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ABSTRACT 

This thesis introduces new conforming and non-conforming finite elements for the 

static and dynamic analysis of rotating composite layered plates and shells. The 

elements consider parabolic distributions of transverse shear stresses, and based on 
Lagrangian and Hermitian shape functions. They can deal with variable thicknes" 

distributions as well as uniform distributions, and they are fully capable to deal with 

rotating plate and shell structures, i. e. centrifugal stiffening and Coriolis force effects 

are considered. Natural frequency analysis, forced vibration analysis, and flutter 

analysis of composite layered plate and shell structures, employing those elements, 

have been investigated. A computer programming package based on the de%'cl()I)c(l 

theory was designed, and it is machine independent and user friendly. A modular 

approach was adopted in the package structure to allow any further development to 

be considered. Efficient frontal solvers were adopted in the package for different 

types of analysis. The developed package has been successfully validated on a main 

frame computer (VAX), Unix workstations, and personal computers. Several case 

studies were investigated and the results obtained were compared with corresponding, 

published theoretical and/or experimental work. The package has proved to be a% crý 

useful tool for the design optimization of composite layered plates and shell', llý 

means of using different fibre angles for different layers so as to achieve the required 

strength and/or stiffness. 
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CHAPTER I 

INTRODUCTION 



1.1 GENERAL INTRODUCTION 

The need for stiffness and strength combined with low density has led desioncr" of 
military and commercial aircraft, aerospace industry, sports equipment and cm-" to 
turn to composite materials. Composites that meet the added requircrilent ol 
resistance to high temperature are found in jet engine turbine hlade,, ' and inksile nosc 
cones. Wherever advancing technology has created a need for cornbimilloll" of 
properties which no single material can provide, composites are hecorning, the 

material of choice. 

Composites are a strategy for producing advanced materials that take ad% anta-c of Z: ) Cý 

the enhanced properties of fibres. A bundle of fibres as such. has little , tructurýd 

value. To harness their strength in a practical material, the desiOnel, of Ia compo,, itc 

material embeds them in a matrix of another material. The matrix ýict,,, &, an 

adhesive, binding the fibres and lending solidity to the material. It also protects the 

tibres from environmental stress and physical damage that could initiate ci-acks. 

Composite materials are usually classified within three types; particulate compositc, " 

which consist of particles of reinforcing material in a matrix sucli &,, coi-ici-ctc, hbrous 

composites which consist of reinforcina fibres in a matrix such as glass or boron L- - 

fibres in an epoxy matrix, and laminated composites which consist of' bonded 

composite layers. 

The type of composite most commonly used in automotive and aircraft structure', iI% 

ilic laminated fibrous composites. These involve fibrous compo,, itc,, and thc 

lainination techniques. Layers of fibre reinforced materiak are bLult-up %\ ith the hhrc 

dlrcction M cach laycr orici-ited in ýt different direction to , 7,1\c the dc,, ired tiffricss 

and sti-cngth in the various directions. When the constituent materials in cach laý-er L- - 

are the sanic, the laminated layci-s are called "laminates". but if they arc different. the 

laminates arc then said to be "hybrid lai-ninate,, ". 



3 

The reinforcing fibres in the fibrous composites should de,, Irahl\ ha% c the follo%N it'Ll 
properties: 

high modulus of elasticity to give efficient rein forcernent 

high ultimate strength 

low variation of strength between individual t'ibrc,, 

stability and retention of strength during handling and t'abrication 

uniform fibre cross-section. 

The matrix is used with the fibres together to form a structural element capahIc ol 
withstanding loads and is usually required to: 

0 bind the fibres together 

0 transfer the loads to the fibres 

stop a crack from propagating straight through a of f'lhi-c,, t) L- "I CN 
0 be chemically and thermally compatihIc \\ itli the l'ihi-c,,. 

The mechanical behaviour of a fibrous composite is also governed, not only hy the 
fibres alone, but by the synergy between the fibres and the matrix. Tlic ultimate 

tensile strength of a composite is a product of this advantageous combination. For 

example, when a bundle of fibres, without a SUrrounding matrix, is stressed, the 

failure of a single fibre eliminates it as a load carrier. The load Carried hý that t'11)1-e 

shifts to the remaining intact fibres, moving them closer to failure, but if the hht-c,, 

are embedded in a matrix, a fibre fracture does not neccssarilý end the mechanical 

strem)th function of the broken fibre. The reason is that matrix materials are Usually 

ductile, and as broken ends of the fibre pull apart, elastic deformation or plastic flow 

of the matrix exerts shear forces which gradually build stress back into the t'ragnient". 

The load on the surrounding intact fibres therefore increases less than it would in the 

absence of the matrix and the load carrying efficienc) of the conij)(),, itc k tlici-cl'ore 

Improved. 

The basic types of finite elements available in the literature for the analý,, P, ol'platc,, 

and shells arc SLImmarized as follows: - 
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Kirchhqffltype elenients 
These are based upon Kirchhoffs plate-bending theor\, in which tran. "%CI-, C 
stresses are ignored, and normak to midplane of the plate before del'on-natiOn 

remain normals after deformation. The element interpolation is based upon 
Hermitian shape functions, where the slope continuity i" partiall), ()I- ftfllý' 

maintained, and may be called nonconforming or confori-ninCr clenicnt" 

according to the fulfilment of that condition. Such clenients nia\ he 

employed for thin plates, but they are not accurate for thick plateý,. 

01) Mindlin-tYpe elemews 

These elements are based upon Mindlin's plate-bendnig, thcoi-y, ill wilich 

transverse shear stresses are considered, as average valUCs along the thicki-ic.. "'s, 

and normals to the midplane of the plate before deformation are assuilled to 

stay straight lines but they are not necessarily normal to the midplailc aftel- 

deformation. Such elements are based upon Lagrangiaii shapc I'Lilictiolls, aild 

suitable for moderately thick plates. Nonetheless. it' thcý are cniploý, cd fol, 

thin plates, they may become over stiff due to the shear locking pheiloilleiloil, tn 

and an appropriate reduced integration scheme might be invoked. 

It is advantageous to have plate-bending finite elements which considel- tran"vcl-'e 

shear stresses based on the parabolic distributions of Reissner (Rei. "sner, 1945), ancl 

to make them valid for thin and thick plate,,, and plates with variable thickiic,,,,. 

1.2 INTEGRITY OF ROTATING TURBOMACHINE BLADES 

A vital component in modern gas turbines is turbomachines. which are axial or 

CCIItI-ifLI0al compressors and turbines. and the critical part of a turbornachine i" the 
I 

blades, which arc not only subjected to acro(lynai-nic forccý,, but the\ arc al,., () rotating 

with vcr\ high speed,, that umicratc large Inertial 1'()i-cc,,. Blaclcý, arc c\cltcd, or 

,, uhJected to forced vibrations. due to fi\cd wake or , tationary I-lo%\ c1ptui-haiice 

c\citations, which arise from vancs or spokes (stator bladcý, ). A,, the rotating bladc,, 



pass through these wakes the aerodynamic forces are reduced CaUsini-, the blades to 
be subjected to pulses, the frequency of which is equal to the number of'wakcs time" 
the speed of rotation. Wherever this frequency is equal to one of the natural 
frequencies of the rotating blades, resonance occurs, causing %cr\ large amplitude, 
which may lead to blade failure. Hence, it Is essential for the integrit\ as"C""111clit ol - 

rotating blades to evaluate their natural frequencies and to bc sure that -, criou,. 

resonance will not occur within the operating speed of the blades. 

Rotating plate or shell structures usually become stiffer with the inci-casc of the 

rotational speed, and the inertia forces which act on the rotating structure CýILISC thl'. 1 L- 
extra stiffness, which is known as the centrifugal stiffening. The natural frequeiicy t) - 
is usually increased with the increase of the rotational speed, or with the illcrcasc ot' 

the centrifugal stiffening. On the other hand, the natural frequencý, may be dccrca,, cd 

with the increase of the generated damping, which is known as the Coriolis effects. 

Engineering components such as compressor blades and gas turbine blades ai-c 
designed nowadays from composite layered materials. It is not casý,, to I'llid a 

commercial finite element package with efficient finite elements that can deal with 

such components. 

1.3 FLUTTER PHENOMENON 

Aeroelasticity is the study of the effect of aerodynamic forces on elastic bodies, such 

as aircraft wings or compressor blades. The classical theory of elasticity deals ýý'Ith Z7) 

stress and deformation of an elastic body under prescribed forcc. " or displacement,,. 

For such a case, the external loads acting on the elastic body are, in gciicral, 

independent of the deformation of the body, and it is usually assumed that the 

deformation is small and has no great effect on the values of the external f0rcc". III 

the problems associated with bending and buckling of plates and shell,,, the cxtcl-llal 

loading and the boundary constraints are usually considered as, pre"cribed parallictcl-". 

However, the situation is quite different when such structure,, are in-imer,, cd M hiýgh 
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speed flows, since the generated aerodynamic forces depend fulk on dic deformed 

shape of the structure in the flow. 

One of the aeroelasticity problems is the stability. or rather the instabilIt\, of a 

structure in a flow. For a given initial shape of an elastic structure. the aerod\ lial-nic 
force increases rapidly with the flow speed, and there ina\ exi"t a critical How , pecd 

at which the structure becomes unstable. Such instability ma\ caU. "C C\cC,,,, [\C 
deformation, and may lead to the destruction of the structure. 

The interplay of aerodynamic, elastic, and inertia forces IS usual]\ callcd fluitcr or 

dynamic aeroelastic instability. If a structure is excited with ari cxteriial forcc Iii the 

presence of no flow the structure will oscillatc and the oscillýitioii %% III ckunp 

gradually. With the presence of a flow, the ratc of dainping of tllc oscillatioll 11W\ 

increase at low flow speeds, and on increasing the flow speed, a point %vIII be 

reached at which the damping rapidly decreases, and the oscillation can 'List niaii-itairl 

itself with a steady amplitude. This speed is known as the critical flutter ", I)Ccd, and 

at a speed of flow just above that critical speed, a great violent oscillation will be 

trii, ocred, at any si-riall disturbance to the structure, and the structurc is sýiid to 

flutter. 

The full aeroelastic and flutter analysis of a practical aerodynamic enginccring 

component is based on computational fluid dynamics coupled with . structural 

mechanics, and hence it requires enormous computational resources. Siniplifiect 

analysis may be possib1c, if the generated aerodynamic forces due to structural L- 
deformation can be mathematically modelled. and inserted in a , trUCtural 

I)i-()ccdLire. 

1.4 OBJECTIVES 

The basic ob_jcctiN, c,, of this work are SUrnmarized &, folloN\ S: - 

(i) Derivation of ncw finitc clemcm,, for , tatic and dynamic analyp, oi 
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composite layered plates and shells. The clements will .: oiiidcr pal-aholic 
distributions of transverse shear strcs. ses. and based on Lagrangrian and 
Hermitian shape functions so as to be very accurate for a wide ran, -, c of' 
thickness. Uniform and variable thickness distributions will ako he 
considered. 

(11) The elements will be fully capable to deal %vith rotatin,,,,, structurc,,. ix. the 

centrifugal stiffenin, (, and Coriolis force effeck wd] be considered. 

The elements will also consider aeroelastic effects for composite laý ci-cd 
panels in supersonic flow. 

(iv) Static stress analysis, natural frequency analysis, forced vibration anal\-,, I,,,, and 
prediction of resonant frequencies for rotating blades made of compo,, ite 
layered materials, together with flutter analysis aiming ýit predictingy the 

critical flutter boundary conditions, are to be con,, idered. 

(V) A computer programming package, based on the developed theory, wIII be 

designed. The package should be machine independent and u,, ci- friendly. A 

modular approach should be adopted in the package structure to allow am, 
further development to be considered. Efficient frontal "hould he 

included for different types of analysis. 

(\' 1) The developed package shOLIId be properly validated and te, ýtcd on main 

tI rarne computers (VAX), Unix workstations, and personal computcr. s. Casc 

studies with existing theoretical and/or experimental results, will be employed 

tor package validation. itý 

(v 11) Exploring the potential of the package for being a useful tool for the 01)HIM1111 

design of plate and shell structures made of composite la\ered material,,. 

1.5 SCOPE OF THESIS 

Literature i-c\'icN\', which co\, ci-, s cxisting, theories on the analysis (if platc and , Iicll 

Stl-LlCtLIl-CS made of compositc materials, and flutter anak si,, of panek Ill ý, LIJICI-1,0111C 
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flow, is presented in chapter 2. with a summary ()t'the conclusion', reý'Lilting froill the 
review. 

Chapter 3 describes the basic theory for the analysis of composite layered plates and 
shells, with explanation of the constitutive equations for laminated composite platc, ' 
and shells. 

Chapter 4 gives the details of the original formulations of the finite clemcm 

equations for the new higher order elements, derivcd for rotatiiicy composite la\ ci-cd Cý - 
plates and shells, and flutter analysis applications. 

The finite element analysis techniques are summarized in chapter 5, and the detailed 

structure of the finite element programmino package v,., (-, i\, cn in chapter 6, %ýItli 1ý7 t: ý - 
coloured illustration of each package module structure. 

Chapter 7 is dedicated to the description and discussion of the result', of a number 

of case studies employed for the validation of the package and study of its full 

potential. The final conclusions and some recommendations for future work are 

summarized in chapter 8. 



CHAPTER 2 

LITERATURE REVIEW 
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2.1 FINITE ELEMENTS OF PI. ATESANDSHELLS 

The stress analysis theories of plate bending problems began as early a,, the Ný 

century. Sophie Germain and Lagrange used a mathematical thcor% In 1, sl I for the 

stress analysis of rectangular plates, and some ý'ears later niany nanic,, appearcd in 

this area, such as Navier, Poisson, Cauchy, and Kirchhoff (Todhunter and Pear,, on. 
1986). 

Analytical solutions of plate bending problems are limited to ca.. scs ýý ith "Inipic 

geometrical shapes, simple loading, and boundary conditions, such as the wel I- know 11 

Navier solution for simply- supported rectangular plates, (Love, 1944 and Tinlosheliko 

and Kreiger 1959). 

Turner et al. ( 1956) introduced a new method, based upon matrix method,, 1'()I- 

structural analysis, in which the in-plane plate problems %%'cre solvcd b\ dividino, or 

discretizing the domain of the plate into sub-domains of triangular shapes. The"c 

were known later as the three-node triangular in-plain finite elements, but the fIr'. t 

to use finite element terminology was Clough (1960) 

Mclosh ( 1963) introduced sorne basic conditions for the derivation of ýICCL. Iratc hilitc 

c1cincrits, and deri\, ed the element stiffne,, s matrix of the 4-node non-conforinincy L- 

rectangular plate bending element. The first conforming rectangular element wa" 

developed by Bogner et al. (1965). Since then an enormous number of publication,, 

clealino with finite element analysis of plates and shells havc appeared iii the 

literature. 

A large number of finitc clement tcxt book,, have been l)LIblj,, hed "Ince tile 

appearancc of the finitc c1cinciit method, and maný (it' thwc contain the detail, of the 

basic types of plate bending clernents, Kirchhoff and Mindlin clemcnts, , Lich a" 

thosc by Zicnk-ic%vicz ( 1977), Hinton and O\\ cii ( 1984). Irow, and Ahmed (I 

cook (1981). Fl-Zafrany (1994). and many others. 



In the field of derivation of different types of shape functions, w1i1ch are nece", ary 
for the finite element technique, El-Zafrany and Cook-son (1985) ijItj-()duced an 
explicit expression for the one-dimensional Hermitian Interpolation problern %% Ith 
arbitrary nodal derivatives, which can be used for the derivation of Hermitian "hapc 
functions. Later, EI-Zafrany and Cookson (1986b) introduced a general theor% 1'or the 
derivation of quadrilateral finite element shape functions, and the theory can deal 

with the Lagrangian and Hermitian shape functions for uniform and boundary- 
described elements. An engineering approach to the derivation of Lagrangian and 
Hermitian shape functions, was introduced by El-Zafrany and Cook"on (1 1)8'6a), lol- 
boundary described triangular elements. 

Many publications, which have appeared recently, are dedicated to the dcl-ivation of 

accurate theories and elements for thick plates. A higher-order shear dcforimit'011 

theory of plates was introduced by Reddy (1984a). This thcoi-\, account'. foi- thc 

parabolic distribution of the transverse shear strains through the thickric"', ofthe pkitc 

and predicts deflections, stresses, and frequencies accurately thaii the fil-"t-ordel- 

theory employed in the derivation of Mindlin elements (Hinton ei al. 197ý). 

Basar and Ding (1990) developed a finite-rotation element for the non-linear analy. "i, " 

of thin shell structures via the displacement formulation. This formulation starts 1'roill 

a consistent finite-rotation shell theory, which is transformed by a variational 

proccdure into an incremental formulation. Thus, the geometrical non-lincarit\ call 

he treated by an incremental-iterative technique. A new plate bending trianpilar 

element with discrete constraints has been introduced by Zienkiewicz et (11. (1990). 

A good review of thin shell finite elements and some applications was pre"ctitc(l h\ 

Yano et al. (1990). This was an attempt to review the advaiices of the formulations 
Z- 

for thin slicil finitc c1cments in the form of flat plates. axisyrninctrical , Iicll,, alid 

curvcd shells. The discrete Kirchhoff theoi-N, shell element,, and the dc, -, ciicratcd shc1l 
II 

clernents xN, ci-c discusscd. This survcy was further Illustrated witli , oiiic e\tcii,, iO'1, s 

and applications to cascs such as static and dynamic rcsponscs, , tatic and dý nainic 
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bucklings, laminated composites, random loadings and structUral and material 
properties. 

Shi and Voyiadjis (1991) introduced an element which reduced the lour-node 
quadrilateral C" plate element to a three-node triangular element automaticalIv. The 
element formulation is based on the updated Lagrangian formulation. the L_ on Karnian 

assumption and the quasi-conforming element method. 

Cofer and Will (1991) introduced a three-dimensional, shell-, olld tran"ItIon element 
for general nonlinear analysis. This element can connect cur\cd shell clement, to 
isoparametric solid elements, and one of its edges is modellcd &, a solid facc that k 
compatible with solid elements, while the remaining edges are compatible with cight- 
node shell elements. Such an element can be used to model complex situations, foi- 

example when analysing welded connections. 

A higher-order linear theory for isotropic plates was Introduced by Blocki ( 1992). 

This theory was developed by refining the linear theory of isotropic plateS HISHIL, bI 
estimates of the strain field. The accuracy of the strain encroy in this theory P" of the 

order (hlL)4 where h is the plate thickness, L is the wave length of the deforination 

pattern, whereas the plate classical theory has accuracy of the order (hlL)2. 

Ramm and Buechter (1992) introduced a comparison study between the shell tllcol-ý 

\'ci-sus degiciierated solid approach, and they have shown that both forMUlations dift'cr 

only in the kind of discretizations if they are based on the same inechanical 

assumptions. The other part of their study was concerned with the lai-gc rotatioii 

[orInUlations for shells, where the formulations were based on purely (gcoinetricA 

considerations. 

By using- the Ritz method. Nl,: Gcc ct al. ( 199-1) determined ý1,.: CLH-atc iiawral 

l'rcqucncic,.,, of , kc%\-cd cantilevcred thin platc. The author,, (4 thi,, papcr ako 
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presented vibration study for the effects of ýtre. ý. ý sinýcrularltic,, at the reentrant comer 
of skewed plates. 

The approximation between the displacement vector and the finitc , traiii tcii,, ()i- Ila, 
been analysed by Sacco ( 1992), and he also proposed a new nioderate 1-olatioll 
theory. In his work the non-linear differential equation problem was , ()I%, ed hý 
deriving the goveming equations for the beam and the plate problems then an 
iterative numerical procedure based on the finite element method and tile "ccalit 
stiffness matrix was developed. 

Onate et al. ( 1992) re-interpreted the good behaviour ot' , licm- constraIncd Rc", ', "er- 
Mindlin plate elements for thick and thin plate situation. " and obtained i simple 

explicit form of the substitute shear strain matrix. This paper jLI, "t rc-forl-nUlated , ()Illc 

well known quadrilateral plate elements and some triangular plate elements. 

Yuqiu and Fei (1992) presented a universal method which cai-i be Uscd to gciicrah/c 

thin plate elements to thick ones without adding any cxtra dcui-cc of fi-ccdoin. Thc\ 
I- 

also constructed a rcctangular moderatel\, thick platc c1cmelit \ý ith 12 dc, -'I-cc,, oI 

freedom. 

Zhongnian (1992) introduced a simple triangular finite clement for platc bendiii(l C7 
applications. This element has three nodes with three basic degrees of freedom per 

node and two internal rotation degrees of freedom. 4: ) 

Gchhardt and Schwei/cHiol' ( 1993) pre,, cmed the possible discretizatioii cn, oi-, %\ heii 

Reissncr-Mindlin shell elements with bilinear shape functions ai-c u"cd, and the 

modifications to prevent such errors. They also discussed the methods to prcvcnt the 

membrane locking with low order Reissner-Mindlin elements. 
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A recent paper by Karakostas and Talaslidis (1993) mtroduced a trlam-, ular ( 
bending element. This element avoids coupling of bending and transverse shear and 
the appearance of excessive shear energy. 

2.2 COMPOSITE LAYERED PLATES AND SHELLS 

Composite materials have increasin(ily been accepted as suitable inaterial" In tile 

high-performance but weight- sen s itive structures such as space vchicle', and 

automobiles. This is mainly due to the high strength to weight and high stiffness to 

weight ratios, which is offered by composite materials. Since laminated composite,, 

are made of different material layers, material properties are discon(InUOLIS through 

the thickness. The miss-match of the material across the larninate Interfaces, bending, 

stretching and coupling makcs the analysis of cornpositc structures %-cr\ coniplicatcd. 

There are a number of finite element publications for composite material', reported 

in the literature, most of which involve the static analysis. Epstein and Huttelmaicr 

( 1983) presented a finite element formulation for the analysis of multilayered thick 

plates, where the transverse shear and normal strains were considered. Widera and 

Mouniene (1984). used an eight-node isoparametric quadrilatcral shell element, which Z: ) 

included the effect of transverse shear strain, in the analy,, I,,, of laminated platc,, and 

shells. 

In the area of dynamic analysis of laminated structures, Has and Wmiu (1970) 

presented an analytical approach to the analysis of laminated cylindrical shells. TIIC. \ 

ignored the Kirchhoff hypothesis of non-deformable normals by including the incrtia 

terms in the equilibrium equations. Witt and Sobczyk (1980), Lli'-, CL1s,, cd the d) 11ainic 

wsponse of laniinated plate,, to randon-i loading. PilLi.,, cli ct al. ( 1983), aiwlý,, cd thick 

laminated plate,, with a finite element model based on a three-dinicil"ional clenlent 

rather than plate theory. 

The asSLIIIIptiOll that displacements are linear function,, of -. the coordinate in the 

thickness direction, has proved to be inadequate for predicting kirnimite 
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response. Therefore many higher order theories incorporatin-L, trans\-cr,, c 11c, 11- , tj-ýIin,, 
have been proposed for better accuracy. Nelson and Lorch (1974), u,, cd up to , ccond 

order terms of z i. e. Z2 in their displacement field. 

Reddy (1984b, and 1985) introduced a refined nonlinear theor% of plate', with 

transverse shear deformation, and a simple higher order theory foi- laimllatCd 

composite plates. The deduction of two-dimensional theoric,,, froni the thrcc- 

dimensional theories in a transversely isotropic body was presented hy Wang ( 1990). 

Chornkwah and Avula (1990) presented also a high order theory for laminated 

composite plates with shear deformation using the Lagrangian multiplier tMilliCILIC. 

Analytical solutions for displacements and stresses in composite laniiiiates are 

developed by Barbero et al. (1990), using the laminate plate them-N of Reddý 

(1984b). 

Chang et al. (1990) advanced a Lagrangian formulation for large translation and 

rotation analysis of deformable rectangular homogeneous plates. They included the 

coupling effects between bending and stretching, in the finite element analysl" ot' 

homogeneous plates. 

Wung and Reddy (1991) presented a first-order shear/fourth -order tralis%ci-, c 

deformation theory for laminated composite plates. Kabir (1992) introduced all 

analytical solution to a moderately thick simply supported rectangular plate, subjected 

to transverse loads, and his work considered Reissner and Mindlin Theories (Reissner 

1945, Mindlin 195 1). 

A recent theory was introduced by Tessler (1993), who derived a m'o-dirnensional 

laminated theory for linear elastic analysis of thick composite plate', witil tllc 

equivalent single-layer assumptions for the displacements, trans\'crse shear ý, train, and 

transverse normal stress. 
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Cho and Parmerter (1994) devolved a three-node non-conforming triangular hcnding 
element, with five degrees of freedom, for symmetric laminated conipo"Ite". Tile 
derivation of this element is based on a higher order plate theory devolved earlier by 
the same authors. 

With the advances in digital computers, the FEM has become ývidcly Liý, cd in the 
analysis of many engineering components. A number of commercial conIPLItcr 
packages are widely used nowadays, such as ANSYS, NASTRAN, PAFEC and 
ABAQUS. Each of those packages contains several types of elements and performs 

static, dynamic, and heat transfer analysis for isotropic and composite material,,,. 
Some other packages have additional capabilities, i. e. prcpr()cc,,,, ing wid 

postprocessing with graphic tools, such as I-deas. Nevcrthelcss', it was i-iot pos,, iNc 
to find any publication or commercial finite element package that can deal with static 

and dynamic analysis of rotating composite layered plates and shells of variabic 

thickness. 

2.3 PANEL FLUTTER 

It has been noticed since the second world war that wings and control "Url'acc.. " of 
high speed aircraft are most unstable, aeroelas tic ally. Ashley and Zartarian (1956) 

introduced a method, based upon the piston theory, for calculating the aerodynamic 

loads on a surface, on which the local pressure generated by the body's motion is 

related to the local normal component of fluid velocity. 

A progress has been made in applying the finite-element techniques to d\ 11aillic tý w 
elastic problems. As early as 1963, Leckie and Lindberg (1963). Archer (1963. 

1965), and Argyris (1965) presented a major development in distributing the rnas,, 

o\, ci- each element for beam vibration problems. Further applicatioil" to plate 

\'ibrations have been criven by Lindbercy (1963). Zienkiewicz and Cheunc, ( 1904). t: ý L_ 1ý7 

Guyan (1965), and Daxvc ( 1965). 



17 

Panel flutter is a self-excited oscillation of a plate in , uper,, ()nlc flow. It dlt't'ci-,, troni 

wing flutter only in that the aerodynamic force resulting from the aii-tl()%\ act,, on one 
side of the panel. The finite element method was first applied to two-dirnell"Wrial 

panel flutter by Olson ( 1967). who showed that only a t'e\\ clenient, were rcClUired 
to yield completely satisfactory results. Later the same author (Olson 1970) c\tcnded 
his method to three-dimensional applications using both rectangular and triangular 

plate bending elements. 

Simultaneously but independently, Appa and Somashekar (1969) formulated the 

aerodynamic matrix for a 12 degrees of freedom rectantc: yýuktr plate elenicnt. Appýi ct 

al. (1970) extended the work to cover skew panels and yax\ed flow hy nican" ol 

coordinate transformation. 

Dowell (1970) reviewed the aeroelastic stability of plates and shell. ý'. His work hcoi 
'"Is 

with the simplest geometry; flat, unloaded plate, and proceeds to niorc complicated-, 

the cylindrical shell. In his review an attempt was made to differentiate betwecii what 

is known beyond a reasonablc doubt, what is guessed, and what Is unknown, ill this 

subject. 

Sander et al. (1973) employed a conforming quadrilateral plate finite clement I'm- b 

flutter analysis of rectanclUlar panels with yawed flow and in plane ýtreýscs. In all of b 
the precccling finite element work the linearized piston theory was employed, and the 

ali-Flow Mach numbers were above 1.6. 

A finite clement formulation and a solution procedure were dcvc1opcd hy and 

SU11CY (1977) for flutter prediction of rectangular panels with one Surface cxposcol to 4n 
three-dimensional Supersonic potential flow. In that work the aerodynamic niatri\ i,, 

hased on the numerically computed velocity potentials, and the cffect ()I' in-plane 

1'()I-CC, S is Included. Rao and Rao ( 1980) invcstioated the laroc-aniplitude '-, Upel"ý, 0111C 

flUttCr 01' MO-C11111CII-SIOnal I)ancls with cnds claý, ticilly i-cstrained again,, [ i-otatIO11. 

DU111"Unctji (1 (), -, '0) prescmcd the theoretical cowidcration,, of lincai- pancl HUttCl- 
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Sarma and Varadan (1988) derived the finite element croverning equation', f'or 

nonlinear panel flutter from energy considerations hY usin(I gian cquatioii the Laaraniz* 

of motion without any approximation. He adopted two solution approaches to Nk)l\e 
the nonlinear panel flutter equations. The first approach con. "idei-S the nonlincai, 

vibration mode as the startinL, point, whei-ca.,, the second approach C()11', Idcl-, tile 
linear panel flutter mode as the starting point. 

Recently, Gray et al. (1991) extended the finite element method to Invc, 'tI-,., Tatc the 

limit-cycle oscillations of two-dimensional panek subjected to h\ pci-sonic flmý 

described by a third-order piston theory aerodynamics 

A finite element frequency domain method for predicatincy nonlincar Huttcr reNpoiisc 

of panels with temperature effects was presented by Xue and Nlei ( 1993). Tllc\ 

formulated the element nonlinear stiffness for a panel under combined thermal and 

aerodynamic loads from the principle of virtual work, considering \, on Karnian", 

large deflection plate theory, the first-order piston theory aerodynamic". and (lic 

quasisteady thermal stress theory. 

Bisi-narck-Nasr ( 1993) presented a finite element analysis of the supersonic I]LlttCl- ()I 

cylindricalýy curved panels based on Reissner's two field variational principle. 

As result of their superior strength-to- weight and stiffness-to-weight ratio". ý11-1 t) Z-: ý 

compared with conventional materials. composite materjals havc been widelý wcd 

iri aeronautical industries. However, to usc them efficiently a good understanding ol' Z7) - 

flicir structural and &'namlc beha\'IoLir undcr various loadii-ig conditions iý, i-icedcd. 

Srinivasan and Babu (1987) investigated the free vibration and flutter of laminated 

quadrilateral plates with clamped edges. In this paper the differential cquation of 

motion was solved by the LISC of an integral equation technique. 
I 

L- 
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SI. hiau and Chang (1991) employed the finite element method to , tud-% the Ilutter 
characteristics of composite panels on multiple supports. 

Lee and Cho (1991) analysed the flutter phenomena for a composite plate in 

supersonic flow by the finite element method, and their anal%, 'is %va,, hased oil thc 

shear deformable theory. They also obtained the effects ofthe geoifletrlcýil shalle. dic 
flow direction, and the fibre orientation on the flutter boundaries lor trapezoidal 

composite plates with simply supported and clamped edges. 

Namini (1991) developed two elements for finite element modelling,, the t"i-st cicnient Z-1 
formulation was developed with shape functions identical to those Li.. Scd for a thi-cc- 
dimensional space frame element, and the second element had a luniped k)rinulatioti, 

which simply assigns one-half of' the overall load to each nicinher cnd. 

Jacquet-Richardet and Henry (1994) presented a general coupling formulation t) zn 
Suitable for the flutter analysis of rotating blades. The aeroelastic displacements 

written as a linear combination of a number of undamped modc" leadii-ig, to a 

complex eigenvalues eigenvectors problem. In this woi-k the blade clýnaniic 

displacements were modelled by using the finite element method. 

Thci-c are a number of text books useful for the study of the governing equations of 

aeroelasticity and flutter, such as Fung (1955), Bisplinghoff et al. (1955)' tz) 
Bisplin(yhoff and Ashley (1962), Dowell (1975), Dowell et al. (1978). and Dmvell 

and 11(yamov (1988). 4: 5 

2.4 CONCLUDING REMARKS 

Important remarks have been ascertained from the literature search. and they are 

SLImmarised ncxt: - 
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0 There is an enormous amount of publications deallng \ýIth linear and non- 
linear static and dynamic analysis of thin and thick i,, otrk)j)ic and 
layered plates and shells. Nevertheless, to the be,, t of the author*,, knowledze 

there is no element in the literature, which can deal efficiemly with the "tatic 

and dynamic analysis of rotating plate and shell structui-c" made ofcompo"ite 

layered materials, i. e. considers the centrifugal stiffening. and Coriolis I'orcc 

effects, and deals accurately with thin and thick structures aý, , uch. 

0 The simplified piston theory is up to now, the main , ()Lii-cc I'or niodellim-, dic 

governing equations of aeroelastic effects for panels placcd in sUpersoilic 

flow. 

0 Conforming finite elements are more accurate than non-coiiforniin-g clenients 

for the analysis of panel flutter. 



CHAPTER 3 

BASIC THEORY FOR THE 

ANALYSIS OF COMPOSITE 

LAYERED PLATES AND SHELLS 
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3.1 STRESS-STRAIN EQUATIONS FOR CO'MPOSITE 
LAYERED PLATES AND SHELLS 

A composite layered plate or shell usuallý- con,, i,,, ts ot'a number ofla\ ers (. %', ) bonded 
firmly with each other. Each layer is a lamina and it Is flat for plates and curvcd for 

shells, and it represents an assemblage of reinforcing fibres in a supportino isotropic Z--1 
matrix. From a macroscopic scale, the layer is considered homogeneous and 

orthotropic. The material properties of the layer are defined with respect to the 

material principal axes x\, y\, Z\ such that : 

The Z\ axis is normal to the midsurface of the laver. 

0 The X\, y\ axes are normal to the z\ axis, in another word Hicy ýu-c in the 

midplane of the layer in case of plates and tangential to the midsurface ot'the 
layer in case of shells. 

The material properties which are required for an elastic analysis are: - 

directions i EEE Young's moduli in the x\ -cspectivcly. y 
V\ V\ V\ Poisson's ratios, with respect to x, N, axes. XY I YZ 5 ZX - 

') -- 

Shear moduli, with respect to X\, j, \, Z\ axes. IIXY 5 Pyz I PzX 

The stress and strain states at any point inside a layer may be defined in terms of the 

t ollowing engineering stress and strain vectors: - 

a= cyx ay oz T'ICY 'r-NIZ Tzx 

E= JE, 
v 

EYEz -Y. V-Nl 7YZ 7zxl 

and for an orthotropic layer, the elastic stress-strain equations may be expre,,,, ed in 

the following matrix form: - 

= C' 

and 

\v he re 

o\ = (3.4) 
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v\ XY v\ xz 
Ex E ý E' ý Z 

v yx 
\ 
yz 

Ex\ E' 
y E\ 

Z 

v zx 
v\ 

zy 

Ex\ E \, E \ 
0 

ý z Z 

0 0 0 

X 

00 

0 0 0 0 0 

0 0 0 0 0 

ýtzX 

(1) 
- (1) 

where refers to properties measured with respect to x\, J, \, Z\ axes, and from 

the symmetry of the C\ matrix it can be deduced that-- 

V\ V\ V\ V\ V\ V\ XY YX Xz zX YZ Z-N 
Eý, \ Ex\ E Eý, \ Ez\ E 

N\ X 

Using minors and cofactors the C\ matrix can be inverted, resulting in the following 

D\ matrix: - 

D= 

d3x3 03x3 

----- ----- ----- 

00 ILXY 

00 
3x3 

0 ýLzx 

(--),. 7) 
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where d\1 3x3 
Q 

E, (I - V\ v YZ ZY 

\+ 
V\ \ Ey (vyx 
yz vzx) 

\+ 
V\ \ Ez (vzx 
Zy vyx) 

E_, (v_ty + vxzvz_, ) 

v' v Xz ZX) 

E, (v\ +vv ZY zx xv) 

E. 
v v., ,v 

EN, (v \, v 
- YZ ýVz) 

v Y. V 

\ IV \V\ and v\ v-vv-vvvv V- XY YX YZ z131 zx xz XY 
lý 

Zx Xz zV VA 

Generally the layers of composite plates or shells are made of the , anic material, but 

each lamina (layer) has its fibres placed in a different angle, i. c. cach klYcr I will 

have different X\, y\ axes, rotated by an angle 0, from the global X, Y, z ýixcs ýis 

illustrated in Fig. (3.1). For the case of plates, the global z axis is always normal to 

the midplane of the layer and in the direction of the material Z\ axis, and it P, 

advantageous to define the material axes with respect to the global ýixc.. s in tei-nis ot, 

the angle 0C 

Defining i, j, k as unit vectors in the direction of the global axes x, z and 

JV as the unit vectors in the direction of the local X\, N, \, Z\ axes of laý, ci 

1, therefore the directional cosines of the material axes with respect to the olobal 

(geometrical) axcs are presented in the following matrix equation: - t) 

iS 

i 
= R1 j (3.8) 
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n 
where R, -n m 

00 

and M= Cos 01 )n= sin 01 

By using the stress-rotation equations (EI-Zafrany, 1995), the strcss \ cctor with 

respect to the local axes can be expressed in terms of the stress vector with respcct 
to the global axes as follows-- 

= R0 a ('9) 

cy 

m2 n2 0 2mn 0 o 

n2 m2 0 
- 2mn 0 0 

0 0 1 0 0 0 

-mn mn 0 M2 -n2 
0 0 

0 0 0 0 m 11 

0 0 0 0 n m 

and it can be deduced that: - 

(). I ()) 

R,, (3.11) 

which can be obtained as a special case of equation (3.9) with the axes rotated hy 

-Oil 
m2 n2 0- 2mn 0 01 

n2 m2 0 2mn 0 0 

0 0 10 0 0 

mn -mn 0m-n 0 0 

0 0 00 m it 
0 0 00 n m 

Similarly the strain vectors can also be derivcd in the same way, i. e.. - 

4E\ R F- E 

R-- I C\ t 
(3.14) 
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where R 

m n 0 mn 0 0 

n m 0 
-mn 0 0 

0 0 1 0 0 0 
2mn 2mn 0 M2 - 11' 0 0 

0 0 0 0 m n 
0 0 0 0 n m 

(3. Iý) 

m n2 0 
-mn 0 0 

n m2 0 mn 0 0 

and 
0 

R E 

0 1 0 0 0 

2mn - 2mn M22 0-n 0 0 
0 0 0 0 m 
0 0 0 0 -11 m 

The stress-strain equations with respect to global axes can be exp ressed as folImv,, -- 

a =DE (3.17) 

Substituting from Equation (3.9) and (3.13) into (3.4) then 

Rcy a= D' RE c- 

ix. R,, -l D' RE 
FJ 

Comparing Equation (3.18) with (3.17) it can be deduced that 

-1 D R, D' R 
Cy E 

which can be expanded in the following form: - t7l 

dm4 d' +n4 d", + 2m 2 
n2 (d", + 2d 11 22 1- 44 

d n'd\l + M4 d*'., +2m 
2112 (d\,, + 2d \ 1 22 1- 44 

22\, )+ (1114 + 114 mn (d\ + d1l )d\, - 4m-"2d' 12 111- 44 

(3.18) 

(3.19) 

d\+d\ 13 13 23 
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n2 d' + M2 d 23 13 23 

mn[n 
2 d\ - M2 dl\l -+- (M 2 

-n2 )(d -, 2d4.; 14 22 12 

[M2 22m -I d 24 mn d22 
-n d\l - (n (d, 2 - 2d 1 44 

d 15 d 16 zz d25 d26 

dd 33 33 

d :, -- - mn(d" -d\ 34 23 13 

m2n2 (d +d\- 2d, 2) + (m 2-n 2)2 
ti 44 11 22 44 

ddd 35 36 45 46 

m2d\+n2 d\ 55 55 66 

n2d+ M2 d' 66 55 66 

d mn(d' -d 56 55 66) 

and = J1 tj 
Hence 

D= 

d, I 
d12 d13 d14 0 0 

d22 d23 d24 0 0 

d33 d34 0 0 

444 0 0 

symm. d55 d56 

d66 

The transvcrsc shear stress and strain vcctors are defined as follow,,: - 

.Iz 
Vz 

( I. " 

(121) 
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y=IY, YYZ 

then it is clear from Equation (3.17) that: - 

where 

if GZ is negligible then: - 

D 
xy 

e. EzdI (d3l Ex+ di2 Ey + d34 Eýv 
1, 

33 

Defining G 
xy 

=Iax 

all TýIr VI 

and 4ýxy IExEYY, 
V. Nl 

I 

hence it can be deduced from Equations (3.17), (3.20), (3.25) that: - 
a=Dc 

xy xy xy 

where 

3.2 

112 
x2Y 

d55 d56 

112 
x2 d65 d66 

(jz :: _ d3 
1 f-x + d32 Ey + d34 Exy + d3 

3 f-z Z () 

d1l 
dl3d3l 

d33 

d2l 
d23d3l 

d33 

d4l 
d43d3l 

d33 

d 
dl3d32 

12 d33 

d, 
d23 d 32 

d33 

d42 
d43d32 

d33 

DEFORMATION AND STRAIN 

d 
dl3d34 

14 d33 

d24 - 
d, d 34 

d33 

d44 
- 

d43d34 

d33 

(_ ) 

(3.23) 

0-24) 

(3.25) 

(31.26) 

(127) 

(3.28) 

3.2.1 Transverse strain modelling 

Consider a composite layered plate, at an instant of time t consisting of -A number ()I 

orthotropic layers N, , as shown in Fig. (3.1). Let the midplane of the pkitc be the 

cartesian x-y plane, and the total thickness at any point (x, Y) on the nildplane 11, 

li(x, Y). The Lipper surface of the plate (z = IL12) may be subjected to a shear force per 
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unit area q,, (x, y) and the lower surface (7 =- h12) subjected to a shear force per unit 
area ql(x, y). The boundary conditions at the lower and upper surfaces of the plate are 

atz=- h12 Txz = 'r YZ = 01 Ciz =-q, ( ý. 29) 

at z= h12 'Uxz =T YZ = 01 aZ=q,, 30 

and from Equation (3.23) we can prove that: - 

atz h12 Yxz= Yyz =0 

If the values of y'z (X, y, t) and y'z (x, y, t) represent the trans\, ci-se shear strain.,, xY 

at the midplane, then the following values of transverse shear strains are defMcd ýis 
tollows: - 

at z, =- h12 Yxz = Yyz 0 

at Z2 =00 and YXZ= YXZ Yyz Y. ý Z 

at Z3 =: h12 Yxz = Yyz =0 

The composite layers are considered to be firmly bonded tolgether, hence the :1 
distribution of displacement components represent continuous functions with i-cspect 

to the -Airection. Since the components of c do not contain partial derivativcs ot 

displacement components with respect to then it is clear that CAV should hc 

continuous with respect to z. 

Considering infinitesimal transverse shear strains 

au awý -1 1 

Yxz =-+ (-) . -1 -) aZax 

vZv+w Zy 

and for negligible transverse shear strains 

au 
Z-aw (3.34) 

aZa 
-v 
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av aw 
azay 

which lead to au 
and 

av being defined in terms of --continuous functions. SmCC 
az az 

the magnitude of transverse shear strains are expected to be much loýýcr than thc 

magnitudes of aw and aWaU , we shall consider and aV alway's continuou,, with 
ax ay az a 1-1 respect to z, i. e. the transverse shear strains will be assumed to be continuous 

functions with respect to z. Hence, the distributions of the transvei-,, c shear , train,, 

across the plate thickness can be deduced by applying Lagrangian mterpolatimi to thc L- I,. - 
values of transverse shear strains listed above, i. e. 

Yxz (X, Y3 Z, t) = 
(Z - Zl) (Z - Z3) 

YXZ (x, Y, (Z2 - Zl) (Z2 - ZO 

(3.36) 

y 
0, (X, Y, 0. I-z 

)21 

x( h12 

(x, Y, Zlt) =Y. z(xo"t) 
I-z (3.37) similarly Yyz h12 

'I 

and it is useful to mention that in this work the transverse normal stress (j will be 
z 

considered negligible. 

3.2.2 Displacement and velocity components 

Substituting from Equation (3.36) and (3.37) into (3.32) and (3.33) then: - 

+ Yxz (X5 Y, 01-0. -) 
8) 

az ax h12 

aZaY 
YV, (x, ý, ' ) 

h12 j 

The lateral deflection it, can be obtained in terms of a Taylor expan,, ioti with re,, I)cct 

to -. as t'ollo\\, S: - 
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-2 
w(x, Y, Z, t) Z-- W. (X, y' t) ZW i (X, Y' t 

i -*1.4(ý) 
zW 

n(X5y, n! 

where w. (x, y, t) jý the value of wat-. =0 

al. w and wi(X, Y, t) =-at0 
az 1. 

Substituting from Equation (3.40) into (3.38) and (3.39) then 

n 
Zi 

aW 
iZ2 

i! ax + Yxz (x, Y, t) 
h12 

0.41) 
i=O 

Wi+0Z 21 

0.42) 
aZi=-0i! ay yz 

(X, Y, t) 
h12 

and by integrating Equations (3.41) and (3.42) with respect to -, wc (yet Z7ý 

Z i+I aw. 4Z3 (3.4-) u (X, yj Z5 
t) 

= U. (X, Y, t) -E-, + Yoz (x, Y, t) 4- x j=O (i + 1) i! ax 3h" 

Z i+I wi 4Z3 
v(x, Y, Zlt) = v. (X, Y, t) --+ YYZ (x, v' t)Z- 

i= () (i + 1) i! a 
-v 

3h-j 

where u. and v. represent the values of u and 1, at z=0- 

The lateral deflection w will be approximated in this work, such that it will be 

considered independent of i. e. 

W(X, Y, Z, t) e w. (X, Y, t) (3.45) 

Hence, Equations (3.43) and (3.44) can be simplified as follows: - 

11 (X, y' Y' t)-+ Y"cz (x , ý, ' t)- ax 3h2j 

1 
(9 it'. 1-4Z1 

(3.47) 
v (x, v' Z, t) Z-: v. (X + y- (x, v' t) 1 ý, -- 

3 li 
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The corresponding velocity components can be obtained h\ differentiating Equation,, 

(3.46), (3.47) and (3.45) with respect to tinic. i. e. 

a 1, ý. 4Z ü(X, Y, Z, t) = ü. - 
z--1ý- ýxz (31.4s) 

ax 3h" 

a ýý. 4Z3 
1>(x, Y, Z, t) = ý. -Z-+ (3.49) 

av 
tz 

3h 2 

ýý(X, Y, Z, t) = ýý. (Xeý ,, t CI. 50) 

where f af 

at 
3.2.3 Strain components 

The 
-v-y strain components will be considered finite and by using a Lagranglan franic tý L- L- 

of reference, they can be expressed in terms of displacenient components (El- 

Zafrany, 1995) as follows: - 

au ,- au 2+( aV 2+ aW 21 

+ 

ax 2 ax ax ax 

av ,( au 2( aV 2 aW 2 

+- 

(9y 2 ay e- ay 

Yxy Z-- (3 
,u+ 

av 
+( 

au au + av av + aw aw 

oy ax ax ay C3X ay ax 2v 

1. C. 

wherc 

Eýy =CI. lif 
+C 

Ei 
Ilf ý-- 

au 
ax 

av 
a-v 

du cl i, 

JY axi 

(3.51) 

(3.52) 

( 3.5- 3) 

4) 

wilicli represents the infinitesimal terms, and 
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EL 

1 au 2 1 aV 2 

2 2X 2 ax 
2 

2 
+ 

2 CY 21 

au au av av alt' aw 
ax ay ax ay ax av - - 

So it is clear from Equations (3.46) and (3.47) that 

a2 0 

au a U. ayv 
-=--, 

Az 

ax ax aX2 
f, ax 

au. al w. a0 au =--Zh fi (Z) 
Yxz 

ay ay ayax ay 

a v. al w. a0 av A (Z) -y vz 
ax ax ax ay ax 

a V. a' w. av A (Z) Y-NIZ 
ay ay ay 

2 ay 
3 

where 
z 

3h 

Hence, the infinitesimal strain vector can be expressed as follows: - 
(X, ý), t) +f (7) ES(X, ý', t) 

1 Einf(X'Y'Zlt) = C? 
n(XIYIt) -ZEb 

where E', 
' (X, ý, ' t) 

au. 

ax 

av. 
a. v 

Oil ol" 
, I + - ox 

(3.; -) 

(*a) 

(3.56b) 

(. 5c) 

(")'. 56d) 

(3.57) 

(3.: ) 

(T59) 
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E b(Xlylt) - 

E, (X, Y, t) = 

The finite strain contributions are 

(ýw 

c, X ,I C-It, 
0 

ay, 
a2W 

2 
ax ay 

ay" xz 
ax 

ay; yz 
a N, 

ay. a -y, ', xz ay ax 

L aU 2 aV 2 aW 2 
cx 

2 ax ax ax 

L1 aU 2 aV 2 aW 2 
Ey =--- 

2 ýy O-ly ýv 

L au au av av ö-, w aý v Yxy =--+--+-- 

ax ay ax ay ax ay 

(.. (1 ) 

(3.02a) 

(3.0 2b) 

(3.62c) 

Substituting from Equations (3.56a), (3.56b), (3.56c) and (3.56d) into (3.02a), (3.62h) 

and (3.62c) it can be proved that: - 

L 
aU. 

2 
aV<, 

2 

aw. 
2 

a2 W. a2W. 
2 

EX = -i -+-+-+Z 
aX2 

+ 
2 ax ax ax ax a. v 

202 
Yz Cýjj 

2W ýv a y*, aC. 021t,. 
2a 

+fl (Z) +z aX aX2 ox ax ox ax aY 
0 a, y 

*Z a2 W. ayý, 
z 

a2 lt, ay ay 
xz Z 

- 2, -f, (z) + 2f, (z) 

ý ax a. 1- , 0. v axa. v a.. v a. ic ýx ýx 

, 
(') 

1A . 6' 
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1 au, 2 aV, 2 a: W 
21 

L=-1 
Ey 

21 - -, -i 

_ 
ay ay e ji 

a2 W. 
)2 

(32W)2 
a y' 

2a2 

Z2 
ay ax 22 

(Z) 
-- 

xz 
'+ )+ (ay )- +fi ay ay 

- 2z 
aU. a2 W. 

. 

aV. a2W 
0 

dy (gy (9x (gy ay 2 

ayoz a, wo ayo alw. 
- 2zfl(z) x yz 

oy ay ay 2 oy ax 

au ayoz av. a Y, 2f, (z) x yz 
ay ay ay ay 

L au. au. av. av. aw. aw. 
xy ax e ax e ax e 

a U. a2W. a U. (-92W. a V. 
a2W. a V. 

a2W. 
+-+-- 

ax ay ax ay aX 2 (9X av2 ay ax 

- 
a2W. a Y'z a2W. a Y' a2W a2W. ay, 

.xZ Vz 0a 
y" 

Z fl (z) +-+- vz 

ax ax ay ax, a-v ay 2 dy axay 

au. a0 au. ayo av. a-Yoz dv. ay YXZ xz Äll + fi (, ) -+ ax ay ay ax ax ay e ax 1 
W. 0-, 2 W. 

(9X 
2 (9x (9X e ay 2 

0 -1 a y. Za Vz 
y- 

�Z 

Ox OY 

oýh) 

(. c) 
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3.3 INERTIAL EFFECTS 

Consider an engineering structure, such as a composite laý ered plate or shell. rotatin(y Cý 
around a fixed axis of rotation with an angular % clocit\ LII i, , ho\; %, n iii F 2). 
The direction of Q may be defined with respect to a global svstcin of axcs h% nicaii,, 

of two points 0 and A on the axis of rotation. The directional cosines of the axis of 

rotation can simply be defined as follows: - 
x- YO 0m YA 

In= 
'A '0 (3.04) 

OA OA OA 

and the angular speed vector may also be represented ýis follow.,, -- 

x++ Q-k y 0.0ý) 
(it + mi + nk-) 

where 0= ýO, 
+ 0, + 0, (3.66) 

y 

The global axes are assumed fixed on the structure, i. e. the coordinates ( x, Y, -) of 

a point inside an undeformable structure are independent of Q. For such a sy,, tern 

of coordinates, the unit vectors in the directions of x, y, z axcs arc functions ol' time, 

and it can be proved from simple mechanics that: - 
di - dj A 

=0 Aiq --0 Aj, =0Ak (3.67) 
dt dt dt 

"(V, Y, before deformation, Considering an infinitesimal mass AM at a point P 
the position vector from the point 0 (on the axis of rotation to point P(, can be 

defined as follows: - 

OP. (x -. v. ) i+ 
(ý' 

-ý)O)j + (7 

-z. ) k 

After deformation point P, may move to point P, 

%ý --. 1. (3.69) P. P =- q=u1+vj+ it, k 

%ý 
--I.. -N. 

( 3. and OP. =- R (t) =R+q (t) 

-'. 
67), Own Diffcrentiating Equation 3.70) with respcct to tinic, and usIng, EqUations 

the \-clocitN vector of the infinitesimal mass due to it,, rotation i,., - 
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dR V-= VO +Aq dt 

where Vo 0AR 

and + -ýj + vý k 

Differentiating again Equation (3.71) with respect to time to cret the acceleration 

vector of the infinitesimal mass due to its rotation then: - 

dV dQ 
a=-=a. +4+ 2QA4 + QA(QAq + -A q . 7- 

dt dt 

dV 
0 where a- 0 dt 

q= Ul + vj + Vý k 

and 
df d2f 

dt dt2 

Consider for simplicity a case with a constant rotational speeds 
(0=0ý 

then 

Equation (3.72) may be simplified as follows: - 

a=a. + ar + aC + ap (3.73) 

where a. 0A (D A Rj (3.74) 

a -3.7 -5 r 

a . 
1. 

= 20 .A-4. (3.76) 
C 

-A 

ap AA-q. (3.77) 

The vectors ar, ac and ap are known as the relative, Coriolis, and centi-1petal 

accelerations respectively. Using equivalent matrix representation where a carle,, ian 

vector 

V=Vi+ Vj + Výk 
XVz 

is rcprcscntcd hy a colunin niatrix 11 -- 
V. 

( 3.78 ) 

(3"7()) 
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then the previous components of accelerations can be represented in the following 

matrix forms: - 

a. Q'Cl R, 

ar q 

ac 20 C2 

ap =_ 
02 C 

where 

x -x . 
RO = y -Y. 

z- z0 

u 

U 

4= 

U 

Q 

w 

12 
-lm -In 

C, -ml _m2 -mn 

-nl -nm 

m 0 -n 
0 

-M 10 

( 3., -), () ) 

(3.81) 

(3.82) 

( 1.83) 

(3.8-4) 

(3.85) 

(3.86) 

( 3.87) 

(3.88) 

( 3. (s 9) 
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3.4 AERODYNAMIC PRESSURE 

Consider an aerodynamic structure, which niaý be a coinpo,, ite laý cred plate or , hell. 
in a stream of air or fluid flow. The surface of the structure ývill be , ubjected to an 
aerodynamic pressure distribution which can be split into t\vo parts as foll(m,,: - 

P -": P- + Pa (3.90) 
The term P. represents the external aerodynamic pressure, which Is Independent ot 

the structure deformation, i. e. any pressure caused due to turbulcnt boLindarv la\cr 

fluctuation. It may be obtained experimentalh: or b\ eniploviii- a ý, cparatc 

computational fluid dynamic analysis. 

The term pa represents the aerodynamic pressure due to aeroelastic effects causcd 

by the deformation of the structure. The basic types of modelling of' p,, cniploycd 

in panel flutter are summarized next. 

(a) The quasi -steadyfirst-order piston theorY 

Let a composite plate represent a panel configured in such a way that one side of it 

is exposed to a uniform air flow parallel to the x axis, and the other side is part of 

a structural cavity, or no flow going under the panel as shown in Fig. (3.1). For a t: ) 
very high supersonic speed ( M. > 2.2 ), the first-order quasi-steady aerodynamic t: ) 
piston theory (Ashley and Zartarian, 1956) leads to: - 

P"(X, Y, t) ý 
Pý Vý 

U. ow 
+ 

aw 
moo ax at 

where p., v, m. are the density, velocity and Mach number of the free strearn 
00 

flow, respectively. The above approximation is based upon assuming that ffic 

dellection is zcro at the panel leading and trailing edLc,,. t-I -- 

(b) Modcljor. ll. 1.6 

Dowell (1975) has derivccl an aerodynamic theorv for the modelling of , 
leading 

I 
Pa Cý 
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to the following approximation for M. > 1.6: - 

Pa(Xlylt) 5? 5 P. V., 
ýM-2- 

I ax 
CIV, 

V at 00 
.) Q- (ý 'I) 

which can be approximated to Equation (3.91) at very high Mach nuniberý,. Equation L- 
(3.92) can also be employed for a cylindrical shell with the -v-axis 

being w, amý, aN 

shown in Fig. (3.4) (Bismarck-Nasr, 1993). 

Effect offlow angle 

For a given panel geometry, consider the case with the flow being yawcd in the 

plane of the panel rather than in the x-direction. Consider X\ being the axis in the 

flow direction and y\ normal to it, as shown in Fig. (3.5). Equation (3.92) nlýiy be 

employed with -aw instead of 
aw (Dowel, 1975). Using the chain rLIlC of' partial L- 

C)x \ ax differentiation, it can be deduced that-- 

(9w aw ax 

c3 x, \ ax ax \ 

i. c. 

(Cosa) aw 
ax 

aw av 
ay ax\ 

(Sin aaw ay 

p V2 

P, (X, Yt 525 - (Cos. ) aw + (sina) 
Ow 

+ 
M- -2 
M2_1 V ax dy 

(1.93) 

Ow 3 
. 94 

at 

This equation will be employed for a general linear modelling of flutter pressure. 
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7 

YN, II - 

1 

Figure 3.1 Local and global ýtxc,, of' kiycrs. 

/I-v IV /- -1 
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Figure 3.2 Rotating mass in a deformable structure 

Alr flo\\ 

Pressure 

ca\ itN V 

Figure 3.3 Moddling of panel flow 
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Figure 3.4 Flow over curved panel 

1) 

Figur 



CHAPTER 4 

FORMULATION OF FINITE ELEMENT 

EQUATIONS 
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4.1 DISPLACEMENT AND VELOCITY INTERPOLATION 

4.1.1 Introduction 

The composite- layered plate element is defined in terms of the midplane (z = 0), 

where also the nodal parameters are defined, which will be explained later. The 

geometry of the plate midplane is defined in terms of nodal coordinates "'Ith rcspcct 
to a cartesian x-y-z system of coordinates. Most of the derivativc,, described here are 
with respect to a local system of axes, where the x-Y plane P, in the midplane. and 
the z-axis is normal to that midplane. 

Physically, the element is constructed of a number of layers (N), as shown in 
Fig. (4.1). The 1 Ih layer's lower surface is described by the following equation: - 

and the upper surface by 

Z(I) L 
(X, 

(1) Zu (X, 
i. e. the thickness distribution is :- 

(x, y) 

(-LI) 

(4.2) 

(4.3) 

The layer has its own material axes, and the stress-strain matrix D(1) is defined with 

respect to the element local x, y, z axes, as described in section (3.1 ). 

4.1.2 In-plane and trans verse-shear parameters 

The midplane displacement components in the x and y directions will lead to 

continuous displacement components, if they are represented by at least C' 

continuous functions. Hence Lagrangian interpolation is suitable for their modelling, 

and for an n-node finite element: - 

U. (X, l', t)=E uj (t) M. (X, 
-v 

) (4.4) 
i=1 

12 
(4. ý, 5 ) V. (X, Y' t)=E vi ( t) Ni (_V, y) 

i=1 
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where UV are the values of the x--ý- displacement component,,. at the midplane i 

node i, and time t, N, (x, y) represents a Lagrangian shape function. 

Isoparametric representation of the element is gIven as follow,,: - 

n 
x (ý, Ti E xi N, 

+I 
n 

Y(ý5 TI Yj N. (4.6) 
i+ 

n 

Z(ý, Jj) E zi Aý- 
i+I 

and the shape functions are expressed in terms of the intrinsic coordinatcs (ý, T, )- 

Lists of the element Lagrangian shape functions eniployed iii this %wrk are hi 
Appendix A. 

Similarly, the transverse shear components, at the midplane can be interpolated in 

terms of Lagrangian shape functions as follows-- 

n 

yoz(x, y, t) = ýj(t) 
x 

(4.7) 
n 

y. (X, Y, t) = qj, (t) Nj(x, y) y 

0t 

where 
Yxz (xi 3 yi (4.8) 

0 
-Yz (x il 

t) *j(t) =y ily 

4.1.3 Interpolation of lateral deflection 

Due to the presence of first order partial derivativcs of it, in the equation ot' 

displacement components. as can be seen in Equations (3.40) and ( 3.47), the latcral 

deflection it, must be C' continuous over the plate, in other words it should hc 

interpolated by means of a Hermitian interpolation. Two types of interpolation, ha,, cd 

upon EI-Zafrany and Cookson (1986a, 1986b), are suggested: - I 
L- 
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(a) Type I (Non -conforming) 
The lateral deflection is interpolated in terms of its values. and the f-ir,, t ordei- partial 
derivatives, i. e. 

n 

W. (X, Y, t) = Ejwj(t)fj(X, Y) + Wi, x(t)gi(x, y) + wi, y(t)hi(x, -i, 
)l (4.91) 

i=l 

where w,. , wi., x 
and w,, y represent the values of wO , 

C-ýW. 
and 

Ow. 
at node 1 and 

ax a N, time tf g, and h,. are the type I Hermitian functions a,, Ir,, ted in 

Appendix B. 

Type 2 (conforming) 

The previous type of elements do not satisfy fully the curvature continuity condition, 

as explained by Zienkiewicz (1977), but it can be fully satisfied if the nodal values 

of a2WIaxay are included in the interpolation expression, leading to the so-callcd 

conforming elements, with the following Hermitian interpolation expression: 

. 
(x, y, t) = Elwi(t)Fi(x, y) + wi, x(t)Gi(x, N, ) w 

i=1 (4.10) 

+ w, 
'y(t)Hý. 

(x, y) + wj, xy(t)Qj(x, Y)j 

where wI. 
'XY 

represents the value of a-'2- w. / ax ay at node i and time t, and F, 
, 

Gi 
, 

Hi and Qi are type 2 Hermitian interpolation functions as listed in Appendix C. 

Notice also that for the remaining parts of this chapter, Equation (4.10) is akýa%" 
117 - 

assumed, and type I Hermitian interpolation is obtained by using: - 

Fi (x, y) -= fi (x, y) 

h, 

Gi (x , y) =- gi (x, y) 

Qi (x, ý, ) =0 
(4.11) 

4.1.4 Nodal displacement vector 

From the previous analysis it is clear that the displacement parameters required at 

each node i are: - 

Ui. ) vig (ýi5 *i, wi, "'ij, wi'Y' w I'VY 
where w i'vy 

Is only required for the sccond typc 



48 

of Hermitian interpolation. To simplify the derivation. the nodal displacement vector 
for an n-node element will be defined at time t as follows: - 

6m(t) 6b(t) 6s(t) 

where am (t) u 4.1 1(t) VIM 42(t) V2(t) Un(t) Vn(t) 

W, M W, " 
(t) wl'y M W, "Y 

M 

w 
n(t) 

Wn, 
x( 

t) Wn, 
y(t) 

w 
n, xv(t) (4.14) 

bs (ýI(t) *I M (K(t) *n(t) (4.1 

4.1.5 Velocity components 

The velocity components at any point ( x, -7) 
inside the plate at time t are x,, 

defined by Equations (3.48), (3.49) and (3.50). They can be represented vectorially 

as follows: - 

4 t) 
4xy (x, Y, Z, t) 

(4.16) 
4Z(X, Y, Z, t) 

where 

ü (X, Y, Z, t) 
(x, Y, Z, t (X, Y, Z, t) 

4z(xl, ygz, t) z[ Vý. (X, Y, t)1 (4.18) 

Substituting from Equations (4.4), (4.5), (4.7) and (4.10) into (3.48), (3.49) and (3.50) 

it can be proved that: - 

4xy(x, y, )zllt) = NL(XY)6m(t) - zNb(XY)6b( 

f, (z) NL(XY)k(t) 

4- (x, y, z, t)= Nu(XY)äb(t) (4. 
-10) 

w, here 

N, 0 N, 0 ... 
Nn 0 

NL (V 
0 N, 0 N, .. -0 

Nn 
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aFi aGi aH, 
N ax ax ax 

b(Xly) 
C, aF, aGi ýHi 

O'y (ýv ay 
NH(Xly) Fi Gi Hi Q, 

4.2 STRAIN COMPONENTS 

aQi 
ax 
aQi 

4.2.1 Infinitesimal strain modelling 

Substituting from Equations (4.4) and (4.5) into (3.59), it can be deduced that: - 

au. 
ax 
C3V E"(X, y, t) B,, (x, y)6, (t) (4. "14) 
ýy 

au. Ov. 
ax 

where 

(x, y) =1 

aNi 
0 

ax 
A- 0 ýy 

aN aAý. 
i 

-1 cy ax 
Similarly it can be proved that: - 

E, (xj, t) B,,, (x, y) 8, (t) 

Substituting from Equations (4.10) into (3.60), it can be , Iio\\, n that: - 

E (-ý' Y' t) 6b(t) 

(4.2 5) 

(4.20) 

(4.27) 
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where 

b(X5y) -": 
I 

Hence, 

o2F,. 
(32Gi (32H (ý2Q , i 

aX 2 ax 2 aX 2 
ax 

0-H (ý2Q I 
C-ly 2 ay 2 -ly C, - N, 
92F c, - cýG a2H C- 

2 , 2 , 2 
ax q--ý ax a7y ax -1 cy ax (ýv I 

(dEýy )i 
nf 

(X, Y, Z, t) = B, (x, y) 8, (t) -zB b(Xi Y) bb(t) 

fl(z) (x, ös (t) 

(4. -,, ý ) 

(4.2 ()) 

Notice also that the transverse shear strain components, as defined Iy EqL at oil II 

and (3.37) can be represented vectorially as follows: - 

Yxz yxZ (x, t 
(4.30) Y(Xgyl, zgt) = f2 (Z) 

Yyz 
. Yyz (X, V, t) 

where (Z) 4Z 

h2 

Substituting from Equations (4.7) and (4.8) Into (4.30), it can be sho%% n diat 

y(x, y, z, t) =f2(z) B, (x, y) ö, (t) (4.3--1) 

where B, (x, y) = NL(Xly) (4.33) 

4.2.2 Modelling of finite strain contributions 

Defining the following rotation vectors. - 

au. av. au. au. 
in 

(4.34) 

ax ax e oýY 

= aý os ax 

0 ow. 
ox 

ax 0-ý 
ý21V o 'w 021t, 

O-V CY OY O-V CY, 
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CIV, C111, 
0 

ww 
0 

w ax ay 

where YXz and 0 YNIZ 

then Equations (3.63a), (3.63b) and (3.63c) can be represented in the foll(mlill-I 

matrix form: - 

L 
x 

L 
LEy 

L 

L 
Yxy 

i 

=1 Am Om + Aw 'w + Z2 Ab () 
b+ 

fi 2 (z) A, Os 
2 

- zfl (z) [A + A, 7 [A + An b 
Os ob] 

b 
Oin Ob] 

+ f, (z) [Am OS + A, 'in] 

au. av. 
0 

ax ax 

where 
au av. 

. 
(ýY 

au. av. au. av. 

ay ay ax ax 

ax ax 
0 0 

d'y 2-v 

a. v a. v ax ox 

(4.3' 8) 

(4.39) 

(4.40) 
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Cý2W. -OW C 

ax 2 ax ay 

Ab= 

Aw =I 

00 

a2W 
00 C- wo 

ýy ax (3y 2 

(32W. Cn72W (ý2W 

C)y ax ay 2 aX 2 ax aN, 

aw. 
- 0 
ax 

aw 0 0 'IY c 
aw. aw. 
ay ax 

(-L41) 

(1. -L) 

Due to the non-linearity of terms in EL equation, it will be represented iii the 

derivations as an integration of its differential values, i. e. 

EL =f 
dE 

L (4.43) 

and it can be proved that: - 

+f2 dEL AmdOm + AwdOw I (z) A. dOs +Z2 AbdOb 

Q Q) [AbdOs + Asdob] - z[AbdOM +Am dO b (4.44) 

+ f, (z) [Am dOs + A, dOm ] 

Using the interpolation equations for displacement components, it can be , Iio%% ii t7ý 
that: - 

d0 G dö 
m m m 

dO G d5 
s m s 

d0 b Gb d8b 

d G d8 b , 
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where 

GM =I 

G= 

Gb =I 

aN. 

ax 
aN 0 , ax 

aN . t 0 
Cýy 

aN 0 i 
C-ly 

aFi aGi all aQ i , ax ax ax ax 
aF aG aH aQ 

ay ()Y 
- 

Nb 

-, 2Fý. 0 `2 o-Gi -'2H o 0-, 2Q 
, i 

ax 2 ax 2 aX 2 aX 2 

-'2F o . 
-'2G o 0- H . (32Q I 1 i , 

ax ýy ax ýy ax OY cit Cýv 
(3ýF - 0"2Gi 0'2H . ý2Qi c l I 
c-ly ax ay ax ýy ax 0 y ax 

n2Fý. 0 'ýGj c 0-, 2 1 o-, 2Qi 

ay 2 ay 2 ay 2 
C-%y 

2 

(4.4, )) 

(4. ý 

(4. ý I) 

Hciicc Equation (4.44) can be rewritten in terms of nodal %, ýdues, &,, f()llm\,,: - 

+f2 da b 
dEL A in G in d6M + AwG,,,, d'w I (z)AsGmd6s +AbGb 

z. f, (z) [A b Gin d 6, + A, Gb d6 b] zIAb Gin d6ln An, Gbd6 b] 

+ f, (z) [A,,, Gin d6S + As Gin d6 
"I 

I 

(4.5 -) 
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4.3 ELEMENT STIFFNESS MATRIX FOR INFINI'FESYNIAI. STRAINS 

The stresses at any point inside the 1" layer. can be related to ý, trams hN 111can" of 
Equations (3.28) and (3.23), i. e. 

(1) 
- (1) oxy Dx' 

y cx y 

T(l) = (1) (4. ý 4) 112 
x2Y 

where oxy ox ay TA Y 

rxz Tyz I 

and D(l), p(l) are stress-strain matrices defined with respect to element local ýIxcs. Xy 

Their derivation from the corresponding matrices defined with respect to material 

axes has been explained in section (3.1). 

For the case of infinitesimal strains, it can be deduced from Equations (4.219), (4.321), 

(4.53) and (4.54) that: - 

a(') - Dx(ly) [ B. 8-zB8+ fl(z) B. 6, (4.55) 
xy mbbI 

T(I) = P(l) [ f2(z) B, 6 
S] 

(4.56) 

The strain energy density or the strain energy per unit volume at any point inside the 

clement can be expressed as follows: - 
1 

Z, t) = -0 C-E 2 

t 

2 
Exy a 

xy 2y 
(4.5 

Hciicc, for the case of infinitesimal strains, the strain energy density at a point inside 

the I" layer will be: - 
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- (1) 1 B' -z fl(z) in in bbs in 

(1) D' 
., y zBb6b+f, (z) B 

+ -1 
[ 6' B' j+22(z) B, bj 

2ss 

- (1) 
=1 1) Hence u- 6' B' D( B6 

2 in in xy mm 

tBt2 bb 

ö'B' fl 
2 

(z) D(l) x 
-V 

ö'B t2 (1) B8 ss 
f2 (Z ) IL 

ss 

-1 
ý6tBtb 

zD(, ', ý B. 6 
2 X- I 

+ at Btz D(l) B6 
m in xy bb 

6' B' f, (z) D (1) B6 
2s in xy in in 

6' B' f, (z) D(l) Bin 's 
in in xy 

I 

-1f 6' B' 
2bb 

tBtz (Z) B 
s in b 15b 

The strain energy per unit area is defined as follows: - 

h12 

(X, fU dz 
-hI2 

and the strain energy of the element at time t is 

ff u\ (x, Y, t) dx d. v 
elemetzt 

(4.5 8) 

(4.59) 

(4.00) 
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Notice that all the B matrices are functions of (. v, v), that mean,, that all I'LInCtIMIN 01 

z and the D matrices, which may be different for different laý ci-,. need to he 

integrated over the thickness. Writing the integration of a function /(II ) over the total 

thickness in terms of integrations over different layers, i. e. 
(L) 

h12 N, ZU 

ff (z) dzf f(z) dz 
-h12 (L) ZL 

then the following expressions of modified D matrices, at any point (-V, Y) oii the 

midplane, can be deduced from the integration of Equation (4.58) with respect to 

h/2 Ni 

Z(') -Z(') ,' 
Dx 

y 
dz =ý[uL]x 

-h/2 
l=I 

h12 N, (Z (1) 3 
(Z (1) 3] 

2 (1) u)L) 
D") Dbb(Xly) ý- 

fz Dx., dz = 1: - XY 
-h12 

1=1 
-3 

h/2 

(x, y) =f fý (z) D(l) dz (x, y) 
-h12 

Ni (Z (1) )3_ (Z (1) )3 
uL 

=3 

(ZÜ», - (Z (1) 51 

15 h2 

16 [(Z (1»7 
_ (ZL(i»7 

1 
D(l) 

63 h4 
xy 

(4.62) 

(4.03) 

(4.64) 
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h12 

(x Y) f J21 (Z) dz 
-h12 

N, 
1: [ (Z(, )) (40) u 

81 (Z (1) )3_ (Z (1) )3] 

3h2u 

16 (1) 5 (1)), 1 
I'l(l) 

5h41 
(ZU ) (Zý 

h12 

D 
mb(x, y) =D, D«1). bm(Xly) 

f 
,' y) dz 

-h12 

Ni (1) 2( 1) 

h12 

Dms (x� y) = Lým (x, y) =f fý (z) D(l) dz 
xy 

-h/2 

(Z (1) )2 (Z (1) )2 

1z (1) 4_ (Z(1))4 D(l) 
3h2UL 

xy 

h12 

Dfz fl (z) D(ly) dz bs 
(X' Y) ":: _ Dýb (X' Y) -": xy 

-h12 

(Z (1) )3_ (Z (1) )3 
L 

_ _4 
ý (Z(1))5 _(z 

(1))5 ] D(l) x1 
15 h- 

(4. () 

(4.66) 

(4.67) 

(4.68) 

wlicrc ZM , Z(l) are measured at (. v, Y). UL 
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Hence, the strain energy per unit area can be expressed as follow,,: - 

(X, 1atBtDB5+16tBtDB8 
2 in in mm in in 2bb bb bb 

B' DB6+6B jL B6 sm ss ms2ssss 

-1ý 6' B' D 
in 

Bin IBIDB6 
2bbb 

45 in in in in bbb 

5'B' D,. B. 6,,, + 8' B' DB6, smmm "is m 

-11 6' B' D, B6+ 6'B' B 
2bbb In ss in 

Ps 
bb 15b 

Integrating Equation (4.69) with respect to the area of the clciiicnt. then the , trýuii 

energy of the element can be expressed at any time t as fOllow,,: - 

43 t Kým 8m + 13t K bb 
5b - 6t Kb 6b 

mbmm 

(X, y) K+ 
ss 

ü1) 1 ös - K ss 
öt 't 

in 
Km b b 

t (4.70) ö, K�� ö, 6 
in in 

öt 
s 

tö K ins in 
ö tK 

b bs 15s 
tt 
s 

Ký, -Ö b 

where Kým ff B' Dmm Bm dx dy (4.71) 
m 

element 

K=BtDB dx dy 
bb 

ff 
b bb b 

e le in ent 

(X, ý, ) - B, K, 's - 
ff 

In 
Dss Bm dx dY (4 7 

ele in ent 

K (0 = 
ff B' [t,, B, dx dy (4.74) 

ss s 
element 

ki 
b= 

ff B 
fn 

Din 
bBb dx dy (4.75) 

eIe in enr 
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K= ff B' D,,,, B.. dx di, Ins m 
element 

K 7-, 

s 
B' DB dx di, (4. b 

ff 
b bs in 

element 

Equation (4.70) may be rewritten as follows: - 

(4.78) 

where 6 (t) is the nodal displacement vector of the element at time t, as defined by 

Equation (4.12), and K is the element stiffness matrix for the case of infinitesinial 
strains and can be constructed as follows: - 

Kmm -K mb Kl? 
ls 

't KK K, mb bb bs 

(X, Y) GO K,, +K ss 

4.4 ELEMENT MASS MATRIX 

The kinetic energy per unit volume, at any point inside the element is: - 

KE =1pIa2+ý2+ ,ý2 
2 

(4.79) 

(4.80) 

Using the velocity vector defined by Equations (4.16), then the previous equatioil can 

be rewritten in the following matrix form: - 

KE q 2 
PI 

., ý, q., y + 4,4z] 

Substituting from Equation (4.19) and (4.20) into (4.81). it can be shown that: - 
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KE = -1 p 6t N'- z 6'N r +fl (z) ý'N 
2mLbbsL 

II 

I NL6m -zN b 
6b 

+fl (z) NL ýs I 

ý'NN ý 
Hence 

bý 

KE 1p ä' Ný' N+ Z2 ä' N'N ä 
2mL 

äm 
bbbb 

,2tt + fl (z) 8, Ný N ä' N' N L 
8s +bHH äb 

-Z5tNtN8 ät Nt Nä 
mLbb-ZbbLm 

+ fl (z) ät Nt N+f, (z) ä' N'N 
mLL 

ýs 
sLLä tri 

- zfl(z) ät N'N zfl(z) ät N'N bbLsLb 
ýb 

The kinetic energy per unit area of the element can be defined as follows: - 
N, Z (1) h12 u 

KE f KE dz f -KE (1) dz (4.83) 
-h12 z (1) 

L 

The N matrices, in Equation (4.82), are independent of -, and the follo%ý im, dciisitý C7 1 
functions can be defined at any point (x, v) on the element midplane. - 

P"(Xgy) = 
h/2 

fp dz 
-h12 

Ni 

=E[ Z", (X, y) - Z' (x, ý, ) 1 

h12 

Pbb(Xly) :: _ 
fZ2 (X, ý, ) p dz 

-h12 

NI Z (1) 

=E 

-( u 
l=I . 

(4.84) 

(4.85) 
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h12 

PHH(Xly) =fp dz z- (X, ý, ) 
-h12 

h12 

(x, y) =Z-4 
Z3 

2p 

dz 
f 

3h 2 

h/2 

NI (1) Z )3 (ZU (x, y» 
(L (X, Y) 

i 

3 

u 
,2 [(Z (1) (X' Y) 

)' 
-(Z (X, ý) ý, 

15 h 

16 (1) 7 (Z (1) (X, Y»7 
63 h21 

(ZU (X'Y» 
L 

h12 

Pmb(Xly) '- 
f 

z(x, y) p dz 
-h12 

NI 2 

=E 
(ZU (X 

, Y» - (ZL ) GIC 
, Y»2 

h12 

(x, y) =p "" 
(x, y) =4Zp dz 

f 

3h 2 
-hI2 

Ni 

=E -(Z") 
(x'3»' 

1 (1) 4_ (Z(1) zu (x, ý, 
» 

, 
(x, ý, ) ý 

(4,141) 

(4.87) 

(4.88) 

(4.89) 
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h/2 

4Z3 
Pbs(X9y) = Psb(X, Y) 

fz 

3h2 
p d, - 

h/2 

NI 
i (x, 

(Z (1) (X, Y»5 _ 
(Z (1) (X, ý, ), ý5 

] 

15 h2 

Hence the kinetic energy per unit area can be expressed as follow,,: - 

KE \=1p ä' N' Nä ä' N'N ä 
2 mm mLLm+ 

Pbb bbbb 

N' N6 6'N'N 6 
HH bHHb+ Pss 

sLLs 

P 6' N'N 6 6' N'N ý 
bin bbL in - Pinb in Lbb 

6' N'N 6 6'N'N 6 Pins in LLs+ PSM sLL in 

ýt NtNý ý'Nt N6 Pbs bbLs- Psb sLbb 

(4.90) 

(4.91) 

Integrating the previous equation over the area of the element, then the kinetic energy 

of the element at a time t can be expressed as follows: - 

KE (t) = -' 
ä' Ali ä+ ä' 

2ýmn ni in b 
(Mbb +m HH) 

ýb 

+tmä 
s ss s- 

ätm Mmb äb 

-ä+ ät mms ä ät Mmb 
in in s 

t 
b 

ääätt t Mbs 
s-s 

Mýs ýb 
s in b 

M"I"I Z-- 
ff PMM N[L NL dx dY (4.1) 

ele me tit 



63 

Mb 
b N' N 

ff 
Pbb bb dx dv (4.94) 

element 

MHH NH' N 
ff 

PHH H dx d N, (4.95) 
element 

S 
ff 

Pss Nt N ýL dx di, (4.96) 
element 

Mmb Nt N 
ff 

Pmb Lb dx dy 
element 

Mm 
S 

t ff Pms NL NL dx dy (4.98) 
element 

Mbs ff 
Pbs NtN bL dx dy (4.99) 

element 

Equation (4.92) can also be simplified as follows: - 

KE (t) -1 
ýt (t) M (t) (4.100) 

2 

where M ým M ýb M M (4.101) 

and M is the mass matrix of the element which is constructed as follows: - 
[ Mm - ]ý'm Mý I 

m b S 

-M 
r 
mb 

Mbb + MHH m 
bs 

ttm MM'S 
- Mýs ss 

4.5 ELEMENT STIFFNESS MATRIX FOR FINITE STRAIN 

CONTRIBUTIONS AND CENTRIFUGAL STIFFENING 

(4.102) 

The virtual or differential value of the finite strain contributions. due to a\ 11-tL1,11 ol 

differential displacement field is 

LLL 
y, 

I 
dCL(X3'Y9Z9t) dEx A., dv 

_ý 
(4.10' 
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assuming negligible finite strain contributions for the tran,,, %ci-,, c , hear traln". The 

vector dC-L is expressed in terms of nodal displacements and shape functions hy 

means of Equation (4.52). The corresponding increment of strain enci-gy densitý at 

any point (x, y, z) in layer 1 is 

dU (1) (x, y, z, td c' (4.104) LLxy 

Substituting from Equation (4.52) into Equation (4.104) then 

dU (1) (x, y, z, td 6' G' A' +d 6' G' A' L in in in bWW 

2ttt f12(Z) ttt 
+z d6 bGbAb + d6S GmAs 

-z d6 tGtAt+ d6t G' At (4.1 () 5) 
in in bbb In 

I 

d6 tGtAt+ d6t Gt Am A (Z) I 
in in SS in 

I 

z d6' G' A' + d6' Gt At 0(1) f, (Z) IbbSSb 
b] 

I 

Xy 

By direct multiplication of matrices, the following equations can be proved: - 

where 

t (4.106) Am Oxy s ein =S Gm 'in 

t=SGö (4.107) As oxy -s os 
in s 

t (4.108) Ab ax 
v 

EE S0b=S Gb bb 

At oxy =S Ow :: -- SG6 (4.109) 
wwwwb 

ox 0 rxy 0 

0 cjýý 0 Cxv 

'r 0aN, 0 

0c0a 

and sw 
ox Txy 
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Hence, Equation (4.105) can be rewntten w, foll()%\,,.: - 

dUd5tGt S(l) G6- d6 tGI S(l) G6 Lmmmmbww 

Z2 d 6' G' SG8+ J*12(z) d 8' G' S (1) G5 bbbbs in in s 

z db tGt S(l) G8+ dö tGt S'l) G8 in in bbbb in in 

döt Gt S(l) G8+ döt Gt S(l) G6 fi (Z) 1 
in in in ss in in in 

] 

- ZA (Z) 1 db tGt S(l) G8+ db tGt S(l) G6 bb in ss in b bl 

(4.11-1) 

Notice that the G matrices are independent of -,, but S and S. may vary with I-, c\ cii 

within the same layer. To simplify the derivations, the average value of the sti-c, ", " Cý 
vector inside the layer will be employed as a constant pararneter within the thickness 

of the layer, i. e. 

s(z+S zu )I 

s', (Z('» + s», (Z('» ] (4.114) 

The following integrated z functions can also be defined as: - 

h/2 N, 

sS dz zzS 
inm 

fuL 

-h12 

h12 Ni 

s', 
', =f S� dz =E[ Z(') - Z(') jS (1) (4.116) 

-h12 

h12 

Sbb fz2S dz 
-h12 (4.117) 

NI (z (1) 3_ (Z (1) ý3] 

u)Li S(I) 
3J 
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h12 

sss 
=4ZS dz 

f 

3h 2 

h/2 

z (1) 3 (Z(I) )3 

8_[ (Z (1) 5 (1) ý5 
-2U 

(ZL 

15 h 

U 
)7 

_ 
(Z )7 S(J) 16 (Z (i) 

63 h4 

Sinb ý- Sbin '- 

h12 

fzS dý 
-h/2 

z (1) 
u 

h/2 

s 
In s 

z- Ss 
in 

(X 
I Y) z- z4ZS dz 

3h2 
h/2 

NI 
2 

_(Z 
(1) 

(Z (1) )4 Z (1) )4 SM 
uL 

3h2 

(4.118) 

(4.111)) 

(4.120) 



67 

Sbs(Xly) : z- Ssb = 

h/2 
fzz 

h/2 

4Z3S d- 
3h 2 

(Z (Z(I) )3 

4[ (Z(J) 5_ (Z(J) ý5 SM 
2uL 15 hý 

(4.1-11) 

The increment of the strain energy per unit area, due to finite strain contribution,,,. 

at point (x, y) on the midplane of the element and time t can be cxl)rc,, scd ýis 

follows: - 
h/2 

dUL(x, y, t) d- (1) dz f UL 
-h12 

= dö' G' SGö+ dö' G' SGö 
mM mm mmbwu iv it, 

d6' G' SG 45 + d6' G' SG6 bb bb bbs in ss in s 

d 6' G' SG6d6tGISG6 in in in bbbbbb in In in 

d6 tGtSG8+ d6 tGtSG6 
in III Ills 171 ss III sm mm 

d 6' G' SG6d6tGtSG6 bb bs Mssm sb bb 

1 '-l 
-) ) 

Integrating over the area of the element, the increment of the strain eneroy due to 

finite-strain contributions and centrifugal stiffening is expressed as follows: - 
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dd UL UL M ff dx dy 
element 

d5 tm Kmm 8 

d6 tKaa 
s ss s 

ta 
, 

Kms 5s 

tG bb Kýs 6s 

+d 6' ( (K(3 + (K, (' 6 b bb b 

G 
d6m Kmb 6m 

- da rb (Kinb )I 6n, 
t 

+ d6 t (KI as )t a snm 

d6t (Kýs)t 6b 
s bs 

a 

where Km" 
m= 

G' SG dx di, (4.1-14) ff In mm In element 

t K; 
b 

ff Gb Sbb Gb dx di, (4.1 25) 
element 

K,, '3 
w=GISG 

dxdN, ff 
w ww w 

element 

KGt 
s's 

ff Gm Ss, G,, dx dy (4.127) 
element 

cF GtSG dxdv Kin 
b 

ff 
"I mb b 

element 

K,, G, 
s=GISG 

dx dy ff 
m ms m 

element 

cl t 

Ký, = ff Gb Sbs G in dxA (4.130) 
e le in en t 

EqUation (4.123) can also be i-cwritten as t'oll()%\,, -- 

d UL M=d 6' (t) K 11 6 (t) 



where 

K° = 

K, l 

Kýb + Kww - 
(Kmb)r 'I 

KaK,, 
bs)' I 

and the total increment of the strain energy will be 

dU(t) = db'(t) [K + K"] 6(t) 

where K has been previously defined by Equation (4.79). 

4.6 DERIVATION OF STATIC EQUATIONS 

FOR A ROTATING ELEMENT 

(. I --)'- 

13 3) 

4.6.1 Equivalent nodal loading to inertial effects 

If a rotating composite layered plate or shell has a steady-state casc of deformation, 

where the vector of deformation ' at any point inside it is independent of time, then q 

the acceleration at that point due to rotation is 

a=a 02 CR 

and Cl, RO are as defined in section (3.3). 

(4.134) 

So far the equations derived for the element are described ývith respect to local axcs 

of the c1cment, where the -, axis is always normal to the element midplanc. If the 

local x, Y and -. axes havc directional cosines ( /11 mi, /I) I, in, n, ) and 

n, ) with respect to the structural global axes respectivelý, then: - 

I 

69 

K. " C, -K mb 

I 

R 3x3 

10 ca I -global 

13 S) 
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where 
11 mi n, 

3x3 
12 M2 

13 M3 n3 

(4. H() 

If the matrix C, is defined in terms of directional cosines ( 1, in, n) with rc,, I)cct to 
the global system of axes, then a given by Equation (4.134) contains components 

with respect to global axes. Using Equation (4.135), it can be "Iiown that: - 

a local :- R3x3 aglobal (4.137) 

For simplicity, the R. vector will represent the position vectoi- of ýt point oii the 

midplane of the element, i. e. with a constant value of -, and the acceleration vcctor 

will be partitioned as follows: - 

a x a 
alocal ay xy 

a 
a z 

where axy 
ax 

ay 
a., = [at] 

(4.138) 

D'Alembert's force due to acceleration for an infinitesimal mass Ani in the I" layer 

is 

A F(l) = -Am a=-p (1) 
a., y Ax Ay Az (4.139) 

local a 

The work done due to a virtual displacement field dq ( x, Y, -, ) will be 

d(AW(l» = dq'A F(') 

p dqxya. 
ýy + dqzazýAxAý,., 

-ýz 

From the analy,, is given in section (4.1). the displacement components, can be 

cxprcs, scd in tcrms of nodal parameters, and shapc function,, a,, follow,,: - 
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du 
d q., y dv 

NL d'm -zN bdÖ b+ 
fl ('ý) 

'yLd 5, 

dw -j -NH d6 b (4.14 -) 
Hence 

-p(')ý[d6 t Nt - zdb' Nt mLbb (4.14-3) 

+ f, (z) d8t Nt Ia+ d6 tNta AxAvAz 
sL xy bH zj 

Integrating over the volume of the element, it can be shown that the wol-k done on 

the element during the virtual displacement is 

dW = d6 tF+ d6 tF+ d6 tF d6t F 
mmbbsb 

where F. ff p. N' a dx dy L xy 
element 

Nta dxdN, ff 
PbbxN, 

element 

F, ff p, N' a., y 
dx dy L 

element 

F p,, Nta dx dy 
w 

ff 
Hz 

element 

and 
h12 

in 
fp dz 

-hl- 

N, 

zz 
uL 

(4.144) 

(4.145) 

(4.146) 

(4.147) 

(4.148) 

(4.149) 
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h12 

Pb fz 
p(l) dz 

-h12 

z 

h/2 

PS =fZ-4Z dz 
3h 2 

-h12 

z (1) 2 
__ 

(1) 21 
U) 

(ZL 

2 

1_[ (Z(I))4 
-( 

3h2 u Zý 

h12 

Pw = Pin f p(') dz 
-h12 

Equation (4.144) can also be expressed as follows: - 

dW = MF 

where 

F 
m 

Fb+ Fw 

F 

(4.150) 

(4.15 1) 

(4.1521) 

(4.153) 

(4.154) 

4.6.2 Element static equations 

Applying the principle of virtual work, the change of the total potential cilcr(p' of the 

element due to a virtual displacement field is zero, or 

dU - dW= 0 

Using matrix eqUations developed in sections (4.3), (4.5) and (4.6.1 ) for a CýI,, c with 
I 

steady-state deformation. then: - 
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db'(K + K") - MF = 

or d6[(K - K")b - F] =0 

i. e. (K + K')6 =F (4.155) 

The finite element equations of the whole composite layered plate or shell are 

assembled from element equations in the usual way, provided that clement stiffnc,, -, 
matrices and nodal vectors are represented with respect to the same global , ý,, tciii 

of axes, as will be explained in section (4.9). 

4.7 DERIVATION OF DYNAMIC EQUATIONS 

FOR A ROTATING ELEMENT 

4.7.1 Rotational speed in terms of local axes 

If the angular velocity vector Q, as described in section (3.3)), is represented in tcrins 

of global components, then: - 

---%. =I+M+nk (4.156) 00 ('G 
GJG G G) 

where ( I, m(;, n(; ) are the directional cosines of Q with respect to the global axcs, 

and GI JGI kG ) are unit vectors in the directions of the global axes. 

Using Equation (4.135), it can be shown that: - 

"local R3x3 ': 'global (4.157) 

0m R3x3 ': 'global 

n 

are the directional cosines of Q wIth rcspect to clenicilt local a\c,, 

Hcncc. it can be deducccl that: - 
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1=1G 11 +M GMI -n Gn, 

M=1G 12 + MG M2 + n. n2 

n=1G 13 + MG M3 +n Gn 3 

and the Equations derived in section (3.3) can be employed with the vcctoi-, aiid 
matrices given by Equations (3.84)-(3.89) being defined with respect to element local 

axes. 

4.7.2 Effect of relative acceleration 

The relative acceleration at an instant of time t, as defined by Equation (-). 81 ) can 
be expressed as follows: - 

a (x, y, z, t) zz: 
4x)l 

r q- 
I 

where 4, 
y 

and 4z =[ý, ] 

(4.160) 

For an infinitesimal mass in layer 1, D'Alembert's force due to relative acceleration 

can be expressed as follows: 

qý, y AF Ax A N, Az 
r q- 

and the work done due to a virtual displacement field dq (-v, y, z. t) %\ iII bc: - 

d (A Wr(l)) d q' AdF (1) 
r (4.162) 

t dqxy 4xy + dqýt- 4z Ax Ay Az pIzI-I 

Expressing dq and 4 in terms of nodal parameters and shape function, and 

intearating over the element, it can be proved that the work done due to 
Lý tý 

D'Alembert's force of the relative acccleration during the virtual dkplaccment iN: - 1ý1 

dHý = -d6'M 8 (4.163) 

where 11 is the mass matrix of the element, Nvhich is identical to that derived in 

section (4.4) from the kinetic cncrov approach. 
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4.7.3 Effect of centripetal acceleration 
D'Alembert's force acting on any infinitesimal mass at laycr 1, due to the centripetal 
acceleration is: - 

(1) = A Fp ap Am P(l) ap Ax AYAZ 

1.. e. (1) 
=(p (1) 02 A F; C, q) Ax Ay Az 

1_ 12 
- lm - ln 

where C, -ml 1 _M2 -mn 

-n1 -nm 1 -n 
2 

The work done by A F,, due to the virtual displacement dq I) 

(I d (A Wp(')) =d q' A Fp ) 

_': p (I)Q2 (dq' C, q) Ax Ay Az 

Defining the following sub-matrices of C,: - 

a22 

_M2 

a12 = [-ln -nm] 

ln t a2 

-mn 
a12 

a3 3 :- 
11 

- 

then it can be shown that: - 

(4.164) 

(4.165) 

(4.166) 

(4.167) 

(4.168) 

(4.169) 

dqt C, q= dq tat 
xy 22 qxy + dqxy a, 1 qz 

(4.170) 
t + dqt a+ dq, a qz z 12 qx,, 33 

Substituting from Equation (4-141) and (4.142) into (4.170) then it can hc deduced 
L- 

that -- 
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dqt C, q= d6t N' aN5+ Z2 d6t N' a, N6 mL 22 Lmbbbb 

+ f, 2 (z) d6 tNtaN8+ d6 tNtaN6 
sL 22 LsbH 33 Hb 

-z d6' Nt aN8-z d6' Nt aN6 bb 21 HbbH 12 bb 

- zd6 tNtaN6-z d6t Nt a, N6 mL 22 bbbbLm 

" d6 tNtaN6+ d6t Nt aN6 mL 21 HbbH 12 Lm 

tttt 
" fl(z) d6m NL a22NL 6S + fl(z) d6, NL a22NL 6m 

- zfl (z) d5t Nt aN- zfl (z) d6t Nt a, N5 bb 22 L 45 SsLbb 

+ f, (z) d6t Nt aN+f, (z) d6' N' a bH 12 L 
6S 

sL 21 
NH 6b 

h12 

Defining PMM fp dz = PHH = PmH = PHm 

-h/2 

h12 

(4.173) Pmb fzp dz = Pbm = PbH = PHb 
-h12 

h12 

Pins f fý (z) p dz = ps,,, = PsH = PHs (4.174) 

-h12 

h12 
2p dz (4.175) Pbb z 

h12 

hl" 
f f2(Z) p dz (4.176) PSS 

-h12 

h12 

pms --- 
fzf, (z) p dz (4.177) 

-h12 

which havc explicit expressions similar to those given by EqUations (4.84)-(4.90). 

then the work done on the element by D'Alembert"s forcc due to the ccntripetal 

acceleration, during the virtual displacement dq. can be cxpi-csscd v, follow,,: - 
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dW = 02 dö' _M 'm - dö'- 
mm b 

Mbb '5b 

d 6' b - MHH + ab d6' s 
-M 6 ss s 

t dab - MbH 6b 
- 

t dab - (MbH)t atb 

d6 t 
m m mb 6- b M b (Mmb)t 15 m 

dt am - 1ý1ý 
H 

t 
45 b+ 

dab - (MHm)t am 

t dam - Mýs + as t d6s (- llýn 
s6 in 

d at b Tlb, 6, - d 6' ( 
s 

-m 
s)' 

ab 
b 

t 
d6 M+ d6, b Hs 

6s r (MHs)t "b 

where 

M=NtaN 
dx dy MM 

ff 
Pmm L 22 L 

element 

Nta, N dx d N, Mb 
b 

ff 
Pbbb 22 b 

element 

N' aN dx dy MHH ff 
PHH H 33 H 

element 

-s=NtaN dx dy MS 
ff 

PSS L 22 L 

element 

NIa,, N dxdv MbH ff 
PbH bH 

element 

NtaN dxdN, ff 
Pmb L- 

Mýb ý 22 b 

element 

Nta,,, N dxdv 
H 

ff 
P 

in HLH 
element 

(4.178) 

(4.179) 

(4.180) 

(4.181) 

(4.182) 

1 8) 

(4.184) 

', 0) 
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NtaN dx dv Mms ff 
Pms L 22 L 

element 

s 
N' aN dx dy Mbs ff 

Pb b 22 L 
element 

, 
N' a,, N dxdv MHS ff 

PH HL 

element 

Equation (4.178) can also be rewritten as follows: - 

dW = 02 d8'M 8 
p 

where 

M m in 

M= +- Mýb "ýnH) 

(ms)t 

Aý 
nb+M mH) 

M +M HH 

t MbH MbH 

Mbs + MHs)t m 
ss 

(4.186) 

(4.17) 

1 

(4.189) 

(4.190) 

4.7.4 Effect of Coriolis acceleration 

D'Alembert's force acting on an infinitesimal mass at layer 1, due to Coriolis 

acceleration is: - 
A F(l) = P(l) a Ax Ay Az 

cc 

= -2p(')QC 2 
ýLX 'ýL Y 'AZ 

0-nM 

Where C, n0- 

M10 

The work done hy A F,, due to a virtual displacement dq is: - 

m 
Ms 

(-Mbs + MHs) 

(-t. 191) 
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(A Wc(l)) dqtAF (1) 
c 

(4.192) 
p(l) 20 (dq' C, 4) Ax Ay Az 

defining the following sub-matrices of C2: 
- 

b220n 
n0 

b12 M 

bbt (4.19 5) 21 12 

then it can be shown that: - 

dtct q=dq, b+ dqx, b, 24 x- 22 
4xy 

-1Z 

+dtb qz 12 
4xy 

By substituting from Equations (4.141) and (4.142) into (4.196) it can be shown 

that-- 

tt2 dqt C2 db,, NbN d6' Nt bN L 22 L 13 
m+ 

7- bb 22 b 

2tt (z) d6s NL b22NL ýS 

- zd6 tNtbN6-z d6' Nt bN6 bb 21 HbbH 12 b 

- zd6 tNtbN6- zd6t Nt bN6 
mL 22 bbbb 22 L 

d6 tNtbN6+ d6t Nt bN6 
in L 21 HbbH 12 L 

tt 
fl(z) d6m NbN+ fl(z) d6' Nt b, N L 22 LssL 22 Lm 

zfl (Z) d 6' N' bNý- zfl (z) d 6' N' bN6 bb 22 LssL 22 b 

r N' bNý+frI fl(z) dab 
H 12 LSI ý7) d5s NL b, l NH 6b 

(4.197) 

lntc(_tratiiig M'cr the volume of the clement, then the work done on the clenicilt 1)\ 

D'Alembert's forcc due to Coriolis acceleration during the virtual displacement dq 
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can be expressed as follows: - 

dgý 20 d6 t+ d6t C+ 
m 

Cým 
mb bb b 

M(ý, 6 
ss 

- d6' C+ b bH b d 6' b 
(CbH)r 

b 

- d6 tc 
in mb b d6 t (C )t b mb in 

" d6 tc6 
in mH b d6 I (C Y6 b inH In 

" d6tmC1ns6s + dbf (Cins)f 6 
in 

- db'C ý- b bs s d6 t (C )t 6 
s bs in 

- d6 tc6- b Hs s d6 t (C Y6 s Hs b 

where 

c 
mm 

Nt b� N dx dv 
mm-,: L ff P 

element 

c ff 
PbbNtb 22 Nb dx dy bb b 

element 

CsNtbN dx dy 
S 

ff 
PSS L 22 L 

element 

CbH ff 
PbH N' bl NH dx dy b 

element 

N' bN dx dy Cmb ff 
Pmb L 22 b 

element 

c N' VN dx d N, in H 
ff 

P 
in HL -1 H 

clement 

c N' b, N dx d N, 
ms 

ff PMS LL 
element 

(4.198) 

(4.199) 

(4.200) 

(4.201) 

(4.202) 

(4.203) 

(4.2104) 

(4.2 () 5) 
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t 

bs P bs 
Nb b22 NL dx dv 

element 

t CHs ff 
P Hs NHb 12 NL dx dY 

element 

Equation (4.198) can be rewritten as follows: - 

where 
dW = -20 MC 

c 

CMM 

c= - (Cmb + CmH)t 

(CMSY 

(- Cmb + CýnH) 

Cbb 

-C 
t 

bH + CbH 

(-Cbs - CHs)t 

c 
ills 

(- Cbs + CHs) 

Cýs ! 

(4.200) 

(4.2071) 

(4.208) 

(4.209) 

Notice that although the K, K', M and -m rnatrice. ý dcfined earlier are ,\ minctric 

matrices, the matrix C is not symmetric. 

4.7.5 Element dynamic equations 

Consider a composite layered plate or shell under dynamic force, the structure, or 

every element of it, can be considered in a state of dynamic equilibrium under 

applied and D'Alembert's forces, and the principle of virtual work can be ýippllccl. 

Assuming that the element is subjected to a virtual displacement field dq (x, y, z., t), 

then-- 

(a) The change of the strain energy of the element is expressed in Equation 

(4.133) as follows: - 

dU (t) = d 6'(t) [K+ K' ]8 (t) 

(b) The work done by applied forces, at an instant of time t, due to dq can he 

cxpl-csscd as follows: - 

dWF(t) =d61 (t) F (t) 
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where F (t) represents a nodal loading , ystem equl% alent to the actual applicd 
force, (EI-Zafrany, 1994). 

(C) The work done by D'Alembert's force due to relative acceleration ill 
expressed in Equation (4.163) as follows: - 

ffý (t) =- 6'(t) 

(d) The work done by D'Alembert's force due to centripetal accclcration I, -. 
defined by Equation (4.189) as follows: - 

dW 02 
p d6t(t) M 8(t) 

(e) The work done by D'Alembert's force due to Coriolis acceleration Vs given 
by Equation (4.208) as follows: - 

20d 6'(t) 

Applying the principle of virtual work at an instant of time t, then: - 

dU(t) - [dWF(t) +d ffý (t) +d Ký +dW (t) ]=0 
c or 

dbl(t) ý[K + K] 6(t) - F(t) +M 8(t) 1 
(4.210) 

M 6(t) +20C0 
Since d6 is due to the virtual displacement field, then its coefficient in the previous 

equation should vanish for arbitrary values of dq, i. e. 

M 8(t) +2QC 

[K + K' - 02 M] 6(t) = F(t) 
(4.2 11) 

which represents the dynamic matrix equation of the element. The dynamic equations 

t or the whole structure are assembled from the element equations using the usual t: ) 
assembly procedure. 

4.8 ELEMENT NIATRICES FOR AEROELASTICEFFECT 

4.8.1 Nodal loading equivalent to external 

aerodynamic pressure 

Consider a composite layered plate or shell subjected to an extcrnal aerodviianiic 
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pressure p,, ( x, y, t) at its upper surface. Taking one finite element, described with 
respect to a local system of axes, where the -, axis is normal to the "urface of the 

element, then the force in the z direction. acting on an infinitesimal al-ca AxAy dUe 

to p,, will be as shown in Fig. (4.2), i. e. 

A F. z-- - (4.12) 

Applying an infinitesimal displacement field dq ( _v, _v, -., 
t) then the %%ork (lone will 

be : 

IK) =- dw(x, y, t) p. (x, y, t) AxAy 

Using Equation (4.142) then 

dw =NH d8 b 

and the total work done on the element can be expressed as follows: - 

dW d6' ) t) N' dx dy 
0b 

ff 
P. (X, 

H 

element 

t F. dab 

where F. (t) = 
ff p. (x, y, t)NHt dx d-y 

element 

which represents the equivalent nodal force vector. 

If dW. is represented as follows: - 

( '13) 4.3 

(4.2 14) 

(4.215) 

dW. = -d8'F 
T (t) 

T0F. 01 (4.2116) then FO (t) =I 

wlici-c 0 Is a null \rcctoi-. and the two null vectors correspond to d6 * d6 
in S 

If the pressure distribution p, ( -v, v, t) is defined numerically, with givcn nodal 

valucs at cvcry time instant t, then at that instant one can use a Lagrangian 

interpolation such that: - 

(p. (t) ), Ni 
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4.8.2 Element flutter matrices 
Using the previous notations. the force acting on an infinitesimal clernent of arca 

AxAy due to the aeroelastic pressure p,, will be: - 

Alý P,, (X, Y, t) Ax Ay 

aw 
-+C 

awl Ax AN, 
(4.218) 

b aw 

ax ay at 
2 

where a 
P. 

Cos a 
M--l --l 

2 

sin a 

2- ( Mw 2) 
C3P 

V- 

22 moo 
-I 

as can be deduced from Equation (3.94) 

The work done by A F, due to a virtual displacement field dq will be: - 

aw aw aw d(AW +c 
,, 
) =- dw(xy, t) a 

ax 
+b ay at 

IAxAY (4.2 19) 

Using Equation (4.142), it can be deduced that-- 

aw = NH, 
x 

8b (4.220) 

ax 

aw N5 (4.212 1 

ay 
H, y b 

aw 
at 

where NH=I. 

NH, 
X ... 

aF,. 

ox 

NH ýb (4.212-2) 

GH Qi ... 

aGi aHi aQi 

ax ax a 
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aFt. aGi aH, C'Qi N ZZ H, Y 2L 0 CIN Y 

Substituting from Equations (4.220)-(4.222) into (4.219) and integrating ovcr the area Z-- t-I 

of the element, then the work done by p,, over the element can be written 
follows: - 

dgý = -db' [K,, (4.21 -1 3 b 
6b + 

Obj 

where 

Ka --:: 
ff NH' (a NH, 

x + bNH, 
Y) 

dx d-v (4.224) 

element 

C a : -- ff c Nt H NHdx dy (4.225) 
element 

Adding the work terms represented by Equations (4.2 14) and (4.223) into Equation 

(4.210), then the generalized dynamic matrix equation of the element ill casc ()I 

rotation and aeroelastic effects is: - 
M8(t) + 20C+ Ca (t) + 

K+ K' 02 M+ Ka) 6(t) (4.226) 

= F(t) + F. (t) 
1 

where 

cT 
a 

T Ka 

000 

Ca 

0 0 

0 0 

0 K 

10 
0 Ol 

according to the similar partitions shown in Equations (4.79), (4.102). ctc. 
L"- 
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4.8.3 Simplified theory for flutter matrices of thin panels 

with uniform layer thickness 

The simplification is based upon: 

(i) Ignoring in-plane coupling, i. e. assuming isotropic material or symnietric 

composites, hence neglecting the in-plane terms in element matrices becau,, e 

they have no effect on flutter. 

Assuming thin panels, which will lead to ignoring transverse shear terms. Z-ý 

Simplified element strain energy 

Considering only the bending degrees of freedom, then: - 
aM E5 bb M 

and the element strain energy can be reduced to: - 

K b2b bb 
6b 

where K5= ff B' DB dx dy bb bb b 
element 

Simplýfied element kinetic energy 

Similarly, the element kinetic energy per unit volume becomes: - 

KE p2=p ý' N' NH ýb 1 
bH 

Hencc KE Nt N dx dy 
2b 

Pmm 
ff 

HHb 

elmnent 

h 
2 N, 

where fp dz h (1) p 

2 

and h(l) is the total thickness of the element, %\hich v, assunied to bc independent 

of (x, Y) tI or the simplified casc. 
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Work done due to aerodynamic pressure 
This can be expressed as follows: - 

dW -M a b(t) [K 
a 

6b M- Ca "b 

where Ka ff N' (a NH,., -b NH,, ) d--v dy H 
element 

Cc ff N' NH dx dy aH 
element 

Defining MffNtN. dx dy HH 

element 

then virtual energy changes can be expressed as follow,,: - 

dU(t) = d5t b 
Kbb ab 

dKE(t) = dbb' m 
b Pmm H 

8b 

dffý = -db tK66 bab t) +C MH 
b(t) 

Applying the energy principle that the total potential energy k statiomirý, tlicn: - 

dx =0= dU + dKE - dgý 

d6' (t) + (K + K,, ) - b[ Pinin MH 8bM+C MH ýb 
bb 15 b 

(t) I 
ý- 

Hence the simplified dynamic equation can be expressed as follows: - 

(t) + (K + K, Pinni MH 8b(t) + CMA bb ,)6b( 
t) 

4.9 ELEMENT AXES AND ROTATED MATRICES 

4.9.1 Local and global axes 

The element matriccs derived in the previous section,, are defined with 1-c,, I)cct to 

c1cment local axc,,, which have the local -, axis normal to the midplane of the 

element. The 
-v ýms of the matenal (the fibre k defined in tenw, of ail angic 0 

1 
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with the local x axis of the element. The orientation of fluid vclocity. for flutter cac.,, 

are defined with respect to the local x axis of the element. Hence, the definition ot' 
the local axes should be dealt with carefully to avoid aiiy unneces, "ary confLl"Ioil. For 

the analysis of plates, the local axes are the same as the global axes, hoý\c\'CF t'or 
facetted shells, the local axes are defined as explained next. 

(a) Definition of the local z axis (ý axis ) 

Let i, J, k be three non-collinear nodes in the midplane of the element, ýv, 

shown in Fig. 4.3. Two position vectors can therefore, be defined in the 

midplane, as follows: - 

Vii = (xi - xi) I+ (yi - yi)j' + (zi - zi) k 
(4.2127) 

Vik = (Xk - Xi) + (yk - yi) + (Zk - 7-i) 

Hence, a vector normal to the midplane can be defined as the vectorial 

product of the previous vectors, i. e. 

-11 

(I 

or 

where 

V. Ij i 

xj -Xi yj - Yi Zi - zi 

Xk -Xi Yk - yi Zk -7i 

Ai+B3j+C3k 

3 -': (yj - yi ) (7-k - Zi) - (yk - Yi) (Zi - Zi) 

B3 Zi ) (Xk - Xi) - (Zk - Zi ) (x -X ji) 

C3 
-Iýi 

) (Yk - Yi xk-xj- Yi 

(4. -12 
8) 

(4.2-19) 

Hencc, the direction cosines of the local -. axis can be det'111Cd LI-' 111C 
-1b. 

components of a unit vector in v, direction, i. e. 
z 
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M n3 k 

where 
A3MB3n C3 

333 
VZ VZ, VZ 

and Pý\ = 
ýA 2+B2+ C2 

333 

(4.21 3 ()) 

Definition of the local x axis (x' axis ) 

For flutter problems, the local x axis should be parallel to the global x axis L- 

to facilitate the definition of fluid flow direction, i. c. 

(4.231) 11 i+ MIJ + n1k 

where 1, = 11 mi = n, =0 

However, the second type of Hermitian functions (conft)"ning) are based upon 

rectangular elements, where local and intrinsic axes are Lis shown in Fig. 

(4.4). This requires that the local x axis should be in the direction of v, ,i.. e. 

11 
X2 X1 Y2 Yl z7 - z1 

n= __ 

1A 

where A=ý (X2 - XI)2 + (Y2 - yl)2 + (Z2 -Z 1)2 

and (X1 
9 Y1 I ZI )I (X21 Y21 Z2 ) are the global coordinates of the element first 

and second nodes. If this type of element is employed in flutter analysis. then 

the local x axis should be parallel to the global x axis. 

A generalized definition is employed in the first type of Hermitian elements 

(non-cotýforming), which includes triangular and quadrilateral elements . that 

is to assume that the local x axis is normal to the local z axis and the global 

y axis, (provided that these two axes are not themselves parallel to ciich 

other). Hence , if -' axis is parallel to Y axis. take x\ axis in the dircctloii ()I 

x axis, OthCIAVISC UsC: - 
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= 
JA / 

(4.32) 
JA 

e. n3 
MI =0 and nj 

13 

2 13 + n3 13 + 113 

(c) Definition qj'the local y axi .S (I-Vi .S 

By default, this is defined normal to the local z and. v axes, i. e. 

jkAi (4.2-13) 

Hence 12 = M3 nj - m, n3 

m2=n311- 

13 Mi -1m 13 

4.9.2 Element rotation matrix 

For an n-node element, an expanded local nodal displacement vector will be defined 

as follows: - 

ocal ... ui vi wi Wi, x wi,. N, 
(oJi (Yxz)i (y )i wi 

... 
(4.23 4) 

1yzz 

and the derived element matrices can be redefined accordingly hN partitioning theni 

tI or each node. Notice also in Equation (4.234) that: - 

Uig Vi5 W1. are the displacement components in the local x, Y and z 
directions respectively. 

( ii ) wi, x Z-- (0 A represents a rotation in the local y direction. 

represents a rotation in the opposite local x dii-cction 

0 for non-conformine, elements. 

w i, x-v 
represents a i-otation in the local z direction for 

conforming elements. 

transverse shear strain causing a change of amilc 
V)i 

measured vectorially in the local v direction. 
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transverse shear strain causing a change Of L AC 'I IIL (Yyz)i ((ýX)j 
ltý - measured vectorially in the local x direction. 

0 

The corresponding global vector for shell applications and folded plates will 
generally be defined as follows: - 

aglobal =ý... ui vi wi (OX)i (()y)j (oz)i (ýX)j ((ýZ)j ((ýY)j 
... 

1 (4.235) 

and the element rotation matrix is defined such that: - 
blocal :::::: R 

element 
aglobal (4.2 3 

which is not required for plate analysis, i. e. '51ocal = aglobal for plates. 

The rotation matrix is defined in terms of 3x3 sub-rotation matrices as follows: - 

Relement =[... Ri Si Tj ... 1 (4.2 17) 

with the following definitions-- 

a Ri is the rotation matrix of the axes, i. e. 

11 mi n, 

Ri =R 3x3 
12 M2 n2 (4.238) 
13 M3 n3 

b Si has two definitions, i. e. 

i For conforming elements, since there are contributions in elenici-it tý) 
matrices corresponding to 0, then 

Si =R* (4.239) 3x3 

For non-conforming, elements there are two possibilities: - ot) 
# If node i is on the intersection of two planes as shown in 

position number I in Fig. (4.5) or on a curvcd surfacc then: - 

Si R* 3x3 

If node i is on a plane away from the intersection linc as , Iio\\ n 

in position number 2 in Fig. (45) then: - S i3x3 
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12 m2 

where R3,, 3 n, 

mn 333 

C Tj for all elements : 
# If node i is on the intersection of t\w plane,, (w oti a cw-\cci 

surface then: - 
T. = R* (4.24 1) 

I 3x3 
# If node i is on a plane away from the line of intersection 

then: - 
T. '- (4-14-1) 

1 ': - 
13 

x3 
i. e. the global and 

v 
), will be replaced hy the local 

(y, 
z), 

and (y 
YA 

(d) Effect on the boundary conditions: 

To avoid having singular element matrices, zero rows or COILIrnn..,, ' will hc 

deleted by putting additional boundary conditions as follows: - 
(i) For conforming element cases with Tj = 3x3 wc assume also the 

boundary condition: 4A = (4.243) 

( ii ) For non-conforming elements cases with S, =T, = I,,,, wc assunie the 

boundary condition: (0'), = ((ýz), =0 (4-244) 

4.9.3 Rotated element matrices 
The strain energy of the element can be expressed as follows: - 

=1 

45 
t u2 

local Klocal51ocal 

Z7' 
6 

local R 
element 

8global 

tatR (4.245) local global element 

then 

III 
R K, R global element ocal element Io ba I 
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1 Ist lobal Ka (4.240) 
2g global global 

Hence, it can be deduced that-- 

K=RtK, R (4. -4-, ) global element ocal element 

Similarly it can be proved that 

M=RtR (4.248) global element 
Mlocal 

element 

The work done by D'Alembert's force equivalent to Coriolis acceleration during 

virtual displacement is defined by Equation (4.208) as: - 

dW 20 d6f c local 
(C )local 15local 

20 d6' Rt global element 
(C )local Relement 45 global 

=-0 d6g'lobal ( C)global 'global 

e. =RtR (4.24 9) (C)global 
element 

(C )loca 
element 

Similarly it can be proved that: - 

-150) (M)global ': -- Retlement (M-)Iocal R 
element 

(4. 
- 

The work done by a nodal force vector during a virtual displacement is: - 

dW = d6 t local 
Flocal 

d6 tRtF 
global elentent local 

d6 t global 
Fglobal 

ix. (F = Rt )local (4.2 5 1) )global 
element (F 
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z 

Element midplane 

x 

Element layers 

ZI 

z 
Layer I 

Figure 4.1 Typical composite layered element 

A 
h 

V 
h 

A 

v 

Figure 4.2 Force oil an infinitesimal area 
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y 

Figure 4.3 Vectors for the definition of element local axes 

V 

B 

11 

11 

0,0 

11 
x 

Figure 4.4 Local and inti-insic axc,, I'm- confoi-ming Hcrinitian c1cment 1ý7 

i) 

H 
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/ 
Figure 4.5 Points with different numbers of degrees of freedom 



CHAPTER 5 

FINITE ELEMENT ANALYSIS 
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5.1 INTRODUCTION 

New conforming and non-conforming finite elements with parabolic transvcrsc shear C 
stress distributions for rotating plate and shell structures, made of composite la\ cl-cd 
materials, have been developed. The basic procedures of different types of finitc 
element analysis employed in this work are summarized in this chapter, and the 
corresponding programming modules are reviewed iii the next chaptci 

Although the main area of research in this thesis is the natural frequency and flutter 

analysis, it is essential to carry out static analysis prior to dynamic analvsIs of 
rotating structures in order to estimate stresses due to rotation, which are required for 

the derivation of centrifugal stiffness matrix. Hencc, dynamic analysis modules havc 

the static analysis as an option prior to dynamic analysis. Due to the %'ci-satility of the 
FEM, most of the finitc element procedures described in this chaptel- are not 

completely original, and we only summarize here their basic aspects for the 

completion of work description. 

5.2 STATIC ANALYSIS 

The finite elernent package developed in this work wýis designed to run on PC's with 

i-casonable resources. Hence, it was essential to cinploy an efficient equation cl-, 

and the most efficient one in terms of RAM requirements and CPU time is the 

frontal solver. The frontal technique was originated by Irons (1970), and it asscmbles 

equations and eliminate variables at the same time. When the coefficients of an 

equation are completely assembled, from the contributions of all relevant elements. 

the corresponding variables are eliminated, keeping only a small proportion of the 

matrix of coefficients in the COMPLIter random access nicnior\ . Hence, reducing the 

R,, \M requirements. and also hy 
-ivoiding the arithmetic operations on zero tcl-111". the 

C0111PLIter CPU time is reduced. 

A frontal solver xvith a dynamic front width, dcN, cloped originally hy Cranfleld 

Computational Nicchanics Group, and showii to be very efficient when u,, cd with 
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virtual-memory computers such as VAX and Workstations. has been modified to deal 

with asymmetric matrices, and employed in this work. Asymmetric matrices arise in 

flutter analysis, and in the presence of dampers with nonsymmetric coctTicient,,. 

Nodal loading vectors equivalent to centrifugal loading have been derived in 

section 4.6.1, and the stresses and strains at different layers can be obtained from 

equations similar to those given in sections 4.2 and 4.3. 

5.3 NATURAL FREQUENCY ANALYSIS 

5.3.1 General theory 

The dynamic matrix equation for a rotating element is given in section 4.7.5, and it 

can be assembled and rewritten for the whole domain of the problem as fol1mvs: - 

MT 8 (t) +20 CT ý (t) +KT6 (t) = 

where MT ! -- 
1: Melment 

elments 

cT Ec 
elment 

elments 

T=E (K + KG _ 
02 M) 

elments 

(s.! ) 

If Coriolis forces effects on the natural frequency is negligible, then the previous 

equation can be reduced to: - 

MT 8 (t) +KT5 (t) = F(t) (5.2) 

When there are no external forces, and with the initial conditions been properly 

imposed, it is possible to induce vibration in any one of several natural modes which 

arc characteristic of the structure. In a natural mode, each point of the structure 

exccLitcs harmonic motion about the position of static equilibrium at the sanic 

reqUency. Hencc, it can be assumed that, at a natural mode of % ibration 

6(t) = 6coswt 
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where 6 represents the vector of nodal amplitudes. The preViOLI,, expre,, sion (46 (t) 

will result in the following matrix equation: - 

(K T_W2MT)6 
=0 (5.3) 

This matrix equation represents a , ystem of homogeneous , imultancOLPý, equatiow, 

which have a non-trivial solution, if the value of X. satisfie. s the follownig conditioii. 

IK T-ýMTJ 
= 

where ý. =W 

(5.4) 

The previous determinant is a polynomial in k which is known as the characteristic 

equation. Its roots ý,,, X ..... are called the eigenvalues. For each root ý,.. there cxkt, ý 

a vectorb,, such that: - 

(K T mT) ai (5.5) 

and which is known as the eigenvector, or the mode shape vector, can be 

obtained in terms of the ratios to one of its components. 

5.3.2 Subspace iteration 

If the finite element matrix equation of natural vibration: 

K T8 
= XMT8 

has KT and MT with a very large order and only relatively few eigenvalues are 

required, the technique of subspace iteration provides a very economical solution. 

The method is based upon reducing KT and M' whilst retaining the lo%%, e,, t 

ar ss clliýciivalues. The subspace iteration algorithm can be summ ized a. follow, (I'l 

Zafrany, 1994): - 
(i) Assume a set of load x, cctors, 

1ý11 xp 
=[yýY, 

... YPI 
\\, Ilcl-c Y, is a vcctor of order in, i- = 1,2, 

III i,, total number of unknown degree,, of freedom, 

1) is the number of the required clgcnvaluc,, 

reasonable is to take Y(r, s) (the Kroncck-cr dcIta). 
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(ii) Solve the following p sets of equations 

Jý 
n/m 

ar -= Yr 

where r=1,2, ..., p 

Form the following rectangular matrix of eigenvectors: 

Xý 
Xp 

=1 61 52 
... 

apI 

(iv) Obtain the reduced or subspace stiffness and mass matrices as follows- 

K 
xp 

xKx p (pxm) (m x M) (m xp) 

m 
xp 

xmx 
p (pxm) (mxm) (m xp) 

(V) Solve the subspace eigenvalue problem: 

Kpxp 8pXI Mp 
Xp 43P XI 

(vi) Form the following square matrix of the reduced eigenvcctoi-s: 

XP, 
xp = ... 

8*I 
2p 

(Vii) Transform back to the original space, using: 

xx* 
new(nlxp) 

'::::: Xold(nlxp) 
' (Pxp) 

(viii) Calculate the new load vector 

=mTx Ynew(m_p) 
inxm new (mxp) 

(ix) Decision 

0 Calculate the maximum error 

(5.6) 

emax = Max (I X'new 
- 

;ý' 

old 

1, i=1,2, ..., P) 

If the maximum crror is greater than a givcn perrnis, ýible crror then L, () 

to step (ii). 
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5.3.3 Simple iteration algorithm 

The matrix equation (5.6) of the reduced eigen% alue probleni can be writtcn as 
follows: - 

6* K* 6* 

Multiplying both sides by K* -', the problem can be expressed a,, the following 

standard eigenvalue problem: - 

Q6, 

where Q= K* -1 M*, and I is a unit matrix of the same order. 

There are many algorithms for the solution of the standard eigenvalue probleill 
(Wilkinson 1965) and (Bathe and Wilson 1973), the simplest of which is the sinipIC 
iteration algorithm summarized next: - 

(a) Iteration. for the lowest k 

The following steps can be employed for determining a value of ý. which com I 
to its minimum value. 

(i) Assume an initial value for 6* 

(ii) Calculate the vector y= 

(iii) The smallest eigenvalue is obtained from the ratio of two scalar 

products, i. e. ý- = (Y'Y)I(Y'Qy) 

(iv) The nodal amplitude vector is calculated from: - 

y/ 
ýY74ý-y 

(V) if I ;ý 
new- 

k1d I>a permissible error, then go to step (n). 

Siveepiiig qf ý, 
/ 

Defining Q, K*-'M*, then from the orthooronality of ei(-, cnvcctor,,, it can hc 
L- cs I- 

proved that the simple iteration algorithm applied to: 
C" 
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Qill will converge to ý, 
-1 

where Q. = Q. - 
1 

J+ 
6 8'M*, j=1,2 

i ; ý. ii 
i 

and X 
-:: ý X :! ý X 

5.4 FORCED VIBRATION 

Consider the assembled finite element dynamic matrix equation (Eq. 5.1 ) for a casc 

of a periodic excitation, or F (t) =A cos (ft) +B sin (ft) (ý. g) 

o steadN -,, tatc where J' is the frequency of excitation (radlsec). The correspondni,, 

nodal displacement vector will be 

6 (t) =a Cos (ft) +0 sin (ft) 

Hence 6 (t) = -f [a sin (ft) -0 cos (ft) ] 

and 2[ CX COS (ft) +p Sin (ft) 

_f 
26 (t) 

It can also be deduced from complex variables, that: - 

a cosO +b sin 0= ýt [(a+ ib) e-'O] 

--j real part of, and it can therefore be proved that: - 

TI (A ý- iB 

(5.10) 

(5.11) 

(5.12) 

(5.13) 

(5.14) 
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where F =A + iB 

Similarly, it can be shown that: - 

6M=Nfýe -f'l ("7,. 1 ()) 

ý (t) = at I- if -6 , -ift 1 (5.17) 

8M=Tf 

-f '8e -f'l 1) 

where 8=a+ ip 0.19) 

Substituting from Equations (5.14), (5.16)-(5.18) into (5.1) then: - 

3tý[-f2MT 
- (2 Of ) iCT +K 

T] 8e -f'l = ýX ý Fý e -f'ý (5.20) 

and the solution of the above matrix equation is equivalent to the solution of the 

I'Ollowing simplified equation: - 

[_f2MT -CT T] 
- (20f)l +K (5.21) 

which represents a system of simultaneous algebraic complex equations. Structural 

or hysteretic damping may be represented in terms of the material property p, known 

ýis the hysteretic damping factor, and KT is modified as follows: - 

a- o2 [(I + iýt)K +KmI elemeni 
eI em en ts 

An excitation frequency which causes resonance, the resonant frequencý, is the mic 

which leads to very high values of vibration amplitudes i. c. it i,, the one which 

satisfics the following condition: - 

IT- iCT K (2 Qf) -f2MTI) =0 
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0 

several values off can be assumed, and the nodal amplitudc, can bc plottcd % crLj, 
f, so as to detect the resonant frequencies. 

5.5 FLUTTER ANALYSIS 

The assembled dynamic matrix equation can contain aeroelastic effects. and resonant 

frequencies may be detected by using a forced vibration approach , Imllar to that 

mentioned in section 5.4. 

Consider the simplified theory described in section 4.8.3, the assernbled eqUations 

of a composite layered panel in a supersonic flow, ignoring excitation lorcc.,,, 

p 
mm 

MH ab (t) +C MH 
b 

(t) + K; 6b(t) =00.24) 

T 
where Ký (K bb +K0 )element 

elements 

T MH MH )element 

elements 

In order to find the corresponding eigenvalues, it is assumed that: - 

where 
ýb 

oc =p 

then 6b (t) =akea 

Äb (t) = a2 8b e "' 

ab(t) = 
'b 

e" (5.25) 

represents the displacement amplitude vector, 

which is a complex eigenvalue, %vith P and w 

being real values, 

and Equation (5-14) become,,: - 
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[KT +( (X C+ a2 Pmm) MT] fHke (5.2 b) 

which leads to the following simple eigenvalue problem: - 

T (5.2 7 45b MI'51 

where ý, =- (a c+ CC2 Pmm ) 

which generally represents a complex eigenvalue. 

The following results can be predicted from the physical concepts of the problem: - 
(a) When V. = 0, i. e. no aerodynamic effect takes place, ý, will have a set of real 

values k,, k29 
,*., representing the bending eigenvalues of the panel, with 

X, 

(b) When V. > 0, and increases monotonically from zero, the smallest 

eigenvalues k, andk2 approach each other and coalesce to kc, at Vý_ = (Vý ), 

and become complex conjugate pairs for V- > (V- ),: 
r. 

The same phenomenon 

is true for each succeeding pair of eigenvalues, but the smallest critical one 

will cause failure, i. e. the higher critical values of ;ý will nevcr practically 

occur. 

Using the subspace iteration algorithm, Equation (5.27) can be reduced as follows-- 
r) 

K* * -": 
ý M2*x2 62*xl (5 -218) 2x2 2xl 

K, K 1 12 10 
(5.29) 

K, *, - XMl K, XM 22 2J 

For non-trivial solution: - 

K*, 

ýM* K, 2 21 

= 
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Kj*j -X MI-1) K, M. " 

12 
MI 

2) 
M'*, 

which can be expanded to the following second degree equation: - 

a 

where a M* M* -m 11 22 2 
M21 m 

K* K* - K* *=I 
2 11 22 12K21 - 

*m*- K* al K11 22 + MI*IK,, *-, 12 
M2'1 - k2l M12 

Hence 

a2l -4 a- (X2 
x2 2a. 

The values of ý,, and can easily be detected, however our present subspace is not 

suitable for X,, and when they have complex roots. Since this situation only 

occurs after the critical flutter boundary (i. e. when ?,., = k, ), an automatic search for 

coalescence conditions has been designed, as follows: - 
(i) Starting with V. =0 (or a= 0), then calculate the expected real values of 

and 
X2 

(ii) Update (-( V-)old + '6 
V- or (a=(a+6a where 

,6V. and, 6 a are given increments, and calculate the corresponding /,, and ý.,. 

(iii) Proceed until the SUbspace iteration solver divergcs at certain V- or a, which 

means that flutter bOLindary has hccn exceeded. Then 

(I '-)om = last I '-- 6 V, 

= last a-Aa 
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decrease the increments, say: 

( 
'6 

VJnew :-( 'W-)old /5 

( 
'6 61 )new 

-": (&a). Id /5 

and repeat from step (ii) with the smaller increments. 

(IV) Proceed until I X, - ), 21 
is less than a perrni,,. ýIble error. 

Since the subspace iteration solver requires initially assumed values for mode shape 

vectors, the previous search procedure was improved and the number of subspace 
iterations was drastically reduced when for every new a or Vý_, wc use the last 

calculated values of mode shape vectors as our initially assumed values. 



CHAPTER 6 

FINITE ELEMENT 

PROGRAMMING PACKAGE 
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6.1 INTRODUCTION 

Based upon the theory described in previous chapters, a niodular finitc clemem 
computer programming package ýýas designed. The package wa,, coded in 
FORTRAN 77, and tested on VAX (VNIS) main frame computers. L'iiix 

workstations, and DOS operating PC's. The package consists of several niodulc", 

where each module is a file containing a group of subroutines. For any specific 

analysis a program can be easily constructed from relevant moduIcs by linkill, -, their 

compiled files, as it will be explained in this chapter. 

The package can be employed for finite element analysis of plates and shells made 

of isotropic or composite layered materials, and the package is capable of static stivs,, 

analysis, natural frequency analysis, forced vibration analysis, and flutter analysk. 

It is not possible within a limited thesis volume to present a detailed description of 

the different subroutines available in the package. Nevertheless, an attempt is made 

in this chapter, aiming at introducHig the structure of the basic moduics, and llmv 

different program options can be constructed. 

The package modules are illustrated by coloured figures, where the element module 

is illustrated in blue, the material module is in green, the common module is in red, 

the Coriolis and centripetal matrices module is in pink, the flutter module is in 

orange, the solver modules are in brown, and the program structures are in violet. 

6.2 ELEMENT MODULE 

This module contains the essential subroutines for the derivation of element stit'hic". " 

and mass matriccs. Since some of the data parameters, and stress calculations depend 

on the typc of clement, the data and stres,, subroutines are also included to facilitate 

fUtLii-c devc1opment. Foi- each tVpe of aiialysis. the module has two %-crsiow,: - 

(a) Plate version, where the anak si,, of plates k assUmed, and the local axc,, ()I 

elements arc therefore. considered in the directiow, of the (-,, Iobal ixc,, ()I* the 



plate. No rotation of element matrices is required, and relevant plate degree, 

of freedom are automatically assumed. 

(b) Shell version, for the analysis of folded plates and curved shells, and elements 
will be considered as facetted shell elements, with local axes which ilia-v be 
different from the global axes of the structure. 

The different element module files in the package are: - 

PLATE-NF. FOR plate version for static and natural frequenc\ aiialy,, i,,. 
SHELL-NF. FOR shell version for static and natural frequencv anal\,, is. 
PLATE-FV. FOR plate version for forced vibration analysis. This filc is 

similar to the one for plate natural frequency analysis 

except it contains complex loading and conlplcx stress 

routines. 

(IV) SHELL-FVTOR shell version for forced vibration analysis and it Ps the 

same as the plate forced vibration version regarding load 

and stress. 

(v) PLATE-FL. FOR plate version for flutter analysis 

(vi) SHELL-FLTOR shell version for flutter analysis. 

The last two files are similar to the corresponding oncs for the natural 

frequency analysis, except they contain a subroutine for reading additional 1-11) 
flutter data. 

All programs were based on double precision arithmetic in order to avoid any III 

conditioning in thin plate matrices due to the difference of order of magnitude 

betw, cen in-plane and out-of-plane terms in element matrices. Howcver, the version 

(1c, scribed in this chapter is the PC version, where double coml)lex was not I)ossible 

with the PC compilers used, and hence all files for forced vibration analý , I,, contain 

single precision parameters. L_ 

Each module file consists of a number of sub-modulcs, each of which k cither a 

SLIbrOLItine or a group of subroutines, performing a , I)ccit'ic t&, k within the linitc 

element procedure, as will be explained in the following smion,, 
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6.2.1 Input subroutine (DATA) 

The input data subroutine is called DATA, and it reads an input file which contain', 
all the parameters required to define the geometry of the structure. its loading and 
boundary conditions, material properties, and Gauss quadrature data, and it tran"Illits 
sufficient information to other subroutines via a number of COMMON blocks. Thc 
input file consists of simple data modules, each with a self explained-tItIc. The 
DATA subroutine is also based on a number of subroutines, each of which is 
responsible for reading a specific data module from the input file, and perforills hasic 

error diagnosis. 

The first three characters of each data record are extracted then transformed to Lipper 

case characters and compared with eight three-letter control words. If no match 1, ý' 
found, the record is considered a comment line, otherwise an appropriate subroutlilc 

is called to read next lines, and perform basic error-diagnosis. Data struCtL11_C Is (TIVC11 
in a separate user manual, and the DATA subroutine Is US11121 the 

subroutines, as illustrated in Fig. (6.1 

ti Subroutine UCASE 

This subroutine ignores any leading spaces before extracting the first three 

characters of a data line, and puts their upper case characters in a key word, 

to be compared with the built in control words, as explained above. 
b Subroutim, NODE 

It reads the number of nodes, for a user-defined finite element mesh, and it 

reads the nodal coordinates with respect to a unique set of global axes. 

c Subroutine ELEMENT 

It reads the element type, whether conforming quadrilateral, non-conforming Z__ 
quadrilateral, or non-conforming triangle, and it also reads the topology arra L_ 1. n y 

of the elements in the finite element mesh. 

tl Subroutine L, -l YER 

This Subroutine identifics whethci- the material is isotropic. compositc with 

uniform laycr thickness, or composite with variable lavcrs thickness. and 

rcads the corresponding material properties, and thicknes, ' distribution. It al"o 

calls flic DMATRIX subroutine \vhich is cxplained in section 6.3- 
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e Subroutine BOUNDARY 

It reads boundary conditions in terms of switches. and it identific" wilether the 
nodes are on a plate or on a curved surface. 
Subroutine LOAD 

There are different versions of this subroutine depending on the type of 
analysis. REAL loads are considered for static analysis, and COMPLEX loa&' 

are assumed for forced vibration analysis. It also contains flutter data 1'or 
flutter analysis. 

Subroutine DYNAMIC 

This subroutine reads rotating speed data in terms of it,, valUC, and thc 

coordinates of two points on the axis of rotation. It also reads data for natural 
frequency analysis. 

h Subroutine GAUSSDATA 

It reads the order of the Gauss quadrature scheme required for the numerical 
integration of every part of element matrices, thus allowing the use of a 

reduced integration approach, if required. Gauss data parameters thcin,, c1\'cs 

are read by calling subroutine GETGAUSS, which ývill read the parameters 

corresponding to a given quadrature order from an existing file. 

Subroutine INFORM 

After all data modules are read and interpreted successfully. this subroutine 

is called to list all data parameters in the output file, thus allowing a double 

check on the data parameters provided for the analysis. 

6.2.2 Element stiffness matrix generator (ESMG) 

This subroutine performs all the operations for the derivation of every clement 

stiffness matrix, and its structure is shown in Fig. (6.2). It calls first subroutine 

LOCAL, which defines the local axes of the element, and the corresponding local 

coordinate,, of elcment nodes. and calculates the element rotation matrix. It calls iic\t 

a number of different subroutines, each calculates a part of the clerncnt ý'tiffnes" 

matrix. as derivc(l in Equation (4.79), then it asscmhlcý, the total element t1t'hic,,, 

matrix. It also rotates the matrix with rcspect to the global axcs in "llell 

The Subroutines for the stiffness matrix parts are summarized as l'ollow,, -. - 
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(a) Subroutine ESMGMM 

This subroutine calculates K 
..... 

defined by Equation (4.71), using the followim-, Z-1 - 
subroutines: - 
(i) DMATRIXMM which calculates Dmin defined by Equation (4.02), and 

PZ, described in section 6.3, may be called for ca,, c,, %\ ith variahlc 
thickness. 

GO BMATRIXM which calculates the matrix Bm defined hy Equation 

(4.25), and it requires the calling of subroutines CARTD. JACOB, 

INTRD, which are described in section 6.4. 

(iii) Matrix manipulation subroutines: MATI, MATM, MATS. w, hich are 

also described in section 6.4. 

(b) Subroutine ESMGBB 

It calculates the matrix K,,, defined by Equation (4.722), using the followiiikg t) I 
subroutines: - 
(i) DMATRIXBB which calculates D,,,, defined by Equation (4.63), and 

PZ, may be called for cases with variable thickness. 

BMATRIXB which calculates the matrix Bb defined hy Equation 

(4.28). It calls subroutines HCARTD-1, HINTRD-1 
..... as , hown in Fig. 

(6.2) 

Matrix manipulation subroutines which are also shown in Fio. (6.2). L- 
(c) Subroutine ESMGSS 

It calculates the matrix K., ("') defined by Equation (4.73), and it calls 

subroutine DMATRIXSS described in section 6.3, and subroutine 

BMATRIXB described above, and the matrix manipulation subroutinc,, 

(d) Subroutine ESMGTT 

It calculates the matrix K,, "" defined by Equation (4.74), and it calls 

subroutine DMATRIXTT described in section 6.3, and subrouthic 

., 
defined by Equation (4.3 ' BMATRIXT which calculates B M. 

(e) Subroutine ESMGMB 

It calculates the matrix K,,,,, defined by Equation (4.75), with a detailcd 

structure shown in Ficy. (6.21). ltý 
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6.2.4 Element centrifugal stiffness matrix generator (CS. NIG) 
This generator is similar to the previous one, and its structure i,, sho%% n in Fig,. (6.4). 
The subroutines defined in the element module for the calculation of different 

matrices required for the element centrifugal stiffness matrix are listed in the 
following table: - 

Subroutine name Matrix or vector calculated Defining equation No. L- 

CSMGMM K cymm 4.124 

CSMGBB KC'bb 4.125 

CSMGVv'W K Oww 4.126 

CSMGSS K OSS 4.127 

CSMGMB K anib 4.1-18 

CSMGMS K Gms 4.129 

CSMGBS KCybs 4.130 

GMATM Gm 4.49 

GMATW Gý%, 4.50 

GMATB Gh 4.5 1 

SMATM Snun 4.115 

SMATW SWIV 4.116 

SMATBB shh 4.117 

SMATS SSS 4.118 

SMATMB sinh 4.119 

SMATMS s/rIS 4.120 

SMATBS Sbs 
4.121 
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6.2.5 Element equivalent nodal force generator (N. FN'G) 

This segment is responsible for the derivation of the nodal forces cquivalcm to 
inertial loading, and its structure is shown in Fig. (6.5). This subroutine calk -i L- 
number of different subroutines for the calculation of the different parts of the nodal 
forces, and shown in the following table: - 

Subroutine name Matrix calculated Defining equation No. 

EQFM Fin 

EQFB Fb 4.140 

EQFS Fs 4.147 

EQFW Fjj, 4.148 

Each of those subroutine calls an integrated p subroutine, as described in scction 6.3, 

in addition to some matrix manipulation subroutines, and it also calls SUN-OLItinc 

LACC to calculate the acceleration due to rotation, and subroutine RVECTOR to 

calculate the axes rotation matrix. The N matrix subroutines, described in section 

6.2.3, are also called by the equivalent loading subroutines. 

6.3 MATERIAL MODULE 

This module contains a number of subroutines designed to calculate am required 

material dependent data such as integrated stress-strain matrices. integratcd den:, it\ 1-11) -- 

parameters, and integrated thickness parameters. There are only two versdons of the 

material module available in the following files: - 

(a) MAT-DP. FOR this is the version which employed for the doublc 

precision analysis. 

(b) MAT-SP. FOR this Is the correspondin-L, ý, Ingle precision 

The modulc consists of' foul- parts. ýi,, 111LIstratcd in Figg. (0.0) 
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6.3.1 Stress-strain matrices subroutines 
The basic parts of those subroutines are as shown in the foliowing table: - 

Subroutine name Matrix calculated Defining equation No. 

DMATRIXMM Dmm 4.6-2 

DMATRIXBB Db6 4.63 

DMATRIXSS Y. V. V 
4.05 

DMATRIXTT D. 
v. v 

4.04 

DMATRIXMB Dinb 4.66 

DMATRIXMS D, 
71s 

4.67 

DMATRIXBS Dh, 4.68 

6.3.2 D matrices for layer 

For the calculation of stresses, the actual stress-strain matrix is required. For isotropic 

materials, this is only one unique matrix, but for composite layers, there is one 

matrix required for every layer. The subroutines summary is explained next: - 

(a) DMA TRIX It calculates the D matrix for isotropic materials, and performs 

the basic calculation of D matrices for each layer, rotated with 

respect to structural axes. 

(b) LAYERED It extracts the D matrix for a specified layer. 

(c LAYERDM It extracts the D matrix for the x-v stress-strain equations, for 

a specified layer. 

6.3.3 Integrated density parameters 

The basic Subroutine.,, for the calculation of the integrated den,, it\* parametcr,, are i,, 

sliown In the next table: - 
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Subroutine name Matrix calculatcd Defining equatioii 

ROWMM Pnun9 PHH 4.84,4, ýO 

ROWBB Pbb 4.85 

ROWSS P. V. V 4.87 

ROWMB Pill/, 4.88 

ROWMS NIS 4.89 

ROWBS Pbs 4.90 

6.3.4 Integrated thickness parameter subroutines 

This group contains subroutine PZ which calculates the thickness of the laYcrs, at anY 

given quadrature point for c&, cs with variable thickness distribution. It also contain,,,,, 

the subroutines necessary for the calculation of the intcgration of. /'(, -. ) functiow, m cr 

the full thickness, as listed in the following table: - 

Subroutine name (Z) Relevant equation No. 

HVECTORM 1 4.115,4.116 

HVECTORB z2 4.117 

HVECTORS Z_ 
4Z3 4.118 
3h 2 

HVECTORMB 
z 4.119 

HVECTORMS Z_ 
4Z3 

4 120 3h 2 
. 

HVECTORBS z2 
_ 

4Z4 4.1 '1 
3h 2 
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6.4 COMMON MODULE 

This module consists of all common subroutines enipl()ýcLf in the derivation ol 
different element matrices, and it has also a double precision vcrsion COM-DTOR 

and a single precision version COM-SP. FOR. The module can be divided into the 
following four groups of subroutines, as shown in Fig. (6.7). 

6.4.1 Matrix manipulation subroutines 
These are common subroutines for different matrix operations as foliow,, -. - 
(a) Subroutine MATI for initiation of square matrices. 
(b) Subroutine MATM for multiplication of two matching rectangular niatriccs. Z'7 L- 
(C) Subroutine MATV for multiplication of a matrix by a vector. 
(d) Subroutine MA7T for transposing a matrix. 

(e) Subroutine MATS for adding two square matrices. 

(f ) Subroutine MATSR for adding two rectangular matrices. 

(g) Subroutine MATSV for adding two vectors. 

6.4.2 Nodal intrinsic coordinates 

This is only one subroutine; INTRCO, which defines the intrinsic nodal coordinatc,, 

for a given element. 

6.4.3 Lagrangian shape function subroutines 

These are the subroutines which calculate the values of Lagrangian shape functions, 

their intrinsic and cartesian derivatives, and the Jacobian determinant at an\, (. Zi%, Cn 

quadrature point, and they are as follows: - 

a Subroutine SHAPE calculates the values of Lagrangian shape functions. 

b Subi-outine INTRD calculates the values of the intrinsic derivati%es of 

Lagranglan shape functions 
'A. 

and (Ný- 

C171 

c Subroutine JACOB calculatc,, the Jacobian matrix, it,, determinant, and it,, 

invci-,,, c matrix. 



121 

d Subroutine CARTD calculates the cartesian derivatives of' LaLranL,, Ian shape 
aNj aNj 

functions 
- and using the information generated hý' SUhroutille 
ax ()Y JACOB. 

6.4.4 Hermitian shape function subroutines 
This group consists of the subroutines which calculate the values ot'Herinitian shape 
functions for conforming and non-conforming elements, and their first and "ccond 

order intrinsic and cartesian derivatives at any given quadrature point, and they are 

listed as follows: - 
(a) HSHAPE It calculates the values of Hermitian shape function,, for 

conforming elements via subroutine HSHAPEN, and for non- 

conforming elements via subroutine HSHAPEO. 

b HITRD] It calculates the values of the first order intrinsic derivativc" foi- 

Hermitian shape functions by calling subroutine HITRD IN for 

conforming elements, and subroutinc HITRDIO For noi-i- 

conforming elements. 

C HINTRD2 This subroutine calculates the second order intrinsic derivatiVc" 

a2a2a2 
and -_ 

for Hermitian shape functions by 

a,, 
2 

aý 
2 a,, aý 

calling subroutine HINTRD2N for conforming elements, and 

subroutine HINTRD20 for non-conforming elements. 

d) JACOB22 This subroutine calculates the second order Jacobian i-natrix, a'N 

defined in APPENDIX D, and its invei-sc matrix. 

HCARTDI It calculates the first order cartesian derivatives- a 
and 

a 
of 

ax ay 
Hermitian shape functions, using the information provided hy 

subroutines JACOB and HITRDL 

HCART02 It calculates the second order cartesian derivativcs, aa 
12 CX C, N' 

a 

and -- of Hermitian shape functions Lising inforination 
Cý V OY 

crenerated hv subroutines JACOB212' and HINTRD'-. 
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6.5 CORIOLIS AND CENTRIPETAI, MATRICES MODULE 

This module contains the subroutines which generates element Coriolis and 
centripetal matrices required for the analysis of rotating structures. It has ako t%\ () 
versions: CRLS-PL. FOR for plates, and CRLS-SH. FOR for,, hells. which are . Irnilar 
except the shell version rotates the generated matrices from local axe,, direction,, to 
global axes directions. The module consists of two main subroutine,, as sun-imarized 
next. 

6.5.1 Coriolis matrix generator (EMCMG) 

This subroutine carries out the derivation of the element Coriolis matrix through ýi I. -, 
number of other subroutines as shown in Fig. (6.8). It calls subroutine LOCAL first 

to generate local nodal coordinates, and element rotation matrix. Then it calls 

subroutine BBMATRIX to calculate b-),, b , 2, and b,, defined h\ Equation,, (4.19-')- 

(4.195). After that it calls a number of subroutines, each of which calculates a part 

of the C matrix, as defined by Equation (4.209). Then it assembIcs the element C 

matrix, and for shell versions this matrix is rotated to the structure global axcs. The 

subroutines which calculate the different parts of the C matrix are shown in the 

following table: - 

Subroutine name Matrix calCUlated Defining equation No. 

EMCGMM cmm 4.199 

EMCGBB t Cb 
b- 

CbH + CýH 4.200,4.202 

EMCGSS Css 4.201 

EMCGMB - 
Cmb + CmH 4.203,4.204 

EMCGBM 11 - 
Crnb - CmH 4.3,4-104 

EMCGMS CM. S 
4.20 5 

EMCGBS Cbs +C Hs 4.206,4-207 

EMCGSB tt Cbs - CHs -10- 4.206,4- ,I 
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6.5.2 Centripetal matrix generator (EMB-NIG) 

This is similar to the Coriolis matrix generator subroutine (EMCMG), but it u,, c,, the 
AAMATRIX to calculate a, a a,.,. and a, defined bey equation,, (4.166)-(4.1 1)0), 12,3 

which are employed in the derivations of different parts of element centripetal i-natrix 

M, as defined by Equation (4.190), and with a structure shoý\ n in Fig. (0.9). 1 his 

subroutines calls also other different subroutines to calculate the part,, of -M matriv 

as in the following table: - 

Subroutine name Matrix calculated Defining equation No. C 

EMBGMM Xf- 
MM 

4.179 

EMBGBB M -M 
Mbb + HH bH - MbH 4.180,4.181,4.18') 

EMBGSS k 4.182 

EMBGMB kb + kH 4.184,4.185 

EMBGBM + mb mH 
4.184,4.185 

EMBGMS 4.186 

EMBGBS Xf 
bs + MHs 4.187,4.188 

EMBGSB bs + RHs 4.187,4.188 

6.6 FLUTTER MATRICES MODULE 

This module consists of the subroutines which generate aeroelastic stiffricss and mass 

matrices, as defined in section 4.8, required for flutter analysis. It also has a pkitc 

\, ci-sion FL-PLATETOR and shell version FL-SHELL. FOR. which arc similar in 

structure except the plate \, ci-,, Ion does not rotate the element matrices. The , tructurc 

I_ 
part,,. of the module is as showil in Fig. (6.10), and it consists of the followingy 
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6.6.1 Aeroelastic stiffness matrix generator 
The matrix K, as defined by Equation (4.224) is generated hý, means of "Libroutinc 
EFKG, and the total element matrix is assembled by suhroutine EKFL. and is rotated 
to global axes in the shell version. 

6.6.2 Aeroelastic mass matrix generator 

The matrix C,, defined by Equation (4.225) is derived by subroutine FTNIG. aiid 
assembled by subroutine EMFL. This matrix, with c=1, is employed as a inass 
matrix with the simplified flutter analysis. 

6.7 SOLVER MODULES 

These are the files containing the master program and solver subroutines for c\, ci-\ 
type of analysis, and they are as follows: - 

6.7.1 Static analysis solver module 
This module is listed in a file called STAT. FOR, and represents a nix,, tcr prograrn 

called STATIC, which controls the operations for static analysis. as shown in FiLl. 

(6.11). The subroutines called by the master program are as follows. - 

Subroutine SET FILE 

This subroutine is employed for interactive definition of the case file name, 

and the corresponding names of input and output files. It was necessary in 

that Subroutine to overcome a difficulty encountered with the Unix operatincr L- 

system, when dealing with character \'ariables of different sizes. ot: ý 

Subroutine DATA 

This subroutine reads the input data as described n section 

(c) Subroutine INITIATION 

This subroutine is required to estimate the front width. so that the right "i1c 4ý 
of records and dynarnic dimcnsions can be u,,, cd in frontal , ubroutiiic,,. It ako 

initiates somc arra\,, based on boundary conditions, to facilitatc eqUatiow, 
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reduction and expansion in frontal subroutines. 

d Subroutine FRONT 

This is the basic frontal subroutine, which assembles the equations elemeiit 
by element, apply boundary conditions, and Gauss elimination. and only kccl),, 
in the computer RAM a small portion of the matrix of equation coefficients. 
as explained in chapter 5. 

e Subroutine SOLVER 

In this subroutine, the backward substitution process take" placc, aiid the 

reduced nodal displacement vector is obtained. 

Subroutine DISP 

In this subroutine, the full nodal displacement vector is defined from the 

reduced vector and prescribed values, and the displacement components M-C 
listed in the output file at every node. 

Subroutine STRESS 

This subroutine calculates the stress and strain components at cvery nodc, by 

averaging the values obtained from different elements sharing the same node. 

For composite layered structures, distributions over the thickness are obtained, 

and values of stress and strains are calculated at lower and upper surfaces of 

each layer, and all the results are listed in the output file. Stress and strain 

components for shell structures, are calculated with respect to element local 

ýIXCS. 

6.7.2 Natural frequency solver module 

This module has a plate version DYNPL-NF. FOR and shell version DYNSH. FOR, 

which are similar except the plate \'ei-sion, if used, \vill only calculate the out-of- 

plane natural frequencies. If the in-plane natural frequencies are required for a plate, 

the shell version can simply be used. since all modules are fulk compatihic. Thc 

i-riodule has the master program NATURAL FREQUENCY, which ý.: ontrok the 

natural frequency operations. The basic operations, and corresponding subroutinc,, are 

as shown in Fitz. (6.1 -1), and will be summarized next. I 
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a Input data 

Subroutine SET FILE k called to define the input/output files. a" explained 
in the previous section, followed by calling subroutine DATA. 

b Frontal matrices 

Frontal operations are carried out by subroutines INITIATION and FIWNT. 

which are similar to those described in section 6.7.1, but subroutine 11MM' 
is designed with a call to a dummy element matrix generator subroutine. and 
is called first with a corresponding argument STIFF, which i" the name ol' a 
subroutine which calls the element stiffness matrix generator (ESMG), and 
equivalent nodal loading subroutine (NFVG). After operating the static 
analysis, FRONT will be called again to define the mass matrix hy using 

subroutine MASS, and STIFF will also call subroutine CSMG which 

calculates the centrifugal stiffening matrix. For plate vcrs'ion, the frontal 

matrices are redefined for plate bending only, after the static analysis Is 

carried out. 

Static anal-ysis 

This is an option provided for rotating structures, which enables stress 

analysis due to centrifugal loading to be carried out. Subroutines SSOLVER, 

DISP and STRESS are similar to SOLVER, DISP and STRESS discussecl in 

section 6.7.1, except subroutine STRESS here calculate..,, al.. "o strc.. ". " 

components at Gaussian points and stores them in direct acccýs files to be 

used by subroutine CSMG for calculating the centrifugal stiffening matrix. 

d Subvpace iteration 

This is the basic solver for natural frequency analysis, and it consists of the 

followina subroutines: - Zý) 

SUBSI which aSSUMeS initial values for the , c1cctccl ci(-, ci1vcctor,,. 

XMAT which calculatcs the X matrix. as described in "mion 

TPRODUCT: it performs triple product of matrices to define the 

reduced and mass matrIccs K' - M* - 
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OV) EIGENV which ka simple iteration cigenvalue solver a.,, will be 
described in part (e) of this section. 

(V) TRANSF which calculates the updated valuc,, ()I- the , eicctc(-i 

eigenvectors. 

(e) Eigenvalue solver 
The reduced eigenvalue problem is analysed with the sii-nple aci-ation 

algorithm discussed in section 5.3. The main subroutine is EIGENV which 

calls the following subroutines: - 
SHIM which defines initial shift parameters, if zero or negatke I. -- 
eigenvalues are encountered. 

(ii) DCOMP which calculates the matrix Q, where Q= K*-I M*, h\ 

solving successive equations calling CHOLES subroutinc, which is 
based upon Choleski factorization method. 

EITR calculates the lowest eigenvalue using the simple iteration Z: ) 
algorithm. 

V) SWEEP redefines the matrix Q such that the eiocnvalue 'ust calculated 4ý i 

will be cancelled or swept, and EITR will then converge to the next 

eigenvalue. 
(f) OUTPUT is just one subroutine, which lists the natural frequency 

results in the output file. 

6.7.3 Forced vibration module 

This module controls the operations for forced vibration analysis and has a plate 

version DYNPL-FV. FOR and shell version SHELL-FV. FOR. The structure of the 

modulc is shown in Fig. (6.13), and the operations are controlled hy a master 

prooram (FORCED VIBRATION). the parts of which are summarized a., ", folloý\-,, -- 

a Input data 

As described in section 6.7.2. 

Stress analysis due to centrilugal loading 

This is a simple static anaksis using REAL N ariahIc,,, and the operations arc L- 
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similar to those described in section 6.7.1. Subroutine names were preceded 

with letter R to indicate REAL variables, so that the subroutines Can be 

identified from similar ones with complex variables having names preceding 

with letter C. The static analysis is required it'there is a rotational speed. and 

stresses at Gaussian quadrature points are calculated and stored in order to he 

used for centrifugal stiffening calculations. 

c Complexfrontal matrices 

A subroutine called CFRONT is used here, which is similar to RFRONT but 

it deals with the complex dynamic matrix as described in scction 5.4. It calls 

subroutine CSTIFF which defines the elemental complex matrix in terms of: - 
(i) Element stiffness matrix K calculated by subroutine ESMG. 

(ii) Element mass matrix M calculated by subroutine EMMG. 

(iii) Element centripetal matrix -M calculated by subroutine EMBMG. 

(iV) Element Coriolis matrix C calculated by subroutine EMCMG. 

(V) Element centrifugal stiffening matrix K' calculated by subroutine 

CSMG. 

d Complex solver 

The analysis is completed with the following subroutines: - 
(i) CSOLVER which performs backward substitution for the reduced 

complex equation. 
CDISP which defines the full complex nodal displacement vector, and 

lists it in the output file. 

CSTRESS which calculates the corresponding complex stres. " and L- 
strain vectors averaged at nodes, and estimated at the upper and lo%% ci- 

surfaces of every layer. 

6.7.4 Flutter solver module 

This module contains the master program FLUTTER which controls the operation t-, 

of flutter analysis, together with frontal and subspace iteration subroutine,,. and it ha" 

ýt plate \, crsion DYNPL-F[-. FOR and shcll \-crsion D)'NSH-Fl-. FOR. Thc platc 
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version is based upon the simplified algorithm described in section 5-5. and 1, 
illustrated in Fig. (6.14). The basic operations are summarized as foll()%\ 

a) Input data 

It is similar to those described in previous solver module,,. 
b) Frontal matrices part 

It contains subroutines similar to the natural frequeiicý module. bUt 111C 
aeroelastic stiffness and mass matrices are iio%k as,, cmbled. No static anak , P" 
is required, since flutter analysis in this package is only po,, sible t'oi- i1oii- 
rotating plates. 

C) Subspace iteration 

This contains subroutines similar to those described in "ection 6.7. '-. 

d) Eigenvalue solver 

There are two major changes in the subroutines here compared %% ith thosc iii 

section 6.7.2, as follows: - 
(i) The Q matrix is calculated directly by inverting the matrix K, via 

subroutine INV, and multiplying the results by matrix M via 

subroutine MATM. 

There is an analytical eigenvalue solver, subroutine EIGENANA, 

which is automatically invoked if no more than the two sniallest 

eigenvalues are required. This is useful for flutter analN,, i,,. and il-I 

associated with an automatic search for coalescence eigenvalues, a" 
described in section 5.5. 

Output results 
Output results are stored in the output file. as described early. 

6.8 PROGRAMS STRUCTURE 

All modules Of this packagc are coded in FORTRAN files. wliich ai-c compiled M 

OBJECT files by the FORTRAN compilers used. The EXECUTABLE file required 

to carry out a particular analysis is obtained hy linking together the OBJECT File,, 

of the relevant modules as shown in Figs (6.15)-(6.18). All the namessliown in those 

figui-cs are file names. C, 
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CHAPTER 7 

RESULTS AND DISCUSSION 
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7.1 INTRODUCTION 

A versatile finite element programming package in Fortran langruage lia" hmi 47, ltý 
developed for the static and dynamic analysis of non-rotatlng and rotating composite 

layered plates and shells, based upon the research carried out in this work. A 

description of the package is given in chapter 6. This package contains a nuillhcr of 

elements, and unique facilities for rotating plate and shell analysis. Consequentl\, an 

important step to be taken before the present programming package is used 1'()r the 

analysis of practical engineering components, is to validate the reliability of the 

different aspects of the package and assess the accuracy of the analysis carried oLit 

by means of it against published experimental and/or analytical results. Naturally, 

during the course of the package development, a large number of individual 

verifications have been carried out, at the various stages of its development. It is also 

advantageous to employ the package for the study of the effects of sorne irnportant 

parameters, in order to demonstrate how the package can be used for optin-lum design 

of composite layered turbomachine blades, or similar engineering components. tn 

Case studies were selected and compared with analytical solutions, and also 

compared with published experimental results whenever possible, so that the 

following tasks can be achieved: - 

(1) Validation of the developed static solvers and stiffness matrices of the 

developed elements. 

(ii) Validation of developed natural frequency solvers and the mass matrices oý 

the developed elements. 

(iii) To demonstrate that the developed elements can provide reliable answers over 

a wide range of thickness, and to evaluate the effect of transverse shear %ý'ith 

the increase of plate thickness. 

(iv) To demonstrate the effects of centrifugal stiffening and Coriolis forces on the 

natural frequencies of rotating plates and shells. 

To study the cffect of fibre angles on the natural frequencicý,. and to 

demonstrate the potential of the Li,, c of laycrs with diffci-cilt fibre dircction,,, 

which "MY lead to an optimum design. 
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(Vi) To demonstrate the capability of the developed package for accurate arial\ ý, Is 
of panel flutter with the prediction of critical flow speed. s. 

(vii) To assess the advantages of the developed package for the analý,, i,, of 
stationary and rotating composite layered plates and shells. 

Most of the selected case studies have been compared with published anal% tical or 
experimental results. However due to the lack of publications on the ctTect of 
Coriolis forces, and centrifugal stiffening, it was decided to \'alidatc them h\ 

checking their numerical values, that is because Coriolis, and centripctal matriccl, 
have subroutines, similar or based upon element mass matrix "Libroutines. and it wa, ý' 
possible to validate the Coriolis, and centripetal matrices, h\ comparing 01cil- 

numerical values with corresponding values of mass matrices, which havc been 

properly validated. 

7.2 STATIC VALIDATION AND MESH SELECTION 

The first part of package validation is to test different solvers and to validatc the 

element stiffness matrix subroutines. Two simple case studies were selected, the first 

is a composite flat plate and the other is a composite curved shell, both with knowii 

analytical solutions. The cases will also be employed for further dynamic analysis, 

as described in sections 7.4 and 7.5. Hence it was decided to use static analysis for 

testing the convergence of different meshes, so as to select optimum meshes for 

dynamic analysis. 

7.2.1 Rectangular cantilever plate case 

A rcctangular plate with length of 0.8 m, width of 0.2 m, and thickness of 0.02 in, Z"_ 
was used for the static analysis. The plate is clamped at one end. and subjected to 

a uniform distributed line load of F=5.88x 103 N at the free end, and the material 

properties \x, crc isotropic properties cxpresscd as orthotropic material propertic,, %\ ItIl 

/--'= 7.5x I WO Pa, V=0. ' ', P= 3000 K,,,, lin". and two laycrs of fibre angic,, 0, arid 

0., being, 45' and -45' respectivclý. The boundary conditioiis, loads to.,., cther ýý itli the 
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geometry of the plate, and a mesh of 16 quadrilateral elements are illustrated ill FICY Cý 1 
(7.1). The finite element package results were compared with the Euler-Bernoull' 
beam solution given in Appendix E. 

7.2.1.1 Conforming quadrilateral element results 
Three different meshes were attempted; a coarse mesh with 4 elei-nent.,,,, a fine "IcAl 
with 16 elements, and a very fine mesh with 64 elements, and the element tylle W'ed 
in these meshes is the 4-node quadrilateral conforming element, as sliown in Filil-1. 

(7.2) a, b, and c, respectively. The lateral displacement in the --direction 1" plotted 

against the length in the x-direction, as shown in Ficy. (7.3). It is clear fron-i the Z7 
figure, that all the meshes gave answers close to the analytical solution, \\ ith the 

results of the two fine meshes being very close to each other and closer to the 

analytical solution than those of the coarse mesh. Hence it was decided to Li,.,,, c the 16- 

element mesh for further analysis, as described in section 7.4. 

7.2.1.2 Non-conforming quadrilateral element results 

To validate this type of element and select the right mesh for this analysis and 

further analysis, the same philosophy as in the previous case was adopted. The three 

rneshes shown in Fig. (7.2) have been employed with the change of' the type of' 

elements to the 4-node non-conforming quadrilateral element. The displacement 

distribution is shown in Fig. (7.4), and a similar trend as in Fig. (7.3) was observed. 

Therefore, the 16-element mesh was also selected for the same reason explained 

above, and it will be used in further analysis as described in section 7.4. 

7.2.1.3 Non-conforming triangular element results 

Several ineslics with the 3-node non-conforming triangular element ý\ cl-c attempted. 

some of which are shown in Fig. (7.5). The corresponding lateral displacement of the 

plate in the -. -direction is sliown in Fig. (7.6). It was obscrvcd that the i-c,, ult,, Cý 
obtained from meshes (a) and (c) have shown slight diffei-ciicc,, bet%\ccil 

corresponding nodes on the two Iong cdges. Therefore it was decided to try a 

symmetric mesh. such &, Mesli (Ih) shown in the sýinic figure, wliicli lias led to 
I 
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symmetric and more accurate answers. Hence mesh (b) k)t FiL,. (7.5) has been choscii 
tI or further analysis, which will be explained in section 7.4. 

7.2.2 Curved shell case 

This case represents a circular shell rigidly fixed at one end, and the other end I.,, free 

and subjected to a uniformly distributed line load of total %-aluc F= IN I (Y ý' N In the 

y-direction, as shown in Fig. (7.7). The radius of curvature of the , hell midsurface 

is R=0.1 m, its width in the z-direction is a=0.04 1ý7, and the thickness is h=0.02 

m. The material of the shell, and the layers configurations are similar to thosc 

described for the previous case in section 7.2.1. Different static analysis witil 

different types of elements have been carried out, as summarized next. Finite element 

results were compared with the corresponding circular beam analytical Solution (-, i\'cll 

in Appendix E. 

7.2.2.1 Conforming quadrilateral element results 

The meshes used in this case are shown in Fig. (7.8) and the element chosen for the 

analysis is the conforming 4-node quadrilateral element. The displacement', in theY- 

direction are plotted against the angle of curvature of the shell midsurface as "llowli 

in Fio. (7.9). It is clear that the results obtained from the two finc meshes are 

closc to the analytical solution, and the 16-element mesh was therefore ,, clcctcd for 

the dynamic analysis described in section 7.5. 

7.2.2.2 Non-conforming quadrilateral element results 

Finite element meshes were as employed for the previous case except the element 

type was the non-conforming 4-node quadrilateral element. The displacement 1-c"Lilt" 

obtained from those nieslics \verc plotted in Fig. (7.10), \\-hich , Iioý\ý, tendciicieý, C 

similar to those (A)scrvcd in Ficy. (7.9), therefore the 16-clement niesh \\, i,, ako L- 

selected for further analysis ýis pvcn in section 7-5- 

7.2.2.3 Non-conforming triangular element results 

Three meshes based LIPOII the 3-node non-conforming triangular c1cment. i,, ho%\ n 
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in Fig. (7.11 ), were attempted. the displacement of the midsLirfacc of the "hell in the 

y-direction was plotted against the angle of curvaturc. togcther %% ith the 
corresponding analytical solution, as shown in Fig. (7.12). It is clear that the result, 
based upon the two fine meshes are closer to the analytical solution. hence the 

element mesh was selected for further analysis as demonstrated in section 7.5. 

7.3 DYNAMIC VALIDATION 

It is essential to validate the developed package and to a.,, sc,,,,,, it', potcntial to dcal 

with the objectives it was designed for, therefore the airri of this ,, cction is to validate 

the package for the natural frequency analysis of plates and shells made of isotropic 

and multi-layered composite materials. The validation cases considered here are 

compared with published analytical results, experimental data, or alternativc finitc 

element solutions. 

7.3.1 Isotropic square plate case 

This case has published analytical results carried out by Narita and Leissa ( 1991), 

and it is advantageous to compare between their results and the results obtained by 

rneans of finite elements developed in this work. The case represents a square plate, 

ýis shown in Fi(-T 
117. 

(7.13), made of isotropic material with the following properties-. - 

a=b=7.62x 
10-2 M 

1.28xloll Pa 

1.04xlO--' 

0.333 

1.5xlO' kg1m 

The plate is fixed at one edge, whilst the other three edges remain free. Scvcral finitc 

clement nicslics were attempted, and the convergence of results was reached with 

4x4 mesh and finer, and the rcsults obtained frorn the 4x4 rnesh are repre"clited hcl-c. 

The finite clement analysis was carried out with the conforming, and non-conl'ornii", -' 
4-node quadrilateral elements. and the non-conforming 3-nodc triangular clement 

with its sciccted mesh as shown in Fiý-,. (7.14). The results wcrc compared with the 
I 
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analytical solution given by Narita and Leissa (1992). a,, demonstrated in Table (7.1 ). 

where non-dimensional frequency parameters were displayed. The non-dimensional 
frequency parameter (D is defined as follows: - 

2 
wa 

where D- Eh 3 

which represents the flexural rigidity of the plate, and w 
12(1 _ V2) 

the frequency in rad/sec. It is clear from Table (7.1) that natural frequencN, 

parameters, for different modes of vibration, as obtained by means of different finite 

elements, agree very well with corresponding analytical solutions. 

7.3.2 Composite layered square plate case 

This case has overall dimensions similar to the previous case shown in Fql. (7.13), C 
but it has 8 layers of a fibrous composite material. Each layer has a thickness of 

0.13 mm, and made of a Hercules type AS/3501-6 Graphite/Epoxy composite 

material with material axes (-v', i, ', -, ') as shown in Fig. (7.15), and properties as listed 

below: - 

= 1.28x10" Pa 

E 
y 

OAIXIO" pa 

4.48xlO' Pa 

IIY\Z\ 1.53xlO9 Pa 

1.53xlO9 Pa 

p 1.5xlO' k gIM3 

V_v\x\ = 0.25 

The fibre angles 0, in the 8 layers are 450, -450, -450,45', 450, -45', -45'. 45" 

The non-dimensional frequcticy parameter for the composite- layered case, P, defined 

as follows: - 

wa2ph 
\ D. 
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where 
Ek 

12 P-v 

and h represents the total thickness of the plate. Meshes similar to those shown ill 
Figures (7.13) and (7.14) were used, and the non-dimensional frequency paranletcrs 

obtained by means of the 4-node conforming quadrilateral element, 4-node non- 

conforming quadrilateral element, and 3-node non-conforming triangular element, 
developed in this work, were compared with the analytical solution published hy 

Narita and Leissa (1992), and also compared with an experimental %ýork- published 
by Crawley (1979), and his finite element results which were based oil a moderately 

thick quadrilateral shallow shell element developed by Lee and Plan (1978), as 

shown in Table (7.2). The package results have generally proved to be closer to the 

analytical solution than those based on Lee and Pian's element. However, some 
deviation (= 8%) between all theoretical results and corresponding experimental 

results was observed. Crawley (1979) mentioned that the experimental results 

represented an average of the measured natural frequencies of nominally identical 

samples. Since there was a slight variation in the finished thickness from plate to 

plate, the measured frequencies were linearly corrected to a reference thickncss 

before averaging. No other correction such as for fibre volume fraction, has been 

applied. 

It was also observed that when the analysis was carried out with double the 

thickncss, the package results, i. e. the non-dimensional frequencý parameters wci-c 

very close to corresponding experimental results. 

7.3.3 Composite layered rectangular plate case 

This casc represents a rectangular plate with aspect ratio alb = -2: 1, where a is the 

length in the x-direction and b is the width in the y-direction. The plate has 8 laycl-, 

of composite material and thickness similar to the previous ca,, c described in scction 

7.3.2, but with the followincy dimensions: - Cý 
24x 10-' 

7.02X 10-2 111 
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Two finite element meshes were employed in the dynamic anal%,, i,, ofthis Ca"e, tile 
first has 8x4 four-node quadrilateral elements as shown in Fig. (7.16). and the 
second has 64 three-node trianglular elements as shown in Fig. (7.17). Tile re"LlIt" 
obtained were compared with the published experimental and finite element results 
of Crawley (1979), as shown in Table (7.3). All finite element result" ofthe packa '7 'C 
were very close to each other, but with a consistent deviation of abOLIt 8"i I'roill the 
experimental results. 

7.3.4 Composite layered cylindrical shell cases 
It is important to validate the dynamic analysis of the package for a cLirvcd , hell, and 

a cylindrical shell with published results has been chosen to achievc that. The 

geometry of the cylindrical curved shell is shown in Fia. (7.18a), the hoLindar\ 

conditions are also illustrated in that figure, and the material propertic,,, arc the , ame 

as in the previous two cases. Two different shells were attempted: the first lia" the 
fibres lie in angles 0,0,30', -30', -30', 30', 0,0 and the angles of fibres in the 

second shell are 0,45', -45', 90', 90', -45', 45', 0. The meshes employed for the 

finite element analysis are as shown Figures (7.18b) and (7.18c). The results ývcrc 

compared with published experimental results of Crawley (1979) and his finite 

element results based on the element of Lee and Pian ( 1978) as shown in Tablc. s 

(7-4) and (7.5). Observations similar to those seen with the previous cýtsc arc f0und, 

emphasizing the accuracy of the developed elements for the dynamic analy.,, I,.,, of 

composite layered shells. 

7.4 DYNAMIC ANALYSIS OF CANTILEVER PLATE CASE 

In this casc the cantilever plate dcscribed in , cction 7.2.1, and sho%\ n in Fig. (7.1 ) 

was employed for further dynamic studies, to investigatc the perf'ormance of the 

devolved elements in a range of thickness and rotational speed, and to check forced 

vibration and rcsonant frequency analysis. Boundary conditions. material, 111c"h, and 

the ocornetry of the platc are a,, cxplained in section 7-1.1. 
Zý 
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Although the non-conforming 3-node triangular element has shown results. at zero 

rotational speed, very close to those obtained h\, means of quadrilateral element,,. It 
has displayed poor performance with the presence of a rotational speed. i. e. %% licil 

there is a centrifugal loading. This has been attributed to the non-'\ ninictry ol' the 

in-plane stresses generated by centrifugal loading, and because they are based upon 

Lagrangian shape functions, the values of those stresses are constant over each 

triangular element. Therefore, the 3-node non-conforming triangular element is not 

recommended for the analysis of rotating blades, unless a very fine mesh is scImcd. 

7.4.1 Thickness effect for non-rotating plate 

The non-dimensional frequencies of the first three bendinzc,, modes of \"bration ha\ c 

been obtained using the 4-node conforming and non-conforming quadrilateral 

elements for a wide range of thickness, and these results are plotted in Figs. (7.19) - 

(7.21). It is clear from these figures that the non-conforming and conformill', 

elements give very close results, and the performance of these elements is stable in 

the full range of thickness, i. e. there is no shear locking phenomenon as cxperienced 

with Mindlin-type elements. It can also bc ascertained froni the abo\c-nientioned 

figures that the transverse shear deformation, considered with the new elements, has 

an effect on the non-dimensional natural frequencies, since the first two bending 

rnodes of vibration are reduced with the increase of thickness. 

7.4.2 Effect of centrifugal stiffening 

Two cascs of thickness, a thin plate case with h=0.01 in, and the other is a thick 

plate with h=0.1 m, were analysed with a wide range of rotational speed, %%-here 

the plates were assumed to be rotating, with a uniform rotational speed, about an axis 

of rotation parallel to the y-axis, as shown in Fig. (7.22). The first three non- 

dimensional bending frequencies were plotted against the rotational speed, and silowil 

in Fws. (7.23) - (7.25) for the thin casc, and in Figs. (7.26) - (7.28) for the thick 

CýIINC. 

The first comment on tho,, c figui-cs is that the confori-nincy and non-conforrillilL, 
1= Z7. 

qUadrilateral clements havc sliown wry close results. for the thin and thick ca,, c,,. It 
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is clear that centrifugal stiffening, which results from an inertial force actinL, in the 
x-direction and resisting bending normal to that direction, will incrca,, 'e the bcnding 
frequencies, with the greatest effect on the lowest frequency. The second reniark is 
that at a rotational speed of 1000 R. P. M. the first bending frequCncy of the thirl c&"c 
is increased by about 100'-/(,, the second increased bý 

-11 c1c, and the third bý The 
thicker the plate the lower is the centrifugal stiffening effect at the saine 'peed, and 
it can also be seen that at the 1000 R. P. M. the increase of the first three bending 
frequencies of the thick case were approximately 2%, O. Yýý, and 0.1 % respectively. 

7.4.3 Forced vibration analysis 

The plate chosen here has the same dimension, material, bOUn&r\ condition,,, aiid 

i-nesh as the one described in section (7.2.1), and it %vas , ubjected to an cxcitatioll 
force parallel to the z-axis, which is normal to the plate at the free ccf(-, c, i. e. the 

excitation force will cause forced bending vibration to the plate. Several studies have 

been carried out as summarized next. 

a Thickness ef .. 
ýect 

For non-rotating plate with excitation frequency of 100 radlyec, the thicknes,, 

of the plate was changed from very thin to thick. and the maxinjun, 

displacement amplitude at the free cdoe, wa.,, plotted against thickne", " a,.,, 

shown in Fig. (7.29). The two quadrilateral elements developed in this work 

show close results. and a stable performance in the range of thickness . It was 

noticed that resonance at that excitation frequency occurred at h=0.0098 m. 

Speed t, . 
11ect 

Several values were assumed for the speed of rotation of the plate, with the 

given excitation frequency, and the maximum displacement amplitude was 

plotted against the rotational speed for a thin plate (h = 0.01 in) as shown in 

Fig. (7.30). and for a thick plate (h = 0.1 in) in FiLl. (7.31) . It is clear from 

the first fIC1. TLire that the critical rotational speed (at whicli the plate resonancc 

%\'III occur) can be casily detected, whil,, t there was no critical specd noticcd. 

within the range of speed tested, for the thick plate casc. 
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c Re, vonant frequencies 

By changing the excitation frequency. and plotting the maximum displacement 

amplitude against the excitation frequency, one can detect the resonant 
frequencies. Fig. (7.32) demonstrates an example, using the 4-nodc 

conforming element, where the maximum displacement amplitude 1..,, plotted 

against excitation frequency for a non-rotating and a rotating plate at 

rotational speed of 600 R. P. M. From the figure it is clear that the rcsonant 
frequencies can easily be detected, and it is also noticeable that theCOFiO I P_ý 
force has a damping effect on the displacement amplitude. 

7.5 DYNAMIC ANALYSIS OF CIRCULAR SHELL 

In this case different types of dynamic analysis investigations similar to thosc 

discussed in the previous section, are carried out on a circular shell. The "11cll cxSc 
is similar in geometry and material properties to that shown in Fig. (7.7). The results 

which have been investigated in this section are summarized as follows: - 

Thickness e&ctjbr a stationat-N, case 

The non-dimensional frequency, for the first three modes of natural vibration, 

are plotted against the ratio of the shell thickness to the radius of curvature 

of its midsurface, as shown in Figs. (7.33)-(7.35). 

b hýh 'centrýfugal stiffening 
. 
ýýct of 

The circular shell was considered rotating about an axis of rotation, as shown 

in Fig. (7.36). The first three natural frequencies are plotted against rotational 

speed for a thin case of Ii = 0.001 m as shown in Figs. (7.37) - (7.39), and for 

a thick case of Ii = 0.01 In in Figs. (7.40) - (7.42). The centrifu, -1al loadiIILI 

generated in this case does not oppose structure bending, and it leads, 

therefore, to a reduction in natural frequencies. 

(c) Forced vibration analysis 

The circular shell was subjected to an excitation force parallel to the Y-Zlxis 

at the five end. The maximum displacement amplitude, in the Y-directJOIJ. WLI" 
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plotted against thickness for a non-rotating case a,, shown in Fig. (7.43). and 
plotted against rotational speed for the thin and thick ca-,, c.,,, in Fig". (7.44) and 
(7.45). The maximum displacement amplitude is plotted again,, t the excitation 
frequency for non-rotating and rotating shells in Fig. (7.46). 

General comments on the displayed results can be summarized as f6flow,,: - 

There is a very close agreement between corresponding results obtained froill 

the two different quadrilateral elements. 

The elements have demonstrated a stable performance in a wide range ol' 

thickness. 

(iii) The transverse shear effects reduce the non-dimensional natural frequency, a,,., 

was observed for the flat plate case. 

(v) The forced vibration analysis can be employed for the detection of the 

resonant frequencies. 

(vi) It is clear from Fig. (7.46) that the centrifugal loading effect has reduced the 

resonant frequency, as expected for that casc, and the Coriolis force effect has 

caused damping which results in reduction of the displacement amplitude. 

7.6 CASE WITH VARIATION OF FIBRE ANGLES 

This case represents a rectangular plate with the length along the x-direction being L- 

a= 15.24x]O-' ni and the length in the y-direction b=7.6"x 10-2 m. Two plates 

werc considcrcd one with fivc laycrs. and the thickness of each laver is 0.1 )x I()-' m, 

whcrc the angIcs of fibrcs arc arram-yed as 0, -0,0, -0,0, and the second P, a sfflLdc 

laycrcd plate with a thicki1css equal to the total thickness of the fivc-kiýer platc, and 

the fibres at an angle 0. as defined in Ficy. (7.15). The meshc,, emplovcd for the finitc 

clement analysis are similar to those displayed in Ficys. (7.16) and (7.17). To 
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demonstrate the effect of the fibre angle, the natural frequency analysis has been 

carried out on plates with different values of 0, i. e. 0= 0,150,30", 45', 60 . 75' 
. 9() . 

7.6.1 Natural frequency analysis of non-rotating plates 
The first five non-dimensional frequencies as obtained by finite element anak "k \\ Ith 
the conforming 4-node quadrilateral, non-conforming 4-node quadrilateral, and non- 
conforming 3-node triangular elements, together with the corresponding analytical 

solution of Narita and Leissa (1992), were plotted against fibre angles, for the 5-lavcl- 

as well as the single-layer plates, as shown in Figs. (7.47) - (7.51 ). The results for 

the 5-layer and the single-layer plates are also displayed in Tables (7.6) and (7.7), 

respectively. 

The following points can be deduced from the given results: - 

(i) Results obtained using different finite elements for the single-layer plate at 
different fibre angles are in a very close agreement to those obtained by the 

analytical solution of Narita and Leissa (1992) for that case. Similarly, the 

finite element results for the 5-layer plate are in excellent agi-cci-nent to the 

corresponding analytical solution given by the same authors. 

Increasing the fibre angle 0, changes the natural frequency, both for the single 

layer and the 5-layer plates, at the five natural modes displayed. 

Oll) The change in the fibre angle 0 have a greater effect on the results of the 5- 

layer plate than on those of the single layer plate. This may Indicate the 

advantage of using more layers if the fibre angle effect is to be fl, 111ý 

exploited. 

7.6.2 Thickness effect 

The main objective of this case is to study the thickness effect on the natural 

frequencies of a multilayered plates, therefore the five-laycr plate was employcd t'or 

this analysis, xvith two values of plate thicknesses beinL, considered, the fir,, t 1,, the 

sainc as in section (7.6.1), but tile sccond thickiicss wa,, ten times grcatci- dian tile 

first. The first fivc non-dimensional natural frcquencic,, I'or the thin and thick plate-, 



16-1 

were plotted against fibre angles 0, as sho%%n in FiLis. (7.52) - (7.56). It i-, ý: Ieai- h-oni 

those figures. that the transverse shear effect tends to reduce the non-dii-nenlonal 
frequency, as observed in previous cases, but this reduction is -, rcater at 111oher 0. 
This means that the effect of the fibre angle on the natural frequency illay be reduced 
by increasing the plate thickness. 

7.6.2 Speed effect 

The two plates of the previous case were analysed again but %% ith a rotational "pced 
to study its effect on the natural frequencies, and for this analy,, P, the rotational ý'pccd 

was 150 R. P. M. The first five non-dimensional frequencies, obtained hy incans of 

conforming element meshes, have been plotted against fibre angle, for non-rotatim" 

and rotating cases as shown in Figs. (7.57) - (7.61). The effect of centrifugal 

stiffening in increasing the natural frequencies can be observed in all thosc [IOUI-CS, 

and it is also observed that the effects of the fibre angle 0 and the trans%-ci-,, c slicar 

are similar to what observed in previous figures. 

7.7 FLUTTER ANALYSIS 

7.7.1 Isotropic rectangular panel 

This case represents an application to two-dimensional panel flutter with a Mach 

IILIIIIbCl- greater than 1.6. A finite element analysis. based upon considering the panel 

as a wide beam was introduced by Olson (1967), and exact analytical solutioii", ýVelv 

pvcn by Houbolt (1958). The panel has a length a in the x-direction, and no Icnath 
C', C, ý 

was specified in they-direction. The effect of the flow speed was presented by means 

of the non-dimensional flutter parameter A, defined as follows: - 

Im- 1 

and the non-dimensional cigcnvalue is defined &, Ka 
D 

where D is the tICXUral rigidity of the panel. The panel \v&, assunled to bc 111adc ot 
I- 
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an aluminium alloy with the following properties: - 

E=7.5xlO'o Pa 

3000 Kg / 1t13 

0.33. 

Two cases of boundary conditions were considered, the first is a clamped panel with 

the two opposite sides at (x = 0) and (x = a) being clamped and the other Side', are 

free, and the second is a simply- supported panel with only the sides at (x = 0) and 

(x -- a) restrained from deformation in the z-direction. The length a was assumed 

0.8 in, and since no length in y-direction was specified with the pLiblished resLilts, it 

was considered that b=0.2 m (an aspect ratio a: b = 4: 1). Scvcrýd meshes, with the 

two different types of boundary conditions were tried, and the resLilts wcrc 

converging with a consistent deviation from published results. In a try to irnprovc 

that deviation the panel width b was increased to 0.4 ni (an aspect ratio a: b = -A ), 

and in return the results became closer to the published ones. The package rcsults 

displayed here, are for a mesh with 8x2 square elements for the case with aspect 

ratio 4.1, and a mesh with 4x2 square elements for the case with aspect ratio 2: 1. 

(a) SiniplY-, yupported panel 

The value of the non-dimensional flutter parameter A was increased gradually, and 

the first two eigenvalues /^ý, and ý, were monitored, until their coalescence was 

achieved. Detecting coalescence, or complex eigenvalues is not possible with the 

, simple iteration algorithm and the subspace iteration solver, described in this thesis, 

and an automatic search scheme was, therefore, adopted when approachlil!, '. ' the point 

of coaIcscciicc, as explained in chapter 5. Thus the detection of the critical fluttei- 

conditions within any given acceptable error limits becomes possible. The 

cori-c, sponding non-dimensional eigenvalues K, and K, were plotted agaill. st the non- 

diniciisional flutter parameter A, using 4-node conforming and non-conforming 

quadrilateral elements, for rectangular plates with aspect ratios 4-1 and 2: 1, to, 2cther 

with the exact analytical solution of Houbolt (1958). which was cxti-acted froiii 

Olson',, report (Olson 1967). as shown in Fig. (7 . 
6-1). The noii-dinicii,, ional 
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eigenvalues at A=0, and at flutter boundary. including the best results of Olson 
(1967) are displayed in Table (7.8). It is clear that the results of the case with a"l)CCt 
ratio 2: 1, as obtained by the developed elements, are very close to the analytical 
solution. 

(b) Clamped panel 

An analysis similar to that performed with the previous case 'xas carried out, and the 

non-dimensional eigenvalues K, and K, were plotted against the non-dimensional 
flutter parameter A as shown in Fig. (7.63). The values of K, and K, at .4=0, and 

the critical values of A and K at flutter boundary are also tabulated in Table (7.9). 

It is also clear that the results obtained by the developed elements, for the ca'ýc with 

aspect ratio 2: 1, are very close to the analytical solution. 

It may be worth mentioning that, for the case where the analytical solution is based 

on a wide beam model, the non-conforming element yielded results closer to the 

analytical solution than the conforming element, for the simply- supported and 

clamped panels. 

7.7.2 Isotropic square panel 

This case represents a square panel, the length of each side was taken as a=0.8 /11, 

and it was made of an isotropic material similar to that used in the previous case 

described in section 7.7.1. Considering the symmetry along the x-axis, the finite 

cicnient meshes of half the panel were employed with 8x4 square conforming and 

non-conforming 4-node elements. 

7.7.2.1 Simply-supported square panel 

III this casc the panel N-,,,, as assumed simply-supported at its 4 edocs, and dift'civnt. 

\'ýilucs of non-dimensional flutter parameter .4 Nvere considered until the critical 

flUtter boundary is reached. Olson ( 1970) had published results bascd on thin plate- 

hendinCT conforniliw, and non-conforining finite cleinents, tocrether with the cxact 

', '()ILItIOII of HOLibolt 1958). RcSUIts baSCd upon the conf'orming and non-con kwill i III-, I 
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elements developed in this work are displayed toLcther ý\ ith the abo\-c nientioned 
published results, at A=0 and at flutter boundary, in Table (7.10). The coalc', Cciicc 
of eigenvalues obtained by the package developed in this work was plotted togcther 

with a curve published by Sander et al. (1973) for a similar case based upon a thin 

conforming plate-bending element, as shown in Fig. (7.64). It is clear frorn tho,, c 
results that conforming elements lead to more accurate flutter results than non- 

conforming elements, as predicted by Olson (1970). However. there k no , ignificant 
difference between the results obtained by means of the package confOrming aiid 4ý Cý 
non-conforming elements, as compared with those of Olson, specially the K, valucs 

7.7.2.2 Clamped square panel 

In this case the four edges of the panel were clamped. The results published I-)y 

Olson (1970) contains only those with the conforming thin plate-bending clement. 
At A=0, he compared K, and K, values with the upper and lower bounds of Dc 

Vito et al. (1966) and the flutter boundary was compared with the approximation oI* 
Houbolt (1958). Those results presented, taking Olson best results, together with 

finite element results of this work, which are based upon the conforming and non- 

conforming elements are displayed in Table (7.11). The conforming element results 

are very close to Olson's, with similar deviation from Houbolt's approximate 

solution. However at A=0 the package results are closer to De Vito et al. results. 

Fig. (7.65) shows the coalescence of eigenvalues based upon conforming and non- 

conformina elements developed in this work. According to previous results, it can C) Z7ý 
be concluded that the flutter results based upon conforming elements are more 

ýiccurate than those obtained by means of non-conforming elements. 

7.7.3 Composite rectangular panel 

This casc is a rcctangular pancl made of 8-laycr fibrous composite material. with the 

following properties: - 

ý, = 112. Ox 109 Pa. 9.2x 109 Pa 
X\ Y 

ýIX 
V= 

ýlOz\ =4Zx, = 5. Ox 109 Pa 
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vy x\ = 0.35, vy x=0.02875 
where x-axis is the fibre axis, which has an angle 0 with the -v-axis. as shown in Fig* 
(7.15). The fibre angles in the eight layers are as 0,90", 0,900,90", 0,90'', 0. 

To facilitate comparison with published results, non-dimensional paranieters ai-c 
defined for the composite case studies as follows: - 

P. v2a3 
Non-dimensional flutter parameter A 

E, h3 

Non-dimensional eigenvalue Ka 
Eý,, h3 

Non-dimensional frequency (D = VK__ 

Two different analytical solutions were presented for a clamped case, by Srinivasan 

and Babu (1987), the first (IE) is based upon an integral equation technique, the 

second (SER) is based on a double series consisting of beam characteristic functions. 

Finite element results, which are based upon the conforming and non-conforming 

elements developed in this work are displayed together with Srinivasan and Babu's 

results in Table (7.12), which proves that finite element results are very close to the 

analytical solutions of Srinivasan and Babu (1987). The coalescence of eigenvalues 

is plotted in Fig. (7.66), which shows a bigger deviation between conforming and 

non-conforming results than that observed for isotropic cases, mainly due to a bier Z-- 
difference between K,, values. 

The same casc was run acrain but ývith simply-supported edge conditions, and finitc 
L_ - L_ 

element i-csults are demonstrated in Table (7.1 3)), with the coa1c,, ccnce CLIF% C, ', 110%% 11 

in Fig. (7.67). An observation similar to the clamped casc can be concluded, L_ 
regarding the deviation between conforming and non-conforming element i-c,, ult,,. 4-- L_ Z: ý L_ 

though it is less than what observed in the clamped casc. 
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7.7.4 Boron/Epoxy composite square panel 
This case represents a composite square panel, constructed of 8 layel-S of a 
Boron/Epoxy composite material with the following properties: - 71 

= 31 OX 106 PSi 
= 2.137xlO'' Pa 

ýy = 2.7 X 106 PSI = 1.8()-, Xio'' Pa 

ý1,, Y, = jjý, ,=0.75x 
106 PSi = 5.171xlO" Pa 

vy\xýl = 0.35, vy x=0.02875 
The layer fibre angles are as the previous case, i. e. 0,90', 0,90", 90", 0,90", 0. 

Analytical results for a clamped case was also given by Srinivasan and Babu (1987), 

and a finite element analysis based upon a shear deformable plate clcnicnt was 

published by Lee and Cho (1991). Two different finite clenicnt meshes ý\ci-c 

attempted using half the plate with symmetry conditions with respect to the x-axis, 

the first is a coarse mesh modelled by means of 4x2 square elements, and the second 
is a fine mesh modelled in terms of 8x4 square elements. Conforming and non- 

conforming results are tabulated together with the published results in Table (7.14), 

and curves for the coalescence of eigenvalue, are shown in Fig. (7.68). It is clear that 

the results of the conforming elements are very close to the analytical solution, C%'cll 

with the coarse mesh. The fine mesh of the non-conforming element has more 

accurate answers than the coarse one. 

The same case was run with simply -supported edge conditions, and convergence of Z: ý 
coalescence results can be observed in Fig. (7.69), and frequencies at A=0 and at 

the fluttcr boundary are tabulated in Table (7.15). It can also be noticed that the 

results based upon conformina and non-conformin2 elements when the fine meý, hc,, L_ 1-1 
are employed came close to each other. 

7.7.5 Graphite/Epoxy composite square panel 

In this casc the panel IS SCILiare in shape and consists of an 8-laycr compositc made 

of a Graph ite/Epox %, material with the following propertics- 
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E 20. Ox 106 psi 
x 

E, \ 
1.4 xlO'psi 

lix 
Y\ = ýLx \=0.8XIO, psi 

0.8XI 06 psi 

Vy 
x, = 0.3, vy, x = 0.021 

= 1.379xlO'' Pa 

= 9.653xlO9 Pa 

= 5. 
-5 

16x 10' Pa 

= 5.516x 10' Pa 

The fibre angles of the layers were 0,450, -45", 0,0, -45", 45", 0. where 0 took the 

values: 00,15', 30', 450,60', 75', 90', to study the effect of the fibre ancrle on flutter. t: ) 
This arrangement was dictated so as we can compare results with a similar case 

presented by Lee and Cho (1991). Two cases with different boundary conditiow, 

were considered, with the finite element meshes consisting of 4x2 square element, 

and the symmetry condition taken into consideration. 

(a) Clamped square panel 

This is the case with all edges being clamped, and the critical non-dimensional flutter 

parameter A, and the flutter frequency (Dcr, as obtained from conforming and non- 

_conforming elements, and published solution (Lee and Cho 1991) were plotted 

against fibre orientation angle 0, as shown in Figs. (7.70) and (7.71). It i.. " clear from 

those figures that the package results are very close to the published onc, ý, and that 

increasing fibre angle will reduce critical flutter conditions. rýý 

( /? ) Simply-supported square panel 

The results of as imply- supported case were plotted in a way similar to the previous 

cýisc, as shown in Fios. (7.72) and (7.73). It is also clear from thosc figures that thc 

lo\\,, ci- the fibre angle 0, the higher will be the critical flutter conditions. The 

deviation betwecii conforming and non-conforminc, element results, ýtrc ,, niallcr than 

what ohscrvcd with the case of clamped edge conditions. 
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7.8 GENERAL DISSCUSION 

During the course of the analysis of the previous case studie. everal Ii no nterest 

general points have been observed and they are summarized next: - 

ýfo a Con 'rming and non-conforming elements 

Conforming and non-conforming elements developed in thi.,, work have Icd 

to accurate and reliable static and dynamic results. The difference betwccil 

their corresponding results was insignificant for static and d\ namic aiial\ 

with the conforming elements showing slightly more accurate answers. The 

major advantage of the conforming elements is the flexibility in use ývith 

curved shells and box structures. The conforming element requires bouildary 

conditions to be in terms of slope angles with respect to gdobal axc,,, whilst 

the non-conforming element requires them in terms of local ýtxcs, which are 

not easy for the user to know. The fact that the conforming c1ciiierit has 

stiffness and mass contributions corresponding to 0,0, and 0, will make 

them well conditioned. 

b Thicknes. y effýct 

The developed elements have shown stable performance in a wide range of' 

thickness for plates and shells. Although they consider transverse shear 

effects, they did not suffer from shear locking as do Mindlin-type elements. 

and reduced integration techniques are not required for the elements 

developed in this work. Transverse shear effects, which are increased hy 

increasing thickness, tend to reduce the non-dimensional frequencies, but one L_ 

should remember that bending frequencies are proportional to thickness. 

c Ceti tl-ýfilg(llfi) /-(, (, (ý/fi, cl 

The centrifugal force I-CSUIting from rotation does not Awa\ , lcýld to a 
1ý -- 

Stiffening as sorne may believe. It , tiffens and winctimes soften,, depending 
Cý - Zý 

upon its direction with respect to the direction of deformation. It' the 
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centrifugal force opposes deformation, it leads to a stiffenin2 and higher 

natural frequencies, with the increase of rotational speed, a, demonstrated by 

the flat plate cases. On the other hand, if it is in the direction of deformation 

it will lead to softening and lower natural 1'requencle,, with the incrcýi,, c Of 
rotational speed, as observed in the circular shell cases. The centrifugal cffcct 
is negligible for some modes, like torsional ones, and is reduced for higher 

modes. The thicker the plate or shell, the lower will be the effect (4 

centrifugal force on bending frequencies, compared at the same rotational 

speed. 

d Coriolisfbrce ýffect 
The Coriolis force results in a damping term in the finite element dynarnic 

equation of rotating structures. This may explain the reduction observed in the 

amplitude of a forced vibration with a frequency close to a resonant 
frequency. The Coriolis J'orce does not have a significant effect oil flic values 

of resonant frequencies themselves. 

LaYerv andfibre angles 

The fibre angle 0 can have a significant effect on the stiffness matrix of 

composite layered plates and shells, and this will result in a correspondiiig 

effect on their natural frequencies. This effect can be increased by increasill" 

the number of layers, while keeping the same thickness. However increasing 

(lie thickness may reduce the effect of 0. The 0 effect may provide a tool foi- 

the desi(nicrs to tune the natural frequencies ýiwiy from resonance CILic to 

excitation frequency, by simply changiiic) the fibre angles without having to 

modify the mechanical design. 

Flutter 

Scvcral additional comments, havc bcen obscrvcd %\ ith flutter anak The 

conforming elements lead to more accurate I-CIAIltS, WIth the "ailic fililte 
Cý 

clement mesh. than thoý, c obtamcd b\ nicaw, of non-confornmiL, clenient,, 
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The critical flutter frequency is reduced when the first two-bending C7 
frequencies, are approaching each other, on increasing the flow speed. The 

fibre angle can have an effect on flutter parameters. and it can also be 

employed by designers, to tune the flutter frequency so as to be at higher Flow 

speed than those panels will be subjected to in practice. 
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Table 7.1 Natural frequency parameters for isotropic square plate 

Mode 1 2 3 4 

Conf-Q 3.461 8.361 21.10 27.04 3 0.5 

Nonconf-Q 3.456 8.362 21.34 26.81 3 (). 47 

Nonconf-T 3.453 8.393 21.34 -16.82 30.67 

Analytical 3.459 8.358 21.09 27.07 30.56 

Table 7.2 Natural frequency parameters for 8-layer composite square plate 

0 of layers (45', -450, -450,450,450, -450, -450,45" 

Mode 1 2 3 4 5 

Cont'-Q 1.812 6.521 10.44 17.11 21.23 

Nonconf-Q 1.807 6.512 10.70 17.00 21.31 

Nonconf-T 1.820 6.506 10.90 16.98 21.40 

Analytical 1.813 6.553 10.48 17.29 21.49 

PUblished 
REM 

1.792 6.443 10.38 17.11 

Experimental 1. (19--) 6.089 10.20 15.07 19.17 
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Table 7.3 Natural frequencies for 8-layer composite rectangLilar plate. 

0 of layers (45", -45', -45'. 45'', 4-50, -45, -45 , 45 ) 

Mode Experimental Published FEN Conf-Q Non-conf-Q Non-conf-T 

1 31.3 31.9 31.85 31.86 29.50 

2 185.8 191.3 191.16 192.96 180.85 

3 214.0 228.2 227.36 227.10 224.81 

4 533.0 565.3 562.22 571.35 540.1-1 

5 653.0 708.3 703.78 703.84 696.66 

Table 7.4 Natural frequencies for 8-layer composite cylindrical first shell scction. 

0 of layers (0", 00,300, -300, -300,300,0', 0' ) 

Mode Experimental Published F. E. M Conf-Q Nonconf-Q Nonconf-T 

1 161.0 165.7 168.72 126.34 141.27 

245.1 289.6 295.09 141.74 195.37 

3 555.6 597.1 606.06 452.03 539.76 

4 670.0 718.5 713.01 793.62 982.72 

5 794.0 833.3 816.94 964.10 1156.19 

Table 7.5 Natural frequencies for 8-layer composite cylindrical second shell section. 

0 of layers (0", 450, -45", 90', 900,45", -45", 0" ) 

Mode Experimental Published F. E-M Conf-Q Nonconf-Q Nonconf-T 

1 177.0 192.4 196.53 190.24 210.59 

201.8 236.1 246.74 '144.77 31 1 18 

645.0 705.8 720.91 674.14 773. -3) - 

4 754.0 808.2 813.96 1091.27 1190.01) 

5 884.8 980.6 985.06 1 -76.14 
'25 1441. - 



174 

Table 7.6 Non-dimensional natural 
different fibre angle 0. 

frequencies for 5-laver rectangular plate at 

Fibres angle 
(Degrees) 0 =0 0= 15 0= 30 0=45 0=60 0= 75 0= 90 

Conf-Q 3.511 3.152 2.445 1.703 1.176 0.94-1 0.894 

M d I 
Nonconf-Q 3.499 3.137 2.423 1.690 1.172 0.94-1 0.894 

o e 
Nonconf-T 3.501 3.145 2.443 1.701 1.177 0.945 0.896 

Analytical 
1 

3.513 
1 

3.153 
1 2.442 1.700 1 1.176 1 0.940 0.897 

Conf-Q 7.057 8.452 10.260 10.070 7.203 5.889 5.388 

M d 2 
Nonconf-Q 7.061 8.433 10.230 10.120 7.345 5.905 5.389 

o e 
Nonconf-T 7.056 8.455 10.260 10.060 7.367 5.971 5.43 2 

Analytical 7.068 8.474 10.310 10.080 7.259 5.888 5.390 

Conf-Q 21.910 19.830 15.200 11.130 9.431 6.9-11 -5.601 
Nonconf-Q 21.270 20.040 15.840 11.430 9.485 6.938 5.606 

Mode 3 
Nonconf-T 21.590 19.680 15.270 11.270 9.485 6.990 5.701 

Analytical 
1 

21.970 19.910 15.260 11.190 9.476 6.931 5.602 

Conf-Q 25.230 27.110 31.410 28.980 20.6 16.5 15.7 

Nonconf-Q 25.150 26.570 30.920 29.290 21.05 16.6 15.70 
Mode 4 

Nonconf-T 26.260 27.480 31.220 28.960 21.2 17.1 16.3 

Analytical 1 25.840 27.490 31.470 28.980 20.62 16.5 15.7 

Conf-Q 27.760 30.850 -) - `0.520 33.870 29.010 21.450 16.1)-() 

Nonconf-Q 30.010 36.190 34.610 29.200 1.540 16.940 
Mode ý 

Nonconf-T 27.360 - 
1.227 ýO "0.8- 34.020 29.190 - 2) 1.790 17.100 

AIMIN ticýd 27.840 1. 340 20 37.1- . 950 ""). 090 21.490 10.05H 
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Table 7.7 Non-dimensional natural frequencies for single ]a\ er rectangular plate at 
different fibre angle 0. 

Fibres angle 
(Degrees) 0 0= 15 0=30 0=45 0=60 0=75 0= 90 

Conf-Q 3.500 2.822 1.913 1.356 1.062 0.926 0.891 

Mode Nonconf-Q 3.488 2.824 1.915 1.357 1.061 0.926 0.891 

I Nonconf-T 3.491 2.821 1.925 1.365 1.066 0.9-19 0.891) 

Analytical 
1 

3.513 
1 

2.832 
1 

1.922 
1 

1.365 
1 

1.066 
1 

0.930 
1 

0.897 

Conf-Q 7.036 7.477 7.603 6.920 6.042 5.491 5. 
--)'7 

1 

Mode Nonconf-Q 7.040 7.418 7.442 6.743 5.934 5.452 5.373 

2 Nonconf-T 7.034 7.504 7.593 6.848 5.980 5.485 5.416 

Analytical 7.068 7.538 7.653 6.932 6.056 5.5 14 5.390 

Conf-Q 21.850 18.440 12.930 9.180 7.053 
-5.961 

5.584 

Mode Nonconf-Q 21.210 18.910 14.000 9.894 7.361 6.046 5.589 

3 Nonconf-T 21.530 18.560 13.380 9.457 7.254 6.114 5.682 

Analytical 21.970 18.770 13.410 9.448 7.154 5.991 5.602 

Conf-Q 25.150 23.590 21.380 19.180 17.12 15.860 15.630 

Mode Nonconf-Q 25.080 22.970 20.770 18.570 16.69 15.680 15.650 

4 Nonconf-T 26.180 23.710 21.260 18.950 16.97 1'ý. 980 16.200 

Analytical 
1 

25.840 23.840 
1 

21.490 
1 

19.250 
1 

17.17 
1 

15.920 
1 

15.690 

Conf-Q 27.680 29.970 32.770 26.900 21.33 18.070 16.880 

Mode Nonconf-Q 25.960 28.800 31.770 
-18.830 -2 

17 5 IS. 5 10 16.890 

5 Nonconf-T 30.630 3-990 27.470 22.08 18.780 17.240 - 

Analvilcal 27.840 3 *1 . 
490 7.640 7 

-11.6 - 18.200 16.95() 
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Table 7.8 Flutter result. ý of simply- ýupported Isotropic rectan. gular panel. 

A= 0 Flutter boundary 

K, K, A CF Kcr 

Conf 4: 1 89.207 1447.440 317.582 970.980 

Non-conf 4: 1 89.207 1447.420 324.174 980.840 

Conf 2: 1 96.778 1538.060 336.042-1 103-"1.43() 

Non-conf 2: 1 97.390 1570.520 344.050 1050.820 

Olson (1967) 97.460 1570.870 342 
. 343 1043.400 

Exact value 97.410 1558.550 343.356 1051.797 

Table 7.9 Flutter results of clamped isotropic rectangular panel. 

A= 0 Flutter Boundary 

K, K, Acr Kc, 

Conf 4: 1 479.640 3572.600 603.585 2611.000 

Non-conf 4: 1 483.77 3566.300 620.998 2666.477 

Conf 2: 1 498.810 3855.500 632.905 2707.100 

Non-conf 2: 1 501.920 3878.000 636.810 
22 7 3.45 0 

Olson (1967) 501-113 3833.960 636.724 
1 -7 

- 
990 

EVICt \'ýIILIC 500.504 3803.540 56 () - 1, -174 1.360 
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Table 7.10 Flutter results of simply- supported isotropic square panel. 

A= 0 Flutter boundary 

KI K2 Acr K 

Conf 389.30 2430.90 511.630 1845.10 

Non-conf 383.30 2374.80 498.820 1801.80 

Olson conf 389.66 2437.80 511.786 1843.29 

Olson non-conf 378.71 2335.5 488.703 1766.24 

Exact value 389.636 2435.23 512.651 1848.21 

Table 7.11 Flutter results of clamped isotropic square panel. 

A= 0 Flutter boundary 

K, K2 Acr Kcr 

Conf 1295.30 5393.30 850.94 4287.60 

Non-conf 1257.00 5189.60 748.11 3619.80 

Olson conf 1296.11 5406.70 850.42 4282.03 

Upper and 1294.96 5386.70 
lower bounds 
(De Vito, et al. ) 1-194.93 5386.40 

Approximate 876.80 4077.00 
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Table 7.12 Flutter results of clamped composite square panel. 

A=0 Flutter boundary 

(D I (D2 Acr (D cr 
Conforming 59.510 79.000 569.720 74.45 1 

Non-conforming 58.420 75.877 459.300 70.189 

S i i 
IE 59.420 79.720 561.580 74.250 

r n vasan 
SER 59.600 79.760 563.820 74.350 

Table 7.13 Flutter results of simply- supported composite square panel. 

A=0 Flutter boundary 

(D (D, ) Acr (Dcr 

Conforming -17.443 
45.798 329.800 41.036 

Non- 
conforming 

27.038 43.974 293.330 39.456 
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Table 7.14 Flutter results of Boron/Epoxy clamped square panel. 

A= 0 Flutter boundary 

(D (D,, Acr (D cr 
Conf (coarse) 23.388 54.135 453.06 46.115 

Non-conf (coarse) 22.259 51.281 405.44 4-1). 629 

Conf (fine) 23.358 53.679 453.3 46.25 0 

Non-conf (fine) 23.009 52.773 436.66 45.434 

IE 23.33 53.77 446.36 46.09 
Srinivasan 

SER 23.63 53.76 474.6 47.19 

Lee & Cho (1991) 23.34 53.62 471.16 40.89 

Table 7.15 Flutter results of Boron/Epoxy simply-supported square panel. 

A0 Flutter boundary 

(D I (D,, A CF (D cr 

Conf (coarse) 10.66 33.1 233.22 27.93 

Non-conf (coarse) 10.28 32.67 226.95 27.28 

Conf (fine) 10.75 34.04 246.9 28.37 

Non-conf (fine) 10.63 33.67 241.11 



180 

y 

Y 

r 
Figure 7.1 Rectangular cantilever plate. 
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(a) 

(b) 

(c) 

Figure 7.2 QLiadrilatcral element meshes Lised for validation of plate casc. 
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(a) 
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Figure 7.5 Three-node triangular element meshes used for validation of plate case. L- 
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Figure 7.7 Cirailar cantllc\'ci- shell 
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Figure 7.8 Four-node element meshes used for validation of shell casc. 
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Figure 7.11 Three-node triangular element mcshes used for validation ol',, hell ca,, c. 
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Figure 7.13 Isotropic square plate with 16 four-node quadrilateral elements. 

Figure 7.14 Finite clement niesh for isotropic square plate casc uý, ML' 32 three-node 
triangular elements. Z 
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Figure 7.15 Layer material axes. 

Figure 7.16 Finite element mesh for composite layered rectangular plate case using 
4-node quadrilateral element. 
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Figure 7.17 Finite element mesh for composite layered rectangular plate using 3- 
node triangular element. 
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Figure 7.18a Eight-layer composite cylindrical shell 
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Figure 7.18b Mesh with 4-node quadrilateral element for composite layer shell. 

Figure 7.18c Mesh with 3-node triangle element for composite layer shell. 
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Figure 7.22 Axis of rotation for plate. 
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Figure 7.36 Axis of rotation for circular shell. 
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CHAPTER 8 

CONCLUSIONS 

AND RECOMMENDATION 
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8.1 CONCLUSIONS 

It is clear from previous chapters that the author has managed ,, Liccc.,,.,,, full% to achieve 

the basic research objectives. New conforming and non-conforillinc--, elements ha\ c 
been developed for the analysis of rotating and non-rotatinlo plate and shell , trLictLii-c,, 

made of isotropic or composite layered materials. 

A modular user-friendly computer finite element package based upon the dc\'clopcd 

elements has been created, and properly validated against published theoretical and 

experimental work. This package is capable of static stress analysis, natural 

frequency analysis, forced vibration analysis, resonant frequencies prediction for 

rotating blades, and flutter analysis of panels in supersonic flow. 

Several case studies have been analysed with the developed package, and some 

useful comments have been concluded in the course of their analysis, which are 

summarized as follows: - 

(i) Conforming and non-conforming elements have led to accurate static and 

dynamic results in general. Nevertheless, it was observed that conforming 

elements are more accurate to be adopted for flutter analysis of rectangular 

panels. 

(i i) The results obtained by means of developed elements proved to be accurate 

tI or a wide range of plate or shell thickness. 

Centrifugal stiffening mcreases the values of natural frequencic,, if' the 

generated centrifugal loading opposes the deformation. Howevcr, the 

centrifugal effects decrease with the increase of structure thickness. 

0 It has been proved through the forced vibration analysis of pkttcý, and , Iicll,, 

by means of the developed packaoc that, the Coriolis force cITcct,, Icad to a 

reduction in forced vibration amplitudc,,. 
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(V) One of the debatable findings is that the non-conforming three-node ti-langullu- C7 
element has shown poor performance, when used for the anak sk of rotating 

plate or shell structures. 

(Vi) The package came to be a very useful tool for the design optiniization of L- 
composite layered plates and shells, by means of using different fibre anLflc,, 

as it was demonstrated through a number of ca,, e studie,,. 

The original work produced in this thesis is summarized as follows: - 

A newly developed theory for higher order conforming and non-conforilling (i) 
Cý 

elements for composite layered plates and shells, with the use of extra dc., -n-ccs 
of freedom to accurately represent the transverse shear clistributions ovcr the 

thickness. The new elements were based on a combination of L. -ILi-anL'laii and 

Hermitian shape functions, and they are valid for a wide range of structural 

thickness. 

(ii) The derivations of the contributions of centrifugal stiffening, Coriolis and 

centripetal acceleration, and equivalent nodal force, are considered in the new 

elements, for the analysis of rotating composite layered plates and , hell 

structures. 

(ill) Derivation of aeroelastic effects in the newly developed elements, and the 

derivation of the corresponding element matrices. 

The c1csign of a modular, user-friendly. computer programming package based 
4t7l t7l L_ It, 

Upon the developed elements. The package is capable of carrying out differci-it 

types of analysis for isotropic and composite layered plate and shell 

structures. 
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8.2 RECOMMENDATIONS FOR FUTURE WORK 

This work has been achieved within the time and resources available without , parinL, 

any effort, nevertheless, it is the author's view that the work can be improved if the 

following points are considered: - 

(i) Derivation of 6-node higher order triangular elements in order to impi-ove the 

accuracy of the analysis of rotating plate and shell structures with triangular 

elements. 

(ii) In order to generalize the flutter analysis, the developed package should be 

coupled with an appropriate CFD package to carry out aeroelastic and flutter 

analysis for more practical applications such as turbomachine blades. 
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LAGRANGIAN SHAPE FUNCTIONS 
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Al 4-NODE QUADRILATERAL ELENIENT 

(i) Shape functions 

4 3 

(A. 1) 

N2(l-T, 

N3T, (A. 3) 

N4 1-ý) TI (A. 4) 

(ii) First order derivatives 

aN, 
= (A. 5) 

aý 
aN2 

= I-Tj (A. 6) 

aý 
aN 3 

aý 
aN 4 

T, 

aý 
aN, 

=_ (A. 9) 
aT, 

1 
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aN 2 10) 

a, q 
aN 3 
aT, 

aN 4 

all 

A2 3-NODE TRIANGULAR ELEMENT SHAPE FUNCTIONS 

// N 

1 

Ti (A. 13) 

N= (A. 14) 

N3 :::::: '9 (A. 15) 



APPENDIX B 

NON-CONFORMING HERMITIAN SHAPE 

FUNCTIONS 
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Bl FOUR-NODE RECTANGULAR ELEMENT 

y 
A 

43 0 -o 

b 

1a2 

f, = (1 - 11) H, l'O (ý)+(l -ý)Hj 
1,0 (11) -(1 -0 (1 - TO (B. 1) 

g, = a(l - il)HI I'l (0 (B. 2) 

h, = b(l - ý)Hjl"(Tj) (B. 3) 

=f (1 -il)H 
l'O +ýH1,0 (B. 4) 

21 

9 a( TI)Hl"(ý) (B. 5) 
22 

1 (B. 6) h2 =- b H, "( il ) 

f3 Hl'o(ý) +ý Hl'O( TI) - (B. 7) 
22 

ail HI "(ý) (B. 8) 93 2 

hbýH"I (il ) (B. 9) 
32 

f4 = qHjl'o(ý) +(1 -ý)H, 
1'0(11) 

-Tj (1 -ý) 
(B. 10) 

I (B. 11) 
94 =a Tj H, 

(B. I h4=b (1 H2 
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where H, l'o (ii )1 

1,1 2 
Tj 2, q + il 

3 112 -2 il 
3 

2+ 
113 

B2 THREE-NODE TRIANGULAR ELEMENT 

3 

2 

fl =(1_ý_ 11 )2 [3 -2(l -ý -TI )] +2 ý il (I -ý -Tj ) (B. 13) 

-XI) 
)2ý +I 91 (X2 

2 

(x 
3x1 

)2 + (B. 14) 
2 

)2 +1ý Ti Y2 - ý'l )12 

(Y3 - Yl +1ý T' (B. 15) 
2 

f2 = ý2(3 -2 ý )+'I ý ii (1-ý -TI ) (B. 16) 
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92 = (X 
I -X2) ý2 +I 

12 

(X 
3 -X2) +Iý TI (B. 17) 

2 

(yl -Y2) 

(y, -y') +1ý 11 (1_ý_ 11 )] (B. 18) 
2 

q2 (3 -2fl ) +2ý Tj (1 -ý -Tj (B. 19) 3 

93 7- (Xl -X3) 11 
2(l 

-11 +1 ý 71 TI 
12 

(x 
2- X3 

2ý +Iý '1 (1 -ý -'I) (B. 19) 
21 

(YI -y3) T) 

(Y2 - Y3 11 
2ý +1ý 71 Ti (B. 20) 

2 
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y 

A 

3 

b 

--- 0 >- x 

F, 1,0 1,0 
= H, (Z)HI (11) 

G, ,11,0 = aHll (Z)Hl (11) 

H, = bH, 1,0 (Z)Hi"l(11) 

abH, 1,1 (Z) H, 1,1 (11 ) 

F 2 H 1,0 (g)Hl' 0 (11) 21 

G 2 aH1,1 (Z)Hl' 0 01) 2 

H, bH 1,0 
2 

Q2 = ab H, 1,1 (Z)HI 1,1 (T1 ) 

F «"2 H 1,0 (g)Hl' 0 (11 3 «' 22 

aH I, I (ý) HI, 0 
322(T, 

bH1,0 (ý)H I'l 
32 

I'l 
Q3 = ab H, (ý)H,, ' '1 (TI 

H11,0 H 1,0 ( Ti 2 

(C. 1) 

(C. 2) 

(C. 3) 

(C. 4) 

(C. i) 

(C. 6) 

(C. 7) 

(C ) 

(C. 9) 

(C. 10) 

(C. I 1) 

(C. 12) 

(C. H) 
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I'l 10 G4 = aH, (ý)H2' (TO 

1,0 1 
H4= bH, (ý)H2 '1( Tj 

(C. 14) 

(C. 1) 

abH I'l (ý)Hl"(, q) (C. 16) 
2 
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DI GEOMETRICAL REPRESENTATION 

TI A 11 

0,1 Intrinsic axes 

Triangle Quadrelateral 

ýOý 01,0: 0,0 

Z\A 

Giobal axes Local axes 

The element is represented with respect to a global system of axes (x, 
_v, -. 

) in terms 

of the following parameters: - 
(a) the global coordinates of midplane nodes, and 

(b) the thickness distribution by means of specifying layers thickness at cvery 

node. 
For an n-node element, the following parameters are specified :- 

I ý, ), i= 11 2, ..., 

hi(l) 91 z-- 192, ..., N, ,i=I, 
2, . ., n 

where -v,, yj, zi are the global coordinates of the node i on the element 

midplane, 

hi(l) is the 1 th layer thickness at node i measured in the normal 

direction to the element midplane. 

The material axe,,, are defined with respect to element local axes. as dc,, cribed in 

section (3.1). For plate problem the local axes are same as global axes, i. e. 

xi =Xi, Yi ---- Yi, zj = zi =0 

and the coordinate -, is also a redundant parameter. For curvcd , Iicll,, the local 
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axes x\ . Y\q Z\ are obtained as described in section (3.1), and with direction co,, ine,, 

m,, n, ), (12, M2, n2) and (I., m_,, n_, ). Hence the local coordinatc,, are defined i,, 
follows :- 

xi = 11 (xi -xi) ' mi (Yi -Yi) + n, (z, -zI) 

Yi = 12 (Xi - Xl) + M2 (yi - Yl) +n2 (yi - yl 

zi = 

where i=1,2, ..., 

The total thickness at node i will be : 
N, 

H, - EH(x, ý, yi\) hi(l) (D. 2) 

and the z coordinates at the lower and upper surfaces of the 1 "' layer, along the line 

which passes through node i and is parallel to the z' axis, is :- 

H. 1-1 
ýk) 

+ 1: h ZL (xi, yi 
2 k=l 

I 
(D. 3) 

z(1) \\ zu iiL (xi, yi )+ hi(1) (D. 4) 

The element is represented in the ý-ij plane as shown in the previous figure, by the 

tI ollowing isoparametric transformation :- 

x'(Z, 11) = 1: xi\ Ni (Z, 11) (D. 5) 
i=1 

n 
ý, ý- (ý, Ti (D. 6) Ti yi 

where Ni (ý 
, il) represents Lagrangian shape functions. 4: ý 

The definitions of modified D matrices and p paramem-s imply integratiow., ()% cr the 

) or il). The thickness will also be interpolated hý means ýixis, at a (Tix, cii (. v\ N" 

of the sarne Lagrangian shape functions, i. e. Z-1 
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(D. 7) 

Hence, Equations similar to (D. 3) and (D. 4) can be employed, i. e. 

I) Hý- (ý91)I-I (k) ( ý: 
, T, ) Ti 

2+1: 
hi 15 (D. 8) 

k=i 

Z(I) (Z, ii) =Z (1) 
L (Z, 11) + (D. 9) 

Ni 

H(Z, ýq) =E hi(')(Z, 11) (D. 10) 
i=1 

D2 NUMERICAL EVALUATION OF ELEMENT MATRICES 

Consider any element matrix, which is as described in previous sections, for example 

Kl,,, defined by Equation (4.72). Using intrinsic coordinates, it can be showil that :- 
1 PTO 

Kff B' Dbb Bb Jý x'y dý dTl 
bb 

00bý, Ti 

ý 

where for quadrilateral elements, 
for triangle elements, and 

ax C)Y 
X Xly )= aý aý =1 

11 
J12 

ax OY J" J22 

aTI all 
, 

which is the Jacobian matrix. 

11) 

(D. I V) 

Using the modified Gaussian quadrature (EI-Zafrany, 1994), it can be shown that :- 

NQNQ 

Kbb=EE f( Tl 
s) 

lt'r w, (BtbD 
bb Bb1j 

at ýr5' 713 
(D. I 

s=l r=l 

where ýrs ý_ llrf(lls)' and '9,, . w, are the abscissa and weight of the modified 
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quadrature scheme with N., points. Notice also that D,,, should be calculated kit 
from Equation (4.63), i. e. 

(Z U( D(l) bb 
(ý 

111 
)EX. 

N 
1=1 - 

A similar procedure can be employed for every other element matrix. 

D3 SHAPE FUNCTION DERIVATIVES 

(D. 13) 

The B matrices and some other matrices, are in terms of first or second order 

cartesian derivatives of intrinsic shape functions. Using the chain rule of partial 

differentiation twice, it can be proved that for a function f( ý, q): - 

af af 
ax aý 
af af 
ay a ii 
(32f -, Xly ()2f 

aX2 
J(2) 

T, 

ý ý 

a ý2 

(32f ()2f 

ay 
2 a,, 

2 

C)2f -)2f 

axay aý aq 

where (-v, Y) represents here for simplicity, the local coordinates, and 

(D. 14) 

J(2) V, Y 

ý, Ti 

is the second order Jacobian matrix defined as follows :- 
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J12 000 

J21 J22 000 

()2X o ý'Y 
1212 2J J 11 12 11 12 

X'3 Ya J a ý2 
(D. I (2) 

Y (32 Y 22 Jý 
1 

Jý2 2 J21 J22 

a2 a2 

()2 X 0)2 Y 
11 

1 
21 '112J22 

JI 
1 
J22 + J12J21 

auTj aýa,, 

and j 11 5 
J121 J21 

5 
J22 are the term s of the first order Jacobian matrix, as defined by 

Equation (D. 11). 

For the special case of simple elements, which can be defined geometrically in terms 

of three nodes, and qua drilateral elements with parallel opposite sides (parellelgram) 

it can be shown that (EI-Zafrany, 1 994) the isoparametric Equations (D. 5) and (D. 6) 

are reduced to 

x(ý,, ij) = a, + blý + cITI 

(D. 16) 
y (ý ,q)= a2 + b2 ý+ C2 11 

C-12 X X ()2X 

aý2 
_0 

a, 12 aý aTj 
a2y a2y a2 Y 0 
aý2 aTI 2 aý aq 

and the derivative equations can be decoupled as follows 

af af 
ax X, Yaý (D. 17) 
af TI af 
av afl 
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(ý2f 

where 

ax 2 

X, a 
a-2f 

J(2) 
(ý, 

reduced 
Cýf 

ay 2 aTj 1) 

J(2) X, y ýý, 

Ti 
reduced 

1212 2J J 11 12 11 12 

212J, Jý 
1 22 

-1 
J22 

1 
11 

j 
21 

J12J22 JI 
1 
J-12 + JI 

'j" I 

1, ý) 

(D. 19) 
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El Euler-Bernoulli beam solution 

F 

x 

L 

8 (X) F X2 (3 L- x) 
6EI 

Ih 

where 
1 bh 
12 

b 


