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Abstract

Nano-porous silicon (PS) is an attractive material for incorporation into

biosensors, because it has a large surface area combined with the ability to generate

both optical and electrical signals. In this paper, we describe a label-free

nanobiosensor for bovine serum albumin (BSA). Nano-porous silicon produced in our

laboratory was functionalised prior to immobilisation of anti-BSA antibody on the

surface. Reaction with BSA in phosphate buffered saline (PBS) buffer resulted in an

impedance change which was inversely proportional to the concentration of the

analyte. The system PBS buffer/antigen-antibody/PS constitutes an

electrolyte-insulator-semiconductor (EIS) structure, thus furnishing an impedance EIS

nanobiosensor. The linear range of the sensor was 0-0.27mg mL -1and the sensitivity

was less than 10μg mL-1.
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1. Introduction

Nano-porous silicon (PS) has received considerable recent attention for

incorporation into biosensors due to its intrinsic optic and electrical properties and its

large surface area, which can be readily functionalised (Zhang et al. 2007). Lin et al.

(Lin et al. 1997) reported an optical interferometric biosensor based on porous silicon, which

was capable of detecting a wide range of analytes with low detection limits. A capacitive catalytic

biosensor has also been described with sensitivity for penicillin of around 0.25mM (Thust et al.

1999). The authors highlighted the large amount of immobilised enzyme associated with the

porous structures. Chan and co-workers designed a DNA sensor using a Bragg reflector. When a

biological molecule attached to the large internal surface of the porous silicon, a change in

refractive index was detected by the shift in the luminescence peaks (Chan et al. 2001). In 2007,

we reported a simple, label-free optical sensor for BSA. The detection principle was

based on the change in light intensity associated with the interaction of protein

molecules with the nano-PS surface (Zhang et al. 2007).

Sensors for biological analytes based on electrolyte-insulator-semiconductor

(EIS) structures have been reported since the late 1990s (Brett et al. 2001; Berney et al.

1999; Schoning et al. 2002; Bergveld et al. 2003; Schoning et al. 2005; Poghossian et al.

2006). The EIS structure is similar to the metal-insulator- semiconductor (MIS), but

the metal contact on the insulator is replaced by an electrolyte contact, to which a

voltage is applied by means of a reference electrode. However, very few articles have

addressed EIS biosensors using PS. Porous EIS structures of n-Si/SiO2/Si3N4 have
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been realised for capacitive pH sensors. The average pH sensitivity of the porous pH

sensor amounts to about 56 mV/pH in the range between pH 4 and pH 8. The study

also utilised penicillinase as a model enzyme to prepare a porous EIS biosensor and

the sensitivity reported was around 0.25 mM (Schoning et al. 2000). Betty and

co-workers (Betty et al. 2004; Betty et al. 2007) described the fabrication and

characterisation of capacitive biosensors with EIS structures and conducted a time

response study. They found that there was a rapid decrease in capacitance following

addition of the analyte to the PS sensor.

In the present work, we describe an impedance immunosensor based on porous

EIS technology comprising a PBS buffer/antibody-antigen/PS structure. The specific

reaction of the antigen (BSA) to the immobilized antibody (antiserum of BSA) caused

a change in impedance that could be monitored on-line. The sensitivity of the

electro-PS biosensor was also investigated.

2. Experimental

2.1 PS preparation

Nano-porous silicon was obtained from p-type Si(100) with a specific

resistance ρ=0.15-0.2 Ω.cm, using an electrochemical etching process at 220 mA/cm2

for 20 minutes in 48% hydrofluoric acid (HF) solution. The PS chip was then treated

with H2O2 to oxidize the PS surface (Zhang et al. 2007).
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2.2 Antibody immobilisation

The Anti-BSA antibody (from Dingguo company) immobilisation was carried

out by immersing 0.5cm2 PS chips into antibody solution for one hour at room

temperature. After thoroughly washing with PBS, the nonspecific sites were blocked

with 2mg/ml Ovalbumin, then washed again with PBS thoroughly.

The antibody immobilisation on the porous silicon matrix was confirmed by

JSPM-5200 atomic force microscopy from JEOL, Japan.

The activity of the immobilised antibody was visualized using BSA - colloidal

gold .

The gold nanoparticles were produced by dissolving H[AuCl4], the solution was

rapidly stirred while a reducing agent was added. This caused Au3+ ions to be reduced

to neutral gold atoms, and the gold gradually starts to precipitate in the form of

sub-nanometer particles. If the solution is stirred vigorously enough, the particles will

be fairly uniform in size.

The antigen colloidal gold labeling was taken by the electrostatic interaction

between Au clusters and the protein amino group. The BSA- colloidal gold was

prepared by mixing colloidal gold suspension with 0.1M BSA solution. After

separation, the BSA- colloidal gold was applied on the antibody-PS and on the free

PS without antibody, but where the protein binding sites were blocked with

Ovalbumin. If the immobilised antibody was active, the BSA - colloidal gold bound to

the antibody-PS and presented a dark red color. In contrast, the colour of the free PS

was light.
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2.3 BSA determination using the impedance method

The impedance analysis was performed using an LK2005A electrochemical

work station (supplied by Lanlike Co Ltd, Tianjin, China). The system consisted of an

Ag/AgCl reference electrode, the antibody-immobilised PS chip as the working

electrode and a platinum wire counter electrode. The buffer was 0.015M PBS, pH 7.4.

The impedance was measured with the substrate bias voltage range of 0.15V to 0.29V.

The analysis commenced with 10ml of 0.015M PBS buffer and then serial

concentrations of BSA (0.01，0.02，0.04，0.08，0.1 mg/ml) were added into the system.

The impedance versus BSA concentration was plotted.

The selectivity of the antibody-PS was also identified with ovalbumin (OVA). At

the same condition, the same concentration of ovalbumin (OVA) and the BSA were

added into the system to react with the antibody-PS, and then the changes of

impedance were collected.

3. Results and Discussion

3.1 Confirmation of the presence of immobilised antibody

In order to confirm the antibody was immobilised on the PS chip the

antibody-immobilised PS and the free PS chips were scanned with a atomic force

microscopy (figure 1). It shows that the antibody immobilised PS chip (figure 1b) is

more than triple thicker than the free chip (figure 1a). This reveals that the antibody

has been immobilised on the porous silicon matrix.
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The activity of the antibody on the chip was determined by reacting the chips

with BSA-colloidal gold. As shown in figure 2, fig 2 a is darker than fig 2 b. This

reveals that the BSA-colloidal gold had bound to the antibody-immobilised PS chip

and the antibody activity was retained.

3.2 Comparison of impedance changes with antibody- immobilised and free PS

Plots of the impedance versus voltage, before and after the deposition of the

antibody layer, are presented in Figure 3 a. The deposition of the antibody layer led to

a decrease in impedance. The decrease in impedance is thought to be due to a change

in dielectric constant after antibodies were immobilised on the PS surface (Figure 3 b).

The electrolyte used for the measurements was 0.015M PBS.

3.3 BSA determination

The selectivity of the antibody-PS was checked with OVA. When the

BSA-antibody-PS reacted with the same concentration of BSA and OVA, the

reduction of impedance with BSA is about 60% larger than with OVA (figure 4).

Therefore, the biosensor has a significant and specific selectivity.

Figure 5 shows the impedance versus voltage plots of the PS sensors after

equilibration with different BSA concentrations for 1 minute, and the total impedance

is decreased after adding BSA.

By fixing the applied potential during in the accumulation of protein at 0.29V, the

impedance varied inversely with the concentration of the analyte, BSA (Figure 6).
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The detection limit is 10 mg/ml. it equals 3 _ SD of zero calibrator. Furthermore,

Figure 6 illustrates that the linear range of the sensor is between 0-0.27mg/ml.

The material used in the literatures is mainly plain silicon. Our material is Nano-porous

silicon, it has many advantages, such as it possess of a large surface area with optical and

electrical signals. The novelty of the work is to combine the nano-porous silicon

properties with the biosensor technology to produce a label free nano-biosensor with a

linear range of 0.01-0.08mg/ml. The sensitivity of the biosensor was 10μg/ml.

4. Conclusion

Nano-porous silicon multilayered microstructures have unique optical, electronic

and morphological properties that can be exploited in chemical and biological sensing.

The large specific surface of nano-structured porous silicon can be chemically

modified to link different molecular probes, which recognise the target analytes. In

order to enhance the sensitivity and simplicity of this as a sensor device, we have

produced and characterised several porous silicon-based structures (Zhang et al. 2007).

In this paper, we developed a label free nanobiosensor for bovine serum albumin

(BSA) determination. Using functionalized PS with immobilised anti-BSA antibody

we showed that the impedance decreased on binding the complimentary antigen and

that the linear range of the sensor was between 0-0.27mg/ml. The minimum

detectable amount of antigen was less than 10μg/ml.
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Legends

Figure 1. The atomic force microscopy image of free PS (A) and antibody

immobilised PS (B).

Figure 2. To identify the presence of the immobilised anti-BSA antibody, the chips

were treated with BSA-colloidal gold: (A) the antibody-PS chip, (B) the free PS chip

Figure 3. (A) shows the impedance versus voltage plots before and after the

deposition of the antibody layer in 0.015M PBS, pH 7.4. Insert shows the impedance

reduction after antibody immobilization in the voltage range of 0.15Vto 0.29V (B)

describes the principle of the impedance decreases after antibody is bound to the PS

electrode.

Figure 4. The selectivity of the antibody-PS was checked with reacting to the same

concentration of BSA and OVA, The reduction of impedance with BSA is larger than

with OVA.

Figure 5. The impedance versus voltage plots of the porous silicon sensors after

addition of different BSA concentrations, 0.01, 0.03, 0.13, 0.23 and 0.27 mg/ml,

respectively.

Figure 6. The effect of BSA concentration on impedance at 290mV from figure 5.
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Figures

Figure 1
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Figure 2

(b)(a)
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Figure 3
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Figure 4
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Figure 5
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