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Abstract 11 

Fouling in membrane coupled photocatalytic reactors was investigated in the case of grey water treatment by 12 

establishing the link between product type, dose, irradiation time and fouling rates in a cross flow membrane cell 13 

fitted with a 0.4 micron pore sized polyethylene membrane. Rapid fouling occurred only with shower gels and 14 

conditioners and was linked to changes in the organo-TiO2 aggregate size postulated to be caused by polymers 15 

within the products. Fouling was reduced to a negligible level when sufficient irradiation was applied 16 

demonstrating that the membrane component of the process is not the issue and that scale up and implementation 17 

of the process relates to effective design of the UV reactor.  18 

 19 
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 21 

INTRODUCTION 22 

A wide range of new engineered nanoparticles are becoming available for use in water and 23 

wastewater treatment (Jefferson, 2008). Recent examples include nano silver coatings on 24 

socks to inhibit microbial growth and hence odour (Ross, 2004) and zero valent iron nano 25 

particles for groundwater remediation (Huang et al., 2008; Ahmadimoghaddam et al., 2008). 26 

Whilst research is continuing into developing new nanoparticles actual uptake of the existing 27 

ones is rather limited in water treatment (Jefferson, 2008). The problem is a classical chemical 28 
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engineering one: how to implement (scale up) a nano scale process at the meso or macro scale 29 

(Wintermantel, 1999). For context, water treatment facilities vary greatly but typically treat 30 

flows in the order of 10s to 100s of ML.d-1. Converted to nano particles, which are typically 31 

in the size range 1-100 nm this equates to 7.2x1026 particles and thus there is a challenge. The 32 

nano particles provide very large specific surface areas with which to provide high mass 33 

transfer and reaction kinetic coefficients yet fixing such a large number of very small particles 34 

so that they remain in the treatment process and do not exit with the product water is 35 

extremely challenging. Typical energy and operating costs for water treatment are in the order 36 

of 0.5 kWh.m-3 and €0.2-0.5.m-3 which means solutions can not be overly complicated or 37 

complex. Reported solutions to the problem involve either immobilisation to solid substrate 38 

(Rachel et al, 2002) or retention by filtration with membranes (Rivero et al., 2006; Chin et al, 39 

2007). 40 

One embodiment of this concept is the membrane chemical reactor (MCR) (Parsons et al, 41 

2000; Jefferson et al, 2001) which utilises nano sized titanium dioxide (TiO2) particles in 42 

combination with a UV light source to generate highly reactive hydroxyl radicals which have 43 

a redox potential of 2.33 V, only surpassed by F2 (Huang et al, 1993). The TiO2 particles are 44 

retained in the system by means of a membrane filtration unit that is configured externally to 45 

the membrane but operated in an air lift, low pressure manner equivalent to that of a 46 

submerged membrane system (LeClech et al, 2003). Long term trials for the treatment of grey 47 

water have shown it to be an effective system comparable to that of a membrane bioreactor 48 

(Pidou et al., 2008). For instance, average effluent residuals of below 10 mg.L-1 for bio-49 

chemical oxygen demand (BOD), below 1 NTU for turbidity, below 2 mg.L-1 for suspended 50 

solids (SS) and no pathogens were observed throughout the trial at a hydraulic residence time 51 

of 2 hours (Pidou et al., 2008). The observed residual levels mean that the technology is 52 

viable for treating greywater to the most stringent water quality standards available for urban 53 
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reuse (Pidou et al, 2007). Consequently, it provides an alternative to biological systems such 54 

as membrane bioreactors (MBRs) where the small scale of operation, proximity to the end 55 

users and the potential for toxic shocks provides a relatively high process failure risk 56 

(Jefferson et al., 1999; Knops et al., 2007). Similar high performance of photocatalytic 57 

systems have been reported for the treatment of dyes (Molinari et al., 2002; Mozia et al., 58 

2007), humic acid (Lee et al., 2001; Fu et al., 2006; Erdei et al., 2008), bisphenol A 59 

(Thiruvenkatachari et al., 2005; Chin et al., 2007) or pesticides (Oller et al., 2006; Lhomme et 60 

al., 2008) hence the appropriateness of the technology as a treatment solution is well 61 

established.  62 

However, during the greywater investigation significant membrane fouling was observed. 63 

Consequently, the system could only be run for about 10 days at a flux of 5 L.m-2.h-1 (LMH) 64 

before a chemical cleaning of the membrane was necessary (Pidou et al, 2008). This was 65 

found to be contradictory to results of a previous study in which the MCR pilot plant was 66 

operated in batch mode (Rivero et al., 2006). Very little or no fouling was observed during 67 

the batch experiments for fluxes up to 120 L.m-2.h-1. Such differences in operation are 68 

surprising but the results obtained during the batch operation tests can be explained by the 69 

fact that the greywater was rapidly treated and consequently for the higher fluxes the TiO2 70 

was dispersed in fairly clean water and very little or no fouling was observed. This suggests 71 

that the fouling propensity of TiO2 changes significantly in the presence of a waste, in this 72 

case greywater.  73 

A paucity of literature on operation of such photocatalytic hybrid membrane systems, 74 

especially for medium to high strength organic wastes, potentially limits the uptake of the 75 

technology to full scale operation. Specifically two key questions remain unanswered: (1) 76 

how to develop systems that can treat sensible flows whilst ensuring all the TiO2 in the system 77 
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is active and hence degrades the organics and (2) how to ensure the membranes does not foul 78 

in systems that answer question 1.  79 

The current paper addresses question 2 by examining the impact of different grey water 80 

products on the fouling behaviour of the system elucidating the major changes in the system 81 

when fouling occurs.  82 

 83 

MATERIALS AND METHODS 84 

Filtration system 85 

A bench-scale filtration system was used to replicate the fouling experienced when operating 86 

the membrane chemical reactor (MC-RTM) (Water Innovate Limited, UK). Trials were 87 

conducted to study the influence of different parameters on titanium dioxide (TiO2) and its 88 

properties to foul membranes. This system was composed of a 9-litre PVC tank in which the 89 

TiO2 and greywater slurry was placed. The slurry was pumped across the membrane module 90 

(Perspex, 28 cm × 20 cm × 8 cm) and back to the reactor at a crossflow velocity of 0.16 m.s-1. 91 

The treated water was permeated through the membrane by a peristaltic pump (505Du, 92 

Watson-Marlow, UK) and a pressure transducer (RS components, UK) was fitted in the 93 

permeate line to record the trans-membrane pressure (TMP). Because it was a batch system, 94 

the permeate was sent back into the tank to avoid any volume loss. The membranes used in 95 

the module were polyethylene sheets with a pore size of 0.4 µm and a surface area of 0.019 96 

m2. 97 

 98 

Methods 99 

A range of products (all bought in a supermarket) including shower gel, shampoo, bathroom 100 

cleaner, conditioner, hand soap and bubble bath were diluted in tap water at a concentration of 101 

2 or 3 g.L-1 and placed in the reactor with 5 g.L-1 of TiO2. These concentrations were chosen 102 
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because they represent the upper range for organic concentrations reported in the literature in 103 

terms of COD in feed grey waters from sampled sites around the world (Pidou et al., 2007). 104 

The COD concentration of the products were measured prior to use at 360, 280, 280, 250, 190 105 

mg.L-1 for the shower gel, conditioner, bubble bath, shampoo and hand soap respectively. 106 

Indeed, concentrations of products of 3 g.L-1 corresponded to solutions with COD 107 

concentrations between 570 and 890 mg.L-1. The TiO2 dose was selected from previous trials 108 

which demonstrated it be the optimum concentration for grey water treatment (Rivero et al., 109 

2006). Ingredients of each of the products as listed in provided in Table 1. Tests using the flux 110 

step method generally used to characterise membrane fouling in MBRs (Le Clech et al., 2003) 111 

were then carried out and the fouling rates determined for the different slurries. Fouling 112 

experiments were conducted under dark light conditions to best replicate practical system 113 

where the membrane is configured such that it is not in direct contact with the UV light to 114 

prevent damage to the membrane structure (Rivero et al., 2006). All tests were duplicated. For 115 

the photo-catalysis tests, the slurry was placed in a stirred tank under a 100W UVA lamp 116 

(Black-Ray, CA, USA) for a range of time ranging between 0.5 and 2 hours. 117 

 118 

Analytical procedures  119 

Particle sizes were measured with a Malvern Mastersizer 2000 particle analyser (Malvern 120 

Instruments Ltd, Worcestershire, UK). It was not possible to measure the particle size with 121 

the TiO2 concentration of  5 g.L-1 as the detection cell saturated because of too many particles. 122 

Consequently, the TiO2 concentration had to be decreased to 1 g.L-1. Product concentrations 123 

were reduced commensurately to maintain a dose ratio between 400-600 mg.gTiO2
-1 to match 124 

experiments in the fouling trials. Five measurements of each sample were performed and the 125 

average value of the median particle size d50 (µm) was taken. 126 

RESULTS 127 
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Cross flow filtration of organo-TiO2 slurries containing bathroom cleaner, shampoo, hand 128 

soap or bubble bath dosed at a level of 600 mg.gTiO2
-1 resulted in insignificant fouling across 129 

the range of fluxes studied with a maximum fouling rate of 0.6 mbar.min-1 (Figure 1) and was 130 

not significantly different from the TiO2 system in tap water only. Consequently, the flux 131 

required to generate rapid fouling of such systems exceeded the maximum value tested in the 132 

laboratory set up and supports the previous finding that TiO2 systems can be operated at 133 

fluxes around 100 LMH without fouling problems (Rivero et al, 2006). In contrast, cross flow 134 

filtration of shower gel, conditioner or real greywater samples results in significant fouling 135 

(Figure 1). To illustrate maximum fouling rates of 6.6 mbar.min-1 at a flux of 35 LMH and 8.9 136 

mbar.min-1 at a flux of 28 LMH were observed for the conditioner and shower gel 137 

respectively. In comparison, a real greywater collected from the bathrooms of a student hall of 138 

residence revealed a fouling propensity in between those observed for the individual products. 139 

This is consistent with the fact that the greywater would be made up of a mix of these 140 

products. Consequently, the fouling behaviour of oragno-TiO2 mixtures appears to be related 141 

to the character of the organics bound to the TiO2 surfaces. Comparison between the current 142 

system and more traditional hybrid membrane reactor processes such as MBRs suggests that 143 

the MCR setup is potentially not bound to the same limitations as MBRs as it potentially can 144 

operate at significantly higher fluxes (Pollice et al., 2005; Le Clech et al., 2003 and 2005). To 145 

illustrate, an example set of data is included in Figure 1 with the fouling profile for an MBR 146 

treating greywater. At fluxes below 25 LMH the fouling rate remains low at 0.6 mbar.min-1 147 

whereas beyond this limit the fouling rate increase dramatically reaching a maximum 148 

measured value of 8.1 mbar.min-1 at a flux of 35 LMH (Figure 1). Based on an operational 149 

description, the critical flux is defined as the crossover between these phases (Brookes et al, 150 

2006) and in the current case is defined as 22 LMH which indicates an upper limit for 151 

operational practice. Comparison with literature values reveals a similar range for both critical 152 
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flux (6-32 LMH) and fouling rate (0.1-10 mbar.min-1) for operational MBR systems (Pollice 153 

et al., 2005; Le Clech et al., 2003 and 2005) confirming the potential differences between 154 

MCR and MBRs.   155 

More detailed analysis of the link between the character of organo-TiO2 mixtures and fouling 156 

revealed the dose ratio to be significant (Figure 2) with reduced fouling as the organic content 157 

within the TiO2 matrix decreased. To illustrate, in the case of shower gel as the organic 158 

source, fouling rates of 8.9, 3.8, 1.6 and 0.2 mbar.min-1 were observed at a flux of 28 LMH 159 

for dose ratios of 600, 400, 200 and 100 mg.gTiO2 (Figure 2a). A similar situation was 160 

observed in the case of systems based on conditioner mixtures where the fouling rate 161 

observed at a flux of 30 LMH was 1.8, 0.9, 0.1 for dose ratios of 600, 400 and 200 mg.gTiO2 162 

indicating that fouling can be controlled in the system by limiting the concentration of certain 163 

types of organics in the system (Figure 2b). Examples of previously reported investigations of 164 

membrane couple photocatalytic processes have focussed on dilute systems with slurry 165 

concentrations of <1 g.L-1 and low organic feeds resulting in dose ratios of 10mgdye.g-1 for 166 

methylene blue dye (Sopajaree et al, 1999), 48mgTOC.g-1 for fulvic acid (Fu et al, 2006) 167 

compared to 114-178 mgCOD.g-1 investigated here at TiO2 doses of 5 g.L-1. In dilute 168 

conditions, reaction rates have been seen to increase as slurry concentration increases (and 169 

dose ratio decreases) as an impact of enhanced mass transfer of the catalyst to the lamp 170 

although fouling is also seen to increase as slurry dose increases (Sopajaree et al, 1999). 171 

Comparison between different commercially available shower gels revealed only the original 172 

choice of product resulted in the extreme fouling pattern (Figure 3). For instance, fouling rates 173 

remained low and stable at a rate between 0.1 and 0.4 mbar.min-1 up to fluxes of 70 LMH for 174 

four alternative brands of shower gels. All five products are commonly available and range 175 

from leading brands to unbranded and environmentally labelled versions. Identification of 176 

specific chemicals associated to the observed results is difficult as exact product contents are 177 
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not available. However comparison of the ingredient lists suggests that the major differences 178 

observed are associated with the inclusion of a polymer (Palmeth 25 Acrylate copolymere) in 179 

the shower gel.  180 

Analysis of the size of the TiO2 in the system revealed that in the absence of organics the 181 

TiO2 aggregates had a median floc size of 15,000 nm and a maximum size of 120,000 nm 182 

(Figure 4) which equate to 300-2400 NP diameters demonstrating the significant role 183 

aggregation plays in the system. Analysis of the organo-TiO2 complexes revealed a 184 

significant difference with the median size altered to 290,000 nm for a non fouling component 185 

and to 1,102,000 nm (22,040 NP diameters) in the case of the shower gel that caused rapid 186 

fouling. The mixed greywater from the student flats produced a median floc size between the 187 

extremes of 130,000 nm which are much larger than previous reported sizing of organo-TiO2 188 

aggregates at around a median size of 1-3000 nm (Ollis, 2003; Choo et al, 2008). 189 

Consequently, addition of organics did not significantly alter the size of the aggregating 190 

system apart from specific products which could generate over a 7000% increase in the 191 

aggregate size. This observation is compatible with the inclusion of polymers in general as 192 

they principally act as aggregating chemicals (Henderson et al, 2009). Comparison with 193 

fouling rate data revealed a power law relationship of the form dP/dt = αd50
β with exponents 194 

of α = 0.019 and β = 0.83 at a flux of 30 LMH and α = 0.061 and β = 0.27 at a flux of 15 195 

LMH indicating the importance of aggregate size on fouling in the system.  196 

Fouling rates of the high fouling systems were reduced to a level similar to those observed for 197 

the other systems after irradiation under UV light for 16 hours, a time period previously 198 

observed to ensure complete irradiation. Similar results were observed for all three organo-199 

TiO2 complexes that caused fouling (Figure 5). For instances, fouling rates at 30 LMH 200 

decreased from previous levels of 0.3, 1.9 and 1.3 for the shampoo, conditioner and mixed 201 

greywater systems to between 0.02-0.13 mbar.min-1 after irradiation. Further, fouling rates did 202 



M
ANUSCRIP

T

 

ACCEPTE
D

ARTICLE IN PRESS

9 

not increase up to the maximum flux tested in the set up of 70 LMH (Figure 5a) confirming 203 

the previous findings of Rivero et al (2006) indicating the importance of effective treatment in 204 

the UV stage of the process if stable operation is to be achieved. More detailed analysis in the 205 

case of the shower gel system revealed a reduction in fouling rate as irradiation time was 206 

increased from 30 minutes to 120 minutes suggesting that a minimum amount of irradiation is 207 

required to treat the audit of TiO2 surface within the system. To illustrate, fouling rates of 208 

10.9, 4.7, 0.9 and 0.7 mbar.min-1 were observed at a flux rate of 50 LMH after irradiation for 209 

30, 45, 90 and 120 minutes respectively (Figure 5b). Significant fouling reduction has also 210 

been observed in a photocatalytic hybrid membrane reactor treating humic acids where a 120 211 

minute reaction time resulted in flux recover to more than 80% of the clean water flux (Fang 212 

et al, 2005). The results suggest that in the set up investigated in the current study a minimum 213 

UV residence time of 120 minutes in the CSTR tank is required to reduce fouling to 214 

acceptable levels. A key question for the future relates to understanding how much organic 215 

material must be removed from the TiO2 surface to reduce fouling. Circumstantially it would 216 

appear that almost complete removal of the organics is necessary due to the relationship 217 

between irradiation time and fouling. Ultimately, successful reactor design will need to based 218 

on an understanding of this issue to deliver the most economic technology possible.  219 

DISCUSSION 220 

The work presented in the current study demonstrates one of the barriers to implementation of 221 

hybrid membrane processes utilising photo catalysis, namely, the potential for rapid fouling 222 

due to undesirable changes to the aggregates of nano TiO2 when combined with specific 223 

chemicals. In the current case this appears to be related to the presence of polymers within 224 

some greywater products which greatly enhance the aggregation process forming very large 225 

organo-TiO2 aggregates that reduce the operating flux achievable within the system.  226 
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The exact reason for the impact of aggregate size on fouling are not currently clear but are 227 

likely to reflect one or a combination of possible effects. Larger aggregates are more likely to 228 

break when exposed to an elevated energy dissipation field (Jarvis et al, 2005) such as in the 229 

reactor or the membrane tank and hence the much larger aggregates formed with the shower 230 

gel are likely to generate significant quantities of fines which can clog the membrane pores 231 

(Jefferson et al, 2004). The larger aggregates are also less likely to receive uniform UV 232 

exposure over the whole organo-TiO2 surface increasing the risk that only a proportion of the 233 

TiO2 is photo catalysed and hence not effectively treated. At the slurry concentrations under 234 

investigation here (5g.L-1) modelled light intensity patterns suggest that illumination occurs 235 

only very close to the lamp (Pareek et al, 2003) such that only TiO2 surfaces that effectively 236 

contact the lamp will be treated. In fact illuminations effectively drops off once the catalyst 237 

loadings reaches 0.1 g.L-1.  238 

In the case of horizontal configured membranes, such as the cross flow test membrane 239 

systems used here, another factor needs to be considered in terms of the inertial lift generated 240 

by the cross flow velocity that prevents cake build up and hence critical flux. In the current 241 

case inertial lift theory suggests that all but the shower gel aggregates would lift at velocities 242 

considerably below the one used. However, in the case of the shower gel tests the inertial lift 243 

velocity is 0.154 m.s-1 which is around the actual velocity the test cell was operated at. Visual 244 

inspection during the experiments confirmed this although it is an outcome of supra critical 245 

flux operation rather than a direct cause. As stated earlier the original fouling problem was 246 

observed during long term trials with a continuously operating unit with the membrane 247 

vertically orientated which suggests that cake layer build up through insufficient inertial lift is 248 

unlikely to be the sole reason but could definitely be responsible for some of the observed 249 

fouling in the current case. 250 

CONCLUSIONS 251 
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Ultimately, whatever the mechanism of fouling, management of the organo-TiO2 aggregates 252 

is crucial for effective operation of such technologies. Given that sufficient irradiation of the 253 

organo-TiO2 complex resolved the fouling problems in the current study suggests that the key 254 

to uptake of the technology is in effective design of the UV reactor systems rather than 255 

improvements in the membrane. The challenge becomes how to ensure enough of the TIO2 256 

surface reacts with the UV light. Transmittance in such systems is generally very low and 257 

hence TiO2 particles must contact the lamp to ensure treatment. This becomes difficult when 258 

considering large aggregates of sizes in the ranges observed here as they will contain 259 

thousands of individual TiO2 particles. However, if nanotechnology solutions like the 260 

membrane photocatalytic systems are be implemented for large scale water treatment in the 261 

future solutions will need to be generated. Current systems are more suitable to small scale 262 

applications such as urban reuse of industrial water treatment where flow requirements are 263 

more manageable.  264 
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Product  Ingredients as listed 
Shampoo  Cocamidopropyl Betaine, DMDM hydantoin, Citric Acid, Tetrasodium EDTA, 

Polysorbate 20, Panthenol , Parfum, Isopropyl Palmitate, Hexylene Glycol, 
Ammonium Laureth Sulfate, Ammonium Lauryl Sulfate, Ammonium Chloride, 
Hydroxypropyltrimonium, Hydrolysed wheat Protein, Tocophenyl Acetate, 
Triamine HCl, Ascorbic Acid, Sodium Cocoyl Isethionate, Sodium 
Lauroaphoacetate, Sodium Methyl Cocoyl Taurate, Dimethicone Bisamo, 
Hydroxypropyl Copolyol, Quaternium 80, Polyquaternium 7, PEG 18 
glyceryloleate/cocoate, Sodium xylene Sulfonate, Magnesium Chloride, 
Magnesium Nitrate, Propylene glycol, Triethanolamine, PEG 60 hydrogenated 
castor oil, Methylchloroisothiazolinone, Methylisothiazolinone 

Bubble bath  Cocamidopropyl Betaine, Sodium Chloride, Sodium Sulfate, Citric Acid, 
Tetrasodium EDTA, Parfum, Glycerin, Benzophenone 4, Iodopropynyl 
Butylcarbonate, CI 74160, Cocamide DEA, Methyldibromo Glutaronitrile, 
Phenoxyethanol, Hexylene Glycol, CI 16035, CI 19140 

Hand soap  Sodium C12‐C13 pareth sulfate, Cocamidopropyl Betaine, Sodium Chloride, 
Lauryl Polyglucose, Sodium Sulfate, DMDM hydantoin, Citric Acid, Tetrasodium 
EDTA, CI 17200, CI 42090, Parfum 

Conditioner  DMDM hydantoin, Citric Acid, Tetrasodium EDTA, Cyclopentaxyloxane, 
Stearamidopropyl diethylamine, Cethyl Alcohol, Quaternium 18 Stearyl alcohol, 
PEG‐2M, Cethearyl Alcohol, Polysorbate 60, Benzyl Alcohol, Panthenyl Ethyl 
Ether, Panthenol, Dimethicone, Hydroxyethylcellulose, Glyceryl Stereate, Oleyl 
Alcohol, Parfum 

Shower gel 1  Sodium C12‐C13 pareth sulfate, Cocamidopropyl Betaine, Sodium Sulfate, 
DMDM hydantoin, Tetrasodium EDTA, Parfum, Acrylates, Palmeth 25 Acrylate 
copolymere, Glycerin, Isopropyl Palmitate, Benzophenone 4, Iodopropynyl 
Butylcarbonate, CI 74160, Methylchloroisothiazolinone, Methylisothiazolinone, 
Decyl glucoside, Formic acid, Lactic acid, Sodium hydroxide, Limonene, Benzyl 
Salicylate 

Shower gel 2  Cocamidopropyl Betaine, Sodium Chloride, Sodium Sulfate, Citric Acid, 
Tetrasodium EDTA, CI 42090, Polysorbate 20, Parfum, Polyquaternium 7, 
Propylene glycol, Sodium hydroxide, Formaldehyde, Sodium benzoate, 
Ethoxydiglycol, Sorbic acid, Chamomilla Recutita, Hamamelis Virginiana, Humulus 
Lupulus, Methylparaben, Rosmarinus Officinalis, Thymus Vulgaris, 
Propylparaben, Cl 47005 

Shower gel 3  Sodium Chloride, Sodium Sulfate, Citric Acid, Tetrasodium EDTA, CI 42090, 
Parfum, Glycerin, Methyldibromo Glutaronitrile, Phenoxyethanol, Hexylene 
Glycol, Sodium benzoate, Lauramidopropyl Betaine, PEG‐7 Glyceril Cocoate, 
Disodium Lauramido MEA‐Sulfosuccinate, Guar Hydroxypropyltrimonium 
Chloride, Sodium citrate, Disodium phosphate, Cl 19140 
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Figure 1: Fouling rates for different products (3 g.L-1). 
Figure 2: Influence of the concentration of (a) shower gel and (b) conditioner on fouling rates. 
Figure 3: Fouling rates for different shower gels (2 g.L-1). 
Figure 4: Particle size distribution of the TiO2 flocs in different solutions 
Figure 5: Influence of UV illumination on fouling rates. 
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