have exactly the same total
number of particles (on both steps) as PF N = 16900. Generalized Hough Transform
remains unchanged as presented in previous chapters with size of the grid (130, 130),
which is equivalent resolution down to 1 km.

5.3.2 Geolocation using TDOA only measurements

This section presents simulation results for TDOA measurements with corresponding
CRLB. It can be clearly seen on figure 5.17 that CRLB for this particular scenario
and TDOA only measurements present flat line, which doesn’t change with number
of measurements. It also can be seen that most algorithms presented in previous
chapters are able to perform close to CRLB bound after 60 measurements, with the
exception of the PF filter, which on the present scenario and type of measurements
demonstrated rather poor performance. It should be noted that target location is
(60.5, 70.5) km, thus traditional Generalized Hough Transform is unable to located
target precisely, due to the grid resolution up to 1 km.

Figure 5.18 depicts same information as 5.17, but in terms of logarithmic RMS
error against number of measurements. As it was said earlier, geolocation us-
ing TDOA-only measurements is the most challenging in this scenario as estimate
doesn’t improve with time, as demonstrated by CRLB distance. It can be seen that
all algorithms performed equally in terms of accuracy, achieving level of available
information. Figure 5.18 allow to see zoomed changes in estimates, which may not
be visible on figure 5.17. Figure 5.19 clearly shows the difference in algorithms run-
ning time, where particle filter with same number of particles as number of points
in GHT grid estimates much slower than any of Hough Transform variants.
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Figure 5.17: RMS error over number of
measurements using TDOA only

Figure 5.18: Logarithmic plot of the RMS
error over number of measurements using
TDOA only

Figure 5.19: Runing time of the each al-
gorithm for TDOA only measurements
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5.3.3 Geolocation using AOA only measurements

This section presents the results of using same algorithms for geolocation using AOA-
only measurements from first platform, which flight path marked as green circles on
5.16. As before 5.20 and 5.21 depict RMS error against number of measurements
and 5.22 shows time. GDOP for this type of estimation is slightly better in the
terms that it is improving over time, however as it was demonstrated before, single
AOA estimation produces very long ellipse, hence the accuracy of the single AOA
estimation is fairly poor. In order to compare the performance of the algorithms, it
is nessesary to test their performance using the fusion of the 2 AOA measurements
with TDOA measurement.

Figure 5.20: RMS error over number of
measurements for one AOA only

Figure 5.21: Logarithmic plot of the RMS
error over number of measurements for
one AOA only measurement

Figure 5.22: Comparison of the calcula-
tion time for AOA only
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5.3.4 Geolocation using combined two AOA and TDOA mea-
surements

This section presents the results of the geolocation using combined AOA and TDOA
measurements from both aircrafts. Figures 5.23 and 5.24 shows the performance of
the algorithms in terms of RMS against number of measurements. It should be noted
again that all participating algorithms using same set of data. In figure 5.23 CRLB
gradually became smaller, despite of the fact that TDOA-only measurements doesn’t
improve geolocation with number of measurements, combination of both 2AOA and
TDOA improves with increasing number of measurements.

The performance of all presented algorithms comparable, with Hough Transform
variants estimating with precision down to one km, while particle filter, geolocating
target within 1.4 km, demonstrate unstable behaviour. Note that GHT can’t locate
target close than nearest grid point, thus 0.7 km is the best possible estimate for
GHT. Figures 5.26 and 5.27 are zoomed versions of the figures 5.23 and 5.24 respec-
tively. On figure 5.28 presented the comparison of the calculation time for Hough
Transform variants, which is indistinguishable line on figure 5.25.

It should be noted that all algorithms use exactly same number of particles and
equivalent number of grid points. Observing the results on figures 5.23 and 5.26
it is possible to conclude that for this particular scenario, particle filter performed
reasonably accurately in terms of RMS error, but slower than Hough Transform
variants. Obviously, GHT precision limited to grid, however Hybrid Hough Trans-
form in it’s ungrided form performed best in terms of accuracy and calculation time.
It should be noted that performance of the particle filter in this conditions doesn’t
improve with number of measurements and this behaviour is consistent, even in case
of another set of measurements for the same scenario.

It is usually assumed that performance of the particle filter can be improved by
altering values of system noise (jitter). However, results of the simulation presented
in figure 5.29, where RMS error of the particle filter calculated as average of 12
simulations for each number of measurements for different values of system noise. It
is clear that choosing right value of σr is challenging (also demonstrated in chapter
3) and additional means of improving particle filter shall be considered. Next step is
to improve particle filter algorithm with known technique called Metropolis-Hastings
step.

5.4 Improving particle filter

5.4.1 Modified Particle Filter with Metropolis-Hastings step

Metropolis-Hastings step

As stated in [6] chapter 7, there can be a problem of degeneracy in particle filter when
the target distribution p(x1:t|y(1:t)) in the particle filter does not overlap significantly
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Figure 5.23: RMS error against number of
measurements for 2AOA and TDOA

Figure 5.24: Logarithmic plot of the RMS
error over number of measurements for 2
AOA and TDOA measurements

Figure 5.25: Calculation comparison time
for 2 AOA and TDOA measurements

with the prediction distribution p(x1:t, y1:t−1). One way to overcome the deficiency
is to incorporate Markov chain moves into the scheme. Since we wish particles to
be drawn from p(x1:t|y1:t) it seems reasonable to design Markov chain transition
kernel T (x1:t, ∂x′1:t) having p(x1:t|y1:t). In practice Metropolis-Hastings step can be
described as:

• Sample the proposal candidate θ∗(i)t # p(θt|θ(i)
t−1)

• If v # U[0,1] ≤ min
{

1, p(yt|xt,θ
∗(i)
t )

p(yt|xt,θ̃
∗(i)
t )

}

– then accept move: θ(i)
0:t =

(
θ̃(i)
(0:t−1), θ

∗(i)
t

)

– else reject move: θ(i)
0:t = θ̃(i)

0:t

Particle filter algorithm modified to include additional Metropolis-Hastings step
implemented as follows:
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Figure 5.26: RMS error over number
of measurements for 2AOA and TDOA.
Hough Transform variants only

Figure 5.27: Logarithmic plot of the RMS
error over number of measurements for
2AOA and TDOA measurements. Hough
Transform variants only

Figure 5.28: Comparison time of the cal-
culation for 2 AOA and TDOA measure-
ments, Hough Transform variants only

1. Initialization, t=0 :

• For i = 1, ...N , sample x(t)
0 # p(x0) and set t=1.

2. Importance sampling step:

• For i = 1, ...N , sample x̃(i)
t # p(xt|x(i)

t−1)

• Set x̃(i)
0:t =

(
x(i)

0:t−1, x̃
(i)t

)

• For i = 1, . . . N , evaluate the importance weights

w̃(i)
t = p(yt|x̃(i)

t ). (5.5)

• Normalise the importance weights.

3. Selection step
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Figure 5.29: RMS error for particle filter using 2AOA and TDOA measurement with
changing values of σr (system noise or jitter). Number of particles N = 16900.

• Resample with replacement N particles
(
x(i)

0:t; i = 1, . . . , N
)

from the set
(
x̃(i)

0:t; i = 1, . . . , N
)

according to importance weights using multinomial

resampling, described above

4. Metropolis Hastings step

5. Set t← t + 1 and go to step 2

5.4.2 Particle filter with Metropolis-Hastings step

Using particle filter with Metropolis-Hastings step it was possible greatly improve
accuracy of the particle filter as can be noted on 5.30 and 5.31. Particle filter with
Metropolis-Hastings step, marked as PF with MH on a figure, quickly converges to
the value below CRLB, but as CRLB became smaller with each number of measure-
ments it became close to the Cramer-Rao lower bound. Figure 5.32 demonstrates
that such accuracy improvement came at expense of the calculation time.

5.4.3 PF with Metropolis-Hastings step and different values
for standard deviation

It has been suggested that standard deviations for ”jitter”(system noise on step
2) and for proposal distribution in Metropolis-Hastings step should be different.
Simulation was performed with changed values for these distribution σ:σjitter =
1 × 10−4km and σMH = 2.2185km. However results, presented in figures 5.33 and
5.34 didn’t indicate any improvement in performance.
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Figure 5.30: RMS error for PF with MH
step

Figure 5.31: Log RMS error for 2 AOA+
TDOA measurements for PF with MH
step

Figure 5.32: Calculation time for 2 AOA
and TDOA measurements for PF with
MH

5.4.4 Discussion

The addition of the Metropolis-Hastings step significantly improve the performance
of the particle filter in terms of RMS error: after just few measurements particle
filter converges to the fairly small value, outperforming CRLB on initial state, how-
ever later converges to a floor, the limit of precision with available information.
However such precision resulted in slowing down particle filter. Changing different
values for ”jitter” of the particles, choosing different measurement noise and system
noise didn’t improve the performance of the particle filter in this particular scenario.
Thus far particle filter algorithm has been compared with Hough Transform vari-
ants on one scenario and same number of particles and grid points. Then particle
filter was modified to include Metropolis-Hastings step, which resulted in improved
accuracy of the particle filter estimates, but slow down the calculation time. In the
next section we will change number of particle for particle filter and particle filter
with Metropolis-Hastings step so their calculation time will be comparable with HT
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Figure 5.33: RMS error for PF with MH
step and same PF with MH with differ-
ent σ:σjitter = 1 × 10−4km and σMH =
2.2185km

Figure 5.34: Log RMS error for 2 AOA+
TDOA measurements for PF with MH
step and same PF with MH with differ-
ent σ:σjitter = 1 × 10−4km and σMH =
2.2185km

Figure 5.35: Calculation time for 2 AOA
and TDOA measurements for PF with
MH step and same PF with MH with dif-
ferent σ:σjitter = 1 × 10−4km and σMH =
2.2185km

variants.

5.5 Particle filters with calculation time compa-
rable with HT variants

The aim of this section is to change number of particles in particle filter and particle
filter with Metropolis-Hastings step in a way that their computation time will be
matching or close to the computation time of the Generalized Hough Transform - to
make all performing algorithms comparable in time. Although by changing number
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Figure 5.36: RMS error for PF with MH
step, PF with different N and GHT

Figure 5.37: Log RMS error for 2 AOA+
TDOA measurements for PF with MH
step and PF with different number of par-
ticles N

Figure 5.38: Calculation time for 2 AOA
and TDOA measurements for PF with
MH step and PF with different number
of particles

of particles N = 169 (1/100 of the GHT grid) for particle filter with MH step
produce comparable performance time with GHT (slowest out of Hough Transform
variants), it resulted in unreliable estimates. Increasing N to 250 didn’t improve
estimate, hence it was necessary to increase N = 507. Traditional particle filter
(bootstrap) where allowed to use N = 2535 particles, as it correspond to comparable
computation time of the particle filter with Metropolis-Hastings step N = 507. The
results of the evaluation of these algorithms presented in figure 5.36 and 5.37, while
their calculation time in 5.38. Particle filter with Metropolis-Hastings step and
N = 1690 (1/10 of GHT grid) is pictured as example of the particle filter with
good accuracy. There are a number of publications on particle filter and sequential
importance resampling estimation [81] and [82] and book [83] which specifically
insist on resetting weights after importance resampling. The Selection step in this
case implemented:
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• Selection step

– Resample with replacement N particles
(
x(i)

0:t; i = 1, . . . , N
)

from the set
(
x̃(i)

0:t; i = 1, . . . , N
)

according to importance weights using multinomial

resampling, described above

– Reset particle weight w(i)
t = 1/N

– Set t← t + 1 and go to step 2

As re-sampling converts the weight values into spatial density, all the weights must
now have a uniform distribution. Such step greatly improves particle filter perfor-
mance as can be seen on figure 5.39 for the same scenario 5.16 and type of measure-
ments. Figure 5.39 shows that particle filter marked as ”PF(w)” performs reaching
CRLB and tracking it very closely.

Figure 5.39: Particle Filter with weights reset after resampling and corresponding
CRLB

It is clear from these figures that particle filters with small number of samples
and comparable performance with GHT provide slightly worse results than GHT,
while increasing number of particles proved much more reliable estimator, but at
expense of the calculation time. One of the ways to demonstrate this trade-off
between accuracy and computation time is to plot points extracted from Pareto
surface. Figures 5.40 show RMS error against computation time and 5.41 shows
same for Hough Transform variants only, for a number of measurements fixed on
78 measurements. This number of measurements were chosen as the point where
each of the algorithms appears to have reached a steady-state performance, but the
particle filter times are not too extreme.

Figure 5.40 demonstrates that out of particle filter algorithms best precision
demonstrated by particle filters with Metropolis-Hastings step N = 1690 and parti-
cle filter with reset weights PF(w) with N = 2535, while bootstrap with N = 2535
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demonstrated the best calculation time. Generalized Hough Transform and particle
filter with reset weights PF(w) with N = 2535 are both optimal solutions. Particle
filter with Metropolis-Hastings step demonstrated how the small increase in the per-
formance from the particle Filter with Metropolis step comes at a great processing
cost. Therefore Generalized Hough Transform is the fastest compared solution while
particle filter with reset weights PF(w) is more precise due to the relative grid size
and target position.

Generalized Hough Transform while being slowest from HT variants has demon-
strated good accuracy and calculation time on this scenario. Figure 5.41 shows the
comparable time and performance trade of for Hough Transform variants and in this
figure it is clear that Hybrid Hough Transform is an overall optimal solution. It

Figure 5.40: RMS error for PF and GHT with fixed number of measurements

was presented in this section that it is possible to build robust particle filter based
estimator by adding Metrpolis-Hastings step and the results of the performance
such algorithm has been presented. The calculation time of the particle filter can be
improve by choosing the lower number of particles. It was also demonstrated that
performance of the particle filter can be comparable to GHT, however for this partic-
ular scenario it was not possible to demonstrate particle filter which will outperform
GHT in terms of calculation time.

One would argue that some of the results and unstable behaviour of the al-
gorithms can be due to some artefact in the generated measurements and the ro-
bustness of the algorithms should be tested by regenerated scenario with new noisy
measurements randomly corrupted by Gaussian noise and RMS error should be av-
eraged over the number of simulation. Such simulation was performed and average
was calculated over 100 simulations for the same fixed number of measurements
78. Figures 5.42 and 5.43 present same mean of the RMS error over 100 simula-
tion in a same way as before, for particle filters with GHT and Hough Transform
variants. Figure 5.46 shows the clustering of the GHT can be where the estimates
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Figure 5.41: HT variants with fixed number of measurements

clusters presented as 4 points on a grid with error ellipse defined by covariance ma-
trix over estimates with center of the ellipse being on the mean of the estimates.
Figure 5.44 depicts error ellipses of PF algorithms, GHT and error ellipse which is
used to calculate CRLB and it is marked as CRLB for reference. All error ellipses
from the algorithm output plotted as defined by covariance matrix calculated using
corresponding algorithms estimates, with center on the mean of these estimates.

Figure 5.45 shows the estimates of the particle filter with error ellipse as defined
by covariance matrix calculated using these estimates. It is clear that the mean
of the particle filter estimates is close to the true target location, however large
spread in estimated position produced very long error ellipse. Figure
5.47 demonstate the impact of the Metropolis-Hastings step on the particle filter
estimates. The ellipse is smaller than simple particle filter, however this ellipse is
now rotated due to the skewness introduced by the particles accepted from uniform
distribution during Metropolis-Hastings step. This skewness is not noticeable in
figure 5.48 as number of particles sufficient to improve estimate by simulating better
a priori distribution.
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Figure 5.42: RMS error (mean over 100 simulations) for PF and GHT with fixed
number of measurements

Figure 5.43: RMS error (mean over 100 simulation) for HT variants with fixed
number of measurements
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Figure 5.44: Error ellipses corresponding to covariance matrixes calculated over 100
estimates for each algorithm with mean centred on a mean of 100 estimates

Figure 5.45: Estimates from the particle filter with error ellipse defined by the
covariance matrix
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Figure 5.46: GHT estimates and error ellipse

Figure 5.47: Particle filter with Metropolis-Hastings step N = 507 estimates and
ellipse defined by the covariance matrix
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Figure 5.48: Particle filter with Metropolis-Hastings step N = 1690 estimates and
ellipse defined by the covariance matrix

Figure 5.49: Particle filter with weights reset after resampling N = 2535, estimates
and ellipse defined by the covariance matrix
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5.5.1 Conculsion

This section showed that it is possible to implement particle filter with good accuracy
by additional Metropolis-Hastings step and by resetting weights to uniform after re-
sampling. The performance of this new particle filter algorithm was compared with
Generalized Hough Transform, Randomized Hough Transform and Hybrid Hough
Transform. Trade-off for particle filter based algorithm between accuracy and calcu-
lation time was demonstrated on single scenario with fixed noise measurements and
then extended to the case where measurements were regenerated with zero-mean
Gaussian noise on each simulation. The presenting algorithm were compared in
terms of estimation accuracy and computation time. In the next section algorithms
will be tested against model mismatch scenario, where measurement noise has been
changed from Gaussian to Uniform and Rayleigh.
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5.6 Model Mismatch

Simulation scenario was changed in a way that Gaussian measurement noise was
replaced by Uniform and Raleigh distribution with parameter 0.5 distributed mea-
surement noise. The target position was changed to (60, 70)km, in order to see
whether any of the algorithms will be able to converge precisely to target location.
Note, that during these simulations both algorithms were using same set of data
rather than sharing model. Results of the particle filter are shown in figure 5.50.
GHT is only marginally worse - it took longer to converge to true target location,
but it located target precisely 5.51.

Figure 5.50: RMS error for PF with weights reset for different measurement error
models

5.6.1 Using Rayleigh probability

In previous section model mismatch test was performed in a way that all algorithms
assumed that measurement error is Gaussian, thus Gaussian likelihood function was
used as weighting in particle filter and Hough Transform algorithms, but actual
measurements in simulation were generated using different distributions: Gaussian,
Rayleigh and Uniform.

In this section we propose to change the underlying assumption about the model
and use Rayleigh defined pdf as weighting in particle filter and Hough Transform.

Applying Rayleigh pdf for TDOA let ζ = (Ri,1 − cτi,1), then:

p(x, y|τi,1) = ζ
exp

(
ζ2

2σ2
r

)

σ2
r

(5.6)
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Figure 5.51: RMS error for Generalized Hough Transform for different measurement
error models

for all ζ > 0 or p(x, y|τi,1) = 0 otherwise. Where Ri range of the source to the ith
receiver is:

Ri =
√

(xri − x)2 + (yri − y)2 (5.7)

and the range difference between receiver i and receiver 1 is:

cτi,1 = Ri −R1

=
√

(xri − x)2 + (yri − y)2

−
√

(xr1 − x)2 + (yr1 − y)2 (5.8)

where, τi,1 is the measured TDOA between the ith receiver and receiver 1 and c is
the velocity of light.

Similarly, for AOA measurements ζθ = (ξ − θi):

p(x, y|θi) = ζθ

exp
(

ζ2
θ

2σ2
θ

)

σ2
θ

(5.9)

where θi is the measured angle of arrival at the ith receiver and ξ is the calculated
angle from the ith receiver at point (xri , yri) to the point (x, y) using an equation of
the form given by (1.1). σθi defines the standard deviation of the AOA measurement
error for that receiver.

Figures 5.52 and 5.53 demonstrate the performance of the particle filter with
Metropolis Hastings step with number of particles N = 507 and N = 1690 respec-
tively, in presence of different type of noise with Rayleigh pdf as weighting function.

Figure 5.54 present the results of the Generalized Hough Transform for the dif-
ferent type of noise with Rayleigh pdf as likelihood function.
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Figure 5.52: Particle filter with Metropolis Hastings step N = 507 number of par-
ticles. Likelihood calculated according to Rayleigh distribution

Figure 5.53: Particle filter with Metropolis Hastings step N = 1690 number of
particles. Likelihood calculated according to Rayleigh distribution

In this section the performance of the particle filter with Metropolis Hastings
step and GHT has been compared on different model mismatch simulations:

1. Measurement error assumed to be Gaussian and thus Gaussian pdf used as like-
lihood/weighting function in the model in the algorithm, while measurement
noise was generated using additive Gaussian, Rayleigh and Uniform distribu-
tions.
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Figure 5.54: Generalized Hough Transform. Likelihood calculated according to
Rayleigh distribution

2. Measurement error assumed to be Rayleigh, hence Rayleigh pdf used as like-
lihood/weighting function in the model in the algorithm, while measurement
noise was generate using Gaussian, Rayleigh and Uniform distributions.

Changing the assumptions that the measurement’s errors are not Gaussian, but
Rayleigh, as in the second case, didn’t improved the performance of the particle filter
algorithm and it’s sustainability to the different types of measurement noise. In the
same case using Rayleigh likelihood in Hough Transform worsened the performance
of HT in presence of Rayleigh and Uniform measurements noise. The case for
this slightly worsened estimate, apart from size of the grid may be the problem of
additions peaks in the parameterised space of the Hough Transform: due to long tail
of Rayleigh distribution - some tails intersect and add to the value of the likelihood
in Hough Transform, thus producing multiple peaks around real target position.
Hough Transform algorithm with Gaussian likelihood provided good performance
in presence of model mismatch, therefore the optimal algorithm for geolocation
would be Hough Transform variants with assumption of the Gaussian model.

Simulation of the measurements for the scenario 5.16 was changed in a way where
33% of the AOA measurements were altered by random phase θfading ∈ (0 . . . π/3).
in practice such alteration of the AOA measurements occur due to fading of the radio
signal. Results of the simulations averaged over 12 simulations are presented in figure
5.55 5.56 with particle filter with reset weights and assumption of that underlying
distribution is Rayleigh in figure 5.57 It is possible to geolocate target in presence
of model mismatch using Bayesian approach and particle filter; and it is also possible
to locate target using Non-Bayesian approach and Hough Transform, with any kind
of model mismatch and any kind of likelihood. Using Rayleigh likelihood in the
model marginally improved the performance of the particle filter in presence of AOA
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Figure 5.55: GHT with faded AOA measurements, geolocation using fused 2 AOA
and TDOA measurements

Figure 5.56: PF with weights reset and faded AOA measurements, geolocation using
fused 2 AOA and TDOA measurements

measurements with fading, as can be noticed in figure 5.57, but overall performance
of the particle filter algorithm and Hough Transform algorithm has been comparable
in terms of accuracy and robustness in terms of dealing with model mismatch.
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Figure 5.57: PF with Raylegh likelihood faded AOA measurements, geolocation
using fused 2 AOA and TDOA measurements

5.7 Conclusion

In this chapter, five different geolocation algorithms have been compared. Three of
these are based on the Hough Transform, one on the particle filter and one on the
Bayesian Randomized estimator. After performing the comparisons under identical
conditions, it was found that whilst all five estimators were able to geolocate the
target successfully, there were important trade-offs between the positional accuracy
of the estimate and the computational overhead such that the choice of the estimator
may depend entirely on the application rather than whether one estimator is more
‘accurate’ than another.

In attempting to reduce the computational overhead of the Generalized Hough
Transform, the performance of the Randomized Hough Transform was obtained.
Whilst it is seen that the RMS positional error of the Randomized Hough Transform
is not as good as the Generalized Hough Transform, the reduction in computational
overhead is substantial. The Hybrid Hough transform, provides an excellent com-
promise that results in an RMS error performance that is indistinguishable from
the Generalized Hough Transform for a computational overhead that is marginally
worse that the Randomized Hough Transform.

It was identified that there are many structural similarities between the Random-
ized Hough Transform and the particle filter, except that the latter uses a Bayesian
approach and the former is non-Bayesian.

Also in this chapter the performance of the algorithm has been compared on
single scenario and single set of data and evaluated in terms of algorithms accu-
racy and computational time. The particle filter algorithm has been extended by
Metropolis-Hastings step and performance of the algorithm presented. Optimal
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points of the Pareto surface were extracted and presented for fixed number of mea-
surements and trade-off between algorithms complexity and accuracy demonstrated.
The robustness of the presented algorithms has been tested by regenerating simu-
lation scenario for 100 times using random measurements noise, but same scenario
and the results confirmed initial comparison positions of the optimal points from
Pareto surface. Generalized Hough Transform have a major disadvantage as it is
grid based method, so it would not be possible to locate target precisely if it is not
on the grid as in above performed experiment. Particle filter on the other hand is
not grid based method, but the one required resampling, thus it would be possible
to locate target precisely with additional computational effort. Modification of the
Hough Transform algorithm as Hybrid Hough Transform algorithm in a way so it
would not be gridded, allow overcome grid-based limits of GHT and keep compu-
tation time low. Overall performance of the particle filter algorithm and Hough
Transform algorithm has been directly comparable in terms of accuracy and robust-
ness in terms of dealing with model mismatch. There was no advantage in these
terms of one over another.



Chapter 6

Generalized estimator

6.1 Introduction

In this chapter, a generalized approach to an estimator is developed in a novel
way that illustrates how the Hough Transform estimator and the ideal Bayesian
Estimator described in the previous chapters are linked via a single parameter α. For
each value of α a new estimator is generated with its own RMS error characteristics
and it is through the variance of the mean RMS positional error with α that the
generalized estimator is examined in details.

It is commonly assumed that the optimum estimator is based on the Bayesian
estimator, such as the Kalman filter. For linear problems, the Kalman filter is an
optimal Bayesian estimator for Gaussian noise. However, it is clear from the previous
chapters that the Hough Transform can be used as an estimator that is non-Bayesian.
In this chapter, the connection of a non-Bayesian estimator with a Bayesian-type is
developed and exploited in more detail. This is achieved by developing a generalized
estimator. The aim of the generalised estimator is to demonstrate the relationship
between the Bayesian and Hough Transform approach.

6.2 Generalized Estimator

According to [84] the Bayesian theorem attributed to Bayes (1744-1809), tells how
to revise the probability of events in the light of new data. It is important to
point out that this theorem is consistent with the probability theory and is widely
accepted by scientific community. There is disagreement however regarding whether
the theorem should be applied to subjective notions of probabilities (the Bayesian
approach) or whether it should only be applied to frequentist notions (the frequentist
approach) [85]. Consider the case of the two measurements z1 and z2, conditionally
independent given the quantity to be estimated x (in geolocation x is a position
vector of the target), the generalised estimator function might be:

pmix(x|z1, z2) = α (p(z1|x) + p(z2|x)) + (1− 2α) (p(z1|x)p(z2|x)p(x)) (6.1)

153
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In this case, where α = 0, the pmix(x|z1, z2) will reduce to Bayes rule (up to nor-
malising constant) and to Hough Transform approach for α = 05.

6.3 Simulation of generalised estimator

As a way of illustrating the effect of changing the estimator function from Bayesian
to Hough by means of the parameter α, consider an illustrative scenario, with two
stationary receivers capable of obtaining Angle-of-Arrival measurements of the signal
from a stationary emitter. The scenario is plotted on figure 6.1, where the receivers
are denoted as blue circles and the emitter (target) as a red cross. Each receiver
provides one measurement corrupted by Gaussian measurement noise with a stan-
dard deviation of 0.02 radians. This scenario is used in order to demonstrate the
overall behaviour of the generalised estimate. Quantitate results will be presented
further, using common scenario 5.16. For a particular value of α, a parameterized
space is formed, using (6.1) instead of the traditional Hough Transform function.
Parameterised space was initialised evenly with ε = 2.2204 × 10−16. In figure 6.2
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Figure 6.1: Simple scenario in order to test the generalized estimator (α function)

with α = 0 the 3D accumulated likelihood function represents that of the Bayesian
estimator, whereas figure 6.3 shows the situation for α = 0.5 corresponding to the
Hough Transform. Examining the surface plot with α = 0.6 and α = 0.9, as shown
in figures 6.4 and 6.5, it is noticeable that this distribution has a ‘dip’ (which is
the subtraction of p(z1|x)p(z2|x)) and the minimum of this function will provide a
position estimate, instead of a peak as in figures 6.2 and 6.3. Hence, for values of
α ≥ 0.6 it would make sense to look for a minimum in the parameterized space
instead of a maximum. The simulation was performed with a step size of α = 0.01
and the results were plotted in figure 6.6, showing the average RMS error calculated
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Figure 6.2: 3D parameterized space with
α = 0, Bayesian like, initialised with prob-
ability distribution over the first measure-
ment

Figure 6.3: 3D parameterized space with
α = 0.5, Hough Transform

Figure 6.4: 3D parameterized space with
α = 0.6, ‘Dipped’ Hough Transform

Figure 6.5: 3D parameterized space with
α = 0.9, ‘Dipped’ Hough Transform

over 50 simulations. As was mentioned before, the RMS error of the minimum of
the function in the parameterized space was also calculated and the average RMS
plotted in figure 6.6, marked as ‘RMS MIN’.

In order to analyse this data, the standard deviation of the RMS error of the
estimates using maximum of the parameterised space was calculated and plotted
as shown in figure 6.7. Figure 6.7 shows that Bayesian estimator have smallest
standard deviation out of all function and it can be logically concluded comparing
figures 6.2 and 6.14-6.3. The paremeterised space with α = 0 have very thin and
sharp peak thus the standard deviation, while outlining ”raised plato” in function
with α = 0.1 . . . 0.5 will impact on the standard deviation of the estimates.

To compare the performance of these functions, another metric was introduced.
Assuming that it is possible to threshold the parameterized space on the levels
50%, 75% and 95% of maximum. Moreover, it is possible to use the size of this
contour, calculated as a sum of the total number of points under the contour, as
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Figure 6.6: Average RMS error over 50 simulation with two AOA measurements,
with the likelihood of the probability of the first measurement used as initial condi-
tions, for the scenario in figure 6.1
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Figure 6.7: Average standard deviation of the RMS error using maximum of the
parameterised space calculated over 50 simulations for the scenario in figure 6.1

a weight for these functions. The average value of the weights were obtained over
by 50 simulations and plotted in figure 6.8. The weights characterize the accuracy
of locating the emitter when using these functions in parameterized space on the
selected threshold and this property might be used as a measure of the goodness of
GDOP for the particular scenario for a particular geolocation method and estimator.
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In some sense, these weights are an inverse equivalent of the Tukey and Mosteller
robustness measurement for the distributions and thus it is an additional measure
the robustness of the functions for the case of the emitter geolocation. According
to Mosteller [86] and [84] two types of robustness were defined, where robustness is
a lack of susceptibility to the effects of non-normality:

• Robustness of validity means that the confidence intervals for the population
location have a 95% chance of covering the population location regardless of
what the underlying distribution is.

• Robustness of efficiency refers to a high effectiveness in the face of non-normal
tails.

The proposed weights are similar measure, covering the population location under
50%, 25% and 5% confidence interval in terms of the [86]. Figure 6.8 demonstrates
that this weights and thus measure of robustness exists only for the values of α >
0.45. The usefulness of this method of weighting for data fusion will be exploited in
detail in chapter 7, but in this chapter it is important to point out that the weights
with 50% threshold exists only for Hough Transform and ‘dipped’ Hough Transform.
It also should be noted that for α ∈ [0 . . . 0.4] ”weight” is very small value - close
to one, this suggest that distribution have very sharp peak, thus small spread in
estimation and consequently higher confidence.
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Figure 6.8: Average value of the weights calculated over 50 simulations for the
scenario in figure 6.1
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6.3.1 Near Hough Transform estimation with α ∈ [0.4 . . . 0.6]

Figure 6.9: Example of 3D parameterized space with α = 0.4, similar to Gaussian
mixture

Figure 6.10: 3D parameterized space with
α = 0.5, Hough Transform

Figure 6.11: 3D parameterized space with
α = 0.6, ‘Dipped’ Hough Transform

We now look closely as the area where α = 0.5, which is the equivalent of the
Hough Transform estimator. The average RMS error over 50 simulations and the
weights described earlier are plotted in figures 6.12 and 6.13 for the same scenario
as before, plotted in figure 6.1.

From these figures, it is possible to conclude that when α >= 0.51 the dis-
tribution in parameterized space goes from ‘peaky’, to uniform plate in which it
is impossible to estimate the emitter position. It then forms a ‘dip’, where after
α = 0.545 a global minimum can provide an estimate of the position, as shown
in 6.12. Another interesting fact is that the weight with a confidence area of 50%
exists only after α = 0.49 to α = 0.51, thus when α = 0.5 the Hough Transform can
provide an ‘estimate’ of the 50% confidence area and this factor will be used in data
fusion.
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Figure 6.12: RMS error over 50 simulations, Hough Transform for the case when
α = 0.5, step size α = 0.001
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Figure 6.13: Average weights, with Hough Transform when α = 0.5 and step size
0.001
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6.3.2 Bayesian or near Bayesian estimation

There are multiple application of Gaussian Mixture [87], including particle filters
[88] and sigma point particle filter [89]. It may be possible to define connection
between generalised estimator with small values of α and Gaussian mixture.

Figure 6.14: Example of 3D parameterized space with α = 0.01, Gaussian mixture

Figure 6.15: Example of 3D parameterized space with α = 0.4, still similar to
Gaussian mixture

According to [90], a Gaussian mixture or contaminated Gaussian model can be
described as:

f(x) = (1− ε)fn(x) + εfc(x) (6.2)
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where fn(x) is the nominal Gaussian density with variance σ2
n, ε is a small positive

constant determining the percentage of contamination, and fc(x) is the contaminat-
ing Gaussian density with a large relative variance, such that σ2

c >> σ2
n. Writing

(6.1) using α = 0.001 yields:

pmix(x|z1, z2) = 0.001 (p(z1|x) + p(z2|x)) + (0.998) (p(z1|x)p(z2|x)p(x)) (6.3)

Now, equation (6.3) can be rewritten in a way where fn(x) = p(z1|x)p(z2|x)p(x)
(standard Bayesian) and fc(x) = p(z1|x) + p(z2|x) the equation (6.3) can be defined
as a Gaussian mixture:

f(x) = 0.998fn(x) + 0.001fc(x) (6.4)

Figure 6.14 shows the parameterized space for the value of alpha α = 0.01 similar to
Gaussian mixture and in figure 6.15 for α = 0.4 it can be seen that it is still similar
to Gaussian mixture.

6.4 Data fusion using the generalised estimator
and model mismatch

The aim of this section is to test the Generalised Estimator on the scenario presented
in figure 5.16 and to discover whether there is a value of alpha, different from
α = 0.5 which can provide reliable estimates in presence of model mismatch, when
the measurements noise modelled as Uniform or Rayleigh, while estimator assumes
that the noise is Gaussian. In addition as in section 5.6 model mismatch with faded
AOA was added where 33% of the AOA measurements were altered by random
phase θfading ∈ (0 . . . π/3). in practice such alteration of the AOA measurements
occur due to fading of the radio signal.

In order to test the different functions presented above for the task of data fusion,
the same scenario as in figure 5.16 was used as to provide consistence comparison.
Note, that although in previous section fusion of TDOA and two AOA measurements
were used, for generalised estimator simulations only AOA measurements were con-
sidered, as there is no known procedure of the normalisation of the likelihood before
fusion of the different type of data.

In the foregoing, the likelihood function was formulated on the basis of Gaussian
measurement errors. In order to test the robustness of the generalised estimator
the statistics of the measurement noise, used for the Monte-Carlo simulation, was
altered: instead of Gaussian noise distributions, the AOA measurements were cor-
rupted by random values sampled from uniform and Rayleigh distributions. How-
ever, important to note the algorithm still assumed that the measurement noise
was Gaussian distributed. As in section 5.6 AOA measurements with fading were
used in order to determine the optimal value of α. Note that although scenario is
the same 5.16 the absence of TDOA measurements made a significant impact on
both Bayesian and Hough Transform estimators. It will be noted, that although the
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precision of the generalised estimator suffered from this model mismatch the esti-
mator still converges with a reasonably small error on the interval α ∈ [0.1 . . . 0.5].
From figures 6.16 and 6.17 it is clear that for 78 measurements any α ∈ (0.1 . . . 0.4)
can provide reasonable estimates, and with small number of measurements like 11
as well. The RMS error calculated as average over 12 simulations and the results
are consistent in their repeatability. It should be noted that α = 0, which models
Bayesian estimator, didn’t provide any reasonable estimate in presence of the model
mismatch measurement noise with faded AOA. The calculation - ”zooming” the

Figure 6.16: RMS error of the generalised estimator with α ∈ [0 . . . 0.6] with step
0.05 for 11 measurements for AOA with fading

interval α ∈ (0.4 . . . 0.6 changing the values of alpha with step 0.0031 was performed.
Figures 6.19) and 6.20 presents the results of the simulation in terms of RMS error
(Euclidian distance). In figure 6.19 any value of α ∈ [0.1 . . . 0.48] gives best estimate
in presence of AOA measurement with fading as in figure 6.20, as well for 78 mea-
surements. Exploring results in figures 6.16 and 6.17 with figures 6.19,6.20 zoomed
version in the vicinity of α = 0.5 and figures 6.22,6.23 zooming α = 0, suggest the
value to use α = 0.25 as basis for the estimator which gives best performance in
presence of model mismatch and measurement noise corrupted by fading.

Figures 6.18 provide 3D view of the values RMS error depending on values of α
and different number of measurements with AOA measurement noise with fading.
Figure 6.21 provides zoomed version of the view in the vicinity of α ∈ [0.4 . . . 0.5].

Figure 6.24 provide 3D view for RMS error depending on value α and number
of measurements in the vicinity of α = 0 for measurement noise AOA with fading.
Note that 3D figures are rotated in order to provide better view.
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Figure 6.17: RMS error of the generalised estimator with α ∈ [0 . . . 0.6] with step
0.05 for 11 measurements for AOA with fading

Figure 6.18: 3D representation of RMS error of the generalised estimator with α ∈
[0 . . . 0.6] with step 0.05 for different number of measurements for AOA with fading

6.4.1 Conclusion

The analysis presented in this section has been carried out in order to derive connec-
tions between the Hough Transform based algorithms and Bayesian type algorithms
using general probability theory. In this section the generalised estimator based on
parameter α, which changes the the estimator’s behaviour with parameter α = 0
near Bayesian to α = 0.5 - Hough Transform equivalent, was proposed and tested on
scenario 5.16 with model mismatch, such as: the measurements noise was assumed
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Figure 6.19: RMS error of the generalised estimator with α zoomed in the area of
0.4 till 0.6 with step 0.0031 for 11 measurements for AOA with fading

Figure 6.20: RMS error of the generalised estimator with α zoomed in the area of
0.4 till 0.6 with step 0.0031 for 78 measurements for AOA with fading

to be Gaussian and then was tested on Gaussian, Rayleigh and Uniform modelled
measurement’s noise with additional test using AOA with fading. Measurement’s
noise may be unknown and may not be Gaussian in practical scenario, thus these
tests have a vital practical importance for the application of geolocation.

In this tests α = 0.5, which is equivalent of Hough Transform, proved to be fairly
robust in terms of sustainability to changing model of the measurements noise. Near
Bayesian for α ∈ (0 . . . 0.1) proved, as expected, provided higher accuracy in pres-
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Figure 6.21: 3d plot RMS with relation to α value from 0.4 till 0.5 with number of
measurements from 2 till 110 for AOA with fading. Note that the plot is rotated

Figure 6.22: RMS error of generalised estimator zoomed around α ∈ [0 . . . 0.1] for
11 measurements with AOA measurements in fading conditions

ence of Gaussian measurement’s noise. Note that although scenario for generalised
estimator Bayesian estimator with α = 0 uses only AOA measurements, thus can’t
be compared directly with particle filter in section 5.6.

It was proposed α = 0.25 may be good estimator which performs better then
Hough Transform based estimator in presence of measurement noise such as simu-
lated faded AOA, however it should be noted that this will increase the complexity
of the estimating algorithm.
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Figure 6.23: RMS error of generalised estimator zoomed around α ∈ [0 . . . 0.1] for
78 measurements with AOA measurements in fading conditions

Figure 6.24: 3d plot RMS with relation of α value from 0 till 0.1 with number of
measurements from 2 till 110 with AOA measurements in fading conditions

Hough transform equivalent to α = 0.5, while not being able to provide the
best results during model mismatch test, still was able to locate target with reason-
able accuracy. One should keep in mind that Hough Transform estimator is a sum
of likelihoods, and as such can be easily programmed or optimised into hardware,
while Generalised estimator with α = 0.25 will require approximately 4 times more
computational operations, so there is a trade-of between simplicity which should
be considered in practice. Furthermore, it has been shown that a connection exists
between the Hough Transform and Gaussian Mixture model based estimation. How-
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ever, further research is required in order to apply the Gaussian Mixture model for
the problem of emitter location. Very recent development of the geolocation using
Gaussian Mixture model using TDOA and FDOA has been presented in [91]. GMM
has also been used as for speaker identification and tracking for example in [92] and
[93].
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6.5 Generalized Mean estimator

In the previous section, the generalized estimator was derived on basis of mixture of
probabilities and tested in order to find an optimal solution for geolocation problem.
In this section another approach has been taken in order to derive and test the
different functions for building a parameterized space - a generalized mean.

The question remains the same, however: is there a better function for the
geolocation estimation that can be used for building a parameterized space, rather
then simply using either the sum of likelihoods as in Hough Transform or the product
of likelihoods as in the Baysian estimator.

The common definition of the Generalized Mean is given by:

Definition Let x1, x2, . . . , xn be real numbers, and f a continuous and strictly
increasing or decreasing function of the real numbers. If each number xi is assigned
a weight pi, with

∑n
i=1 pi = 1, for i = 1, . . . , n, then the generalized mean is defined

as

Mf (x1, . . . , xn) = f−1
( n∑

i=1

pif(xi)
)
. (6.5)

Special cases

1. f(x) = x, pi = 1/n for all i: arithmetic mean, with i = 1, 2 then Ma = x1+x2
2 .

2. f(x) = x: pi = 1 for all i weighted mean with i = 1, 2 then Mw = x1 + x2,
although it would seem that it can be called not normalised mean, as the
weights proportional to x itself.

3. f(x) = log(x), pi = 1/n for all i: geometric mean, with i = 1, 2 then Mg =

exp
log(x1)+log(x2)

2

4. f(x) = 1/x and pi = 1/n for all i: harmonic mean, with i = 1, 2 Mh = 2
1

x1
+ 1

x2

5. f(x) = x2 and pi = 1/n for all i: root-mean-square, Euclidian mean, also

known as quadratic mean, with i = 1, 2 then Mrms =
√

x2
1+x2

2

6. f(x) = xd and pi = 1/n for all i: power mean, with i = 1, 2 and d = 3

then Mp = (x3
1+x3

2
2 )

1
3 , also there are two special cases for power mean, where

p = inf, called maximum mean and calculated as maximum value from x, and
minimum (non-parametric mean) with p = − inf, calculated as minimum from
all values of x (as [85]).

7. f(x) = xd and pi = 1/n for all i: weighted power mean, with i = 1, 2 then

Mp = (x3
1+x3

2
2 )

1
3

Also it is possible to use any continuous and strictly increasing function as a mean,
for example hyperbolic tangent tanh will be used for the simulations as well as
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special cases mentioned above. as the only properties required for the function to
be used as mean function are (i)it should be continuos,(ii) injective (in order for
inverse to exist). Then hyperbolic tangence mean will be:

Mtanh = atanh
tanh(x1) + tanh(x2)

2
(6.6)

Now, assuming that the x from the generalized mean is a likelihood of the probability
definition function given the measurement, it is possible to use the generalized mean
defined earlier in order to build a parameterized space as in 4.5 and the previous
section 6.1 given by (6.7):

AAOA(x, y) = Mf (x1, . . . , xn) (6.7)

where xi is a likelihood of the probability definition function as defined by (4.4).

It is worth mentioning, that there has been a recent development in data fusion
by Simon Julier where he uses the weighted geometric mean for data fusion in
his presentation ‘Estimation without Independence’ [94], so it is of the interest of
research to compare the different means as a fusion function for the purpose of
geolocation.

6.5.1 Application of the generalized mean to geolocation

In order to present generalised mean functions in application for geolocation, the
same simple scenario similar to one in section 6.1 was set up, with two receivers ob-
taining AOA measurements from one stationary target plotted in figure 6.25. Both
AOA measurements are affected by Gaussian noise. The maximum in the parame-
terized space was obtained and this was assumed to provide a position estimate of
the target as before. This simple scenario used only for illustrative purpose. The
examples of the parameterized space, built for these two AOA measurements can be
seen in figures 6.26-6.36. It will be noted that the Hough Transform can be viewed
as the use of the arithmetic mean, or, if Hough Transformed is not normalised by
the number of measurements, it can be seen as a weighted arithmetic mean. The
Bayesian condition probability can be seen as the Geometric mean. Some special
cases, like the geometric and harmonic mean require a check for a non-zero value of
the probability.
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Figure 6.25: Scenario for geolocation using Generalized Mean

Figure 6.26: 2-D parameterised space for
geolocation using arithmetic mean

Figure 6.27: 3-D parameterised space for
geolocation using arithmetic mean
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Figure 6.28: 3-D parameterised space for geolocation weighted arithmetic mean

Figure 6.29: 3-D parameterised space for geolocation using geometric mean
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Figure 6.30: 3-D parameterised space for geolocation using harmonic mean

Figure 6.31: 3-D parameterised space for geolocation using root mean square (also
known as Euclidian mean and quadratic mean)
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Figure 6.32: 3-D parameterised space for geolocation using power mean with p = 3

Figure 6.33: 3-D parameterised space for geolocation using weighted power mean
with p = 3
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Figure 6.34: 3-D parameterised space for geolocation using non-parametric mean,
power mean with p = −∞

Figure 6.35: 3-D parameterised space for geolocation using power mean with p =∞
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Figure 6.36: 3-D parameterised space for geolocation using hyperbolic tangent, f =
tanh
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In order to test the fusion capabilities of the proposed functions, the scenario was
changed to the common comparison scenario 5.16. Only AOA measurements used,
due to the absence of normalisation in Generalised mean functions. The results of
the application of Generalized mean functions to (6.7) for the scenario in figure 5.16
using only two AOA measurements, with a root mean square error as metric against
number of measurements are presented in figures 6.37 6.46. Note that the same
data were used for model mismatch as in section 5.6 for testing model mismatch
performance.

Figure 6.37: RMS error over number of measurements using arithmetic mean in
generalised estimator, averaged over 12 simulations

Exploring figures 6.37 6.46 it is possible to see that arithmetic mean in figure 6.37
(Hough transform equivalent) and geometric mean 6.39 (Bayesian equivalent) are
good estimators, with weighted arithmetic mean 6.38 as equivalent of non-normalised
Hough Transform are performing well in presence of the model mismatch noise.
There are several candidate functions with reasonable performance such as hyper-
bolic tangence based estimator in figure 6.44 and harmonic mean in figure 6.40. Also
power mean in figure 6.42 and RMS (Euclidian) mean in figure 6.41 demonstrated
interesting performance in presence of uniform or Rayleigh noise. Non parametric
mean 6.45 and power mean with p =∞ didn’t performed as estimators. Figure 6.38
dominates the generalised mean based estimators as in presence of uniform noise
RMS is a flat like on zero and produce good results in presence of Rayleigh and
Gaussian measurements noise. However, the application of the weighted arithmetic
mean to data fusion between different types of measurement will lead to the prob-
lem that due to the fact that the values in parameterised space are not normalised,
it will be difficult to fuse different types of measurements together. Fusion of the
different type of measurements using Hough Transform is one of the main points of
the next chapter.
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Figure 6.38: RMS error over number of measurements using weighted mean in gen-
eralised estimator, averaged over 12 simulations. RMS error for uniform distribution
is zero

Figure 6.39: RMS error over number of measurements using geometric mean in
generalised estimator, averaged over 12 simulations
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Figure 6.40: RMS error over number of measurements using harmonic mean in
generalised estimator, averaged over 12 simulations

Figure 6.41: RMS error over number of measurements using root-mean square mean
in generalised estimator, averaged over 12 simulations
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Figure 6.42: RMS error over number of measurements using power mean p = 3 in
generalised estimator

Figure 6.43: RMS error over number of measurements using weighted power mean
with p = 3 in generalised estimator, average over 12 simulations
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Figure 6.44: RMS error over number of measurements using hyperbolic tangence in
generalised estimator, averaged over 12 sumulations

Figure 6.45: RMS error over number of measurements using non parametric mean
(p = −∞) in generalised estimator, averaged over 12 simulations
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Figure 6.46: RMS error over number of measurements using power mean with p =∞
in generalised estimator, averaged over 12 simulations



Chapter 7

Agent-Based Data fusion

7.1 Introduction

In chapter 4 a new method of emitter geolocation was presented based on a im-
age processing technique rather then the more usual classical methods based on
triangulation and hyperbolic location [10] or statistical methods [23][32][95]. The
new method is based on the Generalized Hough Transform (GHT) and one of its
key features is that it is able to fuse different types of measurement data (such as
angle of arrival measurements (AOA) and time difference of arrival measurements
(TDOA)) by transforming them into conditional probabilities and storing them in
a unified parameterized space. In this chapter, the Hough Transform algorithm is
improved by weighting the data appropriately and a novel method of providing the
weights is presented. Then the concept of an agent will be introduced followed by
the application of the weighted Hough Transform for geolocation using agents. The
final part of this chapter will demonstrate cluster level fusion of information and a
decision making process for the agents.

7.2 A Method of Weighted Fusion

When fusing different measurement types, it is usual to weight the individual con-
tributions of the measurements according to their measurement error [32]. How-
ever, for emitter geolocation, the problem is extremely non-linear and the effect of
the measurement errors on the position error is augmented by the GDOP for that
emitter/sensor platform scenario. It is important to recognise that each type of
measurement (AOA, TDOA and FDOA) provide their own, different, contributions
to the GDOP and simply weighting according to measurement error does not repre-
sent the true impact of the error on the positional accuracy of the emitter position
estimate. It is also important to note, that in practical applications some sensors
can be damaged, or obstructed by obstacles and thus provide unreliable estimate.
The contribution of such sensor can improve overall estimate, however if such mea-
surement added and fused with other, more reliable measurements according to the

182
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Figure 7.1: Hough Transform space for
TDOA only measurements (TDOA agent)

Figure 7.2: Hough Transform space for
TDOA only measurements, thresholded at
a level corresponding to 75% of the maxi-
mum likelihood value
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Figure 7.3: Plot of the 75% contour of (4.13) for TDOA set at a threshold of 75%
of the maximum likelihood value

measurement error and GDOP it can worsened the estimate.

A novel form of obtaining the weights has been proposed in this research, where
the aim is to compensate for the different contributions to the emitter position error
from each of the different measurement types according to their GDOP and their
contributions to the estimate, for that scenario.

In this case, the accumulated pdf for a particular measurement type, such as
TDOA, given by (4.13) is first normalized by its peak value (pictured in figure
7.1) and then thresholded at some appropriate value to create a contour at that
threshold, as shown in figures 7.2-7.3 for a threshold set at 75% of the maximum.
Threshold selection at a level of 75% was using the properties of the Hough Trans-
form, demonstrated in section 6.2, with an assumption that 95 % area is too small
and 50 % area too large to provide a weighting criteria. The area contained within
this contour, STDOA, is then obtained. This is repeated for the case of the AOA
measurements whose accumulated pdf is given by (4.5) and the FDOA measure-
ments whose accumulated pdf is given by (4.18). The areas contained within the
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respective contours are: SAOA and SFDOA. It is clear that the larger the area of
the contour, the greater the contribution of these measurements to the positional
error and hence a smaller weight is required. It can also be seen that these contours
contain the effect of GDOP as well as the measurement error. Hence the weights
are given by:

wAOA =
Stot

SAOA
(7.1)

wTDOA =
Stot

STDOA
(7.2)

wFDOA =
Stot

SFDOA
(7.3)

where Stot is the area of the total search space. Now it is possible to fuse different
kind of the measurements, weighting them during the process:

A(x, y) =
wTDOA

L

L∑

l=1

p(x, y|τl,1) + (7.4)

wAOA

M

M∑

m=1

p(x, y|θm) +

wFDOA

N

N∑

m=1

p(x, y|fdi)

where, wTDOA, wAOA and wFDOA are the weights for the three types of measurement
which are calculated according to the impact that both the measurement variance
and GDOP has on them. It can be seen that this approach provides the opportunity
to self-weight the measurements. This is the key requirements for agent-based data
fusion.

7.2.1 Definition of agents

What are Agents?

Agent-based systems are of increasing importance in a wide range of spheres. They
are regarded as a new paradigm enabling an important step forward in empirical
sciences, technology and theory. Recently, this topic has become applicable to mod-
ern wireless network simulation. An agent is characterized by some, or all, of the
following properties [96]:

• Autonomous Behaviour : Every agent is characterised by autonomous be-
haviour.

• Individual World View : Every agent has its own model of the external world
that surrounds it which maybe incomplete or even incorrect.
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• Communicative and Cooperative Capacity : Intelligent agents can exchange
information with other intelligent agents and this is how it builds up its own
world model. Communication with other intelligent agents is the precondition
for common action in pursuit of a goal.

• Intelligent Behaviour : Intelligent Agents have the capacity to learn, make logi-
cal deductions to modify their own world model in the light of new information
that is supplied to it, or which it obtains from the environment

• Spatial mobility : Intelligent agents are required to display spatial mobility.

• Strategies and Decentralised Control : Agents should be able to develop indi-
vidual strategies to ensure the achievement of a common goal, even without
central regulation.

• Emergent Behaviour : Cooperation (feedback) and interactions between intel-
ligent agents can produce a stable system that displays new global behaviour
on the next higher level of abstraction.

For this research it is possible to use agents as a model for simulating ad-hoc
networks in difficult terrains. This model will allow us to simulate agents behaviour,
their agenda and, most important, their communicative and cooperative capacities.

In the context of the emitter location problem, the agent comprises the mea-
surements, communications between the two platforms and a suitable algorithm
rather than the sensor platform. For example, two platforms are necessary to take
a TDOA measurement and this corresponds to a single agent capable of geolocating
using TDOA measurements. The same pair of platforms may, independently, make
a frequency difference of arrival (FDOA) measurement and this will correspond to a
second agent capable of geolocating using FDOA measurements. A platform may be
able to make bearing only measurements and this produces an agent that geolocates
using AOA.

7.3 Agent-based Data Fusion

As mentioned earlier, it is the type of measurement taken, is assumed to be an
agent rather than the sensor platform. For example, two platforms may be able
to take both TDOA measurements and FDOA measurements and this corresponds
to the case where there are two agents: one capable of geolocating using TDOA
measurement and one capable of geolocating from FDOA measurements. A third
agent geolocates using AOA. It will be shown how these agents can geolocate inde-
pendently and collaboratively.

In order to illustrate the new method, consider the scenario shown in figure
7.4. In this scenario, two platforms are moving North at 40 m/s according to a
wavy path and they are able to take several TDOA measurements (Agent 1) along
this path, whereas the platform moving East at 40 m/s is only able to take AOA
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Figure 7.4: Scenario used for agent-based emitter geolocation, showing the flight
paths of the different sensor platforms

measurements (Agent 2). The standard deviation of the TDOA measurement error
as used in section 4.3.1, in this simulation is defined by:

σTDOA ≈
1

W
√

SNR
(7.5)

where W is the noise bandwidth of the receiver set at 7 × 10−7s. The standard
deviation of the AOA error is given by:

σ2
θ ≥

(
c

2πf0d cos(θ)

)2 (
1

SNR

)
(7.6)

if θ < π/2 or σθ = 0.02 otherwise, where f0 is the carrier frequency of the received
signal, d is the maximum separation between antenna elements of interferometer
antennas, and θ is the true bearing angle.

The true target position is at (92km,62km). Each measurement is taken on 10th
second corresponding to 0.4 km step in simulation. Figure 7.5 shows how each agent
can geolocate the emitter independently using the average RMS position error as
a metric. In particular, the figure shows the effect of the number of measurements
on the the average RMS error as the platforms move along their respective flight
paths. In order to obtain the average RMS error the simulations were repeated 50
times and the average taken. It is clear for this scenario that TDOA measurements
generally provide a more accurate position estimate.

Figure 7.5 shows how accurately each agent can independently geolocate the
emitter using the average RMS position error as a metric. In this figure, the average
RMS error is plotted as a function of the TDOA and AOA measurements taken
as the platforms move along their respective flight paths. In order to obtain the
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Figure 7.5: Effect of number of measurements on the average RMS positional error.
In this case each agent separately geolocates. Agent 1 uses TDOA only, Agent 2
uses AOA only

0 10 20 30 40 50 60
0

2

4

6

8

10

12

RM
SE

 (k
m

)

Number of measurements

 

 
Agent 1 TDOA
Fused weighted
Fused unweighted

Figure 7.6: Effect of number of measurements on the average RMS positional error,
showing effect of both unweighted and weighted fusion

average RMS error the simulations were repeated 50 times and the average taken.
It is clear for this scenario that TDOA measurements generally provide a more
accurate position estimate. However, it should be noted that the precise results
of RMS position error are strongly dependent upon the platform/emitter geometry,
and hence the scenario, because this affects the GDOP. This is true for all the results
presented in this section.
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Figure 7.7: Effect of number of measurements on the average RMS positional error,
showing effect of both unweighted and weighted fusion for AOA, TDOA and FDOA
Measurements

Figure 7.6 shows the benefit of fusing the TDOA and AOA measurements for
both weighted and unweighted cases and the results are compared with the case for
TDOA-only emitter geolocation for the scenario above. In this figure, the average
RMS error using AOA-only measurements (Agent 2) was not plotted in order to
demonstrate the advantage of weighting, however the contribution from these agent
was used in fusion calculations. Two observations can be made. First, fusion of
the measurements improves the positional accuracy of the geolocation algorithm.
Second, the impact of weighting is also clear because the weighted result tends to
be much more accurate in terms of RMSE as after > 25 measurements. There is
an observation that for this particular scenario TDOA only measurements without
fusion presents better results, so fusion algorithm does not provide any benefit.
The information that TDOA only measurements will provide better estimate is not
available a priori and dependent on relative target and platform positions. As it
was demonstrated in earlier chapters, the estimator is usually benefit from fusion
in terms of better convergence and accuracy on average for a larger number of
scenarios. In this scenario unweighted fusion remained close to the best available
measurement in this case TDOA and didn’t improved when position AOA agent
changed significantly enough to improve estimate, while weighted fusion attempted
to take best contribution out of both type of measurements.

The scenario in figure 7.4 was altered in a way, that the platforms travelling North
are now able to perform TDOA and FDOA measurements so that the model consist
of TDOA agents, FDOA agents and AOA agents. Figure 7.7 demonstrates the
results of fusion for all three types of measurement, using the RMS positional error as
the metric. This figure shows quite clearly how both weighted and unweighted fusion
improves the positional accuracy of the emitter location estimate when additional
measurements from FDOA agent are made. The advantages of the weighted fusion
can not be observed in this particular case, on contrary, an attempt of weighted
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fusion to TDOA and FDOA type of measurements as more precise estimates lead
to much worse estimates when number of measurements were relatively low.

In this section it was shown that the Hough Transform has properties that can
be exploited which allow it to be used as a framework for agent-based fusion, thus
connecting low level measurement fusion to higher more ‘abstract’, levels, that can
be used for decision making. Furthermore, using the method of self- weighting,
it is possible to provide each geolocation agent with a method to calculate their
own contribution to the final goal of emitter geolocation; In this section, all agents
were constrained to operate within a single cluster, due to restrictions placed on
the information exchange by the wireless communication network they shared. In
the next section the concept of agents will be taken one step further where agents
naturally form multiple clusters.

7.4 Clustered agent data fusion

In this section each cluster is assumed to consist of multiple agents where communi-
cations assumed to be good. However, communications between clusters is assumed
to exist but may be sporadic. This creates a fusion hierarchy: each agent is able to
geolocate individually, a cluster of agents can refine the emitter position using fusion
and clusters of agents can further refine the position estimate by taking advantage
of the different view of the target by each cluster. In this section, the benefits of
providing fusion between clusters of agents will be examined.

In this case, the Agents within each cluster generate a cluster-level model for
that cluster and this is used to obtain the weight, wclusteri for that cluster (assumed
here to be the ith). These weights are used to weight the cluster-level models. The
overall model is the weighted combination of cluster-level models, given by:

Amulti =
1

wcluster1

Acluster1 + · · · 1

wclusteri

Aclusteri (7.7)

The scenario in figure 7.8 has been set up in order to illustrate this. Here, three
UAVs are used, as in the previous scenario, and form cluster 1. In this cluster, two
UAVs fly North and follow a wavy path, whilst one UAV flies East. The North
flying UAVs act as a TDOA agent and the East flying UAV acts as an AOA agent.
In addition, three more UAVs are added to the scenario. One flies in a tight circular
path, a second flies in an oval racetrack path whilst the third flies generally in an
Easterly direction. The UAV flying along the oval path takes AOA measurements,
with an RMS error using equation 7.6 whilst the other two platforms act as a
TDOA agent with an RMS error of 10−7s timing error. Each cluster has good
communications so that agents within that cluster can fuse their results as described
above. However, communications between clusters is sporadic. This means that
each cluster carries out individual cluster-level fusion, and the clusters can only fuse
their cluster levels together when the communications between them is assumed to
be good.
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Figure 7.9 and figure 7.10 show the effect of using two clusters to geolocate
a single emitter. Figure 7.9 represents the RMS error of the emitter position for
Cluster 1 and figure 7.10 shows the RMS error for Cluster 2. In each figure, the
RMS positional error is plotted as a function of the number of measurements made
in each cluster. This forms the cluster-level world model (this is shown as the red
solid line in each figure). Only after this model has been created by each cluster are
the two cluster models fused to form a high level model. It is theoretically possible to
fused cluster level models at any time, however if communications between clusters
are sporadic, it is necessary to be able to minimise inter-cluster communications and
thus hierarchical fusion model presented.

The result of fusing the weighted cluster-level models is shown as the red crosses
in both figures. It is clear that the weighted high-level world model has a much higher
accuracy than the weighted cluster-level models for either cluster. Furthermore, the
use of cluster level fusion results in a much faster ‘convergence’ of the RMS error as
a function of number of measurements. There is improvement in emitter geolocation
performance by adopting a cluster-level fusion strategy is most certainly due to the
effect of minimising the effect of GDOP and unreliable measurements, by using
different ‘look’ directions for each cluster even though the fusion at this level takes
place relatively infrequently.

In this section the concept of agents was developed into hierarchical model, where
agents naturally form multiple clusters. Each cluster is assumed to consist of multi-
ple agents that forms a fusion hierarchy: each agent is able to geolocate individually,
clusters of agents can refine the emitter position using fusion and clusters of agents
can further refine the position estimate by taking advantage of the different view of
the target by each cluster. In the next section the use of the weight for self-awareness
and decision making will be demonstrated.
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Figure 7.8: Scenario for cluster-level data fusion, using two clusters, illustrated as
rectangles
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Figure 7.9: Average RMS error over 50 simulations for the scenario shown in figure
7.8 for cluster 1
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Figure 7.10: Average RMS error over 50 simulations for the scenario shown in figure
7.8 for cluster 2. Cluster 2 has a better geometry of the agents and thus can converge
quicker to a true target position

Autonomous behavior - minimizing weight

It is possible to add some ‘decision making’ logic for the agents, based on checking
the value of weight and then adjusting the flight path until the value of weight
is minimised. Figure 7.11 shows flight paths of the agents. In this scenario, two
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platforms heading north obtained TDOA measurements, thus representing one set
of TDOA measurement, and the platform moving east was able to obtain only AOA
measurements. The following logic was added to agent one:

• Platforms move according to the equation

x(t) = x(t− 1) + v sin θ(∆t) (7.8)

y(t) = y(t− 1) + v∆t (7.9)

where (x(t − 1), y(t − 1)) is the previous or initial position of the aircraft.
θ(∆t) ∈ (0, 2π) is the angle changing on each time step up with step ∆θ =
2π/Nm. Where Nm - duration in simulation, which is equivalent to number of
measurements taken during the simulation.

• Maneuver can be performed by changing the direction of the motion in order
to minimize the weight.

x(t) = x(t− 1)− v sin θ(∆t) (7.10)

y(t) = y(t− 1)− v∆t (7.11)

• On each 5th step, the agent checks: wether previous the weight is larger,
than the current one (wt−1 ≥ wt) and if not then agent then performs the
manoeuvre above.

In this scenario the TDOA agent quickly realised that the platform position was
creating excessive GDOP for effective geolocation and has changed the flight path
of the one platform, to reduce the measurement weight by reducing the GDOP. In
this simulation STDOA from (7.2) was minimised down to one after thirty measure-
ments has been obtained. Figure 7.11 demonstrates the flight path of the TDOA
agent, where one of the platforms employes the method of changing direction of the
motion in order to provide better TDOA measurements. It is known that GDOP of
the TDOA measurements depend on baseline between platforms relative to target
position 2, however as target position is not known the a priori optimal motion
model of the platforms is not available. This section demonstrated the used of the
weighting in parameterised space to adjust motion of the platform with attempt to
provide better measurements and target position estimate.

7.5 Conclusion

This chapter has shown how the Generalised Hough Transform can be used to fuse
AOA, TDOA, and FDOA measurements. In particular, it has introduced a novel
method of weighting the individual sets of measurements according to the impact
that they have on the positional error rather than simply according to the measure-
ment error. The results have shown how using weighted fusion has a beneficial effect
on reducing the error of the position estimate. Also it was shown that the Hough
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Figure 7.11: Scenario illustrating decision making for agent based on weight min-
imisation

Transform can be used as a framework for agent-based fusion, thus connecting low
level measurement fusion to higher more ‘abstract’ level, where it can be used for
decision making.

The concept of geolocation agents has been developed, where agents naturally
form multiple clusters. Each cluster is assumed to consist of multiple agents that
forms a fusion hierarchy: each agent is able to geolocate individually, clusters of
agents can refine the emitter position using fusion and clusters of agents can further
refine the position estimate by taking advantage of the different view of the target by
each cluster. In this chapter the benefits of providing fusion between clusters of the
agents has been examined and the advantages of the clustered (hierarchical) agent-
based data fusion has been demonstrated. Also it was shown that it is possible to add
additional capabilities of the agents, where they can perform different manoeuvre,
in order to minimise GDOP error.



Chapter 8

Conclusion and future work

In this thesis new estimation and data fusion techniques based on Hough Transform
has been shown. The Hough Transform algorithm has been evaluated using the
fusion of different type of measurements (angle of arrival, time difference of arrival
and frequency difference of arrival), together with higher level fusion with terrain
data. There is a good reason to call it a Hough Transform based estimator rather,
for example, than ‘ad-hoc averaging over Gaussian sum’, due to the fact that the
Hough Transform, and its related Radon Transform [55], has been used in image
processing since 1964 (see [57],[97]). Moreover, there are a fair number of opti-
misation techniques that can be considered depending on application and resource
constraints. Some of these techniques relate to optimisation of the parameterized
space, such as the Fuzzy Hough Transform [98] and [80]. Others optimise peak
search in parameterized space using genetic algorithms [99]. The research also has
been carried out by implementing Hough Transform in hardware as in [78]. Some of
these techniques, such as Multiresolution Hough Transform have been tested dur-
ing this research as has another optimised method, which we call Hybrid Hough
Transform, which has been proposed. (Note, there is an ambiguity within image
processing community on the names of the optimisation techniques, such as Mul-
tiresolution Hough Transform: there are two different implementations of MHT,
and there are a number of algorithms called Hybrid Hough Transform). A particle
filter algorithm has been applied to the geolocation problem and it was found the
non-Bayesian RHT was found to have a broadly similar algorithm to the Bayesian
Particle filter. The performance of the Hough Transform based algorithm and the
particle filter have been compared and this has formed the basis for a comparison
of non-Bayesian and Bayesian type estimators with the Cramer-Rao lower bound,
which is representative of the performance of classical estimators. This comparison
lead to the development of the generalised estimator. A generalised estimator has
been developed, where by changing a single parameter, α, the estimator changes
from a Bayesian type to a non-Bayesian type. The analysis has been carried out on
the results of this estimator. Some of these results lead back to support the impor-
tance of the choice resampling method for the particle filter. In addition, the fusion
capability of the Hough Transform has been extended to the development of the
weighted fusion algorithm, which can be used to self-weight the measurements from
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the sensors according to their GDOP. It would be interesting to see these weighting
techniques exploited on command and control level. It is possible to track the value
of this weights and provide a controller which will keep them minimal.

The use of these weighting techniques opens the possibility to higher level fu-
sion, where based on the weighted Hough Transform, an agent-based data fusion
algorithm for emitter geolocation has been proposed, thus moving the geolocation
problem to a higher level of the fusion hierarchy. Agent-based data fusion has been
applied to an even higher level of fusion between groups of agents, thus showing the
possibility of using cluster level fusion based on the Hough Transform approach to
geolocation.Although this aspects has been highlighted in chapter 7 further research
is required in this direction.

A comparison with the Bayesian type techniques in chapter 6.1 lead to a number
of interesting estimation functions, which are capable of obtaining a position esti-
mate. Although not all of these functions produced a good performance for data
fusion, it is in the interest of scientific research to pursue investigations in this area.
For example, a Gaussian Mixture based estimator may be a good solution for the
application, where it is not only necessary to geolocate but also to track the target
after geolocation. Hough Transform, with all its fusion applications, is not capable
of tracking, as HT is mostly dealing with static primitives and combines all previous
information with one solution.

Some algorithms, which may be applied for the task of geolocation has been left
beyond the scope of this thesis and it is in the interest of the scientific research to
apply some commonly known algorithms such as Unscented Kalman filter, to the
problem of geolocation of radio emitters. Also it would be interesting to see the
application of the evolutional algorithms to the task of geolocation of emitters. As
it was mentioned before, image processing community uses evolutionary (genetic)
algorithms for peak search in Hough Transform, so it would be in the interest of
research to extend this concept to the task of geolocation. Especially, if the prob-
lem of geolocation will be broaden to geolocation of the multiple emitters and in
this case the application of the peak search based on the genetic algorithm can be
beneficial. Comparing performance the proposed Hough Transform algorithm with
other algorithms, HT have a several advantages: (i) accumulating likelihoods can be
done very fast, especially in hardware or using optimised functional programming
routines such as accumarray in Matlab, (ii) because of the absence of resampling,
HT can be used as batch or sequential estimator and may fit modern MapReduce
framework[100] [101] and in batch processing form, can take and advantage of paral-
lel processing. MapReduce framework defines in terms of two set of functions map
and reduce, where map function processes data mapping them into key value pairs
(for example likelihoods into key (x, y)), while reduce function reduces (accumu-
lating in case of HT) all values with same key into one value. Although reduce
should be performed after map both of these function can be processed in parallel.
The Hough Transform in this thesis relies only on the assumption that there is a
Gaussian probability function between measurement and the location of the target.
However, this assumption is not crucial for the convergence of the algorithm, and
in more general cases, something like a lookup table of relative measurement to
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position can be used. Moreover, further research is also required in order to extend
the Hough Transform based estimator to three-dimensional case. There are multi-
ple ways to explore new areas highlighted in this thesis, but the main goal of the
project to propose and develop algorithm for geolocation, robust enough to sustain
NLOS effect has been fulfilled by presenting Hough Transform based algorithms and
variations of the particle filter.



Chapter 9

Appendix

9.1 AOA estimation using antenna array or inter-
ferometer

When AOA measurements are used, a position can be estimated with only two
reference nodes, but performance is severely degraded by scattering. Scattering
near and around the sender and receiver will alter the measured AOA. Also, the use
of antenna arrays corresponds to increased sensor node cost, power consumption,
size, and complexity. However, in military applications it is feasible that some nodes
(e.g., those mounted on vehicles/aircraft) will be equipped with arrays.

Figure 9.1: AOA antenna array

A receiver can determine the angle at which a wave impinges on an antenna
in the receiver. The use of smart antennas (also called phased array antennas) is
a very efficient means to determine the AOA of waves impinging on its different
elements. A phased array antenna comprises two or more elements. The accuracy
of measurements, but also the cost of the antennas increases with the number of
elements. It is suggested that an 8 elements antenna can be best trade of for it.
An example of antenna array can be seen on picture 9.2. Several signal-processing
techniques can be used to determine the AOA from the antenna array such as the
Fourier Transform, ESPRIT or MUSIC. The algorithm MUSIC (Multiple Signals
Classification) presents multiple advantages over other techniques as a narrow an-
gular resolution and the ability to provide an estimate of the angular error spread
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Figure 9.2: Basic principles of antenna array

[20]. Some of the UAV can be equipped with this 8 elements antenna so it is possible
to use AoA measurements for position estimation. In the absence of an line of sight
(LOS) signal component, the antenna array will lock on to a reflected signal that
may not be coming from the direction of the sender. Even if an LOS component
is present, multipath will still interfere with the angle measurement. The accuracy
of the AOA method diminishes with increasing distance between the sender and
receiver due to fundamental limitations of the devices used to measure the arrival
angles as well as changing scattering characteristics.

Error covariance for Angle of Arrival

Because of uncertainties in the AOA measurements, uncertainties exist in the esti-
mated emitter location. Thus derivation of the error covariance is required in order
to proceed further. In triangulation, angles to the target are measured from two
receivers. The example of such a scenario for the error analysis are shown in figure
9.3.

The x-axis may be taken along baseline and the origin to be at the receiver 1.
The y-axis lies in the bistatic plane containing two emitter and two receivers. With
a baseline length, D, the coordinates of the two receivers are (0, 0) and (D, 0). The
coordinates of the emitter (x, y) and the angles to the emitter measured from the
baseline at the two sites, are θ1 and θ2. The equation for the LOS from target to
receiver 1 is then

y = x tan θ1 (9.1)

Similarly, the equation for LOS2 is

y = (D − x) tan θ2 (9.2)

The target lies at the intersection of these two lines. Solving the intersection point,

x =
D cos θ1 sin θ2

sin(θ1 + θ2)
(9.3)
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target (x,y)
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Figure 9.3: Error analysis of the emitter geolocation using Angle of Arrival

and

y =
D sin θ1 sin θ2

sin(θ1 + θ2)
(9.4)

The variation in the position of the target due to measurement error in the angles
θ1 and θ2 is given by:

[
∂x
∂y

]
=

[
a b
c d

] [
∂θ1

∂θ2

]
(9.5)

where

a =
−D sin θ1 sin θ2

sin(θ1 + θ2)
− D cos θ1 sin θ2 cos(θ1 + cos θ2)

sin2(θ1 + θ2)

b =
D cos θ1 cos θ2

sin(θ1 + θ2)
− D cos θ1 sin θ2 cos(θ1 + θ2)

sin2θ1 + θ2

c =
D cos θ1 sin θ2

sin(θ1 + θ2)
− D sin θ1 sin θ2 cos(θ1 + θ2)

sin2θ1 + θ2
(9.6)

d =
D sin θ1 cos θ2

sin(θ1 + θ2)
− D sin θ1 sin θ2 cos(θ1 + θ2)

sin2θ1 + θ2

The covariance of this variation error is given by:
[

∂x
∂y

]
= E

[
∂x
∂y

]
E[∂x, ∂y] (9.7)

=

[
a b
c d

]
E

{[
∂θ1

∂θ2

]
[∂θ1, ∂θ2]

} [
a b
c d

]T

(9.8)

Because the variations in θ1 and θ2 independent,

E

{[
∂θ1

∂θ2

]
[∂θ1, ∂θ2]

}
=

[
σ2

θ1
0

0 σ2
θ2

]
(9.9)
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where σθ1 and σθ2 are the standard deviations of the angles, θ1 and θ2. Then from
(9.7):

cov

[
∂x
∂y

]
=

[
a2σ2

θ1
+ b2σ2

θ2
acσ2

θ1
+ bdσ2

θ2

acσ2
θ1

+ bdσ2
θ2

c2σ2
θ1

+ d2σ2
θ2

]
(9.10)

Assume that:
σθ1 = ∆θ1 (9.11)

σθ2 = ∆θ2 (9.12)

and ∆θ1 = ∆θ2 = ∆θ1 thus σθ1 = σtheta2 = σθ. Then from equation (9.10)

cov

[
∂x
∂y

]
=

[
a2 + b2 ac + bd
ac + bd c2 + d2

]
σ2

θ (9.13)

From the equation (9.6), it is seen that the elements a, b, c and d have the factor
D/ sin(θ1 + θ2) in common. Thus, we may write,

a′ = − sin θ1 sin θ2 − cos θ1 sin θ2 cot(θ1 + θ2) (9.14)

a =
D

sin(θ1 + θ2)
a′ (9.15)

b′ = cos θ1 cos θ2 − cos θ1 sin θ2 cot(θ1 + θ2) (9.16)

b =
D

sin(θ1 + θ2)
b′ (9.17)

c′ = cos θ1 sin θ2 − sin θ1 sin θ2 cot(θ1 + θ2) (9.18)

c =
D

sin(θ1 + θ2)
c′ (9.19)

d′ = − sin θ1 cos θ2 − sin θ1 sin θ2 cot(θ1 + θ2) (9.20)

d =
D

sin(θ1 + θ2)
d′ (9.21)

In relation to bistatic angle φ (see figure 9.3)

sin(θ1 + θ2) = sin φ (9.22)

Thus, equation (9.13) can be written as

cov

[
∂x
∂y

]
=

D2

sin2 φ

[
p q
q r

]
σ2

θ (9.23)

1For example in scenario for radar geolocation
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where

p = a′2 + b′2

q = a′c′ + b′d′

r = c′2 + d′2

The square root of eigenvalues of covariance matrix gives the major and minor
axes of the error ellipse. note that if σθ as σθ = 1/2∆θ, then the square root
of the eigenvalues would have yielded the semi-axis.) It is seen that the axis are
proportional to Dσθ/ sin φ, in other words directly proportional to the bistatic angle
φ.

Error covariance for TDOA

As it was shown before in section 1.4.2, it is possible to measure the time of arrival
of the signal on two sites and to use differential of time of arrival located an emitter
on an iso-delay curve. In this section the error analysis will be presented.

Figure 9.4: Time Difference of Arrival, Error Analysis

As in [19] the geometry, shown on figure 9.4, will be explored. The ranges R1

and R2 are given by the following equations:

R1 =
√

x2 + y2 (9.24)

R2 =
√

(D − x)2 + y2 (9.25)
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The time of arrival delay then is

τ =
R1 −R2

c
(9.26)

or

τ =
R2 −R1

c
(9.27)

depending upon which site is taken as the reference and where c is the speed of radio
wave propagation (speed of light).

Tangent to the Iso-delay Curve

The equation of the iso-delay curve is given by

R2 −R1 = τc = ∆ (9.28)

or √
(D − x)2 + y2 −

√
x2 + y2 −∆ = 0 (9.29)

The partial derivatives fx and fy are

fx =
−(D − x)√

(D − x)2 + y2
− x√

(x2 + y2)
= −(cos θ2 + cos θ1) (9.30)

Then the slope of the tangent to the iso-delay curve is

∂x

∂y
= tan θ = −fx

fy
=

cos θ1 + cos θ2

sin θ2 − sin θ1
(9.31)

It can be shown that the tangent to the iso-delay curve at any point is the bisector
to the bistatic angle. From the expression for the slope of the tangent given in
equation 9.31, it is seen that a vector [(sin θ2− sin θ1), (cos θ1 +cos θ2)] lies along the
tangent and its magnitude, M , is:

M =
√

(sin θ2 − sin θ1)2 + (cos θ1 + cos θ2)2

=
√

2 + 2 cos(θ1 + θ2)

=

√

4 cos2

(
θ1 + θ2

2

)

or

M = 2 cos

(
θ1 + θ2

2

)
(9.32)

Now, a vector (cos θ1, sin θ1) lies along the line of sight 1 (LOS1) and has a unity
magnitude. Taking the dot product of the tangent vector and the LOS1 vector
results in:

(sin θ2 − sin θ1) cos θ1 + (cos θ1 + cos θ2) sin θ1

= sin(θ1 + θ2)

= 2 sin

(
θ1 + θ2

2

)
cos

(
θ1 + θ2

2

)
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if the angle between these two vectors is δ, then

M cos δ = 2 sin

(
θ1 + θ2

2

)
cos

(
θ1 + θ2

2

)
(9.33)

or

cos δ =
2 sin

(
θ1+θ2

2

)
cos

(
θ1+θ2

2

)

2 cos
(

θ1+θ2
2

) (9.34)

or

cos δ = sin
θ1 + θ2

2
(9.35)

and from geometry in figure 9.4, since

θ1 + θ2

2
=

π

2
− Θ

2
(9.36)

and

sin

(
θ1 + θ2

2

)
= cos

Θ

2
(9.37)

Hence,

cos δ = cos
Θ

2
(9.38)

or

δ =
Θ

2
(9.39)

i.e. the tangent of iso-delay curve bisects the bistatic angle Θ.

Maximum gradient

The maximum gradient lies along the normal to the curve and is given by

∂τ

∂Sn
=

1

c

√
f 2

x + f 2
y

=
1

c

√
(cos θ1 + cos δ2)2 +

√
(sin θ2 − sin δ1)2

=
1

c

√
2(1 + cos(θ1 + θ2))

=
1

c
2 cos

(
θ1 + θ2

2

)

∂τ

∂Sn
=

2

c
sin

Θ

2
(9.40)

where Sn is a vector along the normal to the curve. From 9.40 follows:

∂Sn =
c∂τ

2 sin Θ
2

(9.41)

In the next chapter overview of the traditional geolocation methods will be provided,
each of them is trying to minimize error and its covariance.
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9.2 Gradient Descent Algorithm

Foy presented a geolocation algorithm based on the simple process of using a Taylor-
series expansion of the defining equations (also known as Gauss or Gauss-Newton
interpolation) [22]. This development provides a convenient introduction to the
algorithmic approach to estimate an emitter position from multiple lines of bearing.
It is also one of the most general and accurate methods available, according to
[10]. The equations express the geometry involved in mathematical terms and are
frequently nonlinear, for details see Section 9.1. Expanding the nonlinearities in
a Taylor series and retaining only the linear terms allows for employing Newton-
Raphson methods of gradient descent to iteratively until an estimated solution is
found. At each stage, a correction factor is calculated based on the linear least-sum
square error. The principal disadvantages and advantages according to Foy are as
shown in Table 9.2

Advantages Disadvantages
Miltiple independent meth-
ods to a single station are
averaged naturally

The method is iterative, re-
quires an initial guess

Multiple measurements and
mixed-mode measurements
are combined properly, that
is, with the correct geo-
metric factors, and can be
weighted according to their
a priori accuracy

It is computationally com-
plex compared to simple
plotting of lines of position

The statistical spread of the
solution can be found easily
and naturally

Being a local correction, its
convergence is not assured

Experience indicates that
the initial position guess can
be quite far off without pre-
venting good convergence.
Failure to converge is easy to
detect
Simulation is easy so the
convergence can be easily
tested
Computational complexity
is less than Kalman filter

Table 9.1: Source [10]. Principal advantages and disadvantages of Gradient Descen-
dent Algorithm

Suppose xt = (xt, yt) represents the true position of the target emitter and
xk = (xk, yk), k = 1, 2, ..., N represents the true position of the N sensors. Let mk
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represent ith measurement at sensor k. These measurements, at this point, are
not restricted to Angle of Arrival (line of bearing), ranges and so forth, but could
represent any measurement useful for calculating the emitter position. Thus,

fi(xT , yT , xk, yk) = ui = mki + εi, k = 1, 2..., N (9.42)

where mki = true value of the measured quantity and εi = error in the mki mea-
surement

For example, if the measurement is that of an Angle of Arrival from the sensor
to the emitter, then

fi(xT , yT , xk, yk) = tan−1

(
yt − yk

xt − xk

)
+ εi (9.43)

The goal is to find (xT , yT ) given the measurements and known locations of the
sensors. The errors in the measurements εi are assumed to be independent (of each
other) and identically distributed (i.i.d) with zero means, εεi = 0, where ε denotes
statistical expectation. The error covariance matrix is given by

R = [rij] (9.44)

with entries
rij = ε (εi, εj) (9.45)

Let (x̂T , ŷT ) be guesses of the true position (xT , yT ). Then

xT = x̂ + δx (9.46)

and
yT = ŷ + δy (9.47)

Unfortunately, because the relation between mki and (xT , yT ) nonlinear, as can be
seen from AOA example, it is necessary to linearize it using Taylor series expansion.
The Taylor series expansion of fi() around point a is given by

f(x) = f(a) + (x− a)f ′(a) +
(x− a)2

2!
f ′′(a) + ... +

(x− a)n

n!
fn(a) + ... (9.48)

where the notation fn(a) refers to the nth derivative of f(x) evaluate at point a. In
two dimensions, this becomes

f(a + h, b + k) = f(a, b) +

(
h

∂

∂x
+ k

∂

∂y

)
f(x, y)|x=a,

y=b + . . .

+
1

n!

(
h

∂

∂x
+ k

∂

∂y

)n

f(x, y)|x=a,
y=b . . . (9.49)

where the bar and subscripts mean that, after differentiation, x is replaced with
a and y is replaced with b. Also, in this notation,

(
h

∂

∂x
+ k

∂

∂y

)
f(x, y) =

(
h
∂f(x, y)

∂x
+ k

∂f(x, y)

∂y

)

(
h

∂

∂x
+ k

∂

∂y

)2

f(x, y) = h2∂2f(x, y)

∂x
+ 2kh

∂2f(x, y)

∂x∂y
+ k2∂f(x, y)

∂y
. . .
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For the case at hand, the two-dimensional Taylor expansion, after deleting all
terms then linear ones, is

f̂i +
∂fi()

∂x
|x=a,
y=b δx +

∂fi()

∂y
|x=a,
y=b δy ≈ mki + εi (9.50)

where
f̂i = fi(x̂T , ŷT , xk, yk) (9.51)

To put this development into matrix form for (easier) manipulation.

H =





h11 h12

h21 h22
...

...
hNs1 hNs2









∂f1()
∂x |x=x̂T ,

y=ŷT

f1()
∂y |

x=x̂T ,
y=ŷT

∂f2()
∂x |x=x̂T ,

y=ŷT

f2()
∂y |

x=x̂T ,
y=ŷT

...
...

∂fNs ()
∂x |x=x̂T ,

y=ŷT

fNs ()
∂y |x=x̂T ,

y=ŷT




(9.52)

δ =

[
δx

δy

]
(9.53)

z =





mk1 − f̂1

mk2 − f̂2
...

mkNs − f̂Ns




(9.54)

and

e =

ε1

ε2
...

εNs

(9.55)

then (9.50) can be written
Hδ ≈ z + e (9.56)

The form of delta that yields the least sum squared error with the terms weighted
according to the covariance matrix in [102] is:

δ = [HT R−1H]−1R−1z (9.57)

where R is a weighting matrix used to factor one or more parameters. R is arbitrary,
but must be positive definite and full rank so that R−1 exists. Therefore, during one
step of the iteration, δ is computed according to (9.57), and new estimates (guesses)
are obtained via

x̂new ← x̂old + δx (9.58)

ŷnew ← ŷold + δy (9.59)

in (9.57) and the iteration is repeated until there is a satisfactory minimization of
the change in (xg, yg) from one iteration to the next (δ = 0). The covariance matrix
of the target estimate is given by

Q0 = [HT R−1H]−1 =

[
δx ρxy

ρxy δy

]
(9.60)
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If the error statistics are normal, then the error region is an ellipse, called the
elliptical error probable(EEP), with semi-major axis a and semi-minor axis b given
by [10]

a2 = 2
σ2

xσ
2
y − ρ2

xy

σ2
x + σ2

y − [σ2
x − σ2

y + 4ρ2
xy]

1/2
C2 (9.61)

b2 = 2
σ2

xσ
2
y − ρ2

xy

σ2
x + σ2

y + [σ2
x − σ2

y + 4ρ2
xy]

1/2
C2 (9.62)

where C = −2ln(1−Pe), with Pe being the confidence that the target lies within the
EEP, (eg., 0,5 for 50%, 0.9 for 90%, and so forth). The tilt angle θ of the semi-major
axis relative to the x-axis is given by

θ =
1

2
tan−1 2ρxy

σ2
x − σ2

y

(9.63)

The circular error probable (CEP) is similar to concept EEP. It is a circle centered
on the computed position with an area such as that the target lies within the circle
with a prescribed probability. It can be estimated to within 10% by [22]

CEP ≈ 0.75
√

a2 + b2 (9.64)

9.2.1 Alternative Estimators

Weighted Least squares

By introducing a weighting matrix, W into the linear least squares objective func-
tion, error contributors to the squaring process can be selectively weighted. This
permits the estimator to reduce the square of certain error components more than
others, according to the selection of W. In effect, the observations with the greatest
importance are allowed to make the greater contributions to the solutions. In this
case, the least squares process minimizes Q(X) = εTWε and the weighted least
squares estimate is:

X̂ = (AT WA)−1AT WY (9.65)

where W is symmetric and positive definite. Because the observation residuals
are samples of a random process, it is reasonable to base the selection of W on a
statistical criterion. The covariance matrix C of the data vector provides a measure
of the contribution made by the data. Consequently it is common for W to be inverse
of C. In this case, it can be shown that the estimator is the best linear unbiased
estimator (if the noise is zero mean Gaussian). This gives a better estimate than
linear least least squares, but requires more work to obtain the covariance matrix
of the data. Another variant of the least squares estimator that have been used for
this type of the problem is the constrained least squares, where a priori information
about the observations is used. As for the least squares method, it is possible to fuse
measurements from different measurement methods, but covariance matrix needs to
include all measurements. In this way, if one measurement method is more accurate
than another, the weighted least squares method will automatically give stronger
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weight to the more accurate method, as well as stronger weight to the most accurate
data points for each method.

Constrained least squares estimation

Consider a typical estimation problem, where the raw measurements are contained
in the column vector g0, the requred state to be estimated is f and the model relating
the two is T , such that:

g0 ≈ Tf (9.66)

The core of the conventional least squares estimator is the matrix operation:

f = T T T−1Tg0 (9.67)

where, in this application, g0 is the column vector of the measurements. However,
under some conditions, the standard, unconstrained least squares method can give
wild over-estimates. The constrained least squares algorithm, tries to overcome this
shortcoming. If Φi and λi denote the ith eigenvector and eigenvalue of matrix TTT
respectively:

[[TT]T]Φi = λiΦi (9.68)

Then the constrained least squares approximation of f is given by:

f =
M∑

i=1

ci

λi + α
Φi (9.69)

where
ci = [Φi][T]g0 (9.70)

The value of α may be found using the Newton-Raphson iterative method, as de-
scribed in the iterative equation below:

α1 = α0 −




C −

∑M
i=1

|ci|2
(λi+α0)2

2
∑M

i=1
|ci|2

(λi+α0)3



 (9.71)

where the subscript on α refer to the iteration number. In this equation, C is the
applied constraint. The value of α for the first iteration can be a guess (for example
α0 = 1). However, care must be taken if α ≤ 0 as the function is discontinuous
below zero and the results of the iterative estimator are unpredictable. A possible
solution is to replace negative values of α0 with a positive random number, typically
in the range [1,100]. The algorithm then starts at a random position. The square
of the norm of vector f , defined as ‖f‖2 =

∑M
i=1 |fi|2 is limited by the value of

the constraint, C. The concept behind the constrained least squares in the present
application is that it would find the squared norm of the measurements representing
the position data, which represents C. This algorithm provides improved stability
in realistic scenarios where the tails of the measurement error distributions may not
be Gaussian but the cost is increased processing.
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Brown’s estimators

Brown [10] developed an algorithm for calculating the best point estimate of the
emitter from measured bearings or line of position (LOP). These included the dis-
tance least squares and asymptotic algorithms. His algorithms were designed for de-
termining the location of both stationary and moving emitters based upon a number
of angular measurements from a moving platform. The algorithms are particularly
useful when there is a appreciable error in the measurement but they are restricted
to platform motion that generates a small baseline in comparison to the distance
between platform and the emitter. The algorithm minimizes the sum of the squares
of the distances to the measured LOPs. The benefit of this method is that the sums
are accumulated in memory as the positional fixes are taken. By solving the linear
equations the estimate of the target position is achieved. The asymptotic algorithm
was developed to minimize the sum of the squares of the angle errors and does
not rely on expensive iteration technique as used in Newton-Gauss methods. This
method was proposed to deal with a particular set of conditions, where the combined
effect of large angle errors and short base line causes the standard algorithms to fail
in even approximating the correct emitter position. Emitter location is determined
by a pair of linear equations, whereby, the asymptotic algorithm is used to calculate
the best point estimate of the target.

Distance Least Squares and Asymptotic Algorithm

The distance to the ith bearing line is given by:

di = |aix + biy − ci| (9.72)

where

[l]ai = sin ξi (9.73)

bi = − cos ξi (9.74)

ci = pi sin ξi − q cos ξi (9.75)

The quantity to be minimised is expressed as:

M =
M∑

i=1

d2
i (9.76)

Taking partial derivatives of M with respect to x and y to linearise equations:

B1x + Ay = E (9.77)

Ax + B2y = −D (9.78)

where,

A =
M∑

i=1

aibi (9.79)
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B1 =
M∑

i=1

a2
i (9.80)

B2 =
M∑

i=1

b2
i (9.81)

D =
M∑

i=1

bici (9.82)

E =
M∑

i=1

aici (9.83)

The simultaneous equations that solve (9.77) and (9.78) are:

x =
B2E + AD

B1B2 − A2
(9.84)

and,

y =
−B1D − AE

B1B2 − A2
(9.85)

The asymptotic algorithm is a simplification of the quadratic algorithm using an
asymptotic approximation and is designed to give better results for small base lines
and large angular errors. The transformed equations use the identity

A′x′2 + B′x′y′ − A′y′2 + D′x′ + E ′y′ = 0 (9.86)

which results in:

x =
GS + DT

ES + DR
(9.87)

and

x =
ET −GR

ES + DR
(9.88)

where
B = B2 −B1 (9.89)

G =
N∑

i=1

c2
i (9.90)

β =
√

4A2 −B2 (9.91)

R = β(β −B) (9.92)

S = 2Aβ (9.93)

T = E(β −B)− 2AD (9.94)

The values of A, B1,B2 and D are as for the least squares estimator.
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Abstract—This paper is concerned with the use of multi-
platform agent-based emitter geolocation. Multiple, self-aware,
agents representing different types of emitter location method,
naturally form clusters, which are controlled by the network
connectivity. Each cluster provides a fusion hierarchy: each
agent is able to geolocate individually, a cluster of agents can
refine the emitter position using fusion and multiple clusters can
further refine the position estimate by taking advantage of the
different view of the target by each cluster. In this paper, the
benefits of providing fusion between clusters of self-aware agents
are examined and the advantages of such clustered agent-based
data fusion are demonstrated for the scenario where imperfect
communication forces the sensor platforms to operate as multiple
clusters.

Keywords: Geolocation, data fusion, agent-based, cluster,

Hough Transform.

I. INTRODUCTION

In earlier papers [1] [2] [3], a new method of emitter
geolocation was presented that was based on image processing
techniques rather than the more usual classical methods using
triangulation and hyperbolic location [4] or statistical methods
[5] [6] [7]. The new method exploits the properties of the
Generalized Hough Transform and one of its key features is
that it is able to fuse different types of measurement data
(such as angle of arrival measurements (AOA), time difference
of arrival measurements (TDOA) and frequency difference
of arrival measurements (FDOA)) by transforming them into
conditional probabilities and storing them in a unified param-
eterized space. Once in this consistent framework, they can
then be fused easily.

In order to optimize data fusion using this method, an
extension to the method was described in [8] wherein sets
of measurements are weighted according to the impact that
they have on the positional error rather than simply according
to the measurement error. In this way, the weighting includes
the effect of the geometric dilution of precision (GDOP) of a
particular geolocation method. The results cited in [8] showed
that this reduced the error of the position estimate.

It was also shown in [8] that the Hough Transform has
properties that can be exploited which allow it to be used as a
framework for agent-based fusion, thus connecting low level
measurement fusion to higher, more ‘abstract’, levels that can
be used for decision making. Furthermore, using the method

of self-weighting, it is possible to provide each geolocation
agent with a method to calculate their contribution to the final
goal of emitter geolocation; thus creating the concept of ‘self-
aware’ or cognitive agents.

The paper [8] considered the case where all the agents were
constrained to operate within a single cluster due to restrictions
placed on the information exchange by the wireless commu-
nications network that they shared. In this paper, we take the
concept of cognitive agents one step further where agents
naturally form multiple clusters. Each cluster is assumed to
consist of multiple self-aware agents where communications
is assumed to be good. However, communications between
clusters is assumed to exist, but is sporadic. This creates a
fusion hierarchy: each agent is able to geolocate individually,
a cluster of agents can refine the emitter position using fusion
and clusters of agents can further refine the position estimate
by taking advantage of the different view of the target by each
cluster. In this paper, we examine the benefits of providing
fusion between clusters of self-aware agents.

II. AGENT-BASED EMITTER GEOLOCATION

In [8], the concept of agents was applied to the problem
of emitter geolocation using the Hough Transform space as
the model of the environment, where the common goal of
the agents was the geolocation of the emitter. An agent is
characterized by some, or all, of the following properties [9]:

• Autonomous Behaviour: Every agent is characterised by
autonomous behaviour.

• Individual World View: Every agent has its own model
of the external world that surrounds it which maybe
incomplete or even incorrect.

• Communicative and Cooperative Capacity: Intelligent
agents can exchange information with other intelligent
agents and this is how it builds up its own world model.
Communication with other intelligent agents is the pre-
condition for common action in pursuit of a goal.

• Intelligent Behaviour: Intelligent Agents have the capac-
ity to learn, make logical deductions to modify their
own world model in the light of new information that is
supplied to it, or which it obtains from the environment

• Spatial mobility: Intelligent agents are sometimes re-
quired to display spatial mobility.
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• Strategies and Decentralised Control: Agents should be
able to develop individual strategies to ensure the achieve-
ment of a common goal, even without central regulation.

• Emergent Behaviour: Cooperation (feedback) and inter-
actions between intelligent agents can produce a stable
system that displays new global behaviour on the next
higher level of abstraction.

In the context of the emitter location problem, the agent does
not simply represent the sensor platform. Rather, it represents
the ability of one or more platforms to provide a position
estimate according to a particular method. For example, two
platforms are necessary to take a TDOA measurement and
this corresponds to a single agent capable of geolocating
using TDOA measurements. The same pair of platforms may,
independently, make a frequency difference of arrival (FDOA)
measurement and this will correspond to a second agent
capable of geolocating using FDOA measurements. A platform
may be able to make bearing only measurements and this
produces an agent that geolocates using AOA.

In the pursuit of the common goal of emitter location, these
agents use the ability of the Hough Transform to weight their
individual contributions to the collaborative fused estimate and
communicate this to the other agents or central control.

III. THE AGENT’S LOCAL MODEL OF THE WORLD

Each agent generates a local model of the emitter location
problem. Here three types of agent are of interest: (i) those
that locate emitters using AOA, (ii) those that locate emitters
using TDOA and (iii) those that locate emitters using FDOA.
In the following sections, these models are briefly described.

A. Geolocation using Angle of Arrival

Consider a single mobile platform, whose position is accu-
rately known, that is able to measure the AOA of the emitted
signal periodically using an interferometer or antenna array.
Let the measured AOA at some instant be θi. The conditional
pdf, p(x, y|θi), of locating the emitter at some point, (x, y),
assuming that the measurement error in the angle of arrival is
Gaussian distributed, is given by:

p(x, y|θi) =

exp

(

−
(ξ−θi)

2

σ2

θi

)

√

2πσθi

(1)

where ξ is the calculated angle from the current position of
the platform, (xri

, yri
), to the point (x, y) and σθi

defines the
standard deviation of the AOA measurement.

Although the point (x, y) could lie anywhere within the
search space, in practice, the search space is split into a regular
grid and (x, y) is constrained to lie at one of the grid points
and (1) is evaluated at each of these grid points.

The local world model of this AOA agent is updated every
time it makes a new measurement and this model is built as
follows from (1):

AAOA(x, y) =
1

M

M
∑

m=1

p(x, y|θm) (2)

Figure 1. Local world model for AOA agent using equation (2)

where M represents the total number of measurements made.
This accumulated pdf now represents the voting array for the
Hough Transform.

An example of such a local world model is pictured in figure
1. This shows the probability of locating the emitter using only
two AoA measurements that intersect at a very shallow angle.
The peak indicates the likely position of the emitter.

B. Geolocation using Time Difference of Arrival

Assume that the emitter signal of interest is received at
two spatially separated receivers, r1 and r2, whose positions
are known. The TDOA, τ1,2 between these receivers can be
obtained using signal cross-correlation, or some other delay-
estimation technique. In this case, the pdf of the emitter
location evaluated at a point (x, y) given τ1,2, and assuming
Gaussian distributed timing errors, is given by:

p(x, y|τ1,2) =
exp

(

−
(R1,2−cτ1,2)

2

2σ2
r

)

√

2πσr

(3)

where R1,2 is the difference between the range of a particular
point on the grid (x, y) to receiver 1 and the range from the
same grid point to receiver 2, c is the speed of light and σr is
the range error for this measurement. A method of calculating
σr is discussed in [2] and [8]. The local world model of this
TDOA agent is built as follows from the conditional pdf (3)
using

ATDOA(x, y) =
1

L

L
∑

l=1

p(x, y|τ1,2l
) (4)

where L represents the actual number of TDOA measurements
taken and τ1,2l

is the lth time difference of arrival measure-
ment. ATDOA(x, y) is equivalent to the voting array (accumu-
lator) for the Hough Transform for the TDOA measurements.

An example of the agent’s local world model is shown in
figure 2 using a single measurement of τ1,2 for a particular
separation of the two sensor platforms.
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Figure 2. Local world model for TDOA agent using equation (4)

C. Geolocation using Frequency Difference of Arrival

Assume that the emitter signal of interest is received at two
spatially separated receivers r1 and r2 whose positions are
known. The ith FDOA measurement fdi

can be obtained using
a Doppler receiver. In this case, the pdf of the emitter location
evaluated at a point (x, y) given fdi

, and assuming a Gaussian
distributed frequency measurement error, is given by:

p (x, y|fdi
) =

exp

(

−
(D1,2−fdi

)2

σ
2

fd

)

√

2πσfd

(5)

where D1,2 is the frequency difference between the Doppler
measurements calculated from a particular point on the grid
(x, y) and receiver 1 and the Doppler measurement from the
same point on the grid and receiver 2. σfd

is the standard
deviation of the measurement error for FDOA. The method of
calculating σfd

is discussed in detail in [8].

The local world model of this FDOA agent is updated every
time it makes a new measurement and this model is built as
follows from (5):

AFDOA(x, y) =
1

N

N
∑

m=1

p (x, y|fdi
) (6)

where N is the number of measurements.

Figure 3 shows an example of the local world model for
20 FDOA measurements. The sensor platform positions move
with time, so the figure shows the most likely emitter position
(i.e. the peak value) after these measurements have been fused.
This figure clearly shows how an FDOA agent is able to
geolocate using a pair of moving platforms.

D. A Method of Weighted Fusion

When fusing different measurement types, it is usual to
weight the individual contributions of the measurements ac-
cording to their measurement error [6]. However, for emitter
geolocation, the problem is extremely non-linear and the effect
of the measurement errors on the position error is augmented
by the GDOP for that emitter/sensor platform scenario. It is

Figure 3. Local world model for FDOA agent using equation (6)

important to recognize that each type of measurement (AOA,
TDOA and FDOA) provide their own, different, contributions
to the GDOP and simply weighting according to measurement
error does not represent the true impact of the error on the
positional accuracy of the emitter position estimate.

In [8], a novel form of obtaining the weights was proposed,
where the aim was to compensate for the different contribu-
tions to the emitter position error from each of the different
measurement types according to their GDOP, for that scenario.

A(x, y) =
wTDOA

L

L
∑

l=1

p(x, y|τl,1) + (7)

wAOA

M

M
∑

m=1

p(x, y|θm) +

wFDOA

N

N
∑

m=1

p(x, y|fdi
)

where, wTDOA, wAOA and wFDOA are the weights for the
three types of measurement which are calculated according to
the impact that both the measurement variance and GDOP has
on them. This is achieved directly from the accumulated pdfs
of the Hough Transform.

In this case the accumulated pdf for a particular measure-
ment type, such as TDOA, given by (4), is first normalized by
its peak value, as shown in figure 2, and then thresholded at
some appropriate value to create a contour at that threshold,
as shown in figure 4 for a threshold set at 75% of the
maximum. The area contained within this contour, STDOA,
is then obtained. This is repeated for the case of the AOA
measurements whose accumulated pdf is given by (2) and the
FDOA measurements whose accumulated pdf is given by (6).
The areas contained within the respective contours are: SAOA

and SFDOA. It will be clear that the larger the area of the
contour, the greater the contribution of these measurements to
the positional error and hence a smaller weight is required.
The weights are given by:

wAOA =
Stot

SAOA
(8)
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Figure 4. Local world model for TDOA only measurements shown in figure
2, thresholded at the level 75% of maximum likelihood value

      





























Figure 5. Scenario used for agent-based emitter geolocation, showing the
flight paths of the different sensor platforms

wTDOA =
Stot

STDOA

(9)

wFDOA =
Stot

SFDOA

(10)

where Stot is the area of the total search space.

E. Agent-based Data Fusion

In order to illustrate the new method, consider the scenario
shown in figure 5. In this scenario, two platforms are moving
North at 40m/s according to a wavy path and they are able
to take TDOA measurements (Agent 1), whereas the platform
moving East at 40m/s is only able to take AOA measurements
(Agent 2). This represents a cluster of AOA, and TDOA
agents. The standard deviation of the TDOA measurement
error in this simulation is set at 7 × 10−7s and the standard
deviation of the AOA error was set at a realistic value of 0.02
radians. The true target position is at (93km,63km). Figure
6 shows the cluster-level world model for AOA and TDOA
agents after a total of 30 measurements have been taken along
the respective flight paths. The peak in this model shows
the most likely position of the emitter. Figure 7 shows how

Figure 6. The cluster-level world model for AOA and TDOA agents after a
total of 30 measurements have been taken along the respective flight paths

accurately each agent can independently geolocate the emitter
using the average rms position error as a metric. In this figure,
the average rms error is plotted as a function of the TDOA
and AOA measurements taken as the platforms move along
their respective flight paths. In order to obtain the average rms
error the simulations were repeated 50 times and the average
taken. It is clear for this scenario that TDOA measurements
generally provide a more accurate position estimate. However,
it should be noted that the precise results of rms position error
are strongly dependent upon the platform/emitter geometry,
and hence the scenario, because this affects the GDOP. This
is true for all the results presented in this paper.

Figure 8 shows the benefit of fusing the TDOA and AOA
measurements for both weighted and unweighted cases and
the results are compared with the case for TDOA-only emitter
geolocation. Two observations can be made. First, fusion of the
measurements significantly improves the positional accuracy
of the geolocation algorithm. Second, the impact of weighting
is also clear because the weighted result tends to be much
more accurate in terms of rms error.

Figure 9 shows the effect of fusing FDOA with TDOA
and AOA for a similar scenario to the previous case. In this
case the platforms travelling North are now able to perform
TDOA and FDOA measurements so that we now have TDOA
agents, FDOA agents and AOA agents. The figure, which
is taken for thirty AOA, TDOA and FDOA measurements,
shows the cluster-level world model for this situation. It is
clear that adding the FDOA measurements ultimately results
in improved positional accuracy, compared with the AOA and
TDOA result of figure 6. This is indicated by the very sharp
peak in the cluster-level world model1.

Figure 10 quantifies the results of figure 9 using the rms
positional error as the metric. This figure shows quite clearly
how both weighted and unweighted fusion improves the posi-
tional accuracy of emitter location relative to emitter location
by just one type of agent. It is found that after about 30

1This is not always the case when the number of measurements is relatively
few.
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Figure 7. Effect of number of measurements on the average rms positional
error. In this case each agent separately geolocates. Agent 1 is TDOA agent,
Agent 2 is AoA agent

      


































Figure 8. Effect of number of measurements on the average rms positional
error, for both unweighted and weighted fusion of AoA and TDOA agents

measurements, the weighted measurements are more accurate
than the unweighted measurements, for this scenario.

IV. CLUSTERED AGENT DATA FUSION

Because the Hough Transform provides a unified environ-
ment for the local own-world models of the agents as well as
the cluster-level model of the clustered agents, it is possible to
apply the same method of weighted data fusion, as described
above, at a higher level where there are several clusters of
agents.

In this case, the Agents within each cluster generate a
cluster-level world model for that cluster and this is used to
obtain the weight, wclusteri

for that cluster (assumed here to
be the ith). These weights are used to weight the cluster-level
world models. The overall model is the weighted combination
of cluster-level world models, given by:

Amulti =
1

wcluster1

Acluster1
+ · · ·

1

wclusteri

Aclusteri
(11)

The scenario in figure 11 has been set up in order to illustrate
this. Here, three Unmanned Aerial Vehicles (UAVs) are used,

Figure 9. The cluster-level world model for AOA, TDOA and FDOA agents
after a total of 30 measurements have been taken along the respective flight
paths

      











































Figure 10. Effect of number of measurements on the average rms positional
error, showing effect of both unweighted and weighted fusion for AOA, TDOA
and FDOA Measurements

       
































 

Figure 11. Scenario for cluster-level data fusion, using two clusters,
illustrated as rectangles.
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Figure 12. Average RMS error over 50 simulations for the scenario shown
in figure 11 for cluster 1

      





































Figure 13. Average RMS error over 50 simulations for the scenario shown
in figure 11 for cluster 2. Cluster 2 has a better geometry of the agents and
thus can converge quicker to a true target position

as in the previous scenario, and form cluster 1. In this cluster,
two UAVs fly North and follow a wavy path, whilst one UAV
flies East. The North flying UAVs act as a TDOA agent and
the East flying UAV acts as an AOA agent. In addition, three
more UAVs are added to the scenario. One flies in a tight
circular path, a second flies in an oval racetrack path whilst
the third flies generally in an Easterly direction. The UAV
flying along the oval path takes AOA measurements, with an
rms error of 0.02rad whilst the other two platforms act as a
TDOA agent with an rms error of 10−7s timing error. Each
cluster has good communications so that agents within that
cluster can fuse their results as described above. However,
communications between clusters is sporadic. This means that
each cluster carries out individual cluster-level fusion, and the
clusters can only fuse their cluster levels together when the
communications between them is assumed to be good.

Figure 12 and figure 13 show the effect of using two clusters
to geolocate a single emitter. Figure 12 represents the rms error
of the emitter position for Cluster 1 and figure 13 shows the

rms error for Cluster 2. In each figure, the rms positional error
is plotted as a function of the number of measurements made
in each cluster. This forms the cluster-level world model (this
is shown as the red solid line in figures 12-13). Only after this
model has been created by each cluster are the two cluster
models fused to form a high level model.

The result of fusing the weighted cluster-level models
is shown as the red stars in both figures. It is clear that
the weighted high-level world model has a much higher
accuracy than the weighted cluster-level models for either
cluster. Furthermore, the use of cluster level fusion results in
a much faster ‘convergence’ of the rms error as a function
of number of measurements. The significant improvement in
emitter geolocation performance by adopting a cluster-level
fusion strategy is most certainly due to the effect of minimising
the effect of GDOP by using different ‘look’ directions for
each cluster even though the fusion at this level takes place
relatively infrequently.

V. CONCLUSION

The paper [8] considered the case where all the agents
were constrained to operate within a single cluster due to
restrictions placed on the information exchange by the wireless
communications network that they shared. In this paper, we
have taken the concept of cognitive agents one step further
where agents naturally form multiple clusters. Each cluster is
assumed to consist of multiple self-aware agents that forms a
fusion hierarchy: each agent is able to geolocate individually,
clusters of agents can refine the emitter position using fusion
and clusters of agents can further refine the position estimate
by taking advantage of the different view of the target by
each cluster. In this paper, the benefits of providing fusion
between clusters of self-aware agents has been examined and
the advantages of the clustered (hierarchical) agent-based data
fusion has been clearly demonstrated.
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Abstract— This paper considers the use of the Hough Trans-
form image processing method applied to the problem of agent-
based multi-platform, multi-sensor emitter geolocation. In this
paper, improved geolocation is obtained through the fusion of
three different types of measurement: angle of arrival, time
difference of arrival and frequency difference of arrival. One
of the main aims of this paper is to introduce a novel method
of obtaining the weights for optimal combining of the different
types of measurement during fusion. Comparative results of the
new method obtained by simulation are presented.
Keywords: Emitter geolocation, Agent-based fusion,
Hough Transform

I. INTRODUCTION

In earlier papers [1] [2] [3], a new method of emitter
geolocation was presented based on image processing tech-
niques rather than the more usual classical methods based on
triangulation and hyperbolic location [4] or statistical methods
[5] [6] [7]. The new method is based on the Generalized Hough
Transform (GHT) and one of its key features is that it is able
to fuse different types of measurement data (such as angle
of arrival measurements (AOA) and time difference of arrival
measurements (TDOA)) by transforming them into conditional
probabilities and storing them in a unified parameterized space.
Thus, they can then be merged easily.

This paper has two main aims. First, the algorithm given in
[2] is extended to include fusion of Frequency Difference of
Arrival (FDOA) measurement data with AOA and TDOA data.
Second the algorithm is improved by weighting each method
of emitter geolocation prior to fusion and the paper presents
a novel method of providing the weights.

The advantage of adding FDOA measurements is that they
produce emitter location estimates whose error ellipse may lie
in a different direction to the error ellipses of the other two
methods. Consequently, it is possible to minimize the effect
of geometric dilution of precision (GDOP) by suitable fusion
of the different types of measurement data.

When fusing different types of data, it is usual to weight the
contributions to the estimate according to the accuracy of the
measurements. This is certainly the case with the maximum
likelihood method [6]. However, for the case of a non-linear
problem, such as emitter geolocation, there is the additional
factor of the GDOP that must be taken into account. Here we

propose a method of weighting that includes the effect that
the measurement errors have on the position estimate (i.e. the
weight we derive includes the effect of GDOP).

In this paper we assume that it is possible to extract
TDOA and FDOA measurements from pairs of platforms using
appropriate signal processing equipment. The bandwidth of
this equipment is optimized to either the TDOA measurement
or the FDOA measurement, since they have different require-
ments [8]. It is also assumed that in order to make these
measurements, broadband data links may be needed between
the platforms. AOA measurements are assumed to be made
using a third DF receiver, as described below.

II. USE OF THE GENERALIZED HOUGH TRANSFORM FOR
EMITTER GEOLOCATION

A. Adaptation of the Generalized Hough Transform
The Generalized Hough Transform is a transformation of

points from the input space, referred to as the feature space
(FS), into curves in parameter space (PS) that can be used for
the detection of geometric patterns. This method is based on
the fact that all points from a straight line (say) positioned in
FS can be mapped to a single point in PS. The GHT can be
represented by the following algorithm:

1) A fixed grid representing the parameters (x, y) that need
to be estimated is created

2) At each point on the grid, the voting function is evaluated
using the likelihood that the estimated emitter position
is at (x, y) given the measurement β, p(x, y|β), and then
accumulated in an array, A:

A(x, y) =
1
L

L∑

l=1

p(x, y|βl) (1)

where βl is the lth measurement of a total L.
3) The estimate is taken as the grid position corresponding

to the peak accumulated likelihood

B. Angle of arrival
Consider a 2D scenario with M receivers (that may be

mobile) and one stationary radio emitter. Assume that the
receivers can obtain the AOA of the emitted signal using an
antenna array and also assume that the measurement errors
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in the AOA are Gaussian (although other distributions can be
accommodated easily). The voting function can be defined in
terms of the conditional pdf, p(x, y|θi), of the emitter being
located at some point (x, y)) within the search space given
the measurement θi. This conditional probability for the AOA
measurements has the form:

p(x, y|θi) =
exp

(
− (ξ−θi)

2

σ2
θi

)

√
2πσθi

(2)

where θi is the measured angle at the ith receiver and ξ is
the calculated angle from the ith receiver at point (xri , yri)
to the point (x, y). σθi defines the standard deviation of the
AOA measurement error for that receiver.

Although the point (x, y) could lie anywhere within the
search space, in practice, the search space is split into a regular
grid and (x, y) is constrained to lie at one of the grid points
and (2) is evaluated at each of these grid points. Assuming
that multiple measurements are made at each receiver, the pdf
is evaluated for each measurement for all receivers. In this
method, the pdfs due to each measurement are accumulated
as follows:

AAOA(x, y) =
1
M

M∑

m=1

p(x, y|θm) (3)

where M represents the total number of measurements made.
This accumulated pdf now represents the voting array for the
Hough Transform. As an example, consider two stationary re-
ceivers located at (20km,10km) and (20km,30km) respectively
and a single emitter located at (60km,80km). At each receiver a
single AOA measurement was taken and the standard deviation
of each measurement due to the effect of DF receiver noise
was taken as σθ = 0.02 radians. The corresponding Hough
Transform space for these AOA measurements is shown in
Fig. 1. The z axis of this figure is the accumulated likelihood
AAOA. The maximum of the Hough Transform space corres-
ponds to the estimated position of the emitter.

C. Time difference of arrival
The following illustrates the Hough Transform method for

the case of emitter geolocation using time difference of arrival
(TDOA). Assume that we can obtain the TDOA between two
spatially separated receivers, r1 and ri using signal cross-
correlation, or some other delay-estimation technique, where
r1 represents the first receiver, and ri is the ith receiver for
index i = 2, 3, ...,M . The range of the emitter to the ith
receiver is:

Ri =
√

(xri − x)2 + (yri − y)2 (4)

where (x, y) is the emitter location and (xri , yri) is the known
location of the ith receiver. The range difference between
receiver Ri and receiver R1 is:

cτi,1 = Ri −R1

=
√

(xri − x)2 + (yri − y)2

−
√

(xr1 − x)2 + (yr1 − y)2 (5)

Fig. 1. Hough Transform space for AOA-only measurements

where, τi,1 is the measured TDOA between the ith receiver
and receiver 1 and c is the velocity of light.

The pdf of the emitter location for this case is given by:

p(x, y|τi,1) =
exp

(
− (Ri,1−cτi,1)

2

2σ2
r

)

√
2πσr

(6)

where Ri,1 is the difference between the range of a particular
point on the grid to receiver 1 and the range from the same
grid point to receiver i and σr is the range error for this
measurement. The range error is dependent upon the error in
the time difference of arrival measurement, σTDOA, and the
geometric dilution of precision (GDOP). According to [8] the
range error for a single TDOA measurement is given by:

σr =
cσTDOA

2sin(Θ
2 )

(7)

where the numerator represents the timing measurement error
and the denominator is the GDOP. Θ is the angle subtended
between the two lines of position from receiver 1 to the emitter
and receiver i to the emitter, respectively. There are a number
of different theoretical approximations for σTDOA depending
upon the assumptions made regarding the SNR of the received
signal [4]. For good SNR conditions it is common to assume
that the standard deviation of the timing error is given by [4]:

σTDOA ≈
1

W
√

SNR
(8)

where W is the noise bandwidth of the TDOA receiver. Using
(8), the range error becomes:

σr =
c

2Wsin(Θ
2 )
√

SNR
(9)

Using the conditional pdf (6), the voting array (accumulator)
for the Hough Transform can be built using:

ATDOA(x, y) =
1
L

L∑

l=1

p(x, y|τl,1) (10)
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Fig. 2. Hough Transform space for TDOA-only measurements

where L represents the actual number of TDOA measurements
taken.

As an example, consider the case of emitter geolocation
using three stationary receivers. These are located at: (20km,
10km), (20km, 75km), (60km, 10km). The emitter is located
at (40km, 40km). In the simulation, it is assumed that the
bandwidth of the received signal is W = 1MHz and the
SNR +3dB, leading to a value for σTDOA = 7 × 10−7s.
Only two TDOA measurements are taken: (i) between receiver
1 and receiver 2 and (ii) between receiver 1 and receiver
3. The resulting Hough Transform space due purely to the
provided TDOA information is shown in Fig 2, where the
z axis represents ATDOA. The dominant peak in the Hough
Transform space denotes the likely emitter position.

D. Frequency difference of arrival

The following illustrates the Hough Transform method for
the case of emitter geolocation using frequency difference
of arrival (FDOA). Assume that we can obtain the FDOA
measurement fdi between the two spatially separated receiv-
ers, r1 and ri using a Doppler receiver of bandwidth B. The
individual Doppler shifts at r1 and ri are given by:

D1 = −f0

c

vxr1
(x− xr1) + vyr1

(y − yr1)√
(x− xr1)

2 + (y − yr1)
2

(11)

Di = −f0

c

vxri
(x− xri) + vyri

(y − yri)√
(x− xri)

2 + (y − yri)
2

(12)

The pdf of the emitter location for this case is given by:

p (x, y|fdi) =
exp

(
− (Di−D1−fdi

)2

σ2
fd

)

√
2πσfd

(13)

Fig. 3. Hough Transform space for FDOA-only measurements
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Fig. 4. Scenario for FDOA for emitter geolocation

The resulting accumulator array for N measurements is given
by:

AFDOA(x, y) =
1
N

N∑

m=1

p (x, y|fdi) (14)

Fig. 3 shows the ability of two moving platforms to geo-
locate an emitter, where the z axis represents the accumulated
likelihood, AFDOA. In this case, the two platforms of interest
are moving North at 40m/s according to a wavy path, as
described in Fig. 4; where σfd = 12mHz is taken from [4]
as a Cramer-Rao lower bound value for B = 25kHz with an
integration time T = 1s and SNR = +3dB. In this case 25
measurements were used, starting at the bottom of the path
and terminating at the top of the path.
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III. FUSION OF AOA AND TDOA WITH FDOA
MEASUREMENTS

Because the sensor data has been transformed into condi-
tional probabilities and are now in a unified parameterized
space, irrespective of the type of measurement, it is possible
to merge the TDOA sensor data with the AoA sensor data.

A(x, y) =
1
L

L∑

l=1

p(x, y|τl,1) + (15)

1
M

M∑

m=1

p(x, y|θm) +

1
N

N∑

m=1

p(x, y|fdi)

Fig. 5 shows the ability of three moving platforms to geolocate
an emitter according to the scenario shown in Fig. 6. In Fig.
6, the dots indicate the paths of the three platforms, the large
cross indicates the true target position at (92km, 62km). In
this case, the two platforms moving North at 40m/s according
to a wavy path are able to take twenty five TDOA and FDOA
measurements, whereas the platform moving East at 40m/s is
able to take twenty five AOA measurements only. The standard
deviation of the TDOA measurement error in this simulation
is set at 7×10−7s and the standard deviation of the AOA error
was set at a realistic value of 0.02 radians and the standard
deviation of the FDOA measurement was set at 12mHz. This
set of results shows how it is possible to fuse three different
measurement types using the Hough Transform, with the very
sharp peak in the accumulated likelihood function giving the
estimated emitter position.

As well as providing the scenario, Fig. 6 shows the effect
of running the simulations several times. The small triangles
indicate the estimated position for five different runs of the
simulation for AOA-only measurements, and it is clear that
there is a large spread in the position estimate. The squares
show the position estimates for TDOA-only measurements,
also for five simulation runs. Similarly, the diamonds show
the position estimates for FDOA-only and the asterisks show
the fused results.

In the next section we show how the geolocation accuracy
can be improved by weighting the contributions to the accu-
mulator array from the AOA, TDOA and FDOA measurements
in (15).

IV. A METHOD OF WEIGHTED FUSION

When fusing different measurement types, it is usual to
weight the individual contributions of the measurements ac-
cording to their measurement error [6]. However, for emitter
geolocation, the problem is extremely non-linear and the effect
of the measurement errors on the position error is augmented
by the GDOP for that emitter/sensor platform scenario. It is
important to recognize that each type of measurement (AOA,
TDOA and FDOA) provide their own, different, contributions
to the GDOP and simply weighting according to measurement

Fig. 5. Hough Transform space for fusion of AOA, TDOA and FDOA
measurements
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Fig. 6. Scenario for fusion of AOA, TDOA and FDOA measurements

error does not represent the true impact of the error on the
positional accuracy of the emitter position estimate.

In this section, we propose a novel form of obtaining the
weights, where the aim is to compensate for the different
contributions to the emitter position error from each of the
different measurement types according to their GDOP, for that
scenario.

A(x, y) =
wTDOA

L

L∑

l=1

p(x, y|τl,1) + (16)

wAOA

M

M∑

m=1

p(x, y|θm) +

wFDOA

N

N∑

m=1

p(x, y|fdi)

where, wTDOA, wAOA and wFDOA are the weights for the
three types of measurement which are calculated according to
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55%-75% of the peak value, highlighting the area of the 75% contour

the impact that GDOP has on them. This is achieved directly
from the accumulated pdfs of the Hough Transform.

For example, the accumulated pdf for a particular measure-
ment type, such as TDOA, given by (10) is first normalized by
its peak value and then generated as a contour plot, as shown
in Fig. 7 for several contours in the range 55%-75%. We then
threshold this contour plot, (we have chosen this threshold to
be set at 75% of the maximum). The area contained within this
threshold contour, STDOA, is then obtained. This is repeated
for the case of the AOA measurements whose accumulated
pdf is given by (3) and the FDOA measurements whose
accumulated pdf is given by (14). The areas contained within
the respective contours are: SAOA and SFDOA. It will be
clear that the larger the area of the contour, the greater the
contribution of these measurements to the positional error and
hence a smaller weight is required.

The weights are given by:

wAOA =
Stot

SAOA
(17)

wTDOA =
Stot

STDOA
(18)

wFDOA =
Stot

SFDOA
(19)

where Stot is the area of the total search space.

V. AGENT-BASED FUSION

Agent-based systems are regarded as a new paradigm which
provide a novel approach to sensor fusion. Here, we apply the
concept of agents to the problem of emitter geolocation using
the Hough Transform space as the model of the environment
where the common goal of the agents is the geolocation of the
emitter. In order to cooperate in the pursuit of this common
goal, these agents use the ability of the Hough Transform

method to obtain the weights of the measurements in accord-
ance with their accuracy, as described in the previous section,
to self-weight their own measurements and hence obtain their
own contribution to their collaborative fused estimate and
communicate this to the other agents or central control (i.e.
they have the property of self-awareness).

In this paper, we relate the type of measurement taken
to be an agent. For example, two platforms may be able to
take both TDOA measurements and FDOA measurements and
this corresponds to the case where there are two agents: one
capable of geolocating using TDOA measurement and one
capable of geolocating from FDOA measurements. A third
agent geolocates using AOA. In the next section, we show
how agents can geolocate independently and collaboratively.

VI. RESULTS

In order to illustrate the new method consider the scenario
shown in Fig. 8. In this scenario, two platforms are moving
North at 40m/s according to a wavy path and they are able to
take several TDOA measurements (Agent 1) along this path,
whereas the platform moving East at 40m/s is only able to
take AOA measurements (Agent 2). The standard deviation
of the TDOA measurement error in this simulation is set at
7 × 10−7s and the standard deviation of the AOA error was
set at a realistic value of 0.02 radians. The true target position
is at (92km,62km). Also shown in this figure are the effects
of running the simulations a number of times on the estimated
emitter position. Here, the triangles represent the result of
using AOA measurements only, the square show the effect of
using TDOA measurements only and the asterisks the effect
of fusing the different measurements.

Fig. 9 shows how each agent can geolocate the emitter
independently using the average rms position error as a metric.
In particular, the figure shows the effect of the number of
measurements on the the average rms error as the platforms
move along their respective flight paths. In order to obtain
the average rms error the simulations were repeated 50 times
and the average taken. It is clear for this scenario that TDOA
measurements generally provide a more accurate position
estimate.

Fig. 10 shows the benefit of fusing the TDOA and AOA
measurements for both weighted and unweighted cases. Two
observations can be made. First, fusion of the measurements
significantly improves the positional accuracy of the geoloca-
tion algorithm. Second, the impact of weighting is also clear
because the weighted result tends to be much more accurate
in terms of rms error. It should be noted that the precise
results of rms position error are strongly dependent upon the
platform/emitter geometry, and hence the scenario, because
this affects the GDOP.

Fig. 11 shows the effect of fusing FDOA with TDOA and
AOA for the scenario of Fig. 8. In this case the platforms
travelling North are now able to perform TDOA and FDOA
measurements. It is clear that adding the FDOA measurements
ultimately results in improved positional accuracy, although
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this is not immediately the case when the number of measure-
ments is relatively few. The effect of weighting is also shown.
It is found that after about 30 measurements, the weighted
measurements are more accurate than the unweighted meas-
urements, for this scenario.

VII. CONCLUSIONS

This paper has shown how the generalized Hough Transform
can be used to fuse AOA, TDOA, and FDOA measurements.
In particular, it has introduced a novel method of weighting the
individual sets of measurements according to the impact that
they have on the positional error rather than simply according
to the measurement error. The results have shown how using
weighted fusion has a beneficial effect on reducing the error
of the position estimate.
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Abstract— This paper compares the performance of RF emitter
geolocation algorithms based on the Hough Transform and the
particle filter. Three Hough Transform methods are considered:
(a) the generalized Hough Transform, (b) the Randomized Hough
Transform and (c) the Hybrid Hough Transform. In each case,
the emitter is assumed to provide a signal from which time
difference of arrival measurements can be made by pairs of
mobile receiving platforms, such as fixed-wing UAVs or fast jets as
well as rotorcraft. Typical emitters include cellphones and other
types of communication equipment. The paper shows that the
Hough Transform outperforms the particle filter both in terms
of the RMS positional error and the computational processing
requirements. 1

I. INTRODUCTION

Location of communication emitters has always been of
vital importance in military applications and it is now gaining
in importance in civilian applications such as: homeland
security, summoning the emergency services and the provision
of location-based value-added services. Traditional methods of
passive RF emitter location are often based on geometrical
techniques such as triangulation and hyperbolic location [1].
Recently, a number of statistical methods have been proposed
to provide improved accuracy [2][3][4]. In this paper we
examine the use of time difference of arrival (TDOA) data
obtained from multiple mobile platforms, such as unmanned
airborne vehicles (UAV), fast jets and rotorcraft, that are fused
using either the Hough Transform (HT) [5] [6] or the particle
filter [7] [8] to provide the position estimate.

The Generalized Hough Transform (GHT) [9] is an image
processing technique for arbitrary shape detection and Alexiev
and Bojilov [10] have proposed it for the elimination of
ghost detections in target tracking using multi-sensor data
fusion. Others [11] have used it for self-positioning of robots
using map matching. Here, we propose the novel application
of the Generalized Hough Transform to the task of emitter
geolocation.

Particle filters (also known as sequential Monte Carlo meth-
ods) are estimation techniques based on simulation used to
estimate the parameters of Bayesian models.

1This work was funded by the Data and Information Fusion Defence
Technology Centre, UK, Project 12.3.2

The paper is arranged as follows. In Section II, the use of
three different variants of the Hough Transform to estimate
the position of the emitter from the TDOA data is provided.
In Section III, the use of the particle filter as a means of
estimating the emitter position from TDOA data is given and
Section IV presents the emitter location scenario that has been
used and provides the main results.

The essence of our paper is to compare whether the non-
Bayesian approach of the Randomized Hough Transform can
outperform the particle filter in terms of RMS positional error
and computational efficiency.

II. USE OF THE HOUGH TRANSFORM AND ITS VARIANTS
FOR EMITTER GEOLOCATION

A. Adaptation of the Generalized Hough Transform
The Hough Transform was patented in 1962 [12] as a

mathematical transformation of points from the input space,
referred to as the feature space (FS), into curves in parameter
space (PS) that can be used for the detection of geometric
patterns. This method is based on the fact that all points from
a straight line (say) positioned in FS can be mapped to a single
point in PS.

Let our sets of hypotheses exist in some coordinate frame-
work (an N-dimensional array). An event can occur within
this coordinate system and can indicate with its conditional
probabilities a set of hypotheses whose parameters are fixed
relative to the event. The conditional probability table of the
event can then also be considered as an N-dimensional array
centered on the event, where N is the dimensionality of the
hypothesis space. This array is called the voting array for
the event. It contains the logs of the normalized conditional
probabilities and so each event will simply add its own voting
array into the accumulator representing the hypothesis space.

Imagine that the hypothesis space is a particular point
located in two dimensions. In this case, the hypothesis space
is then a 2D array of numbers representing the conditional
probability of the event. In this application, the events that are
of interest are the observations (i.e. the measurements of the
parameters of the source). Associated with each measurement
is a probability that the emitter is located at a particular point
(x, y) within the search space. This is equivalent to assigning

1-4244-0871-7/07/$25.00 ©2007 IEEE
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the event to a particular part of the hypothesis space. We
can obtain the conditional probability voting array for each
measurement by placing the emitter into each position in turn
and calculating the conditional probability and adding these
values to the voting array. The Generalized Hough Transform
(GHT) can be represented by the following algorithm:

1) A fixed grid representing the parameters (x, y) that need
to be estimated is created

2) At each point on the grid, the likelihood of the estimate
being (x, y) given the measurement β, p(x, y|β), is
evaluated and accumulated in an array, A:

A(x, y) =
1
L

L∑

l=1

p(x, y|βl) (1)

where βl is the lth measurement of a total L.
3) The estimate is taken as the grid position corresponding

to the peak accumulated likelihood
The following illustrates the Hough Transform method for

the case of emitter geolocation using time difference of arrival
(TDOA). Assume that we can obtain the TDOA between two
spatially separated receivers, r1 and ri using signal cross
correlation or some other delay-estimation technique, where
r1 represents the first receiver, and ri is the ith receiver for
index i = 2, 3, ...,M . The range of the emitter to the ith
receiver is:

Ri =
√

(xri − x)2 + (yri − y)2 (2)

where (x, y) is the emitter location and (xri , yri) is the known
location of the ith receiver. The range difference between
receiver Ri and receiver R1 is:

cτi,1 = Ri − R1

=
√

(xri − x)2 + (yri − y)2

−
√

(xr1 − x)2 + (yr1 − y)2 (3)

where, τi,1 is the measured TDOA between the ith receiver
and receiver 1 and c is the velocity of light.

The pdf of the emitter location for this case is given by:

p(x, y|τi,1) =
exp

(
R2

i,1−c2τ2
i,1

2σ2
r

)

√
2πσr

(4)

where Ri,1 is the difference between the range of a particular
point on the grid to receiver 1 and the range from the same
grid point to receiver i and σr is the range error for this
measurement. The range error is dependent upon the error in
the time difference of arrival measurement, σTDOA, and the
geometric dilution of precision (GDOP). According to [13] the
range error for a single TDOA measurement is given by:

σr =
cσTDOA

2sin(Θ
2 )

(5)

where the numerator represents the timing measurement error
and the denominator is the GDOP. Θ is the angle subtended
between the two lines of position from receiver 1 to the emitter
and receiver i to the emitter, respectively. There are a number

Fig. 1. Hough Transform space for TDOA-only measurements

of different theoretical approximations for σTDOA depending
upon the assumptions made regarding the SNR of the received
signal [1]. For good SNR conditions it is common to assume
that the standard deviation of the timing error is given by:

σTDOA ≈ 1
W

√
SNR

(6)

where W is the noise bandwidth of the receiver. Using (6),
the range error becomes:

σr =
c

2Wsin(Θ
2 )

√
SNR

(7)

Using the conditional pdf (4), the voting array (accumulator)
for the Hough Transform can be built using:

ATDOA(x, y) =
1
L

L∑

l=1

p(x, y|τl,1) (8)

where L represents the number of TDOA measurements taken
from the M receivers.

As an example, consider the case of emitter geolocation
using three stationary receivers. These are located at: (20km,
10km), (20km, 75km), (60km, 10km). The emitter is located
at (40km, 40km). In the simulation, it is assumed that the
bandwidth of the received signal is W = 1 MHz and the
SNR +3dB, leading to a value for σTDOA = 7 × 10−7s.
Only two TDOA measurements are taken - between receiver
1 and receiver 2 and receiver 1 and receiver 3. The resulting
Hough Transform space due purely to the provided TDOA
information is shown in Fig. 1. The dominant peak in the
Hough Transform space denotes the likely emitter position.

B. Randomized Hough Transform
Whereas the Generalized Hough Transform considers every

point on the grid of possible emitter locations, the Randomized
Hough Transform (RHT) examines a smaller subset of these
points based on probabilistic methods. Our implementation of
the Randomized Hough Transform works as follows.
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1) A number of samples representing points on the grid of
the parameterized space are generated randomly with a
uniform distribution

2) At each selected point on the grid, the likelihood corre-
sponding to each TDOA measurement is evaluated and
stored in an array as in (8)

3) The estimated emitter position is taken as the grid posi-
tion corresponding to the peak accumulated likelihood.

Because the likelihoods are evaluated at fewer grid positions
than for the Generalized Hough Transform the computational
time and storage requirements are reduced. However, because
the effective grid spacing is increased (albeit in a statistical
way), the accuracy of the method can be compromised.

When viewed in this way, it will be immediately apparent
that there are parallels between the Randomized Hough Trans-
form and the particle filter. However, it is worthy of comment
that whereas the particle filter uses a Bayesian approach, the
Randomized Hough Transform is non-Bayesian, as indicated
by (8).

The particle filter algorithm using multivariate resampling
is described in Section III

C. Hybrid Hough Transform

In this paper, we propose the use of a further variant of the
Hough Transform, which we call the Hybrid Hough Transform
(HHT), that is inspired by the particle filter algorithm and the
Multiresolution Hough Transform [14] [6]. The performance
of this algorithm will be shown in Section IV to be much
better than either the particle filter or the Randomized Hough
Transform, on which it is based.

The Randomized Hough Transform algorithm is modified
as follows:

1) A number of samples representing points on the grid of
the parameterized space are generated randomly with a
uniform distribution

2) At each selected point on the grid, the likelihood corre-
sponding to each TDOA measurement is evaluated and
stored in an array, as in (8)

3) The grid position (x, y) of the parameterized space
corresponding to the peak accumulated likelihood is
obtained

4) A fixed grid Generalized Hough Transform is performed
around (x, y) using a fixed tile size (for example 10×10
points in our case)

5) The estimate corresponds to the maximum of the up-
dated parameterized space, as shown in Fig. 2

III. EMITTER GEOLOCATION USING TDOA DATA WITH A
PARTICLE FILTER ESTIMATOR

The following illustrates the method for the case of emitter
geolocation using TDOA with a particle filter. As before, it
is assumed that the TDOA can be obtained between two spa-
tially separated receivers using the signal cross correlation or
some other delay estimation technique and that the equations
defining the problem are identical to equations (2) - (7).
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Fig. 2. Parameterized space of the Hybrid Hough Transform

The particle filter has been widely used for target tracking
and other applications, such as state or model estimation.
In this paper, the particle filter is applied to the problem
of geolocation of a radio emitter in multi-path conditions.
Although this application looks similar to target tracking, there
is a significant difference. In our case the state of the target
doesn’t change with time which means that a static framework
has to be applied, as highlighted in [15].

In order to implement the particle filter to estimate the state
vector representing the emitter position, [x̂, ŷ]T , using TDOA
measurements, the following algorithm was applied [7].

1) For the ith TDOA measurement, τ̃i,1, generate L par-
ticles, each with random position, (xpp , ypp) (for p =
1, · · ·L), drawn from the 2D search space with uniform
distribution.

2) Initialize the weight of each particle: w0(xpp , ypp) = 1
for p = 1 · · ·L

3) Evaluate the probability of the emitter being located at
each of the particle positions given the ith measurement,
p(xpp , ypp |τ̃i,1), using the likelihood equation (4)

4) Update the weights of all the particles:

wi(xpp , ypp) = wi−1(xpp , ypp) · p(xpp , ypp |τ̃i,1) (9)

and normalize it:

wi(xpp , ypp) =
wi(xpp , ypp)

∑L
p=1 wi(xpp , ypp)

(10)

for p = 1 · · ·L
5) Resample the indices of the particles using multinomial

resampling [7]
6) Make copies of resampled particles according to previ-

ous step
7) Resample the particles (described below)
8) Repeat from step 1 for next measurement
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Fig. 3. The distribution of weighted particles after the M th measurement
using multivatiate resampling for the particle filter

After all M measurements have been used, the estimated
emitter location (x̂, ŷ) corresponds to the mean position of
the particles.

A. Resampling
The resampling method generates new particles from a two-

dimensional Gaussian distribution with a mean centered on the
position, (xp, yp), of the survivor particle from the previous
measurement and with covariance matrix P. The resampled
particles are generated using:

x = SX + xpI; (11)

where x is the array of the particle position vectors, X is the
array of zero-mean normally distributed values, S = chol(P)T

is a matrix of scaling factors for x and y directions determined
by the covariance of the distribution (where chol is the
Cholesky factorisation of the covariance matrix of the bivariate
distribution of X), xp is the position vector of the survivor
particle from the previous measurement and I is a (1 × L)
unity matrix. It is usual for:

P =
[

0 1
1 0

]
(12)

Figure 3 shows the weighted particles after the M th mea-
surement using multivatiate (Gaussian) resampling.

IV. SIMULATION SCENARIO AND RESULTS

Fig. 4 shows a simplified scenario in which two UAVs are
used to geolocate a single transmitter, denoted as a circle at
(93km, 40km). The two UAVs can have arbitrary flight paths,
shown here with wavy paths. The speed of the platforms is
60m/s.

Fig. 5 shows the RMS error performance of three estima-
tors as a function of the number of TDOA measurements
taken. These were: the Generalized Hough Transform, the
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Fig. 4. Scenario of multiplatform emitter geolocation showing the flight
paths of 3 UAV platforms and the emitter of interest. The crosses show the
estimated emitter position

Randomized Hough Transform and the particle filter based
on [7]. In this figure, the x axis represents the number of
measurements taken and the y axis is an average root mean
square error over 500 simulation runs for a given number
of measurements. For this particular set of simulations the
number of particles for the Randomized Hough Transform and
particle filter were the same, N = 8450. This corresponded to
half the number of grid points used in the Generalized Hough
Transform. As expected, the RMS error tends to fall as the
number of measurements taken increases. It should be noted
that the RMS error for the Generalized Hough Transform and
the particle filter are very close, even though the particle filter
evaluates the position likelihood at half the number of grid
points than the Generalized Hough Transform.

However, the average computational time for the three
methods, as shown in Fig. 6 shows quite clearly that the
Generalized Hough Transform has a much lower computa-
tional overhead than the particle filter. Although the error
performance of the Randomized Hough Transform is worse
than for the Generalized Hough Transform, it offers the lowest
computational overhead. In Fig. 7, the number of particles
was adjusted so that the RMS error performance of the
particle filter and the Randomized Hough Transform were
approximately the same. In this case, the number of particles
used for the particle filter was 20% of the number of grid
points and 75% for the Randomized Hough Transform. Fig,
8, shows that the computational overhead for the particle filter
is still substantially more than for the Randomized Hough
Transform.

In considering these results, it should be noted that the mag-
nitude of the RMS position accuracy depends quite critically
on the relative position of the emitter to the platforms because
of the effect of GDOP and different platform/target scenarios
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Fig. 5. Average RMS positional error obtained over 500 simulations for
different number of measurements. For the Randomized Hough Transform
and the PF, the number of particles (N = 8450) was 50% of the total
number of grid points
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Fig. 6. Average computation time over 500 simulations for different number
of measurements for the different estimators

may produce better or worse RMS error, depending on the
GDOP but the trends across the three types of estimator remain
the same.

The foregoing has shown that the randomized Hough
Transform has a low computational overhead, but this is at
the expense of accuracy. In contrast, the Generalized Hough
Transform has a high accuracy. The Hybrid Hough Transform
provides the reduced computational overhead of the Random-
ized Hough Transform with the accuracy of the Generalized
Hough Transform and this is clearly shown in Fig. 9, which
compares the RMS positional accuracy of the three Hough
Transform methods and Fig. 10 shows the calculation time
for the three Hough Transform variants.

The results show that the computational overhead of the
Hybrid Hough Transform is slightly higher then Randomized
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Fig. 7. Average RMS positional error obtained over 20 simulations for
different number of measurements. For the particle filter N = 3380
(corresponding to 20% of the grid) and for the Randomized Hough Transform
N = 12675 (corresponding to 75% of the total number of grid points)
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Fig. 8. Average computation time over 20 simulations for different number
of measurements for the different estimators

Hough Transform but accuracy of the algorithm is almost
indistinguishable from the Generalized Hough Transform.

A. Bayesian Randomized Estimator
It is possible to construct a Bayesian estimator using a

similar approach to the Randomized Hough Transform in
which the accumulation of likelihoods by arithmetic addi-
tion is replaced by taking the product. Such an estimator
has been implemented here for comparison with the Hough
transform estimators. In this implementation of the Bayesian
Randomized estimator, no resampling is carried out on each
measurement update cycle. This must be contrasted with the
particle filter, where resampling is an important part of the
algorithm to prevent degeneracy. The consequence of this on
the performance of the Bayesian Randomized estimator will
be shown in this section. An example of degeneracy is shown
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Fig. 9. Average RMS error over 500 simulations, Hybrid Hough transform
using fixed grid 10 × 10 sizes
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Fig. 10. Average time obtained over 500 simulations for different number of
measurements for the same scenario. Hybrid Hough transform using 10× 10
fixed grid.

in Fig. 11, which shows the parameterized space after 55
measurements have been used.

The comparison of results are presented in Fig. 12. As
can be seen, the RMS positional error performance of the
Randomized Hough Transform and the Bayesian estimator
are identical. The performance of the two algorithms in
terms of computation time are shown in Fig. 13 and again,
the computational overhead is identical. However, it is clear
from Fig. 12 that the RMS positional error of the Bayesian
Randomized estimator starts to diverge with increasing number
of measurements, whereas the Randomized Hough Transform
and the Generalized Hough Transform continue to converge.
Although not shown here, other results for larger numbers of
measurements confirm that the RMS error performance of the
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Fig. 11. Parameterized space of the Bayesian Randomized estimator after
55 measurements, showing degeneracy
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Fig. 12. Average RMS positional error over 500 simulations for the
Randomized Hough Transform and Bayesian estimator using the same number
of particles (75% of the grid size used for the GHT)

Bayesian Randomized estimator diverges.
One of the advantages of the Hough Transform approach

to dealing with the accumulation of the likelihoods is that it
does not require reinitialization of the parameterized space on
each measurement update cycle, hence it can be used as both
a sequential and a batch estimator at the same time. However,
it is impossible to modify the Bayesian Randomized transform
in the same way and still have an improved accuracy.

In the same way that the Randomized Hough Transform was
modified to form the Hybrid Hough Transform, an attempt was
made to improve the accuracy of the Bayesian Randomized
estimator using a similar approach whereby a fixed grid search
was incorporated with the Bayesian Randomized estimator.
Fig. 14 compares the performance of this modified Bayesian
estimator with the three Hough Transform variants. It is clear
from this result that this approach does not lead to improved
results.

It is also possible to implement uniform resampling and
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Fig. 13. Average computational time over 500 simulation runs run for
the Generalized Hough Transform, Randomized Hough Transform and the
Bayesian Randomized estimator
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Fig. 14. Average RMS positional error obtained over 500 simulations for
different number of measurements for the Generalized Hough Transform,
Randomized Hough Transform, modified Bayesian Randomized estimator and
the Hybrid Hough Transform

reinitialization of the parameterized space before updating it
with each measurement. However it will lead to an algorithm
that is very close to a particle filter, the performance of which
has already been presented earlier.

V. CONCLUSIONS

In this paper we have compared five different geoloca-
tion algorithms. Three of these are based on the Hough
Transform,one on the particle filter and one on the Bayesian
Randomized estimator. After performing the comparisons un-
der identical conditions, it was found that whilst all five
estimators were able to geolocate the target successfully, there
were important tradeoffs between the positional accuracy of
the estimate and the computational overhead such that the
choice of the estimator may depend entirely on the application

rather than whether one estimator is more ’accurate’ than
another. In attempting to reduce the computational overhead
of the Generalized Hough Transform, the performance of the
Randomized Hough Transform has been obtained. Whilst it
is seen that the RMS positional error of the Randomized
Hough Transform is not as good as the Generalized Hough
Transform, the reduction in computational overhead is sub-
stantial. The Hybrid Hough transform, provides an excellent
compromise that results in an RMS error performance that is
indistinguishable from the Generalized Hough Transform, for
a computational overhead that is marginally worse that the
Randomized Hough Transform.

It was identified that there are many structural similarities
between the Randomized Hough Transform and the particle
filter, except that the latter uses a Bayesian approach and
the former is non-Bayesian. After examining these results, it
is clear that a non-Bayesian approach to emitter geolocation
using the Generalized or Hybrid Hough Transform is superior
to the two Bayesian estimators. For the case of the Bayesian
Randomized estimator, in particular, and the particle filter to
a lesser extent, it was observed that after a critical number of
measurements had been input into the estimator, the average
RMS positional error starts to grow, which is not observed for
any of the Hough Transform estimators.
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Abstract - This paper describes a novel source lo-

calization algorithm based on the Hough Transform

that allows different types of sensor data, such as

angle of arrival and time difference of arrival data

to be fused together by means of a transformation

into a consistent parameterized space. A particular

advantage of this method is that terrain data can also

be fused with the various types of sensor data to aid

accurate source localization.∗

Keywords: Emitter localization, data fusion, position

estimation, Generalized Hough Transform.

1 Introduction

Source localization of radio frequency (RF) emitters is
of vital importance in both civilian and military ap-
plications. Traditional methods of passive RF source
localization are often based on geometrical techniques
such as triangulation and hyperbolic location [1]. Re-
cently, a number of statistical methods have been pro-
posed that fuse several types of sensor data to pro-
vide improved accuracy. These include the use of the
least mean squares estimator (LMS) [2], the discrete
probability density function method [3], the likelihood
method [4] and the particle filter [5].

The Generalized Hough Transform [6] is an image
processing technique for arbitrary shape detection and
Alexiev and Bojilov [7] have proposed it for the elim-
ination of ghost detections in target tracking using
multi-sensor data fusion. Others [8] have used it for
self-positioning of robots using map matching. Here,
we propose the novel application of the generalized
Hough Transform to the task of source localization.

2 Adaptation of the Generalized
Hough Transform for Source
Localization

The Hough Transform was patented in 1962 [9] as a
mathematical transformation of points from the input
space, referred to as the feature space (FS), into curves

∗This work was funded by General Dynamics through DTC
DIF Project 12.3.2

in parameter space (PS) that can be used for the de-
tection of geometric patterns. This method is based
on the fact that all points from a straight line (say)
positioned in FS can be mapped to a single point in
PS.

Let our sets of hypotheses exist in some coordinate
framework (an N-dimensional array). An event can
occur within this coordinate system and can indicate
with its conditional probabilities a set of hypotheses
whose parameters are fixed relative to the event. The
conditional probability table of the event can then also
be considered as an N-dimensional array centered on
the event, where N is the dimensionality of the hypoth-
esis space. This array is called the voting array for the
event. It contains the logs of the normalized condi-
tional probabilities and so each event will simply add
its own voting array into the accumulator representing
the hypothesis space.

Imagine that the hypothesis space is a particular
point located in two dimensions. In this case, the hy-
pothesis space is then a 2D array of numbers repre-
senting the conditional probability of the event. In
this application, the events that are of interest are the
observations (i.e. the measurements of the parameters
of the source). Associated with each measurement is
a probability that the source is located at a particular
point (x, y) within the search space. This is equiva-
lent to assigning the event to a particular part of the
hypothesis space. We can obtain the conditional prob-
ability voting array for each measurement by placing
the source into each position in turn and calculating
the conditional probability and adding these values to
the voting array. This approach is described for two
different measurement techniques in the following sec-
tions.

2.1 Angle of arrival measurements

Consider a 2D scenario, with M receivers (that may be
mobile) and one stationary radio source. Assume that
the receivers can obtain the Angle of Arrival (AOA)
of the source emission using an antenna array and also
assume that the measurement errors in the AOA are
Gaussian (although other distributions can be accom-
modated easily). The voting function can be defined
in terms of the conditional probability density func-
tion (pdf), p(x, y|θi), of the source being located at
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Figure 1: HT space for AOA-only measurements

some point (x, y) within the search space given the
measurement θi. This conditional probability for the
AOA measurements has the form:

p(x, y|θi) =
exp

(
(ξ−θi)

2

2σ2
θi

)

√
2πσθi

(1)

where θi is the measured angle at the ith receiver and
ξ is the calculated angle from the ith receiver at point
(xri , yri) to the point (x, y). σθi defines the standard
deviation of the AOA measurement error for that re-
ceiver.

Although the point (x, y) could lie anywhere within
the search space, in practice, the search space is split
into a regular grid and (x, y) is constrained to lie at one
of the grid points and (1) is evaluated at each of these
grid points. Assuming that multiple measurements are
made at each receiver, in the usual way, the pdf is
evaluated for each measurement for all receivers. In
this method, the pdfs due to each measurement are
accumulated as follows:

AAOA(x, y) =
1
M

M∑

m=1

p(x, y|θm) (2)

where M represents the total number of measurements
made. This accumulated pdf now represents the voting
array for the Hough Transform. As an example, con-
sider two stationary receivers located at (20km,10km)
and (20km,30km) respectively and a single source lo-
cated at (60km,80km). At each receiver, a single AOA
measurement was taken and the standard deviation of
each measurement due to the effect of receiver noise
was taken as σθ = 0.02 radians. The corresponding
Hough Transform space for these AOA measurements
is shown in Fig. 1. The maximum of the Hough Trans-
form space corresponds to the estimated position of the
source. The localization error using this method is dis-
cussed in Section 4.

Within the context of the Hough Transform, the
combination of many weak constraints has generated a
stronger constraint, represented by the peak in the hy-
potheses space. The degree of constraint contributed

by an event (measurement) depends on how many dif-
ferent hypotheses it votes for (its specificity). For ex-
ample, if the event’s voting array consisted of sharp
peaks then this would correspond to a strong con-
straint. However, if the voting array is completely
uniform, corresponding to event voting equality for all
hypotheses, then it offers no constraint at all.

2.2 Time difference of arrival measure-
ments

The following illustrates the method for the case of
source localization using time difference of arrival
(TDOA). Assume that we can obtain the TDOA be-
tween two spatially separated receivers (using signal
cross correlation or other delay estimation technique,
for example). Referring all TDOAs to the first receiver,
which is assumed to be the first to receive the transmit-
ted signal, let the index i = 2, 3, ...,M unless otherwise
specified, (x, y) be the source location and (xri , yri) be
the known location of the ith receiver. The range of
the source to the ith receiver is:

Ri =
√

(xri − x)2 + (yri − y)2 (3)

and the range difference between receiver Ri and re-
ceiver R1 is:

cτi,1 = Ri −R1

=
√

(xri − x)2 + (yri − y)2

−
√

(xr1 − x)2 + (yr1 − y)2 (4)

where, τi,1 is the measured TDOA between the ith
receiver and receiver 1 and c is the velocity of light.

The pdf of the source location for this case is given
by:

p(x, y|τi,1) =
exp

(
R2

i,1−c2τ2
i,1

2σ2
r

)

√
2πσr

(5)

where Ri,1 is the difference between the range of a par-
ticular point on the grid to receiver 1 and the range
from the same grid point to receiver i, σr is the range
error for this measurement. The range error is depen-
dent upon the error in the time difference of arrival
measurement, σTDOA, and the geometric dilution of
precision (GDOP). According to [10] the range error
for a single TDOA measurement is given by:

σr =
cσTDOA

2sin(Θ
2 )

(6)

where the numerator represents the timing measure-
ment error and the denominator is the GDOP. Θ is the
angle subtended between the two lines of position from
receiver 1 to the source and receiver i to the source,
respectively. There are a number of different theo-
retical approximations for σTDOA depending upon the
assumptions made regarding the SNR of the received
signal [1]. For good SNR conditions it is common to
assume that the standard deviation of the timing error
is given by:

σTDOA ≈
1

W
√

SNR
(7)
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Figure 2: HT Space for TDOA-only measurements

where W is the noise bandwidth of the receiver,
whereas for low SNR the achievable timing error is
often given by [11]:

σTDOA ≥
√

3
8π2T

1
SNR

1√
f3
2 − f3

1

(8)

where T is the integration time used in the receiver
and W = f2 − f1. Using, for the sake of example, the
high SNR case given by (7), the range error becomes:

σr =
c

2Wsin(Θ
2 )
√

SNR
(9)

Using the conditional pdf (5), the voting array can be
built, as per the earlier case for the AOA measurements
(2) using:

ATDOA(x, y) =
1
L

L∑

l=1

p(x, y|τl,1) (10)

where L represents the number of TDOA measure-
ments taken from the M receivers.

As an example, consider the case of source localiza-
tion using three stationary receivers. These are located
at: (20km, 10km), (20km, 75km), (60km, 10km). The
source is located at (40km, 40km). In the simulation,
it is assumed that the bandwidth of the received sig-
nal is W = 1 MHz and the SNR +3dB, leading to a
value for σTDOA = 7 × 10−7s. Only two TDOA mea-
surements are taken - between receiver 1 and receiver
2 and receiver 1 and receiver 3. The resulting Hough
Transform space due purely to the provided TDOA in-
formation is shown in Fig. 2. Again, the dominant
peak in the Hough Transform space denotes the likely
source position.

2.3 Fusion of AOA with TDOA Mea-
surements

Because the sensor data has been transformed into con-
ditional probabilities and are now in a unified parame-
terized space, irrespective of the type of measurement,

Figure 3: HT space for fusion of AOA with TDOA
measurements

it is possible to merge the TDOA sensor data with the
AOA sensor data.

A(x, y) =
1
M

M∑

m=1

p(x, y|θm) +
1
L

L∑

l=1

p(x, y|τl,1) (11)

The results of fusing the two TDOA measurements de-
scribed in the previous section with one AOA measure-
ment from the receiver at (20km, 75km) are shown in
Fig. 3. The standard deviation of the TDOA mea-
surement error in this simulation is set at σTDOA =
7×10−7s and the standard deviation of the AOA error
is set at a realistic value of π/16 radians. The strong
single peak in the Hough transform space, coincides
with the maximum likelihood of the source position
and it is clear how the additional AOA data has pro-
vided further information to improve the accuracy of
localizing the source position.

2.4 Fusion of sensor data with terrain
data

The new HT method is also very convenient for adding
terrain data. In this case, the terrain data is first
processed to give a first order likelihood that the emit-
ter can be located at a particular map reference on the
basis of a priori knowledge. This terrain-based likeli-
hood map is then transformed into the Hough trans-
form space where is is merged with the Hough trans-
forms due to TDOA data and the AOA data. For
example, in Fig. 4 the likelihood that our target is not
likely at a particular point on the map is shown as the
darkened areas. The influence of this additional infor-
mation on the Hough Transform space, and hence the
likelihood of location the emitter is shown in Fig. 5

3 Complexity Reduction of the
Hough Transform

The complexity of the Hough transform depends on
the grid size and is of order (n × m) where n and m
are the grid dimensions. However, it is possible to
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Figure 4: Illustration of map data showing regions
where the source is unlikely to be (increasing level of
grey)

perform a real-time Hough transform using real-time
content addressable memory [12] or to use optimized
Hough Transform algorithms, such as the Randomized
Generalized Hough Transform [13]. It is also possi-
ble to reduce the computational load by dividing the
parameterized space into overlapping ‘tiles’ that pro-
vides a multi-resolution Hough transform [14], and this
approach was used here. In this method, the parame-
terized space is first divided into a coarse grid and the
likelihood function is evaluated for this grid. The max-
imum for this coarse grid is then obtained and this is
used to refine the search space to a region of 2×2 tiles
centered on the tile containing the maximum. This
ensures that the new search space overlaps the neigh-
bouring tiles of the previous search and still contains
the wanted maximum when subject to a higher resolu-
tion search. For this new search space, the grid size is
refined to provide a much higher resolution. Clearly,
this method can be iterated several times, achieving
progressively higher spatial resolution at each stage.
For example, if the original parameterized space had
an n× n grid, the computational complexity of calcu-
lating the likelihood is O(n2) for the standard Hough
transform. However, for the multi-resolution Hough
Transform, let the number of grid points for the first it-
eration be scaled down by a factor of p. In this case, the

Figure 5: Fusion of TDOA data with map data
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Figure 6: An example of the use of the Multi-resolution
HT for emitter localization using TDOA measurements

order of complexity for the first iteration is O
(

n×n
p

)
,

whilst the order of complexity for the second iteration
O

(
4n×n

p

)
, where in this case, the factor four arises be-

cause for the second iteration we choose a total of four
tiles centered on the peak obtained from the first itera-
tion. Consequently, for just two iterations, the overall
order of complexity is O

((
n×n

p

)
+

(
4n×n

p

))
for the

same overall resolution.
An example of the use of the multi-resolution Hough

transform method is shown in Fig. 6. In this case, the
source is located at (4.13km, 4.13km) (marked with a
cross) within a search space of (10km, 10km) and the
platforms are located at (1km, 2km), (1km, 6km) and
(2km, 7.5km) (marked with circles). The number of
grid points used for the first iteration was 100 × 100
(i.e 10,000 tiles with a separation between grid points
of 0.1km). For the second iteration, an area equivalent
to 2×2 tiles centered on the grid with the maximum in
the accumulator was used, and each tile was split into
100 × 100 grid points (corresponding to a separation
between grid points of 1m).

4 Comparison with CRLB

The Cramer-Rao inequality sets a lower bound for the
variance of any unbiased parameter estimations. Hence
it is of interest to compare the performance of the
Hough Transform algorithm with the optimum. Here,
one of the forms of the CRLB derived in [15] is used:

tr(J−1) = (cσTDOA)2tr
[
(GGT )−1

]
(12)

where

G = ∇RT
ij = [ḡij .....],

ḡij = ḡi − ḡj ,

ḡi = ∇Ri(p̄) =
p̄− q̄i

||p̄− q̄i||

Here, p̄ represents source coordinates in vector form
and q̄i represents the coordinate vector of the ith re-
ceiver. Clearly, ḡi is a unit length vector with ||ḡi|| = 1.
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Figure 7: Moving platform scenario

It points from receiver i to the emitter. G depends on:
(i) the source position (ii) receiver position and (iii)
the set of receiver pairs which are used for source lo-
calization.

The scenario that is used here to compare the per-
formance relative to the CRLB is one where two mo-
bile receivers are used to geolocate a fixed target using
TDOA. Fig. 7 shows the simulation scenario in which
the source is denoted as a cross at (1900m, 1400m), and
the two platforms (moving with a wavy path) are de-
noted as circles. Measurements are taken every second
for 50 seconds. The speed of the platforms is 60m/s.
The standard deviation of the measurement error is
σTDOA = 7.4×10−9 s. The circle surrounding the cross
represents the estimate of the source position after 30
measurements using the Hough Transform. Figure 8
compares the average rms error of the Hough trans-
form method with the CRLB, as measurement data is
accumulated along the flight path. In this case, the
rms error was averaged over 20 independent runs. It is
clear that the Hough Transform method comes quite
close to the CRLB for this scenario. However, it will be
realized that both the CRLB and the average rms er-
ror obtained using the Hough Transform depend quite
critically upon the scenario used.

5 Conclusion

A new source localization algorithm based on the
Hough Transform has been presented. It has the
following advantages over traditional estimator algo-
rithms: (i) the algorithm does not require an initial
guess of the emitter position, (ii) it is easy to fuse data
from different sensors, (iii) terrain data can be incorpo-
rated with the sensor data, (iv) the method can have
a flexible error model (e.g. the error model may be
Gaussian or other distribution), (v) it is robust. The
results have shown that this new approach provide av-
erage rms errors that are close to the CRLB.
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Figure 8: RMS error performance for moving plat-
form scenario of Fig. 7 as a function of the number of
measurements taken compared with the corresponding
CRLB
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