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ABSTRACT 

 

Human behaviour representation in military simulations is not sufficiently realistic, 

specially the decision making by synthetic military commanders. The decision making 

process lacks realistic representation of variability, flexibility, and adaptability 

exhibited by a single entity across various episodes. It is hypothesized that a widely 

accepted naturalistic decision model, suitable for military or other domains with high 

stakes, time stress, dynamic and uncertain environments, based on an equally tested 

cognitive architecture can address some of these deficiencies. And therefore, we have 

developed a computer implementation of Recognition Primed Decision Making (RPD) 

model using Soar cognitive architecture and it is referred to as RPD-Soar agent in 

this report. Due to the ability of the RPD-Soar agent to mentally simulate applicable 

courses of action it is possible for the agent to handle new situations very effectively 

using its prior knowledge.  

The proposed implementation is evaluated using prototypical scenarios arising in 

command decision making in tactical situations. These experiments are aimed at 

testing the RPD-Soar agent in recognising a situation in a changing context, changing 

its decision making strategy with experience, behavioural variability within and 

across individuals, and learning. The results clearly demonstrate the ability of the 

model to improve realism in representing human decision making behaviour by 

exhibiting the ability to recognise a situation in a changing context, handle new 

situations effectively, flexibility in the decision making process, variability within and 

across individuals, and adaptability. The observed variability in the implemented 

model is due to the ability of the agent to select a course of action from reasonable 

but some times sub-optimal choices available. RPD-Soar agent adapts by using 

‘chunking’ process which is a form of explanation based learning provided by Soar 

architecture. The agent adapts to enhance its experience and thus improve its 

efficiency to represent expertise. 
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1 INTRODUCTION 

 

This chapter first introduces the context in which the problem discussed in this thesis 

arises, followed by major contributions of the work and concludes with a brief 

description of the chapters. 

Military simulations are extensively used for planning, training, acquisition of 

systems, evaluation of weapon systems and equipment, tactics and doctrines. Present 

day battle scenarios are very complex and highly dynamic. This complexity and 

dynamism is likely to increase in future. Decisions of present day human commanders 

have unprecedented effects on the outcome of the battle, due to availability of 

firepower, mobility, flexibility, and information (Killebrew, 1998). Human-in-the-

loop simulations are time and personnel intensive (Peck, 2004). In simulations lacking 

human intervention, it is no longer a valid method to use the relative strength of 

opposing forces, together with their firepower, in order to predict battle outcomes 

(U.S. Army, 1997). The battle outcomes of aggregated forces is not as accurate as the 

results produced by different entities engaged in combat interactively with their 

individual plans. Computer implementations of human models populate both types of 

military simulations that are simulations with and without human intervention. These 

implementations include human models for individual combatants, followers, and 

leaders either leading a group of individuals or an integrated platform. The behaviour 

of these models mimicking humans in military simulations is not sufficiently realistic, 

particularly with regard to learning and decision making.  

One of the problems in decision making is that the automated or computer generated 

decisions are predictable. In training simulations this predictability in behaviour 

allows the trainees to play the game of the simulation compromising the aims of the 

training. Predictability is caused by lack of flexibility in decision making strategies, 

variability in behaviour, and adaptability. Lack of flexibility in decision making 

strategies is directly related to the decision making model. 

The decision making process in command agents in present day military simulations, 

such as Warsim 2000 (McNett et al., 1997), and ModSAF (Ceranowicz, 1994a and 

1994b) and JANUS (Pratt and Johnson, 1995) interfaced with decision support 

systems such as DICE (Bowden et al., 1997) and course of action generators such as 
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Fox-GA (Hayes et al., 1998) and CADET (Ground et al., 2002), is predominantly 

based on the military decision making process (MDMP) which in turn is based on the 

well known multi attribute utility analysis (MAUA) model. This decision making 

process is prescriptive; instructing how humans should take decisions. It is in contrast 

to descriptive decision making models that explain how humans actually make 

decisions. The experienced decision makers do not follow the MAUA process of 

generating multiple options and evaluating them on abstract dimensions. They have 

been observed to make decisions according to the recognition primed decision making 

(RPD) model described by Klein and associates after studying fire-ground 

commanders, nurses in intensive care units, and other experts for sustained periods in 

their natural settings (Klein, 1998). The RPD model describes how decision makers 

can recognize a plausible course of action as the first one to consider. A commander's 

knowledge, training, and experience generally help in correctly assessing a situation, 

and developing and mentally wargaming a plausible course of action. The RPD model 

falls under the rubric of naturalistic decision making (NDM) (Lipshitz et al., 2001). 

NDM is characterized by features such as dynamic environments, uncertainty, ill 

defined goals, high stakes, and experienced decision maker. Mental simulation is an 

important part of Klein’s RPD Model. The attempts to develop computer models of 

RPD so far (Warwick et al., 2001), (Forsythe and Xavier, 2002), (Liang et al., 2001), 

(Ji et al., 2007), (Gonzalez and Ahlers, 1998), (Kunde and Darken, 2005), (Norling et 

al., 2001) and (Sokolowski, 2002) have failed to implement mental simulation for 

sequential evaluation and modification of plausible courses of action. Wargaming a 

course of action by mentally simulating it before making decisions is required in 

situations where one course of action may not clearly be recognized as the most 

suitable for the present situation (Klein, 1998). 

Although, the behaviour of command agents is observed externally for realism, this 

behaviour is real only if the human behaviour model is based on plausible 

psychological theory. If for ease of implementation the underlying theory is 

compromised then the model is brittle and displays non-understandable behaviour in 

unexpected situations. Alan Turing in his seminal work Computing Machinery and 

Intelligence in 1950 (Turing, 1950), proposed the ‘Imitation game’ in which the 

performance of a machine mimicking humans is evaluated by observing the external 

behaviour of the model. But also in this test, a model based on a psychological theory 
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of how human’s converse is most likely to outperform other models that are 

developed aimed at only deceiving the observer. 

Human cognition is modelled with the help of cognitive architectures. Varying levels 

of sophistication exist in cognitive models. One of these cognitive architectures is 

Soar (Newell, 1990). Soar has been developed as an architecture of general 

intelligence (Laird et al., 1987). It finds solutions of problems by exploring problem 

spaces through applying available operators to it. Soar provides the basic 

infrastructure to implement all aspects of RPD model and especially ‘mental 

simulation’ for course of action evaluation.  

One important contributor in modelling human behaviour for military simulations may 

be the gaming industry but there is difference in the overall aims of model 

development. In military simulations the requirement is of realism to produce most 

accurate effects while for gaming applications entertainment is the primary 

consideration (Laird, 2000). In gaming artificial intelligence (AI), the requirement of 

human like behaviour reduces to an illusion of human like behaviour because the main 

aim of the development of this type of behaviour is only entertainment and there is no 

emphasis on accuracy or competence of the underlying psychological theories and the 

resulting behaviours. In the gaming industry, if the behaviour of an opponent provides 

a satisfying game experience to the player by not being very easy nor very difficult to 

kill then the purpose is served. Therefore, in gaming applications emphasis is on 

visual graphics, audio, and other features that enhance the user experience. But still 

both industries share a lot in common and can benefit from each other to a great extent 

(Peck, 2004). 

In preceding paragraphs, the requirement of modelling and simulation and the 

importance of realistic human behaviour models for military simulations representing 

conventional warfare are discussed. Most of military conflicts now involve 

asymmetric warfare. Where the relative military power of the belligerents is 

significantly different the conduct of warfare changes form and is known as 

asymmetric warfare. This form of war deals with uncertainties and surprises in terms 

of ends, ways and means. And this uncertainty increases with dissimilarity in the 

opponents. As the conduct of war has drastically changed therefore a commensurate 

change in doctrine, tactics, procedures, and force structure is required. The 
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contingencies are numerous and the experience of the military does not match. 

Therefore, realistic models and simulations are needed to cover the gap in experience.    

 

1.1 The problem 

The human behaviour representation needs to be realistic in order to give a more 

accurate effect of a human commander’s decisions on the course of the battle, as 

suggested in the annual report of army-after-next (U.S. Army, 1997) and (Killebrew, 

1998). 

Pew and Mavor (1998) have pin pointed common short comings of the existing 

decision models, their comments are presented in their own words, “First the decision 

process is too stereotypical, predictable, rigid, and doctrine limited, so it fails to 

provide a realistic characterization of the variability, flexibility, and adaptability 

exhibited by a single entity across many episodes. Variability, flexibility, and 

adaptability are essential for effective decision making in a military environment…. 

Second, the decision process in previous models is too uniform, homogeneous, and 

invariable, so it fails to incorporate the role of such factors as stress, fatigue, 

experience, aggressiveness, impulsiveness, and attitudes toward risk, which vary 

widely across entities.” 

To address the problems of inflexibility in decision making strategy, predictability in 

behaviour, and inadaptability in command agents used in military simulations, this 

research proposes a computer model of command agent based on recognition primed 

decision making (RPD) model implemented in the Soar cognitive architecture. This 

research aims to address the problem of inflexibility in decision making strategy, by 

varying the decision making strategy according to psychologically plausible processes. 

It aims to address the problem of predictability in behaviour, by providing variability 

in behaviour not through randomness which produces undesirable behaviour but 

through satisficing which is giving suboptimal choices to the agent that promise a 

sufficient level of success in achieving the goals. It also addresses the problem of 

inadaptability, by making the agent learn from its experience using a learning 

procedure called chunking in Soar which is a form of explanation-based 

generalization. This learning process increases the efficiency of the agent with 

experience and it can also transfer knowledge to similar tasks. This model also 

promises to alleviate the problems of long development times of agents and 
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knowledge elicitation from subject matter experts by incorporating mental simulation 

capability in the agent which assists the agent in handling new situations effectively. 

The ability to handle new situations is proposed to be further enhanced by 

incorporating a pre-trained artificial neural network in the architecture of the agent. 

The context in which this problem is addressed is discussed below. 

The military community in general has recognized the importance of realistic 

simulations and identified the short comings in the present models of human 

behaviour and realized the importance of realistic representation of human behaviour 

for military simulations (Erwin, 2000), (Erwin, 2001), and (Book, 2002). 

The panel on Strategic directions in simulation research (Nicol et al., 1999) 

emphasises the need to develop techniques to insert reactive and intelligent human 

behaviour in the virtual world for military training simulations and computer games. 

The usual techniques of modelling human behaviour like finite state machines (FSM) 

(Kohavi, 1978) that encode specific behaviours and define the transition conditions 

from one behaviour to the other, are discovered to be limited in representing realistic 

human behaviour. The humans interacting with these entities identify their limitations 

and take advantage of them, thereby compromising the aims of the simulation. The 

panel points out that these behaviour representations are unrealistic by exhibiting only 

correct and by-the-book behaviour.  

The military is using distributed simulations for design and evaluation of equipment 

and weapon systems, military planning, and training. The popular use of computer 

generated forces (CGFs) to support the above simulations as opposing forces and also 

collateral friendly forces requires modelling realistic human behaviour. Moreover, in 

the same context higher and lower echelons are also modelled to see the effect of 

commands given by the higher echelon and reaction from and implementation of 

commands given to the lower echelons, on the progress of the battle.  

In most of the applications of models of human behaviour, it’s the external behaviour 

that is observed for realism. In constructive wargame simulations, it may only be the 

outcome of the battle or the movement of the troops. In distributed simulations, the 

individual behaviours of combatants and units are observed together with their 

execution of plans, and outcome of the encounters. The realism is judged on the 

measure of results and behaviours of individuals and groups meeting the expectancies 

of the observers.  
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Aggregation is at different levels. Representation may be at an individual level or at 

the group level. The individual entity may be an individual combatant like a 

dismounted infantry soldier, a ground vehicle or air system commander, a squad or 

platoon leader or a commander at a higher level.  

The first step of realistic decision making is realistic situation awareness. Although, 

situation awareness is not directly observable in the simulation unless explicitly 

displayed but it is indirectly observed in the out come of decision making that is the 

action taken. The directly observable part is the actions such as which way the entity 

moves, given the plan, the environmental factors, and the situation presented by the 

opposing forces. More examples of such like actions are; shoot, retreat, seek cover, 

advance, follow, pursuit, and evade. To seem real the decisions should be consistent 

with the current goal. The goals should change according to the situation. Sometimes, 

while keeping the main goal in view, human commanders do take opportunistic 

approach and make decisions to take advantage out of an opportunity presented by the 

opposing forces. The expectation of the observers is to witness these types of 

decisions also. 

 

1.2 Modelling and Simulation  

A model is a physical, mathematical, or logical representation of a system, entity, or 

process and a simulation is a method of implementing a model over a period of time. 

 

1.3 Types of military simulations 

Military simulations are differentiated based on what is modelled and what is real. The 

spectrum is divided in three parts, starting from all real it moves up to completely 

synthetic environments and entities including humans. Live simulation involves real 

people operating real systems. It is used for maintaining readiness and testing new 

employment concepts. It is independent of HBR. In virtual simulation, real people 

operate simulated systems. Virtual simulations require human-in-the-loop 

intervention. Human intervention is in the form of decision making, or exercising 

motor control skills, such as firing a weapon system, flying an aircraft, controlling fire 

of weapons and weapon systems. The Close Combat Tactical Trainer (CCTT) is an 

example of virtual simulator (Johnson et al., 1993). The human controller represents 

the decision making and tactics. Intelligent allied or opposing forces may be used and 
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it needs HBR. Constructive Simulation involves simulated people operating 

simulated systems. It is used for planning, training, force development, organizational 

analysis, and resource assessment. Humans set up the simulation, after which the 

simulation runs on its own and produces outcomes that can not be controlled by 

humans. It is totally dependent on HBR either implicitly or explicitly. 

 

1.4 Requirement of command agents 

Human behaviour representation benefits users of following types of military 

simulations: 

• Training 

• Mission rehearsal 

• Analysis 

• Acquisition 

• Joint force analysis (Pew and Mavor, 1998). 

 

1.5 Computer generated forces (CGF) and how to judge them 

U.S. Department of Defense Modelling and Simulation (M&S) Master Plan defines 

CGF as “A generic term used to refer to computer representations of entities in 

simulations which attempts to model human behaviour sufficiently so that the forces 

will take some actions automatically (without requiring man-in-the-loop interaction” 

(DoD, 1998). CGFs operate in synthetic environment. 

 

1.5.1 Synthetic environment  

A synthetic environment is defined in the words of Dompke (2001) as “Internetted 

simulations that represent activities at an appropriate level of realism. These 

environments may be created by within a single computer or over a distributed 

network connected by local and wide area networks and augmented by realistic 

special effects and accurate behavioural models.” A synthetic environment links any 

combination of models, simulations, people and equipment, real or simulated, into a 

common representation of a world. The environment of a simulation is represented 

with its contents like ground, objects, natural and man made features, etc. the effects 

of some actions are also represented. CGFs are one of the components of synthetic 

environment. For example for UK armoured vehicle training, there are two combined 
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arms tactical trainer (CATT) sites at Warminster and Sennelager, UK. Each of those 

has nearly a hundred full mission, full crew, high fidelity, vehicle specific simulators, 

all together capable of hosting a full armoured brigade group. The CGFs in this 

synthetic environment simulate all the enemy forces and civilian population. 

 

1.5.2 Synthetic forces 

We define synthetic forces in the words of Ritter (2002), “Synthetic forces exist in 

military simulations, sometimes alongside real forces that have been instrumented 

and linked to the simulation. The physical aspect represents the movement and state of 

platforms (objects) in the simulation, including such aspects as maximum speed and 

the actions that can be performed in the world. The behavioural aspects of a synthetic 

force platform determine where, when and how it performs the physical actions, that 

is, its behaviour”. Modular Semi-Automated Forces (ModSAF) (Ceranowicz, 1994a 

and 1994b) is an example of synthetic force. 

 

1.5.3 Semi-automated forces 

U.S. Department of Defense Modelling and Simulation (M&S) Master Plan defines 

semi-automated forces as, “Simulation of friendly, enemy and neutral platforms on the 

virtual battlefield in which the individual platform simulations are operated by 

computer simulation of the platform crew and command hierarchy. The term  "semi-

automated" implies that the automation is controlled and monitored by a human who 

injects command-level decision making into the automated command process” (DoD, 

1998). 

 

1.5.4 Intelligent software agent 

Agency is the degree of autonomy vested in the agent and intelligence is the degree of 

reasoning and learned behaviour. Thus an intelligent agent must have some degree of 

autonomy in pursuit of the goal assigned to it which they must exhibit in their 

behaviour while interacting with the environment and other entities, and some ability 

of reasoning in order to carry out the assigned task and learning. According to 

Nwana’s typology (Nwana, 1996) the smart agent is an autonomous, learning, and 

cooperating agent (Figure 1.1). The terms smart agent and intelligent agent are 

interchangeably used in the literature on agent typology. 
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Figure 1.1 Nwana’s agent typology (Nwana, 1996) 

 

1.6 Cognitive science 

Representing human behaviour involves comprehensive models of human abilities. 

Since last four decades, computer systems have been considered analogous to the 

information processing system of humans. Information is acquired, processed, stored, 

retrieved, and used to accomplish given tasks by both computers and human brains. 

Cognitive science based on psychology, linguistics, anthropology, and artificial 

intelligence (AI) is developed to help us understand phenomena like human decision 

making, natural language processing, perception, motor action, memory, and learning. 

Decades of experimental data from research on human psychology has found 

regularities in human behaviour and some of them are very robust. Human regularity 

is defined as the behaviour that all humans seem to exhibit. One of the most robust 

regularity in motor behaviour is the Fitts’ Law (Fitts, 1954), which predicts how long 

it will take a person to move a pointer from one point to a target location as a function 

of the distance to be travelled and the size of the target. Then there are other human 

behaviour regularities like: the garden path phenomenon, regularities about item 

recognition and verbal learning. The garden path phenomenon comes from the field of 

psycholinguistics, which contrasts sentences that are very easy for people to 

understand from those that are very difficult for people to understand (Gibson, 1990). 
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Regularity about item recognition is found by Sternberg (1975), which describes how 

the time taken to decide whether an item is on a memorized list of items increases 

linearly with the length of the list of items. Regularity about verbal learning is that if 

an ordered list of items is memorized by repeated exposure, then the items at the ends 

of the list are learned before the items in the middle of the list (Tulving, 1983). With 

these descriptions of regularities also come the theories that explain these regularities. 

As these theories come from different disciplines, they are not coherent and it is very 

difficult to put them together into a model and develop a human behaviour model 

straight away. However, there have been attempts at developing unified theories of 

cognition (UTC); the most popular implementations of UTC are Soar and ACT-R, 

developed by Newell (1990) and Anderson (1993) respectively. None of these 

implementations have modelled the complete phenomenon of human cognition rather 

these attempts at UTC are considered as a good starting point to bring all the 

incompatible ‘micro theories’ together to develop a bigger picture. 

 

1.7 Definition of human behaviour representation (HBR) 

Human behaviour representation is representing the behaviour of humans as 

individuals, leaders whether leading a group of men or an integrated platform like a 

vehicle with crew, followers, and groups, so that they can appear to be real to 

observers and to humans interacting with them. The human behaviour representation 

(HBR) in this thesis refers to representation of behaviour of humans involved in 

military activities such as operations and training. HBR and human behaviour model 

(HBM), in this thesis, are used interchangeably. An HBM may be an individual 

combatant like a dismounted infantry soldier, a ground vehicle or air system 

commander, a squad or platoon leader or a commander at a higher level. 

 

1.8 Definition of command agent 

We define command agent as “intelligent agents representing human combatant or a 

military commander leading a group of combatants or human controlled platforms that 

autonomously take decisions in military simulations”. 
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1.9 Flexibility in decision making strategy 

We define flexibility in decision making strategy as the ability of the decision maker 

to adopt different decision making method in different situations. For example lack of 

experience or knowledge in the problem under consideration may require the decision 

maker to contemplate more and give a detailed consideration to all the factors as 

compared to a situation where the decision maker has experience and knowledge in 

the problem under consideration. Adopting the same decision making strategy every 

time is not what humans do and is not considered realistic. Until there are a number of 

different decision making strategies the internal and external behaviour moderators 

like knowledge, stress, and fatigue etc. can not be realistically represented in decision 

making behaviour of command agents.  

 

1.10 Variability in behaviour 

We define variability in behaviour as the difference in observed behaviour when one 

or more entities are placed in the same situation while performing the same task. The 

entity may be real or virtual subjects. The situation includes the environment also, as 

part of the situation is formed by variables from the environment. The variability in 

behaviour is divided into two types: variability within an entity and variability across 

entities (Wray and Laird, 2003). Within-entity variability is defined as the variability 

observed in the behaviour of an entity in performing the same task in different 

episodes of the same situation. Across-entity variability is defined as the variability 

observed in the behaviour of more than one entity in comparison to each other in 

performing the same task in the same situation during a single episode. 

 

1.10.1 Requirement of variability in behaviour of synthetic forces in military 

simulations 

Synthetic forces populate both virtual and constructive military simulations for 

training and development and evaluation of new weapon systems and doctrines. These 

synthetic forces are representing either humans or human controlled platforms. These 

platforms include unarmed transport vehicles, tanks, planes, attack helicopters, ships, 

etc (Wray and Laird, 2003). These computer generated forces represent opposite 

forces, own and allied forces, and neutral forces. Trainees interact with these synthetic 

forces during training on these simulations. Trainees engage enemy forces, participate 
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in operations alongside friendly forces, or command own forces. The most important 

reason for modelling variability in behaviour of these computer models of humans is 

to enhance the training benefit and prepare the trainees for real combat where every 

human combatant behaves differently. Training with predictable non-varying 

behaviour affects the training in various ways.  

It has been noted in military simulations as well as in computer games that if the 

computer generated opponent is easily predictable in a given situation then the trainee 

or the player games the situation taking advantage of this limitation of the opponent 

(Wray and Laird, 2003). This is a short cut to actual training and creates incorrect 

performance measures that may prove to be fatal for the trainee during actual combat 

and may put the group or the unit of these trainees into an ambitious task not 

commensurate to their capabilities. 

Usually an aim in designing the opponents is to design them such that they produce 

the best tactical behaviour with a view to make the trainees expert in fighting the most 

well trained opponents. This is good but not real and may prove counterproductive. 

The trainees should be able to handle all kinds of situations that may arise in the type 

of combat for the intended training. A variant from the behaviour of a well trained 

combatant may be a foolishly brave act of an opponent that may surprise the trainee in 

actual combat. For example, an opponent waiting in an open space after taking a turn 

around a building while he is expected to run along the building to find a cover and 

then wait should be able to surprise everybody. Therefore, training against a 

combatant with well trained behaviour is not the complete training rather training 

against all possible behaviours from the opponents is required for the real combat. In 

the same way, it is also a part of good training to expose the trainees to heterogeneous 

team mates and under command forces. It is also part of training to coordinate and 

cooperate with team mates that respond differently in a situation. It is also important 

for the trainees to be able to organize and make best use of under commands with 

different skills and varying knowledge levels and expertise. 

In military simulations aimed at development and evaluation of new weapon systems 

and doctrines it is important to explore the extremes of all possible responses to a 

situation. For example, whilst designing a weapon system its response to an incorrect 

sequence in pressing a set of buttons may never come to light because it is quite 

unusual for anybody to do it. A combatant with a kind of variability in behaviour 



Chapter 1 - Introduction 

13 

covering even some part of the incorrect behaviour space may expose this fault in the 

design. Variability across entities in a simulation may highlight the fact that a weapon 

system that is very effective against opponents with one type of behaviour may not be 

as effective against opponents with another type of behaviour. 

  

1.10.2 Sources of variability in behaviour 

Sources of variability are different for within-entity variability and across-entity 

variability. Across-entity variability is produced due to difference in knowledge, 

experience, personality, culture, religion, and emotional state. Within-entity variability 

is produced due to the variations in mental and physical conditions of the entity. 

Motivation, emotional state, fatigue, and adaptation due to more experience or 

knowledge are some of the factors that produce variability in behaviour within an 

entity. In computer models of human behaviour the variability across-entities may be 

produced by giving different knowledge, experiences, and personality to different 

entities. Producing variability within an entity is difficult to achieve.  

An entity becomes unpredictable if randomness is introduced in its selection process 

of actions that produces behaviour. But this randomness produces undesirable 

behaviour which lacks coherence and salience of actions that should have been 

exhibited in the behaviour of an agent in pursuit of the assigned goals. This behaviour 

is not human-like. The requirement is to produce human-like variability in the 

behaviour to be unpredictable but not arbitrarily random. Humans have a tendency to 

select one course of action more often than other applicable ones. Therefore, if a 

population of behaviours created by repeatedly running the same episode for a single 

agent, is observed then that population should be able to represent the overall 

behaviour while a particular single episode may be different. Similarly, if a population 

of behaviours of same type of agents in an episode is observed then the population 

should be able to represent the over all behaviour while the individual behaviour of 

agents may be different. This is important for training because recognising a pattern is 

part of training that will be missing in case of variability in behaviour of agents 

produced by arbitrary randomness.  

Behaviour validation seems to be at odds with behaviour variability as validating a 

changing behaviour for the same situation naturally looks more complex and difficult.  
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1.11 Learning 

Learning is important for command agents or HBMs for many reasons. Learning 

represents expertise and experience. In military simulations, human-like command 

agents take the role of local commanders, subordinate commanders, opposition force 

commanders and even own or enemy single combatants in a loose command structure 

where they make individual decisions during an operation. A human-like agent in any 

possible role who encounters a situation for a second time is likely to behave 

differently in the light of the experience gained from the previous episode. Keeping in 

view the learning procedures and methods present in current military simulations, 

learning may be divided into two categories: first is off-line learning; and the second 

is learning during the simulation. Off-line learning is the method in which the agents 

are trained when they are not participating in a simulation and which means the agent 

is not adaptable during the simulation. Off-line learning may be with or without 

human intervention. The second method of learning refers to the learning methods that 

are applied during the life of an agent within a simulation and it is adapting its 

behaviour with in the simulation (Ritter, 2002). 

Both of these types of learning can be used to assist the modeller in developing the 

agent but it’s the second type which is significant in representing learning in humans 

that occur in a very short span of time (Pew and Mavor, 1998).  

The procedures and rules used by CGFs in military simulations are usually very 

complicated and it is very difficult to extract this knowledge from subject matter 

experts (SMEs). Therefore, one objective of learning is to automatically train an agent 

to have various levels of knowledge and skills. Moreover, it is very difficult to model 

the agents for each and every situation that may be encountered by the agent in a 

simulation and it is very helpful if some general information is given by the SME and 

the agent learns to handle similar situations automatically. It is relatively easier for the 

SMEs to provide strategies or courses of action at a higher level and then give rules 

and general guidelines to implement lower level actions than giving details of all 

actions down to atomic level. Therefore, a learning method that may automatically 

decompose a higher level course of action and learn what to do with the help of some 

general rules is also required.  

Learning from experience by observing the outcomes of previous decisions is also a 

requirement for command agents. This is reinforcement learning of the agent based on 
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a reward signal from the environment. In case of computerized HBMs, if the reward is 

immediate then it is easy to relate the reward to a decision or an action but it becomes 

very difficult for delayed rewards. For example, in military operations on urban terrain 

(MOUT) a combatant agent fighting inside a building in the presence of enemy forces 

outside peeps out of the window and get shot on his helmet and learns from the 

reward of the action that its not very safe to peep out in that situation. Now if he is not 

shot at that moment in time rather his presence is revealed to the enemy and later after 

lapse of some time when the agent is filling its rifle’s magazine is injured by a grenade 

that is whirled in from the window. What does the agent learn out of this episode? The 

agent needs to keep a record of all previous actions to take any advantage in learning 

from this episode. Or may be there is a requirement of some reasoning system with 

sufficient domain knowledge to take advantage of belated rewards. In cases where the 

actions are hierarchical and so is the associated reward then the problem reduces but 

only to an extent because belated rewards at the same level of hierarchy still remain a 

problem. Learning by observation is yet another approach in which the computer 

agents learn behaviours by observing an expert perform them (Stensrud, 2005). 

The artificial neural network is one candidate technology which provides robust 

learning in noisy, dynamically changing, and uncertain environments. A well trained 

neural net requires large number of examples which is often a problem in military 

domain. 

One suitable candidate for learning in military domain is explanation-based 

generalization (EBL) (Mitchell, 1997). EBL is a type of inductive learning in which 

learning augments the information provided by the historical examples using domain 

knowledge and deductive reasoning. This aids the learning process and substantially 

reduces the number of training examples required for adequate learning. Although, 

EBL has problems of its own such as over generalization, it is suitable in military 

domain because of its ability to learn using very few training examples. EBL is further 

discussed in Section 5.2.6.  

 

1.12 Contribution of this research 

This research contributes in the field of human behaviour representation for military 

simulations; specifically in proposing a command agent model incorporating 
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flexibility in decision making strategies, variability in behaviour, and adaptability. The 

main features of the research are discussed as follows: 

• Parts of the recognition primed decision making (RPD) model is successfully 

implemented in the Soar cognitive architecture in a way that is capable of 

mimicking some decisions made by military commanders in land battlefield 

settings.  

• The model implements Level 1 RPD, when sufficient knowledge exists it 

recognizes a situation in a changing context. Level 2 RPD is partially 

implemented; information available in the environment is processed to make 

cues in order to recognize a situation. The story building part of Level 2 RPD 

is not implemented. 

• Mental simulation forms the basis of Level 3 RPD model. Mental simulation 

has been implemented in this model with such an inherent flexibility to 

accommodate all types of requirements that are expected to be encountered 

while making decisions using RPD model. 

• Flexibility in decision making strategies based on psychological theories is 

achieved. Decision making strategies are based on experience and extent of 

knowledge. 

• Variability in behaviour across individuals is a desirable characteristic in 

human behaviour representation. Variability in behaviour across individuals is 

achieved based on the type of experiences in long term memory of similar 

agents. 

• Variability in behaviour within individuals over different episodes of the same 

task is a very difficult phenomenon to model realistically. Within-entity 

variability is achieved in this model not through randomness which introduces 

undesirable behaviour but due to reasonable but sometimes sub-optimal 

choices made by the agent. 

• The single command agent of the developed model exhibits adaptability across 

various episodes which adds the much desired dynamism to the simulation 

environment. The agent learns from its experience. The learning is based on 

the chunking phenomenon inherent in Soar which is a form of explanation-

based generalization. 
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• The agents also exhibit transfer of knowledge from one task to the other in 

case of overlapping problem spaces within tasks. 

• Due to the ability of the agents to mentally simulate courses of action it is 

possible for the agent to handle new situations very effectively. Which relieves 

the modeller from coding behaviours for all situations expected to be 

encountered in a simulation and this in turn reduces the development time of 

the agent. 

• The strategies to form experiences in the long term memory of the agents are 

required only at a higher level with general rules to evaluate actions at lower 

levels which is easier for the subject matter expert to describe and less tasking 

for the knowledge engineer to elicit. This reduces the time and effort in the 

development of the agent. The ability to mentally simulate the candidate 

courses of action and adaptability inherent in the agent further improves its 

performance. 

• To enhance the ability of the agent to handle new situations, a trained artificial 

neural network is integrated in the proposed architecture, which further 

reduces the labour of the modeller in coding behaviours for all expected 

situations. 

• The research also developed a simple RPDAgent to operate in a simple 

simulation environment in order to explore the affects of realistic human 

decision making on the outcome of the battle simulations. The study concludes 

that the outcome of the constructive military simulations changes if realistic 

human behaviour is incorporated in these simulations, and the known 

mathematical and probabilistic solutions for combat modelling help in 

validating the start point or base line of simulations involving human 

behaviour.  

• The following papers have been published based on the work in this thesis: 

o Raza, M. & Sastry, V. V. S. S. (2007) Command Agents with Human-

Like Decision Making Strategies. Proceedings of the 19th IEEE 

International Conference on Tools with Artificial Intelligence - (ICTAI 

2007), Vol. 2, pp. 71-74. IEEE Computer Society. 
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o Raza, M. & Sastry, V. V. S. S. (2008) Variability in Behavior of 

Command Agents with Human-Like Decision Making Strategies. 

Tenth International Conference on Computer Modeling and Simulation 

(uksim 2008), pp. 562-567. Cambridge, England. 

 

1.13 Organisation of the thesis 

Chapter 1 of the thesis covers the motivation for research, some background 

knowledge about cognitive science, types of military simulations and intelligent 

software agents. The chapter also sets out the problem that is being addressed in the 

thesis. The context in which the problem is addressed is described in some detail and 

definitions of some terms that are used later in the thesis are given. The chapter also 

includes the requirement of various characteristics in synthetic commanders to include 

flexibility in decision making strategies, variability in behaviour, and learning. In the 

end of the chapter, the contributions of this research are presented and the 

organization of the thesis is given. 

Chapter 2 briefly describes mission-planning process, presents Klein’s comments on 

classical approach of decision making, and reviews existing computer techniques for 

representation and acquisition of information required for mission planning. And then 

briefly discusses human behaviour models and definition of related terms, and 

describes recognition primed decision making. In the end, it provides an overview of 

some of the most used existing cognitive architectures as models of human cognition 

to include ACT-R, Soar, and belief, desire, and intentions (BDI). 

Chapter 3 provides the literature review on attempts at the computer implementation 

of recognition primed decision making model. The models discussed in this chapter 

are based on different technologies to include multiple trace memory model, 

physiological model, artificial neural network, fuzzy logic, rule based system, context-

based reasoning, and multi agents based systems (MAS) such as BDI cognitive 

architecture and composite agents. 

Chapter 4 describes the development details of a simple RPDAgent to operate in a 

simple simulation environment and discusses the related experiments and their results. 

The experiments are focused on the aim of the development of this RPDAgent which 

is to see the affects of intelligent like behaviour on the outcome of military 
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simulations. The chapter also highlights the requirements on technology to implement 

a synthetic commander based on recognition primed decision making model.  

Chapter 5 describes the parts of Soar cognitive architecture that are required to 

comprehend the implementation of the RPD-Soar agent discussed in the next chapter. 

The working memory of Soar, its reasoning cycle, conflicts and their resolution, truth 

maintenance system, and learning in Soar are discussed. Some applications of and 

improvements in Soar are also discussed.  

Chapter 6 describes the implementation of recognition primed decision making model 

in Soar cognitive architecture and in the later part of the chapter the enhancement of 

the situation recognition ability of the agent by integrating a trained neural network in 

the architecture is discussed.  

Chapter 7 contains the experiments that are conducted to elucidate the abilities of 

RPD-Soar agent. A total of five major experiments conducted in this chapter are 

aimed at demonstrating the flexibility in decision making, evaluating performance and 

behaviour of various types of RPD-Soar agents, demonstrating behaviour variability 

across agents, testing the ability of the agent to recognize a situation in a changing 

context, testing mental simulation capability of the agent for dynamic situations, 

demonstrating within agent behaviour variability, and adaptability of the agent. The 

last experiment is related to integration of a trained neural network in the architecture 

to enhance the situation recognition ability of the agent. The discussion on the results 

of these experiments is also included. 

Chapter 8 provides the summary and conclusions of the research and also includes 

recommendations for future work. 
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2 BACKGROUND KNOWLEDGE 

 

In this chapter, key aspects of decision making processes and the related terminologies 

are presented. First the mission planning process used in the military is described 

briefly and then Klein’s comments are given on classical decision making approach 

used in this process. Definition of situation awareness with brief description is 

presented, and then some artificial intelligence techniques employed in military 

simulation is discussed. Human behaviour models in use in military simulations are 

presented, and recognition primed decision making model is discussed in detail. An 

overview of ACT-R, Soar, and BDI cognitive architectures is given with their 

comparison in the end. 

 

2.1 Mission planning 

In this chapter two types of military commander planning behaviours are discussed, 

one is doctrinally correct and the other is observed behaviour. First the former type of 

behaviour is discussed and the latter is discussed with RPD. Doctrinally specified 

planning process, detailed in U.S. Army Publication, Staff Organization and 

Operations Field Manual 101-5, has five stages: 

• Mission analysis 

• Intelligence preparation of the battlefield 

• Development of courses of action 

• Analysis of courses of action 

• Decision and execution 

 

The mission analysis stage begins with receipt of an operation order from the higher 

command and is based on the contents of the order (Pew and Mavor, 1998). The aims 

and objectives are analyzed with consideration to operational constraints also called 

limitations that will apply during the course of the operation. The process clearly 

defines the current situation and the mission objectives. This is a very elaborate 

process for the higher echelons of command but at lower level such as a platoon, this 
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process is reduced to considering the factors like the mission, enemy, terrain, troops, 

time available, commonly known as “METT-T Process”. 

The intelligence preparation of the battlefield (IPB) is the next stage, which is the 

situation assessment process. This stage may be very complex for a divisional and 

larger sized force and is not discussed as part of this thesis. For more details on IPB 

interested readers are referred to Doctrine for Intelligence Support to Joint Operations, 

JP 2-0, dated 9 March 2000 and Intelligence Support to Joint Operations, JWP 2-00. 

In platoon level operations, the situation assessment is based on observation, cover 

and concealment, obstacles, key terrain, and avenues of approach (OCOKA) process, 

with consideration also given to the weather. Terrain analysis forms the major part of 

this process and has been described in “FM 5-33 Terrain Analysis, Headquarters 

Department of the U.S. Army, July 1990”. 

The course of action development stage is the stage of the planning process, in which 

several alternative courses of action are generated that can achieve the mission. At 

lower levels the number of plans is usually three but at higher levels such as brigade 

and higher there may be more alternative plans. Most of the times also at higher level 

the alternative plans are three and then there are variants of these plans. It is the 

requirement of army doctrine to generate several courses of action. 

In the course of action analysis stage of the planning process the candidate courses of 

action are elaborated and pitched against each other and evaluated on multiple criteria 

according to the guidelines prescribed in the doctrine, however, there is scope for the 

commanders to keep their own evaluation criteria. 

Course of action selection stage is the stage where decision is made for a plan and 

usually the highest-rated course of action is selected. Commander selects the plans 

and refines it, and generates the plans and orders for unit execution. 

Monitoring and replanning is the process responsible for assessing the situation and 

any deviations from the plan, and then developing or calling up new plans to 

compensate for those deviations. 

 

2.2 Klein’s comments on classical decision making approaches 

The military uses military decision making process (MDMP) which is based on multi-

attribute utility analysis (MAUA) and decision analysis. MAUA is considered as a 

classical approach to decision making and has certain advantages such as it explains 
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the reasons behind a decision which is a requirement where a decision needs to be 

justified. Moreover, MAUA is a systematic process and is suitable for new or less 

experienced decision makers. The experienced decision makers in military and other 

fields involving dynamic situations, high stakes and time pressures have been 

observed to make decisions according to the recognition primed decision making 

(RPD) model. RPD is a type of naturalistic decision making, described by Klein and 

associates after studying fire-ground commanders, nurses in intensive care units, and 

other experts for sustained periods in their natural settings (Klein, 1998). Klein while 

proposing naturalistic decision making evaluates classical decision making which are 

also called prescriptive or normative approaches to decision making. His comments 

are presented here in his own words, “Classical approaches to decision making, such 

as multi-attribute utility analysis (MAUA) and decision analysis, prescribe analytic 

and systematic methods to weigh evidence and select an optimal course of action. 

MAUA decision makers are encouraged to generate a wide range of options, identify 

criteria for evaluating them, assign weights to the evaluation criteria, rate each 

option on each criterion, and tabulate the scores to find the best option. Decision 

analysis is a technique for constructing various branches of responses and counter-

responses and postulating the probability and utility of each possible future state, to 

calculate maximum and minimum outcomes. …… On the surface these strategies may 

seem adequate, yet they fail to consider some important factors inherent in real-world 

decisions. Classical theories deteriorate with time pressure. They simply take too 

long. Under low time pressure, they still require extensive work and they lack 

flexibility for handling rapidly changing conditions. It is difficult to factor in 

ambiguity, vagueness, and inaccuracies when applying analytical methods” (Klein 

and Klinger, 2000). 

 

2.3 Situation awareness 

“Situation awareness is the perception of the elements in the environment within a 

volume of time and space, the comprehension of their meaning, and the projection of 

their status in future” (Endsley, 1995). This definition reproduced in the words of 

Endsley, is the most comprehensive and widely accepted definition of situation 

awareness. It can be divided into three distinct components or levels to be more 

meaningful. First level is the identification of the key elements in the environment. 
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The second level is to elaborate, process, and explain the identified elements or events 

or a combination of both in order to comprehend their meaning. And the third level is 

to generate expectations or predict what is going to be the future values of these 

identified elements which define what is going to be the next situation or may be these 

identified elements do not remain the key elements in future at all or do not remain 

observable. 

  

2.4 Terrain representation and estimation of situation in mission planning 

Some of the methods of terrain representation and techniques used for deriving 

information for situation awareness in the process of mission planning are discussed 

in this section. This discussion provides information on the quality and form of inputs 

available in computer technology for synthetic military commanders. 

 

2.4.1 Terrain representation 

In military simulations, certain features of terrain need to be represented such as 

terrain surface, bathymetry, physical features to include vegetation, trees, roads, rivers, 

and building etc., and soil information to include mobility and water content. The 

terrain surface can be represented using a digital elevation model (DEM). A DEM is 

represented as raster (a grid of squares) commonly built using remote sensing. The 

terrain surface can also be represented as a triangulated irregular network (TIN). TIN 

is a vector based representation, made up of irregularly distributed nodes and lines 

with three dimensional coordinates that are arranged in a network of non-overlapping 

triangles. The fidelity of terrain representation is an important issue. High resolution is 

required for realism but this increases data storage and process costs. The TIN budget 

can be effectively managed, by identifying tactically significant and insignificant 

terrain and accordingly adjusting modelling at high or low resolution (Campbell et al., 

1997). 

Compact terrain database (CTDB) is a highly compact format for terrain 

representation that covers all features of terrain required in military simulations. 

CTDB is used in ModSAF, JointSAF and OneSAF testbed CGFs. CTDB represents the 

terrain surface, bathymetry, physical and abstract features, and contains a polygon 

attribution table (PAT). Elevation data to represent the terrain surface can be stored in 

elevation grid, TIN, or hybrid forms. Elevation grid is composed of elevation posts 
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with elevation data. Abstract features are used by CGFs for path planning composed 

of arial feature boundaries such as tree canopies, lakes etc. The PAT is a global storage 

area for sets of object attribute values such as the mobility characteristics, water 

content, surface category and material category of the terrain.    

 

2.4.2 Estimation of situation in mission planning 

Gaining situation awareness includes performing assessments of terrain and weather, 

and enemy and friendly situations. The terrain is studied keeping in view our own 

mission and resources, and the intentions of the enemy and the size of its force. 

 

2.4.2.1 Line of sight visibility 

Inter-visibility between two points on the terrain surface is calculated to model the 

line of sight (LOS) visibility of entities in simulations. Clear line of sight visibility is a 

dominant factor in selecting defensive positions and also in siting weapons. A popular 

technique used is to calculate it along an appropriate number of equally spaced rays 

out to a certain distance from the observer location for each point in digital elevation 

model (DEM). The LOS calculations assume a certain target height above ground 

level (AGL) and a certain observer height AGL. These heights will vary depending on 

target types and observer types and also the type of operations. The visibility may also 

be varied as a function of distance depending upon visibility at that time for more 

realism in modelling. Some more factors effecting visibility, like forestation and 

cultivation that vary for different seasons of the year cannot be considered when using 

only DEMs. The problem with this technique arises when the spacing of the arrays is 

increased to reduce computations, then the distance between observed points at the far 

end of the array increases (Campbell et al., 1997). 

 

2.4.2.2 Tactical use of terrain 

Surface configuration is studied to determine mobility over an area and also to identify 

suitable areas used for various purposes in military operations. For example, if an area 

needs to be selected for physical occupation by dismounted infantry soldiers with the 

aim of defending that area, then the suitability of the area is based on observation and 

fields of fire towards the approaches leading to it, the size of the area for the 

deployment of the force, and the local slope changes in any direction. The process of 
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surface configuration study from DEMs, is automated through similar techniques as 

that of edge detection in image processing (Campbell et al., 1997). For edge detection 

techniques see (Gonzalez and Woods, 2002). 

Identifying possible concealed avenues of approach is important for planning all types 

of military operations. An attacking force will attempt to minimize its exposure both 

to observation and direct fire as it advances towards a defended location. The 

defending force would prefer to select positions that have highly observable 

approaches. Standard path-planning algorithms (LaValle, 2006) may be applied to the 

visibility scores acquired through the above-mentioned visibility calculating 

techniques in order to rate the availability of cover and concealment on a particular 

approach.  

The information about surface configuration may be used in conjunction with 

probable avenues of approach to identify potential obstacle emplacements, pre-

planned indirect fire locations, etc. 

 

2.4.3 Spatial reasoning 

Forbus, Jeffrey, and Chapmann (2004) have developed a technique called “Qualitative 

spatial reasoning”. This technique involves reasoning that can be done on a computer 

model of a terrain at various levels of resolution, starting from very high resolution 

terrain representation down to a sketch map. 

Fields of fire and observation are important factors considered in military planning 

and operations. Also cover from fire and observation are the same thing considered 

from opposite views. Terrain features, like mountains provide cover from fire and also 

from ground observation. Other kinds of terrain features such as forests block 

visibility, and thus provide concealment. Regions that satisfy these properties are 

critical for mission planning.  Regions that must satisfy multiple constraints are 

computed by combining the regions constructed for each constraint. 

Spatial reasoning is based on spatial relationships and is reasoned on topological and 

positional relationships. Topological relationship is based on the relationship of two 

entities if they are disjointed, touching, or inside one another. 

Positional relationships provide qualitative position and orientation information with 

respect to a global coordinate frame. Compass directions are used to express 

positional relationships. For example a tank can be north of a small village. 
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Two entities may also be linked in a positional relationship based on a local 

coordinate system. For example, if two entities are on a route then it can be said about 

one entity that is ahead, behind, or at the same location along that path. Centroids of 

some objects can be used to indicate their position or location. Some entities have a 

distinct orientation like military units that have fronts, flanks, and rears. 

 

2.5 Current models and simulations in use by the military 

There are many models and simulations in use by the military, this discussion is not 

very exhaustive and only a few of them are discussed here to highlight the 

requirements of human behaviour representation. 

 

2.5.1 JANUS 

JANUS is a constructive high resolution combat model in which individual platforms 

and soldiers are modelled. Platforms have distinct properties such as dimension, 

weight, and carrying capacities. It is designed for the level of squad/team/crew to 

battalion task force but has been extended to brigade and division levels with some 

loss in fidelity. Engagement results are based on mathematical computations with 

stochastic distributions of probabilities of detection, based on the line of sight; kill, 

based on the lethality of the firer and protection level of the target; and hit, based on 

the ballistic characteristics of the weapons (Pew and Mavor, 1998). 

Capabilities and locations of all weapon systems are required to be manually entered 

when setting up the simulation. Human participation is also required for certain other 

game decisions (Ilachinski, 2004). 

 

2.5.2 Close combat tactical training (CCTT) 

CCTT is family of virtual simulations and simulator developed by the U.S. Army and 

training and doctrine command (TRADOC). It simulates battalion sized task force by 

modelling M1 tank, Bradley infantry fighting vehicle, and AH64 attack helicopter 

(Pew and Mavor, 1998).  

 

2.5.3 Corps battle simulation (CBS) 

CBS is a constructive simulation to simulate divisional and corps level operations. It 

interfaces with other army, air force, naval, and logistic simulations in use by the 
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military. It is used to train staff officers at the Army Command and General Staff 

College at Fort Leavenworth, Kansas. Staff officers at level of brigade, division, and 

corps set up the simulation giving inputs that establish unit locations, weapon system 

status, and intended plans (actions or manoeuvres). It executes approximately three 

hours of combat based on the player inputs. It computes battle losses and logistic 

consumptions down to the company and battalion level task forces. The reports and 

status is given to all levels of command and staff participating (Pew and Mavor, 

1998). 

 

2.5.4 Combined arms and support task force evaluation model (CASTFOREM) 

CASTFOREM is currently the U.S. Army’s highest resolution combined arms combat 

simulation model. This model is designed to simulate combats of task force and 

combined arms brigade level forces up to about one and a half hour of intense fire 

fight. The model uses mathematical formulae and stochastic distributions along with 

subroutines to execute some command and control implemented through a look-up 

table based on doctrinal tactics and manoeuvres. Model is used for simulating division 

level operations with some loss in fidelity. Main user of the model is TRADOC 

(Ilachinski, 2004). 

 

2.6 Current HBR models 

Some of the models representing human behaviour are discussed here; the range, 

flexibility, and realism vary in these models. 

 

2.6.1 ModSAF 

ModSAF is the successor of simulator networking (SIMNET) semi-automated forces 

(SAF) developed by U.S. Army’s Simulation, Training, and Instrumentation 

Command (STRICOM). The ModSAF is designed for training and runs in real time for 

combat simulations up to battalion level. It is an interactive, high resolution, entity 

level simulation linked to the terrain database. The user with the help of graphical user 

interface (GUI) can create and control entities. The user also with the help of GUI 

creates, loads, and runs scenarios to simulate a battlefield situation. It provides a 

credible representation of the battlefield including physical and environmental models. 

Human behaviour models cover basic activities like movement, sensing, shooting, 
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communication, and situation awareness. These behaviours are hard wired into the 

model based on the finite state machine model which is restricted to a limited number 

of states. The finite state machine includes a list of states and commands that are 

accepted in each state, a list of actions for each command and a list of conditions in a 

state required to trigger an action (Ilachinski, 2004). 

In ModSAF, the behaviour is restricted to these actions and as such there is no 

underlying human behaviour model and human behaviour representation need to be 

coded into finite state machine. ModSAF is used to model individual soldiers, and 

vehicle and weapon system platforms and the coordinated move of platoons and 

squads and their tactical actions while unit operations are planned and executed by a 

human controller (Pew and Mavor, 1998). 

ModSAF developed by the U.S. Army has been adopted by the other services. In 

Synthetic Theatre of War 1997 (STOW-97) exercise, four types for ModSAF were 

used. Now a new version named OneSAF is being developed that is reported to be 

more capable. 

  

2.6.2 Intelligent forces (IFOR) 

IFOR model has been developed to represent the combat behaviour of fixed and rotary 

wing pilots in combat and reconnaissance missions. These models are based on Soar 

architecture that has been discussed in detail in Chapter 5. The soar architecture is a 

rule based system to model human cognition. Soar uses production rules as the basic 

unit of long-term knowledge. With a view to develop general purpose IFOR in future, 

first a specific context of fixed and rotary wing air operations is used to develop fixed 

wing attack (FWA)-Soar and rotary wing attack (RWA)-Soar pilots for air operations 

are developed. 

 

2.6.2.1 Fixed-wing attack-Soar (FWA-Soar) 

This project is also known as “The TacAir-Soar System”. The system is capable of 

executing most of the airborne missions that the United States military flies in fixed-

wing aircraft. It accomplishes this by integrating a wide variety of intelligent 

capabilities, including real-time hierarchical execution of complex goals and plans, 

communication and coordination with humans and simulated entities, maintenance of 

situational; awareness, and the ability to accept and respond to new orders in flight. 
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TacAir-Soar consists of over 5,200 rules. It uses task decomposition to carry out 

orders given by the higher command. Its most dramatic use was in STOW-97 (Jones et 

al., 1999). 

 

2.6.2.2 Rotary-wing attack-Soar (RWA-Soar) 

Hill and associates developed RWA-Soar (Hill et al., 1997), the system is based on 

Soar architecture and has also added new techniques to facilitate teamwork (Tambe, 

1997). The system consists of a team of agents that perform the tasks of an attack 

helicopter company for a synthetic battlefield environment used for running large-

scale military exercises. This system has an approach to teamwork that enables the 

pilot agents to coordinate their activities in accomplishing the goals of the company. 

 

2.6.3 Synthetic adversaries for urban combat training 

Wray and associates have developed synthetic adversaries to train four-person fire 

teams of US Marines for military operations on urban terrain (MOUT) scenarios 

(Wray et al., 2005). The agents are built using Soar cognitive architecture.  

Best and associates have developed similar implementation of synthetic opponents for 

MOUT in 2002 using ACT-R cognitive architecture (Best et al., 2002). ACT-R 

architecture will be discussed in detail separately. 

  

2.6.4 Synthetic G staff for headquarters  

Mason and Moffat have developed a multi-agent based system to simulate the 

behaviours of staff officers in military headquarters. Their work is focused on 

representing G2 and G3 processes of data fusion, decision-making and planning 

(Mason and Moffat, 2001). 

 

2.6.5 Smart whole air mission model (SWARMM) 

Air Operations Division of the Australian Defence and Science Technology 

Organisation developed SWARMM, in conjunction with the Australian Artificial 

Intelligence Institute (AAII). It is used to simulate fighter aircraft operations; each pilot 

in the system is an agent, programmed with dMARS, a BDI-based cognitive 

architecture. BDI architecture is discussed in detail separately. The agents receive data 
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from the physical models equivalent to the information a real pilot would receive from 

his/her vision and instruments (Lucas and Goss, 1999). 

SWARMM models squadrons of fighter pilots, with a heavy emphasis on teamwork. It 

is used to test new equipment and tactics and has proved to be useful for this purpose. 

  

2.6.6 Irreducible semi-autonomous adaptive combat (ISAAC) 

Introduced in 1997, ISAAC is an agent-based simulation of small unit combat. It 

served as a proof-of-concept that the theretofore-speculative proposition that using 

swarms of software agents obeying simple rules may reproduce real combat 

behaviours could be turned into a practical reality. ISAAC is developed for DOS-based 

computers, and its source code is written in ANSI C. The basic element of ISAAC is 

agent, which loosely represents a primitive combat unit (infantryman, tank, transport 

vehicle, etc.) that is equipped with doctrine, mission, situational awareness, and 

reaction. Doctrine is default local-rule set specifying how to act in a generic 

environment; mission is a set of goals directing an agent’s behaviour; situational 

awareness is based on sensors generating an internal map of an agent’s local 

environment; and reaction is a set of rules that determine how an agent behaves in a 

given context (Ilachinski, 2004). 

 

2.6.6.1 Enhanced ISSAC neural simulation toolkit (EINSTein) 

EINSTein was introduced in 1999. It is based on ISAAC, but uses entirely new source 

code and decision algorithms and contains a vastly richer landscape of user-defined 

primitive functions. The underlying dynamics is patterned after mobile cellular 

automata rules. It has been programmed in C++, using a windows GUI front-end. It 

uses a genetic algorithm toolkit to tailor agent’s rules to desired force level behaviour 

(Ilachinski, 2004). 

EINSTein is used to run simulations for a variety of purposes, land and marine 

combat, command and control evaluation, and social modelling involving riots and 

unrest control. 

 

2.6.7 Map aware non-uniform automata (MANA) 

MANA is an agent-based combat model developed by New Zealand’s Defence 

Technology Agency. MANA shares some concepts with either ISAAC or EINSTein. 
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MANA like ISAAC and EINSTein uses numerical weights to motivate agent’s 

behaviours and parameter setting for sensor range, and fire range through dialog.  

Nonetheless, there are certain unique characteristics and advance features in MANA 

including the ability to develop and maintain a mental map in every agent of the 

locations of previously sensed enemies. Therefore, agent’s actions at any time are 

based on a combination of information from both what they currently perceive and 

what they remember in their mental maps. This internal picture of the environment is 

built as the simulation progresses (Ilachinski, 2004). 

 

2.7 Comparison of EINSTein with JANUS 

Klingaman and Carlton in 2002 at United States West Point Military academy’s 

Operation Research Center for Excellence compared EINSTein and JANUS to 

establish the combat effectiveness of EINSTein’s agents executing National Training 

Center (NTC) type-scenario (cited in Ilachinski, 2004). In the scenario, own force 

consists of an armoured company of fourteen tanks, and enemy force is also of similar 

size consisting of fourteen main battle tanks. There are two sets of EINSTein agents, 

one set learns using EINSTein’s built-in learning capability based on genetic 

algorithm and the other set does not learn. Combat results of both set are recorded. 

These observed actions are then programmed into JANUS and for each case; the 

combat effectiveness resulting from JANUS is compared to the outcome in EINSTein. 

Problems are observed in translating agent and environmental characteristics from one 

model to the other due to model specific constraints and conceptual differences. To 

conclude the report Klingaman and Carlton offer suggestions for both types of model 

to make them more compatible:  1) that multi-agent-based models (ABMs) need 

increased fidelity in terms of terrain and weapon systems; 2) ABM-like personality 

traits and realistic decision making algorithms should be incorporated in traditional 

models, such as JANUS; 3) traditional models should incorporate some mechanism to 

allow learning. 

 

2.8 Recognition primed decision making 

Recognition primed decision-making (RPD) is a promising model of naturalistic 

decision making (NDM) (Klein, 1998) and (Lipshitz et al., 2001). RPD posits that 

humans rarely generate a large number of options and then evaluate all of them in 
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parallel on various abstract dimensions to maximize the expected utility. On the 

contrary, an experienced decision maker recognizes a situation and a course of action 

as first one to consider. 

Earlier Rasmussen (Rasmussen, 1985) used code of behaviour and critical incident 

interviews to study nuclear power plant operators. He proposed a three-stage typology 

of skills: sensorimotor, rule-based, and knowledge based. His three-stage typology 

highlights how a person with different level of expertise uses different strategies in 

decision making. Gladwell (2005) also narrates incidents of correct blink of an eye – 

snapshot decisions. He acknowledges the work of Klein, supported overall by Paul 

Van Riper who was president of the Marine Corps University in 1989 and director of 

Marine air-ground training and education centre, MCCDC, in 1990, in giving this 

spontaneity a structure. He is of the opinion that it is very difficult to bring out the 

correct cues and processes that resulted in a correct decision in the blink of an eye. But 

he also cites the work of Gottman related to reducing complex problems into simple 

elements and proving that even the most complicated relationships and problems have 

underlying patterns that can be identified. He also cites the work of Lee Goldman who 

proves that in picking up these pattern more information than needed or information 

overload increases the level of difficulty in the process because then one is required to 

identify the pattern in more clutter (Goldman et al., 1996). When the decision maker 

thin-slices a situation, recognizes patterns and make a snapshot decision he is 

unconsciously editing the information. 

During the study, by Klein and his associates, of decision makers in various domains 

under time stress, high stakes, and uncertain environments with multiple players in 

field settings it is observed that for an expert the recognizable cues feeding the 

decision process are so overwhelmingly important that only a single option is 

considered before making a decision. One such study involved experienced naval 

officers make decisions in the combat information centre of AEGIS cruisers (Kaempf 

et al., 1996). It is observed in the study that out of 103 cases of situation awareness, 

87% are recognized through feature matching, 12% are developed through story 

building, and only 1% are not explained. In 2003, the Fort Leavenworth Battle 

Command Laboratory conducted experiments involving a group of serving and retired 

officers to evaluate RPD, and the validating comment was “Yes, that’s what we 
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usually do”. From the preliminary results it was found that RPD took 30% less time 

than MDMP (Ross et al., 2004). 

Klein’s RPD model is arguably one of the best-known models in naturalistic decision-

making. Elements of this model have been appearing in the literature previously but 

Klein and associates integrated all elements and produced a wholesome model (Klein, 

1998). This model is characterized with the absence of parallel evaluation of more 

than one option. It is believed that experienced decision makers identify a plausible 

course of action as the first one to consider rather than to generate and evaluate a large 

set of options. Option evaluation is performed serially by mentally simulating action 

and finding out its weaknesses. Problem solving and judgment is a part of decision 

making. The RPD model consists of three Levels as shown in Figure 2.1. 

 

 

Figure 2.1 Klein’s RPD model [adapted from (Klein, 1998)] 
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The simplest and probably the most common case for experts within the RPD model 

is Level 1 (Figure 2.1), where a decision-maker sizes up a situation, forms 

expectancies about what's going to happen next, determines the cues that are most 

relevant, recognizes the reasonable goals to pursue in the situation, recognizes a 

typical course of action that is likely to succeed and carries it out. 

Level 2 is a more difficult case, in which the decision-maker isn't certain about the 

nature of the situation. Perhaps some anomaly arises that violates expectancies and 

forces the decision-maker to question whether the situation is different from what it 

seems, or perhaps uncertainty might be present from the beginning. Here, decision-

makers do deliberate about what's happening. 

Level 3 of RPD model is the case in which decision maker arrives at an understanding 

of a situation and recognizes a typical course of action and then evaluates it by 

mentally simulating what will happen when it is carried out. In this way, if he spots 

weaknesses in the plan, he can repair it and improve the plan, or throw it away and 

evaluate the next plausible action (Klein, 1998). 

The model has been tested in variety of applications including fireground command, 

battle planning, critical care nursing, corporate information management, and chess 

tournament play (Klein and Klinger, 2000). 

 

2.9 Set effects 

Humans have a tendency to set the mind and, at a lower level, the perception in a 

certain way. The Mental set called Einstellung is a tendency of humans to set the 

mind in a certain framework and to adopt a certain strategy, or procedure. For an 

example of mental set see (Luchins, 1942). The perceptual set is a similar bias in the 

way that problems and their solutions are perceived, e.g., nine dots problem (Kershaw 

and Ohlsson, 2001). Another example of perceptual set is from the work of Coren, 

Porac and Ward (1978) where they find gender differences in interpretation using 

ambiguous doodle-like black-and-white figures (Figure 2.2). 
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Figure 2.2 Doodle-like black and white figures 

 

A figure which in more cases was viewed as a brush or a centipede by males was 

viewed in more cases as a comb or teeth by females. Another figure viewed as a target 

mostly by males was in more cases viewed by females as a dinner plate. And a third 

figure which was viewed mostly by men as a head was viewed by most females as a 

cup.  

 

2.9.1 Negative set 

Successful problem solving with a particular mental set biases people toward reusing 

the same set in similar situations. “Negative set” refers to instances in which the “set” 

leads to a non-productive solution, e.g., Luchin’s Water Jug Problem (Luchins, 1942). 

Negative set is a phenomenon that may cause a problem in making decisions with the 

help of RPD model. But mental simulation in which the course of action is played out 

to check for its progress towards the goal helps in avoiding this negative mental set. 

 

2.10 Cognitive architectures 

Human cognition is modelled with the help of cognitive architectures. These 

architectures provide a set of tools and theoretical constraints that help the cognitive 

modeller. Different architectures make different theoretical assumptions which 

influence the nature of cognitive models supported by them (Johnson, 1997).  
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Sensing and perception, and motor behaviour have been added to most of the 

cognitive architectures. Sensing and perception transform representation of external 

stimulus into internal representations that are fed to the cognitive process. Cognition 

encompasses processes such as situation awareness, planning, decision making and 

learning.  Motor behaviour models the functions performed by the neuromuscular 

system to carry out the physical actions selected by the cognitive processes. Cognitive 

processes are based on a memory system and an inference engine. Memory system is 

composed of two types of memories: long term memory (LTM) and short term 

memory (STM) which is also called working memory (WM) in some of the cognitive 

models. LTM is responsible for holding large amount of information for long periods 

of time whereas, STM holds information temporarily for cognitive processing. LTM 

consists of two types of memories: procedural and propositional memories. Procedural 

also called operational memory consists of procedural-motor skills i.e., know how of 

doing a task. Propositional memory consists of a huge variety of knowledge that can 

be represented and expressed symbolically. Propositional memory is further 

subdivided into episodic and semantic memories. Episodic memory is involved with 

recording and subsequent retrieval of unique and concrete experiences of a person 

with some sense of time attached to them. Whereas, semantic memory is concerned 

with a person’s abstract, timeless knowledge of the world that is independent of a 

person’s identity (Tulving, 1983). More discussion on other theories about episodic 

and semantic memories is in Chapter 3. 

ACT-R is a cognitive architecture that is aimed at simulating and understanding 

human cognition (Anderson, 1993). Soar is a cognitive architecture that exhibits 

intelligent behaviour (Laird et al., 1987). The beliefs, desires, and intentions (BDI) 

model is based on the theory of human practical reasoning developed by philosopher 

Michael Bratman (1987). He developed this theory in the mid 1980s. BDI is proposed 

at a higher level of abstraction and researchers make different theoretical assumptions 

to produce practical BDI models. 

 

2.10.1 Adaptive control of thought – rational (ACT-R) 

ACT-R is a hybrid cognitive architecture based on the experimental knowledge in 

cognitive psychology and human cognition. It has a symbolic production system 

which is coupled to a connectionistic sub-symbolic layer like a neural network. ACT-R 
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is a parallel matching, serial firing production system. Conflict resolution strategy is 

psychologically motivated (Anderson, 1993) and (Anderson and Lebiere, 1998). ACT-

R is focused on higher level cognition but perception motor module is added in ACT-R 

in 2004 and now it is called ACT-R/PM (Anderson et al., 2004). 

ACT-R has two types of knowledge – declarative and procedural. Declarative 

Knowledge is the facts we are aware of and which we can describe to others, for 

example, “Cross country movement for wheeled vehicles becomes difficult after rain 

fall” and “the visibility is poor in foggy weather”. Procedural Knowledge (or know-

how) is the knowledge of how to perform some task. We display this knowledge in 

our behaviour, for example, taking turns at a junction while driving a car. Declarative 

knowledge is represented in the form of chunks. These chunks consist of isa pointers. 

One isa pointer specifies the category and additional pointers describe the contents. 

Procedural knowledge is in the form of production rules, which are condition action 

pairs. Both declarative and procedural knowledge are stored in the long term memory. 

For a production rule to apply, its conditions or antecedents are required to match the 

chunks in the working memory. The working memory is the active part of the 

declarative knowledge. The action on the right-hand side specifies some actions to 

take. These actions can modify the declarative memory. 

The chunks are activated on the basis of activation value which is a sum of base-level 

activation and associative activation. Base-level activation is a value representing the 

usefulness of the chunk in the past while associative activation reflects the relevance 

of the chunk to the current context. 

Multiple rules may match the pattern of chunks in the working memory and may 

apply. But as mentioned earlier ACT-R is a serial rule firing system and therefore, only 

one rule is required to be selected to fire. This conflict is resolved by selecting the 

production with the highest utility. The utility of the production is the estimated cost 

to achieve the goal subtracted from the product of the probability of achieving the goal 

if this production is selected and the value of the current goal. 

Associations between declarative memory elements (DMEs) can be tuned through 

experience this is associative learning and can automatically adjust the strength of 

association between DMEs. New productions (procedural knowledge) can be learned 

through analogy to old procedural knowledge through inductive inferences from 

existing procedural knowledge and also through worked examples. Production rules 
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are tuned through learning strengths and updating of the estimates of success 

probability and cost parameters. 

ACT-R is applied to model intelligent opponents in military urban terrain operation 

(MOUT) simulation (Best et al., 2002). 

 

2.10.2 Soar 

Soar is a symbolic cognitive architecture for general intelligence  (Laird et al., 1987) 

and (Newell, 1990). It has been used for creating intelligent forces for large and small 

scale military simulations (Hill et al., 1997), (Jones et al., 1999) and (Wray et al., 

2005). Soar is a forward chaining parallel rule matching and parallel rule firing 

system. Both the declarative and procedural knowledge are represented as production 

rules. The production rules are condition-action pairs. The long term memory (LTM) 

is composed of production rules while the short term memory (STM) contains only 

declarative knowledge. STM in Soar is also the Working Memory (WM) that holds all 

the dynamic data structures. Impasse in Soar is the architecturally detected lack of 

available knowledge. Soar’s basic reasoning cycle is as follows: 

• Input 

• State elaboration  

• Proposing operators 

• Comparing and evaluating operators 

• Selecting the correct operator 

• Applying operator 

• Output. 

 

Learning in Soar is called chunking which is a form of explanation based 

generalization. Soar has been evaluated extensively as a cognitive architecture against 

human behaviour in a wide variety of tasks. Some examples of these models are 

natural-language comprehension, concept acquisition, use of help system etc (Pew and 

Mavor, 1998). Soar is validated for very large-scale military simulation in the TacAir-

Soar for STOW ‘97, which included 722 individual sorties to be flown by US Air 

Force. It demonstrated Soar’s ability to generate autonomous, real-time, high fidelity 

behaviour for a large-scale simulation of a complete theatre battle. The current version 
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of TacAir-Soar contains over 5200 production rules, organized into about 450 

operators and 130 goals (Jones et al., 1999). Soar is further discussed in detail in 

Chapter 5. 

 

2.10.3 Belief, desire, and intentions (BDI)  

Philosopher Michael Bratman (1987) developed the theory of human practical 

reasoning, the origins of the BDI model lie in this theory. In BDI approach the 

behaviour of the individual agent is shaped by its Beliefs, Desires, and Intentions. 

Belief is the agent’s perception of the environment that may or may not be true, 

Desires are the states of the world it seeks to bring, and Intentions are the committed 

plans.  A number of researchers have proposed their preferred axiomatizations 

capturing the relationships between beliefs, desires, and intentions that resulted in 

various theoretical frameworks for BDI architecture (Rao and Georgeff, 1995) and 

(Georgeff and Rao, 1996). The BDI approach was further developed from theoretical 

frameworks to practical systems, through application of abstractions, and static and 

dynamic constraints. And this process resulted in a number of successful 

implementations (Lucas and Goss, 1999); most notable are the procedural reasoning 

system (PRS) (Georgeff and Ingrand, 1990), and its successor “distributed Multi-

Agent Reasoning System” (dMARS) developed in C++ (d'Inverno et al., 1998). 

In computational terms, Beliefs is representation of the state of world, be it in the 

forms of values of variables or symbolic expressions in predicate calculus. Goals may 

also be expressed in any of the forms described for Beliefs above, however in what 

ever way goals are represented, the representation should reflect the desire and not 

tasks as used in usual computer programs. Computationally, Intentions may be a 

group of threads being executed in a process. From a theoretical perspective, 

Intentions are committed plans which are liable to change after observing a change in 

the external environment. The agent is supposed to create these plans every time it 

finds a new situation but because of the resource bound, it caches the plan for reuse. 

Some researchers consider these stored plans to be the part of Belief (Georgeff et al., 

1999) while others consider it as a fourth data structure and formally name it as the 

plan library (d'Inverno et al., 1998). 

The BDI agent senses the environment, reasons about beliefs, desires and intentions 

and then performs a series of actions. After sensing the environment the beliefs of the 
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agent may change, changes in beliefs may change some goals and therefore the 

intentions. Change in intentions will bring new partial plans or recipes into play to 

achieve goals. If multiple plans are available to achieve a goal then the agent uses 

rational choice to select a plan which means it will evaluate all options and select the 

best one. 

The Australian Artificial Intelligence Institute (AAII) has developed Oasis (Optical 

aircraft sequencing using intelligent scheduling) an agent based air traffic control 

system and NASA’s Space Shuttle Monitoring and Control System, using SRI’s  PRS 

(Georgeff and Ingrand, 1990). AAII in conjunction with Australia’s Defence Science 

and Technology Organisation (DSTO) is developing SWARMM, a dMARS agent based 

simulation system to simulate dynamics and pilot reasoning of air missions, and 

provide visualisation. 

 

2.10.4 Summary of cognitive architectures 

All of the cognitive architectures have some distinct advantages and some limitations. 

The first problem in comparing cognitive architectures is that they are universal 

Turing machines and therefore, it is very difficult to prove that an architecture can not 

model some phenomena. A Turing machine that is able to simulate any other is called 

a universal Turing machine or simply a universal machine. A Turing machine is a 

kind of state machine. At any time the machine is in any one of a finite number of 

states. Instructions for a Turing machine consist in specified conditions under which 

the machine will transition between one state and another. A Turing machine has an 

infinite one-dimensional tape divided into cells. Each cell is able to contain one 

symbol, either ‘0’ or ‘1’. The machine has a read-write head, which at any time scans 

a single cell on the tape. This read-write head can move along the tape to scan 

successive cells. The action of a Turing machine is determined completely by (1) the 

current state of the machine (2) the symbol in the cell currently being scanned by the 

head and (3) a table of transition rules, which serve as the “program” for the machine. 

The actions available to a Turing machine are either to write a symbol on the tape in 

the current cell or to move the head one cell (Turing, 1936-7). 

The second problem in comparing cognitive architectures is that there are virtual-

architectures within the architecture. The problem domain, for which a model or an 

agent is being developed, is the most important factor in deciding the architecture. 
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Even within a domain, the specific aspect that needs to be modelled is also a very 

important deciding factor. For command agents, ACT-R has some advantages over 

others in modelling human psychology, flexibility in learning, probabilistic behaviour, 

and decision making based on knowledge as well as Bayesian networks. Soar is 

scalable as has been demonstrated in large scale implementations in military 

simulations and war-games, and it has also been successfully deployed to model 

teamwork due to STEAM. BDI architectures offer proactive planning and teamwork 

in the basic architecture. 

 

2.11 Chapter summary 

The decision making process in use in the military is called Military decision making 

process (MDMP) and is based on multi-attribute utility analysis (MAUA) in which the 

decision makers are encouraged to generate a number of candidate courses of action 

and evaluate them in parallel on multiple attributes. Decision making in most military 

simulations are represented by MDMP. Klein and associates proposed the recognition 

primed decision making (RPD) model that posits that humans rarely generate a large 

number of options; on the contrary an experienced decision maker recognizes a 

situation and a course of action as first one to consider. The courses of action are 

evaluated serially by the decision maker by mentally simulating them one after the 

other. For modelling human behaviour, representing realistic human decision making 

behaviour is imperative, and situation awareness and problem solving is a part of 

decision making. Human behaviour representation without an underlying 

psychological theory based on cognitive processes results in brittle models. Human 

cognition is represented by cognitive architectures such as ACT-R, Soar, and BDI. 

Artificial intelligence techniques that are not a complete and unified model of human 

cognition have also been used to implement RPD to represent realistic human 

behaviour. Some attempts at computer implementation of RPD available in the 

literature are discussed in the next chapter. 
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3 LITERATURE REVIEW 

 

Computer implementation of any conceptual or theoretical model is a challenge in its 

own right. The intensity of the challenge further increases for models of psychological 

theories in general and psychological models in field settings that are outside the 

controlled environment of the laboratory in particular. RPD is one such model of 

human decision making which involves human cognitive processes such as gathering, 

storing, retrieving, and assessing information, setting goals, and sub-goals, developing 

and monitoring expectations, performing mental simulation and making decisions. 

Many attempts have been made at implementing RPD agents using various 

technologies to include multiple trace memory models, physiological models, artificial 

neural networks, fuzzy logic, rule based systems, context-based reasoning, and multi 

agents based systems like BDI cognitive architecture and composite agents (CA). 

Relevant literature using the above technologies is reviewed in this chapter 

 

3.1 Multiple-trace memory model 

Warwick et al. (2001) developed a computational model of RPD (Klein, 1998), based 

on the decision maker’s long term memory (LTM) on the lines of Hintzman’s 

multiple-trace memory model (1986). Hintzman (1984) claims that there is only one 

memory system and that stores episodic traces. The abstract knowledge is not stored 

but is derived from these traces of experience at the time of retrieval. Multiple trace 

theories assume that each experience is stored in memory as a separate trace and does 

not strengthen or modify a prior representation. The new and old traces of even similar 

experiences coexist in the memory. 

The alternate theory assumes that the effect of repetition is mediated by a mechanism 

different from the one involved in episodic memory tasks. According to this view, the 

repeated exposure to exemplars of a category produces traces of individual events in 

episodic memory but also produces an abstract representation of the category in a 

functionally separate generic memory system (Tulving, 1983).  

The decision maker’s LTM is represented by a two-dimensional array. Each row 

represents a situation that prompts recognition and the by-products that follow 

recognition. The RPD experience consists of cues, goals, expectations and a course of 
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action, however, in this model only expectations and courses of action are being 

represented. A probe that is the snapshot of the current situation is sent to the LTM 

and a similarity value for each row is obtained. Each row in LTM contributes to this 

similarity value according to its contents. The situation is recognized if the similarity 

has a value more than a set threshold. This threshold is set by estimating a value from 

worst case scenarios where associations between situations and by-products are 

entirely random. 

There are two ways of characterizing situations. One method uses a rich structure of 

cues, inferences and judgements to identify situations in LTM; the other characterises 

situations simply in terms of cue values. Flat situation awareness is a routine whereby 

unprocessed cue values are stored in the situation awareness array and the 

unprocessed cues from the environment is straight away used to recognize a situation. 

The cue values in the driving environment of the implementation under discussion 

(Warwick et al., 2001) e.g., light colour, the presence or absence of trailing traffic, 

perceived distance to the intersection, the presence or absence of a police officer, etc. 

are used to form judgements the driver makes about the situation. These cues are 

made available in the environment and are straightaway used to recognize the 

situation stored as such in the LTM. But in most real world environments the cues do 

not wear meaning on their sleeves and need interpretation before this can be used to 

form judgement. Taking the example of the same authors in their next computer 

implementation of RPD for conflict resolution in an enroute air traffic control (ATC) 

environment (Warwick et al., 2001), where the cues need processing before a meaning 

can be extracted out of them. The cues in the airspace model are positions, altitudes 

and headings. But for conflict resolution the air traffic controller must know whether 

the planes are climbing or descending. In this case the data from the environment 

drives inferences which in turn form the basis of higher level judgements about the 

situation. 

There are two short comings in this implementation, firstly, the situation has a 

completely flat structure and this may not always be the case in the real world where 

complex problems are deep and hierarchical in nature, secondly, mental simulation 

has not been implemented. 
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3.2 Human emulation model 

Forsythe and Wenner (2000) proposed an ‘organic model’ to predict the behaviour of 

engineered system that results from human involvement in these systems. The human 

cognition emulation model results from this ‘organic model’.  

Forsythe and Xavier in their work with Schoenwald (Schoenwald et al., 2002) 

developed a computational model for Level 1 RPD (Klein, 1998). In this work they 

developed a computational model to generate episodic memory for use in human 

cognition emulation. The application is based on eight embodied-agents in the form of 

vehicles in a large building trying to move through hallways avoiding collision from 

the walls and also amongst each other to place a member at the maximum smoke 

concentration in the building. During the operation they are supposed to keep their 

wireless communication intact which is based on physical limitations; more distance 

for line of sight and less distance through walls. For simplicity of computations 15 out 

of 32 dimensions, and 800 out of 48,000 observations are selected as traces of 

episodic memory. First the observations are classified using two types of cluster 

analysis techniques and then these clusters are interpreted using a classification tree 

model.   

Cluster analysis is a form of unsupervised learning and the nature of no-supervision is 

that there is no knowledge of data structure. Two clustering methods are used: K-

means clustering (Forgy, 1965) and  (Hastie et al., 2001) and DIvisive ANAlysis 

(DIANA) (Kaufman and Rousseeuw, 1990). 

For both the K-means and DIANA, the authors considered the number of clusters that 

can range from one to ten. For the K-means algorithm, five clusters provided adequate 

partitioning whilst the DIANA algorithm requires six clusters. The classification trees 

derived from K-means and DIANA clusters were partitioned on different dimensions. 

The partition rules developed through this process are applied to all 48,000 

observations, i.e., each observation is associated with one of the states developed by 

each algorithm. This work demonstrates the ability to identify behaviour through 

schema abstraction using K-means and DIANA clustering algorithms and a 

classification tree analysis.  

Forsythe and Xavier adopted a two-tiered approach to develop a human emulator 

(Forsythe and Xavier, 2002). In this model, the knowledge is represented using a 

psychological model and a physiological-based model drives this psychological 
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model. The psychological model is the Recognition Primed Decision making (RPD) 

model. In the initial model the decision maker is a perfect decision maker and the 

agent exhibits no individual differences based on cultural factors or individual 

experiences. Factors like fear, arousal, stress, etc., collectively termed as ‘organic 

factors’ (Forsythe and Wenner, 2000), are also not represented. As the knowledge is 

not represented in the neural model thus this design distinguishes itself from neural 

net and connectionist approaches. 

In this “human emulator”, as the authors have called it, memory has been modelled on 

the processes proposed by Klimesch (1996). In this memory model, there are neural 

units operated by dictation from low-level neural processes, e.g., transmitter-receptor 

interactions, metabolic properties, etc. Neural assemblies are formed by collecting 

individual neural units.  

Episodic memory is modelled by a single distributed neural assembly. Processing 

demands lead to increased synchronization.  

Semantic knowledge is represented by a semantic network. This network consists of 

nodes, each node represents a concept. Associated nodes are connected to each other; 

the strength of links varies with the degree of association. The activation of concept 

nodes is dependent on the activation of its neural assembly.  

The pattern recognition process that monitors activation of assemblies associated with 

individual elements and responds when specified patterns of activation occur. This 

amounts to matching current conditions to a known situation schema. This pattern 

recognition process in episodic memory is dependent on a single neural assembly. 

Rows of the template in episodic memory represent known situation schema and 

columns correspond to concepts in the semantic memory. A binary number represents 

activation of a concept. Binary number has a value equal to ‘1’ when a concept is 

activated and a ‘0’ otherwise. Recognition occurs incrementally in accordance with a 

race model and when a threshold is exceeded there is activation of the situation 

schema.  

This improved model sets the stage for implementing mental simulation, which is an 

essential ingredient for Levels 2 and 3 RPD; however, as yet only level 1 RPD has 

been implemented. This computational model is resource intensive and as declared by 

the authors already on the upper limits of response time when it is working on a high 

end desktop with very little knowledge i.e., only 30 concepts in its semantic network. 



Chapter 3 – Literature Review 

47 

The time taken in statistical analysis on experience traces to produce episodic memory 

has not been mentioned most probably it is an offline process. The episodic memory 

thus produced is said to be created without any contribution from domain knowledge. 

 

3.3 Artificial neural network (ANN) model 

Liang et al. (2001) developed a part of the RPD model using artificial neural network 

(ANN). Neural networks, also known as connectionistic networks are inspired by 

principles of neuroscience. A neural network consists of simple processors called 

neurons or units and these neurons are connected with the help of communication 

channels called connections. The channels carry numerical data and the neurons are 

non-linear processors. Neurons process the local data and the data that they receive 

through their connections. There are several types of neural network architectures 

(Gurney, 1997) and (Russell and Norvig, 2003), however, Liang has used a feed-

forward network with back propagation as learning algorithm. Neural networks 

support both types of learning: supervised and unsupervised. Most learning algorithms 

in neural networks are based on the phenomenon of adjusting weights of the 

connections or links (Russell and Norvig, 2003). Back propagation is a supervised 

learning algorithm and adjusts the weights of the connections. 

A feed-forward network represents a function of its current input, and the only internal 

state is the weights themselves. Feed-forward networks are structured on layers. The 

structure may be based on single or multiple layer(s). In a multilayer feed-forward 

neural network, the first layer is known as input layer, the last as output layer and in 

between there may be one or more hidden layers (Figure 3.1).  

The neural network used, by Liang et al. (2001), is a simple multi-layer feed forward 

network consisting of an input layer of four nodes, three hidden layers of 12 nodes 

each, and an output layer of eight nodes. The back-propagation algorithm is used for 

learning. This back-propagation algorithm implements a gradient descent in parameter 

space to minimize the output error. The error on the output is the difference between 

the current output and desired output from a set of training examples. After the net is 

trained by adjusting the weights on the connections, then the resulting net is used to 

recognize patterns or classify the input patterns. 
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Figure 3.1 Artificial neural network 

 

In the work of Liang et al, The environment used is simple and there are 0, 1, or 2 hills 

of equal size in the battle field. The enemy is a single tank and is supposed to fight 

from a fixed position until he wins or loses the battle. Own force consists of three 

tanks and has a three to one advantage in the battle. The plans are based on the options 

to attack with or without a firebase. The variations in plans within these two options 

are generated by locating the fire base and the final assault group at different places, 

by selecting different routes to these locations, and also by developing different 

combinations of firebase and assault groups by changing the strength in each. When 

there is no fire base then all the tanks go into their final assault positions using a route 

and there is no route and position for the fire base. The routes are described by giving 

only one point in between the starting position and the destination in both cases. The 

inputs to the net are the normalized Cartesian coordinates of hills. The output is 

Cartesian coordinates of the final assault group and the firebase positions and one 

point along the route for both of them. In the opinion of the authors (Liang et al., 

2001); for better results more data sets are required, training is suggested to be carried 

out only for one set of solutions to every scenario, and some other technique be used 

after the neural network for better solutions. The recommendation by the authors 

about this hybrid system is that the neural network should be used in reducing the 

number of plans and then some other technique be used to finalize the plan from this 

reduced set. 
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For the scenarios in the test set, some of the solutions generated by the trained neural 

net are not directly executable plans because they are tactically infeasible. Therefore, 

there is a definite requirement within the system to evaluate the generated option and 

modify or reject the generated plan if it is tactically infeasible. But it is difficult to 

determine from this experiment whether the neural network is not able to generate 

tactically feasible plans or is it because of the training set provided as the solution or 

both are contributing factors. Because, in some of the plans given as solutions for the 

training set, the final position of the fire base is located very close to the enemy tank. 

Locating fire base so close to the enemy positions is not a usual practice in the tactical 

situations presented in this paper. In some of the cases in the training set, the final 

position of the assault group is on the enemy position itself and in same cases 

approximately three grids south, south west, or south east of the enemy position. This 

difference in the final positions of the assault group, in our opinion, is not a different 

strategy but a different representation of the same plan, because in some 

representation of the attack plans the plan is marked up to the forming up place 

(FUP). An FUP is a place where the attacking forces form up in attacking formations 

and from this point on it is usually a direct run to the objective. An objective is a place 

that needs to be captured or neutralized in an attack. But the neural net while training 

considers these as two different strategies. When the complete training data set is used 

after doubling the data by taking advantage of symmetry and then further doubling it 

by changing the order of the hill in the data set the network converged only after the 

error criterion was increased by two decimal points. In this thesis, we have integrated 

an artificial neural network with RPD-Soar agent architecture motivated from this 

work. Apart from modifying some plans that are not tactically feasible and adding 

some new plans we have done a major change and that change is in the purpose for 

which the artificial neural network is used. We have used the artificial neural net for 

pattern recognition only and not for plan generation, as Liang et al. (2001) also 

realizes and comments that the option to generate plan directly from the trained neural 

net did not prove to be successful. 

 

3.4 Fuzzy logic model 

Ji et al. (2007) have developed a computational model of RPD based on fuzzy logic. 

Fuzzy logic is reasoning with approximate values rather than precise values as used in 
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predicate logic. Fuzzy logic is derived from fuzzy set theory. Fuzzy sets are sets 

consisting of elements with fuzzy membership associations that is to say a 

membership of an element may have any value ranging from 0 to 1. In classical set 

theory an element of a set may have a membership value of either 0 or 1, in fuzzy sets 

an element may be part of two sets with different membership association values. 

Fuzzy set theory provides a method of formalizing imprecise premises and of 

inferences from them; it is applying logic to language. The age of a person is 

numerically precise. However, relating a particular age to young can be difficult and 

confusing. Fuzziness is deterministic and not random, as the nature of the above 

question is deterministic to a particular person. AND, OR, and NOT operators are 

fundamental to fuzzy sets. The elements of resultant set of AND, OR, and NOT 

operations are also partial memberships because the membership being operated is 

partial and not full. If – then rules are means to inference in fuzzy set theory, e.g., if x 

is small then y is fast. Fuzzy if – then rules are used in fuzzy modelling and control 

systems. In this model imprecise cues are represented by fuzzy sets and higher level 

cues are abstracted out of elementary data using fuzzy reasoning. After developing all 

the cues for a situation, similarity is measured between the present situation and a 

prior experience. The module to measure similarity can handle different types of cues 

involving nominal values, quantitative data, and fuzzy numbers/sets. It is assumed that 

the prior experience and the present situation have the same set of cues. Local 

similarity is measured between the experience and the situation separately for each 

cue. Then a global similarity is computed as the normalized weighted sum of the local 

similarities. If the global similarity value is above a threshold chosen by the user then 

the situation is said to be recognized and if there are more than one experience above 

the threshold then the one with the highest similarity value is selected. There is also an 

action evaluation procedure which is a form of mental simulation but it has two short 

comings. First, it does not have a proper mental model where an action is 

implemented and its effects are observed. Instead a predefined effect is stored with the 

action. If there is no mental model then an action can not change the mental world and 

then the agent can not observe the change in cues to determine whether the selected 

action is taking the agent to the goal or not. Second, human intervention is required to 

modify the plan instead of architecturally supported decomposition of the course of 
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action to atomic actions where these atomic actions may be put in a new sequence to 

develop a new plan. 

 

3.5 Context-based reasoning model 

Context based reasoning is used to represent intelligent behaviour in training 

simulations by Gonzalez and Ahlers (1998). Gonzalez states that context-based 

reasoning is based on the concept of Scripts developed by Shank (Schank and 

Abelson, 1977), for representing knowledge to understand natural language (Gonzalez 

and Ahlers, 1998). The context-based reasoning paradigm posits that the identification 

of the future situation is simplified due to the present situation itself as the present 

situation can only lead to a limited the number of situations. And also, that the context 

defines a set of actions appropriate to address the present situation. 

The concept of Scripts is extended to represent intelligent behaviour in autonomous 

agents in military simulations (Gonzalez and Ahlers, 1998). Tactical knowledge 

representation of these autonomous agents is context-based. The contexts are 

hierarchically divided into the Mission-context, Major-contexts, and Sub-contexts. The 

Mission-context consists of Major-contexts which can be sequentially activated to 

achieve the assigned mission. Major-contexts contain the knowledge to perform major 

tasks and also the knowledge to control its deactivation and activation of another 

Major-context. Major-contexts are mutually exclusive. The Sub-contexts are the lower 

level actions needed to implement a Major-context. Sub-contexts are mutually 

exclusive but may be associated with more than one Major-context. The Context-

based reasoning paradigm encapsulates knowledge about suitable actions for specific 

situations and compatible new situations into hierarchically organized contexts. That 

means all the behavioural knowledge is stored in the context base which is the 

collection of all contexts (Fernlund et al., 2006).   

The Context-based reasoning paradigm is comparable to Soar cognitive architecture 

with regards hierarchical goal decomposition. As discussed above the contexts exist to 

partition the behaviour space and the same can be done in Soar by creating a sub-goal. 

In context-based reasoning in order to activate a context, context-transition logic is 

used which exists to select an appropriate active context at each time step. Whereas, in 

Soar the same is achieved by firing productions to propose an abstract operator which 

in turn creates a sub-state through an operator no change impasse.  
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The Context-based reasoning also resembles Level 1 and Level 2 RPD when its 

selection of context for activation procedure is analysed which is based on situations. 

The context is deselected if it is found by the rules controlling the selection of 

contexts that the premises are not met (Stensrud, 2005). But the similarities end here 

as there is no concept of mental simulation in context-based reasoning.  

 

3.6 Event Predictor - Mental simulation model 

Kunde and Darken (2005) implemented an event predictor to model the mental 

simulation part of RPD. They have applied and tested the model on a scenario built in 

a simulation environment Combat XXI (Kunde and Darken, 2006). In this model, the 

agent decides to fire or hold fire depending on the prediction from the mental 

simulation part of the model as to how many red tanks will be observed by the blue 

tank commander in the next observation and when this next event is expected. The 

mental simulation component is based on a Markov Chain. A Markov Chain is a 

stochastic state machine with the property that the transition to the next state is 

dependent only on the present state and not on the previous states. The transition 

probability from state i to state j is the frequency of transition from state i to j in the 

observations up to the current observation. These transition probabilities are 

normalized so that the sum of all the transition probabilities that any state can 

transition to equals 1. A state is defined as the number of enemy entities detected in an 

observation. The agent stays in a state until it observes a change in the number of 

enemy entities. At this point in time the agent changes its state and the transition 

probabilities and mean dwell times are updated.  

The straight forward method in this state machine may be to predict events with the 

highest transition probability. However, a state machine based on this approach will 

always select the most likely transitions and the states with less likely transition 

probabilities will never be reached. In order to also predict events with low transition 

probabilities, a Monte Carlo simulation was used for sampling the values from the 

probability distributions as estimates. The agent decides to fire or hold fire based on 

the prediction of the next event. It decides to fire if it is predicted that the next state 

will either have less entities or the mean transition time exceeds a preset threshold. 

One hundred Monte Carlo simulations are run for three transitions ahead at each 
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decision point. The mode (most common single outcome) of the 100 runs is selected 

as the sequence ahead. 

This is one of the only two known attempts at implementing the mental simulation 

part of RPD. This event predictor is not flexible enough to accommodate all kinds of 

activities that may be carried out in a mental model in RPD. In this model, the 

designer of the agent has to know all the states that the system can transit to and from, 

that may be too many in a complex situation as the number of state explodes with 

increasing complexity. Not only the states but the transition probabilities of states 

must be known from the beginning, some transition probabilities may be 0 or 1 but 

others will have to be determined prior to the design of the agent. The authors 

declared that the learning may be done while in active use but for these experiments 

learning has been done off line. 

 

3.7 Bratman’s belief, desire, and intensions (BDI) cognitive architecture 

model 

Norling (2000) discusses three approaches of implementing the RPD model based on 

BDI architecture. First, is a ‘Naïve’ approach, in which the agent recognizes all 

possible situations and identifies an individual plan for each situation without having 

to choose from multiple options. The agent is assumed to identify the subtleties in 

situations. This approach has similarities with case-based reasoning (CBR) (Kolodner, 

1993); it may work for simple problems with limited situations but not for complex 

problems. Second, it is a preference-based approach, in which the plans are weighted 

and the plan with the highest weight is selected, in case some choices have equal 

weight then one out of them is randomly selected. Initially, all the plans are equally 

weighted. If a plan succeeds its weighting is increased and if the plan fails the 

weighting is decreased. This approach is a form of reinforcement learning. The third 

approach is context-based, in which the agent adapts plan context. It refines the 

context until the overlaps are removed. This method requires the agent to record the 

state each time a plan is used and then use reflection to work out what caused the plan 

to fail. Then change the context conditions accordingly. For this method to work, 

contextual difference need to be recognized at appropriate level of abstraction, 

otherwise to make the right adjustment in the context conditions very large number of 

experiments will be needed which seems impractical.  
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The approach for an ideally expert RPD agent can straightaway be implemented in 

existing BDI architecture. The preference-based approach can also be implemented 

using meta-level reasoning capability of JACK agent, by keeping the record of success 

and failure of plans and ranking the plans accordingly. JACK is an agent development 

environment produced by Agent Oriented Software Group, Melbourne, Australia. 

JACK, through its appropriate concepts in the JACK Agent Language supports BDI 

architecture and helps define beliefs, plans, external and internal events, and 

capabilities (Agent Oriented Software Ltd., 2008).  Whereas, the context-based 

approach need major modifications in the architecture. Norling (2001) gives 

preliminary ideas about the methods that can be employed for this type of adaptability 

in agents.  

JACK selects plans on the basis of Boolean tests of context conditions written at the 

time the agent is designed. These context conditions can not be updated during the run 

time. To enhance the BDI agents to select plans on the basis of preferences, 

reinforcement learning is introduced. Reinforcement learning is unsupervised learning 

and that is a requirement in these agents. In reinforcement learning the agent is 

rewarded or penalised after reaching a state. Q-learning algorithm is selected because 

of its simplicity. RPD enhanced preference-based BDI agents are evaluated in simple 

environments and is not considered sufficiently rich environments for proper 

evaluation (Norling and Sonenberg, 2002). First, Norling and Sonenberg (2004) plug 

BDI agents, with the help of an interface, to the ‘deathmatch’ version of the first-

person shooting video game “Quake II” which they have previously recommended as 

a testbed for evaluation of agents having sufficiently rich environments.  Then, they 

develop an enhanced BDI agent capable of reinforcement learning using Q-Learning 

algorithm and interfaced it to the Quake II and found two major problems (Norling, 

2004). The first problem is regarding recognition of features of the environment in the 

game and the second is the unfeasibly large state space. The map in Quake II is 

represented in a polygon-based structure. Elements of these data structures have been 

used to render objects on the user’s screen. It proved to be very difficult to recognize 

features of the landscape. State space becomes very large if the raw data out of the 

game engine is straight away used. Position variable, which is one of many, 

considered alone increases the state space incredibly, as the position is in three 

dimensions and each dimension is expressed in real numbers. Although the expert 
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plans elicited out of SME’s knowledge may be easily implemented in the agent, the 

agent does not properly recognize the features of the landscape being used by the 

expert therefore the expert plans are never selected. Thus evaluation of enhanced 

agent is not successfully carried out.  

Apart from these problems of very large state space making it difficult to adapt the 

agent using reinforcement learning and the problem peculiar to evaluation there is one 

basic short coming in BDI paradigm in implementing RPD model and that is mental 

simulation. Norling herself writes “The concept of mental simulation has no obvious 

equivalent in BDI, unless one argues that plans themselves do it”. 

 

3.8 Composite agent model 

Sokolowski (2002) in his early work described composite agent (CA) and its 

similarities with that of the RPD model and discussed the ability of the CA to 

implement RPD model based on these similarities. Hiles et al. (2002) developed the 

CA as a result of their work aimed at computer generated autonomy. A CA is a multi-

agent system (MAS) based on the concept that human decision making which is a 

complex phenomenon may be modelled by numerous interactive agents representing 

various activities involved in a human mind. A CA is composed of symbolic agents 

called symbolic constructor agents (SCA) and reactive agents (RA). SCA observes the 

external environment and creates an internal picture of the external environment. The 

reactive agent (RA) generates actions for the composite agents driven by the inner 

environment created by SCA. There are multiple SCAs and RAs in one CA. Each RA 

represents a specific behaviour of the CA. Each RA is striving to achieve one or more 

goals assigned to it. These goals are driving the behaviour of the CA. In an RA, to 

further these goals there are associative sets of actions. A CA has an over all goal. 

Multiple RAs interact with their own set of actions, and the selection is based on the 

degree to which these actions achieve the overall goal. The CA continues to observe 

the environment and if the situation changes then a different set of actions is selected.  

Sokolowski describes the similarities between RPD model and CA. Like an RPD 

model, the CA through its SCA also senses the external environment, produces an 

internal representation of the situation, and periodically samples the environment. CA 

is also goal driven. Various goals compete for satisfaction and a dominant set of 

actions is selected based on the overall goal. The RPD model knows what to expect 
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next as the situation unfolds and the decision is implemented. CA accomplishes the 

same by periodically monitoring the external situation as it changes caused by either 

external effects or as a result of its own actions. About mental simulation he writes 

“… A CA partially accomplishes mental simulation as it performs its goal 

management process to select the set of actions that it will carry out. However, there is 

no clear mechanism within the CA to modify its existing experiences to provide a 

better solution. The mental simulation process will most likely need to be enhanced to 

better replicate role of mental simulation within RPD….” (Sokolowski, 2002). 

Sokolowski in his later work implemented the RPD model based on CA (Sokolowski, 

2003a), (Sokolowski, 2003b) and (Sokolowski, 2003c). More agents namely Main 

Agent, Recognition Agent and Decision Agent are introduced in this model. 

RPDAgent’s experiences are stored in Minsky’s frames. Minsky identified frames as a 

data structure to hold information about a person’s environment. Each frame holds a 

single RPDAgent experience. 

F = (C*, G*, A*)  

where, F is a frame, C* is a structure containing cues, G* contains goals, and A* 

contains actions for an experience. 

Cues are formed by aggregating the environmental variables associated with that cue. 

Once the values of all cues have been calculated then they are transformed into fuzzy 

values. Each case has three fuzzy sets, an unsatisfactory, a marginal, and a satisfactory 

fuzzy set. Triangular-shaped fuzzy sets have been used. Higher values are more likely 

to fall in the satisfactory set.  

The Main Agent manages the overall system and holds the RPDAgent’s experience 

database. The decision process is conducted mostly by the Decision Agent. On 

receiving a decision request, the existing experience is matched via a look up table. In 

a case where there is no matching experience then the RPDAgent does not have the 

experience to make a decision. In case a where a match is found then the related 

information is given to the concerned agent and SCA is informed of a pending 

decision request. SCA generates an internal representation of the environment and then 

instantiates a Decision Agent to manage the decision process. The decision agent 

making use of its encoded experience proposes a potential decision according to the 

internal representation of the situation. The most favourable action is the action with 

the highest ‘action value’. The action value of an action is the sum of all cue values 
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associated with an action. A Decision agent (DA) instantiates reactive agent (RA) for 

each goal that RPDAgent is supposed to achieve. RA evaluates the potential decision 

with respect to the goal for which it has been instantiated. If potential decision 

satisfies all goals then it is selected for implementation otherwise RPDAgent gets into 

a negotiation function conducted under the control of decision agent (DA) by RA. If a 

negotiation is successful and a compromise above a threshold is reached the decision 

is rendered otherwise the next potential decision is evaluated. If no decisions 

adequately satisfy the goals then RPDAgent renders a default decision appropriate for 

the situation. 

In this implementation the cues have been developed by aggregating the 

environmental variables and the same cues have been used for evaluating the potential 

decision. This method of developing cues for evaluation produces good results for 

operational level decisions like selecting an approach of attack, deciding on the line 

and bias of defence, and of course the selection of a site for amphibious landing. The 

agent has been developed for the same purpose and for an agent with more general 

tasks further methods will have to be added in generating cues from the environments. 

The mental simulation in this case is based on the evaluation of potential decision to 

the degree that it satisfies the main goals. And the degree of satisfaction of a goal is 

the weighted sum of all the cues associated with that goal. Mental simulation in this 

implementation is not flexible enough to accommodate all aspects of the mental 

simulation required of an RPD agent. 

 

3.9 RPD enabled collaborative agents for simulating teamwork (R-CAST) 

Yen, Fan, and Sun and others have developed an RPD enabled collaborative agent 

architecture to support human decision making teams (Fan et al., 2005) and (Yen et 

al., 2006). The architecture for collaborative agents which forms the base on which 

this RPD process is integrated to enhance the decision making ability is known as 

collaborative agent for simulating team behaviour (CAST) (Yen et al., 2001). The 

decision to communicate between team members is based on decision-theoretic 

strategy. That means the cost of communicating and the possibility of requirement of 

the message is considered in calculating expected utility of communicating and also in 

the same way the expected utility of not communicating is calculated. The decision is 

made by the agents for the choice with higher expected utility. For RPD process the 
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experience is divided amongst agents and the one with the requisite experience or 

knowledge agrees to make the decision. All R-CAST agents maintain a mental picture 

of the world according to their own beliefs in the knowledge base. The R-CAST agent 

making the decision checks whether the preconditions of the plan that is selected 

satisfy the knowledge base and if so the agent asserts the plan to see whether the 

relevant goals are met. This part of the RPD process is the mental simulation. It is not 

clear as to what happens to the beliefs of the agent which is based on the state of 

knowledge base if the plan does not meet the goals and is rejected. Does the 

knowledge base go back to the previous stage before the plan is asserted? The 

knowledge base is stated to be proof preserving and in our opinion it should store the 

previous state and revert back to it if the plan is rejected for the sake of truth 

maintenance in the agent’s mental model.  

 

3.10 Summary 

Computer implementations of RPD discussed in this chapter are based on human 

cognitive models at various levels of abstraction developed on different physiological 

and psychological theories to include multiple trace memory model, artificial neural 

network and belief, desire, and intention (BDI) cognitive architecture. RPD 

implemented on hybrid models whereby knowledge represented in a psychological 

model is driven by a physiological model based on neural units is discussed. Two 

implementations based on multiple agent system and one each on fuzzy logic, context 

based reasoning and Markov chain models are also discussed. Mental simulation 

which forms the major part of Level 3 RPD is implemented in fuzzy logic, Markov 

chain, and both of the multiple agent system models. But the scope of the mental 

simulation is limited and does not cover the complete range of requirements of RPD 

model. 

Having reviewed some of the work implementing RPD agent we propose a 

methodology that embeds RPD in Soar cognitive architecture. As a first step we 

develop a simple RPD agent to identify essential components that are required for a 

complete implementation of RPD model. This is illustrated in the next chapter with 

the help of a simple example. 
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4 A SIMPLE RECOGNITION PRIMED DECISION MAKING 

AGENT 

 

The aim of the experiments discussed in this chapter is to realize that realistic 

modelling of human behaviour changes the results of simulations and wargames and 

gives us the opportunity to draw more accurate results from military simulations. The 

aim is also to learn more about, and to probe the ability of the RPD model to provide 

the decision making model required for the intended command agent to be used in 

military simulations. In the end of the chapter the features required in a system to 

implement RPD model are also discussed.  

The simulations based on analytical methods developed in this chapter also serve the 

purpose of validating the base line or start point of simulations involving HBR. 

 

4.1 Tank battle simulation (3-on-1 combat involving a hidden defender) 

For this experiment we have selected a very popular and very well analysed case of 

three-on-one combat (McNaught, 2002) and (Kress and Talmor, 1999). The basic idea 

of this vignette is taken from the work of Kunde and Darken (2005). The blue and red 

forces tactics, information on battle drills and capabilities of weapons and equipment 

is based on the interviews with the subject matter expert (SME) from the OA, 

Modelling and Simulation Group of Defence Academy, United Kingdom and personal 

knowledge of the author on the subject. 

 

4.2 Vignette 

Foxland and Blueland are two neighbouring states, relations have been strained due to 

territorial disputes and now the hostilities are imminent. Foxland is likely to start 

probing the border defensive positions of Blueland and launch a major offensive 

operation against Blueland. 

 

4.2.1 Enemy situation 

An enemy troop of tanks, consisting of three red tanks, is advancing as the forward 

reconnaissance element of the advancing force on the selected avenue of approach. 
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4.2.2 Friendly situation 

There is one blue tank, in hull-down position, on the most likely approach to the 

Blueland main defensive positions. This blue tank is waiting for the advancing enemy 

tanks. 

 

4.2.3 Mission 

Delay the enemy by causing maximum attrition on enemy forward reconnaissance 

elements. 

 

4.2.4 Description 

It is expected that the forward reconnaissance elements consist of a minimum of three 

red tanks. The defensive position adopted by the blue tank will make it difficult for 

the red tanks to detect and engage it. Whereas, the red tanks are moving and the blue 

tank also knows their general direction of approach, therefore, it will have an 

advantage in detecting and later on engaging red tanks. The blue tank also has the 

advantage of surprise. 

 

4.3 Characteristics of entities and terrain 

As the blue tank is in hull-down position, therefore, the probability of its detection is 

relatively small. In a situation where enemy tanks are coming up or around a hill they 

appear and are detected one after the other. For simplicity, in this simulation the 

terrain has been abstracted to two dimensions and the same effect of tanks coming up 

or around the hill has been created using the sensor range of the blue tank. The red 

tank is detected by the blue tank only when the red tank comes within the sensor range 

of the blue tank. The sensor range of the blue tank is depicting the edge of the hill 

where the red tanks are appearing and then they remain visible to the blue tank. To 

give the effect of the red tanks coming up a hill within the firing range of the blue 

tank, the firing range of the blue tank is also kept equal to the sensor range. Sensor 

and firing ranges of blue tank are kept at 1200 meters. 
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4.4 The problem in existing computer generated forces 

In modular semi-automated forces (ModSAF), and other existing computer generated 

forces (CGF), the behaviour of the tank commander is not very realistic. When 

operating without human intervention the very first action of the simulated tank 

commander after detecting an enemy tank, within the firing range of own tank, is to 

engage it. In ModSAF, the usual setting for most of the operations is “shoot on sight”. 

However, for the vignette described in Section 4.2 there is another option that may be 

selected i.e., “no fire until ordered” but to use this option in a ModSAF simulation, 

human intervention is necessary. 

  

4.5 Factors considered by a human tank commander in defence 

Existing CGFs and semi-automated forces (SAFs) in simulations start to shoot on 

sighting enemy tanks. Some of them also check their firing ranges before deciding to 

engage the enemy tank. Whereas, an experienced human tank commander may or may 

not engage an enemy tank on its detection even though that may be within the firing 

range of his tank. Many questions immediately cross his mind on an event of enemy 

tank sighting. Following are some example questions that will immediately pop up in 

the mind of the tank commander when his tank is deployed in a defensive position:- 

• Is this one the only enemy tank? 

• Are there any more tanks following it? 

• Is it the most advantageous time to engage them? 

• Are they going to detect me? 

• What will be the reaction of other enemy tanks after I engage the first tank? 

• Is it feasible to engage them at all? 

• Do I have to delay them? 

• Will I be reinforced? 

• Do I have sufficient ammunition to take on the forthcoming battle? 

 

In this particular situation, a real tank commander having seen one enemy tank, would 

expect additional tanks and would therefore probably wait longer to begin surprise fire 

than would a simulated commander. If he fires before the other tanks round the corner 
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(or come up the hill), they will be warned and may try to outflank him, seek cover, use 

artillery fire, choose a different path, etc. 

 

4.6 Analytical models 

In order to verify the basic simulation we compared our results with analytical models. 

Mainly the Lanchester models of attrition have been used, although, the Markovian 

model has not been used but it has been very briefly discussed in order to show that as 

the battle is realistically modelled with more details then the outcome of the battle 

reduces its dependence from numbers and fire power to other factors like use of 

terrain and battle tactics etcetera.  

British Engineer F. W. Lanchester in 1914, published a paper describing a model of 

attrition process in battle (Lanchester, 1916). The attrition process in combat in this 

model is based on a pair of linked differential equations. The Lanchester equations are 

based on the assumption that the attrition suffered by either side in battle is a function 

of the numerical strengths of the opposing forces involved and the efficiency of their 

respective weapons.  These deterministic Lanchester equations assume that each unit 

on each side is within the weapons range of all units on the other side, each firing unit 

is well aware of the location and condition of all enemy units so that the fire is 

immediately shifted to a new target when the previous target is killed, and the fire is 

uniformly distributed over all surviving units. There are two basic Lanchester laws: 

one is for attrition of forces in a direct fire battle called the deterministic Lanchester 

square law and the other for the attrition of forces in an indirect-fire battle called 

Lanchester linear law. There are modern variations from the original model that are in 

use in present combat models including exponential stochastic Lanchester model. In 

this chapter the deterministic Lanchester square law and stochastic Lanchester model 

are discussed. 

 

4.6.1 Deterministic Lanchester (DL) square law 

The two sides are designated blue and red. 

b, r  =  number of surviving units on the blue side and red side respectively at 

time t. 

B, R =  initial number of units at time t = 0. 

β  =  the rate at which single blue unit can kill red units. 



Chapter 4 – A Simple RPDAgent 

63 

ρ = the rate at which a single red unit can kill blue units. 

The Lanchester equations are as follows: 

 

r
dt

db
ρ−=   and  b

dt

dr
β−=  

 

These equations may be solved with respect to time to give the number of surviving 

units on each side at time t after the start of the battle. However, the more usual form 

of the Lanchester direct-fire model called Lanchester Square Law of attrition for 

direct-fire battle is the solution of these equations with time eliminated as follows: 
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2
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2 
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2
)    Equation 4.1 

In order for the firefight to be at parity in DL square law, the following condition must 

remain valid during the battle: 
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Substituting the above condition in β(B
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 Equation 4.1 yields the following requirement for parity: 

 

   βB
2
 = ρR

2
 

 

Thus, from the above equation, the effectiveness (kill rate) of the single blue 

combatant for parity in direct-fire battle must be given by, 

 

β = ρR
2
     Equation 4.2 

Therefore, for parity in three-on-one battle, blue is required to be nine times more 

effective. 

 

4.6.2 Exponential stochastic Lanchester (ESL) 

In stochastic Lanchester model combatants on both sides assume to have 

exponentially distributed interfering times. Taking the same notation as that of Section 
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4.6.1, the probability of red and blue kill and the mean time distribution to next kill is 

defined as follows: 

• Blue forces kill red at rate = βb 

• Red forces kill blue at rate = ρr 

• Probability of blue killing red =  
rb

b

ρβ

β

+
 

• Probability of red killing blue =  
rb

r

ρβ

ρ

+
 

• Time to next kill has a negative exponential distribution with a  

mean = 
rb ρβ +

1
 

When two sides are at parity in DL square law model the above equation predicts 

mutual annihilation, whereas, parity in a stochastic model would imply an even 

chance of victory for either side.  

McNaught (2002) suggests that in ESL model a different square law exists, and for the 

two forces to be at parity in this model requires the following equation to be satisfied: 

 

β(B
2
+B) =  ρ(R

2
+R)     Equation 4.3 

 

Therefore, for parity in three-on-one battle McNaught (2002) suggests that blue is 

required to be six times more effective but in fact this ratio is higher and parity exists 

approximately at an effectiveness ratio of 7.5 (Wand and Bathe, 2008). 

 

4.6.3 Markovian model 

The Markovian model (McNaught, 2002) takes into account the detection process and 

gives first shot advantage to the hidden defender, shows that in order to have parity in 

three-on-one combat involving a hidden defender the blue has to be four times more 

effective than the red. 

 

4.7 The simulation  

A Simulation has been developed in Java programming language based on the 

exponential stochastic Lanchester (ESL) model (Figure 4.1). This simulation is 

designed to investigate the effect of the introduction of intelligent-like-behaviour in 
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the combatants on the outcome of the battle. The components of the simulation are 

discussed in the succeeding paragraphs. 

To make the comparison simpler, we have assumed the mean inter-firing times to be 

equal for both red and blue forces and the switching time from one target to another is 

assumed to be zero which simply means that the effectiveness ratio can be taken as the 

ratio of the single shot kill probabilities (SSKP).  

 

4.7.1 Blue tank commander (BTC) 

The BTC makes decisions for the blue tank. It has a long term memory (LTM) that 

contains experiences which consists of the situational elements, courses of action and 

expectations. The BTC develops present situation which is a set of values of 

situational elements from the information available in the environment. The present 

situation contains information about the red tanks such as their status i.e. whether 

dead or alive, their distance from the blue tank, whether moving or static, and whether 

firing or not firing.  

The basic idea, of the structure of this LTM consisting of experiences, is taken from 

the work of Warwick et al. (2001). These experiences are developed with the help of a 

subject matter expert (SME). SME is asked to give the most suitable course of action 

and expectation(s) for a given present situation. All possible situations that may arise 

in this scenario are included and every set of values of situational elements called 

present situation in this thesis is associated to a course of action and the expectation(s) 

and is stored in the LTM as an experience. 

BTC gives the present situation to the LTM whose experiences are indexed to the 

elements of the present situation. Based on the present situation an experience is 

retrieved. For simplicity it has been assumed that each set of values of situation 

elements retrieves a single experience which corresponds to a single course of action. 

In this model only courses of action and expectations are retrieved from the memory, 

goals and cues have not been considered. 
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Figure 4.1 Three-on-one tank battle simulation 

 

4.7.2 Simulation environment 

The Simulation environment contains all entities, generates situations, implement 

actions taken by each entity and creates the effects of actions of all the entities present 

in the environment (Banks, 2005). It controls the physical parameters like time to 

engagement and the time taken by the red tanks to travel some distance based on their 

speed. It also decides whether a tank is killed or otherwise when fired at, based on the 

SSKP of the shooting tank. If a tank consumes all its ammunition then the 

environment does not allow the tank to fire any more rounds. However, in the 

experiments discussed in this chapter this limitation on tank ammunition is not 

imposed and it can fire as many rounds as required to end the battle. 

 

4.7.3 Time to engagement 

When a tank engages a new target there is a certain time required for detecting, 

identifying, aiming and firing and also there is travel time of the projectile that it takes 

to reach the target. And when it reaches the target it either hits or misses the target. 

Time to engagements may be modelled with the help of variety of probability 
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distributions. In this experiment we have used exponential, triangular and rectangular 

distributions. The exponential distribution has been used to verify the results of the 

simulation with that of the analytical results and the triangular and rectangular 

distributions have been used to observe the change in results for distributions other 

than the exponential distribution. We have defined two types of time to engagement in 

this experiment. The first is the time to initial engagement and the second is time to 

next engagement. The time to next engagement need to be defined because during the 

course of a battle due to a variety of reasons a target that was previously fired at is 

engaged again. 

 

4.7.3.1 Time to initial engagement 

Time to initial engagement is defined as the time taken by a tank when it engages an 

enemy tank for the first time or a second time only if it disappears in an area that 

provides cover from observation and then reappears at a different location more than 

three hundred metres away. Time to initial engagement is longer than the time to next 

engagement. It has been modelled with the help of two types of distribution, the 

triangular and the exponential distributions (Lecture notes, ESD, 2004). 

First the time to initial engagement based on the triangular distribution is discussed 

and we assume a probability distribution as shown in Figure 4.2. 

 

 

Figure 4.2 Time to initial engagement – Triangular distribution 
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The theory of probability requires that the area under the probability density function 

curve must be unity. The mathematical expression for this probability density function 

is: 
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Where M is the mean time to engagement and C is the spread of time to engagement 

from the mean. The mathematical expression for related cumulative distribution 

functions is: 
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In the above distribution function the expression is in such a form that an analytical 

expression can be formed from which for any generated random number, the variate 

time t may be calculated directly (Rubinstein, 1981), using the following equation: 
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Where R is the random number generated by the random number generator of the 

system simulator. 
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Next time to initial engagement using exponential distribution is discussed and we 

assume the probability density function to be a negative exponential distribution with 

a mean of 
A

1
, as shown in Figure 4.3. The mathematical function is follows: 

 

( ) AtAetf −=    0>t   Equation 4.7 

 

The mathematical expression for cumulative density function is as follows: 

 

( ) AtetF −−= 1      Equation 4.8    

 

Figure 4.3 Time to initial engagement – Exponential distribution 

 

For generated random numbers, R, the variate t may be calculated directly using the 

following expression: 
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4.7.3.2 Time to next engagement 

When it is comparatively easier to detect an enemy tank then less time is required to 

engage a target, therefore, time to next engagement is shorter than time to initial 

engagement. This situation arises when either a tank fails to defeat its target and thus 

it fires again against the same target or the second target is close to the first target. In 
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this simulation if the next target is within 300 meters of the first target then it is 

considered as close. Time to next engagement is modelled with the help of rectangular 

and exponential probability distributions. 

In case of the rectangular distribution, we have assumed the time to next engagement 

to have a probability density function as shown in Figure 4.4. 

 

Figure 4.4 Time to next engagement of the same target – Rectangular distribution 

 

Keeping the area under the rectangle unity, in accordance with probability theory, the 

mathematical expression for this probability density function is as follows: 
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Where a is the minimum time a re-engagement takes and b is the maximum time. 
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In the above distribution function also the expression is in such a form that an 

analytical expression can be formed from which for any generated random number, 

the variate time t may be calculated directly, using the following equation: 
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Where R is the random number generated by the random number generator of the 

system simulator. 

The time to next engagement for the exponential distribution is calculated using 

Equation 4.9; only the mean time in this case is half of the mean time for time to 

initial engagement. 

The above distribution functions for time to next engagement are also used for 

engaging new tanks with in 300 meters distance of the previously engaged tank. If the 

distance of a new detected tank is more than 300 meters in that case the time to 

engagement is determined from the distribution function of time to initial engagement. 

 

4.7.3.3 Speed of red tanks 

It has been assumed that the tanks are moving at a speed of 36 Km per hour and thus 

cover a distance of ten metres in one second. 

 

4.7.3.4 Decision whether a tank is killed or not 

The decision whether a tank is killed or not when fired at is based on the SSKP of the 

tank that is firing. Whenever a tank fires, a random number ‘R’ ranging from 0 to 1 is 

generated based on uniformly distributed probability function. If this ‘R’ is less than 

the SSKP of the tank that is firing then the tank is declared killed. It is not killed 

otherwise.  

 

4.7.4 Validation 

To validate the simulation, the simulation is first tested on one-on-one battle. We 

know from the analytic solution in case of ESL (Section 4.6.2 is referred) the 

stochastic parity exists for one-on-one battle if the effectiveness of the combatants is 

the same. In one-on-one battle there is no switching time as the battle terminates when 

one of the two combatants is destroyed. Therefore, the effectiveness depends only on 

inter-firing times and SSKP of the combatants and for equal inter-firing times the 

effectiveness only depends on SSKP. For both red and blue tanks, the inter-firing 

times, firing and sensor ranges, and SSKPs are kept equal. The inter-firing time has a 

negative exponential distribution with mean at ten seconds and is calculated from 

Equation 4.9. The inter-fire time is kept the same for both initial and subsequent 

engagements throughout this battle. The SSKP and firing range are 0.5 and 1200 
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meters respectively. First 100, 500, 1000, and 10000 simulations are run for 

exponential probability distribution to validate the simulation with respect to the 

analytical solution for ESL. The results of simulations are shown in Figure 4.5, which 

clearly demonstrate that the stochastic parity exists as suggested. 

 

 

 Figure 4.5 Blue and red wins for one-on-one battle 

 

The next set of simulations is run to compare the triangular and exponential 

probability distributions in order to validate the model with triangular distribution. 

Characteristics of the combatants and the probability distributions of time to 

engagement are shown in Table 4.1. The values used for this simulation are the same 

as that of the first simulation only the upper and lower limits in case of triangular 

distribution is specified in addition to the mean value which is the same as that of the 

exponential distribution. Similar to the previous simulation, the inter-firing time is 

kept the same for both initial and subsequent engagements throughout the battle. 
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Table 4.1 Characteristics of combatants for one-on-one simulation  

 

Five sets of 100 simulations each for both probability distributions are run and the 

results are shown in Table 4.2.  

 

Table 4.2 Comparison of exponential and triangular inter-firing time distributions 

 

This test is aimed at validating triangular distribution as an alternative to exponential 

distribution because triangular distribution is comparatively easier to handle in 

computer simulations than exponential distribution. The exponential distribution has 

an infinite tail that causes problems in developing the simulations. A cut-off time is 

required to be set for exponential distribution in order to get a finite inter-fire time.  

Exponential Triangular 

Blue wins Red wins Blue wins  Red wins 

46 54 57 43 

55 45 44 56 

48 52 51 49 

45 55 46 54 

50 50 42 58 

Mean = 48.5 Mean = 51.2 Mean = 48 Mean = 52 

 

  ESL Triangular 

  Red Blue Red Blue 

Number of tanks  1 1 1 1 

Interfering times Mean 10 10 10 10 

 Spread   ±4 ±4 

SSKP  0.5 0.5 0.5 0.5 

Firing range Metres 1200 1200 1200 1200 
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It is evident from the results that the triangular distribution can be used as an alternate 

to the exponential probability distribution. 

The third test on the simulation is aimed at validating the simulation on Equation 4.3 

for three-on-one battle. The validation is done by keeping the equal inter-firing times 

and equal sensor and firing ranges but the SSKP of blue tank is 7.5 times more than 

the red tank for stochastic parity in case stochastic exponential Lanchester (ESL) as 

suggested by (Wand and Bathe, 2008) discussed in Section 4.6.2. Similar to the 

previous simulation firing range of both tanks is 1200 meters and inter-firing time is 

based on negative exponential distribution with mean at ten seconds. In this 

simulation the SSKP of combatants represent their effectiveness as we have assumed 

the switching time to be equal to zero and only the inter-firing time is considered even 

when the targets are switched. We ran 4000 simulations and the total number of blue 

and red wins turned out to be 1868 and 2132 respectively and the corresponding 

probabilities of win are 0.47 and 0.53.  

After validating the simulation with the help of the analytical solution, we changed the 

conduct of battle in the simulation and now the red tanks move 100 metres and then 

stop to engage the blue tank. Red tanks can not fire during move. We ran 100 

simulations for exponential probability distribution and found that stochastic parity 

results when the single tank is six times more effective than each of the three attacking 

tanks. We ran another 100 simulations with the same settings and only changed the 

distribution from exponential to triangular and found out that in this case also the 

stochastic parity exists when the single tank is approximately six times more effective. 

The simulation is now run based on our vignette for both exponential and triangular 

inter-firing time distributions. These are run for a combination of forces with 

intelligent-like and unintelligent-like behaviours opposing each other. One hundred 

simulations are run for each case and the results are analyzed. This is done in order to 

highlight the concept that intelligent-like behaviour can make a difference in the 

outcome of a battle simulation given the same terrain, forces, equipment and situation. 

 

4.7.5 If both red and blue sides do not have intelligent-like behaviour 

The three red tanks start moving towards the blue tank. The first red tank enters the 

sensor range of blue tank, which is also the firing range as described earlier, and the 

blue tank detects it. At this moment the BTC is faced with a decision point. BTC looks 
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at the situation and sends a probe based on the present situation to his memory and 

finds out that he has encountered this situation before and the best course of action is 

to fire, BTC does so because it does not have intelligent-like behaviour. 

We ran 100 simulations each for exponential and triangular probability distributions. 

The time to initial and next engagements are calculated based on Equation 4.9 for 

exponential probability distribution, mean times for initial engagement and next 

engagement are 10 and 5 seconds respectively. Time to engagement for the simulation 

set associated with triangular distribution is calculated using Equation 4.6 and 

Equation 4.12. Time to initial engagement, in this case, is calculated using triangular 

distribution whereas; time to next engagement is calculated using rectangular 

distribution. Mean inter-firing time is 10 and the spread is ±4 seconds for triangular 

distribution. And the maximum and minimum inter-firing times are 3 and 1 second(s) 

respectively for rectangular distribution. Switching time for targets within a distance 

of 300 meters is assumed to be zero and the inter-fire time in this case is equal to time 

to next engagement. For switching targets with a distance of more than 300 meters the 

inter-fire time is increased and is equal to time to initial engagement. 

In this simulation the red tanks are appearing one after the other with a gap of 50 

meters in between them. BTC shoots on sighting the first red tank but the red tanks 

keep moving in the same direction even after realizing that the tank ahead of them is 

engaged (that is the present state of simulations, e.g., ModSAF). As the red tanks are 

appearing one after the other, therefore, it gives an advantage to the blue combatant. 

For the same effectiveness ratio the probability of winning the battle for blue 

improves from parity to 0.62 and 0.61 for exponential and triangular distributions 

respectively.  

 

4.7.6 If the red side has intelligent-like behaviour and blue does not 

BTC shoots again on sighting the first red tank. But in this case, the rest of the two red 

tanks after realizing that the tank ahead of them is being engaged try to manoeuvre 

and attack from the flanks without getting into the blue tanks killing area if they hear 

the first blue shot fired in time. If the red tanks are successful in coming from the 

flanks they compromise the advantage of blue’s defilade position and reduce their 

detection times.  Again this situation was run for two choices of probability 

distributions. 
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The time to initial and next engagements are calculated based on Equation 4.9 for 

exponential probability distribution, mean times for initial engagement and next 

engagement are 10 and 5 seconds respectively. Time to engagement for the simulation 

set associated with triangular distribution is calculated using Equation 4.6 and 

Equation 4.12. Time to initial engagement, in this case, is calculated using triangular 

distribution whereas; time to next engagement is calculated using rectangular 

distribution. Mean inter-firing time is 10 and the spread is ±4 seconds for triangular 

distribution. And the maximum and minimum inter-firing times are 3 and 1 second(s) 

respectively for rectangular distribution. Switching time for targets within a distance 

of 300 meters is assumed to be zero and the inter-fire time in this case is equal to time 

to next engagement. For switching targets with a distance of more than 300 meters the 

inter-fire time is increased and is equal to time to initial engagement. 

Because of this advantage to the red and disadvantage to the blue combatant, the blue 

reduces its probability of winning the battle to 0.41 and 0.35 for exponential and 

triangular distributions respectively.  

 

4.7.7 If both red and blue sides have intelligent-like behaviour 

The three red tanks start moving towards the blue tank. The first red tank enters the 

sensor range of blue tank, which is also the firing range as described earlier, and the 

blue tank detects it. At this moment the BTC is faced with a decision point. BTC looks 

at the situation and sends a probe based on the present situation to his memory and 

finds out that he has encountered this situation before and the best course of action is 

to hold fire and the expectation is another red tank appearing after this tank in a few 

seconds. Therefore, BTC holds fire and waits for another tank. At this point in time 

the blue tank may be engaged by the red tank as it is also in its firing range. Therefore 

the decision to hold fire and wait depends on the personality of this particular BTC. If 

he has been acting bravely in the past and of course considering his hull-down 

position in present situation, he would have experiences in his memory of holding fire 

for greater advantage of trapping more red tanks. But if the BTC has been risk averse 

then the course of action in his memory would be to engage the very first red tank. In 

this case, we take him to be a risk-taking commander and he decides to hold fire and 

expects another red tank. 
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In this simulation, the red tanks are also intelligent and they will try to manoeuvre and 

outflank the blue tank if they detect the blue tank either by observation or if blue tank 

fires. But the blue tank holds fire and it is very difficult for them to detect the blue 

tank due to its hull-down position. Therefore, after few seconds, another red tank 

appears within the firing range of blue tank. BTC sends a probe based on this situation 

to the LTM and finds it to be a typical situation, with a course of action to hold fire 

and expectation of another tank appearing after few seconds. When the third red tank 

also gets in the firing range of blue tank, BTC engages the first red tank, which is at 

the shortest threatening distance. 

The time to initial and next engagements are calculated based on Equation 4.9 for 

exponential probability distribution, mean times for initial engagement and next 

engagement are 10 and 5 seconds respectively. Time to engagement for the simulation 

set associated with triangular distribution is calculated using Equation 4.6 and 

Equation 4.12. Time to initial engagement, in this case, is calculated using triangular 

distribution whereas; time to next engagement is calculated using rectangular 

distribution. Mean inter-firing time is 10 and the spread is ±4 seconds for triangular 

distribution. And the maximum and minimum inter-firing times are 3 and 1 second(s) 

respectively for rectangular distribution. Switching time for targets within a distance 

of 300 meters is assumed to be zero and the inter-fire time in this case is equal to time 

to next engagement. For switching targets with a distance of more than 300 meters the 

inter-fire time is increased and is equal to time to initial engagement. 

Red tanks after realizing that they are being engaged try to manoeuvre and attack from 

the flanks, but this may not be possible as they are already in the killing area of the 

blue tank and they can not disengage as they did in the previous cases. The other two 

red tanks are within 300 meters of each other so the blue tank will engage them with 

shorter inter-firing, i.e. ‘time to next engagement’. 

BTC after each change in situation keeps probing his memory for recognition of 

situation and related courses of action and expectancies and keep testing the 

expectations to find an anomaly and then get back to his memory for recognition of a 

new situation. Red tanks engage the blue tank as they detect it. The time to 

engagement and firing procedure for red tanks is exactly the same as explained above 

for blue tank. 
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Because in this case the red combatants can not avail this advantage of outflanking the 

blue combatant hence blue increases its probability of winning the battle from parity 

(i.e., 0.50) to 0.57 and 0.56 for exponential and triangular distributions respectively. 

The results are summarised in Table 4.3. It is evident from the results that different 

attacking formations and different battle strategies change the out come of the battle. 

 

Table 4.3 Summary of simulation results of simple RPDAgent 

 

This experiment also includes the case when blue side has intelligent-like behaviour 

while the red side does not. Because of the better decision making of blue commander 

all the red tanks get into the killing area and in this situation no matter what is the 

behaviour of red tanks the results will not be different. Because the red tanks can not 

disengage themselves from the blue once they are inside the killing area.  

 

4.8 Conclusions 

The outcomes of constructive military simulations are likely to change if realistic 

human behaviour is incorporated in these simulations. This computer implementation 

of RPD model works for simple problems and need to be developed and experimented 

for complex problems. 

As the main focus of this research is human behaviour representation therefore, more 

emphasis should be laid on realistic modelling of human cognition, decision making 

and learning and less on modelling physical parameters in order to cover more aspects 

of the central topic of research with sufficient depth. Therefore, the physical 

 Exponential distribution Triangular distribution 

Intelligent Blue wins Red wins Blue wins Red wins 

None 62 38 61 39 

Red 41 59 35 65 

Both 57 43 56 44 

*Note: Stochastic parity exists (which means P(win) = 0.50 for each 

force) in 3-on-1 battle with single combatant suggested to be six times 

more effective when the three tanks move 100 metres towards the single 
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parameters may be abstracted and should only be sufficiently modelled to provide 

proper context to the command agent. 

A long term memory and a few ‘if then’ rules will not suffice for an RPDAgent to 

operate successfully in a complex environment, and the agent would require a proper 

cognitive architecture. The decision making in complex situations demands that the 

agent is able to recognize the context of the situation, keep more than one goal in 

mind and make an effort to select an action to satisfy all of them at the same time it is 

also necessary to derive cues from the elements of the situation presented to the agent 

and to have a truth maintenance system in the short term memory to keep a valid 

picture of the whole situation at all times, a long term memory as before to keep all 

the rules applicable to the problem domain, an inference engine and an architecture to 

develop a mental model to evaluate proposed actions. The Soar cognitive architecture 

offers most of the required features and is discussed in the next chapter. 
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5 SOAR 

Soar is a symbolic cognitive architecture for general intelligence (Laird et al., 1987). It 

has also been proposed by Newell as a suitable candidate for unified theories of 

cognition (UTC) in the series of The William James Lectures in 1987 (Newell, 1990). 

Soar is a forward chaining, parallel rule matching and parallel rule firing production 

system. Soar uses an associative mechanism to identify knowledge relevant to the 

current problems with the help of an extremely efficient symbolic matcher. Soar 

employs a computationally inexpensive truth maintenance algorithm to update its 

beliefs about the world. Automatic sub-goaling gives Soar agents a meta-level 

reasoning capability and enables task decomposition. Sub-goals are created due to 

impasses. Impasse in Soar is the architecturally detected lack of available knowledge. 

All types of learning in Soar are through a single phenomenon called chunking. 

Chunking is a form of explanation-based generalization. Chunks are the cached results 

of sub-goals. Soar is capable of building autonomous intelligent agents that interact 

with complex environments inhabited by other intelligent agents and humans. Soar 

has been used to develop intelligent agents for small as well as large scale military 

simulations (Hill et al., 1997), (Jones et al., 1999) and (Wray et al., 2005). 

In this chapter the basics of the underlying concepts and functioning of various 

mechanisms in Soar are discussed that are intended to be used in the implementation 

of the model. After giving an overview of Soar, the architecture, applications, and 

improvements in Soar are discussed. The discussion on architecture includes working 

memory, reasoning cycle, conflict resolution and learning in Soar. Most of the 

material in this Chapter is taken from “The Soar 8 Tutorials 1 – 8” (Laird, 2006a) and 

Soar User’s Manual Version 8.6 Edition 1 dated 18 May 2006 (Laird, 2006b). 

 

5.1 An overview of Soar 

Soar is based on the Problem space hypothesis. In a problem space, there is an initial 

state; there are operators that change the current state, and a desired state. Every task 

is accomplished by attaining a goal. The goal is to reach the desired state. Thus, every 

task is achieved through a search in the problem space for the desired state by 

selecting and applying operators. When there is sufficient knowledge available to 

exactly know which operator to select at each step then the routine behaviour emerges. 
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This routine behaviour is usually represented procedurally, but not in Soar, where all 

problems are represented in problem spaces.  

Decisions in Soar are taken to search in the problem space, e.g., selection of operator, 

selection of state, etc. If sufficient knowledge exists and can be immediately brought 

to bear then a decision is straight away taken. Otherwise, a sub-goal is created to make 

a decision. If there are three proposed operators and the knowledge to select one out of 

them is not immediately available then a sub-goal to select an operator is set up. Sub-

goals in Soar can be setup for any decision for which sufficient knowledge is not 

available. A sub-goal is setup to search for information in order to make the required 

decision. Further sub-goals can also be setup from one sub-goal, thereby, forming a 

tree of sub-goals and problem spaces.  

The long term memory (LTM) containing long term knowledge is organized as a 

production system. Both the task implementation knowledge and the search control 

knowledge are stored in LTM as production rules. Production rules are condition-

action pairs. The declarative knowledge which is examined by the productions is 

available in the working memory (WM). In Soar, WM is the same as short term 

memory (STM). WM of Soar has been explained with the help of an example in 

Section 5.2.1. However, these data structures that take the form of declarative 

knowledge are also stored in the LTM as production rules. When productions fire the 

actions of these production rules produce these data structures in WM.  The data 

structures in WM are formed with the help of working memory elements (WME). A 

WME is an identifier, attribute, and value triplet. 

Unlike other production systems, Soar fires all production rules that are satisfied 

without any conflict resolution. A production is satisfied when its antecedents match 

the declarative knowledge, available in the form of WMEs, in WM.  Productions can 

only add WMEs. Modification and removal of WMEs is carried out by the architecture 

itself. 

The search control knowledge is transferred to WM from LTM through firing of 

production rules containing preferences. The preferences give the behaviour to Soar in 

its current situation. The situation is defined by problem space, a current goal, state 

and operator. The preferences take one of these forms: acceptable, reject, better, best, 

worse, worst, and indifferent. Better and worse preference represent comparison 
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between two items. The decision procedure is independent of domain knowledge and 

it interprets these preferences to select the next action.  

Impasses in Soar are architecturally detected lack of available knowledge to continue 

problem solving. Thus an impasse stops problem solving as Soar does not know what 

to do next and creates a sub-goal to overcome an impasse. All sub-goals in Soar are 

created and maintained by the architecture and therefore, this process is named as 

automatic sub-goaling. Automatic sub-goaling is an important feature of Soar as it 

forms the basis for many other useful features of Soar. If Soar can not accumulate 

sufficient knowledge to proceed with problem solving it stops.  

The architecture maintains a goal stack and keeps monitoring all the active goals in 

the goal hierarchy and it immediately detects the termination of a goal. After detection 

of termination Soar proceeds from termination point, that will be a level higher from 

where the sub-goal is set up. When the goal terminates all the working memory 

elements related to it are automatically removed.  

As the Soar is proposed as a cognitive architecture for general intelligence therefore 

Soar realizes all weak methods. Weak methods are general-purpose search 

mechanisms trying to string together elementary reasoning steps to find complete 

solutions. Such problem solving approaches are called weak methods because, 

although general, they do not scale up to large or difficult problems (Russell and 

Norvig, 2003). The alternative to weak methods is to use the more powerful, domain 

specific knowledge that allows large reasoning steps. The Soar realizes all weak 

methods e.g., hill climbing, means-ends-analysis, etc., through productions provided 

for search control. Due to the structure of Soar, it’s not necessary to procedurally 

represent the method to employ any of the weak methods. If knowledge exists for 

evaluation of operators, and better operators are given larger numerical values or 

better preference symbolically then Soar automatically exhibits a form of hill 

climbing. 

Soar learns by caching the results of its sub-goals as productions and the process is 

named chunking analogous to human cognition. Chunking is a form of explanation-

based generalization.  
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5.2 Architecture 

The behaviour is an integration of architecture and content. The content consists of the 

knowledge of task implementation and search control. The architecture performs the 

functions of; goal creation, goal maintenance, goal termination, decision making, 

memory management and learning. A higher level view of Soar is shown in Figure 

5.1. 

 

 

Figure 5.1 A higher level view of Soar Architecture [(Laird, 2006a) with permission] 

 

5.2.1 Working memory 

The working memory holds the complete processing state for problem solving in 

Soar, to include sensor data, intermediate calculations, objects in the state, goals and 

operators. The graph in Figure 5.2 represents the working memory of a Soar agent that 

has three objects in its world. A block named ‘A’ on top of another block named ‘B’ 

on top of a table named ‘Table’. 

The structure of working memory is in the form of a connected graph, consisting of 

nodes, e.g., S1, B1, T1, and blue, and edges or links, e.g., ontop, name, colour, and 

type (see Figure 5.2). There are two types of nodes in this graph. One type of nodes is 

called identifier and they have links emanating from them and are non-terminal nodes 

such as S1, B1, and T1. While the other type of nodes is called constant and they are 

terminal nodes with no further links emanating from them such as blue. The edges or 
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links are called attributes. The working memory is in the form of an identifier, 

attribute and value triplet called working memory elements (WME). The value in a 

WME may also be an identifier connecting to another attribute. Every WME is either 

directly or indirectly connected to a state symbol, in Figure 5.2 the state identifier is 

S1 and all the WMEs are eventually connected to it. 

 

 

Figure 5.2 Structure of working memory [(Laird, 2006a) with permission] 

 

An object in Soar is defined as a collection of WMEs that share the same first 

identifier. The object in working memory is usually a representation of a physical 

object in the world of the agent. In Figure 5.2, the identifiers S1 and B1 are objects. 

One object may contain other objects as in the case of S1 and B1. The identifier B1 is 

an object of type block, name A, and colour blue, and is ontop of another object B2. 

There are some working memory structures as shown in Figure 5.3 that Soar creates 

automatically. Although, this part of the memory is not shown in Figure 5.2 but the 

agent will have this structure also. The attribute io pointing to identifier I1 in state S1 

appears only on the top state i.e., the first state that Soar agent creates. Whereas, the 

attributes, super-state and type, appear in all states that are created by Soar. The 

output-link I2 and input-link I3 are both identifiers as they may have further 

augmentations connected to them later. 
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Figure 5.3 Working memory input – output link [(Laird, 2006a) with permission] 

 

Working memory is modified by; productions, the decision procedure, and the 

working memory manager. Productions add augmentations in working memory, the 

decision procedure modifies the context stack, and the working memory manager 

removes irrelevant contexts and objects from working memory. 

 

5.2.2 Reasoning cycle of Soar  

Soar’s basic reasoning cycle is shown in Figure 5.4 is as follows: 

• Input 

• State elaboration  

• Proposing operators 

• Comparing and evaluating operators 

• Selecting the correct operator 

• Applying operator 

• Output 

 

 

Figure 5.4 Reasoning Cycle of Soar [(Laird, 2006a) with permission] 



Chapter 5 – Soar 

87 

 

In input phase, new sensory data comes into the working memory through the input-

link. This new data is interpreted during elaboration phase which is next. The 

elaboration phase elaborates the state, proposes operators, and collects preferences. 

The working memory is examined by the productions in the long term memory and 

new objects, augmentation in old objects, and preferences are added. The productions 

that satisfy their conjunction of conditions with a consistent binding of variables by 

matching it with the contents of the working memory are successfully instantiated. A 

production can have a number of concurrently successful instantiations. The 

elaboration phase is monotonic. All successfully instantiated productions fire in 

parallel without any conflict resolution. The only type of conflict resolution in the 

elaboration phase is refractory inhibition which means an instantiation of a production 

is fired only once. Although in a serial machines, productions fire one after the other, 

this is only a limitation of the machine and is at a lower level and does not affect the 

simulated parallelism of Soar production firing. More importantly, the consequences 

of rule firing are accounted for, and ‘simulated parallelism’ does not affect the 

veracity of the system. The process of successful instantiation and firing of 

productions takes place in phases. When a production fires, the action part of a 

production modifies or adds WMEs in the working memory that in turn satisfies the 

conditions of other productions. Eventually all productions that satisfy their conditions 

fire and there are no more productions to fire, at this stage the system is said to reach 

quiescence. Operators are proposed during elaboration phase and the preferences 

related to the proposed operators are also added in the working memory. After 

elaboration phase the decision procedure starts. The process of selection of an 

operator is based on the preferences for the operators. The preferences have three 

basic concepts: acceptability, rejection, and desirability.  Acceptability is a choice to 

be considered. Rejection means a choice is not to be made. Desirability means a 

choice is better than, worse than, or indifferent to another choice. A choice can also 

be best or worst. A choice with best preference means that the choice is selected until 

either it is rejected or there is another choice better than it. A choice with worst 

preference is selected only when there are no other alternatives. The decision 

procedure interprets the semantics of the preference concepts to select an operator to 

be applied. After the operator is selected the rules that apply the operator fire which is 
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followed by firing and retracting of state elaboration and operator proposal rules. 

These rules may also fire during the application phase. After reaching quiescence, 

output and then input are processed. Then elaboration phase described above starts 

again. 

 

5.2.3 Conflicts in Soar 

In Soar, the conflict resolution is not at the level of production rules rather it is at the 

level of problem solving. Because of independence and incompleteness of knowledge 

it is possible for the decision process to fail to select an operator to apply, in which 

case an impasse occurs that needs to be resolved to proceed further with the problem 

solving. In elaboration phase, individual productions expressing independent source of 

knowledge fire independently and contribute to the selection process. It is possible for 

an operator to be both better and worse than another, and thus create conflict of 

desirability between choices. The incompleteness of knowledge is due to the reason 

that the elaboration phase delivers some collection of preferences and these can be 

silent on any particular fact. Soar can at any time be in any state of incomplete 

knowledge.   

Due to conflicting or insufficient knowledge impasse occurs. When multiple operators 

are proposed and there is not sufficient knowledge to distinguish them in order to 

select one out of them, then it is called an operator-tie-impasse. When multiple 

operators are proposed but their preferences conflict then it is called operator-

conflict-impasse. A state-no-change-impasse occurs when there are no acceptable 

preferences to propose operators for the current state or all the acceptable values have 

been rejected. When a new operator is selected in the decision phase but no further 

productions fire in the application phase then an operator-no-change-impasse occurs. 

 

5.2.4 Conflict resolution in Soar 

Soar always creates a new state to resolve a conflict or impasse as called by the Soar 

designers. The goal of the new state is to resolve the impasse. As it is a new state 

created while solving a problem in the higher state and it is created to achieve a goal 

which is part of the main goal therefore it is interchangeably called sub-goal and sub-

state. The new state is initialized with the information from the higher state and it 

carries a link to the higher state named as super-state. The value in this attribute points 
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to the higher state. The new state also contains the complete description of why the 

impasse was created e.g., tie describes it was an operator-tie-impasse and with it the 

information about all the operators that tied is also given. In the new state operators 

are proposed and selected to further the problem solving but an impasse may occur in 

this sub-state creating another state therefore it is possible for Soar to have a stack of 

sub-goals. An impasse in Soar is not considered to be a problem rather problem 

solving in sub-states is a way of decomposing complex problems into smaller parts 

and sub-states provide a context to deliberate about which operator to select. The tie-

impasse is resolved by productions that provide preferences for one choice to be 

distinguished from others or making all the choices indifferent. The conflict-impasse 

is resolved by the productions that create preferences to require one choice or 

eliminate the alternatives. State-no-change-impasse is resolved by productions that 

propose operators for the current state. And operator-no-change-impasse is resolved 

by productions that apply the selected operator, make changes in the state so that the 

proposal for the current operator no more matches, or new operators are proposed and 

preferred. 

All states in Soar are active at all times and the processing goes on in all levels of 

states. An impasse is resolved when the knowledge becomes available in a state which 

created the impasse. When the impasse is resolved, Soar architecture removes the sub-

state with all its WMEs and preferences from the working memory as it has served its 

purpose and is no longer required. But the results that are created in the super-state are 

kept. The sub-states at all the lower levels are removed if an impasse at a higher level 

is resolved and the problem solving in a higher state progresses. The impasses may 

also become irrelevant when something in the outside world change causing 

productions to fire that create knowledge to resolve the impasse e.g., preferences to 

select an operator when the impasse is a tie.  

The functioning of Soar starting from instantiation of productions in the LTM to the 

impasses and creation of sub-states or sub-goals is represented graphically in Figure 

5.5. The process of new results writing new productions in the LTM is the learning 

process of Soar and is discussed in Section 5.2.6. 
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5.2.5 Truth maintenance system 

Soar has a truth maintenance system which retracts results created by a rule from 

working memory when the concerned rule no longer matches. Soar has a support 

system for the facts in the working memory based on two types of supports; i-support 

and o-support.  

 

 

Figure 5.5 Soar: a functional diagram [(Ritter, 2007) with permission] 

 

The Soar architecture classifies rules on the basis of their being part of operator 

application or not. If any antecedent of a rule tests the current operator and changes 

the state the result is classified to have operator-support or o-support. These WMEs 

are persistent and may only be removed by other operator applications or if they get 

disconnected from the state. The results created from all other rules, to include rules 

that propose an operator, elaborate state, elaborate operators, or compare operators are 

said to have instantiation-support or i-support. The WMES that have i-support persist 

as long as the rule instantiation that created them matches. To explain the i- and o-

support, the working memory of world with one blue and one yellow blocks on the 

table presented in Figure 5.2 is considered. There is a production rule that checks the 

colour attribute of the blocks and adds a WME ‘^blue-block-present yes’ on the state 
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object in the working memory if there is any block with the value blue of attribute 

colour. This fact in the working memory has i-support. This fact retracts if the 

condition of having a blue block is not satisfied any more. Now consider what 

happens if there is a selected paint operator that paints this blue block green and 

changes the value of colour attribute of the blue block to green. Now this change in 

the working memory has o-support and will remain there until explicitly removed. 

Automatic retraction of unsupported facts from working memory is a special feature 

of Soar and distinguishes it from other rule-based systems. 

Determining the persistence of results from sub-goals is complicated because of the 

fact that the rules that created these results are removed from the working memory 

with the sub-goals. Thus the question arises how we can determine persistence of 

results when the rules that created the results have been removed. It is done by a rule 

created by Soar architecture called justification. The condition part of the justification 

is the WMEs that exist in the super-state and are tested by the productions that created 

the result. It is done by collecting all the WMEs tested by the production rule that 

created the result and then removing the ones tested from the sub-state. The action 

part of the justification is the result of the sub-goal. The justification is tested as 

though it is the rule responsible for creation of the result kept in a state from the sub-

goal. The conditions of the justification determine the persistency based on the fact 

that whether any condition tests an operator in this state or otherwise. 

 

5.2.6 Learning 

The learning mechanism of Soar is a form of explanation-based generalization. 

Automatic sub-goaling in all aspects of problem solving is the basis of learning in 

Soar. When a sub-goal is created and this new sub-space brings the required 

knowledge to solve the problem due to which the impasse is resolved then the Soar 

architecture creates a chunk production that later controls the search. And next time 

when this particular sub-goal needs to be created this chunk production fires and the 

problem solving proceeds without the impasse. As discussed earlier, the impasse that 

creates sub-goals is an architecturally detected lack of available knowledge and is that 

part of problem solving where Soar needs to learn. The sub-goal is created to find that 

knowledge if it is available in the form of productions in the LTM and the chunk is 

created to store this knowledge in the form of a Soar production in its LTM from 
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where it can be straight away used when needed. Because of this additional 

availability of knowledge Soar improves its performance via a reduction in the 

amount of search. If all sub-spaces are exhausted that means all possible sub-goals in 

a problem space are created to make either a search control decision or perform a task 

implementation function then what is left is an efficient algorithm of the task. The 

efficiency of this algorithm depends on the quality of evaluation of the alternatives 

and the task-implementation methods used in the sub-spaces. 

 

5.2.6.1 The mechanism of chunking 

The chunk production is just like any other Soar production rule. The condition part of 

the chunk is the WMEs in the state that allow through some chain of production firing 

to resolve the impasse. The action part is the result of the sub-goal which is the 

change made in the sub-state that terminated the impasse. The conditions of the chunk 

are based on a dependency analysis of traces of the productions that are fired in the 

sub-state. The traces keep a record of all the WMEs that the production matched and 

WMEs that it generated. The procedure of dependency analysis for chunking is 

explained in Figure 5.6. WMEs are represented by circles both bold and otherwise. 

The WMEs that form the condition part of the chunk are identified as nodes with bold 

circles before the impasse, i.e., before the first vertical line. The arrows going into 

nodes are rules that fire to add it. The arcs joining the arrows mean conjunction of the 

conditions at the tail of these arrows. The first vertical line indicates the start of the 

impasse and creation of a sub-goal, and the next vertical line indicates the resolution 

of impasse. Node R that resolved the impasse is created by the production rule that 

tested nodes 3 and 4 as its conditions. Node 4 is created after testing nodes 3 and B as 

its antecedents. Node 3 is created after testing node 1, while node 1 is created after 

testing the nodes D and A as its antecedents. The result node R depends on nodes 3, 4, 

and 1 and in turn they depend on nodes A, B, and D from the super-state. It is evident 

that node R can be created directly by testing WMEs A, B, and D before the impasse 

occurs without creating any of the nodes 1, 2, 3, and 4, only if the dependence of 

result R on the WMEs from the super-state is known. Thus if there is a production in 

the LTM that tests nodes A, B, and D in the current state and directly creates node R in 

the same state then there is no requirement of generating a sub-goal.  
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Figure 5.6 Chunking – the learning mechanism in Soar [(Ritter, 2007) 

with permission] 

 

A generalization process is applied to the chunks to make them able to match a 

situation of similar description. This generalization process consists of changing the 

identifiers in the WMEs by variables. The identifiers are used in Soar to tie together 

the augmentations of an object in the working memory – they carry no meanings and 

serves as a pointer to the object. A new identifier is generated every time an object is 

created. All instances of the same identifier are replaced by the same variable. 

Different identifiers are replaced by different variables and are forced to match 

different variables. To describe this generalization procedure the example of two 

blocks on a table shown in Figure 5.2 is considered again; if the conditions in the 

chunk are based on these WMEs, <s1> ^block <B1>, <B1> ^name A, <B1> ^colour 

blue, <B1> ^type block, and the action is to give the best preference to the paint 

operator that changes the colour of the blue block to green. In order to generalize this 

chunk, the specific identifier B1 is replaced with a variable that matches to any block 

with the attributes and values as shown in the conditions of the chunk above. All 

instantiations of identifier B1 are replaced with the same variable in a chunk including 

the action side of the chunk. In this case it is the block that is being painted green. 

Chunks are further discussed with practical examples in Chapter 7.  
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Justification and chunk are similar in many ways both are in the form of productions 

with conditions and action parts, and the backtracing process of chunking and 

justifications is also the same. However, their similarities end here; the justifications 

are removed as soon as the WMEs or the preferences that they support are removed, 

whereas, chunks are stored in the LTM with other productions. Chunks have variables 

in its conditions to match similar situations while justifications have identifiers; 

similar to an instantiated chunk. 

Learning in Soar can be turned on or off. When learning is turned off the chunks are 

not produced. 

 

5.3 Applications of Soar 

The problem solving behaviour of Soar has been studied on a range of tasks and 

methods. Soar has been used to solve standard AI toy problems such as towers of 

Hanoi, missionaries and cannibals, eight-puzzle etc (Laird, 2006b). These tasks elicit 

knowledge lean, goal oriented behaviour. Soar has also been used to solve routine, 

algorithmic problems such as searching roots of a quadratic equation, doing 

elementary syllogisms, etc. Soar has also been run on knowledge intensive tasks 

which are the far end of the range of cognitive tasks and are used in current expert 

systems. Soar has been used to develop a system that performed the same task as that 

of an expert system named “R1” which used to configure VAX and PDP-11 

computers at Digital Equipment Corporation. One quarter of the functionality of R1 

was developed using Soar to show that it could completely replace the system if the 

effort warranted. Soar has been able to realize all the familiar weak methods (Laird 

and Newell, 1983). In larger and complex tasks, different weak methods solve 

different subparts of the task. Soar has also been used for creating intelligent forces 

for large and small scale military simulations (Hill et al., 1997), (Jones et al., 1999) 

and (Wray et al., 2005) such as synthetic theatre of war 1997 (STOW-97) in which 

TacAir-Soar flew all U.S. fixed wing aircrafts (Jones et al., 1999). 

 

5.4 Improvements in Soar 

Tambe (1997) developed a general model of team work and called it shell for 

teamwork (STEAM). The main model of STEAM is built on the joint intentions 

(Levesque et al., 1990) and the teamwork is modelled on the hierarchy of joint 
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intentions based on the shared plans of Grosz and Kraus (1996). STEAM provides the 

ability to Soar to model team behaviour. STEAM has about 50 domain independent 

production rules to facilitate the modelling of team behaviour. Sun et al. (2004) 

developed a model on the lines of STEAM called Team-Soar and compared it with 

collaborative agents for simulating teamwork (CAST) model (Yen et al., 2001). Both 

of the teams are given the same task and similar procedural and declarative domain 

knowledge. Team-Soar contains 22 production rules encoded as communication 

knowledge, whereas, CAST   has an elaborate communication mechanism embedded 

in the architecture. Sun et al. (2004) found out that: some of the behaviours of both 

teams is similar; although, CAST   has an efficient communication mechanism, as it is 

embedded in the architecture, compared to Team-Soar but it communicated quite 

frequently compared to the team members of Team-Soar. In Soar, implementing 

teamwork models such as STEAM or Team-Soar requires writing Soar rules to 

incorporate collaboration and communication. 

To introduce variability in the behaviour of Soar agents as a requirement of HBR, 

Wray and Laird (2003) modified the Soar’s knowledge representation and modified 

the decision making process to support the change in knowledge representation. The 

decision making process now also takes into account numerical values associated with 

operators in the absence of symbolic preference. Symbolic preference has priority over 

numerical value. As is true for all knowledge in Soar, the rules giving numeric values 

for candidate operators are context sensitive. Thus, there may be any number of rules 

that give numeric values for an operator. There exist many potential choices to use 

these multiple numeric value for selection of an option. One choice may be averaging 

the values and then a random choice made from the normalized probability 

distribution of the averaged values. The second choice may be to sum them up and 

then randomly select one from the normalized probability distribution of the summed 

values. The selected method is to sum up all proposed numeric preferences for an 

operator iO  into a total score ( )iOSum . The winning operator is selected 

probabilistically according to the Boltzmann distribution as per Equation 5.1. 
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The parameter Temperature is used to round the peak of the probability distribution. 

Nason and Laird (2005) used the acquired capability in Soar, of selecting options 

based on numerical preferences, to extend the architecture to add reinforcement 

learning. The reinforcement learning is a type of learning in which the task is to learn 

how to act in a given environment so as to maximize a reward signal. This is a credit-

assignment problem of determining what was responsible for the reward or 

punishment. In most reinforcement learning approaches, the agent learns a value 

function, which is an estimation of expected sum of future rewards for taking an 

action in a particular state. In Soar-RL, the numeric preferences represent a state-

operator value function. And the reinforcement learning task is to adjust the numeric 

values as the agent encounters rewards in the world. Soar is extended to receive the 

rewards as one of the inputs from the external environment. The environment rewards 

the successful operators with a positive value corresponding to the level of success 

and a negative value to represent punishment. The learning therefore, is as good as the 

measure of success for reward signal. The reinforcement learning in Soar (Soar-RL) 

updates the numeric preference in the next cycle and stores only the immediate 

history. The updating procedure of Soar-RL is  similar to the procedure used in state-

action-reward-state-action (SARSA) algorithm (Rummery and Niranjan, 1994). The 

state-operator value function is distributed over a number of rules generating numeric 

preferences for an operator for a particular set of features in the working memory, and 

the numeric preferences are summed up to form the expected value of reward signal 

used for the selection of an operator. Thus, the update in the value function due to the 

recent reward signal is also distributed equally over all such rules.  

Nuxoll and Laird (2007) integrated episodic memory with Soar in order to extend 

case-based reasoning (CBR) paradigm. Soar architecture is extended to incorporate a 

working memory activation system (Nuxoll et al., 2004) on the lines of the activation 

scheme in ACT-R (Anderson and Lebiere, 1998). Previous episodes are stored in the 

episodic memory and are utilized to remember locations of required items during 

search, and also to learn other actions e.g., dodging enemy fire. This work is an 
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improvement on an earlier work of the authors (Nuxoll and Laird, 2004) in which the 

learning through episodic memory is tested on relatively simpler tasks. 

 

5.5 Summary 

Soar is a cognitive architecture which has long term and short term memories, an 

elaborate truth maintenance system, an architecturally supported goal stack, automatic 

creation of sub-goals and sub-states due to impasses, and a learning mechanism that 

produces new production rules that can be straight away utilized. Soar has been used 

to produce intelligent forces for large scale military simulations and wargames, and 

the architecture is continuously improved to match future requirements. Soar provides 

a convenient framework to model all aspects of RPD model which facilitates the 

implementation of RPD in Soar.  
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6 THE RPD-SOAR AGENT 

 

In this chapter, the implementation of the RPD model in the Soar cognitive 

architecture is discussed. The similarities between Soar and RPD that assist in 

implementation of the model are highlighted first. Then different components of the 

architecture are briefly discussed and then the interface built on Soar mark-up 

language (SML) is discussed. The different processes involved in the working of the 

RPD-Soar agent are discussed with the help of a vignette of an advance to contact 

military land operation. The behaviour of the agent is directed by its experiences or 

previously encountered situations that are stored along with their by-products of goals, 

cues, expectations, and courses of action, in the LTM. These experiences are required 

to be translated into Soar production rules for a Soar agent to understand them and 

behave accordingly. These experiences along with related Soar production rules are 

discussed. In the end of the chapter, the integration of a neural network in the over all 

architecture is discussed. Generally in the thesis and particularly in this chapter, the 

words situation and experience have been used interchangeably when situations are 

mentioned as memory contents that are being recognised. Because it’s these situations 

that the agent has faced in the past are remembered now as his experiences. 

 

6.1 Similarities between Soar and RPD  

Soar has many similarities with the RPD model that may be used to our advantage in 

developing the RPD model. The first advantage of using Soar to model an RPD agent 

is that recognizing a pattern at the input and proposing relevant operators according to 

the situation is already a part of the architecture. The second advantage is that the state 

elaboration phase may be used to process information and reason with it to recognize 

the situation for Level 2 RPD. The third advantage is that if sufficient knowledge in 

the LTM exists then Soar behaves like Level 1 RPD model. And the fourth advantage 

is that the basic structure in Soar is problem space based, and with the help of 

impasses sub-spaces can be created for mental simulation (Raza and Sastry, 2007). 

These similarities are tabulated in Figure 6.1. 
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Figure 6.1 Similarities between Soar and RPD 

 

6.2 The architecture 

The external environment or the world is developed using the Java programming 

language and the agent is developed using the Soar Cognitive architecture. The Soar 

agent and the external environment are interfaced using Soar mark-up language 

(SML). Different environments based on maps for different scenarios can be loaded 

into the system. Agents with different behaviours may be loaded into the system as 

production rules in Soar files (Raza and Sastry, 2007). The architecture of the agent is 

shown in Figure 6.2. In the RPD model it is the experience of the agent that guides its 

behaviour. As recognition primed decision making is modelled within the Soar 

cognitive architecture, therefore, experiences of the RPD model consisting of goals, 

courses of action, cues, and expectations are transformed into appropriate Soar 

production rules. And these Soar-production rules are stored in the agent’s LTM.  

 



Chapter 6 – The RPD-Soar Agent 

101 

 

Figure 6.2 Agent architecture 

 

At the start of each simulation step the situation present in the environment is given as 

input to the agent at its input-link. The agent examines the elements of the situation 

present at the input-link and the information available in its own working memory, 

and if sufficient knowledge is available, it recognizes straight away that a situation is 

typical. This is Level 1 RPD. Some situations are complex and the decision maker has 

to devote more attention to diagnosing the situation. In some of these situations, the 

information from the environment is required to be processed and combined with 

other available knowledge in order to recognize a situation as typical. This is a chain 

reaction and therefore, based on these processed cues and information available in the 

working memory more production rules stored in the LTM fire to process other 

associated information in order to understand the situation better. This part of Level 2 

RPD is implemented with the help of the elaboration phase in the Soar agent’s 

decision cycle. Level 2 RPD for very complex situations warrants story building to 

account for some of the inconsistencies. The story building part of Level 2 RPD is not 

implemented in this model. 
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The situation or experience once recognized is transferred to the working memory 

when the rules containing this experience are fired. The experience appears in the 

working memory in the form of WMEs proposing courses of action applicable to this 

situation, setting goal(s) to accomplish, indicating expectation(s) and indicating 

important cues to monitor. All these elements are present in the LTM as part of the 

experience of the agent in the form of Soar production rules. Based on the available 

knowledge, the inference engine either takes a decision to select one course of action 

to implement or forms a mental model to mentally simulate one or more courses of 

action in order to select one to implement. The environment may be modified by the 

action of the agent or actions by other entities in the environment. When an agent 

takes a decision that needs to change the external world the information is put on the 

output-link of the agent in the output phase of the Soar decision cycle. The external 

world is waiting for any information on the output-link and changes itself accordingly 

as and when any information becomes available. As soon as the world changes, it 

provides this information at the input-link of the agent which picks up the information 

on each of its input phases. 

A trained neural network is used to help the agent in recognizing the situation. As the 

broken outline around the neural network suggests, the neural net is not used in all 

cases. The reason for integration of an artificial neural network in the architecture and 

its functioning as the integrated part of the architecture is discussed in Section 6.8. 

The implementation is aimed at producing an agent mimicking the decision-making 

behaviour of humans. Therefore, the model of the physical world and entities in it 

have been restricted to represent actions and effects of decisions taken and do not 

include the representation to implement motor actions and its effects at a higher level 

of resolution. For example, the reasoning and action selection is restricted in a 

situation to the point where a tank commander selects the action ‘turn’. The action 

‘turn’ has not been further decomposed into the motor actions of braking, turning the 

steering, etc. 

 

6.3 Mental simulation 

In the computer implementation of mental simulation, as in the case of humans, a 

model of the external environment is created in the agent’s head. For mental models 

and related errors see (Burns, 2000). All the objects present in the environment are 
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modelled and the effects each action creates on these objects are also modelled in the 

same way. The mental model of an agent has only the information that is available to 

the agent at the time the mental picture is created. For example, the agent can see only 

one cell around itself and while mentally simulating an action it moves two cells 

ahead but it will know only that much information about this new area that it has 

when it starts the mental simulation. While creating the mental model and replicating 

the world the restrictions mentioned above are kept in mind. Moreover, the 

environment is modelled in such a way that there is no link between the objects in the 

mental world and the same objects in the real world. This need to be carefully done in 

Soar and is taken care of in Selection space production rules developed by Soar group 

(Laird, 2006a). Due to this isolation, during the mental simulation when the agent 

selects an action and applies it, only the mental world changes and the outside 

environment remains un-changed. As the world is modelled in the agent’s head and 

actions are also implemented in this model, therefore, the effect of each action on the 

mental world is required to be the same as that of the real world, which also needs to 

be modelled. This is done with the help of separate production rules taking the same 

action as that of the real world but applicable only to the mental world. Their 

applicability only to the mental world is ensured by keeping appropriate antecedents to 

check the absence of input- output-link on the states representing the world. The agent 

then looks at this changed mental world and then merits the action numerically after 

considering the progress made in achieving the goal. Past experience in the form of 

production rules help the agent in preferring an operator to be evaluated first and in 

judging the usefulness of this action in achieving the goal. In this experiment only one 

step mental simulation has been implemented. In Soar, the mental model for 

simulation is developed by creating problem sub-spaces using operator-tie and 

operator-no change impasses (Raza and Sastry, 2008). After an applicable course of 

action is evaluated then the agent dissolves its mental model either to go ahead and 

apply the selected operator to the real world or to make another mental model to 

evaluate the next candidate course of action (Raza and Sastry, 2007). 

A similar mental model using Soar is developed by Johnson (1994a) and (1994b) for a 

different reason and that is to explain the actions taken by intelligent tactical air agents 

in TacAir-Soar, the Soar-IFOR project discussed in Chapter 2. 
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This mental simulation is a part of Level 3 RPD model and helps the agent select a 

course of action to implement. Unlike Level 1 RPD where the agent is very sure as to 

which course of action should be implemented in a given situation, Level 3 RPD 

model is useful for situations where the agent lacks sufficient experience to exactly 

know how a course of action will play out, and therefore, the agent mentally simulates 

courses of action to see how it unfolds. Based on its experience the agent knows 

which course of action should be mentally simulated first. The agent simulates the 

preferred course of action and if it satisfices then the agent implements it (see Section 

7.1.4). If this course of action is not suitable then the agent selects the next course of 

action in line for mental simulation. The prioritization of these courses of action is 

based on the experience of the agent where it remembers as to how successful a 

course of action was when implemented in this situation previously. When an agent 

faces a completely new situation, it suffers from lack of experience and degenerates to 

traditional decision making. Due to its capability of mental simulation it evaluates all 

courses of action serially, selects the most suitable course of action and implements it 

and due to its adaptability remembers it for the next time as an experience. Although 

in this implementation mental simulation is run for a single step, it can be run for as 

many steps as required. If more than one courses of action are equally promising then 

the agent selects one at random. This method is further discussed in Chapter 7, where 

evaluation based on mental simulation generates variability in the behaviour of the 

agent. Variability in behaviour within an agent across episodes for the same situation 

and task is a major requirement in human behaviour representation, and mental 

simulation in RPD-Soar introduces this variability in the behaviour of the agent. This 

ability of the RPD-Soar agent is an advantage it has over other implementations. 

Before discussing the working of the model in detail with the help of a vignette, the 

interface of the simulation environment with the Soar kernel is discussed.  

 

6.4 The interface 

The simulation environment is interfaced to the Soar kernel with the help of Soar 

mark-up language (SML), as shown in Figure 6.3. 

The simulation environment consists of objects or ‘entities’ as usually called in 

simulations and some of these entities are Soar agents. The Soar kernel is capable of 

developing and maintaining multiple agents and each can have its individual 
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behaviour based on the Soar production rules loaded in that agent. SML was 

developed by the Soar group (Threepenny, 2005) to provide an interface into Soar. 

The client can send and receive Soar XML packets through a socket maintained by 

Soar, which is port 12121 by default. ClientSML is available in C++, Java, and Tcl. 

We have developed the simulation environment in Java and for a client implemented 

in Java, Java_sml_ClientInterface.dll, SoarKernelSML.dll, and ElementXML.dll 

dynamically loaded libraries are required. 

 

 

Figure 6.3 The interface 

 

The entities present in the environment are represented as objects in the working 

memory of the agent therefore; it is natural, logical and more compatible to model the 

world using object oriented software. Java is an object oriented language and therefore 

it can be used to build synthetic environment (Sommerville, 2004). The other option is 

to develop the environment in C++ which is also an object oriented language and can 

be interfaced with Soar using SML. But in this implementation Java is preferred over 

C++ in order to remain in line with the Soar group. 

The complete code for implementation is available in the attached CD (see Appendix 

C) and the key elements of the SML code are given in Appendix D. 

 

6.4.1 Creating Soar kernel and agents 

A Soar kernel can either be created in a new thread or in the same thread. In this 

implementation, the Soar Kernel is created in a new thread so that the simulation is 

run independent of the Soar Kernel. Multiple agents can be created in one kernel with 

different behaviours. The behaviour of each agent is controlled by the production rules 

loaded in it. 
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6.4.2 Input - perception 

The “input-link” of the Soar agent, as explained in Chapter 5, is the link of the agent 

to receive the information about the outside world. This information is picked up by 

the agent during the input phase of the next decision cycle. The client needs to acquire 

the identifier of the input-link in order to give all the information depicting the present 

situation of the world to the agent.  

The identifier WMEs are used to create objects at the input-link. String and integer 

WMEs are created either directly on the input-link or as part of the object represented 

by an identifier at the input-link. It has been discussed in Chapter 5 that a WME is an 

identifier, attribute, and value triplet. The value is either a constant or an identifier. 

The value is an identifier if it is not a terminal node and one or more branches are 

emanating out of this node. The ‘bluetank’ is created as an object in the working 

memory at the input-link representing an entity present in the simulation environment 

(Figure 6.4).  

 

Figure 6.4 Objects on the input-link 

 

The object ‘bluetank’ has three attributes; two of them give its location in the 

Cartesian coordinates and third indicates the direction that the ‘bluetank’ is facing. 

The X and Y coordinates are represented with the WMEs of type integer and the 

direction that the tank is facing is represented with a WME of type ‘string’. All the 

information about the environment and entities present in it that are required by the 

agent to reason for situational awareness to make decisions is provided to the working 

memory of the agent through the input-link. 

The environment in this model is grid based. Each cell in the grid is surrounded by its 

neighbouring cells. Each cell has at least three and at most eight cells as its 

neighbours. These cells are represented as objects in the working memory of the agent 
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because each cell has two attributes representing its location in Cartesian coordinates. 

These attributes have integer values and can be represented with the help of 

techniques discussed above. But consider an example of Cell 5 (Figure 6.5) that has a 

neighbouring cell Cell 2 which is just above Cell 5. To represent the relative position 

of these cells in this environment, a WME need to be created, this has the identifier of 

Cell 5 as its identifier with an attribute north and the value of this attribute being the 

identifier of the cell in the north the Cell 2. This is a case where graphical 

representation is required instead of a simple tree structure. In order to develop a 

graph in working memory of the agent new identifier WME with the same value as 

that of an identifier of an existing object need to be created called ‘Shared identifier 

WME’. An agent created in the Soar Kernel can create this type of WME using an 

inherent method for the purpose. 

 

 

Figure 6.5 Example of graph structure in WM developed from shared identifier WME 

 

Cell is developed as a class in Java. The agent instantiates the cell object to create the 

nine cell graph structure. The agent sits in the centre in Cell 5 in Figure 6.5. This 

template of nine cells moves over the map and the values of the x and y attributes 

representing Cartesian coordinates of the location of the cell on the map and the value 

of the content giving the name of the object present on the location where the cell is 

located now keep changing accordingly.  

 

6.4.3 Output – command/action 

If the agent produces a command then it is put at the output-link after the output 

phase. One or more commands present at the output-link are picked up for 

implementation in the environment.  

Cell 1 Cell 2 Cell 3 

Cell 4 Cell 5 Cell 6 

Cell 7 Cell 8  Cell 9 
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After acquiring all the information related to the command from the output-link the 

agent is informed that the commands have been picked up. This information is used 

by the agent to remove the implemented commands from the output link.  

 

6.4.4 Event handling 

In this model event handling is required to update the user interface in the 

environment and to connect the environment to the ‘Java debugger’. The Java 

debugger can connect to the remote Soar kernel given an internet protocol (IP) 

address and a port number. The IP address is not required if the Soar kernel is running 

on the same machine. When the environment is updated, the world represented in the 

user interface along with the buttons in the bottom of GUI are also updated. Stop, 

start, and update events are registered with the environment and they trigger actions 

wherever required. 

  

6.5 Graphical user interface (GUI) 

The interface has four buttons Run, Stop, Step, and Reset to control the simulation 

(Figure 6.6). The Run button when pressed runs the agents forever until either the 

Stop button is pressed or the agent achieves its goal. All the buttons are enabled and 

disabled appropriately. The GUI is updated whenever the agent makes a decision to 

take an action in the world. The simulation and the GUI are running in separate 

threads and therefore the GUI is updated independently of the simulation.  

 

6.6 The Environment 

The environment is grid based (Figure 6.6). The perimeter has obstacles and the 

agent’s world is restricted to these boundaries. There is a Map class which contains 

the location of obstacle and initial location of the red tank, and is responsible to place 

the appropriate map for the task. The agent is a tank commander who is commanding 

a single tank. There are two types of sensors in the tank, one is a visual sensor that 

looks only one adjacent cell around itself, and the other is a radar sensor that can see 

up to five cells in the direction that the tank is facing. The radar sensor can not see 

beyond any obstacle. Past observations from the radar are retained in the memory of 

the agent and it can use this information in decision making. This environment is 
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more or less common in all the experiments but the changes, if any, are mentioned in 

the experiments. 

 

 

Figure 6.6 The Environment 

 

6.7 Working of RPD-Soar agent 

The implementation and working of the RPD-Soar agent is explained with the help of 

a vignette. The context is an advance-to-contact military land operation. In a 10 x 10, 

grid based environment (Figure 6.6), the tank has to start from the south and advance 

towards north to reach the destination. The environment has only one obstacle which 

is a hill that gives protection from observation and fire. The agent has radar and visual 

sensors as described in Section 6.6. The agent has been given the location of the 

destination cell and has been tasked to advance to that location. Enemy tanks are 

expected on the route to delay the advance. The firing range of an enemy tank is three 

kilometres while, that of the agent is four kilometres. In this experiment one cell 

represents one kilometre. In this thesis the scales for representation of terrain, if 

required, are mentioned with the experiment. 

Most tasks are performed within a larger context that includes higher-level goals. In 

this case the main context is an advance-to-contact military land operation. There are 

three high level contexts in this experiment and each is represented with an 
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experience. The experience has goals, cues, expectations, and a course of action. 

These high level contexts are mutually exclusive and the agent at one time is in any 

one of them. These experiences are shown in Figure 6.7, Figure 6.8, and Figure 6.9. 

 

 

Figure 6.7 Experience – advance 

 

The goal is the state of affairs that is intended to be achieved and may also be defined 

as the end state to which all efforts are directed. The cue is the perception of a set of 

patterns that gives the dynamics of the situation, and makes distinctions in these 

patterns. This pattern is formed by the features of a situation or elements in an 

environment. The expectation is the belief of the agent that an event will or will not 

occur in a given situation. The course of action is the strategy or plan that the agent 

intends to implement.  

Recognition of a situation not only means recognizing a typical response but also 

indicating what goals make sense, what cues are important and what is expected next. 

During advance an important cue is high ground. The agent expects to see no high 

ground within four kilometres of it. Now if the agent finds high ground within four 

kilometres then this expectation is violated and a fresh evaluation of the situation is 

necessary. If the agent finds high ground within four kilometres of itself and is facing 

north, which is the direction of its destination, then it recognizes this situation and 

changes its state to manoeuvre. During manoeuvre the agent does not expect to see an 

Experience:  Advance 

• Goal 

– Reach the destination 

• Cues 

– High ground: not visible 

– Incoming missile: none 

– Enemy tank: none visible 

– Distance to the destination 

• Expectations 

– No incoming missile 

– No enemy tank visible 

– No high ground within four kilometres 

• Course of Action 

– Move towards destination 
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enemy tank. If it sees a tank an expectation is violated and the situation is evaluated 

again. 

 

Figure 6.8 Experience – manoeuvre 

 

 

Figure 6.9 Experience - attack 

 

A brief description of the agent’s behaviour will be given here, a fuller explanation 

together with the code generated is given in Appendix D.  

If we set up the simulation with the map representing the environment displayed in 

Figure 6.6, load the agent with the behaviour required to accomplish the mission for 

advance-to-contact operation, connect it with Soar Java debugger and then run it for a 

Experience:  Attack 

• Goal 

– Destroy the enemy 

• Cues 

– Enemy tank: visible 

• Expectations 

– Enemy tank remains visible 

• Course of Action 

– Engage the enemy tank with fire 

Experience:  Manoeuvre 

• Goals 

– Expose the enemy tank at the longest range 

– Do not expose own tank to enemy within enemy tank’s firing range 

• Cues 

– High ground: at a distance <= 4 kilometres 

– Direction of own tank: facing destination (north) 

– Incoming missile: none 

– Enemy tank: none visible 

• Expectations 

– No incoming missile 

– No enemy tank visible 

– Enemy tank behind high ground on completion of manoeuvre 

• Course of Action 

– While taking cover from the high ground, move to a location four 

kilometres east of expected enemy tank 
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single step then the agent will start to develop working memory contents. Running the 

simulation one step also makes the agent run through one decision cycle. The 

information generated by the radar and the visual sensors is put in the working 

memory through the input-link of the agent. The agent is facing north and is five cells 

south of the high ground therefore the radar sensor of the agent sees an obstacle at 

location represented in Cartesian coordinates as (5, 3). The visual sensor as we know 

can see only one cell around itself and therefore, sees three obstacles in the south, 

south-west, and south-east of the agent. The rest of the five cells around the agent are 

empty and are displaying their contents as empty in the working memory.  

The objects in the environment such as blue tank, map, cell, radar and obstacle are 

represented in the working memory of the agent. The information about these objects 

in the environment is given to the working memory through the input-link of the 

agent. Operator and direction objects are produced in the working memory by the 

production rules loaded in the long term memory (LTM) of the agent. The state object 

is automatically created in the working memory of the agent. Two production rules, 

designed for the purpose, fire to initialize RPD-Soar agent and place the mission of 

the advance-to-contact operation as the desired state in the working memory of the 

agent. 

The simulation is run through the next step and conditions based on the cues of 

experience for advance (Figure 6.7) as the suitable course of action is selected. There 

is no red tank in sight, the obstacle is five kilometres away, and there is no incoming 

missile. The presence of red tank and incoming missile are straight forward cues but 

in order to observe the cue of relative distance of tank to the obstacle some 

elaborations is required which is Level 2 RPD and is done with the help of production 

rules designed for the purpose. The advance course of action is an abstract operator. 

Therefore an operator no-change impasse occurs and a new sub-state is created to 

implement it.  

In this context with advance as its major task the agent has four actions to choose 

from: move in the direction that the tank is facing and turn in the other three 

directions. And as all four are applicable in the situation then an operator tie impasse 

is generated. This is the case in RPD model where the decision maker can not select a 

course of action from a pool of courses of action that he knows can apply. Now the 
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decision maker develops a mental model of the environment and mentally simulates 

the courses of actions serially to select the one which seems satisficing.  

Now among the candidate operators in experiments discussed later, the agent has the 

experience to prefer one operator over the other for evaluation and the experience to 

judge when an operator is satisficing but this agent evaluates each and every candidate 

serially and randomly selects one to evaluate first. Therefore, one operator is selected 

for evaluation at random. 

This operator named evaluate-operator is also abstract and therefore another space is 

created to implement evaluation and this is the mental model for simulating a course 

of action as of RPD model. In this space, all the objects in the environment are 

modelled again and the operator representing the course of action to be evaluated is 

selected to be applied. 

The operator application is not on the real world rather on the model world created in 

the agent’s head. In this case the course of action is being evaluated for advance which 

means a better action is the one that can take the agent close to the destination given in 

the original mission. In order to evaluate the candidate actions, the Manhattan distance 

is calculated after applying each action and the numeric value is recorded as 

evaluation factor. The Manhattan distance between two points (x1, y1) and (x2, y2) is 

defined in terms of X and Y as X = x2 - x1, and Y = y2 - y1. And then the action with 

the least numeric value is selected. This is achieved through the use of selection space 

implementation provided by Soar group (Laird, 2006a) and the production rules 

written for copying the objects and the application of operators in the mental model 

for this implementation. The majority of the production rules provided as selection 

space productions are being used as such in this implementation for mental simulation 

while some of them are modified to suite the requirements of this model.  

After evaluating each action the sub-states of the mental model and thus all the WMEs 

related to them are removed from the working memory of the agent and only the 

evaluated value is kept in the higher state evaluating these actions.   

After evaluating all the candidate actions the move north operator is selected because 

it is taking the agent close to the destination and is applied to the real world. It is done 

through the output-link and with the help of the model for acquisition of commands 

from the agent explained earlier in the same chapter. The new location of the Blue 

agent in the environment after moving north is shown in Figure 6.10.  



Chapter 6 – The RPD-Soar Agent 

114 

 

Figure 6.10 Situation after moving north 

 

Now the distance to the high ground is equal to four kilometres and one of the 

expectations of the advance experience is not met, therefore the situation is re-

evaluated and this time the experience manoeuvre is recognised as its conditions are 

met. The course of action for the experience manoeuvre is represented graphically in 

Figure 6.11. In this case the blue agent sees high ground on its approach to its 

destination and expects an enemy tank behind it. A similar approach has been adopted 

by Tambe and Rosenbloom (1995) where the pilot agent observes the actions of the 

enemy aircrafts and by observing the observable actions infers their unobserved 

actions, plans, goals, and behaviours. 

The course of action manoeuvre is also at higher level of abstraction and creates an 

operator no-change impasse. 
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Figure 6.11 Experience – manoeuvre 

Just like advance, this course of action for experience manoeuvre is implemented 

through atomic actions of move and turn but now the destination is the location 

pointed by the head of the arrow representing the planned path for movement of blue 

tank. 

This location as the destination for completing the manoeuvre action is kept so that 

the Blue tank stops at a distance of four kilometres from the Red tank and therefore is 

out of the firing range of the enemy while the Red tank is within the firing range of 

Blue tank. The Blue tank commander is exploiting the weakness of the enemy to 

achieve his own aim of destroying the enemy forces as secondary mission while 

reaching the destination which is the main mission. In this situation it would have not 

been possible for the Blue tank to reach its destination without destroying the Red 

tank or making it retreat from its present location as the area would have been unsafe 

to advance. 

The selection of the atomic actions in experience manoeuvre is through mental 

simulation as is the case of experience advance.  It is not necessary for all the 

experiences to have all the components of situations as represented in the RPD model. 

It is understandable that the recognition of a situation requires more processing of 

information for comparatively high level contexts; therefore, it is expensive in time 

and resources to repeat the process with every single change in the world. It is also 

 Destinatio
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true that not all changes in the world are likely to change the higher context. It is also 

observed that the behaviours at a higher level persist for a comparatively longer time 

and consist of a combination of low level behaviours. There may not be a requirement 

to associate expectations with the courses of action in the experiences at atomic level 

behaviours where an action is taken that changes the world and then the situation is re-

evaluated to select the next action. This is because the selected course of action does 

not persist long enough to require watching expectations while the action is under 

progress. The same is true for the goal at atomic level. The goal is the result of the 

action itself. Therefore, in this implementation of the RPD model, the goals and 

expectations are part of the experiences representing behaviour at a higher level of 

abstraction. At atomic level the experiences consist of only cues and the action. The 

success value or preference of one action over the other accompanies the experiences 

at even atomic level in most cases. This success value is used in two ways: the first, is 

the selection of a course of action straight away without mentally simulating it if one 

candidate is distinctly better than the others; and the second, is the selection of a 

course of action as the first one to consider for mental simulation when the chances of 

success of candidate courses of action are similar.  

In Soar, it is effortless to model the phenomenon of watching the expectations while 

carrying out a course of action. In Soar, all the states are active at all times. Any 

change in a state at a higher level removes all the sub-states which are responsible for 

the creation of these sub-states.  In the vignette under discussion (see Figure 6.6), the 

advance behaviour is selected and the course of action is under progress when the blue 

tank moves north and the distance between the blue tank and the obstacle reduces to 

four kilometres (Figure 6.10). The agent is expecting no obstacle this close while 

advancing thus an expectation is violated and the situation needs to be re-evaluated. In 

Soar, the re-evaluation of a situation given the violation of expectations is almost 

automatic if the conditions for selection of the concerned operators are set correctly. 

The abstract advance operator that creates the sub-state where this course of action is 

being implemented is removed due to one of its conditions for selection being violated 

and thus the sub-states implementing it are also removed. The situation therefore is re-

evaluated to recognize new situations in order to find courses of action from other 

experiences to proceed with the task.  
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During the manoeuvre context the blue tank keeps moving by selecting actions that 

reduce its distance from the destination recognized as a goal with the present situation 

until it reaches the destination. To accomplish its goal completely the blue tank also 

turns east as shown in Figure 6.12. Now the blue agent finds the red tank on its radar 

sensor. The only cue in the attack experience is red tank (Figure 6.9) and for its 

selection the condition to be satisfied is red tank’s presence. As the condition is met 

therefore the proposal to select attack as a context is fired by a production rule and as 

attack is the only operator proposed therefore it is selected. Attack is an action at a 

higher level of abstraction therefore a new sub-state is created through an operator no-

change impasse to implement this abstract action. In this context a fire action is 

proposed, selected and applied and the red tank is destroyed.  

 

 

Figure 6.12 Situation after completing manoeuvre 

 

The attack experience expects to see the red tank all the time but as the simulation 

removes the destroyed tank it is not visible on the radar sensor. The expectation of the 

situation is violated in the RPD model and situation is required to be re-evaluated and 

in Soar it is implemented by putting it as a condition in the production that proposes 

attack operator. As the conditions for the proposal of the attack operator are not 

satisfied therefore attack operator is removed and so is the sub-state created because 

of it. 
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The situation is re-evaluated and advance is selected which as discussed earlier is an 

abstract operator and creates an operator no-change impasse to create a sub-state to 

implement it. 

The agent repeats move and turn actions after selecting them by evaluating through 

mental simulation and reaches its destination shown in Figure 6.13.  

 

 

Figure 6.13 Blue tank reaches its destination 

 

On completing the mission as in military operations and reaching the goal state as in 

Soar, the agent needs to halt and the simulation stops either for final termination or 

reset for another run. If the simulation needs to be terminated, the agent is stopped 

with the help of Soar production rules using halt command inherent in Soar. But if the 

simulation needs to be stopped and reset for another run then it needs to be done at the 

level of environment by stopping the agent and changing all the variables of the 

environment and the perception of the agent including the location of entities to the 

initial settings. The halt command irreversibly terminates the execution of the Soar 

program and should not be used when the agent needs to be restarted. This method has 

not been used in this implementation because the Soar program is run within a 

simulation which needs to be restarted for the next run until the number of required 

simulations is reached.  
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6.8 Integrating artificial neural network in the architecture 

In rule based systems the antecedents of a production rule have to match exactly for 

the production to fire. If the current situation deviates from the conditions in the rule 

then the appropriate rule does not fire. Due to rule matching through an efficient 

algorithm like RETE and also advances in computer technology it is possible in Soar 

to add a large number of production rules to handle generalization. The RETE 

algorithm efficiently solves the many-to-many matching problem encountered when 

rules are matched to facts (Forgy, 1982). Writing large number of rules is possible but 

is not an efficient method of solving this problem. Alternate approaches like 

similarity-based generalization, fuzzy logic and artificial neural network may solve 

this problem in a more efficient way. In this implementation, an artificial neural 

network is used for situation recognition. There are two reasons for using an artificial 

neural network in this implementation: first, it has already been used for a similar task 

with promising results (Liang et al., 2001); second, it has the ability to automatically 

prioritize the situations according to their level of similarity.   

A simplified diagram of the integration of the artificial neural network is shown in  

Figure 6.14. The situations are fed to the trained artificial neural network which 

matches the new situation to one of the known situations and gives the agent a 

recognized situation. The recognized situation has the complete set or a subset of its 

four constituents that are goals, courses of action, cues, and expectations. The agent 

selects the course of action for the situation and implements it with the help of lower 

level actions selected through mental simulation if required. It is worth mentioning 

here that mental simulation is not being used at a high level and is being used at a low 

level that is to select atomic actions in pursuit of the goal set at a higher level. The 

pool of actions or a single action is proposed depending upon the experience of the 

agent based on the recognized situation.  
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Figure 6.14 Integration of neural network in the architecture 

 

The neural network is trained for each agent based on the range of situations it is 

likely to face. Motivated from the work of Liang et al. (2001), the neural net is a 

multi-layered normal feed forward network. It consists of an input layer of four nodes, 

three hidden layers of twelve nodes each, and the number of nodes in the output layer 

depends upon the number of known situations. The number of nodes in the output 

layer varies from situation to situation. For the experiments conducted in this research 

the configuration of the input layer and the hidden layers is not changed but these 

layers may also be reconfigured if required. 
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The standard back-propagation algorithm is used for learning. A dot product is used 

for the input to a node and a sigmoid function for the transfer function on all layers 

except for the output layer where a pure-linear function is used. The initial values of 

the weights are 1 and the network is trained for 1000 iterations with a constant 

learning rate of 0.01. 

Matlab is used to train the network and then the simulator is implemented in Java so 

as to integrate the learnt net with the agent. The neural network is implemented as a 

Java class. Each output node represents a known situation, when a situation is given to 

the neural net then the output node with the highest value is selected and the 

corresponding situation is the recognized situation. The basic difference of this work 

and work of Liang et al. (2001) is that the latter uses the neural net for pattern 

recognition and plan generation at the same time and in this implementation the neural 

net is used for pattern recognition only. Liang et al. (2001) realize that his technique 

can be used only to reduce the search as all generated plans are not good solutions to 

the problem. In this implementation the RPD-Soar agent which has tremendous 

potential for reasoning with and implementing the plan is enhanced with pattern 

recognition capability of artificial neural network. The details of the neural net and its 

working in the model are further explained in the next chapter with an example 

experiment. 

 

6.9 Summary 

Soar provides a convenient framework to model most of the aspects of the RPD 

model. The elaboration phase in Soar decision cycle is used for situation awareness 

and the problem space based architecture, automatic sub-goaling and creation of sub-

states due to impasse is used for mental simulation. The environment is developed in 

the Java object oriented programming language, the RPD model is implemented in the 

Soar cognitive architecture and the agent and the environment are interfaced with 

Soar mark-up language (SML). A trained artificial neural network is also integrated 

with the agent architecture to enhance the ability of the agent in handling new 

situations. The experiences of the command agent are stored in the LTM in the form of 

production rules. The success values for the courses of action for specific situations 

are represented numerically. All atomic actions, such as move, turn, fire, etcetera, 

expected to be performed by the agent in a simulation are coded by the modeller. The 
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selection of an action for a specific situation in pursuit of single or multiple goals 

based on corresponding success values is the task of the RPD-Soar agent which forms 

the behaviour of the agent. This behaviour emerges at the simulation run time.  

Part of implementation especially production rules specific to the agent in an 

experiment is explained within the experiments in the next chapter. 
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7 EXPERIMENTS, RESULTS, AND DISCUSSION 

 

In this chapter, a number of experiments are discussed to demonstrate all the decision 

making strategies and processes adopted by RPD-Soar agents with varying degrees of 

expertise in different situations. Situational analysis is common to all types of agents 

used in various experiments because some form of information processing is always 

required based on the situational variables presented to the agent. Situational variables 

are the elements of the environment that form a situation in these experiments, e.g., 

location of an obstacle, the destination, and the agent’s own tank etc. In these 

experiments the agents are using three types of decision making processes. The first 

type of decision making process is a case of definite recognition of a situation with 

only one possible course of action and the agent implements it without mentally 

simulating it. The second type relates to recognition of a situation with more than one 

course of action and then serially evaluating all of them one after the other through 

mental simulation to select the best suitable course of action for the present situation. 

Then there are situations where the agent sufficiently recognizes the situation to know 

which course of action is plausibly the best for the present situation but is not sure and 

therefore it evaluates the course of action through mental simulation and implements 

it only if it satisfices, otherwise the agent throws it away and mentally simulates the 

other applicable courses of action. 

The preliminary experiment aimed at verifying Soar’s ability to store situations 

consisting of cues, goals, expectations, and courses of action in its LTM and bringing 

them up at logically correct time in its WM to produce the desired behaviour is already 

discussed in Chapter 6. In this chapter, the experiments discussed are aimed at 

demonstrating the flexibility in decision making and evaluating the performance and 

behaviour of various types of RPD-Soar agents. This will also demonstrate behaviour 

variability across agents, test the ability of the agent to recognize a situation in a 

changing context, test the mental simulation capability of the agent for dynamic 

situations, and demonstrate within agent behaviour variability, and adaptability of the 

agent. The last experiment is related to the integration of a trained neural network in 

the architecture to enhance the situation recognition ability of the agent. 
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This chapter contains some information related to implementation. It would be 

preferable to keep the scope of this chapter restricted to experiments and results only 

but some part of implementation is better understood in its context in this thesis due to 

the particular nature of the research.   

 

7.1 Experiment 1 - Varying performance due to experience 

In this experiment, the flexibility in decision making of the RPD-Soar agent is 

demonstrated. As the agent changes the decision making strategy according to its 

experience the change in performance is measured. This experiment demonstrates the 

possibility of generating agents with varying degrees of experience that exhibit the 

same behaviour but the time taken in decision making, represented by the number of 

Soar decision cycles consumed in making the decision, varies according to the 

experience. This experiment demonstrates the ability of the agent to change decision 

making strategies according to the availability of knowledge which is what humans 

do. This can be used to produce across-entity variability for command agents in 

military simulations based on the agent’s expertise in the task assigned. By giving the 

agents a choice to select from all acceptable actions within-entity variability is also 

produced. In this experiment initially three types of agents are compared and then the 

performance of two RPD agents with different levels of experience is evaluated. 

 

7.1.1 Vignette A - Static obstacles 

In a 10 x 10 grid based environment, the tank has to start from the south and advance 

towards north to reach the destination as shown in the Figure 7.1. The agent has four 

actions to choose from: move in the direction that the tank is facing; and turn in any 

three directions other than the one that the tank is already facing. The tank has only 

the visual sensor that sees one cell around itself. The agent has been given the location 

of the destination cell and has been tasked to advance to that location. Although, there 

is only one obstacle in this environment, this obstacle always comes in the path of the 

agent unless the agent is moving randomly.  

 

7.1.2 Random-walk agent 

This agent has no experience. It only knows a set of actions that may be taken in a 

situation. For example, in the current state that is the starting position in Figure 7.1, 
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the agent is facing north with an empty cell in its north, four actions: move north; turn 

east; turn west; and turn south are proposed. The agent has enough intelligence to 

avoid obstacles in the field and on the boundaries. It is avoiding obstacles by 

considering the actions that collides the agent with the obstacle as non-applicable 

actions. There are two ways of doing it. One way is to propose these operators and 

then give them low preferences. The other way, which is implemented in this 

experiment, is not to propose them at all. The agent has the ability to remember a pool 

of applicable actions in each situation and avoid collision with the obstacles but it 

does not have the capability to evaluate or mentally simulate actions and then select 

either the best or a better one out of them which can take the agent close to its goal 

state. Therefore, the activity may be called a random walk or searching the target 

location with brute force. The agent might well visit the same location many times. 

When the agent reaches its destination it recognizes its goal state and stops.  

 

7.1.3 Less experienced RPD-Soar agent 

This agent has the capability of a third-level RPD agent to mentally simulate the 

actions to find out how the world will change if current action is taken. The agent 

knows its destination, although, it can not see the destination unless it is in the 

adjacent cell to it. The agent knows the distance to and direction of its destination. 

Like the random-walk agent this agent also proposes all applicable actions and avoids 

collision with the obstacles. This may also be termed as experience of an agent as the 

agent knows there is no advantage to colliding with an obstacle. In RPD terms the 

agent already knows the low or zero ‘success value’ of this course of action in this 

situation.  
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Figure 7.1 Simulation environment. The Blue tank is located at cell in 

the middle of bottom row, and is heading north. There is only one 

static obstacle located at the cell in the middle of fifth row in the 

north of the tank. The destination is marked in the middle of top 

row. 

 

Out of the remaining actions the agent does not select one action straight away 

because it has not recognized the situation completely. This means the recognition is 

not specific for an action for the agent to behave like Level 1 RPD agent rather it gives 

a pool of actions for the present situation. The agent is a Level 3 RPD agent but it 

does not have sufficient experience to select one action as the first one to consider for 

mental simulation. Rather this agent due to its lack of experience, indifferently selects 

each action turn by turn and mentally simulates it to find if implemented will the 

action under consideration take the agent close to its present goal or otherwise. After 

the evaluation of each one of them this agent selects the most promising action. 

 

 

7.1.4 Experienced RPD-Soar agent 

Like the Random-walk and Less-experienced agents, this agent also proposes all 

applicable actions and avoids collision with the obstacles. And like the previous agent 

this agent is also not recognizing the situations straight away so it can not behave like 
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Level 1 RPD agent. That means all applicable actions for the present situation are 

proposed and the agent does not have enough experience in the form of success values 

to prefer one operator over the other. This agent is also a Level 3 RPD agent and has 

the capability to mentally simulate the proposed courses of action. Now at the stage of 

mental simulation the agent knows that if there is a move action among the actions 

that require to be evaluated then it has more chances of making the agent progress to 

its goal. Therefore, unlike the previous agent it has enough experience to recognize 

the situation and an associated course of action as the first one to consider for mental 

simulation. It creates a mental model and simulates the prioritized course of action 

through a single step and if the action seems promising applies it to the external 

environment and does not evaluate other applicable actions. As the agent is not testing 

other actions so as to know what they have to offer, it may be said that the agent is not 

optimizing rather it is satisficing. Satisficing is a decision making strategy which does 

not attempt to find an optimal solution rather it tries to meet criteria for a set threshold 

in a solution of the problem. But if mental simulation results in a negative evaluation 

value for the selected course of action which means if implemented in the real world 

this course of action will take the agent away from the goal then the complete mental 

model is removed and the course of action is rejected. And a new mental model is 

developed to evaluate the next course of action.  

For this agent, apart from the first course of action all courses of action are equally 

preferable for selection for mental simulation. In this case, the courses of action are 

not prioritized for mental simulation for every situation rather a general preference is 

given to the move action over turn action. This is due to the nature of the problem, 

because the agent does not move any closer to its goal when the agent turns at its 

present location. Moving to a new location is what will take the agent closer to its goal 

but at the same time it can take the agent away from the goal, therefore, move is not 

selected straight away but is considered first for mental simulation. In other problems 

the agent may need to have a preference for a particular action in one situation and a 

preference for a different action in another situation of the same problem for mental 

simulation. Therefore, it will not be possible to generalize the preference for one 

action for all the situations in a problem. The Soar production rule that prefers the 

move action over turn shown in Figure 7.2 is put in this problem as a default rule as 

part of productions for selection space. 
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Figure 7.2 Production: selection*prioritise*evaluate-operator  

 

7.1.4.1 Evaluation criteria 

The courses of action are evaluated for their suitability in achieving the goal. In this 

problem the goal is to reach a location in the environment marked as the destination. 

For simplicity, the courses of action are evaluated for reducing the distance between 

the cell marked as destination and the cell in which the agent is located and also for 

avoiding obstacles. In order to do this, the present Manhattan distance of the agent 

from its current location to the destination is recorded and then the action being 

evaluated is applied in the mental model. Recall that the Manhattan distance between 

two points is defined as the respective differences of abscissas and ordinates of the 

two points. After the action is taken then again the Manhattan distance is calculated 

and the difference is one of the evaluating factors. The production rules calculating 

these two Manhattan distances are shown in Figure 7.3. The WME state ^tried-tied-

operator is created when the operator required to be evaluated is also selected in the 

decision phase for application. And as the production 

RPD*elaborate*state*manhattan-distance tests the ^tried-tied-operator WME 

therefore, the Manhattan distance is calculated just before the application of the 

selected operator for correct comparison. 

 

sp {selection*prioritise*evaluate-operator 

   :default 

   (state <s> ^name selection 

              ^operator <o1> + 

               ^operator <o2> +) 

   (<o1> ^name evaluate-operator 

         ^superoperator.name move) 

   (<o2> ^name evaluate-operator 

         ^superoperator.name turn)              

   --> 

   (<s> ^operator <o1> > <o2>) 

} 
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Figure 7.3 Productions: to calculate Manhattan distances for evaluation 

sp {rpd*elaborate*state*manhattan-distance 

   (state <s> ^name rpdsoar-ms1    ^desired <d> 

                    ^bluetank <bt>     ^tried-tied-operator) 

   (<d> ^bluetank <dbt>) 

   (<bt> ^x <bx> ^y <by>) 

   (<dbt> ^x <dbx> ^y <dby>) 

--> 

   (<s> ^mhdistance (+ ( abs ( - <dbx> <bx>)) ( abs ( - <dby> <by>)))) 

} 

 

sp {rpd*elaborate*state*present-manhattan-distance 

   (state <s> ^name rpdsoar-ms1    ^desired <d> 

              ^bluetank <bt>       -^io    ^operator <o>) 

   (<d> ^bluetank <dbt>) 

   (<bt> ^x <bx> ^y <by>) 

   (<dbt> ^x <dbx> ^y <dby>) 

--> 

   (<s> ^present-mhdistance (+ ( abs ( - <dbx> <bx>))  

         ( abs ( - <dby> <by>)))) 

} 
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Figure 7.4 Productions: to evaluate actions for manoeuvring obstacles 

The other evaluation factor is measuring the ability of the course of action in making 

the agent quickly manoeuvre obstacles. The production rules evaluating the actions for 

manoeuvring obstacles are shown in Figure 7.4. 

sp {rpd*prefer*operator*turn*west-and-east 

   (state <s> ^name rpdsoar-ms1 

             -^io 

              ^bluetank <tank> 

              ^map.cell <c> 

              ^operator.actions.turn.direction << east west >> 

              ^desired.bluetank.y < <y>) 

   (<tank> ^x <x> ^y <y>) 

   (<c> ^x <x> ^y <y>) 

   (<c> ^north.content obstacle) 

--> 

   (<s> ^obstacle-factor 1) 

} 

sp {rpd*prefer*operator*turn*north 

   (state <s> ^name rpdsoar-ms1 

             -^io 

              ^bluetank <tank> 

              ^map.cell <c> 

              ^operator.actions.turn.direction north 

              ^desired.bluetank.y < <y>) 

   (<tank> ^x <x> ^y <y>) 

   (<c> ^x <x> ^y <y>) 

   (<c> ^north.<< east west >>.content obstacle) 

--> 

   (<s> ^obstacle-factor 2) 

} 

sp {rpd*prefer*operator*move*west-and-east 

   (state <s> ^name rpdsoar-ms1 

             -^io 

              ^bluetank <tank> 

              ^map.cell <c> 

              ^operator.actions.move.direction << east west >> 

              ^desired.bluetank.y < <y>) 

   (<tank> ^x <x> ^y <y>) 

   (<c> ^x <x> ^y <y>) 

   (<c> ^north.content obstacle) 

--> 

   (<s> ^obstacle-factor 3) 

} 
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7.1.5 Results 

Thirty simulations are run for each agent and the result of comparing all three types of 

agents is shown in Figure 7.5. Thirty samples are taken so that the Central Limit 

Theorem will mean that a Normal approximation to the distribution of results will 

enable certain statistical tests to be applied. The y-axis represents Soar decision cycles 

that each agent is using to get to the same destination in the same environment from 

the same starting position. If the Random-walk agent is compared with even the Less-

Experienced RPD-Soar agent the difference is notable (Table 7.1). It is worth 

mentioning here that the number of moves made in the external world by both RPD-

Soar agents is far less than the number of Soar decision cycles as these agents do 

mental contemplation using Soar decision cycles while the Random-walk agent 

physically moves with every Soar decision. Most of the time during the simulation the 

Random-walk agent displays behaviour which does not look intelligent to the observer 

while the other two agents with the ability to mentally simulate their actions before 

implementing them in the real world display a plausible intelligent behaviour to the 

observer.  

 

 

Figure 7.5 RPD-Soar agents vs. Random-walk agent 
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The intelligence in the behaviour of the RPD-Soar agents can be further improved 

with more knowledge and experience. The agents with more intelligent behaviour are 

used in experiments discussed later in this chapter. The across-entity variability in 

behaviour of the agents produced due to varying experience is clearly visible in Figure 

7.5. 

 

Table 7.1 Performance of Random-walk and RPD-Soar agents 

 

A two tailed t-test is performed on the simulation data of less-experienced and 

experienced RPD-Soar agents which confirms that the two means are different at 95% 

confidence level with 131019.1 −×=p . In two tailed t-test there are two hypotheses, Ho: 

µ1 = µ2 versus Ha: µ1 ≠  µ2, where µ1 and µ2 are the two means being compared. In this 

case, µ1 and µ2 are the means of less experienced and experienced RPD-Soar agents 

respectively approximated by the means of sample data. At 95% confidence level if p 

is smaller than the significance level of 0.05 then Ho is rejected. In this case p is much 

smaller than the significance level of 0.05 thus Ho is rejected and the means of less-

experienced and experienced RPD-Soar agents are significantly different at 95% 

confidence level. 

To highlight the differences between both types of RPD-Soar agents the two RPD-

Soar agents have been compared in Figure 7.6.  

                Agent      Mean     Variance 

 Random-walk      656.37        514.93 

 Less-experienced RPD-Soar      184.50        29.90 

 Experienced RPD-Soar      113.97         25.18 

Difference between 

Mean(less-experienced) and 

Mean(experienced) 

      

        ≈ 70 

 

 



Chapter 7 – Experiments, Results, and Discussion  

133 

 

Figure 7.6 Less-Experienced vs. Experienced RPD-Soar agents 

 

It is evident that comparatively more experience reduces the time and effort required 

for mental simulation by selecting one course of action to consider first and not 

evaluating other options if not required. The Less-experienced RPD-Soar agent 

generally consumes more number of Soar decision cycles to reach the destination. 

Behaviour variability within an entity is a desirable characteristic in a command agent 

and is more difficult to produce as compared to across-entity behaviour variability. It 

is defined as the variability in behaviour of the same agent in performing the same 

task over many episodes. Both RPD-Soar agents are displaying this variability. The 

within-entity variability in behaviour in this experiment is produced by giving choices 

to the agents so long as these choices do not take them away from the goal. Therefore, 

at no time during the simulation does the agent seem to be going away from the goal 

but some times the agent turns at one place and these turning actions can be wasteful 

because Soar decision cycles are consumed without the agent moving towards its goal. 

For example, if the agent is facing west whereas the destination is in the north, and we 

know that the agent can move only in the direction that it is facing but it changes its 

direction to south instead of north. This behaviour in the agents is improved by giving 

preference to turn actions towards north if the north cell is not blocked by an obstacle.  
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7.2 Experiment 2 - Changing Context 

The basic concept in RPD is to recognize a situation in a changing context; therefore, 

in this experiment we have given the same situations as in the previous experiment to 

the same agents in changed contexts. The experiences should be sufficiently general to 

be applicable in a changing context. But if the experiences are over generalized then 

they will apply at places where they are not required and produce incorrect behaviour. 

In this experiment the agents have been tested to recognize situations in changing 

contexts in two different environments; the first environment (Figure 7.7) is an 

extended version of the environment of Experiment 1 (Figure 7.1), while in the second 

environment the number of obstacles is increased moreover, the size of the obstacle 

itself is doubled Figure 7.9. 

 

7.2.1 Effect of enlarged environment on agents 

The scenario is kept the same and only the environment is changed from a 10 x 10 to a 

100 x 100 grid. The start point, the obstacle on the way and the target location are all 

kept at relatively the same distances by stretching out proportionally (Figure 7.7). 

 

Figure 7.7 Enlarged environment 
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The number of decisions made by the Random-walk agent in reaching the target 

location increases exponentially, sometimes taking hours to reach the goal state, as is 

expected for such a large scale environment. The Random-walk agent is not discussed 

any further in the results. However, both of the RPD agents recognize the situations in 

the changed context and their behaviour remains that of expert agents as required of 

RPD model as per their levels of expertise as shown in Figure 7.8. The only difference 

in the results from the previous experience is that the agents have consumed more 

Soar decision cycles as is expected because of the requirement of more decision 

making by the agents and thus a higher number of evaluations.  

 

 

 

 

 

Figure 7.8 Less-Experienced vs. Experienced RPD-Soar agents in an 

enlarged environment 

 

One important point to consider is the advantage of experience is prominent in this 

enlarged environment as compared to the previous environment. The difference in the 

means of the Soar decision cycles consumed by the agents in the previous 
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environment is approximately 70 (Table 7.1) while in enlarged environment it is 

approximately 877, (~ 60% reduction in decision cycles) (Table 7.2). 

 

Table 7.2 Performance based on Soar decision cycles of RPD-Soar 

agents in an enlarged environment 

 

7.2.2 Changed obstacle pattern 

In this experiment, the scenario is kept the same and the environment is changed to 

give the same agent an entirely changed context by placing a complex pattern of 

obstacles in the field to manoeuvre to reach its destination (Figure 7.9). The agent is 

designed to manoeuvre only a single-cell obstacle, but in this environment the same 

agent is exposed to an obstacle occupying two adjacent cells. 

The aim of the experiment is to observe whether the agent still recognizes the 

situation and the associated course of action when it looks at a two-cell obstacle 

instead of one-cell obstacle. The agent successfully manoeuvres the obstacle in this 

environment and takes the same action of moving to east or west after recognizing the 

situation from the previous environment of an obstacle in its north. If it decides to 

move east, the number of Soar decision cycles would not change but if it decides to 

move west, the number of decisions increases in the range of 20 – 30. But in both 

cases, the agent manoeuvres the obstacles and finds its way to the destination. 

Agent Mean Variance 

Less-experienced RPD-Soar 1448.33 30.84 

Experienced RPD-Soar 571.76 37.63 

Mean(less-experienced)-

Mean(experienced) 

≈ 877  
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Figure 7.9 Changed Obstacle pattern 

  

7.3 Experiment 3 - Variability within an entity  

In this experiment, a more mobile Blue agent with the ability to move to all eight 

neighbouring cells reaches its destination by manoeuvring around static obstacles and 

avoiding collision with an equally mobile Red agent. Previous experiments are carried 

out to verify the ability of RPD-Soar agent to recognize a situation based on cues and 

sometimes only on a single cue with overwhelming significance. And also the ability 

of the agent to recognize the associated goals, expectations, further cues to look for in 

this situation, and an action with the highest success value. The abilities of RPD-Soar 

agent to take advantage of the opportunity arising from a situation by recognizing 

plausible goals and to change its decision making strategy with experience is also 

demonstrated. The aim of this experiment is to demonstrate, analyze and discuss 

within-entity variability in behaviour of RPD-Soar agents. Variability in behaviour is 

discussed very briefly in Experiment 1 and Experiment 2, but in this experiment 

variability in the behaviour of an RPD-Soar agent is discussed in detail.  
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7.3.1 Explanation of the experiment - Moving threat 

In this experiment (Figure 7.10), the Red agent is moving diagonally, starting from the 

bottom left destined to top right. The Red agent is not intelligent and is following a 

prescribed route. The Blue agent has the same capabilities and the same goal as that of 

the RPD-Soar agent described in Experiment 1 or Experiment 2, but in this 

experiment it only has the visual sensor and does not have the radar sensor, and there 

are two improvements; one is the ability to avoid collision has been added and the 

second change is that it has been made more mobile and flexible. Now, it does not 

have to change directions before moving to any cell and it can also move in four more 

directions of north-east, north-west, south-east and south-west. Therefore, at each 

step, the Blue agent has at most eight actions to choose from. 

 

7.3.2 Mental simulation to avoid Collision  

If the Blue agent keeps pursuing its initial goal without changing its goals according to 

the situation then the Red agent and the Blue agent are due to collide in the next cell 

as indicated in Figure 7.10. As the Blue agent can see only one cell around itself, 

therefore, the Blue agent detects Red agent on its west when the Blue and Red agents 

reach the locations as shown in Figure 7.10. The Blue agent takes its turn to act first 

and then the Red agent takes its turn. As both agents move one cell at a time, 

therefore, the Blue agent knows that Red agent can go to the location where the Red 

agent is now, or any one of the other locations marked with red circles (light grey) as 

shown in Figure 7.11. Therefore, there are three safe locations for Blue agent to avoid 

collision, one where it is located now and the other two are marked with blue circles 

(dark grey) in Figure 7.11. Thus, Blue agent moves east to avoid collision which in 

this case happens to be exactly the opposite direction from the present location of Red 

agent. 
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Figure 7.10 Collision course 

 

The situation and the corresponding action discussed above is only one example from 

the set of situations presented to and actions taken by the Blue agent.  In order to 

check the ability to recognize the situation in different contexts, the Red agent starts 

from four different locations on the west and four different locations on the east of the 

Blue agent. And moving diagonally it tries to collide with the Blue agent at different 

locations. The Blue agent successfully recognizes the situations in all cases and avoids 

collision with the Red agent. One hundred simulations are run for each case to observe 

the variability of the agent’s behaviour for the same situation. The appropriateness of 

choosing to carry out one hundred replications will be tested later. 

 

  

 Destination 
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Figure 7.11 Mental simulation to avoid collision 

 

7.3.3 Factors affecting the decision of the Blue agent 

The evaluation of an action during mental simulation is based on the difference in 

Manhattan distance, relative position of static obstacles and moving Red tank with 

respect to the Blue tank, and also the last action taken by the Blue agent.  

In the mental model of the Blue agent the world is modelled as the Blue agent sees it. 

The Manhattan distance from the Blue agent to the destination is measured before 

starting the mental simulation and then the move action in the direction that is 

required to be mentally simulated is applied in the mental world. And then the 

Manhattan distance is measured again. If the agent is moving towards the destination 

then the difference in Manhattan distance is positive and if the agent is moving away 

then the difference is negative. Likewise, success values for other applicable factors 

are given to the action being evaluated. The criteria for assigning these success values 

to an action are given in the succeeding paragraphs. The success values given due to 

different factors to the action being evaluated are summed up and the action collecting 

the highest success value is selected. 
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7.3.3.1 Manhattan distance 

The factor that always affects the decision of the Blue agent is the Manhattan distance 

which is the signed difference of Manhattan distance before and after the application 

of operator. The numeric value ranges from -2 to +2. 

 

7.3.3.2 Static obstacle 

In order to manoeuvre around static obstacles while the Blue agent is moving towards 

its destination in the north, the move to east or west is given a numeric value of +2 

when there is an obstacle in the north of the Blue agent.  

 

7.3.3.3 Red tank 

The numeric values to evaluate an action of the Blue agent when it encounters a 

moving Red tank are as follows: 

 

• +2 for moving to a cell exactly opposite to cell containing the red tank. 

• -2 for moving to north or east cells if the red tank is in the cell north-east to the 

blue tank. 

• -2 for moving to south or east cells if the red tank is in the cell south-east to 

the blue tank. 

• -2 for moving to north or west cells if the red tank is in the cell north-west to 

the blue tank. 

• -2 for moving to south or west cells if the red tank is in the cell south-west to 

the blue tank. 

• -2 for moving to south, north, north-east, or south-east cells if the red tank is in 

the cell east to the blue tank. 

• -2 for moving to north, south, north-west, or south-west cells if the red tank is 

in the cell west to the blue tank. 

• -2 for moving to east, west, south-east, or south-west cells if the red tank is in 

the cell south to the blue tank. 

• -2 for moving to east, west, north-east, or north-west cells if the red tank is in 

the cell north to the blue tank. 
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7.3.3.4 Undoing last action 

A numeric value of -1 is given to the action if the action makes the Blue agent undo 

what it has done in the last turn. 

 

7.3.4 Results 

One hundred simulations are run for each starting location of Red agent. Different 

starting locations of Red agent correspond to different situations as for each starting 

location Blue agent sees the Red agent at either a different location or in a different 

direction. And in some cases both the location and the direction is different. The total 

number of behaviours for each case ranges from 19 to 24. The number of behaviours 

displayed by Blue agent in all situations faced by it is summarised in Table 7.3. 

As in this experiment every path traversed by the Blue agent is a different behaviour, 

therefore, we have used the term path and behaviour interchangeably. The case when 

the Red agent starts from two squares east of the Blue agent is discussed in detail as 

this provides more space for the Blue agent to manoeuvre and therefore produces the 

maximum number of distinct behaviours. 
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Table 7.3 Number of distinct paths traversed by Blue agent in eight 

different situations 

 

In one of particular run, with the Blue agent starting at position (5, 8), the Blue agent 

moves first and reaches location 1 in Figure 7.12, the Red agent also moves to its 

location 1, and then the Blue agent detects Red agent and moves to its location 2 to 

avoid collision. The Blue agent keeps moving to locations 3 and then 4 to avoid 

collision with the Red agent until both reach their locations number 5. Here the Blue 

agent takes a risky decision and moves to location 6. In this point in time the Red 

agent on its turn can move down and collide with Blue agent, but it is moving on a 

prescribed route and therefore the Blue agent survives. In one hundred runs the Blue 

agent has chosen to adopt this route, requiring nine moves to reach the destination, 

only once. The Blue agent adopts the path, displayed in Figure 7.13, most frequently 

and selects it 16 times in one hundred trials. This risk aversive behaviour and also a 

non-optimal move to location 9 increased the length of the route to thirteen steps. 

 

Start location Red agent Visible to Blue agent No. of Paths 

4 squares west – 1 north (1, 7) Step 3, north-west 20 

3 squares west – 1 north (2, 7) Step 2, north-west 22 

4 squares west (1, 8) Step 3, west 21 

3 squares west (2, 8) Step 2, west 19 

2 squares east  - 1 north (7, 7) Step 1, north-east 22 

2 squares east (7, 8) Step 1, east 24 

3 squares east – 1 north (8, 7) Step 2, north-east 22 

3 squares east (8, 8) Step 2, east 21 
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Figure 7.12 The least frequently used path. The labels with each path 

are depicting the step number of the corresponding agent. 
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Figure 7.13 The most frequently used path. Some times the Blue agent 

traverses the same location number of times. The label on the left 

shows the step number earlier in time than the number on the right. 

0, 3 means agent visits this location at step 0 and then comes to the 

same location in step 3. 

 

In one hundred simulation runs for this case in which the Red agent starts from the 

same location and moves on the same prescribed route, the Blue agent finds twenty 

four distinct routes to the destination. These routes are shown in Figure 7.14 through 

Figure 7.17 for quick comparison. 
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Figure 7.14 Behaviours of Blue agent for starting position of Red - (7, 8) 
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Figure 7.15 Behaviours of Blue agent for starting position of Red - (7, 8) 
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Figure 7.16 Behaviours of Blue agent for starting position of Red - (7, 8) 
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Figure 7.17 Behaviours of Blue agent for starting position of Red - (7, 8) 

 

The probabilities of occurrence of these twenty four behaviours are shown in Figure 

7.18 (bottom graph). Behaviours have been grouped according to their path lengths, 

and the probability distribution of these groups is displayed in the upper part of the 

same figure. For maximum variability in behaviour the paths should be equally 

distributed. The probability of a single behaviour or a group of behaviours in case of 

equal distribution is shown as red horizontal line for easy reference. While the 

proposed implementation achieved a reasonable spread of behaviours, there still 

remains some bias towards Group 5 (this relates to behaviours of path length 13). 
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Figure 7.18 Probabilities of Blue agent’s behaviour 

 

Although, for maximum variability in behaviour, the paths should be equally 

distributed but one of the requirements of human-like behaviour variability is the 

presence of a hidden pattern in the behaviour. Correct individual behaviour and 

producing intended population-level distribution is a requirement on HBR. During 

training simulations the trainees should be able to identify patterns and take advantage 

of it (Wray and Laird, 2003). This agent is displaying a distribution with some 

behaviour more likely than others in a population. This is produced by fine tuning the 

set of numeric values given to different actions during mental simulation and a 

different behaviour may emerge as most favoured with a different set of values. 

Behaviour patterns of the same agent for the same situation i.e., same starting location 

of Red agent (Red starting two squares east of Blue), for 100, 200 and 1000 

simulation runs with path lengths are shown in Figure 7.19, Figure 7.20, and Figure 

7.21. 

 

 



Chapter 7 – Experiments, Results, and Discussion  

151 

 

Figure 7.19 Behaviours of Blue agent over 100 simulation runs – Red starts: (7,8) 

 

The same behaviour emerges as the most frequently occurring behaviour in 100, 200, 

and 1000 simulation runs. The most frequent behaviour for 100 simulation runs is 

shown in Figure 7.13, and for 200 and 1000 simulation runs are shown in Figure 7.22.  

The second most frequent behaviour in 1000 simulation runs is shown in Figure 7.23. 

This is exactly the same path with length 11 as that of the most frequently used path 

with length 13 (see Figure 7.13) except for one move that the agent makes just below 

the obstacle. The agent on encountering the obstacle has two options either to move 

east or move west. In the case of behaviour with path length 13 the agent moves east 

to avoid the obstacle but finds out that it will have to move further east and more away 

from the objective to manoeuvre the obstacle. When the agent evaluates this move in 

the direction of east, the Manhattan distance to the objective increases, which gives a 

negative success value to the move, therefore, it moves back towards west and then 

moves west again to clear the obstacle and move towards its objective in the north. In 

the case of behaviour with path length 11 the agent decides to move west instead of 

east as it encounters the obstacle and avoids the two moves in the direction of west 

therefore completes the goal in comparatively lesser number of steps. Except for this 

difference both behaviours are identical. 
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Figure 7.20 Behaviours of Blue agent over 200 simulation runs – Red starts: (7,8) 

There is one more point to note in the 200 and 1000 simulation runs and that is the 

change in the total number of behaviours. In 200 simulation runs, two new behaviours 

are produced with path length 10 and one behaviour of path length 11 is not produced. 

Therefore, the total number of behaviours is increased by one making it 25. In 1000 

simulation runs, all behaviours are included and the total number of behaviours is 26. 

There is a possibility that other behaviours exist that have not so far been generated. 
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Figure 7.21 Behaviours of Blue agent over 1000 simulation runs – Red starts: (7,8) 

 

Figure 7.22 Most frequent behaviour for 200 (left) and 1000 (right) simulation runs 
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Figure 7.23 Second most frequent behaviour in 1000 simulation runs 

 

The variability produced in this RPD-Soar agent is not due to randomness that 

produces undesirable behaviour rather it has been produced because of the reasonable 

but some times sub-optimal choices given to the agents. 

 

7.4 Behaviours resulting from strategies formulated by humans 

Three subject matter experts and two non experts were asked to give their 

recommended strategy to avoid the collision with the Red tank, if they have the same 

task with the same sensors as that of the agent in this experiment. Two strategies to 

avoid the moving agent were recommended by them. One strategy emphasizes safety, 

in which the Blue agent mentally simulates all possible future moves of the Red agent 

in the next step, and then the Blue agent selects its own move; which is one from the 

pool of all of the possible moves that can take it to a cell which can not be occupied 

by the Red agent in next step. The second strategy involves a calculated risk, in which, 

the Blue agent, where possible predicts Red agent’s one move from all possible future 

moves of Red agent by observing Red’s two previous moves. And then Blue takes a 

risk only if this risk takes the Blue agent closer to the goal by selecting to move to a 

cell which may possibly be occupied by the Red agent in its next move but is not the 

predicted one. The proposed RPD-Soar agent model demonstrated both of the 

behaviours that result from the use of both of these strategies formulated by humans. 
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Although, the ability to predict the most probable move from the history of Red 

agent’s moves is not implemented, but this behaviour is also generated due to the 

success values of actions incorporated in the experiences. On the corners where the 

choices of moves of Blue agent is restricted and where the advantage of taking the risk 

is more than the negative success value of a risky action the Blue agent takes the risk. 

As it is explained earlier in this chapter that the case where the red agent starts from 

location (7, 8) is discussed in detail because in this situation the red and blue agents 

start interacting with each other from the very first step in the simulation. The 

distributions of behaviours for rest of the seven cases for 100 simulation runs are 

shown in Figure 7.24 through Figure 7.30. 

 

 

Figure 7.24 Behaviours of Blue agent over 100 simulation runs – Red starts: (1, 7) 
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Figure 7.25 Behaviours of Blue agent over 100 simulation runs – Red starts: (2, 7) 

 

Figure 7.26 Behaviours of Blue agent over 100 simulation runs – Red starts: (1, 8) 
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Figure 7.27 Behaviours of Blue agent over 100 simulation runs – Red starts: (2, 8) 

 

Figure 7.28 Behaviours of Blue agent over 100 simulation runs – Red starts: (7, 7) 
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Figure 7.29 Behaviours of Blue agent over 100 simulation runs – Red starts: (8, 7) 

 

Figure 7.30 Behaviours of Blue agent over 100 simulation runs – Red starts: (8, 8) 

 

The number of behaviours in one hundred simulation runs for these seven cases range 

from nineteen to twenty two depending upon the number of steps taken from the start 

of the simulation to the point where the agents start to interact. Results of all these 
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experiments show a similar trend to that of the case that is discussed in detail in which 

the red agent starts from location (7, 8). 

 

7.5 Experiment 4 - Learning 

This experiment is about the adaptability of an RPD-Soar agent during the simulation 

that adds dynamism to the simulation environment. The experiments are aimed at 

observing the learning process in four different situations and then the transfer of 

learning from one situation to the other. 

 

7.5.1 The change in the agent 

The environment, the task, and the agents are same as that of Experiment 3, the only 

difference in the Blue agent is that more specific evaluation of behaviour of the agent 

in manoeuvring around an obstacle located north of the agent is added. In the previous 

experiment the agent is trained to handle single-cell obstacles and it does defeat a two-

cell obstacle but half of the times the manoeuvre is not very efficient. When the agent 

moves west which is a random choice between the two choices of east and west, then 

the move seems intelligent but when it moves east then it has to come back to its 

original cell which is wasteful. In this experiment the agent is designed to handle two-

cell obstacles in an efficient way. The agent while moving to its destination in the 

north finds the two-cell obstacle south of destination (Figure 7.31). The agent at this 

point not only recognizes an obstacle to its north but also identifies the obstacle in its 

north-east and knows that if it moves east still it will be blocked by an obstacle in the 

north; therefore, it gives a success value of 2 during mental simulation of move west 

action. The production rule in Figure 7.32 checks for the conditions in this situation 

during mental simulation and gives this success value as obstacle-factor. This is the 

only situation where a numeric value is given to an action in relation to the obstacle 

because if the agent is in the south of the east part of the two-cell obstacle then the 

agent moves west anyway because of the attraction of the agent towards the 

destination. And if there is a single-cell obstacle blocking the agent in any location 

exactly in the south of the destination, the agent may randomly chose one from the 

two choices of move east or west. To check the efficacy of the production it is tested 

in a difficult situation where both the obstacle and the agent are moved to extreme 

west from their present location displayed in Figure 7.31. Now the production in 
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Figure 7.32 seems to be pushing the agent in the wall by giving a success value of 2 to 

the action move west, but in this situation there is no proposed action as move west 

because the location to move to is an obstacle. 

 

 

Figure 7.31 Agent south of two-cell obstacle 

 

7.5.2   Learning method 

The learning mechanism inherent in Soar is called chunking and is a form of 

explanation based generalization. Explanation based learning is a type of inductive 

learning. Inductive learning requires a certain number of training examples to achieve 

a given level of generalization accuracy. Artificial neural network and decision tree 

learning are examples of inductive learning. Analytical learning augments the 

information provided by the historical examples using domain knowledge and 

deductive reasoning. Deductive reasoning is that type of logical reasoning in which 

conclusions must follow from their premises (Giarratano and Riley, 1998). The use of 

domain knowledge and deductions aids the learning process and substantially reduces 

the number of training examples required for adequate learning. Explanation based 

learning belongs to this sub category of inductive learning. 
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Figure 7.32 Production: evaluate move west action - two-cell obstacle in the north 

 

Due to the ability of the RPD-Soar agent to mentally simulate applicable courses of 

action it is possible to use the agent without rigorous training as it can handle new 

situations effectively. Given a high level task the agent, through mental simulation, 

finds out the sequence of implementation of low level tasks itself to achieve the aim 

of the high level task. The mental simulation takes time because during contemplation 

of the course of action a large number of Soar decision cycles are consumed. 

Therefore an untrained agent tends to be slow in deciding and taking an action 

compared to an experienced agent. It is worth mentioning here that both of the agents 

respond within real time. Through this learning technique it is expected that the 

number of Soar decision cycles which represents the time taken to make a decision 

reduces. In terms of RPD model it is a process of increasing expertise through 

experience and the same situation which is first handled through Level 3 RPD after 

training is handled through Level 1 RPD. For a given task the agent starts to learn and 

makes decision straight away in situations for which it has already learnt. The time 

sp {rpd*evluate*numeric-value*obstacle-factor*north 

   (state <s> ^name rpdsoar-ms1 

             -^io 

              ^bluetank <tank> 

              ^map.cell <c> 

              ^operator.actions.move.direction west 

              ^desired.bluetank.y < <y>) 

   (<tank> ^x <x> ^y <y>) 

   (<c> ^x <x> ^y <y>) 

   (<c> ^north.content obstacle) 

   (<c> ^north-east.content obstacle) 

--> 

   (<s> ^obstacle-factor 2) 

} 
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required to complete a task reduces as the agent repeats the task again and again and 

the number of new situations reduce that the agent may encounter in this task. Due to 

this learning mechanism, the time taken by an agent to complete the same task 

becomes proportional to the experience of the agent. In a simulation, if there is a 

requirement of agents with varying level of experience to perform a task then it may 

be met by producing agents using this learning mechanism. 

In Soar, the learning can be turned on and off. The Soar command that turns learning 

on is “learn --on”. When learning is on then chunks are produced when an impasse is 

resolved. These chunks are straight away loaded in the LTM of the agent as soon as 

they are produced and are ready to fire like any other production rule present in the 

LTM of the agent. In this experiment and also the previous experiments when the 

simulation is reset then the agent is initialized which means the agent keeps its LTM 

as such and initializes only the working memory. As the chunks are loaded in the LTM 

therefore chunks remain stored in the LTM when the simulation is reset. When the 

simulation is terminated then the agent is killed and then creating the agent again 

requires all production rules to be reloaded in the LTM and chunks if not stored 

elsewhere are lost. The procedure for storing chunks and other data is shown in Figure 

7.33. The chunks are stored after every simulation run and the data storage holds the 

chunks for all stages of learning. For example if a set of 50 simulations are run in one 

go, then the experience of this agent can be scaled from 0 to 50. All the learnt chunks 

can also be stored together after completing all the simulation runs with a little 

variation in the code.  

 

7.5.3 The problem of over generalization in chunking 

During experimentation on learning it is observed that sometimes the learned 

production rules (chunks) are over generalized and apply in situations where they are 

not required and thus produce undesirable behaviour. The point to note is that the 

problem representation where learning is involved has two aspects: the first aspect is 

the correct representation for problem solving; and the other is correct representation 

of the problem for learning (Ritter, 2007). When the problem is being solved correctly 

then the representation is correct for problem solving but it may or may not be correct 

for learning. 
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Figure 7.33 Storing process of chunks and statistics  

  

For example, in our experiments the problem is being solved correctly and the Blue 

agent is avoiding collision with static and moving objects and reaching its destination 

every time but when learning is set to on then there is unresolved conflict of two 

operators. The problem is that in one simulation run when the Blue agent is at a 

certain location it finds Red agent in its neighbouring cell. The Blue agent mentally 

simulates the actions and finds one to avoid the collision and through chunking marks 

this action as the best suitable for the Blue agent when at this location. It is worth 

mentioning here that one of the antecedents to this learnt chunk tests for the presence 
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of Red agent. In another simulation run, the Blue agent at the same location does not 

find the moving Red agent in its neighbouring cells, and mentally simulates actions 

and marks one action best suited for this situation which may be different from the 

chunk produced in the situation discussed above where the chunk is produced for 

selecting a course of action aimed at avoiding Red agent. Now in another simulation 

run, the Blue agent at the same location finds a conflict between these two actions 

when Red agent is present in the neighbouring cell. The reason for this conflict is the 

chunk that is learnt when there is no Red agent because it is more general and fires 

even when the Red agent is present. This is a case of over generalization. It is solved 

by dividing the applicable operator into two different operators, one operator is action-

tank-present and the other is action-tank-not-present. 

Initially when a chunk is created it contains actual identifiers of objects but this makes 

the chunk very specific and the chunk only fires when the actual objects are matched. 

To improve generality the identifiers of actual objects are replaced by variables. The 

constants in the conditions are not changed. One modification in the representation of 

the problem that can improve generality in the learnt chunks is to reduce the use of 

constants to a minimum. Reduction of constants improves the generality and also 

increases the quantity of transfer of learnt knowledge to other tasks. In our opinion, in 

this implementation if the locations of the agents, the destination, and the obstacles is 

represented in relative distance and directions from the point of view of Blue agent 

using spatial reasoning then the generality can be improved further.  

 

7.5.4 First task – Red agent starting position- (7, 8) 

The Blue agent starts from location (5, 8) and Red agent starts from location (7, 8) 

(Figure 7.34). Blue agent moves north towards its destination and Red agent moves 

north-west and then Blue agent sees the Red agent as it can only see one cell around 

itself, just like the visual sensor of Blue agent in the previous experiment. The starting 

locations and the situation after first moves of both agents are shown in Figure 7.34. 
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Figure 7.34 Situations before and after first moves of both Red and Blue agents 

 

From the situation displayed in the right part of Figure 7.34 the Blue agent moves to 

its destination in the north and avoids collision on the way. On every step it mentally 

simulates its own next move while keeping in view the possible moves of the Red 

agent if the Red agent is visible and the main task of reaching the destination in the 

north across the two-cell obstacle. After every mental simulation it stores the chunk so 

that next time when it faces the same situation the agent does not have to mentally 

simulate candidate courses of action but behave as Level 1 RPD agent and decide 

straight away which action is most suitable in this situation. For example, the chunk 

shown in Figure 7.35 is for a situation displayed in Figure 7.36. The destination of the 

Blue agent is marked with a green square just above the two-cell obstacle which is 

given as the desired state for the task and can be seen as one of the conditions of the 

learnt chunk. The Blue agent is at location (3, 6) and sees Red agent in its 

neighbouring cell towards north-east. Blue agent is to choose one from two actions: 

first action moves the agent to its west cell; and the second action moves the agent to 

the north-west cell. The Blue agent in this situation has learnt to prefer to move north-

west instead of west without any mental simulation due to its experience which it 

acquired in its earlier simulation runs. Note also that this chunk is specific to this 

configuration of agent location and is not transferable to similar configuration 

elsewhere. 
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Figure 7.35 Chunk learnt to avoid collision with Red agent 

 

These agents learn another type of chunk which records the success value of an action 

that is evaluated in mental simulation such that when next time this situation arises 

and an action is required to be evaluated then the success value is given straight away 

without further mental simulation. An example of this type of chunk is shown in 

Figure 7.37. 

 

sp {chunk-362*d20*tie*6 

    :chunk 

    (state <s1> ^name rpdsoar-ms1 ^desired <d1> ^bluetank <b1> 

          ^operator <o1> + ^operator <o2> +  

^problem-space <p1> ^map <m1>) 

    (<d1> ^better higher ^bluetank <b2>) 

    (<b1> ^y 6 ^x 3) 

    (<b2> ^y 1 ^x 5) 

    (<o1> ^name move-redtank-present ^actions <a2>) 

    (<o2> ^name move-redtank-present ^actions <a1>) 

    (<p1> ^name rpdsoar-ms1) 

    (<m1> ^cell <c1>) 

    (<c1> ^y 6 ^x 3 ^north-east <n1>) 

    (<n1> ^content redtank) 

    (<a1> ^move <m2>) 

    (<m2> ^direction west) 

    (<a2> ^move <m3>) 

    (<m3> ^direction north-west) 

    --> 

    (<s1> ^operator <o2> < <o1>) 

} 
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Figure 7.36 Situation for the chunk learnt to avoid collision with Red agent 
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Figure 7.37 Chunk learnt to remember success value of an action for a situation 

 

For the first task Blue agent learns for 50 simulation runs. The performance of Blue 

agent over these fifty simulation runs is shown in Figure 7.38. The Blue agent 

consumes 253 Soar decision cycles in the first simulation run and learns 344 chunks. 

It keeps learning chunks for first five simulation runs and then it does not encounter 

any new situation for up to seventh simulation run, during this time it uses its learnt 

knowledge and behaves like an experienced Level 1 RPD agent for these situations. 

Then again it finds new situations and has to mentally simulate the applicable actions 

to evaluate them and then select one which takes more Soar decision cycles. Up to 

thirty simulation runs the agent faces situations within a run that are new and keeps 

learning and for the rest of the simulations after the thirtieth it uses its learnt 

knowledge. By the time it reaches fiftieth simulation run it performs the same task in 

sp {chunk-313*d227*opnochange*1 

    :chunk 

    (state <s1> ^operator <o1> ^evaluation <e1>) 

    (<o1> -^default-desired-copy yes ^name evaluate-operator 

^superproblem-space <s2> ^superoperator <s3> ^evaluation <e1> ^super-state <s4>) 

    (<s2> ^name rpdsoar-ms1) 

    (<s3> ^name move-redtank-not-present ^actions <a1>) 

    (<s4> ^name rpdsoar-ms1 ^bluetank <b1>) 

    (<b1> ^y 2 ^x 4) 

    (<e1> ^desired <d1>) 

    (<d1> ^bluetank <b2>) 

    (<b2> ^y 1 ^x 5) 

    (<a1> ^move <m1>) 

    (<m1> ^direction north-east) 

    --> 

    (<e1> ^numeric-value 2 +) 

} 
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14 Soar decision cycles, and behaves like a Level 1 RPD agent for this task. And by 

this time it is not learning any more chunks. 

 

Figure 7.38 Learning curve of Blue agent – Red agent starts from location (7, 8) 

 

7.5.5 Second task – Red agent starting position - (8, 8) 

The Blue agent starts from location (5, 8) and Red agent starts from location (8, 8) 

(Figure 7.39). Blue agent moves north twice towards its destination and Red agent 

moves north-west twice and then Blue agent sees the Red agent. The starting locations 

and the situation after first two moves of both agents are shown in Figure 7.39. 
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Figure 7.39 Situations before and after two moves of both Red and Blue agents 

 

From the situation displayed in the right part of Figure 7.39, the Blue agent moves to 

its destination in the north and avoids collision on the way. On every step it mentally 

simulates its own next move while keeping in view the possible moves of Red agent if 

the Red agent is visible and the main task of reaching the destination in the north 

across the two-cell obstacle. After every mental simulation it stores the chunks that it 

learns. 

Blue agent learns for 50 simulation runs for the second task also. The performance of 

Blue agent over these fifty simulation runs is shown in Figure 7.40. The Blue agent 

consumes 262 Soar decision cycles in the first simulation run and learns 369 chunks. 

It keeps learning chunks for first seven simulation runs and then it does not encounter 

much of new situations for up to thirteenth simulation run, during this time it uses its 

learnt knowledge and behaves mostly like an experienced Level 1 RPD agent for the 

situations faced. It keeps learning uptil 45
th

 simulation run most of which is done up 

to the 28
th

 simulation run. By the time it reaches fiftieth simulation run it performs the 

same task in 14 Soar decision cycles, and behaves like a Level 1 RPD agent for this 

task. And for the last few simulation runs it does not learn new chunks. There is one 

spike in between 25
th

 and 30
th

 simulation runs, it is because the agent selects a new 

path to the destination and gets into more number of new situations. Because of the 

inherent variability in the behaviour of the agent it may happen during any simulation 
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run but it is observed that this agent for this task learns most of the chunks within fifty 

simulation runs. 

 

 

Figure 7.40 Learning curve of Blue agent – Red agent starts from location (8, 8) 

 

7.5.6 Third task – Red agent starting position - (9, 7) 

The Blue agent starts from location (5, 8) and Red agent starts from location (9, 7). 

Blue agent moves north towards its destination and Red agent moves north-west and 

then after three moves from both agents, Blue agent sees the Red agent in the cell to 

its north-east (Figure 7.41). 

 

 



Chapter 7 – Experiments, Results, and Discussion  

172 

 

Figure 7.41 Situations after three moves of both Red and Blue agents 

 

From the situation displayed in Figure 7.41, the Blue agent moves to its destination in 

the north and avoids collision on the way. On every step it mentally simulates its own 

next move while keeping in view the possible moves of Red agent if the Red agent is 

visible and the main task of reaching the destination in the north across the two-cell 

obstacle. After every mental simulation it stores the chunks that it learns. 

Similar to the first two tasks, Blue agent learns for 50 simulation runs for the third 

task also. The performance of Blue agent over these fifty simulation runs is shown in 

Figure 7.42. The Blue agent consumes 238 Soar decision cycles in the first simulation 

run and learns 331 chunks. 

It keeps learning chunks for first forty simulation runs and then it does not encounter 

new situations for up to the end that is the fiftieth simulation run except the 45
th

 

simulation run where the agent faces new situations. By the time it reaches fiftieth 

simulation run it performs the same task in 13 Soar decision cycles, has learnt 923 

chunks and behaves like a Level 1 RPD agent for this task. 
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Figure 7.42 Learning curve of Blue agent – Red agent starts from location (9, 7) 

 

7.5.7 Fourth task – Red agent starting position - (9, 8) 

The Blue agent starts from location (5, 8) and Red agent starts from location (9, 8). 

The Blue agent moves north towards its destination and Red agent moves north-west 

and then after three moves by both agents, Blue agent sees the Red agent in its east 

(Figure 7.43). 

 

Figure 7.43 Situations after three moves of both Red and Blue agents 
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From the situation displayed in Figure 7.43, the Blue agent moves to its destination in 

the north and avoids collision on the way. On every step it mentally simulates its own 

next move while keeping in view the possible moves of Red agent if the Red agent is 

visible and the main task of reaching the destination in the north across the two-cell 

obstacle. After every mental simulation it stores the chunks that it learns. 

Similar to the last three tasks, Blue agent learns for 50 simulation runs for the fourth 

task also. The performance of Blue agent over these fifty simulation runs is shown in 

Figure 7.44. The Blue agent consumes 285 Soar decision cycles in the first simulation 

run and learns 405 chunks. 

 

Figure 7.44 Learning curve of Blue agent – Red agent starts from location (9, 8) 

 

It learns most of the chunks within first twenty simulation runs and then it does not 

encounter much of new situations for up to the end that is the fiftieth simulation run, 

except for few new situations just before thirtieth and after forty-fifth simulation run. 

By the time it reaches fiftieth simulation run it performs the same task in 15 Soar 

decision cycles, has learnt 905 chunks and behaves like a Level 1 RPD agent for this 

task. 
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The results of experiments on learning discussed in the Sections 7.5.4 – 7.5.7 

demonstrate the ability of the agent to learn from its experience. Maximum learning 

occurs in the initial runs of the simulation for each of the four tasks given to the agent. 

This learnt knowledge of the agent is used on exactly the same task. However, if there 

are certain situations that occur in other tasks then the learnt knowledge from one task 

may be utilized in other tasks also. The next experiment tests the ability of the agent to 

transfer learnt knowledge from one task to another with overlapping problem spaces. 

 

7.5.8 Transfer of learning 

This experiment is aimed at testing an RPD-Soar agent for learning that is 

transferrable from one task to the other during the life of an agent. It is observed in the 

previous tasks that the agent learns all the chunks for the task in approximately 50 

simulation runs as almost all new situations that may arise are encountered by the 

agent within these exposures.  Therefore, this experiment is based on 200 simulation 

runs, fifty for each of the four tasks discussed in the Sections 7.5.4 – 7.5.7. These 

tasks are appropriate to test for evidence of transfer of learnt knowledge because the 

problem spaces of the tasks overlap, and similar situations are likely to arise across 

tasks. However, the quantity of transferred knowledge varies from one task to the 

other due to inherent variability in behaviour of the agents. In this experiment, the 

agent learns from one task in fifty simulation runs, holds the learnt chunks and then 

the task is changed for the next fifty simulation runs, and so on until all four tasks are 

performed by the agent for fifty times each. It is assumed, based on the results of the 

last four experiments, that fifty simulations for one task enable the agent to learn most 

of the chunks that can be learnt for this type of tasks. The learning performance of the 

RPD-Soar agent is displayed in Figure 7.45. 
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Figure 7.45 Learning curve of Blue agent over four tasks 

 

The agent starts performing the first task exactly in the same way as it performed in 

the first experiment related to learning for the first task discussed above. It consumes 

265 Soar decision cycles but by the time it completes thirty simulation runs it is 

consuming approximately 14 to 15 Soar decision cycles. After fifty simulation runs 

the task of the agent is changed to the second task. Now in performing this new task 

the agent consumes approximately 100 Soar decision cycles less than it consumed in 

the second experiment related to learning discussed in Section 7.5.5. After 100 

simulation runs the task is changed again and the agent performs the third task in the 

first simulation run for the new task in only 112 decision cycles, which is 126 Soar 

decision cycles less than it consumed in third experiment related to learning discussed 

in Section 7.5.6. At 150
th

 simulation run the task is changed again and this time in the 

first simulation run of the new task agent completes the task in only 60 Soar decision 

cycles. This performance graph displays clear evidence of transfer of knowledge from 

one task to the other. The total number of chunks learnt in performing each of the four 

tasks separately in the experiments discussed above is shown in Table 7.4. The total 

number of learnt chunks are reduced from 3807 to only 1703 required to perform the 

same four tasks by the same agent due to transfer of learning. 
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The transfer of learning is largely attributable to the chunks that can be used in the 

similar situations in other tasks. The agent learns from the results of mental simulation 

which is the knowledge to select the action in a situation which offers the best success 

value. During mental simulation all candidate actions are evaluated one after the other 

and the results are stored as chunks.  

A file containing all the chunks learnt by the RPD-Soar agent in this experiment is 

available in the attached CD, see Appendix E. 

 

Table 7.4 Comparison of chunks learnt  

 

 

7.6 Experiment 5 – Recognition of situation by neural network 

The vignette for this experiment is motivated from the work of Liang et al. (2001). 

The domain is a military ground based operation. A military commander of a troop of 

tanks consisting of three tanks selects a strategy to attack the enemy tank in the north. 

The terrain is simple and it can have 0, 1, or 2 passable hills. The terrain with two hills 

is shown in Figure 7.46; the enemy is represented with a red square in the north at 

location (0, 1) and own position is the blue circle in the south at the origin. The 

locations are represented in Cartesian coordinates, the abscissa ranges [1, -1] and 

ordinate [0, 1]. The agent’s own starting position and the enemy position remains the 

same through out the experiment. The enemy is static and fights from the same 

location until the battle is over. The commander selects a strategy based on the 

decisions that whether to divide the troop of tanks in an assault group (AG) and a fire 

Number of chunks learnt Tasks 

Independent tasks Tasks in-sequence 

1 – Red (7, 8) 1021 - 

2 – Red (8, 8) 958 - 

3 – Red (9, 7) 923 - 

4 – Red (9, 8) 905 - 

Total 3807 1703 

*This number is expected to remain approximately same for any ordering of 

these tasks. 
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support (FS) group or to use them as one group only. The commander also selects the 

intermediate and the final locations or location of these groups or group which also 

dictate the route to be adopted by the group(s). 

 

 

Figure 7.46 Example terrain with two hills 

 

As discussed in Chapter 6, the neural net in this experiment is used for pattern 

recognition and not for plan generation because, as Liang et al. also realize, the option 

to generate plan directly from the trained neural network does not prove to be 

successful. In this experiment the target for training in each case is the numeric value 

of ‘1’ for the output node corresponding to the recognized situation and ‘0’ for the rest 

of the output nodes. It is assumed that such a clear difference between two target 

values will produce better results compared to the mixed target values for the output 

nodes corresponding to different strategies in the work of Liang et al. (2001). 

Moreover, there is potential advantage in this representation for an RPD model. The 

advantage in this design is that for a given situation the output node with the highest 

value is considered as the recognized situation and if the evaluation of the 

corresponding course of action through mental simulation is not promising then the 

output node with the second highest value may be considered. During training of the 
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network, it is observed by the author and also mentioned by Liang et al. (2001) that 

training the same neural network for two different plans for the same situation or 

minor changes in the situation such as one for an aggressive and the other for a 

conventional commander reduces the learning performance in terms of increased 

residual error. Therefore, the training set is divided into two parts one for the 

aggressive commander and the other for the conventional commander. The basic 

situations and corresponding strategies in the work of Liang et al. (2001) is used but 

some strategies are modified and some more strategies are added in the training set for 

this experiment based on the knowledge of the author on the subject. The reason for 

the addition of examples in the training set is to improve the performance of the net in 

recognition of new situations which are related to number of training examples and 

also to sufficiently cover the problem space. 

One training example that is modified is shown in the Figure 7.47. In this example the 

final location of AG is almost in the line of fire of the FS group, this strategy based on 

making maximum use of the cover from enemy observation and fire available to own 

tanks due to the hill may result in fratricide. 
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Figure 7.47 A typical training example. Note the placement of the 

assault group (AG) and the fire support group (FS), the FS which is 

supposed to support the AG with fire during the attack is behind the 

AG and almost in the same line. This strategy makes maximum use 

of cover from fire and observation available to own tanks from the 

enemy due to hills but this placement can result in fratricide and is 

unrealistic and needs to be modified. 

 

Now consider the example in Figure 7.48. Again, in this example the cover from 

observation and fire available in the form of the hills is used but the distance of the 

fire support group from the enemy is relatively more compared to the other training 

examples. Although, the scale of the map and the firing range of the weapon systems 

have not been explicitly given by the author, the general idea about the reasonable 

distance of the fire support group from the target may be established keeping in view 

the rest of the plans in the training set. In this case it is relatively more close to the 

own position than the enemy and therefore this plan is modified. 
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Figure 7.48  Another training example that needs modification. In this 

strategy also in order to make maximum use of hills to protect own 

tanks from enemy observation and fire, the FS is positioned 

relatively more close to the own initial position than the enemy 

positions being attacked by the AG. The FS should be positioned 

closer to the enemy to provide effective fire support.  

 

7.6.1 Training examples 

The locations of the hills 1 and 2 and the corresponding situation for training the 

neural net to represent the conventional commander is given in Table 7.5.  
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Table 7.5 Training set for conventional commander 

 

For every situation there is a corresponding strategy and these strategies are shown in 

Figure 7.49 through to Figure 7.60. It is worth mentioning here that the first two 

terrain patterns given in the first two rows of Table 7.5 relate to situation 1 and the 

corresponding plan is shown in Figure 7.49, and from then onwards each row 

representing a single terrain pattern has a distinct plan. 

Hill 1 Hill 2 

Y X Y X 

Situation 

0.00 0.00 0.00 0.00 1 

0.30 -0.67 0.30 0.67 1 

0.60 0.00 0.00 0.00 2 

1.00 -0.17 0.00 0.00 3 

0.70 -0.11 0.00 0.00 4 

1.00 -0.17 0.40 0.00 5 

0.90 -0.44 0.70 0.00 6 

0.50 0.00 0.00 0.00 7 

0.90 -0.17 0.90 0.17 8 

0.90 -0.17 0.50 -0.22 9 

0.70 -0.44 0.70 0.44 10 

0.60 0.00 0.70 0.17 11 

0.60 -0.67 0.60 0.67 12 

 



Chapter 7 – Experiments, Results, and Discussion  

183 

 

Figure 7.49 Strategy for Situation 1. For all those situations where 

either there are no hills present in the battlefield or the hills are located 

closer to the own position than the enemy (first two entries of Table 7.5 

correspond to such situations) this strategy is used. This plan is 

conventional in which the own troop of tanks is divided into two 

groups the FS and the AG, the FS is positioned on the east to provide 

fire support while the AG attacks from the south. 
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Figure 7.50 Strategy for Situation 2. In this battlefield there is only one 

hill in the middle ground that affects the selection of strategy. The 

FS is positioned behind the hill to protect it from enemy 

observation and fire. The AG manoeuvres from the east and attacks 

the enemy positions. 
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Figure 7.51 Strategy for Situation 3. In this battlefield there is only one 

hill located in the west and very close to the enemy position. The 

FS takes position behind this hill to provide fire support and the AG 

attacks the enemy from the south. The position of the fire support is 

very close to the enemy and can provide very effective fire support. 

Although it is protected behind the hill but due to proximity to the 

enemy FS group is threatened and this strategy is based on a 

calculated risk as regards FS group. 
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Figure 7.52 Strategy for Situation 4. In this battlefield there is only one 

hill located in the south west of the enemy position. The FS group 

occupies the position behind this hill moving to its position from 

the west. The AG manoeuvring from the east attacks the enemy 

position. 
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Figure 7.53 Strategy for Situation 5. In this battlefield there are two 

hills: one hill is located just short of the middle ground; and the 

other is located a little west of the enemy position. The FS group 

moves north to occupy its position south of the hill in the middle 

ground from where it supports the attack. The AG manoeuvres from 

the west and attacks the enemy position from behind the hill 

located in the west of the enemy. 
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Figure 7.54 Strategy for Situation 6. There are two hills in this 

battlefield; one hill is located close to enemy position on its south 

and the other hill is located south-west-west of the enemy position. 

The FS group moves from the west and occupies its position 

behind the west hill to provide fire support for the AG. The AG 

moves north to the hill south of the enemy and attacks the enemy 

position from there. 
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Figure 7.55 Strategy for Situation 7. There is only one hill in this 

battlefield located in the middle ground south of the enemy 

position. The FS group moves north of the hill to support the AG. 

The AG manoeuvres from the east to attack the enemy position. 

This situation is quite similar to the situation in Figure 7.50 with 

the only difference that the hill in this case is comparatively more 

towards south of the enemy position.  
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Figure 7.56 Strategy for Situation 8. There are two hills in this 

battlefield. Both of the hills are close to the enemy position; one on 

the south-east and the other on the south-west. The FS group moves 

from the west and occupies its position behind the south-west hill 

to provide fire support to the AG. The AG manoeuvres from the 

east to attack the enemy position from the south-east hill. 
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Figure 7.57 Strategy for Situation 9. There are two hills in this 

battlefield and both of them are south-west of the enemy position. 

The AG manoeuvres from the west taking cover of these hills and 

attacks the enemy position from behind the hill close to the enemy 

position. The FS group moves from the east and takes position in 

the open terrain in the south-east of the enemy position to provide 

fire support to the AG. 
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Figure 7.58 Strategy for Situation 10. It is a very idealistic battlefield 

for the attacker, due to two hills present at suitable locations to 

provide cover for both of it’s groups that is the AG and the FS.  The 

FS moves from the west and occupies position behind the south-

west hill to support the AG with fire and the AG manoeuvres from 

the east to attack the enemy position from behind the south-east 

hill. 
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Figure 7.59 Strategy for Situation 11. There are two hills in this 

battlefield; one is in the south and the other is in the south-south-

east of the enemy position. The FS group takes advantage of the 

hill in the south and moving north occupies the position behind the 

hill to support the attack of AG with fire. While the hill in the 

north-east of this south hill is relatively close and is not suitable for 

the AG to position behind it because this narrow angle from the 

view point of the enemy is suitable for effective engagement of 

both groups with fire. Therefore, the AG manoeuvres further east 

taking partial cover from the hill and attacks the enemy position 

from the east. 
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Figure 7.60 Strategy for Situation 12. There are two hills in this battle 

field; both in south and one each in either directions east and west. 

This situation resembles the situation presented in Figure 7.58 with 

the difference that the hills in this case are comparatively a little 

south and further away in easterly and westerly directions. 

Although the distance of the hills from the enemy position is a little 

more than what is ideal for positioning FS and AG for the attack 

but is sufficiently advantageous and therefore FS group positions 

behind the westerly hill and the AG attacks from behind the easterly 

hill in this strategy. 

 

7.6.2 Results 

In order to explore the problem space we fixed one hill and moved the other hill on 

the given terrain on an interval of 0.01 on both axes. The neural net part of the agent is 

required to recognize new situations produced in the environment. In the battlefield, 
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the locations of enemy and own positions are fixed. The situational variables are the 

locations of hills in the terrain. As the locations of the hills are changed in the terrain, 

new situations are generated. The ability of the agent to recognize new situations need 

to be ascertained. The new situations are the ones that are not included in the training 

examples and for which the agent has not been trained. By fixing one hill at a suitable 

location and moving the other hill throughout the battlefield new situations are 

generated. The hill is fixed at such locations so that maximum problem space is 

explored and important new situations are produced. Plans produced for new 

situations by the neural net trained for the conventional commander are shown in 

Figure 7.61 through to Figure 7.64. 

The result of experiment where one hill is fixed at (0, 0.17) is shown in Figure 7.61. 

The diagram shows the situation that is recognized when the second hill is in different 

positions. All the situations in which one of the hills is to the south of the enemy 

location at a middle distance are expected to be recognized. These are Situations 2, 5, 

6, 7 and 11. Situation 5 is recognized when the second hill is in the area just west of 

the enemy location. Situation 5 should claim some of the area in its south, presently 

occupied by Situation 1 and the area around own position that is middle bottom 

should have been claimed by Situation 2. The reason for Situation 1 to be claiming 

these areas probably is that Situation 1 has two training examples and that might have 

increased its influence on recognition. Situation 12 is recognized in the area when the 

second hill is moved to the extreme west in the upper part of the battle field which is 

expected. Situation 9 is not recognized at all and it is not expected to be recognized 

because in Situation 9 both of the hills are in the west and that situation never occurs 

in this setting. 
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Figure 7.61 Situations with one hill fixed at (0, 0.7). In this case a total 

of six situations are recognized, but two situations recognized most 

of the time are 1 (Figure 7.49) and 7 (Figure 7.55). If the other hill 

is south-westerly then Situation 1 is recognized but if it is towards 

east then Situation 7 is recognized. The strategies applied to these 

two situations are similar but only the locations of AG and FS are 

interchanged. The other recognized situations are 2, 5, 11 and 12. 

One desirable feature common to all the strategies applied to these 

situations is the use of the hill in the middle ground as protection 

from observation and fire for either AG or FS. 

 

The result of the experiment where the location of one hill is fixed at (0.4, 0.7) is 

shown in Figure 7.62. Because of fixing the location of one hill in the east Situations 

8, 10, 11 and 12 are expected to be recognized.  
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Figure 7.62 Situations for one hill fixed at (0.4, 0.7). In this case a total 

of seven situations are produced. The setting is quite similar to the 

setting in Figure 7.61 and therefore, again the two main situations 

recognized are 1 and 7. The other recognized situations are 5, 8, 10, 

11 and 12, and strategies applied to all these situations also use the 

hill in the east for protection against observation and fire from the 

enemy for either the AG or FS, except for the strategy for Situation 

5. In the strategy for Situation 5, the AG uses the hill in the west 

which gives more advantage to the attacker. 

 

Situation 10 is expected to be recognized more than it is in this experiment and some 

part of the area occupied by Situation 5 should be claimed by Situation 10. The larger 

area occupied by Situation 12 in the west is expected but the small area in the north is 

somewhat unexpected. The area occupied by Situation 11 in the south east and a small 

square in the top are not expected. The neural net is not trained for the situations in 
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which the hills are located on the boundaries that are away from the starting positions 

because there is no importance of these hills in selecting the strategy for attack. 

Therefore, some of the results for hill(s) on the boundaries are not explainable. 

Situation 9 is not recognized at all and it is not expected to be recognized because in 

Situation 9 both of the hills are in the west and that situation never occurs in this 

setting. 

The result of the experiment where the location of one hill is fixed at (-0.17, 0.7) is 

shown in Figure 7.63.  

 

Figure 7.63 Situations for one hill fixed at (-0.17, 0.7). In this case a 

total of ten situations are produced. More number of situations are 

recognized in this case as compared to the previous experiment 

because most of the training examples are based on either both hills 

or at least one hill in the west therefore, the agent produces ten out 

of a total of twelve possible situations.  
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Situations 2, 4, 5, 6, 9, 10 and 11 are expected because of the location of the fixed hill 

in the west. The difference between Situations 10 and 11 is that one hill in Situation 

10 is in the west and in Situation 11 it is in the middle of the battle field while the 

other is in the west in Situation 10 and in the middle in Situation 11. In this 

experiment one hill in the west is fixed in the middle of the position of the hill in 

Situations 10 and 11, and therefore, the recognition of either situation is decided only 

due to the location of the hill in the east. The area occupied by Situation 7 in the north 

east, Situation 12 in the south west and part of the area occupied by Situation 5 above 

the area occupied by Situation 12 is not expected and is probably present due to the 

reason that neural net is not trained on the boundaries away from enemy and own 

positions. 

The result of the experiment where the location of one hill is fixed at (0, 0) is shown 

in Figure 7.64. Due to the location of one hill fixed exactly at (0, 0), Situations 1, 2, 3, 

4 and 7 are expected. Situation 5, 9 and 12 are recognized due to the location of the 

moving hill in the regions where the agent is trained to recognize these situations. 

Situation 11 recognized in the northeast and a small area the shape of a square 

occupied by Situation 7 in the northeast is not expected. Both of these cases are in the 

boundary of the battlefield for which the agent is not trained to recognize situations.  
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Figure 7.64 Situations for one hill fixed at (0, 0). In this case nine out 

of twelve Situations are produced. Strategy 2 uses the hill in the 

west for AG, Strategy 3 uses the hill in the north and west of enemy 

for FS, Strategy 4 uses the hill in the south west of the enemy for 

FS, Situations 5 and 9 use the hill in the north and west of enemy 

for AG, Strategy 12 uses the hill in the south west of the enemy for 

FS to the advantage of the attacker.  

 

The agent is generally recognizing the situations correctly and recognizing all twelve 

situations. The situations recognized for positions on the boundaries away from the 

enemy and own starting positions on the boundaries are not explainable because the 

neural net is not trained for these situations as the hills located in these areas do not 

affect the selection of strategy. The neural net is so structured that it gives a similarity 

value of the presented situation to all twelve situations. These results show the 

situation that is recognized with the highest similarity value. The situation selected by 
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the neural net with the highest recognition value is fed to the agent where the strategy 

associated with recognized situation is implemented. The RPD-Soar agent uses mental 

simulation for selecting course of action at the atomic level in order to implement the 

goal set by this selected strategy. All the components are available to take the RPD-

Soar agent to a level where the strategy selected by the neural net is evaluated in a 

mental model and if it is not suitable then the strategy associated with the next best 

recognized situation is evaluated. However this has not been implemented as a part of 

this research.  

 

7.7 Summary 

In this chapter, the experiments discussed are aimed at demonstrating the flexibility in 

decision making and evaluating performance and behaviour of various types of RPD-

Soar agents. The experiments on the agent discussed in this chapter also demonstrate 

behaviour variability across agents and behaviour variability within an agent across 

episodes, test the ability of the agent to recognize a situation in a changing context and 

test mental simulation capability of the agent for dynamic situations. The experiments 

on learning demonstrate the ability of the agent to adapt to recurring tasks and transfer 

the learnt knowledge to other tasks with overlapping problem spaces. The last 

experiment is related to integration of a trained neural network in the architecture to 

enhance the situation recognition ability of the agent. The conclusions of the research 

are provided in the next chapter. 

The code required to carry out all the experiments discussed in this chapter is 

available in the attached CD, see Appendix C. 
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8 SUMMARY, CONCLUSIONS AND FUTURE WORK 

 

In this chapter, the research work is summarized, important conclusions are listed and 

the future direction of this research is discussed. 

 

8.1 Summary 

The purpose of this research is to propose and implement an architecture to model 

command agents that addresses some of the deficiencies in decision making and 

learning that assist in current human behaviour representations for military 

simulations. In order to achieve the aim of this research, we have developed a 

computer implementation of the recognition primed decision making (RPD) model 

using the Soar cognitive architecture which is referred to as RPD-Soar agent in this 

thesis. The recognition primed decision making model is selected as the most suitable 

model of naturalistic decision making for the military domain as a result of very 

comprehensive research carried out by Klein and his associates on the decision 

making behaviour of military commanders and experts in similar domains. The Soar 

architecture is selected to represent human cognition because of its successful 

applications in representing human behaviour in the military domain. Moreover, there 

are many advantages with regards to the implementation of the RPD model in Soar, 

and these are discussed in the next paragraph in detail. 

Soar provides a convenient frame work to model all three Levels of RPD. 

Recognizing patterns in the environment and proposing applicable operators is already 

a part of the Soar architecture, and if Soar has sufficient knowledge then it behaves 

like Level 1 RPD, with only one problem and that is that Soar does not allow partial 

matching of conditions for recognition of a production rule. Level 2 RPD except for 

the story building part, is achieved through the elaboration phase of Soar. In the 

elaboration phase all production rules are matched and fired in parallel. And in this 

phase any amount of reasoning and processing of the environmental variables may be 

carried out to understand the situation and extract cues for situation recognition. Level 

3 RPD has its emphasis on mental simulation and the Soar architecture has the 

capability to take mental simulation to as many steps as is suitable for the application. 

In Soar, if multiple operators with equal preferences are proposed then the architecture 
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considers it lack of sufficient knowledge and creates an operator tie impasse, which in 

turn creates a sub-state to bring to bear the knowledge required to resolve this conflict. 

This sub-state is used as the selection space for evaluating these operators. For each 

proposed operator or action as we call it in RPD, an abstract operator called evaluate-

operator is proposed, which in turn creates another sub-space through operator no-

change impasse, which is used as a mental model to evaluate the operator. The objects 

of the external world are modelled in this mental model and the action required to be 

evaluated is applied to this mental world to see its effects. If this action is promising 

then the mental model is dissolved and the action is applied to the real world. If the 

action does not satisfice then it is thrown away and the next action is mentally 

simulated by creating another mental model. This process is repeated until one action 

is selected. If no action is promising then the one with the highest success value 

among them is selected and in situations where multiple actions have equal success 

value then one out of them is selected at random. 

In RPD-Soar agents, the modeller needs to code the behaviour for higher level tasks 

which is comparatively easier to acquire from domain experts. The knowledge is 

required to be elicited in the form of experiences with whatever is pertinent for that 

particular experience from the four components; cues, goals, expectations, and courses 

of action. The modeller then codes the behaviour of the agent for atomic actions such 

as turn, move, or fire, which are few as compared to the total number of behaviours 

and assistance if needed from the domain expert may be acquired. Because of the 

capability of mental simulation, the behaviour from a sequence of primitive actions 

emerges automatically, which means the modeller has to design general rules for 

evaluation of courses of action by modelling the effects of each atomic action on the 

environment. There is no requirement to give a specific course of action for every new 

situation from the start. These agents can be further enhanced to exhibit various levels 

of expertise. 

The proposed implementation is evaluated using prototypical scenarios arising in 

command decision making in tactical situations. The RPD-Soar agent recognizes 

situations within a context and generates goals, expectations, and plausible courses of 

action accordingly and then wargames the course of action by mentally simulating it. 

Due to the ability of the RPD-Soar agent to mentally simulate applicable courses of 
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action it is possible for the agent to handle new situations very effectively using its 

prior knowledge. 

Experiments are developed as a whole to test the proposed implementation for 

flexibility in decision making strategies, behavioural variability and adaptability. The 

study compares the behaviour of agents with and without the capability to mentally 

simulate courses of action, by observing the external environment where the actions as 

a result of these two decision-making processes are implemented. Various 

experiments clearly demonstrate that the behaviour exhibited by the RPD-Soar agents 

is consistent with that of plausible human behaviour. The results show how the 

behaviour of agents is more human like when the agent uses mental simulation, than 

otherwise. 

It has been demonstrated that an experienced agent takes quicker decisions and a less 

experienced agent may give the same behaviour but with more evaluation that will 

make it slow to react to situations. In these simulations the agents were taking turns to 

act, therefore, this effect could only be measured through the number of Soar decision 

cycles. The advantage of experience will be directly observable if the simulation is 

running on time steps instead of agents acting in turns. The RPD-Soar agent exhibits 

the ability to change decision making strategy with experience, which means the same 

agent for a situation for which the agent has sufficient knowledge adopts a Level 1 

RPD strategy and for a situation where the agent has less experience it automatically 

changes its strategy to Level 3 RPD. This is the demonstration of the ability of the 

agent to possess flexibility in decision making. In this case this change of strategy can 

be used to either produce agents with varying experience or to represent different 

levels of knowledge of the same agent for different problems. But this inherent 

flexibility in decision making strategy can also be used to represent stress in an agent. 

The variability in behaviour within an agent is a desirable characteristic. Variability in 

agents may be produced through randomness but randomness also introduces 

undesirable behaviour. The observed variability in the RPD-Soar agent is due to 

reasonable but some times sub-optimal choices made by the agent. And the 

preliminary results clearly demonstrate the ability of the model to represent human 

behaviour variability within and across individuals. 

The overall variability is expected to increase in an environment where more entities 

are interacting with RPD-Soar agent.  



Chapter 8 – Summary, Conclusions and Future Work  

206 

Agents adapt using chunking provided by the Soar architecture which is a form of 

explanation based learning. Learning through chunking in Soar is the process of 

remembering the results of the sub-goals. In terms of RPD-Soar agents it is the 

process of changing from a Level 3 RPD to Level 1 RPD. The latter is more efficient 

and is an indicator of the experience of the agent.  

The RPD-Soar agents have demonstrated the ability to transfer learnt knowledge from 

one task to the other. If the agent has learnt an experience from one task and a similar 

situation arises in the other task then the agent is observed to use this knowledge. 

In rule based systems the antecedents of the production rule have to match exactly for 

the production to fire. If the current situation deviates from the conditions in the rule 

then the appropriate rule does not fire. Due to rule matching through efficient 

algorithms and also advances in computer technology it is possible in Soar to add a 

large number of production rules to handle generalization. But writing large number 

of rules is not an efficient method of solving this problem. To enhance the ability of 

the agent to recognize new situations an artificial neural network is integrated in the 

architecture. The neural net is trained on the example experiences that the RPD-Soar 

agent is likely to face in the simulation. For this experiment the neural net is trained to 

recognize situations presented by the terrain in order to develop a strategy to attack the 

enemy tank with the help of a troop of own tanks. 

 

8.2 Conclusions 

The need for realistic decision making in military simulations has been identified. 

Much of the recognition primed decision making (RPD) model has been successfully 

implemented using the Soar cognitive architecture. It has been demonstrated that the 

agents developed using RPD exhibit a rich variety of desirable behaviours within the 

domain considered. Some of the salient features of the work are summarized below:- 

• Soar cognitive architecture provides the basic framework to model most 

aspects of recognition primed decision making (RPD) model. The RPD model 

implemented in the Soar cognitive architecture is capable of mimicking some 

of the decisions made by military commanders in battlefield settings.  

• Level 1 RPD has been completely implemented for situations where sufficient 

knowledge is available. The agent straight away recognizes a situation as 

typical and selects a course of action for that situation to implement. 
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• That part of Level 2 RPD has been implemented where situations are not 

recognized straight away and information from the environment is required to 

be processed and combined with already available knowledge in order to 

diagnose and then recognize a situation as typical.  

• The Level 2 RPD for very complex situations require story building to account 

for some of the inconsistencies in situation recognition. This part of Level 2 

RPD has not been implemented in this model. 

• Mental simulation which forms the basis of Level 3 RPD has been 

implemented in this model with such flexibility to accommodate all types of 

requirements that are expected to be encountered while making decisions 

using RPD model. 

• Flexibility in decision making strategies based on psychological theories is 

achieved. Decision making strategies are based on experience and extent of 

knowledge. 

• Variability in behaviour across individuals is a desirable characteristic in 

human behaviour representation. Variability in behaviour across individuals is 

achieved based on the type of experiences in long term memory of similar 

agents. Within-entity variability is achieved in this model not through 

randomness which introduces undesirable behaviour but through reasonable 

but sometimes sub-optimal choices made by the agent. 

• Command agent of the developed model exhibits adaptability across various 

episodes which adds the much desired dynamism to the simulation 

environment. The agent learns from its experience. The learning is based on 

the chunking phenomenon inherent in Soar which is a form of explanation-

based generalization. 

• The agents also exhibit transfer of knowledge from one task to the other in 

case of overlapping problem spaces within tasks. 

• Due to the ability of the agents to mentally simulate courses of action it is 

possible for the agent to handle new situations very effectively. This relieves 

the modeller from coding behaviours for all situations expected to be 

encountered in a simulation and this in turn reduces the development time of 

the agent. 
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• The strategies to form experiences in the long term memory of the agents are 

required only at a higher level with general rules to evaluate actions at lower 

levels which is easier for the subject matter expert to describe and less tasking 

for the knowledge engineer to elicit. This reduces the time and effort in the 

development of the agent. Following this the mental simulation and learning 

abilities can be used to improve the agent. 

• The ability of the agent to handle new situations is further enhanced using a 

trained artificial neural network which is integrated in the proposed 

architecture. This further reduces the labour of the modeller in coding 

behaviours for all expected situations. 

• The research also developed a simple RPDAgent to operate in a simple 

simulation environment in order to explore the affect of realistic human 

decision making on the outcome of the battle simulations. The study concludes 

that the outcome of the constructive military simulations changes if more 

realistic human behaviour is incorporated in these simulations, and the known 

mathematical and probabilistic solutions for combat modelling help in 

validating the start point or base line of simulations involving human 

behaviour. 

• In order to develop an agent for a different domain based on RPD-Soar model 

following tasks are required to be completed:  

o Change the objects of this implementation to the objects of the domain 

of interest. The structure for tree and graph representation is already 

available as SML code in this implementation and can be utilized as per 

the requirements. 

o Elicit knowledge about the domain from the experiences of the subject 

matter expert and transform it to the form of goals, cues, expectations 

and courses of action in the light of the examples in this 

implementation. 

o Convert the experiences into Soar rules using the rules of this 

implementation as examples.  

o Set the goals as the desired state. Convert the cues and expectations 

into conditions, and courses of actions as operators. 



Chapter 8 – Summary, Conclusions and Future Work  

209 

o Give the success values of all courses of action applicable to a situation 

as numeric preferences to operators in Soar rules. 

o Identify the objects that need to be represented in the mental model and 

also the level of attributes that need to be represented. Change the 

objects and their attributes using the Soar rules in Selection space as 

examples. 

o Give preference to operators to select for evaluation. Write Soar rules 

to implement the selected operator (the course of action) in the mental 

model. 

o Write Soar rules to evaluate the situation after the selected course of 

action is implemented to find out whether this action is likely to take 

the agent to its goal or otherwise. The factors on which a course of 

action is evaluated may be different for different domains but the Soar 

rules of this implementation can be used as examples. 

 

8.3 Future work 

In this section, a list of future directions of work is enumerated. This is important as it 

is likely to provide a clear perspective to this research work. 

• The model is required to be tested in a richer context. There are two options as 

regards selection of the environment for rich context. The first option is to 

integrate the agent with ModSAF (or similar simulation environment), where 

the agent takes higher level decisions and the ModSAF entities implement the 

commands in the ModSAF environment. This option has some problems 

regarding the restriction on availability of ModSAF code. The second option is 

to integrate the RPD-Soar agent in some computer game application and for 

this option Unreal Tournament is a possible candidate due to the availability 

of its code. 

• The number of steps in the mental simulation should be increased from the 

present implementation of a single step only. The next phase in this direction it 

should be related to the complexity of the decision problem and time 

constrained decision making. 

• Decision strategy is presently related to knowledge. It should also be related to 

stress due to time and physiological conditions of the decision maker. 
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• The basic platform of variable behaviour is demonstrated in this 

implementation. It should be linked to behaviour moderators like fatigue, fear, 

morale etc. 

• Reinforcement learning has been recently incorporated in Soar (Nason and 

Laird, 2005). Reinforcement learning should be incorporated to adapt the 

success values of courses of action. The effect of reinforcement learning on 

variability in behaviour should also be analyzed. 

• A synthetic life of the agent should be created using the episodic memory 

proposed by Nuxoll and Laird (2004) and (2007). 

• The plan selected by the neural network should be modified if necessary by the 

agent after evaluation through mental simulation. 
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10 APPENDIX A – LIST OF ACRONYMS 

 

AAII   Australian artificial intelligence institute 

ABM  Agent based model 

ACT-R Adaptive control of thought – rational 

ACT-R/PM Adaptive control of thought – rational/perception motor 

AG  Assault group 

AGL  Above ground level 

AI  Artificial intelligence 

ANN  Artificial neural network 

BDI  Belief, desire, and intentions 

BTC   Blue tank commander  

CA   Composite agents  

CASTFOREM   Combined arms and support task force evaluation model  

CAST   Collaborative agent for simulating team behaviour  

CBR   Case-based reasoning  

CBS  Corps battle simulation 

CCTT  Close combat tactical trainer 

CFOR   Command forces  

CGF   Computer generated forces  

CTDB  Compact terrain database 

DA  Decision agent  

DEM   Digital elevation model 

DIANA  DIvisive ANAlysis  

DIS   Distributive interactive simulations 

DL   Deterministic Lanchester square law  

dMARS  Distributed Multi-Agent Reasoning System 

DME   Declarative memory element 

DoD  Department of defense 

DSTO  Defence and science technology organisation 

EBL  Explanation-based generalization 

EINSTein  Enhanced ISSAC neural simulation toolkit  

ESL   Exponential stochastic Lanchester  
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FM  Field manual 

FS   Fire support 

FSM  Finite state machines 

FWA   Fixed wing attack  

GUI  Graphical user interface 

HBR  Human behaviour representation 

HBM  Human behaviour model  

ISAAC  Irreducible semi-autonomous adaptive combat  

IA  Intelligent agent 

IP   Internet protocol 

IPB  Intelligence preparation of the battlefield 

IFOR   Intelligent forces 

LOS  Line of sight 

LTM   Long term memory 

MANA  Map aware non-uniform automata  

MAS   Multi-agent system  

MAUA  Multi attribute utility analysis  

MDMP  Military decision making process  

METT-T  Mission, enemy, terrain, troops, and time available 

ModSAF  Modular semi-automated forces  

MOUT    Military operations on urban terrain 

NDM   Naturalistic decision making  

Oasis   Optical aircraft sequencing using intelligent scheduling 

OCOKA  Observation, cover and concealment, obstacles, key terrain, and 

avenues of approach 

PRS   Procedural reasoning system  

RA  Reactive agent 

R-CAST  RPD enabled collaborative agents for simulating teamwork  

RL  Reinforcement learning 

RPD  Recognition primed decision making 

RWA   Rotary wing attack  

SIMNET  Simulator networking  

SAF  Semi-automated force 
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SARSA  State action reward state action  

SCA   Symbolic constructor agents  

SME   Subject matter expert 

SML   Soar mark-up language  

SSKP   Single shot kill probabilities  

STRICOM  Simulation, training, and instrumentation command  

STOW  Synthetic theatre of war 

STEAM Shell for teamwork 

STM   Short term memory 

SWARMM  Smart whole air mission model 

TIN  Triangulated irregular network 

TRADOC  Training and doctrine command  

UTC  Unified theories of cognition 

WM   Working memory  

WME  Working memory element 
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11 APPENDIX B – GLOSSARY OF TERMS 

 

Agent:  A computer program that persists and operates as an entity in a simulation. 

 

Assault group:  A group of force within a military organization like platoon, 

squadron, or task force, etc that is assigned the mission of physically attacking the 

enemy forces or positions. 

 

Atomic level action:  An action that is not further decomposed in the model. 

 

Attribute:  A property of an entity. 

 

Behaviour:  The outcome of a continuous process of decision making by an agent 

operating in its environment while attempting to carry out a task.  

 

Command agents:  Intelligent agents representing human combatant or a military 

commander leading a group of combatants or human controlled platforms that 

autonomously take decisions in military simulations. 

 

Defilade:  The protection of a position, vehicle, or troops against enemy observation 

or gunfire. 

 

Enfilade:  A volley of gunfire directed along a line from end to end. 

 

Entity:  An entity is an object of interest in the system. 

 

Fire support:  Fire support is the support provided by one mobile or static group of 

combatants to the other by fire using available weapon systems. 

  

Higher level action: An action that can be decomposed further into higher level or 

atomic actions. 
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Intelligent agent:  Intelligent agent is an autonomous, learning, and cooperating agent 

that continuously interacts with its environment in pursuit of a mission assigned to it 

mimicking human intelligence. 

 

Platform:  Representation of a transport or fighting vehicle, or a weapon system with 

one or more crew members. The over all behaviour of the platform is controlled by the 

decision of its commander. 

 

Situation variable: The elements in an environment that define a situation for an 

agent. 
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12 APPENDIX C - PROJECT SOFTWARE  

The complete research work is developed in Java using Eclipse as the development 

environment. All types and versions of agents with their simulation environments are 

stored as Eclipse projects with all its necessary files. The software is included in the 

CD attached with the back cover. 

 

12.1 RPD-Soar agents 

All types and versions of RPD-Soar agents, their required Soar files and data link 

libraries to include ElementXML.dll, SoarKernelSML.dll, and 

Java_sml_ClientInterface.dll are stored as Java projects in workspace Eclipse1 in the 

attached CD. The class libraries sml.jar and swt.jar need to be added from Soar.  

All the programs required to extract data from stats file generated from Soar are also 

included in each project. 

 

12.1.1 Experiment described in implementation 

Advance to contact military operation is stored in the project directory 

Eclipse1\RPDSoar-MentalSimVer5. Simulation.java is the main class. 

 

12.1.2 Experiment 1 – Varying performance due to experience 

The code to carry out Experiment 1 is available in the project directory 

Eclipse1\RPDSoar-MentalSim140207. Random–walk agent, Less-experienced RPD-

Soar agent and the Experienced RPD-Soar agent are all stored as separate Soar files 

and can be inserted in the class Environment.java to be loaded. TankSimulation.java is 

the main class. 

 

12.1.3 Experiment 2 – Changing context 

Changing context due to number of obstacle is available in project directory 

Eclipse1\RPDSoar-MentalSimVer2.0-140207. Changing context due to enlarged 

environment is available in project directory Eclipse1\RPDSoar-MentalSimVer2.2. 

TankSimulation.java is the main class in both cases. 
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12.1.4 Experiment 3 – Variability within an agent 

The complete experiment for variability with in agent is set up from the project 

Eclipse1\RPDSoar-MentalSimVer3.2. The starting location of the Red agent is 

required to be changed according to the coordinates specified in each part of the 

experiment. Simulation.java is the main class. 

 

12.1.5 Experiment 4 – Learning 

The complete experiment for learning in an agent is set up from the project 

Eclipse1\RPDSoar-MentalSimVer3.3. The starting location of the Red agent is 

required to be changed according to the coordinates specified in each task of the 

experiment and code for transfer of learning is available as comments which can be 

uncommented to run. Simulation.java is the main class. 

 

12.1.6 Experiment 5 – Recognition of situation by artificial neural network 

The neural net part implemented in Matlab is stored in the directory Neural Net1. The 

implementation of trained net in Java and its integration with Soar as Java project 

RPDSoar-MentalSimVer6 in the Eclipse workspace Eclipse1. The weights in the 

NeuralNetTfrFn.java class need to be imported from NeuralNet1 for an agent. The 

NeuralNet1 contains programs to extract weights from learnt neural net in Matlab to 

be imported to Java. Simulation.java is the main class. 

 

12.2 A simple RPDAgent 

All types and versions of the simple RPDAgent discussed in Chapter 4 are stored as 

RPDTankSimulationVer-*** in the workspace Eclipse-Java in the attached CD. Main 

class is Simulator.java in all the projects. 

 

12.2.1 Verification of one-on-one combat 

Exponential and triangular time distribution versions are stored as projects 

RPDTankSimulationVer-1.2 and RPDTankSimulationVer-1.1 respectively. 

 

12.2.2 Verification of three-on-one combat 

Verification of three-on-one combat is done on exponential time distribution and is 

stored as project RPDTankSimulationVer-2.3. 
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12.2.3 Two cases: Red and Blue agents not intelligent, and only Red agents 

intelligent in three-on-one combat 

Three Red tanks are approaching Blue tank in line formation and both sides are not 

intelligent and the next experiment of only Red agents intelligent are developed in the 

projects mentioned in the following sentence by modifying the if then conditions of 

time to engagement for Red tank. If the Red tank hears the Blue tank fire and then the 

Red tanks out of the firing range of Blue tank manoeuvre and fire on short inter-firing 

time by calling the method of timeToNextEngmnt(). Exponential and triangular time 

distribution versions are stored as projects RPDTankSimulationVer-1.5 and 

RPDTankSimulationVer-1.6 respectively. 

 

12.2.4 Both Red and Blue agents are intelligent in three-on-one combat 

Exponential and triangular time distribution versions are stored as projects 

RPDTankSimulationVer-1.7 and RPDTankSimulationVer-1.8 respectively. 
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13 APPENDIX D – EXPLANATION OF THE KEY ELEMENTS 

OF THE CODE OF RPD-SOAR AGENT 

 

Some key elements of the code used in implementing the RPD-Soar agent are 

discussed in this appendix. 

 

13.1 The architecture 

The external environment or the world is developed using the Java programming 

language and the agent is developed using the Soar Cognitive architecture. The Soar 

agent and the external environment are interfaced using Soar mark-up language 

(SML). Different environments based on maps for different scenarios can be loaded 

into the system. Agents with different behaviours may be loaded into the system as 

production rules in Soar files. In the RPD model it is the experience of the agent that 

guides its behaviour. As recognition primed decision making is modelled within the 

Soar cognitive architecture, therefore, experiences of the RPD model consisting of 

goals, courses of action, cues, and expectations are transformed into appropriate Soar 

production rules. And these Soar-production rules are stored in the agent’s LTM.  

 

13.2 The interface 

The simulation environment is interfaced to the Soar kernel with the help of soar 

mark-up language (SML), as shown in Figure 13.1. 

 

 

Figure 13.1 The interface 

 

The simulation environment consists of objects or ‘entities’ as usually called in 

simulations and some of these entities are Soar agents. The Soar kernel is capable of 

Soar Markup 
Language 

(SML) 

Simulation 
Environment 

Soar  
Kernel 
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developing and maintaining multiple agents and each can have its individual 

behaviour based on the Soar production rules loaded in that agent. SML was 

developed by the Soar group to provide an interface into Soar. The client can send and 

receive Soar XML packets through a socket maintained by Soar, which is port 12121 

by default. ClientSML is available in C++, Java, and Tcl. We have developed the 

simulation environment in Java and for a client implemented in Java, 

Java_sml_ClientInterface.dll, SoarKernelSML.dll, and ElementXML.dll dynamically 

loaded libraries are required.  

 

13.2.1 Creating Soar kernel and agents 

A Soar kernel is created in a new thread using the code shown in Figure 13.2. Soar 

kernel can also be created in the same thread but we do not use this method because 

we require the Soar Kernel to run in a separate thread from that of the environment. 

In order to create an agent in this kernel and load productions in the created agent the 

code shown in Figure 13.3 is used. To facilitate debugging, it also prints any errors 

that are generated while loading the productions. Multiple agents can be created using 

the same process by giving each agent a different name. And every agent behaves 

according to the Soar production rules loaded in it. 

 

 

Figure 13.2 Code to create Soar kernel 

Kernel kernel; 

//create Soar kernel 

try { 

kernel = Kernel.CreateKernelInNewThread("SoarKernelSML"); 

} catch (Exception e) { 

System.out.println("Exception while creating kernel: " + e.getMessage()); 

 System.exit(1); 

  

if (kernel.HadError()) { 

System.out.println("Error creating kernel: " + kernel.GetLastErrorDescription()); 

      System.exit(1); 

 } 

} 
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Figure 13.3 Code to create a Soar agent 

 

13.2.2 Input - perception 

The “input-link” of the Soar agent, as explained in the previous chapter, is the link of 

the agent to receive the information about the outside world. This information is 

picked up by the agent during the input phase of the next decision cycle. The client 

needs to acquire the identifier of the input-link in order to give all the information 

depicting the present situation of the world to the agent. The code to get this input-link 

identifier and example code of connecting an object from the environment to it, which 

is put as an identifier on the input-link is shown in Figure 13.4. 

 

 

Figure 13.4 Code to get the input-link and create an identifier WME 

 

The identifier WMEs are required when objects need to be created at the input-link, 

e.g., map in Figure 13.4. String and integer WMEs are created either directly on the 

input-link or as part of the object represented by an identifier at the input-link. An 

example of a WME of type ‘string’ named as ‘sound’ is created directly on the input-

link with the help of code shown in Figure 13.5 with an attribute named ‘sound’ and 

its value is a string type constant equal to ‘silent’. A WME is an identifier, attribute, 

Identifier input, map; 

String MAP = "map"; 

input = agent.GetInputLink(); 

map = agent.CreateIdWME(input, MAP); 

Agent agent; 

agent = kernel.CreateAgent(“agent name”); 

boolean load = agent.LoadProductions(“File Name.soar”); 

if (!load || agent.HadError()) { 

 throw new IllegalStateException("Error loading  productions: " + 

agent.GetLastErrorDescription()); 

} 
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and value triplet. The value is either a constant or an identifier. The value is an 

identifier if it is not a terminal node and one or more branches are emanating out of 

this node. In Figure 13.5, ‘bluetank’ is created as an object in the working memory at 

the input-link representing an entity present in the simulation environment. The object 

‘bluetank’ has three attributes; two of them are its location in the Cartesian 

coordinates and third is the direction that the ‘bluetank’ is facing. The X and Y 

coordinates are represented with the WMEs of type integer and the direction that the 

tank is facing is represented with a WME of type ‘string’. All the objects and facts that 

are required by the agent to reason for situational awareness and decision making are 

represented in the working memory of the agent through the input-link using codes 

similar to the ones explained in the above paragraphs but one type named ‘Shared 

Identifier WME’ and it is discussed in the succeeding paragraphs. 

 

Figure 13.5 Code to create object identifier, string and integer WMEs 

Identifier blueTank; 

IntElement intElmBlueX, intElmBlueY; 

StringElement strElmTkFacing, sound; 

String BLUETANK = "bluetank"; 

String X = "x"; 

String Y = "y"; 

String FACING = "facing"; 

 

//input is the identifier on input-link 

sound = agent.CreateStringWME(input, "sound", "silent"); 

 

//input is the identifier on input-link 

blueTank = agent.CreateIdWME(input, BLUETANK); 

 

//attribute x and value is location of Blue tank. 

intElmBlueX = agent.CreateIntWME(blueTank, X, locOfBlueTkX); 

 

//attribute y and value is location of Blue tank. 

intElmBlueY = agent.CreateIntWME(blueTank, Y, locOfBlueTkY); 

 

//attribute facing and value is direction of Blue tank. 

strElmTkFacing =agent.CreateStringWME(blueTank,FACING,tkFacing); 
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The environment in this model is grid based. Each cell in the grid is surrounded by its 

neighbouring cells. Each cell has at least three and at most eight cells as its 

neighbours. These cells are represented as objects in the working memory of the agent 

because each cell has two attributes representing its location in Cartesian coordinates. 

These attributes have integer constant values and can be represented with the help of 

techniques discussed above. But consider an example of Cell 5 (Figure 13.6), it has a 

neighbouring cell just above it Cell 2. To represent this environment a WME need to 

be created, which has the identifier of Cell 5 as its identifier with an attribute north 

and the value being the identifier of the cell in the north the Cell 2 which itself is 

another object. This is a case where graph is required instead of a simple tree. In order 

to develop a graph in working memory of the agent new identifier WME with the same 

value as that of an identifier of an existing object need to be created through ‘Create 

shared identifier WME’ method; the code is shown in Figure 13.6. 

 

 

Figure 13.6 Example of shared identifier WME 

 

Cell is developed as a class in Java, part of the code is shown in Figure 13.7. The 

upper part of the code which is a constructor constructs the cells and gives them 

values for their location in Cartesian coordinates and the content and the lower part of 

the code which is an example of one of many methods of the same type that connect 

these cells to each other. The agent instantiates the cell object to create the nine cell 

graph structure. The code in S_Agent class that instantiates cells and then connects 

them is shown in Figure 13.8. The upper part of the code creates these cells and gives 

agent.CreateSharedIdWME(Identifier of Cell 5, ”north”, Identifier of Cell 2); 

Cell 1 Cell 2 Cell 3 

Cell 4 Cell 5 Cell 6 

Cell 7 Cell 8  Cell 9 
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them the values from the map of the environment for fixed objects in the map and if 

the objects are dynamic during a simulation then it gives the cells the values 

separately as the map of the environment does not have these values. These values 

come when the simulation is fired like in the case of red tank in Figure 13.8. The 

lower part of the code is a small portion of the code that uses the method in Cell class 

(Figure 13.7) to connect these cells together in a graph. 

 

 

Figure 13.7 Part of code for Cell class 

public class Cell { 

 . 

 . 

 . 

    public Cell(Agent agent, Identifier map, int xvalue, int yvalue,  

String contentvalue) { 

 this.agent = agent; 

 this.map = map; 

 this.xvalue = xvalue; 

 this.yvalue = yvalue; 

 this.contentvalue = contentvalue; 

   

 Cell cell = agent.CreateIdWME(map, CELL); 

 IntElement xIntElm = agent.CreateIntWME(cell, X, xvalue); 

 IntElement yIntElm = agent.CreateIntWME(cell, Y, yvalue); 

StringElement contentStrElm = agent.CreateStringWME(cell, CONTENT, contentvalue); 

} 

 . 

 . 

 public void setNorthSquare(Cell snorthcell) { 

  if (idNorthCell != null) 

   agent.DestroyWME(idNorthCell); 

  if(snorthcell == null)  

   idNorthCell = agent.CreateSharedIdWME(cell, NORTH, null); 

  else {    

   

northcell = snorthcell;   

  idNorthCell = agent.CreateSharedIdWME(cell, NORTH, northcell.cell; 

  } 

 } 

} 
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Figure 13.8 Part of code in S_Agent class to create cells and connect them 

 

The agent sits in the centre in Cell 5 in Figure 13.6 and therefore the value of the 

content attribute of this cell is always bluetank. This template of nine cells moves over 

the map and the value of the x an y attributes representing Cartesian Coordinates of 

the location of the cell on the map and the value of the content giving the name of the 

object present on the location where the cell is now keep changing accordingly. The 

method in Cell class that updates these values in the WMEs are shown in Figure 13.9. 

List cells = new ArrayList();   

. 

. 

int i, j; 

    for (i = 0; i < 3; i++) 

     for (j = 0; j < 3; j++){ 

      if(x[i] == locOfRedTkX && y[j] == locOfRedTkY) 

   cells.add(new Cell(agent, map, x[i], y[j], REDTANK)); 

      else 

       cells.add(new Cell(agent, map, x[i], y[j], mapEnv[x[i]][y[j]])); 

     } // for loop 

 

     for (i = 0; i < 9; i++) { 

      if(i==0 || i==3 || i==6) 

       ((Cell)cells.get(i)).setNorthSquare(null); 

      else 

(Cell)cells.get(i)).setNorthSquare((Cell)cells.get(i-1)); 

  if(i==0 || i==1 || i==2) 

   ((Cell)cells.get(i)).setWestSquare(null); 

  else        

   ((Cell)cells.get(i)).setWestSquare((Cell)cells.get(i-3)); 

  if(i==2 || i==5 || i==8) 

   ((Cell)cells.get(i)).setSouthSquare(null); 

  else        

   ((Cell)cells.get(i)).setSouthSquare((Cell)cells.get(i+1)); 

  if(i==6 || i==7 || i==8) 

   ((Cell)cells.get(i)).setEastSquare(null); 

  else        

   ((Cell)cells.get(i)).setEastSquare((Cell)cells.get(i+3)); }//for loop 
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Figure 13.9 Method in Cell class to update values in the cell WMEs 

 

13.2.3 Output – command/action 

The command is put at the output-link after the output phase. The code to get 

command from the agent is shown in Figure 13.10. The method agent.Commands() 

returns true Boolean value if the agent has put any command on the output-link. The 

method agent.Command(0) returns the identifier of the first command and if there are 

more commands then the sequence needs to continue to 1,2,3,… for the identifiers of 

other commands. The method GetCommandName() on the identifier of command 

object returns command name as a string object. The method equals(“command 

name”) on the string object is used to identify the command. The method 

GetParameterValue(“attribute”) on the identifier of command object gives the value 

of that WME with the attribute that is passed as a parameter. Its representation in 

working memory is shown in the bottom of Figure 13.10. 

public class Cell { 

 . 

 . 

 public boolean setValues(int sxvalue, int syvalue, String scontentvalue) { 

   

        if (sxvalue < 0 || syvalue < 0 || !(scontentvalue == EMPTY ||  

          scontentvalue == OBSTACLE || scontentvalue == ROAD  

          || scontentvalue == RIVER || scontentvalue == REDTANK)) 

            return false;         

        if (xvalue != sxvalue) 

            agent.Update(xIntElm, sxvalue); 

        xvalue = sxvalue; 

         

        if (yvalue != syvalue) 

            agent.Update(yIntElm, syvalue); 

        yvalue = syvalue; 

         

        if (contentvalue != scontentvalue) 

            agent.Update(contentStrElm, scontentvalue); 

        contentvalue = scontentvalue;         

        return true; 

    } 

    . 

    . 

} 
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Figure 13.10 Output – command 

 

public boolean executeCommand() { 

  if (agent.Commands()) { 

    for (int i = 0; i < agent.GetNumberCommands(); ++i){ 

      Identifier command = agent.GetCommand(i);              

     if(command.GetCommandName().equals("move")) { 

         if(command.GetParameterValue("direction").equals("north")) 

            locOfBlueTkY = locOfBlueTkY-1; 

           if(command.GetParameterValue("direction").equals("south")) 

            locOfBlueTkY = locOfBlueTkY+1; 

           if(command.GetParameterValue("direction").equals("east")) 

            locOfBlueTkX = locOfBlueTkX+1; 

           if(command.GetParameterValue("direction").equals("west")) 

            locOfBlueTkX = locOfBlueTkX-1; 

     } // if(command....) 

           

     if(command.GetCommandName().equals("turn")) { 

           if(command.GetParameterValue("direction").equals("north")) 

            dir = 'n'; 

           if(command.GetParameterValue("direction").equals("south")) 

            dir = 's'; 

           if(command.GetParameterValue("direction").equals("east")) 

            dir = 'e'; 

           if(command.GetParameterValue("direction").equals("west")) 

            dir = 'w'; 

     }//if 

     command.AddStatusComplete(); 

     agent.Commit(); 

     agent.ClearOutputLinkChanges(); 

    }//for loop 

        return true; 

   }//if 

   else   

   return false; 

}//executeCommand 

 

 

 

<Identifier of command object> ^direction north 
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After acquiring all the information from the command at the output-link the command 

object is augmented with a WME with attribute equal to ‘status’ and value equal to 

‘complete’. This is done with the help of the method AddStatusComplete() on the 

identifier of the command object. This is a kind of a back door approach of telling the 

agent that the commands have been picked for implementation by writing status 

complete on the command at the output link. This information is used by the agent to 

remove the implemented commands from the output link. But nothing is passed on to 

the agent until Commit() method is used on the command identifier object. After 

which ClearOutputLinkChanges() method on the agent object is implemented. The 

reason for using this method is because we are using a technique to get the commands 

in which the changes on the output-link are monitored to pick up a fresh command 

therefore the output-link changes need to be cleared. Now the method commands() on 

agent object returns true after output-link is changed.  

 

13.2.4 Event handling 

In this model event handling is required to update the user interface in the 

environment and to connect the environment to the ‘Java debugger’. The Java 

debugger can connect to the remote Soar kernel given an internet protocol (IP) 

address and a port number. The IP address is not required if the Soar kernel is running 

on the same machine. The user interface in this implementation is in the Simulation 

class. The Soar kernel is created in Environment class. The Simulation class is 

registered with the kernel through the Environment using its 

registerForStartStopEvent() method (Figure 13.11). The Simulation object is passed 

as second argument to RegisterForSystemEvent() method in Kernel class Figure 

13.12. This argument is an object of SystemEventInterface type and Simulation object 

matches the type because the Simulation is implementing the EnvironmentListener 

interface class (Figure 13.13) and EnvironmentListener is extending 

SystemEventInterface class (Figure 13.11).  

 



Appendices 

243 

 

Figure 13.11 Code to handle events in Environment class 

 

//Class: Environment 

public class Environment implements Runnable, Kernel.UpdateEventInterface { 

//This allows us to either run the environment directly or from a debugger and get correct behaviour 

   int updateCallback = kernel.RegisterForUpdateEvent( 

       smlUpdateEventId.smlEVENT_AFTER_ALL_OUTPUT_PHASES, this, null) ; 

  

public void registerForStartStopEvents(EnvironmentListener listener, String methodName) { 

   if (kernel != null){ 

      int startCallback = kernel.RegisterForSystemEvent( 

  smlSystemEventId.smlEVENT_SYSTEM_START, listener, null) ; 

            int stopCallback  = kernel.RegisterForSystemEvent( 

  smlSystemEventId.smlEVENT_SYSTEM_STOP, listener, null) ; 

     } 

    } 

/** This method is called when the "after_all_output_phases" event fires,  

* at which point we update the world */ 

public void updateEventHandler(int eventID, Object data, Kernel kernel, int runFlags){ 

    try{ 

  if (m_StopNow) { 

   m_StopNow = false ; 

kernel.StopAllAgents() ; 

  }//if 

    updateWorld() ; 

    }//try 

    catch (Throwable t){ 

  System.out.println("Caught a throwable event" + t.toString());  

  

    } 

 } 

} 

 

//Class: EnvironmentListener 

public interface EnvironmentListener extends Kernel.SystemEventInterface { 

   

public void tankMoved(Environment env, int x, int y, char dir, int redx, int redy); 

     

 

     public void atGoalState(Environment env); 

} //EnvironmentListener ends 
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Figure 13.12 Methods and fields in Kernel and  other sml classes for event handling  

 

The Environment is registered with kernel through RegisterForUpdateEvent() method 

in the Kernel class (Figure 13.12).  The Environment is passed as second argument to 

the method which is UpdateEventInterface class but it matches because the 

Environment is implementing UpdateEventInterface class (Figure 13.12). The 

UpdateEventInterface and  smlUpdateEventId classes are used to update the world 

 

public class Kernel{ 

  //Class: SystemEventInterface within Kernel 

  public interface SystemEventInterface { 

public void systemEventHandler(int eventID, Object data, Kernel kernel); 

  } 

  //Class: UpdateEventInterface within Kernel 

  public interface UpdateEventInterface {   

public void updateEventHandler(int eventID, Object data, Kernel kernel, int runFlags); 

  } 

   public int RegisterForSystemEvent(smlSystemEventId id, SystemEventInterface      handlerObject, Object 

callbackData) {  

return smlJNI.Kernel_RegisterForSystemEvent(swigCPtr, id.swigValue(),    this, handlerObject, callbackData); 

  } 

 

  public int RegisterForUpdateEvent(smlUpdateEventId id, UpdateEventInterface handlerObject, Object callbackData){ 

return smlJNI.Kernel_RegisterForUpdateEvent(swigCPtr, id.swigValue(), this, handlerObject, callbackData) ; 

  } 

} // ends Kernel Class  

 

//Class: smlUpdateEventId 

public final class smlUpdateEventId { 

public final static smlUpdateEventId smlEVENT_AFTER_ALL_OUTPUT_PHASES = new 

smlUpdateEventId("smlEVENT_AFTER_ALL_OUTPUT_PHASES", 

smlXMLEventId.smlEVENT_LAST_XML_EVENT.swigValue() + 1); 

} // ends Class: smlUpdateEventId 

 

//Class: smlSystemEventId 

public final class smlSystemEventId {   

public final static smlSystemEventId smlEVENT_SYSTEM_START = new 

smlSystemEventId("smlEVENT_SYSTEM_START"); 

public final static smlSystemEventId smlEVENT_SYSTEM_STOP = new 

smlSystemEventId("smlEVENT_SYSTEM_STOP"); 

} 
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and SystemEventInterface and smlSystemEventId classes are used to update the 

buttons in the GUI (Figure 13.12). 

 

 

Figure 13.13 Code in Simulation class for event handling 

 

13.3 Graphical user interface (GUI) 

The code for the GUI is in the Simulation class. The interface has four buttons Run, 

Stop, Step, and Reset to control the simulation Figure 13.14. The Run button when 

pressed runs the agents forever until either the stop button is pressed or the agent 

achieves its goal. All the buttons are enabled and disabled appropriately. The GUI is 

updated whenever the agent makes a decision to take an action in the world. The 

simulation and the GUI are running in separate threads and therefore the GUI is 

updated independently of the simulation.  

 

public class Simulation implements EnvironmentListener {   

Environment env = new Environment(BlueTkX, BlueTkY, RedTkX,fRedTkY, mapArray); 

      env.addEnvironmentListener(this); 

      env.registerForStartStopEvents(this, "systemEventHandler") ; 

   

  public void systemEventHandler(int eventID, Object data, Kernel kernel){ 

 if (eventID == sml.smlSystemEventId.smlEVENT_SYSTEM_START.swigValue()) { 

// The callback comes in on Soar's thread and we have to update the //buttons on the UI thread, so 

switch threads. 

dpy.asyncExec(new Runnable(){ 

public void run() { updateButtons(true) ; } } ) ; 

 } 

 

 if (eventID == sml.smlSystemEventId.smlEVENT_SYSTEM_STOP.swigValue()) { 

  dpy.asyncExec(new Runnable(){ 

public void run(){ updateButtons(false) ; } } ) ; 

 } 

  } 

} 
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13.4 The Environment 

The environment is grid based (Figure 13.14). The perimeter has obstacles and the 

agent’s world is restricted to these boundaries. There is a Map class which contains 

the location of obstacle and initial location of the red tank, and is responsible to place 

the appropriate map for the task. The agent is a tank commander who is commanding 

a single tank. There are two types of sensors in the tank, one is a visual sensor that 

looks only one adjacent cell around itself, and the other is a radar sensor that can see 

up to five cells in the direction that the tank is facing. The radar sensor can not see 

beyond any obstacle. Past observations from the radar are retained in the memory of 

the agent and it can use this information in decision making. This environment is 

more or less common in all the experiments but the changes, if any, are mentioned in 

the experiments. 

 

 

Figure 13.14 The Environment 

 

13.5 Working of RPD-Soar agent 

The implementation and working of the RPD-Soar agent is explained with the help of 

a vignette. The context is an advance-to-contact military land operation. In a 10 x 10, 

grid based environment (Figure 13.14), the tank has to start from the south and 

advance towards north to reach the destination. The environment has only one 
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obstacle which is a hill that gives protection from observation and fire. The agent has 

radar and visual sensors as described in Section 6.6. The agent has been given the 

location of the destination cell and has been tasked to advance to that location. Enemy 

tanks are expected on the route to delay the advance. The firing range of an enemy 

tank is three kilometres while, that of the agent is four kilometres. In this experiment 

one cell represents one kilometre. In this thesis the scales for representation of terrain, 

if required, are mentioned with the experiment. 

Most tasks are performed within a larger context that includes higher-level goals. In 

this case the main context is an advance-to-contact military land operation. There are 

three high level contexts in this experiment and each is represented with an 

experience. The experience has goals, cues, expectations, and a course of action. 

These high level contexts are mutually exclusive and the agent at one time is in any 

one of them. These experiences are shown in Figure 13.15, Figure 13.16, and Figure 

13.17. 

 

 

Figure 13.15 Experience – advance 

 

The goal is the state of affairs that is intended to be achieved and may also be defined 

as the end state to which all efforts are directed. The cue is the perception of a set of 

patterns that gives the dynamics of the situation, and making distinctions in these 

patterns. This pattern is formed by the features of a situation or elements in an 

Experience:  Advance 

• Goal 

– Reach the destination 

• Cues 

– High ground: not visible 

– Incoming missile: none 

– Enemy tank: none visible 

– Distance to the destination 

• Expectations 

– No incoming missile 

– No enemy tank visible 

– No high ground within four kilometres 

• Course of Action 

– Move towards destination 

 



Appendices 

248 

environment. The expectation is the belief of the agent that an event will or will not 

occur in a given situation. The course of action is the strategy or plan that the agent 

intends to implement.  

Recognition of a situation not only means recognizing a typical response but also 

indicating what goals make sense, what cues are important and what is expected next. 

During advance an important cue is high ground. The agent expects to see no high 

ground within four kilometres of it. Now if the agent finds high ground within four 

kilometres then this expectation is violated and a fresh evaluation of the situation is 

necessary. If the agent finds high ground within four kilometres of itself and is facing 

north, which is the direction of its destination, then it recognizes this situation and 

changes its state to manoeuvre. During manoeuvre the agent does not expect to see an 

enemy tank. If it sees a tank an expectation is violated and the situation is evaluated 

again. 

 

Figure 13.16 Experience – manoeuvre 

 

Experience:  Manoeuvre 

• Goals 

– Expose the enemy tank at the longest range 

– Do not expose own tank to enemy within enemy tank’s firing range 

• Cues 

– High ground: at a distance <= 4 kilometres 

– Direction of own tank: facing destination (north) 

– Incoming missile: none 

– Enemy tank: none visible 

• Expectations 

– No incoming missile 

– No enemy tank visible 

– Enemy tank behind high ground on completion of manoeuvre 

• Course of Action 

– While taking cover from the high ground, move to a location four 

kilometres east of expected enemy tank 
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Figure 13.17 Experience - attack 

 

If we set up the simulation with the map representing the environment displayed in 

Figure 13.14, load the agent with the behaviour required to accomplish the mission for 

advance-to-contact operation, connect it with Soar Java debugger and then run it for a 

single step then the agent will start to develop working memory contents as shown in 

Figure 13.18. Running the simulation one step also makes the agent run through one 

decision cycle. The information generated by the radar and the visual sensors is put in 

the working memory through the input-link of the agent. This information is shown in 

Figure 13.18. The agent is facing north and is five cells south of the high ground 

therefore the radar sensor of the agent sees an obstacle at location represented in 

Cartesian coordinates as (5, 3). This information is represented in working memory as 

(S1 ^io I1) (I1 ^input-link I2) (I2 ^radar R1) (R1 ^obstacle O1) (O1 ^x 5 ^y 3). The 

visual sensor as we know can see only one cell around itself and therefore, sees three 

obstacles in the south, south-west, and south-east of the agent represented in the 

working memory as (M1 ^cell C9 ^cell C8 ^cell C7 ^cell C6 ^cell C5 ^cell C4 ^cell C3 

^cell C2 ^cell C1) (C9 ^content obstacle) (C6 ^content obstacle) (C3 ^content 

obstacle). The rest of the five cells around the agent are empty and are displaying their 

contents as empty in the working memory.  

 

Experience:  Attack 

• Goal 

– Destroy the enemy 

• Cues 

– Enemy tank: visible 

• Expectations 

– Enemy tank remains visible 

• Course of Action 

– Engage the enemy tank with fire 



Appendices 

250 

 

Figure 13.18 Working memory of the RPD-Soar agent 

 

The bluetank, map, cell, radar, obstacle, and empty are objects in the working 

memory that have been put there through the input-link by the environment. Operator 

and direction objects are produced by the production rules loaded in the agent. The 

state object is automatically created in the working memory of the agent. The 

production rule propose*initialize-rpd-soar (Figure 13.19) checks for a task for the 

agent by checking the absence of name of the state and proposes an operator named 

initialize-rpd-soar. This being the only operator proposed is selected in the decision 

phase and is applied in the application phase by the rule apply*initialize-rpd-soar 

(lower half of Figure 13.19). Firing of this rule places the mission of this advance-to-

contact operation as the desired state in the working memory of the agent. 

The simulation is run through the next step and conditions based on the cues of 

experience for advance (Figure 13.15) as the suitable course of action is selected. 

There is no red tank in sight, the obstacle is five kilometres away, and there is no 

(S1 ^bluetank B1 ^directions E15 ^directions N1 ^directions W1 ^directions S2 

       ^io I1 ^map M1 ^operator O2 + ^operator O2 ^radar R1 ^super-state nil 

       ^super-state-set nil ^top-state S1 ^type state) 

  (I1 ^input-link I2 ^output-link I3) 

    (I3) 

    (I2 ^bluetank B1 ^incoming no ^map M1 ^radar R1 ^sound silent) 

      (B1 ^facing north ^x 5 ^y 8) 

      (R1 ^empty E14 ^empty E13 ^empty E2 ^empty E12 ^empty E11 ^empty E10 

             ^empty E9 ^empty E8 ^empty E7 ^empty E6 ^empty E5 ^empty E4 

             ^empty E3 ^empty E1 ^obstacle O1) 

        (E14 ^x 6 ^y 3) (E13 ^x 4 ^y 3) (O1 ^x 5 ^y 3) (E12 ^x 6 ^y 4) 

        (E11 ^x 4 ^y 4) (E10 ^x 5 ^y 4) (E9 ^x 6 ^y 5) (E8 ^x 4 ^y 5) 

        (E7 ^x 5 ^y 5)  (E6 ^x 6 ^y 6)  (E5 ^x 4 ^y 6) (E4 ^x 5 ^y 6) 

        (E3 ^x 6 ^y 7)  (E2 ^x 4 ^y 7)  (E1 ^x 5 ^y 7)  

(M1 ^cell C9 ^cell C8  ^cell C7 ^cell C6 ^cell C5 ^cell C4 ^cell C3 ^cell C2 ^cell C1) 

        (C9 ^content obstacle ^north C8 ^north-west C5 ^west C6 ^x 6 ^y 9) 

        (C5 ^content empty ^east C8 ^north C4 ^north-east C7 ^north-west C1 

                 ^south C6 ^south-east C9 ^south-west C3 ^west C2 ^x 5 ^y 8) 

        (C6 ^content obstacle ^east C9 ^north C5 ^north-east C8 

                 ^north-west C2 ^west C3 ^x 5 ^y 9) 

        (C8 ^content empty ^north C7 ^north-west C4 ^south C9 ^south-west C6 

                 ^west C5 ^x 6 ^y 8) 

        (C7 ^content empty ^south C8 ^south-west C5 ^west C4 ^x 6 ^y 7) 

        (C4 ^content empty ^east C7 ^south C5 ^south-east C8 ^south-west C2 

                 ^west C1 ^x 5 ^y 7) 

        (C3 ^content obstacle ^east C6 ^north C2 ^north-east C5 ^x 4 ^y 9) 

        (C2 ^content empty ^east C5 ^north C1 ^north-east C4 ^south C3 

                 ^south-east C6 ^x 4 ^y 8) 

        (C1 ^content empty ^east C4 ^south C2 ^south-east C5 ^x 4 ^y 7) 

  (N1 ^opposite south ^value north) (E15 ^opposite west ^value east) 

  (S2 ^opposite north ^value south) (W1 ^opposite east ^value west) 

  (O2 ^name initialize-rpd-soar) 
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incoming missile. The presence of red tank and incoming missile are straight forward 

cues but in order to observe the cue of relative distance of tank to the obstacle some 

elaborations is required which is Level 2 RPD and is done with the help of 

productions in Figure 13.20. The advance course of action is an abstract operator. 

Therefore an operator no-change impasse occurred and a new sub-state is created to 

implement it.  

 

 

 

Figure 13.19 Production: initialize-rpd-soar 

 

sp {propose*initialize-rpd-soar 

   (state <s> ^super-state nil 

              -^name) 

--> 

   (<s> ^operator <o> +) 

   (<o> ^name initialize-rpd-soar) 

} 

 

sp {apply*initialize-rpd-soar 

   (state <s> ^operator <op>) 

   (<op> ^name initialize-rpd-soar) 

--> 

   (<s> ^name rpd-soar 

        ^desired <d>) 

   (<d> ^bluetank <btk>) 

   (<btk> ^x 5 ^y 1) 

} 
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Figure 13.20 Productions: elaborate distance of tank to obstacle 

 

In this context with advance as its major task the agent has four actions to choose 

from: move in the direction that the tank is facing and turn in the other three 

directions. And as all four are applicable in the situation then an operator tie impasse 

is generated (Figure 13.21). This is the situation of RPD model where the decision 

maker can not select a course of action from a pool of courses of action that he knows 

can apply. Now the decision maker develops a mental model of the environment and 

mentally simulates the courses of actions serially to select the one which seems 

satisficing.  

 

 

Figure 13.21 Operator tie impasse 

 

sp {elaborations*elaborate*state*dist-obs-tank 

   (state <s> ^operator.name initialize-rpd-soar) 

--> 

   (<s> ^dist-obs-tank <dot>) 

} 

 

sp {elaborations*elaborate*state*dist-obs-tank*coords 

   (state <s> ^name rpd-soar 

              ^bluetank <bt> 

              ^radar.obstacle <obs> 

              ^dist-obs-tank <dot>) 

   (<bt> ^x <btx> ^y <bty>) 

   (<obs> ^x <ox> > 0 < 9   ^y <oy> > 0 < 9) 

--> 

   (<dot> ^x (- <btx> <ox>)   ^y (- <bty> <oy>) ) 

} 

: ==>S: S1  

      :    O: O3 (advance) 

      :    ==>S: S3 (operator no-change) 

      :       ==>S: S5 (operator tie) 
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Now among the candidate operators in experiments discussed later, the agent has the 

experience to prefer one operator over the other for evaluation and the experience to 

judge when an operator is satisficing but this agent evaluates each and every candidate 

serially and randomly selects one to evaluate first. Therefore, one operator is selected 

in the selection space S5 for evaluation at random, shown in Figure 13.22. 

 

 

Figure 13.22 Operator: evaluate-operator 

 

This operator named evaluate-operator is also abstract and therefore another space S7 

is created to implement evaluation and this is the mental model for simulating a 

course of action as of RPD model (Figure 13.23). In this space, all the objects in the 

environment are modelled again and the operator representing the course of action to 

be evaluated is selected to be applied. 

 

Figure 13.23 Space for mental simulation 

 

The operator application is not on the real world rather on the model world created in 

the agent’s head. In this case the course of action is being evaluated for advance which 

means a better action is the one that can take the agent close to the destination given in 

the original mission. In order to evaluate the candidate actions, the Manhattan distance 

is calculated after applying each action and the numeric value is recorded as 

evaluation factor. Manhattan distance between two points (x1, y1) and (x2, y2) is 

defined in terms of X and Y as X = x2 - x1, and Y = y2 - y1. And then the action with 

: ==>S: S1  

      :    O: O3 (advance) 

      :    ==>S: S3 (operator no-change) 

: ==>S: S1  

      :    O: O3 (advance) 

      :    ==>S: S3 (operator no-change) 

      :       ==>S: S5 (operator tie) 

      :          O: O10 (evaluate-operator) 

      :          ==>S: S7 (operator no-change) 

      :             O: C10 (turn) 
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the least numeric value is selected. This is achieved through the use of selection space 

implementation provided by Soar group (Laird, 2006a) and the production rules 

written for copying the objects and the application of operators in the mental model 

for this implementation. Some of the production rules written for this purpose are 

shown in Figure 13.24.  

The majority of the production rules provided as selection space productions are being 

used as such in this implementation for mental simulation while some of them are 

modified to suite the requirements of this model. The first rule in Figure 13.24 is used 

by the production rules of selection space for copying objects in the mental model; the 

second rule is used to calculate the Manhattan distance; and the third rule applies a 

north move operator for mental simulation after checking the absence of io object 

which is an indicator that this is the mental model and not the real world. 

 

Figure 13.24 Example productions used to implement mental simulation 

 

1 sp {advance*elaborate*problem-space 

(state <s> ^name advance) 

--> 

(<s> ^problem-space <p>) 

(<p> ^name advance ^default-state-copy yes  

^two-level-attributes bluetank) 

} 

 

2 sp {advance*elaborate*state*manhattan-distance 

(state <s> ^name advance 

               ^desired <d>    ^bluetank <bt>   ^tried-tied-operator) 

(<d> ^bluetank <dbt>) 

(<bt> ^x <bx> ^y <by>) 

(<dbt> ^x <dbx> ^y <dby>) 

--> 

(<s> ^mhdistance <mhd>) 

(<mhd> ^mhx ( abs ( - <dbx> <bx>))   ^mhy ( abs ( - <dby> <by>))) 

} 
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After evaluating each action the sub-states of the mental model and thus all the WMEs 

related to them are removed from the working memory of the agent and only the 

evaluated value is kept in the higher state evaluating these actions.   

After evaluating all the candidate actions move north operator is selected because it is 

taking the agent close to the destination and is applied to the real world. It is done 

through the output-link and with the help of the model for acquisition of commands 

from the agent explained earlier in the same chapter. The new location of the Blue 

agent in the environment after moving north is shown in Figure 13.25.  

 

Figure 13.25 Situation after moving north 

Now the distance to the high ground is equal to four kilometres and one of the 

expectations of the advance experience is not met, therefore the situation is re-

evaluated and this time the experience manoeuvre is recognised as its conditions are 

met. The course of action for the experience manoeuvre is represented graphically in 

Figure 13.26. In this case the blue agent sees high ground on its approach to its 

destination and expects an enemy tank behind it. Similar approach has been adopted 

by Tambe and Rosenbloom (1995) where the pilot agent observes the actions of the 

enemy aircrafts and by observing the observable actions infers their unobserved 

actions, plans, goals, and behaviours. 

The course of action manoeuvre is also at higher level of abstraction and creates an 

operator no-change impasse (Figure 13.27). 
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Figure 13.26 Experience – manoeuvre 

Just like advance, this course of action for experience manoeuvre is implemented 

through atomic actions of move and turn but now the destination is the location 

pointed by the head of the arrow representing the planned path for movement of blue 

tank. This desired state set as the goal of experience manoeuvre is set by the 

production rule shown in Figure 13.28. 

 

 

Figure 13.27 Manoeuvre - an abstract action 

 

This location as destination for completing the manoeuvre action is kept so as the 

Blue tank appears at a distance of four kilometres from the Red tank and therefore is 

out of the firing range of the enemy while the Red tank is within the firing range of 

Blue tank. The Blue tank commander is exploiting the weakness of the enemy to 

achieve own aim of destroying the enemy forces as secondary mission while reaching 

the destination which is the main mission. In this situation it would have not been 

: ==>S: S1  

      :    O: O12 (mnvr) 

 Destinatio
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possible for the Blue tank to reach its destination without destroying the Red tank or 

making it retreat from its present location as the area would have been unsafe to 

advance. 

 

 

Figure 13.28 Production: set the goal for manoeuvre 

 

The selection of the atomic actions in experience manoeuvre is through mental 

simulation as is the case of experience advance.  It is not necessary for all the 

experiences to have all the components of situations as represented in the RPD model. 

It is understandable that the recognition of a situation requires more processing of 

information for comparatively high level contexts; therefore, it is expensive in time 

and resources to repeat the process with every single change in the world. It is also 

true that not all changes in the world are likely to change the higher context. It is also 

observed that the behaviours at a higher level persist for a comparatively longer time 

and consist of a combination of low level behaviours. There may not be a requirement 

to associate expectations with the courses of action in the experiences at atomic level 

behaviours where an action is taken that changes the world and then the situation is re-

evaluated to select the next action. This is because the selected course of action does 

not persist long enough to require watching expectations while the action is under 

progress. The same is true for the goal at atomic level. The goal is the result of the 

action itself. Therefore, in this implementation of the RPD model, the goals and 

expectations are part of the experiences representing behaviour at a higher level of 

abstraction. At atomic level the experiences consist of only cues and the action. The 

success value or preference of one action over the other accompanies the experiences 

sp {mnvr*initialize*desired*state 

   (state <s> ^name mnvr    ^radar.obstacle <obs>) 

   (<obs> ^x <ox> > 0 < 9   ^y <oy> > 0 < 9) 

--> 

   (<s> ^desired <d>) 

   (<d> ^bluetank <btk>    ^better lower) 

   (<btk> ^x (- <ox> 4)      ^y (- <oy> 1)       ^facing east) 

} 
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at even atomic level in most cases. This success value is used in two ways: the first, is 

the selection of a course of action straight away without mentally simulating it if one 

candidate is distinctly better than the others; and the second, is the selection of a 

course of action as the first one to consider for mental simulation when the chances of 

success of candidate courses of action are similar.  

In Soar, it is effortless to model the phenomenon of watching the expectations while 

carrying out a course of action. In Soar, all the states are active at all times. Any 

change in a state at a higher level removes all the sub-states which are responsible for 

the creation of these sub-states.  In the vignette under discussion (see Figure 13.14), 

the advance behaviour is selected and the course of action is under progress when the 

blue tank moves north and the distance between the blue tank and the obstacle reduces 

to four kilometres (Figure 13.25). The agent is expecting no obstacle this close while 

advancing thus an expectation is violated and the situation needs to be re-evaluated. In 

Soar, the re-evaluation of a situation given the violation of expectations is almost 

automatic if the conditions for selection of the concerned operators are set correctly. 

The abstract advance operator that creates the sub-state where this course of action is 

being implemented is removed due to one of its conditions for selection being violated 

and thus the sub-states implementing it are also removed. The situation therefore is re-

evaluated to recognize new situations in order to find courses of action from other 

experiences to proceed with the task.  

During the manoeuvre context the blue tank keeps moving by selecting actions that 

reduce its distance from the destination recognized as a goal with the present situation 

until it reaches the destination. To accomplish its goal completely the blue tank also 

turns east as shown in Figure 13.29. Now the blue agent finds the red tank on its radar 

sensor (Figure 13.30). The only cue in the attack experience is red tank (Figure 13.17) 

and for its selection the condition to be satisfied is red tank’s presence. As the 

condition is met therefore the proposal to select attack as a context is fired by the 

production rule shown in Figure 13.31 and as attack is the only operator proposed 

therefore it is selected. Attack is an action at a higher level of abstraction therefore a 

new sub-state is created through an operator no-change impasse (Figure 13.32) to 

implement this abstract action. In this context a fire action is proposed, selected and 

applied and the red tank is destroyed.  

 



Appendices 

259 

 

Figure 13.29 Situation after completing manoeuvre 

 

 

Figure 13.30 State of working memory showing red tank on radar sensor 

 

(S1 ^bluetank B1 ^desired D2 ^directions E15 ^directions W1 ^directions S2 

       ^directions N1 ^dist-obs-tank D1 ^io I1 ^map M1 ^mnvr-situation yes 

       ^name rpd-soar ^operator O215 + ^operator O215 ^radar R1 

       ^super-state nil ^super-state-set nil ^top-state S1 ^type state) 

   

      (R1 ^empty E84 ^empty E83 ^empty E82 ^empty E1 ^obstacle O61 

             ^obstacle O45 ^obstacle O44 ^obstacle O43 ^obstacle O62 

             ^obstacle O71 ^obstacle O72 ^obstacle O73 ^obstacle O120 

             ^obstacle O1 ^obstacle O121 ^obstacle O122 ^obstacle O123 

             ^obstacle O124 ^obstacle O125 ^obstacle O140 ^obstacle O141 

             ^obstacle O142 ^obstacle O143 ^obstacle O144 ^obstacle O60 

             ^redtank R2) 
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Figure 13.31 Production - propose attack 

 

 

Figure 13.32 Attack – an abstract action 

 

The attack experience expects to see the red tank all the time but as the simulation 

removes the destroyed tank it is not visible on the radar sensor. The expectation of the 

situation is violated in the RPD model and situation is required to be re-evaluated and 

in Soar it is implemented by putting it as a condition in the production that proposes 

attack operator as shown in Figure 13.31. As the conditions for the proposal of the 

attack operator are not satisfied therefore attack operator is removed and so is the sub-

state created because of it. 

The situation is re-evaluated and advance is selected which as discussed earlier is an 

abstract operator and creates an operator no-change impasse to create a sub-state to 

implement it Figure 13.33. 

 

 

Figure 13.33 Advance – an abstract action 

 

The agent, repeating move and turn actions after selecting them by evaluating through 

mental simulation reaches its destination shown in Figure 13.34.  

 

: ==>S: S1  

      :    O: O215 (attack) 

sp {rpd-soar*propose*attack 

   (state <s> ^name rpd-soar   ^radar.redtank ) 

--> 

   (<s> ^operator <op> + =) 

   (<op> ^name attack) 

} 

 

: ==>S: S1  

      :    O: O217 (advance) 
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Figure 13.34 Blue tank reaches its destination 

 

On completing the mission as in military operations and reaching the goal state as in 

Soar, the agent needs to halt and the simulation is required to either stop or reset for 

another run. In case only the agent needs to be stopped, it may be done with the help 

of Soar production rules and the method to implement this option is discussed later, 

but if the simulation needs to be stopped and reset for another run then it may be done 

with the help of the code shown in Figure 13.35 and Figure 13.36. 
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 Figure 13.35 Environment – methods to handle goal state 

 

public class Environment implements Runnable, 

 Kernel.UpdateEventInterface { 

. 

. 

public void updateWorld() { 

if(blueTk.executeCommand()) { 

  . 

  .   

   firetankMoved();  

          if (isAtGoalState()) 

                  fireAtGoalState(); 

}//if(blueTk.exec....) 

 }//updateWorld() 

public boolean isAtGoalState() { 

  return (locOfBlueTkX == 5 && locOfBlueTkY == 1); 

} 

* Notifies any registered listeners that this <code>Environment</code> 

     * has reached the goal state. */ 

     protected void fireAtGoalState() { 

        Iterator i = listeners.iterator(); 

        while (i.hasNext()) 

            ((EnvironmentListener)i.next()).atGoalState(this); 

    } 

* Runs Soar until interrupted 

 */ 

 public void run() { 

  if (isAtGoalState())  

   return;     

  m_StopNow = false; 

 

  // Start a run 

  kernel.RunAllAgentsForever(); 

 } 

 public void step() { 

  if (isAtGoalState())  

   return; 

  // Run one decision 

  kernel.RunAllAgents(1); 

 } 

/** Stop a run (might have been started here in the environment or in the debugger)*/ 

 public void stop() { 

  // issue StopSoar() in a callback. 

  m_StopNow = true; 

 } 

} 
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Figure 13.36 Simulation – method to handle goal state 

 

If agent has some command to execute, it is executed and then it is checked with the 

help of the method isAtGoalState() whether the goal state is reached or not. If the goal 

state is reached then the Environment with the help of the protected method 

fireAtGoalState() fires the atGoalState() method in all the registered listeners (Figure 

13.35). The Simulation with the help of its atGoalState() method calls the Stop() 

method in Environment which sets the Boolean variable m_StopNow true. The update 

 

public class Simulation implements PaintListener,  

ControlListener, EnvironmentListener {  

. 

. 

public void atGoalState(Environment env) {  

   env.stop(); 

   System.out.println("Goal State reached."); 

} 

public void systemEventHandler(int eventID, Object 

data, Kernel kernel) { 

if (eventID == sml.smlSystemEventId.smlEVENT_SYSTEM_START.swigValue()) { 

// The callback comes in on Soar's thread and we have to //update the buttons on the UI thread, so switch 

threads. 

dpy.asyncExec(new Runnable() {  

public void run() { updateButtons(true) ; } } ) ; 

  } 

 

if (eventID == sml.smlSystemEventId.smlEVENT_SYSTEM_STOP.swigValue()) { 

  simRun++; 

   if(simRun<totalSimRuns) { 

    env.reset(); 

    env.run(); 

  } 

// The callback comes in on Soar's thread and we have to //update the buttons on the UI thread, so switch 

threads. 

  dpy.asyncExec(new Runnable() {  

public void run() { updateButtons(false) ; } } ) ; 

} 

} 

} 
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event handling method in Environment, shown in Figure 13.11, checks for 

m_StopNow variable and if true the agents are stopped. When the agent stops the 

systemEventHandler() method in Simulation is evoked which resets the environment 

and runs the simulation again until the number of simulations required is reached 

(Figure 13.36). 

The agent can be stopped using halt command inherent in Soar. The halt command 

irreversibly terminates the execution of the Soar program and should not be used 

when the agent needs to be restarted. The production rules that implement this method 

of stopping the execution of Soar program is shown in Figure 13.37. But this has not 

been used in most cases in this implementation because the Soar program is run 

within a simulation which needs to be restarted most of the times.  
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Figure 13.37 Productions: to set the goal, test the goal and halt the agent 

 

# This production sets the goal for the agent. 

 

sp {rpd*apply*initialize-rpdsoar-ms1 

   (state <s> ^operator <op>) 

   (<op> ^name initialize-rpdsoar-ms1) 

--> 

   (<s> ^name rpdsoar-ms1 

        ^desired <d>) 

   (<d> ^bluetank <btk>) 

   (<btk> ^x 5 ^y 1) 

} 

 

# This production tests the goal state and  

# halts the execution of Soar program when 

# the goal is achieved. 

 

sp {rpd*detect*desired-state*reached 

  (state <s> ^name rpdsoar-ms1 

             ^io 

            ^desired <d> 

            ^bluetank <bt>) 

 (<d> ^bluetank <dbt>) 

 (<dbt> ^x <x> ^y <y>) 

 (<bt> ^x <x> ^y <y>) 

    

--> 

   (write (crlf) |Success!|) 

   (halt) 

} 
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14 APPENDIX E – LEARNT CHUNKS 

The chunks learnt by the RPD-Soar agent in Experiment 4 are stored in the file named 

learnt chunks in the attached CD. 
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