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Abstract 

Future requirements for lower automotive emissions have lead to the development of 

new internal combustion (IC) engine technologies. Gasoline Direct Injection (GDI), for 

example, is one of these promising new IC engine concepts. It offers the opportunity of 
increased efficiency through unthrottled operation. However, the realisation of this 

concept is critically dependent on the in-cylinder mixture formation, especially in the 

late injection/lean operation mode. Ideally, this would require a precise stratification of 

the in-cylinder fuel-air mixture in 3 distinct zones: an ignitable pocket located at the 

spark plug, surrounded by a stoichiometric mixture of fuel and air, encompassed by air. 
To enable this stratification, the GDI concept utilises advanced injector technology. 

Phase Doppler Anemometry (PDA), Planar Laser-Induced Fluorescence (PLIF) and the 

combination of PLIF and Mie scattering in the Laser-Sheet Dropsizing (LSD) 

technique, have been applied to sprays in the past to obtain dropsize information and 

study the mixture formation process. These new GDI sprays are denser, their droplet 

sizes are smaller and they evaporate faster, and as such, place us at the limit of the 

validity of these measurements techniques. 

The diagnostics were applied to a GDI spray in a pressure vessel for realistic in-cylinder 

conditions, ranging from supercooled to superheated environments. Tracer evaporation 
issues in the PLIF technique were resolved by using a dual tracer system. The study 

showed that the LSD technique provided good quantitative data in low evaporation 

regimes. In highly evaporating regimes, the technique still gave reliable dropsize data 

for the early stages of the injection, but was limited afterwards by vapour-phase 

contribution to the fluorescence signal. Variations between PDA data and LSD results 

also suggested a deviation of the Mie scattering signal from the assumed d2 dependence. 

This was further investigated and was found to be true for small droplets (d/?. <0.2). This 

source of error might be improved by using a different observation angle. High density 

seriously compromises the accuracy of PDA, whilst its effect through multiple 

scattering is of second order for the LSD technique. 
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In low evaporating regimes, LSD has the overall advantage of being a 2-D measurement 

technique, and will yield data with a maximum error of 30% in dense parts of the spray 

where PDA data is totally unreliable. If the spray evaporates quickly, PLIF by itself is 

an appropriate tool for following the air-fuel mixture, because short droplet lifetimes 

limit the 2-phase flow behaviour of the spray. 

Particle Image Velocimetry (PIV), the LSD technique and equivalence ratio LIF 

measurements were applied to a BMW single cylinder optical GDI engine. The early 

injection operation showed no particular issues. However, the results obtained in the late 

injection highlighted the poor mixing and inappropriate stratification. 
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Chapter 1 

Introduction 

In this chapter, the concept of direct-injection spark-ignition engines is introduced, 

along with its potential to increase efficiency and therefore reduce emissions, especially 
in the stratified/lean burn mode. First, a brief review of thermodynamics and 

combustion fundamentals relevant to lean burn and direct-injection are given. This is 

followed by the description of several combustion concepts for direct injection and the 
issues that this technology faces. The objectives of the work and an outline of the thesis 

complete the chapter. 

1.1. Engine Basics 

1.1.1. Emissions 

Irremediably, the exhaust gases of a gasoline engine contain mainly water (H20) and 

carbon dioxide (C02), with small amounts of nitrogen oxides (NOx), carbon monoxide 
(CO) and unburned hydrocarbons (UHC). 

Before 1970, no legislation limited the amount of any of these emissions. However, as 
CO and UHC became known as a risk to human health, the USA was the first to limit 

these sources of pollution through legislation. More accurate control of the fuel was 

sufficient to avoid these emissions. 
Later on, NOx was discovered to be the source of smog when it interacts with sunlight 

and HC. Exhaust gas after-treatment with 3-way catalysts (TWC) allowed to meet the 

new NOx and HC regulations. 
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More recently, CO2 has been regarded as a source of pollution, because it is a 

greenhouse gas which is considered to contribute to global warming. The European 

Commission has undertaken to reduce CO2 emissions by 8% between 1990 and 2012, in 

compliance with the Kyoto protocol. With this in mind, the main automotive companies 

are aiming to limit average CO2 emissions from vehicles sold in Europe to 140 g/km in 

2008 (compared with 164 g/km in 2002) and a further reduction to 120 g/km by 2012 is 

also being considered. For a petrol engine, CO2 emissions can only be reduced by 

improving the fuel consumption. Because the engine manufacturers do not want to 

compromise on engine performance, they have only one solution: increase the gasoline 

engine's efficiency. 

1.1.2. Combustion Basics 

By definition, an air/fuel mixture is stoichiometric when the exact amount of air is 

supplied to burn the fuel completely. In theory, the end products of a stoichiometric 

combustion of a hydrocarbon fuel in air will be C02, H2O and N2. 

C, Hy+(: 
242 

+i 
)(02+3.76"N2)-*xCO2+1H2O+3.76"(2+1)NZ 

Equation 1-1: Ideal stoichiometric combustion of a hydrocarbon fuel 

In practise, the fuel might not have sufficient time to burn completely before the exhaust 

valve(s) open, especially in the transient conditions, when air-to-fuel ratio (AFR), spark 

timing and Exhaust Gas Recirculation (EGR) may not be properly matched. Quenching 

of the flame in the later phase of the expansion stroke - when the combustion is 

especially slow - is a source of unburned hydrocarbon and carbon monoxide emissions. 

Another source of UHC emissions is engine oil left in a thin film on the cylinder wall, 

piston and cylinder head. These oil layers can absorb and desorb hydrocarbons before 

and after combustion thus permitting a fraction of fuel to escape the combustion process 

unburned. Fuel trapped in crevices too narrow for the flame is also a source of UHC 

(Heywood 1988). 

Also, for combustion temperatures above 2000K, C02,02 and H2O molecules are 
dissociated to CO, 0 and H2. The molecular oxygen then reacts with the nitrogen of the 
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air. This leads to the formation of small quantities of nitrogen oxides, mainly of nitric 

oxide (NO) and small amounts of nitrogen dioxide (NO2). The formation of NO 

increases with the temperature of the burnt gases. 
Catalytic converters can remove NO from the burnt gases by reduction using CO and 

H2. They also oxidise CO and hydrocarbons into CO2 and H20- 

Today's engines are all equipped with 3-way catalysts to reduce the unwanted CO, 

UHC and NOx. However, these catalysts require a stoichiometric mixture for optimal 

conversion. If an engine is going to be run lean, the oxygen-rich environment will not 

allow an efficient reduction of NOx. Therefore, the engine has to run sufficiently lean in 

order to form only acceptable quantities of nitrous oxides. 

1.1.3. Engine Thermodynamics 

In 1862, French engineer Alphonse Beau de Rochas patented the principle of a 4-stroke 

internal combustion engine with a cycle consisting of 2 isentropic and 2 isochoric 

curves. His idea was that more work could be retrieved if the air/fuel mixture was 

compressed before the combustion. 14 years later, German engineer Nicolaus Otto built 

the engine, known as the spark ignition engine. 

The cycle is illustrated in Figure 1-1: 

" 1-+2 Constant pressure intake 

"2-. 3 Adiabatic and reversible compression 

"3 -º 4 Adiabatic combustion at constant volume 

"4-5 Adiabatic and reversible expansion 

"5-6 -- 7 Exhaust 

The efficiency of this theoretical cycle is: 

W, 

mQ 

Equation 1-2 

where rr is the compression ratio and y is the specific heat ratio. We is the recovered 

work, and is represented by the blue area. 
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Equation 1-2 states that the efficiency of the cycle can be improved by increasing the 

compression ratio, and by decreasing the specific heat ratio. 

P14 

3 

I7 

'5 

2,6 

V 

Figure 1-1: Clapeyron diagram of a theoretical 4-stroke SI engine cycle 

Most petrol engines operate with homogeneous, near stoichiometric air/fuel mixture in 

order to perform the complete combustion of the pre-mixed charge. To run such an 

engine at part load, the amount of fuel is reduced. The amount of air must also be 

reduced to keep the mixture stoichiometric. That is usually done by throttling with a 

butterfly valve. This throttling induces pumping losses - represented by the green area 

of the PV diagram of a throttled cycle (see Figure 1-2). 

P 

V 

Figure 1-2: Clapeyron diagram of a theoretical throttled cycle 

If an engine could be operated at part load without throttling the air, its efficiency would 

be increased. However, not throttling the air implies that the engine must run on an 

overall lean air/fuel mixture. 
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1.2. Lean Burn Combustion in SI engines 

1.2.1. Lean Operation 

Typically, the stoichiometric air-to-fuel ratio (AFR) is 14.6 for petrol engines. 
An engine will run with a homogeneous lean charge, within the lean operation limit. 

Beyond that limit, the mixture will fail to ignite, leading to unacceptable UIHC 

emissions, and cycle-to-cycle fluctuations in torque which will affect the driveability 

and smoothness. 
However, even within that limit, as the mixture is leaned out, the time to establish the 

flame kernel, the flame propagation period and the fluctuations in indicated mean 

effective pressure (imep) all increase (Young 1981). For slow burning cycles, the 

mixture might not be completely burnt before the exhaust valve opens, leading to a 

rapid increase in UHC emissions and fuel consumption (Quader 1976). Therefore, the 

slowest burning cycle actually defines the practical (or stable) lean operation limit for a 
homogeneously lean operating engine. 

Furthermore, in order to optimise torque in SI engines, the bulk of the heat release must 

occur at a specific time in the cycle. The variations in flame propagation implies that for 

faster burning cycles, the heat release will occur too soon, and for the slower burning 

cycles it will occur too late. This leads to a reduction of torque and power, thus a 

reduction in efficiency. 

Further dilution may cause flame extinction before the exhaust valve is open, or before 

the flame has propagated across the chamber. 

1.2.2. Extending the Lean Operation Limit 

As seen previously, leaning out the mixture reduces flame propagation speed: the 

slower burning rates limit the engine's lean operation. The factors that influence the 

flame development and propagation are: 

" compression ratio 

" spark location 

" mixture formation 

" turbulence level 
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They have the potential to extend the lean operation limit. 

Increasing the compression ratio increases the charge's temperature, thus helping 

combustion. It also reduces the fraction of residual gases, which limit the lean operation 

(Quader 1974). However, the compression ratio can only be increased to the knock 

limit. This is determined by the engine's geometry and the fuel's octane rating. 

Rapid combustion can also be helped by placing the spark plug in a central position, or 
adopting a twin sparkplug strategy. 

Increasing the turbulence level will increase the burning rate, provided that the flame is 

not extinguished through too much stretching or increased heat transfer. A practical way 

of creating turbulence in the cylinder is by introducing kinetic energy during the intake 

stroke, which will be converted to turbulence during the compression stroke. 

Swirl, or air that rotates around the cylinder axis, will result in turbulence generation 

throughout the cycle (Liou and Santavicca 1983, Hall and Bracco 1987). Swirl can be 

generated by helical inlet ports (like the ones in the Honda V-TEC engine), by shrouded 

valves or by asymmetric inlet (Pajot 2000). Above a certain level, swirl does not 

significantly improve the lean limit (Inoue et al. 1993). 

Tumble, or air that rotates round a horizontal axis, generates turbulence in the second 

part of the compression stroke (Haddad and Denbratt 1991, Kiyota et al. 1992). Tumble 

can be obtained with 4-valve configurations. 

Swirl flow Tumble now 
Fr 

yHndRr 

ýA; 
t 

Q= 
Figure 1-3: Swirl and Tumble flows 

Squish is also a source of turbulence which helps the development of the flame, as long 

as the spark plug is located in the squish flow (Gatowski and Heywood 1985). Tumble 
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ratios above 2.5 tend to increase misfires and imep fluctuations, for part load and ultra 
lean mixtures (Iwamoto et al. 1992). 

For a fixed valve timing and lift, turbulence is a function of engine speed. If adequate 
levels of turbulence are generated at low engine speeds, this may lead to excessive 

turbulence levels at high RPM. High fluctuations in flow might then cause flame 

extinction due to excessive stretch. 

The issue with lean burning is the flame development. The variations in flame 

development are mainly caused by variations in laminar flame speed (Keck et al. 1987). 

Flame speed is a function of the ignition process and mixture strength influences the 

ignition (Pischinger and Heywood 1988, Le Coz 1992). 

The lean operation for homogeneous mixtures is therefore limited by the weak mixture 

at ignition. This leads to the concept of fuel stratification in order to produce an 
ignitable pocket near the spark plug at the time of ignition. 

1.2.3. Stratification 

Tluee Japanese manufacturers developed lean burn engines. All used the same strategy: 

at low RPM and load, the engine runs with a lean air/fuel ratio for maximum fuel 

economy. As the combustion temperature is low, NOx output is also low: the catalyst 

just oxidises HC and CO. At higher load, the engine reverts to homogeneous 

stoichiometric mixing for increased power and the catalyst also reduces the NOx. 

Toyota's lean-burn engine operates with an AFR of 25 below 4800 RPM and below 

75% of maximum torque. At higher speed and load, it reverts back to a stoichiometric 

mixture, and runs at full load with an AFR of 12.5. The cylinder head features a 4-valve 

per cylinder pent-roof configuration with separated dual intake ports. One is a helical 

port shape, and the other is straight, containing a swirl control valve (SCV). To increase 

volumetric efficiency, a small passage between the two ports allows a small air flow to 

the straight when the SCV is closed. A twin spray fuel injector injects into both ports. It 

is claimed that the fuel is finely atomised by the swirling flow in the helical port and the 

high speed flow in the straight port, resulting in a homogeneous charge. 
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The Honda V-TEC engine follows the same concept: it operates with an AFR of 22 

below 3000 RPM and at low load. At high load or above 3000 RPM, the engine reverts 

to homogeneous stoichiometric combustion. The engine also has a 4-valve pent-roof 

head with a central spark plug. One of the inlet valve controls a high swirl port, in order 

to insure high turbulence. In the lean mode, only this inlet valve opens fully, while the 

other opens about lmm briefly to avoid fuel build-up. At full load, both valves open 

fully for good volumetric efficiency. With double injection in the lean operation mode, 

it is claimed that the charge is stratified near the spark plug at ignition (Hone et al. 

1993, Hardalupas et al. 1995, Berckmüller 1996). 

Although both lean burn port-injection engines follow the same strategy (i. e. swirl 

intake and sequential injection), it is noteworthy that Toyota's engine is claimed to be a 
homogeneous charge engine (Shimuzu et al. 1992) while Honda's engine is stratified 

charged. However, Berckmüller (1996) signals that the measurements on the Toyota 

engine can be deceptive as only 1 region was measured. 

In 1992, Mitsubishi began producing the Mitsubishi MVV (Mitsubishi Vertical Vortex) 

3-valve per cylinder engine. It used the combination of tumble and injection of fuel 

through one port to stratify the mixture. It is claimed that the absence of swirl maintains 

the stratification during the compression stroke. The exhaust valve situated opposite the 

fuel intake valve is replaced by the spark plug, thus positioning the latter near the 

axially stratified charge (see Figure 1-4). Using tumble instead of swirl reduces the 

pumping losses. The lean-burn MVV engine can achieve complete combustion with an 

air-fuel ratio as high as 25. 

Figure 1-4: Mitsubishi MW 3-valve tumble-guided 

stratified lean-burn engine 
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One of port fuel-injection's (PFI) limitations is that the fuel can only enter the cylinder 

when the intake valves are open. By directly injecting fuel into the cylinder, the 

injection process is no longer limited to valve opening, but can be extended through the 

whole cycle, and more interestingly, during the compression stroke. The advantage of 
direct injection is that the fuel can be placed in the combustion space in a more 

controlled manner than with conventional port injection systems: this gives it a greater 

potential for charge stratification 

1.3. Gasoline Direct Injection 

1.3.1. Development 

Since the 1920's, attempts have been made to develop hybrid internal combustion 

engines that would combine the best features of petrol and diesel engines. 

During World War II, Daimler-Benz, in conjunction with Bosch and the Reich Air 

Ministry experimented with direct injection. The primary aim was to eliminate fuel 

starvation during steep dives and improve performance for air combat. The result was 

the DB 601 family of engines, which equipped various fighters and bombers of the 

Luftwaffe, its most famous association being with the Messerschmitt Me 109 in the 

Battle of Britain. Direct fuel injection into the cylinders was provided by means of a 

twelve-unit high-pressure pump mounted between the cylinder blocks where it was fed 

by a Graitzin transfer pump. The high-pressure leads between the pump and the 

cylinders were of equal length. This fuel injection system proved to be very smooth and 

accelerated rapidly when the throttle was opened. 

In 1954, Mercedes-Benz introduced the world's first four-stroke direct injection gasoline 

engine in a production car. It had a 3-litre, in-line 6-cylinder engine with a Bosch direct 

mechanical fuel injection. The engine produced 215 horsepower, and gave the car a top 

speed of 160 mph. 

However, these DI engines operated with homogeneous stoichiometric mixtures. The 

idea behind GDI today is that directly injecting into the cylinder allows a better control 

of the fuel location within the cylinder, therefore giving it a greater potential for mixture 
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stratification. This should allow GDI to extend the AFR of lean-bum gasoline engine to 

values higher than 25, and reach equivalence ratios similar to those of Diesel engines. If 

the gasoline engine can be run unthrottled, then the reduction of the pumping losses will 

enable it to increase the efficiency and therefore reduce fuel consumption: theoretically, 

GDI has the potential to reduce the fuel consumption by 20 to 25 % at low speeds and 

loads compared to homogeneous stoichiometric operation (Karl et al. 1996). 

In 1996, Mitsubishi launched the first stratified spark-ignition direct injection engine, 

called GDI (Gasoline Direct Injection). This engine was said to reduce fuel 

consumption by over 15%, without compromising on driveability. 

Figure 1-5: Cutaway section of the 1954 Mercedes 300SL 

direct injection engine 

1.3.2. Advantages of GDI 

The GDI concept is meant to increase the efficiency of the petrol engine and therefore 

reduce the fuel consumption. In turn, this reduces the CO2 emissions. This increase in 

efficiency is possible through 4 main features: 

" Higher compression ratio 

" Increased ratio of specific heat (y) 

" Reduction of pumping losses 

" Less heat losses 
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By injecting the fuel directly inside the chamber, the charge is cooled inside the cylinder 

as it evaporates. In PFI engines, the cooling starts in the intake manifold, but the charge 

is then warmed up as it travels through the port before reaching the cylinder. Therefore, 

with GDI, the temperature of the charge at the time of compression is lower than that of 

a PFI engine. Because its temperature is lower than that of a PFI charge, it can be 

compressed more before it spontaneously ignites. This enables to increase the 

compression ratio, thus increasing the cycle's efficiency. 

Because the charge is leaned out, the mixture contains a higher ratio of diatomic 

molecules (N2 and 02). This increases the ratio of specific heats, which increases the 

efficiency (see Equation 1-2). 

Running lean with very high AFRs enables to control the engine power output by 

varying the amount of fuel without having to throttle the air. This reduces the pumping 

losses, increasing to the cycle's efficiency at part load. 

The increase in efficiency also comes from the presence of excess fresh air in the 

stratified mode. This reduces the heat and exhaust losses due to lower temperature in the 

cylinder during the combustion and expansion stroke. 

Direct injection can also improve cold-start hydrocarbon emissions and engine transient 

response because it avoids the deposition and build-up of fuel in the intake ports of 

conventional PFI engines. However, for most engine operating conditions, direct- 

injection has higher engine-out smoke and HC emissions than their PFI counterparts. 

1.3.3. GDI Combustion Chamber Concepts 

The idea of direct injection is to create a perfect, stratified charge by forming a richer 

cloud in the vicinity of the spark plug. The challenge is to control precisely the amount, 

size and distribution of the fuel droplets to suit varied driving conditions, and to do this 

reliably over the life of the vehicle. 

Within a few milliseconds, the fuel spray must be atomised in very fine droplets, and be 

completely evaporated before ignition. At the same time, it is absolutely crucial that the 
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mixture at the spark location is optimal at the time of ignition. Otherwise, the 

combustion is not efficient, and the pollutant output increases. 

Three different concepts have been developed to obtain the stratified mixture for direct 

injection combustion systems: 

" Wall-guided 

" Air-guided 

" Spray-guided 

In reality, for the three concepts, the stratification is achieved by a combination of these 

mechanisms. 

In the wall and air-guided systems, the spark plug is usually located centrally, and the 

injector is to the side. Fuel is injected at a distance from the spark location at pressures 

typically around 100 bar, and is redirected towards the spark plug by a secondary 

mechanism. In the case of wall-guided systems, the piston crown has a bowl shape that 

redirects the fuel towards the spark plug. Mitsubishi's GDI engine (see Figure 1-6) 

features upright straight intake ports rather than horizontal intake ports used in 

conventional engines. The upright straight intake ports direct the airflow down at the 

curved-top piston, which redirects the airflow into a strong reverse tumble for optimal 

fuel injection. 

Figure 1-6: Mitsubishi GDI wall-guided system 

Audi's FSI (Fuel Stratified Injection) technology (see Figure 1-7) is an air-guided 

system. A vortex is created inside the combustion chamber by a tumble flap in the 
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intake manifold combined with a specially-shaped piston crown. The injected fuel is 

redirected by the air motion towards the centrally placed spark plug. The FSI engines 

range from a 1.6 Litre in-line 4 cylinder engine with a compression ratio of 12: 1 to the 

latest 3.2 Litre V6 engine with a compression ratio of 12.5. 

Figure 1-7: Audi FSI air-guided system 

The spray-guided system, where the fuel is injected directly towards the spark gap 

location was investigated as early as 1972 (Simko et al. ). Such systems suffered from 

two main problems: spark plug fouling and poor combustion robustness. However, with 

the progress in injector technology, and the introduction of Piezo-electric injectors, 

spray-guided systems are now knowing renewed interest (Matsumoto 2004). These 

injectors operate at higher pressures than the 1s` generation GDI injectors. Their 

response time is quicker, more precise and the droplet sizes are much smaller. 

Figure 1-8: Spray-guided system with Piezo-electric injector 
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1.3.4. Issues 

1.3.4.1. Emissions 

The difficulty in GDI is that the charge must remain stratified while the mixing process 

occurs. Paradoxically, the presence of the fuel must be short enough not to diffuse and 
long enough to mix properly. 

The stratified charge preparation relies on mixing of the air and the spray just enough to 

obtain an ignitable mixture underneath the spark plug, surrounded by air or an 

extremely lean mixture. This inevitably results in rich regions inside the ignitable 

pocket and leaner regions at the periphery. Both regions are subject to incomplete 

combustion, which is the first source of HC emissions. 

The first generation of GDI designs (wall-guided systems) used a bowl to direct the 

spray towards the spark plug. The impingement of the fuel on the piston results in the 

formation of a liquid fuel film that constitutes the second source of HC emissions 

(Karlson and Heywood 2001). Frank and Heywood (1991) had found little changes in 

HC emissions with changes in piston temperature, and concluded that fuel wetting of 

the piston surface was not a significant source of HC emissions. However, they 

acknowledged that they used a high volatility fuel. Stanglmaier et al. (1999) studied the 

influence of wall wetting location for HC emissions and found that the wetting of the 

cylinder liner on the exhaust side was the strongest contributor, followed by the wetting 

on the piston top, and finally the wetting of the liner under the intake valves being the 

best case. Depositing 10% of the total fuel mass on the top of the piston results in a 30 

to 70% increase in HC emissions for idle and part load conditions (Li et al. 1999). 

Sandquist et al. (2000) investigated these hydrocarbon emissions and confirmed that 

over-mixing at the boundaries of the air/fuel mixture cloud and under-mixing both in 

the spray centre and on the surface of the piston bowl are the dominant mechanisms. 

There is a fuel injection timing optimum that minimises the sum of HC from over- 

mixing and under-mixing. As the mixing time is reduced, carbon monoxide (CO) and 

soot emissions increase. Drake et al. (2003) confirmed this and found that wall wetting 

was only responsible for 15% of UHC emissions for a swirl injector and 2% for a 

multihole injector in a wall-guided system. They found that most of the fuel-film mass 
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evaporates during the cycle and burns as pool fires. The fuel-films are the dominant 

source of smoke emission with 10% of the fuel-film mass converted to emitted smoke 
for the swirl injector. Smoke emissions are very small when using the multihole 
injector, which is consistent with the decrease in fuel-film. 

With stratified-charge combustion, the rich regions produce high temperatures which 

are favourable for NOx formation in the presence of excess air. Replacing the excess air 

with EGR can reduce NOx, but is limited by the fact that EGR reduces laminar flame 

speed (Metghalchi and Keck 1982, Rhodes and Keck 1985) and is therefore detrimental 

to the combustion process. 

1.3.4.2. Catalysts for GDI engines 

The idea behind GDI is to decrease CO2 emissions, but this must not compromise on 

HC or NOx emissions. The 3-way catalysts equipped on PFI engines are only efficient 

at reducing NOx under stoichiometric operation. Therefore, an adequate system must be 

developed for GDI engines in order to run under both homogeneous and lean burn 

conditions. 

Lean NOx catalytic converters currently come in two varieties: the Selective Catalytic 

Reduction (SCR) and the Lean NOx Trap (LNT). 

The Lean NOx Trap is equipped of a 3-way catalyst and a NO2 trap. This trap is made 

of an alkaline earth compound (such as barium or strontium) or an alkali metal 

compound (such as potassium) which adsorb the NO2 and form a stable metal nitrate. 
Under lean conditions, the catalyst oxidises NO to produce NO2 which is adsorbed by 

the trap along with the NO2 resulting from the in-cylinder combustion. When the device 

is full, the engine reverts to a stoichiometric combustion and the NO2 is reduced to N2. 

The storage-type converter is controlled by a mapped operating characteristic and by 

temperature. When the storage device is saturated, the engine's mixture is made richer 

for a short time (typically for 2-3 seconds each minute). This raises the temperature of 

the exhaust gas, so that the NO2 is released and reduced in the 3-way catalyst. 

Originally, the Selective Catalytic Reduction concept was used on stationary sources 

using ammonia or urea as the reducing agent. The Selective Catalytic Reduction using 
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hydrocarbons (SRC-HC) has the advantage that the catalyst utilizes hydrocarbon species 

present in the exhaust stream for NOx reduction. The reaction can be supplemented with 

additional hydrocarbons either via secondary injection into the cylinder or direct 

injection into the exhaust stream. 

Lean NOx traps (LNTs) are currently the technology of choice for treating the NOx 

emissions from lean-burn SI engines because of their higher efficiency. However, the 

sulphur tolerance of aged LNTs is much lower than that of the fresh LNTs. Moreover, 

the aged LNTs are more difficult to desulphate relative to the fresh ones. Long-term use 

of this type of NOx catalytic converter in Europe, where the sulphur content of petrol is 

200ppm, would result in almost total loss in effectiveness. The robustness of the LNT 

still needs to be improved. With the help of the newly established low sulphur fuel to be 

introduced in the European and the U. S. markets, the widespread application of LNT 

technology will become more promising (Li et al. 2001). 

1.4. Summary 
One method to reduce CO2 emissions from SI engines is to improve their efficiency. 

This can be achieved by operating with a lean mixture. In the late 1980's Japanese 

manufacturers launched stratified charge port-injection engines. It was clear that direct 

injection could extend the stratification by allowing injection during the compression 

stroke. The improvements in fuel injection technology as well as advances in the 

understanding of the processes involved in mixture preparation and stratified charge 

combustion have allowed the realisation of the concept. In 1996, the technology became 

commercially available with Mitsubishi's GDI engine: the first generation of stratified 

charge direct injection SI engines with a wall-guided system. 

Compared to port injection SI engines, HC emissions were thought to be improved 

because of the absence of wall wetting in inlet ports. However, the wetting of the piston 

and the cylinder walls during the injection and mixing process are important issues. 

Also, the stratification in the late injection, lean burn mode requires refinement, because 

the mixing time is poor, which irremediably creates inhomogeneous regions prone to 

bad combustion. By re-introducing spray-guided direct injection and using the lean burn 

concept in the future, the gasoline engine fuel consumption will come even closer to the 

supreme economy of a modem diesel. 
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1.5. Aims of this Thesis 

The mixture formation process for the lean operation mode is therefore a key issue to its 

further development. It is essential to obtain a perfectly stratified charge with an optimal 

stoichiometry in a localised mixture near the spark plug. If zones of the mixture are too 

rich, soot will be produced and if too lean, misfire or hydrocarbon (HC) emissions will 

occur. Further, it is critical to avoid the mixture having excessive wall contact or 

impacting crevices which can enhance HC emissions. Understanding the mixture 
formation process in detail requires an accurate knowledge the spray formation (i. e. 
droplet sizes and their evolution during injection as they evaporate). The Laser Sheet 

Dropsizing (LSD) technique is an important new laser diagnostics tool with the 

potential to study such a system. Combined with other 2-dimensional, non-intrusive 

diagnostics to measure droplet speed and local AFR, this would give development 

engineers a powerful tool for rapidly characterising sprays. The aim of the thesis was to 

develop such a tool. This requires the improvement and validation of the LSD technique 

for highly evaporative sprays. The diagnostic is combined with Particle Image 

Velocimetry (PIV) and Planar Laser-Induced Fluorescence (PLIF) to measure drop size, 

speed and fuel distribution in a BMW GDI optical research engine. 

1.6. Outline of this Thesis 
This thesis is organised in 4 parts. Part I includes Chapter 1 and 2 to provide 

background information on GDI's potential to meet future legislation and presents the 

different laser techniques used in SI engines to better understand and improve the 

mixing process. Part II (Chapters 3-5) concerns the development of the Laser Sheet 

Dropsizing (LSD) technique for an evaporating GDI spray. Part III (Chapter 6) is the 

application of the LSD technique to an optical engine, along with other laser techniques 

for a complete characterisation of the spray. Part IV contains the conclusion and 

discussion of this work, along with the references and appendices. 

Chapter 2 reviews the various laser diagnostics used to study and characterise spray 

development and mixture formation inside engines and gives examples of applications. 

An intensive study of fluorescence for the development of the LSD technique is found 

in Chapter 3. This includes a study of liquid-phase fluorescence and the determination 
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of the best fuel/tracer system regarding absorption, temperature and evaporation issues. 

Chapter 4 describes the experimental set-up that enabled to study a GDI spray in 

realistic engine conditions using both Phase Doppler Anemometry (PDA) and the LSD 

technique. Chapter 5 presents and compares the results obtained from the LSD and the 

PDA technique in order to validate and find the limitations of the LSD technique for 

different realistic conditions. In Chapter 6, the LSD technique is applied to an optical 

engine, along with PN and AFR measurements for a complete 2-dimensional study of 

the spray development. The conclusions of the thesis work are discussed in Chapter 7. 
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Chapter 2 

Laser Diagnostics in Spark Ignition Engines 

The importance of in-cylinder fluid motion and the need for visualisation and 

measurement has been recognised since the early days of engine research. In-cylinder 

flow was studied by Clerk as early as 1921 using a low speed optical engine designed 

by Ricardo. 

The combustion phenomenon is a direct result of the in-cylinder air-fuel mixing and the 

ignition, therefore any information on mixture strength distribution, spray size 
distribution and velocities could prove useful. Combustion chambers are harsh 

environments, with usually limited access, which makes measurements difficult. Laser- 

based diagnostics allow for non-intrusive measurements within these systems. With 

high power lasers, improved imaging systems, imaging techniques and optical engines, 

non-intrusive measurements methods have developed greatly. This has allowed a 

greater understanding of the in-cylinder phenomenon. 

This chapter first presents light scattering theory, followed by a review of various laser 

diagnostics that are used to study and characterise sprays and the air-fuel mixing 

process. 

2.1. Light Scattering Techniques 

Light scattering is a term referring to physical processes involving the interaction of 
light and matter. This interaction partially "deflects" the incident light in directions 

deviated from the incident direction. 

The passage of light through a medium induces vibrations which give rise to secondary 

waves. In a perfectly homogeneous medium, the secondary waves are equally scattered 

21 



in all directions: their sum is a wave that has the same propagation direction as the 

incident light. Molecules in a liquid or a gas induce small variations in refractive index, 

therefore creating a non homogeneous medium. As a result, the secondary waves do not 

cancel each other out, and the resulting light is scattered in different directions to that of 

the incoming light. 

A droplet can be seen as a collection of antennas that emit (scatter) an incident electric 
field. This scattering depends on the size and shape, the observation angle (scattering 

angle), the response of each antenna (composition), and the polarisation state and 

wavelength of the incident wave. 

Scattered signals can be either elastic or inelastic. The elastic scattering is an interaction 

without an energy loss (or exchange) between the light and the matter within a droplet: 

after the interaction, the liquid drop is at the same state of energy as it was initially, and 

the energy in the light exiting the interaction point is equal to the energy of the incident 

light. This restriction of equal energy does not prohibit a change in direction, but 

according to Planck's law, it prohibits a change in frequency. 

E=h"v=> AE=h"Av 

Equation 2-1: Planck's law 

where E is the energy and AE is the energy variation, v is the frequency and dv is the 

frequency variation and h is Planck's constant. 

In the case of an elastic scatter (i. e. when there is no energy exchange - AE = 0) there is 

no frequency change (Av = 0). On the other hand, an inelastic process describes a 

permanent energy exchange and involves a frequency shift. In practice, the two types of 

scattering may take place simultaneously. 

2.1.1. Laser Rayleigh Scattering (LRS) 

LRS is the elastic scattering of incident laser light with particles smaller than the 

wavelength of the light. From a quantum mechanics point of view, LRS occurs when a 

photon collides with a molecule, exciting it to a higher energy state. The molecule then 

relaxes back to the original state, emitting a photon of the same wavelength. 
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For a sphere of radius r much smaller than the wavelength of the light (r « X), Rayleigh 

deduced that the intensity of scattered light is proportional to r6 / Xa 

Usually, Rayleigh scatter is detected at 900, and allows to measure species 

concentration. If the pressure and species are known, the density measurement can be 

converted to temperature (Dibble and Hollenbach 1981). 

Since LRS is an elastic process it suffers from background light of the same 

wavelength. That includes Mie scatter from particles, which, for a1 pm droplet, is about 

20 orders of magnitude higher than the Rayleigh scattering. Scattering from optics and 

other surfaces are also an issue. 

Arcoumanis and Enotiadis (1991) used LRS and showed that the fuel concentration in 

the combustion chamber of a port-injected spark-ignition engine was affected by the 

injection time and duration. 

Zhao et al. (1993) used LRS with a 532nm laser light sheet in a motored optical SI 

engine. They used Freon- 12 and propane to study the mixing process, and found that the 

concentration distribution was non-homogeneous at the time of ignition. 

Espey et al. (1997) obtained quantitative 2-D images of fuel vapour concentrations in an 

evaporating and combusting diesel spray, using a 532nm laser light sheet in an optical 

single cylinder DI Diesel engine. They estimated the error to be around 20%. 

2.1.2. Spontaneous Raman Scattering (SRS) 

When a photon collides with a molecule, it transfers its energy and excites the molecule 

to a higher energy state. Generally, both rotational and vibrational energies of the 

molecule are affected through the collision with the photon. In the case of SRS, the 

energy of the photon is more than can be stored by rotation or vibration in the molecule, 
but not enough to allow the molecule to reach the first electronic state. The molecule is 

therefore excited to a highly unstable virtual state and drops back almost immediately to 

a stable energy level, emitting a photon in the process. If the final level is the same as 

the original level, Rayleigh scatter is observed. If the final level is higher than the 

original level, the energy transfer is called Stokes Raman, and is red shifted. If the final 

level is lower than the original level, the result is the emission of a photon of lower 

wavelength, referred to as anti-Stokes Raman. 
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Raman scattering is an inelastic process which allows species and temperature 

measurements. The scattered light is collected and its intensity and spectral 

characteristics measured with a spectrometer. The species concentration is obtained 

from the intensity and the temperature from the spectral distribution. 

SRS was first applied to IC engines in 1979 when Johnston obtained AFR 

measurements in a DI stratified charge engine from the ratio of signals of the fuel 

(Propane) and N2 at different crank angles. 

Because of the small Raman scattering section, interference from other light scattering 

processes can be a serious problem to the technique. For this reason, little progress was 

made in the development of SRS during the 1980's (Zhao and Ladommatos 1998). 

More recently, Miles and Dilligan (1996) measured major species (H20, C02,02 and 
fuel (C3H8)) in the Sandia transparent research engine. The residual gas mole fraction 

was obtained. 

Energy 
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Figure 2-1: Raman scattering energy levels: Stokes (red) and anti-Stokes (blue) 

Knapp et al. (1997) performed SRS in one of the cylinders of a 4-cylinder SI engine. 

They measured single-cycle and cycle-averaged concentrations of H2O, 02 and Iso- 

Octane (C8H18) relative to N2 at different temperatures to take into account the 

temperature dependence of the Raman cross sections. By normalising the fuel and air 
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signals, the AFR measurement obtained from single shots eliminated pulse-to-pulse 
laser variation and window fouling. A precision better than 4% was obtained in the low 

load case and better than 3% in the high load case. 
Miles (1999) describes a simultaneous multipoint single laser shot SRS measurement 

system applied to an optical engine. 

Since SRS measures AFR directly, it can be applied to situations where EGR gas exists 

and has been accorded renewed interest. The drawback of the technique has been the 

low signal strength, but with the new high power UV lasers, this is less of a problem. 

2.1.3. Mie scattering 

Mie scattering is an elastic process which appears if the scattered particles are large 

compared with the incident wavelength (i. e. d»1). If light is scattered by particles that 

are smaller than the light's wavelength, the phenomenon is Rayleigh scattering. 

The Mie scattering process is based on a change of the electrical and magnetic 

properties inside and in the vicinity of the scatterer. Due to the large size of the 

particles, the scattering process is a due to reflections, refraction and diffraction. The 

exact solution for scattering of electromagnetic waves from a spherical dielectric body 

was first obtained by Gustav Mie in 1908. The field of radiation resulting from the 

interaction between a single droplet and an incident light beam can therefore be 

calculated using the Mie-Lorenz theory. The resulting effects on the emitted light are 

changes in phase, amplitude and polarisation. 

For Mie scattering, the mathematical solution of the Lorentz-Mie equation is a function 

of droplet diameter, scattering angle, refractive index of the droplet, polarisation and 

wavelength of the incident beam (Bohren and Huffman 1983). 

Figure 2-2: Scattered light from a droplet 
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2.1.3.1. Total scattered signal 

A droplet redirects (scatters) light proportionally to its scattering cross section (Qscan): 

Is, 
total -C' Ilaser ' fscatt 

Equation 2-2 

where 'laser is the intensity of the incoming light and C is a proportionality constant. 

The Mie scattering efficiency for a droplet is its ability to redirect power. It is defined as 

the scattering cross section divided by the cross-sectional area: 

Oscan 
-4 QQscaa 

scat! a- D2 

Equation 2-3 

Combining Equation 2-2 and Equation 2-3 gives an expression of the total scattered 

intensity as a function of diameter: 

I 
s, total 

_ C' ' Ilaser ' Qscatt - 

Equation 2-4 

The scattering and extinction efficiencies are provided by the Lorenz-Mie theory 

(Bohren and Huffman 1983): 

ý2n+1)" ja� 12 a�I2 +Ib�I2 
X ý-I 

Equation 2-5 

Q-1 (M 
I X) 

4.2n+1). Re(a 
. +b�)} 

x R-I 

Equation 2-6 

where x is the sizing parameter defined by x=x" D/A, with D the droplet diameter. m is 

the refractive index and coefficients a� and b� are the Mie scattering coefficients, and 

can be found explicitly in Van de Hulst (1957) or Bohren and Huffman (1983). 
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The absorption efficiency is then defined by: 
Qai, 

s 
= Q., 

- 
Q. 

Equation 2-7 

In case of absorption, the refractive index must be used in its complex form: 

m=mRC -imlm 

Equation 2-8 

The real part (mRe) corresponds to the refractive index (i. e. the ratio of the speed of light 

to the phase velocity in the medium). The imaginary part (mi. ) expresses attenuation or 

absorption of the light as it propagates through the medium. 

Le Gal (1999) computed the scattering efficiency as a function of droplet diameter for a 

532nm incident wavelength and non absorbing droplet of refractive index m=1.44. His 

results (see Figure 2-3) demonstrated the features of Mie scatter found in Conwell et al. 
(1984): 

" Qscart sharply increases as the droplet diameter increases from the Rayleigh limit 

(D c%) 

" Qscaa approaches the geometrical optics limit of 2 as the diameter becomes large 

" The spectrum consists of rapid oscillations superimposed on a slowly varying 

background. 

4.. 

4 

tnýilioý 

t3 

2.5 

a 

1. 

04 

R~ msim 
0 

3"f 

oný. e D Ms r (in , im) 

Figure 2-3: Scattering efficiency for droplets up to 5pm, 2=532nm, m=1.44 

(Le Gal 1999) 
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These low frequency oscillations are due to interferences between refracted and 

diffracted light (Knight et al. 1992). Each peak occurs at regular intervals and can be 

associated with a resonance which correspond to Morphology Dependent Resonances 

(MDRs) and are discussed further in this chapter. 

The result also suggests that for diameters above a few microns, the Mie scatter 

intensity could vary as a function of the diameter squared. 

The FarField Mie scattering LightLab software developed by Valley Scientific, Inc. was 

used to determine the scattering efficiency as a function of droplet diameter for a 266nm 

incident wavelength. A refractive index m=1.4 was used to simulate scattering from non 

absorbing Iso-Octane droplets. 
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Figure 2-4: Scattering efficiency, 2=266nm, m=1.4 

As expected, when the wavelength is halved, the characteristics of the Mie scattered 

intensity occur at half the diameter sizes. This suggests that the total scattered intensity 

will deviate from surface dependence by a maximum of 5% for droplets larger than 

6µm. 
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2.1.3.2. Mie scattering as a function of angle 

As seen previously, the total scattered light is proportional to the surface area. However, 

the scattered intensity is not evenly distributed. Figure 2-5 is the polar diagram (in a 
logarithmic scale) for the scattering intensity of 266nm light by a 10µm droplet. The 

figure shows three important results: 

9 The intensity of the forward scattered light (0--0°)is much larger than the 

backscatter or any other direction 

" The characteristics of the intensity distribution changes very strongly with 

observation angle 

" The intensity distribution from two polarisations can be very different. 
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Figure 2-5: Polar diagram (log scale) of Mie scattering for a lOpm droplet 

If the scattered light from a droplet of diameter D is observed at an angle 9 with a 

collection angle ofd 0 (see Figure 2-6), the intensity will be: 

Is(D, e, ee)=C"Iiuei "F(D, e, ee)"Qs,. « "DZ 
Equation 2-9 

where F represents the proportion of light scattered within the collection angle. At a 

given wavelength, F is a function of droplet diameter, observation angle and collection 

angle. 
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Figure 2-6: Mie scattering observed at an angle 

In their notations, Yeh et al. (1993a, 1993b) combine F and Qscot, in a single term and 

write Equation 2-9 as: 

rs(D, e, ee)= c'Ilaser Qsca«(D, e, ee)'D2 
Equation 2-10 

where Qscatt(D, 9, JO) can be assimilated to the scattering efficiency for the specific 

observation and collection angles. 

Using the geometrical approach, Glantschnig and Chen (1981) demonstrated that the 

average measured scattered intensity is proportional to the diameter of the spherical 

scatterer: 

1sca, 
t(D, m, 9) = K(m, O). Dz 

Equation 2-11 

where K(m, 9) is a constant depending on the refractive index (m), the collection angle 
(0) and the geometry of the scattering set-up. 

Equation 2-11 is correct, as long as the receiver's f-number is small enough to average 

over the angular fluctuations resulting from the interference between the reflected and 

refracted light (Bachalo and Houser (1984)). 

Sankar et al. (1997) modelled the scattering intensity based on the Mie-Lorenz theory in 

order to predict the variation of scattered signal with droplet size. 
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Figure 2-7: Computed variation of scattered light intensity with diameter for a 90° 

collection angle and no absorption (Sankar et at. 1997) 

The authors found that the scattered intensity is lower at 90° compared to 45° or 1450 

angles. Also the variations around a D2 dependence were higher at 90° than for the two 

other angles. 

By adding an absorption coefficient to the refractive index (m=1.334-0.001 i) the 

oscillations seen in Figure 2-7 were reduced (see Figure 2-8): for weak absorbing 

droplets, the Mie signal is very well approximated by a D2 relationship. 
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Figure 2-8: Computed variation of scattered light intensity with diameter for a 90° 

collection angle and weak absorption (Sankar et al. 1997) 
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2.1.4. Planar Laser-Induced Fluorescence (PLIF) 

2.1.4.1. Description 

In fluorescence scattering (Demtröder 1982), a molecule absorbs a photon of the 

incident light. This energy allows the molecule to "jump" to a higher electronic level. 

The states of these upper levels are metastable with characteristic lifetimes of about 

0.1 ns to 10µs. Therefore, very shortly after the transition to the upper level, the 

molecule drops back to a stable energy level with the ground electronic state. 

Fluorescence occurs when a molecule relaxes radiatively after having been excited to a 

higher electronic state. 

For a simple two level energy system, following the excitation from state 1 to state 2 

(B12 " I,, ), a molecule can undergo 5 important processes: 

" The molecule returns to its original quantum state by laser-induced stimulated 

emission BZ, " 1,, 

" The molecule can absorb another photon and reach a higher state, eventually 

reaching an ionized level B2i " I,, 

" Inelastic collisions with other molecules can produce vibrational and rotational 

transfers Qv;,.,.:. In many cases, these collisions result in electronic energy 

transfers Qelec ' also referred to as quenching 

" Interactions between the individual atoms of the molecule can produce internal 

energy transfer and dissociation of the molecule Qpe 

" The originally populated state and nearby states indirectly populated through 

collisions return to a lower state through the emission of light A21 , producing 

the laser induced fluorescence 
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Figure 2-9: Two energy level diagram for molecules excited by a laser source 

(Seitzman and Hanson 1993) 

Considering a two energy level system, where A21 is the Einstein coefficient for 

spontaneous emission (fluorescence), B12 and B21 the Einstein coefficients for 

stimulated excitation and emission respectively and Q21 is the total quenching factor 

(i. e. a combination of the pre-dissociation quenching factor Qp, 
e , the collisional or 

electronic quenching factor Qe, 
ec, and the intermolecular collisional quenching Q ib., a, 

the rate of change of the population at the excited level is given by: 

dd2 
=N . B12"IV-N2. (812'Iv +A21+Q21) 

Equation 2-12 

where Ni and N2 are the lower and upper level population respectively. 

As the laser pulse (-10"8s) is generally longer than the fluorescence lifetime (-10"9s), it 

can be assumed that steady state conditions are reached, and therefore Equation 2-12 is 

equal to zero. With the population conservation, where No is the initial total population 

at the lower level, No = N, + N2 , the population at the excited state can be written as: 

B12 " IV 

NZ=No"A21+Q21+(B12+B21)"I, 

Equation 2-13 
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By defining the saturation intensity as: 

I 
sar 

= 
A21+Q21 

B12 +B21 

Equation 2-14 

N2 can be expressed as: 

11 
N2 = No . B12 I, 

A21 +Q21 1+ 
Iý 

Isar 

Equation 2-15 

The fluorescence is proportional to the upper state population multiplied by its 

probability to fluoresce: 

FocN2"4 

Equation 2-16 

The fluorescence can therefore be expressed as: 

FaNo 'B12', 
A21 1 

Ali +Q21 1+ 
Iv 

Iaht 

Equation 2-17 

In the saturation regime (Iv»Isai), the fluorescence intensity is: 

FaNo'B1s" 
A2, 

B12 +B21 

Equation 2-18 

The fluorescence signal is independent of both the laser fluence and the quenching: the 

signal is directly related to the species concentration. However, it is very difficult to 

reach saturation when performing PLIF. 
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At low laser excitation regimes (lv«Isat), Equation 2-17 becomes: 

FocN BI 
A21 

A21 + Q2I 

Equation 2-19 

This is the linear regime: the fluorescence is proportional to the laser intensity. In this 

regime, the signal is also proportional to the species concentration, and inversely 

proportional to the quenching. 

In the linear regime, if the quenching rate is low (Q2 f «A21), the fluorescence signal 
becomes: 

FocNo "B12 "I,, 

Equation 2-20 

If the quenching rate is high (Q21»A21), Equation 2-15 becomes: 

N2=No'B12 .I. 
1 

Qz1 

Equation 2-21 

and the fluorescence signal becomes: 

FocNo B12 Iv . 
`21 
QZ1 

Equation 2-22 

In these conditions, the fluorescence signal is proportional to the laser intensity and the 

species concentration. 

2.1.4.2. PLIF applied to IC engines 

The wide application of PLIF in IC engines is mainly due to the strength of the 

fluorescence process, relative to those of Raman or Rayleigh scattering. Also, PLIF can 
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be used to image fuel location in both the liquid and vapour phase (Tait and Greenhalgh 

1992). 

For in-cylinder measurements, two different strategies have been adapted: natural 
fluorescence from the species of interest or fluorescence obtained from an added dopant 

(also called tracer). 

Most of the early fluorescence work carried out in IC engines was performed in the 

linear non-quenching regime. In these conditions, the fluorescence signal is proportional 

to the laser intensity and the species concentration. 

Naturally fluorescing species like OH were excited to look at flame front (Felton et al. 
1988, Suntz et al. 1988). For fuel visualisation in IC engines, gasoline was first used 
because it contains fluorescing compounds. However, these different compounds each 
have individual fluorescence properties and for that reason, quantitative measurements 

are not possible. For quantitative measurements, Arnold et al. (1990) used a specific 

tracer in the fuel (acetaldehyde). Lawrenz et al. (1992) studied various tracers to replace 

the gasoline fuel by a single compound fluorescent fuel. They found Ethylmethylketone 

(EMK - or 2-Butanone) to be the best and measured AFR using throughout the intake 

and compression stroke and found appreciable inhomogeneities in fuel distribution. 

Baritaud and Heinze (1992) introduced Iso-Octane as a single component fuel, doped 

with biacetyle to obtain the fluorescence. Since, many fuel studies in IC engines have 

used various tracers with Iso-Octane. The choice of added tracers to visualise the fuel is 
discussed in Chapter 3. Berckmüller et al. (1994) used 3-Pentanone to visualise the fuel 

vapour and measure crank-angle resolved AFR in a lean burn Honda V-TEC transparent 

engine and found that there was substantial cycle-to-cycle variations in local fuel 

concentration at the spark electrodes. 

LIF has also been used to measure oil film thickness, as early as 1974 by Smart and 
Ford. Shaw et al. (1992) developed an optical fibre based LIF measurement system and 
determined oil film thickness at the piston ring / cylinder liner interface. 

Until this point, tracers had been selected for their non-quenching behaviour in oxygen. 
If the tracer was quenched by oxygen (e. g. TriEthylAmine -TEA- which has a high 
fluorescence yield but is strongly quenched), experiments were carried out in a Nitrogen 

environment. 
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Reboux et al. (1994) showed that quenching in the vapour phase, which had been 

considered as an unwanted effect could, on the contrary, be used for quantitative 
determination of AFR. If the quenching rate is directly proportional to the concentration 

of oxygen (Q21 =k-[02]), a linear relation exists between the fluorescence intensity and 

the fuel-to-air ratio (FAR): 

Fcc&a el 
cc4 Q2 02 

Equation 2-23 

Frieden and Sick (2003) measured Oxygen distribution using toluene and 3-pentanone 

tracers. Because the fluorescence spectra of the two tracers are distinct, their signals can 

be easily separated. In addition, toluene's fluorescence is quenched in oxygen, whereas 

3-pentanone's is not. The ratio of their signals can be used to extract 02 concentration. 

By knowing the amount of fuel and the amount of air, the distribution of the 3" species 

(EGR) can then be obtained. 
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One issue with this technique is that the signal is inversely proportional to the species 

that is being measured. 

One of the issues with PLIF is that the fluorescence from the liquid or vapour phase of a 

single component cannot be spectrally separated. This is because the fluorescence 

spectra of organic molecules dissolved in non-polar solvents are virtually identical to 

the spectra of the same molecules in the vapour phase. To overcome this, Melton (1983) 

introduced Laser Induced Exciplex Fluorescence (LIEF). The technique uses a mixture 

of two monomers, one serving as an electron donor (D) and the other as an electron 

acceptor (A). When A and D are excited (to A* and D* respectively) and fluoresce, they 

can bind with the opposite ground state monomer to form a third fluorescent species (A- 

D) * which is bound in the excited state but not in the ground state. The newly formed 
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species is called the excited state complex or exciplex. The probability that A and D 

form an exciplex is influenced by temperature and concentrations of the donor and 

acceptor. By adequately choosing the concentration of the donor and the acceptor, it can 

be assured that the liquid-phase fluorescence is predominantly characterised by the red_ 

shifted emission from the exciplex, whereas the vapour phase fluorescence is dominated 

by the emission of the monomers A and D. 
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Figure 2-10: Spectra of 10% Naphtalene, 1% TMPD, 89% cetane mixtures in the 

ligand and vapour phases - T=220°C (Melton 1983) 

The first exciplex system for LIEF was developed by Melton (1983) and applied to 

droplets. The mixture consisted of 10 to 15% naphthalene combined with 1% 

tetramethyl-p-phenylene diamine (TMPD) in a synthetic diesel fuel (hexadecane). 

Melton and Verdieck (1985) later used a 2.5% Naphtalene / 1% TMPD exciplex 

mixture in 96.5% hexadecane (cetane) to study the vapour and liquid phase mixing of a 

Delavan hollow cone injector. Figure 2-10 shows the spectral separation of the liquid 

phase fluorescence of the exciplex with the vapour phase fluorescence. 

Melton (1993) proposed exciplex systems with boiling points matching those of 

gasoline fuel. They were based on tertiary alkyl amines like TriEthylAmine (TEA) and 

n-PropylDiEthylAmine (NPDEA) mixed with electronegatively substituted benzenes 

like Fluorobenzene (FBZ) and 4-FluoroToluene (4FT). Fröba et al. (1998) introduced 

TriEthylAmine (TEA) and Benzene as a new fluorescent tracer system for LIEF. A 

mixture of 2% TEA and 3.4% Benzene was used in Iso-Octane. This tracer mixture has 

two advantages: it predominantly forms an exciplex in the liquid phase, and it is also 
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quenched by oxygen. This allowed to simultaneously separate the liquid and vapour 

phase fluorescence whilst using the quenching behaviour to determine FAR 

2.1.5. Morphology Dependent Resonances (MDR) 

Morphology Dependent Resonances (MDRs) of spherical and smooth non-spherical 

particles are reviewed by Hill and Benner (1988). MDRs in microspheres are 

responsible for the ripple structure observed in Mie scattering (see Figure 2-3). They are 

also responsible for the large optical feedback necessary for the lasing (Serpengüzel et 

al. 1992). 

Issing 

Figure 2-11: Spatial distribution of the internal intensity in a microsphere 

(Serpengüzel et at. 1992) 

An interpretation of MDRs is that of rays propagating around the droplet's surface. 

MDRs are usually treated as standing waves that can be decomposed into two counter- 

propagating waves that are contained by total internal reflection and travel around the 

droplet rim (see Figure 2-11). For the correct droplet size, the waves may return to their 

starting point with their initial phase and constructive interference takes place. The 

structure due to the constructive interference is correlated to the morphology of the 

drops, hence the usage of the term morphology dependent resonance. 

Resonance peaks have been observed in elastic and inelastic scattering, and can modify 

the emission from a micro-droplet. Resonant effects are only likely to be important if 

the spacing between MDRs exceeds the emission line width of the fluorescent 

molecules (Hill et al. 1996). In practice, resonance peaks are dampened by surface 

imperfections and droplet shape. Inhomogeneities in refractive index near the surface of 

an evaporating droplet will also dampen resonance peaks (Knight et al. 1992). 
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2.2. Velocity Measurements 

2.2.1. Laser Doppler Anemometry (LDA) 

Laser Doppler Anemometry (LDA) - or Laser Doppler Velocimetry (LDV) - was 

pioneered by Yeh and Cummins (1964) and is described in detail by Durst et al. (1981). 

It is a point measurement technique. 

A probe volume is created by splitting the laser beams in two equal intensity beams and 

crossing them at an angle. At first, beam splitters were used, and the interference pattern 

of the coherent light resulted in fringes. Later, a Bragg cell was used as a beam splitter. 

It is a glass crystal with a vibrating piezo crystal attached. The vibration generates 

acoustical waves acting like an optical grid. The output of the Bragg cell is two beams 

of equal intensity and one at the same wavelength as the input beam, the other slightly 

shifted (a 40MHz shift on a 600THz frequency). 

l 
Figure 2-12: Interference fringes 

The fringe spacing djis given by: 

d2 
2" sin 0 

Equation 2-24 

The frequency shift obtained by the Bragg cell makes the fringe pattern move at a 

constant velocity (Vsh; ft). Particles which are not moving will generate a signal of the 

shift frequency fsh; ft. The velocities V0 and Vneg will generate signal frequencies fps 

and f�, g , respectively. 
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When a single droplet crosses the interference fringes in the probe volume, it scatters 

intensity-modulated light. The rate of intensity variation (i. e. the Doppler frequency - 
fD) indicates the time the droplet takes to travel the distance between two fringes. The 

droplet's velocity component normal to the fringes and relative to the fringe velocity is: 

Vr =d 1 
fD 

Equation 2-25 

Llght 11 kXensrty 

d. 

A dz2 
sin (9 `ý 

Figure 2-13: light modulation from a droplet crossing the fringe pattern 

The actual velocity of the particle is: 

v= vsh; 
R+v 

Equation 2-26 

2.2.2. Particle Image Velocimetry (PIV) 

In 1921, in-cylinder- flow was studied by Clerk using a low speed optical engine 

designed by Ricardo. At this early stage the flow was visualised using smoke, and 

allowed Clerk to confirm the turbulent behaviour of the in-cylinder flow and also to 

disprove Otto's theory that the charge was stratified. 

In 1937, studies, undertaken by Lee, employed a number of innovations. In particular, 

pieces of feather were introduced in the flow as tracers and the motion was recorded 

using a high-speed tine camera and an intense light source. By manually matching the 

location of the seeds in consecutive frames, velocity was determined. It was the early 

form of Particulate Tracking Velocimetry (PTV). With CCD cameras, photographs are 

now digitised and tracking algorithms automate the process. 
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Correlation-based Particle Image Velocimetry (PIV) does not require the matching of 
individual droplets. Instead, it determines average motion of groups of particles 

contained within a small area called the interrogation region. The overall frame is 

divided into regions and the correlation function is computed over each region, yielding 

a velocity vector per interrogation region. It is possible to calculate average velocity 

maps, instantaneous or average vorticity maps, turbulence intensity maps and spatial 

correlation maps. 

Compared to PTV, the averaging over multiple particle pairs within an interrogation 

region makes the measurement noise-tolerant and robust. This measurement technique 

gives access to quantitative information that is very useful for the characterisation of 
flows. It can be used both in aerodynamics and hydrodynamics, and the measurable 

velocity range extends from very low velocities to the supersonic regime. 

While LDA is limited to the point measurements, PIV is used to extract 2-dimensional 

velocity fields. Due to the short laser pulse duration, each image contains the 

instantaneous position of the particles. The local velocity in the flow is measured by 

determining the displacement of the particles between two laser pulses (images). If the 

seeding density is sufficiently high, a two-dimensional velocity map of the illuminated 

region can be generated. 

When the pairs of images are recorded on the same frame, the analysis is carried out by 

auto-correlation: the displacement is determined by shifting the image relative to itself 

and summing the product of the corresponding pixels for each shift. This sum goes 

through a maximum when the shift matches the displacement. For each square 

interrogation region of width w, the correlation function for each shift Q) is given by: 

w 
xý- 

xý-- 
2 

w 
Y-- 
T 

I(x, Y)xl(x+i, y+ j) 
Yom-2 

Equation 2-27 
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Figure 2-14 - Single frame - double exposure and Auto-correlation analysis 

The auto-correlation function shows a central peak (i. e. R(0,0) is the maximum) and two 

symmetric secondary peaks. The position of these secondary peaks with respect to the 

centre of the analysis window gives the displacement of the particles. The symmetry of 

the correlation function prevents knowledge of the direction of displacement, which has 

to be determined from the flow. 

To eliminate the ambiguity, the two particle images can be recorded on different frames. 

The analysis is then carried out by cross-correlation: the determination of the 

displacement is done by shifting the second image relative to the first image and 

summing the product of the corresponding pixels for each shift. This sum reaches its 

maximum when the shift is equal to the displacement. In discrete terms, the cross- 

correlation is given by: 

ww 
x=- Y: - 

ýI1(x, 
Y)XI2(x+i, Y+J) 

w 
2 

Equation 2-28 

Figure 2-15 - Double frame - double exposure and Cross-correlation analysis 
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In this case, the cross-correlation function shows only a single intense peak whose 

position with respect to the centre gives access to the direction (with no ambiguity) and 
length of the displacement of the particles in the analysis window (see Figure 2-15) 

Evaluating the correlations in the direct way is not efficient as regards computing time. 

However, the Wiener-Khinchin theorem states that the correlation of two signals f and g 
(f ® g) in the temporal domain can be computed as a multiplication in the frequency 

domain: 

.f 
®SWF-' f XS 

Equation 2-29 

where f and g are the Fourier transforms off and g respectively, f is the complex 

conjugate of f and F is the inverse Fourier transform. 

Using the Fast Fourier Transform (FFT) is far more efficient: the auto-correlation 

(where f=g=1) can be quickly calculated by 1 forward transform and 1 inverse 

transform: 

R(i, j) = F-' 
II (u, vý 

2 

Equation 2-30 

The cross-correlation (f=11 and g=12) can be obtained quickly with 2 forward transforms 

and I inverse transform: 

F'-I Ii (u, v)xi (u, v) 

Equation 2-31 
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PIV was first applied to in cylinder measurements by Reuss et al. (1989) in a motored 

engine. The velocity of the swirling bulk flow could be measured in a portion of the 

engine cylinder, parallel to the piston crown. Vorticity structures and strain rates were 
derived from instantaneous flow fields. It was suggested that the magnitude of the 

observed strain rates and the random distribution of high strain regions could affect the 

early flame growth and therefore contribute to cyclic variations in engine performance. 

Nino et al. (1993) demonstrated PIV in a fired 2-stroke engine with high swirl inlet 

configuration. Instantaneous and ensemble averaged velocity fields parallel to the piston 

crown and velocity fluctuations could be obtained in the unburned gas. 

Reeves (1994) measured the instantaneous velocity field in a motored 4-valve engine. 

Illumination of a plane parallel to the cylinder axis through a piston window allowed the 

study of large scale tumble vortices. 

Pajot (2000) made turbulence velocity measurements in a port injection RENAULT 

engine and also showed that the axis of tumble and swirl movement were not 

respectively exactly horizontal and vertical. 

Hentschel et al. (1999) studied droplet PIV of a swirl injector. They used 2 Excimer 

lasers (308nm) for the measurements in a pressure chamber, and a double pulse 

frequency-doubled Nd: YAG laser (532nm) for the engine experiments. They found that 

in some cases, the droplet velocities could only be obtained on the edge area due to the 

high density inside the spray. 

Yamakawa et al. (2001) studied simultaneously the spray and air motion around the 

spray. They injected a solution of water and Rhodamine into the air and used a 532nm 

light source. The scattered light from the spray droplets was separated from the 

fluorescence of the Rhodamine in the air. Spray velocities were obtained by Mie scatter 

PIV and air motion with LIF PIV. 
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2.3. Size Measurement 

The droplet size distribution is directly related to the spray's atomisation and 

vaporisation process. The quality of the air-fuel mixing is critically dependent on these 

factors. Early development of sizing techniques include freezing drops (Longwell 1943) 

or molten wax techniques (Joyce 1949). The first technique used an alcohol bath kept at 

the temperature of dry ice, which was cold enough to freeze the drops. This enabled to 

sample the droplets. The second technique used the fact that molten wax has the same 

properties as kerosene, and was fed through aero injectors, and would solidify at the 

exit. Since then, non intrusive methods have greatly developed. 

2.3.1. Laser diffraction 

Low-angle laser light scattering (LALLS, commonly called laser diffraction) systems 

typically pass a laser beam of known wavelength through a suspension of the material to 

be analyzed and measure the angular distribution and intensity of the forward-scattered 

(diffracted) light by the particles in suspension. A theoretical model, based on 
diffraction of particles with particular properties and grain-size distribution, is then 

fitted to the actual diffraction results. When the first laser diffraction instruments were 

launched, the constraints of most commonly available computers meant that the 

instruments used an approximation of Mie light-scattering theory known as the 

Frauenhofer approximation to produce particle size analyses. However the full the 

solution of the light scattering of spheres as predicted by Gustav Mie can now be 

applied. 

Figure 2-16: Measurement volume for the line-of-sight scattering technique 
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This line-of sight technique uses forward scattered light from moving particles. The 

detected light is not sensitive to refractive index or shape, and therefore is only a 

function of size (Swithenbank 1976). The measurement of this angular light distribution 

is the basis of the optical particle sizer manufactured by Malvern Instruments Ltd. 

The technique measures the forward scattered light of a cloud of particles in a laser 

beam. Not only is the measurement averaged over the light path (line-of-sight 

technique), it is also averaged over the beam diameter, which gives this method limited 

spatial resolution. However, if the spray is axisymetric, the averaged measurements of 

optical extinction and droplet size distribution can be deconvoluted into radial variations 

of drop size distribution and number density (Hammond 1981). 

2.3.2. Interferometric Particle Imaging 

This technique is based on the principle of defocused imaging of Mie scattering from 

transparent droplets. The interference of reflected and refracted light results in fringe 

patterns (see Figure 2-17) which contain the information about the size of the droplet in 

the spacing of the fringes. 

It goes by various names: PMSI - Planar Mie Scattering Interferometry, PH - Planar 

Interferometric Imaging, PPIA - Planar Particle Image Analysis, ILIDS - 
Interferometric Light Imaging for Droplet Sizing. 

Figure 2-17: Interference pattern in out-of-focus imaging of droplets 
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The technique was pioneered in 1986 by König et al. They focused a laser beam onto a 

stream of monodisperse droplets and measured the resulting fringe pattern in the far 

field. They recognised the potential for accurate drop size measurements. 

Van de Hulst and Wang (1991) proposed that the droplets give two glare points in the 

focussed plane, and that it is possible to determine the diameter from the distance 

between the 2 glow spots. However, this would require high magnification to resolve 

them, and this technique would offer no advantage over direct particle imaging. 

These two points act as 2 spherical emission sources. Their overlap creates parallel 

fringes, and can be seen in the defocused plane. 

Using geometrical optics, Hesselbacher et al. (1991) demonstrated that the diameter and 

the fringe spacing were linked, and described the relationship between particle diameter 

d and number of fringes Nby: 

d=2 N1 
a 

ýsý,, ,ým" sin e2 

jm2 
-2"m"cos 

in / +1 

Equation 2-32 

where m is the refractive index, A is the laser wavelength, 0 and a are the scattering and 

collecting angle respectively. 

Glover et al. (1995) extended the technique to a light sheet and applied it in an engine to 

a spatially sparse spray. Pajot and MounaIm (1998) successfully obtained dropsize data 

from the non-dense part of a spray in an SI engine, but the denser part of the spray was 

not measurable due to the overlapping of the circular interferogram. 

Koboyashi et al. (2000) further improved the technique by optically compressing the 

circular fringe images using an anamorphic system consisting of two cylindrical lenses. 

This not only avoids signal overlap but also increases signal-to-noise ratio of the 

captured interferential image. They obtained an error of less than 3% for arithmetic 

mean diameter. 
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(A) (B) 

Figure 2-18: Interferometric image (Maeda et al. 2000) using 

(A) Conventional technique - 15 droplets 

(B) Compression Optics - >100 droplets 

Maeda et al. (2000) combined the compression technique with double-pulsed images 

and simultaneously measured drop size and velocity. 
The technique shows great promise but only manages to capture parts of the spray: 

typical imaging is 10mm x 10mm on a 1008 x 1018 pixel camera (Maeda et at. 2003). 

Commercial instruments are available from Dantec (FlowMap Particle Sizing System) 

and LaVision (SizeMaster). 

2.3.3. Phase Doppler Anemometry (PDA) 

The basic principle of this method was proposed by Durst and Zare in 1975 and by 

Bachalo in 1980 as an extension of Laser Doppler Anemometry (LDA). The technique 

uses the phase angle between adjacent Doppler signals for drop size measurement. 

When a droplet crosses a fringe pattern formed at the intersection of two focused laser 
beams, it acts as a lens and forms a magnified version of the fringes at the two detectors 

(see Figure 2-19). 
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Figure 2-19: PDA sizing principle (figure is not to scale: in practice, R»f) 

A stationary sphere of diameter D will project magnified fringes at a distance R from the 

centre of the droplet. If f is the focal length of the sphere, considered as a thick lens, and 

df is the object fringe spacing, then the measured spacing of the image fringes d�, ag is 

given by: 

_ d, (R 
. 
f) 

d 
f. 

Equation 2-33 

As R»f, Equation 2-31 can be simplified to: 

dmag %R- 
f 

Equation 2-34 

For a sphere of refractive index n, considered as a thick lens for small scattering angles: 

nD 
n-1 4 

Equation 2-35 

1 

ývý 
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If the particle moves, the fringes will appear to rotate about the focal point of the the 

thick lens. A detector at a given point will therefore see an oscillating pattern of light 

and dark fringes. If another detector is seperated by the distance a, the signal will be out 

of phase from the first detector by an angle: 

= 2x a 
d�ag 

Equation 2-36 

Combining Equation 2-34, Equation 2-35 and Equation 2-36 we obtain : 

Our an 
sing DocD 

n-1 R"A 

Equation 2-37 

One complication with PDA is that the light from a droplet is both refracted and 

reflected and the phase difference from these two scattering mechanisms is not 

necessarily the same. The solution is to use polarised laser light and to arrange for the 

detectors to be close to Brewster's angle O, = 2-Arctan(1/n) at which refraction 
dominates reflection. In practice the phase-diameter relationship is near linear between 

30° to 80°, with the best linearity at Brewster's angle normally a maximum in the 

scattering at the angle of 1st refraction often referred to as the rainbow angle. 

A second issue concerns the compromise between accuracy and range afforded by a 

total phase angle of 2n. To overcome this limitation, normally 3 detectors are used, 

yielding two different separations between pairs so that the wider-separated pair phase 

angles greater than 2R can be measured without ambiguity. This arrangement also 

increases the redundancy of the measurement and permits validation of the 

measurement. 
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Figure 2-20: Calibration curves for detectors' phase shifts (1-2 and 1-3) 

Signals are typically processed using a dedicated signal processor and in particular a 

covariance processor which can simultaneously measure phase and frequency from a 

Doppler burst. More recently, commercial manufacturers have developed discrete 

Fourier transform processors. These offer higher bandwidth and hence velocity range, 

higher accuracy, and reduced dead-time. 

A major uncertainty with the PDA is caused by the measurement volume effect (MVE). 

This is due to the beams' Gaussian profile and is also referred to as the trajectory effect: 

if a large particle penetrates the probe volume, the intensity profile of the incident 

beams causes a non-uniform illumination of the particle and induces reflected and 

refracted rays which may have roughly the same intensities on the detectors (see Figure 

2-21). For dominating reflected light, this effect results in considerable errors in size 

measurement. 

Figure 2-21: Trajectory effect due to beam profile 
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Using geometric optics, Sankar et al. (1992) showed that the measurement of a 45µm 

droplet placed in a measurement volume with a 80µm waist might result in an 

underestimation as large as 67% of the true diameter. One way to minimise the 

distribution effect is to increase the size of the measurement volume. However, this 

increases the probability of multiple occupancy. Another method is to use an additional 
detector (Grehan et al. 1992). 

The slit aperture can also suppress completely the light scattering property selected for 

calculating the particle diameter. If a particle crosses the right part of the volume (see 

Figure 2-22), the refracted light will be suppressed. If this was the chosen scattering 

mechanism, the equipment will determine a wrong drop size. 

Durst et al. (1994) showed that the non uniform illumination effect due to the image 

boundary of the spatial slit filter in the receiving optics is even more critical than the 

Gaussian beam defect. 

In spray applications, the PDA system is usually set up to receive refracted light. Due to 

the trajectory and slit effect, reflected light can damage the measurement. Aizu et al. 

(1993) proposed the Planar PDA (PPDA) system which consists in a 90° rotation of the 

transmitting and receiving optics. 

Tropea et al. (1994) proposed the dual-mode PDA. This four beam system basically 

combines two detectors of the standard PDA (SPDA) with two detectors of the Planar 

PDA in a single receiving unit (see Figure 2-23). The comparison of the droplet size 

obtained with the SPDA and PPDA allows to validate the measurement. 
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Figure 2-23: Dantec Dual-mode PDA 

PDA in dense spray cannot provide reliable data (Wigley 1994). This is partly due to the 

fact that PDA cannot make reliable measurements when more than one drop enters the 

measurement volume. Also, in dense sprays, random scattering and attenuation due to 

numerous droplets crossing the incident and reflected/refracted light is also an issue. 

Wigley et al. (1999) improved the PDA system by reducing the measurement volume 

and increasing the power (120mW and 250mW per beam at 488 and 514nm 

respectively) and measured velocities and drop sizes in a GDI injector (Wigley et al. 

(2002). 

2.3.4. Laser Sheet Dropsizing (LSD) 

For a given number (N) of droplets, the Sauter Mean Diameter (SMD or D32) 

corresponds to the diameter of a drop that would have the same ratio of volume-to- 

surface area as that of the N droplets. This diameter is frequently specified because it 

allows the calculation of the total area of an atomised volume of liquid. It is also the 

most useful value for determining the rate of evaporation. Therefore, lower SMDs 

indicate better atomisation of the fuel. 

f- D3'dD Yn; 'D 
DoD= 

_ 
32 = 

a0 do 
DZ dD 

32 
ni DZ 

0 dD 

Equation 2-38: Definition of the Sauter Mean diameter (continuous - discrete) 
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Theoretically, the ratio between the LIF and Mie scatter signal from liquid droplets can 

be used to extract the SMD. The technique originated in 1993 from Yeh et al. and was 

applied on a diesel injector. Sankar et al. (1996) developed a similar technique - Planar 

Drop Sizing (PDS) - which was applied to a Delavanan swirl injector. Le Gal (1999) 

developed the Laser Sheet Dropsizing (LSD) technique which uses the same principle 

as Sankar et al. (1996) with a UV light source from a Nd: YAG laser. An in depth 

review of the principle can be found in Chapter 3. 

The basic principle of the LSD technique uses the property that the LIF and Mie scatter 

signals from a low absorbing droplet (k) are volume and surface dependent respectively. 

The local ratio of the two signals will therefore be proportional to SMD: 

D320, >) a 
IuF09A 
IMie(I, J) 

Equation 2-39 

Le Gal (1999) verified the volume and surface dependence of the LIF and Mie 

scattering signals respectively using a TSI droplet generator. He later applied the 

technique to a Delavan pressure-swirl atomiser spray and found good agreement with 

results obtained with PDA. 

Park et al. (2002) verified the technique with a droplet generator using unleaded 

gasoline and also found good agreement for the d3 and d2 dependence of the LIF and 

Mie scatter signals respectively. They applied the technique to a GDI swirl type injector 

and determined the calibration constant using PDA. They found that the characteristics 

of the injector varied with injection pressure. 

Zimmer et al. (2002) applied the technique to an industrial oil burner and found that 

droplet clusters form in high density regions. They identified flow structures using PIV, 

possibly explaining this cluster formation. 

Domann and Hardalupas (2003) and Charalampous et al. (2004) have proposed recent 

improvements to the technique, which are discussed in Chapter S. 
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PART II 
DEVELOPMENT OF THE LASER SHEET DROPSIZING 

(LSD) TECHNIQUE 
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Chapter 3 

Development of Laser Sheet Dropsizing for 
Evaporative Sprays 

The Laser Sheet Dropsizing (LSD) technique is based upon the combination of elastic 

Mie scatter and inelastic scatter (LIF) of illuminated droplets. Mie scattering is a very 

robust technique for liquid-phase imaging, but the behaviour of fluorescence in an 

evaporative spray is less obvious. The feasibility of the LSD technique is strongly 
dependent on the accuracy of PLIF in the evaporating liquid phase. In this chapter, the 

requirements and selection of an appropriate tracer/fuel system are discussed. 

Temperature and Pressure dependence are investigated along with evaporation 

calculations. This is followed by the description of a dual imaging set-up along with the 

calibration procedures required for the LSD technique. 

3.1. Principle 

Because the fluorescence and the Mie scatter are volume and surface effects 

respectively, theoretically, the ratio between the LIF and Mie scatter signal from liquid 

droplets can be used to extract the Sauter Mean Diameter. 
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Figure 3-1: Light scattering from an absorbing droplet 
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3.1.1. Early development 

Yeh et al. (1993a, 1993b) were the first to use the intensity ratio of simultaneous LIF 

and Mie scatter signals to measure Sauter Mean Diameter (SMD). They applied the 

technique on an axisymetric spray. 
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Figure 3-2: Experiment schematics - Yeh et al. (1993a). 

They assumed that the LIF intensity was proportional to droplet volume for dropl 

smaller than 80µm. At location (r, z) the fluorescence is given by: 

"0 dn 
If(r, z) I° e'ý. C'. fD3dDdD 

0 

Equation 3-l 

where I, is the incident laser intensity and will be attenuated by kx according to Be. ezLambert's 
law, x is the distance from the incident spray edge and k the attenuation 

coefficient. C, is a constant value that includes the absorption coefficient, the quantum 

yield and the detection system's characteristics. 

They defined the Mie scattered signal as: 

I3(r, z) = Io "e'ý'C2 " 
IQ,. (a', 9,09)"DZ 

dDdD 

0 

Equation 3_2 

where C2 is the constant relating to the incident light intensity and the detection system 

characteristics. A8) is a function of the droplet parameter a=A" DIA 
. 
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By assuming a particle size distribution, they defined an average scattering coefficient: 

f Q3 (a, O, M9)"DZ 
dDdD 

Qs«ur a32 
, 

o"ä 0= 0 

DZDdD J0 

Equation 3-3 

where a32 = it " D32(r, z)/A and D32(r, z) is the local Sauter Mean Diameter and is given 

by: 

JD3dDdD 

_o 
D32-oo 

5D2 
DdD 

0 

Equation 3-4 

By combining Equation 3-1, Equation 3-2, Equation 3-3 and Equation 3-4 they 

obtained: 

Q3 
11 x32,9,09 I f(r, z) D3zýrýzý- 

C Is(r, z) 

Equation 3-5 

where C=C, /CZ 
. 

By assuming that the spray was axisymetric, they integrated Equation 3-5 cylindrically 

over the spray to extract a value of the constant C: 
ZR(: ) 

J J1f(r, z)"2irr dr"dz 
Lspwr 

a3i 
9 

05'ä B00 

C- 
/ý 

ZRz D32 

J fI3(r, z)"2mr"dr"dz 
00 

Equation 3-6 

where D32 is the SMD for the whole spray, Z is the height of the spray and R(z) is the 

radius of the spray at the height z. 
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They then used an empirical equation to determine the SMD for the whole spray (D32) 

and, which enabled the calculation of Q, 
1, a32,19, M9 . 

The local SMD (D32(r, z)) was then determined using an iterative process on Equation 

3-5 as Qsca:, a32,99 A9 is a function of (D32(r, z)). 

They applied the technique using TMPD in a base fuel and the fluorescence was 

generated using a Nd: YAG laser at a wavelength of 355nm. They collected the light at 
90°and separated the LIF from the Mie scatter using a doubling prism and filters. 

This technique is self-calibrating if the spray's overall SMD is known and the spray can 
be assumed axisymetric. The determination of the local SMD also requires the local 

droplet size distribution and in many cases, it is unknown. 

3.1.2. The Laser Sheet Dropsizing principle 

Le Gal (1999) developed the Laser Sheet Dropsizing (LSD) technique based on the 

same principle. However, whereas the approach by Yeh et al. (1993) used the exact Mie 

scatter signal - which takes into account the variation of the scattering coefficient (Qscoý) 

for different droplet sizes - the LSD technique simplifies this by assuming that the 

scattering coefficient is constant (i. e. the Mie scatter signal collected at 900 is simply 

function of the diameter squared). 

Under low absorption conditions, fluorescence is expected to be proportional to liquid 

volume or liquid mass distribution (Talley et al. 1996, Domann and Hardalupas 2000) 

and the LIF signal from a droplet k can therefore be expressed as: 

3 1 
j, k = Cl ' Ilaser, 

k 
dk 

Equation 3-7 

where Il er, k is the laser power which excites droplet k. 
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Sankar et al. (1997) showed that for weak absorption, the Mie scatter signal can be well 

approximated by: 

Is, 
k = C2 Ilaser, 

k "d2 k 

Equation 3-8 

where CI and C2 are constants independent of the droplet size or laser power. 

If both images are captured on a CCD, the spray image is digitised into in small 

windows, as seen in Figure 3-3. 

1 

Figure 3-3: Droplet distribution of the spray, as seen by the CCD chip 

The intensity of pixel (ij) corresponding to the fluorescence of N(ij) droplets can be 

expressed as: 

N(i N i, ') N(i, 

Ij(l i)= 
f 

f, k = 

t(C, 

'llase,, kk)=Cl' k'dk) 
k-I k-I k-I 

Equation 3-9 
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Equation 3-9 corresponds to the discretisation of Equation 3-1. 

Because the droplets within a pixel are randomly placed, the scattered light lacks 

coherence and will not interfere (Sankar et al. 1996). The intensity of pixel (ij) from the 

Mie scattering of N(ij) droplets can be written as: 

N(l, ) 
Is t1 Ak 

ýj 
(C2 

' 
Ilaser, 

k 
dk 

)= 
C2. 

`Ifaser, k 
Z 

==2 

k-I k-I k-I 

Equation 3-10 

Equation 3-10 is a discrete version of Equation 3-2, where the scattering coefficient is 

independent of the diameter. 

If the LIF and Mie scatter signals follow Equation 3-9 and Equation 3-10 respectively, 

for each pixel (i, j) of the CCD array imaging N(i j) number of droplets, the intensity 

ratio of the signals will be: 
Nl ( 

if(t,. l) 
Cl. 

i, ) 

k=1 
\Ilaaer, k * 

dk 
) 

N i, ) 

2 Is 111 ( 
C2 . \Ilaaer, k 

dk 

k-i 

Equation 3-11 

For low absorption and small pixel sizes (typically a pixel represents 100µm xl Oppm) 

the laser absorption is negligible: the laser power can be assumed homogeneous withjn 

the pixel (i. e. Vk a [1, N(i, j)l I, 
OJer. k = cst). Also, if the images are recorded 

simultaneously, the laser intensity is the same for both scatterings. Therefore, the ratio 

can be written as: 
N) 

d3 
Ifýtýl) 

_ 
C, k 

Is(l,. %) C"N tj2 
= "3209j) 

. 
dk 

k-i 

Equation 3-12 
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where C=C, / C2 

The local SMD is given by: 

AI1j 
(r, z) D32 (l, ll=cI, 
(r, 

z 

Equation 3-13 

Equation 3-13 shows that the uneven distribution of laser fluence across the CCD chip 
is eliminated by the ratio of the signals pixel by pixel, and that the result is proportional 

to Sauter Mean Diameter. 

Theoretically, the proportionality constant (C) is not a function of the pixel. Therefore, 

the known SMD in any pixel could be used to calibrate the data on the whole CCD chip. 

Furthermore, the assumption that the scattering coefficient is constant eliminates the 

iterative process in the local calculation of the SMD. 

Le Gal (1999) demonstrated the LSD technique at ambient pressure and temperature 

conditions. This work will try to demonstrate the technique in a GDI spray under 

realistic engine conditions, i. e. higher pressures and temperatures. The critical issue 

with the LSD technique is the accuracy of the fluorescence signal, and its ability to 

continuously yield a volume-dependent signal for evaporating droplets. The following 

subchapter discusses this issue. 

3.2. Laser-Induced Fluorescence for the LSD technique 

3.2.1. Fluorescent Tracers 

Since the introduction of Iso-Octane as a single component fuel, the application of LIF 

has seen the use of various fluorescing tracers for fuel distribution measurements in 

transparent engines. Tracers such as Acetaldehyde (Arnold et al. 1990), Biacetyl 

(Baritaud and Heinze 1992) and Acetone (Wolff et al. 1994) were used. Recent work 

suggests the widespread use of 3-Pentanone. This tracer's popularity is due to its almost 

matching boiling point with Iso-Octane (101.7°C and 99.2°C respectively). Qualitative 

work using 3-Pentanone is reported amongst others by Neij et al. (1994), Ossler and 
Alden (1997), Steeper and Stevens (2000). Berkmüller et al. (1994) and Stojkovic and 
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Sick (2001) performed quantitative measurement of local AFR measurements. Stojkovic 

and Sick (2001) also used the ratio of LIF and Mie scattering signals to determine SMA. 

However, recent study by Davy et al. (2003) has demonstrated that 3-Pentanone's 

boiling point is deceptive, and that under engine evaporating regimes, the fluorophore 

does not perform its required task: tracing the fuel. 

In the engine, the fuel/tracer system is subject to evaporation, rises in pressure and 

temperature and finally combustion. In order for the fluorescent dye to properly act as a 
tracer for the Laser Sheet Dropsizing technique, it must follow certain requirements. 

The tracer should: 

" Absorb at the laser wavelength 

" Co-evaporate with the fuel 

" Be soluble in the fuel / Consumed during combustion 

The tracer's fluorescence should: 

" Yield sufficient signal 

" Be volume-dependent 

" Be independent of temperature / pressure 

9 Not quench 

Of the commonly used fluorophores, the first 3 properties enabled to select 5 potential 

tracers. The likelihood of co-evaporation was done by selecting tracers with boiling 

points close to that of iso-octane: 

" 3-Pentanone 

" 2-Hexanone 

" Toluene 

" Fluorobenzene 

" TEA 
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Compound Formula 

Molecular 

Weight 

(g/mol) 

Boiling 

Point 

(°C) 

Density 

(glcm3) 

Heat of 

vaporisation 

(J/g) 

Iso-Octane C8H18 114.23 99.2 0.6919 269 

3-Pentanone C5H100 86.14 101.7 0.8138 388 

2-Hexanone C6H120 100.16 127.6 0.812 363 

Fluorobenzene C6H5F 96.1 84.7 1.02 324 

Toluene C7H8 92.14 110.6 0.867 360 

TEA C6H15N 101.19 89.5 0.725 306 

Table 3-1: Properties of Iso-Octane and various tracers 
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Figure 3-5: Toluene 
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Figure 3-7: 3-Pentanone 
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Figure 3-9: 2-Hexanone 

3.2.2. Absorption measurements 

In order to fluoresce, the tracer must absorb at the excitation wavelength. In order for 

the fluorescence to be volume dependent, the entire volume of the droplet must be 

homogeneously illuminated. This requires an optimal absorption. 

Beer-Lambert law gives the theoretical behaviour of light as it passes through a trt 
absorbing medium: 

I= Io -e -s-c-d 

Equation 3.114 

where Io is the incident light energy, I is the energy after travelling the distance d, c is 
the concentration and eis the molecular absorptivity (or extinction coefficient). 

Parker (1964) uses a more practical form of this equation with a base 10 logarithm 844d 
defines the optical density (or absorbance) as: 

A=lo 
I 

=s"c"d jo 

Equation 3_11s 

where c is expressed in mol. L-', din cm and Ein L. mol-'. cni '. 
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Figure 3-10: Light extinction for different absorbances 
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Using a droplet generator and different dye concentrations, Le Gal (1999) showed that 

the LIF signal is proportional to d', where n varied from 3.2 to 2 and found that an 

absorbance of 2.7 gave a diameter cubed LIF signal. 

In the extreme case of a highly absorbing droplet, the incoming light will be completely 

absorbed near the surface (see Figure 3-11(c)). The bulk of the fluorescence will appear 

to coming from the surface, thus yielding a fluorescence signal proportional to surface 

area, hence n=2. 

In the case of low absorption, the droplet's volume is homogeneously illuminated and 

the fluorescence signal is volume dependent (see Figure 3-11(a)). However, if the tracer 

concentration is too low, the droplet may exhibit amplified stimulated emission (ASE), 

where the droplet acts as a cavity with gain greater than 1. Fluorescing systems with low 

quantum gain, for example low quantum efficiency or less efficient internal reflection 

(lower refractive index relative to medium) are likely to show less pronounced ASE and 

have n nearer 3. 

Domann and Hardalupas (2000) computed the LIF signal in a droplet and showed that it 

was unevenly distributed and that the d3 dependency was accurate for low tracer 

concentrations. 
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Figure 3-11: Droplet illumination for increasing absorptions 

In their study, Yeh et al. (1996) refer to work done by Felton et al. (1993) to justify that 
fluorescence intensity is proportionnal to the third power if the droplet diameter is 

smaller than 80µm. They used 1% NNN'N'-tetramethyl-p-phenylenediamine (TMPD) 

in their base fuel (0-solvent). Sankar et al. (1996) used water as a test liquid and added 

small amounts of fluorescein-di-sodium salt to obtain a low absorbing tracer system. 
These small concentrations will typically give low absorption mediums. Figure 3-10 

shows that such small mediums will only absorb a fraction of the incoming light, and 
the illumination within the droplet will be quasi-homogeneous. 

In order to accurately determine the appropriate tracer concentrations, the absorbances 

of various fuel/tracer systems for different dye concentrations were measured using a 
PERKINS-ELMER Lambda 7 UVNIS Spectrophotometer. 

The absorbance measurements were done in a1 cm path-length fused silica cuvette. The 

following graphs represent absorbance as a function of wavelength. The red dot 

represents the ideal point (i. e. A=2.7 at ?. =266nm). 
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Figure 3-12: Absorption measurement for 1% 3-Pentanone in Iso-Octane 
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Figure 3-13 - Absorption measurements for 0.3% Fluorobenzene in Iso-Octane 
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Figure 3-14 - Absorption measurements for 0.2% Toluene in Iso-Octane 
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Figure 3-15: Absorption measurements for 2-Hexanone in Iso-Octane 
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Figure 3-16: Absorption measurements for TEA in Iso-Octane 

The tracer concentrations which give a 2.7 absorbance at 266nm (the excitation 

wavelength of this study) are summarised in Table 3-2. These values give an indication 

of the maximum tracer concentration. Concentrations below these figures will still 

satisfy the diameter cubed dependence, as long as the tracer does not exhibit ASE. 

Furthermore, the absorption spectrums of the two ketones (3-Pentanone and 2- 

Hexanone) peak at 277nm, so their variation of absorption around 266nm (the excitation 

wavelength for this work) is relatively small. As the absorption spectrum shifts with 

temperature, this is an indication that the temperature dependence of the fluorescence of 

these two compounds is likely to be weak. 

Tracer in Iso-Octane % Volume in Iso-Octane Slope (nm-') 

3-Pentanone 1.5 6% 

2-Hexanone 1.5 6% 

Toluene 0.2 25% 

Fluorobenzene 0.3 50% 

TEA 12 25% 

Table 3-2: Tracer concentrations for an optimal absorbance 
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3.2.3. Temperature dependence 

Another requirement for the tracer is that its fluorescence is independent of temperature. 

Experiments were carried out to investigate the temperature dependence of liquid-phase 

fluorescence for an excitation wavelength of 266nm. 

A fused silica cuvette, containing Iso-octane and the fluorophore, was inserted in a 

rectangular brass container heated by four cylindrical heaters in each corner (see Figure 

3-17). 

Figure 3-17: Brass container, heaters and cuvette 

The Spectra Physics PIV400 Nd: YAG laser was used. It generated 532 and 266nm 

wavelengths. The beams were separated using a Calcium Fluoride (CaFI) prism. The 

532nm beam was then reflected at 90 degrees and dumped (see Figure 3-18). 

A Flowmaster 3 CCD Camera coupled to a UV 105mm Nikon lens recorded the LIF 

images. A BG37 filter (see Figure 3-19) cut out the Mie scatter occurring at 266nm. 

CCD Camera 0. 

105mm Nikon lens 0 

BG37 filter 
CaFI prism 

cuvette 
Nd: YAG 532mn mirror 

Laser dump 

Figure 3-18: Experimental set-up for temperature dependence of LIF 
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The computer was the experiment master and the Davis imaging software from 

LaVision used to trigger the laser and the camera. The image processing was also done 

with Davis. 
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Figure 3-19: Transmittance curve for the BG37 filter 

The heaters were turned on and off with a switch, and the temperature of the brass 

container was measured by a thermocouple. The container was heated and maintained at 

a stable temperature for 1 minute before the images were recorded, in order to allow the 

fuel/tracer mixture to reach that temperature. 60 images were recorded. To eliminate 

laser fluctuations while the laser warms up, only the last 30 images were averaged to 

give a final image. 2 rectangles within the image were selected and the average intensity 

within each rectangle was extracted. 

Figure 3-20: Fluorescence in the cuvette - rectangle 

A sensitivity study showed that the variations in intensity from one rectangle to the 

other were identical (see Figure 3-21). 
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Figure 3-21: Intensity variation in 2 different rectangles 

The following set of graphs present the variation of fluorescence intensity at various 

temperatures. 
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Figure 3-22: 3-Pentanone - temperature dependence of fluorescence 
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Figure 3-23: 2-Hexanone - temperature dependence of fluorescence 
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Figure 3-24: Toluene - temperature dependence of fluorescence 
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Figure 3-25: Fluorobenzene - temperature dependence of fluorescence 
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Figure 3-26: TEA - temperature dependence of fluorescence 
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For all tracers, except Fluorobenzene, the liquid phase fluorescence showed little 

change below boiling point, the worst case being 10%. Part of that variation can be 

attributed to experimental error, due to laser fluctuations from shot to shot, and 

deviation in power as the experiment progressed. The measurement points closer to 

100°C show a positive deviation. This deviation is the smallest for 2-Hexanone, whose 

boiling point is 25°C higher than that of Iso-Octane. 

The increase of the intensity around and beyond the boiling point can be attributed to 

the formation of bubbles in the cuvette. The resulting layer of gas-phase decreases the 

absorption. This in turn increases the laser power at the measurement volume and 

therefore the fluorescence intensity. 

3.2.4. Pressure dependence 

Because the liquid phase is quasi-incompressible, the distribution of the tracer within 

the liquid fuel should remain unchanged with pressure. To investigate the pressure 

dependence of the liquid phase fluorescence, the same type of experiment as the 

temperature study was carried out in a high pressure vessel. The fluorescence of the fuel 

tracer within a quartz cuvette was recorded on an intensified CCD camera. 5 Pressures 

were investigated: 1,5,10,15, and 20 bar. When the vessel had reached the desired 

pressure, 200 images were recorded, and an average of the last 100 was calculated. The 

fluorescence intensity profile of the average image was plotted. 
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Figure 3-27: Fluorescence intensity profile across the cuvette for 3-Pentanone 
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As expected, the variation of the profile was weak. A first experiment had consisted in 

taking images at increasing pressures (1,5,10,15 and 20bar). It was observed that the 

profiles were very similar, but decreasing with pressure. The experiment was reiterated 

by choosing another order for the pressures (1,10,20,15 and 5bar), and it was found 

that the decrease of the profile's intensity was actually a function of time. This decrease 

is due to the breaking down of the ketone bond (C=O) from the repetitive UV excitation 

(Tait 1994). 

The deviation of the profile from the Beer-Lambert's law can be attributed to the 

honeycomb structure which was clearly visible with the intensifier used. 
All the tracers tested verified that the liquid phase fluorescence is independent of 

pressure. 

3.2.5. Tracer evaporation 

3.2.5.1. Background 

The fluorescence signal of a droplet is a function of the tracer volume (concentration) 

within the droplet. In order to maintain the diameter cubed dependence of the LIF 

signal, the tracer's relative concentration should not change during evaporation. It is 

absolutely crucial that the tracer evaporates at the same rate as the fuel. 

Two extreme regimes of droplet evaporation must be considered (Law 1982). In the 

rapid evaporation (also referred to as diffusion-limited evaporation), the rate of surface 

regression is one or two orders of magnitude greater than the rate of liquid-phase mass 
diffusion. This "freezes" the composition of the droplet, and the evaporation is 

homogeneous. On the other hand, in the slow evaporation regime, the compounds at the 

surface of the droplet will evaporate at different rates and the diffusion will redistribute 
the compounds. This is also known as the distillation regime. 

For conditions below the saturation curve (e. g. a spray injected in ambient conditions - 
25°C and 1 bar) the evaporation will occur in the slow regime. Around boiling 

conditions, the vaporisation can be either slow or fast, depending on the initial size of 

the droplets. In the'superheated regime (i. e. for conditions above the saturation curve), 

when the spray is injected in the late part of the compression stroke (e. g. 300°C and 

l Obar), rapid evaporation will take place. 
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3-Pentanone has been the preferred tracer for AFR measurements because of its close 

matching boiling point with Iso-Octane (99.2°C vs. 101.7°C at I bar) and because its 

fluorescence is well characterised (Ghandi and Felton (1996), Grossman et al. (1996). 

However, Le Coz et al. (1994) reported that the molar fraction of 3-Pentanone in the 

vapour phase was twice that of the liquid phase for a 5/95 mixture in Iso-octane, and 

suggested the use of 2-Hexanone because of its lower volatility. Davy et al. (2003) also 

indicated that 3-Pentanone is not a suitable tracer at low concentrations due to its 

preferential evaporation when mixed with Iso-octane, even though it's boiling point is 

higher. This is because 3-Pentanone and Iso-Octane form an azeotrope. 

An azeotrope is a mixture of liquids that has a constant boiling point and thus cannot be 

separated by distillation. Ethanol (boiling point 78.5°C) and water (boiling point 100°C) 

form a binary azeotrope having a boiling point of 78.2°C and a composition that is 

95.6% ethanol. Therefore, a mixture of 95% ethanol and 5% water will co-evaporate. 

In the case of non-azeotropic mixture, a close matching boiling point will be beneficial. 

However, for mixtures which form an azeotrope, the concentrations should match the 

azeotropic mixture. However, if that mixture has a too high absorbance, than it will not 

be suitable. 

3.2.5.2. Vapour-Liquid Equilibrium Calculations 

3.2.5.2.1. The model 

To characterise and calculate the differential evaporation of various tracer systems in 

Iso-Octane, a model using the gamma-phi method following the guidelines from 

Malanowski and Anderko (1992) was developed for flash calculations at a fixed 

temperature. 

The liquid vapour equilibrium (VLE) of any component within a multi-component 

mixture is given by: 

y, "P"D; =x; "y, "I° 
Equation 3-16 
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where: 

y,: vapour mole fraction of component i 

P: equilibrium pressure 

0': fugacity coefficient/correction factor for the non-ideality of the vapour 

phase of compound i 

x,: liquid mole fraction of component i 

y: activity coefficient of component i 

Pi : vapour pressure of pure component i 

For low pressures, the fugacity coefficient can be considered equal to 1. 

The activity coefficients can be estimated using the Wilson (1964) equation: 

In In Ixe 
"Arý +1-ý 

nk 
Yr - 

j=1 k=1 
x! 'Ak,! 

1=1 

Equation 3-17 

At infinite dilution, the activity of component i over component j is extrapolated from 

the case where the molar fraction of component i is 1 and the molar fraction of j is 0. 

This leads to: 
1ny, j = -1nA, 1 -Ai; +1 

Equation 3-18 

1nyý, =-1nA.; -A; j+1 

Equation 3-19 

Parameters A,,; are found from simultaneous solution of the above relations for two 

components at infinite dilution. 
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The activity at infinite dilution can be found using the Modified Separation of Cohesive 

Energy Density model (MOSCED) proposed by Thomas and Eckert (1984). It is based 

on the assumption that forces contributing to the cohesive energy density are additive. 
Forces included are dispersion, orientation, induction and hydrogen bonding. The five 

parameters associated to these forces are the dispersion parameter A., the induction 

parameter q, the polar parameter r, and the acidity and basicity parameters (respectively 

a and fl). These modifications affect the activity coefficients in a symmetric way, 

contrary to experiment. Thomas and Eckert introduce two more parameters (W and ) to 

account for asymmetry effects resulting from differences in polarity and degree of 
hydrogen bonding respectively. These two are functions of other parameters. 

The activities at infinite dilution are given by: 

?; -(z; -r; 
ý (a1 

-a; 
). (Q, 

-Q; 
) 

In y; ;- RT 
(ý 

- ý; +qq+ lýd;.. W; ý; 

Equation 3-20 

where v; is the liquid molar volume at 20°C in cm3. mol-1 and is given by: 

M 

P 

Equation 3-21 

with M the molecular weight in g. mol-' and p the density in g. cm 3. 

d; ý is the Flory-Huggins combinatorial term to account for differences in molecular size: 

GGG m, 

V Vi 
In li +1- 

ýL 

Equation 3-22 

Parameters a, ß, T, yi, ý and as are temperature dependent: 

a=ao. t°"8 

Equation 3-23 
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=/0't0.8 

Equation 3-24 

T =T0 "t0.4 

Equation 3-25 

The subscript 0 refers to 20°C. 

yr=POL+0.011"a"ß 

Equation 3-26 

ý =0.68" (POL 
-1)+{3.4-2.4"exp[(-0.023). 

(ao "ßof5l2 

Equation 3-27 

POL=q4 "[1.15-1.15"exp(-0.02"r3)]+1 

Equation 3-28 

as = 0.953 - 0.00968 " 
(z2 +a. ß) 

Equation 3-29 

Having determined the activities and the saturated pressures (for a fixed liquid fraction), 

the equilibrium pressure is: 

Y, . P=(Yý "P)=t 
(x1 

. r, . 'r) 

Equation 3-30 

The vapour fraction of a component i can then be calculated as: 

xi "y; "P,, 0 
Yi -P 

Equation 3-31 
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3.2.5.2.2. The parameters 

The parameters required for the MOSCED calculation were taken from the literature 

(Reid et al. 1987). All but one compound were found in a table. The parameters for 2- 

Hexanone were estimated by the following equations: 

- C4.5 
). (, 

+Nc-1 ° 3.5+Nc 100) 

Equation 3-32 

4.5 
__ p0__Cfi 

3.5 + Nc 

). (, 
+Nc-1) 

100 

Equation 3-33 

ro4.5 1o --T 
(3.5 

+ Nc 100 

Equation 3-34 

where Nc is the number of carbon atoms in the molecule. For ketones, Ca= 0, CO = 4.87 

and Cs = 3.93. 

For saturated compounds, qo =1. 

The values of the different parameters are found in Table 3-3. 

Vo 20 so 4o ao A 

Iso-Octane 165.1 7.84 0.00 1.00 0.00 0.00 

3-Pentanone 105.8 7.86 2.77 1.00 0.00 3.43 

2-Hexanone 123.3 7.85 1.95 1.00 0.00 2.42 

Toluene 106.3 8.45 1.56 0.90 0.15 1.60 

TEA 139.0 7.52 0.53 1.00 0.00 4.98 

Table 3-3: MOSCED parameters for various compounds at 20°C 

The vapour pressures are usually not well documented for values above the boiling 

point at atmospheric conditions. However, the data for Toluene is almost complete for 

temperatures ranging from 0°C to the critical point (318°C). Figure 3-28 represents the 
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staturation curve of Toluene. The values for the different series are obtained using the 

Antoine equation which expresses the vapour pressure P (in bar) as function of the 

temperature T (in Kelvin): 

log(P) = A-TBC 

Equation 3-35 

where A, B and C are the Antoine parameters determined empirically. These parameters 

are usually defined for a specific temperature range. 

The extrapolation of the data points between Series 1 and 2 and Series 2 and 3 fit well. 
Also, Series 3 can be extrapolated to the critical point. These features were used to 

approximate the saturation curves for the other compounds. 
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Figure 3-28: Saturation curve for Toluene 

o Series 1 

$vies 2 

Series 3 

* critical point 

The critical points can be found in the CRC Handbook of Chemistry and Physics and 
the Antoine parameters for some temperature ranges were found in the NIST Chemises, 

WebBook. The other saturation points were determined using the generalised enthalpy 
diagram. The saturation curves are represented in Figure 3-29, and the vapour pressures 

at 4 different temperatures can be found in Table 3-4. 
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Figure 3-29: Saturation curves for various compounds 

50°C 100°C 150°C 200°C 

Iso-Octane 0.19 1.13 3.97 9.80 

3-Pentanone 0.15 0.95 3.56 9.79 

2-Hexanone 0.03 0.34 2.03 6.49 

Toluene 0.12 0.74 2.75 7.46 

TEA 0.26 1.38 5.03 13.24 

Table 3-4: Vapour pressures (in bar) at 4 different temperatures 

3.2.5.2.3. The programme 

A programme was written in C++ to calculate the equilibrium pressure and vapour 

molar fraction as a function of liquid molar fraction of the tracer system (see Figure 

3-30). The calculation was done for liquid molar fractions ranging from 0 to 1 in step of 

0.001. This allowed to build the vapour-liquid equilibrium diagram and understand the 

evaporative behaviours of the tracers in Iso-Octane. 

The programme was validated by tracing the 3-Pentanone boiling and condensation 

curves for 50°C (see Figure 3-31) and comparing them with the ones from Davy et al. 

(2003). In their work, Davy et al. (2003) used empirical data from Fuchs et al. (1984) 

which use slightly different vapour pressures than the ones obtained from the literature. 

For the purpose of the validation, those vapour pressures were used. 
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START 

Input Temperature 

Calculation of the activity at infinite dilution (y) 

Calculation of A;,; 

Set liquid molar fraction (x; ) 

Calculation of the activity (y; ) 

Calculation of the equilibrium pressure (P) 

Calculation of vapour molar fraction (y) 

I Edit xiyi and P 

END 

Figure 3-30: Programme structure for the distillation calculations. 
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Figure 3-31: Vapour-liquid equilibrium diagram for the 3-Pentanone/Iso-Octane 

system at 50°C 
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A second programme was used to determine the evolution of the fluorescence intensity 

relative to the volume of a droplet (see Figure 3-32). 

START 

Input Temperature and Tracer Concentration 

Calculation of the activity at infinite dilution (y) 

Calculation of Ai 

Initial volume (P) 

Remove 1 mole 

Calculation of the activity (Y) 

Calculation of the equilibrium pressure (P) I 

Calculation of vapour molar fractions (y; ) 

Calculation of the liquid composition (xi) 

Calculation of the liquid fluorescence (Ij) 

Edit V and If 

END 

Figure 3-32: Programme structure for the calculation of fluorescence variation in 

an evaporating droplet 

The calculation consisted of 1000 steps, corresponding to the removal of 1 mole from a 

1000 mole droplet. For each numerical step, the vapour molar fraction of the removed 

mole was determined to recalculate the composition of the liquid-phase mixture. 

Assuming that the fluorescence is not quenched and that the droplet is homogeneously 
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illuminated droplet (volume dependent signal), the fluorescence intensity was directly 

proportional to the tracer concentration in the remaining volume. 

3.2.5.3. Results for single tracer systems 

For each tracer, two graphs are plotted. 

The first graph presents the vapour molar fraction as a function of the liquid molar 
fraction. This indicates whether the tracer or the Iso-Octane is preferentially expelled . It 

also allows to notice if the tracer/fuel mixture forms an azeotrope, and if so, at which 

mixture concentration. 

The second graph presents the fluorescence of a droplet as a function of the volume, as 

the droplet evaporates. For the purpose of this programme, the fluorescence is 

proportional to the tracer concentration (i. e. there is no quenching). The fluorescence 

and the volume have initial values of I00[a. u. ]. 
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different temperatures 
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Figure 3-31 showed that the boiling and condensation curves go through an extremum 

(a maximum in the case of 3-Pentanone and Iso-Octane), characteristic of a (positive) 

azeotrope. Figure 3-33 shows the azeotrope's shift with temperature: at 50°C, the 

azeotropy is for a 40/60 mixture whilst at NOT the azeotrope corresponds to a 60/40 

mixture. 

However, the azeotrope occurs at high concentrations of 3-Pentanone which are not 

suitable for the volume dependence fluorescence of the droplets studied. 

At low tracer concentrations, the mixture will preferentially evaporate the 3-Pentanone, 

even though its boiling point is higher. 

A 2% 3-Pentanone liquid composition will have a vapour composition of 4.1 % at 50°C 

and 3.1 % at 200°C. 
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Figure 3-34: Fluorescence vs. Volume for an evaporating droplet containing 

2% 3-Pentanone 

Figure 3-34 demonstrates the importance of differential evaporation. When the droplet 

has half evaporated, the fluorescence intensity has decreased by 80%, already yielding 

an error greater than 50%. The differential evaporation decreases with temperature, but 

would still be unsatisfactory for slow evaporation regimes. 
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Figure 3-35 : Evaporation of 2-Hexanone in Iso-Octane for different temperatures 

Hexanone and Iso-Octane do not form an azeotrope. Because 2-Hexanone's saturation 

curve is higher than Iso-Octane's, there is preferential evaporation of the Iso-Octane: 

the fluorescence signal will increase relative to the volume as the droplet evaporates 

(see Figure 3-35). A 2% liquid mixture will have a vapour composition of 1.1 % at 50°C 

and 1.7% at 200°C. 
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Figure 3-36: Fluorescence vs. Volume for an evaporating droplet containing 

2% 2-Hexanone 
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3.2.5.3.3. Toluene 
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Figure 3-37: Evaporation of Toluene in Iso-Octane for different temperatures 

Like the 2-Hexanone/Iso-Octane mixture, the Toluene/Iso-Octane mixture will 

preferentially evaporate the fuel. A mixture of 0.3% liquid Toluene will have a vapour 

composition of 0.44 % tracer at 50°C and 0.4 % at 200°C. Because the Iso-Octane is 

preferentially evaporated and is in much higher quantity than the Toluene, the relative 

change in concentration should be negligible. Figure 3-38 demonstrates this feature: the 

differential evaporation is weak, and becomes even weaker at higher temperatures. 
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Figure 3-38: Fluorescence vs. Volume for an evaporating droplet containing 

0.3% Toluene 

91 

+o 
o 20 40 eo so 100 

Flachsenee kw«" y [au. ] 



3.2.5.3.4. TEA 
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Figure 3-39 : Evaporation of TEA in Iso-Octane for different temperatures 

TEA does not form an azeotrope in Iso-Octane (see Figure 3-39). Because of its lower 

saturation curve relative to Iso-Octane, TEA will be preferentially evaporated. A 3% 

TEA liquid mixture will have a vapour composition of 4.3% and 4% at 50°C and 200°C 

respectively. The differential evaporation is weaker than for 3-Pentanone (see Figure 

3-40). 

-SM 

- ioo°c 

ism 

--200"C %' 
o 20 40 eo so 

Fluoº. sesne. NN. ndfy Eau. ) 

-o 
100 

Figure 3-40: Fluorescence vs. Volume for an evaporating droplet containing 3% 
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3.2.5.3.5. Conclusion 

The tracers can be categorised either as expellers (Toluene and 2-Hexanone) or 

expulsed (TEA and 3-Pentanone). In the case of non azeotropic mixtures, this can be 

predicted by the saturation curve, and the closer matching curves are optimal. In the 

case of azeotropic mixtures like 3-Pentanone in Iso-Octane, quasi-identical saturation 

curves are deceptive in 2 ways: they give a false impression of co-evaporation, and their 

relative position can mislead as to which of the two compounds will be preferentially 

expelled. 

Toluene and TEA evaporation characteristics are the closest to co-evaporation. Their 

boiling points are within Iso-Octane's ± 10°C. However, their quenching behaviour is 

the limiting factor for measurements in a fired engine. 

On the other hand, ketones show very little quenching in oxygen (Tait 1994), so they 

are more appropriate from that point of view for the LSD technique. However, as has 

just been shown, 3-Pentanone and 2-Hexanone do not satisfy co-evaporation 

behaviours. Nevertheless, because they exhibit opposite expulsion behaviours, the 

combination of these 2 tracers could balance out the differential evaporation. 

However, the two tracers don't have the same quantum yield: even if a dual tracer 

system evaporates homogeneously, the fluorescence will not be an adequate indication 

of the volume. A compromising tracer composition should be possible to optimise the 

tracer system's fluorescence with an evaporating droplet. 

The programmes described previously were adapted for 3-component mixtures. 

3.2.5.4. The 3-Pentanone / 2-Hexanone tracer system 

At the time of this work, Han and Steeper (2002) suggested a mixture of 3-Pentanone 

and 3-Hexanone to balance the differential evaporation. They found their ratio of 

quantum yields to be 5. While imaging a spray in the pressure vessel at BMW AG, it 

was found that changing the tracer from 2% 3-Pentanone to 2% 2-Hexanone 

necessitated an increase of the intensifier's gain by 10 (68 to 78) in order to match the 

fluorescence intensity. From the intensifier's data sheet, the ratio of quantum yields was 

calculated to be 4.3. 
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The two ketones have similar absorption/absorbance spectrums. As seen previously, 

both tracers could be used individually at a concentration of 2% in Iso-Octane. 

Therefore, the dual tracer system could also have a concentration of 2%. The 

evaporation of a droplet was simulated for 5 mixtures of 3-Pentanone and 2-Hexatnone 

in 98% Iso-Octane. These mixtures ranged from 3-Pentanone to pure 2-Hexanone. 

For convenience, a mixture of x% 3-Pentanone, y% 2-Hexanone z% Iso-Octane is 

referred to as x/y/z. 
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Figure 3-41: Fluorescence vs. Volume for an evaporating droplet at 50°C 

containing various 3-Pentanone / 2-Hexanone mixtures in 98% Iso-octane 

At 50°C, the 0.25/1.75/98 mixture balances perfectly the co-evaporation and the 
quantum ratio for the first 40% of the volume evaporation, but yields an increasijg 

discrepancy afterwards. 

With a 0.5/1.5/98 mixture composition, at the start of the evaporation, the fluorescence 

signal is underestimating the droplet size by a maximum error of 13%. At the lower 
end 

of the evaporation, the signal is overestimated by a maximum of 33%. 

The LIF from a 1/1/98 mixture will underestimate the volume during most of the 
evaporation with a maximum error of 42% and will overestimate the rest of the 
evaporation 
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Figure 3-42: Fluorescence vs. Volume for an evaporating droplet at 100°C 

containing various 3-Pentanone / 2-Hexanone mixtures in 98% Iso-octane 

As the temperature is increased to 100°C, the curves for the single tracers get closer to 

the y=x line, signifying that the compromise for the tracer system is much more open 

(see Figure 3-42). 

The 1/1/98 mixture still exhibits a 39% underestimation of the volume, but the 

0.5/1.5/98 mixture is precise within 11% for 85% of the volume evaporation. Once 

again the 0.25/1.75/98 mixture is perfect for the first half of the evaporation, but the 

excess 2-Hexanone makes this mixture's behaviour overestimate the volume by a factor 

of 3.6 for the rest of the evaporation. 

As the temperature is further increased, (see Figure 3-43 and Figure 3-44), the 

narrowing of the curves around the y=x line is still improved. At 150°C, the 1/ 1 /98 and 

0.5/1.5/98 mixtures underestimate the volume throughout the whole evaporation, with 

maximum errors of 51 % and 22% respectively. The error with the 0.25/1.75/98 mixture 

is within 4% for most of the evaporation and only increases within the last 5% of the 

remaining volume. 

At 200°C, the 0.25/1.75/98 mixture is optimal, with a worst-case underestimation and 

overestimation error of 17% and 1.6% respectively. 
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Figure 3-43: Fluorescence vs. Volume for an evaporating droplet at 150°C 

containing various 3-Pentanone / 2-Hexanone mixtures in 98% Iso-octane 
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Figure 3-44: Fluorescence vs. Volume for an evaporating droplet at 200°C 

containing various 3-Pentanone / 2-Hexanone mixtures in 98% Iso-octane 

In the case of a non-quenching environment, Toluene would be the obvious simple 

choice as regards tracer evaporation. In the presence of oxygen, depending on the 

temperature, the optimal 3-Pentanone / 2-Hexanone tracer system will vary slightly. 

Below 100°C, the 0.5/1.5/98 mixture is the best compromise between the fluorescence's 
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initial underestimation and final overestimation of the volume. For temperatures above 

150°C, the most adequate would tend to be 0.25/1.75/98. 

But for more specific use such as in engines, for temperatures or pressures above 200°C 

and 5bar, the fuel and tracer(s) will be in the superheated regime, where the evaporation 
is diffusion limited, and the differential evaporation should be minimal. 

3.3. Imaging for the LSD technique 

3.3.1. Imaging Optics 

There are several methods to collect the Mie scatter and Fluorescence images. 

The most appropriate is to collect them simultaneously. The easiest - and most 

expensive - method requires the use of 2 intensified cameras, one for each image. A 

cheaper option is to use one camera onto which both images can be recorded. This 

single camera technique requires image separation optics. The following paragraphs 

presents several ways to achieve this. 

3.3.1.1. The stereoscopic imager 

The stereoscopic imager is a very compact design that consists of two front apertures 

with mirrors to redirect the incoming light out a third aperture situated in the back (see 

Figure 3-45) 

Mie @ 266 nm 

Mie @ 532 nm 

LIF 

Figure 3-45: The stereoscopic beam splitter with its filters 

On the front left aperture, a BG 4 band pass filter can be fitted to select the LIF and 

reject the Mie scatter. 
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On the other front aperture, a 266nm interference filter selects the Mie scatter signal 

only. A neutral density (ND) filter is added to the interference filter to attenuate the Mie 

signal, in order to obtain LIF and Mie intensities of the same order of magnitude on the 

CCD chip. 

Figure 3-46: The stereoscopic imager, lens, intensifier and camera set-up 

However, one of the drawbacks of this imaging system is the small size of its mirrors, 

which gives a weak light collection (10% efficiency). As the LIF signal is already weak, 

this type of imager is not suitable for our experiments. 

3.3.1.2. The prism set-up 

The following optical set-up by Park et al. (2002) uses a doubling prism. On one half, a 
band pass filter and a ND filter selects and attenuates the Mie scatter signal. On the 

other half, two long wavelength pass filters select the LIF and reject the Mie scatter (see 

Figure 3-47). 

prism 

Figure 3-47: The prism separation 

In the presence of 532nm light, an appropriate filter can be added to the two long-pass 

filters. 
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The stereoscopic imager and the prism share a common drawback: they both reject half 

of the intensity from each signal. This is an issue, considering the weak fluorescence 

intensity of 2-Hexanone and 3-Pentanone. 

3.3.1.3. The 2 lens set-up 

This set-up is adapted from the separating optics used by Kelman and Masri (1994). It 

uses two lenses. A glass lens focuses the fluorescence on the intensifier and rejects the 

Mie scatter. The Mie scatter signal is collected on a different path. It is redirected into 

the intensifier using dichroic mirrors and focused using a quartz lens of longer focal 

length (because the optical path is longer than that of the fluorescence). 

266nm dichroic mirrors 

Quartz Lens (fl=12Ommm) 

Lens (fl=85mmm) ýý Intensifier 

Figure 3-48: The 2-lens set-up 

In the presence of additional 532nm light, an appropriate filter (e. g. BG4) can be located 

in front of the glass lens. 

The light collection angle is increased. However, this set-up, like the two previous 

others, still suffers from a major drawback: the stereoscopic view of the object. Because 

the two light paths are not the same, in a dense spray, the signal collected through the 

Mie path does not go through the same parts of the spray as the signal collected for the 

LIF path (see Figure 3-49). This induces error that cannot be quantified. 
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Laser sheet 

Mie path 

Figure 3-49: Stereoscopic imaging - Different light paths in dense sprays 

3.3.1.4. The 5 mirror set-up 

Le Gal (1999) used a 5-mirror system to separate the Mie scatter from the fluorescence. 

It consists of 2 dichroic mirrors and 3 broadband mirrors, all 2inch in diameter and 

positioned at an angle of 22.5° (see Figure 3-50). 

Figure 3-50: The 5-mirror set-up 

In this setup, the light is reflected off a broadband mirror. It comes onto a 266nm 

dichroic mirror (quartz glass with a 266nm coating) which reflects the Mie signal and 

lets the LIF through. Both signals are then reflected on two different broadband mirrors 

on adjustable mounts. The signals rejoin at the second dichroic mirror where the Mie 

signal is reflected and the LIF signal goes through. Both signals have been separated 

using the adjustable mirrors, but they originate from the same light path. Another 
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advantage of the set-up is that the camera is positioned parallel to the incoming light 

path. 

A neutral density filter is in the Mie signal path to attenuate the signal's intensity in 

order to match the weaker LIF intensity. 

A BG4 filter is in the LIF path to cut out the eventual Mie scatter that could have been 

transmitted through the dichroic mirrors. It also cuts out 532nm Mie scattering because 

the laser sheet contains both second and fourth harmonics (532 and 266nm). 

However, this set-up is too long: the mirrors represent increasingly smaller apertures as 

they are further away from the camera. 

3.3.1.5. The 4 mirror set-up 

This setup is based on Le Gal (1999) 5-mirror imaging system. It abandons the first 

broadband mirror, and the other mirrors are mounted at 45°. The camera is therefore 

mounted orthogonally to the incoming light (see Figure 3-51). Because this set-up is 

more compact and contains fewer mirrors, the aperture phenomenon is improved. 

Figure 3-51: The 4-mirror set-up 

However, because the mirrors are mounted at 45° instead of the previous 22.5°, their 

effective surface is narrower, and the set-up must be finely tuned for imaging. 

For this reason, the same short set-up was designed with 3-inch mirrors. 
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3.3.2. Geometric Calibration 

The LSD technique requires the ratio of fluorescence and scattered light from the same 
droplets. From an imaging point of view, the technique requires that the intensity from a 

pixel in the LIF image is divided by the intensity of a geometrically corresponding pixel 
in the Mie scatter image. In other words, the two scattering images must be 

superimposed. However, the use of a single camera with a4 mirror set-up will rotate, 

translate and project the images in the separation process. Therefore, a geometric 

calibration of the camera is required to superimpose the LIF and Mie scatter image 

perfectly: each part of the CCD chip must have its own calibration to rotate, de-warp 

and translate the image so that the two will superimpose in order to match for the 

division in the LSD technique. 

The simplest method requires the illumination of three non-aligned points. By finding 

their pixel co-ordinates, the rotation, relative warping and translation can be obtained. 

S 

. 0 

a 
e 

" 

Figure 3-52: Original image and separated images on the two parts of the chip 

Instead of using the 3-point calibration, the DaVis software from LaVision has a 

calibration procedure which requires the image of regularly spaced crosses (or dots). 

The software finds the position of each cross and maps the correction so that the 

corrected image looks like the original image. 

3.3.3. Calibration procedure 
In a first step, the optical system must be set up. This requires the adjustment of the 4- 

mirror system, the focusing of the lens and the camera should have a resolution of 

approximately 1OOpm/pixel. 

This can be done by the following sequence: 
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Install the system 

" Install the calibration plate in the imaging plane. 

" Install the 4-mirror and camera system 

" Check that all mirrors are at 45° 

Calibration plate illumination 

" Illuminate the calibration plate with a lamp 

9 Take images 

" Adjust the LIF mirror to position the calibration image on one half of the camera 

Camera and lens rough adjustment (using the LIF path) 

" Adjust the camera's distance and focusing to obtain a resolution of 
approximately 100µm / pixel 

" Stop taking images 

" Decrease the Intensifier Gain back to 0 

Mie scatter path mirror adjustment 

" Block off the LIF path 

" Start Taking Images 

" Remove all filters in the Mie scatter path. 

" Illuminate the calibration plate with 266nm light and adjust Intensifier Gain 

" Adjust mirror to position the Mie scatter calibration image on the other half of 

the camera 

" Fine adjust the focusing of the lens using the Mie scatter image. 

Following the adjustment of the mirrors, the following step consists in imaging the 

spray in realistic conditions in order to determine the ND filters required for the 

attenuation of the Mie scatter signal. The adjustment mirrors can also be tuned to 

eliminate overlap of noise or reflections from one image onto the other's spray image. 

With the correct filters in place and the mirrors adjusted, the calibration plate should be 

re-inserted and calibration images for the Mie scatter and LIF path must be recorded. It 

was found that illuminating the calibration plate with the laser light sheet provided both 
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a Mie scatter and fluorescence image of the calibration plate. The fine adjustment of the 

light sheet at an incoming small angle was absolutely crucial, as was the quality of the 

calibration plates. An aluminium plate or sheet was used at the other end of the 

calibration plate to reflect and diffuse the light for optimal illumination. 

bkhý 
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Chapter 4 

Experimental Setup for LSD Validation 

To investigate the validity of the LSD technique for a highly evaporating GDI spray, 

measurements were carried out in Munich in the Benzin-Direkt-Einspritzung Optischer 

Prüfstand (BDE-OP - Gasoline Direct Injection Optical Test Bed) at BMW AG. This 

chapter presents and describes the test rig. It consists of two pressure vessels: the first 

vessel enabled simultaneous measurements of Mie scatter and LIF images on a GDI 

spray and to apply the LSD technique. The second vessel allowed acquisition of PDA 

data for the same spray in order to compare the two techniques. 

Figure 4-1 : View of the 2 Pressure Vessel rigs (Photo: BMW AG) 
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4.1. The test rig 
The test rig is a 1.5 million Euro facility composed of 2 fully automated pressure vessels 
for laser diagnostics on injectors: one allows for 2-D imaging of LIF and Mie scatter, 

the other is for PDA. 

The design of the vessel is by RWTH Aachen's ITM department headed by Professor 

Peters. The automation of the test rig is by Sonplas. The imaging system and software 
for the Mie scatter/LIF vessel is from LaVision and the system for the PDA vessel was 

originally from TSI and was later replaced by Dantec. 

The vessels enable the simulation of various temperature and pressure conditions under 

which injectors have to operate. To do so, the inside of the vessels are pressurised and 
heated with continuous flow of Nitrogen. The maximum operating conditions are 400°C 

and 35bar. 

4.1.1. Vessel design 

The basic design of each vessel consists of two concentric cylinders (see Figure 4-2). 

The outer cylinder is 60mm thick to resist to pressures up to 35bar. It is closed at the top 

and bottom. The pressure tightness is ensured by rubber O-rings which are water 

cooled. The inner cylinder is 105mm in diameter and 260mm high. It contains the 

Nitrogen flow and the injector spray. It is open to the outer cylinder, so that it is not 

subject to pressure differentials. Its main role is to insulate the thick outer cylinder in 

order to reduce the thermal inertia of the system: this allows the experiment to proceed 

from one set of Pressure and Temperature conditions to the next without having to cool 

down or warm up the bulk of the pressure vessel. 

4.1.2. Optical Access 

Optical access inside the pressure vessel is possible through windows. Both vessels 

have inserts in the outer cylinder to accommodate for 35mm thick outer side windows. 

Window holders are bolted to the vessel with 12 nuts, and allow an apparent window 

aperture of 60mmx 140mm. Each outer window has an inner window counterpart 

inserted in the inner cylinder. Both vessels also have a bottom window to allow for 

imaging from below. 
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Figure 4-2: Cutaway section of the Mie/LIF Pressure vessel - 
inner/outer cylinder, windows and window holders 

4.1.3. Vessel Conditioning 

Liquid Nitrogen is stored in a pressurised 3000 Litre tank. It is delivered to the vessels 
by evaporation, thus avoiding using an expensive and high maintenance pump. In order 

to operate the rig continuously, a valve and a throttle (one upstream and one 
downstream of the vessel) control the pressure inside the chamber while continuously 

purging the gas flow. For chamber pressures below 2.5bar, a suction pump is activated 
in order to produce a sufficient pressure difference between the inlet and the outlet of 

the vessel to maintain a permanent purging gas flow. 

The temperature conditioning is done by passing the Nitrogen flow through heaters 

before it enters the vessel. A first set of heaters is used for the 25-150°C temperature 

range. For temperatures above 150°C, a second set of heaters is used, and the Nitrogen 

flow has to be at a minimum of 60Nm3/h to avoid damaging them. 

To allow for space around the top of the vessel, the nitrogen enters the chamber through 

3 pipes which connect to the side of the head (see Figure 4-3). 
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4.1.4. Injector 

The injector is inserted and held in the injector mount. Originally, the pressure vessel's 

design only allowed positioning of the injector mount on top of the chamber, injecting 

downwards. The vessel design was modified to have the possibility to operate with a 

motorised side mount, allowing automatic rotation of the injector. Therefore, the 

injector can sit either on the top of the chamber and inject downwards, or can be 

installed on the side, injecting towards the side windows. Whichever position is not 

occupied by the injector is replaced by a blank. 

The injector temperature is conditioned by a silicon oil conditioned heating/cooling unit. 

The injection is triggered by the Test-rig computer. A timing signal is sent to the 

injector driver, which delivers the appropriate power signal to the injector. 

Figure 4-3: Schematics of the pressure vessel 
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4.1.5. Fuel 

Fuel is drawn from the fuel tank by a piston pump. Once the pump is full, it can 

pressurise the fuel up to a maximum pressure of 200bar. The pressure is maintained by a 

moving the pump piston with a fast stepping motor. This enables the delivery of fuel at 

a constant pressure - therefore pulsation-free, contrary to a rotating pump system. 

Before entering the injector, the fuel is conditioned by another silicon oil bath in the 

pump and in a cross-flow heat exchanger near the injector. 

At the exit of the vessel, the nitrogen/fuel mixture passes through heat exchangers, 

condensers and an active carbon filter to retrieve the UHC. 

4.2. The "Mie/LIF" Pressure Vessel 

This vessel allows for laser sheet diagnostics. 

4.2.1. Fuel 

This vessel has two separate fuel lines: one for pure iso-octane only and another for an 
iso-octane/tracer mixture. The non-tracered and tracered fuel are contained in 2 different 

tanks. In order to minimise contamination, each tank has a separate fuel line containing 

its individual pump and pipes. The pipes only rejoin 10cm upstream of the injector. 

Excess fuel or purged fuel is dumped in a third tank. 

Figure 4-4: The "Mie/LIF" pressure vessel and its 

3 side windows 
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4.2.2. Optical access 

Optical access inside the pressure vessel is possible through 4 windows (3 rectangular 

side windows and 1 round bottom window). The two diametrically opposed side 

windows allow two opposed laser sheets to enter and exit the chamber. The third side 

window and the bottom window allow for the imaging. 

4.2.3. Laser and sheet forming optics 

The laser used is a PIV 400 Nd: YAG from Spectra Physics. It is a twin cavity laser 

having independent control between cavities. Each cavity consists of an oscillator and 

amplifier mounted in series. Both are made up of a flashlamp, rod and reflective cavity. 

The flashlamps are triggered at a fixed rate of 10Hz (with an allowed tolerance of 

±10%) to build up the energy. This energy is released by a Q-switch: this changes the 

polarisation of the back plate and allows the light to pass through. For maximum power 

output, the laser requires an optimal delay between the flashlamp trigger signal and the 

Q-switch signal - typically around 180µs for this laser. Therefore, the laser cannot fire 

on demand. 

The fundamental output beams (1064nm) are combined with beam steering optics and 

fed through two doubling crystals to form 532nm and 266nm beams. Typical energies 

are round 400mJ/pulse at 532nm and 60mJ/pulse at 266nm. 

In the laser head, a first mirror allows the dumping of the fundamental immediately, 

reflecting the 2d and 4t' harmonics. The 532 and 266nm beams are then redirected 

through a 532nm beam attenuator. 

The beam is then divided with a 50/50 beam splitter, to form two opposing laser sheets. 

This allows to obtain a more even laser power through the spray, as opposed to an 

attenuated sheet that traverses only one way. Because the coating had degraded and the 

ratio was of the order of 90/10, the beam splitter was replaced by a 266 mirror, and the 

laser sheet entered the vessel through the left side window only. This was possible 

because the laser attenuation in the LSD technique is not critical, as the ratio of two 

scattering images cancels it out. 
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Figure 4-5: The laser set-up 

The 266nm mirror directs the beam upwards. A finely adjustable 45° mirror then 

redirects it into the sheet forming optics. This consists of 2 pairs of concave and convex 

fused silica cylindrical lenses: 2 to focus the sheet horizontally at the centre of the 

pressure vessel, and 2 to expand the sheet vertically. The lenses are located on a slider 

which is encased in a black cylinder. Circular knobs slide the lenses backwards and 

forwards for the adjustment of the laser sheet. The sheet-foaming optics can be rotated 

90° to form a either a vertical or horizontal light sheet, and are mounted on a motorised 

vertical translation stage, allowing to move the sheet up and down. 

The laser sheet was positioned at the centre of the chamber, below the injector tip. The 

sheet was focused at the middle of the vessel by looking at the sheet profile at the entry 

and exit of the chamber. The sheet was centred on the windows, so that is was 

perpendicular to the chamber. 

4.2.4. Imaging system 

The separation of the Mie scatter and LIF was done using the 4-mirror set-up with 3 

inch mirrors (see Chapter 3, §3.3.1.5). The 4-mirror set up was positioned on a sliding 

rail located in the axis of 2°d side window. Because the camera needed to be mounted 

orthogonal to the incoming light, a sliding rail was mounted on a vertical translation 

stage, for the positioning and adjustment of the camera (see Figure 4-6). 

Imaging was done using the DaVis software from LaVision. The images were recorded 

using a 12 bit FlowMaster 3 CCD camera coupled to a gated IRO image intensifier with 

a Halle f2 100mm achromatic fused silica lens. 
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Figure 4-6: Imaging Set-up (Photo: BMW AG) 

4.2.5. Timing and Synchronisation 

The injection is triggered by the Test-rig computer. The Imaging computer uses this 

signal to trigger its Programmable Timing Unit (PTU). The PTU sequence synchronises 

the laser (Flashlamp and Q-switch), Intensifier and Camera exposure, so that the images 

occur at a specific time after the start of injection (see Figure 4-8). The user sets the 

imaging times in the window illustrated in Figure 4-7. 

Each injector has a specific "dead time" which corresponds to the delay between the 

triggering - or electronic start of injection (ESOI) - and the actual start of fuel injection - 

also called optical start of injection (OSOI). This "dead time" is a combination of an 

electronic delay between the trigger signal input to the injector driver and the signal it 

sends to the injector and a mechanical delay due to the needle lift. 

The DaVis software requires the input of this parameter. This allows it to determine the 

PTU delay so that the imaging can correspond to timings after the actual start of 

injection (i. e. OSOI). 

112 



P Can sa1M. Nunbo of mapas: 

r Camsa 2 Mi@ fJ Show InaOsý 

r u. a. nre. ýp 

Scan Papa or 

f Soon hjodaDeIW I U» br nwip 
Sot to F- Stan - 0.3 End - 0.9 Inc. -F OS OMs. I - 007 ims] 

F Scan Sor ts. W Usero'ns. wg 

St. ea: Standby Tqw. r wasmat 
PN nobr... 

Ptopssny mode SPM ptococain0 d1w Mar, 

Saving 

S. yiip mode: no pnfw JI Use b idn PK. 18_TK-400 

S. vi prelim: 
Ir Encode dW r Enood. two 

r Remove intemr3aN temi* 

Execute 

Figure 4-7: Window for the imaging timings 
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Figure 4-8: PTU synchronisation sequence (not to scale) 
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4.2.6. Spatial Calibration 

The set-up of the 4-mirror separation optics requires the selection of band-pass and 

neutral density filters and the adjustment of the mirrors so that the LIF and the Mie 

images are on two parts of the CCD chip. It is then crucial to have a spatial calibration 

of the two halves of the chip. 

The test rig in Munich has an anodised aluminium plate where crosses have been 

marked out with a laser, the distance between each cross being 6mm (see Figure 4-9). 

Figure 4-9: Calibration plate with the adjustable aluminium diffuser plate 

Figure 4-10: Calibration images for the Mie path (left) and the LIF path (right) 

The right side window was removed and the calibration plate was inserted in its place. 

The plate was designed to be located exactly underneath the injector tip, in the middle 

of the bomb. A 266nm dichroic mirror was laid over the beam splitter in order to 

redirect the 266nm laser light through the left sheet-forming optics. The adjustment 
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knobs on the top 45° mirror situated before the sheet-forming optics allowed to direct 

the sheet onto the plate at a very low angle. An aluminium plate was used to scatter the 

light. It was found that this illumination of the plate gave a good 266nm Mie scatter 
image of the plate, as well as a good fluorescence image. Images were taken by running 

the DaVis imaging software on internal trigger (i. e. the PTU is triggered by the 

computer at a rate of 10Hz). 

4.2.7. Traverse system 

The laser optics and camera system are mounted on a common motorised translation 

stage, so that the sheet can be moved inside the chamber without requiring re-focusing 

or re-calibrating. To ensure positional accuracy, each time the rig is switched on, the 

translation stages must be referenced. The Test-rig computer performs this by moving 

the traverses to the end of the stage. Only afterwards can the traverse be moved freely. 

For these experiments, measurements were done in a single plane, so the traverse was 

only adjusted for the laser sheet positioning. 

Pressure 

vessel 

Laser sheet 

optics 

45° mirror 

Nd: YAG "' 266nm 

mirror 

Injector 

40. 4-mirror image 

splitter 

CCD Intensifier 
Camera 

Figure 4-11: Schematics of the LSD setup 
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4.3. PDA pressure vessel 
This vessel is actually equipped with a Dual PDA enabling to measure 2 component 

velocities and diameter. Originally, the diagnostics system was from TSI, consisting of 

a Fibre Coupler, transmitting and receiving optics, a Photodetector Module (PDM 100) 

and the Multibit Digital Processor (FSA 4000) controlled by the PC-based software 

package called Flow Sizer. The experiments were carried with this system. Later, a 
Dua1PDA system from Dantec was installed, with a new fibre coupler, transmitting ad 

receiving optics, Photodetector Module (detector Unit), Processor (BSA P80) and 

software (BSA Flow Software) which enabled to renew part of the experiment with a 
different system. 

4.3.1. Optical Access 

The PDA pressure vessel has two side windows, at an angle of 1150 (i. e. PDA is done 

using refraction at an off-axis angle of 65°. The transmitting (or sending) and receiving 

optics are each located in front of a window. 

Figure 4-12: View of the PDA pressure vessel 

4.3.2. Laser and beam sputter 

The laser is an Innova Model 305C 5W Argon Ion Laser from Coherent. 

The laser light goes through a Bragg cell. This device splits in the beams in equally 

intense beams and adds a 40MHz optical shift frequency onto the 1st order beam. The 

beams of orders 0 and 1 are extracted and fall onto a prism. This splits the light into the 
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discrete Argon ion wavelengths. The most intense green (514nm) and blue (488nm) 

beams are redirected with mirrors into the fibre coupling. From there, they reach the 

Transmitting optics. 

4.3.3. Measurement volumes 

The 2 pairs of beams interfere and form 2 measurement volumes which must be 

superimposed. This requires the beams to intersect at the same point. To adjust the 

intersection of the beams, the sending optics were removed from the mount and pointed 

towards a wall. A 4mm focal length spherical lens was placed at the intersection to 

magnify the image of the beams and allow optical adjustment. 
The sizes of the measurement volumes for the TSI and Dantec system are found in 

Table 4-1. 

PDA system TSI Dantec 

Transmitter XRV 208-6.3 112mm Fiber 

Beam distance 60mm 75mm 

Beam diameter 2mm 4.5mm 

Off-axis angle 65° 65° 

Focal length (front lens) 300mm 310mm 

Measurement volume diameter 98µm 47µm 

Measurement volume length 980µm 390µm 

Fringe distance 2.58µm 2.16µm 

Number of static fringes in MV 38 10 

Calibration factor 2.58 m/s/MHz 2.16 m/s/MHz 

Receiver RCV 208 112mm 

Aperture 72mm 90mm 

Focal length (front lens) 300mm 310mm 

Slit width 50µm 25µm 

Table 4-1: PDA parameters 

117 



4.3.4. Timing 

For each new injection, the PDA system requires a temporal reference to determine the 

time at which an event occurred after the start of injection. This reference is the injector 

trigger from the Test-rig computer, i. e. the electronic start of injection. 

The user can also set a window at which the events are validated, (e. g. from Ims ASOI 

to 3ms ASOI). 

Injector 
Pressure 

vessel 

Transmitting 

optics 

3-way 

translation 
t 

stage 

Receiving 

optics 

PMs, Signal 

PDA 

Argon Ion laser "+' 

Figure 4-13: Schematics of the PDA vessel 
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4.3.5. Traversing system 

The transmitting and receiving optics are mounted on the same horizontal aluminium 
beam. This beam is mounted on a three-way translation stage to allow for displacement 

in all directions. The stage is motorised and the coordinates are input to the Test-rig 

computer. In the same way as the other vessel, the stage must go to a reference point 
before being operated. The point of origin is set manually at the injector tip. This is 

done by inserting a specific blank with a small needle in replacement of the injector 

mount. The design is such that the tip of the needle is at the location of the injector tip. 

The traverse system is adjusted so that the measurement volume hits the tip of the 

needle. The precision is t250pm. 

4.3.6. Tuning 

A monodisperse spray from a water nebuliser was used for the fine adjustment of the 

system. It allowed an accurate positioning of the receiving optics, by checking the 

collected data along with the collection rate (typically 90% and more). 

4.4. Test rig operation 
The test-rig can be operated either manually or in automatic mode. 
Each vessel is controlled by its individual Test-rig computer. This computer controls the 

conditioning of the vessel and the fuel, the movement of the traverses and also triggers 

the injector: it is the experiment master. 

Each rig then has a specific computer for the laser diagnostics which run as slaves. 

4.4.1. Manual mode 

The manual mode allows set-up of the experiment and adjustment of the optics for the 

injection measurements. In this mode, the user sets all the parameters remotely. The 

conditioning of the vessel (Pressure, Temperature and Flux) is done using the windows 

shown in Figure 4-15. The user fills the fuel pump by opening and closing a series of 

valves and inputs the pressure (see Figure 4-16). The injection is triggered using the 

window illustrated in Figure 4-14 in which the user inputs the injection duration and 

repetition rate. 
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Figure 4-15: Pressure and temperature settings in the manual mode 
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Figure 4-16: Fuel Pump schematics and parameters in the manual mode 

4.4.2. Automatic mode 

Once the setup is complete, the rig can be operated in automatic mode. 

In this mode, the user inputs the vessel's conditioning parameters in a line on the Test- 

rig computer (see Figure 4-17). Each line represents one set of measurements. 

The parameters are: 

" the vessel's Pressure and Temperature 

" the fuel's Pressure and Temperature 

" the translation stage's position 
" the injector voltage, injection time and frequency 

There is a serial communication protocol to exchange data between the two PCs, 

consisting of 4 commands (status, start, break, end) and 3 statii (ready, busy, error): the 

Test-rig computer (master) continuously sends commands to the diagnostics computer 

(slave) and checks the slave's status. Each command has to be answered within a few 

seconds, otherwise the test-rig PC (master) will switch the rig off. 
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Figure 4-17: Automatic mode - vessel parameters 

Once the experimental parameters have been set, the diagnostics computer (slave) is set 

to a Standby mode (status "ready"), waiting for the Test-rig computer (master) to reach 

the conditioning parameters of the vessel. The conditioning sequence starts with the 

release of Nitrogen into the chamber. First, the valves stabilise the pressure and the 

purging flow. The heaters then heat up the Nitrogen whilst the valves are continuously 

adjusted to maintain the pressure and the flow. When the nitrogen has reached a stable 

temperature, the fuel is conditioned to the desired temperature. Once the conditioning is 

stabilised (± 3%), the fuel pump is filled. When the pump has reached the desired 

pressure, the master computer tells the slave computer it is ready to start. As soon as the 

slave is ready, it gets a new command, and measurements can begin. At this point the 

slave status becomes "busy". The injection proceeds until the diagnostics computer has 

finished the data acquisition for this conditioning line. At this point, the slave computer 

changes its status to "ready" and the Test-rig computer moves to the next conditioning 

parameters. The end of the measurements is indicated by a0 at the beginning of the next 

line. At that point, the rig releases the pressure and maintains a flux until the heaters are 

cooled down. 
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Figure 4-18: Schematics of the Master-Slave computer 

communication in the automatic mode 

In the meantime the rig-PC has 15 threads running to control the rigs hardware and is 

surveying 6 safety loops. The rig-PC is also connected to an 1/0-profibus delivering 

data from sensors (temperature, pressure, fuel levels, water flow, etc. ), pneumatic 

valves, actors and pumps. In addition to the profibus, the rig-PC is connected by TCP/IP 

with 10 units controlled with a serial RS232 or RS485 interface such as gas flow valves 

and throttles, silicon oil conditioners. Timings and the pump control is done by a 

separate controller connected via a CAN bus to the PC. Above all there is a SPS acting 

as profibus master. Safety features are all SPS controlled. 
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Chapter 5 

Measurements and Results 

This chapter presents the results obtained from the experiments carried out in BMW 

AG's BDE-OP test-rig in Munich. The aim was to find the best tracer mixture for the 

LSD technique applied to an evaporating GDI spray. First, the GDI injector and the 

Pressures and Temperatures conditions for the measurements are introduced. This is 

followed by the presentation of the experimental procedure and data processing for the 

LSD and the time-resolved PDA techniques. Finally a comparison of the two is 

presented and the validity and limitations of the techniques are discussed. 

5.1. Introduction 

A GDI spray from a swirl injector was investigated at 5 different Pressures and 

Temperatures. These conditions were chosen to represent both realistic in-cylinder 

conditions and different boiling regimes (see Figure 5-1). 
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Figure 5-1: Saturated Pressures of various compounds - Engine conditions 
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These conditions are: 

" Ol bar - 25°C 

" 03bar - 135°C 

" 05bar - 195°C 

"l Obar - 295°C 

" 15bar - 360°C 

The injector used in this work was the Bosch 70°/00 high pressure swirl injector. It is a 

needle-type injector, with an axisymetric spray (�=0°) and a cone-angle of cr70°. 

"` ý_ 
I 

Figure 5-2: Injector a and y angles 

The delay between the electronic injection signal (or Electronic Start Of Injection - 
ESOI) and the Optical Start Of Injection (OSOI) was measured using Mie scatter 
images. The "Offset" parameter was set to Oms and images were iteratively taken at 

various times after OSOI (in this case ESOI=OSOI), until two consecutive images 

showed the absence and the presence of fuel respectively. For this Bosh swirl injector, 

the "dead-time" was measured to be 0.68ms ± 0.025ms (i. e. 4%). 

The injection duration was set to 1.5ms. Five different times After Start Of Injection 

(ASOI) were chosen: 0.7ms, 1.2 ms, 1.7ms, 2.2ms and 2.7ms. These times represent the 

different phases in the development of the spray. 
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5.2. LIF/Mie scatter measurements for the LSD technique 

5.2.1. Fuel/tracer systems 

5 different tracer systems were tested, 4 of which consisted of different mixtures of 3- 

Pentanone and 2-Hexanone in Iso-Octane: 

" 2.0% Pentanone - 98% Iso-Octane 

" 1.0% Pentanone - 1.0% Hexanone - 98% Iso-Octane 

" 0.5% Pentanone - 1.5% Hexanone - 98% Iso-Octane 

" 2.0% Hexanone - 98% Iso-Octane 

As will be discussed at the end of the chapter, these 4 tracer systems were limited by 

vapour contribution to the fluorescence signal. An Exciplex system developed by Fröba 

et al. (1998) was used as the 5`h tracer mixture: 

" 2% TEA - 3.4% Benzene - 94.6% Iso-octane 

To change the fuel/tracer mixture, the tank must be completely emptied and washed to 

avoid contamination. The tank was not designed specifically for this. Instead, the 

mixtures were prepared in glass bottles, and the pipe from which the mixture is drawn 

from the tank was inserted into the bottle. 

For each change in the tracer system, a sequence of operations was carried out to ensure 

sure that the next measurement campaign did not contain residuals from the previous 

mixture. This consisted of 

" Removing the fuel pipe from the glass bottle 

" Letting the previous tracer/fuel mixture run out from the pipe 

" Inserting the pipe in the next glass bottle 

" Filling the fuel pump 

" Emptying the fuel pump directly into the waste tank 

" Filling the fuel pump a second time 

" Injecting the fuel into the rig until the pump was empty 

" The pump was filled a third time and the fuel was injected until the pump was 

empty. 
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The images of the injection after the 3d pump filling showed a stable fluorescence 

signal, suggesting that the previous fuel was completely evacuated from the system. 

With the new fuel in place, images were recorded. The LIF intensity varied from the 

previous mixture, due to the difference in fluorescence yield and tracer concentrations. 

The LIF path contained a BG4 filter to attenuate any 266nm light and Mie scatter from 

the 532nm light present in the pressure vessel. In the case of the Exciplex mixture, the 

liquid phase fluorescence was selected using the WG335 long-pass filter, rejecting the 

spectrum below 335nm. The Mie scatter light path was accordingly attenuated so that 

the Mie scatter intensity matched that of the LIF signal. The filters used are found in 

Table 5-1. 
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Figure 5-3: Transmittance of the BG4 and GG400 filters and their combination 

Tracer composition ND filter Filter in LIF path 
2.0% Pentanone 3+0.2-3.3 BG4 

1.0% Pentanone 
3+0.6-3.6 BG4 

1.0% Hexanone 

0.5% Pentanone 
3+0.6-3.6 BG4 

1.5% Hexanone 

2.0% Hexanone 3+1-4 BG4 

2.0% TEA BG4 
3+1+0.3-4.3 

3.4% Benzene WG335 

Table 5-1: Filters for the different tracer systems 
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The alignment of the 4-mirror setup and the intensified camera was done for the first 

tracer mixture. For the other mixtures, only the filters had to be changed. Each filter 

change modified the light paths. Therefore, a new spatial calibration was carried out for 

each new mixture. 

5.2.2. Experimental Settings 

Because of the limited capacity of the fuel pump, 80 images were recorded for each of 

the 5 timings. This allowed the experiment to proceed with the recording of the 5 

different sets in a single run, without having to refill the pump and interrupt the 

experiment. 

An injection frequency of 1Hz was chosen. A frequency of 2Hz was tested, but the 

fluorescence image suffered from contamination by vapour remains from the previous 
injection. 

The calibration images enable the positioning of the Mie scatter and LIF images in 

identical locations in two separate images. It also determines the resolution of the 

image. The injector tip was set as the reference point. This procedure involved 

determining the pixel co-ordinates of the tip, and its accuracy was within l pixel, i. e. 
WORM. 

Bosch 700/00 Swirl Injector 

Fuel Pressure 80 bar 

Injection duration 1.5ms 

Injection Frequency 1 Hz 

Start of imaging 0.7ms ASOI 

End of imaging 2.7ms ASOI 

Increment 0.5ms 

Number of timings 5 

Injector dead-time 0.68ms 

Images recorded 80 

Table 5-2: Injection and imaging parameters 
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5.2.3. Experimental Procedure 

With the calibrated optical system in place and the laser sheet adjusted, the parameters 
for the test-rig computer and the imaging computer were set. The first step required the 

adjustment of the laser. This consisted in: 

" Warming up the laser for 20 minutes 

" Optimising the laser power by adjusting the doubling crystals 

" Letting the laser run for another 15 minutes 

" Checking the laser power and adjusting if necessary 

Once the laser power was stable, the imaging computer was set to the "Ready" status by 

setting the software to "External trigger" and pressing the "Start" button. 

The measurement was then initiated by pressing the "Start" button on the test-rig 

software. 

The laser power was monitored on-line. If the case of large laser fluctuations, the laser 

power could be readjusted. 

Between two sets of measurements (i. e. when the pressure vessel was conditioned to the 

next set of Pressure and Temperature), the laser power was checked and adjusted if 

necessary. 

5.2.4. Image Processing 

For each measurement condition, the intensifier was set to a fixed gain. A background 

image was recorded with the laser firing inside the pressure vessel, without injection. 

This background image was automatically subtracted to the images. 

For each time step, the dual images were then averaged, separated and corrected for 

geometrical alignment. 

An additional background value was subtracted to account for spray-induced 

background. This value was determined by averaging the intensity of a selected region 

around the spray for each image. 

The images were then masked by setting all intensities below a threshold (typically 10 

counts) to 0. 
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Figure 5-4: Image processing of the Mie scatter (left) and LIF (right) images 

Because the spray was nearly axisymmetrical, the data from one half of the spray was 

extracted. Due to the interference of side reflections with the left part of the 

fluorescence image, the right half of both images was chosen. However, the mirrors in 

the system invert the images from right to left. Therefore, the data extracted in the right 

half of each image corresponded to the half spray, left of the injector tip. 

The average LIF and Mie scatter images can be found in Appendix A. 
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5.3. PDA Measurements 

The aim of the PDA experiments was to obtain local SMDs in the spray for the same 
five Pressure and Temperature conditions, in order to calibrate and analyse the data 

obtained from the LSD measurements. 

5.3.1. Measurement grid 

Measurements were carried out along a grid, with a vertical spacing of 5mm. The 

horizontal spacing varied in order to obtain a minimum of 50 measurement points for 

each condition. 

To minimise the distance travelled through the spray, the measurement volume was 

moved in the "(O, y, z) , y<O " vertical half plane, located below the injector tip and 

closest to the receiving optics. However, the measurements in the "Mie/LIF" pressure 

vessel were performed in the "(O, x, z) , x<O " half plane. Therefore, the injector was 

rotated 90° anti-clockwise for the PDA measurement. 

"We-LIF" PDA 

\i 
Y L 
zx 

Figure 5-5: Measurement half planes (red) for the LSD and PDA techniques 

lbar 

25°C 

3bar 

135°C 

5bar 

195°C 

10bar 

295°C 

15bar 

360°C 

Grid - VxH (mmxmm) 4x5 3x5 3x5 2.5 x5 2x5 

Measurement points 64 74 56 54 49 

Table 5-3: Grid size and measurement points 
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The grid size intervals and the measurement points were determined using the Mie 

scatter images previously obtained for the same spray. 
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Figure 5-6: Measurement points in the grid 

133 



5.3.2. Downmix / Sampling frequency settings 

The photodetectors transfer the light into an electrical signal which is read out by the 

digital processor. The incoming raw signal from the PMs is first high-pass-filtered to 

remove the pedestal. It is then log-amplified to obtain a nearly squared signal from the 

Gaussian signal. The signal's frequency is proportional to the velocity of the detected 

droplet, offset by 40MHz due to the moving fringes. 

To increase the signal-to-noise ratio (SNR), the user sets a downmix and a sampling 

frequency. This allows a quadrature mixer to downmix the signal to a lower frequency, 

after which a band-pass filter is applied. 

Before running the rig in automatic mode, the optimal setting for each measurement 

point was determined. For this, the rig was operated in manual mode. At each Pressure 

and Temperature condition, the measurement volume was positioned at the various 
locations of the grid. At each location, PDA measurements were performed with the 

widest filter possible until sufficient data was plotted on the real-time diameter vs. 
frequency graph to determine the smallest filter width applicable. 

For each conditioning, the points were grouped by downmix frequency setting. 

5.3.3. Timing 

To reduce the file sizes, the PDA software can filter the data temporally. The LSD 

technique was applied at timings ranging from 0.7 to 2.7ms after optical start of 
injection (OSOI). The PDA data was therefore filtered around that range, with a 
tolerance of 0.2ms. Because the PDA reference point corresponds to the electronic start 

of injection (ESOI), the PDA temporal window was set between 1.18 and 3.58ms. 

ESOI OSOI 

ý 

1 

0.68ms 1 

injector 
dead time 

t 

t=O for PDA 

Ti T2 T3 T4 

11 

11 

:,, (0.2ms 

fl for LSD 

T5 

0.2mm: : 

Figure 5-7: Trigger and Temporal filter (blue) for the PDA data acquisition 
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5.3.4. Measurement procedure 

The Argon-Ion laser was first warmed up and the power was then adjusted. 

The measurement positions were input in the test-rig computer's conditioning table. For 

each Pressure and Temperature setting, the measurement points with the same 

downmix/sampling frequency setting were regrouped in tables. The PDA software was 

run in coincidental mode, which compares the 2 diameters measured by the dual PDA 

system, and only validates the events where both diameters are similar. 

The rig was then operated in automatic mode. From one line to the next, the 

conditioning was released at the end of the data acquisition. This allowed sufficient time 

to check and adjust laser power between two runs. 

At the end of the run, the software creates a file. A 5-line header indicates the position 

of the measurement volume in the spray as well as the parameters measured. Following 

the header, each line contains the information about each validated PDA event. 

Each line contains 4 parameters: 

" the time t after ESOI at which the droplet was detected (in ms) 

" the vertical speed vZ (in m/s) 

" the horizontal speed vy (in m/s) 

" the diameter D of the droplet (in µm) 

DXEX v1 
C: \PDA-Messungen\B_Swirl_r=0-16. Ida 
Thu Mar 25 16: 23: 41 2004 
0,00 mm; -4,00 mm; 64,00 mm 
"Time [ms]" "LDA1 [m/s]" "LDA2 [m/s]" "D [um]" 
1,228 63,80 4,82 #N/A 
1,231 60,66 4,22 3,9 
1,237 85,85 20,82 16,4 
1,238 77,98 17,38 #N/A 
1,246 60,85 6,21 5,4 
1,248 59,96 5,41 7,7 

Figure 5-8: Example of a PDA data file for 1 measurement point 

The PDA data was used to calculate the SMD of droplets for the five timings at each 

measurement point. 
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5.3.5. Time selection 

The LSD technique freezes the spray and allows the measurement of the SMD of 
droplets present in one pixel at a specific time (e. g. T=1.2ms AOSOI). On the other 
hand, the PDA measurement technique does not freeze the spray: it analyses the passage 

of a droplet through the measurement volume, and indicates the time at which the event 

occurred. These two techniques are intrinsically different. Therefore, the PDA data must 
be carefully selected to match the LSD measurement. One method of freezing the PDA 

data in time could consist of selecting the events which occurred specifically at that 

time. However, a more appropriate way of matching the PDA data to the LSD 

experiment is to select the droplets which would be present in the LSD measurement 

volume at the time of interest. Because the pixels are binned 2 by 2, the actual LSD 

measurement volume is larger than the PDA's. Therefore, droplets detected by the PDA 

system just before or after the time of interest (e. g. 1.204ms or I. 997ms) might be 

located within that volume at the time of interest (1.2ms). 

The measurement volume has the shape of an elongated rugby ball, of horizontal and 

vertical axis measuring -900µm and -100µm respectively. Due to the slit in the 

receiving optics (50µm for the TSI system), the effective measurement volume is a 
cylinder of diameter -I OOµm and a height of 50µm (see Figure 5-9). 

Figure 5-9: PDA measurement volume 

For each event, the PDA data provides the horizontal and vertical speeds of the droplet 

(vy and vZ respectively). Assuming that the droplet's speed remains constant over small 
distances, the location of a droplet shortly before and after the event can be determined 

(see Figure 5-10). If a droplet is spotted before or after our time of interest (at T'=T 

8t), between T and T', the droplet will have had a horizontal and vertical displacement 

by=vy. St and bz=vv. 6t respectively. If these displacements are both smaller than 100µm 
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the droplet was present at the time of interest in the measurement volume used for the 

LSD experiment. 

T LSD measurement 

volume (4 pixels) 
i 

z 

Sze 
T+or PDA 

00 measurement 

Ht&: 
I:: 

Figure 5-10: Cutaway section of the measurement volumes 

However, the distance criterion chosen for the time-resolved data can be an issue. In a 
highly evaporating environment, or for very small droplets, the diameter may evolve 

within the allowed displacement. Also, as the sampling size is changed, it is possible 

that erroneous diameters appear or disappear, thus creating large variations in SMD. For 

this reason, the SMD data was time-resolved using 3 displacement tolerances: 50,100 

and 150µm. The 100µm displacement was used as the reference, the two others served 

as indicators of the accuracy/stability of that reference. The variation in SMD was used 

as a criterion for selecting the final data and was defined as: 

AO = max 
I SMD5°,,,, - SMD, oo,,,, 

II SMD150,,,, - SMDIOOII�P 

SMD, OOP,, SMD, O,,, 

Equation 5-1 

5.3.6. Data processing 

A programme was written in C++ in order to extract time-resolved SMD from the PDA 

data. The programme consists of reading out a line, verifying that the line is valid, and 

separating it in the 4 parameters: time, vertical speed, horizontal speed and diameter). 
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The velocity data then allows to check whether the distance travelled between the event 

and a time of interest is within the distance criteria. If so, the diameter is stacked in an 

array. At the end of the file, this array then allows the calculation of the time-resolved 

SMD and PDF of each measurement point. 

Start 

Open File 
771 

Read out next line 

Line complete? no 
yes 

Separate parameters 

Time Valid? no 
yes 

Stack parameters 

Last line ? no 
yes 

Calculate SMD 

Last file? 
no 

yes 

Export SMD and PDF 

End 

Figure 5-11: Program Structure for PDA data Processing 

The SMD values and corresponding sample sizes were transferred to a spread sheet and 

were placed in a table, representing their position in the half spray (see Appendix B). 
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5.3.7. PDA accuracy 

Because the spray was very dense, the validation rate and therefore the number of 

samples obtained was low. The time selection further reduced the samples. Typically, 

the time-resolved SMDs were calculated with samples ranging from 1 to 1000 droplets, 

most samples containing less than 100 droplets. Therefore, the validity of the PDA data 

must be studied closely to ensure statistical accuracy with low samples. This is crucial, 

as the SMDs obtained with this technique were used as the reference to validate the 

LSD technique. 

For comparison purposes, measurements were performed with 2 different PDA systems 

for the lbar-25°C case. This enabled to study the validity of the PDA data. In Figure 

5-12, all the time-resolved SMDs from the TSI system are compared to the SMDs 

obtained at the same point with the Dantec system. The SMDs were calculated with an 

allowed displacement of 100µm. The diagonal indicates is the y=x line, and the dotted 

lines above and below indicate +15% and -15% variation respectively. The colours 
indicate the time ASOI. 
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Figure 5-12: TSI-Dantec SMD variations for all measurement points 

The comparison shows that out of the 166 points compared, only 75 (-'/z) agree within 

15% variation. This raises 3 issues: is the PDA data reliable? When both TSI and 

Dantec data are available, can they be filtered to ensure reasonable accuracy? How can 

one ensure accuracy when only TSI data is available? 
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By selecting the data where both SMDs showed less than 15% variation for the three 

distance criteria (i. e. AO <15%), most of the points outside the 15% deviation are 

eliminated (see Figure 5-13). 
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Figure 5-13: TSI-Dantec SMD variations for all measurement points 

with Ao <15% 

This process also eliminated 18 points which previously agreed within 15%. This 

suggests that the remaining points might still contain errors, and that further filtering is 

required. 

To better understand the discrepancies between the two measurements, the droplet size 
distribution were studied at each measurement point and for each timing. These 

distributions can be found in Appendix C. 

5.3.7.1. Filtering using 2 data sets 

The TSI and Dantec data can be considered reliable if both measurement systems give 

similar droplet size distributions for the same point. Because of the number of 
distributions, a study was carried out to determine the parameters which could be used 

to automatically filter/eliminate the measurements which yielded different size 
distributions. A few distributions at different measurement points (MP) are represented 
below to illustrate the different cases encountered. The blue distributions are obtained 
from TSI data and the red distributions from the Dantec system. 
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Three types of cases were found: 

1. the distributions and SMDs both do not match 

2. both distributions and SMDs match 

3. the SMDs match but the distributions are different 

A variable representing the variation of SMD was defined as: 

ASMD = 
SMDD,, 

niec - 
SMD, s, 

SMD, s, 

Equation 5-2 

In case n°1, illustrated by MP 19 (see Figure 5-14) and MP 49 (see Figure 5-15), the 

ASMD are 31% and 33%. These measurements can be eliminated by setting a maximum 

allowed value for OSMD. 
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Figure 5-14: PDF for MP 19 (y=12, z=20) at 0.7ms ASOI 
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Figure 5-15: PDF for MP 49 (y=16, z=30) at 1.2ms ASOI 
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An issue arises when the SMDs are similar. For this case, another variable must be used 

to separate the measurement points with different distributions from those with similar 

distributions. 

It was found that matching SMDs which had both been calculated from higher sample 

sizes showed similar distributions (see Figure 5-16, Figure 5-17 and Figure 5-18). 
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Figure 5-16: PDF for MP 2 (y=0, z=10) at 2.2ms ASOI 
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Figure 5-17: PDF for MP 62 (y=8, z=60) at 2.7ms ASOI 
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Figure 5-18: PDF for MP 1 (y=0, z=5) at 2.2ms ASOI 

142 



On the other hand, when at least one of the two sample sizes was low, the distributions 

were different (see Figure 5-19 and Figure 5-20). 
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Figure 5-20: PDF for MP 14 (y=12, z=25) at 2.7ms ASOI 

For both these cases, the SMDs were similar within 9%, and the AO were both low. The 

dissimilarities in distributions can be attributed to the low number of droplets used to 

determine the SMD. In the case of MP 31, the TSI data is low, whereas in the case of 

MP 14 the Dantec data is low. 

These examples illustrate that the sample size should also be used to filter the data. 

They also demonstrate that one system does not systematically detect more droplets 

than the other. Therefore, a minimum sample sizes for both distributions must be 

considered simultaneously. 
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Figure 5-19: PDF for MP 31 (y=12, z=35) at 1.7ms ASOI 
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Measurement point MP 60 (see Figure 5-21) showed the case where the distributions 

were different for high sample sizes (>100) with a ASMD of 17%. 

On the other hand, MP 12 (see Figure 5-22) showed the case of different distributions 

for a ASMD of 15% but where the SMD had been calculated with 58 droplets. 
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Figure 5-21: PDF for MP 60 (y=12, z=55) at 2.7ms ASOI 
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Figure 5-22: PDF for MP 12 (y=4, z=25) at 2.7ms ASOI 

By setting the highest allowable value of ASMD and A4 to 15% and the minimum 

sample size to 60 droplets, the remaining data (21 points) had matching SMDs and 

distributions. 
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5.3.7.2. Filtering using 1 data set 

Figure 5-23 illustrates the PDA points validated with ASMD < 15%, AO < 15% and a 

minimum sample size of 60 droplets. 
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Figure 5-23: TSI-Dantec SMD comparison 

ASMD < 15% - Samples > 60 droplets - A#< 15% 

By keeping the same minimum number of samples and A0, but without imposing a 
ESMD (see Figure 5-24), 16 new points appeared. 
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These points were identified as: 

" 0.7ms: MP 29,34,23,24,14 

" 1.2ms: MP 30,49 

" 1.7ms: MP 35,36, 

" 2.2ms: MP 3,55,58 

" 2.7ms: MP 62,30,31,32 

Their variation and distribution were studied (see Table 5-4). It was found that 78% had 

resembling distributions. The standard deviation for these 37 points was 27%. However, 

the only point showing a variation well over 35% (MP 32 - see Figure 5-25) displayed 

the unique case of nearly resembling distributions, one of which contained isolated 

samples bigger than 26µm. If this point was eliminated, the deviation of the 36 points 

dropped to 15%, which is very acceptable considering the density of the spray. 

LSMD 0-15% 15-20% 20-25% 25-35% 30-35% +35% 

Number of points 21 8 3 2 2 1 

Matching Distribution 21 4 3 0 1 9 

Table 5-4: PDA data points for Samples > 60 droplets and Ao< 15% 
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Figure 5-25: PDF for MP 32 (y=16, z=35) at 2.7ms ASOI 

lt was concluded that in the Case where only one set of PDA data was available, the 

SMDs selected as references would be the ones calculated with a minimum of 60 

droplets, and with a AO < 15%. 
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5.4. LSD - PDA Comparison 

5.4.1. Calibration Constant 
Theoretically, the division of the LIF and Mie scatter intensity is proportional to SMD. 

This can be expressed as: 

SMD D(i, J)= C. 
1LIF0, f) 
I Mie 

(l 
/ 

Equation 5-3 

where C is the calibration constant which needs to be determined. 

Using the SMD obtained with PDA as a reference, the local relative error in SMD 

measured by LSD can therefore be defined as: 

_ 
SMDLSD (i, J) - 

SMDPDA (i, 

.J1 Eýle Jý - SMDPDA (i, j) 

Equation 5-4 

For N points, the most appropriate calibration constant is obtained by minimising the 

relative errors. This can be done by minimising the error's deviation from zero: 

£(l, j 
6_N 

EN 

Equation 5-5 

For every pressure and temperature setting and for each tracer system, a spread sheet 

was created to calculate the deviation. 
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The sheets consisted of 

" SMD and sample size for a distance criteria of 50µm from TSI data 

" SMD and sample size for a distance criteria of 100µm from TSI data 

" SMD and sample size for a distance criteria of 150µm from TSI data 

" SMD and sample size for a distance criteria of 50µm from Dantec data 

(only at lbar-25°C) 

" SMD and sample size for a distance criteria of 100µm from Dantec data 

(only at 1 bar-25°C) 

" SMD and sample size for a distance criteria of 150µm from Dantec data 

(only at I bar-25°C) 

" LIF data 

" Mie scatter data 

The spreadsheet was structured so that the data could be filtered by selecting 

" the minimum number of droplets in the PDA samples 

"a maximum value for OSMD (only at lbar-25°C) 

"a maximum value for A0 

For the 1 bar-25°C case, the reference SMDs were calculated by averaging the SMDs 

obtained from the TSI and Dantec systems: 

ýi SMD, s, 
(i, j) + SMDD�«c (i, SMD j 

PDA ý 
j) =2 

Equation 5-6 

For a given calibration constant, the spread sheet would give: 

" The deviation (QE ) 

" The number of points compared 

"A plot of the filtered SMDs obtained with PDA versus the SMDs obtained with 
the LSD technique. 

Calibration constants were determined by minimising the deviation. 
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For a given tracer system, the calibration constant should be constant. Due to the 

confidence in the PDA data for the lbar-25°C case, it was obvious that the calibration 

constant should be determined using the LSD data obtained in the lbar-25°C case. 

Calibration PDA-LSD 
Tracer composition 

Constant (C) Deviation (o, ) 
2.0% Pentanone 18 25% 

1.0% Pentanone 
23 23% 

1.0% Hexanone 

0.5% Pentanone 
34 22% 

1.5% Hexanone 

2.0% Hexanone 27 26% 

2.0% TEA 
78 32% 

3.4% Benzene 

Table 5-5: Calibration Constant for the different tracer systems 

5.4.2. Results 

The results are presented as a comparison of the SMD obtained from the PDA data 

plotted against the SMD obtained with the LSD technique. The continuous grey line 

represents the y=x line (i. e. where PDA and LSD agree). The doted lines around the 

grey line are variations. In the 1 bar-25°C case, these lines represent ±15%. For all other 

cases, they represent ±20%. 

The colours indicate the time ASOI. 
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Figure 5-27: PDA-LSD comparison at 3bar -135°C 

x/y/z t* x% 3-Pentanone - y% 2-Hexanone - z% Iso-Octane 

Exciplex t* 2% TEA - 3.4% Benzene - 94.6% Iso-Octane 
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Figure 5-28: PDA-LSD comparison at 5bar -195°C 

x/y/za x% 3-Pentanone - y% 2-Hexanone - z% Iso-Octane 
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Figure 5-29: PDA-LSD comparison at 10bar - 295°C 

x/y/zq x% 3-Pentanone - y% 2-Hexanone - z% Iso-Octane 

Exciplex p 2% TEA - 3.4% Benzene - 94.6% Iso-Octane 
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Figure 5-30: PDA-LSD comparison at l5bar - 360°C 
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The tracer systems composed of a mixture of the two ketones displayed two types of 
behaviours which enabled to categorise them into 2 groups: 

1. the 3 tracer systems which contain 2-Hexanone 

2. the 3-Pentanone/Iso-Octane mixture 

The Exciplex system was expected to eliminate the overestimation of the SMD obtained 

with the LSD technique. The results show this was not achieved. This behaviour is 

explained further in the analysis of the results. 

The analysis is carried out by looking at two issues: 

" the discrepancies between the PDA and the LSD results 

" the variations of LSD relative to the tracer systems. 

Generally, the 5 following behaviours were noticed: 

" Good agreement for all tracers at atmospheric conditions, within 30% variation. 

" Above atmospheric conditions, the LSD technique showed an increasing 

overestimation of the SMD for later stages of the injection. 

" The LSD technique showed an increase of the overestimation of the SMD as the 

environment became more superheated 

" From 3bar-135°C to 10bar-295°C, the SMD obtained were higher from the 

Exciplex and 3-Pentanone/Iso-Octane mixtures at the later stages 

" At l5bar and 360°C, the overestimation of the SMD level out. 

For all tracer mixtures, the results obtained at Ibar and 25°C do not show extreme 

variations between the PDA and LSD technique. The best tracer systems are the 

1.0/1.0/98 and 0.5/1.5/98 mixtures. 

At 3bar and 135°C, the is` group matches the PDA data much better than the 2d, 

especially in the later phases of the injection. The best results are still obtained with the 

1.0/1.0/98 and 0.5/1.5/98 mixtures. As the conditions evolve toward the superheated 

regime, the discrepancies between PDA and LSD results worsen as the injection 

progresses. Also, for the 5bar - 195°C and lobar - 295°C cases, the variations in SMD 

between group 1 and 2 increase. However, at 15bar and 360°C, all systems show the 

same order of variation. 
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5.5. Analysis 

The discrepancies between the results obtained with the LSD technique and the PDA 

technique can be caused by three factors: 

9 The LIF signal 

" The Mie scatter signal 

" The PDA data 

The variation of LSD data relative to the different mixtures can only be explained by the 

LIF or Mie scatter signals. Because the tracer concentrations in Iso-Octane were very 

weak (only a total of 2% for the 3-Pentanone / 2-Hexanone mixtures), the spray (i. e. the 

droplets' evolution) was expected to be independent of the fuel mixture. Therefore the 

variation in SMD from one mixture to another can be attributed predominantly to the 

fluorescence. 

To better understand these variations in fluorescence, 3 issues must be examined: 

" fluorescence yield 

" vapour phase contribution to the LIF signal 

9 evaporation regime 

5.5.1. Fluorescence yield 

The fluorescence is proportional to the amount of tracer and also to the fluorescence 

yield. The behaviour of 3-Pentanone's fluorescence in various environments is well 

documented for several UV excitation wavelengths (Wolff et al. (1995), Grossman et al. 

(1996), Fujikawa et al. (1997), Ossler and Alden (1997), Koch and Hanson (2003) - see 

Figure 5-31). 

However, 2-Hexanone's fluorescence behaviour is not documented. Han and Steeper 

(2002) have also looked at mixtures of ketones (3-Pentanone and 3-Hexanone) to 

produce co-evaporating tracer systems. They studied the fluorescence of two tracer 

systems for a 266nm excitation wavelength and found that the normalised fluorescence 

of the mixture containing only 3-Pentanone decreased less than the fluorescence of the 

tracer system containing a mixture of the two ketones (see Figure 5-32). This suggests 

that the fluorescence of 3-Hexanone decreases more with temperature than with 3- 

Pentanone. The same can be assumed between 2-Hexanone and 3-Pentanone. 
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Figure 5-31: Temperature dependence of 3-Pentanone Fluorescence in 

atmospheric Nitrogen - Koch and Hanson (2003) 
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Han and Steeper (2002) 
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These graphs suggest a decrease of fluorescence with temperature. They do not justify 

the increase of the LIF signal. 
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5.5.2. Vapour phase fluorescence 

At atmospheric conditions, 3-Pentanone's liquid phase is 210 times denser than the 

vapour phase. 2-Hexanone's liquid phase is 180 times denser. Prior to the experiments, 

the vapour phase fluorescence was therefore assumed to be negligible compared to the 

liquid-phase fluorescence. 

However, for conditions above the saturation curve, all tracer systems displayed an 
increase of the fluorescence signal in time, relative to the Mie scatter signal. As the 

conditions evolved towards more superheated regimes, this increase became larger. This 

suggests a significant vapour contribution to the signal. 

u 1000 2000 
NONE OF 

Figure 5-33: LIF and Mie scatter images at 5bar and 195°C 

If the local fluorescence signal is separated in a liquid phase and a vapour phase signal, 

the local ratio of the fluorescence and the Mie scattering intensities in the LSD 

technique is: 
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LIF(i, j) 
_ 

LIF (i, j) + LIF,, (i, j) 
_ 

LIF, (i, j) 
+ 

LIF,, (i, j 
Mie(i, j) Mie(i, j) Mie(i, j) Mie(i, j) 

Equation 5-7 

The desired SMD would be the ratio of the liquid-phase fluorescence and the Mie 

scatter intensities. Defined as SMD', Equation 5-7 can be written as: 

LIF,. (i, j) LIF(i, j) 
_ SMD'(i, j)+ 

Mie(i, j) Mie(i, j) 

Equation 5-8 

Figure 5-34 is an illustration of Equation 5-8. At lbar and 25°C (i. e. low evaporation 

conditions), the vapour fluorescence is negligible, and the ratio of scattering intensities 

is close to the SMD determined by PDA. 
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Figure 5-34: Vapour contribution in the estimation of the SMD 

5.5.3. Evaporation regime 

When the vapour contribution to the fluorescence signal is at least of the same order as 

the liquid LIF, the second term of Equation 5-8 cannot be neglected. 

In the case of a 2-Hexanone/Iso-Octane mixture, for slow evaporation, the relative 

tracer concentration increases in the droplet. Therefore SMD' is expected to be 

High Evaporation 
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- ---------- ý' 
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overestimated. Any additional fluorescence intensity from the presence of vapour in the 

measurement volume will increase the overestimation (see Figure 5-35). 
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Figure 5-35: Differential evaporation and vapour phase contribution 

With the 3-Pentanone/Iso-Octane mixture, in the case of slow evaporation, the tracer is 

preferentially expelled from the droplet: SMD' is underestimated. At the later stage of 

the injection, the measurement volume contains not only vapour from the evaporating 

droplets present, but also vapour originating from the previous passage of "older" 

droplets. This may result in the mass of vapour being larger than the mass of the liquid: 

the tracer system which contains more fluorophore in the vapour phase will therefore 

give a larger apparent SMD. 

As the conditions evolve towards a homogenous evaporation regime, the contents of 

vapour will contain similar amounts of tracer. At that point the values of the SMDs 

should become independent of the tracer system. This is the case at I5bar and 360°C. 

However, at I Obar and 295°C, there were still noticeable differences between the tracer 

systems containing 2-Hexanone and the 3-Pentanone/Iso-Octane mixture. This suggests 

that even though the environment is superheated, the droplet's warming-up phase is not 

negligible, which limits the evaporation rate and allows for diffusion/differential 

evaporation. 
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5.5.4. Conclusion 

The work undertaken with tracer systems composed of various mixtures of 3-Pentanone 

and 2-Hexanone (i. e. 2 ketones with opposite vaporisation characteristics) showed that 

the LSD technique works well at atmospheric conditions. This is because the 

evaporation is weak, and the vapour can diffuse. This allows the amount of tracer in the 

vapour phase to be sufficiently low not to contribute significantly to the fluorescence 

signal. In this case, the ratio of LIF to Mie scatter signal is proportional to the ratio of 

Volume to Surface of the liquid phase, thus yielding close SMD, within 30% variation. 

With the increase in pressure and temperature, the technique still gives reasonable 

results for the early stage of the injection because the vapour content of the spray is not 

significant enough. However, the technique fails to deliver accurate SMD at the later 

phases of the injection. The increase in pressure causes the spray to collapse and limits 

the diffusion of the vapour. The rise in temperature generates vapour more quickly. 

These two phenomena explain the increase of the presence of tracer in the vapour phase, 

which increases the fluorescence signal relative to the Mie scattering signal. 

In a homogeneous evaporation regime, all tracers will yield the same SMD values. In 

the case of differential evaporation, the tracer with the lowest saturation pressure will 

generate more vapour phase fluorescence, and may give higher SMD than less 

evaporating tracers due to the presence of vapour from previous droplets. 

5.5.5. PLIEF to remove the vapour contribution 

The vapour phase contributes significantly to the fluorescence signal for conditions 

above atmospheric. To eliminate the vapour contribution to the LIF signal, an exciplex 

system was tested. The system showed similar results for the lbar - 25°C, where 

evaporation is not an issue. However, at 3 bar and above, the values of SMD increased 

in a similar way as the 3-Pentanone/Iso-Octane mixture. 

As the temperature is increased, the monomers' - i. e. the vapour phase's - emission 

spectrum is red-shifted. Furthermore, Kornmesser et al. (2001) showed that the 

fluorescence yield of the monomer increases by a factor of 4 between 20 and 100°C (see 

Figure 5-37). Also, both TEA and Benzene have much lower boiling points than the 
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other tracers and Iso-Octane itself (85 and 80°C respectively). The vapour phase will 

therefore contain much more tracer than with the other mixtures. 

These 3 effects contribute to amplifying the fluorescence in a spectral range that is not 

eliminated because the filter was not sufficiently selective. Therefore, the experiments 

should be carried out by selecting the fluorescence which occurs above 400nm. 
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Figure 5-36: Liquid-vapour emission spectra for the LIEF - Fröba et al. (1998) 
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Figure 5-37: Relative fluorescence intensities of the TEA/Benzene exciplex and 

monomer in Iso-Octane (Kornmesser et al. 2001) 

162 



5.5.6. PDA - LSD discrepancies 

The work shows that at atmospheric conditions, the evaporation is low and the tracer 

systems behave in a similar way. These conditions were expected to give matching 

results between the LSD and the PDA techniques. However, there are variations 

between the SMD obtained with the PDA and LSD technique. 

Le Gal (1999) suggested that for dense sprays, the multiple scattering effects between 

the laser sheet and collecting optics was responsible for the deviations of the LIF and 

Mie scatter signals from their d3 and d2 dependence respectively. It is believed that the 

multiple scattering is of second order, because it affects both signals: the effect of 

additional intensity caused by multiple scattering is attenuated in the ratio of the 

fluorescence and Mie scattering signals. 

Other problems lie in the fact that PDA is not an accurate tool for measuring dense 

sprays. The best measurements are done in parts of the spray where the number of 
droplets is sufficiently low to limit multiple occupancy. However, in these parts of the 

spray, the fluorescence and Mie scattering signals are low, and their SNR is high, 

yielding erroneous SMD. Therefore, where the PDA data provides reliable data, the 

LSD technique can not, and vice-versa. 

The variations in the results can be attributed to imperfections in the fluorescence 

signal, multiple scattering and the PDA technique. The validity of the surface 

dependence of the Mie scatter signal, however, was never questioned following the 

findings of Bachalo (1984) and the work by Sankar et al. (1996) where numerical work 
had showed that "for absorbing droplets, the scattered light intensity is proportional to 

the droplet diameter, especially for droplets greater than about I µm in diameter". 

Figure 5-38 shows numerical simulations by Domann and Hardalupas (2003) of 

Fluorescence and Mie scatter signal intensities using an excitation wavelength of 

514.5nm (Argon-Ion), scattering at 90° and a collection angle of 3.8°. The graphs show 

large variations of the Mie scatter signal from the d2 dependence (in red) for droplets 

smaller than 100µm in diameter. This suggests at best a good agreement for droplet 

diameters smaller than 50µm for an excitation wavelength of 266nm. On the other hand, 

the fluorescence signal agrees well with a' law. They found that n=2.996 for an 

absorbing droplet, which implies that the fluorescence signal will deviate from the 

droplet volume by a maximum of 2.5% for droplet diameters smaller than 50µm. 
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Figure 5-38: Fluorescence and Mie scatter intensity as a function of diameter 

(Domann and Hardalupas 2003) 

Following this, they numerically calculated the SMD obtained for single droplets using 
the ratio of the LIF and Mie scatter signals. By comparing it to the real SMD (in this 

case, the diameter), they obtained the calibration constant (K). Figure 5-39 displays the 

calibration constant as a function of size. Kfit represents the calibration constant if both 

signals followed the ideal volume and surface relationship. In the 20-50µm range, the 

error will be as high as 30%. The plot also suggests that the discrepancies worsen as the 

diameters get smaller. 
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Figure 5-39: Calibration constant for monodisperse droplets 

(Domann and Hardalupas 2003) 
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Figure 5-40 illustrates the errors that these variations create when the SMD is measured 
for different distribution of droplets. The error is smaller for distributions containing 
large droplets. In the case of the Bosch Swirl injector in this study, the distributions 

were usually of the Rosin-Rammler or Log-normal type, with a maximum droplet 

diameter of 50µm, similar to distribution (a) in Figure 5-40. This distribution gives an 

error of 31 %. 
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Figure 5-40: Error in Measured SMD for different size distributions 

(Domann and Hardalupas 2003) 

The comparison of the SMDs obtained with the LSD and the PDA techniques showed 

variations of this order of magnitude. 

5.6. Summary 

PDA measurements were carried out on a spray to study the validity of the LSD 

technique for in-cylinder conditions. 

Even though the PDA data was not necessarily reliable because of the nature of the 

spray, several issues were identified. 

The most important issue arises from the previously assumed result that the Mie 

scattering signal follows a d1 dependence. However, as was discussed, for the range of 
droplet diameters in this particular spray, the Mie scatter signal will deviate strongly 
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from that surface dependence, because the proportion of light emitted towards the 

collection optics varies strongly from one size droplet to the other. The integration of 

the signal over a droplet size distribution will attenuate these variations. Determining 

the calibration constant using PDA data from a similar droplet distribution will further 

reduce the discrepancies. Charalampous et al. (2004) have carried out such work using 

the geometrical approach and found the best accuracy was obtained for a 60° 

observation angle. Further studies could include computational work using the Mie 

scatter theory to simulate the intensities of the Mie scatter signal and determine the 

optimal observation and collection angles. 

The influence of multiple scattering and its contribution to measurement error is 

currently under investigation by Berrocal et al. (2005) for inhomogeneous polydisperse 

turbid media. 

In the case of high evaporation, discrepancies as high as 1000% were found, due to the 

contribution of vapour phase fluorescence. This can be dealt with by using an Exciplex 

system and by selecting an appropriate high pass filter to completely eliminate the 

monomers' fluorescence. 

In the case of high evaporation at high pressures, the increase in the SMD obtained with 

the LSD technique is actually an indication of vapour apparition, and can be used to 

compare evaporation rates between injectors. 

Experimentally, the best tracer system was the 3-Pentanone / 2-Hexanone / Iso-Octane 

mixture at proportions of 0.5 / 1.5 / 98 by volume. The maximum error was 30% up to 

5bar and 195°C. Above these conditions, the vapour phase contribution to the 

fluorescence signal is non negligible. However, in highly evaporating conditions, the 

droplet life-times are short because of their small sizes. In this case, the location of the 

vapour phase is more relevant to the combustion process. 
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PART III 

ENGINE SPRAY VISUALISATION MEASUREMENTS 
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Chapter 6 
Engine Measurements 

Several laser diagnostics techniques were applied to a GDI optical engine to 

characterise the spray for two injection strategies: early/homogenous injection and 

late/stratified injection. These diagnostics include PLIF measurements to determine 

equivalence ratio, simultaneous Mie scatter / LIF images in the LSD technique for 

calculating SMD, and PIV measurements using Mie scattering to determine droplet 

velocities. This chapter presents the optical engine and the experimental set-up. The set- 

up for each technique is described, and the results are analysed. 

6.1. Experimental Set-Up 

6.1.1. Engine configuration 
These experiments were carried out on a BMW single-cylinder research engine with 

optical access. The engine is composed of a Ricardo crank casing, an elongated engine 

block, an elongated piston, a fused silica annulus and the cylinder head (see Figure 6-1) 

and has a displacement of 499cc. 

The block has a 45° mirror mounted inside. The piston is elongated and hollow with 

intake and exhaust side walls removed, enabling the positioning of the 45° mirror 

directly under the cylinder axis. This allows optical access of the combustion chamber 

through a fused silica window located in the piston top. Previously, a bowl-shaped 

piston with a small centred window was used for wall/air-guided mixing. For these 

experiments, the piston is flat, allowing a large diameter window (50mm) and therefore 

favouring optical access rather than in-cylinder mixing (see Figure 6-2, Figure 6-3, 

Figure 6-4 and Figure 6-5). 
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Figure 6-1: Single cylinder optical research engine 
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Figure 6-4: Engine block and fused 

silica crown 

Figure 6-2: Complete Optical Engine 

Figure 6-3: Elongated and hollow 

piston 

I 

Figure 6-5: Piston head 

The engine has a 4-valve asymmetric pent-roof cylinder-head configuration to 

accommodate bigger inlet valves. One of the inlet valves is deactivated in order to 

create a swirl motion inside the cylinder. A spark plug is located at the centre of the roof 

line. A Bosch 70°/10° Swirl injector is located between the two intake valves (see 

Figure 6-6). 

e 
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Figure 6-6: A view of the cylinder head configuration 

Optical access in the cylinder is also possible through the fused silica annulus located 

between the engine block and the cylinder head. The 2 triangular sections of the 

cylinder-head also have fused silica inserts for optical access in the pent-roof region of 

the combustion chamber. 

Air enters the engine by passing through an air filter, an intake duct, a throttle body and 

finally an inlet plenum (see Figure 6-8). The entire length of the intake manifold is 

heated to 40°C using heating mats. The manifold pressure is measured in the inlet 

plenum. An additional injector (the calibration injector) is mounted approximately Im 

upstream of the intake. This allows to create a charge that is homogenously mixed 

before entering the cylinder. This system was designed by Berckmüller and O'Young, 

in 1996, but was not published before 2000 (Kelman et al. ). Ipp et al. (1999) used the 

same air intake system for their FAR-LIF experiments. 

The tracer/fuel mixture is stored in a tank and is pressurised in two stages before 

reaching the injector. First, the tanks are pressurised to 3bar using Nitrogen. The fuel is 

then delivered to the high pressure fuel pump. The 3-piston type pump is mounted on 

the top of the cylinder head and is belt-driven from the intake cam-shaft. The 

pressurised fuel is then fed into a pressure regulator before being sent to the injector 

(see Figure 6-7). 
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Figure 6-8: Air filter, intake, plenum 

Figure 6-7: Fuel Pump and Pressure chamber and calibration injector 

Regulator 

The engine is mounted on an English Electric dynamometer regulated by a Saftronics 

controller to provide constant speed, which was 1000 rpm for this set of experiments. 

The engine speed is regulated to a pre-set value by the controller of the dynamometer on 

which the engine is mounted. 

The engine's cylinder head is water cooled and its coolant is preheated to 70°C. The 

engine block is cooled by cold water. The oil is circulated from the crank-case to the 

cylinder-head via an independent electrical pump. The operating pressure is 4Opsi. 

The engine was designed for early GDI development work and was adapted here for 

good optical access. This piston geometry compromised the mixing process. The first 

task consisted in finding 2 operating points: one in the early injectionihomogeneous 

mode, and another in the late injection/lean/stratified mode. The conditions are 

summarised in Table 6-1. The crank angle reference (0°CA) is the 

compression/combustion top dead centre. 360°CA is the exchange TDC. 

Early injection 

(Homogeneous) 

Late injection 

(Stratified) 

SOI 420°CA 670°CA 

Injection duration 1.85ms 1.80ms 

Ignition 702°CA 702°CA 

AP 340mbar 20mbar 

I, 1 -3 

Table 6-1: Operating points for the GDI engine 
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6.1.2. Laser and Light Sheet Optics 

A Spectra Physics PIV 400 Nd: YAG laser was used as the illumination source. The 

laser emits at 1064nm. Doubling crystals allow to generate 532nm and 266nm light. For 

the LSD and AFR-LIF experiments, the fuel was excited using the 4a' harmonic 

(266nm) whilst the 2"d harmonic (532nm) was chosen to carry out the PIV 

measurements. 

A laser sheet was formed inside the cylinder to image the fuel in the central plane of the 

combustion chamber. A vertical sheet coming through the piston was used to illuminate 

the whole chamber, including the pent-roof, in order to visualise the fuel around the 

sparkplug at time of ignition. 

At the exit of the laser, the beam was redirected with two dichroic mirrors (266nm or 
532nm depending on the experiment) so that it was perpendicular to the engine, 

horizontal and pointing at the middle of the 45° mirror located under the cylinder axis. 

The laser sheet was then formed using a combination of 3 fused silica lenses: a spherical 

lens of 2m focal length thinned the beam to less than 500gm inside the engine. Two 

cylindrical lenses then expanded the beam in one direction to form a sheet of 

approximately 5cm in width. The sheet was then directed into the cylinder via the 45° 

mirror. 

Figure 6-9: Sheet-forming Optics 
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The laser sheet's adjustment required the removal of the cylinder head. A target was 

positioned over the annulus window. It was set against the two cylinder head guides, 

used as reference, and had markings for several positions left and right of the central 

plane. The laser sheet position was fine adjusted using the 2"d dichroic mirror and the 

rotary mount of the 2nd cylindrical lens. 

Figure 6-10: Laser sheet target and illumination 

6.1.3. Spatial Calibration 

To determine the resolution and the position of the images, a calibration plate 

containing regularly spaced white crosses on a black background was used to calibrate 

the CCD chip. A plate similar to the laser target, with a circular hole cut out, enabled the 

insertion of the plate inside the cylinder and to position it at the same location as the 

laser sheet (see Figure 6-11). 

Figure 6-11: Positioning plate and Calibration plate 
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6.1.4. Timing and Synchronising for the Experiment 

The timing and synchronisation is schematically represented in Figure 6-13. The engine 

is the experiment master. The dynamometer keeps the engine at a constant speed. A 

Kistler type 2612B sensor situated at the end of the crankshaft provides a1 pulse / °CA 

signal, and an optical sensor with a single tooth disk on the exhaust camshaft provides a 

1 pulse /2 rev signal (see Figure 6-12). 

Figure 6-12: The cam sensor and single tooth 

These signals are fed into the engine management box. This box allows the user to set: 

" the crank angle for start of injection (SOI) 

" the injection duration (in ms) 

" the crank angle for ignition 

" the crank angle for the laser trigger 

Every 4-stroke cycle, the engine management box outputs an injection, an ignition and a 

laser-trigger signal. 

The injection signal is fed into the injector driver to provide the signal for the injector 

whilst the ignition signal is amplified. Both signals are then sent into a Control Box 

which allows the user to activate the injection and ignition. A 2-way switch controls the 

spark for the ignition. A 3-way switch allows the user to start injecting the fuel. Pushing 

the switch forwards will activate the DI injector located in the head. Pushing the switch 

backwards will activate the calibration injector located upstream of the air intake. 

The laser-trigger signal supplied by the engine management box is amplified before 

being used to trigger the computer's Programmable Timing Unit (PTU). The PTU runs 

the laser, intensifier (IRO) and camera (CCD). The imaging software used was 

DaVis6.2 by LaVision. 
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Nd: YAG Laser 

L 
Dynamometer 

Controller 

1 pulse/°CA Engine 
Management 

I pulse/2rev 

Amplifier 
Ignition box 

Injector driver 

Intensifier 
Controller 

ON DI 

Control gg Box 
Spark Inj. caiib. 

Figure 6-13: Schematic of the instrumentation for laser diagnostics in the engine 
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At 1000 rpm, the management box is sending the computer a signal at 8.33Hz (1 signal 

per 4-stroke cycle i. e. every 120ms). The laser runs efficiently between 9.5 and 10.5 Hz 

The camera's maximum repetition rate is 8Hz. Taking these frequencies into account, 

the software calculates the laser frequency for optimal image recording. For these 

experiments, the laser ran at 10.41667 Hz (i. e. every 96ms), enabling the capturing of an 

image every 5 4-stroke cycles. 

Trigger 
I<«er 

_I I Li, lil '11111) 

Imaging 
I1 

Figure 6-14: Synchronising the Laser with the Engine trigger signal 

Because the laser must be Q-switched 186µs after the Flashlamp trigger, the laser 

cannot be triggered on demand. The software allows to set a delay (at least equal to the 

Q-switch delay) between the PTU trigger and the Q-switch trigger. This delay was set to 

the smallest interval corresponding to an integer number of degree crank angle: 333µs, 

i. e. 2°CA at l 000rpm. The lasing occurred 2°CA after the management box's trigger. 

333µs H 2°CA 

PTU delay 

186 s 
S 

Input / PTU trigger 

Flashlamp trigger 

Q-switch trigger 

Figure 6-15: Timing sequence for the laser 

The repetition rate of the camera (8Hz), combined with the laser frequency (10Hz) do 

not allow high-speed imaging. Instead, many images were recorded at the same crank 

angle over many cycles. This was repeated at different crank angle positions. 
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6.1.5. Engine Operation Procedure 

The procedure of a typical test run was as follows: 

" Warm the cylinder head cooling water to 70°C using a heater in the coolant 

system 

" Switch on the oil pump to circulate and warm up the oil to 70°C. 

" Get the engine up to speed (1000rpm) 

" Pressurise the fuel tank to 3bar using Nitrogen 

" Open the fuel line 

" Set the voltage to the Pressure regulator 

" Turn the ignition switch on and check for the spark 

" Set the throttle position 

" Dial the desired settings in the engine management box 

" Start injection 

6.1.6. Image Acquisition 

A User/PC interface was programmed to automate the image acquisition, storage and 

nomenclature. 

Figure 6-16: User-PC interface for the measurements 
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6.2. LIF measurements for Equivalence ratio 

Equivalence ratio measurements were performed to compare the evolution of fuel 

distribution and stoichiometry for the early and late injection modes. A mixture of 20% 

Pentanone in Iso-Octane was used. The stoichiometric equation for the combustion of 1 

mole in air is: 

411 115 37 41 115 

C . C8H, 8+ . C5H, 00)+ 10 "(02+3.76"NZ)-f 5 "COZ+ 5 "H2O+3.76.10 NZ 
55 

Equation 6-1: Combustion of 20% 3-Pentanone - 80% Iso-Octane in air 

The stoichiometric AFR for this fuel mixture is AFRs1 = 14.5. 

6.2.1. Measuring equivalence ratio using LIF 

The idea of the experiments is to perform two sets of LIF measurements. The 1 s` set, 

referred to as DI (Direct Injection) consists in recording (at a specific crank angle) the 

fluorescence of fuel that is directly injected into the cylinder using the injector located 

in the cylinder head. In the 2"d measurement set, referred to as Cal (Calibration), fuel is 

injected in the intake duct using the injector located upstream of the air-intake and the 

fluorescence images of this homogeneous air/fuel mixture are recorded. 

In both cases, a local measurement volume will have an equivalence ratio of. 

AFR" 
AFR mfi"l 

AFR s` ma,. 

Equation 6-2 

where mfel and ma;, are the local masses of fuel and air respectively. 

Assuming that the cylinder is filled exclusively with fuel and air, the measurement 

volume (VT) can be written as: 

m, ma;, VT = Vom, + VQ;, _+ 
Per Pa;, 

Equation 6-3 
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Combining Equation 6-2 and Equation 6-3, the measurement volume is: 

VT =mr. 
1+ 1 AFRsi 

=1m' 
AFRsi 

+ 
mir 

Pf., pair ID 
l 

Pair Pfuti 

Equation 6-4 

This measurement volume for the Calibration and DI experiments are identical. This 

can be written as: 
Cal D/ 1 Cal AFRst mf-, D, AFR,, mfg 

ca, ' miuel + mil "+ 

Pair Pte, Par, Pte, 

Equation ä5 

Calibration Direct Injection 

0 0 

0 0 0 

O 
p p 

p p 

0 

o0 o0 
0o°0° 

0 
o000 

0 
00 

Ca! Cal DI DI m%l malr m fue, mai, 

a car DI D1 of 
eel f air 

'fuel valr 

Figure 6-17: Content of fuel and air in the local measurement volume 

Rearranging Equation 6-5 gives: 
D/ 

40DI = q)Ca!, 
mlüel 1 

Cal D/ 

AFR,, p f., m f-I 

Equation 6-6 
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If a fluorophore that is not quenched by Oxygen is added to the fuel, its fluorescence 

signal is given by: 

If =C "'laser -q- 
f(P, T) . no-acer 

Equation 6-7 

where C is a proportionality constant, l/ýe, is the local laser intensity, i is the collection 

efficiency of the detection system, n,,,,, 
r is the amount of tracer and f (P, T) is the 

fluorescence yield of the tracer at a given pressure (P) and temperature (T). 

When the fuel is fully vaporised, the amount of tracer is proportional to the amount of 
fuel. In terms of mass of fuel (mf, e, ), the fluorescent intensity can be written as: 

If = 
C- I,,. 

er 'l "f 
(P, T) mfue, 

Equation 6-8 

If the LIF measurements are performed using the DI injector, the local fluorescent 

intensity will be: 

If DI C, 
.1 aser 

rI -f 

(P DI T DI )m DJ 
fuel 

Equation 6-9 

If calibration measurements are performed by injecting a homogenous charge using the 

calibration injector, the local fluorescent intensity can be expressed as: 

I fa! =Cf. 
Ilaser 

' 17 ' 
,f 

(PCa! 
7+Cal 

1, 
mýCiaell J 

Equation 6-10 

Dividing Equation 6-9 by Equation 6-10 gives the local ratio of mass: 

DI DI ý( ca( 
mf-(_If fP 

,T 
mcal 

-if PDI TDI Iud I 

Equation 6-11 
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Combining Equation 6-6 and Equation 6-11 gives the equivalence ratio as a function of 

the fluorescent intensities, the calibration stoichiometry and the fluorescence yields: 

ID] Pcaý 7. Cal 1 
(DDi _ýcar 

If 
.f' 

Icar f Poi TDi 1 Pair f pcar Tcar ' air f .% 1+AFR� ýP 
ý' 

1-liar' 
f pni'7. DI 

Equation 6-12 

6.2.2. Experimental setup 

The fluorescence images were recorded using a 12bit Flowmaster3 CCD camera, 

coupled to a gated IRO image intensifier with a Halle f2 100mm achromatic fused 

silica lens. A BG4 filter in front of the lens selected the fluorescence. To avoid damage 

to the lens/intensifier/camera system in case the quartz annulus exploded, a broadband 

(BB) UV-enhanced mirror was used to reflect the fluorescence at 90° before entering the 

imaging system. 

BB mirror 

BG4 filter 

Figure 6-18: Imaging Setup for the Equivalence Ratio measurement 
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6.2.3. Measurement procedure 

The first task consisted in determining the fuel injection duration of the calibration 

injector for the two throttle positions. The stoichiometry setting for the DI and 

Calibration run was matched as best as possible in order to obtain similar flame and 

therefore wall temperatures. 

The calibration run requires the mixture to ignite in order to obtain a correct reading 

from the Lambda sensor. In the late injection case, the engine operated with a lean 

stratified mixture with an overall equivalence ratio (D=0.33 (AFR of -45). A 

homogeneous mixture will not ignite at this value of AFR. Thus, the mixture was leaned 

out as much as possible without reaching the misfire limit. 

For the early direct injection case, the engine operated with a stoichiometric throttled 

air-fuel mixture. The calibration injection duration was adjusted to meet the same 

stoichiometry. 

At each crank angle of interest, 2 sets of 80 LIF images were recorded. The first set 

consisted of images of the direct injection (referred to as DI images), the second set 

consisted of images from a homogeneous mixture of known equivalence ratio. (referred 

to as Calibration images). 

For each crank angle measurement, the procedure consisted in: 

" Dial the desired Crank Angle (-2°CA due to PTU delay) 

" Take background images (no injection) 

" Dial the desired Direct Injection duration 

" Switch DI injector on 

" Take images 

" Switch DI injector off 

" Dial the desired Calibration injection duration 

" Switch on the Calibration injector 

" Take images 

" Switch Calibration injector off 

" Repeat for other Crank Angles 
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Equation 6-12 is obtained by assuming that the laser intensities in the DI measurement 

and its corresponding Calibration measurement are identical. By alternating a DI and a 

Calibration measurement, the fluctuation of laser power with time was minimised. 

Early Injection Late Injection 

DI Calibration DI Calibration 

Injection duration 1.80ms 2.3ms 1.85ms 3.30ms 

1 1 -3 1.55 

AP 340mbar 20mbar 

Table 6-2: Operating Parameters for the equivalence ratio measurements 

6.2.4. Fluorescence yield correction 

Obtaining equivalence ratio images requires crank-angle resolved determination of the 

thermodynamic in-cylinder conditions, in order to account for variations in fluorescence 

yield for the DI and Calibration image. 

The differences between the DI and Calibration cycle is due to the charge cooling effect 

caused by the vaporisation of the fuel that is directly injected into the cylinder. The 

energy exchange between the air and the fuel can be written as: 

ma;, " AHafr - -mir - AHA, 

Equation 6-13 

where AHQ� and dHh ei are the variation of enthalpy for the air and the fuel respectively. 

If the initial temperature of the air is T.,, and the temperature at the end of the charge 

cooling is 7f , assuming that the cooling process occurs and constant pressure, the air's 

change in enthalpy is: 

11au =Cpar. , 
(Tf 

-Tý 

Equation 6-14 

where cp, Q� is the specific heat of the air. 
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6.2.4.1. Early injection case 

When direct injection occurs during the intake stroke, even though the injected fuel is in 

the super cooled regime, it will evaporate until it saturates the air. The partial pressure 

of the fuel at 25°C is a 10th of the total pressure (P;,, =0.06bar). Because the volume of 

air is 50 times that of the fuel when running at stoichiometric conditions, the fuel can 

therefore totally vaporise. The initial and final pressure and temperature conditions of 

the fuel are 
(P;,,,, T 

1e, 
) 

and 
(Pfi'1e,, T) respectively. 

The change in the enthalpy of the fuel can be decomposed as shown in Figure 6-19. 

This enables to write it as: 
V ýfue! _- 0Hfuel+Cp. 

f4eIg 

(T f Tjue! 

Equation 6-15 

where cp, f�eI is the specific heat of the fuel and d fHjuei is the heat of vaporisation of the 

fuel. 

liquid gas 

T` h, er 
Pjll -------- 

vr 
Psai 

Tie d Hfuel 

Per 

F---- AH , -ý Enthalpy 

Figure 6-19: Enthalpy change for early injection 

By introducing the AFR, the final temperature is given by: 

Tf= 
AFR "cp, ai. ' 

70,. + Cp, fu l' Then - O'Hf 
ei 

AFR " Cp. air + CP. 1g_ 

Equation 6-16 
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The charge cooling was found to be 20°C and the thermodynamic values were taken at 
30°C (see Table 6-3). The temperature of the charge was calculated assuming an 

isentropic compression (see Figure 6-21). 

Iso-Octane 3-Pentanone Fuel 

cp, gas (J/g. K) 2.3 1.6 2.2 

XH (J/g) 300 440 328 

Table 6-3: Thermodynamic values at 30°C for the early injection case 

6.2.4.2. Late injection strategy 

In the case of late injection (670°CA, i. e., 50° BTDC), the in-cylinder pressure and 

temperature at the end of the intake stroke are identical for the DI and Calibration cases: 

0.980bar and 40°C. 

The variation between the cycles occurs at 670°CA when the direct injection of fuel 

causes the charge cooling in the compression stroke. The change in enthalpy can be 

decomposed as shown in Figure 6-20: 

MI juei = mý, er ' 
lc 

" 
(T' 

- P" )+ S'H +c (T. ýaý - T' ýJ 
P"Iuelry fiel fuel fuel P"furl, 

, 

Equation 6-17 

where Cp, fue1,4 and cp f_, ga, 
are the specific heats of the fuel in the liquid phase and gas 

phase respectively. 

Pressure' 

P' fuel 

liquid 

T' fuel 

': 1 
1 

411uer Enthalpy 

Figure 6-20: Change in enthalpy for late injection 
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Introducing the AFR, the final temperature is: 

AFR c a; r ' 
Tä;, -c er 'T er + 

(c 
-c). Tsar - ý"H 

7+ f_P P" fu by P, ýerRas P. fuerry fuel fuel 

AFR " CP, a;. + Cp, fi, elg,, 

Equation 6-18 

Pressure and temperature were plotted against Degree Crank Angle (°CA) to determine 

the in-cylinder conditions. At the start of injection, they are P=5bar and T=220°C. The 

temperature drop was 17°C. The thermodynamic values were therefore taken at 210°C 

and can be found in Table 6-4. The injection lasted approximately 15°CA: the fuel 

imposed a temperature drop of l IC per crank angle. This temperature drop was 
implemented in the isentropic compression for each crank angle. 

Iso-Octane 3-Pentanone Fuel 

cp, Iiq (J/g. K) 3.5 2.3 3.3 

cp, gas (J/g. K) 2.9 2.0 2.75 

SH (J/g) 170 250 183 

7'6°r (°C) 160 160 160 

Table 6-4: Thermodynamic values for the late injection case 

T('C) 

400 - 

300 - 

200 - 

100- 

-Late DI 

-Early DI 

-Calibration 

Figure 6-21: In-cylinder Temperatures during the compression stroke 
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Figure 6-22: Ratio of fluorescence yield during the compression stroke 

Figure 6-22 shows a maximum increase of the fluorescence yield ratio by 10% for the 

ignition crank angle. However, the calculations do not take into account heat input from 

the cylinder walls, therefore the charge cooling was overestimated. This suggests an 

overestimation of the increase of the fluorescence yield ratio. For the image processing, 

the ratio was therefore assumed constant and set to unity. 

6.2.5. Image Processing 

For each crank angle, the average background image was calculated as: 
V 

Bk(i,. l) 
B 1, jc k-l 

N 

Equation 6-19 

where N is number of images per set, and Bk(ij) is the k/h single shot background image 

The raw images at a specific crank angle were "average background" subtracted: 

If. 
k\l, %1 1raw. 

k\t+J)-O 
i-, 

- 

Equation 6-20 
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The local average DI and Calibration fluorescent intensity in pixel (i j) are respectively: 
N 

DD/ 
j, k(I, I 

ID, (i, j)= k=l 

fN 

Equation 6-21 

N 
Ca/ If. k 1ý. 1 

If `(i, j) = 
k-l 

N 

Equation 6-22 

The local single-shot equivalence ratio is given by: 

4vD'(1, J)= scar 
If k(i, 

)1 

I r(l, l) 
1+ 

1, Par. 1_IfkA 
AFR3, Per I far 0, A 

Equation 6-23 

The average equivalence ratio is expressed as an average of mass, and therefore as an 

average of intensities: 

'DI (i, ) 4DCal 
I 

f, 
" 1 

"I fa`(1,1) "1+1 
Pai. 1_ 

If 
__05 

j) 
_ AFR, Per I Cal (j, j) 

Equation 6-24 

The standard deviation is then defined as: 

Df 

, cr. - t' Am 
N 

Equation 6-25 
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The relative fluctuation is: 

l er mo, (i , j) DI (j 

Equation 6-26 

The final equivalence ratio images have an intensity of I for an equivalence ratio of 1. 

The images were multiplied by 64, and presented in a logarithmic scale ranging from 0 

to 512, thus allowing to illustrate equivalence ratios ranging from 0 to 8 and 

maintaining good colour resolution around stoichiometry. 

The images for the equivalence ratio fluctuation were multiplied by 64 and were 

presented on a linear scale ranging from 0 to 124, to illustrate variations up to 200%. 

Following Pages: 

Figure 6-23: Equivalence ratio and its fluctuations (in%) In the vertical plane in 

the centre of the combustion chamber. Early Injection (SOI at 

420°CA) and Late Injection (SOI at 670°CA). 360°CA Is the 

exhaustlinlet TDC and 0°/720°CA is the compression/combustion 
TDC. 
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6.2.6. Results 

6.2.6.1. Early Injection 

The images show vertical structure caused by low laser power regions in the laser 

sheet (and therefore high SNR). This was due to combustion material deposits on the 

piston crown window. 

In the case of the early injection, the images show a homogeneous and stoichiometric 

mixture after 650°CA. 

The equivalence ratio images obtained at 580°CA (40° ABDC) and 640°CA indicate 

rich regions. However, at these piston positions, the fluorescence signal was low (20 

counts) because the amount of fuel per unit volume is low. 

The homogeneity observed at 650°CA (i. e. -50°CA before ignition) suggests that the 

fuel and air will still have sufficient time to mix at full load (6 to 7 times the speed). 

This would also be helped by the increase in turbulence at higher rpm. The cycle-to- 

cycle fluctuation is of the order of 60%. This value is slightly high, and can be 

explained by the low signals throughout the experiment. 

In this early injection mode, there were no misfires and the flame was blue indicating 

a stoichiometric, well premixed flame. Therefore, the images were expected to be that 

of a homogeneous stoichiometric mixture. Had the fluorescence yield correction been 

applied, the results would have become inconsistent. This further agrees with the idea 

that the energy input to vaporise the fuel is not only supplied through cooling of the 

air but also by the cylinder walls. 

6.2.6.2. Late Injection 

The late injection images show a collapsed spray shooting across the combustion 

chamber. The early part of the injection shows a very rich mixture ((b>5) with very 

little cycle-to-cycle fluctuation. This indicates that the early part of the injection is 

very stable and can be explained by the high kinetic energy of the ballistic liquid fuel. 

At the end of the injection (687°CA) a stoichiometric mixture appears at the bottom 

edge of the spray. This region corresponds to the location in the spray where the 
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fuel/air interface is the largest. The mixing in that region is also the highest and is 

indicated by the higher fluctuations (although the higher fluctuations can also be 

attributed to low signals and high signal-to-noise ratio). After the end of the injection, 

the cloud of fuel is entrained towards the cylinder wall on the exhaust side. The cycle- 

to-cycle fluctuations increase, indicating that the mixture is in the gas phase and is 

prone to fluctuations from in-cylinder air motion. The cloud is stratified: it has very 

fuel-rich region nearest to the exhaust side, and an increasingly diluted mixture 

towards the sparkplug. 

At time of ignition, the rich fuel cloud has travelled beyond the spark plug, and has 

disappeared from the optical access. A small stoichiometric mixture is present at the 

top left of the spark plug, but the mixture around the spark plug is mainly lean. The 

part of the combustion chamber closest to the injector is ultra lean. 

Advancing the time of ignition or retarding the start of injection would locate the 

ignitable mixture closer to the spark plug. However, in the ideal stratified mixture, the 

ignitable pocket is the richest region, and the neighbouring air/fuel cloud should be 

stoichiometric. In this late injection strategy, the ignitable pocket is surrounded by an 

even richer mixture on one side and a leaner mixture on the other. This results in the 

production of a sooty flame in the rich region and unburnt hydrocarbons in the other. 

Another solution could consist in putting the spark plug between the exhaust valves, 

opposite to the injector and retarding the time of ignition. This would give the rich 

cloud some additional mixing time, and reduce the equivalence ratio to a more 

appropriate value (-. 1.1-1.2) for ignition. 

In these conditions, the engine misfired and the flame was yellow, indicating rich 

regions and that the charge was not well premixed. 

The excess air played an important role in keeping the temperature of the burnt gases 

down: the exhaust temperature stabilised at around 300°C. This allowed to run the 

engine continuously, whereas in the early/homogenous injection, the exhaust 

temperatures would exceed 400°C, and injection had to be stopped after 40 images in 

order not to damage the engine. 
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6.3. LSD measurements 

6.3.1. Experimental Setup 

The LSD technique was applied to the engine in the early and late injection modes. 

The tracer system that gave the best results in the previous study was used: 3- 

Pentanone (0.5%) mixed with 3-Hexanone (1.5%) in Iso-Octane (98%). 

Simultaneous LIF and Mie scatter images were recorded using the same optical set-up 

as the measurements performed in the pressure vessels: a 4-mirror system and a 12 bit 

Flowmaster3 CCD camera, coupled to a gated IRO image intensifier with a Halle f2 

100mm achromatic fused silica lens. A combination of two ND filters (3 and 0.3) 

was in the Mie scatter path to attenuate the signal to the same order of magnitude as 

the fluorescence signal. A BG4 filter was in the LIF path to eliminate residual 266nm 

and 532nm light. Because the images section was wider than it was high, the camera 

was mounted at 90° to the IRO to optimise the separation of the PLIF and Mie Scatter 

image on the two halves of the CCD chip (see Figure 6-24). 

AEF 

BG4 filter 

BB mirror 

266nm mirror 

Figure 6-24: Imaging Setup for the LSD technique 
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6.3.2. Spatial Calibration 

A calibration plate with crosses placed at 4mm intervals was used. The ND filter in 

the Mie scatter path attenuated the intensity of the Mie scatter signal by a factor of 

103. Because the laser power was low, an acceptable Mie scattering image of the 

calibration plate was difficult to obtain. This proved to be the major difficulty in 

applying the technique. The light sheet used to illuminate the calibration plate 

required extremely fine adjustments and an average of 2000 images was necessary to 

obtain a suitable calibration image for the image-correction algorithm. 

Figure 6-25: LIF (left) and Mie scatter (right) images of the calibration plate 

6.3.3. Measurement procedure 

For both the early and late injection case, 80 images were recorded at each crank 

angle during the injection duration. In the Early Injection mode, this required 2 runs 

of 40 images due to the temperature of the exhaust gases. Only 1 run was necessary in 

the Late Injection mode. For each crank angle, a background image was averaged 

from 80 single shot images where the laser was fired in the engine without injecting 

fuel. 

The laser sheet was positioned at the centre of the combustion chamber. The 

triggering scheme for the laser, intensifier and camera was the same as the 

equivalence ratio measurements. 
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6.3.4. Image Processing 

The images were processed to obtain average and rms data for the PLIF and Mie 

scatter images. 

The images were background subtracted. An additional spray-induced background 

was subtracted (typically 2 to 5 counts). The images were then corrected for position. 

The LSD images were obtained by dividing the corrected average image of PLIF by 

the corrected average image of the Mie scatter. 

SMD images were then determined by multiplying the LSD image by a Calibration 

constant. Due to the similarities between the injector present in the engine (Bosch 

swirl 70°/10°) and the injector used in the pressure vessels (Bosch swirl 70°/0°), it was 

assumed that both would yield similar SMDs. The LSD images were therefore 

calibrated using the SMD values of from the 70°/0°. 

40µm 

30µm 

20µm 

10µm 

0 

Figure 6-26: SMD image from the 70°/0° Bosch Swirl Injector 

Following pages: 

Figure 6-27: Early Injection (SOI: 420°CA) - LIF and Mie scatter images 

(Average and Rms) presented in a logarithmic scale. The SMD 

image is a calibrated LSD image presented in linear scale. 

Figure 6-28: Late Injection (SOI: 670°CA) - LIF and Mie scatter images 

(Average and Rms) presented in a logarithmic scale. The SMD 

image is a calibrated LSD image presented in linear scale. 
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6.3.5. Results 

The images show an injector delay corresponding to 2°CA (i. e. 0.33µs) between the 

injector trigger signal and the actual start of injection (or Optical Start Of Injection - 
OSOI). 

At 1000rpm, an injection duration of 1.8ms represents 11 'CA. However, the intensities 

in the PLIF and Mie scatter images only start reducing 12°CA after OSOI. At 13°CA 

after OSOI, there is no more fuel at the injector tip, indicating that the injector closes 

within 2°CA. That suggests that the injector opens fully within 2°CA. 

The injection process for both the early and late strategies shows 3 distinct phases. 

During the first 4°CA after OSOI, the spray is in a transient phase. This transient phase 
is twice as long as the needle lift. The variation of the fuel passage causes the fuel 

pressure to oscillate and these oscillations are not immediately attenuated when the 

injector is fully open. The fuel exiting the injector at this early phase has no common 

characteristics with the later part of the spray. It is referred to as "pre-spray". It takes 

approximately 0.66ms for the spray to fully develop. From 4°CA to I1 °CA after OSOI, 

the injection is in steady state and the spray geometry is unchanged: as the injector 

closes, the cone angle is unchanged. 

Figure 6-29: Injector Opening and Spray Regime 

When the spray is fully developed, the fluorescence signal remains constant even 

though there is an increasing amount of fuel present inside the cylinder. This can be 

explained by the conical nature of the spray, whereby the number of droplets per unit 

volume decreases as they travel away from the injector tip. The evaporation of these 

droplets also diffuses mass outside the sheet. Eventually, the fluorescence from the 

diluted tracer is below the detection threshold of the intensifier/camera system. 
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6.3.5.1. Early Injection 

For this injection strategy, the cone angle of the fully developed spray is 70°. 

At the start of the injection (422°CA), the SMDs are very high. These values are 

inaccurate, because the fuel is likely to be present in ligaments and the LSD technique 

only applies to spherical droplets. 

In these conditions, the fuel temperature is below boiling point. Therefore the 

evaporation process requires the presence of unsaturated air. 

At 423°CA, most of the pre-spray has SMD values around 20µm. The droplet sizes at 

the edge of the spray in the near nozzle region are twice as high. 

At 424°CA, the spray has started to open up, therefore enhancing evaporation: the 

droplet sizes have decreased to around 15µm. 

Beyond 425°CA, when the spray is established, the droplet sizes around the nozzle are 

30µm). The proximity of the cylinder head limits the motion and availability of air for 

the top part of the spray, therefore compromising the mixing and evaporation. On the 

other hand, the bottom part of the spray benefits from almost unlimited amounts of 

unsaturated air, and no boundary conditions. This results in higher SMDs at the top 

(15µm) compared to the bottom (10µm). Furthermore, the swirling motion of the spray 

drives the larger droplets towards the edge of the spray. This further contributes to the 

high SMDs in the top edge (18µm). 

The SMD values for the last part of the injection (434 and 435°CA) are unfortunately 

unreliable, because the intensity counts of the fluorescence signal are too low to yield 

accurate data. 

6.3.5.2. Late injection 

As the spray is injected into higher pressures (approximately 5bar at 670°CA), the cone 

angle collapses to 30°. This feature is common to swirl injectors and is explained by the 

breaking down of the swirling motion due to the increased density of the air. The 

reduced centrifugal force homogenises the droplet distribution and the SMDs within the 

spray are approximately 13µm. This collapse of the spray increases the density of the 

droplets and therefore reduces the air/fuel mixing. 

The droplet sizes around the nozzle (35µm) are identical to the early injection case. 
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6.4. PIV Measurements 

6.4.1. Experimental Setup 

Mie scatter PIV was applied to the optical engine using a 532nm light sheet. The fuel 

consisted of Iso-Octane only. 

The images were captured on a FlowMaster3 Camera coupled to a Nikon f4 50mm 

lens. A 532nm filter was installed on the end of the lens to select the Mie scattering. A 

broadband mirror reflected the signal at 90°. 

J 
mr 

Figure 6-30: PIV Imaging Setup 

BB mirror 

S32nm filter 

The images were recorded in the Cross-correlation mode, i. e. 2 images per frame. The 

triggering scheme for the laser and camera for this type of measurement is illustrated in 

Figure 6-31. In this mode, the camera exposure is fixed to 10µs for the 1" frame and 

125ms for the 2°d frame at the end of which both frames are read out to the computer. 

The camera trigger is such that the first lasing occurs at the end of the 1 s` frame. 
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333µs hº2"CA 

Input / PTU trigger 

Flashlampl trigger 
186 us 

Q-switchl trigger 

dt 

Flashlamp2 trigger 
186µs 

Q-switch2 trigger 
10µs 

Camera trigger 

Camera exposure 

1180ns 

Figure 6-31: Triggering scheme for cross-correlation PIV 

6.4.2. Spatial Calibration 

Usually, PIV is applied to flow measurements, where the flow is seeded with low 

density particles. The cross-correlation is then accurate because the intensities in the 

interrogation window have distinct intensity peaks. In the case of fuel velocity 

measurements, the fuel acts as the seed and can be extremely dense (see Figure 6-32). 

(a) (b) 

Figure 6-32: Interrogation regions of the spray - non dense (a) and dense (b) 
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For the cross-correlation to be successful, the image resolution must be such that 

structure can be resolved. The spray was magnified as much as possible whilst 

maintaining it entirely within the camera frame. The focusing of the camera and the 

spatial calibration of the combustion chamber was performed by illuminating the 

calibration plate with a flashlamp. The resolution was 30µm per pixel. 

Figure 6-33: Calibration Image 

6.4.3. PIV Settings 

For a fixed resolution, the crucial variable is the time interval between the two laser 

shots (dt), because it defines the displacement. The expected velocities of the spray 

ranged from lm/s to 80m/s (these velocities were obtained from the PDA measurements 

with the 70°/0° Bosch swirl injector). Table 6-5 shows the pixel displacement for 

various speeds, at various values of dt. 

Velocity 

dt 

lm/s 5m/s lOm/s 20m/s 50m/s 80m/s 

05µs 0.2 0.8 1.7 3.3 8.3 13.3 

10µs 0.3 1.7 3.3 6.7 16.7 26.7 

15µs 0.5 2.5 5.0 10.0 25.0 40.0 

20µs 0.7 3.3 6.7 13.3 33.3 53.3 

Table 6-5: Displacements in pixels for various velocities and dt 
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For each crank angle, 100 double-frame images were recorded for 3 different dts: 5,10 

and 20µs. Before each set of 100 images, a background image was averaged from 100 

single shot images where the laser was fired in the engine without injecting fuel. 

The images were background subtracted and corrected. To reduce computing time, the 

images were masked, so that vectors would only be calculated in the region where the 

spray was present. 

The individual images were then processed with different interrogation window sizes 

with single passes (64x64 and 32x32), constant window-size multipasses (64x64 and 

32x32) and adaptive multipasses (64x64 then 32x32). 

6.4.4. Results 

The Mie scatter images were used to determine the displacement of the pre-spray. Its 

velocity was calculated to be approximately 80m/s. The results that gave the closest 

velocity values were obtained with a dt of 5µs. 

The spray density is the main reason for this result. Many droplets are travelling in 

slightly different directions. By setting a short time interval, their displacement is kept 

low and similar: the peak in the cross-correlation indicates this displacement. For longer 

time intervals, the displacements of the numerous droplets will be different and the peak 

observed in the cross-correlation will not correspond to any physical displacement. 

Amongst the results obtained with dt=5µs, the best match was obtained using a constant 

window size multipass with a 32x32 interrogation region and a 50% overlap 

The single shot vector fields obtained in Figure 6-34 illustrate the problems caused by 

high density: in both the early and late injection cases, the vectors obtained in the very 

dense region around the nozzle are incorrect. Also, some regions of the image have 

patches where velocity data are incorrect, or could not be determined at all. These 

patches with incorrect data vary from one image to another. Therefore, the averaging of 

the single shot vector fields gives an ensemble idea of the spray velocities, but the 

velocities obtained in the denser parts of the spray, where the data are ambiguous, are 

likely to be underestimated. 
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Figure 6-34: Single Shot PIV Images (32x32), 2-pass 

Following pages: 

Figure 6-35: Velocities and corresponding Average Mie scatter images for the 
Early and Late injection cases. The vector fields are presented with a 
grey scale Mie scatter image in the background. 
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6.4.5. Discussion 

Even though different regions of the instantaneous vector fields show ambiguous 

results, the averaged vector fields in the less dense regions agree with the evolution of 

the spray given by the crank-angle resolved Mie scatter images. This can be attributed 

to the high number of images used in the calculation. 

The lens aperture is set so that the high density (therefore brightest) regions of the spray 

illuminate the CCD to the maximum of 4000 counts. However, this limits the resolution 

in the less dense part of the spray, where the intensity can be 500 times lower. 

6.4.5.1. Early injection 

At 423°CA, the spray is very dense and the resolution is too low too obtain reliable Ply 

data. As the cone angle starts to widen, the spray become more dilute and the structure 

can be resolved in the less dense regions. At 424°CA, the pre-spray is the least dense 

part of the spray, and its velocity is 80m/s. The velocities of the droplets following the 

pre-spray are lower, typically 30 to 40m/s. This phenomenon is expected because the 

effective fuel passage is smaller as the needle just begins to lift, therefore giving higher 

velocities. 

The density of the fuel present beyond the spark plug is too low to obtain a sufficiently 
high Mie scatter signal and the velocities are therefore inaccurate. 

6.4.5.2. Late Injection 

In the late injection mode, the collapsing of the spray increases the density, and the PIV 

measurements cannot provide accurate data until the cone angle has opened sufficiently 
(675°CA). The velocities throughout the injection range typically between 20 and 

30m/s. They are lower than the ones obtained for the early injection because the higher 

pressure increases the collision rate between air and fuel molecules. This induces a 

lower spray penetration which is clearly visible on the Mie scatter image at 676°CA. 

However, the fuel speeds are still high, and the fuel is projected past the spark plug. 
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6.5. Summary 

Three measurement techniques were applied to the optical engine to characterise the 

spray and mixture formation process for two different injection strategies. 

These results showed that direct injection during the intake stroke gave a wide spray 

which facilitated the air/fuel mixing to give a homogeneous premixed charge at time of 
ignition, as a PFI engine would. 

When the fuel was injected in the later phase of the compression stoke, the spray gave 

similar droplet sizes. However, the collapse of the cone angle reduced the air/fuel 

mixing. This poor mixing created a fuel stratification. The low mixing time resulted in 

an inadequate stratified charge for "clean" combustion: at the time of ignition, there 

remained a rich region next to an ignitable pocket, and the latter was not at the 

appropriate location. The reduced evaporation also implies that more fuel was in the 

liquid phase and was able to maintain a high velocity. One method to reduce the 

penetration and avoid the fuel going past the spark plug could consist in injecting 

smaller droplets. They would evaporate faster, thus reducing the speed of the fuel cloud. 

This would also increase the mixing. The optimal start of injection would likely be a 
function of load (i. e. injection duration) and engine speed, and could be determined with 

LIF imaging. 
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Chapter 7 

Conclusion 

In order to meet the new emissions legislation, the automotive industry is having to 

refine the operation of its petrol engines. The GDI concept is a promising technology: it 

offers the opportunity of increased efficiency through unthrottled operation. However, 

the realisation of this concept is critically dependent on the in-cylinder mixture 
formation, especially in the late injection/lean operation mode. Ideally, this would 

require a precise stratification of the in-cylinder fuel-air mixture in 3 distinct zones: an 

ignitable pocket located at the spark plug, surrounded by a stoichiometric mixture of 

fuel and air, encompassed by air. High pressure injection and piston bowl geometries 

were early attempts to redirect the spray and stratify the air-fuel mixture. Air-guided 

systems improved the system by limiting wall wetting. However, the future seems to be 

in the spray-guided systems: the realisation of GDI concept strongly depends on the 

advances in injector technology. 

The GDI sprays have become very refined. Due to the elevated injection pressures, the 

atomisation is improved, the particle sizes are much smaller and the mass flux is 

increased. These sprays are very fine and dense. The idea behind this project was to 

develop a tool that could be applied to these sprays for rapid 2-D characterisation. This 

involved applying Phase Doppler Anemometry (PDA), Planar Laser-Induced 

Fluorescence (PLIF) and the Laser-Sheet Dropsizing (LSD) technique to denser sprays 

in harsher environments, where these tools are at the limit of their validity. 

The study lead to three important results. 
Firstly, an optimal tracer system was determined for the application of the PLIF 

technique for liquid-phase measurements. It uses the combination of two ketones (3- 
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Pentanone and 2-Hexanone) which have opposite evaporative behaviours when mixed 

with Iso-Octane. This limits the differential evaporation. The low concentrations of 

these tracers gives a good volume-dependent fluorescence signal in the liquid phase, 

whilst retaining reasonable signal intensities. Ketones also have the advantage of not 
being quenched by Oxygen, therefore enabling the use of this tracer system for realistic 

IC engine studies. 

Secondly, the LSD and PDA techniques were applied to a GD1 spray in a pressure 

vessel for realistic in-cylinder conditions, ranging from supercooled to superheated 

environments. The comparison of the results demonstrated several problems which can 
be improved. 

The PDA technique suffers from multiple occupancy of droplets in these very dense 

sprays. Higher laser power and smaller measurement volume can increase the accuracy. 
The study also showed that the LSD technique provided good quantitative data at 

atmospheric conditions. In highly evaporative conditions, the technique still gave 

reliable SMD data for the early stages of the injection where evaporation was not 
dominant, but was limited afterwards by vapour-phase contribution to the fluorescence 

signal. This could be resolved in non-quenching environments by using Exciplex tracer 

systems and the appropriate filter to eliminate entirely the vapour phase from the 

collected fluorescence. On the other hand, the comparison of a two-phase LIF signal 

and liquid-phase Mie scatter signal can provide an indication of the evaporation rate. 
Discrepancies between the results obtained with the PDA and LSD techniques were also 

attributed to 2 issues. The first is the d2 dependence assumption of the Mie scattering 

signal. For small droplets, the proportion of scattered light at 90' can vary substantially 
for different diameters. Perhaps another observation angle would yield a better surface 
dependence of the Mie scatter signal. Second, multiple scattering will contribute 

additional intensity to both fluorescence and Mie scattering signals. This surplus of light 

is not related to the local dropsize distribution. However, this effect is probably of 

second order as the LSD technique uses a ratio of signals. The quantification of multiple 

scattering is currently under investigation. 

In low evaporating regimes, the LSD technique therefore has the overall advantage of 
being a 2-D measurement technique, and will yield data with a maximum error of 30% 

in dense parts of the spray where PDA data is totally unreliable. If the spray evaporates 
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quickly, PLIF by itself is an appropriate tool for following the air-fuel mixture, because 

short droplet lifetimes limit the 2-phase flow behaviour of the spray. 
Lastly, 3 diagnostics (PIV, PLIF and LSD technique) were applied in an optical GDI 

engine. First, it demonstrated the application of the LSD technique in an engine. The 

major difficulty proved to be the spatial calibration of the two images when using a 

single camera. Secondly, the study of the spray's behaviour and the location of the fuel 

highlighted the important issues that the GDI concept faces: the stratification was at the 

wrong location because the fuel maintained ballistic speed for too long. By reducing the 

droplet diameters, the fuel would vaporise and therefore slow down much faster, 

enabling the formation of the cloud at the spark plug. Most importantly, the equivalence 

ratio measurements allowed the determination of the location and stoichiometry of the 

air-fuel mixture. This suggests that stratification can be achieved with small droplet 

spray-guided systems. It is now up to the injector manufacturers to provide such 
technology. 
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APPENDIX A 

LIF and Mie Scatter images 

Average fluorescence (LIF) and Mie scatter images obtained in the Pressure Vessel. For 

each (Pressure-Temperature) condition, the images at the five times after Start of 
Injection are illustrated. 
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APPENDIX B 

Time-resolved PDA results 
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APPENDIX C 

Time-resolved PDF of TSI and Dantec data 

Each line represents a measurement point (MP). 

The PDF from TSI data is on the left and the PDF from Dantec data is on the right. 
The colours indicate the time ASOI. 
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