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Abstract 

Basic concept of the present study was to examine ochratoxin A (OTA) presence 

in Greek grapes on the field, during winemaking and at the final product, wine. 

Finally the project was an attempt to integrate approaches for controlling the 

responsible fungus (Aspergillus carbonarius) in Greece, together with ways to 

eliminate presence of OTA in wine. To this end the effect of water activity (aw), 

and other important environmental factors such as temperature, pH and strains and 

their interactions on growth/OTA production were studied. Greek A. carbonarius 

isolates grew optimally at 30-35ºC and 0.96 aw, while maximum OTA production 

occurred under suboptimal growth conditions (15-20ºC & 0.93-0.96 aw). Greek 

isolates examined in the present study were more xerotolerant than others of the 

Mediterranean basin. Studies were performed in organic and non-organic vine 

grape production systems in an attempt to correlate the presence of total 

Aspergillus section Nigri and ochratoxigenic A. carbonarius strains with 

meteorological conditions and geographical localization. Besides the studies on 

ecophysiology and in the field, growth data were fitted to several predictive 

models in order to contribute to the evaluation of solutions that can be practically 

used in Greece for protecting production from OTA contamination. The effect of 

temperature and aw on the growth of A. carbonarius strains could be satisfactorily 

predicted under the experimental conditions studied, and the proposed boundary 

models for growth/no growth and toxin/no toxin production could serve as a 

useful tool. Another component of the present thesis was the investigation of OTA 

content in Greek wines and the correlation of the results with the origin of 

production, the year of production, the colour and type, and other vinification 

techniques. This showed that Greek red, rosé and white wines had lower levels 

and incidences of contamination than wines from other countries of the 

Mediterranean basin. Moreover, Greek wines were below the European limit of 

2.0 μg L
-1

. Although contamination with the mycotoxigenic fungus was rather 

high, most of the samples contained low levels of OTA. The key areas of concern 

were the results from the southern regions of Greece, mainly Peloponnese and 

Aegean Islands, especially for the dessert type ones. In order to understand the 
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partitioning of OTA during vinification and clarification processes in Greek 

wines, an experimental vinification process was performed using different 

fermentation techniques (presence or absence of artificially inoculated OTA, A. 

carbonarius, starter yeasts). The general trend for the evolution of OTA 

concentration throughout the vinification process was a decrease of the initial 

concentration which was more significant in the first days of fermentation when 

acceleration of yeast population took place. This data has been integrated to 

produce a prevention management strategy in Greece to minimise OTA 

contamination in the grape-wine chain.  
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UV = Ultra-violet 

WHO = World Health Organization 

y = colony diameter (or radius) (mm, μm) 

y0 = initial colony diameter (or radius), usually zero (mm, μm) 

ymax = maximum colony diameter (or radius) attained, asymptotic value (mm, μm) 

λ = lag period (defined as the intersection of the line defining the maximum specific growth 
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1.1 Introduction  

Mycotoxins are a class of highly toxic chemical compounds produced, under particular 

environmental conditions by several moulds (Pitt & Hocking, 1997). The presence of this 

diverse group of fungal secondary metabolites on feed or food has wide fluctuation from year 

to year mainly because of the large number of factors affecting fungal invasion and growth 

(Kuiper-Goodman, 2004). Some of these critical factors are: fungal strain, climate and 

geographical conditions, cultivation techniques and postharvest handling (JEFCA, 2001). 

Consumption of food contaminated with mycotoxins has been linked with carcinogenic, 

nephrotoxic and teratogenic potency and, generally, suppressive actions on the immune 

system (Creppy, 2002; Kuiper-Goodman, 2004). Mycotoxin outbreaks in developing 

countries have led to numerous toxicosis incidents and deaths due to the high consumption of 

contaminated food products (Shephard, 2008). These contaminants may occur in a wide range 

of agricultural products such as cereals, fresh and dried fruits, coffee beans, cocoa, coffee, and 

beverages such as beer and wine (Samson et al., 2000). Table 1.1 summarize the most 

frequently occurring mycotoxins, the responsible fungal species and their toxic effects 

(C.A.S.T., 2003).  

 

 

Table 1.1 Commodities in which mycotoxins have been found and the resulting effects on animals and 

humans (adapted from Bullerman 1979, 1981, 1986) 

  Effects of mycotoxins 

Mycotoxin 
Contaminated 

commodities 
Affected species Pathological effects 

Aflatoxins 

(B1, B2, G1, G2, M1, 

M2) 

 

Peanuts, corn, wheat, 

rice, cottonseed, copra, 

nuts, various foods, 

milk, eggs, cheese, 

figs. 

 

 

Birds 

Duckling, turkey, poult, 

pheasant chick, 

mature chicken, quail 

Mammals 

Young pigs, pregnant 

sows, dog, calf, mature 

cattle, sheep, cat, 

monkey, human 

Fish 

Laboratory animals 

Hepatotoxicity (liver damage) 

Bile duct hyperplasia 

Haemorrhage 

Intestinal tract 

Kidneys 

Carcinogenesis (liver tumors) 

 

Citrinin  

 

Cereal grains (wheat, 

barley, corn, rice) 

Swine, dog, laboratory 

animals 

Nephrotoxicity 

(tubular necrosis of kidney) 

Porcine nephropathy 

Cyclopiazonic acid  

 

Corn, peanuts, cheese, 

kodo millet 

Chicken, turkey, swine, 

rat, guinea pig, human 

Muscle necrosis  

Intestinal haemorrhage and 

edema 

Oral lesions 

Ochratoxin A  

 

Cereal grains (wheat, 

barley, oats, corn), 

Swine, dog, duckling, 

chicken, rat, human 

Nephrotoxicity  

(tubular necrosis of kidney)  
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dry beans, mouldy 

peanuts, cheese, 

tissues of swine, 

coffee, raisins, 

grapes, dried fruits, 

wine  

Porcine nephropathy  

Mild liver damage 

Enteritis 

Teratogenesis 

Carcinogenesis (kidney tumours) 

Urinary tract tumours 

Patulin  

 

Mouldy feed, rotted 

apples, apple juice, 

wheat straw residue  

 

Birds 

Chicken, chicken 

embryo, quail  

Mammals 

Cat, cattle, mouse, 

rabbit, rat, human  

Others 

Brine shrimp, guppy, 

zebra, fish larvae 

Edema 

Brain 

Lungs  

Haemorrhage 

Lungs  

Capillary damage 

Liver 

Spleen 

Kidney 

Paralysis of motor nerves 

Convulsions 

Carcinogenesis 

Antibiotic 

Penicillic acid  Stored corn, cereal 

grains, dried beans, 

mouldy tobacco  

Mouse, rat, chicken 

embryo, quail, brine 

shrimp 

Liver damage 

(fatty liver, cell necrosis) 

Kidney damage 

Digitalis-like action on heart 

Dilates blood vessels 

Antidiuretic 

Edema in rabbit skin 

Carcinogenesis 

Antibiotic 

Penitrem  Mouldy cream cheese, 

English walnuts, 

hamburger bun, 

beer  

Dog, mouse, human Tremors, death, incoordination, 

bloody diarrhea 

Sterigmatocystin  Green coffee, mouldy 

wheat, grains, hard 

cheeses, peas, 

cottonseed 

Mouse, rat  Carcinogenesis  

Hepatotoxin 

Trichothecenes 

(T-2 toxin,  

diacetoxyscirpenol,  

neosolaniol, 

nivalenol, 

diacetylnivalenol,  

deoxynivalenol,  

HT-2 toxin,  

fusarenon X) 

Corn, wheat, 

commercial cattle 

feed, mixed feed, 

barley, oats 

Swine, cattle, chicken, 

turkey, horse, rat, dog, 

mouse, cat, human 

Digestive disorders  

(emesis, diarrhea, refuse to eat)  

Haemorrhage  

(stomach, heart, intestines, 

lungs, bladder, kidney)  

Edema  

Oral lesions  

Dermatitis Blood disorders 

(leucopenia) 

Zearalenone Corn, mouldy hay, 

pelleted commercial 

feed  

Swine, dairy cattle, 

chicken, turkey, lamb, 

rat, mouse, guinea pig 

Estrogenic effects (edema of 

vulva, prolapse of vagina, 

enlargement of uterus) 

Atrophy of testicles 

Atrophy of ovaries, enlargement 

of mammary glands 

Abortion 

 

Among mycotoxins, ochratoxin A (OTA) is very important. This isocoumarin derivative 

of the secondary metabolism of the genus Aspergillus (A. ochraceus, Aspergillus Section 

Nigri) and Penicillium (P. verrucosum and P. nordicum) has gained the attention of the 

scientific community due to its carcinogenic potential after consumption (WHO, 2002; 
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Creppy, 2002). Ochratoxin A was first reported in South Africa on 1965 as a secondary 

metabolite of a strain of A. ochraceus (Van der Merwe et al., 1965). Nevertheless, only during 

the last two decades has the contamination of agricultural products been well documented. 

After cereals, wine is considered to be the major source of daily OTA intake according to 

several studies (Murphy et al., 2006). Surveys in Europe and other wine regions worldwide, 

including South American countries and Australia, confirmed the frequent presence of OTA 

in grapes and wines. (Blesa et al., 2004; Leong et al., 2006b; Magnoli et al., 2004; Sera et al., 

2004; Shephard et al., 2003; Soufleros et al., 2003; Stefanaki et al., 2003). 

OTA contamination of grape products is now widely attributed to the infection of grapes 

on the vine by members of Aspergillus Section Nigri. Toxigenic isolates of Aspergillus niger 

and Aspergillus carbonarius have been isolated from grapes in Australia (Leong et al., 

2006a), South America (Rosa et al., 2004), South Africa (Chulze et al., 2006) and many 

European countries (Sage et al., 2002; Abarca et al., 2003; Battilani et al., 2006a) including 

Greece (Tjamos et al., 2006).  

 There is evidence that temperature and aw are two factors of paramount importance in 

influencing growth and OTA formation by mycotoxigenic spoilage fungi on wine grapes. The 

difference in temperature among the viticultural regions, the daily mean temperature, the 

reduction of water availability within the grapes due to sugar content increment and 

vinification techniques influence growth and OTA production by A. carbonarius (Pitt & 

Hocking, 1997; Sanchis & Magan, 2004; Belli et al., 2006a; Serra et al., 2006). 

All these studies led to an investigation of the reasons causing this newly derived health 

hazard. The European Union developed legislative limits of 2 ng ml
-1

 for wine and grape juice 

and 10 ng ml
-1

 for dried vine fruits (123/2005/EC). Moreover, this stimulated more research 

on the prevention of OTA contamination of grapes and their products. In the framework of 

prevention strategies, research is related to both the grape culturing techniques and 

ecophysiology of A. carbonarius in the field, and moreover the clarification of the wine 

during vinification procedures. The present study is an attempt to integrate approaches for 

controlling the responsible fungus (A. carbonarius) in Greece, together with ways to eliminate 

the presence of OTA in wine. 

 

1.2 Specific Objectives of the Research Project 

The present research project was carried out to address 4 objectives (Figure 1.1). The first 

one was the study the mycoflora dynamics in organic/non-organic vine grape production 

systems in relation to the presence of ochratoxigenic A. carbonarius strains. For this purpose 
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the mycoflora population changes were determined in relation to the production system. The 

enumeration and isolation of the total Aspergillus section Nigri isolates, identification of the 

Aspergillus carbonarius isolates and control of their ochratoxigenic ability by both qualitative 

and quantitative methods were carried out.  

The second objective was a detailed study of the ecology and control of A. carbonarius in 

grapes. Very little information is available on the growth tolerances to the key environmental 

factors and on OTA production by isolates of A. carbonarius from Greece and how these 

compare with other regions with a Mediterranean climate. As grape exhibits a wide water 

content gradient from the time it is set on the vineyard until processing to wine, the role of 

aw/moisture content on the presence of OTA has to be clarified. In this instance, the effect of 

aw, along with other important environmental factors, temperature, pH and strains and their 

interactions on growth/OTA production was studied. The growth studies were performed with 

both in vitro using Petri dish culture and with the “Wimpenny” gradient plate technique.  

Besides the ecophysiological study, the raw growth data were fitted to several predictive 

models. There was a need for the development of validated predictive models that can 

describe the influence of environmental and preservative factors on the growth of fungi of 

importance in grapes. This would contribute to the evaluation of solutions that can be 

practically used in Greece for protecting production from OTA contamination. Several 

models including (i) Arrhenius type models (ii) cardinal models, (iii) Belehradrek type and 

(iv) polynomial models were examined to describe the trends observed.  

The third objective was to understand the partitioning of OTA during vinification and 

clarification of Greek wines with an experimental vinification process using the different 

techniques of fermentation (presence or absence of OTA, A. carbonarius, SO2, starter yeasts). 

The increasing consumer resistance to food produced with the use of chemical preservatives 

also force to develop techniques based on the application of natural antifungal chemicals. 

Thus, the final product was furthermore processed with several commercial substances for 

clarification of the existing OTA and their effectiveness was assessed. A survey of OTA 

presence in Greek commercial wines has also been conducted from the first year of the project 

(2004) until its end (2008). This survey contacted to help correlate the winemaking region, the 

type of wine and the year of production, in relation to OTA contamination and risk from 

contamination.  

The fourth objective of the project was to integrate the gathered information to develop 

prevention strategies in Greece. Mycotoxin contamination of food is often a multi-stage 

process. Mycotoxins occur in crops when a mycotoxigenic strain is in the environment, comes 
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in contact with the crop, either in the field or during transportation and storage, and is able to 

infect and grow in that crop under conducive conditions that allow mycotoxin production. 

OTA must then be stable throughout the subsequent processing and the vinification 

fermentation, in order to present a potential health risk in the final product. These studies on 

ecology and OTA production must take into account the gathered knowledge for the Greek 

winemaking industry, which will engage the appropriate management strategies in field and 

during winemaking in order to minimise or even clarify the OTA content of their products. 

 

Figure1.1 Aims and Objectives of the research project. 

 

4th AIM/OBJECTIVE: use of the gathered information for developing 

prevention strategies in Greece. 

2nd AIM/OBJECTIVE: study of the ecology and the control of A. 

carbonarius in grapes. 

 Effect of environmental factors (longitude, altitude, strain, aw, T, pH) and 

their interactions on growth/OTA production 

 Use of different methods as common Petri dishes, “Wimpenny‟s” gradient 

plates, enzyme essays. 

 Predictive models to predict and control growth and OTA production. 

3rd AIM/OBJECTIVE: partitioning of OTA during vinification and 

clarification of Greek wines. 

 Experimental vinification with different techniques of fermentation 

(presence or absence of OTA, A. carbonarius, SO2, starter yeasts) 

 Clarification of the existing OTA and study of the effectiveness of the 

substances used  

 Survey of Ochratoxin A Presence in Greek Wines. 

1st AIM/OBJECTIVE: study of mycoflora dynamics in organic/non-organic 

vine grape production systems. 

 Recordings of vine grapes‟ Mycoflora 

 Enumeration and isolation of the total Aspergillus section Nigri isolates  

 Identification of the Aspergillus carbonarius strains and control of their 

ochratoxigenic ability by both qualitative and quantitative methods  
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Chapter 2: Literature Review 

 

2.1 Importance of Vine Grape Production and Winemaking in Greece 

 

2.1.1 History 

Vine cultivation and wine production first appeared in Greece around 3500 BC. We have 

the earliest identification of wines from the period 800-1500 BC from Homer‟s epics. Today, 

the total area of vineyards with grapes for vinification amounts to roughly 70,000 hectares, of 

which 10% produces appellation of origin wines and the rest is for the production of table 

wines, including wines with a geographical indication. Total production is 4,000,000 

hectolitres per year. Of the total production, 30% is intended for self-consumption, 30% is 

produced by privately owned wineries, and the remaining 40% is vinified by cooperatives. 

The wine industry has more than 350 active enterprises in both the private and cooperative 

sectors, the majority of which are of small or medium size and have the production of wine as 

their sole activity.  

 

2.1.2 Characteristics of Greek Vineyard 

The main characteristic of the Greek vineyard is the many scattered smallholdings. With 

regard to geographical conditions, Greece is characterized by its diversity. The soil is 

generally rocky, chalk with clay and lime-stone subsoil or over porous rock. There is a wide 

diversity of topography and aspects and vines can be found cultivated in areas from sea level 

up to altitudes of 1,000 meters. Climates show a similar diversity. The climate of Greece is 

generally classified as Mediterranean, but in the northern regions the climate can be said to be 

continental, while in the south it verges on the sub-tropical. This combination of soil and 

climatic conditions is conducive for culturing of vines. Moeover, contributes to the creation of 

a wide variety of microclimates, which with the many, fine local grape varieties allows for the 

production of a wide variety of wines. The large number of indigenous grape varieties 

constitutes one of the major advantages of wine production in Greece; that these varieties are 

unique to Greece gives the country a powerful comparative advantage on a world map that is 

tending toward varietal homogenization (Boutaris, 2008).  

 

2.1.3 Ochratoxin A Presence in wine 

Unfortunately, although Greece produces world-class wines, both in quality and quantity, 

there are numerous publications referring to contaminated wine (Stefanaki et al., 2003; 
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Soufleros et al., 2003) and products such as grapes (Tjamos et al., 2004; Tjamos et al., 2006; 

Melletis et al., 2007) and dried vine fruits (MacDonalds et al., 1999; Stefanaki et al., 2003).   

Thus, in order to protect an important economic sector such as winemaking it is essential 

that strategies are developed which will allow the production of wine free of any toxin 

contaminants.  

 

2.2 Fungal and Mycotoxin Contamination of Vine Grape 

 

2.2.1 Vine Grape Morphology 

OTA contamination of grapes requires the presence of toxigenic fungi in the vineyard and 

the transfer of the fungus into the berry, together with conditions that will favour growth and 

toxin production. The interior of grape berry is sterile, comprising fleshy mesocarp tissue 

(pulp) and seeds. The berry exocarp (skin) is the primary barrier to fungal infection, 

consisting of a waxy cuticle, and epidermal and sub-epidermal cells. The skin can be damaged 

by disease, pests and environmental conditions resulting in the splitting of the fruit (Amerine 

et al., 1972). Grapes contain high levels of sugars and other nutrients, and although they 

possess ideal water activity for microbial growth, their acidic pH makes them particularly 

susceptible to fungal spoilage, because a large bacterial component is eliminated since most 

bacteria prefer near neutral pH. Some fungi are plant pathogens and can start the spoilage 

process from the vineyard while others, although they could contaminate grapes in the field, 

actually proliferate and cause substantial spoilage only after harvest when the main plant 

defences are reduced or eliminated. Fungal spoilage of grapes will depend on cultivation, 

harvesting, handling, transport, and post-harvest storage and marketing conditions (Katsoudas 

& Tournas, 2005). 

 

2.2.2 Mycobiota and Ochratoxin A Contamination 

Moulds commonly isolated from grapes are Botrytis cinerea, Alternaria and 

Cladosporium. Less common are Fusarium, Penicillium, Aspergillus, Ulocladium and yeasts 

(Pit & Hocking, 1997). In a recent survey carried out in Uruguay to evaluate the mycoflora of 

grapes, Aspergillus species were isolated in low frequency. Again, the main species isolated 

were A. alternata, Cladosporium cladosporioides and Epicoccum purpurascens. Among the 

Penicillium species isolated P. chrysogenum, P. minoluteum and P. decumbens were most 

frequently isolated, while Botrytis cinerea was commonly isolated at harvest (Chulze et al., 

2006). 
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 From the above genera only Aspergillus and Penicillium include ochratoxigenic species. 

The Aspergilli the section circumdati (yellow Aspergilli) are well known OTA producers. 

They have been studied extensively on cereals and cereal products where A. ochraceus and 

Penicillium verrucosum are considered the major cause of OTA contamination of many 

commodities (Ramos et al., 1998; Magan, 2006; Cabañas et al., 2008; Villa & Markaki, 

2009). The same species were also believed to produce OTA in grapes until 1999 when A. 

carbonarius and A. niger were identified in dried vine fruits (Codex Alimentarius 

Commission, 1999). Aspergillus section Nigri, the so-called “the black Aspergilli”, were first 

described as OTA producers by Abarca et al. (1994), and this was furthermore confirmed by 

many other researchers (Abarca et al., 2001; Cabanes et al., 2002; Samson et al., 2004; 

Perrone et al., 2005).  

After more than a decade of research there are many published studies supporting that 

Aspergillus section Nigri and in particular A. carbonarius having a central role in OTA 

contamination of grape products (Cabañes et al., 2002; Bellí et al., 2005b; Jørgensen, 2005; 

Battilani et al., 2006a).  A. carbonarius is supposed to play the main role for two reasons. 

Mainly, because the percentage of positive strains and the amount of OTA produced in vitro 

are definitely higher than in other black aspergilli. Furthermore, because the frequency of 

Aspergillus Section Nigri that are present on bunches on early véraison, increases going 

towards later grape‟s growth stages (Cabañes et al., 2002; Battiliani & Pietri, 2002; Belli et 

al., 2004b; 2005b; Serra et al., 2006b). 

 

2.3 Mycofloral Dynamics in the Field 

 

2.3.1 Black Aspergilli Distribution  

There is lack of information in the international literature referring to black Aspergilli 

field dynamics. The reason is that Aspergillus section Nigri was not believed to be a classical 

pathogen of grapes (Battiliani et al., 2004). Although, sometimes black Aspergilli can cause 

“black rot” disease of grape, due to high sporulation on berries, resulting in shrunken and dry 

fruit (Visconti et al., 2008). Soon after the first reports of OTA presence in wine (Majerus & 

Otteneder, 1996; Zimmerli & Dick, 1996), researchers started isolating ochratoxigenic black 

Aspergillus spp. from the field of vineyards, believing that such species were the main source 

of contamination (Abarca et al., 2001). The distribution of the black Aspergilli in vineyards is 

represented by three subgroups: the A. niger “aggregate” which is the principal group, the A. 
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carbonarius whose incidence is 2-3 times less than A. niger “aggregate”, and the Aspergillus 

uniseriate spp. as the least represented group (Battilani et al., 2006b; Visconti et al., 2008).  

In recent years research has been accelerated in relation to mycofloral dynamics on the 

field. Based on a recent geostatistical study, Greece was an area which had a higher isolation 

percentage of A. carbonarius when compared with other countries of the Mediterranean basin 

(France, Israel, Italy, Portugal and Spain), as well as high contamination in its vineyards by 

black Aspergilli at harvesting time, exceeding 50% of berries (Battilani et al., 2006b). It is 

also of major importance that, although black Aspergilli have a significantly low percentage 

of OTA-producing strains, not exceeding 10-15%, more than 90% of the isolated A. 

carbonarius strains from many studies investigating grape mycoflora are positive for 

ochratoxin A production (Serra et al., 2003; Battilani & Pietri, 2004a; Battilani et al, 2006a; 

Belli et al., 2006d; Gomez et al., 2006). Moreover, the OTA producing capacity of these 

isolates, when examined in vitro, could reach sometimes levels up to 5000 ng mL
-1

 or g
-1

 of 

culture medium (Magnoli et al., 2004; Belli et al., 2005a; Valero et al., 2006a). 

The findings of Cozzi et al. (2006) are particularly interesting as they found  higher levels 

of contamination by black Aspergilli and OTA in grapes originating from bunches damaged 

by Lobesia botrana larvae as compared to bunches without L. botrana attacks (Cozzi et al., 

2006). In this direction Belli et al. (2007a) published results that confirmed the theory that 

damaged berries were more susceptible to black Aspergilli colonisation. Other researchers 

noticed that rain prior to harvest was a common cause of berry damage, favouring Aspergillus 

infection (Serra et al., 2003; Leong et al. 2006a; Cozzi et al. 2007). Berry damage caused by 

insects, birds or other fungal infection is one of the primary factors affecting disease 

development and OTA accumulation in berries (Visconti et al., 2008; Martinez et al., 2009).  

 

2.3.2 Geographical and Climatological Attributes  

There are studies which have attempted to examine the way that geological and climatic 

factors influence the presence of A. carbonarius and its ochratoxin A production potential. 

Important findings correlate strongly the incidence of A. carbonarius with latitude and 

longitude of the field, distance from the sea, and the meteorological conditions. Cozzi et al. 

(2007) found that meteorological conditions and closeness to sea played a major role in OTA 

presence, while Pateraki et al. (2007b) observed higher frequencies of isolation and OTA 

levels from sultanas dried near the sea level from those at the highest altitude levels (1000m).  

Batillani et al. (2006b) used the combination of day-degree and rainfall parameters to draw 

thermo-wetness maps which were correlated with the incidence of A. carbonarius in the 
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Mediterranean basin. In the same study the incidence was significantly correlated with 

latitude and longitude with a positive West–East and North–South gradient (Battilani et al, 

2006b). This has also been confirmed by several other researchers that revealed data of OTA 

contamination in wines from different countries of Europe. These researchers have noted that 

the OTA content of European wine from the south of Europe is higher than in wine from 

northern Europe (Jørgensen, 2005; Burdaspal & Legarda, 2007; Melletis et al., 2007; Clouvel 

et al., 2008; Valero et al., 2008).  

 

2.3.3 Cropping Systems 

Another important issue, not clearly defined yet and possibly playing a key role in OTA 

contamination of vineyards, is the cropping system followed. Cozzi et al. (2007) monitored 

the role of the cropping system in a 2-year survey carried out on four different systems, 

namely spur-pruned cordon, bower system, head (or small tree) system and espalier. In both 

years, the espalier cropping system produced the most contaminated grapes in terms of A. 

carbonarius infection and OTA accumulation. This could be explained by the closeness of 

bunches to the soil, which is the most important source of A. carbonarius inoculum, compared 

to spur pruned cordon and bower system. The higher humidity occurring in the espalier 

cropping system compared to the head system can explain the different contamination level, 

despite the similar distance of bunches from the soil (Cozzi et al. 2007). Studies have been 

also contacted to reveal the effect of organic versus conventional culturing. OTA content was 

determined in 44 organically and conventionally produced wines originating from different 

geographical regions, but unfortunately there was not any statistically significant difference 

between the two types of production (Chiodini et al., 2006). In contrast Ponsone et al. (2007), 

when analyzed grapes cultured organically and conventional in Argentina, found that the 

percentage of samples colonized by Aspergillus section Nigri and the percentage of A. 

carbonarius were significantly influenced by the cropping system, and were less important in 

the organic cultured fields at harvesting (Ponsone et al., 2007). 

 

2.4 Ecophysiological attributes of mycotoxigenic fungi with specific 

reference to Aspergillus carbonarius 

 

2.4.1 Water activity (aw) and temperature 

In contrast to bacterial growth, were temperature is the most important determinant of 

growth, water activity is the most important environmental factor affecting the ability of fungi 
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to germinate, grow and establish themselves on food. Temperature is also very important, this 

being highlighted in its well documented interactions with aw in determining fungal growth 

(Pitt & Hocking, 1997; Adams & Moss, 1999; Dantigny et al., 2005a). Temperatures differ 

among viticultural regions, among seasons, during stages of maturation, while aw within the 

berry decreases during maturation upon accumulation of berry sugars. As a result, mentioning 

one factor without the other might be useless, and the studies of the ecology of Aspergillus 

carbonarius have to examine together these factors. Fungal growth results from the complex 

interaction of these factors together with incubation time. Thus an understanding of each 

factor involved is essential to understand the overall process and to predict fungal spoilage 

and OTA production (Pardo et al., 2005a; Magan & Aldred, 2005).  

Fungal growth is generally characterized by minimal, optimal and maximal aw or 

temperature values for both germination and hyphal/mycelial extension. Many researchers 

assessed the influence of ecophysiological determinants based on the growth and OTA 

production on classic mycological media such as CYA, MEA and YES (Esteban et al., 2004 

& 2006; Palacios-Cabrera et al., 2005; Romero et al., 2007; Kapetanakou et al., 2009). In the 

last decade experiments were mainly conducted on a synthetic grape juice medium (SGM or 

SNM), simulating grape composition at véraison, in order that the results can be comparable 

between the different studies. There is a significant number of studies on ecophysiology of A. 

carbonarius (Belli et al., 2004a, 2004c; 2005a; Mitchell et al., 2004; Leong et al., 2006a; 

Valero et al., 2006a, 2006b, 2007a, 2008; Pateraki et al., 2007a; Tassou et al., 2007a, 2007b, 

2009). Most studies have shown that the optimum aw for growth is at around 0.98 and a 

temperature of 30 to 35ºC. As regards the marginal condition for growth, this could be 

defined by a minimum aw of 0.87 and a minimum temperature of 10-15ºC. The upper limits of 

growth are defined by a temperature between 38 and 40°C, and aw area of freely available 

water. OTA production was generally found to be optimum at 20ºC and 0.93-0.98 aw, with 

maximum accumulation at 10-20 days incubation. Generally, OTA production is greater at 

suboptimal conditions for growth. Accumulation tends to deplete when temperature reaches 

the upper marginal conditions of growth but this is not happening for the lower marginal 

temperature and aw. Nevertheless, some results seem to be contradictory, mainly due to isolate 

and regional variations. Giving some examples, Belli et al. (2004a; 2004b; 2004c; 2005a) 

repeatedly referred to differences between growth rates and OTA production of several strains 

of A. carbonarius when tested under the same media and environmental conditions. Cabañes 

et al. (2002) analysed the OTA produced after 7, 14 and 21 days at 25ºC, by two A. niger 

aggregate and five A. carbonarius isolates, resulting in a different maximum OTA 
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accumulation that appeared  to depend on the strain. Mitchel et al. (2004) presented 

differences in growth rates and OTA production between strains from several European 

countries, and sometimes between strains of the same origin. Testing isolates of different 

countries of origin may partly explain the different adaptation of the isolates to different 

ecophysiological conditions (Bellí et al, 2004b; Mitchell et al., 2004). 

 

2.4.2 Antagonism between different species 

Another aspect of interest is the antagonism between different species colonising grapes. 

Studies conducted by Valero et al. (2007a, b) showed that Aspergillus section Nigri is very 

often dominant when grown together with other grape-associated filamentous fungi.  When 

they simulated in vitro sun-drying of grapes, they revealed that when competing fungi were 

added to A. carbonarius inoculum, the OTA content was reduced. Competing mycoflora 

acted as an additional control factor against OTA accumulation at  30°C, but at 20°C, where 

OTA production is optimal, this did not happen (Valero et al., 2006b; 2007c). In another 

study the application of Candida guillermondi as an antagonistic biocontrol agent has also 

shown some success on reducing Aspergillus rots in Israel (Zahavi et al., 2000). 

 

2.4.3 Atmosphere composition 

The surrounding atmosphere may also affect growth and OTA production by A. 

carbonarius. However, recent studies by Pateraki et al. (2007a) showed that modified 

atmospheres do not play a critical role.  They found that for five strains of A. carbonarius 

using controlled atmospheres (25 and 50% CO2) at different aw levels on SGM and 25ºC it 

was difficult to control germination, growth and OTA production effectively, especially after 

10 days exposure.  It was also noted that aw was a more significant factor than the modified 

atmosphere (Pateraki et al., 2007a). 

Another study evaluated growth of A. carbonarius and A. niger under modified 

atmosphere packaging (1% O2 - 1% O2 ⁄ 15% CO2, 5% O2). These studies also  concluded that 

modified atmospheres is unlikely to be suitable as a sole method for OTA minimization and 

grape preservation, since of the atmospheres tested, only 1% O2 combined with 15% CO2 

consistently reduced fungal growth and OTA synthesis by A. carbonarius and A. niger 

(Valero et al., 2008). 

Lazar et al. (2008) evaluated the antifungal activity of nitric oxide (NO) against the 

growth of the postharvest horticulture pathogens Aspergillus niger, Monilinia fructicola and 
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Penicillium italicum and found that short-term exposure to a low concentration of the gas was 

able to inhibit the subsequent growth of the fungi. 

Finally, very interesting findings were reported from a study conducted by Dantigny and 

his colleagues, on the effect of ethanol vapours on growth of several food spoilage moulds, 

including A. niger. Ethanol appeared to be an effective additional barrier to inhibit fungal 

growth in food products and could represent an interesting alternative to the use of 

preservatives (Dantingy et al., 2005b). 

 

2.4.4 Fungicides 

Other important factors, at the pre-harvest stage, are the culturing techniques and whether 

organic or conventional cultivation systems are employed. There are some studies showing 

the effect of fungicides used for conventional types of cultivation but more work is needed in 

this direction. Data to characterize the behaviour of A. carbonarius in relation to fungicide 

treatments are scarce.  Belli et al. (2006b) tested the efficiency against this mould at 20 and 

30ºC for a range of 26 fungicides designed to control other species infecting vines, noting that 

not all the fungicides that reduced growth reduced the OTA synthesis and fungicides that 

contained copper or strobilurins reduced both growth and the toxin production, contrary to 

sulphur-based fungicides. Studies by Mitchell (2007) suggested that there was an interaction 

between environmental factors such as water activity, growth and OTA production in the 

presence of fungicides. In some cases this resulted in a significant stimulation of OTA 

production under water stress.  

In a recent study by Gustav et al. (2008), sulphur dioxide (SO2) generator pads used to 

reduce the number of A. carbonarius isolates from grapes on SGM, but this only occurred in 

combination with storage at 0ºC. Moreover, exposure of A. carbonarius to a final level of 0.4 

ppm of SO2 resulted in fewer fungal colonies than in the control, but the surviving spores 

developed into fungal colonies, although they failed to sporulate (Gustav et al., 2008). 

Medina et al., (2007a) examined the efficacy of natamycin to control A. carbonarius 

growth and OTA production under various combinations of aw and temperature. Natamycin at 

concentrations of 50-100ng ml
-1

 appeared to be very effective on controlling growth and OTA 

production by strains of A. carbonarius over a range of environmental conditions on grape-

based media. Medina et al. (2007b) also tested the efficacy of Carbendazim, a systemic 

fungicide that is widely used against fungal infections in grapes, found that it positively 

influenced OTA production by A. carbonarius in the field and concluded that this could 

increase OTA content in grape juices and wines.  Similar conclusions were reached by 
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Tjamos et al. (2004) demonstrating that chemical applications with the fungicides 

Carbendazim or Chorus were ineffective in controlling the fungus in Corinth raisin cultivars. 

Nevertheless, the fungicide Switch, especially under low to intermediate Aspergillus infection 

of vineyards, could both significantly reduce the occurrence of OTA-producing Aspergillus 

spp. (Tjamos et al., 2004). Valero et al. (2007b) evaluated the effect of preharvest grape 

pesticides, Chorus and Switch, in Aspergillus section Nigri infection in dehydrating grapes, 

the final ochratoxin A (OTA) content with Switch was slightly more efficient than Chorus in 

inhibiting mould colonization and in preventing OTA production both in inoculated and non-

inoculated grapes (Valero et al., 2007b). Finally, Belli et al. (2007b) also ended at the same 

conclusions when studied the effect of the two above mentioned fungicides and their mixture 

on the field for inhibition of growth and OTA production by A. niger aggregate and A. 

carbonarius. 

 

2.5 Ochratoxin A 

 

After the emergence of ochratoxin A (OTA) and its connection with Aspergillus 

ochraceus by Van der Merwe et al. (1965), more Aspergillus species were shown to produce 

ochratoxins in subsequent studies: A. melleus, A. sulphureus, A. alliaceus, A. sclerotiorum, A. 

albertensis, A. auricomus, Neopetromyces muricatus, and A. lanosus. All these species were 

originally grouped in Aspergillus section Circumdati, but A. alliaceus, A. lanosus and A. 

albertensis are now placed in section Flavi. Aspergillus ochraceus, that was polyphyletic as 

traditionally defined, recently was split into several species, some of which include OTA-

producing isolates: Aspergillus cretensis, A. flocculosus, A. pseudoelegans, A. 

roseoglobulosus, A. westerdijkiae, as well as A. ochraceus sensu strictu. Ochratoxin A 

production has also been found in A. glaucus (section Aspergillus). Later, ochratoxin 

production was found in A. niger var. niger and subsequently in other species of Aspergillus 

section Nigri: A. awamori and A. carbonarius and recently, in two newly described species 

isolated from coffee, A. lacticoffeatus and A. sclerotioniger (Bayman & Baker, 2006).  

 OTA has a pentaketide skeleton, and contains a chlorinated isocoumarin moiety linked 

through a carboxyl group to L-phenylalanine via an amide bond. The chemical structure of 

OTA is shown in Figure 2.1. OTA is one of a family of mycotoxins including Ochratoxins B 

and C which are the dechlorinated analogue and the ethyl ester respectively. The isocoumarin 

carboxylic acid (ochratoxin a) and its dechlorinated analogue (ochratoxin β) are also 
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detectable in cultures of OTA-producing strains of Aspergillus and Penicillium and 4-hydroxy 

OTA has also been found in cultures of Aspergillus ochraceus. (JEFCA, 2001). 

 

 

Figure 2.1 Stereo-chemical structure of ochratoxin A 

Many researchers verified adverse health effects, mainly on kidney and liver and 

subsequently its teratogenic potential (Purchase & Theron, 1968; Brown et al., 1976; Peraica 

et al., 1999). OTA was also associated with an endemic nephropathy, called “Balkan Endemic 

Nephropathy” in the Balkan countries linked with the frequent consumption of contaminated 

porcine ham (Stoev, 1998). Nevertheless, there are still doubts about the acute linkage of 

OTA with this incident (Mally et al., 2007). Until now, many surveys are still suggesting that 

the presence of OTA in food impacts human health (Creppy, 2002; Heussner et al., 2006; 

Clark & Snedeker, 2006).  

The toxicological status of OTA has been reviewed several times and detailed 

monographs have been published by the International Agency for Research on Cancer (IARC, 

1993), by the Joint FAO/WHO Expert Committee on Food Additives (JECFA, 2001) and 

European Food Safety Authority (EFSA, 2006). From the available evidence it is clear that 

OTA is potently nephrotoxic and carcinogenic. It is also teratogenic and immunotoxic, 

affecting both humoral and cell-mediated immunity. For these reasons IARC classified OTA 

as a possible carcinogen of group 2B (IARC, 1993). Ochratoxin A is efficiently absorbed by 

the body and it has a long residence time in body tissues, thus it is detectable in the blood of 

mice 18 days after receiving a single dose. Being a derivative of L-phenylalanine, it is a 

potent inhibitor of the incorporation of this amino acid into proteins by inhibiting 

phenylalanine t-RNA synthetase. It also inhibits the biosynthesis of tyrosine by inhibiting 

phenylalanine hydroxylase (Moss, 2008; EFSA, 2006). 
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2.6 Partitioning of Ochratoxin A during Vinification and Clarification of 

Wines 

 

2.6.1 Presence of OTA in Greek wines  

The widespread of human exposure to OTA is well documented by a number of surveys 

reporting the occurrence of the mycotoxin in a variety of food products. An assessment of 

dietary intake of OTA by the population of the European Community has been performed 

showing that the main contributors to OTA exposure are cereals and their products, followed 

by wine, coffee and beer. Moreover, grape products such as dried vine fruits and grape juice 

contribute to a significant extend to the children OTA exposure (European Commission, 

2002).  

OTA was detected in wine for the first time in 1996 by Zimmerli and Dick (1996). This 

study referred to OTA determination of 118 European table wines whose incidence of 

contamination was 70%, but with low range of OTA concentration in the samples (<0.005-0.4 

μg kg
-1

). Thereafter, several surveys have been contacted, mainly in Europe, showing that the 

problem is more severe for Southern Europe. A great number of surveys show a gradient in 

contamination correlated to the colour, and therefore to the production process of wine. Both 

OTA incidence and concentration were increased in the order white < rosé < red (Visconti et 

al., 1999; Otteneder & Majerus, 2000; Soleas et al., 2001; Belli et al., 2004d; Blesa et al., 

2004; Ng et al., 2004; Rosa et al., 2004; Anli et al., 2005; Mateo et al., 2007). Several authors 

reviewing surveys for OTA presence in wines originated from all over the world, ended up to 

the same results. Otteneder & Majerus (2000), except from the 450 wines that analysed, they 

reviewed a total of 400 wines presenting the same gradient in incidence and concentration. 

Jorgensen (2005) reviewing SCOOP-2 report‟s 1470 wine samples and Visconti et al. (2008) 

reviewing 3512 wines, both reported a gradient of red>rosé>white type wines. Nevertheless, 

there are some studies that did not reveal the same conclusion (Shepard et al., 2003; Stefanaki 

et al., 2003). Another, common base in all these and many more surveys was the higher level 

of incidence and concentration of OTA in wines originated from Southern European regions 

of production in contrast with those of northern regions (Otteneder & Majerus, 2000; Pietri et 

al., 2001; Anli et al., 2005; Jorgensen, 2005; Visconti et al., 2008). Only Soleas et al. (2001) 

did not find any evidence to support the South – North gradient. Finally, many studies agreed 

that special wines, more known as dessert wines, have often greater levels of OTA (Pietri et 

al., 2001; Belli et al., 2004d; Mateo et al., 2007). Moreover, Burdaspal & Legarda (2007) and 

Valero et al. (2008b) found an incidence in dessert wines greater than 90%, whereas the 
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former study revealed a maximum concentration of 4.63 μg l
-1 

and the latter higher occurrence 

in wines that originated from must fortified before fermentation and those made from grapes 

dried by means of sun exposure. Belli et al. (2004d) found a concentration of 15.25 μg l
−1

 in a 

muscatel. Only a survey contacted by Blesa et al. (2004) showed that dessert wines were less 

contaminated than dry types of wine. As regards surveys for Greek wines, Markaki et al. 

(2001) analysed 31 samples of red wine and all contained OTA, with 9 of them exceeding 0.1 

μg l
-1

, but always lower from the maximum permitted EU level of 2.0 μg kg
-1

. Soufleros et al. 

(2003) analysed 28 dry wines (14 red, 13 white, one rosé) and 7 sweet wines (3 red, 4 white) 

finding the same gradient of concentration as above (sweet wines > dry wines / red > white), 

while Stefanaki et al. (2003) analysed 268 wines but without finding any differences between 

red, rose, white types. Nevertheless, the Southern > Northern and sweet > dry gradients was 

again present. Generally, in Greece, more than 66% of samples showed detectable OTA levels 

and both red and sweet wines showed the highest levels (Markaki et al., 2001; Soufleros et 

al., 2003; Stefanaki et al., 2003). Finally 100% of samples analyzed in Turkey had detectable 

levels of the toxin (Anli et al., 2005). All the studies cited are primarily aimed at quantifying 

OTA, while little information is available about the origin of the toxin. According to Battilani 

& Pietri (2002) and Soufleros et al. (2003) the gradient between the colour types of wine may 

be connected with the longer mash standing in red vinification, while suggested that OTA 

found in sweet wines of southern European origin is probably formed after the harvest of the 

grapes, and mainly due to the technique of sun drying, prior to the alcoholic fermentation.       

 

2.6.2 Fate of OTA during vinification 

Several factors in winemaking procedures such as conditions of storage of the harvested 

grapes, type of maceration, and conditions of fermentation can play a crucial role for the 

presence of OTA in wines. In the production of wine, grapes undergo multiple stages during 

which solids and liquids are separated. In white vinification, grapes are crushed, then pressed 

to remove the skin and seeds. The juice may be treated with pectinase to enhance precipitation 

of grape solids before fermentation commences. In red vinification, grapes are crushed then 

fermented in the presence of skins and seeds to extract colour and tannins. This mixture is 

later pressed to remove skins and seeds. Both white and red wines undergo successive 

clarification stages to remove precipitated yeasts and other solids. Malolactic fermentation, in 

which malic acid is converted into lactic by lactic acid bacteria, may also occur after 

fermentation.  
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Lasram et al. (2008) studied the evolution of OTA in red and rosé vinification and 

resulted that the maceration of pomace had a significant effect on the increase of OTA content 

in red wine whereas the alcoholic fermentation had a reducing effect. After crushing, OTA 

content was distributed between the must and the pomace. Their data pointed out that the skin 

contained a large part of OTA produced by Aspergillus carbonarius, something that was also 

pointed out from other authors (Battilani & Pietri, 2002) after investigating the occurrence of 

the toxin in the skin and the pulp. However, the spontaneous malolactic fermentation showed 

no significant effect on the OTA content in wine. They also revealed that storage of red wine 

in tanks followed by draining caused a significant decrease of OTA of about 55% (Lasram et 

al., 2008). Grazioli et al. (2006), studying the effect of processing stages of winemaking, 

ended up to the same conclusion, that no OTA is produced during winemaking, but each 

operation can modify OTA content. The OTA naturally present in grapes to a certain degree is 

released to the juice during crushing. Maceration increases the OTA content, while alcoholic 

and malolactic fermentation cause a reduction in OTA in the wine. In a similar study, but with 

artificially contaminated grapes, the evolution of ochratoxin A (OTA) content was assessed 

from must to wine during the making of Port Wine. The levels of OTA observed during the 

vinification dropped by up to 92% (Ratola et al., 2005). Another study by Cecchini et al. 

(2006) pointed out the dependence of the yeast strain involved in the fermentation on the fate 

of OTA content in vinification. The absence of degradation products suggested an adsorption 

mechanism from the yeast lees that was relevant to the different yeast strains used. Moreover, 

OTA concentration in methanolic yeast lees from red must fermentation was higher than in 

white.  

 

2.6.3 Removal /decontamination of OTA from wines 

OTA detoxification strategies are classified depending on the type of treatment – 

physical, chemical or microbiological – and their objective is to reduce or eliminate the OTA 

toxic effects by destroying, modifying or absorbing this mycotoxin (FAO/WHO/UNEP, 

1999). The ideal detoxification method would be easy to use and economical, and would not 

generate toxic compounds or alter other food quality parameters. Thus, firstly, the effect of 

processing stages on the toxin reduction should be studied and in the case that this would not 

be possible, other additional treatments (physical, chemical or microbiological) should be 

considered. 



 

 

- 36 - 
 

Fernandes et al. (2003, 2005) reported the reduction of OTA whenever solids and liquids 

were separated, thus these authors proposed that the partitioning of OTA to certain substrates 

was the primary means of removal during vinification. 

Bejaoui et al. (2004a) succeeded a significant decrease of OTA levels in YPG medium 

and SGM by using six oenological Saccharomyces strains reaching a maximum decrease of 

45%. When both heat and acid pretreated yeasts were used, OTA removal was enhanced, 

indicating that adsorption, not catabolism, is the mechanism to reduce OTA concentrations. 

Adsorption was also improved when the yeast concentration was increased and when the pH 

of the medium was lower. Approximately 90% of OTA was bound rapidly within 5 min and 

up to 72 h of incubation with heat-treated cells of either S. cerevisiae or S. bayanus. In a 

similar study investigating the performance of 20 strains of Saccharomyces sensu stricto to 

remove ochratoxin A (OTA) during vinification, the results were indicated that OTA-removal 

from grape must was probably carried out by the yeast cell wall, just like the aforementioned 

study resulted (Caridi et al., 2006). In another study, 40 isolates representing the black 

apergilli species Aspergillus carbonarius, A. niger aggregate and A. japonicus, isolated on 

French grapes, were assessed for OTA degradation capacities in czapek yeast extract broth 

(CYB) and in a synthetic grape juice medium (SGM) contaminated with OTA. It was clearly 

observed that in both media these fungi had the ability to degrade OTA to OTa (ochratoxin a) 

(Bejaoui et al., 2004b). Varga et al. (2000) also tested A. fumigatus and black Aspergillus 

strains to detoxify ochratoxin A in culture media and ended up to the same conclusion. 

Nevertheless, the use of black aspergilli to eliminate OTA that is a metabolite of the same 

sections of aspergilli it is not much promising, with the exception, probably, of non OTA 

producer strains of A. niger which is one of the few fungi which has received GRAS 

(generally recognized as safe) status from the US Food and Drug Administration (due to its 

low toxicity) and could therefore be of interest in further uses for the biological elimination of 

OTA in grape juices and musts. Finally, Mateo et al. (2010) tested ten Oenococcus oeni 

strains to remove OTA from culture medium with significant differences depending on the 

strain, incubation period, and initial OTA level in the medium. Mycotoxin reductions were 

higher than 60%. 

Beyond the physical and biological methods discussed above, the most promising 

decontamination can be suggested that of chemical treatments during winemaking process. A 

variety of fining agents, including activated carbon, silica gel, potassium caseinate, egg 

albumin, and gelatine, have been evaluated in relation to their abilities to remove OTA in 

fortified wines (Amézqueta et al., 2009). Castellari et al. (2001) pointed out that potassium 
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caseinate and activated carbon were found to be the best fining agents that could be used to 

remove OTA in wine. Potassium caseinate removed up to 82% of OTA, whereas activated 

carbon showed the highest specific adsorption capacity. The same results were revealed by 

Olivares-Marin et al. (2009) and Var et al., (2008), both teams proving the efficiency of 

activated carbon on detoxifying wines. The later authors also tested the efficiency of 

bentonite, but caused only small decreases in the OTA levels. 

 

2.7 Legislation Governing Maximum Levels of Ochratoxin A for Grape 

and Grape Products 

 

Since the discovery of aflatoxins in the early 1960‟s, regulations have been established in 

many countries to protect the consumer from the harmful effects of these mycotoxins. The 

recognition that aflatoxins and other mycotoxins can cause major illness in humans and 

animals has led to limits being set for aflatoxins and some other mycotoxins in different 

countries around the world, often however on an ad hoc basis. The European Union aims to 

harmonise legislation between the countries of the Union. Various factors play a role in the 

decision-making process required for setting these limits. These include scientific factors such 

as the availability of toxicological data, survey data, knowledge about the occurrence and 

distribution of mycotoxins in commodities, and analytical methodology. Economic and 

political factors such as commercial interests and sufficiency of food supply have their impact 

as well (EMAN). 

For setting up a statutory maximum level, a summary toxicological assessment of the 

substance with regard to its impact on human health and on the environment is reached by 

cooperation between the following organisations: 

International Programme on Chemical Safety (IPCS, www.who.int/pcs/) 

International Agency on Research on Cancer (IARC, www.iarc.fr) 

Joint FAO/WHO Committee on Food Additives and Contaminants (JECFA, 

www.who.int/pcs/jecfa/jecfa.htm) 

Within the EU, this assessment is the responsibility of the Scientific Committee on Food 

(SCF, http://europa.eu.int/comm/food/fs/sc/scf/index_en.html). Throughout these discussions, 

and taking into account international standards or norms (e.g. Codex Alimentarius) in order to 

ensure that international trade is not impeded without justification, adoption of maximum 

levels is taken leading to a Directive or Regulation. 
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On the basis of Council Regulation (EEC) No. 315/93 maximum levels for a number of 

mycotoxins in certain foodstuffs have been set by Commission Regulation (EC) No. 

1881/2006. Within the latter the Commission Regulation (EC) No 123/2005 as regards 

ochratoxin A was embodied, whereas Commission Directive 401/2006 regulates the method 

of sampling and analysis. The maximum levels are detailed in the Table 2.1. 

 

Table 2.1 Maximum Levels for Ochratoxin A as regulated by Commission Regulation (EC) No 

1881/2006. 

Product 

OTA (µg/kg) 

Maximum 

Level 

Unprocessed cereals 5.0 

All products derived from unprocessed cereals, including 

processed cereals products and cereals intended for direct 

human consumption  

3.0 

Dried vine fruit (currants, raisins and sultanas) 10.0 

Roasted coffee beans and ground roasted coffee, excluding 

soluble coffee 
5.0 

Soluble coffee (instant coffee) 10.0 

Wine (including sparkling wine, excluding liqueur wine and 

wine with an alcoholic strength of not less than 15 % vol) and 

fruit wine 

2.0 

Aromatised wine, aromatised wine-based drinks and 

aromatised wine-product cocktails 
2.0 

Grape juice, concentrated grape juice as reconstituted, grape 

nectar, grape must as reconstituted, intended for direct human 

consumption 

2.0 

Processed cereal-based foods and baby foods for infants and 

young children 
0.50 

Dietary foods for special medical purposes intended 

specifically for infants 
0.50 

 

2.8 Predictive Mycology 

 

2.8.1 Introduction  

For over 20 years, predictive microbiology has focused on bacterial food-borne 

pathogens, and some spoilage bacteria. Few studies have concerned to model fungal 

development. Predictive modelling is a versatile tool that should not be limited to bacteria, but 

should be extended to moulds. Mathematical modelling of fungal growth was reviewed earlier 

(Gibson et al., 1994; Gibson & Hocking, 1997; Dantigny, 2004; Davidson, 2007), but it still 
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remains a subject of research. Because of the inherent differences between fungal and bacterial 

growth, such tools should take into account the specificities of mould growth (Gibson & 

Hocking, 1997; Dantigny et al., 2005a). The term “predictive mycology” was therefore 

coined to differentiate the modelling of fungal growth and mycotoxin production from that of 

bacteria (Dantigny et al., 2005a). 

 

2.8.2 Mould Specificities and Growth Measurement 

Fungal growth involves germination, hyphal extension and eventually forming mycelium. 

Spores are widely disseminated in the environment, and they are principally responsible for 

spoilage. Under favourable conditions, spores will swell. Thereafter, when the length of the 

germ tube is between one half and twice of the spore diameter, the spore is considered to have 

germinated. Germination can be considered as the main step to be focused on, because a 

product is spoiled as soon as visible hyphae can be observed. However, few studies have 

concerned germination kinetics (Marin et al., 1996; 1998a; Sautour et al., 2001a; Dantigny et 

al., 2002; Pardo et al., 2005b; 2005c) and the lack in literature is greater regarding to A. 

carbonarius (Dantigny et al., 2007). This limitation can be explained in part by the acquiring 

sufficient and reproducible data. In fact, this kind of study requires microscopic observation 

for evaluating the length of the germ tube. Moreover, measurements should be carried out 

without opening the Petri-dishes (Dantigny, 2004; Dantigny et al., 2006). Although, Marin et 

al. (2008a) showed that for some species of airborne fungi the ergosterol content can be used 

as mould growth indicator for primary modelling. But it must be noted that ergosterol content 

can vary with substrate, growth conditions, and the age of mycelium and due to interspecies 

differences (Gibson & Hocking, 1997). More work was dedicated to the measurement of 

hyphal extension rate, which is usually reported as radial growth rate (mm d
-1

) (Gibson et al., 

1994; Baranyi et al., 1996). It is probably the simplest and most direct measure, but does not 

necessarily represent the true nature of fungal growth. Fungal hyphae can penetrate the three 

dimensional matrix of foods, and since that point the radial growth does not represent the 

actual growth of the fungus (Gibson & Hocking, 1997). Another attempt modelling fungal 

growth has been presented from Panagou et al. (2005) using the gradient plate technique first 

introduced by Szybalski and Bryson on 1952, but furthermore refined by Wimpenny and 

Waters (1984; 1987). Panagou inoculated Monascus ruber van Tieghem on the surface of 

square Petri-dishes with gradients of NaCl at right angles with gradients of pH, which were 

incubated at different temperatures. Visible fungal was expressed to optical density units, 

recorded by image analysis and graphically presented in form of three dimensional grids. 
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Finally, the data were applied to several models in order to generate plots of growth / no 

growth interface (Panagou et al., 2005). Other researchers are measuring the increase of a 

fungal metabolite, usually an enzyme, in order to make an assessment for growth. Numerous 

studies trying to estimate the influence of several environmental factors on fungal growth by 

the increment of enzymes such as phosphomonoesterase, protease, b-glucosidase, 

endocellulase, laccase and many other (Marín et al., 1998b; Keshri & Magan, 2000; Fragoeiro 

& Magan, 2005). Again there is lack in literature referring to A. carbonarius and moreover 

this technique does not supply appropriate data sets for growth modelling. A prerequisite for a 

useful and reliable model must be a database containing large amounts of relevant data, 

preferably in the form of growth or survival curves. 

 

2.8.3 Primary Modelling 

According to Whiting and Buchanan (1993), models that describe the response of 

microorganisms to a single set of conditions over time are termed as “primary” models. A 

primary model for microbial growth aims to describe the kinetics of the process with as few 

parameters as possible, while still being able to accurately define the distinct stages of growth 

(McKellar & Lu, 2004). When coming to fungi, the concept of primary modelling seem to be 

less demanding in mathematical terms since the stages of growth are depleted with lag to 

germination and a linear growth state. Since now two approaches are referred to fungal 

growth modelling, the first being the germination of fungal spores and the second the hyphal 

radial extension. The germination of spores of Fusarium moniliforme and F. verticillioides as 

a function of time was first studied at different aw and temperatures (Marín et al., 1996). The 

percentage of germination vs. time was modelled with the modified Gompertz equation at 

different conditions. There are two different ways of looking at spore germination: 

(1) the percentage of germination at a certain time, where the percentage of germination 

vs. time can be modelled with the modified by Zwietering et al. (1990) Gompertz equation 

(Marin et al., 2006; 1998a; Pardo et al., 2005b; 2005c; 2005d; Dantigny et al., 2007):  

P = A·exp·(-exp[μm·e(1) ·(λge-t)/A+1]) 

where A (%) was the asymptotic P value at t→+∝, μm (h
−1

) was the slope term of the 

tangent line through the inflection point (tG) as defined further, λge (h) was the t-axis intercept 

of the tangent through the inflection point and t was the time (h), and:  

(2) the time to obtain a certain germination percentage, or germination time. The 

germination time can be considered as the probability of a single spore germinating. 
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Accordingly, the logistic function is used (Dantigny et al., 2002; 2005a; 2007; Samapundo et 

al., 2007a): 

 

where Pmax (%) was the asymptotic P value at t→+∝, k (h
−1

) was the slope term of the 

tangent line through the inflection point, τ (h) was the inflection point where P equals half of 

the Pmax and t was the time (h). By using any of these equations, it is possible to estimate 

accurately the time necessary to reach a certain percentage of germination. 

Shortly after the completion of germination, the mycelium is visible to the naked eye 

(when the colony reaches approximately 3 mm in diameter). Therefore fungal growth can be 

easily estimated from macroscopic measurements of the radius of the colony. The modified 

Gompertz model has been again used for empirically modelling mould growth on the basis of 

its proven flexibility to different asymmetrical growth data (Char et al., 2005; Marin et al., 

2008a).  

Although, more common is the primary model developed originally for bacterial growth 

by Baranyi et al. (1993), which has been adapted to fit colony diameter growth curves of 4 

species from Aspergillus section Nigri (Gibson et al., 1994):  

 

where: 

 

and 

 

Since then is appearing in many studies referring to fungal growth modelling: Aspergillus 

section Flavi (Baranyi et al., 1996), Penicillium roqueforti (Valík et al., 1999), P. 

brevicompactum (Membré & Kubaczka, 2000), P. verrucosum and P. proliferatum 

(Samapundo et al., 2005; 2007b), A. flavus (Marin et al., 2009), 14 fungal species 

representing general common food contaminants found in intermediate moisture foods, 

including A. carbonarius (Marin et al., 2008a;Tassou et al., 2007a). When plotting diameters 

(or radiuses) of a mould colony growing in an agar Petri plate against time, a lag phase is 
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observed, followed by a linear phase, but in most of the cases no decrease in growth rate is 

observed before the edge of the Petri plate is reached. Under constant conditions a fungal 

colony would then probably grow indefinitely, if the agar plate was unlimited; thus, in the 

absence of the edge of the plate, the Baranyi's model parameter m (Richards‟ curve, curvature 

after the exponential phase) should be fixed in a way to eliminate the upper asymptote (m=1). 

The use of these models enables the estimation of important growth parameters such as the 

maximum colony growth rate (gmax, mm d
−1

) and lag phase duration (λ, d) (Samapundo et al., 

2005; 2007a; Marin et al., 2008a).  

Nevertheless, the most common way assessing fungal growth rates is a simple linear 

model with breakpoint:  

r = m · (t - λ), 

where r was the colony radius (mm), m the radial growth rate (mm d
-1

), and λ is the lag 

time (d). The linear section of the graph (with growth rate of m) is extrapolated to a zero 

increase in diameter, and the intercept on the time axis is defined as the lag prior to growth 

(λ). In most cases, the fits are excellent, as is being revealed from numerous studies for fungi: 

Aspergillus ochraceus (Lee & Magan, 1999; 2000), Mucor racemosus (Dantigny et al., 2002), 

P. chrysogenum (Sautour et al., 2003) P. verrucosum (Pardo et al., 2005d), Botrytis cinerea 

(Lahlali et al., 2007), several food spoilage moulds (Cuppers et al., 1997; Sautour et al., 

2001b; Dantigny et al., 2005b; Marin et al., 2008a) and Aspergillus section Nigri including A. 

carbonarius or the latter one alone (Mitchel et al., 2004; Parra et al., 2004; Parra & Magan, 

2005; Belli et al., 2004a; 2005a; Leong et al., 2006a; Medina et al., 2007a; 2007b; Pateraki et 

al., 2007a; Romero et al., 2007; Samapundo et al., 2007a; Valero et al., 2007a; Marin et al., 

2008a). The main disadvantage of the latter model is that when the experimental design 

includes suboptimal conditions, the estimation of lag phase by extrapolation cannot be 

reliable (Marin et al., 2008a). 

Finally, it is reported for the inactivation of spores a classical first order equation: 

dN /dt = -kN, 

where N is the number of surviving spores after treatment (cfu/ml), t is the time (min) and 

k is an inactivation rate (min
-1

). In a same way, the known Bigelow model is used, with the D 

and z values (Dantigny et al., 2005a).  

 

2.8.4 Secondary Modelling 

Models that describe the effect of environmental conditions, e.g., physical, chemical, and 

biotic features, on the values of the parameters of a primary model are termed “secondary” 
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models (Whiting & Buchanan, 1993). The concept of predictive microbiology is that detailed 

knowledge of the growth responses of microorganism to environmental conditions enables 

objective evaluation of the effect of processing, distribution and storage operations on the 

microbiological safety and quality of foods. If the microbial ecology of a processing operation 

or a product during distribution or storage is understood, survival and/or growth of an 

organism of concern may be predicted on the basis of a mathematical relationship between 

microbial growth rate and environmental conditions (McMeekin et al., 1993). 

Two major types of models are recognized. Empirical models are derived from an 

essentially pragmatic perspective. They simply describe the data in a convenient mathematical 

relationship and consequently often give little or no insight into the underlying process 

(McMeekin et al., 1993). Because empirical models are descriptions of the experimental 

conditions, they should not be used to make predictions outside the limits of the original 

experiments (Gibson & Hocking, 1997).  

Mechanistic, or deterministic, models are built up from theoretical bases and, if they are 

correctly formulated, may allow the interpretation of the modelled response in terms of 

known physical, chemical, and biological phenomena and processes (McMeekin et al., 1993). 

An advantage of mechanistic approaches is that they tend to provide a better foundation for 

subsequent development and expansion of models. Conversely, as none of the models in use 

in predictive microbiology can be considered to be mechanistic, they can only be used to 

make predictions by interpolation. In general, even with good quality data the mechanistic 

models do not provide better fit to data and are usually harder to work with than semi-

mechanistic or empirical models currently used (Ross & Dalgaard, 2004). Semi-mechanistic 

models are termed empirical models including an aspect of mechanistic modelling and vice 

versa. Mechanistic or semi-mechanistic models usually include parameters from differential 

equations of applicable known theories (growth kinetics, substrate utilization and depletion 

rates, substrate or end-product diffusion rates etc.) and attempt to describe what is actually 

occurring during growth. Such models can give more insight into the behaviour of a 

biological system than empirical models can (Gibson & Hocking, 1997).  

In the following pages a brief report of secondary models is presented, always relatively 

with mycelial growth and toxin production studies in the late literature. 

Secondary Models: 

Based on the Arrhenius Equation 

This group of models relates growth rate with several environmental factors by extended 

types of Arrhenius thermodynamic model originally proposed to describe the effect of 
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temperature on rates of chemical reactions. After taking the natural logarithm, and with the 

proper re-parameterization this equation leads to a range of secondary models, based on 

adherence to the reaction kinetics described by the Arrhenius model, but including terms to 

account for the observed deviations. In this group belong the mechanistic modifications of 

Hinshelwood, Schoolfield and Ross all reviewed previously, but few of these types of models 

have been routinely applied in predictive microbiology, possibly because the models are 

highly nonlinear and initial parameter estimates are difficult to determine (Ross & Dalgaard, 

2004; Zwietering, 1991). Moreover, they had never been applied to mycelial growth rates. 

More close to predictive mycology is the empirical modification of the Arrhenius 

equation that Davey (1989) has proposed to model the effects of temperature and water 

activity, which is linear and thus allows for explicit solution of the optimum parameter values. 

The “linear Arrhenius” or “Davey” models have been used to model growth of moulds on 

solid microbiological media under the influence of several environmental factors. Panagou et 

al. (2003) applied an extension of the Davey equation to model temperature, aw and pH effect 

on growth rates of Monascus ruber, and Samapundo et al. (2007d) to model bw and 

temperature on growth of Aspergillus flavus and A. parasiticus on corn. 

Square-Root-Type or Bêlerádek-Type 

In many cases the classical Arrhenius equation is inappropriate to describe the effect of 

suboptimal temperature on growth rates of microorganisms because the (apparent) activation 

energy (E) itself is temperature dependant. To overcome this problem Ratkowsky et al. 

(1982) suggested a simple empirical model. When this model was fitted to experimental 

growth rates the data were square-root transformed to stabilize their variance and this simple 

model and its numerous expansions are named square-root-type, Ratkowsky-type, or 

Bêlerádek-type models. For the reason that the simple square-root-type model was intended to 

be applied only to the low temperature region, namely from the minimum temperature at 

which growth can occur to that just below the optimum temperature, Ratkowsky et al. (1983) 

introduced a four parameter extension to enable the whole biokinetic temperature range to be 

modelled. The Ratkowsky-type model has several applications to bacterial growth and some 

can be found in predictive mycology, either by its own or by combining it with other models. 

Cuppers et al. (1997) successfully modelled the influence of temperature with Ratkowsky 

model for P. roqueforti, Trichoderma harzianum, Paecilomyces variotii, A. niger and 

Emericella nidulans. Parra & Magan (2005) used an extension of this model for the 

temperature dependence, combined with Gibson model for aw dependence on A. niger growth.  

Polynomial models 
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The effect of many different environmental parameters (e.g., temperature, NaCl/aw, pH, 

nitrite, CO2, organic acids, and natural antimicrobials) has been described by these linear 

models. Polynomial models were extensively used during the 1990s and they remain widely 

applied although square-root-type and cardinal parameters models are becoming increasingly 

popular. Polynomial models are attractive, first, because they are relatively easy to fit to 

experimental data by multiple linear regression, which is available in most statistical 

packages. Second, polynomial models allow the environmental parameters and their 

interactions to be taken into account. Thus, application of polynomial models is a simple way 

to summarize information from a data set (Ross & Dalgaard, 2004). 

A first approach on modelling fungal growth with this type of equations is presented by 

Gibson et al. (1994), where aw is transformed to bw in order to perform a better fitting of the 

growth data to the quadratic function proposed and since known as Gibson transformation for 

aw: 

 

and the proposed 2
nd

 order Polynomial being: 

 

used to fit growth data of  A. flavus, A. oryzae, A. parasiticus and A. nomius against water 

activity. The same exactly mathematical method was adopted from Barayni et al. (1996) to 

investigate the relatedness of A. flavus, A. oryzae, A. parasiticus and A. nomius. Cuppers et al. 

(1997) used the same model after having substitute bw with NaCl concentration in order to 

assess its effect on growth of P. roqueforti, Trichoderma harzianum, Paecilomyces variotii, 

A. niger and Emericella nidulans. A two-variant quadratic function, again with the 

transformation of Gibson for aw was used from Valik et al. (1999) to study the effect of bw 

and pH on growth rates of P. roqueforti, while Panagou et al. (2003) included a third variable, 

temperature in the same model for Monascus ruber. Guynot et al. (2005) also used a 2
nd

 order 

polynomial with 3 variables, C6H7KO2 concentration, aw and pH for predicting growth rates 

of Eurotium amstelodami, E. herbariorum, E. rubrum, A. flavus and A. niger. Many other 

studies have applied polynomial equations for modelling environmental factors on microbial 

growth and lag phase. Pardo et al. (2005b) used the same mathematical means to estimate 

influence of aw and T on lag phase duration of A. ochraceus, while Lahlali et al. (2007) and 

Samapundo et al. (2007d) on growth rate of B. cinerea and A. flavus and A. parasiticus 

respectively. The latter author also used the method for aw and salt concentration (Samapundo 

et al., 2007e) on Fusarium and Aspergillus spp. and on bw on Fusarium proliferatum and F. 
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verticilliodes (Samapundo et al., 2005). In the last paper an attempt made to use a 3
rd

 order 

polynomial for bw and temperature influence. 

Nevertheless, higher order polynomial models, e.g., cubic or quadratic models have been 

criticized for being too flexible and for attempting to model, rather than eliminate, 

experimental error. Because of the very flexible nature of higher order polynomial models 

they should not be used as secondary model within predictive microbiology unless very high 

quality experimental data are available and support the application of these models. 

Moreover, polynomial models have properties that limit their usefulness as secondary 

predictive models. Polynomials include many coefficients that have no biological 

interpretation. The high number of coefficients and their lack of biological interpretation 

make it difficult to compare polynomial models with other secondary predictive models. The 

important information included in, e.g., the Tmin parameter of a square-root-type model is not 

provided by polynomial model (Ross & Dalgaard, 2004). 

The Gamma Concept 

The concept of dimensionless growth factors, now known as the gamma (g) concept, was 

introduced in predictive microbiology by Zwietering et al. (1992). The gamma (g) concept 

relies firstly on the observation that many factors affecting microbial growth rate act 

independently, and that the effect of each measurable factor on growth rate can be represented 

by a discrete term that is multiplied by terms for the effect of all other growth rate affecting 

factors 

Secondly, the effect on growth rate of any factor can be expressed as a fraction of the 

maximum growth rate (i.e., the rate when that environmental factor is at the optimum level). 

Under the gamma concept approach, the cumulative effect of many factors poised at 

suboptimal levels can be estimated from the product of the relative inhibition of growth rate 

due to each factor, as indicated by the complete equations for temperature, pH and aw 

(Zwietering et al., 1996). The relative inhibitory effect of a specific environmental variable is 

described by a growth factor “gamma” (γ), a dimensionless measure that has a value between 

0 and 1. The relative inhibitory effect can be determined from the “distance” between the 

optimal level of the factor, and the minimum (or maximum) level that completely inhibits 

growth by recourse to a predictive model. In the gamma model approach, the reference 

growth rate is μmax, so that reference levels of temperature, water activity, etc., are those that 

are the optimum for growth rate, usually represented as Topt, aw opt, pHopt, etc. The combined 

effect of several environmental factors is then determined by multiplication of their respective 

γ factors (Ross & Dalgaard, 2004). Panagou et al. (2003) presented an expellant example of 
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gamma factor concept when applied to model aw, T and pH effect on growth rate of Monascus 

ruber.  

Cardinal Parameter Models 

The basic idea behind cardinal parameters models (CPMs) is to use model parameters 

that have a biological or graphical interpretation. When models are fitted to experimental data 

by nonlinear regression, this has the obvious advantage that appropriate starting values are 

easy to determine. General CPMs rely on the assumption that the inhibitory effect of 

environmental factors is multiplicative, an assumption that was formalized in the gamma (g) 

concept discussed above. Thus, general CPMs consist of a discrete term for each 

environmental factor, with each term expressed as the growth rate at the optima of the factor; 

i.e., each term has a numerical value between 0 and 1 and at optimal growth conditions all 

terms have a value of 1 and thus μmax is equal to μopt. Within predictive mycology various 

CPMs were developed. A first approach of CPMs to food spoilage fungi was introduced by 

Cuppers et al.(1997) using a model originally built up for microbial growth from Rosso et al. 

(1995).  

Expressions of CPM related with fungal growth are the temperature effect on Penicillium 

roqueforti, Trichoderma harzianum, Paecilomyces variotii, Aspergillus niger and Emericella 

nidulans studied by Cuppers et al. (1997). Rosso and Robinson (2001) and Sautour et al. 

(2001b) used the same method to model the effect of aw on Aspergillus flavus, A. nomius, A. 

oryzae, A. parasiticus, A. candidus, A. sydowii, Eurotium amstelodami, E. chevalieri, and 

Xeromyces bisporus the first two authors and P. chrysogenum, A. flavus, C. cladosporioides 

and Alternaria alternata the latter group of authors. An expansion of this model is presented 

from Panagou et al. (2003) in order to include the effect of temperature beside that of aw and 

pH for the fungus Monascus ruber. Finally, Marin et al. (2009) used the model of Rosso and 

Robinson (2001) to assess aw influence on A. flavus growth. 

Artificial Neural Networks 

Artificial neural networks (ANNs) are algorithms that can be used to perform complex 

statistical modelling between a set of predictor variables and response variables. Their 

particular advantage is that they have the potential to approximate underlying relationships of 

any complexity between those variables. The use of ANN in predictive growth modelling 

remains relatively little developed, and direct comparison of the performance of different 

ANN techniques is still lacking (Ross & Dalgaard, 2004). Although, an interesting ANN 

performance for the effect of pH, aw and temperature on radial growth rate of Monascus ruber 

is presented by Panagou et al. (2007). 
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Probability Models  

In probability models in predictive microbiology the data are usually that the response 

(e.g., growth, detectable toxin production) is observed under the experimental conditions, or 

that it is not. Responses such as detectable toxin production can be coded as either 0 (response 

not observed) or 1 (response observed) or, if repeated observations have been made, as 

probability (between 0 and 1). The probability is related to potential predictor variables by 

some mathematical function using regression techniques. Because regression techniques do 

not exist for dichotomous data, the regression equation is usually related to the log odds, or 

logit, of the outcome of interest (Ross & Dalgaard, 2004). Studies from the field of mycology 

are presented from Sautour et al. where the probability (%) of conidial germination of P. 

chrysogenum after 25 days of incubation was modelled against aw, temperature and pH by a 

polynomial equation (Sautour et al., 2001a), and T90(%) was estimated, taking into account 

the influence of the same environmental factors on the fungus (Sautour et al., 2001c) with a 

2
nd

 order polynomial. 

Growth/No Growth Interface Models 

Models defining combinations of environmental conditions that just prevent growth have 

become known as „G/NG interface,” “growth boundary,” or more simply “growth limits” 

models. Various approaches have been suggested to define the G/NG boundary with most 

common empirical or deterministic approaches and logistic regression techniques.  

A global logistic model incorporating a dummy variable for the growth medium was used 

for the estimation of the growth–no growth interface of yeast Issatchenkia occidentalis as a 

function of NaCl, citric and sorbic acid concentrations. From this work, the growth/no growth 

interface for a selected probability can be deduced by substituting logit (p) by the 

corresponding polynomial equation and plotting the resulting equation as a function of two or 

three variables, while maintaining the rest of them at predetermined levels (Lopez et al., 

2007). Marin et al. (2008b) built a probability model to predict the growth of Aspergillus 

carbonarius as a function of moisture content and storage temperature of pistachios nuts. 

Marin et al. (2009) modelled probability growth data by using linear logistic regression 

analysis to determine the growth/no-growth boundaries of A. flavus under different water 

activity levels. Battey et al. (2001) and Panagou et al. (2003) used the same methodology by 

expanding the polynomial to include more factors. The first team modelled the probability of 

growth for A. niger and P. spinulosum against time, pH, titratable acidity, °Brix, sodium 

benzoate and potassium sorbate concentrations in ready-to-drink beverages, while the latter 
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team modelled probability of growth of Monascus ruber against NaCl concentration, 

temperature and pH. 

Toxin modelling 

If literature of growth/no-growth interface referring to toxigenic fungi is limited, studies 

relating probability modelling of toxin production are minimal. A first integrated approach 

has been carried out by Pitt (1993) whose first thing to consider was the difficulty of toxin 

modelling due the parallel production and degradation of aflatoxin and the poorly understood 

fungal secondary metabolism. Pitt assumed the rate of toxin formation proportional to the rate 

of production of new cell mass and the rate of toxin degradation proportional to the 

production of the concentration of dead cell mass and aflatoxin. An Arrhenius-type function 

was selected for the effect of temperature, a linear function for aw and a parabolic for pH. By 

this methodology the author tried to conclude to a model that will take into account all 

environmental factors and predict the relative growth and toxin formation (Pitt, 1993). But the 

numerous assumptions that followed during model construction minimize its usefulness, and 

thus this work had no much progress later. Marin et al. (1999) investigated the potential of 

modelling fumonisin B1 production under the influence of temperature and aw by Fusarium 

moniliforme and F. proliferatum on maize grain. Although that detailed two-dimensional 

profiles to assess fumonisin B1 production under the environmental factors essayed was 

successfully developed, the differences between productions at the different temperatures 

were not high enough to provide general models. Since the effect of aw on fumonisin 

accumulations was much more marked, its impact was modelled through a 3
rd

 degree 

polynomial for some of the temperature sets. However, in this study the crucial aspects of 

initial inoculum, time, and fluctuation of environmental conditions were not taking into 

account, and thus the prediction is meaningless outside the limited environmental conditions 

tested. 

Nowadays, the trend is, instead of trying to model the concentration during time, to 

model the probability of presence of the toxin at an actual time. In this direction, Marin et al. 

(2008b) built a probability model to predict the growth and OTA production boundaries of 

Aspergillus carbonarius strains under different incubation temperatures and moisture content 

pistachios. Tassou et al. (2009) also modelled the probabilities of growth and OTA 

production of Aspergillus carbonarius isolates on media of different aw and incubation 

temperatures and demonstrated graphically the Growth/No Growth and OTA production 

boundaries. 
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2.9 Strategies on Prevention and Control of A. carbonarius 

 

The presence of OTA in grapes, grape products and wine is dependent on opportune 

climate conditions which can facilitate germination and mycelial colonisation to occur. The 

most important factors governing these components are water activity, temperature and their 

interaction with the nutrient status of the food matrix. For grapes, pre-harvest contamination 

is a critical factor in determining the contamination in wine, especially of red wine where the 

skins are left in the initial phases of production. For processing of grapes, pH is also 

important. 

For the production of vine fruits the grapes are generally sun-dried for 7–14 days and 

turned regularly to ensure an even drying. This technique is also applied in some specialty 

dessert wines in Greece and other countries of Mediterranean basin. During this process the 

sugar is concentrated as the moisture content decreases resulting in an almost selective 

medium for xerotolerant moulds such as Aspergillus section Nigri species. If a rain episode 

occurs during the process, then, this can result to a higher risk of OTA contamination due to 

uneven drying (Magan & Aldred, 2005). 

Softening of the berry skin and swelling after véraison cause the skin to split in some 

berries, allowing infection by A. carbonarius and subsequent sporulation. Appropriate 

vineyard management during the period between véraison and harvest is vital for reducing 

berry splitting, and thus, minimising Aspergillus rots and the risk for OTA formation. 

Fungicides, such as Switch® (cyprodinil+fludioxonil, Syngenta, Basel, Switzerland), have 

been reported to be effective in reducing Aspergillus rots when applied shortly before 

véraison, with follow-up sprays before harvest conferring additional reductions. Aspergillus 

rots may be controlled by minimising berry damage through careful management of irrigation 

and canopy. Management of fungi such as B. cinerea and Erysiphe necator (powdery 

mildew), which are capable of damaging berries, is another strategy for reducing the 

incidence of Aspergillus bunch rots (Leong et al., 2006d; Belli et al., 2007). In the same way 

grape berry damage by Lobesia botrana has been shown to considerably increase the 

contamination level of black aspergilli and consequent OTA accumulation in grapes. It is, 

therefore, important to ensure adequate insect control in combination with fungicide treatment 

to realize effective pest management (Cozzi et al., 2006; Visconti et al., 2008). 

Another promising innovation is proposed by Battilani et al. (2006b) with the use of 

Geostatistical analysis tools to identify areas with a high risk of grape infection by black 

aspergilli. This study examined geostatistical data and relate key climatic information on a 
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regional basis to levels of contamination of wine grapes with A. Section Nigri and A. 

carbonarius, responsible for ochratoxin A contamination in wine and vine fruits. This 

approach can be found very useful in developing accurate risk maps and a web-based 

knowledge system for risk from OTA and this way indicate the distribution in the field and 

allow prediction of occurrence (Battilani et al., 2006b; C.A.S.T., 2003). 

Battilani & Pietri (2004a) and Martínez-Rodríguez & Carrascoza (2009) discuss the 

application of HACCP system during the winemaking process to control the formation and 

concentration of OTA in wine. OTA concentrations in the final product should not exceed the 

limits established in the legislation. If the contrary happens, the traceability system and the 

existing records will allow the failure and the batch that has become out of control to be 

located, and thus to find the CCP that has become out of control, modifying this if necessary. 

In conclusion, fungicidal and insecticidal treatments can reduce OTA contamination. 

Developing of risk maps, based on critical control points, can help to prevent and control 

OTA accumulation in grapes. Availability of rapid methods for OTA analysis is also 

important for preventive and corrective intervention at critical control points. During 

vinification of (red) grapes only a small amount of the initial present OTA remains dissolved 

in the wine, while most of it is absorbed by solid winery by-products (grape pomace and lees). 

Carbon reduces OTA concentrations in wines, but negatively affects quality. Good 

Agriculture Practices (balanced soil tillage, irrigation, nitrogen fertilization, and pruning) and 

Good Manufacturing Practices (reduced harvest to vinification time, segregation of rot 

bunches) help considerably to reduce OTA contamination risk (Visconti et al., 2008). 
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Chapter 3: Mycoflora Dynamics in Organic/non-Organic Vine 

Grape Production in Greece 

 

3.1 Introduction  

 

Several surveys in European and other traditional wine-producing countries, such as 

Australia and South American countries have confirmed the frequent presence of A. 

carbonarius on grapes (Magnoli et al., 2003; Battilani et al., 2004b; Belli et al., 2004b; 

2006d; Guzev et al., 2006; Leong et al., 2006b; Tjamos et al., 2006; Melki Ben Fredj et al., 

2007; Visconti et al., 2008). The presence and incidence of the responsible mycoflora is 

affected by several factors of the vine environment, i.e., the status of the grape berries, the 

number of damaged berries, the meteorological conditions, the localization of the vineyard, 

the cropping system and the chemical treatments (Battilani et al., 2006b; Blesa et al., 2006; 

Belli et al., 2005b; 2007a; 2007b; Leong et al., 2006b; Clouvel et al., 2008). Studying these 

factors in vivo and understudying the ways they are affecting the presence of black aspergilli 

on the vineyard is important, because it will allow early detection of A. carbonarius which is 

considered the major cause of OTA contamination of grapes.  

The incidence of the black aspergilli responsible for OTA presence in grapes increases as 

berries mature, starting from the early stages of berry development, but become very well 

established from véraison until grape ripening (Battilani & Pietri, 2002; Belli et al., 2005b; 

Bejaoui et al., 2006; Serra et al., 2003; 2006b). The occurrence of black aspergilli has been 

correlated mainly with temperature, and to a lesser extent to relative humidity and pre-harvest 

rainfall (Belli et al., 2005b; Battilani et al., 2006b; Leong et al., 2007), while an increased 

incidence is reported from the warmer regions of southern Europe (Battilani et al., 2004b; 

Belli et al., 2004b; 2006d; Guzev et al., 2006; Tjamos et al., 2006; Melki Ben Fredj et al., 

2007). Battilani et al. (2004b) reported differences in susceptibility to infection and OTA 

production among cultivars commonly grown in Italy, while the same was also noted by 

Bejaoui et al. (2006) for French cultivars and Tjamos et al. (2004; 2006) for Greek ones. The 

common viticulture chemical treatments and their efficacy on A. carbonarius control have 

been studied by several authors (Tjamos et al., 2004; Belli et al., 2004; Valero et al., 2007b), 

while organic versus conventional culturing have been also investigated (Chiodini et al., 

2006; Ponsone et al., 2007).  
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The present chapter aims to correlate the incidence of A. carbonarius in Greek cultivars 

intended for winemaking with the above mentioned factors, and particularly with the cropping 

system applied, in a way that will reveal useful information regarding the control of the 

species responsible for OTA production in the fungal mycoflora of grapes.  

 

3.2 Materials and methods 

 

3.2.1 Data collection 

3.2.1.1 Study areas 

The vineyards were located with the cooperation of 2 Greek wine producers, Arkas S.A. 

(Domain Spiropoulos) located in Tripoli, Arcadia, and Achaia Clauss Co. located in Patra, 

Achaea. Both wineries‟ vineyards lie in the greater range of Peloponnesus as shown in Figure 

3.1. They are located in the prefectures of Achaea, Arcadia and Corinthia. In total 21 different 

vineyards, in 10 locations laid at heights starting from an altitude of 20 m and a distance of 5 

km from the sea and reaching about 750 m altitude and 50 km from sea. They were chosen 

from both conventionally and organically cultured cultivars. For every sampled vineyard 

recordings were made of the longitude, latitude, altitude, and distance from the sea, the 

weather conditions and the culturing technique followed by the producer (Tables 3.1, 3.2). 

The laboratory work was carried out at the Institute of Technology of Agricultural Products at 

Lycovrisi, Attiki (National Agricultural Research Foundation). 

 

Figure 3.1 Locations and coding of studied vineyards in the 3 Peloponnese prefectures: A 

= Achaea, B = Corinthia, C = Arcadia. 
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Table 3.1 Geographic localisation of the studied vineyards 

Prefecture 
Altitude (m) Latitude Longitude 

Distance from 

sea (km) 

Climate 

type* Location name (code) 

Achaea      

Limnochori (A1) 20 38°8'34"N 21°28'49"E 5 km LM 

Loussika (A2) 60 38°6′34″N 21°35′28″E  5 km LM 

Krini  (A3) 150 38°11'46"N 21°46'12"E 5 km LM 

Zissimeika (A4) 150 38°3'3"N 21°36'32"E 15 km LM 

Arla (A5) 200 38°3'22"N  21°35'55"E 15 km LM 

Kalavrita (A6) 750 38°3'1"N 21°55'17"E 40 km M 

Corinthia      

Achladia (B1) 350 37°50'23"N 22°18'56"E 45 km M 

Archaia Nemea (B2) 400 37°48'58"N 22°42'26"E 20 km M 

Arcadia      

Mantinia (C1) 650 37°40'24"N 22°21'53"E 50 km M 

Agiorgitika (C2) 650 37°29'40"N 22°29'13"E 25 km M 

* Climate type coding:  

LM (Landlocked Mediterranean) = Climate with moderate rainfall, mild winter and dry summer. 

M (Mountainous) = Climate with icy winter, cool summer and rainfall all the year. The temperature has great 

fluctuation within a day and between different seasons. 

 

 

Table 3.2 Monthly Mean Rainfall and Temperature for the 2 types of 

climate studied. 

 July August September 

 Landlocked Mediterranean 

Rainfall (mm) 10 10 10 

Temperature (°C) 27 26 23 

 Mountainous 

Rainfall (mm) 20 20 30 

Temperature (°C) 25 24 20 

 

 

3.2.1.2 Study cultivars 

The wine producing grape cultivars cultured in the 21 vineyards and recorded for the 

mycological study were Mavrodaphni, Cabernet Sauvignon, Agiorgitico, Moschophilero and 
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Syrah from red varieties, and Roditis, Sauvignon Blanc, Chardonnay and Muscat Blanc from 

white. Mavrodaphni, Agiorgitico, Moschophilero, Roditis and Muscat Blanc cultivars 

represent the most common Greek varieties cultured in the Peloponnesian regions and give 

some of the most famous V.Q.P.R.D. Greek wines such as “Moschatos Patron”, 

“Mavrodaphni Patron”, “Moschophilero Mantineias” and “Agiorgitico Nemeas”. On the other 

hand, the remaining famous international varieties and Greek Roditis are frequently used for 

the production of regional wines of high quality.      

 

3.2.1.3 Vineyards management 

All vineyards of Arkas S.A. were treated according to the E.U. legislation for organic 

farming and only the following commercial chemicals were applied: 

Fungicides 

YPER 50WP = 50% w/w copper hydroxide, as Cu in water-dispersible powder 

(VECTOR AGRO S.A.) 

Kumulus 80WG = 80% w/w sulphur in water-dispersible granules (BASF Agro) 

SULPHUR-B.F.L. 96 DP = 96% w/w sulphur dry powder (Phosphoric Fertilisers 

Industry S.A.) 

Fertilizers 

Genitron Spyrou S.A. Organic Fertilizer 

Geotron Spyrou S.A. Nitrate Organic Fertilizer 

Vineyards of Achaia Clauss Co. were cultured with the conventional wine-making grape 

culturing, with herbicide as well as fungicide treatment and fertilizer applications. Varieties, 

culturing, and sampling time for the vineyards studied are presented in Table 3.3. 
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Table 3.3 Varieties, culturing technique and sampling for the vineyards studied. 

Vineyard
1
 Cropping 

System
2
 

Samplings
3
 

Variety studied (Colour) 2004 2005 2006 2007 

A1      

Roditis (w) C   R  

A2      

Roditis (w) C  R V-R  

A3      

Roditis (w) C R R V-R R 

Mavrodaphni (r) C R R R V-R 

Cabernet Sauvignon (r) C R R   

Muscat Blanc (w) O  R   

A4      

Roditis (w) C  R   

A5      

Roditis (w) C R R   

A6      

Roditis (w) C  R   

Cabernet Sauvignon (r) C   R  

B1      

Agiorgitico (r) O  R R  

B2      

Agiorgitico (r) C   R  

C1      

Sauvignon Blanc (w) O R  R  

Chardonnay (w) O R  R  

Moschophilero (r) O R R V-R R 

Cabernet Sauvignon (r) O R R V-R R 

Agiorgitico (r) O R  V-R  

Syrah (r) O   V-R V-R 

C2      

Moschophilero (r) O    V-R 
1
 w = white cultivar, r = red cultivar 

2
 C = Conventional, O = Organic 

3
 R = Ripening, V = Véraison  

 

3.2.1.4 Field Samplings 

The study started during the harvesting period of 2005 (September, October), continued 

for two developmental stages of the berries, early véraison and ripening (harvest time), in 

2006 and 2007. Moreover, mycological data was also obtained for some vineyards in 2004. 

For the present mycological study, five plants were marked along two major diagonal 

transects of each vineyard. Three bunches were collected from each marked plant at véraison 

and at harvest. Bunches collected were at a height of 0.5-1.0 m from the ground. They were 
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kept in paper bags and stored in portable refrigerators during transfer to the laboratory and 

analysed within 24h. 

 

3.2.2 Mycological study 

 

3.2.2.1 Fungal isolation  

From each bunch, three berries were randomly selected. Three or four pieces of skin were 

aseptically (in the Laminar flow bench) removed using surface sterilised tweezers from every 

selected grape of the bunch and placed on agar plates containing Dichloran Rose Bengal 

Chloramphenicol agar (DRBC, Merck). The pieces of skin were placed on the substrate with 

the outer skin side downwards (Pitt & Hocking, 1997). Additionally, a whole bunch was 

crushed with the help of a stomacher crusher and decimal serial dilutions were prepared in 

order to compare the populations with frequency of isolation by direct plating. Plates were 

incubated at 25
ο
C for 7 days. From the third day of incubation, the plates were monitored in 

the stereomicroscope for the presence of Aspergillus and Penicillium species. Colonies were 

enumerated and for every Aspergillus isolate, a suspension of spores was maintained in 10% 

glycerol solution maintained at –80
ο
C (Serra et al., 2003). 

 

3.2.2.2 Aspergillus spp. identification 

The Aspergilli isolates were further cultured on Malt Extract Agar (MEA, Merck) and 

Czapek Yeast Extract Agar (CYA, prepared at laboratory according to Samson et al., 2000) 

for identification. Their identification was based on their morphological and microscopic 

characteristics and in accordance with the guidelines of Samson et al. (2000) and Pitt & 

Hocking (1997). Several isolates were also compared with selected reference strains of A. 

niger, A. japonicus and A. carbonarius, kindly provided by the Applied Mycology Group of 

Cranfield University (Prof. N. Magan, Cranfield University, UK).  

On the eighth day of cultivation the MEA plates were checked for identification of 

Aspergillus section Nigri and particularly for A. carbonarius strains. The macroscopic 

identification was made by the use of a stereoscope and by eye observation of the 

characteristics of isolates, while isolates were also observed with a high powered compound 

microscope. For every colony believed to belong to the black Aspergilli a small quantity of 

conidia was placed with a microbiology cringle to a vial with sterilized and double-distillate 

water and 10% glycerol or 0.1% agar-agar solution, and maintained at –80
ο
C.  
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3.2.2.3 Ochratoxigenic ability of Aspergilli isolates 

Qualitative: Aspergillus isolates were grown on Coconut cream medium (40-50% 

coconut cream, 1.5% agar) at 25
ο
 C for 7 days. The plates were then viewed inverted under 

long wave UV light and checked for the presence of fluorescence under the colony indicating 

OTA production (Dyer & McCammon, 1994; Heenan et al., 1998).  

Quantitative: Cultures of aspergilli were grown on CYA plates at 25
ο
 C for 7 days. Three 

agar plugs were removed upon the radial of every colony and after weighted were placed into 

a vial with 0.5 ml methanol for the infusion of OTA. After 60 min, the extract was filtered 

(Millex®-HV 0.45μm, 13mm), diluted 100 fold (0.1 ml to 10ml) and kept in vials at 4°C until 

the injection to the HPLC (Bragulat et al. 2001). 

 HPLC analysis: The samples were analysed using an HPLC device (Hellamco Hewlett 

Packard Series 1100) equipped with a fluorescence detector (330nm excitation wavelength; 

460nm emission wavelength). Chromatographic separations were performed with a C18 

column (Waters spherisorb ODS-2 5 um, 250 mm×4.6 mm). The mobile phase was pumped 

at 1.0 ml min
-1

 and consisted of an isocratic solution of acetonitrile (ACCN): H2O: acetic acid 

at 51:47:2. OTA was quantified on the basis of the HPLC fluorometric response compared 

with that of an OTA standard. The detection limit for OA was <0.01 μg g
-1

 of medium 

substrate.  

 

3.2.2.3 Storage of fungal isolates 

As soon as the mycelium had colonised 50% of the Petri plate to obtain mature conidia, a 

small quantity of them was also stored in the same way as above. This method was also used 

for isolation of species and strains of Aspergillus genus from several musts and grapes 

varieties of Peloponnese region. Moreover, surface isolations from machinery and raw 

material have been made from the wineries we visited. Spores of the isolated strains or 

isolates are kept in deep freezer (-80°C) and recovered every 6 month.  

 

3.3 Results 

 

3.3.1 Total mycoflora 

All isolated and identified colonies found, belonged to the following genera: Aspergillus, 

Penicillium, Alternaria, and Botrytis spp., that were almost always present, and 

Cladosporium, Epicocum, Fusarium, Rhizopus, and Trichoderma spp., that were rarely 

identified in the sampled grapes (Data not shown).  
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The results of the mycological study for each of the years studied and separate vineyards 

are presented in Tables 3.4 – 3.7, while in Figure 3.2 the occurrence and the population 

composition of Aspergillus section Nigri spp. at harvest time for all studied vineyards are 

shown.   

 

Table 3.4 Mycoflora dynamics for 2004 at ripening stage of vine grape 

Cultivar / 

Vineyard code 

Colour / 

Culture 
 

% Aspergillus 

section Nigri 
% Penicillia spp. % Other Fungi 

MD/A3 r/C  50 38 12 

CS/A3 r/C  51 12 37 

RD/A3 w/C  94 2 4 

RD/A5 w/C  74 18 8 

MP/C1 r/O  25 13 62 

CS/C1 r/O  0 50 50 

AG/C1 r/O  0 57 43 

SB/C1 w/O  20 20 60 

CR/C1 w/O  20 40 40 

Total   37.1 27.8 35.1 
1
MD = Mavrodaphni, CS = Cabernet Sauvignon, AG = Agiorgitico, RD = Roditis, MP = 

Moschophilero, SB = Sauvignon Blanc, CR = Chardonnay 
2
For the localisation of each vineyard according to its code it is recommended to advise Figure 3.1 and 

Tables 3.1 & 3.2 
3
r = red, w = white, O = Organically cultured, C = Conventionally cultured 

 

 

Table 3.5 Mycoflora dynamics for 2005 at ripening stage of vine grape 

Cultivar / 

Vineyard code 

Colour / 

Culture 
 

% Aspergillus 

section Nigri 
% Penicillia spp. % Other Fungi 

MD/A3 r/C  11 30 57 

CS/A3 r/C  4 69 25 

RD/A2 w/C  87 8 4 

RD/A3 w/C  65 28 5 

RD/A4 w/C  60 21 18 

RD/A5 w/C  75 6 18 

RD/A6 w/C  11 56 31 

MP/C1 r/O  10 23 65 

CS/C1 r/O  4 36 59 

AG/C1 r/O  26 6 66 

MB/A3 w/O  71 1 27 

Total   27.4 33.3 39.3 
1
MD = Mavrodaphni, CS = Cabernet Sauvignon, AG = Agiorgitico, RD = Roditis, MP = 

Moschophilero, MB = Muscat Blanc 
2
For the localisation of each vineyard according to its code it is recommended to advise Figure 3.1 and 

Tables 3.1 & 3.2 
3
r = red, w = white, O = Organically cultured, C = Conventionally cultured 
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Table 3.6 Mycoflora dynamics for 2006 at véraison and ripening stage of vine grape  

Cultivar
1
 / 

Vineyard code
2
 

Colour / 

Culture
3
 

Sampling 

period 

% Aspergillus 

section Nigri 
% Penicillia spp. % Other Fungi 

MD/A3 r/C ripening 98 0.7 0.4 

CS/A6 r/C ripening 31 48 20 

AG/B2 r/C ripening 57 26 16 

RD/A1 w/C ripening 86 2 10 

RD/A2 w/C véraison 62 4 33 

  ripening 85 4 10 

RD/A3 w/C véraison 24 19 55 

  ripening 90 0 9 

AG/C1 r/O véraison 0.1 80 19 

  ripening 0.2 72 27 

AG/B1 r/O ripening 13 66 19 

MP/C1 r/O véraison 0.1 80 19 

  ripening 1 67 31 

CS/C1 r/O véraison 0.4 87 11 

  ripening 1 60 38 

SR/C1 r/O véraison 0.3 73 26 

  ripening 1 55 42 

SB/C1 w/O ripening 2 68 29 

CR/C1 w/O ripening 0.5 44 54 

Total  véraison 1.6 78.8 19.6 

Total  ripening 23.9 48.3 27.8 
1
MD = Mavrodaphni, CS = Cabernet Sauvignon, AG = Agiorgitico, RD = Roditis, MP = 

Moschophilero, SB = Sauvignon Blanc, CR = Chardonnay 
2
For the localisation of each vineyard according to its code it is recommended to advise Figure 3.1 and 

Tables 3.1 & 3.2 
3
r = red, w = white, O = Organically cultured, C = Conventionally cultured 

  
 

Table 3.7 Mycoflora dynamics for 2007 at véraison and ripening stage of vine grape 

Cultivar / 

Vineyard code 

Colour / 

Culture 

Sampling 

period 

% Aspergillus 

section Nigri 
% Penicillia spp. % Other Fungi 

MD/A3 r/C véraison 19 0 80 

  ripening 94 0.4 5 

RD/A3 w/C ripening 60 2 37 

MP/C2 r/O véraison 0.8 0 99 

  ripening 7 67 25 

MP/C1 r/O ripening 0 2 97 

AG/B1 r/O véraison 0 78 21 

  ripening 2 90 7 

CS/C1 r/O ripening 0.7 1 98 

SR/C1 r/O ripening 0 0 100 

Total  véraison 6.6 17.9 75.3 

Total  ripening 32.0 22.3 45.6 
1
MD = Mavrodaphni, CS = Cabernet Sauvignon, AG = Agiorgitico, RD = Roditis, MP = 

Moschophilero, SR = Syrah 
2
For the localisation of each vineyard according to its code it is recommended to advise Figure 3.1 and 

Tables 3.1 & 3.2 
3
r = red, w = white, O = Organically cultured, C = Conventionally cultured 
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These results indicated that the occurrence of Aspergillus section Nigri species was 

relatively high every year in the total mycofloral populations and represented >23% and for 

2004 reached a mean occurrence of 41%. In the composition of Aspergillus section Nigri 

population, A. carbonarius represented 22 – 35%, with 2004 the only exception where it was 

about 10%. Nevertheless, mycofloral analysis for that year was not part of the thesis per se 

and detailed identification was not done. From the isolates identified as A. carbonatius, >80% 

were able to produce OTA. From the OTA-producers the highest detected production was 

23.11 μg g
-1

 while the majority of them produced <10 μg g
-1

 of growth medium.  
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Figure 3.2 Occurrence and population composition of Aspergillus spp. at harvest time on berries of wine 

grape cultivars in Peloponnese for the 4 studied years (2004-2007). 
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3.3.2 Ripening vs véraison 

Considering berry status, six different varieties (2 white and 4 red) cultured from 9 

different vineyards were monitored for their mycofloral dynamics during 2006-07. Figure 3.3 

shows that for the total mycoflora there was a strong correlation between the two berry 

statuses. This was also evident when the results are considered in relation to cropping system, 

organic or conventional followed (Figure 3.4).  

 

Figure 3.3 Total mycoflora of wine making vineyards between the véraison and 

ripening stage of grape. 

 

Figure 3.4 Total mycoflora of organically and conventionally cultured vineyards 

between the véraison and ripening stage of grape. 
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It is also worthwhile noting that the “other fungi” percentage increased during the 

ripening of grapes for the organic vineyards in contrast to the conventional, where the use of 

chemical treatments appeared to decrease them. Although A. section Nigri did not show the 

same patterns. A similar trend was found when examining every variety separately (Figure 

3.5), especially for the two conventionally cultured Roditis and Mavrodaphni cultivars for 

which the increase from véraison to ripening was more marked.  

 

Figure 3.5 Mycoflora dynamics for 6 varieties of wine making vineyards. Roditis 

(RD) and Mavrodaphni (MD) were of conventional culturing, while Agiorgitico 

(AG), Moschophilero (MP), Cabernet Sauvignon (CS) and Syrah (SR), of organic. 

 

3.3.3 Organic vs conventional culturing technique 

When data are distributed between conventionally and organically treated vineyards 

results showed a strong correlation with the cropping type. Results are demonstrated in 

Figures 3.6 – 3.8. 
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Figure 3.6 Total mycoflora of wine making vineyards between the véraison and 

ripening stage of grape in relation to culturing type. 

 

 

Figure 3.7 Total mycoflora at harvesting time for conventionally cultured 

Mavrodaphni (MD) and Roditis (RD) cultivars and for the organically cultured 

Moschophilero (MP) and Cabernet Sauvignon (CS). 
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Figure 3.8 Total mycoflora at harvesting time for conventionally and organically 

cultured cv. Cabernet Sauvignon. 

 

The percentage of samples colonized by Aspergillus section Nigri was significantly 

influenced by the cropping system followed by the two wine producers. A. section Nigri from 

conventional vineyards studied were generally the dominant fraction in contrast with the 

organically where the section was dominant only in one case of a Muscat Blanc variety grown 

in the lowest altitude from all the organically grown varieties. 

It is worthwhile noting that Cabernet Sauvignon (Figure 3.8; Table 3.5), although 

showing the same trend in relation to cropping system, it was the least contaminated variety 

among the conventionally cultured examined. 

 

Figure 3.9 Total mycoflora at harvesting time for conventionally and organically 

cultured Agiorgitico cultivar for 2006. 
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In Figure 3.9  the population distribution for an Agiorgitico variety cultured 

conventionally and organically in lateral regions in Nemea are shown (B1, Achladia Nemeas, 

organic and B2, Archaia Nemea, conventional; Table 3.1). Agiorgitico is presented from the 

overall results as a rather resistant variety to Aspergillus section Nigri spp., but when the 

cropping system followed was a conventional one, even if the location remained the same as 

that of organic cultured ones, the results was far worse from the latter.  

 

3.3.4 Geo-climatic factors  

Some interesting findings were found when the results were correlated to the altitude and 

distance from sea. As has been shown in Figure 3.9 the occurrence of black Aspergilli 

increases for the Roditis cultivars as culturing altitude decreases. A similar trend is shown in 

Figure 3.10, but this was correlated to smaller distances from sea (5 & 15km) since when the 

distance was greater, the altitude also increased. 

As regards the climatic conditions for the period of study (véraison and ripening) the 

discrimination of Mountainous (M) and Landlocked Mediterranean (LM) climate types is the 

same with the discrimination made for altitude (Tables 3.1, 3.2), and therefore results are not 

shown again. As shown in Figure 3.10 and 3.11, the vineyards of LM climate are far more 

susceptible to black Aspergilli infection from those located at higher altitudes and thus in a 

Mountainous climate.  

 

 

Figure 3.10 Total mycoflora at harvesting time for Roditis variety at different 

altitudes of Achaea region. 
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Figure 3.11 Total mycoflora at harvesting time for Roditis variety at different 

distances from sea of Achaea region (Altitude 50-200m). 

 

3.3.5 Grape Varieties  

As regards the cultivars of vines the results shown in Figure 3.12 draw a clear 

discrimination between two groups. Those commonly cultivated at high altitudes and which 

result in wines of high acidity and low sugar content (Cabernet Sauvignon, Agiorgitico, 

Sauvignon Blanc and Syrah), had low susceptibility to contamination by A. section Nigri. In 

contrast, the varieties of Mavrodafni, Roditis and Muscat Blanc, usually cultured in lower 

altitudes, and with high sugar content, were found to be more susceptible to black Aspergilli. 

From these varieties the Roditis and Muscat Blanc have characteristic thin berry-skin, which 

make them more susceptible to fungal or insect infection. The colour of the sample did not 

play a central role in occurrence of black Aspergilli, since both white and red varieties found 

to be highly contaminated [e.g. MD (r) & MB (w)]. 
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Figure 3.12 Total mycoflora of the studied varieties. 

 

3.4 Discussion 

 

The grape varieties included in this study are representative of a wide range of 

characteristics. Regarding geographical distribution, Cabernet Sauvignon is probably the most 

common grape variety in the world and it is widely grown in Greece, giving high quality red 

dry wines. Sauvignon Blanc, Muscat Blanc and Syrah are less common varieties in Greece. 

Nevertheless, Muscat Blanc is a variety that has been adapted to the regional vineyard 

characteristics of Achaea and is designated with the V.Q.P.R.D. certification. Equally 

important varieties for Greek wine-making production and also of V.Q.P.R.D. certification 

are the varieties of Mavrodaphni, intended usually for the production of sweet wines, and 

Agiorgitico that gives red dry wines of high quality. Roditis is a variety that in Peloponnese is 

used for the production of local table wines with high consumption in Greece. The position of 

these varieties (Roditis, Mavrodaphni, Agiorgitico, Muscat Blanc and Cabernet Sauvignon) 

on the Greek wine making industry and market, and the fact that they produce important 

quality wines, make the severity of the reported infection from Aspergillus section Nigri more 

important. 

Aspergillus section Nigri and in particular A. carbonarius play a  central role in OTA 

contamination of grape products (Cabañes et al., 2002; Bellí et al., 2005b; Jørgensen, 2005; 

Battilani et al., 2006a).  In this study they were thus the main fungi considered. The 

occurrence of A. section Nigri in the total mycoflora of all vineyards tested was always high 



 

 

- 70 - 
 

(23.9 – 41.7%) throughout the 4 years of study, although there have been recorded higher 

incidences in  more limited surveys in Greece (Battilani et al., 2006b; Tjamos et al., 2006).  

However, some samplings of Roditis and Mavrodaphni varieties from Achaea showed 

incidences >90% for some years. From the A. section Nigri isolates, A. carbonarius 

represented 20-35%, with the only exception being 2004, where they represented only 10% of 

the total black Aspergilli isolates. OTA-producers within the A. carbonarius fraction were 

always >80%. These results are in accordance with other studies from Italy (Battilani et al., 

2004b), Spain (Bau et al., 2005; Gomez et al., 2006), France (Bejaoui et al., 2006) and 

Tunisia (Lasram et al., 2007) of the Mediterranean basin.  

The study between the two stages of grape maturation, véraison and ripening, revealed 

interesting information about the dynamics of the potential OTA producer fungi. Firstly, it 

was clearly shown that the final occurrence of A. section Nigri in the total mycoflora is 

proportional to the infection at véraison. When high incidences were present at véraison, then, 

at the following samplings just before harvest, the incidence increased dramatically. The same 

was observed from several other studies regarding the two stages of maturation in grapes 

intended for wine-making (Serra et al., 2003; 2005; 2006b; Bejaoui e al., 2006; Tjamos et al., 

2006; Lasram et al., 2007). Nevertheless, different results have been found. For example, 

Battilani et al. (2006a) and Belli et al. (2004b) reported the same incidence of A. section Nigri 

and A. carbonarius between the two maturation stages of grape berries. The factor of “sour 

rot” or “black mold” that is dominant in Greece and elsewhere should also be taken into 

account as an amplifier of spore contamination of the berries between véraison and harvest 

(Guzev et al., 2006; Tjamos et al., 2004). In a similar way, the main characteristic of the most 

contaminated samples of the present study was the increased proportion of damaged berries, 

which apart from “sour rot” incidence, may be correlated also with the thin berry skin and 

high sugar proportion of these samples. 

When the results are differentiated as organic and conventional cultured vineyards, the 

picture changes dramatically, showing a mean incidence of infected berries for conventionally 

cultured vineyards >52% and in some cases >70% (i.e. Roditis or Mavrodaphni samplings). In 

contrast, organically cultured vineyards present a rather low mean incidence of infection (6%) 

at harvesting time, with some samples revealing an absence of black Aspergilli at harvest 

time. The quality of the samples, in terms of damaged berries, was far better for organically 

cultivated vineyards, while even for intact samples of conventional cultured plants the 

incidence remained high. Similar results have been reported from other studies regarding the 

cropping system followed before harvest of wine-making vineyards. Ponsone et al. (2007) 
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monitored two cultivars in Argentina under organic and non-organic cultivation system, with 

main differences between the two techniques being the use of herbicides for the latter. The 

two cultivars under organic cropping had reduced incidences of A. section Nigri spp. at 

harvest time compared with the non-organic. This was revealed even in the case where 

population of black Aspergilli was greater at véraison for organic type vineyards. Always, at 

harvesting time organically cultured samples had at least half the incidence from 

conventionally grown ones. Data of Tjamos et al. (2006) showed that the organically grown 

varieties Athiri and Cabernet Sauvignon were less contaminated among the sampled wine 

grape cultivars, while the conventionally grown Cabernet Sauvignon was the most 

contaminated one.    

Valero et al. (2007b), examined fungicide applications of either Chorus (cyprodinil) or 

Switch (37.5% cyprodinil + 25% fludioxonil) 21 days before harvest. When the fungicides 

were applied twice pre-harvest with one extra application at véraison, the inhibition of A. 

section Nigri was reduced. The effectiveness of these two fungicides was also shown by 

others (Tjamos et al., 2004; Belli et al., 2006b; 2007b). However, since there is awareness of 

the traditional SO4Cu or copper hydroxide effectiveness for fungal inhibition and accounting 

the general trend for minimising chemical treatments in agriculture, the present study did not 

focused on the effect of commercially available fungicides. Moreover, from the results of the 

present study, in conventionally cultured vineyards there was a decrease in other contaminant 

fungi following the maturation of grapes, while the opposite happens with “Aspergillus 

section Nigri”. In contrast, organically cultured varieties presented an increase of other 

contaminant fungi from véraison to ripening. These results suggest that when the inhibition of 

mycoflora by fungicides is not fully successful, the reduction of mycoflora from the chemical 

treatment allows rapid A. carbonarius colonisation to occur when the environmental 

conditions are favourable. As regards the varieties studied, the results are in accordance with 

Tjamos et al. (2006) findings that revealed the Agiorgitiko cultivar cultivated in mountainous 

regions of Greece showed a low level of A. carbonarius even if the total Aspergillus spp. 

infection level was high and the Muscat Blanc cultivar from the Aegean Islands found to be 

among the most contaminated ones. Moreover, in surveys investigating the presence of OTA 

in Greek wines, the most contaminated samples refer to sweet wines, which are usually 

produced in Greece by Muscat Blanc and Mavrodaphni cultivars (Stefanaki et al. 2003; 

Soufleros et al. 2003).  

There is clearly an effect of the localisation of vineyard to the population of fungi. This 

comes out firstly from the decreased infection from A. section Nigri of Roditis varieties 
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grown at higher altitudes in contrast with those located in lower and near to the sea. Secondly, 

from the fact that Muscat Blanc grown in Achaea region, although being of organic cropping, 

had similar incidence of black Aspergilli with other varieties of the same origin. In contrast, 

varieties grown in the mountainous Arcadia always had lower incidences from the 

Mediterranean climate of Achaea. A similar trend was also reported by Tjamos et al. (2006) 

for Greek cultivars, where more contamination was found in those originating from 

Mediterranean climates near the sea, like the Aegean Islands, in contrast with those grown in 

mountainous climates of Central Greece.  
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Chapter 4: Ecology and Control of A. carbonarius in Grapes  

 

4.1 Introduction 

 

Mycotoxins are toxic metabolites produced by certain fungi that can infect and proliferate 

on various agricultural commodities in the field and/or during storage. The occurrence of 

these toxins on grains, nuts and other commodities susceptible to mould infestation is 

influenced by several environmental factors. Temperature, humidity, latitude, stage of 

maturation and mechanical damage of the fruit or the kernel are some factors that can affect 

the growth and toxin production of the fungi (Pitt and Hocking 1997; Magan and Olsen 

2004). Mycotoxins may exhibit various toxicological manifestations; some are teratogenic, 

mutagenic and /or carcinogenic in susceptible animal species and are associated with various 

diseases in domestic animals, livestock, and humans in many parts of the world (JEFCA 

2001). Black aspergilli are the main ochratoxin A (OTA) producing species most frequently 

encountered in warm and tropical climates in a variety of foods (Abarca et al. 1994). In 

particular, ochratoxin A (OTA) is a secondary metabolite of several species of filamentous 

fungi (Aspergillus section Circumdati and A. section Nigri) with nephrotoxic, 

immunosuppressive, teratogenic and carcinogenic effects to animals and humans (O‟Brien 

and Dietrich 2005; Murphy et al. 2006; Richard 2007). Moreover, there are several reports 

from many countries in the world describing the high frequencies of OTA contamination in a 

large number of food groups (Creppy 2002; Counil et al. 2005), leading international 

organizations and authorities to thoroughly investigate and report risk assessments of the 

problem (JEFCA 2001; Berg 2003; Heussner 2006). Many authors report OTA contamination 

of cereal and vegetable products, even meat products like sausages contaminated via poor 

quality animal feed (Samson et al. 2000; Magan and Olsen 2004). Grapes, raisins, grape juice 

and wine can be considered as high-risk products because of colonisation by Aspergillus 

carbonarius (Chulze et al. 2006; Leong et al. 2006a). Several research studies have 

determined the mycoflora responsible for the presence of OTA in these products and have 

shown that Aspergillus Section Nigri and in particular A. carbonarius have a central role in 

OTA contamination of these commodities (Abarca et al. 2001; Cabañes et al. 2002; Esteban 

et al. 2004; Bellí et al. 2005; 2007; Jørgensen 2005; Battilani et al. 2006a; Pateraki et al. 

2007; Visconti et al. 2008). This has led the EU to develop legislative limits of 2ng ml
-1

 for 

wine and grape juice and 10ng ml
-1

 for vine dried fruits (EC Regulation 1886/2006). The 

frequent presence of OTA in these products above the acceptable limits has been previously 
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demonstrated (McDonald et al. 1999; Stefanaki et al. 2001; Soufleros et al. 2003; Belli et al. 

2004b; Magnoli et al. 2004; Mankotia 2004). 

Moreover, strains of A. carbonarius have been isolated and identified in several 

Mediterranean wine producing countries such as Spain, Italy, Israel, Portugal and Greece 

(Serra et al. 2003; Battilani et al. 2004; Bellí et al. 2004a; Mitchell et al. 2004; Tjamos et al. 

2004, 2006) and other parts of the world (Chulze et al. 2006; Leong et al. 2006; Romero et al. 

2007). Based on a recent geostatistical study (Battilani et al. 2006b), Greece was an area 

which had a high isolation percentage of A. carbonarius when compared with other countries 

(France, Israel, Italy, Portugal and Spain), as well as high contamination in its vineyards by 

black aspergilli at harvest time, exceeding 50% of berries. 

Fungal growth is influenced by several environmental (abiotic) parameters, but generally 

temperature and water activity (aw) are regarded as the principal controlling factors 

determining the potential for growth (Scott 1957; Magan and Lacey 1984, 1988; Panagou et 

al. 2003; Plaza et al. 2003; Dantigny et al. 2005). Alike, these two factors are of paramount 

importance in influencing growth and OTA formation by mycotoxigenic spoilage fungi on 

wine grapes. The differences of temperature among the viticultural regions, the daily mean 

temperature, the reduction of water availability within the grapes due to sugar content 

increases and production techniques influences growth and OTA production by A. 

carbonarius (Pitt and Hocking 1997; Belli et al. 2006; Serra et al. 2006). Although some 

research is available on the ecophysiology of isolates of A. carbonarius, some results seem to 

be contradictory mainly due to isolate and regional variations (Bragulat et al. 2001; Mitchel et 

al. 2004; Belli et al. 2005a). Very little information is available on the tolerances of 

environmental factors and OTA production by isolates of A. carbonarius from Greece and 

how this compares with other regions in the Mediterranean region. 

In this instance one of the objectives of this study was to examine the effect of 

temperature and aw on in vitro growth and OTA production of two A. carbonarius isolates 

from wine grapes in southern Greece. The effects on (a) lag phase prior to growth, (b) growth 

rates and (c) temporal and maximum OTA production at marginal and optimum conditions 

identified. Surface response curves were developed for prediction of growth and OTA 

production which could be useful to predict times when growth and OTA may be produced. 

Mathematical modelling has proved to be a valuable tool to predict bacterial growth as a 

function of environmental factors such as temperature, pH and water activity (Davey 1994; 

Zwietering et al. 1994; Rosso et al. 1995; McMeeking et al. 2002). However, the modelling 

of filamentous fungi has not received the same level of attention, possibly due to inherent 



 

 

- 75 - 
 

difficulties in quantifying fungal growth and produce reliable and reproducible data (Gibson 

et al. 1994; Gibson and Hocking 1997; Dantigny et al. 2005). Recently, the need for 

improved understanding of the factors controlling fungal growth in foods has attracted the 

attention of several researchers who have developed probabilistic, mechanistic, semi-

mechanistic, empirical and thermal death models for a variety of toxigenic and spoilage fungi 

(Gibson et al. 1994; Cuppers et al. 1997; Valík et al. 1999; Membré and Kubaczka 2000; 

Patriarca et al. 2001; Rosso and Robinson 2001; Sautour et al. 2001, 2002; Valík and 

Piecková 2001).  

In the case of A. carbonarius there are several published studies reporting the effect of 

temperature and aw on fungal growth using modelling approaches (Bellí et al. 2004b, 2005; 

Mitchell et al. 2004; Magan and Aldred 2005; Pardo et al. 2005). However, these studies are 

focused almost exclusively on secondary polynomial model development producing response 

surface contour plots. In addition, these models were used for fitting the experimental data 

and defining optimum conditions for germination and growth, whereas no attempt was made 

to validate them with independently derived data and assess their prediction capability. 

Within the aims of the present study was to develop and evaluate comparative empirical 

models, including models with biological meaningless parameters and cardinal models, in an 

attempt to describe the effect of temperature and water activity on the growth rate of an 

ochratoxigenic A. carbonarius isolate on a synthetic grape nutrient medium, and to validate 

the developed models with independent data from the literature. 

Moreover, a special category of predictive models, and namely probabilistic models have 

been used to determine microbial responses in relation to time and provide estimates for 

parameters such as lag phase duration and growth rate. The latter determine the probability of 

microbial growth or toxin production, i.e. whether growth or toxin production might occur or 

not, under a specific range of environmental factors (Whiting 1995). So far, several modelling 

approaches have been developed for A. carbonarius to quantify the effect of temperature and 

aw on fungal growth and OTA production (Bellí et al. 2004b, 2005; Magan and Aldred 2005; 

Pardo et al. 2005; Marín et al. 2006; Tassou et al. 2007; Romero et al. 2007). However, these 

studies have been focused almost exclusively on the development of kinetic models providing 

information in the form of growth rate and lag phase duration or produce response surface and 

contour plots, whereas there is little information available on the development of a 

probabilistic approach to quantify fungal growth and OTA production boundaries for a 

specific range of environmental conditions. Recently, Marín et al. (2008b) has developed a 

probabilistic model to determine the growth/no growth boundaries and OTA production by A. 
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carbonarius in pistachio nuts. To the best of our knowledge, no similar probabilistic model 

has been developed so far for A. carbonarius on grapes and grape products. 

One the novelty of the present thesis is the development of probabilistic models to predict 

the growth/no growth and OTA production boundaries of two ochratoxigenic isolates of A. 

carbonarius from Greek wine grapes on a synthetic grape juice medium, and (ii) to validate 

the performance of the developed models with independent data from the literature.        

 

4.2 Materials and methods 

 

4.2.1 Fungal isolates 

All studies in this chapter were carried out with two OTA-producing strains of A. 

carbonarius (ATHUM Culture Collection of Fungi, National and Kapodistrian University of 

Athens; ATHUM 5659 & ATHUM 5660), isolated from wine grapes (cultivar Roditis) during 

the harvesting period of 2005 in the Peloponnesus region, South Greece (Tassou et al., 2007). 

They were identified with macroscopic and microscopic observation (Pitt and Hocking 1997; 

Samson et al. 2000) and by comparison with type strains from CABI (CABI Bioscience, 

Farnham, Surrey, U.K.). Their OTA production ability was confirmed on CYA medium using 

the method developed by Bragulat et al. (2001) (25°C/7days), being 4.9 and 8.9 μg g
-1

 

respectively. 

 

4.2.2 Medium and water activity modification 

A synthetic grape-juice medium (SGM) representative of grape composition between 

véraison and harvest was used in all growth experiments. The medium consisted of the 

following ingredients: D(+) glucose, 70 g; D(-) fructose, 30 g; L(-) tartaric acid, 7 g; L(-) 

malic acid, 10 g; (NH4)2HPO4, 0.67 g; KH2PO4, 0.67 g; MgSO4·7H2O, 1.5 g; NaCl, 0.15 g; 

CuCl2, 0.0015 g; FeSO4·7H2O, 0.021 g; ZnSO4·7H2O, 0.0075 g; (+) catechin hydrate, 0.05 g; 

agar, 25 g; and distilled water, ca 1000 ml (Mitchel et al. 2004). The medium was adjusted to 

pH 3.5 with 2M KOH and had an aw of 0.98 which represented the unmodified control 

treatment. The aw of the unmodified medium was 0.98, measured by a Novasina 

Thermoconstander RTD 33 (Novasina AG, Zürich, Switzerland) water activity meter at 20°C, 

and it was used as the control treatment.  The aw of the SGM was adjusted by the addition of 

amounts of the non-ionic solute glycerol (Merck, Darmstadt, Germany). The amounts 

required were calculated using a standard curve of known glycerol concentrations and aw 

levels (Bellí et al. 2004a) and corresponded to the preferred levels for every experiment. The 
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medium was autoclaved and poured into sterile 9 cm Petri plates. Additional non-inoculated 

plates of each treatment were made to ensure that aw levels remained accurate during 

experimental periods. These were found to not be significant when measured with a 

HygroClip
®
 water activity meter (Rotronic HygroLab set 3, Huntington, NY, USA). 

 

4.2.3 Inoculation, incubation and growth measurement 

The fungus was grown on SGM medium for 10 days at 25°C to obtain sporulating 

cultures. Spore suspensions were obtained by flooding the plates with 15 ml sterile phosphate 

buffer solution (pH 7.0) containing 0.1% of a wetting agent (Tween 80, Merck, Darmstadt, 

Germany) and gently scraping the surface of the medium with a sterile spatula. After filtering 

through sterile medical tissue (Aseptica, Athens, Greece), the final concentration of spores 

was assessed by a counting chamber and adjusted to 10
6
 spores ml

-1 
(Neubauer Brand, 

Wertheim, Germany). All treatments were inoculated centrally with a 5 μl spore suspension of 

10
6
 spores ml

-1
. This resulted in a 3–4 mm diameter droplet at the centre of the Petri plates 

containing 15-20 ml SGM medium. The experiment for the impact of the two environmental 

factors on growth and OTA production was carried out at aw levels of 0.85, 0.90, 0.93, 0.96 

and 0.98 in combination with temperatures of 10, 15, 20, 25, 30, 35 and 40°C. The 

experiment for the development of the predictive models was carried out at 0.85, 0.90, 0.93, 

0.96 and 0.98 aw, and at the same temperatures with the later. The effect of temperature and 

aw on fungal growth and OTA production was investigated by means of a full factorial design. 

Four replicated plates for each treatment were used and the whole experiment was repeated 

twice (n = 8). For every treatment of aw/temperature the Petri plates were enclosed in 

polyethylene bags and kept in constant temperature chambers. Growth measurements were 

carried out for up to 50 days. Mycelial extension was measured daily or periodically 

depending on treatment by measuring the diameter of the colonies in two directions at right 

angles to each other. The radial extension rates were obtained from these data.  

 

4.2.4 Determination and quantification of OTA 

OTA production was assessed by a modification of the Bragulat et al. (2001) method in 

all growth experiments performed. An agar plug of 3 mm radius was taken from the central 

area of each colony after 5, 10, 15, 25 and 35 days incubation. The sampling was stopped at 

this time point because previous studies suggested that degradation of OTA can occur over 

longer periods (Leong et al. 2006b). The samples were weighed and placed in dark glass 

vials. They were then vortexed with 0.5 ml of methanol and kept in the solvent for 1 hr. The 
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extracts were filtered (Millex
®
 Syringe Driven Filter Unit, Millipore Co. Bedford, MA, USA) 

and stored at 4°C until HPLC analysis. 

Analysis was performed with a HPLC system (Hewlett Packard Series 1100), equipped 

with an Agilent 1100 fluorescence detector (330 nm excitation wavelength; 460 nm emission 

wavelength). Chromatographic separations were performed with a C18 Waters Spherisorb 

ODS2 column (5 μm, 250×4·6 mm). The flow rate of the mobile phase used (acetonitrile: 

water: acetic acid; 51:47:2) was 1ml min
-1

. The detection limit of the method was <0·01 μg 

OTA g
-1

 of SGM and extracts were diluted to 1:100 just before inoculation to HPLC system. 

The OTA standard used for the reference curve was supplied by Sigma. The OTA production 

results were analysed with a computer equipped with the HP ChemStation 1990-99 software 

(Hewlett Packard Company, CA, USA). 

 

4.3 Results 

 

4.3.1 Impact of water activity and temperature on growth and ochratoxin A production of 

two A. carbonarius isolates from wine grapes in Greece 

 

4.3.1.1 Statistical treatment of the data and primary modelling 

The data collected by measuring the extension of the mycelium were fitted to Baranyi 

equation in order to determine maximum specific growth rates (mm d
-1

) and lag phases prior 

to growth (days) by using DMFit v. 2·0 (Institute of Food Research, Norwich Research Park 

Norwich, U.K.), an Excel add-in program to fit curves where a linear phase is preceded and 

followed by a stationary phase. DMFit is based on a reparameterized version of the model of 

Baranyi and the main difference between this model and other sigmoid curves like Gompertz, 

Logistic, etc. is that the mid-phase is really very close to linear, unlike those classical sigmoid 

curves which have a pronounced curvature there (Baranyi et al. 1993; Barayni and Roberts 

1994). 

The linear growth phases were only used for statistical analyses. To exclude the 

stationary phase the model of Baranyi (Baranyi et al. 2003; Baranyi and Roberts 1994) was 

modified by setting a 0 value for the “Richard curvature” parameter (this defines the curvature 

at the end of the linear phase). The derived maximum specific radial growth rates were then 

examined for the effect of aw × temperature × isolate by ANOVA using Statistica software 

(Statsoft, Tulsa, OK, USA). 
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Polynomial multiple linear regression analysis and the resulting response surface models 

were obtained in order to predict growth rates and OTA production for A. carbonarius 

isolates with the examined environmental factors also using the Statistica software. 

 

4.3.1.2 Impact of temperature and aw on lag phase prior to growth of the two A. 

carbonarius isolates 

No significant differences were found between the two isolates with respect to lag phase 

duration. Thus, as an example, data for one isolate is shown in Figure 4.1. This shows the 

influence of temperature and aw on lag phase (in days) at 15–35°C. The results at 10 and 40°C 

are not included as no growth occurred at all aw treatments over the experimental period. The 

shortest lag phases (0.54-0.58 days) were at 30-35°C and 0.96 aw. At lower temperatures (15 

and 20°C) the shortest lag phases were 2.32 and 1.45 days respectively at the highest aw level 

used (0.98). It was also interesting that the lag phase duration between different aw levels had 

a greater variance at a set temperature treatment, than between different temperatures and the 

same aw level. 
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Figure 4.1 A. carbonarius lag phase duration (days) in relationship with the environmental factors 

studied, temperature (°C) and water activity (aw) level. (Data are mean values from the two strains ± 

standard error). 
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4.3.1.3 Impact of temperature and aw on the mycelium growth of the two A. carbonarius 

isolates 

Table 4.1 shows the maximum specific growth rates (estimated by the Excel add-in 

program DMFit, IFR, Norwich, UK) of both isolates of A. carbonarius at different 

temperatures (15-35°C) and in the aw range of 0.850–0.980. Data for the temperatures of 10 

and 40°C are not shown as no growth was detected at these conditions. All DMFit growth 

curves had values of R
2
 > 0.99 (data not shown). 

 

Table 4.1 Maximum specific growth rates (mm d
-1

) of the two Aspergillus carbonarius isolates at 

different aw and temperature levels on SGM. 

Isolate aw 
Growth rate (mm d

-1
)

* 

15°C 20°C 25°C 30°C 35°C 

A
. 

ca
rb

o
n
a
ri

u
s 

A
T

H
U

M
 5

6
5
9
  

0·850 n.g.
** 

n.g. 0·37±0·01 n.g. n.g. 

0·900 0·44±0·01 0·88±0.01 3·06±0·04 3·43±0·05 3·75±0·08 

0·930 1·49±0·01 2·02±0·04 4·87±0·10 5·93±0·12 6·38±0·15 

0·960 2·76±0·09 4·01±0·09 6·43±0·21 7·07±0·37 7·33±0·46 

0·980 2·36±0·06 3.18±0·01 5·05±0·21 6·49±0·30 6·81±0·16 

A
. 

ca
rb

o
n
a
ri

u
s 

A
T

H
U

M
 5

6
6
0

  

0·850 n.g. n.g. 0·39±0·01 n.g. n.g. 

0·900 0·43±0·01 0·64±0·01 3·07±0·04 3·64±0·04 3·89±0·06 

0·930 1·39±0·02 2·06±0·04 4·69±0·05 5·77±0·15 6·65±0·17 

0·960 2·92±0·07 3·91±0·08 6·64±0·14 7·00±0·41 7·35±0·29 

0·980 2·52±0·05 3·23±0·08 4·41±0·18 6·61±0·28 7·16±0·11 

*
 Data are mean values of duplicate experiments (three replications each) ± standard error 

**
 No growth was observed after 55 days of incubation 

 

Temperatures of 30 and 35°C were optimum for growth of the A. carbonarius isolates. 

The highest growth rates were at 35°C and at 0.96 aw, although the shortest lag period prior to 

growth was observed at 30°C and the same aw. Although 25°C was not optimum for growth, 

mycelial extension occurred at 0.85 aw only at these combination of conditions. At all other 

temperatures no growth has occurred over the 55 day incubation period. Growth was 

significantly reduced at 15 and 20°C when compared with that at ≥25°C. Generally, 0.96 aw 

favoured the growth of A. carbonarius isolates regardless of the temperature. 

Analysis of variance (Table 4.2) showed that the single factors of aw and temperature and 

their interaction were highly significant (P<0.000001) on growth rate. This was supported by 
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the test of the SS Whole Model vs. SS Residual which resulted in an R
2
 of > 0.99. There was 

no significant difference between isolate and its interaction with the two environmental 

factors. Thus, subsequent data treatment included data sets for both isolates together. 

 

Table 4.2 Analysis of variance of the effects of isolate, aw, temperature, and their interaction, on 

growth of A. carbonarius. 

Factors SS df MS F p 

Intercept 1165.284 1 1165.284 44880.20 0.000001* 

Isolate 0.008 1 0.008 0.30 0.587359
ns

 

aw 740.968 6 123.495 4756.32 0.000001* 

Temperature 408.787 4 102.197 3936.04 0.000001* 

Isolate × aw 0.327 6 0.055 2.10 0.057184
ns

 

Isolate × Temperature 0.021 4 0.005 0.21 0.934760
ns

 

Temperature × aw 238.148 24 9.923 382.17 0.000001* 

Isolate × Temperature × aw 1.006 24 0.042 1.61 0.046928
ns

 

*: statistically significant at P<0.000001; ns: not significant 

 

Figure 4.2 shows the surface response contour plot of growth rates for both isolates after 

quadratic smoothing of the data. The function describing the suggested model of growth rate 

vs. aw and temperature and its coefficients were estimated by multiple linear regression 

resulting in a second order polynomial with R
2
 > 0.99 and the function:  

μ (h
-1

) = -7.683+2.406×aw+3.362×T-0.317×aw
2
+0.104×aw×T-0.416×T

2
. 
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Figure 4.2 Surface response (quadratic) contour plot showing the effect of aw and temperature on the 

maximum specific growth rate (h
-1

) of A. carbonarius isolates, on the SGM. 

 

4.3.1.4 Impact of temperature and aw on OTA production by the A. carbonarius isolates 

Figure 4.3 shows the contour plot of OTA production against aw and temperature after 

distance weighted least squares smoothing of the data for both two isolates. Maximum OTA 

was produced at 20°C and 0.96 aw. In general, optimum conditions for OTA production were 

0.93–0.96 aw at 20°C, then at 0.93 aw and 15°C. Significantly less production occurred at all 

aw treatments at ≥25°C. 
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Figure 4.3 DWLS surface response contour plot for OTA production (μg g
-1

) by the two A. 

carbonarius strains, after 10 days of growth on the SGM, in relation to aw and temperature. 

 

The temporal changes in OTA production at 20
o
C and three aw levels are shown in Figure 

4.4. The highest amounts of OTA were produced after 15-25 days. The maximum amounts of 

OTA production detected were 3.14 and 2.67μg g
-1

 respectively for the two isolates (data not 

shown). 
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Figure 4.4 Ochratoxin A production by Aspergillus carbonarius ATHUM 5659 (solid symbols) and 

ATHUM 5660 (outlined symbols) over time at water activity 0·930(■, □), 0·960(▲, Δ), 0·980(●, ○), 

and temperature of 20°C. 
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4.3.2 Modelling the effect of temperature and water activity on the growth of an 

ochratoxigenic isolate of Aspergillus carbonarius from Greek wine grapes  

 

4.3.2.1 Model development 

A standard two-step approach was followed to develop a model for the influence of 

temperature and aw on fungal growth. First, estimates of the maximum specific colony growth 

rates (μmax) were obtained by applying Baranyi‟s primary model (Baranyi et al. 1993; Baranyi 

and Roberts 1994) as described before (Section 4.3.1.1). The average estimates of μmax were 

then fitted to secondary models to describe the single and combined effects of temperature 

and water activity on fungal growth.  

A quadratic response surface model was the first model used. The following 

transformation of water activity was applied, as introduced by Gibson et al. (1994): 

1w wb a           (1) 

Therefore, the quadratic expression of the natural logarithm of maximum colony growth 

rate had the following form: 

 ln μmax = a0 + a1· bw + a2· bw
 2
 + a3·T

 
+ a4·T

2
 + a5·T· bw                    (2) 

where a0…a5 are design parameters estimated by non-linear regression. The natural 

logarithm transformation was introduced to stabilize the variance of the fitted values for 

growth rate (Gibson and Hocking 1997). 

The extended combined model proposed by Parra and Magan (2004), based on the 

Gibson-type aw dependence (Eq. 1) and the Ratkowsky-type temperature dependence on 

growth rate, was the second modelling approach to study the effect of temperature and aw on 

the growth of A. carbonarius. The model has the general form: 

)]exp(1[ln 43

2

210max TaTababaa ww                    (3)  

where μmax is the maximum specific growth rate (mm day
-1

) and a0…a4 are regression 

coefficients. 

The model of Miles et al. (1997) was the third approach followed to study the effect of 

the entire biokinetic range of temperatures and aw levels on the growth of the fungus. The 

model is based on the following equation: 

)]}(exp[1{)()]}(exp[1{)( maxminmaxminmax wwww aadaaTTcTTb    (4) 

where b, c and d are coefficients to be fitted and Tmin, Tmax, aw,min, aw,max are the minimum 

and maximum values of temperature and water activity, respectively, beyond which growth is 

not possible.  
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The linear Arrhenius-Davey equation (Davey 1989) was the forth model tested, based on 

the following equation: 

 2

43

2

210max //ln TaTaaaaaa ww         (5) 

where T is absolute temperature (°K), aw is water activity and a0…a4 are coefficients to 

be determined. 

Finally, the Rosso equation (Rosso et al. 1995; Rosso and Robinson 2001) for the effect 

of temperature and water activity on fungal growth was selected: 

 

                                                                    (6) 

where 

 

 and  

                  

 

 

The terms Tmin, Tmax, aw,min, aw,max correspond to the values of temperature and water 

activity, respectively, below and above which no growth occurs. Additionally, Topt and aw,opt 

are the values of temperature and water activity at which μmax is equal to its optimal value 

(μopt). 

The in-house programme DMFit (Institute of Food Research, Norwich, UK) was used to 

fit the growth curves and estimate the maximum specific colony growth rate (μmax). Non-

linear regression was carried out using the quasi-Newton algorithm of the NLIN procedure of 

Statistica v6.0 (Statsoft Inc., Tulsa, OK, USA) to fit the secondary growth models. The 

indices used for statistical comparison of models were the regression coefficient (R
2
) and the 

root mean square error (RMSE).   

 

4.3.2.2 Model validation 

The developed models were validated with independent data from the literature (Bellí et 

al. 2005) for eight strains of A. carbonarius grown at different aw and temperature regimes on 

the same synthetic grape juice medium (SNM). The prediction capability of the models was 

evaluated using graphical plots as well as the bias (Bf) and accuracy (Af) factors (Ross 1996).  
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4.3.2.3 Results 

The growth curves based on colony diameter changes were typical of fungal growth 

presenting a straight line after a short lag period. The colony growth rate was calculated with 

the Baranyi primary model as the slope of the linear segment of each growth curve. Parameter 

estimation for Eqs 2 and 3 was based on the transformation of aw to bw. However, for easier 

comparison, all graphs are presented in aw terms. No growth was observed at 10 and 40°C in 

the time frame of the experiments, regardless of aw treatment. In addition, no growth took 

place at aw values equal to 0.85 at all experimental temperatures. The response of the fungus 

to the environmental variables examined was quantified with five different models. Initially, 

the natural logarithm of the maximum specific colony growth rate (ln μmax) was modelled vs. 

temperature and bw with a quadratic response surface model (Equation 2; Figure 4.5; Table 

4.3).  
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Table 4.3 Parameter estimation and performance statistics of the coefficients of the models for the 

μmax of A. carbonarius. 

Equation type Parameter Estimated value R
2
 RMSE 

Polynomial a0 

a1 

a2 

a3 

a4 

a5 

-2.815 ± 0.961 

0.167 ± 0.052 

-0.003 ± 0.001 

18.263 ± 5.973 

-68.627 ± 12.122 

0.319 ± 0.086 

0.978 0.179 

Parra a0 

a1 

a2 

a3 

a4 

-2.582 ± 1.023 

26.241 ± 8.898 

-68.627 ± 19.348 

0.071 ± 0.011 

-0.143 ± 0.113
*
 

0.939 0.285 

Miles a0 

a1 

a2 

aw,min 

aw,max 

Tmin 

Tmax 

1.147 ± 0.625 

6.50 ± 3.57 

126.96 ± 12.74 

0.862 ± 0.023 

0.995 ± 0.036 

-0.15 ± 0.23
*
 

43.88 ± 5.25  

0.967 0.619 

Davey a0 

a1 

a2 

a3 

a4 

-225.293 ± 84.625 

519.30 ± 176.67 

-269.978 ± 93.998 

-6800.57 ± 9906.90
*
 

 -45.751 ± 14.69·10
5*

 

0.939 0.287 

Rosso μopt (days
-1

) 

aw,min 

aw,max 

aw,opt 

Tmin 

Tmax 

Topt 

9.84 ± 0.82 

0.824 ± 0.045 

0.999 ± 0.031 

0.962 ± 0.005 

-4.17 ± 1.99
*
 

43.25 ± 13.58 

34.62 ± 3.17  

0.977 0.569 

*
 Not significant at P<0.05 
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Figure 4.5 Quadratic response surface predicting the effect of temperature and aw on the natural 

logarithm of maximum specific colony growth rate (ln μmax) of A. carbonarius on a synthetic grape 

juice medium. Data points are mean values of three replications from two experiments. 

 

From the generated response surface it is evident that the maximum specific colony 

growth rates form parabolic curves with relatively parallel positions, implying that the 

environmental factors act independently and pose additive effects. Curvature is observed in 

the optimal/super-optimal region for temperature, i.e. at 25-35°C. It is more intense at lower 

aw values over the whole range of temperature, but as aw moves to optimal/super-optimal 

values, curvature is greatly reduced. Growth rates presented a peak at 35°C for all aw levels 

tested. The maximum specific colony growth rate was obtained at 35°C and 0.96 aw.  

The second model tested was the extended combined model proposed by Parra and Magan 

(Equation 3; Figure 4.6; Table 4.3). The strain was characterised by a sharp decrease in 

colony growth rate from aw,opt to aw,max and from a slower decrease from aw,opt to aw,min. The aw 

for optimal growth rate was ca 0.96 at all temperatures tested.  
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Figure 4.6 Fitted curves of the Parra model (Eq 3) describing the aw dependence of ln μmax of A. 

carbonarius growing on a synthetic grape juice medium at different temperature levels. Data points 

are mean values of three replications from two experiments. 

 

The third model was an extended square root-type model proposed by Miles et al. (1997) 

in which the relative effect of temperature and aw was modelled vs. the square root of the 

maximum specific colony growth rate ( max ) (Equation 4; Figure 4.7; Table 4.3). This 

model has the advantage to provide parameter estimates (cardinal parameters) with biological 

meaning, such as minimal temperature for growth (Tmin), maximum temperature for growth 

(Tmax), minimal aw for growth (aw,min) and maximum aw for growth (aw,max) (Table 4.3). Based 

on this model the aw,opt for growth was found to be at ca. 0.97 for all incubation temperatures 

(Figure 4.8) whereas the minimal and maximum aw for growth were 0.86 and 0.99, 

respectively. However, this model provided a rather unrealistic temperature estimate for 

minimal growth (Tmin), -0.15, and a higher maximum growth temperature (Tmax) for A. 

carbonarious, ca 43°C (Table 4.3).  
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Figure 4.7 Fitted curves of the Miles model (Eq 4) describing the effect of aw and temperature on the 

square root of maximum specific colony growth rate (
max

) of A. carbonarius growing on a 

synthetic grape juice medium. Data points are mean values of three replications from two experiments. 

 

Good fitting was also obtained by the modified (linear) version of the Arrhenius equation 

as proposed by Davey (1989) (Equation 5; Figure 4.8; Table 4.3). However, a weak point of 

this model is the lack of physiological interpretation for the significance of the values of the 

estimated regression parameters. The aw for optimum growth was 0.96 regardless of 

incubation temperature (Figure 4.8). Besides, the parameters 1/T and 1/T
2
 were not 

statistically significant (Table 4.3) indicating that fungal growth was influenced primarily by 

water activity and to a much lesser extent by incubation temperature.  
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Figure 4.8 Fitted curves of the Davey model (Eq 5) describing the effect of aw and temperature on ln 

μmax of A. carbonarius growing on a synthetic grape juice medium. Data points are mean values of 

three replications from two experiments. 

 

Finally, the complete model of Rosso gave a good quality fit for the data set of A. 

carbonarius providing cardinal values of environmental factors (minimal, maximum and 

optimal values) (Equation 6; Figure 4.9; Table 4.3). The estimates for aw,min, aw,max and Tmax 

were comparable with the values of Eq. 4 (Miles model) although the latter model gave a 

slightly higher estimate of aw,min for growth. Additionally, the Rosso-type model provided 

estimates for optimum values of growth rate, temperature and water activity (Table 4.3), but 

again an unrealistic estimate for Tmin was predicted. As far as the statistical evaluation is 

concerned, all models exhibited good fit to experimental data in terms of R
2
 and RMSE. The 

lowest RMSE values were observed in the polynomial, Parra and Davey models. This is 

associated with the ln transformation of maximum specific colony growth rates used in these 

models, in contrast to the untransformed values introduced to the Rosso model and the square 

root transformation of the square root-type models. 
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Figure 4.9 Fitted curves of the Rosso model (Eq 6) describing the effect of aw and temperature on the 

maximum specific colony growth rate (μmax) of A. carbonarius growing on a synthetic grape juice 

medium. Data points are mean values of three replications from two experiments. 

 

The graphical comparisons of the observed growth rates of eight A. carbonarius strains 

from independent literature data vs. the predicted growth rates by the five developed models 

is presented in Figure 4.10. The performance of validation in terms of calculated bias (Bf) and 

accuracy (Af) factors is shown in Table 4.4. The calculated Bf values were > 1, indicating that, 

in general, the models predicted higher maximum specific growth rates than observed. 

Moreover, the values of Af indicated that all models predicted colony growth rates with 

approximately the same deviation from the observed growth rates.                                

            

 

 

 

 

Figure 4.10 (Next page) Predictions of the polynomial (a), Parra (b), Miles (c), Davey (d), and Rosso 

(e) models for the μmax of eight strains of A. carbonarius from independently derived data (Bellí et al. 

2005).
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Table 4.4 Validation indices (bias and accuracy factors) for the performance of the developed 

models on independently derived data from the literature (Bellí et al. 2005). 

Equation type Bias factor Accuracy factor 

Polynomial 1.45 1.54 

Parra 1.44 1.57 

Miles 1.49 1.57 

Davey 1.45 1.58 

Rosso 1.54 1.62 
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4.3.3 Effect of temperature and aw on growth and ochratoxin A production 

boundaries of two Aspergillus carbonarius isolates on a simulated grape juice medium 

 

4.3.3.1 Modelling of the growth/no growth interface 

For each replicate response of the two fungal isolates, visible growth or no growth 

were scored as values of 1 or 0, respectively. Data were fitted to a logistic regression 

model based on the approach of Ratkowsky and Ross (1995) in order to determine the 

growth/no growth boundaries of the fungi under the assayed environmental factors. The 

model employed was a second-order logistic regression model in the form shown in the 

following equation: 

2 2 2

0 1 2 3 4 5 6 7 8 9
1

log ( ) ln
w w w w

P
it P a a t a T a a a t a T a a a tT a ta a Ta

P
(1) 

where, P is the probability of growth (in the range of 0-1), ai are coefficients to be 

estimated, aw is the water activity of the medium, t (days) is incubation time, and T (°C) is 

temperature. The equation was fitted using Minitab
®
 version 14.1 (Minitab Inc., State 

College, PA, USA) logistic regression procedure. The automatic variable selection option 

with a stepwise selection method was used to choose the significant effects (P<0.05). The 

predicted growth/no growth interfaces for P=0.1, 0.5, and 0.9 were calculated using 

Microsoft Excel Solver. The following statistical indices were calculated to measure the 

goodness-of-fit of the developed models: the Hosmer-Lemeshow goodness-of-fit statistic, 

the maximum rescaled R
2
 and the concordance rate (McKellar and Lu 2001; 

Koutsoumanis and Sofos 2005; Skandamis et al. 2007). 

 

4.3.3.2 Modelling of OTA production 

For the same set of aw/temperature conditions a separate logistic regression model 

was developed to quantify the effect of both factors on OTA production. For this reason, 

OTA analysis results were assigned values of either 1 when OTA concentration was 

above the limit of detection (>l.d.), or 0 when OTA concentration was below the limit of 

detection (<l.d.). Logistic regression was used to calculate the probability of OTA 

production given a certain combination of storage conditions (aw and temperature) and 

incubation time. A similar second order logistic regression model was developed as 

follows: 
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 2 2 2

0 1 2 3 4 5 6 7 8 9
1

log ( ) ln
w w w w

P
it P b b t b T b a b t b T b a b tT b ta b Ta

P
 

(2) 

where, P is the probability of OTA production (in the range of 0-1), and bi are 

coefficients to be estimated. The equation was fitted using Minitab
®
 version 14.1 (Minitab 

Inc., State College, PA, USA) logistic regression procedure. The automatic variable 

selection option with a stepwise selection method was used to choose the significant 

effects (P<0.05). The predicted OTA interfaces for P=0.1, 0.5, and 0.9 were calculated 

using Microsoft Excel Solver. The goodness-of-fit of the developed model was assessed 

by the same statistical indices as mentioned above. 

 

4.3.3.3 Comparison of the developed models with independent data 

The predictions at 50% probability level of models for the two isolates of A. 

carbonarius were compared with two literature data sets in which conditions for growth 

were similar to those used for the development of the logistic models. Specifically, the 

first validation data set was that of Bellí et al. (2005) in which the growth and OTA 

production of eight isolates of A. carbonarius were monitored on the same synthetic grape 

juice medium in relation to temperature (15-37°C) and water activity (0.90-0.99 aw). The 

second data set was again of Bellí et al. (2004b) who studied the effect of water activity 

(0.90-0.995 aw) and temperature (10-37°C) on the growth rate of ten isolates of 

Aspergillus section Nigri from which four were A. carbonarius, on the same synthetic 

grape juice medium. In both data sets, the value of 0.99 aw was not included in the 

validation approach as it was outside the initial aw range used in our work for the 

development of the probabilistic model. It has to be noted that in both publications the 

reported growth data are provided in the form of kinetic parameters (growth rates, mm 

day
-1

) and not as incidence (probability) of growth/no growth. For the purpose of 

validation, values of 0 or 1 have been assigned by the authors of the present work to 

validation data for a selected time period of 20 days, where, according to our experience, 

growth or no growth should have been occurred. 

 

4.3.3.4 Results  

The parameter estimates and statistics with the significant effects (P < 0.05) of the 

logistic regression model for the growth of the two fungal isolates are shown in Tables 4.5 

and 4.6. The degree of agreement between predictions and observations was 99.4% 
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concordant and 0.6% discordant for A. carbonarius ATHUM 5659 (Table 4.5) indicating 

successful data fitting. Overall, 5.5% of observed data fell on the “wrong” side of the 

predicted boundary at a probability level of 0.5, from which 4.1% were false positives 

(i.e. growth predicted when no growth was observed) and 1.5% false negatives (i.e. no 

growth predicted but growth observed). The goodness-of-fit was also evaluated by the 

Hosmer-Lemeshow statistic (χ
2
 =11.98, df = 8, P = 0.152) and the maximum rescaled R

2
 

(0.845) which proved the good adjustment of the model to the observations. A similar 

pattern was observed for the other isolate of A. carbonarius ATHUM 5660 (Table 4.6). In 

this case, the concordance of the model was 99.5%, whereas 3.4% and 0.7% of the 

predictions were false positive and false negatives, respectively. The Hosmer-Lemeshow 

statistic and the maximum rescaled R
2
 showed high agreement of predicted with observed 

probability of growth and hence adequate fit of the data. 
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Table 4.5 Estimated parameters and statistical indices of the logistic regression model for the growth/no 

growth interface of Aspergillus carbonarius ATHUM 5659.  

Parameter Estimated value Standard Error P 

Intercept 

t 

T 

aw 

t
2
 

T
2
 

aw
2
 

t∙T 

t∙aw 

T∙aw 

-1163.41 

3.76 

7.45 

2144.02 

-0.035 

-0.095 

-1040.71 

-0.022 

-1.95 

-2.30 

243.25 

1.22 

1.40 

475.82 

0.013 

0.017 

242.24 

0.006 

1.14 

0.78 

0.000 

0.002 

0.000 

0.000 

0.008 

0.000 

0.000 

0.001 

n.s.
 

0.003 

Hosmer-Lemeshow 

Maximum rescaled R
2
 

Concordant rate (%) 

Discordant rate (%) 

False positive 
a 

False negative 
b
 

11.98 (df = 8, P = 0.152) 

0.845 

99.4 

0.6 

4.1% 

1.4% 

a 
Growth was not observed when the model predicted growth at probability P > 0.5 

b
 Growth was observed when the model predicted no growth at probability P < 0.5 

n.s.: Not significant (P > 0.05) 
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Table 4.6 Estimated parameters and statistical indices of the logistic regression model for the 

growth/no growth interface of Aspergillus carbonarius ATHUM 5660.  

Parameter Estimated value Standard Error P 

Intercept 

t 

T 

aw 

t
2
 

T
2
 

aw
2
 

t∙T 

t∙aw 

T∙aw 

-1083.51 

4.85 

9.39 

1894.01 

-0.039 

-0.106 

-874.51 

-0.022 

-2.91 

-3.72 

260.13 

1.42 

1.74 

504.45 

0.014 

0.018 

254.41 

0.006 

1.33 

0.98 

0.000 

0.001 

0.000 

0.000 

0.006 

0.000 

0.001 

0.001 

0.030 

0.000 

Hosmer-Lemeshow 

Maximum rescaled R
2
 

Concordant rate (%) 

Discordant rate (%) 

False positive 
a 

False negative 
b
 

0.82 (df = 8, P = 0.999) 

0.869 

99.5 

0.5 

3.4% 

0.7% 

a 
Growth was not observed when the model predicted growth at probability P > 0.5 

b
 Growth was observed when the model predicted no growth at probability P < 0.5 

 

Plots of probability of growth for aw and temperature at 5, 15 and 25 days of 

incubation are presented in Figures 4.11 and 4.12. It is characteristic that the probability 

plot shifted to lower temperatures for the same aw level, especially between 5 and 15 days 

for both fungal isolates. In addition, the probability of growth for A. carbonarius 

ATHUM 5660 was higher at the lowest aw assayed (0.85) at 15 and 25 days (Figure 4.12) 

indicating that this fungal isolate could be more xerophilic compared with A. carbonarius 

ATHUM 5659. The predicted growth interfaces with respect to time at probabilities of 

0.1, 0.5 and 0.9, together with the observed growth/ no growth data from which the 

predictions were derived are depicted in Figures 4.13 and 4.14 for each isolate. These 

graphs are also representative of the low percentage of model disagreement with the 

experimental data. No growth was observed at 10°C and 40°C, regardless of aw level. As 
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time increased, the predicted growth interface shifted to lower water activity values for 

both isolates. The advancement of the interface was clearer between 5 and 15 days, but 

from this time onwards little change was evident, with the exception of 40°C and 0.98 aw 

where slow fungal growth was observed at 25 days. 

 

Table 4.7 Estimated parameters and statistical indices of the logistic regression model for OTA 

presence of Aspergillus carbonarius ATHUM 5659.  

Parameter Estimated value Standard Error P 

Intercept 

t 

T 

aw 

t
2
 

T
2
 

aw
2
 

t∙T 

t∙aw 

T∙aw 

-1619.59 

2.73 

-3.36 

1709.83 

-0.009 

-0.062 

-933.25 

-0.011 

-2.12 

6.94 

247.17 

1.46 

1.10 

528.52 

0.011 

0.008 

284.14 

0.004 

1.50 

1.42 

0.001 

0.042 

0.002 

0.001 

n.s. 

0.000 

0.001 

0.033 

n.s. 

0.000 

Hosmer-Lemeshow 

Maximum rescaled R
2
 

Concordant rate (%) 

Discordant rate (%) 

False positive 
a 

False negative 
b
 

4.05 (df = 8, P = 0.852) 

0.856 

98.9 

1.1 

1.4% 

2.7% 

a 
OTA absence was observed when the model predicted presence at probability P > 0.5 

b
 OTA presence was observed when the model predicted absence at probability P < 0.5 

n.s.: Not significant (P > 0.05) 
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Table 4.8 Estimated parameters and statistical indices of the logistic regression model for OTA 

presence of Aspergillus carbonarius ATHUM 5660.  

Parameter Estimated value Standard Error P 

Intercept 

t 

T 

aw 

t
2
 

T
2
 

aw
2
 

t∙T 

t∙aw 

T∙aw 

-1395.49 

16.07 

-0.247 

2640.74 

-0.051 

-0.061 

-1276.59 

-0.006 

-15.18 

3.47 

285.59 

3.11 

0.098 

580.71 

0.011 

0.008 

300.49 

0.005 

3.01 

1.09 

0.000 

0.000 

0.008 

0.000 

0.001 

0.000 

0.000 

n.s. 

0.000 

0.002 

Hosmer-Lemeshow 

Maximum rescaled R
2
 

Concordant rate (%) 

Discordant rate (%) 

False positive 
a 

False negative 
b 

12.14 (df = 8, P = 0.145) 

0.832 

99.1 

0.9 

0.7% 

2.0% 

 

a
 OTA absence was observed when the model predicted presence at probability P > 0.5 

b
 OTA presence was observed when the model predicted absence at probability P < 0.5 

n.s.: Not significant (P > 0.05)  
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Figure 4.11 The effect of temperature and water activity on the predicted probability of 

Aspergillus carbonarius ATHUM 5659 growth on a synthetic grape juice medium for 5, 15 and 

25 days. 
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Figure 4.12 The effect of temperature and water activity on the predicted probability of 

Aspergillus carbonarius ATHUM 5660 growth on a synthetic grape juice medium for 5, 15 and 

25 days. 
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Figure 4.13 Growth/no growth boundaries of Aspergillus carbonarius ATHUM 5659 after 5, 15 

and 25 days incubation on a synthetic grape juice medium. Solid symbol: growth, open symbol: 

no growth; solid line P = 0.9; dotted line P = 0.5; dashed line P = 0.1. 
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Figure 4.14 Growth/no growth boundaries of Aspergillus carbonarius ATHUM 5660 after 5, 15 

and 25 days incubation on a synthetic grape juice medium. Solid symbol: growth, open symbol: 

no growth; solid line P = 0.9; dotted line P = 0.5; dashed line P = 0.1. 
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A probabilistic approach was also employed for OTA production using a full second 

order logistic regression model for each fungal isolate. The developed models showed 

high agreement of prediction  with observed probability for OTA production, as  was 

evident from the high concordance rate (98.9-99.1) and the R
2
 statistic values (0.832-

0.856) (Tables 4.7 and 4.8). Increasing probabilities for OTA were predicted at 15 days, 

compared to those after 5 days, particularly at the lower aw levels assayed (0.88-0.94) 

(Figures 4.15 and 4.16). The lowest probability for OTA production (P = 0.03) was 

observed at aw 0.85 and 19-20°C even after 25 days of storage. Probability profiles at 15 

and 25 days presented similar patterns with the exception of aw 0.88 where increased 

values were estimated for both fungal isolates with respect to time. The predicted OTA 

interface at probabilities of 0.1, 0.5 and 0.9 is shown in Figures 4.17 and 4.18. No OTA 

was detected either at 10°C or at 40°C regardless of aw. Similarly, no OTA was detected 

at aw 0.85 at the different temperature levels. At 5 days, predictions with P = 0.5 enclosed 

all OTA production cases for A. carbonarius ATHUM 5960 (Figure 4.18). The same was 

not observed for the other isolate as three aw/temperature conditions were left below the 

interface line (Figure 4.17). With regard to time, the interface shifted to lower aw values 

and at 25 days the P = 0.5 interface line enclosed all the OTA production cases for both 

isolates. 
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Figure 4.15 The effect of temperature and water activity on the predicted probability of Aspergillus 

carbonarius ATHUM 5659 OTA presence on a synthetic grape juice medium for 5, 15 and 25 days. 
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Figure 4.16 The effect of temperature and water activity on the predicted probability of Aspergillus 

carbonarius ATHUM 5660 OTA presence on a synthetic grape juice medium for 5, 15 and 25 days. 
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Figure 4.17 OTA production boundaries of Aspergillus carbonarius ATHUM 5659 after 5, 15 and 25 

days incubation on a synthetic grape juice medium. Solid symbol: OTA presence (>l.d.), open symbol: 

OTA absence (<l.d.); solid line P = 0.9; dotted line P = 0.5; dashed line P = 0.1. 
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Figure 4.18 OTA production boundaries of Aspergillus carbonarius ATHUM 5660 after 5, 15 and 25 

days incubation on a synthetic grape juice medium. Solid symbol: OTA presence (>l.d.), open symbol: 

OTA absence (<l.d.); solid line P = 0.9; dotted line P = 0.5; dashed line P = 0.1. 
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Table 4.9 Validation of growth/no growth logistic model using independent data of Bellí et al. 2005
* 

aw Temperature 

(°C) 

Observed 
b
 

growth 

Logistic model 
c 

0.90 

0.93 

0.95 

15 

15 

15 

0 

1 

1 

1 

1 

1 

0.90 

0.93 

0.95 

20 

20 

20 

1 

1 

1 

1 

1 

1 

0.90 

0.93 

0.95 

30 

30 

30 

1 

1 

1 

1 

1 

1 

0.90 

0.93 

0.95 

35 

35 

35 

1 

1 

1 

1 

1 

1 

0.90 

0.93 

0.95 

37 

37 

37 

1 

1 

1 

1 

1 

1 

 

a
 Data of eight strains of A. carbonarius (W9, W37, W38, W89, W104, W120, W128, W198) for 

which there was no observed growth at 15°C and 0.90 aw 
b 
After 20 days of incubation, growth = 1; no growth = 0

 
 

c 
Growth prediction by logistic model using P > 0.5 denotes growth = 1; no growth = 0 
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Table 4.10 Validation of growth/no growth logistic model using data of Bellí et al. (2004) 

Strain aw Temperature 

(°C) 
Observed 

growth 
a 

Logistic 

model 
b 

 

 

 

 

 

 

 

 

 

 
A. carbonarius (36br4) 

A. carbonarius 

(A0933) 

A. carbonarius 

(Mu644) 

 

 

0.90 
0.93 
0.95 
0.98 

10 
10 
10 
10 

0 
0 
1 
1 

0 
0 
0 
0 

0.90 
0.93 
0.95 
0.98 

15 
15 
15 
15 

1 
1 
1 
1 

1 
1 
1 
1 

0.90 
0.93 
0.95 
0.98 

20 
20 
20 
20 

1 
1 
1 
1 

1 
1 
1 
1 

0.90 
0.93 
0.95 
0.98 

25 
25 
25 
25 

1 
1 
1 
1 

1 
1 
1 
1 

0.90 
0.93 
0.95 
0.98 

30 
30 
30 
30 

1 
1 
1 
1 

1 
1 
1 
1 

0.90 
0.93 
0.95 
0.98 

37 
37 
37 
37 

1 
1 
1 
1 

1 
1 
1 
1 

 

 

 

 

 

 

 

 

 

 

 
A. carbonarius 

(01UAs294) 

0.90 
0.93 
0.95 
0.98 

10 
10 
10 
10 

0 
0 
0 
1 

0 
0 
0 
0 

0.90 
0.93 
0.95 
0.98 

15 
15 
15 
15 

1 
1 
1 
1 

1 
1 
1 
1 

0.90 
0.93 
0.95 
0.98 

20 
20 
20 
20 

1 
1 
1 
1 

1 
1 
1 
1 

0.90 
0.93 
0.95 
0.98 

25 
25 
25 
25 

1 
1 
1 
1 

1 
1 
1 
1 

0.90 
0.93 
0.95 
0.98 

30 
30 
30 
30 

1 
1 
1 
1 

1 
1 
1 
1 

0.90 
0.93 
0.95 
0.98 

37 
37 
37 
37 

1 
1 
1 
1 

1 
1 
1 
1 

a 
After 20 days of incubation, growth = 1; no growth = 0 

b 
Growth prediction by logistic model using P > 0.5 denotes growth = 1; no growth = 0 
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Table 4.11 Validation of logistic model for OTA presence/absence using data of Bellí et al. (2005) 

Strain aw Temperature 

(°C) 
Observed 

a 
Logistic model 

b 

 

 

 

 

 

 
A. carbonarius (W9) 

A. carbonarius (W38) 

 

 

 

0.90 
0.93 
0.95 

15 
15 
15 

0 
0 
0 

0 
0 
1 

0.90 
0.93 
0.95 

20 
20 
20 

0 
0 
1 

0 
1 
1 

0.90 
0.93 
0.95 

30 
30 
30 

0 
0 
1 

0 
1 
1 

0.90 
0.93 
0.95 

35 
35 
55 

0 
0 
0 

0 
0 
1 

0.90 
0.93 
0.95 

37 
37 
37 

0 
0 
0 

0 
0 
0 

 

 

 

 

 
A. carbonarius (W89) 

A. carbonarius (W128) 

A. carbonarius (W198) 

 

0.90 
0.93 
0.95 

15 
15 
15 

0 
0 
0 

0 
0 
1 

0.90 
0.93 
0.95 

20 
20 
20 

0 
0 
1 

0 
1 
1 

0.90 
0.93 
0.95 

30 
30 
30 

0 
0 
0 

0 
1 
1 

0.90 
0.93 
0.95 

35 
35 
35 

0 
0 
0 

0 
0 
1 

0.90 
0.93 
0.95 

37 
37 
37 

0 
0 
0 

0 
0 
0 

 

 

 

 

 

 
A. carbonarius (W37) 

0.90 
0.93 
0.95 

15 
15 
15 

0 
0 
0 

0 
0 
1 

0.90 
0.93 
0.95 

20 
20 
20 

0 
1 
1 

0 
1 
1 

0.90 
0.93 
0.95 

30 
30 
30 

0 
0 
0 

0 
1 
1 

0.90 
0.93 
0.95 

35 
35 
35 

0 
0 
0 

0 
0 
1 

0.90 
0.93 
0.95 

37 
37 
37 

0 
0 
0 

0 
0 
0 

a 
After 7 days of incubation, presence (>l.d.) = 1; absence (<l.d.) = 0 

b 
Predicted OTA by logistic model using P > 0.5 denotes presence = 1; absence = 0  
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Validation was carried out with literature data from two independent data sets. In the 

first literature study (Bellí et al. 2005) the logistic model predicted growth in all cases 

(100%), while growth was not actually observed at 0.90 aw and 15°C for the eight strains 

of A. carbonarius assayed (Table 4.9). A similar situation was observed with the second 

literature study (Bellí et al. 2004) where the model gave  three false negative (i.e. no 

growth predicted when growth was observed) predictions at 10°C and 0.95, 0.98 aw (Table 

4.10) for four strains of the fungus examined. Predicted OTA responses from the first 

literature study are shown in Table 4.11. There was an overall discordance for 13 

aw/temperature conditions for which the logistic model predicted OTA production above 

the detection limit, while the observed OTA concentration was below the detection limit. 

However, all the erroneously predicted cases were on the safe side (fail positive).  

 

4.4 Discussion 

 

4.4.1 Impact of temperature and aw on lag phase, growth and OTA production of the 

two A. carbonarius isolates 

A major part of the South-East Mediterranean region has been linked with a high 

contamination level of Aspergillus section Nigri in grapes mainly due to the high day 

temperatures and the decreasing total rainfall in August. For Greece, there is an increased 

percentage of A. carbonarius isolation during this period of the year (Battilani et al. 

2006b). The scope of the present study was therefore to investigate the in vitro behaviour 

of Greek isolates under environmental factors that resemble the environmental range of 

conditions relevant to Greece during the ripening of grapes. 

The short lag phases prior to growth found in this study under optimum 

environmental conditions show how rapidly germination and growth of A. carbonarius 

can occur. These results confirm those with isolates of A. carbonarius from Italy, Spain 

and Israel (Mitchell et al. 2004; Magan and Aldred 2005). Indeed, comparison of 

germination and establishment on grape skin and grape tissue over a range of 

temperatures and relative humidity suggest that germination is fastest on grape tissue, 

followed by that in vitro and was slowest on undamaged grape skin (Mitchell et al., 

2003). The present study and those previously suggest optimum conditions for 

germination or lag phases prior to growth, is at 25–35°C and aw range of 0.95–0.98. 
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The ANOVA of aw and temperature and their interaction, on growth of the two 

isolates were highly significant. It was interesting to note that these isolates from Greece 

were able to grow at 0.85 aw at 25
o
C. All previous studies have suggested that growth is 

inhibited completely at this aw level (Mitchell et al. 2004; Belli et al. 2005a; Leong et al. 

2006b). More isolates would have to be examined to check whether this occurs 

consistently in Greece as part of adaptation to regional climatic conditions. Although one 

isolate examined here grew slightly faster than the other, this is not unusual. This was 

observed for other countries (Mitchell et al. 2004; Bellí et al. 2005a; Leong et al. 2006b). 

The optimum growth temperature for both Greek A. carbonarius isolates was 30-35°C 

regardless of aw treatment. Previous studies with isolates from Spain, France, Portugal and 

Italy reported maximum growth rates of 30-37°C (Mitchell et al. 2003; Belli et al. 2004a; 

Mitchell et al. 2004; Pardo et al. 2005). 

The present study found that the optimum aw for growth of A. carbonarius isolates is 

in the range 0.96–0.98. When the data were processed with quadratic smoothing this 

provides the contour plot presented. This type of model estimated the whole range of aw 

levels above 0.96 as optimum, while for temperature this suggested 25–35°C as optimum 

instead of 30–35°C that the raw growth data revealed. It may be that quadratic smoothing 

may slightly overestimate the optimum range for growth. Previous studies on A. 

carbonarius suggest two groups of isolates. Those suggesting an optimum aw for growth 

of between 0.95–0.98 (Belli et al. 2004a; Mitchell et al. 2004) and the other assuming that 

up to freely available water conditions (aw >0·96) are the upper limit (Belli et al. 2005a; 

Pardo et al. 2005; Magan et al. 2005). 

In contrast to other studies that found maximum OTA production after 5–10 days 

incubation (Bellí et al. 2004c; Bellí et al. 2005a; Mitchell et al. 2004), the present study 

found maximum amounts consistently produced between days 15–25. This supports other 

studies that suggest maximum OTA production later (Esteban et al. 2004; Leong et al. 

2006a). The subsequent relative decrease of OTA production after 25 days incubation has 

also been pointed out by other authors (Bejaoui et al. 2006; Leong et al. 2006a). 

The optimum range of the environmental factors for production of OTA was 20°C 

and 0.93-0.96 aw. This was followed by treatments at 15°C and 0.93 aw. In this study 

OTA production was absent or below the limit of detection at 30 and 35ºC, and at low aw 

(0.90). There was also low production (0.02–0.65 μg g
-1

, 10–15d) at 0.98 aw regardless 

temperature. Some authors have reported optimum OTA production when freely available 

water was present (>0.99 aw; Bellí et al. 2005a; Leong et al. 2006b). 
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The present study and others suggest that intra-isolate differences are very small, 

especially when are grown under optimum environmental conditions (Bellí et al. 2004c; 

Esteban et al. 2004; Mitchell et al. 2004; Bellí et al. 2005a; Leong et al. 2006a). 

However, at marginal conditions differences may occur. 

The models developed and the contour plots obtained can help to establish the 

interface of OTA production/no production and estimate the cardinal environmental factor 

values for growth and toxin production by A. carbonarius. It is clear that the optima for 

OTA production maps across to the sub-optimal conditions for growth. The reduction in 

aw of berries during ripening (0.98–0.95) and the high temperatures at the end of the 

véraison period in Greece until vinification (>35ºC) are two factors of major importance 

influencing OTA contamination. The information here will be valuable in understanding 

the factors contributing to OTA production in wine grape production in southern Greece 

and should contribute to development of a more effective prevention strategy. 

 

4.4.2 Predictive models for the effect of temperature and aw on the growth of A. 

carbonarius 

Aspergillus carbonarius is a rather fast growing fungus with a reported temperature 

range for growth from 10 to 40°C (Esteban et al. 2004) and optimum aw at 0.98-0.99 

(Magan and Aldred 2005; Battilani et al. 2006). In this study, no growth was observed at 

marginal conditions of aw (0.85) and temperatures (10 and 40°C) assayed in the time scale 

of the experiment. These results are comparable with Mitchell et al. (2004), who reported 

no growth of eight A. carbonarius strains from Portugal, Israel, Italy and Greece at 0.88 

aw. The same authors reported no growth of any strain at 10°C, whereas in another study 

(Bellí et al. 2004) minimum growth rates were observed at this temperature. 

The effect of temperature and water availability on fungal growth was quantified by 

two different types of models. One was based on equations with dimensionless 

(biologically meaningless) parameters (Eqs 2, 3, 5) and the other on models with cardinal 

values (Eqs 4, 6). A quadratic polynomial model was selected as an empirical modelling 

approach for fungi (Gibson et al. 1994; Valík et al. 1999; Valík and Piecková 2001; Pardo 

et al. 2005) and exhibited good performance in terms of R
2
 and RMSE (Table 4.3; Figure 

4.5) predicting optimal conditions for growth at 35°C and 0.96 aw. These results are 

consistent with previous published works (Mitchell et al. 2003; Leong et al. 2004) 

reporting optimal temperatures for A. carbonarius between 25-35°C, whereas other 

authors reported lower optimal temperature for growth at 30°C (Battilani et al. 2006b). 
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The aw,opt value predicted by the polynomial model agrees with previous findings 

(Mitchell et al. 2003, 2004) who reported optimum growth rates at intermediate aw levels. 

The extended combined model of Parra and Magan (2004) was the second model 

selected. It combines the parabolic relationship between the natural logarithm of growth 

rate and aw developed by Gibson et al. (1994), with the square root model showing the 

relationship between temperature and bacterial growth developed by Ratkowsky et al. 

(1983). The model also presented satisfactory performance as inferred by the relevant 

statistical indices of R
2
 and RMSE (Table 4.3; Figure 4.6). The predicted value lies within 

the limits reported in the literature for isolates of Aspergillus Section Nigri obtained from 

grapes (Bellí et al. 2004). The linear Arrhenius-Davey model is an expansion of the 

original Arrhenius model introduced by Davey (1989) to model the effect of incubation 

temperature on microbial growth. This model which is widely applied to bacterial growth 

(Ross and Dalgaard 2004) was selected to determine how well it could describe fungal 

growth. The model presented satisfactory fitting to the current data (Table 4.3; Figure 4.8) 

suggesting that this approach can also be expanded to account for fungal growth. The 

aw,opt was similar to the value predicted by the previous two models. However, the 

estimated parameters for the 1/T and 1/T
2
 terms were not significant confirming previous 

findings that aw have a larger effect on fungal growth than temperature (Holmquist et al. 

1983; Sautour et al. 2002; Samapundo et al. 2005). Despite the good quality of fit the 

above models lack biological meaningful parameters and for this reason models with 

cardinal values were selected. One of the advantages of these models is that they enable 

easy assessment of initial parameter values and hence, facilitate the convergence 

procedure. An expanded square root-type model taking into account the entire biokinetic 

ranges of temperature and water activity was initially tested (Table 4.3; Figure 4.7). The 

model performed well with the data set and gave realistic estimates for aw,min and aw.max 

which are in line with published values (Mitchell et al. 2003, 2004; Magan and Aldred 

2005). However, the model gave an unrealistic value for Tmin and a higher value for Tmax 

than the reported growth range, 10-40°C (Esteban et al. 2004). Finally, the complete 

model of Rosso et al. (1995) provided additionally estimates of the optimum values for 

temperature (Topt) and aw (aw,opt) for growth as well as an estimate for the optimum growth 

rate (μopt) (Table 4.3; Figure 4.9). These values are in agreement with previous authors 

(Magan and Aldred 2005) who reported an optimum radial extension of approximately 10 

mm day
-1

 at 30-35°C and 0.99-0.93 aw. Validation of the developed models with 

independent data from the literature (Bellí et al. 2005) showed reasonably good 
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correlation among observed and predicted colony growth rates (Table 4.4; Figure 4.10). 

However, the distribution of the majority of data points above the diagonal line indicated 

that all models over-estimated fungal growth rates, i.e. the predicted values were higher 

that the observed. The difference was more intense at higher (35°C) than at lower 

temperatures (15°C). This was possibly due to differences in the observed growth rates 

among the different strains of A. carbonarius reported by the authors, as there is variation 

in the growth rates of various strains between countries and also within the same country 

(Mitchell et al. 2004). 

In conclusion, the results of this study showed that under the current experimental 

conditions, the combined effect of temperature and water activity on the growth responses 

of A. carbonarius could be satisfactorily predicted, and the examined models could serve 

as tools for this purpose. Models with biological interpretable parameters presented good 

overall performance and may contribute to the literature with cardinal temperatures and 

aw values to determine the conditions for germination and growth of A. carbonarius. 

However, in order to build better models, a database is necessary with information from a 

wide range of strains from different climatic conditions and countries.  

 

4.4.3 Growth and OTA production boundaries of two A. carbonarius isolates 

The present study describes the applicability of a probabilistic modelling approach 

for the influence of aw and temperature on growth and OTA production of two 

ochratoxigenic isolates of A. carbonarius from Greek wine grapes. Models to predict the 

likelihood of growth of microorganisms as a function of intrinsic and extrinsic factors 

were first explored in the 1970s (Genigeorgis 1981; Gibson et al. 1987), known as 

“probability” models. Later on it became necessary to manage the risk to consumers from 

foodborne pathogens and ensure presence/absence of a certain microorganism in a food 

commodity, thus leading to the development of “growth/no growth boundary” or 

“interface” modelling (Ratkowsky and Ross 1995). In recent years the need for modelling 

microbial growth limits has been increasingly recognised (McMeekin et al. 2002). Such 

models can be useful in the development of processes that allow production of safer food 

products and could also be important for deciding food safety regulations (Schaffnet and 

Labuza 1997). So far predictive mycology has not received the same level of attention 

compared to food-borne pathogenic bacteria and only recently the concepts for modelling 

fungal development have been reviewed (Dantigny et al. 2005). Probability models, 
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although not extensively used in predictive mycology, can provide useful information and 

define the response of the fungus in boundary conditions of growth and toxin production.  

The present logistic model was fitted successfully to the experimental data as the 

agreement between observed and predicted probabilities was > 99% concordant for fungal 

growth (Tables 4.7 & 4.8) and > 98% for OTA production (Tables 4.9 & 4.10) for both 

isolates. It proved difficult to find appropriate literature data to compare our logistic 

model as no similar approach has been employed so far for A. carbonarius in grapes. 

However, these values are comparable with those reported by Marín et al. (2008) for A. 

carbonarius growth and OTA production in pistachio nuts, where the relevant concordant 

rates were 95.6% (for fungal growth) and 94.6% (for OTA production). The maximum 

rescaled R
2
 of 0.845/0.869 (for growth) and 0.832/0.856 (for OTA) obtained in the present 

study was higher than that reported in the above mentioned work, i.e. 0.786 and 0.715 for 

growth and OTA production, respectively. The higher values of R
2
 reported in this work 

could be explained by the fact that our experiment was carried out on a synthetic and 

well-defined laboratory medium, whereas in the other work the fungus was inoculated 

directly on pistachio nuts.      

With respect to time, the growth boundary shifted to higher temperature levels (25-

30°C) (Figures 4.13 & 4.14) whereas the OTA production boundary shifted to lower 

temperatures (15-25°C) (Figures. 4.17 & 4.18) indicating that OTA production does not 

occur at its best under the same conditions for growth. The extension of the growth 

boundary with time was similar for the two isolates, with the lowest aw for growth at 0.85-

0.88 depending on incubation temperature. Growth at these  aw values, although not 

consistent with literature data (Mitchell et al. 2004; Bellí et al. 2005; Leong et al. 2006), 

could be attributed to adaptation to regional climatic conditions, thus making  these 

isolates more tolerant to xerophilic conditions. As observed in the probability plots 

(Figures. 4.11 & 4.12), probabilities of growth over 0.8 were predicted in synthetic grape 

medium with 0.90-0.98 aw incubated at 15-35°C in 5 days time. As the aw in grapes 

during ripening is 0.95-0.98 and the prevailing temperatures at harvest many vary 

between 30 and 35°C, or lower depending on regional conditions, there is increased 

probability of fungal growth and subsequent OTA contamination. The same probability 

level (P > 0.8) for OTA production for the same temperature range and time was attained 

in growth media with 0.94-0.98 aw for A. carbonarius ATHUM 5659 (Figure 4.17) and 

0.96-0.98 aw for A. carbonarius ATHUM 5660 (Figure 4.18), indicating that the range of 

aw for OTA production is narrower than that for growth. However, fungal growth and 
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OTA production is much more complicated under realistic conditions as reported by 

Marín et al. (2006). Environmental fluxes, especially day temperatures may not be 

appropriate for OTA production but may support hyphal extension increasing the 

potential for OTA production under lower temperatures at night. 

Validation with independent literature data showed that the developed logistic model 

could adequately predict the growth/no growth cases of other A. carbonarius strains at a 

probability level of 0.5. Some disagreement was only observed with 1 false positive 

(Table 4.11) and 3 false negative (Table 4.12) predictions out of 68 total growth cases. 

The false negative cases were not predicted successfully as they were located at the 

boundaries of the domain of the model. Finally, the model predicted OTA responses 

reasonably well as the agreement with literature data for OTA absence was 27 out of 40 

(67.5%) cases and 5 out of 5 (100%) cases for OTA presence (Table 4.13). The 

misclassified cases of the model could be attributed to the great variability of different A. 

carbonarius stains in OTA production between countries and also within the same 

country even under the same environmental conditions (Mitchell et al. 2004).                

In conclusion, the results of this study indicate that logistic regression models can be 

successfully employed to predict the boundaries for growth and OTA production of A. 

carbonarius on a synthetic grape juice medium and also for other mycotoxin producing 

species. However, due to the variability of A. carbonarius strains in growth potential and 

OTA production, further research is needed to develop and validate more extensively such 

models with additional regional experimental data from grapes and grape products. 
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Chapter 5: A Survey of Ochratoxin A Occurrence in Greek 

Wines 

  

5.1 Introduction 

 

Ochratoxin A (OTA) is a toxic metabolite produced by specific fungi that can infect 

and proliferate on various agricultural commodities in the field and/or during storage (Pitt 

& Hocking, 1997; Van Egmont, 2000). The occurrence of this toxin in food is influenced 

by environmental factors such as temperature, humidity, and the extent of rainfall during 

the pre-harvesting period, the harvesting techniques and post-harvesting handling 

practices (JEFCA, 2001; FAO, 2007; EFSA, 2006; Magan & Aldred, 2007). OTA has 

nephrotoxic, immunosuppressive, teratogenic and carcinogenic effects on animals, and is 

classified as a possible human carcinogen of the 2B Group by the IARC (Heussner et al., 

2006; Creppy, 2002; IARC, 1993). Moreover, there are several reports from many 

countries in the world, describing the high frequencies of OTA in a large number of food 

groups such as cereals, fruits, meat and their products (Pohland et al., 1992; Murphy et 

al., 2006). This has resulted in a focus on means of minimizing the risk of exposure of 

consumers to this mycotoxin in a range of foodstuffs (FAO, 2007; EFSA, 2006; EU, 

2002). Grapes, raisins, grape juice and wine can be considered as high risk products 

which can be contaminated by Aspergillus carbonarius (Visconti et al., 2008). It has been 

suggested that OTA produced by this fungus and the presence in wine accounts for 13-

21% of the total human exposure (JEFCA, 2001; EU, 2002). Based on the available 

scientific data for OTA, the European Union (EU) established maximum permitted limits 

of 10.0 μg kg
-1

 for dried vine fruits (currants, raisins and sultanas) and 2.0 μg kg
-1

 for 

wine, grape juice and musts (EU, 2006).  

OTA was detected in wine for the first time in 1996 by Zimmerli and Dick (1996), 

who found that 70% of 118 European table wines were contaminated with OTA. 

Thereafter, several surveys were conducted worldwide, and these have been reviewed 

previously and illustrate the severity of the problem (Visconti et al., 2008; Otteneder & 

Majerus, 2000; Mateo et al., 2007; Visconti et al., 1999). The proportion of positive OTA 

contaminated wines was very high, exceeding 50% in some countries, especially around 

the Mediterranean basin. Many authors report a greater contamination of dessert (sweet) 

wines in contrast with the dry types, probably due to process that is applied before 
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vinification. A gradient in OTA concentration is usually recognized, correlated with the 

color, and therefore to the production process of wine, with OTA levels diminishing from 

red through rosé to white wine. Another, common finding in the majority of the surveys, 

is the higher level of incidence and concentration of OTA in wines originated from 

southern, in contrast to those of northern regions of production in the same surveys 

(Visconti et al., 1999; Otteneder & Majerus, 2000; Soleas et al., 2001; Pietri et al., 2001; 

EU, 2002; Bellí et al., 2004; Ng et al., 2004; Rosa et al., 2004; Anli et al., 2005; 

Burdaspal & Legarda, 2007; Mateo et al., 2007; Visconti et al., 2008; Valero et al., 2008). 

Nevertheless, there are some studies that did not reveal the same conclusions (Shephard et 

al., 2003; Valero et al., 2003).  

With respect to Greek wines, Markaki et al. (2001) analyzed 31 samples of red wine, 

all produced in countries of the Mediterranean basin, with 8 of Greek origin. All the 

Greek samples contained OTA, with one having the highest contamination reaching 2.35 

μg L
-1

. Soufleros et al. (2003) analyzed 35 Greek wines and found a rather high incidence 

(62.8%) with a maximum level of 3.2 μg L
-1

 OTA but with only 3 samples exceeding 1.0 

μg L
-1

. In another survey for the presence of OTA in 268 Greek wines, Stefanaki et al. 

(2003) found that 40% of the total number of dry wines showed no detectable OTA 

concentrations, whereas 11.5% of all surveyed Greek wines contained OTA at ≥1.0 μg L
-

1
. However, none of these studies examined the possible contamination in different 

seasons and different vinification systems. The objective of this study was to examine a 

wide range of wines from  the key production areas in Greece produced over the period 

1999-2006 in relation to OTA presence based on color, type, origin, variety, production 

year and whether using traditional or organic cropping systems.  

 

5.2 Materials and methods 

 

5.2.1 Study Area 

Greece is located in southern Europe and lies between Italy and Turkey. The Aegean 

Sea, Ionian Sea and Mediterranean Sea border the country. The terrain of Greece is 

mostly mountainous with mountain ranges extending into the sea as peninsulas or chains 

of islands. The climate of Greece is mostly of a temperate kind and has hot, dry summers, 

followed by a warm and wet autumn, with ample sunlight throughout the year. Seven 

winemaking regions were chosen for this study, representing more than 80 % of the total 
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wine producing vineyards of the country. Figure 5.1 show the areas where wine samples 

originated from. Wines produced from vineyards of northern (Macedonia), western 

(Epirus), central (Sterea Ellada and Thessaly), southern (Peloponnese and Crete Island) 

and eastern (Aegean Islands) Greece were evaluated. 

 

Figure 5.1 Incidence of Ochratoxin A in the Greek domain. 

Numbers indicate positives/total samples. 

 

5.2.2 Wine Samples  

Commercial available wines were purchased from supermarkets of Athens and stored 

at 4 ºC until analysis. A total number of 150 samples was analyzed of which 123 (64 red, 

49 white and 10 rosé) were dry and 27 (14 red and 13 white) dessert type (sweet) wines. 

All wines were produced during the years 1999 to 2006 and were of various viticultural 

and oenological practices.    

 

5.2.3 Extraction, Detection and OTA Quantification  

Analysis was performed always within the year of production of the wine. The 

extraction and detection procedure of OTA in wine was strictly derived from the 

European norm (EN 14133, V 03-128) (EU, 2001). A volume of 10 mL of must or wine 

was diluted in 10 mL of water solution containing PEG (1%) (Acros Organics) and 

NaHCO3 (5%).The pH value of the result solution corresponds to the range 7.2-7.8. The 

solution was filtered through Whatman GF/A glass microfiber filter with porosity of 1.6 
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μm. The filtrate was then passed through an Ochrapep immune-affinity column (IAC) (r-

Biopharm, St Didier Au Mont D‟Or, France) at a flow rate of 1 drop s
-1

. The column was 

successively washed with 5 mL of water solution containing NaCl (2.5%) and NaHCO3 

(0.5%) followed by 5 mL of HPLC-grade water at a flow rate of 1-2 drops/s and dried 

with air. OTA was eluted by 2 mL of HPLC-grade methanol through the IAC at a flow 

rate of 1 drop/s. The eluate, collected in an HPLC vial (Wheaton; 2 mL), was evaporated 

under nitrogen stream at 50 °C and reconstituted with 250 μL of mobile phase prior to 

HPLC analysis.  

 

5.2.4 The Chromatographic System  

OTA was detected and quantified by reversed-phase HPLC. The analysis was 

performed using a chromatographic system (series 1100, Hewlett Packard, Palo Alto, 

Calif.) equipped with an autosampler (Agilent 1100, G1313A, ALS) and a fluorescence 

detector (Agilent 1100, G 1321A, FLD) set at 330 nm (excitation) and 460 nm (emission). 

The system was controlled by Chemstation software. Chromatographic separations were 

performed with a C18 Spherisorb ODS2 column (5 μm by 250 mm by 4.6 mm; Waters, 

Milford, Mass.). The flow rate of the mobile phase (acetonitrile–water–acetic acid at 

51:47:2) was 1 ml min
-1

. The injection volume corresponds to 100 μL and the retention 

time was about 8 min. Under these conditions, the limit of detection of OTA was 0.01 μg 

L
-1

. Preparation of samples and further details are referred in paragraphs 3.2.2.3 and 4.2.4.  

 

5.2.5 Statistics  

Statistical analysis was performed according to standard analysis of variance 

(ANOVA) using the Statistica software package (Statsoft, Tulsa, Okla.). 

 

5.3 Results 

 

Of the 150 samples of Greek wines 104 (69%) were found to be positive for OTA 

presence. Although the percentage of positive samples indicates a rather high incidence of 

contamination, the majority of the samples tested (91%) had low levels of OTA (n.d. – 1.0 

μg L
-1

) with 14 samples (9%) being between 1.0 and 2.0 μg L
-1

 and only one reaching the 

E.U. permissible maximum level of 2.0 μg L
-1

. The incidence and concentration of OTA 

in red wines were similar (70% positive; mean = 0.21 μg L
-1

) with that of white (63% 



 

 

127 
 

positive; mean = 0.21 μg L
-1

), and moreover the statistical analysis did not reveal any 

statistically significant difference between these groups. In contrast, the results support a 

considerably higher incidence and contamination of dessert type wines (81% positive; 

mean = 0.57 μg L
-1

) against dry (67% positive; mean = 0.17 μg L
-1

), for both red and 

white wines (Table 5.1). With regards to the origin of the samples there appeared to be a 

clearly defined gradient, with increasing concentrations of OTA from north to south and 

western to eastern regions of viticulture (Table 5.2). Finally, conventionally versus 

organically produced wines and year of production did not show any significant 

differences in terms of mean, median and range of OTA contamination (Table 5.3 and 

Figure 5.2). Moreover, in Table 5.4 is given an overview of what has been done up today 

regarding investigation of OTA presence exclusively for Greek wines. This table 

summarizes the results of 466 Greek wine samples analyzed and published in OTA 

occurrence surveys.  
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Table 5.1 Ochratoxin A in μg L
-1

 for dry and dessert Greek wines  

Type 

No. of 

positives/total 

samples
a        

(%) 

OTA concentration (μg L
-1

) 

 

Incidence of OTA contamination (%) 

Mean
b
  Median

b
  Range

c
 

 < 0.05 

μg L
-1

 

0.05-0.5 

μg L
-1

 

0.5-1.0 

μg L
-1

 

1.0-1.5 

μg L
-1

 

1.5-2.0 

μg L
-1

 

Total Dry wines 82/123 (66.7) 0.17 0.06 n.d.-1.51 

 

43.9 44.7 4.9 5.7 0.8 

  Red dry wines 45/64 (70.3) 0.21 0.07 n.d.-1.31 

 

40.6 45.3 7.8 6.3 0.0 

  White dry wines 31/49 (63.3) 0.21 0.08 n.d.-0.51 

 

46.9 42.9 2.0 6.1 2.0 

  Rosé dry wines 6/10 (60.0) 0.09 0.03 n.d.-0.38 

 

50.0 50.0 0.0 0.0 0.0 

Total Dessert wines 22/27 (81.5) 0.57 0.40 n.d.-2.00 

 

18.5 37.0 22.2 18.5 3.7 

  Red Dessert wines 13/14 (92.9) 0.72 0.57 n.d.-2.00 

 

7.1 35.7 28.6 21.4 7.1 

  White Dessert wines 9/13 (69.2) 0.41 0.35 n.d.-1.16 

 

30.8 38.5 15.4 15.4 0.0 

Total wines 104/150 (69.4) 0.26 0.10 n.d.-2.00   39.3 43.3 8.0 8.0 1.3 
a
 In brackets: % precentage. 

b 
Concentration of samples with no detectable OTA is considered as LOD/2 (0.005 μg L

-1
) for the mean 

and median estimation   
c
 n.d. = not detected (<0.01μg L

-1
). 

 

Table 5.2 Mean OTA concentrations in different types of wine from various regions of Greece 

Origin
a
 

Dry wines (82/123)
a,b

   Desert wines (22/27)
a,b

 
Total

b
 

Red Rosé White   Red White 

North, West & Central Greece (22/43) 0.10 0.06 0.06 

 

- n.d.
c
 0.08 

   Macedonia (13/25) 0.13 0.07 0.05 
 

- - 0.06 

   Epirus (3/8) 0.13 - 0.01 
 

- n.d. 0.13 

   Sterea Ellada (4/6) 0.07 0.04 0.18 
 

- - 0.10 

   Thessalia (2/4) 0.04 - - 
 

- - 0.04 

South Greece (54/77) 0.13 0.17 0.21 
 

0.72 n.d. 0.23 

   Peloponnese (42/62) 0.12 0.17 0.24 

 

0.72 n.d. 0.30 

   Crete (12/15) 0.15 - 0.06 
 

- - 0.12 

Aegean Islands (28/30) 1.05 - 0.30 
 

- 0.48 0.53 

Overall Greek Regions (104/150) 0.21 0.09 0.21   0.72 0.41 0.26 
a
 In brackets: positive/total. 

b
 Concentration of samples with no detectable OTA is considered as LOD/2 (0.005 μg L

-1
) for the mean 

concentration  
c
 n.d. = not detected (<0.01μg L

-1
). 
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Table 5.3 Ochratoxin A in μg L
-1

 for conventionally and organically produced 

Greek wines 

Cultivation type 
No. of 

positives/total 

samples
a 

OTA concentration (μg L
-1

) 

Mean
b
  Median

b
  Range

c 

Conventional 83/117 (70.9) 0.28 0.09 n.d.-2.00 

Organic 21/33 (63.6) 0.20 0.02 n.d.-1.48 
a
 In brackets: positive/total. 

b
 Concentration of samples with no detectable OTA is considered as LOD/2 

(0.005 μg L
-1

) for the mean concentration.  
c
 n.d. = not detected (<0.01μg L

-1
). 

 

 

 

Figure 5.2 Incidence of ochratoxin A contamination of Greek wines produced during the years 

1999 to 2006 (In brackets the total number of tested samples). 
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Table 5.4 Occurrence and levels of OTA in Greek wines 

a
 Authors did not divide sweet from dry type wines.  

 

 

 

 

 

 

 

 Wine type 

 Red Rosé White Sweet 

Reference 
Positive / 

Total 
Mean Range 

Positive / 

Total 
Mean Range 

Positive / 

Total 
Mean Range 

Positive / 

Total 
Mean Range 

Soleas et al., 2001 4/23
a
 - <0.05-0.10 - - - 2/16

a
 - <0.05-0.10 - - - 

Markaki et al., 2001 8/8 - 0.002-2.35 - - - - - - - - - 

EU, 2002 (SCOOP) 21/38 0.16 <0.05-2.61 3/5 0.07 <0.05-0.13 23/45 0.13 <0.05-1.17 6/7 0.54 <0.05-1.68 

Stefanaki et al., 2003 71/104 0.34 <0.05-2.69 13/20 0.17 <0.05-1.16 63/118 0.25 <0.05-1.72 15/18 0.58 <0.05-2.82 

Soufleros et al., 2003 9/14 0.68 <0.02-2.51 0/1 n.d. n.d. 7/13 0.27 <0.02-0.87 6/7 0.94 <0.02-3.20 

Ng et al., 2004 8/10
a
 - <0.004-<1.00 - - - 9/13

a
 - <0.004-3.72 - - - 

Burdaspal et al., 2007 - - - - - - - - - 6/6 0.83 0.12-2.95 
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5.4 Discussion 

 

Our results confirm the hypothesis of a high incidence in the Mediterranean basin 

and moreover there seems to be a clear gradient within the borders of Greece between 

the different regions studied. Thus, the northern, western and central Greek regions 

together, resulted in incidence of 22 contaminated samples out of 43 tested, while the 

southern Greece and the Aegean Islands had 54 positives out of 77 samples and 28 

out of 30, respectively. The main climatic differences between the three former and 

the two latter regions are the higher temperature and low humidity of the northern 

Greece during summer periods, and at the same time the fact that in the mainland, 

either northern or western regions, cultivation takes place usually at higher altitudes. 

This gradient was also observed in studies in Italy (Pietri et al., 2001; Perrone et al., 

2007), Spain (Burdaspal & Legarda, 2007; Valero et al., 2008), and limited surveys in 

Greece (Stefaniaki et al., 2003; Soufleros et al., 2003; Melletis et al., 2007), and 

Turkey. However, the latter study in Turkey has shown that those from the Thrace and 

Aegean coast in the west of the country were more contaminated than those 

originating from the east mainland of Anatolia (Anli et al., 2005). The factor which 

may be responsible for this difference could be the climatic conditions after véraison 

of the grapes and during ripening, where the wet and hotter profile at the 

Mediterranean coast favors the higher incidence of growth and OTA production on 

grapes by A. carbonarius (Visconti et al., 2008; Blesa et al., 2006; Battilani et al., 

2006).  

With regards to the color of the wines tested, the gradient in OTA concentration 

observed between red, rosé and white wines was not evident for the dry type wines. 

Although the red ones had incidence and range of contamination above those of the 

white wines, the mean and median concentration did not differ and, moreover, a 

statistical comparison of the concentrations showed no statistically significant 

difference. This is in contrast to some other studies for Greek wines (Markaki et al., 

2001; Soufleros et al., 2003), but supports some other surveys (Ng et al., 2004; 

Stefanaki et al., 2003). In previous surveys for other countries, the trend of 

diminishing OTA contamination from red wines to white has usually been relatively 

consistent (Visconti et al., 1999; Bellí et al., 2004; Blesa et al., 2004; Rosa et al., 
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2004; Anli et al., 2005). Although, in other cases was not clear or absent (Zimmerli & 

Dick, 1996; Otteneder & Majerus, 2000; Ng et al., 2004; Shephard et al., 2003).  

Nevertheless, when distinguishing the dessert type wines, the aforementioned 

increasing gradient of red colored sweet wines versus white is clearly present. The 

higher contamination of red types against white wines is probably due the longer 

mash standing followed in red vinification. While white grapes are immediately 

pressed after being harvested and juice is used for fermentation, red wine grapes are 

mashed and the skin and juice are put aside for several days. With respect to rosé type 

wines, the mash standing holds from some hours to one day, according to the 

desirable tone of the final color. During this processing stage of maceration for the red 

wines, aerobic conditions and elevated temperatures can favor the growth of the 

existing mould, and subsequently further OTA production can take place (Otteneder 

& Majerus, 2000; Visconti et al., 2008; Blesa et al., 2006).  

It is well established in the relative literature that dessert (sweet) wines represent 

the most OTA-contaminated type of wines. In terms of frequency, dessert wines 

appear to have the highest incidence of OTA presence. In all surveys, from the very 

first by Zimmerli and Dick (1996) to the most recent by Valero et al. (2008), 

occurrence of OTA in dessert wines usually exceed 90% of the total samples with, 

sometimes, remarkably high concentration in comparison with dry type wines. 

Likewise, the present study revealed 22 contaminated samples out of 27 tested 

(incidence 81%), with 22% of them having > 1.0 μg L
-1

 OTA, while for the dry type 

wines in this range was only 7%. Some previous studies have reported incidences of 

between 80 and 100% for dessert wines being contaminated by OTA with similar 

mean values (Zimmerli & Dick, 1996; Burdaspal & Legarda, 2007; Soufleros et al., 

2003; Stefanaki et al., 2003) and sometimes higher (Pietri et al., 2001; Valero et al. 

2008) than those found in the present study (mean = 0.57 μg L
-1

, median = 0.40 μg L
-

1
). However, maximum levels in Greek dessert wines in the literature never exceeded 

the 3.20 μg L
-1

 reported by Soufleros et al. (2003). These levels were also never as 

high as those found by Belli et al. (2004) and Valero et al. (2008) in Spanish 

muscatels (15.25 and 15.62 μg L
-1

 respectively). Dessert type wines in Greece are 

almost always produced by the traditional sun-drying method (insolation). This 

winemaking procedure is performed by exposing grapes for several days to an open 

environment in order to lose humidity by sun-drying. When these days are followed 

by wet and cool nights, damaged grapes become more susceptible to A. carbonarius 
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and OTA contamination (Valero et al., 2008; Soufleros et al., 2003; Gómez et al., 

2006).  

As regards the influence of the production year, no significant differences in 

OTA concentrations were found for the tested wines, neither related with the total of 

samples nor regarding color, type or region groups (data not shown). Nevertheless, it 

is worth mentioning that the year with the highest incidence and contamination was 

1999, followed by 2001, 2002, 2003 and 2005, while the least contaminated samples 

appear to be produced 2000, followed by those of 2004 and 2006. It should be 

commented, although, the fact that Stefanaki et al. (2003) and Soufleros et al. (2003) 

reported those from the 1999 harvest were the most contaminated. Meteorological 

data for Greece in that year revealed increased rainfall and relative humidity during 

the harvesting period, which probably favored growth of OTA-producing fungi. 

With respect to conventional and organically produced wines, the statistical 

examination failed to found any significant differences. The mean, median and the 

ranges of OTA concentration of the two groups are presented in Table 3 where a 

slightly increased incidence and contamination for OTA in conventionally produced 

wines is defined. Tjamos et al. (2006) show that the organically grown in Greece 

varieties Athiri and Cabernet Sauvignon were the less contaminated among the 

sampled wine grape cultivars and, moreover, the non organically grown Cabernet 

Sauvignon proved to be highly contaminated by A. carbonarius in comparison with 

the organically grown. In another study in Argentinean wine grapes cultivated under 

organic and non-organic systems, Ponsone et al. (2007) report also lower OTA 

concentration and A. carbonarius presence during harvesting for the organically 

produced wines. Chiodini et al. (2006), in a survey for OTA in wine, compared 

organically and conventionally produced products, failed to find significant 

differences between the two types of cropping system. They reported that the use of 

fungicides in conventional farming may stress molds such that they initiate toxin 

production. However, as the key factors are the good agricultural, handling, and 

storage practices required in organic, as well in conventional, agriculture in order to 

minimize the risk of mold growth and mycotoxin contamination (Blesa et al., 2004; 

Tjamos et al., 2006; Chiodini et al., 2006). 

In conclusion, this study of OTA in wines produced in Greece shows that Greek 

red, rosé and white wines had lower levels and incidences than wines from other 

countries of the Mediterranean basin, that all Greek wines were below the proposed 
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European limit of 2.0 μg L
-1

, that our results were comparable with published results 

from EU Member States and, although that the incidence of contamination was rather 

high, most of the samples contained low levels of contamination with this mycotoxin. 

The key areas of concern were the results from the southern regions of Greece, mainly 

Peloponnese and Aegean Islands, especially for the dessert type ones. More detailed 

surveys should be contacted in the future related to OTA presence in relation to 

viticultural practices and vinification procedures. 
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Chapter 6: Microvinification Experiment – Fate of 

Ochratoxin A during Vinifications and Clarification 

Procedures 

 

6.1 Introduction  

 

Processing can play an important role in diminishing the potential risks of 

mycotoxin-contaminated food commodities. Thus, it is important to evaluate the 

effects of processing on OTA to determine if the toxin level can be managed through 

post-harvest procedures. The safety of wine can only be assured by monitoring OTA 

risk throughout the winemaking process. In particular, all stages of the process, 

starting with grape harvesting, including the intermediate stages in the winery and the 

distribution of the wine itself should be observed. Information on OTA persistence 

and transformation during processing would be useful for the development of an 

effective prevention strategy for OTA contamination (Grazioli et al., 2006). 

Several corrective techniques for reducing the incidence of OTA in wines have 

been tried. The content of OTA has been studied on grape products (Blesa et al., 

2004; Leong et al., 2006b; Magnoli et al., 2004; Sera et al., 2004; Shephard et al., 

2003; Soufleros et al., 2003; Stefanaki et al., 2003), the conditions and factors 

required for the development of OTA have also been assessed (Pitt & Hocking, 1997; 

Sanchis & Magan, 2004; Belli et al., 2006a; Serra et al., 2006), as well as the 

response to different cropping systems (Chiodini et al., 2006; Cozzi et al., 2007; 

Ponsone et al., 2007). However, although A. carbonarius that produce OTA, the 

chemical structure of it, and its stability and toxicity are all known, its appearance and 

metabolic pathway is still uncertain during winemaking. It is not clear how 

vinification affects OTA content in wines, and only  few studies refer on this subject. 

 During red wine manufacturing, OTA content decreases until the malolactic 

fermentation preceding its bottling. In white type vinification, were maceration and 

malolactic fermentation are absent, the decrease taking place before and during 

fermentation process. The mycotoxin level diminishes, probably due to its adsorption 

on the Saccharomyces cerevisiae yeast surface, to its interaction with metabolites 

produced by yeast, to its degradation with the lactic bacteria still present in wine or 
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more likely is associated with removal of spent fractions during winemaking, such as 

wine lees after fermentation or sediment after racking (Bejaoui et al., 2004a; Cecchini 

et al., 2006; Grazioli et al., 2006; Fernándes et al., 2007). 

For OTA detoxification, chemical compounds or adsorbent materials have been 

tested such as activated charcoal, cholestyramine, sodium and calcium aluminum 

silicates (mainly zeolites), bentonite, wood fragments or yeast cells (Leong et al., 

2006b; 2006e; Cecchini et al., 2006). Wine fining agents such as potassium caseinate 

or activated carbon have shown also positive effects on OTA detoxification (reduction 

up to 82%) but they have also damaged wine quality due the reduction caused in the 

concentration of some important wine constituents such as polyphenols and aroma 

compounds (Fernandes et al., 2007; Castellari et al. 2001; Gambouti et al., 2005). 

The aim of this work was to study the fate of OTA during the main stages of the 

winemaking process (crushing, maceration, alcoholic fermentation, racking, and 

malolactic fermentation) and the influence of wine clarification (bentonite, potassium 

caseinate, and activated carbon) on OTA concentration, either with the presence of A. 

carbonarius or starter yeast. For these purposes 4 experimental vinifications contacted 

the 2005 and 2006 vintages, one white and one red vinification every for every year, 

in laboratory scale but according the instructions of the supplier wineries, in order to 

imitate as possible the process applied by them in industrial scale.  

 

6.2 Materials and methods 

 

5.2.1 Grape samples 

For the micro-vinification trial in the laboratory, grapes (80 kg) were collected at 

harvest time of the red Agiorgitico cultivar, from Arcadian vineyards of Arkas S.A. 

(C1; see Chapter 3: Table 3.1 & Figure 3.1). Another vinification assay has been 

conducted with grapes of Roditis white cultivar, from different vineyards of Achaia 

Clauss Co. located in Achaea (A1-A5; see Chapter 3: Table 3.1 & Figure 3.1), which 

were used for the production of the white wine. Roditis cv. was selected among other 

cultivars for the reason that in mycofloral study (see 3 Chapter) appeared the most 

contaminated one. The winemaking trials were performed during two vintages, 2005 

and 2006.  The micro-vinification process performed at the laboratory of Institute of 
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Technology of Agricultural Products (NAgReF, Lycovrysi, Athens, Greece), 

immediately after the arrival of the grapes.  

 

6.2.2 Red micro-vinification procedures 

Vinification trials started by destemming grapes and crushing them with the help 

of a manual winepress, yielding a must with pomace (skins and seeds) included. 

Thereafter, must was separated to 8.0 L batches and placed in food-grade plastic 

buckets of 10.0 L capacity. Pomace was separated in 1 Kg batches, placed in tulle, 

sank in each bucket to represent the soaking “pomace cap” of industrial maceration 

and was immersed twice a day. Each bucket of must with pomace, added with 6.0 g 

hL
-1

 potassium metabisulfite (KHSO2) in order to generate 30 mg L
-1

 of SO2. SO2 was 

checked every second day and corrected when needed. Temperature, grape-sugar (in 

Bé density scale) and pH for every case were recorded daily. The pH remained almost 

constant and within the range of 3.3 to 3.8 and temperature was at 22-26 °C during 

maceration and kept at 16-18 °C for alcoholic fermentation. Grape sugar density 

diminished gradually to zero after 18 days when the residual sugars were <1.0 g L
-1

. 

After 4 days maceration was completed, drawing off and press of pomace took place, 

and the received must continued alcoholic fermentation. After the following 

completion of alcoholic fermentation, a first racking was carried out to remove the 

lees from the wine. Then, malolactic fermentation (MLF) occurred spontaneously, 

due to lactic acid bacteria resident in the wine, and after 12 days a second racking 

took place and wine was stabilized for bottling by the addition of potassium 

metabisulfite. 

 

6.2.3 White micro-vinification procedures 

The procedures followed for white micro-vinification was exactly the same as for 

the red one with only the following exceptions. Firstly, after grapes were destemmed 

and pressed, pomace was separated and must proceed to vinification without 

maceration. Secondly, the end of alcoholic fermentation was after 15 days, malolactic 

fermentation did not take place and wines were racked with potassium metabisulfite, 

cold-stabilized for 10 days at 10°C, and bottled. Finally, it must be noted that both 

years must of white Roditis cv. found contaminated with an OTA concentration of 

0.30 and 0.080 μg L
-1

, respectively for 2005 & 2006, while must of red Agiorgitico 

cv. was always free of OTA.  
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6.2.4 Experimental design  

Both years the same experiment took place in order to check repeatability of the 

procedure. Apart from the blanks cases, there have been monitored the presence of 5.0 

ppb OTA, of an inoculum of 5×10
4
 L

-1
 A. carbonarius spore suspension and the 

presence of starter yeast (200 mg L
-1

 Saccharomyces bayanus + 200 mg L
-1

 fermaide), 

all at the start of the vinification. The outline of the cases studied in both white and 

red micro-vinification is presented in Table 6.1.  

 

Table 6.1 Experimental design of the micro-vinifications. 

Case Starter yeast A. carbonarius Ochratoxin A 

A No No No 

B No No Yes 

C No Yes No 

D Yes No No 

E Yes No Yes 

F Yes Yes No 

 

6.2.5 Sampling  

Must or wine samples, lees, and pomace for red vinification, were collected on 

five distinct occasions for OTA determination during the vinification process: after 

the beginning of the fermentation (1
st
 day), twice during fermentation (5

th
 and 10

th
 

days), at the end of fermentation (15
th

 day for the white, 18
th

 for red), at the end of 

MLF for red (30
th

 day) and at the final product just before bottling. Moreover, 

microbiological studies performed for both Saccharomyces spp. and A. carbonarius in 

order to test their viability during the process. 

 

6.2.6 OTA determination 

The methodology for OTA determination was based on the reference method for 

wines described in the European Standards (EU, 2006b), comprising clean-up by 

immunoaffinity columns followed by HPLC quantification (see paragraph 5.2.3). For 

musts, the modification was made: in the clean-up, the initial ratio of must:dilution 

solution (PEG) was 25:125 ml (instead of the typical 10:10 ml used for wines) 

(Visconti et al., 2001). All samples were injected in duplicate. The chromatography 

equipment is presented in paragraphs 5.2.3 & 5.2.4 of the Chapter 5. 
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6.2.7 Fining Agents and Clarification Experiments 

Three enological fining agents (bentonite, potassium caseinate and activated 

carbon) were purchased in specialized stores and added with double-distilled water as 

recommended by the cooperated wineries. Clarification experiments were performed 

by using the fining agents at fixed dosage commonly used in the current winemaking 

practice. Aliquots of each red wine (50 mL) were poured in cap-vials and added with 

a single fining agent. Wines were mixed, kept in the dark at +4 °C for 12 h, and then 

centrifuged for 20 min at 8500 rpm. The supernatant was collected and analyzed for 

its OTA concentration. The percentage of removed OTA was calculated on the basis 

of the initial OTA concentration and accounting for the dilution effect caused by the 

addition of the fining agents. 

 

6.3 Results 

 

6.3.1 Effects of enological practices on OTA 

Ochratoxin A levels in wines and the effect of the enological factors essayed are 

shown in Tables 6.2 and 6.3. Concentration ranges for OTA after finish of vinification 

were 0.02 to 2.87 μg L
-1

 and not detected to 2.23 μg L
-1

 for white and red wines, 

respectively. Roditis cv. had a small initial contamination of OTA of 0.30 μg L
-1

, 

apart from the added (5 μg L
-1

), which almost has been detoxified during the white 

vinification process. Wines from red cultivar Agiorgitico were free of OTA initially 

and in both OTA adsorption and ranges in final product were better than white, 

although, for the cases of physically contaminated samples (A & D, Table 6.2), were 

the amount of OTA was much lesser than the artificially contaminated ones, the toxin 

almost detoxified at the end of fermentation. Of major importance is also the finding 

that in both vinifications, when A. carbonarius inoculum was added, there have been 

an increase in OTA for the first days, which these days after started to diminishing. In 

these cases the % adsorption was measured with the highest concentration reached 

through the vinification and not the initially present OTA. Very interesting, also, is 

the fact that pomace analysed after the end of red vinification procedure were highly 

contaminated either from the artificially contamination or by the presence of A. 

carbonarius with OTA levels up to 4.10 μg L
-1

. Finally, MLF also decreased the OTA 

content in wine. 
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Table 6.2 OTA concentration during white micro-vinification  

Roditis cv.  OTA concentration (μg L
-1

)  

Case 

No 

Starter 

Yeast 

A. 

carbon-

arius 

OTA 

Vinification process 

(days) Final 

product 

OTA 

adsorption 

(%)
1
 1 5 10  

A – – – 0.30 0.22 0.18  0.03 90.00 

B – – + 4.81 4.29 3.76  2.87 40.33 

C – + – 0.83 0.90 0.77  0.63 24.09 

D + – – 0.28 0.23 0.19  0.02 92.85 

E + – + 5.09 3.71 3.10  2.86 43.81 

F + + – 0.73 0.96 0.89  0.83 13.54 
1
 % adsorption measured with the highest concentration reached through the vinification and not 

with the initially present OTA 

 

Table 6.3 OTA concentration during red micro-vinification  

Agiorgitico cv.  OTA concentration (μg L
-1

)  

Case 

No 

Starter 

Yeast 

A. 

carbon-

arius 

OTA 

Vinification process 

(days) Final 

product 
Pomace 

OTA 

adsorption 

(%) 1 5 10 18 

A – – – n.d. n.d. n.d. n.d. n.d. n.d. - 

B – – + 4.91 3.30 2.90 1.98 1.47 3.10 55.50 

C – + – 0.04 0.57 0.23 0.19 0.18 1.34 57.47 

D + – – n.d. n.d. n.d. n.d. n.d. n.d. - 

E + – + 4.87 3.51 3.10 2.67 2.23 4.13 54.21 

F + + – 0.10 0.53 0.40 0.22 0.13 1.10 76.48 
1
n.d.= not detected (LOD = 0.01 μg L

-1
) 

 

6.3.2 Adsorptive capacity of fining agents 

Finally in following Table 6.4 the performance of 3 common wine fining agents 

are presented. The adsorbed amount of OTA is calculated from the final concentration 

at the bottling stage of wines. As it can be seen none of the tested fining agents had 

satisfactory results.  

 

Table 6.4 Relative amount of OTA (%) adsorbed from wine by the fining agents. 

Fining agent Dosage (g/l) Application time 
OTA adsorption (%) 

White wine Red wine 

Bentonite 0.40 1-2 hours 19-22 9-14 

Potassium caseinate 0.75 1-2 hours < 5 15-20 

Activated carbon 0.10 24 hours 19-21 10-12 
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6.4 Discussion 

 

The general trend for the evolution of OTA concentration throughout the 

vinification process is clear. OTA levels decreased markedly in all situations, as can 

be seen in Tables 6.2 & 6.3. The decrease in OTA of the initial must is more 

pronounced few days after the start of fermentation, as it has been noted also by 

others (Ratola et al., 2005; Caridi et al., 2006) and in the present experiment 

particularly after the fifth day of fermentation. A similar increase was observed from 

Varga & Kozakiewicz (2006). The microbiological and mycofloral analysis (data not 

shown) denotes a dramatically increase of yeast dynamics from the 3
rd

 day of 

fermentation and a coinstantaneous decrease of A. carbonarius from that day until the 

5
th

, after which no viable spores were detected. From this point to the end of the 

fermentation OTA diminished probably due to adsorption from yeast cells and 

furthermore, for red vinification, due to pomace present, which, due to chemical 

binding, at the end of maceration, found highly contaminated. In fact, there must be 

extensive adsorption of OTA to the solid parts of the grapes. Fernandes et al. (2003), 

who reported a decrease in OTA content from must to wine, noted that the presence of 

biomass could favour such a trend in the must, which could also be due to an 

adsorption mechanism onto its surface, explained by the overall negative charge in the 

cell walls and the acidic nature of OTA (Castellari et al., 2001). Otteneder and 

Majerus (2000) mentioned that grape juices are usually more contaminated than 

wines, given the absence of a fermentation process.  

When the initial contamination was low, either because initially present or 

produced by A. carbonarius, the decrease was greater reaching 90% incidence for the 

former and 76% for the latter. Nevertheless, the same has not been noticed for the 

white vinification and A. carbonarius presence. In this instance the decrease was 

relatively poor (13.54 & 23.09% for starter yeast S. bayanus present and indigenous 

yeast, respectively). This should be come from the fact that A. carbonarius can 

proliferate better on the solid “pomace cup”, were possibly OTA is bind and removed 

after maceration, in contrast with white vinification were no maceration taking place. 

In addition, the presence of starter yeast did not seem to have any significant 

performance as compared with the indigenous yeasts. In contrast, many studies have 

reported better adsorption capacities for S. cerevisiae and S. bayanus (Caridi et al., 
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2006; Bejaoui et al., 2004; Fernándes et al., 2007). The yeast cell wall is made up of 

two principal constituents: β-glucans and mannoproteins. Mannoproteins are partially 

water-soluble components that are released during and, above all, at the end of 

alcoholic fermentation. The mannoproteins located in the outermost layer of the yeast 

cell wall give this structure its active properties and have an important role in 

controlling the wall‟s porosity. In the low pH range of wine, mannoproteins carry 

negative charges and, as a consequence, they may establish electrostatic and ionic 

interactions with the other wine components and therefore bind OTA. The structure of 

mannoproteins of yeasts walls vary from strain to strain and between species. This 

structural variability may explain the differences in the binding activity of wine yeasts 

OTA (Caridi et al., 2006).  

After alcoholic fermentation, the MLF causes a significant OTA reduction (Table 

6.3). This confirms the positive decontaminating effect of lactic acid bacteria, 

responsible for the biological deacidification of wines. Trials carried out on lab-scale 

and industrial scale (Ratola et al., 2005) show that the reduction depends on the 

bacterial strain and it is inversely related to OTA concentration in wine and 

independent of the alcohol concentration. 

As regards the high concentration of OTA in pomace, data pointed out that the 

skin contains a large part of OTA either produced by Aspergillus carbonarius or 

added artificially to the must. Indeed, Battilani and Pietri (2002) after investigating 

the occurrence of the toxin in the skin and the pulp of naturally infected berries 

reported that the skin of grape berries seems to be the most frequently contaminated 

tissue. Gambuti et al. (2005) observed that intensive pressing of pomace increased the 

OTA concentration in wine also reported the role of grape skin as a carrier of OTA in 

wine.  

Unfortunately, the wine fining agents did not reveal a significant decrease of 

OTA, with bentonite having a 19-22 % adsorption for white wine and potassium 

caseinate a 15-20 % for red (Table 6.4). Indeed, a relatively poor ability of bentonite 

to bind and precipitate OTA was reported by Castellari et al. (2001) during wine 

fining. These authors found that bentonite was an efficient adsorbent of OTA per unit 

of surface area; however, at concentrations used in wine fining, the active surface area 

was small which limits its absorbing efficiency compared with other agents such as 

activated charcoal. According to Gambuti et al. (2005) among several products 

(natural polysaccharide, cellulose ester, PVPP, cellulose fibre, rind yeast, silica gel, 
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bentonite, deodorant carbon, de-colorising carbon, high meso-porosity carbon, and 

high de-colorising carbon) evaluated for the clarifying treatment of contaminated red 

wines, only enological carbon reduced the OTA concentration. However, according to 

Leong et al. (2006f) bentonite was the most effective fining agent for removing OTA 

from Semillon wine. These contradictory data are probably due to differences 

between the fining agent concentrations, the chemical nature of wine components and 

the OTA concentration in the initial wine. 

In winemaking, grapes are subjected to many processing steps, and the final 

result is a decrease in OTA level. OTA present in grapes is partially released into 

must during crushing and during maceration. During fermentation, the OTA content 

decreases in the liquid fraction either in alcoholic or MLF fermentation. The 

clarification (either natural sedimentation or use of adjuvants, racking), contribute to 

OTA decrease, because of its adsorption to the sediment. Grape selection is a 

preventive measure to control safety hazards and good manufacturing practices in 

winemaking can effectively reduce contamination. Grape crushing is a crucial step 

and OTA measurement should be done at this stage. Operations unit such as solid 

liquid separation and the fermentative processes are effective in reducing OTA. In 

order to manage the hazards of OTA in winemaking and to verify if OTA content in 

wine is lower than the legal limit of 2 μg L
-1

 defined by European Commission, OTA 

analysis in must and in wine at the end of alcoholic fermentation would be enough, 

since the following phases reduce OTA content. 
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Chapter 7: General Discussion 

 

7.1 Mycofloral Study 

 

The grape varieties included in this study are representative of a wide range of 

characteristics. Equally important Greek varieties for wine-making were included, 

some of them being of V.Q.P.R.D. certification. The position of these varieties 

(Roditis, Mavrodaphni, Agiorgitico, Muscat Blanc and Cabernet Sauvignon) on the 

Greek wine making industry and market, and the fact that they produce important 

quality wines, make the severity of the reported infection from Aspergillus section 

Nigri more important. 

The occurrence of A. section Nigri in the total mycoflora of all vineyards tested 

was always high throughout the 4 years of study (23.9 – 41.7%). However, some 

samplings of Roditis and Mavrodaphni varieties from Achaea showed incidences 

>90% for some years. From the A. section Nigri isolates, A. carbonarius represented 

20-35%, with the only exception being 2004, where they represented only 10% of the 

total black Aspergilli isolates. 

The study between the two stages of grape maturation, véraison and ripening, 

revealed that final occurrence of A. section Nigri in the total mycoflora is proportional 

to the infection at véraison. Moreover, the main characteristic of the most 

contaminated samples was the increased proportion of damaged berries, which apart 

from “sour rot” incidence, may correlate also with the thin berry skin and high sugar 

proportion of these samples. 

The results comparing conventional and organically grown grapes suggest that, 

when the inhibition of mycoflora by fungicides is not fully successful, the reduction 

of mycoflora from the chemical treatment allows rapid A. carbonarius colonisation to 

occur, especially when the environmental conditions are favourable. 

Definitely, there is an effect of the localisation of vineyards to the population of 

OTA producing fungi. Localisation of vineyards reflects the weather conditions. High 

temperatures and relative humidity, favour growth of A. carbonarius. Thus, Greece is 

among the countries that incidence of A. Section Nigri and A. carbonarius at 

harvesting are particularly high. Varieties grown in the mountainous regions always 

had lower incidences from the Mediterranean climate localisation. Moreover, from the 



 

 

145 
 

study has also revealed for Greek cultivars and wines that the more contaminated 

were those originating from Mediterranean climates near the sea, like the Aegean 

Islands and Achaea in contrast with those grown in mountainous climates of Greece. 

The Aspergillus spp. population is increasing with time during grape growing season, 

while wine cultivars with high amounts of sugar tend to be more infested by A. 

carbonarius than the wine cultivars of high acidity grown for dry wine production. 

Cultivation practices are considered to be of importance for the occurrence and the 

population composition of Aspergillus spp., since the organically grown vineyards 

showed very limited infection. On the contrary, vineyards of conventional practices 

were the most contaminated by A. carbonarius, since the applied type of pruning does 

not prevent contact of canes with the soil. Moreover there is a trend related to 

fungicides treatments. When used in excess their effectiveness on A. carbonarius 

decreased contrary to isolates of other genera. In addition, the present and many other 

studies revealed that for Greece organically grown vines present a greater resistance 

to infestation from ochratoxigenic black Aspergillus spp. But the main reasons for this 

is probably the carefully selected locations of vineyards that assure the good aeration 

of vines and the thorough application of Good Agricultural Practices that organic 

culture demands.  

 

7.2 Ecology 

 

Greek A. carbonarius strains isolated from the present study presented the shorter 

lag phases prior to growth under optimum environmental conditions when compared 

with other isolates of different countries. A similar trend observed as regards the 

tolerance to xerophilic conditions of these isolates, which seem not losing their spore 

germination ability at 0.85 aw. It could be mentioned that although intra-isolate 

differences are very small, at marginal conditions differences may occur mainly as 

part of adaptation to regional climatic conditions. As the optimum aw for OTA 

production was around 0.95, contamination on the vineyard can occur mainly when 

grape sugars‟ diminish, at mature period. Although, at lower temperatures, around 20-

25 ºC, OTA production can take place even at véraison.  

In addition, the 7 year survey contacted OTA in wines produced in Greece 

showed that Greek red, rosé and white wines had lower levels and incidences than 
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wines from other countries of the Mediterranean basin, that all Greek wines were 

below the proposed European limit of 2.0 μg L
-1

, that our results were comparable 

with published results from EU Member States and, although that the incidence of 

contamination was rather high, most of the samples contained low levels of 

contamination with this mycotoxin. The key areas of concern were the results from 

the southern regions of Greece, mainly Peloponnese and Aegean Islands, especially 

for the dessert type ones. In these areas producers follow the traditional sun-drying 

method for the production of desert wines, which under the specific environmental 

condition may favour the production of OTA on the processed grapes. In this instance 

special attention should be given to the hygiene conditions of the sun-drying areas and 

time that the process last should be as limited as possible. As regards the micro-

vinification experiments, from these a main conclusion is that OTA present in grapes 

is partially released into must during crushing and during maceration. Consequently, 

duration of maceration should also be limited or under low and controlled 

temperatures. Furthermore, during fermentation, the OTA content decreases in the 

liquid fraction either in alcoholic or MLF fermentation. The clarification (either 

natural sedimentation or use of adjuvants, racking), contribute to OTA decrease, 

because of its adsorption to the sediment. 

 

7.3 Predictive Mycology 

 

Several studies have been done to weigh the ecophysiological factors of fungal 

growth and mycotoxin production on both artificial growth substrates and real foods. 

In addition, a large number of reports have been published on potential techniques to 

inhibit fungal growth and mycotoxin production (Garcia et al., 2009). These reported 

the conditions capable for supporting or inhibiting fungal growth and/or mycotoxin 

production. The last decade, interest has been increasing for application of predictive 

modelling techniques to describe fungal growth and mycotoxin production. As 

predictive mycology continues to grow, even more related models specific for fungal 

growth will be developed, as currently most models in use today and used in this 

study are borrowed from predictive microbiology. Moreover, the present study 

describes the applicability of a probabilistic modelling approach for the influence of 

aw and temperature on growth and OTA production of two ochratoxigenic isolates of 
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A. carbonarius from Greek wine grapes. Models to predict the likelihood of growth 

and OTA production of mycotoxigenic fungi as a function of intrinsic and extrinsic 

factors, known as “probability” models, can be very valuable both in prevention 

strategy and risk assessment planning. The development of predictive mycology to the 

levels that predictive microbiology has reached requires the development of rapid 

methods to estimate fungal growth. The current methods of measuring the colony 

diameters or HPLC for OTA determination are too laborious or time consuming. As 

an example, methods based on automated image analysis have been used to estimate 

the growth (hyphal extension) of incubated cultures (Panagou et al., 2005) and ELISA 

and rapid methods for qualitative assessment of OTA presence have been developed 

(Saha et al., 2007). Such techniques would significantly reduce the work that has to 

be done to obtain a sufficient quantity of growth data and OTA production, reduce 

measurement errors and enable for far more work to be done in the same time. 

Furthermore, current models need to be extended to account for the consequences of 

fungal competition, the presence of insects, fungicides and pesticides amongst many 

others. Once such models can be provided then their predictions can be treated with 

more confidence than those of current models which only account for the effect of 

what are considered to be the most important determinants of fungal growth, aw and 

temperature. Finally, importance should be noted on inoculum levels and the ability of 

fungi to grow and contaminate vine grapes with OTA should be thoroughly 

investigated. Where possible models are incorporating the demonstrated large 

variation in growth at the individual spore level, should be developed to account for 

the variation that is not revealed when high inoculum levels are used in model 

development (Dantigny & Nanguy, 2009). 

The results of this study showed that under the current experimental conditions, 

the combined effect of temperature and water activity on the growth responses of A. 

carbonarius could be satisfactorily predicted, and the examined models could serve as 

tools for this purpose. 
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7.4 Use of the gathered information for developing prevention 

strategies in Greece 

 

7.4.1 Pre-harvesting strategies – Viticulture 

Harvesting date should be selected according to the ripeness of grapes, its 

sanitary level, the meteorological conditions, and always after evaluation of the risk 

for contamination with ochratoxigenic fungi. In areas of high risk, grapes should be 

harvested earlier, and when heavily contaminated grapes are detected, they should be 

rejected from winemaking procedure. Same treatment should be followed for grapes 

damaged by insects and damaged berries. Transportation of harvested grapes should 

be as fast as possible and avoid holding periods. Recipients for transportation should 

be carefully cleaned. 

Targeted management strategies require prior identification of vineyards or 

regions in which grapes and wine are at risk of OTA. Several studies in Europe report 

the increased isolation of A. carbonarius in warm climates and increased humidity. 

Damage to berries is the primary factor affecting the development of Aspergillus 

bunch rots and the subsequent production of OTA in grapes. Berry damage may occur 

due to birds, insects or infection by other fungi such as Botrytis cinerea (Botrytis rot) 

or Erysiphe necator (powdery mildew). Rain prior to harvest is a common cause of 

berry damage. During rain, high osmotic pressure within the berries, combined with 

low evaporative water losses cause the berries to swell and if critical turgor pressure is 

reached, the berry skin splits. The severity of infection, as assessed by black 

Aspergillus counts, was highest in years when rain prior to harvest caused berry 

splitting in grapes grown for drying (Leong et al., 2006b). An increase in counts 

during fruit drying was also observed, which is indicative of continued growth by A. 

carbonarius and possible concomitant OTA production during the early stages of 

drying (Magan & Aldred, 2005). It may be possible to modulate the incidence of A. 

carbonarius in soil through vineyard management techniques. Vineyards in which the 

soil was tilled regularly showed greater A. carbonarius counts in the soil than 

vineyards which had minimal soil cultivation. Similarly, grapes from a vineyard with 

frequent soil cultivation displayed a higher incidence of black Aspergillus spp. than 

grapes from a vineyard with minimal cultivation (Leong et al., 2006b). Moreover, 

Tjamos et al. (2006) noted that vineyards located on hilly, sunny and well aerated 
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sites, and were applied with linear cultivation system that facilitates aeration and 

reduces relative humidity, had lower incidences of A. carbonarius. Considering the 

aforementioned, the choice of organic cultivation, under Good Agricultural Practices 

that necessitate in this cropping type, poses a partial solution for A. carbonarius and 

OTA contamination problem. Finally, an effective strategy on the field should 

definitely include a narrow monitoring of vineyards for fungi incidence and berries 

status from early véraison until harvest. If toxigenic black Aspergilli spp. were 

frequently identified in a vineyard in the months before harvest, application of 

fungicidal sprays may reduce the incidence of Aspergillus rot and OTA contamination 

(Leong et al., 2006b; Tjamos et al., 2004; Batillani et al., 2005b). 

 

7.4.2 Enological practices 

Grape selection is a preventive measure to control safety hazards and good 

manufacturing practices in winemaking can effectively reduce contamination. Grape 

crushing is a crucial step and OTA measurement should be done at this stage. Next, in 

the final stage of the maceration process, good conditions exist for mould growth, as 

long as there is no fermentation and there are aerobic conditions. This is a point that 

control of the process should be taken e.g. keeping temperature in low ranges. 

Moreover maceration type with pomace in free air contact on the top of the must 

should be avoided. 

Yeast is predominant in natural flora on the surface of fresh grapes and is 

significant in winemaking because it carries out the alcoholic fermentation and its 

autolysis products may affect the sensory quality products and the growth of spoilage 

bacteria. Ochratoxigenic fungi are inhibited by ethanol and the generally anaerobic 

conditions. Moreover, the primal mode of removal of OTA during vinification was 

adsorption rather than degradation. In particular, binding of OTA to yeast cells during 

fermentation appeared to play an important role in OTA reduction. Many studies 

report yeast strains with high “binding” capacity to OTA, either through the 

fermentation process or to adsorption on lees. Although, due to quality assurance 

issues wineries is difficult to differentiate the strain that ensure the characteristics of 

their final product. Also, the lactic acid fermentation can contribute, by the same way 

of cell binding, to OTA decontamination. 

Enological fining agents have been shown to reduce the OTA level in wine 

during the ordinary clarification practice. In particular, activated carbon and 
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potassium caseinate have a good capacity to absorb OTA in model solutions, whereas 

bentonite has demonstrated a low affinity for OTA. Although, agents such as 

bentonite may remove proteins to which OTA are already bind, whereas 

proteinaceous material such as gelatine or potassium caseinate can provide the OTA 

to be bound on. Nevertheless, the higher reduction on OTA reported, in most studies 

is the step of pressing of grapes and of manipulation of solid and liquid parts during 

vinification (e.g. maceration, fining). Concluding, there must always taking place 

during vinification a close monitoring of crushing, maceration and fermentation 

processes, which could perfectly serve also as CCP of an implemented HACCP 

system for wineries.  

 

7.5 Suggestions for future work 

 

 Research to clarify whether the primary mode of infestation is opportunistic, 

latent, or otherwise is still required.  

 The identification of genes preside for OTA production, are still pending, and 

moreover, it should be elucidated the interaction of A. carbonarius strains of 

different origin, with other mycoflora, fungicides, and environmental factors. 

 Current models of predictive mycology need to be extended in order to account 

also of fungal competition, the presence of insects, fungicides and pesticides 

amongst many others.  

 Research for new varieties less susceptible to fungal infection.  

 Innovative vinification procedures.  

 Molecular detection techniques. Indeed, late years, it has been shown that 

induction of OTA biosynthesis genes, which can be measured by real-time PCR 

and microarray, some time before the mycotoxin identification by analytical 

methods, and thus, the activation of these genes can be used as an early indicator 

for mycotoxin biosynthesis (Schmidt-Heydt & Geisen, 2007; Schmidt-Heydt et 

al., 2008). However only some genes of a given mycotoxin biosynthesis pathway 

can be regarded as key genes, whose activation is directly coupled to the 

mycotoxin biosynthesis. In this direction evolution is rapid and good promising.  
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