

CRANFIELD UNIVERSITY

MASOOD RAZA

COMMAND AGENTS WITH HUMAN-LIKE DECISION MAKING STRATEGIES

CRANFIELD DEFENCE AND SECURITY

PhD THESIS

CRANFIELD UNIVERSITY

CRANFIELD DEFENCE AND SECURITY

DEPARTMENT OF ENGINEERING SYSTEMS AND MANAGEMENT

PhD THESIS

Academic Year 2004-2008

Masood Raza

Command agents with human-like decision making strategies

Supervisor: Dr V V S S Sastry

July 2009

© Cranfield University 2009. All rights reserved. No part of this publication may be reproduced

without the written permission of the copyright owner.

i

ABSTRACT

Human behaviour representation in military simulations is not sufficiently realistic,

specially the decision making by synthetic military commanders. The decision making

process lacks realistic representation of variability, flexibility, and adaptability

exhibited by a single entity across various episodes. It is hypothesized that a widely

accepted naturalistic decision model, suitable for military or other domains with high

stakes, time stress, dynamic and uncertain environments, based on an equally tested

cognitive architecture can address some of these deficiencies. And therefore, we have

developed a computer implementation of Recognition Primed Decision Making (RPD)

model using Soar cognitive architecture and it is referred to as RPD-Soar agent in

this report. Due to the ability of the RPD-Soar agent to mentally simulate applicable

courses of action it is possible for the agent to handle new situations very effectively

using its prior knowledge.

The proposed implementation is evaluated using prototypical scenarios arising in

command decision making in tactical situations. These experiments are aimed at

testing the RPD-Soar agent in recognising a situation in a changing context, changing

its decision making strategy with experience, behavioural variability within and

across individuals, and learning. The results clearly demonstrate the ability of the

model to improve realism in representing human decision making behaviour by

exhibiting the ability to recognise a situation in a changing context, handle new

situations effectively, flexibility in the decision making process, variability within and

across individuals, and adaptability. The observed variability in the implemented

model is due to the ability of the agent to select a course of action from reasonable

but some times sub-optimal choices available. RPD-Soar agent adapts by using

‘chunking’ process which is a form of explanation based learning provided by Soar

architecture. The agent adapts to enhance its experience and thus improve its

efficiency to represent expertise.

ii

ACKNOWLEDGEMENT

I thank my advisor, Dr Venkat Sastry, and my thesis committee members Mr Mike

Bathe and Dr Ken McNaught for guiding me throughout my research and I specially

thank them for putting up with me during the update meetings because I definitely

know how fruitless those meetings would have been for them. I also thank Dr Frank

Ritter for guiding me through out on all aspects of my research work and Professor

John Laird for his support in solving the problems related to Soar and I thank both of

them again for giving me permission to use diagrams related to Soar from their work

in this thesis. I also appreciate the efforts put in by our department in keeping all the

administrative tasks smooth through out the period of this research and I specially

thank Ros and Paula for providing me all the support that I desperately needed in

sorting out the administrative requirements related to funding and arranging my visits

abroad and in country to attend the conferences to present my research work. I thank

NUST, Pakistan for funding my research and at the same time acknowledge the

generosity of Cranfield University for keeping me registered for an additional year

free of cost with all the facilities for research. I also thank my fellow student Tracey,

who always helped me in understanding any thing related to operational research and

also for introducing me to eBay which proved fatal for my pocket. I am also indebted

to my wife Talat for her ever present support and unshakeable trust in my abilities

without which I could have never crossed the initial landmarks of this task. I must not

forget to thank my two sons Faizan and Hassaan who remained undemanding through

out this time and my mother who very patiently waited and prayed for my safe return

to home. God be willing, I will try to give them some good time very soon.

Table of Contents

iii

TABLE OF CONTENTS

1 INTRODUCTION..1

1.1 The problem ...4

1.2 Modelling and Simulation..6

1.3 Types of military simulations...6

1.4 Requirement of command agents...7

1.5 Computer generated forces (CGF) and how to judge them7

1.5.1 Synthetic environment ...7

1.5.2 Synthetic forces..8

1.5.3 Semi-automated forces...8

1.5.4 Intelligent software agent ...8

1.6 Cognitive science ...9

1.7 Definition of human behaviour representation (HBR)10

1.8 Definition of command agent ..10

1.9 Flexibility in decision making strategy ..11

1.10 Variability in behaviour ...11

1.10.1 Requirement of variability in behaviour of synthetic forces in military

simulations ...11

1.10.2 Sources of variability in behaviour ..13

1.11 Learning ...14

1.12 Contribution of this research..15

1.13 Organisation of the thesis...18

2 BACKGROUND KNOWLEDGE ..21

2.1 Mission planning..21

2.2 Klein’s comments on classical decision making approaches.......................22

2.3 Situation awareness..23

2.4 Terrain representation and estimation of situation in mission planning24

2.4.1 Terrain representation ..24

2.4.2 Estimation of situation in mission planning...25

Table of Contents

iv

2.4.3 Spatial reasoning..26

2.5 Current models and simulations in use by the military................................27

2.5.1 JANUS ...27

2.5.2 Close combat tactical training (CCTT) ..27

2.5.3 Corps battle simulation (CBS) ...27

2.5.4 Combined arms and support task force evaluation model

(CASTFOREM) ..28

2.6 Current HBR models ..28

2.6.1 ModSAF...28

2.6.2 Intelligent forces (IFOR)..29

2.6.3 Synthetic adversaries for urban combat training..................................30

2.6.4 Synthetic G staff for headquarters..30

2.6.5 Smart whole air mission model (SWARMM)30

2.6.6 Irreducible semi-autonomous adaptive combat (ISAAC)31

2.6.7 Map aware non-uniform automata (MANA) ..31

2.7 Comparison of EINSTein with JANUS...32

2.8 Recognition primed decision making ..32

2.9 Set effects...35

2.9.1 Negative set..36

2.10 Cognitive architectures ..36

2.10.1 Adaptive control of thought – rational (ACT-R)37

2.10.2 Soar ..39

2.10.3 Belief, desire, and intentions (BDI) ...40

2.10.4 Summary of cognitive architectures...41

2.11 Chapter summary ...42

3 LITERATURE REVIEW...43

3.1 Multiple-trace memory model..43

3.2 Human emulation model..45

3.3 Artificial neural network (ANN) model ...47

3.4 Fuzzy logic model ..49

3.5 Context-based reasoning model ...51

3.6 Event Predictor - Mental simulation model ...52

Table of Contents

v

3.7 Bratman’s belief, desire, and intensions (BDI) cognitive architecture model .

 ..53

3.8 Composite agent model..55

3.9 RPD enabled collaborative agents for simulating teamwork (R-CAST)57

3.10 Summary ..58

4 A SIMPLE RECOGNITION PRIMED DECISION MAKING AGENT............................59

4.1 Tank battle simulation (3-on-1 combat involving a hidden defender).........59

4.2 Vignette..59

4.2.1 Enemy situation..59

4.2.2 Friendly situation ...60

4.2.3 Mission...60

4.2.4 Description...60

4.3 Characteristics of entities and terrain...60

4.4 The problem in existing computer generated forces61

4.5 Factors considered by a human tank commander in defence.......................61

4.6 Analytical models ..62

4.6.1 Deterministic Lanchester (DL) square law ..62

4.6.2 Exponential stochastic Lanchester (ESL) ..63

4.6.3 Markovian model ...64

4.7 The simulation ...64

4.7.1 Blue tank commander (BTC) ...65

4.7.2 Simulation environment...66

4.7.3 Time to engagement...66

4.7.4 Validation...71

4.7.5 If both red and blue sides do not have intelligent-like behaviour74

4.7.6 If the red side has intelligent-like behaviour and blue does not...........75

4.7.7 If both red and blue sides have intelligent-like behaviour76

4.8 Conclusions..78

5 SOAR...81

5.1 An overview of Soar ..81

5.2 Architecture..84

5.2.1 Working memory ...84

Table of Contents

vi

5.2.2 Reasoning cycle of Soar...86

5.2.3 Conflicts in Soar ..88

5.2.4 Conflict resolution in Soar...88

5.2.5 Truth maintenance system..90

5.2.6 Learning ...91

5.3 Applications of Soar ..94

5.4 Improvements in Soar ..94

5.5 Summary ..97

6 THE RPD-SOAR AGENT ...99

6.1 Similarities between Soar and RPD...99

6.2 The architecture..100

6.3 Mental simulation ..102

6.4 The interface ..104

6.4.1 Creating Soar kernel and agents ..105

6.4.2 Input - perception ...106

6.4.3 Output – command/action..107

6.4.4 Event handling ...108

6.5 Graphical user interface (GUI)...108

6.6 The Environment ...108

6.7 Working of RPD-Soar agent..109

6.8 Integrating artificial neural network in the architecture.............................119

6.9 Summary ..121

7 EXPERIMENTS, RESULTS, AND DISCUSSION ..123

7.1 Experiment 1 - Varying performance due to experience124

7.1.1 Vignette A - Static obstacles..124

7.1.2 Random-walk agent ...124

7.1.3 Less experienced RPD-Soar agent...125

7.1.4 Experienced RPD-Soar agent ..126

7.1.5 Results..131

7.2 Experiment 2 - Changing Context ...134

7.2.1 Effect of enlarged environment on agents ...134

7.2.2 Changed obstacle pattern ...136

Table of Contents

vii

7.3 Experiment 3 - Variability within an entity ...137

7.3.1 Explanation of the experiment - Moving threat138

7.3.2 Mental simulation to avoid Collision...138

7.3.3 Factors affecting the decision of the Blue agent140

7.3.4 Results..142

7.4 Behaviours resulting from strategies formulated by humans.....................154

7.5 Experiment 4 - Learning ..159

7.5.1 The change in the agent..159

7.5.2 Learning method ..160

7.5.3 The problem of over generalization in chunking162

7.5.4 First task – Red agent starting position- (7, 8)164

7.5.5 Second task – Red agent starting position - (8, 8)169

7.5.6 Third task – Red agent starting position - (9, 7)171

7.5.7 Fourth task – Red agent starting position - (9, 8)...............................173

7.5.8 Transfer of learning..175

7.6 Experiment 5 – Recognition of situation by neural network177

7.6.1 Training examples..181

7.6.2 Results..194

7.7 Summary ..201

8 SUMMARY, CONCLUSIONS AND FUTURE WORK ..203

8.1 Summary ..203

8.2 Conclusions..206

8.3 Future work ..209

9 REFERENCES ...211

10 APPENDIX A – LIST OF ACRONYMS ...223

11 APPENDIX B – GLOSSARY OF TERMS...227

12 APPENDIX C - PROJECT SOFTWARE...229

12.1 RPD-Soar agents ..229

12.1.1 Experiment described in implementation ..229

12.1.2 Experiment 1 – Varying performance due to experience...................229

12.1.3 Experiment 2 – Changing context..229

Table of Contents

viii

12.1.4 Experiment 3 – Variability within an agent230

12.1.5 Experiment 4 – Learning..230

12.1.6 Experiment 5 – Recognition of situation by artificial neural network.....

 ..230

12.2 A simple RPDAgent ..230

12.2.1 Verification of one-on-one combat ..230

12.2.2 Verification of three-on-one combat..230

12.2.3 Two cases: Red and Blue agents not intelligent, and only Red agents

intelligent in three-on-one combat ...231

12.2.4 Both Red and Blue agents are intelligent in three-on-one combat.....231

13 APPENDIX D – EXPLANATION OF THE KEY ELEMENTS OF THE CODE OF RPD-SOAR

AGENT ...233

13.1 The architecture..233

13.2 The interface ..233

13.2.1 Creating Soar kernel and agents ..234

13.2.2 Input - perception ...235

13.2.3 Output – command/action..240

13.2.4 Event handling ...242

13.3 Graphical user interface (GUI)...245

13.4 The Environment ...246

13.5 Working of RPD-Soar agent..246

14 APPENDIX E – LEARNT CHUNKS ..267

15 APPENDIX F – PUBLICATIONS ...269

List of Figures

ix

LIST OF FIGURES

Figure 1.1 Nwana’s agent typology (Nwana, 1996)...9

Figure 2.1 Klein’s RPD model [adopted from (Klein, 1998)]34

Figure 2.2 Doodle-like black and white figures...36

Figure 3.1 Artificial neural network...48

Figure 4.1 Three-on-one tank battle simulation...66

Figure 4.2 Time to initial engagement – Triangular distribution.................................67

Figure 4.3 Time to initial engagement – Exponential distribution69

Figure 4.4 Time to next engagement of the same target – Rectangular distribution ...70

Figure 4.5 Blue and red wins for one-on-one battle...72

Figure 5.1 A higher level view of Soar Architecture [(Laird, 2006a) with permission]

..84

Figure 5.2 Structure of working memory [(Laird, 2006a) with permission]85

Figure 5.3 Working memory input – output link [(Laird, 2006a) with permission]....86

Figure 5.4 Reasoning Cycle of Soar [(Laird, 2006a) with permission]86

Figure 5.5 Soar: a functional diagram [(Ritter, 2007) with permission]90

Figure 5.6 Chunking – the learning mechanism in Soar [(Ritter, 2007) with

permission]...93

Figure 6.1 Similarities between Soar and RPD ...100

Figure 6.2 Agent architecture...101

Figure 6.3 The interface ...105

Figure 6.4 Objects on the input-link ..106

Figure 6.5 Example of graph structure in WM developed from shared identifier WME

..107

Figure 6.6 The Environment ..109

Figure 6.7 Experience – advance ...110

Figure 6.8 Experience – manoeuvre...111

Figure 6.9 Experience - attack ...111

List of Figures

x

Figure 6.10 Situation after moving north...114

Figure 6.11 Experience – manoeuvre...115

Figure 6.12 Situation after completing manoeuvre..117

Figure 6.13 Blue tank reaches its destination...118

Figure 6.14 Integration of neural network in the architecture....................................120

Figure 7.1 Simulation environment. The Blue tank is located at cell in the middle of

bottom row, and is heading north. There is only one static obstacle located at the

cell in the middle of fifth row in the north of the tank. The destination is marked in

the middle of top row. ..126

Figure 7.2 Production: selection*prioritise*evaluate-operator128

Figure 7.3 Productions: to calculate Manhattan distances for evaluation..................129

Figure 7.4 Productions: to evaluate actions for manoeuvring obstacles130

Figure 7.5 RPD-Soar agents vs. Random-walk agent..131

Figure 7.6 Less-Experienced vs. Experienced RPD-Soar agents133

Figure 7.7 Enlarged environment...134

Figure 7.8 Less-Experienced vs. Experienced RPD-Soar agents in an enlarged

environment ...135

Figure 7.9 Changed Obstacle pattern ...137

Figure 7.10 Collision course ..139

Figure 7.11 Mental simulation to avoid collision ..140

Figure 7.12 The least frequently used path. The labels with each path are depicting the

step number of the corresponding agent. ...144

Figure 7.13 The most frequently used path. Some times the Blue agent traverses the

same location number of times. The label on the left shows the step number earlier

in time than the number on the right. 0, 3 means agent visits this location at step 0

and then comes to the same location in step 3. ..145

Figure 7.14 Behaviours of Blue agent for starting position of Red - (7, 8)146

Figure 7.15 Behaviours of Blue agent for starting position of Red - (7, 8)147

Figure 7.16 Behaviours of Blue agent for starting position of Red - (7, 8)148

Figure 7.17 Behaviours of Blue agent for starting position of Red - (7, 8)149

Figure 7.18 Probabilities of Blue agent’s behaviour..150

Figure 7.19 Behaviours of Blue agent over 100 simulation runs – Red starts: (7,8)

..151

List of Figures

xi

Figure 7.20 Behaviours of Blue agent over 200 simulation runs – Red starts: (7,8)

..152

Figure 7.21 Behaviours of Blue agent over 1000 simulation runs – Red starts: (7,8)

..153

Figure 7.22 Most frequent behaviour for 200 (left) and 1000 (right) simulation runs

..153

Figure 7.23 Second most frequent behaviour in 1000 simulation runs154

Figure 7.24 Behaviours of Blue agent over 100 simulation runs – Red starts: (1, 7)

..155

Figure 7.25 Behaviours of Blue agent over 100 simulation runs – Red starts: (2, 7)

..156

Figure 7.26 Behaviours of Blue agent over 100 simulation runs – Red starts: (1, 8)

..156

Figure 7.27 Behaviours of Blue agent over 100 simulation runs – Red starts: (2, 8)

..157

Figure 7.28 Behaviours of Blue agent over 100 simulation runs – Red starts: (7, 7)

..157

Figure 7.29 Behaviours of Blue agent over 100 simulation runs – Red starts: (8, 7)

..158

Figure 7.30 Behaviours of Blue agent over 100 simulation runs – Red starts: (8, 8)

..158

Figure 7.31 Agent south of two-cell obstacle ..160

Figure 7.32 Production: evaluate move west action - two-cell obstacle in the north

..161

Figure 7.33 Storing process of chunks and statistics ...163

Figure 7.34 Situations before and after first moves of both Red and Blue agents.....165

Figure 7.35 Chunk learnt to avoid collision with Red agent166

Figure 7.36 Situation for the chunk learnt to avoid collision with Red agent167

Figure 7.37 Chunk learnt to remember success value of an action for a situation.....168

Figure 7.38 Learning curve of Blue agent – Red agent starts from location (7, 8)....169

Figure 7.39 Situations before and after two moves of both Red and Blue agents170

Figure 7.40 Learning curve of Blue agent – Red agent starts from location (8, 8)....171

Figure 7.41 Situations after three moves of both Red and Blue agents172

List of Figures

xii

Figure 7.42 Learning curve of Blue agent – Red agent starts from location (9, 7)....173

Figure 7.43 Situations after three moves of both Red and Blue agents173

Figure 7.44 Learning curve of Blue agent – Red agent starts from location (9, 8)....174

Figure 7.45 Learning curve of Blue agent over four tasks ...176

Figure 7.46 Example terrain with two hills..178

Figure 7.47 A typical training example. Note the placement of the assault group (AG)

and the fire support group (FS), the FS which is supposed to support the AG with

fire during the attack is behind the AG and almost in the same line. This strategy

makes maximum use of cover from fire and observation available to own tanks

from the enemy due to hills but this placement can result in fratricide and is

unrealistic and needs to be modified..180

Figure 7.48 Another training example that needs modification. In this strategy also in

order to make maximum use of hills to protect own tanks from enemy observation

and fire, the FS is positioned relatively more close to the own initial position than

the enemy positions being attacked by the AG. The FS should be positioned closer

to the enemy to provide effective fire support. ..181

Figure 7.49 Strategy for Situation 1. For all those situations where either there are no

hills present in the battlefield or the hills are located closer to the own position

than the enemy (first two entries of Table 7.5 correspond to such situations) this

strategy is used. This plan is conventional in which the own troop of tanks is

divided into two groups the FS and the AG, the FS is positioned on the east to

provide fire support while the AG attacks from the south.183

Figure 7.50 Strategy for Situation 2. In this battlefield there is only one hill in the

middle ground that affects the selection of strategy. The FS is positioned behind

the hill to protect it from enemy observation and fire. The AG manoeuvres from

the east and attacks the enemy positions..184

Figure 7.51 Strategy for Situation 3. In this battlefield there is only one hill located in

the west and very close to the enemy position. The FS takes position behind this

hill to provide fire support and the AG attacks the enemy from the south. The

position of the fire support is very close to the enemy and can provide very

effective fire support. Although it is protected behind the hill but due to proximity

to the enemy FS group is threatened and this strategy is based on a calculated risk

as regards FS group..185

List of Figures

xiii

Figure 7.52 Strategy for Situation 4. In this battlefield there is only one hill located in

the south west of the enemy position. The FS group occupies the position behind

this hill moving to its position from the west. The AG manoeuvring from the east

attacks the enemy position. ..186

Figure 7.53 Strategy for Situation 5. In this battlefield there are two hills: one hill is

located just short of the middle ground; and the other is located a little west of the

enemy position. The FS group moves north to occupy its position south of the hill

in the middle ground from where it supports the attack. The AG manoeuvres from

the west and attacks the enemy position from behind the hill located in the west of

the enemy. ..187

Figure 7.54 Strategy for Situation 6. There are two hills in this battlefield; one hill is

located close to enemy position on its south and the other hill is located south-

west-west of the enemy position. The FS group moves from the west and occupies

its position behind the west hill to provide fire support for the AG. The AG moves

north to the hill south of the enemy and attacks the enemy position from there. 188

Figure 7.55 Strategy for Situation 7. There is only one hill in this battlefield located in

the middle ground south of the enemy position. The FS group moves north of the

hill to support the AG. The AG manoeuvres from the east to attack the enemy

position. This situation is quite similar to the situation in Figure 7.50 with the only

difference that the hill in this case is comparatively more towards south of the

enemy position. ..189

Figure 7.56 Strategy for Situation 8. There are two hills in this battlefield. Both of the

hills are close to the enemy position; one on the south-east and the other on the

south-west. The FS group moves from the west and occupies its position behind

the south-west hill to provide fire support to the AG. The AG manoeuvres from the

east to attack the enemy position from the south-east hill.190

Figure 7.57 Strategy for Situation 9. There are two hills in this battlefield and both of

them are south-west of the enemy position. The AG manoeuvres from the west

taking cover of these hills and attacks the enemy position from behind the hill

close to the enemy position. The FS group moves from the east and takes position

in the open terrain in the south-east of the enemy position to provide fire support

to the AG. ...191

List of Figures

xiv

Figure 7.58 Strategy for Situation 10. It is a very idealistic battlefield for the attacker,

due to two hills present at suitable locations to provide cover for both of it’s

groups that is the AG and the FS. The FS moves from the west and occupies

position behind the south-west hill to support the AG with fire and the AG

manoeuvres from the east to attack the enemy position from behind the south-east

hill. ...192

Figure 7.59 Strategy for Situation 11. There are two hills in this battlefield; one is in

the south and the other is in the south-south-east of the enemy position. The FS

group takes advantage of the hill in the south and moving north occupies the

position behind the hill to support the attack of AG with fire. While the hill in the

north-east of this south hill is relatively close and is not suitable for the AG to

position behind it because this narrow angle from the view point of the enemy is

suitable for effective engagement of both groups with fire. Therefore, the AG

manoeuvres further east taking partial cover from the hill and attacks the enemy

position from the east...193

Figure 7.60 Strategy for Situation 12. There are two hills in this battle field; both in

south and one each in either directions east and west. This situation resembles the

situation presented in Figure 7.58 with the difference that the hills in this case are

comparatively a little south and further away in easterly and westerly directions.

Although the distance of the hills from the enemy position is a little more than

what is ideal for positioning FS and AG for the attack but is sufficiently

advantageous and therefore FS group positions behind the westerly hill and the AG

attacks from behind the easterly hill in this strategy. ...194

Figure 7.61 Situations with one hill fixed at (0, 0.7). In this case a total of six

situations are recognized, but two situations recognized most of the time are 1

(Figure 7.49) and 7 (Figure 7.55). If the other hill is south-westerly then Situation

1 is recognized but if it is towards east then Situation 7 is recognized. The

strategies applied to these two situations are similar but only the locations of AG

and FS are interchanged. The other recognized situations are 2, 5, 11 and 12. One

desirable feature common to all the strategies applied to these situations is the use

of the hill in the middle ground as protection from observation and fire for either

AG or FS. ...196

List of Figures

xv

Figure 7.62 Situations for one hill fixed at (0.4, 0.7). In this case a total of seven

situations are produced. The setting is quite similar to the setting in Figure 7.61

and therefore, again the two main situations recognized are 1 and 7. The other

recognized situations are 5, 8, 10, 11 and 12, and strategies applied to all these

situations also use the hill in the east for protection against observation and fire

from the enemy for either the AG or FS, except for the strategy for Situation 5. In

the strategy for Situation 5, the AG uses the hill in the west which gives more

advantage to the attacker..197

Figure 7.63 Situations for one hill fixed at (-0.17, 0.7). In this case a total of ten

situations are produced. More number of situations are recognized in this case as

compared to the previous experiment because most of the training examples are

based on either both hills or at least one hill in the west therefore, the agent

produces ten out of a total of twelve possible situations......................................198

Figure 7.64 Situations for one hill fixed at (0, 0). In this case nine out of twelve

Situations are produced. Strategy 2 uses the hill in the west for AG, Strategy 3 uses

the hill in the north and west of enemy for FS, Strategy 4 uses the hill in the south

west of the enemy for FS, Situations 5 and 9 use the hill in the north and west of

enemy for AG, Strategy 12 uses the hill in the south west of the enemy for FS to

the advantage of the attacker..200

Figure 13.1 The interface ...233

Figure 13.2 Code to create Soar kernel..234

Figure 13.3 Code to create a Soar agent ..235

Figure 13.4 Code to get the input-link and create an identifier WME235

Figure 13.5 Code to create object identifier, string and integer WMEs236

Figure 13.6 Example of shared identifier WME...237

Figure 13.7 Part of code for Cell class...238

Figure 13.8 Part of code in S_Agent class to create cells and connect them.............239

Figure 13.9 Method in Cell class to update values in the cell WMEs240

Figure 13.10 Output – command ...241

Figure 13.11 Code to handle events in Environment class ..243

Figure 13.12 Methods and fields in Kernel and other sml classes for event handling

..244

Figure 13.13 Code in Simulation class for event handling ..245

List of Figures

xvi

Figure 13.14 The Environment ..246

Figure 13.15 Experience – advance ...247

Figure 13.16 Experience – manoeuvre...248

Figure 13.17 Experience - attack ...249

Figure 13.18 Working memory of the RPD-Soar agent ..250

Figure 13.19 Production: initialize-rpd-soar..251

Figure 13.20 Productions: elaborate distance of tank to obstacle..............................252

Figure 13.21 Operator tie impasse ...252

Figure 13.22 Operator: evaluate-operator ..253

Figure 13.23 Space for mental simulation ...253

Figure 13.24 Example productions used to implement mental simulation................254

Figure 13.25 Situation after moving north...255

Figure 13.26 Experience – manoeuvre...256

Figure 13.27 Manoeuvre - an abstract action...256

Figure 13.28 Production: set the goal for manoeuvre ..257

Figure 13.29 Situation after completing manoeuvre..259

Figure 13.30 State of working memory showing red tank on radar sensor................259

Figure 13.31 Production - propose attack ..260

Figure 13.32 Attack – an abstract action..260

Figure 13.33 Advance – an abstract action ..260

Figure 13.34 Blue tank reaches its destination...261

Figure 13.35 Environment – methods to handle goal state..262

Figure 13.36 Simulation – method to handle goal state...263

Figure 13.37 Productions: to set the goal, test the goal and halt the agent265

List of Tables

xvii

LIST OF TABLES

Table 4.1 Characteristics of combatants for one-on-one simulation............................73

Table 4.2 Comparison of exponential and triangular inter-firing time distributions ...73

Table 4.3 Summary of simulation results of simple RPDAgent...................................78

Table 7.1 Performance of Random-walk and RPD-Soar agents132

Table 7.2 Performance based on Soar decision cycles of RPD-Soar agents in an

enlarged environment...136

Table 7.3 Number of distinct paths traversed by Blue agent in eight different situations

..143

Table 7.4 Comparison of chunks learnt ...177

Table 7.5 Training set for conventional commander ...182

xviii

Chapter 1 - Introduction

1

1 INTRODUCTION

This chapter first introduces the context in which the problem discussed in this thesis

arises, followed by major contributions of the work and concludes with a brief

description of the chapters.

Military simulations are extensively used for planning, training, acquisition of

systems, evaluation of weapon systems and equipment, tactics and doctrines. Present

day battle scenarios are very complex and highly dynamic. This complexity and

dynamism is likely to increase in future. Decisions of present day human commanders

have unprecedented effects on the outcome of the battle, due to availability of

firepower, mobility, flexibility, and information (Killebrew, 1998). Human-in-the-

loop simulations are time and personnel intensive (Peck, 2004). In simulations lacking

human intervention, it is no longer a valid method to use the relative strength of

opposing forces, together with their firepower, in order to predict battle outcomes

(U.S. Army, 1997). The battle outcomes of aggregated forces is not as accurate as the

results produced by different entities engaged in combat interactively with their

individual plans. Computer implementations of human models populate both types of

military simulations that are simulations with and without human intervention. These

implementations include human models for individual combatants, followers, and

leaders either leading a group of individuals or an integrated platform. The behaviour

of these models mimicking humans in military simulations is not sufficiently realistic,

particularly with regard to learning and decision making.

One of the problems in decision making is that the automated or computer generated

decisions are predictable. In training simulations this predictability in behaviour

allows the trainees to play the game of the simulation compromising the aims of the

training. Predictability is caused by lack of flexibility in decision making strategies,

variability in behaviour, and adaptability. Lack of flexibility in decision making

strategies is directly related to the decision making model.

The decision making process in command agents in present day military simulations,

such as Warsim 2000 (McNett et al., 1997), and ModSAF (Ceranowicz, 1994a and

1994b) and JANUS (Pratt and Johnson, 1995) interfaced with decision support

systems such as DICE (Bowden et al., 1997) and course of action generators such as

Chapter 1 - Introduction

2

Fox-GA (Hayes et al., 1998) and CADET (Ground et al., 2002), is predominantly

based on the military decision making process (MDMP) which in turn is based on the

well known multi attribute utility analysis (MAUA) model. This decision making

process is prescriptive; instructing how humans should take decisions. It is in contrast

to descriptive decision making models that explain how humans actually make

decisions. The experienced decision makers do not follow the MAUA process of

generating multiple options and evaluating them on abstract dimensions. They have

been observed to make decisions according to the recognition primed decision making

(RPD) model described by Klein and associates after studying fire-ground

commanders, nurses in intensive care units, and other experts for sustained periods in

their natural settings (Klein, 1998). The RPD model describes how decision makers

can recognize a plausible course of action as the first one to consider. A commander's

knowledge, training, and experience generally help in correctly assessing a situation,

and developing and mentally wargaming a plausible course of action. The RPD model

falls under the rubric of naturalistic decision making (NDM) (Lipshitz et al., 2001).

NDM is characterized by features such as dynamic environments, uncertainty, ill

defined goals, high stakes, and experienced decision maker. Mental simulation is an

important part of Klein’s RPD Model. The attempts to develop computer models of

RPD so far (Warwick et al., 2001), (Forsythe and Xavier, 2002), (Liang et al., 2001),

(Ji et al., 2007), (Gonzalez and Ahlers, 1998), (Kunde and Darken, 2005), (Norling et

al., 2001) and (Sokolowski, 2002) have failed to implement mental simulation for

sequential evaluation and modification of plausible courses of action. Wargaming a

course of action by mentally simulating it before making decisions is required in

situations where one course of action may not clearly be recognized as the most

suitable for the present situation (Klein, 1998).

Although, the behaviour of command agents is observed externally for realism, this

behaviour is real only if the human behaviour model is based on plausible

psychological theory. If for ease of implementation the underlying theory is

compromised then the model is brittle and displays non-understandable behaviour in

unexpected situations. Alan Turing in his seminal work Computing Machinery and

Intelligence in 1950 (Turing, 1950), proposed the ‘Imitation game’ in which the

performance of a machine mimicking humans is evaluated by observing the external

behaviour of the model. But also in this test, a model based on a psychological theory

Chapter 1 - Introduction

3

of how human’s converse is most likely to outperform other models that are

developed aimed at only deceiving the observer.

Human cognition is modelled with the help of cognitive architectures. Varying levels

of sophistication exist in cognitive models. One of these cognitive architectures is

Soar (Newell, 1990). Soar has been developed as an architecture of general

intelligence (Laird et al., 1987). It finds solutions of problems by exploring problem

spaces through applying available operators to it. Soar provides the basic

infrastructure to implement all aspects of RPD model and especially ‘mental

simulation’ for course of action evaluation.

One important contributor in modelling human behaviour for military simulations may

be the gaming industry but there is difference in the overall aims of model

development. In military simulations the requirement is of realism to produce most

accurate effects while for gaming applications entertainment is the primary

consideration (Laird, 2000). In gaming artificial intelligence (AI), the requirement of

human like behaviour reduces to an illusion of human like behaviour because the main

aim of the development of this type of behaviour is only entertainment and there is no

emphasis on accuracy or competence of the underlying psychological theories and the

resulting behaviours. In the gaming industry, if the behaviour of an opponent provides

a satisfying game experience to the player by not being very easy nor very difficult to

kill then the purpose is served. Therefore, in gaming applications emphasis is on

visual graphics, audio, and other features that enhance the user experience. But still

both industries share a lot in common and can benefit from each other to a great extent

(Peck, 2004).

In preceding paragraphs, the requirement of modelling and simulation and the

importance of realistic human behaviour models for military simulations representing

conventional warfare are discussed. Most of military conflicts now involve

asymmetric warfare. Where the relative military power of the belligerents is

significantly different the conduct of warfare changes form and is known as

asymmetric warfare. This form of war deals with uncertainties and surprises in terms

of ends, ways and means. And this uncertainty increases with dissimilarity in the

opponents. As the conduct of war has drastically changed therefore a commensurate

change in doctrine, tactics, procedures, and force structure is required. The

Chapter 1 - Introduction

4

contingencies are numerous and the experience of the military does not match.

Therefore, realistic models and simulations are needed to cover the gap in experience.

1.1 The problem

The human behaviour representation needs to be realistic in order to give a more

accurate effect of a human commander’s decisions on the course of the battle, as

suggested in the annual report of army-after-next (U.S. Army, 1997) and (Killebrew,

1998).

Pew and Mavor (1998) have pin pointed common short comings of the existing

decision models, their comments are presented in their own words, “First the decision

process is too stereotypical, predictable, rigid, and doctrine limited, so it fails to

provide a realistic characterization of the variability, flexibility, and adaptability

exhibited by a single entity across many episodes. Variability, flexibility, and

adaptability are essential for effective decision making in a military environment….

Second, the decision process in previous models is too uniform, homogeneous, and

invariable, so it fails to incorporate the role of such factors as stress, fatigue,

experience, aggressiveness, impulsiveness, and attitudes toward risk, which vary

widely across entities.”

To address the problems of inflexibility in decision making strategy, predictability in

behaviour, and inadaptability in command agents used in military simulations, this

research proposes a computer model of command agent based on recognition primed

decision making (RPD) model implemented in the Soar cognitive architecture. This

research aims to address the problem of inflexibility in decision making strategy, by

varying the decision making strategy according to psychologically plausible processes.

It aims to address the problem of predictability in behaviour, by providing variability

in behaviour not through randomness which produces undesirable behaviour but

through satisficing which is giving suboptimal choices to the agent that promise a

sufficient level of success in achieving the goals. It also addresses the problem of

inadaptability, by making the agent learn from its experience using a learning

procedure called chunking in Soar which is a form of explanation-based

generalization. This learning process increases the efficiency of the agent with

experience and it can also transfer knowledge to similar tasks. This model also

promises to alleviate the problems of long development times of agents and

Chapter 1 - Introduction

5

knowledge elicitation from subject matter experts by incorporating mental simulation

capability in the agent which assists the agent in handling new situations effectively.

The ability to handle new situations is proposed to be further enhanced by

incorporating a pre-trained artificial neural network in the architecture of the agent.

The context in which this problem is addressed is discussed below.

The military community in general has recognized the importance of realistic

simulations and identified the short comings in the present models of human

behaviour and realized the importance of realistic representation of human behaviour

for military simulations (Erwin, 2000), (Erwin, 2001), and (Book, 2002).

The panel on Strategic directions in simulation research (Nicol et al., 1999)

emphasises the need to develop techniques to insert reactive and intelligent human

behaviour in the virtual world for military training simulations and computer games.

The usual techniques of modelling human behaviour like finite state machines (FSM)

(Kohavi, 1978) that encode specific behaviours and define the transition conditions

from one behaviour to the other, are discovered to be limited in representing realistic

human behaviour. The humans interacting with these entities identify their limitations

and take advantage of them, thereby compromising the aims of the simulation. The

panel points out that these behaviour representations are unrealistic by exhibiting only

correct and by-the-book behaviour.

The military is using distributed simulations for design and evaluation of equipment

and weapon systems, military planning, and training. The popular use of computer

generated forces (CGFs) to support the above simulations as opposing forces and also

collateral friendly forces requires modelling realistic human behaviour. Moreover, in

the same context higher and lower echelons are also modelled to see the effect of

commands given by the higher echelon and reaction from and implementation of

commands given to the lower echelons, on the progress of the battle.

In most of the applications of models of human behaviour, it’s the external behaviour

that is observed for realism. In constructive wargame simulations, it may only be the

outcome of the battle or the movement of the troops. In distributed simulations, the

individual behaviours of combatants and units are observed together with their

execution of plans, and outcome of the encounters. The realism is judged on the

measure of results and behaviours of individuals and groups meeting the expectancies

of the observers.

Chapter 1 - Introduction

6

Aggregation is at different levels. Representation may be at an individual level or at

the group level. The individual entity may be an individual combatant like a

dismounted infantry soldier, a ground vehicle or air system commander, a squad or

platoon leader or a commander at a higher level.

The first step of realistic decision making is realistic situation awareness. Although,

situation awareness is not directly observable in the simulation unless explicitly

displayed but it is indirectly observed in the out come of decision making that is the

action taken. The directly observable part is the actions such as which way the entity

moves, given the plan, the environmental factors, and the situation presented by the

opposing forces. More examples of such like actions are; shoot, retreat, seek cover,

advance, follow, pursuit, and evade. To seem real the decisions should be consistent

with the current goal. The goals should change according to the situation. Sometimes,

while keeping the main goal in view, human commanders do take opportunistic

approach and make decisions to take advantage out of an opportunity presented by the

opposing forces. The expectation of the observers is to witness these types of

decisions also.

1.2 Modelling and Simulation

A model is a physical, mathematical, or logical representation of a system, entity, or

process and a simulation is a method of implementing a model over a period of time.

1.3 Types of military simulations

Military simulations are differentiated based on what is modelled and what is real. The

spectrum is divided in three parts, starting from all real it moves up to completely

synthetic environments and entities including humans. Live simulation involves real

people operating real systems. It is used for maintaining readiness and testing new

employment concepts. It is independent of HBR. In virtual simulation, real people

operate simulated systems. Virtual simulations require human-in-the-loop

intervention. Human intervention is in the form of decision making, or exercising

motor control skills, such as firing a weapon system, flying an aircraft, controlling fire

of weapons and weapon systems. The Close Combat Tactical Trainer (CCTT) is an

example of virtual simulator (Johnson et al., 1993). The human controller represents

the decision making and tactics. Intelligent allied or opposing forces may be used and

Chapter 1 - Introduction

7

it needs HBR. Constructive Simulation involves simulated people operating

simulated systems. It is used for planning, training, force development, organizational

analysis, and resource assessment. Humans set up the simulation, after which the

simulation runs on its own and produces outcomes that can not be controlled by

humans. It is totally dependent on HBR either implicitly or explicitly.

1.4 Requirement of command agents

Human behaviour representation benefits users of following types of military

simulations:

• Training

• Mission rehearsal

• Analysis

• Acquisition

• Joint force analysis (Pew and Mavor, 1998).

1.5 Computer generated forces (CGF) and how to judge them

U.S. Department of Defense Modelling and Simulation (M&S) Master Plan defines

CGF as “A generic term used to refer to computer representations of entities in

simulations which attempts to model human behaviour sufficiently so that the forces

will take some actions automatically (without requiring man-in-the-loop interaction”

(DoD, 1998). CGFs operate in synthetic environment.

1.5.1 Synthetic environment

A synthetic environment is defined in the words of Dompke (2001) as “Internetted

simulations that represent activities at an appropriate level of realism. These

environments may be created by within a single computer or over a distributed

network connected by local and wide area networks and augmented by realistic

special effects and accurate behavioural models.” A synthetic environment links any

combination of models, simulations, people and equipment, real or simulated, into a

common representation of a world. The environment of a simulation is represented

with its contents like ground, objects, natural and man made features, etc. the effects

of some actions are also represented. CGFs are one of the components of synthetic

environment. For example for UK armoured vehicle training, there are two combined

Chapter 1 - Introduction

8

arms tactical trainer (CATT) sites at Warminster and Sennelager, UK. Each of those

has nearly a hundred full mission, full crew, high fidelity, vehicle specific simulators,

all together capable of hosting a full armoured brigade group. The CGFs in this

synthetic environment simulate all the enemy forces and civilian population.

1.5.2 Synthetic forces

We define synthetic forces in the words of Ritter (2002), “Synthetic forces exist in

military simulations, sometimes alongside real forces that have been instrumented

and linked to the simulation. The physical aspect represents the movement and state of

platforms (objects) in the simulation, including such aspects as maximum speed and

the actions that can be performed in the world. The behavioural aspects of a synthetic

force platform determine where, when and how it performs the physical actions, that

is, its behaviour”. Modular Semi-Automated Forces (ModSAF) (Ceranowicz, 1994a

and 1994b) is an example of synthetic force.

1.5.3 Semi-automated forces

U.S. Department of Defense Modelling and Simulation (M&S) Master Plan defines

semi-automated forces as, “Simulation of friendly, enemy and neutral platforms on the

virtual battlefield in which the individual platform simulations are operated by

computer simulation of the platform crew and command hierarchy. The term "semi-

automated" implies that the automation is controlled and monitored by a human who

injects command-level decision making into the automated command process” (DoD,

1998).

1.5.4 Intelligent software agent

Agency is the degree of autonomy vested in the agent and intelligence is the degree of

reasoning and learned behaviour. Thus an intelligent agent must have some degree of

autonomy in pursuit of the goal assigned to it which they must exhibit in their

behaviour while interacting with the environment and other entities, and some ability

of reasoning in order to carry out the assigned task and learning. According to

Nwana’s typology (Nwana, 1996) the smart agent is an autonomous, learning, and

cooperating agent (Figure 1.1). The terms smart agent and intelligent agent are

interchangeably used in the literature on agent typology.

Chapter 1 - Introduction

9

Figure 1.1 Nwana’s agent typology (Nwana, 1996)

1.6 Cognitive science

Representing human behaviour involves comprehensive models of human abilities.

Since last four decades, computer systems have been considered analogous to the

information processing system of humans. Information is acquired, processed, stored,

retrieved, and used to accomplish given tasks by both computers and human brains.

Cognitive science based on psychology, linguistics, anthropology, and artificial

intelligence (AI) is developed to help us understand phenomena like human decision

making, natural language processing, perception, motor action, memory, and learning.

Decades of experimental data from research on human psychology has found

regularities in human behaviour and some of them are very robust. Human regularity

is defined as the behaviour that all humans seem to exhibit. One of the most robust

regularity in motor behaviour is the Fitts’ Law (Fitts, 1954), which predicts how long

it will take a person to move a pointer from one point to a target location as a function

of the distance to be travelled and the size of the target. Then there are other human

behaviour regularities like: the garden path phenomenon, regularities about item

recognition and verbal learning. The garden path phenomenon comes from the field of

psycholinguistics, which contrasts sentences that are very easy for people to

understand from those that are very difficult for people to understand (Gibson, 1990).

Learn

Autonomous

Cooperate

Interface Agents

Collaborative

Learning

 Agents

Collaborative

 Agents

Smart Agents

Nwana’s Agent Typology

Chapter 1 - Introduction

10

Regularity about item recognition is found by Sternberg (1975), which describes how

the time taken to decide whether an item is on a memorized list of items increases

linearly with the length of the list of items. Regularity about verbal learning is that if

an ordered list of items is memorized by repeated exposure, then the items at the ends

of the list are learned before the items in the middle of the list (Tulving, 1983). With

these descriptions of regularities also come the theories that explain these regularities.

As these theories come from different disciplines, they are not coherent and it is very

difficult to put them together into a model and develop a human behaviour model

straight away. However, there have been attempts at developing unified theories of

cognition (UTC); the most popular implementations of UTC are Soar and ACT-R,

developed by Newell (1990) and Anderson (1993) respectively. None of these

implementations have modelled the complete phenomenon of human cognition rather

these attempts at UTC are considered as a good starting point to bring all the

incompatible ‘micro theories’ together to develop a bigger picture.

1.7 Definition of human behaviour representation (HBR)

Human behaviour representation is representing the behaviour of humans as

individuals, leaders whether leading a group of men or an integrated platform like a

vehicle with crew, followers, and groups, so that they can appear to be real to

observers and to humans interacting with them. The human behaviour representation

(HBR) in this thesis refers to representation of behaviour of humans involved in

military activities such as operations and training. HBR and human behaviour model

(HBM), in this thesis, are used interchangeably. An HBM may be an individual

combatant like a dismounted infantry soldier, a ground vehicle or air system

commander, a squad or platoon leader or a commander at a higher level.

1.8 Definition of command agent

We define command agent as “intelligent agents representing human combatant or a

military commander leading a group of combatants or human controlled platforms that

autonomously take decisions in military simulations”.

Chapter 1 - Introduction

11

1.9 Flexibility in decision making strategy

We define flexibility in decision making strategy as the ability of the decision maker

to adopt different decision making method in different situations. For example lack of

experience or knowledge in the problem under consideration may require the decision

maker to contemplate more and give a detailed consideration to all the factors as

compared to a situation where the decision maker has experience and knowledge in

the problem under consideration. Adopting the same decision making strategy every

time is not what humans do and is not considered realistic. Until there are a number of

different decision making strategies the internal and external behaviour moderators

like knowledge, stress, and fatigue etc. can not be realistically represented in decision

making behaviour of command agents.

1.10 Variability in behaviour

We define variability in behaviour as the difference in observed behaviour when one

or more entities are placed in the same situation while performing the same task. The

entity may be real or virtual subjects. The situation includes the environment also, as

part of the situation is formed by variables from the environment. The variability in

behaviour is divided into two types: variability within an entity and variability across

entities (Wray and Laird, 2003). Within-entity variability is defined as the variability

observed in the behaviour of an entity in performing the same task in different

episodes of the same situation. Across-entity variability is defined as the variability

observed in the behaviour of more than one entity in comparison to each other in

performing the same task in the same situation during a single episode.

1.10.1 Requirement of variability in behaviour of synthetic forces in military

simulations

Synthetic forces populate both virtual and constructive military simulations for

training and development and evaluation of new weapon systems and doctrines. These

synthetic forces are representing either humans or human controlled platforms. These

platforms include unarmed transport vehicles, tanks, planes, attack helicopters, ships,

etc (Wray and Laird, 2003). These computer generated forces represent opposite

forces, own and allied forces, and neutral forces. Trainees interact with these synthetic

forces during training on these simulations. Trainees engage enemy forces, participate

Chapter 1 - Introduction

12

in operations alongside friendly forces, or command own forces. The most important

reason for modelling variability in behaviour of these computer models of humans is

to enhance the training benefit and prepare the trainees for real combat where every

human combatant behaves differently. Training with predictable non-varying

behaviour affects the training in various ways.

It has been noted in military simulations as well as in computer games that if the

computer generated opponent is easily predictable in a given situation then the trainee

or the player games the situation taking advantage of this limitation of the opponent

(Wray and Laird, 2003). This is a short cut to actual training and creates incorrect

performance measures that may prove to be fatal for the trainee during actual combat

and may put the group or the unit of these trainees into an ambitious task not

commensurate to their capabilities.

Usually an aim in designing the opponents is to design them such that they produce

the best tactical behaviour with a view to make the trainees expert in fighting the most

well trained opponents. This is good but not real and may prove counterproductive.

The trainees should be able to handle all kinds of situations that may arise in the type

of combat for the intended training. A variant from the behaviour of a well trained

combatant may be a foolishly brave act of an opponent that may surprise the trainee in

actual combat. For example, an opponent waiting in an open space after taking a turn

around a building while he is expected to run along the building to find a cover and

then wait should be able to surprise everybody. Therefore, training against a

combatant with well trained behaviour is not the complete training rather training

against all possible behaviours from the opponents is required for the real combat. In

the same way, it is also a part of good training to expose the trainees to heterogeneous

team mates and under command forces. It is also part of training to coordinate and

cooperate with team mates that respond differently in a situation. It is also important

for the trainees to be able to organize and make best use of under commands with

different skills and varying knowledge levels and expertise.

In military simulations aimed at development and evaluation of new weapon systems

and doctrines it is important to explore the extremes of all possible responses to a

situation. For example, whilst designing a weapon system its response to an incorrect

sequence in pressing a set of buttons may never come to light because it is quite

unusual for anybody to do it. A combatant with a kind of variability in behaviour

Chapter 1 - Introduction

13

covering even some part of the incorrect behaviour space may expose this fault in the

design. Variability across entities in a simulation may highlight the fact that a weapon

system that is very effective against opponents with one type of behaviour may not be

as effective against opponents with another type of behaviour.

1.10.2 Sources of variability in behaviour

Sources of variability are different for within-entity variability and across-entity

variability. Across-entity variability is produced due to difference in knowledge,

experience, personality, culture, religion, and emotional state. Within-entity variability

is produced due to the variations in mental and physical conditions of the entity.

Motivation, emotional state, fatigue, and adaptation due to more experience or

knowledge are some of the factors that produce variability in behaviour within an

entity. In computer models of human behaviour the variability across-entities may be

produced by giving different knowledge, experiences, and personality to different

entities. Producing variability within an entity is difficult to achieve.

An entity becomes unpredictable if randomness is introduced in its selection process

of actions that produces behaviour. But this randomness produces undesirable

behaviour which lacks coherence and salience of actions that should have been

exhibited in the behaviour of an agent in pursuit of the assigned goals. This behaviour

is not human-like. The requirement is to produce human-like variability in the

behaviour to be unpredictable but not arbitrarily random. Humans have a tendency to

select one course of action more often than other applicable ones. Therefore, if a

population of behaviours created by repeatedly running the same episode for a single

agent, is observed then that population should be able to represent the overall

behaviour while a particular single episode may be different. Similarly, if a population

of behaviours of same type of agents in an episode is observed then the population

should be able to represent the over all behaviour while the individual behaviour of

agents may be different. This is important for training because recognising a pattern is

part of training that will be missing in case of variability in behaviour of agents

produced by arbitrary randomness.

Behaviour validation seems to be at odds with behaviour variability as validating a

changing behaviour for the same situation naturally looks more complex and difficult.

Chapter 1 - Introduction

14

1.11 Learning

Learning is important for command agents or HBMs for many reasons. Learning

represents expertise and experience. In military simulations, human-like command

agents take the role of local commanders, subordinate commanders, opposition force

commanders and even own or enemy single combatants in a loose command structure

where they make individual decisions during an operation. A human-like agent in any

possible role who encounters a situation for a second time is likely to behave

differently in the light of the experience gained from the previous episode. Keeping in

view the learning procedures and methods present in current military simulations,

learning may be divided into two categories: first is off-line learning; and the second

is learning during the simulation. Off-line learning is the method in which the agents

are trained when they are not participating in a simulation and which means the agent

is not adaptable during the simulation. Off-line learning may be with or without

human intervention. The second method of learning refers to the learning methods that

are applied during the life of an agent within a simulation and it is adapting its

behaviour with in the simulation (Ritter, 2002).

Both of these types of learning can be used to assist the modeller in developing the

agent but it’s the second type which is significant in representing learning in humans

that occur in a very short span of time (Pew and Mavor, 1998).

The procedures and rules used by CGFs in military simulations are usually very

complicated and it is very difficult to extract this knowledge from subject matter

experts (SMEs). Therefore, one objective of learning is to automatically train an agent

to have various levels of knowledge and skills. Moreover, it is very difficult to model

the agents for each and every situation that may be encountered by the agent in a

simulation and it is very helpful if some general information is given by the SME and

the agent learns to handle similar situations automatically. It is relatively easier for the

SMEs to provide strategies or courses of action at a higher level and then give rules

and general guidelines to implement lower level actions than giving details of all

actions down to atomic level. Therefore, a learning method that may automatically

decompose a higher level course of action and learn what to do with the help of some

general rules is also required.

Learning from experience by observing the outcomes of previous decisions is also a

requirement for command agents. This is reinforcement learning of the agent based on

Chapter 1 - Introduction

15

a reward signal from the environment. In case of computerized HBMs, if the reward is

immediate then it is easy to relate the reward to a decision or an action but it becomes

very difficult for delayed rewards. For example, in military operations on urban terrain

(MOUT) a combatant agent fighting inside a building in the presence of enemy forces

outside peeps out of the window and get shot on his helmet and learns from the

reward of the action that its not very safe to peep out in that situation. Now if he is not

shot at that moment in time rather his presence is revealed to the enemy and later after

lapse of some time when the agent is filling its rifle’s magazine is injured by a grenade

that is whirled in from the window. What does the agent learn out of this episode? The

agent needs to keep a record of all previous actions to take any advantage in learning

from this episode. Or may be there is a requirement of some reasoning system with

sufficient domain knowledge to take advantage of belated rewards. In cases where the

actions are hierarchical and so is the associated reward then the problem reduces but

only to an extent because belated rewards at the same level of hierarchy still remain a

problem. Learning by observation is yet another approach in which the computer

agents learn behaviours by observing an expert perform them (Stensrud, 2005).

The artificial neural network is one candidate technology which provides robust

learning in noisy, dynamically changing, and uncertain environments. A well trained

neural net requires large number of examples which is often a problem in military

domain.

One suitable candidate for learning in military domain is explanation-based

generalization (EBL) (Mitchell, 1997). EBL is a type of inductive learning in which

learning augments the information provided by the historical examples using domain

knowledge and deductive reasoning. This aids the learning process and substantially

reduces the number of training examples required for adequate learning. Although,

EBL has problems of its own such as over generalization, it is suitable in military

domain because of its ability to learn using very few training examples. EBL is further

discussed in Section 5.2.6.

1.12 Contribution of this research

This research contributes in the field of human behaviour representation for military

simulations; specifically in proposing a command agent model incorporating

Chapter 1 - Introduction

16

flexibility in decision making strategies, variability in behaviour, and adaptability. The

main features of the research are discussed as follows:

• Parts of the recognition primed decision making (RPD) model is successfully

implemented in the Soar cognitive architecture in a way that is capable of

mimicking some decisions made by military commanders in land battlefield

settings.

• The model implements Level 1 RPD, when sufficient knowledge exists it

recognizes a situation in a changing context. Level 2 RPD is partially

implemented; information available in the environment is processed to make

cues in order to recognize a situation. The story building part of Level 2 RPD

is not implemented.

• Mental simulation forms the basis of Level 3 RPD model. Mental simulation

has been implemented in this model with such an inherent flexibility to

accommodate all types of requirements that are expected to be encountered

while making decisions using RPD model.

• Flexibility in decision making strategies based on psychological theories is

achieved. Decision making strategies are based on experience and extent of

knowledge.

• Variability in behaviour across individuals is a desirable characteristic in

human behaviour representation. Variability in behaviour across individuals is

achieved based on the type of experiences in long term memory of similar

agents.

• Variability in behaviour within individuals over different episodes of the same

task is a very difficult phenomenon to model realistically. Within-entity

variability is achieved in this model not through randomness which introduces

undesirable behaviour but due to reasonable but sometimes sub-optimal

choices made by the agent.

• The single command agent of the developed model exhibits adaptability across

various episodes which adds the much desired dynamism to the simulation

environment. The agent learns from its experience. The learning is based on

the chunking phenomenon inherent in Soar which is a form of explanation-

based generalization.

Chapter 1 - Introduction

17

• The agents also exhibit transfer of knowledge from one task to the other in

case of overlapping problem spaces within tasks.

• Due to the ability of the agents to mentally simulate courses of action it is

possible for the agent to handle new situations very effectively. Which relieves

the modeller from coding behaviours for all situations expected to be

encountered in a simulation and this in turn reduces the development time of

the agent.

• The strategies to form experiences in the long term memory of the agents are

required only at a higher level with general rules to evaluate actions at lower

levels which is easier for the subject matter expert to describe and less tasking

for the knowledge engineer to elicit. This reduces the time and effort in the

development of the agent. The ability to mentally simulate the candidate

courses of action and adaptability inherent in the agent further improves its

performance.

• To enhance the ability of the agent to handle new situations, a trained artificial

neural network is integrated in the proposed architecture, which further

reduces the labour of the modeller in coding behaviours for all expected

situations.

• The research also developed a simple RPDAgent to operate in a simple

simulation environment in order to explore the affects of realistic human

decision making on the outcome of the battle simulations. The study concludes

that the outcome of the constructive military simulations changes if realistic

human behaviour is incorporated in these simulations, and the known

mathematical and probabilistic solutions for combat modelling help in

validating the start point or base line of simulations involving human

behaviour.

• The following papers have been published based on the work in this thesis:

o Raza, M. & Sastry, V. V. S. S. (2007) Command Agents with Human-

Like Decision Making Strategies. Proceedings of the 19th IEEE

International Conference on Tools with Artificial Intelligence - (ICTAI

2007), Vol. 2, pp. 71-74. IEEE Computer Society.

Chapter 1 - Introduction

18

o Raza, M. & Sastry, V. V. S. S. (2008) Variability in Behavior of

Command Agents with Human-Like Decision Making Strategies.

Tenth International Conference on Computer Modeling and Simulation

(uksim 2008), pp. 562-567. Cambridge, England.

1.13 Organisation of the thesis

Chapter 1 of the thesis covers the motivation for research, some background

knowledge about cognitive science, types of military simulations and intelligent

software agents. The chapter also sets out the problem that is being addressed in the

thesis. The context in which the problem is addressed is described in some detail and

definitions of some terms that are used later in the thesis are given. The chapter also

includes the requirement of various characteristics in synthetic commanders to include

flexibility in decision making strategies, variability in behaviour, and learning. In the

end of the chapter, the contributions of this research are presented and the

organization of the thesis is given.

Chapter 2 briefly describes mission-planning process, presents Klein’s comments on

classical approach of decision making, and reviews existing computer techniques for

representation and acquisition of information required for mission planning. And then

briefly discusses human behaviour models and definition of related terms, and

describes recognition primed decision making. In the end, it provides an overview of

some of the most used existing cognitive architectures as models of human cognition

to include ACT-R, Soar, and belief, desire, and intentions (BDI).

Chapter 3 provides the literature review on attempts at the computer implementation

of recognition primed decision making model. The models discussed in this chapter

are based on different technologies to include multiple trace memory model,

physiological model, artificial neural network, fuzzy logic, rule based system, context-

based reasoning, and multi agents based systems (MAS) such as BDI cognitive

architecture and composite agents.

Chapter 4 describes the development details of a simple RPDAgent to operate in a

simple simulation environment and discusses the related experiments and their results.

The experiments are focused on the aim of the development of this RPDAgent which

is to see the affects of intelligent like behaviour on the outcome of military

Chapter 1 - Introduction

19

simulations. The chapter also highlights the requirements on technology to implement

a synthetic commander based on recognition primed decision making model.

Chapter 5 describes the parts of Soar cognitive architecture that are required to

comprehend the implementation of the RPD-Soar agent discussed in the next chapter.

The working memory of Soar, its reasoning cycle, conflicts and their resolution, truth

maintenance system, and learning in Soar are discussed. Some applications of and

improvements in Soar are also discussed.

Chapter 6 describes the implementation of recognition primed decision making model

in Soar cognitive architecture and in the later part of the chapter the enhancement of

the situation recognition ability of the agent by integrating a trained neural network in

the architecture is discussed.

Chapter 7 contains the experiments that are conducted to elucidate the abilities of

RPD-Soar agent. A total of five major experiments conducted in this chapter are

aimed at demonstrating the flexibility in decision making, evaluating performance and

behaviour of various types of RPD-Soar agents, demonstrating behaviour variability

across agents, testing the ability of the agent to recognize a situation in a changing

context, testing mental simulation capability of the agent for dynamic situations,

demonstrating within agent behaviour variability, and adaptability of the agent. The

last experiment is related to integration of a trained neural network in the architecture

to enhance the situation recognition ability of the agent. The discussion on the results

of these experiments is also included.

Chapter 8 provides the summary and conclusions of the research and also includes

recommendations for future work.

Chapter 1 - Introduction

20

Chapter 2 – Background Knowledge

21

2 BACKGROUND KNOWLEDGE

In this chapter, key aspects of decision making processes and the related terminologies

are presented. First the mission planning process used in the military is described

briefly and then Klein’s comments are given on classical decision making approach

used in this process. Definition of situation awareness with brief description is

presented, and then some artificial intelligence techniques employed in military

simulation is discussed. Human behaviour models in use in military simulations are

presented, and recognition primed decision making model is discussed in detail. An

overview of ACT-R, Soar, and BDI cognitive architectures is given with their

comparison in the end.

2.1 Mission planning

In this chapter two types of military commander planning behaviours are discussed,

one is doctrinally correct and the other is observed behaviour. First the former type of

behaviour is discussed and the latter is discussed with RPD. Doctrinally specified

planning process, detailed in U.S. Army Publication, Staff Organization and

Operations Field Manual 101-5, has five stages:

• Mission analysis

• Intelligence preparation of the battlefield

• Development of courses of action

• Analysis of courses of action

• Decision and execution

The mission analysis stage begins with receipt of an operation order from the higher

command and is based on the contents of the order (Pew and Mavor, 1998). The aims

and objectives are analyzed with consideration to operational constraints also called

limitations that will apply during the course of the operation. The process clearly

defines the current situation and the mission objectives. This is a very elaborate

process for the higher echelons of command but at lower level such as a platoon, this

Chapter 2 – Background Knowledge

22

process is reduced to considering the factors like the mission, enemy, terrain, troops,

time available, commonly known as “METT-T Process”.

The intelligence preparation of the battlefield (IPB) is the next stage, which is the

situation assessment process. This stage may be very complex for a divisional and

larger sized force and is not discussed as part of this thesis. For more details on IPB

interested readers are referred to Doctrine for Intelligence Support to Joint Operations,

JP 2-0, dated 9 March 2000 and Intelligence Support to Joint Operations, JWP 2-00.

In platoon level operations, the situation assessment is based on observation, cover

and concealment, obstacles, key terrain, and avenues of approach (OCOKA) process,

with consideration also given to the weather. Terrain analysis forms the major part of

this process and has been described in “FM 5-33 Terrain Analysis, Headquarters

Department of the U.S. Army, July 1990”.

The course of action development stage is the stage of the planning process, in which

several alternative courses of action are generated that can achieve the mission. At

lower levels the number of plans is usually three but at higher levels such as brigade

and higher there may be more alternative plans. Most of the times also at higher level

the alternative plans are three and then there are variants of these plans. It is the

requirement of army doctrine to generate several courses of action.

In the course of action analysis stage of the planning process the candidate courses of

action are elaborated and pitched against each other and evaluated on multiple criteria

according to the guidelines prescribed in the doctrine, however, there is scope for the

commanders to keep their own evaluation criteria.

Course of action selection stage is the stage where decision is made for a plan and

usually the highest-rated course of action is selected. Commander selects the plans

and refines it, and generates the plans and orders for unit execution.

Monitoring and replanning is the process responsible for assessing the situation and

any deviations from the plan, and then developing or calling up new plans to

compensate for those deviations.

2.2 Klein’s comments on classical decision making approaches

The military uses military decision making process (MDMP) which is based on multi-

attribute utility analysis (MAUA) and decision analysis. MAUA is considered as a

classical approach to decision making and has certain advantages such as it explains

Chapter 2 – Background Knowledge

23

the reasons behind a decision which is a requirement where a decision needs to be

justified. Moreover, MAUA is a systematic process and is suitable for new or less

experienced decision makers. The experienced decision makers in military and other

fields involving dynamic situations, high stakes and time pressures have been

observed to make decisions according to the recognition primed decision making

(RPD) model. RPD is a type of naturalistic decision making, described by Klein and

associates after studying fire-ground commanders, nurses in intensive care units, and

other experts for sustained periods in their natural settings (Klein, 1998). Klein while

proposing naturalistic decision making evaluates classical decision making which are

also called prescriptive or normative approaches to decision making. His comments

are presented here in his own words, “Classical approaches to decision making, such

as multi-attribute utility analysis (MAUA) and decision analysis, prescribe analytic

and systematic methods to weigh evidence and select an optimal course of action.

MAUA decision makers are encouraged to generate a wide range of options, identify

criteria for evaluating them, assign weights to the evaluation criteria, rate each

option on each criterion, and tabulate the scores to find the best option. Decision

analysis is a technique for constructing various branches of responses and counter-

responses and postulating the probability and utility of each possible future state, to

calculate maximum and minimum outcomes. …… On the surface these strategies may

seem adequate, yet they fail to consider some important factors inherent in real-world

decisions. Classical theories deteriorate with time pressure. They simply take too

long. Under low time pressure, they still require extensive work and they lack

flexibility for handling rapidly changing conditions. It is difficult to factor in

ambiguity, vagueness, and inaccuracies when applying analytical methods” (Klein

and Klinger, 2000).

2.3 Situation awareness

“Situation awareness is the perception of the elements in the environment within a

volume of time and space, the comprehension of their meaning, and the projection of

their status in future” (Endsley, 1995). This definition reproduced in the words of

Endsley, is the most comprehensive and widely accepted definition of situation

awareness. It can be divided into three distinct components or levels to be more

meaningful. First level is the identification of the key elements in the environment.

Chapter 2 – Background Knowledge

24

The second level is to elaborate, process, and explain the identified elements or events

or a combination of both in order to comprehend their meaning. And the third level is

to generate expectations or predict what is going to be the future values of these

identified elements which define what is going to be the next situation or may be these

identified elements do not remain the key elements in future at all or do not remain

observable.

2.4 Terrain representation and estimation of situation in mission planning

Some of the methods of terrain representation and techniques used for deriving

information for situation awareness in the process of mission planning are discussed

in this section. This discussion provides information on the quality and form of inputs

available in computer technology for synthetic military commanders.

2.4.1 Terrain representation

In military simulations, certain features of terrain need to be represented such as

terrain surface, bathymetry, physical features to include vegetation, trees, roads, rivers,

and building etc., and soil information to include mobility and water content. The

terrain surface can be represented using a digital elevation model (DEM). A DEM is

represented as raster (a grid of squares) commonly built using remote sensing. The

terrain surface can also be represented as a triangulated irregular network (TIN). TIN

is a vector based representation, made up of irregularly distributed nodes and lines

with three dimensional coordinates that are arranged in a network of non-overlapping

triangles. The fidelity of terrain representation is an important issue. High resolution is

required for realism but this increases data storage and process costs. The TIN budget

can be effectively managed, by identifying tactically significant and insignificant

terrain and accordingly adjusting modelling at high or low resolution (Campbell et al.,

1997).

Compact terrain database (CTDB) is a highly compact format for terrain

representation that covers all features of terrain required in military simulations.

CTDB is used in ModSAF, JointSAF and OneSAF testbed CGFs. CTDB represents the

terrain surface, bathymetry, physical and abstract features, and contains a polygon

attribution table (PAT). Elevation data to represent the terrain surface can be stored in

elevation grid, TIN, or hybrid forms. Elevation grid is composed of elevation posts

Chapter 2 – Background Knowledge

25

with elevation data. Abstract features are used by CGFs for path planning composed

of arial feature boundaries such as tree canopies, lakes etc. The PAT is a global storage

area for sets of object attribute values such as the mobility characteristics, water

content, surface category and material category of the terrain.

2.4.2 Estimation of situation in mission planning

Gaining situation awareness includes performing assessments of terrain and weather,

and enemy and friendly situations. The terrain is studied keeping in view our own

mission and resources, and the intentions of the enemy and the size of its force.

2.4.2.1 Line of sight visibility

Inter-visibility between two points on the terrain surface is calculated to model the

line of sight (LOS) visibility of entities in simulations. Clear line of sight visibility is a

dominant factor in selecting defensive positions and also in siting weapons. A popular

technique used is to calculate it along an appropriate number of equally spaced rays

out to a certain distance from the observer location for each point in digital elevation

model (DEM). The LOS calculations assume a certain target height above ground

level (AGL) and a certain observer height AGL. These heights will vary depending on

target types and observer types and also the type of operations. The visibility may also

be varied as a function of distance depending upon visibility at that time for more

realism in modelling. Some more factors effecting visibility, like forestation and

cultivation that vary for different seasons of the year cannot be considered when using

only DEMs. The problem with this technique arises when the spacing of the arrays is

increased to reduce computations, then the distance between observed points at the far

end of the array increases (Campbell et al., 1997).

2.4.2.2 Tactical use of terrain

Surface configuration is studied to determine mobility over an area and also to identify

suitable areas used for various purposes in military operations. For example, if an area

needs to be selected for physical occupation by dismounted infantry soldiers with the

aim of defending that area, then the suitability of the area is based on observation and

fields of fire towards the approaches leading to it, the size of the area for the

deployment of the force, and the local slope changes in any direction. The process of

Chapter 2 – Background Knowledge

26

surface configuration study from DEMs, is automated through similar techniques as

that of edge detection in image processing (Campbell et al., 1997). For edge detection

techniques see (Gonzalez and Woods, 2002).

Identifying possible concealed avenues of approach is important for planning all types

of military operations. An attacking force will attempt to minimize its exposure both

to observation and direct fire as it advances towards a defended location. The

defending force would prefer to select positions that have highly observable

approaches. Standard path-planning algorithms (LaValle, 2006) may be applied to the

visibility scores acquired through the above-mentioned visibility calculating

techniques in order to rate the availability of cover and concealment on a particular

approach.

The information about surface configuration may be used in conjunction with

probable avenues of approach to identify potential obstacle emplacements, pre-

planned indirect fire locations, etc.

2.4.3 Spatial reasoning

Forbus, Jeffrey, and Chapmann (2004) have developed a technique called “Qualitative

spatial reasoning”. This technique involves reasoning that can be done on a computer

model of a terrain at various levels of resolution, starting from very high resolution

terrain representation down to a sketch map.

Fields of fire and observation are important factors considered in military planning

and operations. Also cover from fire and observation are the same thing considered

from opposite views. Terrain features, like mountains provide cover from fire and also

from ground observation. Other kinds of terrain features such as forests block

visibility, and thus provide concealment. Regions that satisfy these properties are

critical for mission planning. Regions that must satisfy multiple constraints are

computed by combining the regions constructed for each constraint.

Spatial reasoning is based on spatial relationships and is reasoned on topological and

positional relationships. Topological relationship is based on the relationship of two

entities if they are disjointed, touching, or inside one another.

Positional relationships provide qualitative position and orientation information with

respect to a global coordinate frame. Compass directions are used to express

positional relationships. For example a tank can be north of a small village.

Chapter 2 – Background Knowledge

27

Two entities may also be linked in a positional relationship based on a local

coordinate system. For example, if two entities are on a route then it can be said about

one entity that is ahead, behind, or at the same location along that path. Centroids of

some objects can be used to indicate their position or location. Some entities have a

distinct orientation like military units that have fronts, flanks, and rears.

2.5 Current models and simulations in use by the military

There are many models and simulations in use by the military, this discussion is not

very exhaustive and only a few of them are discussed here to highlight the

requirements of human behaviour representation.

2.5.1 JANUS

JANUS is a constructive high resolution combat model in which individual platforms

and soldiers are modelled. Platforms have distinct properties such as dimension,

weight, and carrying capacities. It is designed for the level of squad/team/crew to

battalion task force but has been extended to brigade and division levels with some

loss in fidelity. Engagement results are based on mathematical computations with

stochastic distributions of probabilities of detection, based on the line of sight; kill,

based on the lethality of the firer and protection level of the target; and hit, based on

the ballistic characteristics of the weapons (Pew and Mavor, 1998).

Capabilities and locations of all weapon systems are required to be manually entered

when setting up the simulation. Human participation is also required for certain other

game decisions (Ilachinski, 2004).

2.5.2 Close combat tactical training (CCTT)

CCTT is family of virtual simulations and simulator developed by the U.S. Army and

training and doctrine command (TRADOC). It simulates battalion sized task force by

modelling M1 tank, Bradley infantry fighting vehicle, and AH64 attack helicopter

(Pew and Mavor, 1998).

2.5.3 Corps battle simulation (CBS)

CBS is a constructive simulation to simulate divisional and corps level operations. It

interfaces with other army, air force, naval, and logistic simulations in use by the

Chapter 2 – Background Knowledge

28

military. It is used to train staff officers at the Army Command and General Staff

College at Fort Leavenworth, Kansas. Staff officers at level of brigade, division, and

corps set up the simulation giving inputs that establish unit locations, weapon system

status, and intended plans (actions or manoeuvres). It executes approximately three

hours of combat based on the player inputs. It computes battle losses and logistic

consumptions down to the company and battalion level task forces. The reports and

status is given to all levels of command and staff participating (Pew and Mavor,

1998).

2.5.4 Combined arms and support task force evaluation model (CASTFOREM)

CASTFOREM is currently the U.S. Army’s highest resolution combined arms combat

simulation model. This model is designed to simulate combats of task force and

combined arms brigade level forces up to about one and a half hour of intense fire

fight. The model uses mathematical formulae and stochastic distributions along with

subroutines to execute some command and control implemented through a look-up

table based on doctrinal tactics and manoeuvres. Model is used for simulating division

level operations with some loss in fidelity. Main user of the model is TRADOC

(Ilachinski, 2004).

2.6 Current HBR models

Some of the models representing human behaviour are discussed here; the range,

flexibility, and realism vary in these models.

2.6.1 ModSAF

ModSAF is the successor of simulator networking (SIMNET) semi-automated forces

(SAF) developed by U.S. Army’s Simulation, Training, and Instrumentation

Command (STRICOM). The ModSAF is designed for training and runs in real time for

combat simulations up to battalion level. It is an interactive, high resolution, entity

level simulation linked to the terrain database. The user with the help of graphical user

interface (GUI) can create and control entities. The user also with the help of GUI

creates, loads, and runs scenarios to simulate a battlefield situation. It provides a

credible representation of the battlefield including physical and environmental models.

Human behaviour models cover basic activities like movement, sensing, shooting,

Chapter 2 – Background Knowledge

29

communication, and situation awareness. These behaviours are hard wired into the

model based on the finite state machine model which is restricted to a limited number

of states. The finite state machine includes a list of states and commands that are

accepted in each state, a list of actions for each command and a list of conditions in a

state required to trigger an action (Ilachinski, 2004).

In ModSAF, the behaviour is restricted to these actions and as such there is no

underlying human behaviour model and human behaviour representation need to be

coded into finite state machine. ModSAF is used to model individual soldiers, and

vehicle and weapon system platforms and the coordinated move of platoons and

squads and their tactical actions while unit operations are planned and executed by a

human controller (Pew and Mavor, 1998).

ModSAF developed by the U.S. Army has been adopted by the other services. In

Synthetic Theatre of War 1997 (STOW-97) exercise, four types for ModSAF were

used. Now a new version named OneSAF is being developed that is reported to be

more capable.

2.6.2 Intelligent forces (IFOR)

IFOR model has been developed to represent the combat behaviour of fixed and rotary

wing pilots in combat and reconnaissance missions. These models are based on Soar

architecture that has been discussed in detail in Chapter 5. The soar architecture is a

rule based system to model human cognition. Soar uses production rules as the basic

unit of long-term knowledge. With a view to develop general purpose IFOR in future,

first a specific context of fixed and rotary wing air operations is used to develop fixed

wing attack (FWA)-Soar and rotary wing attack (RWA)-Soar pilots for air operations

are developed.

2.6.2.1 Fixed-wing attack-Soar (FWA-Soar)

This project is also known as “The TacAir-Soar System”. The system is capable of

executing most of the airborne missions that the United States military flies in fixed-

wing aircraft. It accomplishes this by integrating a wide variety of intelligent

capabilities, including real-time hierarchical execution of complex goals and plans,

communication and coordination with humans and simulated entities, maintenance of

situational; awareness, and the ability to accept and respond to new orders in flight.

Chapter 2 – Background Knowledge

30

TacAir-Soar consists of over 5,200 rules. It uses task decomposition to carry out

orders given by the higher command. Its most dramatic use was in STOW-97 (Jones et

al., 1999).

2.6.2.2 Rotary-wing attack-Soar (RWA-Soar)

Hill and associates developed RWA-Soar (Hill et al., 1997), the system is based on

Soar architecture and has also added new techniques to facilitate teamwork (Tambe,

1997). The system consists of a team of agents that perform the tasks of an attack

helicopter company for a synthetic battlefield environment used for running large-

scale military exercises. This system has an approach to teamwork that enables the

pilot agents to coordinate their activities in accomplishing the goals of the company.

2.6.3 Synthetic adversaries for urban combat training

Wray and associates have developed synthetic adversaries to train four-person fire

teams of US Marines for military operations on urban terrain (MOUT) scenarios

(Wray et al., 2005). The agents are built using Soar cognitive architecture.

Best and associates have developed similar implementation of synthetic opponents for

MOUT in 2002 using ACT-R cognitive architecture (Best et al., 2002). ACT-R

architecture will be discussed in detail separately.

2.6.4 Synthetic G staff for headquarters

Mason and Moffat have developed a multi-agent based system to simulate the

behaviours of staff officers in military headquarters. Their work is focused on

representing G2 and G3 processes of data fusion, decision-making and planning

(Mason and Moffat, 2001).

2.6.5 Smart whole air mission model (SWARMM)

Air Operations Division of the Australian Defence and Science Technology

Organisation developed SWARMM, in conjunction with the Australian Artificial

Intelligence Institute (AAII). It is used to simulate fighter aircraft operations; each pilot

in the system is an agent, programmed with dMARS, a BDI-based cognitive

architecture. BDI architecture is discussed in detail separately. The agents receive data

Chapter 2 – Background Knowledge

31

from the physical models equivalent to the information a real pilot would receive from

his/her vision and instruments (Lucas and Goss, 1999).

SWARMM models squadrons of fighter pilots, with a heavy emphasis on teamwork. It

is used to test new equipment and tactics and has proved to be useful for this purpose.

2.6.6 Irreducible semi-autonomous adaptive combat (ISAAC)

Introduced in 1997, ISAAC is an agent-based simulation of small unit combat. It

served as a proof-of-concept that the theretofore-speculative proposition that using

swarms of software agents obeying simple rules may reproduce real combat

behaviours could be turned into a practical reality. ISAAC is developed for DOS-based

computers, and its source code is written in ANSI C. The basic element of ISAAC is

agent, which loosely represents a primitive combat unit (infantryman, tank, transport

vehicle, etc.) that is equipped with doctrine, mission, situational awareness, and

reaction. Doctrine is default local-rule set specifying how to act in a generic

environment; mission is a set of goals directing an agent’s behaviour; situational

awareness is based on sensors generating an internal map of an agent’s local

environment; and reaction is a set of rules that determine how an agent behaves in a

given context (Ilachinski, 2004).

2.6.6.1 Enhanced ISSAC neural simulation toolkit (EINSTein)

EINSTein was introduced in 1999. It is based on ISAAC, but uses entirely new source

code and decision algorithms and contains a vastly richer landscape of user-defined

primitive functions. The underlying dynamics is patterned after mobile cellular

automata rules. It has been programmed in C++, using a windows GUI front-end. It

uses a genetic algorithm toolkit to tailor agent’s rules to desired force level behaviour

(Ilachinski, 2004).

EINSTein is used to run simulations for a variety of purposes, land and marine

combat, command and control evaluation, and social modelling involving riots and

unrest control.

2.6.7 Map aware non-uniform automata (MANA)

MANA is an agent-based combat model developed by New Zealand’s Defence

Technology Agency. MANA shares some concepts with either ISAAC or EINSTein.

Chapter 2 – Background Knowledge

32

MANA like ISAAC and EINSTein uses numerical weights to motivate agent’s

behaviours and parameter setting for sensor range, and fire range through dialog.

Nonetheless, there are certain unique characteristics and advance features in MANA

including the ability to develop and maintain a mental map in every agent of the

locations of previously sensed enemies. Therefore, agent’s actions at any time are

based on a combination of information from both what they currently perceive and

what they remember in their mental maps. This internal picture of the environment is

built as the simulation progresses (Ilachinski, 2004).

2.7 Comparison of EINSTein with JANUS

Klingaman and Carlton in 2002 at United States West Point Military academy’s

Operation Research Center for Excellence compared EINSTein and JANUS to

establish the combat effectiveness of EINSTein’s agents executing National Training

Center (NTC) type-scenario (cited in Ilachinski, 2004). In the scenario, own force

consists of an armoured company of fourteen tanks, and enemy force is also of similar

size consisting of fourteen main battle tanks. There are two sets of EINSTein agents,

one set learns using EINSTein’s built-in learning capability based on genetic

algorithm and the other set does not learn. Combat results of both set are recorded.

These observed actions are then programmed into JANUS and for each case; the

combat effectiveness resulting from JANUS is compared to the outcome in EINSTein.

Problems are observed in translating agent and environmental characteristics from one

model to the other due to model specific constraints and conceptual differences. To

conclude the report Klingaman and Carlton offer suggestions for both types of model

to make them more compatible: 1) that multi-agent-based models (ABMs) need

increased fidelity in terms of terrain and weapon systems; 2) ABM-like personality

traits and realistic decision making algorithms should be incorporated in traditional

models, such as JANUS; 3) traditional models should incorporate some mechanism to

allow learning.

2.8 Recognition primed decision making

Recognition primed decision-making (RPD) is a promising model of naturalistic

decision making (NDM) (Klein, 1998) and (Lipshitz et al., 2001). RPD posits that

humans rarely generate a large number of options and then evaluate all of them in

Chapter 2 – Background Knowledge

33

parallel on various abstract dimensions to maximize the expected utility. On the

contrary, an experienced decision maker recognizes a situation and a course of action

as first one to consider.

Earlier Rasmussen (Rasmussen, 1985) used code of behaviour and critical incident

interviews to study nuclear power plant operators. He proposed a three-stage typology

of skills: sensorimotor, rule-based, and knowledge based. His three-stage typology

highlights how a person with different level of expertise uses different strategies in

decision making. Gladwell (2005) also narrates incidents of correct blink of an eye –

snapshot decisions. He acknowledges the work of Klein, supported overall by Paul

Van Riper who was president of the Marine Corps University in 1989 and director of

Marine air-ground training and education centre, MCCDC, in 1990, in giving this

spontaneity a structure. He is of the opinion that it is very difficult to bring out the

correct cues and processes that resulted in a correct decision in the blink of an eye. But

he also cites the work of Gottman related to reducing complex problems into simple

elements and proving that even the most complicated relationships and problems have

underlying patterns that can be identified. He also cites the work of Lee Goldman who

proves that in picking up these pattern more information than needed or information

overload increases the level of difficulty in the process because then one is required to

identify the pattern in more clutter (Goldman et al., 1996). When the decision maker

thin-slices a situation, recognizes patterns and make a snapshot decision he is

unconsciously editing the information.

During the study, by Klein and his associates, of decision makers in various domains

under time stress, high stakes, and uncertain environments with multiple players in

field settings it is observed that for an expert the recognizable cues feeding the

decision process are so overwhelmingly important that only a single option is

considered before making a decision. One such study involved experienced naval

officers make decisions in the combat information centre of AEGIS cruisers (Kaempf

et al., 1996). It is observed in the study that out of 103 cases of situation awareness,

87% are recognized through feature matching, 12% are developed through story

building, and only 1% are not explained. In 2003, the Fort Leavenworth Battle

Command Laboratory conducted experiments involving a group of serving and retired

officers to evaluate RPD, and the validating comment was “Yes, that’s what we

Chapter 2 – Background Knowledge

34

usually do”. From the preliminary results it was found that RPD took 30% less time

than MDMP (Ross et al., 2004).

Klein’s RPD model is arguably one of the best-known models in naturalistic decision-

making. Elements of this model have been appearing in the literature previously but

Klein and associates integrated all elements and produced a wholesome model (Klein,

1998). This model is characterized with the absence of parallel evaluation of more

than one option. It is believed that experienced decision makers identify a plausible

course of action as the first one to consider rather than to generate and evaluate a large

set of options. Option evaluation is performed serially by mentally simulating action

and finding out its weaknesses. Problem solving and judgment is a part of decision

making. The RPD model consists of three Levels as shown in Figure 2.1.

Figure 2.1 Klein’s RPD model [adapted from (Klein, 1998)]

Chapter 2 – Background Knowledge

35

The simplest and probably the most common case for experts within the RPD model

is Level 1 (Figure 2.1), where a decision-maker sizes up a situation, forms

expectancies about what's going to happen next, determines the cues that are most

relevant, recognizes the reasonable goals to pursue in the situation, recognizes a

typical course of action that is likely to succeed and carries it out.

Level 2 is a more difficult case, in which the decision-maker isn't certain about the

nature of the situation. Perhaps some anomaly arises that violates expectancies and

forces the decision-maker to question whether the situation is different from what it

seems, or perhaps uncertainty might be present from the beginning. Here, decision-

makers do deliberate about what's happening.

Level 3 of RPD model is the case in which decision maker arrives at an understanding

of a situation and recognizes a typical course of action and then evaluates it by

mentally simulating what will happen when it is carried out. In this way, if he spots

weaknesses in the plan, he can repair it and improve the plan, or throw it away and

evaluate the next plausible action (Klein, 1998).

The model has been tested in variety of applications including fireground command,

battle planning, critical care nursing, corporate information management, and chess

tournament play (Klein and Klinger, 2000).

2.9 Set effects

Humans have a tendency to set the mind and, at a lower level, the perception in a

certain way. The Mental set called Einstellung is a tendency of humans to set the

mind in a certain framework and to adopt a certain strategy, or procedure. For an

example of mental set see (Luchins, 1942). The perceptual set is a similar bias in the

way that problems and their solutions are perceived, e.g., nine dots problem (Kershaw

and Ohlsson, 2001). Another example of perceptual set is from the work of Coren,

Porac and Ward (1978) where they find gender differences in interpretation using

ambiguous doodle-like black-and-white figures (Figure 2.2).

Chapter 2 – Background Knowledge

36

Figure 2.2 Doodle-like black and white figures

A figure which in more cases was viewed as a brush or a centipede by males was

viewed in more cases as a comb or teeth by females. Another figure viewed as a target

mostly by males was in more cases viewed by females as a dinner plate. And a third

figure which was viewed mostly by men as a head was viewed by most females as a

cup.

2.9.1 Negative set

Successful problem solving with a particular mental set biases people toward reusing

the same set in similar situations. “Negative set” refers to instances in which the “set”

leads to a non-productive solution, e.g., Luchin’s Water Jug Problem (Luchins, 1942).

Negative set is a phenomenon that may cause a problem in making decisions with the

help of RPD model. But mental simulation in which the course of action is played out

to check for its progress towards the goal helps in avoiding this negative mental set.

2.10 Cognitive architectures

Human cognition is modelled with the help of cognitive architectures. These

architectures provide a set of tools and theoretical constraints that help the cognitive

modeller. Different architectures make different theoretical assumptions which

influence the nature of cognitive models supported by them (Johnson, 1997).

Chapter 2 – Background Knowledge

37

Sensing and perception, and motor behaviour have been added to most of the

cognitive architectures. Sensing and perception transform representation of external

stimulus into internal representations that are fed to the cognitive process. Cognition

encompasses processes such as situation awareness, planning, decision making and

learning. Motor behaviour models the functions performed by the neuromuscular

system to carry out the physical actions selected by the cognitive processes. Cognitive

processes are based on a memory system and an inference engine. Memory system is

composed of two types of memories: long term memory (LTM) and short term

memory (STM) which is also called working memory (WM) in some of the cognitive

models. LTM is responsible for holding large amount of information for long periods

of time whereas, STM holds information temporarily for cognitive processing. LTM

consists of two types of memories: procedural and propositional memories. Procedural

also called operational memory consists of procedural-motor skills i.e., know how of

doing a task. Propositional memory consists of a huge variety of knowledge that can

be represented and expressed symbolically. Propositional memory is further

subdivided into episodic and semantic memories. Episodic memory is involved with

recording and subsequent retrieval of unique and concrete experiences of a person

with some sense of time attached to them. Whereas, semantic memory is concerned

with a person’s abstract, timeless knowledge of the world that is independent of a

person’s identity (Tulving, 1983). More discussion on other theories about episodic

and semantic memories is in Chapter 3.

ACT-R is a cognitive architecture that is aimed at simulating and understanding

human cognition (Anderson, 1993). Soar is a cognitive architecture that exhibits

intelligent behaviour (Laird et al., 1987). The beliefs, desires, and intentions (BDI)

model is based on the theory of human practical reasoning developed by philosopher

Michael Bratman (1987). He developed this theory in the mid 1980s. BDI is proposed

at a higher level of abstraction and researchers make different theoretical assumptions

to produce practical BDI models.

2.10.1 Adaptive control of thought – rational (ACT-R)

ACT-R is a hybrid cognitive architecture based on the experimental knowledge in

cognitive psychology and human cognition. It has a symbolic production system

which is coupled to a connectionistic sub-symbolic layer like a neural network. ACT-R

Chapter 2 – Background Knowledge

38

is a parallel matching, serial firing production system. Conflict resolution strategy is

psychologically motivated (Anderson, 1993) and (Anderson and Lebiere, 1998). ACT-

R is focused on higher level cognition but perception motor module is added in ACT-R

in 2004 and now it is called ACT-R/PM (Anderson et al., 2004).

ACT-R has two types of knowledge – declarative and procedural. Declarative

Knowledge is the facts we are aware of and which we can describe to others, for

example, “Cross country movement for wheeled vehicles becomes difficult after rain

fall” and “the visibility is poor in foggy weather”. Procedural Knowledge (or know-

how) is the knowledge of how to perform some task. We display this knowledge in

our behaviour, for example, taking turns at a junction while driving a car. Declarative

knowledge is represented in the form of chunks. These chunks consist of isa pointers.

One isa pointer specifies the category and additional pointers describe the contents.

Procedural knowledge is in the form of production rules, which are condition action

pairs. Both declarative and procedural knowledge are stored in the long term memory.

For a production rule to apply, its conditions or antecedents are required to match the

chunks in the working memory. The working memory is the active part of the

declarative knowledge. The action on the right-hand side specifies some actions to

take. These actions can modify the declarative memory.

The chunks are activated on the basis of activation value which is a sum of base-level

activation and associative activation. Base-level activation is a value representing the

usefulness of the chunk in the past while associative activation reflects the relevance

of the chunk to the current context.

Multiple rules may match the pattern of chunks in the working memory and may

apply. But as mentioned earlier ACT-R is a serial rule firing system and therefore, only

one rule is required to be selected to fire. This conflict is resolved by selecting the

production with the highest utility. The utility of the production is the estimated cost

to achieve the goal subtracted from the product of the probability of achieving the goal

if this production is selected and the value of the current goal.

Associations between declarative memory elements (DMEs) can be tuned through

experience this is associative learning and can automatically adjust the strength of

association between DMEs. New productions (procedural knowledge) can be learned

through analogy to old procedural knowledge through inductive inferences from

existing procedural knowledge and also through worked examples. Production rules

Chapter 2 – Background Knowledge

39

are tuned through learning strengths and updating of the estimates of success

probability and cost parameters.

ACT-R is applied to model intelligent opponents in military urban terrain operation

(MOUT) simulation (Best et al., 2002).

2.10.2 Soar

Soar is a symbolic cognitive architecture for general intelligence (Laird et al., 1987)

and (Newell, 1990). It has been used for creating intelligent forces for large and small

scale military simulations (Hill et al., 1997), (Jones et al., 1999) and (Wray et al.,

2005). Soar is a forward chaining parallel rule matching and parallel rule firing

system. Both the declarative and procedural knowledge are represented as production

rules. The production rules are condition-action pairs. The long term memory (LTM)

is composed of production rules while the short term memory (STM) contains only

declarative knowledge. STM in Soar is also the Working Memory (WM) that holds all

the dynamic data structures. Impasse in Soar is the architecturally detected lack of

available knowledge. Soar’s basic reasoning cycle is as follows:

• Input

• State elaboration

• Proposing operators

• Comparing and evaluating operators

• Selecting the correct operator

• Applying operator

• Output.

Learning in Soar is called chunking which is a form of explanation based

generalization. Soar has been evaluated extensively as a cognitive architecture against

human behaviour in a wide variety of tasks. Some examples of these models are

natural-language comprehension, concept acquisition, use of help system etc (Pew and

Mavor, 1998). Soar is validated for very large-scale military simulation in the TacAir-

Soar for STOW ‘97, which included 722 individual sorties to be flown by US Air

Force. It demonstrated Soar’s ability to generate autonomous, real-time, high fidelity

behaviour for a large-scale simulation of a complete theatre battle. The current version

Chapter 2 – Background Knowledge

40

of TacAir-Soar contains over 5200 production rules, organized into about 450

operators and 130 goals (Jones et al., 1999). Soar is further discussed in detail in

Chapter 5.

2.10.3 Belief, desire, and intentions (BDI)

Philosopher Michael Bratman (1987) developed the theory of human practical

reasoning, the origins of the BDI model lie in this theory. In BDI approach the

behaviour of the individual agent is shaped by its Beliefs, Desires, and Intentions.

Belief is the agent’s perception of the environment that may or may not be true,

Desires are the states of the world it seeks to bring, and Intentions are the committed

plans. A number of researchers have proposed their preferred axiomatizations

capturing the relationships between beliefs, desires, and intentions that resulted in

various theoretical frameworks for BDI architecture (Rao and Georgeff, 1995) and

(Georgeff and Rao, 1996). The BDI approach was further developed from theoretical

frameworks to practical systems, through application of abstractions, and static and

dynamic constraints. And this process resulted in a number of successful

implementations (Lucas and Goss, 1999); most notable are the procedural reasoning

system (PRS) (Georgeff and Ingrand, 1990), and its successor “distributed Multi-

Agent Reasoning System” (dMARS) developed in C++ (d'Inverno et al., 1998).

In computational terms, Beliefs is representation of the state of world, be it in the

forms of values of variables or symbolic expressions in predicate calculus. Goals may

also be expressed in any of the forms described for Beliefs above, however in what

ever way goals are represented, the representation should reflect the desire and not

tasks as used in usual computer programs. Computationally, Intentions may be a

group of threads being executed in a process. From a theoretical perspective,

Intentions are committed plans which are liable to change after observing a change in

the external environment. The agent is supposed to create these plans every time it

finds a new situation but because of the resource bound, it caches the plan for reuse.

Some researchers consider these stored plans to be the part of Belief (Georgeff et al.,

1999) while others consider it as a fourth data structure and formally name it as the

plan library (d'Inverno et al., 1998).

The BDI agent senses the environment, reasons about beliefs, desires and intentions

and then performs a series of actions. After sensing the environment the beliefs of the

Chapter 2 – Background Knowledge

41

agent may change, changes in beliefs may change some goals and therefore the

intentions. Change in intentions will bring new partial plans or recipes into play to

achieve goals. If multiple plans are available to achieve a goal then the agent uses

rational choice to select a plan which means it will evaluate all options and select the

best one.

The Australian Artificial Intelligence Institute (AAII) has developed Oasis (Optical

aircraft sequencing using intelligent scheduling) an agent based air traffic control

system and NASA’s Space Shuttle Monitoring and Control System, using SRI’s PRS

(Georgeff and Ingrand, 1990). AAII in conjunction with Australia’s Defence Science

and Technology Organisation (DSTO) is developing SWARMM, a dMARS agent based

simulation system to simulate dynamics and pilot reasoning of air missions, and

provide visualisation.

2.10.4 Summary of cognitive architectures

All of the cognitive architectures have some distinct advantages and some limitations.

The first problem in comparing cognitive architectures is that they are universal

Turing machines and therefore, it is very difficult to prove that an architecture can not

model some phenomena. A Turing machine that is able to simulate any other is called

a universal Turing machine or simply a universal machine. A Turing machine is a

kind of state machine. At any time the machine is in any one of a finite number of

states. Instructions for a Turing machine consist in specified conditions under which

the machine will transition between one state and another. A Turing machine has an

infinite one-dimensional tape divided into cells. Each cell is able to contain one

symbol, either ‘0’ or ‘1’. The machine has a read-write head, which at any time scans

a single cell on the tape. This read-write head can move along the tape to scan

successive cells. The action of a Turing machine is determined completely by (1) the

current state of the machine (2) the symbol in the cell currently being scanned by the

head and (3) a table of transition rules, which serve as the “program” for the machine.

The actions available to a Turing machine are either to write a symbol on the tape in

the current cell or to move the head one cell (Turing, 1936-7).

The second problem in comparing cognitive architectures is that there are virtual-

architectures within the architecture. The problem domain, for which a model or an

agent is being developed, is the most important factor in deciding the architecture.

Chapter 2 – Background Knowledge

42

Even within a domain, the specific aspect that needs to be modelled is also a very

important deciding factor. For command agents, ACT-R has some advantages over

others in modelling human psychology, flexibility in learning, probabilistic behaviour,

and decision making based on knowledge as well as Bayesian networks. Soar is

scalable as has been demonstrated in large scale implementations in military

simulations and war-games, and it has also been successfully deployed to model

teamwork due to STEAM. BDI architectures offer proactive planning and teamwork

in the basic architecture.

2.11 Chapter summary

The decision making process in use in the military is called Military decision making

process (MDMP) and is based on multi-attribute utility analysis (MAUA) in which the

decision makers are encouraged to generate a number of candidate courses of action

and evaluate them in parallel on multiple attributes. Decision making in most military

simulations are represented by MDMP. Klein and associates proposed the recognition

primed decision making (RPD) model that posits that humans rarely generate a large

number of options; on the contrary an experienced decision maker recognizes a

situation and a course of action as first one to consider. The courses of action are

evaluated serially by the decision maker by mentally simulating them one after the

other. For modelling human behaviour, representing realistic human decision making

behaviour is imperative, and situation awareness and problem solving is a part of

decision making. Human behaviour representation without an underlying

psychological theory based on cognitive processes results in brittle models. Human

cognition is represented by cognitive architectures such as ACT-R, Soar, and BDI.

Artificial intelligence techniques that are not a complete and unified model of human

cognition have also been used to implement RPD to represent realistic human

behaviour. Some attempts at computer implementation of RPD available in the

literature are discussed in the next chapter.

Chapter 3 – Literature Review

43

3 LITERATURE REVIEW

Computer implementation of any conceptual or theoretical model is a challenge in its

own right. The intensity of the challenge further increases for models of psychological

theories in general and psychological models in field settings that are outside the

controlled environment of the laboratory in particular. RPD is one such model of

human decision making which involves human cognitive processes such as gathering,

storing, retrieving, and assessing information, setting goals, and sub-goals, developing

and monitoring expectations, performing mental simulation and making decisions.

Many attempts have been made at implementing RPD agents using various

technologies to include multiple trace memory models, physiological models, artificial

neural networks, fuzzy logic, rule based systems, context-based reasoning, and multi

agents based systems like BDI cognitive architecture and composite agents (CA).

Relevant literature using the above technologies is reviewed in this chapter

3.1 Multiple-trace memory model

Warwick et al. (2001) developed a computational model of RPD (Klein, 1998), based

on the decision maker’s long term memory (LTM) on the lines of Hintzman’s

multiple-trace memory model (1986). Hintzman (1984) claims that there is only one

memory system and that stores episodic traces. The abstract knowledge is not stored

but is derived from these traces of experience at the time of retrieval. Multiple trace

theories assume that each experience is stored in memory as a separate trace and does

not strengthen or modify a prior representation. The new and old traces of even similar

experiences coexist in the memory.

The alternate theory assumes that the effect of repetition is mediated by a mechanism

different from the one involved in episodic memory tasks. According to this view, the

repeated exposure to exemplars of a category produces traces of individual events in

episodic memory but also produces an abstract representation of the category in a

functionally separate generic memory system (Tulving, 1983).

The decision maker’s LTM is represented by a two-dimensional array. Each row

represents a situation that prompts recognition and the by-products that follow

recognition. The RPD experience consists of cues, goals, expectations and a course of

Chapter 3 – Literature Review

44

action, however, in this model only expectations and courses of action are being

represented. A probe that is the snapshot of the current situation is sent to the LTM

and a similarity value for each row is obtained. Each row in LTM contributes to this

similarity value according to its contents. The situation is recognized if the similarity

has a value more than a set threshold. This threshold is set by estimating a value from

worst case scenarios where associations between situations and by-products are

entirely random.

There are two ways of characterizing situations. One method uses a rich structure of

cues, inferences and judgements to identify situations in LTM; the other characterises

situations simply in terms of cue values. Flat situation awareness is a routine whereby

unprocessed cue values are stored in the situation awareness array and the

unprocessed cues from the environment is straight away used to recognize a situation.

The cue values in the driving environment of the implementation under discussion

(Warwick et al., 2001) e.g., light colour, the presence or absence of trailing traffic,

perceived distance to the intersection, the presence or absence of a police officer, etc.

are used to form judgements the driver makes about the situation. These cues are

made available in the environment and are straightaway used to recognize the

situation stored as such in the LTM. But in most real world environments the cues do

not wear meaning on their sleeves and need interpretation before this can be used to

form judgement. Taking the example of the same authors in their next computer

implementation of RPD for conflict resolution in an enroute air traffic control (ATC)

environment (Warwick et al., 2001), where the cues need processing before a meaning

can be extracted out of them. The cues in the airspace model are positions, altitudes

and headings. But for conflict resolution the air traffic controller must know whether

the planes are climbing or descending. In this case the data from the environment

drives inferences which in turn form the basis of higher level judgements about the

situation.

There are two short comings in this implementation, firstly, the situation has a

completely flat structure and this may not always be the case in the real world where

complex problems are deep and hierarchical in nature, secondly, mental simulation

has not been implemented.

Chapter 3 – Literature Review

45

3.2 Human emulation model

Forsythe and Wenner (2000) proposed an ‘organic model’ to predict the behaviour of

engineered system that results from human involvement in these systems. The human

cognition emulation model results from this ‘organic model’.

Forsythe and Xavier in their work with Schoenwald (Schoenwald et al., 2002)

developed a computational model for Level 1 RPD (Klein, 1998). In this work they

developed a computational model to generate episodic memory for use in human

cognition emulation. The application is based on eight embodied-agents in the form of

vehicles in a large building trying to move through hallways avoiding collision from

the walls and also amongst each other to place a member at the maximum smoke

concentration in the building. During the operation they are supposed to keep their

wireless communication intact which is based on physical limitations; more distance

for line of sight and less distance through walls. For simplicity of computations 15 out

of 32 dimensions, and 800 out of 48,000 observations are selected as traces of

episodic memory. First the observations are classified using two types of cluster

analysis techniques and then these clusters are interpreted using a classification tree

model.

Cluster analysis is a form of unsupervised learning and the nature of no-supervision is

that there is no knowledge of data structure. Two clustering methods are used: K-

means clustering (Forgy, 1965) and (Hastie et al., 2001) and DIvisive ANAlysis

(DIANA) (Kaufman and Rousseeuw, 1990).

For both the K-means and DIANA, the authors considered the number of clusters that

can range from one to ten. For the K-means algorithm, five clusters provided adequate

partitioning whilst the DIANA algorithm requires six clusters. The classification trees

derived from K-means and DIANA clusters were partitioned on different dimensions.

The partition rules developed through this process are applied to all 48,000

observations, i.e., each observation is associated with one of the states developed by

each algorithm. This work demonstrates the ability to identify behaviour through

schema abstraction using K-means and DIANA clustering algorithms and a

classification tree analysis.

Forsythe and Xavier adopted a two-tiered approach to develop a human emulator

(Forsythe and Xavier, 2002). In this model, the knowledge is represented using a

psychological model and a physiological-based model drives this psychological

Chapter 3 – Literature Review

46

model. The psychological model is the Recognition Primed Decision making (RPD)

model. In the initial model the decision maker is a perfect decision maker and the

agent exhibits no individual differences based on cultural factors or individual

experiences. Factors like fear, arousal, stress, etc., collectively termed as ‘organic

factors’ (Forsythe and Wenner, 2000), are also not represented. As the knowledge is

not represented in the neural model thus this design distinguishes itself from neural

net and connectionist approaches.

In this “human emulator”, as the authors have called it, memory has been modelled on

the processes proposed by Klimesch (1996). In this memory model, there are neural

units operated by dictation from low-level neural processes, e.g., transmitter-receptor

interactions, metabolic properties, etc. Neural assemblies are formed by collecting

individual neural units.

Episodic memory is modelled by a single distributed neural assembly. Processing

demands lead to increased synchronization.

Semantic knowledge is represented by a semantic network. This network consists of

nodes, each node represents a concept. Associated nodes are connected to each other;

the strength of links varies with the degree of association. The activation of concept

nodes is dependent on the activation of its neural assembly.

The pattern recognition process that monitors activation of assemblies associated with

individual elements and responds when specified patterns of activation occur. This

amounts to matching current conditions to a known situation schema. This pattern

recognition process in episodic memory is dependent on a single neural assembly.

Rows of the template in episodic memory represent known situation schema and

columns correspond to concepts in the semantic memory. A binary number represents

activation of a concept. Binary number has a value equal to ‘1’ when a concept is

activated and a ‘0’ otherwise. Recognition occurs incrementally in accordance with a

race model and when a threshold is exceeded there is activation of the situation

schema.

This improved model sets the stage for implementing mental simulation, which is an

essential ingredient for Levels 2 and 3 RPD; however, as yet only level 1 RPD has

been implemented. This computational model is resource intensive and as declared by

the authors already on the upper limits of response time when it is working on a high

end desktop with very little knowledge i.e., only 30 concepts in its semantic network.

Chapter 3 – Literature Review

47

The time taken in statistical analysis on experience traces to produce episodic memory

has not been mentioned most probably it is an offline process. The episodic memory

thus produced is said to be created without any contribution from domain knowledge.

3.3 Artificial neural network (ANN) model

Liang et al. (2001) developed a part of the RPD model using artificial neural network

(ANN). Neural networks, also known as connectionistic networks are inspired by

principles of neuroscience. A neural network consists of simple processors called

neurons or units and these neurons are connected with the help of communication

channels called connections. The channels carry numerical data and the neurons are

non-linear processors. Neurons process the local data and the data that they receive

through their connections. There are several types of neural network architectures

(Gurney, 1997) and (Russell and Norvig, 2003), however, Liang has used a feed-

forward network with back propagation as learning algorithm. Neural networks

support both types of learning: supervised and unsupervised. Most learning algorithms

in neural networks are based on the phenomenon of adjusting weights of the

connections or links (Russell and Norvig, 2003). Back propagation is a supervised

learning algorithm and adjusts the weights of the connections.

A feed-forward network represents a function of its current input, and the only internal

state is the weights themselves. Feed-forward networks are structured on layers. The

structure may be based on single or multiple layer(s). In a multilayer feed-forward

neural network, the first layer is known as input layer, the last as output layer and in

between there may be one or more hidden layers (Figure 3.1).

The neural network used, by Liang et al. (2001), is a simple multi-layer feed forward

network consisting of an input layer of four nodes, three hidden layers of 12 nodes

each, and an output layer of eight nodes. The back-propagation algorithm is used for

learning. This back-propagation algorithm implements a gradient descent in parameter

space to minimize the output error. The error on the output is the difference between

the current output and desired output from a set of training examples. After the net is

trained by adjusting the weights on the connections, then the resulting net is used to

recognize patterns or classify the input patterns.

Chapter 3 – Literature Review

48

Figure 3.1 Artificial neural network

In the work of Liang et al, The environment used is simple and there are 0, 1, or 2 hills

of equal size in the battle field. The enemy is a single tank and is supposed to fight

from a fixed position until he wins or loses the battle. Own force consists of three

tanks and has a three to one advantage in the battle. The plans are based on the options

to attack with or without a firebase. The variations in plans within these two options

are generated by locating the fire base and the final assault group at different places,

by selecting different routes to these locations, and also by developing different

combinations of firebase and assault groups by changing the strength in each. When

there is no fire base then all the tanks go into their final assault positions using a route

and there is no route and position for the fire base. The routes are described by giving

only one point in between the starting position and the destination in both cases. The

inputs to the net are the normalized Cartesian coordinates of hills. The output is

Cartesian coordinates of the final assault group and the firebase positions and one

point along the route for both of them. In the opinion of the authors (Liang et al.,

2001); for better results more data sets are required, training is suggested to be carried

out only for one set of solutions to every scenario, and some other technique be used

after the neural network for better solutions. The recommendation by the authors

about this hybrid system is that the neural network should be used in reducing the

number of plans and then some other technique be used to finalize the plan from this

reduced set.

Wk,j

Wj,i

Activation function of the

hidden unit j (j=1,…,m): aj

1

n

1

m

i

j

k

Output value of the output

unit i: Oi

Input value of the input

unit k (k=1,…,n): Ik

Chapter 3 – Literature Review

49

For the scenarios in the test set, some of the solutions generated by the trained neural

net are not directly executable plans because they are tactically infeasible. Therefore,

there is a definite requirement within the system to evaluate the generated option and

modify or reject the generated plan if it is tactically infeasible. But it is difficult to

determine from this experiment whether the neural network is not able to generate

tactically feasible plans or is it because of the training set provided as the solution or

both are contributing factors. Because, in some of the plans given as solutions for the

training set, the final position of the fire base is located very close to the enemy tank.

Locating fire base so close to the enemy positions is not a usual practice in the tactical

situations presented in this paper. In some of the cases in the training set, the final

position of the assault group is on the enemy position itself and in same cases

approximately three grids south, south west, or south east of the enemy position. This

difference in the final positions of the assault group, in our opinion, is not a different

strategy but a different representation of the same plan, because in some

representation of the attack plans the plan is marked up to the forming up place

(FUP). An FUP is a place where the attacking forces form up in attacking formations

and from this point on it is usually a direct run to the objective. An objective is a place

that needs to be captured or neutralized in an attack. But the neural net while training

considers these as two different strategies. When the complete training data set is used

after doubling the data by taking advantage of symmetry and then further doubling it

by changing the order of the hill in the data set the network converged only after the

error criterion was increased by two decimal points. In this thesis, we have integrated

an artificial neural network with RPD-Soar agent architecture motivated from this

work. Apart from modifying some plans that are not tactically feasible and adding

some new plans we have done a major change and that change is in the purpose for

which the artificial neural network is used. We have used the artificial neural net for

pattern recognition only and not for plan generation, as Liang et al. (2001) also

realizes and comments that the option to generate plan directly from the trained neural

net did not prove to be successful.

3.4 Fuzzy logic model

Ji et al. (2007) have developed a computational model of RPD based on fuzzy logic.

Fuzzy logic is reasoning with approximate values rather than precise values as used in

Chapter 3 – Literature Review

50

predicate logic. Fuzzy logic is derived from fuzzy set theory. Fuzzy sets are sets

consisting of elements with fuzzy membership associations that is to say a

membership of an element may have any value ranging from 0 to 1. In classical set

theory an element of a set may have a membership value of either 0 or 1, in fuzzy sets

an element may be part of two sets with different membership association values.

Fuzzy set theory provides a method of formalizing imprecise premises and of

inferences from them; it is applying logic to language. The age of a person is

numerically precise. However, relating a particular age to young can be difficult and

confusing. Fuzziness is deterministic and not random, as the nature of the above

question is deterministic to a particular person. AND, OR, and NOT operators are

fundamental to fuzzy sets. The elements of resultant set of AND, OR, and NOT

operations are also partial memberships because the membership being operated is

partial and not full. If – then rules are means to inference in fuzzy set theory, e.g., if x

is small then y is fast. Fuzzy if – then rules are used in fuzzy modelling and control

systems. In this model imprecise cues are represented by fuzzy sets and higher level

cues are abstracted out of elementary data using fuzzy reasoning. After developing all

the cues for a situation, similarity is measured between the present situation and a

prior experience. The module to measure similarity can handle different types of cues

involving nominal values, quantitative data, and fuzzy numbers/sets. It is assumed that

the prior experience and the present situation have the same set of cues. Local

similarity is measured between the experience and the situation separately for each

cue. Then a global similarity is computed as the normalized weighted sum of the local

similarities. If the global similarity value is above a threshold chosen by the user then

the situation is said to be recognized and if there are more than one experience above

the threshold then the one with the highest similarity value is selected. There is also an

action evaluation procedure which is a form of mental simulation but it has two short

comings. First, it does not have a proper mental model where an action is

implemented and its effects are observed. Instead a predefined effect is stored with the

action. If there is no mental model then an action can not change the mental world and

then the agent can not observe the change in cues to determine whether the selected

action is taking the agent to the goal or not. Second, human intervention is required to

modify the plan instead of architecturally supported decomposition of the course of

Chapter 3 – Literature Review

51

action to atomic actions where these atomic actions may be put in a new sequence to

develop a new plan.

3.5 Context-based reasoning model

Context based reasoning is used to represent intelligent behaviour in training

simulations by Gonzalez and Ahlers (1998). Gonzalez states that context-based

reasoning is based on the concept of Scripts developed by Shank (Schank and

Abelson, 1977), for representing knowledge to understand natural language (Gonzalez

and Ahlers, 1998). The context-based reasoning paradigm posits that the identification

of the future situation is simplified due to the present situation itself as the present

situation can only lead to a limited the number of situations. And also, that the context

defines a set of actions appropriate to address the present situation.

The concept of Scripts is extended to represent intelligent behaviour in autonomous

agents in military simulations (Gonzalez and Ahlers, 1998). Tactical knowledge

representation of these autonomous agents is context-based. The contexts are

hierarchically divided into the Mission-context, Major-contexts, and Sub-contexts. The

Mission-context consists of Major-contexts which can be sequentially activated to

achieve the assigned mission. Major-contexts contain the knowledge to perform major

tasks and also the knowledge to control its deactivation and activation of another

Major-context. Major-contexts are mutually exclusive. The Sub-contexts are the lower

level actions needed to implement a Major-context. Sub-contexts are mutually

exclusive but may be associated with more than one Major-context. The Context-

based reasoning paradigm encapsulates knowledge about suitable actions for specific

situations and compatible new situations into hierarchically organized contexts. That

means all the behavioural knowledge is stored in the context base which is the

collection of all contexts (Fernlund et al., 2006).

The Context-based reasoning paradigm is comparable to Soar cognitive architecture

with regards hierarchical goal decomposition. As discussed above the contexts exist to

partition the behaviour space and the same can be done in Soar by creating a sub-goal.

In context-based reasoning in order to activate a context, context-transition logic is

used which exists to select an appropriate active context at each time step. Whereas, in

Soar the same is achieved by firing productions to propose an abstract operator which

in turn creates a sub-state through an operator no change impasse.

Chapter 3 – Literature Review

52

The Context-based reasoning also resembles Level 1 and Level 2 RPD when its

selection of context for activation procedure is analysed which is based on situations.

The context is deselected if it is found by the rules controlling the selection of

contexts that the premises are not met (Stensrud, 2005). But the similarities end here

as there is no concept of mental simulation in context-based reasoning.

3.6 Event Predictor - Mental simulation model

Kunde and Darken (2005) implemented an event predictor to model the mental

simulation part of RPD. They have applied and tested the model on a scenario built in

a simulation environment Combat XXI (Kunde and Darken, 2006). In this model, the

agent decides to fire or hold fire depending on the prediction from the mental

simulation part of the model as to how many red tanks will be observed by the blue

tank commander in the next observation and when this next event is expected. The

mental simulation component is based on a Markov Chain. A Markov Chain is a

stochastic state machine with the property that the transition to the next state is

dependent only on the present state and not on the previous states. The transition

probability from state i to state j is the frequency of transition from state i to j in the

observations up to the current observation. These transition probabilities are

normalized so that the sum of all the transition probabilities that any state can

transition to equals 1. A state is defined as the number of enemy entities detected in an

observation. The agent stays in a state until it observes a change in the number of

enemy entities. At this point in time the agent changes its state and the transition

probabilities and mean dwell times are updated.

The straight forward method in this state machine may be to predict events with the

highest transition probability. However, a state machine based on this approach will

always select the most likely transitions and the states with less likely transition

probabilities will never be reached. In order to also predict events with low transition

probabilities, a Monte Carlo simulation was used for sampling the values from the

probability distributions as estimates. The agent decides to fire or hold fire based on

the prediction of the next event. It decides to fire if it is predicted that the next state

will either have less entities or the mean transition time exceeds a preset threshold.

One hundred Monte Carlo simulations are run for three transitions ahead at each

Chapter 3 – Literature Review

53

decision point. The mode (most common single outcome) of the 100 runs is selected

as the sequence ahead.

This is one of the only two known attempts at implementing the mental simulation

part of RPD. This event predictor is not flexible enough to accommodate all kinds of

activities that may be carried out in a mental model in RPD. In this model, the

designer of the agent has to know all the states that the system can transit to and from,

that may be too many in a complex situation as the number of state explodes with

increasing complexity. Not only the states but the transition probabilities of states

must be known from the beginning, some transition probabilities may be 0 or 1 but

others will have to be determined prior to the design of the agent. The authors

declared that the learning may be done while in active use but for these experiments

learning has been done off line.

3.7 Bratman’s belief, desire, and intensions (BDI) cognitive architecture

model

Norling (2000) discusses three approaches of implementing the RPD model based on

BDI architecture. First, is a ‘Naïve’ approach, in which the agent recognizes all

possible situations and identifies an individual plan for each situation without having

to choose from multiple options. The agent is assumed to identify the subtleties in

situations. This approach has similarities with case-based reasoning (CBR) (Kolodner,

1993); it may work for simple problems with limited situations but not for complex

problems. Second, it is a preference-based approach, in which the plans are weighted

and the plan with the highest weight is selected, in case some choices have equal

weight then one out of them is randomly selected. Initially, all the plans are equally

weighted. If a plan succeeds its weighting is increased and if the plan fails the

weighting is decreased. This approach is a form of reinforcement learning. The third

approach is context-based, in which the agent adapts plan context. It refines the

context until the overlaps are removed. This method requires the agent to record the

state each time a plan is used and then use reflection to work out what caused the plan

to fail. Then change the context conditions accordingly. For this method to work,

contextual difference need to be recognized at appropriate level of abstraction,

otherwise to make the right adjustment in the context conditions very large number of

experiments will be needed which seems impractical.

Chapter 3 – Literature Review

54

The approach for an ideally expert RPD agent can straightaway be implemented in

existing BDI architecture. The preference-based approach can also be implemented

using meta-level reasoning capability of JACK agent, by keeping the record of success

and failure of plans and ranking the plans accordingly. JACK is an agent development

environment produced by Agent Oriented Software Group, Melbourne, Australia.

JACK, through its appropriate concepts in the JACK Agent Language supports BDI

architecture and helps define beliefs, plans, external and internal events, and

capabilities (Agent Oriented Software Ltd., 2008). Whereas, the context-based

approach need major modifications in the architecture. Norling (2001) gives

preliminary ideas about the methods that can be employed for this type of adaptability

in agents.

JACK selects plans on the basis of Boolean tests of context conditions written at the

time the agent is designed. These context conditions can not be updated during the run

time. To enhance the BDI agents to select plans on the basis of preferences,

reinforcement learning is introduced. Reinforcement learning is unsupervised learning

and that is a requirement in these agents. In reinforcement learning the agent is

rewarded or penalised after reaching a state. Q-learning algorithm is selected because

of its simplicity. RPD enhanced preference-based BDI agents are evaluated in simple

environments and is not considered sufficiently rich environments for proper

evaluation (Norling and Sonenberg, 2002). First, Norling and Sonenberg (2004) plug

BDI agents, with the help of an interface, to the ‘deathmatch’ version of the first-

person shooting video game “Quake II” which they have previously recommended as

a testbed for evaluation of agents having sufficiently rich environments. Then, they

develop an enhanced BDI agent capable of reinforcement learning using Q-Learning

algorithm and interfaced it to the Quake II and found two major problems (Norling,

2004). The first problem is regarding recognition of features of the environment in the

game and the second is the unfeasibly large state space. The map in Quake II is

represented in a polygon-based structure. Elements of these data structures have been

used to render objects on the user’s screen. It proved to be very difficult to recognize

features of the landscape. State space becomes very large if the raw data out of the

game engine is straight away used. Position variable, which is one of many,

considered alone increases the state space incredibly, as the position is in three

dimensions and each dimension is expressed in real numbers. Although the expert

Chapter 3 – Literature Review

55

plans elicited out of SME’s knowledge may be easily implemented in the agent, the

agent does not properly recognize the features of the landscape being used by the

expert therefore the expert plans are never selected. Thus evaluation of enhanced

agent is not successfully carried out.

Apart from these problems of very large state space making it difficult to adapt the

agent using reinforcement learning and the problem peculiar to evaluation there is one

basic short coming in BDI paradigm in implementing RPD model and that is mental

simulation. Norling herself writes “The concept of mental simulation has no obvious

equivalent in BDI, unless one argues that plans themselves do it”.

3.8 Composite agent model

Sokolowski (2002) in his early work described composite agent (CA) and its

similarities with that of the RPD model and discussed the ability of the CA to

implement RPD model based on these similarities. Hiles et al. (2002) developed the

CA as a result of their work aimed at computer generated autonomy. A CA is a multi-

agent system (MAS) based on the concept that human decision making which is a

complex phenomenon may be modelled by numerous interactive agents representing

various activities involved in a human mind. A CA is composed of symbolic agents

called symbolic constructor agents (SCA) and reactive agents (RA). SCA observes the

external environment and creates an internal picture of the external environment. The

reactive agent (RA) generates actions for the composite agents driven by the inner

environment created by SCA. There are multiple SCAs and RAs in one CA. Each RA

represents a specific behaviour of the CA. Each RA is striving to achieve one or more

goals assigned to it. These goals are driving the behaviour of the CA. In an RA, to

further these goals there are associative sets of actions. A CA has an over all goal.

Multiple RAs interact with their own set of actions, and the selection is based on the

degree to which these actions achieve the overall goal. The CA continues to observe

the environment and if the situation changes then a different set of actions is selected.

Sokolowski describes the similarities between RPD model and CA. Like an RPD

model, the CA through its SCA also senses the external environment, produces an

internal representation of the situation, and periodically samples the environment. CA

is also goal driven. Various goals compete for satisfaction and a dominant set of

actions is selected based on the overall goal. The RPD model knows what to expect

Chapter 3 – Literature Review

56

next as the situation unfolds and the decision is implemented. CA accomplishes the

same by periodically monitoring the external situation as it changes caused by either

external effects or as a result of its own actions. About mental simulation he writes

“… A CA partially accomplishes mental simulation as it performs its goal

management process to select the set of actions that it will carry out. However, there is

no clear mechanism within the CA to modify its existing experiences to provide a

better solution. The mental simulation process will most likely need to be enhanced to

better replicate role of mental simulation within RPD….” (Sokolowski, 2002).

Sokolowski in his later work implemented the RPD model based on CA (Sokolowski,

2003a), (Sokolowski, 2003b) and (Sokolowski, 2003c). More agents namely Main

Agent, Recognition Agent and Decision Agent are introduced in this model.

RPDAgent’s experiences are stored in Minsky’s frames. Minsky identified frames as a

data structure to hold information about a person’s environment. Each frame holds a

single RPDAgent experience.

F = (C*, G*, A*)

where, F is a frame, C* is a structure containing cues, G* contains goals, and A*

contains actions for an experience.

Cues are formed by aggregating the environmental variables associated with that cue.

Once the values of all cues have been calculated then they are transformed into fuzzy

values. Each case has three fuzzy sets, an unsatisfactory, a marginal, and a satisfactory

fuzzy set. Triangular-shaped fuzzy sets have been used. Higher values are more likely

to fall in the satisfactory set.

The Main Agent manages the overall system and holds the RPDAgent’s experience

database. The decision process is conducted mostly by the Decision Agent. On

receiving a decision request, the existing experience is matched via a look up table. In

a case where there is no matching experience then the RPDAgent does not have the

experience to make a decision. In case a where a match is found then the related

information is given to the concerned agent and SCA is informed of a pending

decision request. SCA generates an internal representation of the environment and then

instantiates a Decision Agent to manage the decision process. The decision agent

making use of its encoded experience proposes a potential decision according to the

internal representation of the situation. The most favourable action is the action with

the highest ‘action value’. The action value of an action is the sum of all cue values

Chapter 3 – Literature Review

57

associated with an action. A Decision agent (DA) instantiates reactive agent (RA) for

each goal that RPDAgent is supposed to achieve. RA evaluates the potential decision

with respect to the goal for which it has been instantiated. If potential decision

satisfies all goals then it is selected for implementation otherwise RPDAgent gets into

a negotiation function conducted under the control of decision agent (DA) by RA. If a

negotiation is successful and a compromise above a threshold is reached the decision

is rendered otherwise the next potential decision is evaluated. If no decisions

adequately satisfy the goals then RPDAgent renders a default decision appropriate for

the situation.

In this implementation the cues have been developed by aggregating the

environmental variables and the same cues have been used for evaluating the potential

decision. This method of developing cues for evaluation produces good results for

operational level decisions like selecting an approach of attack, deciding on the line

and bias of defence, and of course the selection of a site for amphibious landing. The

agent has been developed for the same purpose and for an agent with more general

tasks further methods will have to be added in generating cues from the environments.

The mental simulation in this case is based on the evaluation of potential decision to

the degree that it satisfies the main goals. And the degree of satisfaction of a goal is

the weighted sum of all the cues associated with that goal. Mental simulation in this

implementation is not flexible enough to accommodate all aspects of the mental

simulation required of an RPD agent.

3.9 RPD enabled collaborative agents for simulating teamwork (R-CAST)

Yen, Fan, and Sun and others have developed an RPD enabled collaborative agent

architecture to support human decision making teams (Fan et al., 2005) and (Yen et

al., 2006). The architecture for collaborative agents which forms the base on which

this RPD process is integrated to enhance the decision making ability is known as

collaborative agent for simulating team behaviour (CAST) (Yen et al., 2001). The

decision to communicate between team members is based on decision-theoretic

strategy. That means the cost of communicating and the possibility of requirement of

the message is considered in calculating expected utility of communicating and also in

the same way the expected utility of not communicating is calculated. The decision is

made by the agents for the choice with higher expected utility. For RPD process the

Chapter 3 – Literature Review

58

experience is divided amongst agents and the one with the requisite experience or

knowledge agrees to make the decision. All R-CAST agents maintain a mental picture

of the world according to their own beliefs in the knowledge base. The R-CAST agent

making the decision checks whether the preconditions of the plan that is selected

satisfy the knowledge base and if so the agent asserts the plan to see whether the

relevant goals are met. This part of the RPD process is the mental simulation. It is not

clear as to what happens to the beliefs of the agent which is based on the state of

knowledge base if the plan does not meet the goals and is rejected. Does the

knowledge base go back to the previous stage before the plan is asserted? The

knowledge base is stated to be proof preserving and in our opinion it should store the

previous state and revert back to it if the plan is rejected for the sake of truth

maintenance in the agent’s mental model.

3.10 Summary

Computer implementations of RPD discussed in this chapter are based on human

cognitive models at various levels of abstraction developed on different physiological

and psychological theories to include multiple trace memory model, artificial neural

network and belief, desire, and intention (BDI) cognitive architecture. RPD

implemented on hybrid models whereby knowledge represented in a psychological

model is driven by a physiological model based on neural units is discussed. Two

implementations based on multiple agent system and one each on fuzzy logic, context

based reasoning and Markov chain models are also discussed. Mental simulation

which forms the major part of Level 3 RPD is implemented in fuzzy logic, Markov

chain, and both of the multiple agent system models. But the scope of the mental

simulation is limited and does not cover the complete range of requirements of RPD

model.

Having reviewed some of the work implementing RPD agent we propose a

methodology that embeds RPD in Soar cognitive architecture. As a first step we

develop a simple RPD agent to identify essential components that are required for a

complete implementation of RPD model. This is illustrated in the next chapter with

the help of a simple example.

Chapter 4 – A Simple RPDAgent

59

4 A SIMPLE RECOGNITION PRIMED DECISION MAKING

AGENT

The aim of the experiments discussed in this chapter is to realize that realistic

modelling of human behaviour changes the results of simulations and wargames and

gives us the opportunity to draw more accurate results from military simulations. The

aim is also to learn more about, and to probe the ability of the RPD model to provide

the decision making model required for the intended command agent to be used in

military simulations. In the end of the chapter the features required in a system to

implement RPD model are also discussed.

The simulations based on analytical methods developed in this chapter also serve the

purpose of validating the base line or start point of simulations involving HBR.

4.1 Tank battle simulation (3-on-1 combat involving a hidden defender)

For this experiment we have selected a very popular and very well analysed case of

three-on-one combat (McNaught, 2002) and (Kress and Talmor, 1999). The basic idea

of this vignette is taken from the work of Kunde and Darken (2005). The blue and red

forces tactics, information on battle drills and capabilities of weapons and equipment

is based on the interviews with the subject matter expert (SME) from the OA,

Modelling and Simulation Group of Defence Academy, United Kingdom and personal

knowledge of the author on the subject.

4.2 Vignette

Foxland and Blueland are two neighbouring states, relations have been strained due to

territorial disputes and now the hostilities are imminent. Foxland is likely to start

probing the border defensive positions of Blueland and launch a major offensive

operation against Blueland.

4.2.1 Enemy situation

An enemy troop of tanks, consisting of three red tanks, is advancing as the forward

reconnaissance element of the advancing force on the selected avenue of approach.

Chapter 4 – A Simple RPDAgent

60

4.2.2 Friendly situation

There is one blue tank, in hull-down position, on the most likely approach to the

Blueland main defensive positions. This blue tank is waiting for the advancing enemy

tanks.

4.2.3 Mission

Delay the enemy by causing maximum attrition on enemy forward reconnaissance

elements.

4.2.4 Description

It is expected that the forward reconnaissance elements consist of a minimum of three

red tanks. The defensive position adopted by the blue tank will make it difficult for

the red tanks to detect and engage it. Whereas, the red tanks are moving and the blue

tank also knows their general direction of approach, therefore, it will have an

advantage in detecting and later on engaging red tanks. The blue tank also has the

advantage of surprise.

4.3 Characteristics of entities and terrain

As the blue tank is in hull-down position, therefore, the probability of its detection is

relatively small. In a situation where enemy tanks are coming up or around a hill they

appear and are detected one after the other. For simplicity, in this simulation the

terrain has been abstracted to two dimensions and the same effect of tanks coming up

or around the hill has been created using the sensor range of the blue tank. The red

tank is detected by the blue tank only when the red tank comes within the sensor range

of the blue tank. The sensor range of the blue tank is depicting the edge of the hill

where the red tanks are appearing and then they remain visible to the blue tank. To

give the effect of the red tanks coming up a hill within the firing range of the blue

tank, the firing range of the blue tank is also kept equal to the sensor range. Sensor

and firing ranges of blue tank are kept at 1200 meters.

Chapter 4 – A Simple RPDAgent

61

4.4 The problem in existing computer generated forces

In modular semi-automated forces (ModSAF), and other existing computer generated

forces (CGF), the behaviour of the tank commander is not very realistic. When

operating without human intervention the very first action of the simulated tank

commander after detecting an enemy tank, within the firing range of own tank, is to

engage it. In ModSAF, the usual setting for most of the operations is “shoot on sight”.

However, for the vignette described in Section 4.2 there is another option that may be

selected i.e., “no fire until ordered” but to use this option in a ModSAF simulation,

human intervention is necessary.

4.5 Factors considered by a human tank commander in defence

Existing CGFs and semi-automated forces (SAFs) in simulations start to shoot on

sighting enemy tanks. Some of them also check their firing ranges before deciding to

engage the enemy tank. Whereas, an experienced human tank commander may or may

not engage an enemy tank on its detection even though that may be within the firing

range of his tank. Many questions immediately cross his mind on an event of enemy

tank sighting. Following are some example questions that will immediately pop up in

the mind of the tank commander when his tank is deployed in a defensive position:-

• Is this one the only enemy tank?

• Are there any more tanks following it?

• Is it the most advantageous time to engage them?

• Are they going to detect me?

• What will be the reaction of other enemy tanks after I engage the first tank?

• Is it feasible to engage them at all?

• Do I have to delay them?

• Will I be reinforced?

• Do I have sufficient ammunition to take on the forthcoming battle?

In this particular situation, a real tank commander having seen one enemy tank, would

expect additional tanks and would therefore probably wait longer to begin surprise fire

than would a simulated commander. If he fires before the other tanks round the corner

Chapter 4 – A Simple RPDAgent

62

(or come up the hill), they will be warned and may try to outflank him, seek cover, use

artillery fire, choose a different path, etc.

4.6 Analytical models

In order to verify the basic simulation we compared our results with analytical models.

Mainly the Lanchester models of attrition have been used, although, the Markovian

model has not been used but it has been very briefly discussed in order to show that as

the battle is realistically modelled with more details then the outcome of the battle

reduces its dependence from numbers and fire power to other factors like use of

terrain and battle tactics etcetera.

British Engineer F. W. Lanchester in 1914, published a paper describing a model of

attrition process in battle (Lanchester, 1916). The attrition process in combat in this

model is based on a pair of linked differential equations. The Lanchester equations are

based on the assumption that the attrition suffered by either side in battle is a function

of the numerical strengths of the opposing forces involved and the efficiency of their

respective weapons. These deterministic Lanchester equations assume that each unit

on each side is within the weapons range of all units on the other side, each firing unit

is well aware of the location and condition of all enemy units so that the fire is

immediately shifted to a new target when the previous target is killed, and the fire is

uniformly distributed over all surviving units. There are two basic Lanchester laws:

one is for attrition of forces in a direct fire battle called the deterministic Lanchester

square law and the other for the attrition of forces in an indirect-fire battle called

Lanchester linear law. There are modern variations from the original model that are in

use in present combat models including exponential stochastic Lanchester model. In

this chapter the deterministic Lanchester square law and stochastic Lanchester model

are discussed.

4.6.1 Deterministic Lanchester (DL) square law

The two sides are designated blue and red.

b, r = number of surviving units on the blue side and red side respectively at

time t.

B, R = initial number of units at time t = 0.

β = the rate at which single blue unit can kill red units.

Chapter 4 – A Simple RPDAgent

63

ρ = the rate at which a single red unit can kill blue units.

The Lanchester equations are as follows:

r
dt

db
ρ−= and b

dt

dr
β−=

These equations may be solved with respect to time to give the number of surviving

units on each side at time t after the start of the battle. However, the more usual form

of the Lanchester direct-fire model called Lanchester Square Law of attrition for

direct-fire battle is the solution of these equations with time eliminated as follows:

 β(B
2
 - b

2
) = ρ(R

2
– r

2
) Equation 4.1

In order for the firefight to be at parity in DL square law, the following condition must

remain valid during the battle:

R

r

B

b
=

Substituting the above condition in β(B
2
 - b

2
) = ρ(R

2
– r

2
)

 Equation 4.1 yields the following requirement for parity:

 βB
2
 = ρR

2

Thus, from the above equation, the effectiveness (kill rate) of the single blue

combatant for parity in direct-fire battle must be given by,

β = ρR
2
 Equation 4.2

Therefore, for parity in three-on-one battle, blue is required to be nine times more

effective.

4.6.2 Exponential stochastic Lanchester (ESL)

In stochastic Lanchester model combatants on both sides assume to have

exponentially distributed interfering times. Taking the same notation as that of Section

Chapter 4 – A Simple RPDAgent

64

4.6.1, the probability of red and blue kill and the mean time distribution to next kill is

defined as follows:

• Blue forces kill red at rate = βb

• Red forces kill blue at rate = ρr

• Probability of blue killing red =
rb

b

ρβ

β

+

• Probability of red killing blue =
rb

r

ρβ

ρ

+

• Time to next kill has a negative exponential distribution with a

mean =
rb ρβ +

1

When two sides are at parity in DL square law model the above equation predicts

mutual annihilation, whereas, parity in a stochastic model would imply an even

chance of victory for either side.

McNaught (2002) suggests that in ESL model a different square law exists, and for the

two forces to be at parity in this model requires the following equation to be satisfied:

β(B
2
+B) = ρ(R

2
+R) Equation 4.3

Therefore, for parity in three-on-one battle McNaught (2002) suggests that blue is

required to be six times more effective but in fact this ratio is higher and parity exists

approximately at an effectiveness ratio of 7.5 (Wand and Bathe, 2008).

4.6.3 Markovian model

The Markovian model (McNaught, 2002) takes into account the detection process and

gives first shot advantage to the hidden defender, shows that in order to have parity in

three-on-one combat involving a hidden defender the blue has to be four times more

effective than the red.

4.7 The simulation

A Simulation has been developed in Java programming language based on the

exponential stochastic Lanchester (ESL) model (Figure 4.1). This simulation is

designed to investigate the effect of the introduction of intelligent-like-behaviour in

Chapter 4 – A Simple RPDAgent

65

the combatants on the outcome of the battle. The components of the simulation are

discussed in the succeeding paragraphs.

To make the comparison simpler, we have assumed the mean inter-firing times to be

equal for both red and blue forces and the switching time from one target to another is

assumed to be zero which simply means that the effectiveness ratio can be taken as the

ratio of the single shot kill probabilities (SSKP).

4.7.1 Blue tank commander (BTC)

The BTC makes decisions for the blue tank. It has a long term memory (LTM) that

contains experiences which consists of the situational elements, courses of action and

expectations. The BTC develops present situation which is a set of values of

situational elements from the information available in the environment. The present

situation contains information about the red tanks such as their status i.e. whether

dead or alive, their distance from the blue tank, whether moving or static, and whether

firing or not firing.

The basic idea, of the structure of this LTM consisting of experiences, is taken from

the work of Warwick et al. (2001). These experiences are developed with the help of a

subject matter expert (SME). SME is asked to give the most suitable course of action

and expectation(s) for a given present situation. All possible situations that may arise

in this scenario are included and every set of values of situational elements called

present situation in this thesis is associated to a course of action and the expectation(s)

and is stored in the LTM as an experience.

BTC gives the present situation to the LTM whose experiences are indexed to the

elements of the present situation. Based on the present situation an experience is

retrieved. For simplicity it has been assumed that each set of values of situation

elements retrieves a single experience which corresponds to a single course of action.

In this model only courses of action and expectations are retrieved from the memory,

goals and cues have not been considered.

Chapter 4 – A Simple RPDAgent

66

Figure 4.1 Three-on-one tank battle simulation

4.7.2 Simulation environment

The Simulation environment contains all entities, generates situations, implement

actions taken by each entity and creates the effects of actions of all the entities present

in the environment (Banks, 2005). It controls the physical parameters like time to

engagement and the time taken by the red tanks to travel some distance based on their

speed. It also decides whether a tank is killed or otherwise when fired at, based on the

SSKP of the shooting tank. If a tank consumes all its ammunition then the

environment does not allow the tank to fire any more rounds. However, in the

experiments discussed in this chapter this limitation on tank ammunition is not

imposed and it can fire as many rounds as required to end the battle.

4.7.3 Time to engagement

When a tank engages a new target there is a certain time required for detecting,

identifying, aiming and firing and also there is travel time of the projectile that it takes

to reach the target. And when it reaches the target it either hits or misses the target.

Time to engagements may be modelled with the help of variety of probability

Red tank

Red tank

Red tank Blue tank

Blue Tank Commander

Long Term Memory

Courses of Action
• Fire

• Wait

Expectations

• Will another enemy

tank appear?

Simulation Environment

Control physical parameters

• Speed

• Distance

Generate situations

Implement actions

Create effects

Chapter 4 – A Simple RPDAgent

67

distributions. In this experiment we have used exponential, triangular and rectangular

distributions. The exponential distribution has been used to verify the results of the

simulation with that of the analytical results and the triangular and rectangular

distributions have been used to observe the change in results for distributions other

than the exponential distribution. We have defined two types of time to engagement in

this experiment. The first is the time to initial engagement and the second is time to

next engagement. The time to next engagement need to be defined because during the

course of a battle due to a variety of reasons a target that was previously fired at is

engaged again.

4.7.3.1 Time to initial engagement

Time to initial engagement is defined as the time taken by a tank when it engages an

enemy tank for the first time or a second time only if it disappears in an area that

provides cover from observation and then reappears at a different location more than

three hundred metres away. Time to initial engagement is longer than the time to next

engagement. It has been modelled with the help of two types of distribution, the

triangular and the exponential distributions (Lecture notes, ESD, 2004).

First the time to initial engagement based on the triangular distribution is discussed

and we assume a probability distribution as shown in Figure 4.2.

Figure 4.2 Time to initial engagement – Triangular distribution

Probability

Density

M-C M M+C

(1)

Time t

(secs)

Chapter 4 – A Simple RPDAgent

68

The theory of probability requires that the area under the probability density function

curve must be unity. The mathematical expression for this probability density function

is:

()

()

()















−
+

−
+

=

0

1

1

2

2

1 C

tM

C

C

Mt

C

tf

elsewhere

CMtM

MtCM

+<<

<<−

 Equation 4.4

Where M is the mean time to engagement and C is the spread of time to engagement

from the mean. The mathematical expression for related cumulative distribution

functions is:

()

() ()

() ()















+
+

−
−

+

−
+

−
+

=

0

2

1

2

12

2

2

22

2

22

2

2

2

2

2

1
C

CM

C

tMt

C

t

C

MC

C

Mtt

C

t

tF

elsewhere

CMtM

MtCM

+<<

<<−

 Equation 4.5

In the above distribution function the expression is in such a form that an analytical

expression can be formed from which for any generated random number, the variate

time t may be calculated directly (Rubinstein, 1981), using the following equation:

()





−±+

±−
=

RCCM

RCCM
t

12

2

CMtM

MtCM

+<<

<<−
 Equation 4.6

Where R is the random number generated by the random number generator of the

system simulator.

Chapter 4 – A Simple RPDAgent

69

Next time to initial engagement using exponential distribution is discussed and we

assume the probability density function to be a negative exponential distribution with

a mean of
A

1
, as shown in Figure 4.3. The mathematical function is follows:

() AtAetf −= 0>t Equation 4.7

The mathematical expression for cumulative density function is as follows:

() AtetF −−= 1 Equation 4.8

Figure 4.3 Time to initial engagement – Exponential distribution

For generated random numbers, R, the variate t may be calculated directly using the

following expression:

RA
t e

−
=

1

1
log

1
 Equation 4.9

4.7.3.2 Time to next engagement

When it is comparatively easier to detect an enemy tank then less time is required to

engage a target, therefore, time to next engagement is shorter than time to initial

engagement. This situation arises when either a tank fails to defeat its target and thus

it fires again against the same target or the second target is close to the first target. In

Probability

Density

Time t

(secs)

A

Chapter 4 – A Simple RPDAgent

70

this simulation if the next target is within 300 meters of the first target then it is

considered as close. Time to next engagement is modelled with the help of rectangular

and exponential probability distributions.

In case of the rectangular distribution, we have assumed the time to next engagement

to have a probability density function as shown in Figure 4.4.

Figure 4.4 Time to next engagement of the same target – Rectangular distribution

Keeping the area under the rectangle unity, in accordance with probability theory, the

mathematical expression for this probability density function is as follows:

()
ab

tf
−

=
1

2 bta << Equation 4.10

Where a is the minimum time a re-engagement takes and b is the maximum time.

() ()
ab

at
tF

−

−
=2 bta << Equation 4.11

In the above distribution function also the expression is in such a form that an

analytical expression can be formed from which for any generated random number,

the variate time t may be calculated directly, using the following equation:

() aabRt +−= bta << Equation 4.12

Probability

Density

a b

(2)

Time t

(secs)

Chapter 4 – A Simple RPDAgent

71

Where R is the random number generated by the random number generator of the

system simulator.

The time to next engagement for the exponential distribution is calculated using

Equation 4.9; only the mean time in this case is half of the mean time for time to

initial engagement.

The above distribution functions for time to next engagement are also used for

engaging new tanks with in 300 meters distance of the previously engaged tank. If the

distance of a new detected tank is more than 300 meters in that case the time to

engagement is determined from the distribution function of time to initial engagement.

4.7.3.3 Speed of red tanks

It has been assumed that the tanks are moving at a speed of 36 Km per hour and thus

cover a distance of ten metres in one second.

4.7.3.4 Decision whether a tank is killed or not

The decision whether a tank is killed or not when fired at is based on the SSKP of the

tank that is firing. Whenever a tank fires, a random number ‘R’ ranging from 0 to 1 is

generated based on uniformly distributed probability function. If this ‘R’ is less than

the SSKP of the tank that is firing then the tank is declared killed. It is not killed

otherwise.

4.7.4 Validation

To validate the simulation, the simulation is first tested on one-on-one battle. We

know from the analytic solution in case of ESL (Section 4.6.2 is referred) the

stochastic parity exists for one-on-one battle if the effectiveness of the combatants is

the same. In one-on-one battle there is no switching time as the battle terminates when

one of the two combatants is destroyed. Therefore, the effectiveness depends only on

inter-firing times and SSKP of the combatants and for equal inter-firing times the

effectiveness only depends on SSKP. For both red and blue tanks, the inter-firing

times, firing and sensor ranges, and SSKPs are kept equal. The inter-firing time has a

negative exponential distribution with mean at ten seconds and is calculated from

Equation 4.9. The inter-fire time is kept the same for both initial and subsequent

engagements throughout this battle. The SSKP and firing range are 0.5 and 1200

Chapter 4 – A Simple RPDAgent

72

meters respectively. First 100, 500, 1000, and 10000 simulations are run for

exponential probability distribution to validate the simulation with respect to the

analytical solution for ESL. The results of simulations are shown in Figure 4.5, which

clearly demonstrate that the stochastic parity exists as suggested.

 Figure 4.5 Blue and red wins for one-on-one battle

The next set of simulations is run to compare the triangular and exponential

probability distributions in order to validate the model with triangular distribution.

Characteristics of the combatants and the probability distributions of time to

engagement are shown in Table 4.1. The values used for this simulation are the same

as that of the first simulation only the upper and lower limits in case of triangular

distribution is specified in addition to the mean value which is the same as that of the

exponential distribution. Similar to the previous simulation, the inter-firing time is

kept the same for both initial and subsequent engagements throughout the battle.

Chapter 4 – A Simple RPDAgent

73

Table 4.1 Characteristics of combatants for one-on-one simulation

Five sets of 100 simulations each for both probability distributions are run and the

results are shown in Table 4.2.

Table 4.2 Comparison of exponential and triangular inter-firing time distributions

This test is aimed at validating triangular distribution as an alternative to exponential

distribution because triangular distribution is comparatively easier to handle in

computer simulations than exponential distribution. The exponential distribution has

an infinite tail that causes problems in developing the simulations. A cut-off time is

required to be set for exponential distribution in order to get a finite inter-fire time.

Exponential Triangular

Blue wins Red wins Blue wins Red wins

46 54 57 43

55 45 44 56

48 52 51 49

45 55 46 54

50 50 42 58

Mean = 48.5 Mean = 51.2 Mean = 48 Mean = 52

 ESL Triangular

 Red Blue Red Blue

Number of tanks 1 1 1 1

Interfering times Mean 10 10 10 10

 Spread ±4 ±4

SSKP 0.5 0.5 0.5 0.5

Firing range Metres 1200 1200 1200 1200

Chapter 4 – A Simple RPDAgent

74

It is evident from the results that the triangular distribution can be used as an alternate

to the exponential probability distribution.

The third test on the simulation is aimed at validating the simulation on Equation 4.3

for three-on-one battle. The validation is done by keeping the equal inter-firing times

and equal sensor and firing ranges but the SSKP of blue tank is 7.5 times more than

the red tank for stochastic parity in case stochastic exponential Lanchester (ESL) as

suggested by (Wand and Bathe, 2008) discussed in Section 4.6.2. Similar to the

previous simulation firing range of both tanks is 1200 meters and inter-firing time is

based on negative exponential distribution with mean at ten seconds. In this

simulation the SSKP of combatants represent their effectiveness as we have assumed

the switching time to be equal to zero and only the inter-firing time is considered even

when the targets are switched. We ran 4000 simulations and the total number of blue

and red wins turned out to be 1868 and 2132 respectively and the corresponding

probabilities of win are 0.47 and 0.53.

After validating the simulation with the help of the analytical solution, we changed the

conduct of battle in the simulation and now the red tanks move 100 metres and then

stop to engage the blue tank. Red tanks can not fire during move. We ran 100

simulations for exponential probability distribution and found that stochastic parity

results when the single tank is six times more effective than each of the three attacking

tanks. We ran another 100 simulations with the same settings and only changed the

distribution from exponential to triangular and found out that in this case also the

stochastic parity exists when the single tank is approximately six times more effective.

The simulation is now run based on our vignette for both exponential and triangular

inter-firing time distributions. These are run for a combination of forces with

intelligent-like and unintelligent-like behaviours opposing each other. One hundred

simulations are run for each case and the results are analyzed. This is done in order to

highlight the concept that intelligent-like behaviour can make a difference in the

outcome of a battle simulation given the same terrain, forces, equipment and situation.

4.7.5 If both red and blue sides do not have intelligent-like behaviour

The three red tanks start moving towards the blue tank. The first red tank enters the

sensor range of blue tank, which is also the firing range as described earlier, and the

blue tank detects it. At this moment the BTC is faced with a decision point. BTC looks

Chapter 4 – A Simple RPDAgent

75

at the situation and sends a probe based on the present situation to his memory and

finds out that he has encountered this situation before and the best course of action is

to fire, BTC does so because it does not have intelligent-like behaviour.

We ran 100 simulations each for exponential and triangular probability distributions.

The time to initial and next engagements are calculated based on Equation 4.9 for

exponential probability distribution, mean times for initial engagement and next

engagement are 10 and 5 seconds respectively. Time to engagement for the simulation

set associated with triangular distribution is calculated using Equation 4.6 and

Equation 4.12. Time to initial engagement, in this case, is calculated using triangular

distribution whereas; time to next engagement is calculated using rectangular

distribution. Mean inter-firing time is 10 and the spread is ±4 seconds for triangular

distribution. And the maximum and minimum inter-firing times are 3 and 1 second(s)

respectively for rectangular distribution. Switching time for targets within a distance

of 300 meters is assumed to be zero and the inter-fire time in this case is equal to time

to next engagement. For switching targets with a distance of more than 300 meters the

inter-fire time is increased and is equal to time to initial engagement.

In this simulation the red tanks are appearing one after the other with a gap of 50

meters in between them. BTC shoots on sighting the first red tank but the red tanks

keep moving in the same direction even after realizing that the tank ahead of them is

engaged (that is the present state of simulations, e.g., ModSAF). As the red tanks are

appearing one after the other, therefore, it gives an advantage to the blue combatant.

For the same effectiveness ratio the probability of winning the battle for blue

improves from parity to 0.62 and 0.61 for exponential and triangular distributions

respectively.

4.7.6 If the red side has intelligent-like behaviour and blue does not

BTC shoots again on sighting the first red tank. But in this case, the rest of the two red

tanks after realizing that the tank ahead of them is being engaged try to manoeuvre

and attack from the flanks without getting into the blue tanks killing area if they hear

the first blue shot fired in time. If the red tanks are successful in coming from the

flanks they compromise the advantage of blue’s defilade position and reduce their

detection times. Again this situation was run for two choices of probability

distributions.

Chapter 4 – A Simple RPDAgent

76

The time to initial and next engagements are calculated based on Equation 4.9 for

exponential probability distribution, mean times for initial engagement and next

engagement are 10 and 5 seconds respectively. Time to engagement for the simulation

set associated with triangular distribution is calculated using Equation 4.6 and

Equation 4.12. Time to initial engagement, in this case, is calculated using triangular

distribution whereas; time to next engagement is calculated using rectangular

distribution. Mean inter-firing time is 10 and the spread is ±4 seconds for triangular

distribution. And the maximum and minimum inter-firing times are 3 and 1 second(s)

respectively for rectangular distribution. Switching time for targets within a distance

of 300 meters is assumed to be zero and the inter-fire time in this case is equal to time

to next engagement. For switching targets with a distance of more than 300 meters the

inter-fire time is increased and is equal to time to initial engagement.

Because of this advantage to the red and disadvantage to the blue combatant, the blue

reduces its probability of winning the battle to 0.41 and 0.35 for exponential and

triangular distributions respectively.

4.7.7 If both red and blue sides have intelligent-like behaviour

The three red tanks start moving towards the blue tank. The first red tank enters the

sensor range of blue tank, which is also the firing range as described earlier, and the

blue tank detects it. At this moment the BTC is faced with a decision point. BTC looks

at the situation and sends a probe based on the present situation to his memory and

finds out that he has encountered this situation before and the best course of action is

to hold fire and the expectation is another red tank appearing after this tank in a few

seconds. Therefore, BTC holds fire and waits for another tank. At this point in time

the blue tank may be engaged by the red tank as it is also in its firing range. Therefore

the decision to hold fire and wait depends on the personality of this particular BTC. If

he has been acting bravely in the past and of course considering his hull-down

position in present situation, he would have experiences in his memory of holding fire

for greater advantage of trapping more red tanks. But if the BTC has been risk averse

then the course of action in his memory would be to engage the very first red tank. In

this case, we take him to be a risk-taking commander and he decides to hold fire and

expects another red tank.

Chapter 4 – A Simple RPDAgent

77

In this simulation, the red tanks are also intelligent and they will try to manoeuvre and

outflank the blue tank if they detect the blue tank either by observation or if blue tank

fires. But the blue tank holds fire and it is very difficult for them to detect the blue

tank due to its hull-down position. Therefore, after few seconds, another red tank

appears within the firing range of blue tank. BTC sends a probe based on this situation

to the LTM and finds it to be a typical situation, with a course of action to hold fire

and expectation of another tank appearing after few seconds. When the third red tank

also gets in the firing range of blue tank, BTC engages the first red tank, which is at

the shortest threatening distance.

The time to initial and next engagements are calculated based on Equation 4.9 for

exponential probability distribution, mean times for initial engagement and next

engagement are 10 and 5 seconds respectively. Time to engagement for the simulation

set associated with triangular distribution is calculated using Equation 4.6 and

Equation 4.12. Time to initial engagement, in this case, is calculated using triangular

distribution whereas; time to next engagement is calculated using rectangular

distribution. Mean inter-firing time is 10 and the spread is ±4 seconds for triangular

distribution. And the maximum and minimum inter-firing times are 3 and 1 second(s)

respectively for rectangular distribution. Switching time for targets within a distance

of 300 meters is assumed to be zero and the inter-fire time in this case is equal to time

to next engagement. For switching targets with a distance of more than 300 meters the

inter-fire time is increased and is equal to time to initial engagement.

Red tanks after realizing that they are being engaged try to manoeuvre and attack from

the flanks, but this may not be possible as they are already in the killing area of the

blue tank and they can not disengage as they did in the previous cases. The other two

red tanks are within 300 meters of each other so the blue tank will engage them with

shorter inter-firing, i.e. ‘time to next engagement’.

BTC after each change in situation keeps probing his memory for recognition of

situation and related courses of action and expectancies and keep testing the

expectations to find an anomaly and then get back to his memory for recognition of a

new situation. Red tanks engage the blue tank as they detect it. The time to

engagement and firing procedure for red tanks is exactly the same as explained above

for blue tank.

Chapter 4 – A Simple RPDAgent

78

Because in this case the red combatants can not avail this advantage of outflanking the

blue combatant hence blue increases its probability of winning the battle from parity

(i.e., 0.50) to 0.57 and 0.56 for exponential and triangular distributions respectively.

The results are summarised in Table 4.3. It is evident from the results that different

attacking formations and different battle strategies change the out come of the battle.

Table 4.3 Summary of simulation results of simple RPDAgent

This experiment also includes the case when blue side has intelligent-like behaviour

while the red side does not. Because of the better decision making of blue commander

all the red tanks get into the killing area and in this situation no matter what is the

behaviour of red tanks the results will not be different. Because the red tanks can not

disengage themselves from the blue once they are inside the killing area.

4.8 Conclusions

The outcomes of constructive military simulations are likely to change if realistic

human behaviour is incorporated in these simulations. This computer implementation

of RPD model works for simple problems and need to be developed and experimented

for complex problems.

As the main focus of this research is human behaviour representation therefore, more

emphasis should be laid on realistic modelling of human cognition, decision making

and learning and less on modelling physical parameters in order to cover more aspects

of the central topic of research with sufficient depth. Therefore, the physical

 Exponential distribution Triangular distribution

Intelligent Blue wins Red wins Blue wins Red wins

None 62 38 61 39

Red 41 59 35 65

Both 57 43 56 44

*Note: Stochastic parity exists (which means P(win) = 0.50 for each

force) in 3-on-1 battle with single combatant suggested to be six times

more effective when the three tanks move 100 metres towards the single

Chapter 4 – A Simple RPDAgent

79

parameters may be abstracted and should only be sufficiently modelled to provide

proper context to the command agent.

A long term memory and a few ‘if then’ rules will not suffice for an RPDAgent to

operate successfully in a complex environment, and the agent would require a proper

cognitive architecture. The decision making in complex situations demands that the

agent is able to recognize the context of the situation, keep more than one goal in

mind and make an effort to select an action to satisfy all of them at the same time it is

also necessary to derive cues from the elements of the situation presented to the agent

and to have a truth maintenance system in the short term memory to keep a valid

picture of the whole situation at all times, a long term memory as before to keep all

the rules applicable to the problem domain, an inference engine and an architecture to

develop a mental model to evaluate proposed actions. The Soar cognitive architecture

offers most of the required features and is discussed in the next chapter.

Chapter 4 – A Simple RPDAgent

80

Chapter 5 – Soar

81

5 SOAR

Soar is a symbolic cognitive architecture for general intelligence (Laird et al., 1987). It

has also been proposed by Newell as a suitable candidate for unified theories of

cognition (UTC) in the series of The William James Lectures in 1987 (Newell, 1990).

Soar is a forward chaining, parallel rule matching and parallel rule firing production

system. Soar uses an associative mechanism to identify knowledge relevant to the

current problems with the help of an extremely efficient symbolic matcher. Soar

employs a computationally inexpensive truth maintenance algorithm to update its

beliefs about the world. Automatic sub-goaling gives Soar agents a meta-level

reasoning capability and enables task decomposition. Sub-goals are created due to

impasses. Impasse in Soar is the architecturally detected lack of available knowledge.

All types of learning in Soar are through a single phenomenon called chunking.

Chunking is a form of explanation-based generalization. Chunks are the cached results

of sub-goals. Soar is capable of building autonomous intelligent agents that interact

with complex environments inhabited by other intelligent agents and humans. Soar

has been used to develop intelligent agents for small as well as large scale military

simulations (Hill et al., 1997), (Jones et al., 1999) and (Wray et al., 2005).

In this chapter the basics of the underlying concepts and functioning of various

mechanisms in Soar are discussed that are intended to be used in the implementation

of the model. After giving an overview of Soar, the architecture, applications, and

improvements in Soar are discussed. The discussion on architecture includes working

memory, reasoning cycle, conflict resolution and learning in Soar. Most of the

material in this Chapter is taken from “The Soar 8 Tutorials 1 – 8” (Laird, 2006a) and

Soar User’s Manual Version 8.6 Edition 1 dated 18 May 2006 (Laird, 2006b).

5.1 An overview of Soar

Soar is based on the Problem space hypothesis. In a problem space, there is an initial

state; there are operators that change the current state, and a desired state. Every task

is accomplished by attaining a goal. The goal is to reach the desired state. Thus, every

task is achieved through a search in the problem space for the desired state by

selecting and applying operators. When there is sufficient knowledge available to

exactly know which operator to select at each step then the routine behaviour emerges.

Chapter 5 – Soar

82

This routine behaviour is usually represented procedurally, but not in Soar, where all

problems are represented in problem spaces.

Decisions in Soar are taken to search in the problem space, e.g., selection of operator,

selection of state, etc. If sufficient knowledge exists and can be immediately brought

to bear then a decision is straight away taken. Otherwise, a sub-goal is created to make

a decision. If there are three proposed operators and the knowledge to select one out of

them is not immediately available then a sub-goal to select an operator is set up. Sub-

goals in Soar can be setup for any decision for which sufficient knowledge is not

available. A sub-goal is setup to search for information in order to make the required

decision. Further sub-goals can also be setup from one sub-goal, thereby, forming a

tree of sub-goals and problem spaces.

The long term memory (LTM) containing long term knowledge is organized as a

production system. Both the task implementation knowledge and the search control

knowledge are stored in LTM as production rules. Production rules are condition-

action pairs. The declarative knowledge which is examined by the productions is

available in the working memory (WM). In Soar, WM is the same as short term

memory (STM). WM of Soar has been explained with the help of an example in

Section 5.2.1. However, these data structures that take the form of declarative

knowledge are also stored in the LTM as production rules. When productions fire the

actions of these production rules produce these data structures in WM. The data

structures in WM are formed with the help of working memory elements (WME). A

WME is an identifier, attribute, and value triplet.

Unlike other production systems, Soar fires all production rules that are satisfied

without any conflict resolution. A production is satisfied when its antecedents match

the declarative knowledge, available in the form of WMEs, in WM. Productions can

only add WMEs. Modification and removal of WMEs is carried out by the architecture

itself.

The search control knowledge is transferred to WM from LTM through firing of

production rules containing preferences. The preferences give the behaviour to Soar in

its current situation. The situation is defined by problem space, a current goal, state

and operator. The preferences take one of these forms: acceptable, reject, better, best,

worse, worst, and indifferent. Better and worse preference represent comparison

Chapter 5 – Soar

83

between two items. The decision procedure is independent of domain knowledge and

it interprets these preferences to select the next action.

Impasses in Soar are architecturally detected lack of available knowledge to continue

problem solving. Thus an impasse stops problem solving as Soar does not know what

to do next and creates a sub-goal to overcome an impasse. All sub-goals in Soar are

created and maintained by the architecture and therefore, this process is named as

automatic sub-goaling. Automatic sub-goaling is an important feature of Soar as it

forms the basis for many other useful features of Soar. If Soar can not accumulate

sufficient knowledge to proceed with problem solving it stops.

The architecture maintains a goal stack and keeps monitoring all the active goals in

the goal hierarchy and it immediately detects the termination of a goal. After detection

of termination Soar proceeds from termination point, that will be a level higher from

where the sub-goal is set up. When the goal terminates all the working memory

elements related to it are automatically removed.

As the Soar is proposed as a cognitive architecture for general intelligence therefore

Soar realizes all weak methods. Weak methods are general-purpose search

mechanisms trying to string together elementary reasoning steps to find complete

solutions. Such problem solving approaches are called weak methods because,

although general, they do not scale up to large or difficult problems (Russell and

Norvig, 2003). The alternative to weak methods is to use the more powerful, domain

specific knowledge that allows large reasoning steps. The Soar realizes all weak

methods e.g., hill climbing, means-ends-analysis, etc., through productions provided

for search control. Due to the structure of Soar, it’s not necessary to procedurally

represent the method to employ any of the weak methods. If knowledge exists for

evaluation of operators, and better operators are given larger numerical values or

better preference symbolically then Soar automatically exhibits a form of hill

climbing.

Soar learns by caching the results of its sub-goals as productions and the process is

named chunking analogous to human cognition. Chunking is a form of explanation-

based generalization.

Chapter 5 – Soar

84

5.2 Architecture

The behaviour is an integration of architecture and content. The content consists of the

knowledge of task implementation and search control. The architecture performs the

functions of; goal creation, goal maintenance, goal termination, decision making,

memory management and learning. A higher level view of Soar is shown in Figure

5.1.

Figure 5.1 A higher level view of Soar Architecture [(Laird, 2006a) with permission]

5.2.1 Working memory

The working memory holds the complete processing state for problem solving in

Soar, to include sensor data, intermediate calculations, objects in the state, goals and

operators. The graph in Figure 5.2 represents the working memory of a Soar agent that

has three objects in its world. A block named ‘A’ on top of another block named ‘B’

on top of a table named ‘Table’.

The structure of working memory is in the form of a connected graph, consisting of

nodes, e.g., S1, B1, T1, and blue, and edges or links, e.g., ontop, name, colour, and

type (see Figure 5.2). There are two types of nodes in this graph. One type of nodes is

called identifier and they have links emanating from them and are non-terminal nodes

such as S1, B1, and T1. While the other type of nodes is called constant and they are

terminal nodes with no further links emanating from them such as blue. The edges or

Chapter 5 – Soar

85

links are called attributes. The working memory is in the form of an identifier,

attribute and value triplet called working memory elements (WME). The value in a

WME may also be an identifier connecting to another attribute. Every WME is either

directly or indirectly connected to a state symbol, in Figure 5.2 the state identifier is

S1 and all the WMEs are eventually connected to it.

Figure 5.2 Structure of working memory [(Laird, 2006a) with permission]

An object in Soar is defined as a collection of WMEs that share the same first

identifier. The object in working memory is usually a representation of a physical

object in the world of the agent. In Figure 5.2, the identifiers S1 and B1 are objects.

One object may contain other objects as in the case of S1 and B1. The identifier B1 is

an object of type block, name A, and colour blue, and is ontop of another object B2.

There are some working memory structures as shown in Figure 5.3 that Soar creates

automatically. Although, this part of the memory is not shown in Figure 5.2 but the

agent will have this structure also. The attribute io pointing to identifier I1 in state S1

appears only on the top state i.e., the first state that Soar agent creates. Whereas, the

attributes, super-state and type, appear in all states that are created by Soar. The

output-link I2 and input-link I3 are both identifiers as they may have further

augmentations connected to them later.

Chapter 5 – Soar

86

Figure 5.3 Working memory input – output link [(Laird, 2006a) with permission]

Working memory is modified by; productions, the decision procedure, and the

working memory manager. Productions add augmentations in working memory, the

decision procedure modifies the context stack, and the working memory manager

removes irrelevant contexts and objects from working memory.

5.2.2 Reasoning cycle of Soar

Soar’s basic reasoning cycle is shown in Figure 5.4 is as follows:

• Input

• State elaboration

• Proposing operators

• Comparing and evaluating operators

• Selecting the correct operator

• Applying operator

• Output

Figure 5.4 Reasoning Cycle of Soar [(Laird, 2006a) with permission]

Chapter 5 – Soar

87

In input phase, new sensory data comes into the working memory through the input-

link. This new data is interpreted during elaboration phase which is next. The

elaboration phase elaborates the state, proposes operators, and collects preferences.

The working memory is examined by the productions in the long term memory and

new objects, augmentation in old objects, and preferences are added. The productions

that satisfy their conjunction of conditions with a consistent binding of variables by

matching it with the contents of the working memory are successfully instantiated. A

production can have a number of concurrently successful instantiations. The

elaboration phase is monotonic. All successfully instantiated productions fire in

parallel without any conflict resolution. The only type of conflict resolution in the

elaboration phase is refractory inhibition which means an instantiation of a production

is fired only once. Although in a serial machines, productions fire one after the other,

this is only a limitation of the machine and is at a lower level and does not affect the

simulated parallelism of Soar production firing. More importantly, the consequences

of rule firing are accounted for, and ‘simulated parallelism’ does not affect the

veracity of the system. The process of successful instantiation and firing of

productions takes place in phases. When a production fires, the action part of a

production modifies or adds WMEs in the working memory that in turn satisfies the

conditions of other productions. Eventually all productions that satisfy their conditions

fire and there are no more productions to fire, at this stage the system is said to reach

quiescence. Operators are proposed during elaboration phase and the preferences

related to the proposed operators are also added in the working memory. After

elaboration phase the decision procedure starts. The process of selection of an

operator is based on the preferences for the operators. The preferences have three

basic concepts: acceptability, rejection, and desirability. Acceptability is a choice to

be considered. Rejection means a choice is not to be made. Desirability means a

choice is better than, worse than, or indifferent to another choice. A choice can also

be best or worst. A choice with best preference means that the choice is selected until

either it is rejected or there is another choice better than it. A choice with worst

preference is selected only when there are no other alternatives. The decision

procedure interprets the semantics of the preference concepts to select an operator to

be applied. After the operator is selected the rules that apply the operator fire which is

Chapter 5 – Soar

88

followed by firing and retracting of state elaboration and operator proposal rules.

These rules may also fire during the application phase. After reaching quiescence,

output and then input are processed. Then elaboration phase described above starts

again.

5.2.3 Conflicts in Soar

In Soar, the conflict resolution is not at the level of production rules rather it is at the

level of problem solving. Because of independence and incompleteness of knowledge

it is possible for the decision process to fail to select an operator to apply, in which

case an impasse occurs that needs to be resolved to proceed further with the problem

solving. In elaboration phase, individual productions expressing independent source of

knowledge fire independently and contribute to the selection process. It is possible for

an operator to be both better and worse than another, and thus create conflict of

desirability between choices. The incompleteness of knowledge is due to the reason

that the elaboration phase delivers some collection of preferences and these can be

silent on any particular fact. Soar can at any time be in any state of incomplete

knowledge.

Due to conflicting or insufficient knowledge impasse occurs. When multiple operators

are proposed and there is not sufficient knowledge to distinguish them in order to

select one out of them, then it is called an operator-tie-impasse. When multiple

operators are proposed but their preferences conflict then it is called operator-

conflict-impasse. A state-no-change-impasse occurs when there are no acceptable

preferences to propose operators for the current state or all the acceptable values have

been rejected. When a new operator is selected in the decision phase but no further

productions fire in the application phase then an operator-no-change-impasse occurs.

5.2.4 Conflict resolution in Soar

Soar always creates a new state to resolve a conflict or impasse as called by the Soar

designers. The goal of the new state is to resolve the impasse. As it is a new state

created while solving a problem in the higher state and it is created to achieve a goal

which is part of the main goal therefore it is interchangeably called sub-goal and sub-

state. The new state is initialized with the information from the higher state and it

carries a link to the higher state named as super-state. The value in this attribute points

Chapter 5 – Soar

89

to the higher state. The new state also contains the complete description of why the

impasse was created e.g., tie describes it was an operator-tie-impasse and with it the

information about all the operators that tied is also given. In the new state operators

are proposed and selected to further the problem solving but an impasse may occur in

this sub-state creating another state therefore it is possible for Soar to have a stack of

sub-goals. An impasse in Soar is not considered to be a problem rather problem

solving in sub-states is a way of decomposing complex problems into smaller parts

and sub-states provide a context to deliberate about which operator to select. The tie-

impasse is resolved by productions that provide preferences for one choice to be

distinguished from others or making all the choices indifferent. The conflict-impasse

is resolved by the productions that create preferences to require one choice or

eliminate the alternatives. State-no-change-impasse is resolved by productions that

propose operators for the current state. And operator-no-change-impasse is resolved

by productions that apply the selected operator, make changes in the state so that the

proposal for the current operator no more matches, or new operators are proposed and

preferred.

All states in Soar are active at all times and the processing goes on in all levels of

states. An impasse is resolved when the knowledge becomes available in a state which

created the impasse. When the impasse is resolved, Soar architecture removes the sub-

state with all its WMEs and preferences from the working memory as it has served its

purpose and is no longer required. But the results that are created in the super-state are

kept. The sub-states at all the lower levels are removed if an impasse at a higher level

is resolved and the problem solving in a higher state progresses. The impasses may

also become irrelevant when something in the outside world change causing

productions to fire that create knowledge to resolve the impasse e.g., preferences to

select an operator when the impasse is a tie.

The functioning of Soar starting from instantiation of productions in the LTM to the

impasses and creation of sub-states or sub-goals is represented graphically in Figure

5.5. The process of new results writing new productions in the LTM is the learning

process of Soar and is discussed in Section 5.2.6.

Chapter 5 – Soar

90

5.2.5 Truth maintenance system

Soar has a truth maintenance system which retracts results created by a rule from

working memory when the concerned rule no longer matches. Soar has a support

system for the facts in the working memory based on two types of supports; i-support

and o-support.

Figure 5.5 Soar: a functional diagram [(Ritter, 2007) with permission]

The Soar architecture classifies rules on the basis of their being part of operator

application or not. If any antecedent of a rule tests the current operator and changes

the state the result is classified to have operator-support or o-support. These WMEs

are persistent and may only be removed by other operator applications or if they get

disconnected from the state. The results created from all other rules, to include rules

that propose an operator, elaborate state, elaborate operators, or compare operators are

said to have instantiation-support or i-support. The WMES that have i-support persist

as long as the rule instantiation that created them matches. To explain the i- and o-

support, the working memory of world with one blue and one yellow blocks on the

table presented in Figure 5.2 is considered. There is a production rule that checks the

colour attribute of the blocks and adds a WME ‘^blue-block-present yes’ on the state

Chapter 5 – Soar

91

object in the working memory if there is any block with the value blue of attribute

colour. This fact in the working memory has i-support. This fact retracts if the

condition of having a blue block is not satisfied any more. Now consider what

happens if there is a selected paint operator that paints this blue block green and

changes the value of colour attribute of the blue block to green. Now this change in

the working memory has o-support and will remain there until explicitly removed.

Automatic retraction of unsupported facts from working memory is a special feature

of Soar and distinguishes it from other rule-based systems.

Determining the persistence of results from sub-goals is complicated because of the

fact that the rules that created these results are removed from the working memory

with the sub-goals. Thus the question arises how we can determine persistence of

results when the rules that created the results have been removed. It is done by a rule

created by Soar architecture called justification. The condition part of the justification

is the WMEs that exist in the super-state and are tested by the productions that created

the result. It is done by collecting all the WMEs tested by the production rule that

created the result and then removing the ones tested from the sub-state. The action

part of the justification is the result of the sub-goal. The justification is tested as

though it is the rule responsible for creation of the result kept in a state from the sub-

goal. The conditions of the justification determine the persistency based on the fact

that whether any condition tests an operator in this state or otherwise.

5.2.6 Learning

The learning mechanism of Soar is a form of explanation-based generalization.

Automatic sub-goaling in all aspects of problem solving is the basis of learning in

Soar. When a sub-goal is created and this new sub-space brings the required

knowledge to solve the problem due to which the impasse is resolved then the Soar

architecture creates a chunk production that later controls the search. And next time

when this particular sub-goal needs to be created this chunk production fires and the

problem solving proceeds without the impasse. As discussed earlier, the impasse that

creates sub-goals is an architecturally detected lack of available knowledge and is that

part of problem solving where Soar needs to learn. The sub-goal is created to find that

knowledge if it is available in the form of productions in the LTM and the chunk is

created to store this knowledge in the form of a Soar production in its LTM from

Chapter 5 – Soar

92

where it can be straight away used when needed. Because of this additional

availability of knowledge Soar improves its performance via a reduction in the

amount of search. If all sub-spaces are exhausted that means all possible sub-goals in

a problem space are created to make either a search control decision or perform a task

implementation function then what is left is an efficient algorithm of the task. The

efficiency of this algorithm depends on the quality of evaluation of the alternatives

and the task-implementation methods used in the sub-spaces.

5.2.6.1 The mechanism of chunking

The chunk production is just like any other Soar production rule. The condition part of

the chunk is the WMEs in the state that allow through some chain of production firing

to resolve the impasse. The action part is the result of the sub-goal which is the

change made in the sub-state that terminated the impasse. The conditions of the chunk

are based on a dependency analysis of traces of the productions that are fired in the

sub-state. The traces keep a record of all the WMEs that the production matched and

WMEs that it generated. The procedure of dependency analysis for chunking is

explained in Figure 5.6. WMEs are represented by circles both bold and otherwise.

The WMEs that form the condition part of the chunk are identified as nodes with bold

circles before the impasse, i.e., before the first vertical line. The arrows going into

nodes are rules that fire to add it. The arcs joining the arrows mean conjunction of the

conditions at the tail of these arrows. The first vertical line indicates the start of the

impasse and creation of a sub-goal, and the next vertical line indicates the resolution

of impasse. Node R that resolved the impasse is created by the production rule that

tested nodes 3 and 4 as its conditions. Node 4 is created after testing nodes 3 and B as

its antecedents. Node 3 is created after testing node 1, while node 1 is created after

testing the nodes D and A as its antecedents. The result node R depends on nodes 3, 4,

and 1 and in turn they depend on nodes A, B, and D from the super-state. It is evident

that node R can be created directly by testing WMEs A, B, and D before the impasse

occurs without creating any of the nodes 1, 2, 3, and 4, only if the dependence of

result R on the WMEs from the super-state is known. Thus if there is a production in

the LTM that tests nodes A, B, and D in the current state and directly creates node R in

the same state then there is no requirement of generating a sub-goal.

Chapter 5 – Soar

93

Figure 5.6 Chunking – the learning mechanism in Soar [(Ritter, 2007)

with permission]

A generalization process is applied to the chunks to make them able to match a

situation of similar description. This generalization process consists of changing the

identifiers in the WMEs by variables. The identifiers are used in Soar to tie together

the augmentations of an object in the working memory – they carry no meanings and

serves as a pointer to the object. A new identifier is generated every time an object is

created. All instances of the same identifier are replaced by the same variable.

Different identifiers are replaced by different variables and are forced to match

different variables. To describe this generalization procedure the example of two

blocks on a table shown in Figure 5.2 is considered again; if the conditions in the

chunk are based on these WMEs, <s1> ^block <B1>, <B1> ^name A, <B1> ^colour

blue, <B1> ^type block, and the action is to give the best preference to the paint

operator that changes the colour of the blue block to green. In order to generalize this

chunk, the specific identifier B1 is replaced with a variable that matches to any block

with the attributes and values as shown in the conditions of the chunk above. All

instantiations of identifier B1 are replaced with the same variable in a chunk including

the action side of the chunk. In this case it is the block that is being painted green.

Chunks are further discussed with practical examples in Chapter 7.

Chapter 5 – Soar

94

Justification and chunk are similar in many ways both are in the form of productions

with conditions and action parts, and the backtracing process of chunking and

justifications is also the same. However, their similarities end here; the justifications

are removed as soon as the WMEs or the preferences that they support are removed,

whereas, chunks are stored in the LTM with other productions. Chunks have variables

in its conditions to match similar situations while justifications have identifiers;

similar to an instantiated chunk.

Learning in Soar can be turned on or off. When learning is turned off the chunks are

not produced.

5.3 Applications of Soar

The problem solving behaviour of Soar has been studied on a range of tasks and

methods. Soar has been used to solve standard AI toy problems such as towers of

Hanoi, missionaries and cannibals, eight-puzzle etc (Laird, 2006b). These tasks elicit

knowledge lean, goal oriented behaviour. Soar has also been used to solve routine,

algorithmic problems such as searching roots of a quadratic equation, doing

elementary syllogisms, etc. Soar has also been run on knowledge intensive tasks

which are the far end of the range of cognitive tasks and are used in current expert

systems. Soar has been used to develop a system that performed the same task as that

of an expert system named “R1” which used to configure VAX and PDP-11

computers at Digital Equipment Corporation. One quarter of the functionality of R1

was developed using Soar to show that it could completely replace the system if the

effort warranted. Soar has been able to realize all the familiar weak methods (Laird

and Newell, 1983). In larger and complex tasks, different weak methods solve

different subparts of the task. Soar has also been used for creating intelligent forces

for large and small scale military simulations (Hill et al., 1997), (Jones et al., 1999)

and (Wray et al., 2005) such as synthetic theatre of war 1997 (STOW-97) in which

TacAir-Soar flew all U.S. fixed wing aircrafts (Jones et al., 1999).

5.4 Improvements in Soar

Tambe (1997) developed a general model of team work and called it shell for

teamwork (STEAM). The main model of STEAM is built on the joint intentions

(Levesque et al., 1990) and the teamwork is modelled on the hierarchy of joint

Chapter 5 – Soar

95

intentions based on the shared plans of Grosz and Kraus (1996). STEAM provides the

ability to Soar to model team behaviour. STEAM has about 50 domain independent

production rules to facilitate the modelling of team behaviour. Sun et al. (2004)

developed a model on the lines of STEAM called Team-Soar and compared it with

collaborative agents for simulating teamwork (CAST) model (Yen et al., 2001). Both

of the teams are given the same task and similar procedural and declarative domain

knowledge. Team-Soar contains 22 production rules encoded as communication

knowledge, whereas, CAST has an elaborate communication mechanism embedded

in the architecture. Sun et al. (2004) found out that: some of the behaviours of both

teams is similar; although, CAST has an efficient communication mechanism, as it is

embedded in the architecture, compared to Team-Soar but it communicated quite

frequently compared to the team members of Team-Soar. In Soar, implementing

teamwork models such as STEAM or Team-Soar requires writing Soar rules to

incorporate collaboration and communication.

To introduce variability in the behaviour of Soar agents as a requirement of HBR,

Wray and Laird (2003) modified the Soar’s knowledge representation and modified

the decision making process to support the change in knowledge representation. The

decision making process now also takes into account numerical values associated with

operators in the absence of symbolic preference. Symbolic preference has priority over

numerical value. As is true for all knowledge in Soar, the rules giving numeric values

for candidate operators are context sensitive. Thus, there may be any number of rules

that give numeric values for an operator. There exist many potential choices to use

these multiple numeric value for selection of an option. One choice may be averaging

the values and then a random choice made from the normalized probability

distribution of the averaged values. The second choice may be to sum them up and

then randomly select one from the normalized probability distribution of the summed

values. The selected method is to sum up all proposed numeric preferences for an

operator iO into a total score ()iOSum . The winning operator is selected

probabilistically according to the Boltzmann distribution as per Equation 5.1.

Chapter 5 – Soar

96

()

()

∑
=

i

eTemperatur
OSum

eTemperatur
OSum

i
i

i

e

e
OP)(Equation 5.1

The parameter Temperature is used to round the peak of the probability distribution.

Nason and Laird (2005) used the acquired capability in Soar, of selecting options

based on numerical preferences, to extend the architecture to add reinforcement

learning. The reinforcement learning is a type of learning in which the task is to learn

how to act in a given environment so as to maximize a reward signal. This is a credit-

assignment problem of determining what was responsible for the reward or

punishment. In most reinforcement learning approaches, the agent learns a value

function, which is an estimation of expected sum of future rewards for taking an

action in a particular state. In Soar-RL, the numeric preferences represent a state-

operator value function. And the reinforcement learning task is to adjust the numeric

values as the agent encounters rewards in the world. Soar is extended to receive the

rewards as one of the inputs from the external environment. The environment rewards

the successful operators with a positive value corresponding to the level of success

and a negative value to represent punishment. The learning therefore, is as good as the

measure of success for reward signal. The reinforcement learning in Soar (Soar-RL)

updates the numeric preference in the next cycle and stores only the immediate

history. The updating procedure of Soar-RL is similar to the procedure used in state-

action-reward-state-action (SARSA) algorithm (Rummery and Niranjan, 1994). The

state-operator value function is distributed over a number of rules generating numeric

preferences for an operator for a particular set of features in the working memory, and

the numeric preferences are summed up to form the expected value of reward signal

used for the selection of an operator. Thus, the update in the value function due to the

recent reward signal is also distributed equally over all such rules.

Nuxoll and Laird (2007) integrated episodic memory with Soar in order to extend

case-based reasoning (CBR) paradigm. Soar architecture is extended to incorporate a

working memory activation system (Nuxoll et al., 2004) on the lines of the activation

scheme in ACT-R (Anderson and Lebiere, 1998). Previous episodes are stored in the

episodic memory and are utilized to remember locations of required items during

search, and also to learn other actions e.g., dodging enemy fire. This work is an

Chapter 5 – Soar

97

improvement on an earlier work of the authors (Nuxoll and Laird, 2004) in which the

learning through episodic memory is tested on relatively simpler tasks.

5.5 Summary

Soar is a cognitive architecture which has long term and short term memories, an

elaborate truth maintenance system, an architecturally supported goal stack, automatic

creation of sub-goals and sub-states due to impasses, and a learning mechanism that

produces new production rules that can be straight away utilized. Soar has been used

to produce intelligent forces for large scale military simulations and wargames, and

the architecture is continuously improved to match future requirements. Soar provides

a convenient framework to model all aspects of RPD model which facilitates the

implementation of RPD in Soar.

Chapter 5 – Soar

98

Chapter 6 – The RPD-Soar Agent

99

6 THE RPD-SOAR AGENT

In this chapter, the implementation of the RPD model in the Soar cognitive

architecture is discussed. The similarities between Soar and RPD that assist in

implementation of the model are highlighted first. Then different components of the

architecture are briefly discussed and then the interface built on Soar mark-up

language (SML) is discussed. The different processes involved in the working of the

RPD-Soar agent are discussed with the help of a vignette of an advance to contact

military land operation. The behaviour of the agent is directed by its experiences or

previously encountered situations that are stored along with their by-products of goals,

cues, expectations, and courses of action, in the LTM. These experiences are required

to be translated into Soar production rules for a Soar agent to understand them and

behave accordingly. These experiences along with related Soar production rules are

discussed. In the end of the chapter, the integration of a neural network in the over all

architecture is discussed. Generally in the thesis and particularly in this chapter, the

words situation and experience have been used interchangeably when situations are

mentioned as memory contents that are being recognised. Because it’s these situations

that the agent has faced in the past are remembered now as his experiences.

6.1 Similarities between Soar and RPD

Soar has many similarities with the RPD model that may be used to our advantage in

developing the RPD model. The first advantage of using Soar to model an RPD agent

is that recognizing a pattern at the input and proposing relevant operators according to

the situation is already a part of the architecture. The second advantage is that the state

elaboration phase may be used to process information and reason with it to recognize

the situation for Level 2 RPD. The third advantage is that if sufficient knowledge in

the LTM exists then Soar behaves like Level 1 RPD model. And the fourth advantage

is that the basic structure in Soar is problem space based, and with the help of

impasses sub-spaces can be created for mental simulation (Raza and Sastry, 2007).

These similarities are tabulated in Figure 6.1.

Chapter 6 – The RPD-Soar Agent

100

Figure 6.1 Similarities between Soar and RPD

6.2 The architecture

The external environment or the world is developed using the Java programming

language and the agent is developed using the Soar Cognitive architecture. The Soar

agent and the external environment are interfaced using Soar mark-up language

(SML). Different environments based on maps for different scenarios can be loaded

into the system. Agents with different behaviours may be loaded into the system as

production rules in Soar files (Raza and Sastry, 2007). The architecture of the agent is

shown in Figure 6.2. In the RPD model it is the experience of the agent that guides its

behaviour. As recognition primed decision making is modelled within the Soar

cognitive architecture, therefore, experiences of the RPD model consisting of goals,

courses of action, cues, and expectations are transformed into appropriate Soar

production rules. And these Soar-production rules are stored in the agent’s LTM.

Chapter 6 – The RPD-Soar Agent

101

Figure 6.2 Agent architecture

At the start of each simulation step the situation present in the environment is given as

input to the agent at its input-link. The agent examines the elements of the situation

present at the input-link and the information available in its own working memory,

and if sufficient knowledge is available, it recognizes straight away that a situation is

typical. This is Level 1 RPD. Some situations are complex and the decision maker has

to devote more attention to diagnosing the situation. In some of these situations, the

information from the environment is required to be processed and combined with

other available knowledge in order to recognize a situation as typical. This is a chain

reaction and therefore, based on these processed cues and information available in the

working memory more production rules stored in the LTM fire to process other

associated information in order to understand the situation better. This part of Level 2

RPD is implemented with the help of the elaboration phase in the Soar agent’s

decision cycle. Level 2 RPD for very complex situations warrants story building to

account for some of the inconsistencies. The story building part of Level 2 RPD is not

implemented in this model.

Inference

Engine

 &

Long Term Memory

Experiences; Effects for MM

&

Agent

Working Memory

Cue
Extraction Actions

Mental Model

 Environment

Age nt

Infer enc e

Engine

W orking Memor y

A
c
tio

n
s

&

Long Te rm Memory

Exper ie nc es; Effec ts for MM

&

Situations Effects

Environment

Agent

Situation Recognition

Neural Net

Chapter 6 – The RPD-Soar Agent

102

The situation or experience once recognized is transferred to the working memory

when the rules containing this experience are fired. The experience appears in the

working memory in the form of WMEs proposing courses of action applicable to this

situation, setting goal(s) to accomplish, indicating expectation(s) and indicating

important cues to monitor. All these elements are present in the LTM as part of the

experience of the agent in the form of Soar production rules. Based on the available

knowledge, the inference engine either takes a decision to select one course of action

to implement or forms a mental model to mentally simulate one or more courses of

action in order to select one to implement. The environment may be modified by the

action of the agent or actions by other entities in the environment. When an agent

takes a decision that needs to change the external world the information is put on the

output-link of the agent in the output phase of the Soar decision cycle. The external

world is waiting for any information on the output-link and changes itself accordingly

as and when any information becomes available. As soon as the world changes, it

provides this information at the input-link of the agent which picks up the information

on each of its input phases.

A trained neural network is used to help the agent in recognizing the situation. As the

broken outline around the neural network suggests, the neural net is not used in all

cases. The reason for integration of an artificial neural network in the architecture and

its functioning as the integrated part of the architecture is discussed in Section 6.8.

The implementation is aimed at producing an agent mimicking the decision-making

behaviour of humans. Therefore, the model of the physical world and entities in it

have been restricted to represent actions and effects of decisions taken and do not

include the representation to implement motor actions and its effects at a higher level

of resolution. For example, the reasoning and action selection is restricted in a

situation to the point where a tank commander selects the action ‘turn’. The action

‘turn’ has not been further decomposed into the motor actions of braking, turning the

steering, etc.

6.3 Mental simulation

In the computer implementation of mental simulation, as in the case of humans, a

model of the external environment is created in the agent’s head. For mental models

and related errors see (Burns, 2000). All the objects present in the environment are

Chapter 6 – The RPD-Soar Agent

103

modelled and the effects each action creates on these objects are also modelled in the

same way. The mental model of an agent has only the information that is available to

the agent at the time the mental picture is created. For example, the agent can see only

one cell around itself and while mentally simulating an action it moves two cells

ahead but it will know only that much information about this new area that it has

when it starts the mental simulation. While creating the mental model and replicating

the world the restrictions mentioned above are kept in mind. Moreover, the

environment is modelled in such a way that there is no link between the objects in the

mental world and the same objects in the real world. This need to be carefully done in

Soar and is taken care of in Selection space production rules developed by Soar group

(Laird, 2006a). Due to this isolation, during the mental simulation when the agent

selects an action and applies it, only the mental world changes and the outside

environment remains un-changed. As the world is modelled in the agent’s head and

actions are also implemented in this model, therefore, the effect of each action on the

mental world is required to be the same as that of the real world, which also needs to

be modelled. This is done with the help of separate production rules taking the same

action as that of the real world but applicable only to the mental world. Their

applicability only to the mental world is ensured by keeping appropriate antecedents to

check the absence of input- output-link on the states representing the world. The agent

then looks at this changed mental world and then merits the action numerically after

considering the progress made in achieving the goal. Past experience in the form of

production rules help the agent in preferring an operator to be evaluated first and in

judging the usefulness of this action in achieving the goal. In this experiment only one

step mental simulation has been implemented. In Soar, the mental model for

simulation is developed by creating problem sub-spaces using operator-tie and

operator-no change impasses (Raza and Sastry, 2008). After an applicable course of

action is evaluated then the agent dissolves its mental model either to go ahead and

apply the selected operator to the real world or to make another mental model to

evaluate the next candidate course of action (Raza and Sastry, 2007).

A similar mental model using Soar is developed by Johnson (1994a) and (1994b) for a

different reason and that is to explain the actions taken by intelligent tactical air agents

in TacAir-Soar, the Soar-IFOR project discussed in Chapter 2.

Chapter 6 – The RPD-Soar Agent

104

This mental simulation is a part of Level 3 RPD model and helps the agent select a

course of action to implement. Unlike Level 1 RPD where the agent is very sure as to

which course of action should be implemented in a given situation, Level 3 RPD

model is useful for situations where the agent lacks sufficient experience to exactly

know how a course of action will play out, and therefore, the agent mentally simulates

courses of action to see how it unfolds. Based on its experience the agent knows

which course of action should be mentally simulated first. The agent simulates the

preferred course of action and if it satisfices then the agent implements it (see Section

7.1.4). If this course of action is not suitable then the agent selects the next course of

action in line for mental simulation. The prioritization of these courses of action is

based on the experience of the agent where it remembers as to how successful a

course of action was when implemented in this situation previously. When an agent

faces a completely new situation, it suffers from lack of experience and degenerates to

traditional decision making. Due to its capability of mental simulation it evaluates all

courses of action serially, selects the most suitable course of action and implements it

and due to its adaptability remembers it for the next time as an experience. Although

in this implementation mental simulation is run for a single step, it can be run for as

many steps as required. If more than one courses of action are equally promising then

the agent selects one at random. This method is further discussed in Chapter 7, where

evaluation based on mental simulation generates variability in the behaviour of the

agent. Variability in behaviour within an agent across episodes for the same situation

and task is a major requirement in human behaviour representation, and mental

simulation in RPD-Soar introduces this variability in the behaviour of the agent. This

ability of the RPD-Soar agent is an advantage it has over other implementations.

Before discussing the working of the model in detail with the help of a vignette, the

interface of the simulation environment with the Soar kernel is discussed.

6.4 The interface

The simulation environment is interfaced to the Soar kernel with the help of Soar

mark-up language (SML), as shown in Figure 6.3.

The simulation environment consists of objects or ‘entities’ as usually called in

simulations and some of these entities are Soar agents. The Soar kernel is capable of

developing and maintaining multiple agents and each can have its individual

Chapter 6 – The RPD-Soar Agent

105

behaviour based on the Soar production rules loaded in that agent. SML was

developed by the Soar group (Threepenny, 2005) to provide an interface into Soar.

The client can send and receive Soar XML packets through a socket maintained by

Soar, which is port 12121 by default. ClientSML is available in C++, Java, and Tcl.

We have developed the simulation environment in Java and for a client implemented

in Java, Java_sml_ClientInterface.dll, SoarKernelSML.dll, and ElementXML.dll

dynamically loaded libraries are required.

Figure 6.3 The interface

The entities present in the environment are represented as objects in the working

memory of the agent therefore; it is natural, logical and more compatible to model the

world using object oriented software. Java is an object oriented language and therefore

it can be used to build synthetic environment (Sommerville, 2004). The other option is

to develop the environment in C++ which is also an object oriented language and can

be interfaced with Soar using SML. But in this implementation Java is preferred over

C++ in order to remain in line with the Soar group.

The complete code for implementation is available in the attached CD (see Appendix

C) and the key elements of the SML code are given in Appendix D.

6.4.1 Creating Soar kernel and agents

A Soar kernel can either be created in a new thread or in the same thread. In this

implementation, the Soar Kernel is created in a new thread so that the simulation is

run independent of the Soar Kernel. Multiple agents can be created in one kernel with

different behaviours. The behaviour of each agent is controlled by the production rules

loaded in it.

Soar Markup
Language

(SML)

Simulation
Environment

Soar
Kernel

Chapter 6 – The RPD-Soar Agent

106

6.4.2 Input - perception

The “input-link” of the Soar agent, as explained in Chapter 5, is the link of the agent

to receive the information about the outside world. This information is picked up by

the agent during the input phase of the next decision cycle. The client needs to acquire

the identifier of the input-link in order to give all the information depicting the present

situation of the world to the agent.

The identifier WMEs are used to create objects at the input-link. String and integer

WMEs are created either directly on the input-link or as part of the object represented

by an identifier at the input-link. It has been discussed in Chapter 5 that a WME is an

identifier, attribute, and value triplet. The value is either a constant or an identifier.

The value is an identifier if it is not a terminal node and one or more branches are

emanating out of this node. The ‘bluetank’ is created as an object in the working

memory at the input-link representing an entity present in the simulation environment

(Figure 6.4).

Figure 6.4 Objects on the input-link

The object ‘bluetank’ has three attributes; two of them give its location in the

Cartesian coordinates and third indicates the direction that the ‘bluetank’ is facing.

The X and Y coordinates are represented with the WMEs of type integer and the

direction that the tank is facing is represented with a WME of type ‘string’. All the

information about the environment and entities present in it that are required by the

agent to reason for situational awareness to make decisions is provided to the working

memory of the agent through the input-link.

The environment in this model is grid based. Each cell in the grid is surrounded by its

neighbouring cells. Each cell has at least three and at most eight cells as its

neighbours. These cells are represented as objects in the working memory of the agent

^
io

^
output-link

^
input-link

I1

I3

I2

S1

^bluetank
 B1

^x

^y

^facing

north

3

5

Chapter 6 – The RPD-Soar Agent

107

because each cell has two attributes representing its location in Cartesian coordinates.

These attributes have integer values and can be represented with the help of

techniques discussed above. But consider an example of Cell 5 (Figure 6.5) that has a

neighbouring cell Cell 2 which is just above Cell 5. To represent the relative position

of these cells in this environment, a WME need to be created, this has the identifier of

Cell 5 as its identifier with an attribute north and the value of this attribute being the

identifier of the cell in the north the Cell 2. This is a case where graphical

representation is required instead of a simple tree structure. In order to develop a

graph in working memory of the agent new identifier WME with the same value as

that of an identifier of an existing object need to be created called ‘Shared identifier

WME’. An agent created in the Soar Kernel can create this type of WME using an

inherent method for the purpose.

Figure 6.5 Example of graph structure in WM developed from shared identifier WME

Cell is developed as a class in Java. The agent instantiates the cell object to create the

nine cell graph structure. The agent sits in the centre in Cell 5 in Figure 6.5. This

template of nine cells moves over the map and the values of the x and y attributes

representing Cartesian coordinates of the location of the cell on the map and the value

of the content giving the name of the object present on the location where the cell is

located now keep changing accordingly.

6.4.3 Output – command/action

If the agent produces a command then it is put at the output-link after the output

phase. One or more commands present at the output-link are picked up for

implementation in the environment.

Cell 1 Cell 2 Cell 3

Cell 4 Cell 5 Cell 6

Cell 7 Cell 8 Cell 9

Chapter 6 – The RPD-Soar Agent

108

After acquiring all the information related to the command from the output-link the

agent is informed that the commands have been picked up. This information is used

by the agent to remove the implemented commands from the output link.

6.4.4 Event handling

In this model event handling is required to update the user interface in the

environment and to connect the environment to the ‘Java debugger’. The Java

debugger can connect to the remote Soar kernel given an internet protocol (IP)

address and a port number. The IP address is not required if the Soar kernel is running

on the same machine. When the environment is updated, the world represented in the

user interface along with the buttons in the bottom of GUI are also updated. Stop,

start, and update events are registered with the environment and they trigger actions

wherever required.

6.5 Graphical user interface (GUI)

The interface has four buttons Run, Stop, Step, and Reset to control the simulation

(Figure 6.6). The Run button when pressed runs the agents forever until either the

Stop button is pressed or the agent achieves its goal. All the buttons are enabled and

disabled appropriately. The GUI is updated whenever the agent makes a decision to

take an action in the world. The simulation and the GUI are running in separate

threads and therefore the GUI is updated independently of the simulation.

6.6 The Environment

The environment is grid based (Figure 6.6). The perimeter has obstacles and the

agent’s world is restricted to these boundaries. There is a Map class which contains

the location of obstacle and initial location of the red tank, and is responsible to place

the appropriate map for the task. The agent is a tank commander who is commanding

a single tank. There are two types of sensors in the tank, one is a visual sensor that

looks only one adjacent cell around itself, and the other is a radar sensor that can see

up to five cells in the direction that the tank is facing. The radar sensor can not see

beyond any obstacle. Past observations from the radar are retained in the memory of

the agent and it can use this information in decision making. This environment is

Chapter 6 – The RPD-Soar Agent

109

more or less common in all the experiments but the changes, if any, are mentioned in

the experiments.

Figure 6.6 The Environment

6.7 Working of RPD-Soar agent

The implementation and working of the RPD-Soar agent is explained with the help of

a vignette. The context is an advance-to-contact military land operation. In a 10 x 10,

grid based environment (Figure 6.6), the tank has to start from the south and advance

towards north to reach the destination. The environment has only one obstacle which

is a hill that gives protection from observation and fire. The agent has radar and visual

sensors as described in Section 6.6. The agent has been given the location of the

destination cell and has been tasked to advance to that location. Enemy tanks are

expected on the route to delay the advance. The firing range of an enemy tank is three

kilometres while, that of the agent is four kilometres. In this experiment one cell

represents one kilometre. In this thesis the scales for representation of terrain, if

required, are mentioned with the experiment.

Most tasks are performed within a larger context that includes higher-level goals. In

this case the main context is an advance-to-contact military land operation. There are

three high level contexts in this experiment and each is represented with an

Chapter 6 – The RPD-Soar Agent

110

experience. The experience has goals, cues, expectations, and a course of action.

These high level contexts are mutually exclusive and the agent at one time is in any

one of them. These experiences are shown in Figure 6.7, Figure 6.8, and Figure 6.9.

Figure 6.7 Experience – advance

The goal is the state of affairs that is intended to be achieved and may also be defined

as the end state to which all efforts are directed. The cue is the perception of a set of

patterns that gives the dynamics of the situation, and makes distinctions in these

patterns. This pattern is formed by the features of a situation or elements in an

environment. The expectation is the belief of the agent that an event will or will not

occur in a given situation. The course of action is the strategy or plan that the agent

intends to implement.

Recognition of a situation not only means recognizing a typical response but also

indicating what goals make sense, what cues are important and what is expected next.

During advance an important cue is high ground. The agent expects to see no high

ground within four kilometres of it. Now if the agent finds high ground within four

kilometres then this expectation is violated and a fresh evaluation of the situation is

necessary. If the agent finds high ground within four kilometres of itself and is facing

north, which is the direction of its destination, then it recognizes this situation and

changes its state to manoeuvre. During manoeuvre the agent does not expect to see an

Experience: Advance

• Goal

– Reach the destination

• Cues

– High ground: not visible

– Incoming missile: none

– Enemy tank: none visible

– Distance to the destination

• Expectations

– No incoming missile

– No enemy tank visible

– No high ground within four kilometres

• Course of Action

– Move towards destination

Chapter 6 – The RPD-Soar Agent

111

enemy tank. If it sees a tank an expectation is violated and the situation is evaluated

again.

Figure 6.8 Experience – manoeuvre

Figure 6.9 Experience - attack

A brief description of the agent’s behaviour will be given here, a fuller explanation

together with the code generated is given in Appendix D.

If we set up the simulation with the map representing the environment displayed in

Figure 6.6, load the agent with the behaviour required to accomplish the mission for

advance-to-contact operation, connect it with Soar Java debugger and then run it for a

Experience: Attack

• Goal

– Destroy the enemy

• Cues

– Enemy tank: visible

• Expectations

– Enemy tank remains visible

• Course of Action

– Engage the enemy tank with fire

Experience: Manoeuvre

• Goals

– Expose the enemy tank at the longest range

– Do not expose own tank to enemy within enemy tank’s firing range

• Cues

– High ground: at a distance <= 4 kilometres

– Direction of own tank: facing destination (north)

– Incoming missile: none

– Enemy tank: none visible

• Expectations

– No incoming missile

– No enemy tank visible

– Enemy tank behind high ground on completion of manoeuvre

• Course of Action

– While taking cover from the high ground, move to a location four

kilometres east of expected enemy tank

Chapter 6 – The RPD-Soar Agent

112

single step then the agent will start to develop working memory contents. Running the

simulation one step also makes the agent run through one decision cycle. The

information generated by the radar and the visual sensors is put in the working

memory through the input-link of the agent. The agent is facing north and is five cells

south of the high ground therefore the radar sensor of the agent sees an obstacle at

location represented in Cartesian coordinates as (5, 3). The visual sensor as we know

can see only one cell around itself and therefore, sees three obstacles in the south,

south-west, and south-east of the agent. The rest of the five cells around the agent are

empty and are displaying their contents as empty in the working memory.

The objects in the environment such as blue tank, map, cell, radar and obstacle are

represented in the working memory of the agent. The information about these objects

in the environment is given to the working memory through the input-link of the

agent. Operator and direction objects are produced in the working memory by the

production rules loaded in the long term memory (LTM) of the agent. The state object

is automatically created in the working memory of the agent. Two production rules,

designed for the purpose, fire to initialize RPD-Soar agent and place the mission of

the advance-to-contact operation as the desired state in the working memory of the

agent.

The simulation is run through the next step and conditions based on the cues of

experience for advance (Figure 6.7) as the suitable course of action is selected. There

is no red tank in sight, the obstacle is five kilometres away, and there is no incoming

missile. The presence of red tank and incoming missile are straight forward cues but

in order to observe the cue of relative distance of tank to the obstacle some

elaborations is required which is Level 2 RPD and is done with the help of production

rules designed for the purpose. The advance course of action is an abstract operator.

Therefore an operator no-change impasse occurs and a new sub-state is created to

implement it.

In this context with advance as its major task the agent has four actions to choose

from: move in the direction that the tank is facing and turn in the other three

directions. And as all four are applicable in the situation then an operator tie impasse

is generated. This is the case in RPD model where the decision maker can not select a

course of action from a pool of courses of action that he knows can apply. Now the

Chapter 6 – The RPD-Soar Agent

113

decision maker develops a mental model of the environment and mentally simulates

the courses of actions serially to select the one which seems satisficing.

Now among the candidate operators in experiments discussed later, the agent has the

experience to prefer one operator over the other for evaluation and the experience to

judge when an operator is satisficing but this agent evaluates each and every candidate

serially and randomly selects one to evaluate first. Therefore, one operator is selected

for evaluation at random.

This operator named evaluate-operator is also abstract and therefore another space is

created to implement evaluation and this is the mental model for simulating a course

of action as of RPD model. In this space, all the objects in the environment are

modelled again and the operator representing the course of action to be evaluated is

selected to be applied.

The operator application is not on the real world rather on the model world created in

the agent’s head. In this case the course of action is being evaluated for advance which

means a better action is the one that can take the agent close to the destination given in

the original mission. In order to evaluate the candidate actions, the Manhattan distance

is calculated after applying each action and the numeric value is recorded as

evaluation factor. The Manhattan distance between two points (x1, y1) and (x2, y2) is

defined in terms of X and Y as X = x2 - x1, and Y = y2 - y1. And then the action with

the least numeric value is selected. This is achieved through the use of selection space

implementation provided by Soar group (Laird, 2006a) and the production rules

written for copying the objects and the application of operators in the mental model

for this implementation. The majority of the production rules provided as selection

space productions are being used as such in this implementation for mental simulation

while some of them are modified to suite the requirements of this model.

After evaluating each action the sub-states of the mental model and thus all the WMEs

related to them are removed from the working memory of the agent and only the

evaluated value is kept in the higher state evaluating these actions.

After evaluating all the candidate actions the move north operator is selected because

it is taking the agent close to the destination and is applied to the real world. It is done

through the output-link and with the help of the model for acquisition of commands

from the agent explained earlier in the same chapter. The new location of the Blue

agent in the environment after moving north is shown in Figure 6.10.

Chapter 6 – The RPD-Soar Agent

114

Figure 6.10 Situation after moving north

Now the distance to the high ground is equal to four kilometres and one of the

expectations of the advance experience is not met, therefore the situation is re-

evaluated and this time the experience manoeuvre is recognised as its conditions are

met. The course of action for the experience manoeuvre is represented graphically in

Figure 6.11. In this case the blue agent sees high ground on its approach to its

destination and expects an enemy tank behind it. A similar approach has been adopted

by Tambe and Rosenbloom (1995) where the pilot agent observes the actions of the

enemy aircrafts and by observing the observable actions infers their unobserved

actions, plans, goals, and behaviours.

The course of action manoeuvre is also at higher level of abstraction and creates an

operator no-change impasse.

Chapter 6 – The RPD-Soar Agent

115

Figure 6.11 Experience – manoeuvre

Just like advance, this course of action for experience manoeuvre is implemented

through atomic actions of move and turn but now the destination is the location

pointed by the head of the arrow representing the planned path for movement of blue

tank.

This location as the destination for completing the manoeuvre action is kept so that

the Blue tank stops at a distance of four kilometres from the Red tank and therefore is

out of the firing range of the enemy while the Red tank is within the firing range of

Blue tank. The Blue tank commander is exploiting the weakness of the enemy to

achieve his own aim of destroying the enemy forces as secondary mission while

reaching the destination which is the main mission. In this situation it would have not

been possible for the Blue tank to reach its destination without destroying the Red

tank or making it retreat from its present location as the area would have been unsafe

to advance.

The selection of the atomic actions in experience manoeuvre is through mental

simulation as is the case of experience advance. It is not necessary for all the

experiences to have all the components of situations as represented in the RPD model.

It is understandable that the recognition of a situation requires more processing of

information for comparatively high level contexts; therefore, it is expensive in time

and resources to repeat the process with every single change in the world. It is also

 Destinatio

Chapter 6 – The RPD-Soar Agent

116

true that not all changes in the world are likely to change the higher context. It is also

observed that the behaviours at a higher level persist for a comparatively longer time

and consist of a combination of low level behaviours. There may not be a requirement

to associate expectations with the courses of action in the experiences at atomic level

behaviours where an action is taken that changes the world and then the situation is re-

evaluated to select the next action. This is because the selected course of action does

not persist long enough to require watching expectations while the action is under

progress. The same is true for the goal at atomic level. The goal is the result of the

action itself. Therefore, in this implementation of the RPD model, the goals and

expectations are part of the experiences representing behaviour at a higher level of

abstraction. At atomic level the experiences consist of only cues and the action. The

success value or preference of one action over the other accompanies the experiences

at even atomic level in most cases. This success value is used in two ways: the first, is

the selection of a course of action straight away without mentally simulating it if one

candidate is distinctly better than the others; and the second, is the selection of a

course of action as the first one to consider for mental simulation when the chances of

success of candidate courses of action are similar.

In Soar, it is effortless to model the phenomenon of watching the expectations while

carrying out a course of action. In Soar, all the states are active at all times. Any

change in a state at a higher level removes all the sub-states which are responsible for

the creation of these sub-states. In the vignette under discussion (see Figure 6.6), the

advance behaviour is selected and the course of action is under progress when the blue

tank moves north and the distance between the blue tank and the obstacle reduces to

four kilometres (Figure 6.10). The agent is expecting no obstacle this close while

advancing thus an expectation is violated and the situation needs to be re-evaluated. In

Soar, the re-evaluation of a situation given the violation of expectations is almost

automatic if the conditions for selection of the concerned operators are set correctly.

The abstract advance operator that creates the sub-state where this course of action is

being implemented is removed due to one of its conditions for selection being violated

and thus the sub-states implementing it are also removed. The situation therefore is re-

evaluated to recognize new situations in order to find courses of action from other

experiences to proceed with the task.

Chapter 6 – The RPD-Soar Agent

117

During the manoeuvre context the blue tank keeps moving by selecting actions that

reduce its distance from the destination recognized as a goal with the present situation

until it reaches the destination. To accomplish its goal completely the blue tank also

turns east as shown in Figure 6.12. Now the blue agent finds the red tank on its radar

sensor. The only cue in the attack experience is red tank (Figure 6.9) and for its

selection the condition to be satisfied is red tank’s presence. As the condition is met

therefore the proposal to select attack as a context is fired by a production rule and as

attack is the only operator proposed therefore it is selected. Attack is an action at a

higher level of abstraction therefore a new sub-state is created through an operator no-

change impasse to implement this abstract action. In this context a fire action is

proposed, selected and applied and the red tank is destroyed.

Figure 6.12 Situation after completing manoeuvre

The attack experience expects to see the red tank all the time but as the simulation

removes the destroyed tank it is not visible on the radar sensor. The expectation of the

situation is violated in the RPD model and situation is required to be re-evaluated and

in Soar it is implemented by putting it as a condition in the production that proposes

attack operator. As the conditions for the proposal of the attack operator are not

satisfied therefore attack operator is removed and so is the sub-state created because

of it.

Chapter 6 – The RPD-Soar Agent

118

The situation is re-evaluated and advance is selected which as discussed earlier is an

abstract operator and creates an operator no-change impasse to create a sub-state to

implement it.

The agent repeats move and turn actions after selecting them by evaluating through

mental simulation and reaches its destination shown in Figure 6.13.

Figure 6.13 Blue tank reaches its destination

On completing the mission as in military operations and reaching the goal state as in

Soar, the agent needs to halt and the simulation stops either for final termination or

reset for another run. If the simulation needs to be terminated, the agent is stopped

with the help of Soar production rules using halt command inherent in Soar. But if the

simulation needs to be stopped and reset for another run then it needs to be done at the

level of environment by stopping the agent and changing all the variables of the

environment and the perception of the agent including the location of entities to the

initial settings. The halt command irreversibly terminates the execution of the Soar

program and should not be used when the agent needs to be restarted. This method has

not been used in this implementation because the Soar program is run within a

simulation which needs to be restarted for the next run until the number of required

simulations is reached.

Chapter 6 – The RPD-Soar Agent

119

6.8 Integrating artificial neural network in the architecture

In rule based systems the antecedents of a production rule have to match exactly for

the production to fire. If the current situation deviates from the conditions in the rule

then the appropriate rule does not fire. Due to rule matching through an efficient

algorithm like RETE and also advances in computer technology it is possible in Soar

to add a large number of production rules to handle generalization. The RETE

algorithm efficiently solves the many-to-many matching problem encountered when

rules are matched to facts (Forgy, 1982). Writing large number of rules is possible but

is not an efficient method of solving this problem. Alternate approaches like

similarity-based generalization, fuzzy logic and artificial neural network may solve

this problem in a more efficient way. In this implementation, an artificial neural

network is used for situation recognition. There are two reasons for using an artificial

neural network in this implementation: first, it has already been used for a similar task

with promising results (Liang et al., 2001); second, it has the ability to automatically

prioritize the situations according to their level of similarity.

A simplified diagram of the integration of the artificial neural network is shown in

Figure 6.14. The situations are fed to the trained artificial neural network which

matches the new situation to one of the known situations and gives the agent a

recognized situation. The recognized situation has the complete set or a subset of its

four constituents that are goals, courses of action, cues, and expectations. The agent

selects the course of action for the situation and implements it with the help of lower

level actions selected through mental simulation if required. It is worth mentioning

here that mental simulation is not being used at a high level and is being used at a low

level that is to select atomic actions in pursuit of the goal set at a higher level. The

pool of actions or a single action is proposed depending upon the experience of the

agent based on the recognized situation.

Chapter 6 – The RPD-Soar Agent

120

Figure 6.14 Integration of neural network in the architecture

The neural network is trained for each agent based on the range of situations it is

likely to face. Motivated from the work of Liang et al. (2001), the neural net is a

multi-layered normal feed forward network. It consists of an input layer of four nodes,

three hidden layers of twelve nodes each, and the number of nodes in the output layer

depends upon the number of known situations. The number of nodes in the output

layer varies from situation to situation. For the experiments conducted in this research

the configuration of the input layer and the hidden layers is not changed but these

layers may also be reconfigured if required.

Yes

No

Environment

Artificial

neural

Network

Select course of action

Implement course of action

Select action

Implement action

Goal

achieved?

Stop

Situations

Recognized Situation

Agent

Mental

Simulation

Chapter 6 – The RPD-Soar Agent

121

The standard back-propagation algorithm is used for learning. A dot product is used

for the input to a node and a sigmoid function for the transfer function on all layers

except for the output layer where a pure-linear function is used. The initial values of

the weights are 1 and the network is trained for 1000 iterations with a constant

learning rate of 0.01.

Matlab is used to train the network and then the simulator is implemented in Java so

as to integrate the learnt net with the agent. The neural network is implemented as a

Java class. Each output node represents a known situation, when a situation is given to

the neural net then the output node with the highest value is selected and the

corresponding situation is the recognized situation. The basic difference of this work

and work of Liang et al. (2001) is that the latter uses the neural net for pattern

recognition and plan generation at the same time and in this implementation the neural

net is used for pattern recognition only. Liang et al. (2001) realize that his technique

can be used only to reduce the search as all generated plans are not good solutions to

the problem. In this implementation the RPD-Soar agent which has tremendous

potential for reasoning with and implementing the plan is enhanced with pattern

recognition capability of artificial neural network. The details of the neural net and its

working in the model are further explained in the next chapter with an example

experiment.

6.9 Summary

Soar provides a convenient framework to model most of the aspects of the RPD

model. The elaboration phase in Soar decision cycle is used for situation awareness

and the problem space based architecture, automatic sub-goaling and creation of sub-

states due to impasse is used for mental simulation. The environment is developed in

the Java object oriented programming language, the RPD model is implemented in the

Soar cognitive architecture and the agent and the environment are interfaced with

Soar mark-up language (SML). A trained artificial neural network is also integrated

with the agent architecture to enhance the ability of the agent in handling new

situations. The experiences of the command agent are stored in the LTM in the form of

production rules. The success values for the courses of action for specific situations

are represented numerically. All atomic actions, such as move, turn, fire, etcetera,

expected to be performed by the agent in a simulation are coded by the modeller. The

Chapter 6 – The RPD-Soar Agent

122

selection of an action for a specific situation in pursuit of single or multiple goals

based on corresponding success values is the task of the RPD-Soar agent which forms

the behaviour of the agent. This behaviour emerges at the simulation run time.

Part of implementation especially production rules specific to the agent in an

experiment is explained within the experiments in the next chapter.

Chapter 7 – Experiments, Results, and Discussion

123

7 EXPERIMENTS, RESULTS, AND DISCUSSION

In this chapter, a number of experiments are discussed to demonstrate all the decision

making strategies and processes adopted by RPD-Soar agents with varying degrees of

expertise in different situations. Situational analysis is common to all types of agents

used in various experiments because some form of information processing is always

required based on the situational variables presented to the agent. Situational variables

are the elements of the environment that form a situation in these experiments, e.g.,

location of an obstacle, the destination, and the agent’s own tank etc. In these

experiments the agents are using three types of decision making processes. The first

type of decision making process is a case of definite recognition of a situation with

only one possible course of action and the agent implements it without mentally

simulating it. The second type relates to recognition of a situation with more than one

course of action and then serially evaluating all of them one after the other through

mental simulation to select the best suitable course of action for the present situation.

Then there are situations where the agent sufficiently recognizes the situation to know

which course of action is plausibly the best for the present situation but is not sure and

therefore it evaluates the course of action through mental simulation and implements

it only if it satisfices, otherwise the agent throws it away and mentally simulates the

other applicable courses of action.

The preliminary experiment aimed at verifying Soar’s ability to store situations

consisting of cues, goals, expectations, and courses of action in its LTM and bringing

them up at logically correct time in its WM to produce the desired behaviour is already

discussed in Chapter 6. In this chapter, the experiments discussed are aimed at

demonstrating the flexibility in decision making and evaluating the performance and

behaviour of various types of RPD-Soar agents. This will also demonstrate behaviour

variability across agents, test the ability of the agent to recognize a situation in a

changing context, test the mental simulation capability of the agent for dynamic

situations, and demonstrate within agent behaviour variability, and adaptability of the

agent. The last experiment is related to the integration of a trained neural network in

the architecture to enhance the situation recognition ability of the agent.

Chapter 7 – Experiments, Results, and Discussion

124

This chapter contains some information related to implementation. It would be

preferable to keep the scope of this chapter restricted to experiments and results only

but some part of implementation is better understood in its context in this thesis due to

the particular nature of the research.

7.1 Experiment 1 - Varying performance due to experience

In this experiment, the flexibility in decision making of the RPD-Soar agent is

demonstrated. As the agent changes the decision making strategy according to its

experience the change in performance is measured. This experiment demonstrates the

possibility of generating agents with varying degrees of experience that exhibit the

same behaviour but the time taken in decision making, represented by the number of

Soar decision cycles consumed in making the decision, varies according to the

experience. This experiment demonstrates the ability of the agent to change decision

making strategies according to the availability of knowledge which is what humans

do. This can be used to produce across-entity variability for command agents in

military simulations based on the agent’s expertise in the task assigned. By giving the

agents a choice to select from all acceptable actions within-entity variability is also

produced. In this experiment initially three types of agents are compared and then the

performance of two RPD agents with different levels of experience is evaluated.

7.1.1 Vignette A - Static obstacles

In a 10 x 10 grid based environment, the tank has to start from the south and advance

towards north to reach the destination as shown in the Figure 7.1. The agent has four

actions to choose from: move in the direction that the tank is facing; and turn in any

three directions other than the one that the tank is already facing. The tank has only

the visual sensor that sees one cell around itself. The agent has been given the location

of the destination cell and has been tasked to advance to that location. Although, there

is only one obstacle in this environment, this obstacle always comes in the path of the

agent unless the agent is moving randomly.

7.1.2 Random-walk agent

This agent has no experience. It only knows a set of actions that may be taken in a

situation. For example, in the current state that is the starting position in Figure 7.1,

Chapter 7 – Experiments, Results, and Discussion

125

the agent is facing north with an empty cell in its north, four actions: move north; turn

east; turn west; and turn south are proposed. The agent has enough intelligence to

avoid obstacles in the field and on the boundaries. It is avoiding obstacles by

considering the actions that collides the agent with the obstacle as non-applicable

actions. There are two ways of doing it. One way is to propose these operators and

then give them low preferences. The other way, which is implemented in this

experiment, is not to propose them at all. The agent has the ability to remember a pool

of applicable actions in each situation and avoid collision with the obstacles but it

does not have the capability to evaluate or mentally simulate actions and then select

either the best or a better one out of them which can take the agent close to its goal

state. Therefore, the activity may be called a random walk or searching the target

location with brute force. The agent might well visit the same location many times.

When the agent reaches its destination it recognizes its goal state and stops.

7.1.3 Less experienced RPD-Soar agent

This agent has the capability of a third-level RPD agent to mentally simulate the

actions to find out how the world will change if current action is taken. The agent

knows its destination, although, it can not see the destination unless it is in the

adjacent cell to it. The agent knows the distance to and direction of its destination.

Like the random-walk agent this agent also proposes all applicable actions and avoids

collision with the obstacles. This may also be termed as experience of an agent as the

agent knows there is no advantage to colliding with an obstacle. In RPD terms the

agent already knows the low or zero ‘success value’ of this course of action in this

situation.

Chapter 7 – Experiments, Results, and Discussion

126

Figure 7.1 Simulation environment. The Blue tank is located at cell in

the middle of bottom row, and is heading north. There is only one

static obstacle located at the cell in the middle of fifth row in the

north of the tank. The destination is marked in the middle of top

row.

Out of the remaining actions the agent does not select one action straight away

because it has not recognized the situation completely. This means the recognition is

not specific for an action for the agent to behave like Level 1 RPD agent rather it gives

a pool of actions for the present situation. The agent is a Level 3 RPD agent but it

does not have sufficient experience to select one action as the first one to consider for

mental simulation. Rather this agent due to its lack of experience, indifferently selects

each action turn by turn and mentally simulates it to find if implemented will the

action under consideration take the agent close to its present goal or otherwise. After

the evaluation of each one of them this agent selects the most promising action.

7.1.4 Experienced RPD-Soar agent

Like the Random-walk and Less-experienced agents, this agent also proposes all

applicable actions and avoids collision with the obstacles. And like the previous agent

this agent is also not recognizing the situations straight away so it can not behave like

Chapter 7 – Experiments, Results, and Discussion

127

Level 1 RPD agent. That means all applicable actions for the present situation are

proposed and the agent does not have enough experience in the form of success values

to prefer one operator over the other. This agent is also a Level 3 RPD agent and has

the capability to mentally simulate the proposed courses of action. Now at the stage of

mental simulation the agent knows that if there is a move action among the actions

that require to be evaluated then it has more chances of making the agent progress to

its goal. Therefore, unlike the previous agent it has enough experience to recognize

the situation and an associated course of action as the first one to consider for mental

simulation. It creates a mental model and simulates the prioritized course of action

through a single step and if the action seems promising applies it to the external

environment and does not evaluate other applicable actions. As the agent is not testing

other actions so as to know what they have to offer, it may be said that the agent is not

optimizing rather it is satisficing. Satisficing is a decision making strategy which does

not attempt to find an optimal solution rather it tries to meet criteria for a set threshold

in a solution of the problem. But if mental simulation results in a negative evaluation

value for the selected course of action which means if implemented in the real world

this course of action will take the agent away from the goal then the complete mental

model is removed and the course of action is rejected. And a new mental model is

developed to evaluate the next course of action.

For this agent, apart from the first course of action all courses of action are equally

preferable for selection for mental simulation. In this case, the courses of action are

not prioritized for mental simulation for every situation rather a general preference is

given to the move action over turn action. This is due to the nature of the problem,

because the agent does not move any closer to its goal when the agent turns at its

present location. Moving to a new location is what will take the agent closer to its goal

but at the same time it can take the agent away from the goal, therefore, move is not

selected straight away but is considered first for mental simulation. In other problems

the agent may need to have a preference for a particular action in one situation and a

preference for a different action in another situation of the same problem for mental

simulation. Therefore, it will not be possible to generalize the preference for one

action for all the situations in a problem. The Soar production rule that prefers the

move action over turn shown in Figure 7.2 is put in this problem as a default rule as

part of productions for selection space.

Chapter 7 – Experiments, Results, and Discussion

128

Figure 7.2 Production: selection*prioritise*evaluate-operator

7.1.4.1 Evaluation criteria

The courses of action are evaluated for their suitability in achieving the goal. In this

problem the goal is to reach a location in the environment marked as the destination.

For simplicity, the courses of action are evaluated for reducing the distance between

the cell marked as destination and the cell in which the agent is located and also for

avoiding obstacles. In order to do this, the present Manhattan distance of the agent

from its current location to the destination is recorded and then the action being

evaluated is applied in the mental model. Recall that the Manhattan distance between

two points is defined as the respective differences of abscissas and ordinates of the

two points. After the action is taken then again the Manhattan distance is calculated

and the difference is one of the evaluating factors. The production rules calculating

these two Manhattan distances are shown in Figure 7.3. The WME state ^tried-tied-

operator is created when the operator required to be evaluated is also selected in the

decision phase for application. And as the production

RPD*elaborate*state*manhattan-distance tests the ^tried-tied-operator WME

therefore, the Manhattan distance is calculated just before the application of the

selected operator for correct comparison.

sp {selection*prioritise*evaluate-operator

 :default

 (state <s> ^name selection

 ^operator <o1> +

 ^operator <o2> +)

 (<o1> ^name evaluate-operator

 ^superoperator.name move)

 (<o2> ^name evaluate-operator

 ^superoperator.name turn)

 -->

 (<s> ^operator <o1> > <o2>)

}

Chapter 7 – Experiments, Results, and Discussion

129

Figure 7.3 Productions: to calculate Manhattan distances for evaluation

sp {rpd*elaborate*state*manhattan-distance

 (state <s> ^name rpdsoar-ms1 ^desired <d>

 ^bluetank <bt> ^tried-tied-operator)

 (<d> ^bluetank <dbt>)

 (<bt> ^x <bx> ^y <by>)

 (<dbt> ^x <dbx> ^y <dby>)

-->

 (<s> ^mhdistance (+ (abs (- <dbx> <bx>)) (abs (- <dby> <by>))))

}

sp {rpd*elaborate*state*present-manhattan-distance

 (state <s> ^name rpdsoar-ms1 ^desired <d>

 ^bluetank <bt> -^io ^operator <o>)

 (<d> ^bluetank <dbt>)

 (<bt> ^x <bx> ^y <by>)

 (<dbt> ^x <dbx> ^y <dby>)

-->

 (<s> ^present-mhdistance (+ (abs (- <dbx> <bx>))

 (abs (- <dby> <by>))))

}

Chapter 7 – Experiments, Results, and Discussion

130

Figure 7.4 Productions: to evaluate actions for manoeuvring obstacles

The other evaluation factor is measuring the ability of the course of action in making

the agent quickly manoeuvre obstacles. The production rules evaluating the actions for

manoeuvring obstacles are shown in Figure 7.4.

sp {rpd*prefer*operator*turn*west-and-east

 (state <s> ^name rpdsoar-ms1

 -^io

 ^bluetank <tank>

 ^map.cell <c>

 ^operator.actions.turn.direction << east west >>

 ^desired.bluetank.y < <y>)

 (<tank> ^x <x> ^y <y>)

 (<c> ^x <x> ^y <y>)

 (<c> ^north.content obstacle)

-->

 (<s> ^obstacle-factor 1)

}

sp {rpd*prefer*operator*turn*north

 (state <s> ^name rpdsoar-ms1

 -^io

 ^bluetank <tank>

 ^map.cell <c>

 ^operator.actions.turn.direction north

 ^desired.bluetank.y < <y>)

 (<tank> ^x <x> ^y <y>)

 (<c> ^x <x> ^y <y>)

 (<c> ^north.<< east west >>.content obstacle)

-->

 (<s> ^obstacle-factor 2)

}

sp {rpd*prefer*operator*move*west-and-east

 (state <s> ^name rpdsoar-ms1

 -^io

 ^bluetank <tank>

 ^map.cell <c>

 ^operator.actions.move.direction << east west >>

 ^desired.bluetank.y < <y>)

 (<tank> ^x <x> ^y <y>)

 (<c> ^x <x> ^y <y>)

 (<c> ^north.content obstacle)

-->

 (<s> ^obstacle-factor 3)

}

Chapter 7 – Experiments, Results, and Discussion

131

7.1.5 Results

Thirty simulations are run for each agent and the result of comparing all three types of

agents is shown in Figure 7.5. Thirty samples are taken so that the Central Limit

Theorem will mean that a Normal approximation to the distribution of results will

enable certain statistical tests to be applied. The y-axis represents Soar decision cycles

that each agent is using to get to the same destination in the same environment from

the same starting position. If the Random-walk agent is compared with even the Less-

Experienced RPD-Soar agent the difference is notable (Table 7.1). It is worth

mentioning here that the number of moves made in the external world by both RPD-

Soar agents is far less than the number of Soar decision cycles as these agents do

mental contemplation using Soar decision cycles while the Random-walk agent

physically moves with every Soar decision. Most of the time during the simulation the

Random-walk agent displays behaviour which does not look intelligent to the observer

while the other two agents with the ability to mentally simulate their actions before

implementing them in the real world display a plausible intelligent behaviour to the

observer.

Figure 7.5 RPD-Soar agents vs. Random-walk agent

Comparison of Agents

0

500

1000

1500

2000

2500

3000

1 4 7 10 13 16 19 22 25 28

Simulation Run

N
u

m
b

e
r

o
f

D
e
c
is

io
n

Less-Experienced

Experience

Random Walk

Chapter 7 – Experiments, Results, and Discussion

132

The intelligence in the behaviour of the RPD-Soar agents can be further improved

with more knowledge and experience. The agents with more intelligent behaviour are

used in experiments discussed later in this chapter. The across-entity variability in

behaviour of the agents produced due to varying experience is clearly visible in Figure

7.5.

Table 7.1 Performance of Random-walk and RPD-Soar agents

A two tailed t-test is performed on the simulation data of less-experienced and

experienced RPD-Soar agents which confirms that the two means are different at 95%

confidence level with 131019.1 −×=p . In two tailed t-test there are two hypotheses, Ho:

µ1 = µ2 versus Ha: µ1 ≠ µ2, where µ1 and µ2 are the two means being compared. In this

case, µ1 and µ2 are the means of less experienced and experienced RPD-Soar agents

respectively approximated by the means of sample data. At 95% confidence level if p

is smaller than the significance level of 0.05 then Ho is rejected. In this case p is much

smaller than the significance level of 0.05 thus Ho is rejected and the means of less-

experienced and experienced RPD-Soar agents are significantly different at 95%

confidence level.

To highlight the differences between both types of RPD-Soar agents the two RPD-

Soar agents have been compared in Figure 7.6.

 Agent Mean Variance

 Random-walk 656.37 514.93

 Less-experienced RPD-Soar 184.50 29.90

 Experienced RPD-Soar 113.97 25.18

Difference between

Mean(less-experienced) and

Mean(experienced)

 ≈ 70

Chapter 7 – Experiments, Results, and Discussion

133

Figure 7.6 Less-Experienced vs. Experienced RPD-Soar agents

It is evident that comparatively more experience reduces the time and effort required

for mental simulation by selecting one course of action to consider first and not

evaluating other options if not required. The Less-experienced RPD-Soar agent

generally consumes more number of Soar decision cycles to reach the destination.

Behaviour variability within an entity is a desirable characteristic in a command agent

and is more difficult to produce as compared to across-entity behaviour variability. It

is defined as the variability in behaviour of the same agent in performing the same

task over many episodes. Both RPD-Soar agents are displaying this variability. The

within-entity variability in behaviour in this experiment is produced by giving choices

to the agents so long as these choices do not take them away from the goal. Therefore,

at no time during the simulation does the agent seem to be going away from the goal

but some times the agent turns at one place and these turning actions can be wasteful

because Soar decision cycles are consumed without the agent moving towards its goal.

For example, if the agent is facing west whereas the destination is in the north, and we

know that the agent can move only in the direction that it is facing but it changes its

direction to south instead of north. This behaviour in the agents is improved by giving

preference to turn actions towards north if the north cell is not blocked by an obstacle.

Less Experienced and Experienced RPD-Soar

Agents

0

50

100

150

200

250

300

350

1 4 7 10 13 16 19 22 25 28

Simulation Run

N
u

m
b

e
r

o
f

D
e
c
is

io
n

Less Experienced

Experienced

Variability across agents

Variability within an agent

Variability within an agent

Less Experienced and Experienced RPD-Soar

Agents

0

50

100

150

200

250

300

350

1 4 7 10 13 16 19 22 25 28

Simulation Run

N
u

m
b

e
r

o
f

D
e
c
is

io
n

Less Experienced

Experienced

Variability across agents

Variability within an agent

Variability within an agent

Chapter 7 – Experiments, Results, and Discussion

134

7.2 Experiment 2 - Changing Context

The basic concept in RPD is to recognize a situation in a changing context; therefore,

in this experiment we have given the same situations as in the previous experiment to

the same agents in changed contexts. The experiences should be sufficiently general to

be applicable in a changing context. But if the experiences are over generalized then

they will apply at places where they are not required and produce incorrect behaviour.

In this experiment the agents have been tested to recognize situations in changing

contexts in two different environments; the first environment (Figure 7.7) is an

extended version of the environment of Experiment 1 (Figure 7.1), while in the second

environment the number of obstacles is increased moreover, the size of the obstacle

itself is doubled Figure 7.9.

7.2.1 Effect of enlarged environment on agents

The scenario is kept the same and only the environment is changed from a 10 x 10 to a

100 x 100 grid. The start point, the obstacle on the way and the target location are all

kept at relatively the same distances by stretching out proportionally (Figure 7.7).

Figure 7.7 Enlarged environment

Chapter 7 – Experiments, Results, and Discussion

135

The number of decisions made by the Random-walk agent in reaching the target

location increases exponentially, sometimes taking hours to reach the goal state, as is

expected for such a large scale environment. The Random-walk agent is not discussed

any further in the results. However, both of the RPD agents recognize the situations in

the changed context and their behaviour remains that of expert agents as required of

RPD model as per their levels of expertise as shown in Figure 7.8. The only difference

in the results from the previous experience is that the agents have consumed more

Soar decision cycles as is expected because of the requirement of more decision

making by the agents and thus a higher number of evaluations.

Figure 7.8 Less-Experienced vs. Experienced RPD-Soar agents in an

enlarged environment

One important point to consider is the advantage of experience is prominent in this

enlarged environment as compared to the previous environment. The difference in the

means of the Soar decision cycles consumed by the agents in the previous

RPD-Soar agents

0

200

400

600

800

1000

1200

1400

1600

1800

1 14 27 40 53 66 79 92 105 118 131 144

Runs

D
e

c
is

io
n

s

Less-experienced

Experienced

Chapter 7 – Experiments, Results, and Discussion

136

environment is approximately 70 (Table 7.1) while in enlarged environment it is

approximately 877, (~ 60% reduction in decision cycles) (Table 7.2).

Table 7.2 Performance based on Soar decision cycles of RPD-Soar

agents in an enlarged environment

7.2.2 Changed obstacle pattern

In this experiment, the scenario is kept the same and the environment is changed to

give the same agent an entirely changed context by placing a complex pattern of

obstacles in the field to manoeuvre to reach its destination (Figure 7.9). The agent is

designed to manoeuvre only a single-cell obstacle, but in this environment the same

agent is exposed to an obstacle occupying two adjacent cells.

The aim of the experiment is to observe whether the agent still recognizes the

situation and the associated course of action when it looks at a two-cell obstacle

instead of one-cell obstacle. The agent successfully manoeuvres the obstacle in this

environment and takes the same action of moving to east or west after recognizing the

situation from the previous environment of an obstacle in its north. If it decides to

move east, the number of Soar decision cycles would not change but if it decides to

move west, the number of decisions increases in the range of 20 – 30. But in both

cases, the agent manoeuvres the obstacles and finds its way to the destination.

Agent Mean Variance

Less-experienced RPD-Soar 1448.33 30.84

Experienced RPD-Soar 571.76 37.63

Mean(less-experienced)-

Mean(experienced)

≈ 877

Chapter 7 – Experiments, Results, and Discussion

137

Figure 7.9 Changed Obstacle pattern

7.3 Experiment 3 - Variability within an entity

In this experiment, a more mobile Blue agent with the ability to move to all eight

neighbouring cells reaches its destination by manoeuvring around static obstacles and

avoiding collision with an equally mobile Red agent. Previous experiments are carried

out to verify the ability of RPD-Soar agent to recognize a situation based on cues and

sometimes only on a single cue with overwhelming significance. And also the ability

of the agent to recognize the associated goals, expectations, further cues to look for in

this situation, and an action with the highest success value. The abilities of RPD-Soar

agent to take advantage of the opportunity arising from a situation by recognizing

plausible goals and to change its decision making strategy with experience is also

demonstrated. The aim of this experiment is to demonstrate, analyze and discuss

within-entity variability in behaviour of RPD-Soar agents. Variability in behaviour is

discussed very briefly in Experiment 1 and Experiment 2, but in this experiment

variability in the behaviour of an RPD-Soar agent is discussed in detail.

Chapter 7 – Experiments, Results, and Discussion

138

7.3.1 Explanation of the experiment - Moving threat

In this experiment (Figure 7.10), the Red agent is moving diagonally, starting from the

bottom left destined to top right. The Red agent is not intelligent and is following a

prescribed route. The Blue agent has the same capabilities and the same goal as that of

the RPD-Soar agent described in Experiment 1 or Experiment 2, but in this

experiment it only has the visual sensor and does not have the radar sensor, and there

are two improvements; one is the ability to avoid collision has been added and the

second change is that it has been made more mobile and flexible. Now, it does not

have to change directions before moving to any cell and it can also move in four more

directions of north-east, north-west, south-east and south-west. Therefore, at each

step, the Blue agent has at most eight actions to choose from.

7.3.2 Mental simulation to avoid Collision

If the Blue agent keeps pursuing its initial goal without changing its goals according to

the situation then the Red agent and the Blue agent are due to collide in the next cell

as indicated in Figure 7.10. As the Blue agent can see only one cell around itself,

therefore, the Blue agent detects Red agent on its west when the Blue and Red agents

reach the locations as shown in Figure 7.10. The Blue agent takes its turn to act first

and then the Red agent takes its turn. As both agents move one cell at a time,

therefore, the Blue agent knows that Red agent can go to the location where the Red

agent is now, or any one of the other locations marked with red circles (light grey) as

shown in Figure 7.11. Therefore, there are three safe locations for Blue agent to avoid

collision, one where it is located now and the other two are marked with blue circles

(dark grey) in Figure 7.11. Thus, Blue agent moves east to avoid collision which in

this case happens to be exactly the opposite direction from the present location of Red

agent.

Chapter 7 – Experiments, Results, and Discussion

139

Figure 7.10 Collision course

The situation and the corresponding action discussed above is only one example from

the set of situations presented to and actions taken by the Blue agent. In order to

check the ability to recognize the situation in different contexts, the Red agent starts

from four different locations on the west and four different locations on the east of the

Blue agent. And moving diagonally it tries to collide with the Blue agent at different

locations. The Blue agent successfully recognizes the situations in all cases and avoids

collision with the Red agent. One hundred simulations are run for each case to observe

the variability of the agent’s behaviour for the same situation. The appropriateness of

choosing to carry out one hundred replications will be tested later.

 Destination

Chapter 7 – Experiments, Results, and Discussion

140

Figure 7.11 Mental simulation to avoid collision

7.3.3 Factors affecting the decision of the Blue agent

The evaluation of an action during mental simulation is based on the difference in

Manhattan distance, relative position of static obstacles and moving Red tank with

respect to the Blue tank, and also the last action taken by the Blue agent.

In the mental model of the Blue agent the world is modelled as the Blue agent sees it.

The Manhattan distance from the Blue agent to the destination is measured before

starting the mental simulation and then the move action in the direction that is

required to be mentally simulated is applied in the mental world. And then the

Manhattan distance is measured again. If the agent is moving towards the destination

then the difference in Manhattan distance is positive and if the agent is moving away

then the difference is negative. Likewise, success values for other applicable factors

are given to the action being evaluated. The criteria for assigning these success values

to an action are given in the succeeding paragraphs. The success values given due to

different factors to the action being evaluated are summed up and the action collecting

the highest success value is selected.

Chapter 7 – Experiments, Results, and Discussion

141

7.3.3.1 Manhattan distance

The factor that always affects the decision of the Blue agent is the Manhattan distance

which is the signed difference of Manhattan distance before and after the application

of operator. The numeric value ranges from -2 to +2.

7.3.3.2 Static obstacle

In order to manoeuvre around static obstacles while the Blue agent is moving towards

its destination in the north, the move to east or west is given a numeric value of +2

when there is an obstacle in the north of the Blue agent.

7.3.3.3 Red tank

The numeric values to evaluate an action of the Blue agent when it encounters a

moving Red tank are as follows:

• +2 for moving to a cell exactly opposite to cell containing the red tank.

• -2 for moving to north or east cells if the red tank is in the cell north-east to the

blue tank.

• -2 for moving to south or east cells if the red tank is in the cell south-east to

the blue tank.

• -2 for moving to north or west cells if the red tank is in the cell north-west to

the blue tank.

• -2 for moving to south or west cells if the red tank is in the cell south-west to

the blue tank.

• -2 for moving to south, north, north-east, or south-east cells if the red tank is in

the cell east to the blue tank.

• -2 for moving to north, south, north-west, or south-west cells if the red tank is

in the cell west to the blue tank.

• -2 for moving to east, west, south-east, or south-west cells if the red tank is in

the cell south to the blue tank.

• -2 for moving to east, west, north-east, or north-west cells if the red tank is in

the cell north to the blue tank.

Chapter 7 – Experiments, Results, and Discussion

142

7.3.3.4 Undoing last action

A numeric value of -1 is given to the action if the action makes the Blue agent undo

what it has done in the last turn.

7.3.4 Results

One hundred simulations are run for each starting location of Red agent. Different

starting locations of Red agent correspond to different situations as for each starting

location Blue agent sees the Red agent at either a different location or in a different

direction. And in some cases both the location and the direction is different. The total

number of behaviours for each case ranges from 19 to 24. The number of behaviours

displayed by Blue agent in all situations faced by it is summarised in Table 7.3.

As in this experiment every path traversed by the Blue agent is a different behaviour,

therefore, we have used the term path and behaviour interchangeably. The case when

the Red agent starts from two squares east of the Blue agent is discussed in detail as

this provides more space for the Blue agent to manoeuvre and therefore produces the

maximum number of distinct behaviours.

Chapter 7 – Experiments, Results, and Discussion

143

Table 7.3 Number of distinct paths traversed by Blue agent in eight

different situations

In one of particular run, with the Blue agent starting at position (5, 8), the Blue agent

moves first and reaches location 1 in Figure 7.12, the Red agent also moves to its

location 1, and then the Blue agent detects Red agent and moves to its location 2 to

avoid collision. The Blue agent keeps moving to locations 3 and then 4 to avoid

collision with the Red agent until both reach their locations number 5. Here the Blue

agent takes a risky decision and moves to location 6. In this point in time the Red

agent on its turn can move down and collide with Blue agent, but it is moving on a

prescribed route and therefore the Blue agent survives. In one hundred runs the Blue

agent has chosen to adopt this route, requiring nine moves to reach the destination,

only once. The Blue agent adopts the path, displayed in Figure 7.13, most frequently

and selects it 16 times in one hundred trials. This risk aversive behaviour and also a

non-optimal move to location 9 increased the length of the route to thirteen steps.

Start location Red agent Visible to Blue agent No. of Paths

4 squares west – 1 north (1, 7) Step 3, north-west 20

3 squares west – 1 north (2, 7) Step 2, north-west 22

4 squares west (1, 8) Step 3, west 21

3 squares west (2, 8) Step 2, west 19

2 squares east - 1 north (7, 7) Step 1, north-east 22

2 squares east (7, 8) Step 1, east 24

3 squares east – 1 north (8, 7) Step 2, north-east 22

3 squares east (8, 8) Step 2, east 21

Chapter 7 – Experiments, Results, and Discussion

144

Figure 7.12 The least frequently used path. The labels with each path

are depicting the step number of the corresponding agent.

Chapter 7 – Experiments, Results, and Discussion

145

Figure 7.13 The most frequently used path. Some times the Blue agent

traverses the same location number of times. The label on the left

shows the step number earlier in time than the number on the right.

0, 3 means agent visits this location at step 0 and then comes to the

same location in step 3.

In one hundred simulation runs for this case in which the Red agent starts from the

same location and moves on the same prescribed route, the Blue agent finds twenty

four distinct routes to the destination. These routes are shown in Figure 7.14 through

Figure 7.17 for quick comparison.

Chapter 7 – Experiments, Results, and Discussion

146

Figure 7.14 Behaviours of Blue agent for starting position of Red - (7, 8)

Chapter 7 – Experiments, Results, and Discussion

147

Figure 7.15 Behaviours of Blue agent for starting position of Red - (7, 8)

Chapter 7 – Experiments, Results, and Discussion

148

Figure 7.16 Behaviours of Blue agent for starting position of Red - (7, 8)

Chapter 7 – Experiments, Results, and Discussion

149

Figure 7.17 Behaviours of Blue agent for starting position of Red - (7, 8)

The probabilities of occurrence of these twenty four behaviours are shown in Figure

7.18 (bottom graph). Behaviours have been grouped according to their path lengths,

and the probability distribution of these groups is displayed in the upper part of the

same figure. For maximum variability in behaviour the paths should be equally

distributed. The probability of a single behaviour or a group of behaviours in case of

equal distribution is shown as red horizontal line for easy reference. While the

proposed implementation achieved a reasonable spread of behaviours, there still

remains some bias towards Group 5 (this relates to behaviours of path length 13).

Chapter 7 – Experiments, Results, and Discussion

150

Figure 7.18 Probabilities of Blue agent’s behaviour

Although, for maximum variability in behaviour, the paths should be equally

distributed but one of the requirements of human-like behaviour variability is the

presence of a hidden pattern in the behaviour. Correct individual behaviour and

producing intended population-level distribution is a requirement on HBR. During

training simulations the trainees should be able to identify patterns and take advantage

of it (Wray and Laird, 2003). This agent is displaying a distribution with some

behaviour more likely than others in a population. This is produced by fine tuning the

set of numeric values given to different actions during mental simulation and a

different behaviour may emerge as most favoured with a different set of values.

Behaviour patterns of the same agent for the same situation i.e., same starting location

of Red agent (Red starting two squares east of Blue), for 100, 200 and 1000

simulation runs with path lengths are shown in Figure 7.19, Figure 7.20, and Figure

7.21.

Chapter 7 – Experiments, Results, and Discussion

151

Figure 7.19 Behaviours of Blue agent over 100 simulation runs – Red starts: (7,8)

The same behaviour emerges as the most frequently occurring behaviour in 100, 200,

and 1000 simulation runs. The most frequent behaviour for 100 simulation runs is

shown in Figure 7.13, and for 200 and 1000 simulation runs are shown in Figure 7.22.

The second most frequent behaviour in 1000 simulation runs is shown in Figure 7.23.

This is exactly the same path with length 11 as that of the most frequently used path

with length 13 (see Figure 7.13) except for one move that the agent makes just below

the obstacle. The agent on encountering the obstacle has two options either to move

east or move west. In the case of behaviour with path length 13 the agent moves east

to avoid the obstacle but finds out that it will have to move further east and more away

from the objective to manoeuvre the obstacle. When the agent evaluates this move in

the direction of east, the Manhattan distance to the objective increases, which gives a

negative success value to the move, therefore, it moves back towards west and then

moves west again to clear the obstacle and move towards its objective in the north. In

the case of behaviour with path length 11 the agent decides to move west instead of

east as it encounters the obstacle and avoids the two moves in the direction of west

therefore completes the goal in comparatively lesser number of steps. Except for this

difference both behaviours are identical.

Chapter 7 – Experiments, Results, and Discussion

152

Figure 7.20 Behaviours of Blue agent over 200 simulation runs – Red starts: (7,8)

There is one more point to note in the 200 and 1000 simulation runs and that is the

change in the total number of behaviours. In 200 simulation runs, two new behaviours

are produced with path length 10 and one behaviour of path length 11 is not produced.

Therefore, the total number of behaviours is increased by one making it 25. In 1000

simulation runs, all behaviours are included and the total number of behaviours is 26.

There is a possibility that other behaviours exist that have not so far been generated.

Chapter 7 – Experiments, Results, and Discussion

153

Figure 7.21 Behaviours of Blue agent over 1000 simulation runs – Red starts: (7,8)

Figure 7.22 Most frequent behaviour for 200 (left) and 1000 (right) simulation runs

Chapter 7 – Experiments, Results, and Discussion

154

Figure 7.23 Second most frequent behaviour in 1000 simulation runs

The variability produced in this RPD-Soar agent is not due to randomness that

produces undesirable behaviour rather it has been produced because of the reasonable

but some times sub-optimal choices given to the agents.

7.4 Behaviours resulting from strategies formulated by humans

Three subject matter experts and two non experts were asked to give their

recommended strategy to avoid the collision with the Red tank, if they have the same

task with the same sensors as that of the agent in this experiment. Two strategies to

avoid the moving agent were recommended by them. One strategy emphasizes safety,

in which the Blue agent mentally simulates all possible future moves of the Red agent

in the next step, and then the Blue agent selects its own move; which is one from the

pool of all of the possible moves that can take it to a cell which can not be occupied

by the Red agent in next step. The second strategy involves a calculated risk, in which,

the Blue agent, where possible predicts Red agent’s one move from all possible future

moves of Red agent by observing Red’s two previous moves. And then Blue takes a

risk only if this risk takes the Blue agent closer to the goal by selecting to move to a

cell which may possibly be occupied by the Red agent in its next move but is not the

predicted one. The proposed RPD-Soar agent model demonstrated both of the

behaviours that result from the use of both of these strategies formulated by humans.

Chapter 7 – Experiments, Results, and Discussion

155

Although, the ability to predict the most probable move from the history of Red

agent’s moves is not implemented, but this behaviour is also generated due to the

success values of actions incorporated in the experiences. On the corners where the

choices of moves of Blue agent is restricted and where the advantage of taking the risk

is more than the negative success value of a risky action the Blue agent takes the risk.

As it is explained earlier in this chapter that the case where the red agent starts from

location (7, 8) is discussed in detail because in this situation the red and blue agents

start interacting with each other from the very first step in the simulation. The

distributions of behaviours for rest of the seven cases for 100 simulation runs are

shown in Figure 7.24 through Figure 7.30.

Figure 7.24 Behaviours of Blue agent over 100 simulation runs – Red starts: (1, 7)

Chapter 7 – Experiments, Results, and Discussion

156

Figure 7.25 Behaviours of Blue agent over 100 simulation runs – Red starts: (2, 7)

Figure 7.26 Behaviours of Blue agent over 100 simulation runs – Red starts: (1, 8)

Chapter 7 – Experiments, Results, and Discussion

157

Figure 7.27 Behaviours of Blue agent over 100 simulation runs – Red starts: (2, 8)

Figure 7.28 Behaviours of Blue agent over 100 simulation runs – Red starts: (7, 7)

Chapter 7 – Experiments, Results, and Discussion

158

Figure 7.29 Behaviours of Blue agent over 100 simulation runs – Red starts: (8, 7)

Figure 7.30 Behaviours of Blue agent over 100 simulation runs – Red starts: (8, 8)

The number of behaviours in one hundred simulation runs for these seven cases range

from nineteen to twenty two depending upon the number of steps taken from the start

of the simulation to the point where the agents start to interact. Results of all these

Chapter 7 – Experiments, Results, and Discussion

159

experiments show a similar trend to that of the case that is discussed in detail in which

the red agent starts from location (7, 8).

7.5 Experiment 4 - Learning

This experiment is about the adaptability of an RPD-Soar agent during the simulation

that adds dynamism to the simulation environment. The experiments are aimed at

observing the learning process in four different situations and then the transfer of

learning from one situation to the other.

7.5.1 The change in the agent

The environment, the task, and the agents are same as that of Experiment 3, the only

difference in the Blue agent is that more specific evaluation of behaviour of the agent

in manoeuvring around an obstacle located north of the agent is added. In the previous

experiment the agent is trained to handle single-cell obstacles and it does defeat a two-

cell obstacle but half of the times the manoeuvre is not very efficient. When the agent

moves west which is a random choice between the two choices of east and west, then

the move seems intelligent but when it moves east then it has to come back to its

original cell which is wasteful. In this experiment the agent is designed to handle two-

cell obstacles in an efficient way. The agent while moving to its destination in the

north finds the two-cell obstacle south of destination (Figure 7.31). The agent at this

point not only recognizes an obstacle to its north but also identifies the obstacle in its

north-east and knows that if it moves east still it will be blocked by an obstacle in the

north; therefore, it gives a success value of 2 during mental simulation of move west

action. The production rule in Figure 7.32 checks for the conditions in this situation

during mental simulation and gives this success value as obstacle-factor. This is the

only situation where a numeric value is given to an action in relation to the obstacle

because if the agent is in the south of the east part of the two-cell obstacle then the

agent moves west anyway because of the attraction of the agent towards the

destination. And if there is a single-cell obstacle blocking the agent in any location

exactly in the south of the destination, the agent may randomly chose one from the

two choices of move east or west. To check the efficacy of the production it is tested

in a difficult situation where both the obstacle and the agent are moved to extreme

west from their present location displayed in Figure 7.31. Now the production in

Chapter 7 – Experiments, Results, and Discussion

160

Figure 7.32 seems to be pushing the agent in the wall by giving a success value of 2 to

the action move west, but in this situation there is no proposed action as move west

because the location to move to is an obstacle.

Figure 7.31 Agent south of two-cell obstacle

7.5.2 Learning method

The learning mechanism inherent in Soar is called chunking and is a form of

explanation based generalization. Explanation based learning is a type of inductive

learning. Inductive learning requires a certain number of training examples to achieve

a given level of generalization accuracy. Artificial neural network and decision tree

learning are examples of inductive learning. Analytical learning augments the

information provided by the historical examples using domain knowledge and

deductive reasoning. Deductive reasoning is that type of logical reasoning in which

conclusions must follow from their premises (Giarratano and Riley, 1998). The use of

domain knowledge and deductions aids the learning process and substantially reduces

the number of training examples required for adequate learning. Explanation based

learning belongs to this sub category of inductive learning.

Chapter 7 – Experiments, Results, and Discussion

161

Figure 7.32 Production: evaluate move west action - two-cell obstacle in the north

Due to the ability of the RPD-Soar agent to mentally simulate applicable courses of

action it is possible to use the agent without rigorous training as it can handle new

situations effectively. Given a high level task the agent, through mental simulation,

finds out the sequence of implementation of low level tasks itself to achieve the aim

of the high level task. The mental simulation takes time because during contemplation

of the course of action a large number of Soar decision cycles are consumed.

Therefore an untrained agent tends to be slow in deciding and taking an action

compared to an experienced agent. It is worth mentioning here that both of the agents

respond within real time. Through this learning technique it is expected that the

number of Soar decision cycles which represents the time taken to make a decision

reduces. In terms of RPD model it is a process of increasing expertise through

experience and the same situation which is first handled through Level 3 RPD after

training is handled through Level 1 RPD. For a given task the agent starts to learn and

makes decision straight away in situations for which it has already learnt. The time

sp {rpd*evluate*numeric-value*obstacle-factor*north

 (state <s> ^name rpdsoar-ms1

 -^io

 ^bluetank <tank>

 ^map.cell <c>

 ^operator.actions.move.direction west

 ^desired.bluetank.y < <y>)

 (<tank> ^x <x> ^y <y>)

 (<c> ^x <x> ^y <y>)

 (<c> ^north.content obstacle)

 (<c> ^north-east.content obstacle)

-->

 (<s> ^obstacle-factor 2)

}

Chapter 7 – Experiments, Results, and Discussion

162

required to complete a task reduces as the agent repeats the task again and again and

the number of new situations reduce that the agent may encounter in this task. Due to

this learning mechanism, the time taken by an agent to complete the same task

becomes proportional to the experience of the agent. In a simulation, if there is a

requirement of agents with varying level of experience to perform a task then it may

be met by producing agents using this learning mechanism.

In Soar, the learning can be turned on and off. The Soar command that turns learning

on is “learn --on”. When learning is on then chunks are produced when an impasse is

resolved. These chunks are straight away loaded in the LTM of the agent as soon as

they are produced and are ready to fire like any other production rule present in the

LTM of the agent. In this experiment and also the previous experiments when the

simulation is reset then the agent is initialized which means the agent keeps its LTM

as such and initializes only the working memory. As the chunks are loaded in the LTM

therefore chunks remain stored in the LTM when the simulation is reset. When the

simulation is terminated then the agent is killed and then creating the agent again

requires all production rules to be reloaded in the LTM and chunks if not stored

elsewhere are lost. The procedure for storing chunks and other data is shown in Figure

7.33. The chunks are stored after every simulation run and the data storage holds the

chunks for all stages of learning. For example if a set of 50 simulations are run in one

go, then the experience of this agent can be scaled from 0 to 50. All the learnt chunks

can also be stored together after completing all the simulation runs with a little

variation in the code.

7.5.3 The problem of over generalization in chunking

During experimentation on learning it is observed that sometimes the learned

production rules (chunks) are over generalized and apply in situations where they are

not required and thus produce undesirable behaviour. The point to note is that the

problem representation where learning is involved has two aspects: the first aspect is

the correct representation for problem solving; and the other is correct representation

of the problem for learning (Ritter, 2007). When the problem is being solved correctly

then the representation is correct for problem solving but it may or may not be correct

for learning.

Chapter 7 – Experiments, Results, and Discussion

163

Figure 7.33 Storing process of chunks and statistics

For example, in our experiments the problem is being solved correctly and the Blue

agent is avoiding collision with static and moving objects and reaching its destination

every time but when learning is set to on then there is unresolved conflict of two

operators. The problem is that in one simulation run when the Blue agent is at a

certain location it finds Red agent in its neighbouring cell. The Blue agent mentally

simulates the actions and finds one to avoid the collision and through chunking marks

this action as the best suitable for the Blue agent when at this location. It is worth

mentioning here that one of the antecedents to this learnt chunk tests for the presence

Chapter 7 – Experiments, Results, and Discussion

164

of Red agent. In another simulation run, the Blue agent at the same location does not

find the moving Red agent in its neighbouring cells, and mentally simulates actions

and marks one action best suited for this situation which may be different from the

chunk produced in the situation discussed above where the chunk is produced for

selecting a course of action aimed at avoiding Red agent. Now in another simulation

run, the Blue agent at the same location finds a conflict between these two actions

when Red agent is present in the neighbouring cell. The reason for this conflict is the

chunk that is learnt when there is no Red agent because it is more general and fires

even when the Red agent is present. This is a case of over generalization. It is solved

by dividing the applicable operator into two different operators, one operator is action-

tank-present and the other is action-tank-not-present.

Initially when a chunk is created it contains actual identifiers of objects but this makes

the chunk very specific and the chunk only fires when the actual objects are matched.

To improve generality the identifiers of actual objects are replaced by variables. The

constants in the conditions are not changed. One modification in the representation of

the problem that can improve generality in the learnt chunks is to reduce the use of

constants to a minimum. Reduction of constants improves the generality and also

increases the quantity of transfer of learnt knowledge to other tasks. In our opinion, in

this implementation if the locations of the agents, the destination, and the obstacles is

represented in relative distance and directions from the point of view of Blue agent

using spatial reasoning then the generality can be improved further.

7.5.4 First task – Red agent starting position- (7, 8)

The Blue agent starts from location (5, 8) and Red agent starts from location (7, 8)

(Figure 7.34). Blue agent moves north towards its destination and Red agent moves

north-west and then Blue agent sees the Red agent as it can only see one cell around

itself, just like the visual sensor of Blue agent in the previous experiment. The starting

locations and the situation after first moves of both agents are shown in Figure 7.34.

Chapter 7 – Experiments, Results, and Discussion

165

Figure 7.34 Situations before and after first moves of both Red and Blue agents

From the situation displayed in the right part of Figure 7.34 the Blue agent moves to

its destination in the north and avoids collision on the way. On every step it mentally

simulates its own next move while keeping in view the possible moves of the Red

agent if the Red agent is visible and the main task of reaching the destination in the

north across the two-cell obstacle. After every mental simulation it stores the chunk so

that next time when it faces the same situation the agent does not have to mentally

simulate candidate courses of action but behave as Level 1 RPD agent and decide

straight away which action is most suitable in this situation. For example, the chunk

shown in Figure 7.35 is for a situation displayed in Figure 7.36. The destination of the

Blue agent is marked with a green square just above the two-cell obstacle which is

given as the desired state for the task and can be seen as one of the conditions of the

learnt chunk. The Blue agent is at location (3, 6) and sees Red agent in its

neighbouring cell towards north-east. Blue agent is to choose one from two actions:

first action moves the agent to its west cell; and the second action moves the agent to

the north-west cell. The Blue agent in this situation has learnt to prefer to move north-

west instead of west without any mental simulation due to its experience which it

acquired in its earlier simulation runs. Note also that this chunk is specific to this

configuration of agent location and is not transferable to similar configuration

elsewhere.

Chapter 7 – Experiments, Results, and Discussion

166

Figure 7.35 Chunk learnt to avoid collision with Red agent

These agents learn another type of chunk which records the success value of an action

that is evaluated in mental simulation such that when next time this situation arises

and an action is required to be evaluated then the success value is given straight away

without further mental simulation. An example of this type of chunk is shown in

Figure 7.37.

sp {chunk-362*d20*tie*6

 :chunk

 (state <s1> ^name rpdsoar-ms1 ^desired <d1> ^bluetank <b1>

 ^operator <o1> + ^operator <o2> +

^problem-space <p1> ^map <m1>)

 (<d1> ^better higher ^bluetank <b2>)

 (<b1> ^y 6 ^x 3)

 (<b2> ^y 1 ^x 5)

 (<o1> ^name move-redtank-present ^actions <a2>)

 (<o2> ^name move-redtank-present ^actions <a1>)

 (<p1> ^name rpdsoar-ms1)

 (<m1> ^cell <c1>)

 (<c1> ^y 6 ^x 3 ^north-east <n1>)

 (<n1> ^content redtank)

 (<a1> ^move <m2>)

 (<m2> ^direction west)

 (<a2> ^move <m3>)

 (<m3> ^direction north-west)

 -->

 (<s1> ^operator <o2> < <o1>)

}

Chapter 7 – Experiments, Results, and Discussion

167

Figure 7.36 Situation for the chunk learnt to avoid collision with Red agent

Chapter 7 – Experiments, Results, and Discussion

168

Figure 7.37 Chunk learnt to remember success value of an action for a situation

For the first task Blue agent learns for 50 simulation runs. The performance of Blue

agent over these fifty simulation runs is shown in Figure 7.38. The Blue agent

consumes 253 Soar decision cycles in the first simulation run and learns 344 chunks.

It keeps learning chunks for first five simulation runs and then it does not encounter

any new situation for up to seventh simulation run, during this time it uses its learnt

knowledge and behaves like an experienced Level 1 RPD agent for these situations.

Then again it finds new situations and has to mentally simulate the applicable actions

to evaluate them and then select one which takes more Soar decision cycles. Up to

thirty simulation runs the agent faces situations within a run that are new and keeps

learning and for the rest of the simulations after the thirtieth it uses its learnt

knowledge. By the time it reaches fiftieth simulation run it performs the same task in

sp {chunk-313*d227*opnochange*1

 :chunk

 (state <s1> ^operator <o1> ^evaluation <e1>)

 (<o1> -^default-desired-copy yes ^name evaluate-operator

^superproblem-space <s2> ^superoperator <s3> ^evaluation <e1> ^super-state <s4>)

 (<s2> ^name rpdsoar-ms1)

 (<s3> ^name move-redtank-not-present ^actions <a1>)

 (<s4> ^name rpdsoar-ms1 ^bluetank <b1>)

 (<b1> ^y 2 ^x 4)

 (<e1> ^desired <d1>)

 (<d1> ^bluetank <b2>)

 (<b2> ^y 1 ^x 5)

 (<a1> ^move <m1>)

 (<m1> ^direction north-east)

 -->

 (<e1> ^numeric-value 2 +)

}

Chapter 7 – Experiments, Results, and Discussion

169

14 Soar decision cycles, and behaves like a Level 1 RPD agent for this task. And by

this time it is not learning any more chunks.

Figure 7.38 Learning curve of Blue agent – Red agent starts from location (7, 8)

7.5.5 Second task – Red agent starting position - (8, 8)

The Blue agent starts from location (5, 8) and Red agent starts from location (8, 8)

(Figure 7.39). Blue agent moves north twice towards its destination and Red agent

moves north-west twice and then Blue agent sees the Red agent. The starting locations

and the situation after first two moves of both agents are shown in Figure 7.39.

Chapter 7 – Experiments, Results, and Discussion

170

Figure 7.39 Situations before and after two moves of both Red and Blue agents

From the situation displayed in the right part of Figure 7.39, the Blue agent moves to

its destination in the north and avoids collision on the way. On every step it mentally

simulates its own next move while keeping in view the possible moves of Red agent if

the Red agent is visible and the main task of reaching the destination in the north

across the two-cell obstacle. After every mental simulation it stores the chunks that it

learns.

Blue agent learns for 50 simulation runs for the second task also. The performance of

Blue agent over these fifty simulation runs is shown in Figure 7.40. The Blue agent

consumes 262 Soar decision cycles in the first simulation run and learns 369 chunks.

It keeps learning chunks for first seven simulation runs and then it does not encounter

much of new situations for up to thirteenth simulation run, during this time it uses its

learnt knowledge and behaves mostly like an experienced Level 1 RPD agent for the

situations faced. It keeps learning uptil 45
th

 simulation run most of which is done up

to the 28
th

 simulation run. By the time it reaches fiftieth simulation run it performs the

same task in 14 Soar decision cycles, and behaves like a Level 1 RPD agent for this

task. And for the last few simulation runs it does not learn new chunks. There is one

spike in between 25
th

 and 30
th

 simulation runs, it is because the agent selects a new

path to the destination and gets into more number of new situations. Because of the

inherent variability in the behaviour of the agent it may happen during any simulation

Chapter 7 – Experiments, Results, and Discussion

171

run but it is observed that this agent for this task learns most of the chunks within fifty

simulation runs.

Figure 7.40 Learning curve of Blue agent – Red agent starts from location (8, 8)

7.5.6 Third task – Red agent starting position - (9, 7)

The Blue agent starts from location (5, 8) and Red agent starts from location (9, 7).

Blue agent moves north towards its destination and Red agent moves north-west and

then after three moves from both agents, Blue agent sees the Red agent in the cell to

its north-east (Figure 7.41).

Chapter 7 – Experiments, Results, and Discussion

172

Figure 7.41 Situations after three moves of both Red and Blue agents

From the situation displayed in Figure 7.41, the Blue agent moves to its destination in

the north and avoids collision on the way. On every step it mentally simulates its own

next move while keeping in view the possible moves of Red agent if the Red agent is

visible and the main task of reaching the destination in the north across the two-cell

obstacle. After every mental simulation it stores the chunks that it learns.

Similar to the first two tasks, Blue agent learns for 50 simulation runs for the third

task also. The performance of Blue agent over these fifty simulation runs is shown in

Figure 7.42. The Blue agent consumes 238 Soar decision cycles in the first simulation

run and learns 331 chunks.

It keeps learning chunks for first forty simulation runs and then it does not encounter

new situations for up to the end that is the fiftieth simulation run except the 45
th

simulation run where the agent faces new situations. By the time it reaches fiftieth

simulation run it performs the same task in 13 Soar decision cycles, has learnt 923

chunks and behaves like a Level 1 RPD agent for this task.

Chapter 7 – Experiments, Results, and Discussion

173

Figure 7.42 Learning curve of Blue agent – Red agent starts from location (9, 7)

7.5.7 Fourth task – Red agent starting position - (9, 8)

The Blue agent starts from location (5, 8) and Red agent starts from location (9, 8).

The Blue agent moves north towards its destination and Red agent moves north-west

and then after three moves by both agents, Blue agent sees the Red agent in its east

(Figure 7.43).

Figure 7.43 Situations after three moves of both Red and Blue agents

Chapter 7 – Experiments, Results, and Discussion

174

From the situation displayed in Figure 7.43, the Blue agent moves to its destination in

the north and avoids collision on the way. On every step it mentally simulates its own

next move while keeping in view the possible moves of Red agent if the Red agent is

visible and the main task of reaching the destination in the north across the two-cell

obstacle. After every mental simulation it stores the chunks that it learns.

Similar to the last three tasks, Blue agent learns for 50 simulation runs for the fourth

task also. The performance of Blue agent over these fifty simulation runs is shown in

Figure 7.44. The Blue agent consumes 285 Soar decision cycles in the first simulation

run and learns 405 chunks.

Figure 7.44 Learning curve of Blue agent – Red agent starts from location (9, 8)

It learns most of the chunks within first twenty simulation runs and then it does not

encounter much of new situations for up to the end that is the fiftieth simulation run,

except for few new situations just before thirtieth and after forty-fifth simulation run.

By the time it reaches fiftieth simulation run it performs the same task in 15 Soar

decision cycles, has learnt 905 chunks and behaves like a Level 1 RPD agent for this

task.

Chapter 7 – Experiments, Results, and Discussion

175

The results of experiments on learning discussed in the Sections 7.5.4 – 7.5.7

demonstrate the ability of the agent to learn from its experience. Maximum learning

occurs in the initial runs of the simulation for each of the four tasks given to the agent.

This learnt knowledge of the agent is used on exactly the same task. However, if there

are certain situations that occur in other tasks then the learnt knowledge from one task

may be utilized in other tasks also. The next experiment tests the ability of the agent to

transfer learnt knowledge from one task to another with overlapping problem spaces.

7.5.8 Transfer of learning

This experiment is aimed at testing an RPD-Soar agent for learning that is

transferrable from one task to the other during the life of an agent. It is observed in the

previous tasks that the agent learns all the chunks for the task in approximately 50

simulation runs as almost all new situations that may arise are encountered by the

agent within these exposures. Therefore, this experiment is based on 200 simulation

runs, fifty for each of the four tasks discussed in the Sections 7.5.4 – 7.5.7. These

tasks are appropriate to test for evidence of transfer of learnt knowledge because the

problem spaces of the tasks overlap, and similar situations are likely to arise across

tasks. However, the quantity of transferred knowledge varies from one task to the

other due to inherent variability in behaviour of the agents. In this experiment, the

agent learns from one task in fifty simulation runs, holds the learnt chunks and then

the task is changed for the next fifty simulation runs, and so on until all four tasks are

performed by the agent for fifty times each. It is assumed, based on the results of the

last four experiments, that fifty simulations for one task enable the agent to learn most

of the chunks that can be learnt for this type of tasks. The learning performance of the

RPD-Soar agent is displayed in Figure 7.45.

Chapter 7 – Experiments, Results, and Discussion

176

Figure 7.45 Learning curve of Blue agent over four tasks

The agent starts performing the first task exactly in the same way as it performed in

the first experiment related to learning for the first task discussed above. It consumes

265 Soar decision cycles but by the time it completes thirty simulation runs it is

consuming approximately 14 to 15 Soar decision cycles. After fifty simulation runs

the task of the agent is changed to the second task. Now in performing this new task

the agent consumes approximately 100 Soar decision cycles less than it consumed in

the second experiment related to learning discussed in Section 7.5.5. After 100

simulation runs the task is changed again and the agent performs the third task in the

first simulation run for the new task in only 112 decision cycles, which is 126 Soar

decision cycles less than it consumed in third experiment related to learning discussed

in Section 7.5.6. At 150
th

 simulation run the task is changed again and this time in the

first simulation run of the new task agent completes the task in only 60 Soar decision

cycles. This performance graph displays clear evidence of transfer of knowledge from

one task to the other. The total number of chunks learnt in performing each of the four

tasks separately in the experiments discussed above is shown in Table 7.4. The total

number of learnt chunks are reduced from 3807 to only 1703 required to perform the

same four tasks by the same agent due to transfer of learning.

Chapter 7 – Experiments, Results, and Discussion

177

The transfer of learning is largely attributable to the chunks that can be used in the

similar situations in other tasks. The agent learns from the results of mental simulation

which is the knowledge to select the action in a situation which offers the best success

value. During mental simulation all candidate actions are evaluated one after the other

and the results are stored as chunks.

A file containing all the chunks learnt by the RPD-Soar agent in this experiment is

available in the attached CD, see Appendix E.

Table 7.4 Comparison of chunks learnt

7.6 Experiment 5 – Recognition of situation by neural network

The vignette for this experiment is motivated from the work of Liang et al. (2001).

The domain is a military ground based operation. A military commander of a troop of

tanks consisting of three tanks selects a strategy to attack the enemy tank in the north.

The terrain is simple and it can have 0, 1, or 2 passable hills. The terrain with two hills

is shown in Figure 7.46; the enemy is represented with a red square in the north at

location (0, 1) and own position is the blue circle in the south at the origin. The

locations are represented in Cartesian coordinates, the abscissa ranges [1, -1] and

ordinate [0, 1]. The agent’s own starting position and the enemy position remains the

same through out the experiment. The enemy is static and fights from the same

location until the battle is over. The commander selects a strategy based on the

decisions that whether to divide the troop of tanks in an assault group (AG) and a fire

Number of chunks learnt Tasks

Independent tasks Tasks in-sequence

1 – Red (7, 8) 1021 -

2 – Red (8, 8) 958 -

3 – Red (9, 7) 923 -

4 – Red (9, 8) 905 -

Total 3807 1703

*This number is expected to remain approximately same for any ordering of

these tasks.

Chapter 7 – Experiments, Results, and Discussion

178

support (FS) group or to use them as one group only. The commander also selects the

intermediate and the final locations or location of these groups or group which also

dictate the route to be adopted by the group(s).

Figure 7.46 Example terrain with two hills

As discussed in Chapter 6, the neural net in this experiment is used for pattern

recognition and not for plan generation because, as Liang et al. also realize, the option

to generate plan directly from the trained neural network does not prove to be

successful. In this experiment the target for training in each case is the numeric value

of ‘1’ for the output node corresponding to the recognized situation and ‘0’ for the rest

of the output nodes. It is assumed that such a clear difference between two target

values will produce better results compared to the mixed target values for the output

nodes corresponding to different strategies in the work of Liang et al. (2001).

Moreover, there is potential advantage in this representation for an RPD model. The

advantage in this design is that for a given situation the output node with the highest

value is considered as the recognized situation and if the evaluation of the

corresponding course of action through mental simulation is not promising then the

output node with the second highest value may be considered. During training of the

Chapter 7 – Experiments, Results, and Discussion

179

network, it is observed by the author and also mentioned by Liang et al. (2001) that

training the same neural network for two different plans for the same situation or

minor changes in the situation such as one for an aggressive and the other for a

conventional commander reduces the learning performance in terms of increased

residual error. Therefore, the training set is divided into two parts one for the

aggressive commander and the other for the conventional commander. The basic

situations and corresponding strategies in the work of Liang et al. (2001) is used but

some strategies are modified and some more strategies are added in the training set for

this experiment based on the knowledge of the author on the subject. The reason for

the addition of examples in the training set is to improve the performance of the net in

recognition of new situations which are related to number of training examples and

also to sufficiently cover the problem space.

One training example that is modified is shown in the Figure 7.47. In this example the

final location of AG is almost in the line of fire of the FS group, this strategy based on

making maximum use of the cover from enemy observation and fire available to own

tanks due to the hill may result in fratricide.

Chapter 7 – Experiments, Results, and Discussion

180

Figure 7.47 A typical training example. Note the placement of the

assault group (AG) and the fire support group (FS), the FS which is

supposed to support the AG with fire during the attack is behind the

AG and almost in the same line. This strategy makes maximum use

of cover from fire and observation available to own tanks from the

enemy due to hills but this placement can result in fratricide and is

unrealistic and needs to be modified.

Now consider the example in Figure 7.48. Again, in this example the cover from

observation and fire available in the form of the hills is used but the distance of the

fire support group from the enemy is relatively more compared to the other training

examples. Although, the scale of the map and the firing range of the weapon systems

have not been explicitly given by the author, the general idea about the reasonable

distance of the fire support group from the target may be established keeping in view

the rest of the plans in the training set. In this case it is relatively more close to the

own position than the enemy and therefore this plan is modified.

Chapter 7 – Experiments, Results, and Discussion

181

Figure 7.48 Another training example that needs modification. In this

strategy also in order to make maximum use of hills to protect own

tanks from enemy observation and fire, the FS is positioned

relatively more close to the own initial position than the enemy

positions being attacked by the AG. The FS should be positioned

closer to the enemy to provide effective fire support.

7.6.1 Training examples

The locations of the hills 1 and 2 and the corresponding situation for training the

neural net to represent the conventional commander is given in Table 7.5.

Chapter 7 – Experiments, Results, and Discussion

182

Table 7.5 Training set for conventional commander

For every situation there is a corresponding strategy and these strategies are shown in

Figure 7.49 through to Figure 7.60. It is worth mentioning here that the first two

terrain patterns given in the first two rows of Table 7.5 relate to situation 1 and the

corresponding plan is shown in Figure 7.49, and from then onwards each row

representing a single terrain pattern has a distinct plan.

Hill 1 Hill 2

Y X Y X

Situation

0.00 0.00 0.00 0.00 1

0.30 -0.67 0.30 0.67 1

0.60 0.00 0.00 0.00 2

1.00 -0.17 0.00 0.00 3

0.70 -0.11 0.00 0.00 4

1.00 -0.17 0.40 0.00 5

0.90 -0.44 0.70 0.00 6

0.50 0.00 0.00 0.00 7

0.90 -0.17 0.90 0.17 8

0.90 -0.17 0.50 -0.22 9

0.70 -0.44 0.70 0.44 10

0.60 0.00 0.70 0.17 11

0.60 -0.67 0.60 0.67 12

Chapter 7 – Experiments, Results, and Discussion

183

Figure 7.49 Strategy for Situation 1. For all those situations where

either there are no hills present in the battlefield or the hills are located

closer to the own position than the enemy (first two entries of Table 7.5

correspond to such situations) this strategy is used. This plan is

conventional in which the own troop of tanks is divided into two

groups the FS and the AG, the FS is positioned on the east to provide

fire support while the AG attacks from the south.

Chapter 7 – Experiments, Results, and Discussion

184

Figure 7.50 Strategy for Situation 2. In this battlefield there is only one

hill in the middle ground that affects the selection of strategy. The

FS is positioned behind the hill to protect it from enemy

observation and fire. The AG manoeuvres from the east and attacks

the enemy positions.

Chapter 7 – Experiments, Results, and Discussion

185

Figure 7.51 Strategy for Situation 3. In this battlefield there is only one

hill located in the west and very close to the enemy position. The

FS takes position behind this hill to provide fire support and the AG

attacks the enemy from the south. The position of the fire support is

very close to the enemy and can provide very effective fire support.

Although it is protected behind the hill but due to proximity to the

enemy FS group is threatened and this strategy is based on a

calculated risk as regards FS group.

Chapter 7 – Experiments, Results, and Discussion

186

Figure 7.52 Strategy for Situation 4. In this battlefield there is only one

hill located in the south west of the enemy position. The FS group

occupies the position behind this hill moving to its position from

the west. The AG manoeuvring from the east attacks the enemy

position.

Chapter 7 – Experiments, Results, and Discussion

187

Figure 7.53 Strategy for Situation 5. In this battlefield there are two

hills: one hill is located just short of the middle ground; and the

other is located a little west of the enemy position. The FS group

moves north to occupy its position south of the hill in the middle

ground from where it supports the attack. The AG manoeuvres from

the west and attacks the enemy position from behind the hill

located in the west of the enemy.

Chapter 7 – Experiments, Results, and Discussion

188

Figure 7.54 Strategy for Situation 6. There are two hills in this

battlefield; one hill is located close to enemy position on its south

and the other hill is located south-west-west of the enemy position.

The FS group moves from the west and occupies its position

behind the west hill to provide fire support for the AG. The AG

moves north to the hill south of the enemy and attacks the enemy

position from there.

Chapter 7 – Experiments, Results, and Discussion

189

Figure 7.55 Strategy for Situation 7. There is only one hill in this

battlefield located in the middle ground south of the enemy

position. The FS group moves north of the hill to support the AG.

The AG manoeuvres from the east to attack the enemy position.

This situation is quite similar to the situation in Figure 7.50 with

the only difference that the hill in this case is comparatively more

towards south of the enemy position.

Chapter 7 – Experiments, Results, and Discussion

190

Figure 7.56 Strategy for Situation 8. There are two hills in this

battlefield. Both of the hills are close to the enemy position; one on

the south-east and the other on the south-west. The FS group moves

from the west and occupies its position behind the south-west hill

to provide fire support to the AG. The AG manoeuvres from the

east to attack the enemy position from the south-east hill.

Chapter 7 – Experiments, Results, and Discussion

191

Figure 7.57 Strategy for Situation 9. There are two hills in this

battlefield and both of them are south-west of the enemy position.

The AG manoeuvres from the west taking cover of these hills and

attacks the enemy position from behind the hill close to the enemy

position. The FS group moves from the east and takes position in

the open terrain in the south-east of the enemy position to provide

fire support to the AG.

Chapter 7 – Experiments, Results, and Discussion

192

Figure 7.58 Strategy for Situation 10. It is a very idealistic battlefield

for the attacker, due to two hills present at suitable locations to

provide cover for both of it’s groups that is the AG and the FS. The

FS moves from the west and occupies position behind the south-

west hill to support the AG with fire and the AG manoeuvres from

the east to attack the enemy position from behind the south-east

hill.

Chapter 7 – Experiments, Results, and Discussion

193

Figure 7.59 Strategy for Situation 11. There are two hills in this

battlefield; one is in the south and the other is in the south-south-

east of the enemy position. The FS group takes advantage of the

hill in the south and moving north occupies the position behind the

hill to support the attack of AG with fire. While the hill in the

north-east of this south hill is relatively close and is not suitable for

the AG to position behind it because this narrow angle from the

view point of the enemy is suitable for effective engagement of

both groups with fire. Therefore, the AG manoeuvres further east

taking partial cover from the hill and attacks the enemy position

from the east.

Chapter 7 – Experiments, Results, and Discussion

194

Figure 7.60 Strategy for Situation 12. There are two hills in this battle

field; both in south and one each in either directions east and west.

This situation resembles the situation presented in Figure 7.58 with

the difference that the hills in this case are comparatively a little

south and further away in easterly and westerly directions.

Although the distance of the hills from the enemy position is a little

more than what is ideal for positioning FS and AG for the attack

but is sufficiently advantageous and therefore FS group positions

behind the westerly hill and the AG attacks from behind the easterly

hill in this strategy.

7.6.2 Results

In order to explore the problem space we fixed one hill and moved the other hill on

the given terrain on an interval of 0.01 on both axes. The neural net part of the agent is

required to recognize new situations produced in the environment. In the battlefield,

Chapter 7 – Experiments, Results, and Discussion

195

the locations of enemy and own positions are fixed. The situational variables are the

locations of hills in the terrain. As the locations of the hills are changed in the terrain,

new situations are generated. The ability of the agent to recognize new situations need

to be ascertained. The new situations are the ones that are not included in the training

examples and for which the agent has not been trained. By fixing one hill at a suitable

location and moving the other hill throughout the battlefield new situations are

generated. The hill is fixed at such locations so that maximum problem space is

explored and important new situations are produced. Plans produced for new

situations by the neural net trained for the conventional commander are shown in

Figure 7.61 through to Figure 7.64.

The result of experiment where one hill is fixed at (0, 0.17) is shown in Figure 7.61.

The diagram shows the situation that is recognized when the second hill is in different

positions. All the situations in which one of the hills is to the south of the enemy

location at a middle distance are expected to be recognized. These are Situations 2, 5,

6, 7 and 11. Situation 5 is recognized when the second hill is in the area just west of

the enemy location. Situation 5 should claim some of the area in its south, presently

occupied by Situation 1 and the area around own position that is middle bottom

should have been claimed by Situation 2. The reason for Situation 1 to be claiming

these areas probably is that Situation 1 has two training examples and that might have

increased its influence on recognition. Situation 12 is recognized in the area when the

second hill is moved to the extreme west in the upper part of the battle field which is

expected. Situation 9 is not recognized at all and it is not expected to be recognized

because in Situation 9 both of the hills are in the west and that situation never occurs

in this setting.

Chapter 7 – Experiments, Results, and Discussion

196

Figure 7.61 Situations with one hill fixed at (0, 0.7). In this case a total

of six situations are recognized, but two situations recognized most

of the time are 1 (Figure 7.49) and 7 (Figure 7.55). If the other hill

is south-westerly then Situation 1 is recognized but if it is towards

east then Situation 7 is recognized. The strategies applied to these

two situations are similar but only the locations of AG and FS are

interchanged. The other recognized situations are 2, 5, 11 and 12.

One desirable feature common to all the strategies applied to these

situations is the use of the hill in the middle ground as protection

from observation and fire for either AG or FS.

The result of the experiment where the location of one hill is fixed at (0.4, 0.7) is

shown in Figure 7.62. Because of fixing the location of one hill in the east Situations

8, 10, 11 and 12 are expected to be recognized.

Chapter 7 – Experiments, Results, and Discussion

197

Figure 7.62 Situations for one hill fixed at (0.4, 0.7). In this case a total

of seven situations are produced. The setting is quite similar to the

setting in Figure 7.61 and therefore, again the two main situations

recognized are 1 and 7. The other recognized situations are 5, 8, 10,

11 and 12, and strategies applied to all these situations also use the

hill in the east for protection against observation and fire from the

enemy for either the AG or FS, except for the strategy for Situation

5. In the strategy for Situation 5, the AG uses the hill in the west

which gives more advantage to the attacker.

Situation 10 is expected to be recognized more than it is in this experiment and some

part of the area occupied by Situation 5 should be claimed by Situation 10. The larger

area occupied by Situation 12 in the west is expected but the small area in the north is

somewhat unexpected. The area occupied by Situation 11 in the south east and a small

square in the top are not expected. The neural net is not trained for the situations in

Chapter 7 – Experiments, Results, and Discussion

198

which the hills are located on the boundaries that are away from the starting positions

because there is no importance of these hills in selecting the strategy for attack.

Therefore, some of the results for hill(s) on the boundaries are not explainable.

Situation 9 is not recognized at all and it is not expected to be recognized because in

Situation 9 both of the hills are in the west and that situation never occurs in this

setting.

The result of the experiment where the location of one hill is fixed at (-0.17, 0.7) is

shown in Figure 7.63.

Figure 7.63 Situations for one hill fixed at (-0.17, 0.7). In this case a

total of ten situations are produced. More number of situations are

recognized in this case as compared to the previous experiment

because most of the training examples are based on either both hills

or at least one hill in the west therefore, the agent produces ten out

of a total of twelve possible situations.

Chapter 7 – Experiments, Results, and Discussion

199

Situations 2, 4, 5, 6, 9, 10 and 11 are expected because of the location of the fixed hill

in the west. The difference between Situations 10 and 11 is that one hill in Situation

10 is in the west and in Situation 11 it is in the middle of the battle field while the

other is in the west in Situation 10 and in the middle in Situation 11. In this

experiment one hill in the west is fixed in the middle of the position of the hill in

Situations 10 and 11, and therefore, the recognition of either situation is decided only

due to the location of the hill in the east. The area occupied by Situation 7 in the north

east, Situation 12 in the south west and part of the area occupied by Situation 5 above

the area occupied by Situation 12 is not expected and is probably present due to the

reason that neural net is not trained on the boundaries away from enemy and own

positions.

The result of the experiment where the location of one hill is fixed at (0, 0) is shown

in Figure 7.64. Due to the location of one hill fixed exactly at (0, 0), Situations 1, 2, 3,

4 and 7 are expected. Situation 5, 9 and 12 are recognized due to the location of the

moving hill in the regions where the agent is trained to recognize these situations.

Situation 11 recognized in the northeast and a small area the shape of a square

occupied by Situation 7 in the northeast is not expected. Both of these cases are in the

boundary of the battlefield for which the agent is not trained to recognize situations.

Chapter 7 – Experiments, Results, and Discussion

200

Figure 7.64 Situations for one hill fixed at (0, 0). In this case nine out

of twelve Situations are produced. Strategy 2 uses the hill in the

west for AG, Strategy 3 uses the hill in the north and west of enemy

for FS, Strategy 4 uses the hill in the south west of the enemy for

FS, Situations 5 and 9 use the hill in the north and west of enemy

for AG, Strategy 12 uses the hill in the south west of the enemy for

FS to the advantage of the attacker.

The agent is generally recognizing the situations correctly and recognizing all twelve

situations. The situations recognized for positions on the boundaries away from the

enemy and own starting positions on the boundaries are not explainable because the

neural net is not trained for these situations as the hills located in these areas do not

affect the selection of strategy. The neural net is so structured that it gives a similarity

value of the presented situation to all twelve situations. These results show the

situation that is recognized with the highest similarity value. The situation selected by

Chapter 7 – Experiments, Results, and Discussion

201

the neural net with the highest recognition value is fed to the agent where the strategy

associated with recognized situation is implemented. The RPD-Soar agent uses mental

simulation for selecting course of action at the atomic level in order to implement the

goal set by this selected strategy. All the components are available to take the RPD-

Soar agent to a level where the strategy selected by the neural net is evaluated in a

mental model and if it is not suitable then the strategy associated with the next best

recognized situation is evaluated. However this has not been implemented as a part of

this research.

7.7 Summary

In this chapter, the experiments discussed are aimed at demonstrating the flexibility in

decision making and evaluating performance and behaviour of various types of RPD-

Soar agents. The experiments on the agent discussed in this chapter also demonstrate

behaviour variability across agents and behaviour variability within an agent across

episodes, test the ability of the agent to recognize a situation in a changing context and

test mental simulation capability of the agent for dynamic situations. The experiments

on learning demonstrate the ability of the agent to adapt to recurring tasks and transfer

the learnt knowledge to other tasks with overlapping problem spaces. The last

experiment is related to integration of a trained neural network in the architecture to

enhance the situation recognition ability of the agent. The conclusions of the research

are provided in the next chapter.

The code required to carry out all the experiments discussed in this chapter is

available in the attached CD, see Appendix C.

Chapter 7 – Experiments, Results, and Discussion

202

Chapter 8 – Summary, Conclusions and Future Work

203

8 SUMMARY, CONCLUSIONS AND FUTURE WORK

In this chapter, the research work is summarized, important conclusions are listed and

the future direction of this research is discussed.

8.1 Summary

The purpose of this research is to propose and implement an architecture to model

command agents that addresses some of the deficiencies in decision making and

learning that assist in current human behaviour representations for military

simulations. In order to achieve the aim of this research, we have developed a

computer implementation of the recognition primed decision making (RPD) model

using the Soar cognitive architecture which is referred to as RPD-Soar agent in this

thesis. The recognition primed decision making model is selected as the most suitable

model of naturalistic decision making for the military domain as a result of very

comprehensive research carried out by Klein and his associates on the decision

making behaviour of military commanders and experts in similar domains. The Soar

architecture is selected to represent human cognition because of its successful

applications in representing human behaviour in the military domain. Moreover, there

are many advantages with regards to the implementation of the RPD model in Soar,

and these are discussed in the next paragraph in detail.

Soar provides a convenient frame work to model all three Levels of RPD.

Recognizing patterns in the environment and proposing applicable operators is already

a part of the Soar architecture, and if Soar has sufficient knowledge then it behaves

like Level 1 RPD, with only one problem and that is that Soar does not allow partial

matching of conditions for recognition of a production rule. Level 2 RPD except for

the story building part, is achieved through the elaboration phase of Soar. In the

elaboration phase all production rules are matched and fired in parallel. And in this

phase any amount of reasoning and processing of the environmental variables may be

carried out to understand the situation and extract cues for situation recognition. Level

3 RPD has its emphasis on mental simulation and the Soar architecture has the

capability to take mental simulation to as many steps as is suitable for the application.

In Soar, if multiple operators with equal preferences are proposed then the architecture

Chapter 8 – Summary, Conclusions and Future Work

204

considers it lack of sufficient knowledge and creates an operator tie impasse, which in

turn creates a sub-state to bring to bear the knowledge required to resolve this conflict.

This sub-state is used as the selection space for evaluating these operators. For each

proposed operator or action as we call it in RPD, an abstract operator called evaluate-

operator is proposed, which in turn creates another sub-space through operator no-

change impasse, which is used as a mental model to evaluate the operator. The objects

of the external world are modelled in this mental model and the action required to be

evaluated is applied to this mental world to see its effects. If this action is promising

then the mental model is dissolved and the action is applied to the real world. If the

action does not satisfice then it is thrown away and the next action is mentally

simulated by creating another mental model. This process is repeated until one action

is selected. If no action is promising then the one with the highest success value

among them is selected and in situations where multiple actions have equal success

value then one out of them is selected at random.

In RPD-Soar agents, the modeller needs to code the behaviour for higher level tasks

which is comparatively easier to acquire from domain experts. The knowledge is

required to be elicited in the form of experiences with whatever is pertinent for that

particular experience from the four components; cues, goals, expectations, and courses

of action. The modeller then codes the behaviour of the agent for atomic actions such

as turn, move, or fire, which are few as compared to the total number of behaviours

and assistance if needed from the domain expert may be acquired. Because of the

capability of mental simulation, the behaviour from a sequence of primitive actions

emerges automatically, which means the modeller has to design general rules for

evaluation of courses of action by modelling the effects of each atomic action on the

environment. There is no requirement to give a specific course of action for every new

situation from the start. These agents can be further enhanced to exhibit various levels

of expertise.

The proposed implementation is evaluated using prototypical scenarios arising in

command decision making in tactical situations. The RPD-Soar agent recognizes

situations within a context and generates goals, expectations, and plausible courses of

action accordingly and then wargames the course of action by mentally simulating it.

Due to the ability of the RPD-Soar agent to mentally simulate applicable courses of

Chapter 8 – Summary, Conclusions and Future Work

205

action it is possible for the agent to handle new situations very effectively using its

prior knowledge.

Experiments are developed as a whole to test the proposed implementation for

flexibility in decision making strategies, behavioural variability and adaptability. The

study compares the behaviour of agents with and without the capability to mentally

simulate courses of action, by observing the external environment where the actions as

a result of these two decision-making processes are implemented. Various

experiments clearly demonstrate that the behaviour exhibited by the RPD-Soar agents

is consistent with that of plausible human behaviour. The results show how the

behaviour of agents is more human like when the agent uses mental simulation, than

otherwise.

It has been demonstrated that an experienced agent takes quicker decisions and a less

experienced agent may give the same behaviour but with more evaluation that will

make it slow to react to situations. In these simulations the agents were taking turns to

act, therefore, this effect could only be measured through the number of Soar decision

cycles. The advantage of experience will be directly observable if the simulation is

running on time steps instead of agents acting in turns. The RPD-Soar agent exhibits

the ability to change decision making strategy with experience, which means the same

agent for a situation for which the agent has sufficient knowledge adopts a Level 1

RPD strategy and for a situation where the agent has less experience it automatically

changes its strategy to Level 3 RPD. This is the demonstration of the ability of the

agent to possess flexibility in decision making. In this case this change of strategy can

be used to either produce agents with varying experience or to represent different

levels of knowledge of the same agent for different problems. But this inherent

flexibility in decision making strategy can also be used to represent stress in an agent.

The variability in behaviour within an agent is a desirable characteristic. Variability in

agents may be produced through randomness but randomness also introduces

undesirable behaviour. The observed variability in the RPD-Soar agent is due to

reasonable but some times sub-optimal choices made by the agent. And the

preliminary results clearly demonstrate the ability of the model to represent human

behaviour variability within and across individuals.

The overall variability is expected to increase in an environment where more entities

are interacting with RPD-Soar agent.

Chapter 8 – Summary, Conclusions and Future Work

206

Agents adapt using chunking provided by the Soar architecture which is a form of

explanation based learning. Learning through chunking in Soar is the process of

remembering the results of the sub-goals. In terms of RPD-Soar agents it is the

process of changing from a Level 3 RPD to Level 1 RPD. The latter is more efficient

and is an indicator of the experience of the agent.

The RPD-Soar agents have demonstrated the ability to transfer learnt knowledge from

one task to the other. If the agent has learnt an experience from one task and a similar

situation arises in the other task then the agent is observed to use this knowledge.

In rule based systems the antecedents of the production rule have to match exactly for

the production to fire. If the current situation deviates from the conditions in the rule

then the appropriate rule does not fire. Due to rule matching through efficient

algorithms and also advances in computer technology it is possible in Soar to add a

large number of production rules to handle generalization. But writing large number

of rules is not an efficient method of solving this problem. To enhance the ability of

the agent to recognize new situations an artificial neural network is integrated in the

architecture. The neural net is trained on the example experiences that the RPD-Soar

agent is likely to face in the simulation. For this experiment the neural net is trained to

recognize situations presented by the terrain in order to develop a strategy to attack the

enemy tank with the help of a troop of own tanks.

8.2 Conclusions

The need for realistic decision making in military simulations has been identified.

Much of the recognition primed decision making (RPD) model has been successfully

implemented using the Soar cognitive architecture. It has been demonstrated that the

agents developed using RPD exhibit a rich variety of desirable behaviours within the

domain considered. Some of the salient features of the work are summarized below:-

• Soar cognitive architecture provides the basic framework to model most

aspects of recognition primed decision making (RPD) model. The RPD model

implemented in the Soar cognitive architecture is capable of mimicking some

of the decisions made by military commanders in battlefield settings.

• Level 1 RPD has been completely implemented for situations where sufficient

knowledge is available. The agent straight away recognizes a situation as

typical and selects a course of action for that situation to implement.

Chapter 8 – Summary, Conclusions and Future Work

207

• That part of Level 2 RPD has been implemented where situations are not

recognized straight away and information from the environment is required to

be processed and combined with already available knowledge in order to

diagnose and then recognize a situation as typical.

• The Level 2 RPD for very complex situations require story building to account

for some of the inconsistencies in situation recognition. This part of Level 2

RPD has not been implemented in this model.

• Mental simulation which forms the basis of Level 3 RPD has been

implemented in this model with such flexibility to accommodate all types of

requirements that are expected to be encountered while making decisions

using RPD model.

• Flexibility in decision making strategies based on psychological theories is

achieved. Decision making strategies are based on experience and extent of

knowledge.

• Variability in behaviour across individuals is a desirable characteristic in

human behaviour representation. Variability in behaviour across individuals is

achieved based on the type of experiences in long term memory of similar

agents. Within-entity variability is achieved in this model not through

randomness which introduces undesirable behaviour but through reasonable

but sometimes sub-optimal choices made by the agent.

• Command agent of the developed model exhibits adaptability across various

episodes which adds the much desired dynamism to the simulation

environment. The agent learns from its experience. The learning is based on

the chunking phenomenon inherent in Soar which is a form of explanation-

based generalization.

• The agents also exhibit transfer of knowledge from one task to the other in

case of overlapping problem spaces within tasks.

• Due to the ability of the agents to mentally simulate courses of action it is

possible for the agent to handle new situations very effectively. This relieves

the modeller from coding behaviours for all situations expected to be

encountered in a simulation and this in turn reduces the development time of

the agent.

Chapter 8 – Summary, Conclusions and Future Work

208

• The strategies to form experiences in the long term memory of the agents are

required only at a higher level with general rules to evaluate actions at lower

levels which is easier for the subject matter expert to describe and less tasking

for the knowledge engineer to elicit. This reduces the time and effort in the

development of the agent. Following this the mental simulation and learning

abilities can be used to improve the agent.

• The ability of the agent to handle new situations is further enhanced using a

trained artificial neural network which is integrated in the proposed

architecture. This further reduces the labour of the modeller in coding

behaviours for all expected situations.

• The research also developed a simple RPDAgent to operate in a simple

simulation environment in order to explore the affect of realistic human

decision making on the outcome of the battle simulations. The study concludes

that the outcome of the constructive military simulations changes if more

realistic human behaviour is incorporated in these simulations, and the known

mathematical and probabilistic solutions for combat modelling help in

validating the start point or base line of simulations involving human

behaviour.

• In order to develop an agent for a different domain based on RPD-Soar model

following tasks are required to be completed:

o Change the objects of this implementation to the objects of the domain

of interest. The structure for tree and graph representation is already

available as SML code in this implementation and can be utilized as per

the requirements.

o Elicit knowledge about the domain from the experiences of the subject

matter expert and transform it to the form of goals, cues, expectations

and courses of action in the light of the examples in this

implementation.

o Convert the experiences into Soar rules using the rules of this

implementation as examples.

o Set the goals as the desired state. Convert the cues and expectations

into conditions, and courses of actions as operators.

Chapter 8 – Summary, Conclusions and Future Work

209

o Give the success values of all courses of action applicable to a situation

as numeric preferences to operators in Soar rules.

o Identify the objects that need to be represented in the mental model and

also the level of attributes that need to be represented. Change the

objects and their attributes using the Soar rules in Selection space as

examples.

o Give preference to operators to select for evaluation. Write Soar rules

to implement the selected operator (the course of action) in the mental

model.

o Write Soar rules to evaluate the situation after the selected course of

action is implemented to find out whether this action is likely to take

the agent to its goal or otherwise. The factors on which a course of

action is evaluated may be different for different domains but the Soar

rules of this implementation can be used as examples.

8.3 Future work

In this section, a list of future directions of work is enumerated. This is important as it

is likely to provide a clear perspective to this research work.

• The model is required to be tested in a richer context. There are two options as

regards selection of the environment for rich context. The first option is to

integrate the agent with ModSAF (or similar simulation environment), where

the agent takes higher level decisions and the ModSAF entities implement the

commands in the ModSAF environment. This option has some problems

regarding the restriction on availability of ModSAF code. The second option is

to integrate the RPD-Soar agent in some computer game application and for

this option Unreal Tournament is a possible candidate due to the availability

of its code.

• The number of steps in the mental simulation should be increased from the

present implementation of a single step only. The next phase in this direction it

should be related to the complexity of the decision problem and time

constrained decision making.

• Decision strategy is presently related to knowledge. It should also be related to

stress due to time and physiological conditions of the decision maker.

Chapter 8 – Summary, Conclusions and Future Work

210

• The basic platform of variable behaviour is demonstrated in this

implementation. It should be linked to behaviour moderators like fatigue, fear,

morale etc.

• Reinforcement learning has been recently incorporated in Soar (Nason and

Laird, 2005). Reinforcement learning should be incorporated to adapt the

success values of courses of action. The effect of reinforcement learning on

variability in behaviour should also be analyzed.

• A synthetic life of the agent should be created using the episodic memory

proposed by Nuxoll and Laird (2004) and (2007).

• The plan selected by the neural network should be modified if necessary by the

agent after evaluation through mental simulation.

References

211

9 REFERENCES

AGENT ORIENTED SOFTWARE LTD. (2008) JACK Intelligent Agents: Agent

Manual Release 5.3.

ANDERSON, J. R. (1993) Rules of the mind, Hillsdale, N.J. ; Hove, L. Erlbaum.

ANDERSON, J. R. & LEBIERE, C. (1998) The atomic components of thought,

Mahwah, NJ: Lawrence Erlbaum Associates.

ANDERSON, J. R., BOTHELL, D., BYRNE, M. D., DOUGLASS, S., LEBIERE, C.

& QIN, Y. (2004) An integrated theory of the mind. Psychological Review,

111, pp. 1036-1060.

U.S. ARMY (1997) Knowledge and Speed: The Annual Report of the Army After

Next Project. Washington, DC: U.S. Army Chief of Staff.

U.S. Department of the Army (1990) Terrain Analysis, FM 5-33. Headquarters,

Department of the Army, Washington, D.C.

U.S. Department of the Army (1993) Staff Organization and Operations, FM 101-5.

Headquarters. Fort Monroe, VA.

http://www.globalsecurity.org/military/library/policy/army/fm/101-5/f540.pdf

BANKS, J. (2005) Discrete-event system simulation, Upper Saddle River, N.J. ;

London, Pearson Prentice Hall.

BEST, B. J., LEBIERE, C. & SCARPINNATTTO, K. C. (2002) Modelling Synthetic

Opponents in MOUT Training Simulations using ACT-R Cognitive

Architecture. Paper presented at the 11th Conference on Computer Generated

Forces and behaviour Representation, Orlando.

BOOK, E. (2002) Central Fla. School promotes advanced simulation studies. National

Defense. Iss. November.

http://www.nationaldefensemagazine.org/issues/2002/Nov/Central_Fla.htm

BOWDEN, F. D. J., GABRISCH, C. & DAVIES, M. (1997) C3I systems analysis

using the Distributed Interactive C3I Effectiveness (DICE) simulation.

Proceedings of the IEEE International Conference on Systems, Man and

Cybernetics, 5, 4326-4331.

BRATMAN, M. (1987) Intention, Plans, and Practical Reasoning, Harvard University

Press,Cambridge, MA. Reprinted in 1999, CSLI Publications, Stanford, CA.

References

212

BURNS, K. (2000) Mental models and normal errors. Proceedings of the 5th

Conference on Naturalistic Decision Making, May 26-28. Tammsvik, Sweden.

CERANOWICZ, A. (1994a) ModSAF Capabilities. Proceedings of the Forth

Conference on Computer Generated Forces and Behavioral Representation,

May 4-6, 1994, University of Central Florida, Orlando, pp. 3-8.

CERANOWICZ, A. (1994b) Operator Control of Behavior in ModSAF. Proceedings

of the Forth Conference on Computer Generated Forces and Behavioral

Representation, May 4-6, 1994, University of Central Florida, Orlando, pp. 9-

16.

CAMPBELL, L., LOTMIN, A. & DERICO, M. M. G. R., C. (1997) The use of

artificial intelligence in military simulations. Systems, Man, and Cybernetics,

'Computational Cybernetics and Simulation', IEEE International Conference

on, Vol.3, Iss., 12-15 Oct 1997 pp. 2607-2612.

STANLEY, C., PORAC, C. & WARD, L. M. (1978) Sensation and Perception

(International Edn.). New York: Academic Press.

D'INVERNO, M., KINNY, D., LUCK, M. & WOOLDRIDGE, M. (1998) A Formal

Specification of dMARS. Proceedings of the 4th International Workshop on

Intelligent Agents IV, Agent Theories, Architectures, and Languages, pp. 155-

176. Springer-Verlag.

DEPARTMENT OF DEFENSE (1998) "DoD Modeling and Simulation (M&S)

Glossary", DoD 5000.59-M, 01/1998.

DOMPKE, U. (2001) Simulation of and for Military Decision Making. RTO SAS

Lecture Series, Italy, 15-16 October.

ENDSLEY, M. R. (1995) Toward a theory of situation awareness in dynamic systems.

Human Factors, 37, pp. 32-64.

ERWIN, S. I. (2000) Simulation of Human Behavior Helps Military Training Models.

National Defense, Vol. 85, No. 564, pp. 32-35.

ERWIN, S. I. (2001) Commanders Want Realistic Simulations. National Defense,

Vol. 85, No. 567, pp. 50-51.

ESD, A. M. A. O. R. (2004) Foundations of modelling and simulation. Lecture notes,

DCMT, Cranfield University.

References

213

FAN, X., SUN, S., MCNEESE, M. & YEN, J. (2005) Extending the recognition-

primed decision model to support human-agent collaboration. AAMAS 05,

pp945-952. ACM Press.

FERNLUND, H., GONZALEZ, A., GEORGIOPOULOS, M. & DEMARA, R. (2006)

Learning tactical human behavior through observation of human performance.

IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART

B-CYBERNETICS, 36, pp. 128-140.

FITTS, P. M. (1954) The information capacity of the human motor system in

controlling the amplitude of movement. JOURNAL OF EXPERIMENTAL

PSYCHOLOGY, 47, pp. 381-391.

FORBUS, K. D., USHER, J. & CHAPMAN, V. (2004) Qualitative spatial reasoning

about sketch maps. AI Magazine, 25, pp. 61-72.

FORGY, C. (1982) Rete: A fast algorithm for the many pattern/many object pattern

match problem. Artificial Intelligence, 19, pp. 17 - 37.

FORGY, E. (1965) Cluster analysis for multivariate data: Efficiency vs.

interpretability of classifications. Biometrics, 21.

FORSYTHE, C. & WENNER, C. (2000) Surety of human elements of high

consequence systems: An Organic Model. Proceedings of the IEA 2000 /

HFES 2000 Congress, Vol. 3, pp. 839-842. San Diego, CA.

FORSYTHE, C. & XAVIER, P. G. (2002) Human emulation: Progress towards

realistic synthetic human agents. 11th Conference on Computer-generated

Forces and Behavior Representation. pp. 257-266. Orlando, FL.

GEORGEFF, M., PELL, B., POLLACK, M., TAMBE, M. & WOOLDRIDGE, M.

(1999) The belief-desire-intention model of agency. Intelligent Agents V, pp.

1-10.

GEORGEFF, M. P. & INGRAND, F. F. (1990) Real-time reasoning: The monitoring

and control of spacecraft systems. Proceedings of the sixth conference on

Artificial intelligence applications, pp. 198-204.

GEORGEFF, M. P. & RAO, A. S. (1996) A profile of the Australian Artificial

Intelligence Institute. IEEE Expert-Intelligent Systems and their Applications,

11, pp. 89-92.

GIARRATANO, J. C. & RILEY, G. (1998) Expert systems : principles and

programming, Boston ; London, PWS.

References

214

GIBSON, E. (1990) Recency preferences and garden-path effects. Proceedings of the

Twelfth Annual Conference of the Cognitive Science Society, 372-379.

GLADWELL, M. (2005) Blink : the power of thinking without thinking, London,

Allen Lane.

GOLDMAN, L., COOK, E. F., JOHNSON, P. A., BRAND, D. A., ROUAN, G. W. &

LEE, T. H. (1996) Prediction of the Need for Intensive Care in Patients who

Come to Emergency Departments with Acute Chest Pain. THE NEW

ENGLAND JOURNAL OF MEDICINE, 334, pp. 1498-1504.

GONZALEZ, A. J. & AHLERS, R. (1998) Context-based representation of intelligent

behavior in training simulations. Transactions of the Society for Computer

Simulation, 15, pp. 153-166.

GONZALEZ, R. E. & WOODS, R. E. (2002) Digital image processing, Pearson

Education Singapore.

GROSZ, B. J. & KRAUS, S. (1996) Collaborative plans for complex group action.

Artificial Intelligence, 86, pp. 269-357.

GROUND, L., KOTT, A. & BUDD, R. (2002) A knowledge-based tool for planning

of military operations: The coalition perspective. Proceedings of the Second

International Conference on Knowledge Systems for Coalition Operations.

GURNEY, K. (1997) An introduction to neural networks, CRC Press.

HASTIE, T. J., TIBSHIRANI, R. J. & FRIEDMAN, J. H. (2001) The elements of

statistical learningdata mining, inference, and prediction : with 200 full-color

illustrations, New York, Springer.

HAYES, C. C., SCHLABACH, J. L. & FIEBIG, C. B. (1998) FOX-GA: An

intelligent planning and decision support tool. Proceedings of the IEEE

International Conference on Systems, Man and Cybernetics, 3, pp. 2454-2459.

HILES, J. (2002) Innovations in computer generated autonomy. Naval Postgraduate

School Technical Report NPS-MV-02-002.

HILL, J., W., R., CHEN, J., GRATCH, J., ROSENBLOOM, P. & TAMBE, M. (1997)

Intelligent agents for the synthetic battlefield: a company of rotary wing

aircraft. Innovative Applications of Artificial Intelligence, pp. 1006-1012.

HINTZMAN, D. L. (1984) MINERVA 2: A simulation model of human memory.

Behavior Research Methods, Instruments, & Computers, 16, pp. 96-101.

References

215

HINTZMAN, D. L. (1986) Schema abstraction in a multiple-trace memory model.

Psychological Review, 93, pp. 429-445.

ILACHINSKI, A. (2004) Artificial war : multiagent-based simulation of combat,

River Edge, NJ, World Scientific Pub.

JI, Y., MASSANARI, R. M., AGER, J., YEN, J., MILLER, R. E. & YING, H. (2007)

A fuzzy logic-based computational recognition-primed decision model.

Information Sciences, 177, pp. 4338-4353.

JOHNSON, T. (1997) Control in ACT-R and soar. Proceedings of the Nineteenth

Annual Conference of the Cognitive Science Society, pp. 343-348.

JOHNSON, W. L. (1994a) Agents that explain their own actions, In Proceedings of

the Fourth Conference on Computer Generated Forces and Behavioral

Representation, pp. 87-95.

JOHNSON, W. L. (1994b) Agents that learn to explain themselves, In Proceedings of

the National Conference on Artificial Intelligence, pp. 1257-1263, AAAI

press.

JOHNSON, W. R., MASTAGLIO, T. W. & PETERSON, P. D. (1993) Close combat

tactical trainer program. Winter Simulation Conference Proceedings, pp. 1021-

1029.

JONES, R. M., LAIRD, J. E., NIELSEN, P. E., COULTER, K. J., KENNY, P. &

KOSS, F. V. (1999) Automated intelligent pilots for combat flight simulation.

AI Magazine, 20, pp. 27-41.

KAEMPF, G. L., KLEIN, G., THORDSEN, M. L. & WOLF, S. (1996) Decision

making in complex naval command-and-control environments. Human

Factors, 38, pp. 220-231.

KAUFMAN, L. & ROUSSEEUW, P. J. (1990) Finding groups in data: An

introduction to cluster analysis, New York, Wiley.

KERSHAW, T. C. & OHLSSON, S. (2001) Training for insight: The case of the nine-

dot problem. Proceedings of the Twenty-third Annual Conference of the

Cognitive Science Society, pp. 489-493.

KILLEBREW, R. B. (1998) Learning from Wargames: A Status Report. Parameters,

Spring 1998, pp. 122-35.

KLEIN, G. A. (1998) Sources of power : how people make decisions, Cambridge,

Mass. ; London, MIT Press.

References

216

KLEIN, G. & KLINGER, D. (2000) Naturalistic Decision Making. Human Systems

IAC GATEWAY, XI, pp. 16-19.

KLIMESCH, W. (1996) Memory processes, brain oscillations and EEG

synchronization. International Journal of Psychophysiology, 24, pp. 61-100.

KOHAVI, Z. (1978) Switching and finite automata theory, New York, McGraw-Hill.

KOLODNER, J. L. (1993) Case-based learning, Boston ; London, Kluwer Academic

Publishers.

KRESS, M. & TALMOR, I. (1999) New look at the 3:1 rule of combat through

Markov Stochastic Lanchester models. Journal of the Operational Research

Society, 50, pp. 733-744.

KUNDE, D. & DARKEN, C. (2005) Event Prediction for Modeling Mental

Simulation in Naturalistic Decision Making. Proceedings of BRIMS 2005.

KUNDE, D. & DARKEN, C. (2006) A Mental Simulation-Based Decision-Making

Architecture Applied to Ground Combat. Proceedings of BRIMS 2006.

LAIRD, J. E. (2006a) The Soar 8 Tutorials 1 - 8. Electrical Engineering and Computer

Science Department, University of Michigan.

http://sitemaker.umich.edu/soar/home

LAIRD, J. E. (2006b) Soar User’s Manual Version 8.6 Edition 1. Electrical

Engineering and Computer Science Department, University of Michigan.

http://sitemaker.umich.edu/soar/home

LAIRD, J. E. & NEWELL, A. (1983) A universal weak method: Summary of results.

Proceedings of the Eighth International Joint Conference on Artificial

Intelligence, pp. 771-773.

LAIRD, J. E., NEWELL, A. & ROSENBLOOM, P. S. (1987) SOAR - An architecture

for general intelligence. ARTIFICIAL INTELLIGENCE, 33, pp. 1-64.

LAIRD, J. E. (2000) It Knows What You’re Going To Do: Adding anticipation to a

QuakeBot. AAAI 2000 Spring Symposium on Artificial Intelligence and

Interactive Entertainment. AAAI Technical Report SS00–02. Menlo Park, CA:

AAAI Press.

LAIRD, J. E. (2000) An exploration into computer games and computer generated

forces. Proc. 9th Conf. Computer Generated Forces and Behavioral

Representation.

References

217

LANCHESTER, F. W. (1916) Aircraft in warfare: The dawn of the fourth arm,

Constable & Co, London, England.

LAVALLE, S. M. (2006) MPlanning Algorithms, Cambridge University Press.

LEVESQUE, H. J., COHEN, P. R. & NUNES, J. H. T. (1990) On acting together.

Proceedings of AAAI-90, pp. 94-99.

LIANG, Y., ROBICHAUD, R. & FUGERE, B. J. (2001) Implementing a naturalistic

command agent design. Proceedings of the Tenth Conference on Computer

Generated Forces, 379-386.

LIPSHITZ, R., KLEIN, G., ORASANU, J. & SALAS, E. (2001) Focus article: Taking

stock of naturalistic decision making. Journal of Behavioral Decision Making,

14, pp. 331-352.

LUCAS, A. & GOSS, S. (1999) The potential for intelligent software agents in

defence simulation. IN GOSS, S. (Ed.) Information, Decision and Control, pp.

579-583.

LUCHINS, A. S. (1942) Mechanization in problem solving. Psychological

Monographs, 54(Whole No. 248).

MASON, C. R. & MOFFAT, J. (2001) An agent architecture for implementing

command and control in military simulations. Proceedings of the Winter

Simulation Conference, pp. 721-729.

MCNAUGHT, K. R. (2002) Markovian models of three-on-one combat involving a

hidden defender. Naval Research Logistics, 49, pp. 627-646.

MCNETT, M. D., PHELAN, R. G., JR. & MCGINNIS, M. L. (1997) WARSIM 2000:

combining multiple expert opinions from subject matter experts to generate

requirements for staff training at battalion level and above. Systems, Man, and

Cybernetics, 1997. 'Computational Cybernetics and Simulation'., 1997 IEEE

International Conference, 2, pp. 1280-1284.

MITCHELL, T. (1997) Machine Learning, McGraw Hill International Editions.

NASON, S. & LAIRD, J. E. (2005) Soar-RL: Integrating reinforcement learning with

Soar. Cognitive Systems Research, 6, pp. 51-59.

NEWELL, A. (1990) Unified theories of cognition, Cambridge, Mass. ; London,

Harvard University Press.

NICOL, D. M., BALCI, O., FUJIMOTO, R. M., FISHWICK, P. A., L'ECUYER, P. &

SMITH, R. (1999) Strategic directions in simulation research (panel).

References

218

Proceedings of the 31st conference on Winter simulation: Simulation---a

bridge to the future - Volume 2. Phoenix, Arizona, United States, ACM.

NORLING, E. (2004) Folk psychology for human modelling: Extending the BDI

paradigm. In Proceedings of the Third international Joint Conference on

Autonomous Agents and Multiagent Systems - Volume 1 (New York, July 19

- 23). International Conference on Autonomous Agents, pp. 202-209. IEEE

Computer Society. Washington, DC.

NORLING, E. & SONENBERG, L. (2002) An approach to evaluating human

characteristics in agents. Proceedings of the International Workshop on

Regulated Agent-Based Systems: Theories and Applications (RASTA'02), pp.

51-60.

NORLING, E. & SONENBERG, L. (2004) Creating interactive characters with BDI

agents. Proceedings of the Australian Workshop on Interactive Entertainment

IE2004. Sydney, Australia.

NORLING, E., SONENBERG, L. & RONNQUIST, R. (2001) Enhancing multi-agent

based simulation with human-like decision making strategies. MULTI-

AGENT-BASED SIMULATION, 1979, pp. 214-228.

NUXOLL, A. & LAIRD, J. E. (2004) A Cognitive Model of Episodic Memory

Integrated with a General Cognitive Architecture. Proceedings of the Sixth

International Conference on Cognitive Modeling, pp. 220-225.

NUXOLL, A., LAIRD, J. E. & JAMES, M. R. (2004) Comprehensive working

memory activation in Soar. Proceedings of the 6th International Conference on

Cognitive Modeling, pp. 226-230.

NUXOLL, A. M. & LAIRD, J. E. (2007) Extending cognitive architecture with

episodic memory. In Proceedings of the 21st National Conference on Artificial

Intelligence-(AAAI), pp. 1560-1564.

NWANA, H. S. (1996) Software Agents: An Overview. Knowledge Engineering

Review, Vol. 11, pp. 1-40.

PECK, M. (2004) Computer games helping to train commanding officers. National

Defense. Iss. December.

http://www.nationaldefensemagazine.org/issues/2004/Dec/ComputerGamesHelping.ht

m

References

219

PEW, R. W. & MAVOR, A. S. (1998) Modeling human and organizational behavior :

application to military simulations, Washington, D.C. ; [Great Britain],

National Academy Press.

PRATT, D. R. & JOHNSON, M. A. (1995) Constructive and virtual model linkage.

Winter Simulation Conference Proceedings, pp. 1222-1228.

RAO, A. S. & GEORGEFF, M. P. (1995) BDI agents: From theory to practice.

Proceedings of the First International Conference on Multi-Agent Systems, pp.

312-319.

RASMUSSEN, J. (1985) The role of hierarchical knowledge representation in

decisionmaking and system management. IEEE Transactions on Systems, Man

and Cybernetics, 15, pp. 234-243.

RAZA, M. & SASTRY, V. V. S. S. (2007) Command Agents with Human-Like

Decision Making Strategies. Proceedings of the 19th IEEE International

Conference on Tools with Artificial Intelligence (ICTAI 2007), Vol. 2, pp. 71-

74. IEEE Computer Society.

RAZA, M. & SASTRY, V. V. S. S. (2008) Variability in Behavior of Command

Agents with Human-Like Decision Making Strategies. Tenth International

Conference on Computer Modeling and Simulation (uksim 2008), pp. 562-

567. Cambridge, England.

RITTER, F. (2007) Personal communication.

RITTER, F. E., SHADBOLT, N. R., ELLIMAN, D., YOUNG, R., GOBET, F., &

BAXTER, G. D. (2002) Techniques for modeling human performance in

synthetic environments: A supplementary review. Wright-Patterson Air Force

Base, OH: Human Systems Information Analysis Center.

ROSS, K. G., KLEIN, G. A., THUNHOLM, P., SCHMITT, J. F. & BAXTER, H. C.

(2004) The Recognition-Primed Decision Model. Military Review, July-

August, 6.

RUBINSTEIN, R. Y. (1981) Simulation and the Monte Carlo method, John Wiley and

Sons.

RUMMERY, G. A. & NIRANJAN, M. (1994) On-line Q-learning using connectionist

system. Cambridge University Engineering Department, CUED/FINENG/TR,

166.

References

220

RUSSELL, S. J. & NORVIG, P. (2003) Artificial intelligence : a modern approach,

Upper Saddle River, N.J. ; [Great Britain], Prentice Hall.

SCHANK, R. C. & ABELSON, R. P. (1977) Scripts, plans, goals and understanding :

an inquiry into human knowledge structures, Hillsdale, N.J., Erlbaum ; New

York ; London : Distributed by Wiley.

SCHOENWALD, D., XAVIER, P., THOMAS, E., FORSYTHE, C. & PARKER, E.

(2002) Simulation of a Cognitive Algorithm for a Distributed Robotic Sensing

Network. World Automation Congress, 2002. Proceedings of the 5th Biannual.

vol.14, pp 7-12.

SOKOLOWSKI, J. (2002) Can a composite agent be used to implement a recognition-

primed decision model. Proceedings of the Eleventh Conference on Computer

Generated Forces and Beharioral Representation, pp. 431-436.

SOKOLOWSKI, J. (2003a) Enhanced military decision modeling using a MultiAgent

system approach. Proceedings of the Twelfth Conference on Behavior

Representation in Modeling and Simulation, pp. 179-186.

SOKOLOWSKI, J. A. (2003b) Representing Knowledge and Experience in

RPDAgent. 12th Conference on Behavior Representation in Modeling and

Simulation (BRIMS). May 12-15, Scottsdale, AZ.

SOKOLOWSKI, J. A. (2003c) Modeling the decision process of a joint task force

commander. Norfolk, Virginia, USA., Old Dominion University.

SOMMERVILLE, I. (2004) Software engineering, Boston ; London, Pearson/Addison

Wesley.

STENSRUD, B. (2005) FAMTILE: An Algorithm for Learning High-Level Tactical

Behavior from Observation. School of Electrical and Computer Engineering.

Orlando, Florida, University of Central Florida.

STERNBERG, S. (1975) Memory scanning - new findings and current controversies.

QUARTERLY JOURNAL OF EXPERIMENTAL PSYCHOLOGY, 27, pp. 1-

32.

SUN, S., COUNCIL, I., FAN, X., RITTER, F. E. & YEN, J. (2004) Comparing

Teamwork Modeling in an Empirical Approach. Proceedings of the sixth

international conference on cognitive modeling, pp. 388-389. Mahwah, NJ:

Erlbaum.

References

221

TAMBE, M. and ROSENBLOOM, P. S. (1995) RESC: An approach for real-time,

dynamic agent tracking, In Proceeding of the 14th International Joint

Conference, AI, pp. 103-110.

TAMBE, M. (1997) Towards flexible teamwork. JOURNAL OF ARTIFICIAL

INTELLIGENCE RESEARCH, 7, pp. 83-124.

THREEPENNY (2005) Soar 8 Documentation - SML quick start guide. Threepenny

Software LLC.

http://sitemaker.umich.edu/soar/home

TULVING, E. (1983) Elements of episodic memory, Oxford, Clarendon.

TURING, A.M., (1936-7) On Computable Numbers, With an Application to the

Entscheidungsproblem. Proceedings of the London Mathematical Society, (2)

42, pp 230-265; correction ibid. 43, pp 544-546.

TURING, A. M. (1950) Computing machinery and intelligence. Mind, 59, pp. 433-

460.

WAND, K. & BATHE, M. R. (2008) Personal communication.

WARWICK, W., MCILWAINE, S., HUTTON, R. & MCDERMOTT, P. (2001)

Developing computational models of recognition-primed decision making.

Proceedings of the Tenth Conference on Computer Generated Forces, pp. 232-

331.

WRAY, R. & LAIRD, J. (2003) Variability in human behavior modeling for military

simulations. Proceedings of the 2003 Conference on Behavior Representation

in Modeling and Simulation.

WRAY, R. E., LAIRD, J. E., NUXOLL, A., STOKES, D. & KERFOOT, A. (2005)

Synthetic adversaries for urban combat training. AI Magazine, 26, pp. 82-92.

YEN, J., YIN, J., IOERGER, T., MILLER, M., XU, D. & VOLZ, R. (2001) CAST :

Collaborative agents for simulating teamwork. Proceedings of the Seventeenth

International Joint Conference on Artificial Intelligence (IJCAI-01), pp. 1135-

1142.

YEN, J., FAN, X., SUN, S., HANRATTY, T. & DUMER, J. (2006) Agents with

shared mental models for enhancing team decision makings. Decision Support

Systems, 41, pp. 634-653.

References

222

Appendices

223

10 APPENDIX A – LIST OF ACRONYMS

AAII Australian artificial intelligence institute

ABM Agent based model

ACT-R Adaptive control of thought – rational

ACT-R/PM Adaptive control of thought – rational/perception motor

AG Assault group

AGL Above ground level

AI Artificial intelligence

ANN Artificial neural network

BDI Belief, desire, and intentions

BTC Blue tank commander

CA Composite agents

CASTFOREM Combined arms and support task force evaluation model

CAST Collaborative agent for simulating team behaviour

CBR Case-based reasoning

CBS Corps battle simulation

CCTT Close combat tactical trainer

CFOR Command forces

CGF Computer generated forces

CTDB Compact terrain database

DA Decision agent

DEM Digital elevation model

DIANA DIvisive ANAlysis

DIS Distributive interactive simulations

DL Deterministic Lanchester square law

dMARS Distributed Multi-Agent Reasoning System

DME Declarative memory element

DoD Department of defense

DSTO Defence and science technology organisation

EBL Explanation-based generalization

EINSTein Enhanced ISSAC neural simulation toolkit

ESL Exponential stochastic Lanchester

Appendices

224

FM Field manual

FS Fire support

FSM Finite state machines

FWA Fixed wing attack

GUI Graphical user interface

HBR Human behaviour representation

HBM Human behaviour model

ISAAC Irreducible semi-autonomous adaptive combat

IA Intelligent agent

IP Internet protocol

IPB Intelligence preparation of the battlefield

IFOR Intelligent forces

LOS Line of sight

LTM Long term memory

MANA Map aware non-uniform automata

MAS Multi-agent system

MAUA Multi attribute utility analysis

MDMP Military decision making process

METT-T Mission, enemy, terrain, troops, and time available

ModSAF Modular semi-automated forces

MOUT Military operations on urban terrain

NDM Naturalistic decision making

Oasis Optical aircraft sequencing using intelligent scheduling

OCOKA Observation, cover and concealment, obstacles, key terrain, and

avenues of approach

PRS Procedural reasoning system

RA Reactive agent

R-CAST RPD enabled collaborative agents for simulating teamwork

RL Reinforcement learning

RPD Recognition primed decision making

RWA Rotary wing attack

SIMNET Simulator networking

SAF Semi-automated force

Appendices

225

SARSA State action reward state action

SCA Symbolic constructor agents

SME Subject matter expert

SML Soar mark-up language

SSKP Single shot kill probabilities

STRICOM Simulation, training, and instrumentation command

STOW Synthetic theatre of war

STEAM Shell for teamwork

STM Short term memory

SWARMM Smart whole air mission model

TIN Triangulated irregular network

TRADOC Training and doctrine command

UTC Unified theories of cognition

WM Working memory

WME Working memory element

Appendices

226

Appendices

227

11 APPENDIX B – GLOSSARY OF TERMS

Agent: A computer program that persists and operates as an entity in a simulation.

Assault group: A group of force within a military organization like platoon,

squadron, or task force, etc that is assigned the mission of physically attacking the

enemy forces or positions.

Atomic level action: An action that is not further decomposed in the model.

Attribute: A property of an entity.

Behaviour: The outcome of a continuous process of decision making by an agent

operating in its environment while attempting to carry out a task.

Command agents: Intelligent agents representing human combatant or a military

commander leading a group of combatants or human controlled platforms that

autonomously take decisions in military simulations.

Defilade: The protection of a position, vehicle, or troops against enemy observation

or gunfire.

Enfilade: A volley of gunfire directed along a line from end to end.

Entity: An entity is an object of interest in the system.

Fire support: Fire support is the support provided by one mobile or static group of

combatants to the other by fire using available weapon systems.

Higher level action: An action that can be decomposed further into higher level or

atomic actions.

Appendices

228

Intelligent agent: Intelligent agent is an autonomous, learning, and cooperating agent

that continuously interacts with its environment in pursuit of a mission assigned to it

mimicking human intelligence.

Platform: Representation of a transport or fighting vehicle, or a weapon system with

one or more crew members. The over all behaviour of the platform is controlled by the

decision of its commander.

Situation variable: The elements in an environment that define a situation for an

agent.

Appendices

229

12 APPENDIX C - PROJECT SOFTWARE

The complete research work is developed in Java using Eclipse as the development

environment. All types and versions of agents with their simulation environments are

stored as Eclipse projects with all its necessary files. The software is included in the

CD attached with the back cover.

12.1 RPD-Soar agents

All types and versions of RPD-Soar agents, their required Soar files and data link

libraries to include ElementXML.dll, SoarKernelSML.dll, and

Java_sml_ClientInterface.dll are stored as Java projects in workspace Eclipse1 in the

attached CD. The class libraries sml.jar and swt.jar need to be added from Soar.

All the programs required to extract data from stats file generated from Soar are also

included in each project.

12.1.1 Experiment described in implementation

Advance to contact military operation is stored in the project directory

Eclipse1\RPDSoar-MentalSimVer5. Simulation.java is the main class.

12.1.2 Experiment 1 – Varying performance due to experience

The code to carry out Experiment 1 is available in the project directory

Eclipse1\RPDSoar-MentalSim140207. Random–walk agent, Less-experienced RPD-

Soar agent and the Experienced RPD-Soar agent are all stored as separate Soar files

and can be inserted in the class Environment.java to be loaded. TankSimulation.java is

the main class.

12.1.3 Experiment 2 – Changing context

Changing context due to number of obstacle is available in project directory

Eclipse1\RPDSoar-MentalSimVer2.0-140207. Changing context due to enlarged

environment is available in project directory Eclipse1\RPDSoar-MentalSimVer2.2.

TankSimulation.java is the main class in both cases.

Appendices

230

12.1.4 Experiment 3 – Variability within an agent

The complete experiment for variability with in agent is set up from the project

Eclipse1\RPDSoar-MentalSimVer3.2. The starting location of the Red agent is

required to be changed according to the coordinates specified in each part of the

experiment. Simulation.java is the main class.

12.1.5 Experiment 4 – Learning

The complete experiment for learning in an agent is set up from the project

Eclipse1\RPDSoar-MentalSimVer3.3. The starting location of the Red agent is

required to be changed according to the coordinates specified in each task of the

experiment and code for transfer of learning is available as comments which can be

uncommented to run. Simulation.java is the main class.

12.1.6 Experiment 5 – Recognition of situation by artificial neural network

The neural net part implemented in Matlab is stored in the directory Neural Net1. The

implementation of trained net in Java and its integration with Soar as Java project

RPDSoar-MentalSimVer6 in the Eclipse workspace Eclipse1. The weights in the

NeuralNetTfrFn.java class need to be imported from NeuralNet1 for an agent. The

NeuralNet1 contains programs to extract weights from learnt neural net in Matlab to

be imported to Java. Simulation.java is the main class.

12.2 A simple RPDAgent

All types and versions of the simple RPDAgent discussed in Chapter 4 are stored as

RPDTankSimulationVer-*** in the workspace Eclipse-Java in the attached CD. Main

class is Simulator.java in all the projects.

12.2.1 Verification of one-on-one combat

Exponential and triangular time distribution versions are stored as projects

RPDTankSimulationVer-1.2 and RPDTankSimulationVer-1.1 respectively.

12.2.2 Verification of three-on-one combat

Verification of three-on-one combat is done on exponential time distribution and is

stored as project RPDTankSimulationVer-2.3.

Appendices

231

12.2.3 Two cases: Red and Blue agents not intelligent, and only Red agents

intelligent in three-on-one combat

Three Red tanks are approaching Blue tank in line formation and both sides are not

intelligent and the next experiment of only Red agents intelligent are developed in the

projects mentioned in the following sentence by modifying the if then conditions of

time to engagement for Red tank. If the Red tank hears the Blue tank fire and then the

Red tanks out of the firing range of Blue tank manoeuvre and fire on short inter-firing

time by calling the method of timeToNextEngmnt(). Exponential and triangular time

distribution versions are stored as projects RPDTankSimulationVer-1.5 and

RPDTankSimulationVer-1.6 respectively.

12.2.4 Both Red and Blue agents are intelligent in three-on-one combat

Exponential and triangular time distribution versions are stored as projects

RPDTankSimulationVer-1.7 and RPDTankSimulationVer-1.8 respectively.

Appendices

232

Appendices

233

13 APPENDIX D – EXPLANATION OF THE KEY ELEMENTS

OF THE CODE OF RPD-SOAR AGENT

Some key elements of the code used in implementing the RPD-Soar agent are

discussed in this appendix.

13.1 The architecture

The external environment or the world is developed using the Java programming

language and the agent is developed using the Soar Cognitive architecture. The Soar

agent and the external environment are interfaced using Soar mark-up language

(SML). Different environments based on maps for different scenarios can be loaded

into the system. Agents with different behaviours may be loaded into the system as

production rules in Soar files. In the RPD model it is the experience of the agent that

guides its behaviour. As recognition primed decision making is modelled within the

Soar cognitive architecture, therefore, experiences of the RPD model consisting of

goals, courses of action, cues, and expectations are transformed into appropriate Soar

production rules. And these Soar-production rules are stored in the agent’s LTM.

13.2 The interface

The simulation environment is interfaced to the Soar kernel with the help of soar

mark-up language (SML), as shown in Figure 13.1.

Figure 13.1 The interface

The simulation environment consists of objects or ‘entities’ as usually called in

simulations and some of these entities are Soar agents. The Soar kernel is capable of

Soar Markup
Language

(SML)

Simulation
Environment

Soar
Kernel

Appendices

234

developing and maintaining multiple agents and each can have its individual

behaviour based on the Soar production rules loaded in that agent. SML was

developed by the Soar group to provide an interface into Soar. The client can send and

receive Soar XML packets through a socket maintained by Soar, which is port 12121

by default. ClientSML is available in C++, Java, and Tcl. We have developed the

simulation environment in Java and for a client implemented in Java,

Java_sml_ClientInterface.dll, SoarKernelSML.dll, and ElementXML.dll dynamically

loaded libraries are required.

13.2.1 Creating Soar kernel and agents

A Soar kernel is created in a new thread using the code shown in Figure 13.2. Soar

kernel can also be created in the same thread but we do not use this method because

we require the Soar Kernel to run in a separate thread from that of the environment.

In order to create an agent in this kernel and load productions in the created agent the

code shown in Figure 13.3 is used. To facilitate debugging, it also prints any errors

that are generated while loading the productions. Multiple agents can be created using

the same process by giving each agent a different name. And every agent behaves

according to the Soar production rules loaded in it.

Figure 13.2 Code to create Soar kernel

Kernel kernel;

//create Soar kernel

try {

kernel = Kernel.CreateKernelInNewThread("SoarKernelSML");

} catch (Exception e) {

System.out.println("Exception while creating kernel: " + e.getMessage());

 System.exit(1);

if (kernel.HadError()) {

System.out.println("Error creating kernel: " + kernel.GetLastErrorDescription());

 System.exit(1);

 }

}

Appendices

235

Figure 13.3 Code to create a Soar agent

13.2.2 Input - perception

The “input-link” of the Soar agent, as explained in the previous chapter, is the link of

the agent to receive the information about the outside world. This information is

picked up by the agent during the input phase of the next decision cycle. The client

needs to acquire the identifier of the input-link in order to give all the information

depicting the present situation of the world to the agent. The code to get this input-link

identifier and example code of connecting an object from the environment to it, which

is put as an identifier on the input-link is shown in Figure 13.4.

Figure 13.4 Code to get the input-link and create an identifier WME

The identifier WMEs are required when objects need to be created at the input-link,

e.g., map in Figure 13.4. String and integer WMEs are created either directly on the

input-link or as part of the object represented by an identifier at the input-link. An

example of a WME of type ‘string’ named as ‘sound’ is created directly on the input-

link with the help of code shown in Figure 13.5 with an attribute named ‘sound’ and

its value is a string type constant equal to ‘silent’. A WME is an identifier, attribute,

Identifier input, map;

String MAP = "map";

input = agent.GetInputLink();

map = agent.CreateIdWME(input, MAP);

Agent agent;

agent = kernel.CreateAgent(“agent name”);

boolean load = agent.LoadProductions(“File Name.soar”);

if (!load || agent.HadError()) {

 throw new IllegalStateException("Error loading productions: " +

agent.GetLastErrorDescription());

}

Appendices

236

and value triplet. The value is either a constant or an identifier. The value is an

identifier if it is not a terminal node and one or more branches are emanating out of

this node. In Figure 13.5, ‘bluetank’ is created as an object in the working memory at

the input-link representing an entity present in the simulation environment. The object

‘bluetank’ has three attributes; two of them are its location in the Cartesian

coordinates and third is the direction that the ‘bluetank’ is facing. The X and Y

coordinates are represented with the WMEs of type integer and the direction that the

tank is facing is represented with a WME of type ‘string’. All the objects and facts that

are required by the agent to reason for situational awareness and decision making are

represented in the working memory of the agent through the input-link using codes

similar to the ones explained in the above paragraphs but one type named ‘Shared

Identifier WME’ and it is discussed in the succeeding paragraphs.

Figure 13.5 Code to create object identifier, string and integer WMEs

Identifier blueTank;

IntElement intElmBlueX, intElmBlueY;

StringElement strElmTkFacing, sound;

String BLUETANK = "bluetank";

String X = "x";

String Y = "y";

String FACING = "facing";

//input is the identifier on input-link

sound = agent.CreateStringWME(input, "sound", "silent");

//input is the identifier on input-link

blueTank = agent.CreateIdWME(input, BLUETANK);

//attribute x and value is location of Blue tank.

intElmBlueX = agent.CreateIntWME(blueTank, X, locOfBlueTkX);

//attribute y and value is location of Blue tank.

intElmBlueY = agent.CreateIntWME(blueTank, Y, locOfBlueTkY);

//attribute facing and value is direction of Blue tank.

strElmTkFacing =agent.CreateStringWME(blueTank,FACING,tkFacing);

Appendices

237

The environment in this model is grid based. Each cell in the grid is surrounded by its

neighbouring cells. Each cell has at least three and at most eight cells as its

neighbours. These cells are represented as objects in the working memory of the agent

because each cell has two attributes representing its location in Cartesian coordinates.

These attributes have integer constant values and can be represented with the help of

techniques discussed above. But consider an example of Cell 5 (Figure 13.6), it has a

neighbouring cell just above it Cell 2. To represent this environment a WME need to

be created, which has the identifier of Cell 5 as its identifier with an attribute north

and the value being the identifier of the cell in the north the Cell 2 which itself is

another object. This is a case where graph is required instead of a simple tree. In order

to develop a graph in working memory of the agent new identifier WME with the same

value as that of an identifier of an existing object need to be created through ‘Create

shared identifier WME’ method; the code is shown in Figure 13.6.

Figure 13.6 Example of shared identifier WME

Cell is developed as a class in Java, part of the code is shown in Figure 13.7. The

upper part of the code which is a constructor constructs the cells and gives them

values for their location in Cartesian coordinates and the content and the lower part of

the code which is an example of one of many methods of the same type that connect

these cells to each other. The agent instantiates the cell object to create the nine cell

graph structure. The code in S_Agent class that instantiates cells and then connects

them is shown in Figure 13.8. The upper part of the code creates these cells and gives

agent.CreateSharedIdWME(Identifier of Cell 5, ”north”, Identifier of Cell 2);

Cell 1 Cell 2 Cell 3

Cell 4 Cell 5 Cell 6

Cell 7 Cell 8 Cell 9

Appendices

238

them the values from the map of the environment for fixed objects in the map and if

the objects are dynamic during a simulation then it gives the cells the values

separately as the map of the environment does not have these values. These values

come when the simulation is fired like in the case of red tank in Figure 13.8. The

lower part of the code is a small portion of the code that uses the method in Cell class

(Figure 13.7) to connect these cells together in a graph.

Figure 13.7 Part of code for Cell class

public class Cell {

 .

 .

 .

 public Cell(Agent agent, Identifier map, int xvalue, int yvalue,

String contentvalue) {

 this.agent = agent;

 this.map = map;

 this.xvalue = xvalue;

 this.yvalue = yvalue;

 this.contentvalue = contentvalue;

 Cell cell = agent.CreateIdWME(map, CELL);

 IntElement xIntElm = agent.CreateIntWME(cell, X, xvalue);

 IntElement yIntElm = agent.CreateIntWME(cell, Y, yvalue);

StringElement contentStrElm = agent.CreateStringWME(cell, CONTENT, contentvalue);

}

 .

 .

 public void setNorthSquare(Cell snorthcell) {

 if (idNorthCell != null)

 agent.DestroyWME(idNorthCell);

 if(snorthcell == null)

 idNorthCell = agent.CreateSharedIdWME(cell, NORTH, null);

 else {

northcell = snorthcell;

 idNorthCell = agent.CreateSharedIdWME(cell, NORTH, northcell.cell;

 }

 }

}

Appendices

239

Figure 13.8 Part of code in S_Agent class to create cells and connect them

The agent sits in the centre in Cell 5 in Figure 13.6 and therefore the value of the

content attribute of this cell is always bluetank. This template of nine cells moves over

the map and the value of the x an y attributes representing Cartesian Coordinates of

the location of the cell on the map and the value of the content giving the name of the

object present on the location where the cell is now keep changing accordingly. The

method in Cell class that updates these values in the WMEs are shown in Figure 13.9.

List cells = new ArrayList();

.

.

int i, j;

 for (i = 0; i < 3; i++)

 for (j = 0; j < 3; j++){

 if(x[i] == locOfRedTkX && y[j] == locOfRedTkY)

 cells.add(new Cell(agent, map, x[i], y[j], REDTANK));

 else

 cells.add(new Cell(agent, map, x[i], y[j], mapEnv[x[i]][y[j]]));

 } // for loop

 for (i = 0; i < 9; i++) {

 if(i==0 || i==3 || i==6)

 ((Cell)cells.get(i)).setNorthSquare(null);

 else

(Cell)cells.get(i)).setNorthSquare((Cell)cells.get(i-1));

 if(i==0 || i==1 || i==2)

 ((Cell)cells.get(i)).setWestSquare(null);

 else

 ((Cell)cells.get(i)).setWestSquare((Cell)cells.get(i-3));

 if(i==2 || i==5 || i==8)

 ((Cell)cells.get(i)).setSouthSquare(null);

 else

 ((Cell)cells.get(i)).setSouthSquare((Cell)cells.get(i+1));

 if(i==6 || i==7 || i==8)

 ((Cell)cells.get(i)).setEastSquare(null);

 else

 ((Cell)cells.get(i)).setEastSquare((Cell)cells.get(i+3)); }//for loop

Appendices

240

Figure 13.9 Method in Cell class to update values in the cell WMEs

13.2.3 Output – command/action

The command is put at the output-link after the output phase. The code to get

command from the agent is shown in Figure 13.10. The method agent.Commands()

returns true Boolean value if the agent has put any command on the output-link. The

method agent.Command(0) returns the identifier of the first command and if there are

more commands then the sequence needs to continue to 1,2,3,… for the identifiers of

other commands. The method GetCommandName() on the identifier of command

object returns command name as a string object. The method equals(“command

name”) on the string object is used to identify the command. The method

GetParameterValue(“attribute”) on the identifier of command object gives the value

of that WME with the attribute that is passed as a parameter. Its representation in

working memory is shown in the bottom of Figure 13.10.

public class Cell {

 .

 .

 public boolean setValues(int sxvalue, int syvalue, String scontentvalue) {

 if (sxvalue < 0 || syvalue < 0 || !(scontentvalue == EMPTY ||

 scontentvalue == OBSTACLE || scontentvalue == ROAD

 || scontentvalue == RIVER || scontentvalue == REDTANK))

 return false;

 if (xvalue != sxvalue)

 agent.Update(xIntElm, sxvalue);

 xvalue = sxvalue;

 if (yvalue != syvalue)

 agent.Update(yIntElm, syvalue);

 yvalue = syvalue;

 if (contentvalue != scontentvalue)

 agent.Update(contentStrElm, scontentvalue);

 contentvalue = scontentvalue;

 return true;

 }

 .

 .

}

Appendices

241

Figure 13.10 Output – command

public boolean executeCommand() {

 if (agent.Commands()) {

 for (int i = 0; i < agent.GetNumberCommands(); ++i){

 Identifier command = agent.GetCommand(i);

 if(command.GetCommandName().equals("move")) {

 if(command.GetParameterValue("direction").equals("north"))

 locOfBlueTkY = locOfBlueTkY-1;

 if(command.GetParameterValue("direction").equals("south"))

 locOfBlueTkY = locOfBlueTkY+1;

 if(command.GetParameterValue("direction").equals("east"))

 locOfBlueTkX = locOfBlueTkX+1;

 if(command.GetParameterValue("direction").equals("west"))

 locOfBlueTkX = locOfBlueTkX-1;

 } // if(command....)

 if(command.GetCommandName().equals("turn")) {

 if(command.GetParameterValue("direction").equals("north"))

 dir = 'n';

 if(command.GetParameterValue("direction").equals("south"))

 dir = 's';

 if(command.GetParameterValue("direction").equals("east"))

 dir = 'e';

 if(command.GetParameterValue("direction").equals("west"))

 dir = 'w';

 }//if

 command.AddStatusComplete();

 agent.Commit();

 agent.ClearOutputLinkChanges();

 }//for loop

 return true;

 }//if

 else

 return false;

}//executeCommand

<Identifier of command object> ^direction north

Appendices

242

After acquiring all the information from the command at the output-link the command

object is augmented with a WME with attribute equal to ‘status’ and value equal to

‘complete’. This is done with the help of the method AddStatusComplete() on the

identifier of the command object. This is a kind of a back door approach of telling the

agent that the commands have been picked for implementation by writing status

complete on the command at the output link. This information is used by the agent to

remove the implemented commands from the output link. But nothing is passed on to

the agent until Commit() method is used on the command identifier object. After

which ClearOutputLinkChanges() method on the agent object is implemented. The

reason for using this method is because we are using a technique to get the commands

in which the changes on the output-link are monitored to pick up a fresh command

therefore the output-link changes need to be cleared. Now the method commands() on

agent object returns true after output-link is changed.

13.2.4 Event handling

In this model event handling is required to update the user interface in the

environment and to connect the environment to the ‘Java debugger’. The Java

debugger can connect to the remote Soar kernel given an internet protocol (IP)

address and a port number. The IP address is not required if the Soar kernel is running

on the same machine. The user interface in this implementation is in the Simulation

class. The Soar kernel is created in Environment class. The Simulation class is

registered with the kernel through the Environment using its

registerForStartStopEvent() method (Figure 13.11). The Simulation object is passed

as second argument to RegisterForSystemEvent() method in Kernel class Figure

13.12. This argument is an object of SystemEventInterface type and Simulation object

matches the type because the Simulation is implementing the EnvironmentListener

interface class (Figure 13.13) and EnvironmentListener is extending

SystemEventInterface class (Figure 13.11).

Appendices

243

Figure 13.11 Code to handle events in Environment class

//Class: Environment

public class Environment implements Runnable, Kernel.UpdateEventInterface {

//This allows us to either run the environment directly or from a debugger and get correct behaviour

 int updateCallback = kernel.RegisterForUpdateEvent(

 smlUpdateEventId.smlEVENT_AFTER_ALL_OUTPUT_PHASES, this, null) ;

public void registerForStartStopEvents(EnvironmentListener listener, String methodName) {

 if (kernel != null){

 int startCallback = kernel.RegisterForSystemEvent(

 smlSystemEventId.smlEVENT_SYSTEM_START, listener, null) ;

 int stopCallback = kernel.RegisterForSystemEvent(

 smlSystemEventId.smlEVENT_SYSTEM_STOP, listener, null) ;

 }

 }

/** This method is called when the "after_all_output_phases" event fires,

* at which point we update the world */

public void updateEventHandler(int eventID, Object data, Kernel kernel, int runFlags){

 try{

 if (m_StopNow) {

 m_StopNow = false ;

kernel.StopAllAgents() ;

 }//if

 updateWorld() ;

 }//try

 catch (Throwable t){

 System.out.println("Caught a throwable event" + t.toString());

 }

 }

}

//Class: EnvironmentListener

public interface EnvironmentListener extends Kernel.SystemEventInterface {

public void tankMoved(Environment env, int x, int y, char dir, int redx, int redy);

 public void atGoalState(Environment env);

} //EnvironmentListener ends

Appendices

244

Figure 13.12 Methods and fields in Kernel and other sml classes for event handling

The Environment is registered with kernel through RegisterForUpdateEvent() method

in the Kernel class (Figure 13.12). The Environment is passed as second argument to

the method which is UpdateEventInterface class but it matches because the

Environment is implementing UpdateEventInterface class (Figure 13.12). The

UpdateEventInterface and smlUpdateEventId classes are used to update the world

public class Kernel{

 //Class: SystemEventInterface within Kernel

 public interface SystemEventInterface {

public void systemEventHandler(int eventID, Object data, Kernel kernel);

 }

 //Class: UpdateEventInterface within Kernel

 public interface UpdateEventInterface {

public void updateEventHandler(int eventID, Object data, Kernel kernel, int runFlags);

 }

 public int RegisterForSystemEvent(smlSystemEventId id, SystemEventInterface handlerObject, Object

callbackData) {

return smlJNI.Kernel_RegisterForSystemEvent(swigCPtr, id.swigValue(), this, handlerObject, callbackData);

 }

 public int RegisterForUpdateEvent(smlUpdateEventId id, UpdateEventInterface handlerObject, Object callbackData){

return smlJNI.Kernel_RegisterForUpdateEvent(swigCPtr, id.swigValue(), this, handlerObject, callbackData) ;

 }

} // ends Kernel Class

//Class: smlUpdateEventId

public final class smlUpdateEventId {

public final static smlUpdateEventId smlEVENT_AFTER_ALL_OUTPUT_PHASES = new

smlUpdateEventId("smlEVENT_AFTER_ALL_OUTPUT_PHASES",

smlXMLEventId.smlEVENT_LAST_XML_EVENT.swigValue() + 1);

} // ends Class: smlUpdateEventId

//Class: smlSystemEventId

public final class smlSystemEventId {

public final static smlSystemEventId smlEVENT_SYSTEM_START = new

smlSystemEventId("smlEVENT_SYSTEM_START");

public final static smlSystemEventId smlEVENT_SYSTEM_STOP = new

smlSystemEventId("smlEVENT_SYSTEM_STOP");

}

Appendices

245

and SystemEventInterface and smlSystemEventId classes are used to update the

buttons in the GUI (Figure 13.12).

Figure 13.13 Code in Simulation class for event handling

13.3 Graphical user interface (GUI)

The code for the GUI is in the Simulation class. The interface has four buttons Run,

Stop, Step, and Reset to control the simulation Figure 13.14. The Run button when

pressed runs the agents forever until either the stop button is pressed or the agent

achieves its goal. All the buttons are enabled and disabled appropriately. The GUI is

updated whenever the agent makes a decision to take an action in the world. The

simulation and the GUI are running in separate threads and therefore the GUI is

updated independently of the simulation.

public class Simulation implements EnvironmentListener {

Environment env = new Environment(BlueTkX, BlueTkY, RedTkX,fRedTkY, mapArray);

 env.addEnvironmentListener(this);

 env.registerForStartStopEvents(this, "systemEventHandler") ;

 public void systemEventHandler(int eventID, Object data, Kernel kernel){

 if (eventID == sml.smlSystemEventId.smlEVENT_SYSTEM_START.swigValue()) {

// The callback comes in on Soar's thread and we have to update the //buttons on the UI thread, so

switch threads.

dpy.asyncExec(new Runnable(){

public void run() { updateButtons(true) ; } }) ;

 }

 if (eventID == sml.smlSystemEventId.smlEVENT_SYSTEM_STOP.swigValue()) {

 dpy.asyncExec(new Runnable(){

public void run(){ updateButtons(false) ; } }) ;

 }

 }

}

Appendices

246

13.4 The Environment

The environment is grid based (Figure 13.14). The perimeter has obstacles and the

agent’s world is restricted to these boundaries. There is a Map class which contains

the location of obstacle and initial location of the red tank, and is responsible to place

the appropriate map for the task. The agent is a tank commander who is commanding

a single tank. There are two types of sensors in the tank, one is a visual sensor that

looks only one adjacent cell around itself, and the other is a radar sensor that can see

up to five cells in the direction that the tank is facing. The radar sensor can not see

beyond any obstacle. Past observations from the radar are retained in the memory of

the agent and it can use this information in decision making. This environment is

more or less common in all the experiments but the changes, if any, are mentioned in

the experiments.

Figure 13.14 The Environment

13.5 Working of RPD-Soar agent

The implementation and working of the RPD-Soar agent is explained with the help of

a vignette. The context is an advance-to-contact military land operation. In a 10 x 10,

grid based environment (Figure 13.14), the tank has to start from the south and

advance towards north to reach the destination. The environment has only one

Appendices

247

obstacle which is a hill that gives protection from observation and fire. The agent has

radar and visual sensors as described in Section 6.6. The agent has been given the

location of the destination cell and has been tasked to advance to that location. Enemy

tanks are expected on the route to delay the advance. The firing range of an enemy

tank is three kilometres while, that of the agent is four kilometres. In this experiment

one cell represents one kilometre. In this thesis the scales for representation of terrain,

if required, are mentioned with the experiment.

Most tasks are performed within a larger context that includes higher-level goals. In

this case the main context is an advance-to-contact military land operation. There are

three high level contexts in this experiment and each is represented with an

experience. The experience has goals, cues, expectations, and a course of action.

These high level contexts are mutually exclusive and the agent at one time is in any

one of them. These experiences are shown in Figure 13.15, Figure 13.16, and Figure

13.17.

Figure 13.15 Experience – advance

The goal is the state of affairs that is intended to be achieved and may also be defined

as the end state to which all efforts are directed. The cue is the perception of a set of

patterns that gives the dynamics of the situation, and making distinctions in these

patterns. This pattern is formed by the features of a situation or elements in an

Experience: Advance

• Goal

– Reach the destination

• Cues

– High ground: not visible

– Incoming missile: none

– Enemy tank: none visible

– Distance to the destination

• Expectations

– No incoming missile

– No enemy tank visible

– No high ground within four kilometres

• Course of Action

– Move towards destination

Appendices

248

environment. The expectation is the belief of the agent that an event will or will not

occur in a given situation. The course of action is the strategy or plan that the agent

intends to implement.

Recognition of a situation not only means recognizing a typical response but also

indicating what goals make sense, what cues are important and what is expected next.

During advance an important cue is high ground. The agent expects to see no high

ground within four kilometres of it. Now if the agent finds high ground within four

kilometres then this expectation is violated and a fresh evaluation of the situation is

necessary. If the agent finds high ground within four kilometres of itself and is facing

north, which is the direction of its destination, then it recognizes this situation and

changes its state to manoeuvre. During manoeuvre the agent does not expect to see an

enemy tank. If it sees a tank an expectation is violated and the situation is evaluated

again.

Figure 13.16 Experience – manoeuvre

Experience: Manoeuvre

• Goals

– Expose the enemy tank at the longest range

– Do not expose own tank to enemy within enemy tank’s firing range

• Cues

– High ground: at a distance <= 4 kilometres

– Direction of own tank: facing destination (north)

– Incoming missile: none

– Enemy tank: none visible

• Expectations

– No incoming missile

– No enemy tank visible

– Enemy tank behind high ground on completion of manoeuvre

• Course of Action

– While taking cover from the high ground, move to a location four

kilometres east of expected enemy tank

Appendices

249

Figure 13.17 Experience - attack

If we set up the simulation with the map representing the environment displayed in

Figure 13.14, load the agent with the behaviour required to accomplish the mission for

advance-to-contact operation, connect it with Soar Java debugger and then run it for a

single step then the agent will start to develop working memory contents as shown in

Figure 13.18. Running the simulation one step also makes the agent run through one

decision cycle. The information generated by the radar and the visual sensors is put in

the working memory through the input-link of the agent. This information is shown in

Figure 13.18. The agent is facing north and is five cells south of the high ground

therefore the radar sensor of the agent sees an obstacle at location represented in

Cartesian coordinates as (5, 3). This information is represented in working memory as

(S1 ^io I1) (I1 ^input-link I2) (I2 ^radar R1) (R1 ^obstacle O1) (O1 ^x 5 ^y 3). The

visual sensor as we know can see only one cell around itself and therefore, sees three

obstacles in the south, south-west, and south-east of the agent represented in the

working memory as (M1 ^cell C9 ^cell C8 ^cell C7 ^cell C6 ^cell C5 ^cell C4 ^cell C3

^cell C2 ^cell C1) (C9 ^content obstacle) (C6 ^content obstacle) (C3 ^content

obstacle). The rest of the five cells around the agent are empty and are displaying their

contents as empty in the working memory.

Experience: Attack

• Goal

– Destroy the enemy

• Cues

– Enemy tank: visible

• Expectations

– Enemy tank remains visible

• Course of Action

– Engage the enemy tank with fire

Appendices

250

Figure 13.18 Working memory of the RPD-Soar agent

The bluetank, map, cell, radar, obstacle, and empty are objects in the working

memory that have been put there through the input-link by the environment. Operator

and direction objects are produced by the production rules loaded in the agent. The

state object is automatically created in the working memory of the agent. The

production rule propose*initialize-rpd-soar (Figure 13.19) checks for a task for the

agent by checking the absence of name of the state and proposes an operator named

initialize-rpd-soar. This being the only operator proposed is selected in the decision

phase and is applied in the application phase by the rule apply*initialize-rpd-soar

(lower half of Figure 13.19). Firing of this rule places the mission of this advance-to-

contact operation as the desired state in the working memory of the agent.

The simulation is run through the next step and conditions based on the cues of

experience for advance (Figure 13.15) as the suitable course of action is selected.

There is no red tank in sight, the obstacle is five kilometres away, and there is no

(S1 ^bluetank B1 ^directions E15 ^directions N1 ^directions W1 ^directions S2

 ^io I1 ^map M1 ^operator O2 + ^operator O2 ^radar R1 ^super-state nil

 ^super-state-set nil ^top-state S1 ^type state)

 (I1 ^input-link I2 ^output-link I3)

 (I3)

 (I2 ^bluetank B1 ^incoming no ^map M1 ^radar R1 ^sound silent)

 (B1 ^facing north ^x 5 ^y 8)

 (R1 ^empty E14 ^empty E13 ^empty E2 ^empty E12 ^empty E11 ^empty E10

 ^empty E9 ^empty E8 ^empty E7 ^empty E6 ^empty E5 ^empty E4

 ^empty E3 ^empty E1 ^obstacle O1)

 (E14 ^x 6 ^y 3) (E13 ^x 4 ^y 3) (O1 ^x 5 ^y 3) (E12 ^x 6 ^y 4)

 (E11 ^x 4 ^y 4) (E10 ^x 5 ^y 4) (E9 ^x 6 ^y 5) (E8 ^x 4 ^y 5)

 (E7 ^x 5 ^y 5) (E6 ^x 6 ^y 6) (E5 ^x 4 ^y 6) (E4 ^x 5 ^y 6)

 (E3 ^x 6 ^y 7) (E2 ^x 4 ^y 7) (E1 ^x 5 ^y 7)

(M1 ^cell C9 ^cell C8 ^cell C7 ^cell C6 ^cell C5 ^cell C4 ^cell C3 ^cell C2 ^cell C1)

 (C9 ^content obstacle ^north C8 ^north-west C5 ^west C6 ^x 6 ^y 9)

 (C5 ^content empty ^east C8 ^north C4 ^north-east C7 ^north-west C1

 ^south C6 ^south-east C9 ^south-west C3 ^west C2 ^x 5 ^y 8)

 (C6 ^content obstacle ^east C9 ^north C5 ^north-east C8

 ^north-west C2 ^west C3 ^x 5 ^y 9)

 (C8 ^content empty ^north C7 ^north-west C4 ^south C9 ^south-west C6

 ^west C5 ^x 6 ^y 8)

 (C7 ^content empty ^south C8 ^south-west C5 ^west C4 ^x 6 ^y 7)

 (C4 ^content empty ^east C7 ^south C5 ^south-east C8 ^south-west C2

 ^west C1 ^x 5 ^y 7)

 (C3 ^content obstacle ^east C6 ^north C2 ^north-east C5 ^x 4 ^y 9)

 (C2 ^content empty ^east C5 ^north C1 ^north-east C4 ^south C3

 ^south-east C6 ^x 4 ^y 8)

 (C1 ^content empty ^east C4 ^south C2 ^south-east C5 ^x 4 ^y 7)

 (N1 ^opposite south ^value north) (E15 ^opposite west ^value east)

 (S2 ^opposite north ^value south) (W1 ^opposite east ^value west)

 (O2 ^name initialize-rpd-soar)

Appendices

251

incoming missile. The presence of red tank and incoming missile are straight forward

cues but in order to observe the cue of relative distance of tank to the obstacle some

elaborations is required which is Level 2 RPD and is done with the help of

productions in Figure 13.20. The advance course of action is an abstract operator.

Therefore an operator no-change impasse occurred and a new sub-state is created to

implement it.

Figure 13.19 Production: initialize-rpd-soar

sp {propose*initialize-rpd-soar

 (state <s> ^super-state nil

 -^name)

-->

 (<s> ^operator <o> +)

 (<o> ^name initialize-rpd-soar)

}

sp {apply*initialize-rpd-soar

 (state <s> ^operator <op>)

 (<op> ^name initialize-rpd-soar)

-->

 (<s> ^name rpd-soar

 ^desired <d>)

 (<d> ^bluetank <btk>)

 (<btk> ^x 5 ^y 1)

}

Appendices

252

Figure 13.20 Productions: elaborate distance of tank to obstacle

In this context with advance as its major task the agent has four actions to choose

from: move in the direction that the tank is facing and turn in the other three

directions. And as all four are applicable in the situation then an operator tie impasse

is generated (Figure 13.21). This is the situation of RPD model where the decision

maker can not select a course of action from a pool of courses of action that he knows

can apply. Now the decision maker develops a mental model of the environment and

mentally simulates the courses of actions serially to select the one which seems

satisficing.

Figure 13.21 Operator tie impasse

sp {elaborations*elaborate*state*dist-obs-tank

 (state <s> ^operator.name initialize-rpd-soar)

-->

 (<s> ^dist-obs-tank <dot>)

}

sp {elaborations*elaborate*state*dist-obs-tank*coords

 (state <s> ^name rpd-soar

 ^bluetank <bt>

 ^radar.obstacle <obs>

 ^dist-obs-tank <dot>)

 (<bt> ^x <btx> ^y <bty>)

 (<obs> ^x <ox> > 0 < 9 ^y <oy> > 0 < 9)

-->

 (<dot> ^x (- <btx> <ox>) ^y (- <bty> <oy>))

}

: ==>S: S1

 : O: O3 (advance)

 : ==>S: S3 (operator no-change)

 : ==>S: S5 (operator tie)

Appendices

253

Now among the candidate operators in experiments discussed later, the agent has the

experience to prefer one operator over the other for evaluation and the experience to

judge when an operator is satisficing but this agent evaluates each and every candidate

serially and randomly selects one to evaluate first. Therefore, one operator is selected

in the selection space S5 for evaluation at random, shown in Figure 13.22.

Figure 13.22 Operator: evaluate-operator

This operator named evaluate-operator is also abstract and therefore another space S7

is created to implement evaluation and this is the mental model for simulating a

course of action as of RPD model (Figure 13.23). In this space, all the objects in the

environment are modelled again and the operator representing the course of action to

be evaluated is selected to be applied.

Figure 13.23 Space for mental simulation

The operator application is not on the real world rather on the model world created in

the agent’s head. In this case the course of action is being evaluated for advance which

means a better action is the one that can take the agent close to the destination given in

the original mission. In order to evaluate the candidate actions, the Manhattan distance

is calculated after applying each action and the numeric value is recorded as

evaluation factor. Manhattan distance between two points (x1, y1) and (x2, y2) is

defined in terms of X and Y as X = x2 - x1, and Y = y2 - y1. And then the action with

: ==>S: S1

 : O: O3 (advance)

 : ==>S: S3 (operator no-change)

: ==>S: S1

 : O: O3 (advance)

 : ==>S: S3 (operator no-change)

 : ==>S: S5 (operator tie)

 : O: O10 (evaluate-operator)

 : ==>S: S7 (operator no-change)

 : O: C10 (turn)

Appendices

254

the least numeric value is selected. This is achieved through the use of selection space

implementation provided by Soar group (Laird, 2006a) and the production rules

written for copying the objects and the application of operators in the mental model

for this implementation. Some of the production rules written for this purpose are

shown in Figure 13.24.

The majority of the production rules provided as selection space productions are being

used as such in this implementation for mental simulation while some of them are

modified to suite the requirements of this model. The first rule in Figure 13.24 is used

by the production rules of selection space for copying objects in the mental model; the

second rule is used to calculate the Manhattan distance; and the third rule applies a

north move operator for mental simulation after checking the absence of io object

which is an indicator that this is the mental model and not the real world.

Figure 13.24 Example productions used to implement mental simulation

1 sp {advance*elaborate*problem-space

(state <s> ^name advance)

-->

(<s> ^problem-space <p>)

(<p> ^name advance ^default-state-copy yes

^two-level-attributes bluetank)

}

2 sp {advance*elaborate*state*manhattan-distance

(state <s> ^name advance

 ^desired <d> ^bluetank <bt> ^tried-tied-operator)

(<d> ^bluetank <dbt>)

(<bt> ^x <bx> ^y <by>)

(<dbt> ^x <dbx> ^y <dby>)

-->

(<s> ^mhdistance <mhd>)

(<mhd> ^mhx (abs (- <dbx> <bx>)) ^mhy (abs (- <dby> <by>)))

}

Appendices

255

After evaluating each action the sub-states of the mental model and thus all the WMEs

related to them are removed from the working memory of the agent and only the

evaluated value is kept in the higher state evaluating these actions.

After evaluating all the candidate actions move north operator is selected because it is

taking the agent close to the destination and is applied to the real world. It is done

through the output-link and with the help of the model for acquisition of commands

from the agent explained earlier in the same chapter. The new location of the Blue

agent in the environment after moving north is shown in Figure 13.25.

Figure 13.25 Situation after moving north

Now the distance to the high ground is equal to four kilometres and one of the

expectations of the advance experience is not met, therefore the situation is re-

evaluated and this time the experience manoeuvre is recognised as its conditions are

met. The course of action for the experience manoeuvre is represented graphically in

Figure 13.26. In this case the blue agent sees high ground on its approach to its

destination and expects an enemy tank behind it. Similar approach has been adopted

by Tambe and Rosenbloom (1995) where the pilot agent observes the actions of the

enemy aircrafts and by observing the observable actions infers their unobserved

actions, plans, goals, and behaviours.

The course of action manoeuvre is also at higher level of abstraction and creates an

operator no-change impasse (Figure 13.27).

Appendices

256

Figure 13.26 Experience – manoeuvre

Just like advance, this course of action for experience manoeuvre is implemented

through atomic actions of move and turn but now the destination is the location

pointed by the head of the arrow representing the planned path for movement of blue

tank. This desired state set as the goal of experience manoeuvre is set by the

production rule shown in Figure 13.28.

Figure 13.27 Manoeuvre - an abstract action

This location as destination for completing the manoeuvre action is kept so as the

Blue tank appears at a distance of four kilometres from the Red tank and therefore is

out of the firing range of the enemy while the Red tank is within the firing range of

Blue tank. The Blue tank commander is exploiting the weakness of the enemy to

achieve own aim of destroying the enemy forces as secondary mission while reaching

the destination which is the main mission. In this situation it would have not been

: ==>S: S1

 : O: O12 (mnvr)

 Destinatio

Appendices

257

possible for the Blue tank to reach its destination without destroying the Red tank or

making it retreat from its present location as the area would have been unsafe to

advance.

Figure 13.28 Production: set the goal for manoeuvre

The selection of the atomic actions in experience manoeuvre is through mental

simulation as is the case of experience advance. It is not necessary for all the

experiences to have all the components of situations as represented in the RPD model.

It is understandable that the recognition of a situation requires more processing of

information for comparatively high level contexts; therefore, it is expensive in time

and resources to repeat the process with every single change in the world. It is also

true that not all changes in the world are likely to change the higher context. It is also

observed that the behaviours at a higher level persist for a comparatively longer time

and consist of a combination of low level behaviours. There may not be a requirement

to associate expectations with the courses of action in the experiences at atomic level

behaviours where an action is taken that changes the world and then the situation is re-

evaluated to select the next action. This is because the selected course of action does

not persist long enough to require watching expectations while the action is under

progress. The same is true for the goal at atomic level. The goal is the result of the

action itself. Therefore, in this implementation of the RPD model, the goals and

expectations are part of the experiences representing behaviour at a higher level of

abstraction. At atomic level the experiences consist of only cues and the action. The

success value or preference of one action over the other accompanies the experiences

sp {mnvr*initialize*desired*state

 (state <s> ^name mnvr ^radar.obstacle <obs>)

 (<obs> ^x <ox> > 0 < 9 ^y <oy> > 0 < 9)

-->

 (<s> ^desired <d>)

 (<d> ^bluetank <btk> ^better lower)

 (<btk> ^x (- <ox> 4) ^y (- <oy> 1) ^facing east)

}

Appendices

258

at even atomic level in most cases. This success value is used in two ways: the first, is

the selection of a course of action straight away without mentally simulating it if one

candidate is distinctly better than the others; and the second, is the selection of a

course of action as the first one to consider for mental simulation when the chances of

success of candidate courses of action are similar.

In Soar, it is effortless to model the phenomenon of watching the expectations while

carrying out a course of action. In Soar, all the states are active at all times. Any

change in a state at a higher level removes all the sub-states which are responsible for

the creation of these sub-states. In the vignette under discussion (see Figure 13.14),

the advance behaviour is selected and the course of action is under progress when the

blue tank moves north and the distance between the blue tank and the obstacle reduces

to four kilometres (Figure 13.25). The agent is expecting no obstacle this close while

advancing thus an expectation is violated and the situation needs to be re-evaluated. In

Soar, the re-evaluation of a situation given the violation of expectations is almost

automatic if the conditions for selection of the concerned operators are set correctly.

The abstract advance operator that creates the sub-state where this course of action is

being implemented is removed due to one of its conditions for selection being violated

and thus the sub-states implementing it are also removed. The situation therefore is re-

evaluated to recognize new situations in order to find courses of action from other

experiences to proceed with the task.

During the manoeuvre context the blue tank keeps moving by selecting actions that

reduce its distance from the destination recognized as a goal with the present situation

until it reaches the destination. To accomplish its goal completely the blue tank also

turns east as shown in Figure 13.29. Now the blue agent finds the red tank on its radar

sensor (Figure 13.30). The only cue in the attack experience is red tank (Figure 13.17)

and for its selection the condition to be satisfied is red tank’s presence. As the

condition is met therefore the proposal to select attack as a context is fired by the

production rule shown in Figure 13.31 and as attack is the only operator proposed

therefore it is selected. Attack is an action at a higher level of abstraction therefore a

new sub-state is created through an operator no-change impasse (Figure 13.32) to

implement this abstract action. In this context a fire action is proposed, selected and

applied and the red tank is destroyed.

Appendices

259

Figure 13.29 Situation after completing manoeuvre

Figure 13.30 State of working memory showing red tank on radar sensor

(S1 ^bluetank B1 ^desired D2 ^directions E15 ^directions W1 ^directions S2

 ^directions N1 ^dist-obs-tank D1 ^io I1 ^map M1 ^mnvr-situation yes

 ^name rpd-soar ^operator O215 + ^operator O215 ^radar R1

 ^super-state nil ^super-state-set nil ^top-state S1 ^type state)

 (R1 ^empty E84 ^empty E83 ^empty E82 ^empty E1 ^obstacle O61

 ^obstacle O45 ^obstacle O44 ^obstacle O43 ^obstacle O62

 ^obstacle O71 ^obstacle O72 ^obstacle O73 ^obstacle O120

 ^obstacle O1 ^obstacle O121 ^obstacle O122 ^obstacle O123

 ^obstacle O124 ^obstacle O125 ^obstacle O140 ^obstacle O141

 ^obstacle O142 ^obstacle O143 ^obstacle O144 ^obstacle O60

 ^redtank R2)

Appendices

260

Figure 13.31 Production - propose attack

Figure 13.32 Attack – an abstract action

The attack experience expects to see the red tank all the time but as the simulation

removes the destroyed tank it is not visible on the radar sensor. The expectation of the

situation is violated in the RPD model and situation is required to be re-evaluated and

in Soar it is implemented by putting it as a condition in the production that proposes

attack operator as shown in Figure 13.31. As the conditions for the proposal of the

attack operator are not satisfied therefore attack operator is removed and so is the sub-

state created because of it.

The situation is re-evaluated and advance is selected which as discussed earlier is an

abstract operator and creates an operator no-change impasse to create a sub-state to

implement it Figure 13.33.

Figure 13.33 Advance – an abstract action

The agent, repeating move and turn actions after selecting them by evaluating through

mental simulation reaches its destination shown in Figure 13.34.

: ==>S: S1

 : O: O215 (attack)

sp {rpd-soar*propose*attack

 (state <s> ^name rpd-soar ^radar.redtank)

-->

 (<s> ^operator <op> + =)

 (<op> ^name attack)

}

: ==>S: S1

 : O: O217 (advance)

Appendices

261

Figure 13.34 Blue tank reaches its destination

On completing the mission as in military operations and reaching the goal state as in

Soar, the agent needs to halt and the simulation is required to either stop or reset for

another run. In case only the agent needs to be stopped, it may be done with the help

of Soar production rules and the method to implement this option is discussed later,

but if the simulation needs to be stopped and reset for another run then it may be done

with the help of the code shown in Figure 13.35 and Figure 13.36.

Appendices

262

 Figure 13.35 Environment – methods to handle goal state

public class Environment implements Runnable,

 Kernel.UpdateEventInterface {

.

.

public void updateWorld() {

if(blueTk.executeCommand()) {

 .

 .

 firetankMoved();

 if (isAtGoalState())

 fireAtGoalState();

}//if(blueTk.exec....)

 }//updateWorld()

public boolean isAtGoalState() {

 return (locOfBlueTkX == 5 && locOfBlueTkY == 1);

}

* Notifies any registered listeners that this <code>Environment</code>

 * has reached the goal state. */

 protected void fireAtGoalState() {

 Iterator i = listeners.iterator();

 while (i.hasNext())

 ((EnvironmentListener)i.next()).atGoalState(this);

 }

* Runs Soar until interrupted

 */

 public void run() {

 if (isAtGoalState())

 return;

 m_StopNow = false;

 // Start a run

 kernel.RunAllAgentsForever();

 }

 public void step() {

 if (isAtGoalState())

 return;

 // Run one decision

 kernel.RunAllAgents(1);

 }

/** Stop a run (might have been started here in the environment or in the debugger)*/

 public void stop() {

 // issue StopSoar() in a callback.

 m_StopNow = true;

 }

}

Appendices

263

Figure 13.36 Simulation – method to handle goal state

If agent has some command to execute, it is executed and then it is checked with the

help of the method isAtGoalState() whether the goal state is reached or not. If the goal

state is reached then the Environment with the help of the protected method

fireAtGoalState() fires the atGoalState() method in all the registered listeners (Figure

13.35). The Simulation with the help of its atGoalState() method calls the Stop()

method in Environment which sets the Boolean variable m_StopNow true. The update

public class Simulation implements PaintListener,

ControlListener, EnvironmentListener {

.

.

public void atGoalState(Environment env) {

 env.stop();

 System.out.println("Goal State reached.");

}

public void systemEventHandler(int eventID, Object

data, Kernel kernel) {

if (eventID == sml.smlSystemEventId.smlEVENT_SYSTEM_START.swigValue()) {

// The callback comes in on Soar's thread and we have to //update the buttons on the UI thread, so switch

threads.

dpy.asyncExec(new Runnable() {

public void run() { updateButtons(true) ; } }) ;

 }

if (eventID == sml.smlSystemEventId.smlEVENT_SYSTEM_STOP.swigValue()) {

 simRun++;

 if(simRun<totalSimRuns) {

 env.reset();

 env.run();

 }

// The callback comes in on Soar's thread and we have to //update the buttons on the UI thread, so switch

threads.

 dpy.asyncExec(new Runnable() {

public void run() { updateButtons(false) ; } }) ;

}

}

}

Appendices

264

event handling method in Environment, shown in Figure 13.11, checks for

m_StopNow variable and if true the agents are stopped. When the agent stops the

systemEventHandler() method in Simulation is evoked which resets the environment

and runs the simulation again until the number of simulations required is reached

(Figure 13.36).

The agent can be stopped using halt command inherent in Soar. The halt command

irreversibly terminates the execution of the Soar program and should not be used

when the agent needs to be restarted. The production rules that implement this method

of stopping the execution of Soar program is shown in Figure 13.37. But this has not

been used in most cases in this implementation because the Soar program is run

within a simulation which needs to be restarted most of the times.

Appendices

265

Figure 13.37 Productions: to set the goal, test the goal and halt the agent

This production sets the goal for the agent.

sp {rpd*apply*initialize-rpdsoar-ms1

 (state <s> ^operator <op>)

 (<op> ^name initialize-rpdsoar-ms1)

-->

 (<s> ^name rpdsoar-ms1

 ^desired <d>)

 (<d> ^bluetank <btk>)

 (<btk> ^x 5 ^y 1)

}

This production tests the goal state and

halts the execution of Soar program when

the goal is achieved.

sp {rpd*detect*desired-state*reached

 (state <s> ^name rpdsoar-ms1

 ^io

 ^desired <d>

 ^bluetank <bt>)

 (<d> ^bluetank <dbt>)

 (<dbt> ^x <x> ^y <y>)

 (<bt> ^x <x> ^y <y>)

-->

 (write (crlf) |Success!|)

 (halt)

}

Appendices

266

Appendices

267

14 APPENDIX E – LEARNT CHUNKS

The chunks learnt by the RPD-Soar agent in Experiment 4 are stored in the file named

learnt chunks in the attached CD.

Appendices

268

Appendices

269

15 APPENDIX F – PUBLICATIONS

The following papers have been published based on the work in this thesis:

• Raza, M. & Sastry, V. V. S. S. (2007) Command Agents with Human-Like

Decision Making Strategies. Proceedings of the 19th IEEE International

Conference on Tools with Artificial Intelligence - (ICTAI 2007), Vol. 2, pp.

71-74. IEEE Computer Society.

• Raza, M. & Sastry, V. V. S. S. (2008) Variability in Behavior of Command

Agents with Human-Like Decision Making Strategies. Tenth International

Conference on Computer Modeling and Simulation (uksim 2008), pp. 562-567.

Cambridge, England.

