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aucrrrv a r+m 

This thesis concentrates on accuracy improvements for 

an existing software package that solves the three 

dimensional Reynolds Averaged Navier-Stokes equations in 

rotating coordinates. It is a cell centred explicit time 

marching code. Two topics are considered: improvement to 

the discretization scheme, and reduction of the artificial 

dissipation. 

The first topic is the analysis of the straight 

averaging process which demonstrates that the process can 

result in inconsistency with a skewed grid. An alternative 

consistent scheme is proposed which is based upon 

quadratic interpolation. Improved accuracy can also be 

obtained by modifying the grid or adopting a cell vertex 

scheme. The stability of the iterative process is also 

shown to depend on the time step. 

The reduction of artificial dissipation (second 

topic) first considers the role of the so called aspect- 

ratio and velocity functions. These are found to be 

limited in influence and a new function is proposed based 

upon the local flow gradient. Both two and three 

dimensional turbomachinery cases are tested and 

improvements demonstrated. In the second part of the 

analysis, the eigenvalues of the stability matrix are used 

to reduce the dissipation in overdamped regions. Again 

this method is applied to various test cases and 

improvements demonstrated. 

The management part of this Total Technology PhD 



Program discusses topics concerned with collaboration and 

technology development in the aero engine industry with 

particular emphasis on the role of an " emerging 

partner. 
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NOTATION 

A= area 

A= throat area 

C= speed of sound 

D= dissipation 

e= total energy/mass 

fe = external forces 

Ff= friction force 

Fp = pressure force 

H= rothalpy 

i, j, k = unit vectors in cartesian coordinate 

k= thermal conductivity 

K2 = coefficient of second order dissipation 

K4 = coefficient of fourth order dissipation 

ML = local Mach number 

Mmax = maximum Mach number 

p= static pressure 

Pmean = mean total pressure at the intake 

Pr = Prandtl number 

P60 = lowest value of mean total pressure over a 600 at 

the fan face 

q= heat flux 

SE = entropy 

S= scaling factor 

A Sx = area of cell'face with normal in x direction 

AS y= area of cell face with normal in y direction 

t= time 

T= static temperature 



u, v, w = velocity in x, y, and z Cartesian coordinate. "., 

VL = local velocity 

Vinf = boundary layer edge velocity 

Vref = reference velocity 

Vol = cell volume 

x, y, z = cartesian coordinate 
A 

= boundary layer thickness 

= specific heat ratio = 1.4 

8ý= incident angle 

= eigenvalues 

,, 
0 = fluid flow viscosity 

A= effective viscosity 

A= laminar viscosity 

,, #r= turbulent viscosity 

1/ = scalar viscosity constant 

p= density 

7`= viscous shear stress 

W= vorticity 

-n- = rotational speed 



1.0 INTRODUCTION 

1.1 Background 

In the competitive worldwide aerospace market, the 

capability to design and manufacture aero engines with 

good performance, within budget and to time is crucial for 

survival. In order to achieve these goals, an aero engine 

company has to take into consideration aspects of fuel 

prices, regulatory requirements in safety and the 

environment, passenger comfort and other matters (Ford, 

1992, and Jewell, 1994). The matter is further 

complicated by potential changes in all related matters at 

the same time in the future. 

Fuel prices and usage have a direct effect on engine 

competitiveness through engine efficiency (specific fuel 

. consumption). So much so that a decrease in the specific 

fuel consumption of 1.1 % and 0.4 % for the V2500 and 

-RB211 turbofan engines respectively can be translated to a 

cost change to the aircraft operator per year of US 

$12,000 and $33,500. This change in specific fuel 

consumption could typically be caused by a reduction in 

compressor efficiency of 1% (Robinson, 1991). 

On the other hand, the efficiency depends upon the 

level of the technology involved in the design. This is 

confirmed by the historical development from the turbojet 

to the early high bypass turbofan engines, figure-1.1 

(Flax, 1974). Recent developments have resulted in further 

reduction of fuel consumption and predictions for the 21st 

century suggest that the trend will continue, figure-1.2 
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(Stryker, 1994). The many aspects of material processý_, 

manufacturing and aerodynamic technology contribute 

significantly to the improved performance of aero-engines 

(Hall, 1994)). The present work, however, concentrates, on 

the aerodynamic aspect of turbomachinery design and 

development alone. 

Nowadays, aerodynamic technology has reached such -'ä 

level of sophistication that details of the airflow 

through the engine components can be predicted with 

reasonable accuracy. In the past, such information 

depended largely upon experiments and engine testing work, 

with designs relying heavily on empirically based methods. 

Advances in computer has provided high speed computing 

tolls for solving approximations to the Navier Stokes -F 

equations. This has been achieved through developments "In 

algorithms and physical modelling of the governing 

equations of the air flow which has facilitated techniques 

now capable of numerical simulation of the flow through'°' 

engine components. 

This has resulted in the emergence of the new 

technology Computational Fluid Dynamics (CFD) as a 

complementary tool to earlier design methods. This 

technology now enables engine designers to carry out a 

large numbers of computations in a shorter time scale 

providing more optmized designs. In the past, the design 

verification required extensive testing of model hardware. 

With the CFD technology almost all the'testing can be 

performed numerically. Thus, the costly and time 
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consuming exercise of building and testing the hardware 

can largely be avoided (Douglass and Ramshaw, 1994). 

Currently complex computer models are now beginning to be 

used in many engine components (such as cooling systems of 

the turbine) which has not been possible before (Hill and 

Langdell, 1993). 

The airflow through the complex geometry of engine 

components is characterized by shocks, flow separation, 

vortices, unsteadiness and various viscous and secondary 

flow phenomena. The physical processes are embodied in 

the Navier Stokes equations which require discretization 

and simplification before even a time averaged solution 

can be obtained. 

These processes introduce errors although the 

solution can still be used to qualitatively select a 

better design. For instance, based upon computational 

results, a designer can distinguish aerodynamically well 

designed blades from aerodynamically less well designed 

blades (Hah, 1989). Currently, even with the availability 

of the Navier Stokes solvers, design calculations of the 

flow within engine components still require tests to 

simulate other aspect of flow which as yet can not be- 

modelled. However, the contribution of CFD technology is 

to reduce the testing required to produce competitive 

engines and to permit engine components to be designed 

"right first time" leading to significantly reduced 

development time and cost (Hill and Langdell, 1993). 

It is significant to also note that if an engine 
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efficiency is less than predicted to the customer (who has 

purchased on the basis of these predictions) then it is 

often the case that the engine manufacturers will have - to 

finance any loss in the productivity under fuel burn 

guarantees. The discrepancies generated by prediction 

methods (experiment and computationally ) therefore carry 

significant cost consequences to manufacturers, (Robinson, 

1991). Part of the problem is due to inaccurate CFD 

modelling of the airflow through engine components 

1.2 Objective of the Thesis 

Accuracy of CFD prediction becomes a problem because 

of the simplified mathematical nature of the equations"', 

solved inevitably incorporate terms which generate false 

physics. Therefore, the model suffers inaccuracy whereas 

industry requires an accurate and reliable design tool in 

order to have competitive design capabilities. In the 

light of this goal, the present research work concentrates 

on improving the accuracy of an available CFD'program 

which solves the Reynolds Averaged Navier Stokes 

equations., This software has been produced for the 

solution of internal flow-problems within engine 

components such as compressor and turbine blades, as well 

as engine intake nacelles and nozzles (Ho, 1992). 

In this thesis, the investigation concentrates on the 

discretization scheme used by the code (in an arbitrary 

grid arrangement which is covered in chapter 4) and the 

reduction of artificial dissipation (covered in chapters 5 

and 6). 
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The discretization analysis studies both standard and 

modified schemes and in order to provide better accuracy, 

especially with skewed grids, an improved discretization 

scheme is also proposed. In addition as an alternative to 

adopting an improved scheme, grid modification is 

investigated to improve the accuracy. As an alternative 

to the cell centred scheme used in the standard software, 

a cell vertex scheme is considered. In addition to the 

spatial discretization analyzed in the above, time 

discretization is carried out to provide stability 

constraints. 

Dissipation reduction is investigated by analyzing 

various dissipation models (chapter 5) and exploiting an 

eigenvalues analysis (chapter 6). 

The errors generated by the standard dissipation are 

firstly analyzed and various correction functions proposed 

by other researchers examined. An improved correction 

function is then proposed which can reduce dissipation in 

critical regions of flows. Various test cases are 

considered including Ni's Bump, and two and three 

dimensional blading configurations. 

The eigenvalues for a given level of dissipation are 

calculated from a stability matrix (derived from the 

governing equations). Based on the relationship between 

eigenvalues and dissipation, two ideas are proposed which 

try to obtain a balance between accuracy and robustness. 

The first method attempts to set the eigenvalues (or rate 

of convergence) and calculate the dissipation, and the 
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second method, to reduce the dissipation in the ovc Tamped 

regions where the eigenvalues are unnecessarily large and 

negative. 

Collc-boration within the aero-engine industry is a- 

feature of modern programmes and is also considered as 

part of this thesis. Collaboration is undertaken to 

reduce risk and get market share where there are currently, 

too many products and the market share for each company is 

likely to reduce. Aero-engine companies are therefore, 

collaborating to both finance the investment and capture` 

market share. 

A feature of the discussion is to establish the 

importance of technology to each partner in such a 

collaboration together with the project management 

techniques required for the development of technology with 

an inexperienced partner. 
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2. COLLABORATION AND TECHNOLOGY IN THE AFRO ENGINE 

INDUSTRY 

2.1 Introduction 

Collaboration within the Aero Engine industry is 

being increasingly accepted as a logical means for 

companies to survive in difficult conditions, and to 

expand into new markets. Because of the high levels of 

investment required for engine developments, a large 

market share is essential for Aero Engine companies to 

make a satisfactory return. According to Aviation Week 

and Space Technology (28 February 1994), an engine must 

now capture at least fifty percent of its market share in 

order for it to be profitable., 

However, when there are too many companies launching 

their products into the same market, the potential share 

of each company within that market will be'limited. 

Those companies which succeed in securing only a-small 

share of their market, will, therefore, need to 

rationalize if they are to remain in business (Regional 

Air, August 1993). 

Thus, it is logical that companies which are already 

in the market should seek partners in order to share 

costs and combine their respective market shares. ' Where 

international partnerships are formed, such 

collaborations will also facilitate expansion into new 

markets. 

Many governments now demand that, for engines 

purchased by national airlines and other state 
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organisations, a proportion of the engine components must 

be produced locally. This arrangement provides a means 

by which local industry can enter into the aero engine 

business. However, such new entrants face strong 

competition and do not usually have the capability to 

fully establish an indigenous industry (Hemmings, 1992). 

In such circumstances a collaboration with well 

established companies can provide the opportunity for 

local companies to gain access to invaluable expertise in 

technology, marketing, or other associated areas. This= 

chapter tries to analyze what new entrants need, in terms 

of technological capability, when they decide to enter 

into such collaboration with an established partner. 

If the new entrant plans to enter into the 

collaboration by taking responsibility for the 

development, design, and manufacture of the engine 

components, it will need to acquire the necessary 

expertise so that it will be able to undertake the design 

using advanced technology. The acquisition of this 

capability, which is crucial to competitiveness, will be 

scrutinized by the more established partners, or their 

sponsoring governments, to safeguard proprietary 

information. 

Protection of intellectual property is a very 

important issue to be discussed during negotiation for 

any collaboration. In order to be considered as a 

partner in acollaboration, the new entrant"must have a 

minimum technological capability, in addition to having-' 
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other assets such as investment capital, or access to 

foreign markets. A strategic plan to build such 

technological capability is elaborated through project 

management in this paper. 

2.2 Historical Background 

The world's Aerospace industries have been 

established through high investment ventures. Such 

industries always manufacture products according to 

market demand; however, they are characterised by the 

high levels of technology they need to remain 

competitive, and some stringent requirements in terms'of 

safety and the environment. 

Aerospace industries are normally established either 

to exploit the market commercially, or to lead 

technological developments. Most civil aerospace' 

industries are established to exploit the market 

commercially, and, historically, this has been done as a 

result of spin offs from developments in military 

hardware. The market, though, has often proved 

insufficient to support such industries for long. After 

the first world war, for example, in 1921, all United 

Kingdom airline companies went out of business (Fearon, 

1969). Such difficulties were caused by the high 

operating costs of the early airliners due to uneconomic 

fuel consumption, and inadequate equipment (Todd and 

Simpson, 1986). As the industry matured, however, and 

the market grew, the aerospace industry in the United 

Stated (US) and other countries successfully worked at 
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exploiting the market commercially. 

It is stated by Hayward (1986) that the industry in 

the US would not be able to exploit the market profitably 

without state support. Such support can be in the form 

of government subsidy, state ownership, or large 

contracts for military aircraft. 

Current free market policy tends to lead to the 

formation of private companies for many business 

ventures, and such companies invariably seek to capture 

market share. However, the products of newly formed 

aerospace companies cannot easily penetrate markets when 

they are competing with established products. 

Furthermore, difficulties are encountered due to: the 

need to fulfill quality standards; trade barriers; and 

the need for high investment. Such difficulties mean 

that newly formed private aerospace companies are 

unlikely to be profitable within a reasonable time span!. 

In developing countries, or newly industrialised 

countries, there are normally insufficient resources for 

large capital projects. Additionally, industrial skills 

are often limited to the manufacture of simple products. 

Therefore, it is difficult to build high technology 

industries, such as aero engine industries, without the 

backing of government policy and funding. 

The government policy is often laid out to support' 

various goals in the national development of sectors such 

as technology and agriculture, and could be set according 

to the goal of acquiring high technology through 
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establishment of the aero engine industry. Such policy, 

of course, varies from country to country but the purpose 

is to provide a means for agents of the development to 

facilitate the achievement of the goal. In almost all 

countries that have an aircraft industry, -the government 

sets industrial policy to support that industry. 

2.3. Collaboration as a Global-Trend 

2.3.1 Initiation of Collaboration 

The aero engine market and the aero engine industry 

have gone through a transformation. Before 1960, an 

airline would buy a transport plane as a complete unit of 

airframe and engine. In the current market, engines and 

airframes are treated as separate products, and aero 

engine companies have to compete in the market place 

whenever airlines purchase an aircraft from an airframe 

manufacturer (Hayward, 1986). The role of aero engine 

companies has, therefore, changed, from that of supplier 

to airframe manufacturers, to that of supplier to 

airlines. In consequence they now directly interact with 

the users of their products. 

In general, it may be considered that an industry, 

including the aero engine industry, sells either existing 

or new products to existing or new markets. Market 

expansion is considered to take place when either new 

products are sold, or existing products are sold into new 

markets. This is illustrated in figure-2.1. 

If the existing products are sold into new markets 

which are located in. another country, a collaboration may 
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be proposed. Since new engine 

high levels of investment, it 

guarantee the necessary return 

existing markets. In order to 

products often need to be sold 

markets. If the new market is 

development requires very 

is often difficult to 

of investment from 

obtain such a return, new'- 

in both existing and new'-- 

located in another 

country, a collaboration may be proposed which may 

include research, development and design. 

If the airframe products do not have sufficiently 

large markets, it will not be possible for sales to 

support the development of new engines. In such 

circumstances the airframe manufacturer will have to 

design its products around the engines available in the 

market place. 

If, on the other hand, the market for the airframe 

products is sufficiently large, it may be possible for 

airframe sales to support the development of new engines, " 

and for several companies to compete in the same market 

for these. Because of the fiercely competitive engine 

market, and the high cost of new engine development and 

production, the industries may wish to enter into 

collaborations to expand their market, share the risk, 

and share the cost. 

A collaboration may involve research and 

development, design, testing, manufacturing, or sales. 

In manufacturing, the collaboration will often involve 

only production under license or co-production. 

other forms of collaboration are based on 
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subcontracting parts of the engines either for research 

and development, or design. In research, for example, 

high technology collaboration is currently being 

conducted for next generation supersonic transport 

engines and Rolls-Royce, SNECMA, MTU, and FIAT are all 

developing such engines through collaborative ventures 

(Aviation Week, 11 April 1994). 

The collaboration arrangement may involve 

established partners only, or established partners and a 

new entrant. A collaboration may be initiated when an 

established company, which has experience in technology, 

marketing, and sales, is short of financial resources, or 

is uncertain about the financial return of investment due 

to pressures from competition. 

In this situation, the new entrant, which may have 

strong financial resources and potential access to new 

markets, could plan to enter into the aero engine 

industry. Thus, gains in market share and capital 

infusion, may be traded for technology transfer and 

experience in the aero engine industry. 

For the established industry, the purpose of the 

collaboration may be to maintain the present market and 

expand into new markets. For the new entrant, 

collaboration is usually the only way of getting into the 

industry. 

On other occasions, collaboration may be part of an 

offset arrangement where an aero engine company sells its 

products to a foreign customer. In such circumstances, 
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the purchasing state may set conditions for purchase so 

that parts of the products need to be manufactu: _d 
locally in that state. 

The method of sale may differ between private and 

state supported companies (Cornell, 1981). Private 

companies usually compete in the open market, whereas 

state companies can rely on more protected markets. 

In a protected civil aerospace market, for instance, 

the government may set conditions where the national 

airlines have to purchase the domestic products. In the 

open market, the manufacturers have to compete 

aggressively to sell their products, and this may involve 

financing the purchase, particularly with exports. The 

government may also provide a means of supporting the 

sales campaign. However, where the market is protected, 

the state ensures the availability of customers to 

support the industry. 

2.3.2 Reasons for Collaboration 

Technological advances in engine products are 

dependent upon advances in other fields of technology 

such as materials or electronics (Hayward, 1986). 

Aerospace products are becoming increasingly complex due 

to such advancement, and this is creating specialization 

whereby many other supporting companies build and sei *ice 

specific parts of the engines such as pumps or measuring 

instruments. 

In an aero engine project, the aero engine company 

usually acts'as the prime contractor, and the supporting 
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companies usually act as subcontractors that supply the 

specialized equipment. Nowadays, there are a few prime 

contractors and numerous subcontractors (Bracher, 1981). 

The complexity of the specialized technology, and the 

division of responsibility in product development among 

contractors, tends to lead to the need for high levels of 

investment. 

Aircraft manufacturers need to continually improve 

productivity and competitiveness wherever high technology 

in aircraft engines has an important role. In this 

context, productivity is a measure of efficiency of 

aircraft production (James, 1982). Among the factors 

that influence the airlines to choose engines are: fuel 

consumption; reliability; noise; emission levels; price; 

cost of overhaul; the financial package; and political 

considerations (Cedar, 1986). 

The fuel consumption, reliability, noise and 

emission levels of engines may all be improved through 

technological advancement. Therefore, highly competitive 

engines tend to require high levels of technology, which 

tend to require high levels of investment. However, 

aircraft manufacturers are not willing to invest in new 

equipment which does not give a satisfactory return, even 

though it may be technologically superior. 

Where an aero engine company needs to invest- 

heavily in high technology, it may, therefore, seek 

collaboration in order to improve the return on 

investment or reduce the risk. 
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In order to satisfy market demand for planes of 50 

to 400 passengers, aero-engine companies have to make 

products that cover a wide range of engine types. 

Developing new engines, and producing a wide range of 

engines, requires large capital investments, and, in 

collaborations, this large investment is likely to be 

shared among partners. 

A company which has a world wide market needs to 

enter into a global manufacturing policy in order to 

maintain the overall level of business in an increasingly 

competitive market. This policy leads to the 

establishment of manufacturing facilities for different 

markets in different countries. With this strategy, the 

products tend to be manufactured in one part of the world 

and shipped to another part for assembly (Gopal, 1992). '-' 

The nature of global manufacturing involves different 

technologies in different plants. The technology level 

, ranges from sub-assembly, through to assembly and 

manufacturing. 

The levels of technology employed in different 

countries is closely associated with the overall levels 

of technology possessed by the countries where the 

facilities are located. 

Facilities may still be opened in countries with low 

levels of technology if there is cheap labour as an 

incentive. In fact, one of the goals of a global 

manufacturing policy is to gain access to such cheap 

labour. With different products coming from different 
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manufacturing plants, the performance criteria of each 

plant is important, and it depends on the technology and 

objectives of the plant. 

Such a global strategy tends, to be based on 

production at several plants, sourcing from multiple 

locations, and the implementation of monitoring systems 

for major processes ranging from the supply of raw 

materials to the final assembly of products (copal, 

1992). Through effective integration with such 

a global manufacturing policy, a broad international 

collaboration can be successfully formed. 

The aerospace industry needs high levels of 

investment coupled with the use of high technology. In 

order to get a satisfactory return on investment, it, 

therefore, has to be able to achieve high levels of 

product sales, and these need to be supported by the 

economies inherent from large scale production capacity 

and a large market size. A collaboration between 

partners from different countries is one means of 

achieving these goals. 

A collaboration arrangement can pull together the 

resources from several partners to create a large 

critical mass which can match some strong competition. 

The Airbus consortium, in the airframe sector, is one 

such example. Airbus is a consortium of ,a number of 

European civil aerospace companies which have been able 

to consolidate their resources and successfully match the 

strong competition faced from the United States civil- 
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aerospace sector. 

Other factors that are putting financial pressure on 

the aero engine industry are the depressed state of 

airline finances, price competition among airframe 

manufacturers, and a reduction in the returns obtained 

from investment by airframe manufacturers (Hayward, 

1986). 

Price competition among airframe manufactuers has an 

effect on aero engine manufacturers since engines can 

only be sold when airframes are sold. It has been 

estimated that 80% of engines are sold directly to 

airframe manufacturers (Hemmings, 1992), and it is only 

by adjusting the price of engines that airframes can be 

profitably sold. 

2.4 Technology in the Aero Engine Industry 

The well being and development of the aerospace 

industry is dependent upon technological progress. This- 

can be pushed by research laboratories or pulled by the- 

market or industry. It varies from being basic to 

commercially oriented. 

2.4.1 The Role and Requirement of Technology 

Since basic research does not have'an immediate 

return on investment, it is often supported by a 

government agency. The research that can have immediate 

impact on the industry is affected by conditions in the 

market such as operating costs. The level of technology 

depends on: the technical requirement; the governing 

authority; and the market demand. Several items that can= 
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be affected by the technological development are: engine 

efficiency; noise; emissions; and ease of operation 

(Ford, 1992). 

The market can drive the acquisition of the 

technology. For instance, a research project to develop 

an efficient engine may either be cancelled or delayed 

when fuel is cheap and there is little demand from the 

market for an engine with low specific fuel consumption. 

When fuel is expensive, however, it-is likely to be worth 

funding such research since the demand for engines with 

low specific fuel consumption is likely to be high. In 

such circumstances a satisfactory return on investment is 

quite possible. 

With technological push, the laboratory can provide 

an increased level of technology. If the market cannot 

support the technology on that level, the technology will 

never find any application in industry. Propfan 

technology failed, to reach the market because the propfan 

engines could not compete with other jet engines. 

Therefore, the Boeing 7J7 project was cancelled (Aviation 

Week, '14 March 1988). Learning through experience is 

essential to maintain the technology. The experience of 

a customer about the use of a product is important 

information required to improve the technology of the 

future product. British Airways' experience with the' 

Boeing, 747 was incorporated into the new Boeing 777 

design features (Sunday Times, 19 June-1994). In order 

to achieve early Extended Twin Operation (ETOP) over 
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water clearance, Boeing researched what caused in-flight 

shut down, and addressed the problem (Aviation Week, 19':. 

April 1993). Based upon this knowledge, an ETOP airplane 

was designed, manufactured and tested. 

Low technology design is characterized by making 

many assumptions about a large number of parameters, 

which are not universally valid. High technology design` 

is characterized by the ability to take account of, and 

calculate, a large number of different parameters. Such' 

high technology design, in the field of aerodynamics, is' 

expensive because it needs more computing power, and 

sophisticated measuring devices. For instance, the 

application of such high technology requires the 

calculation of more parameters because it takes into 

account of a wider range of physical processes that can-- 

affect the design. This leads to the requirement for new 

knowledge about the behaviour of certain physical 

processes which, in turn, need to be researched. 

Such research inevitably requires further 

applications of high technology. Due to a limited budget 

and time, the resulting parameters that could have been 

obtained from that research are assumed to fulfil certain 

conditions, which are not always universally valid. The 

new instrumentation such as laser anemometer measurement, 

ensemble averaged hot wire data, and a better'numerical },. 

method for flow prediction in three dimensions, show that 

air flow inside aircraft engines is extremely complicated 

(Denton, 1993). Other parameters have°to be calculated. 
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to understand this complicated flow. However, this 

effort very often cannot be afforded. Therefore, some 

parameters are assumed to fulfil certain conditions. The 

uncertainty is due to discrepancies that are introduced 

where the assumptions are invalid. 

In fact, the above argument applies also to low 

technology. The difference from high technology is that 

the low technology limits areas of exploration which, in 

consequence, limits the resulting design capability. In 

other words, the design is not able to fulfil wide areas 

of operational conditions such as high level of 

performance efficiency. Thus, all levels of the 

technology make assumptions, but the higher technology 

has a wider area of application. For example, the area 

of exploration of viscous flow is wider than that of the 

inviscid flow. 

In order to reduce the uncertainty and gain 

confidence in the results, a large number of tests have 

to be carried out. Since the increase in efficiency of a 

gas turbine engine or aircraft engine is influenced by 

the increase in turbine entry temperature, Rolls Royce 

actively develops high temperature turbine technology. 

10,000 cycle tests have been completed in temperatures 

above 1800 K (Rolls-Royce Private communication). 

Such large numbers of tests will inevitably incur a 

high cost and also will increase lead time. Thus, 

uncertainty can contribute to high development costs. In 

another example, new technology makes the engines more 
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cost effective by reducing their size and weight, and 

increasing their simplicity and ruggedness (Wennerstroom, 

1989). In engine components such as compressors, the 

development cost is affected by the need for ever higher 

efficiency, demand for lower manufacturing cost, and by 

reduction in size and weight. This will push the 

mechanism of the compressor into higher aerodynamic 

loading which will require better prediction methods 

(Fottner, 1989). 

Inability of low technology to predict aerodynamic 

losses because of the many assumptions it makes, may 

result in high losses, for instance, in an engine. These 

high losses result in high specific fuel consumption. It 

is then not possible to fulfil stringent requirements 

such as low specific fuel consumption, low emissions, or 

others, with low technology. 

Increased engine efficiency will not only make the 

engine more competitive and cost effective, but it will 

fulfil requirements for the environment. However, it 

must not make the engines difficult to maintain and less 

durable (Matson, 1993). A success in improving the 

efficiency and reduction in maintenance cost is a good 

selling point. CFM International introduced a new design 

of CFM 56-3XS which had 15-% lower maintenance cost and 5 

% lower specific fuel consumption than the other model 

CFM 56-3C (Flight International, 9 June 1993). 

The demands of the travelling public, such as 

shorter flying time, higher levels of comfort, less noise 
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in the cabin, lower fares, etc; and those of regulatory 

authorities, such as reduction in noise, have created new 

markets for certain types of aircraft and engines (Ford, 

June 1992). The market determines the choice of engines 

for the airliners. These factors are translated into the 

requirement for certain types of technology. 

For instance, high reliability tends to be due to 

better prediction of component behaviour in the harsh 

engine environment, such as inside the combustion chamber 

; or lower fuel consumption tends to be due to better 

prediction of losses. The technology of prediction 

methods needs investment in research and development. One 

thing that new technology has to avoid is, ultimately, to 

increase product costs to such an extent that they are no 

longer competitive. However, new technology, such as 

CFD technology, can reduce development costs for a given 

level of requirement. The goal is to produce engines at 

competitive prices, for a given requirement. The 

requirement can be fulfilled by the application of high 

technology. The acquisition of such technology needs 

investment that will tend to drive up the development 

cost. 

2.4.2 Cost Effective Technology 

The way in which technology will affect the 

development cost, and fulfil the engine design 

requirement, can be illustrated by a three dimensional 

chart of technology, development cost and design 

requirement (figure-2.2). There are many aspects of 
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engine requirement. In this chapter, one of the most 

important requirements is low specific fuel consumption 

which will be considered as a parameter along the axis of 

the requirement. A new requirement of low specific fuel 

consumption has to be fulfilled by higher levels of 

technology, and it is represented as point B on the 

technology axis. If the location of B is not correctly 

estimated, there will either be insufficient or surplus 

technology, as is illustrated in the two dimensional 

chart of requirement and technology (figure-2.3). 

In the field of aerodynamics, increased levels of 

technology mean more sophisticated analytical methods, 

and fewer experimental tests. In the two dimensional 

chart of cost and level of technology (figure-2.4), the 

analytical solution covers potential methods to direct 

simulation methods of turbulent flow. The experimental. 

tests with a wind tunnel are required to verify the 

analytical predictions. As the analytical methods become. 

more sophisticated, they become capable of replacing more 

wind tunnel tests. This is possible because the 

analytical method is able to simulate the aerodynamic 

flows that were previously predicted by wind tunnel 

tests. There will be a decreasing overall cost of tests, 

due to a decreasing number of tests, but the cost of each 

particular test increases as the technology advances. 

The potential solutions contain only pressure and 

velocity distributions. Other essential parameters, such 

as drag or losses, are obtained by experimental tests. 
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The cost of potential methods decrease, and the cost of 

wind tunnel tests increase, with time. It is much 

cheaper to use potential methods now, in the 1990's, than 

it was in the 1960's. The advancement of computer 

technology reduces the computing cost. CFD methods which 

were prohibitively expensive in the 1960's, can now be 

afforded. 

Due to the requirement for more accurate results 

through the application of new technology, wind tunnel 

costs per unit time increase. If the number of, hours of 

wind tunnel tests remains the same, wind tunnel costs 

will, therefore, increase. This relationship can be seen 

in figure-2.5. The target of acquiring the technology to 

fulfil the requirement and control the cost is to choose 

the level of technology that will result in minimum cost. 

This is illustrated in the chart of cost and technology 

(figure-2.4). 

The higher level of technology is capable of 

simulating more complicated flow such that it needs less 

wind tunnel test time. The cost of CFD rises with 

increasing levels of technology, even though the cost of 

wind tunnel testing decreases, because fewer tests are 

required. This results in a higher overall, cost, which 

is shown by point C on the chart. The case with an 

insufficient level of technology will be similar. Even 

though the cost of computing is low due to the simple 

method of solution, this will result in a need for a-- 

large number of wind tunnel tests, which will cause costs 
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to rise. This is shown by point A on the chart. 

An important slice of the three dimensional chart 

describes the relationship between design requirement and 

cost (figure-2.6). The development cost required to 

fulfil the design requirement, as it is related to the 

level of technology, has to be carefully justified. The 

use of insufficient or surplus technology for certain 

design requirements results in unnecessarily high 

development costs. 

2.4.3 Technology Acquisition 

The new entrant, that is sponsored'by government, 

has to consider management of technological innovation 

and this can follow two broad approaches. The first is a 

gradual evolution of the existing technology; and the 

second is a sudden high risk strategy to exploit new 

technology (Hayward, 1986). Technology is part of the 

industrial asset that needs investment by either the 

sponsoring government or a private venture (Draper, 

1987). In other words, the new entrant can participate 

in a collaborative project in research and development 

which will involve several companies. The mastering of 

the technology is accomplished through research and 

development. In order to ove_come difficulties with 

sharing high technology in Europe, there should be an 

umbrella organization formed in order to promote research 

cooperation. For instance, the EC commissioned a study 

of major European airframe companies which was used to 

form the basis of the European Research Programme 
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(Hayward, 1991). 

This type of collaboration is aimed at producing 

major financial savings through sharing of costs at the 

development stage. The new entrant has to consider 

taking responsibility for one engine component from 

development to manufacturing since it will motivate its 

employees to achieve targets for the project because 

their work has a direct impact on sales. 

If the objective of the collaboration project is to 

develop a new aeroengine, the technology is likely to be 

the most important aspect of the project. In this case, 

each partner is likely to use similar design procedures 

for the aero engine. The established partners can lead 

the design process since they will have a comprehensive 

data base and much design experience. The new entrants 

can learn through involvement in the project. The reason 

for participating in the design of the new engine will be 

to learn about the technology by drawing from the 

experience of the established partners. The skills 

acquisition will concentrate on base technology for 

minimum capability, and advanced technology for 

competitive advantage. 

Base Technology 

An aero engine industry product clearly has to meet 

the customer requirements. These requirements are driven 

by market conditions. In order to achieve that goal, the 

technology and cost requirements have to be satisfied. 

The engine requirement leads to its specification. After 
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studying the market conditions and producing the engine 

specification, the cost and technology that are required 

will be clear, and collaboration can be considered in 

terms of risk and benefit. 

The new engine specification is a basic description 

of what the engine has to be capable of. The next step 

is a preliminary study where the technical subject starts 

to be addressed. From a preliminary study, engine cycle 

and layout are obtained. Engine sizing follows where 

component design begins. Before the components that go 

into the design start to be manufactured, they will need 

to be tested. If the test result is not satisfactory, 

the components will need to be redesigned or modified. 

Once, the engine passes its certification, the delivery 

of the engine will commence. 

Even though each partner in the collaboration does 

not need to have the same level 

partner needs to have a base le, 

base level of technology is the 

which any partner can gradually 

competitive level that is being 

collaboration project. 

Advanced Technology 

of technology, each 

/el of technology. This 

minimum technology from 

build up to the 

pursued in the 

High technology has a crucial role to play in 

producing improved and competitive engines. The decision 

on the level of technology to employ is based on the 

target so that the project has to be completed within 

time and budget. One of the high technologies that is 
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essential to competitiveness is Computational Fluid 

Dynamics (CFD), which is used to design engine components 

such as compressors, turbine blades, etc. This 

technology is capable of modelling the airflow accurately 

and providing a better understanding of physical 

processes (Rolls-Royce Private Communication). 

This capability will reduce design lead times and 

will result in greater levels of efficiency, that will 

help to guarantee the delivery of products within time 

and budget. The CFD technology is embodied in software, 

hardware, people and methods. Without proper 

understanding, the technology is treated as a black box 

and users only concern themselves with input and output. 

In such circumstances the danger is that the users or 

designers may have great difficulty in producing an 

acceptable design for all range of conditions. This is 

because a thorough understanding of the CFD method is 

required for the users to have an adequate understanding 

of its capability. 

In the early days, compressor and turbine blades 

were designed by empirical methods and experimental 

tests. The rising cost of these tests, and the 

advancement of computing technology and methods have 

brought CFD technology into the design environment. One 

criteria that the airline takes into consideration when 

it chooses aircraft engines is efficiency, which is a 

measure of the losses in the real system. The losses are 

generated as the available energy in fuel is converted 
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into useful propulsive power. Low losses, or high 

efficiency, can be achieved through an understanding of 

the physical loss mechanisms, and investigating ways to 

reduce the losses. CFD technology provides the tools for 

that purpose, such that the engine components can be 

correctly designed, according to their requirements, on 

the first attempt. In this case, there will be no need 

for repeated tests in order to obtain the correct 

component specification. There will only need to be a 

single test. Therefore, the design costs will be reduced. 

2.5 Plan to Develop Technology Capability 

2.5.1 Introduction 

It is quite clear from the above section that 

q 
i 

technological capability is an important requirement for 

any new entrant to enter into a collaborative project in 

the aero-engine industry. In order to support a new 

entrant as it embarks upon a collaborative project, a 

strategic plan to develop technological capability from a' 

basic level to an advanced level is needed. Such a plan 

is developed below. 

Project management techniques are proposed as a 

suitable method for efficiently managing such a plan. As 

a first step towards entering into the industry, the goal. 

of having design, development and manufacturing 

capability, of certain parts of an engine, will be 

established, through this strategy. 

2.5.2 Plan 

The strategic plan consists of three parts. These 
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are: manufacturing; licensed production or co-production; 

design and development. Establishing an aero engine 

company capable of undertaking all parts requires a huge 

investment. In order to obtain sufficient' capital, a new 

entrant can follow one of two policies which are either 

based upon the free market or state planning. 

Each part of this strategy requires an increasing 

level of technological capability. However, each part 

also has technology which is specific to that part. 

Manufacturing 

In the first instance, the manufacturing technology 

has to be capable of manufacturing engine parts which 

have already been designed by the lead company. The sale 

of company products where the company has only 

manufacturing responsibility will depend on'the sale of 

the complete engines. The dependence on the lead company 

puts the manufacturing company at risk. Its market size 

and output are controlled by the lead company. 

Manufacturing products are shipped to other companies for 

engine assembly. 

As long as the engines have a world wide market, the 

manufactured product will have a world wide market as 

well. In this situation, the company aims at a global 

market but it may not have the goal of indigenous engine 

production. Its success depends on the success of a 

global manufacturing policy to support a large 

manufacturing project (copal, 1992). This part is 

usually pursued by the new entrant-before entering into a 
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collaboration. 

Licensed Production 

Technology of manufacturing, assembling and 

producing engines can be acquired when the new entrant 

enters into licensed production arrangements with another 

company. This arrangement provides a first opportunity 

for the new entrant to learn the technology to produce 

and market complete engines. The development and design 

of the engines will remain the responsibility of the lead 

company. In contrast with the manufacturing company, the 

licensed production company has more control over the 

markerting of its products because it sells directly to 

the engine customer. 

The licensed production project can start with 

assembling of a complete engine, with no parts being 

manufactured, and can move progressively to manufacturing 

parts. The technological skills acquired, gradually 

progress from those of simple assembly to manufacturing 

of simple and sophisticated parts. Manufacturing of 

sophisticated parts, such as turbine or compressor blades 

requires high levels of investment. Furthermore, the 

technology for manufacturing those parts is very closely 

guarded. 

Design and Develogaent 

As the new entrant masters the technology through 

licensed production and manufacturing projects, it moves 

into a position where it is able to enter into an" 

indigenous design project with partners. 
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2.5.3 Technological Capability of Design and-Development 

Planning the development of the technological 

capability at each stage, can be achieved through 

adopting project management techniques (Cleland and 

Kocaoglu, 1981). 

Project Management 

This part of the chapter concentrates on development 

of the technological capability for design and 

development. In project management several areas may be 

considered simultaneously, such as human resources, 

technology, hardware, cost, etc. The purpose of the 

project management technique is to minimize the time and 

resource required to achieve a single goal. The goal in 

this instance is technological capability to support 

design and development of aero engines. 

Organization 

The project is organized into four groups which are: 

finance; forecast and technology definition; technology 

development; and implementation (figure-2.7). This is a 

project based organization where the four functional 

groups will provide the overall resources necessary for 

the accomplishment of the project (Lecture Notes of 

School of Management, 1993). 

Work Breakdown Structure 

The project itself is broken down into several 

parts. They are: human resources; technology; cost 

control; and hardware. (figure-2.8). The work breakdown' 

defines the scope of the project. In each part, several 

functional groups work to achieve the project goal. For 
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instance, in the human resource part, the forecast and 

technology, development and implementation groups, all 

work together to forecast available human resources, 

develop these to have the capabilities needed to achieve 

the project goals, and implement their capability. These 

three. functional groups are to achieve the project goal 

in human resources. The goal here is to provide the man 

power that is capable of carrying out design and 

development in aero engine projects. 

Execution Logic 

This leads to matrix responsibility, which is 

division of responsibility for each functional group into 

parts of the project (table-2. i). The execution logic of 
the project explains how the project'is going to be 

undertaken (figure-2.9). For instance, after one part of 

the project is complete, deciding which parts should 

follow. These parts are taken from the breakdown of the 

project. It starts with forecast and financial resources. 

The financial resources will not be elaborated further, ' 

but will determine the choice of hardware, etc. 

Phases 

The project is carried out in phases which are: 

feasibility study; definition; execution and 

implementation. The feasibility study will gather 

information on what to expect, how much-it is expected to 

cost and what resources are available. The definition 

will define the technology based'upon the available 

resources, and the requirement for the technological 
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capability. The execution phase will actually build up 

the capability by recruiting personnel, modifying, 

adopting, creating the technology, and hardware 

acquisition. The implementation will be possible when 

all elements of the technological capability bave been 

achieved. In order to limit the scope of the study, it 

is the Computational Fluid Dynamic technology that will 

be discussed. 

2.6 Project Management for Development of Computational 

Fluid Dynamic Technology 

2.6.1 Introduction 

The application of the project management technique 

for the development of the Computational Fluid Dynamic 

(CFD) technology is elaborated in this part of the 

chapter. As the technique is used to manage several 

disciplines simultaneously, the execution of the project 

is done in phases such as feasibility study, definition, 

execution, and implementation. 

The feasibility study may find that accurate 

prediction methods are expected to come from the 

application of CFD technology. This method may also 

incur less cost than the application of empirical and 

experimental methods. However, the technological 

capability would depend upon available human resources. 

The goal of the capability must be achievable within time 

and budget. As the technology is defined in the next 

phase, the required capability is set according to the 

capability in the current aero engine industry such as 
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Computer Aided Engineering (CAE). The development of the 

technological capability in personnel, technology and 

hardware is in the execution phase. A core team is 

formed and the capability is actually developed in stages 

from recruitment of inexperienced personnel, to 

establishing a fully capable team. The technology can be 

obtained from open literature, it can be developed from 

basic information, or it can be created. The practical 

application aspect will facilitate the technological 

development. The implementation phase is reached when 

the team has all elements of the technological 

capability, and is ready to take an assignment in design 

and development. 

2.6.2 Feasibility Study 

Past Design Method 

The past design practice based its approach on 

empirical prediction or cook book and experimental 

methods (Fottner, 1989). It allowed only limited 

variation of design features. This method was formulated 

from experimental data that had been compiled and 

verified. The results of the calculations by this method 

need to be verified by experiment. New design features 

that lie outside the known range of validity have to be 

verified by extensive experiment. An empirical method is 

fast because the calculation can be done using general 

purpose computers, or even by hand. Since it is fast, it 

is generally cheap. However, experimental testing is 

becoming more expensive. The design technology based 
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upon iteration of the empirical correlation and 

experimental testing is, -therefore, becoming more 

expensive. 

Such an approach also is unlikely to eventually 

result in competitive engine performance, because of the 

limitations of the methods employed. The engine will not 

be competitive in the market because it is likely to have 

a low efficiency. The engine efficiency is one the most 

important criteria that is assessed by airlines (Cedar, 

1986). The engine is likely to be inefficient because it 

generates high losses. The loss is the amount of energy 

or thrust that is lost due to design imperfections, 

physical limitations, etc. The losses, in turn, can be 

represented as extra cost of the operation of the aero 

engine. The engine that is designed by the cook book 

method may well be able to fulfil the basic requirement, 

but will entail higher operational costs. For instance, 

in order to achieve the design goal, the less efficient 

engine consumes more fuel than the efficient one. The 

extra fuel consumption is necessary to generate extra 

energy to compensate for the high losses. 

As an example, blading design will be elaborated. A 

blade has a function to increase pressure and consume 

power, or decrease pressure and produce power. It 

functions by turning the air flow. In the cook book 

approach, there are a series of blades that are available 

to choose from. The air flow through these types of 

blades have many undesirable features that generate high 
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losses. Those features can be minimized by design 

iteration of the empirical calculation and experimental 

verification. There are two disadvantages with this 

technological approach. The first is the growing cost of, 

the experimental verification. The second is that the 

method does not provide blade geometry that' guarantees 

low losses. 

Computational Fluid Dynamics 

The source of the limitation above is the inability 

of the empirical method to predict accurately the 

aerodynamic parameters such as pressure, velocity, etc. 

The accuracy of the prediction depends upon the ability 

to solve the aerodynarr--7 equations. In figure-2.10, the 

internal flow pattern of an aero engine is shown to be 

very complex (Rolls-Royce Private Communication). 

Although all the flow phenomena can be simulated 

experimentally, it will be at very high cost. The 

aerodynamic physical nature in general is divided into 

viscous or inviscid flow, and high or low speed flow. 

The empirical method has sets of rules that are usually', 

valid only in each of the flow regimes. The better way 

to obtain accurate solutions is to solve the aerodynamic 

equations. 

The Computational Fluid Dynamics (CFD)"technology 

provides methods to predict airflow characteristics by 

solving the aerodynamic equations. Some degree of 

approximation is still imposed because complete solution 

of the equations is still beyond the capability of 
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present day technology (Hussaini, 1988). In the early 

days, CFD was demonstrated by hand calculation. It is 

the advancement of computer technology, in terms of the 

memory size and computational speed that makes CFD 

technology attractive to the designers as a more advanced 

method. Use of this technology is a fast and cost 

effective way to obtain superior design. 

The current development of CFD technology has 

reached a stage where the governing equations of the 

aerodynamics or Navier Stokes equations can be solved for 

practical applications in an industrial environment. 

Therefore, it is worthwhile to look back twenty years of 

development in CFD technology. There are four stages 

which are: linearized inviscid; nonlinear inviscid 

(Euler); Reynolds Average Navier Stokes; and full Navier 

Stokes (Hessemus, 1992). The linearized inviscid has 

been extensively used in an industrial environment for 

over two decades. 

A limitation with this method is that it is 

acceptable only for low speed flow. If the flow speed'is 

close to the speed of sound, the flow becomes more 

complex, and the validity of the linearized method is 

severely limited. The nonlinear inviscid method was 

developed to handle high speed flows. This method has 

already been used by the industry. For flow through very 

complex geometries such as turbine blade tips, the linear 

and nonlinear inviscid methods can not capture critical 

physical phenomena such as flow separation, etc. 
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The Reynolds Averaged Navier Stokes method is valid 

for either high or low speeds and is capable of computing 

flow through complex geometries. A very important 

phenomena in the flow which is turbulence, is not 

directly computed but is modelled. The accuracy of this 

method very much depends on the accuracy of the 

turbulence model. The accuracy of this model is 

restricted in range, and hence the accuracy of the 

Reynolds Averaged Navier Stokes methods is also 

restricted. 

The full Navier Stokes method is, in principle, 

valid universally since the limitation due to the 

turbulence modelling is eliminated by directly computing 

the turbulence. This last method is still'in the 

research stage because it demands high computational 

power. All of the methods from the linear inviscid 

through to the full Navier Stokes methods, represent 

degrees of approximation. According to Hessemus (1992), 

the numerical algorithms for the first three stages have 

already reached their full efficiency. The computer 

speed is the only limiting factor in order to reduce 

their CPU time. 

The next generation of computer systems are based on 

parallel computing (Skerret, 1992). In such systems 

many small processors are arranged in parallel. This 

type'of computer is capable of calculating vast amounts 

of data at high speed. The performance is achieved by 

distributing the computation among the'many processors, 
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and carrying them out simultaneously. 

Flow phenomena such as flow separation, that cannot 

be simulated by the inviscid methods, has to be 

complemented by the experimental methods. Since the more 

sophisticated methods, such'as the Reynold Averaged 

Navier Stokes method, can simulate that kind of flow 

phenomena, the experimental methods are being replaced by 

CFD methods. As computers become more'powerful, and the 

prediction methods become more reliable, the role of the 

CFD and experimental methods will gradually change with 

time. The time when the CFD method is considered as the 

main solver for the flow simulation, and the experimental 

method is considered as the verification means for the 

simulation result, is likely to be in the near future 

(figure-2.11). 

Human Resource 

Human resource capability is an essential part of 

technological capability and in general consists of 

users, or designers, code developers and system 

developers. The human resource capability is initiated 

by forming a core team. Its initial capability depends 

upon the educational background, training, and experience 

of the team members. If the team members have adequate 

educational background, but they do not have any 

experience, they will carry out the task of developing 

technology by using available methods. Those methods can 

be obtained from internal or external resources. The 

latter is third--party software., 
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It is important that the team will try to define a 

task that can make a contribution to any existing project 

in the company. This will give them an opportunity to 

learn through practical problems. Since the objective of 

the project is to develop technology, the development 

task is initiated as soon as the required man power 

becomes available. The hardware will certainly be 

purchased from outside, but its maximum utilization needs 

time to build up through application. This part of the 

technological capability is the responsibility of'the 

system developer. 

The capability can be described by comparison 

between different teams. Team A, that has already 

achieved a certain level of capability, needs n 'time to 

accomplish an assignment. Team B, which has achieved a 

different level of capability, needs m time to accomplish 

the same assignment. If the m time is much longer than 

the n time, other issues will arise. The team B may have 

difficulty in achieving the objectives. The investment 

in man hours and other resources may exceed the savings 

and benefits that can be incurred when the team'finally 

completes the project and provides the technology. If 

that is the case, the project objectives have to be 

adjusted. 

2.6.3 Definition 

Level of Current Aero Engine Technology 

In the definition phase, technology base is defined 

according to the level of technology that'is possessed by 
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a current aero engine company. The goal of design and 

development actually requires application of a Computer 

Aided Engineering (CAE) system in the aerothermodynamic 

design and analysis of all major aero engine components 

(Rolls-Royce Private Communication). 

Computer Aided Engineering (CAE) 

In the core of the CAE system is aerothermodynamic 

design and CFD methods. These methods cover basic 

aerothermodynamic design through CFD methods at the 

cutting edge of the technology. The technology base 

resulting from this project has to fulfil the requirement 

of the CAE. An example of an application is a 

compressor. It is an engine component that compresses 

incoming air to high pressure. The objective of the 

compressor blade design is to obtain a blade profile that 

turns the flow, and results in high pressure in the most 

efficient way, and does not suffer from any vibration and 

structural problems. 

Methods 

The basic method, or simple performance prediction 

method, is computationally cheap and provides a good 

result of a compressor system over a whole range of 

operating speed. The next level of sophistication is to 

use analytical methods based upon a quasi three 

dimensional method. This method is still cheap because 

it runs routinely on a general purpose computer. Due to 

the requirement for reduced cost, reduced design time, 

and higher performance, CFD methods to solve the Navier 
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Stokes equations are necessary. These cover steady and 

unsteady solutions, in two or three dimensions. 

Software to facilitate interaction between the user 

and computational results are part of the technological 

capability. They consist of preprocessors and 

postprocessors. The preprocessor processes data from the 

geometry of the compressor to be compatible with the 

input of the CFD methods. The postprocessor processes 

data from the computational result, to be presented to 

users in a very easily interpreted form such as colour 

graphics. For other engine components; or other areas of 

application, the aerothermodynamic design and CFD method 

are similar. 

2.6.4 Execution 

In the execution phase, the building of the 

technology capability is carried out. 

Core Team 

The core personnel have already been recruited or 

are available. This phase is divided into five stages. 

Stages 

The stage where this phase can start depends upon 

the background education and experience of the personnel 

(see appendix - 2.1). At this phase, the number of 

people involved is higher than the number of people in 

earlier phases. 

Practical Application 

The activity in this phase is solving practical 

problems, modifying, adapting and creating technology. 
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If the necessary hardware is not available, it will have 

to be purchased in this phase. The practical problem is 

part of an existing project in the company which is 

relevant to the aero engine design. For instance, if the 

team is going to work in an aircraft design environment, 

the practical problem can be design, installation, etc. 

It is important to get involved in practical problems in 

order to keep pace with existing project demands, and 

make a real contribution to the company. During the 

project of developing the capability, the application to 

practical problems can be considered as an early 

financial return on investment. 

Technology 

A method of solution, or technology can often be 

obtained from published literature, but cannot usually be 

applied directly. Some of the information about the 

methods may be omitted because it is proprietary. 

Therefore, this type of method must be developed and 

modified based upon a large number of publications. 

Another type of technology such as the three dimensional 

Navier Stokes solver has to be created because little 

information about this technology is available in 

published literature. 

2.6.5 Implementation 

By the time this phase is reached, the team is fully 

capable and ready to take assignments from any aero 

engine projects in design and development. The project 

of developing technological capability is complete. 
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2.7 Conclusion 

Collaboration in the aero engine industry is a 

strategy to overcome increasing costs and shrinking 

markets. In this situation well established companies 

may seek partners to share costs and expand into foreign 

markets. Such collaboration can provide an opportunity 

for local industry to gain access to technological 

expertise, and other skills, as the more established 

partners are able to acquire the necessary capital 

infusion to compete in the market. 

Technology has an important role to play in 

collaborations since it may be that product requirements 

can only be fulfilled through the use of high technology. 

However, application of the technology will only be cost 

effective if a product, designed or produced using that 

technology, is able to fulfil its requirement at a 

reduced cost compared to conventional means. 

Attempts to introduce high technology too early in 

the design process may not be successful since designers 

tend to prefer established methods. However, the failure 

to promptly introduce such technology may lead to 

uncompetitive products since, even if a product fulfils 

its end requirements, it may be uncompetitive due to 

excessive cost of design or production. 

The opportunity to acquire technological skills may 

provide the new entrant in a collaboration with a 

resource of base technology or minimum technology and 

advanced technology. The technological skills can be 
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acquired through technological innovation, and 

participation in design, development, and research. 

Therefore, the new entrant has to develop the 

technological capability from 'a minimum level at which it 

can be accepted as a partner. The development of' 

technological skills may be accomplished through a 

strategic plan which will eventually provide capability 

at an advanced level acceptable to the competitive nature 

of a collaboration project. 

The objectives of such a plan may be to acquire the 

design, development, and manufacturing capability for a 

certain proportion of an engine. 

Since the process of developing technological 

capability is multidisciplinary, the project management 

technique, which manages those diciplines simultaneously, 

will save time in achieving the objective of developing 

Computational Fluid Dynamics Technology. 
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3.0 BACKGROUND 

3.1 Introduction 

The approach to solve the Navier-Stokes equation 

depends upon the numerical treatment of the time and 

spatial derivative in the equations. Since in this thesis, 

we are concerned only with the steady state solution, the 

time derivative can be set to zero or used to estimate the 

rate of convergence to the steady state solution. In these 

solutions, the spatial derivatives, which consist of 

convection and diffusion terms, are discretized by finite 

difference, finite element or finite volume methods. 

The finite difference method is the oldest method 

first developed by Euler in 1768 (Hirsch, 1989). Its 

concept is based upon Taylor series expansion and the flow 

variables are approximated by values at grid points. The 

derivatives terms are replaced by differences over a small 

finite interval (Smith, 1978). Kuntz and Lashkminarayana 

(1992) used such finite difference method to compute two 

and three dimensional flows in turbomachinery cases. 

With the finite element method, the flow region is 

divided into elements and a flow variable is prescibed 

within an element in terms of its nodal values. Numerical 

procedures such as the variational and weighted residual 

methods can then be used to compute the nodal values so 

that they satisfy the differential equations. This method 

was used by Whitehead (1972) to compute two dimensional 

cases, and later developed by Cedar (1985) to compute 

three dimensional cases. The choice of this method was 
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rather arbitrary, however, the element can be of irregular 

shape. 

The finite volume method is based on the integration 

of the convection and diffusion terms over a cell which 

can have any arbitrary shape (in a complicated'geometry). 

It preserves the properties of conservation (Peyret and 

Taylor, 1984). The flow variables can be stored at cell 

centres as proposed by Jameson et al (1981) or at cell 

vertices as proposed by Ni (1982). In cartesian 

coordinate systems, the finite volume approach will reduce 

to the finite difference method. This method also can be 

considered as a special case of the method of weighted 

residuals of finite element (Hirsch, 1989). ° 

The resulting discretized equations can be solved by 

either pressure correction or time marching methods. The 

pressure correction method originates from an effort to 

solve the incompressible Navier-Stokes equations where the 

main dependent variables are pressure and velocity. 

(density cannot be used as the main dependent variable in 

an incompressible computation). Alternatively the 

pressure can be computed from the equation of state as in 

the case of the time marching method. At low speeds, 

however, the change of density becomes very small and 

therefore the density-pressure coupling becomes very weak. 

Almost all of the pressure correction methods have 

their origins from SIMPLE (Simple Implicit Method for 

Pressure Linked Equations) scheme by Patankar and Spalding 
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(1972) and detail procedures can be found in the book by 

Patankar (1980). This scheme is based upon the steady 

state equation. However, Hirsch (1989) devised an- 

unsteady development using explicit time integration. 

Alternative method proposed by McGuirk and Page (1990) 

implemented the unsteady equation but using (backward 

Euler) implicit time integration. This technique of 

integration will be explained later. 

The basis of the pressure correction method involves 

an iterative procedure to solve for velocity and enthalpy 

for a given pressure from the linearized momentum and 

energy equations (Stow, 1989). In this method, the 

initial velocity derived does not satisfy the continuity 

equation, and thus has to be corrected. This correction is 

a function of the pressure field (hence pressure 

correction). This procedure is briefly described by Stow 

(1989), and Hirsch (1989) and the detail are elaborated by 

Connel (1983), Moore and Moore (1985), and Demirdzic et al 

(1993). Even though this method was originally developed 

for solutions of the incompressible flow, compressible 

flow extention have been developed by Karki and Patankar 

(1988), McGuirk and Page (1990), Demirdzic et al (1993), 

and Kobayashi and Pereira (1992). Its application to 

turbomachinery cases has been developed by Hah (1983) and 

Rhie (1986). 

The alternative time marching method integrates the 

unsteady equations in time as well as space. The aim 

being to use natural transient process to obtain a steady 
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state solution. This solution is required as quickly as 

possible as integration does not have to be time accurate. 

The integration technique consists of either explicit or 

implicit methods. 

The explicit method suffers from small time step in 

order to maintain stability during the iteration. It 

therefore needs large numbers of iterations to achieve 

convergence. However, it is easier to program and more 

amenable for parallel computation than the implicit method 

(Pierce, 1994). This last characteristic is important 

with the availability of parallel machines. Denton (1974) 

used such a method for blade-to-blade flows. 

The implicit method can have larger time step 

therefore it needs fewer iterations to achieve 

convergence. However, the computational cost per time 

step is more expensive. In general, it is more difficult 

to program an implicit time marching procedure. This 

method was used by Beam and Warming (1976) and McDonnald 

and Briley (1975). 

This thesis is concerned. with the development of a 

particular code to better simulate internal flows. A much 

fuller description of this code is given by Ho (1992) and 

its application area includes flow through blades, intakes 

and nozzles as described by Stow (1989) and Hill and 

Langdell (1993). The code represents a compressible three 

dimensional implementation of the governing equations of 

fluid flow. 

In this code, the unsteady Navier Stokes equations 
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are solved by an explicit time marching algorithm and use 

the cell centred finite volume discretization scheme of 

Jameson et al (1981). Evaluation of fluxes at cell face 

centres is approximated by straight averaging values at 

cell centres located on either side of the faces. In an 

arbitrary grid, the numerical solution suffers an accuracy 

problem because the approximated fluxes are not exactly 

located at the cell face centres. The spatial 

discretization used in this flow solver is central 

difference which has the disadvantage of admiting 

oscillations in the solutions. In order to damp out the 

oscillations, artificial dissipation is added to the 

equations but it can result in inaccuracy as shown by 

Pulliam (1986), Hirsch (1989, vol-I) and Swanson and 

Turkel (1992). 

From the conservative form of the governing equation, 

the flux terms can be written as products of 

Jacobian matrices and state variables. The spatial 

discretization of the flux terms results in the 

discretization of the Jacobian matrices which results in a 

stability matrix. Real positive eigenvalues of this 

matrix indicate instabilities as explained by Eriksson 

(1985), Hirsch (1989, vol-I) and Santos (1993,1994) and in 

order to obtain stability, artificial dissipation has to 

be added to shift the eigenvalues to negative. Therefore, 

the eigenvalues act as a sensor to determine the 

dissipation required to maintain stability. 
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3.2 Governing Equations 

The unsteady Navier-Stokes equations in three 

dimensions consist of the mass conservation equation, 

three momentum equations and an energy equation. In a 

relative frame of reference which is rotating about the 

x-axis with blade speed IL, they are 
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The viscous stress, e- is a function of the flow 

effective viscosity and velocity derivatives. For laminar 

flow, the effective viscosity is calculated from 

Sutherland's law which relates the viscosity to absolute 

temperature (White, 1974). For turbulent flow, the 
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effective viscosity consists of both the laminar and 

turbulent (eddy's) viscosities which can be expressed as 

Ile = AL + AT 

The turbulent viscosity depends upon detail unsteady 

structures of the flow. Thus, fully turbulent flow can be, 

calculated by solving the unsteady three dimensional 

Navier-Stokes equations. However, the time and length 

scales required vary very considerably. The length scales 

range from the size of the . mallest eddies to the largest 

ones. The time step depenas upon the size of these eddies 

and the kolmogorov velocity (Giles, 1992). In order to 

capture these fully, very fine mesh and very small time 

step are needed. In the current situation, it is only 

practical to compute the turbulence directly for very 

simple geometry such as a flat plate. 

Therefore, almost all calculations resort to 

turbulence modelling by considering time averaged 

properties of the flow. Turbulence models can be 

classified according to the number of additional transport 

equation required for the turbulent parameter. The 

simplest model is the algebraic model first proposed by 

Cebeci and Smith (1974). It is based upon a two layer 

formula where the viscosity is calculated in the inner and 

outer layers. The viscosity in the inner layer involves 

the calculation of mixing length. The outer formulation 

requires the search for 6*, the viscous layer thickness 

and Ue the velocity at the edge of the viscous layer. 
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Problems in determining a and Ue led Baldwin and Lomax to 

develop an alternative algebraic model based on that of 

Cebeci Smith, but avoids the need to search for the edge 

of the boundary layer. Since the algebraic model does not 

need additional transport equation, it is often refered to 

as the zero equation model. It gives good result in 

attached flow but not in separated flow and in regions of 

boundary layer and shock interaction. 

In k-1 model, the mixing length is calculated from an 

algebraic expression and the local turbulent kinetic 

energy, k is computed from a transport equation. Since 

there is only one transport equation, this model is called 

one- equation model. The implementation of this model 

leads to improved flow prediction (Coupland, 1993). In k-E 

model, the turbulent kinetic energy, k and the dissipation 

energy E are computed from the corresponding transport 

equations. Since there are two tranport equations, this 

model is called two-equation model. This model can 

predict separation and improve three dimensional flow 

calculation (Hirsch, 1989). 

The turbulence modelling used in this investigation 

is the mixing length model by Moore and Moore (1988) which 

is a modification of the Baldwin and Lomax model. Due to 

the grid spacing that can be afforded for a typical three 

dimensional case, the wall function is used (Birch, 1987 

and Ho, 1992). 

3.3 Discretization 

The governing equations are discretized by a cell 

ss 



centred finite volume scheme in which the system of 

equations is expressed as 

W OF OG äK 
ät + äx -1- ay -I- az 

In integral form, equation (3.3.1) becomes 

% 
at 

fWdV+Jif. 
iidS = 

(3.3.1) 

(3.3.2) 

where on the left hand side, the first integration is 

over a control volume V and second integration is over a 

control surface S, and n is unit outward normal to this 

surface, and 

H =(F: +F,, )i+(G; +Gt, )j+(K, +K,, )k 

The second integral in equation (3.3.2) can be 

approximated as 

JSH. idS -E Hp. NPASp 
P 

Expanding the right hand side (figure-3.2) 

(3.3.3) 

(3.3.4). 

Hp. pLSp = Hi+;, i, k. N; +;, i, kLS; +;, i, k + H; 
-; a, k" Nj-;, i, kLS; -=, i, k+ 

r 

Hi, i+;, t. ;, ýýS; ri+, rk 
+ Hi, i-;, k" Nsri-;, kASjri-,, k-ý' 

8; ik+i. N; ik+116S; jk+1 +E; ik_i. N; ik_IOS; i(3.3.4a) rr3rr2r, 3rr2r, ,, k-1 2 

where 

Ni+i, i. tAS; +s. i, k = &5; +=, i, kJ: 
i+ (ts1+,,, 

k)3 + (AsI+4,, 
k)sk (3.3.4b) 

8i+i>;, k=(Pi+Fv)i+1, i, k+(Gi+Gv)i+1, i, k +(Ki+KV)i+z, irkk 
(3.3.4C) 

All the variables and their first derivatives are stored 

at the cell centres. The viscous and heat fluxes in Fv 

, Gv and Kv are evaluated at the face centres of each cell. 
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In the present code, the face centred values-are 

evaluated from values of the neigbouring cell centres that 

are separated by that surface by straight averaging. For 

instance at face (i+1/2, j, k), flux H is approximated as 

Hj+i, i, k + Hi,,, k H=+?, "k-2 
(3.3.4d) 

From this formulation, the flux Hi+1/2, j is geometrically 
located at the mid point between cell centre (i, j) and 
(i+l, j). In a non-uniform grid such as stretched and 

skewed grids, the mid point (i+1/2, j) is not necessarily 

located at the cell face centre (figure-3.3). This 

discrepancy generates inaccuracy. 

In order to improve the accuracy, the fluxes should 

be evaluated at the cell face centre. Several proposals 

lead to different types of averaging which try to model 

the cell face values from the cell centre values and are 

described by Turkel (1986), Turkel, Yaniv, and Landau -- 

(1986) and Alimin (1994). These are analyzed in Chapter 

4. It is essential that t'%e scheme be formulated as 

compactly as possible in order not to 

incorporate unnecessary surrounding cells. Thus, spurious 

modes generated by the compact scheme can be kept to a 

minimum level. Also, any improved scheme proposed must 

not greatly increase the computational time. 

3.4 Artificial Dissipation 

Application of central differencing in the finite 

volume scheme above leads to oscillation in solutions 

which can occur near shocks because of the discontinuity 
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and in smooth regions because of odd-even decoupling. The 

last effect can be shown by the scheme in a one 

dimensional equation, 

au äu 

ät +Qý =0 (3.4.1) 

Integration of the above equation results in semi 

discretized-equation 

du 
(u+_-tL_) 

_2 

dt +a L" (3.4.2) 

Applying straight averaging approximation in uniform grid 

it becomes 
du ('ui+l 

- ui-1 

at +a 20x =0 

(3.4.3) 

Location of the discrete u is as follows 
Lex ax 1 

J. "t ./tAt/ 

Since the flux is independent of the ui, the variation of 

u does not depend on ui itself. Then chequerboard 

solutions which in fact describes odd-even decoupling 

effects illustrated by the following figures satisfy the 

semi discretized equation obtained from the'central 

difference implementation 

. rte 

I 

I'ý. ý _ 

I- 

-- 

ti+i + 

These solutions can be superimposed on a uniform flow and -, 
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each of them is a solution to the steady discrete equation 

as described by Giles (1992). The viscous discretization 

adopted does not provide sufficient coupling to damp the 

oscillations and in order to achieve this, artificial 

dissipation (which has to simulate physical viscosity) 

must be added, see Hirch (1989, vol-II) and Fletcher 

(1991, vol-I). In the Navier Stokes equation, the viscous 

terms actually generate diffusive effects which smooth out 

gradients of the flow properties as explained by Vemuri 

(1981). Since these terms contain second order 

derivatives, the artificial dissipation is formulated 

based upon even order derivatives, see Anderson (1984) and 

Fletcher (1991, vol-II). The dissipation model adopted is 

based on Jameson's scheme (1981) which consists of a blend 

of second and fourth order differences. This is also 

applied by others such as Swanson (1987) and Caughey 

(1988) where, 

-A second order difference is nonzero near a shock 

and zero in any other regions. 

-A fourth order difference is required in regions 

away from the shock and is zero near a shock (its 

use is motivated by dissipative character of the 

mathematical formulation). 

The discretized equations with dissipation flux can be 

represented as 

aw,, ý, k 
+ Q;, 3, k +v 

, j, k - D;, sk = & (3.4.4) 
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Qi, i, 0 inviscid flux 

Vjýýýk= viscous flux 

Di, j, k= dissipation flux 

where Di, j, k = D5 +DI +Dc 

and Df= di+1/2, j, k di-1/2, j, k is the dissipation flux 

in the F- direction. The dissipation component in the 

f- direction is 

Volume 
f2 di+z, 

i, k 1E=+2, J, k 
(w1+1 

, l, k - w, 
). k) 

, i, k :+2 

4 
i+l, j. k (Wi+2, j, k - 3W, +I.,, k + 3W:, ). k 

where 

E1ý+Z, 
l k= 

K2{maxbz,,, 
k)}fm 

E'2. 
). k = max{U, facýK4 - E2+1, 

) k} 
2 

bs, ý, k = 
(P=+i, 

j, k - 2Pt, j, k + Pi-1. ). k 
IPs+1, 

j, k + 2pz, j, k + ps - I. j. k I 

fm = max (0, min (1, (Mach - 0.9) 5)) 

where Mach is Mach Number 

6 i, j, k is a pressure sensor 

K2 & K4 are user specified constants 

(3.4.5) 

(3.4.5a) 

(3.4.5b) 

(3.4.5c) 

(3.4.5d) 

face is anisotropic factor in ¬- direction, 

0< fac¬ <1 

fm is a local Mach number function 

The dissipation components in the I and S directions are 

similarly defined. By using the Taylor expansion, the 

difference terms in equation (3.4.5) is written as 
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vol 2 8W di+ J, k 
) 

i+ 1j, k 

- i+I, j, k6 
¶L)3 a3 w 

(3.4.6) 
The expression for ,&t will be given later. 

Therefore the terms which affect the dissipation are 

1) Grid size , &f (and Al , Qc ) 

The size is determined by computational grid 

(figure-3.2) which varies across the region of the flow 

but it does not vary during the iteration. 

2) Second order dissipation function (6 2) 

This function determines the magnitude of second 

order dissipation which is required to capture a shock 

wave. It depends upon a constant K2 and a pressure 

sensor parameter. In order to avoid switching on 

second order dissipation in regions of high 

accelerating flow for example around leading edge of 

turbine blade, the 6 i, jjk is multiplied by a local 

Mach number function (f 
M) 

3) Fourth order dissipation function (E 4) 

This function determines the magnitude of fourth 

order dissipation which is required to damp out 

oscillations in regions of nearly uniform flow. It 

depends upon a constant K4 and since the fourth order 

dissipation introduces overshoots near the shock, it 

has to be set to zero in that region. 

4) Anisotropic Factors, f ac ¬ (and f ac 7f ac j. ) 

This factor varies from zero to one which reduces the 
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fourth order dissipation in f- direction. Other 

similar factor such as facI and fac. reduce the 

dissipation in the corresponding directions. 

5) Scaling factor (Vol/, & t) 

In three dimensions 

vol vol vol vol 
Et _ ET+t, + 

7 Ott 
(3.4.7) 

where 

S2 + vol 
= uS zI+ vS 

I+ IwSE: +c 
F-- Sz + S2_ -{- AtE E Ey Er Ey 

2µ (Sr + S, 2 +S 
pvol (3.4.7a ) 

and S,, is the x-component of the surface area which 

has it. normal along the ¬- direction (figure-3.2). 

Other surface areas are defined accordingly. C is the 

speed of sound and vol is the volume of a cell. Along 

each direction, for instance, the - direction the 

t, ) consist of a convective and a scaling factor (vol/A 
3 

diffusive components. 

The viscous component is given by 

(Zýtc) l 

vol. 
(s2x +Shy+s2 

vPP (3.4.8) 

and the convection component is given by 

JuStu -}- (vSEy +) -}- c 
Fj2 

-I- SZ + Sý Vol 
fy . - _ E= OtE 

(3.4.9) 

It can easily be shown in a cartesian coordinate system 

where F ,7 and coincide with x, y and z respectively 

that the scaling factor in F- direction is 
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Vol 
_ lu/ iL (I + cI 71L + 

2µ (L L ()'2 
ýtE pvol (3.4.10) 

It will be noted that (vol/A t)' depends upon cell 

aspect ratio 
LL 

, and it follows from equation 
Al 4'S 

(3.4.7a) that A tf can be interpreted as the maximum 

time required for physical information to propagate 

with physical speed across the grid in the 

P- direction and similarly in other directions. 

6) Derivatives, w 
and 

a= 
(and other directions) 

aT aP The flow parameter derivatives depend on the magnitude 

of the flow parameter variation in each direction. 

It will be clear from the foregoing analysis that 

each term in the expression of equation (3.4.5) makes a 

different contribution to the total dissipation. Three 

dimensional internal flow generally has grid sizes, cell 

aspect ratios and flow gradients which vary in all three 

directions. By appropriately formulating the dissipation 

terms, improved accuracy can be obtained in critical 

regions such as near walls, the blade leading edge, 

trailing edge and exit flows. Results of such treatment 

are discussed in chapter S. 

3.5 Eigenvalue Analysis 

The time evolution of the semi discretized equation 

can be analyzed by computing the eigenvalues of the 

matrices derived from the spatial discretization. The 

influence of the dissipation on these eigenvalues will be 

studied for the purpose of dissipation reduction. 

The analysis is applied to the governing equations of 
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the fluid flow. The Navier Stokes equation in two 

dimensions can be written as 

ät+ax+aG y (3.5.1) 

where q, F and G terms are two dimensional version of the 

terms given in section 3.2 

In finite volume formulation, the semi-discretized 

equation (3.5.1) 

becomes 4 
Aaatj +EH,. T AS" =0 

p=i (3.5.2) 

where A is the cell area and qi, j is the state variable at 

cell centre (i, j) and the summation term is the two 

dimensional version of equation (3.3.4a) 

At cell face (i+l/2. j) 

(F1+1, 
s+13)Z + 

(c1+±s+3)Y 

(3.5.3) 

and the flux F consists of 

F=FI+Fv 

FI and FV stand for inviscid and viscous parts of the 

vector F respectively. Vector G is similarly defined. 

With Jacobian matrices, the inviscid vector FI and GI 

can be written as 

FI =Aq and GI =Bq (3.5.4a) 

and the viscous vector FV and GV can be written as 

FV = Cq and GV =Dq (3.5.4b) 

Matrices A, B, C and D are defined in appendix-3.1-and the 

derivation presented above wil be further elaborated in 

chapter 6. Substituting equation (3.5.4a) and (3.5.4b) 
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into equation (3.5.3) and applying straight averaging 

qi+l/2, j (qi+l, j + qi, j )/2 provides 

Hi+Z, j. Ni+Z, Jýsi+ 2, J = (A+ C)i+, 
J qi+. l 

(, LSr)i+2, 
J 2 

+ (B + D): + z ,i 
qj+ z ,i(, 

L Sy) j+ Z ,J 
(3.5.5) 

Similar expression can be derived for the other faces and 

the fluxes at cell faces can be substituted back into 

equation (3.5.2). Then, the semi-discretized equation 

(3.5.2) can be written as 

dqiº7 
MG qiº7 + RG (3.5.6) 

dt 

where MG is a matrix which governs the stability of 

equation (3.5.1) at semi-discretized level and RG contains 

nonhomogenous terms. This matrix has the size 16 xnxn 

where n is the number of grid points and evaluating its 

eigenvalues can consume considerable computational time. 

By using an approximate explicit formulation which does 

not take into account the effect of the neighbouring grid 

points (i+l, j) , (i-l, j), (i, j+l), and (i, j-1) the 

stability of the semi descritized equation (3.5.2) can be 

analyzed locally using 4x4 matrix as Santos (1993,1994) 

had shown. The resulting equation is written as 

Addtý -MJ9j,, +Rj (3.5.7) 

4 

where Mi _E (Ar + Bp) OS=P + (BP + DP) LSyr 3.5.7a) 
P=I 

p is at cell face 

Ri contains terms that belongs to neighbouring 
t 
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cells and nonhomogenous terms. 

Sxp and Syp are x and y components of face area at p, 

The eigenvalues of matrix Mi are, in general, complex. 

Positive real eigenvalues indicate that qi, j grows without 

bound so that the semi discretized equation (3.5.2) is 

unstable. In order to achieve a stable solution, 

artificial dissipation has to be added so that all 

eigenvalues will be negative on convergence. Then equation 

(3.5.1) becomes 

ät +-+T-+-5-+-- a= yy (3.5.8) 

where D is the dissipation vector. This formulation is 

discussed in section 3.4. The dissipation is the summation 

of the second and fourth order difference of the state 

variable which contain qi, j and its neighbours such as 

qi+l, j' qi-l, j 'qi, j+l and gi, j_1. Using the approximate 

formulation the dissipation effect is locally analyzed and 

can be formulated as 

D= MD qi, 7 + RD (3.5.9) 

where MD = matrix coefficient 

RD = term with neighbouring cells 

The addition of matrix coefficient MD to the Jacobian 

matrix contributes to the diagonal element only. The 

stability matrix then becomes, 

MT = MJ + MD (3.5.10) 

MD = {(-ZE2 + 6eß) + (-2Eý + 6C4) I 
and (3.5.10a) 

77 
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where 2- (vol) 
_ 

vol 2 J'j At 
2 Lt 

+? ,i2 zi 
(3.5.1Ob) 

I= Identity Matrix 

and where 
4,72 

and .6 are similarly defined 

and are two dimensional versions of equation 

(3.4.5a) and (3.4.5b) 

Since the eigenvalues provide information about the 

stability of the system, the effect of artificial 

dissipation can be examined. The plan is to selectively 

reduce the dissipation at each grid point during 

iterations without violating the stability condition. 

This condition is fulfilled by ensuring the eigenvalues 

remain negative on convergence. This will be discussed in 

chapter 6. 

3.6 Summary 

A numerical method to solve and analyze the unsteady 

Navier Stokes equations has been briefly described. The 

governing equations in three dimensions in a rotating 

coordinate system is elaborated. The space discretization 

is a cell centred finite volume scheme. The required cell 

face centre value is approximated by straight averaging 

the cell centre values which are located on either sides 

of that face. Inaccuracy is generated in arbitrary grids 

because the resulting value from straight averaging is not 

necessarily located at the cell face centres. Improved 

schemes which approximate the values directly at the cell 

face centre and are as compact as possible with reasonable 

computational time will be discussed in chapter 4. 
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Since the central difference scheme admits an 

oscillatory solution, artificial dissipation is applied to 

suppress oscillations near shocks due to discontinuity and 

in smooth regions due to odd-even decoupling. The 

dissipation model proposed is a blend of second and fourth 

order differences. The magnitude of the dissipation 

throughout the flow region depends upon variations of flow 

parameters, grid size and cell aspect ratio. A proposed 

improved model developed in chapter 5 will take "advantage 

of these variations in order to reduce the dissipation. 

The eigenvalue analysis of the Jacobian matrix 

extracted from the spatial discretization provides 

information about the stability limit of the semi' 

discretized equations. Since the eigenvalues depend upon 

the magnitude of the artificial dissipation, they can'be 

used to check the effect of the dissipation on the 

stability. The aim is to selectively reduce the'artificial 

dissipation at each grid point during the iteration in' = 

order to improve accuracy whilst maintaining 'stability. 
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4.0 DISCRETIZATION 

4.1 Introduction 

The numerical solution of the partial differential 

equations of fluid flow such as the Navier-Stokes 

equations at grid points within the flow domain requires 

spatial discretization of the terms. The current 

investigation of the spatial discretization concentrates 

on accuracy improvement of the explicit time marching 

method based-on the cell centre finite volume method of 

Jameson et al (1981) and discussed in chapter 3. 

In the finite volume scheme, the partial 

differential equations are converted into ordinary 

differential equations by integrating the flux terms, 

which are the spatial derivatives, over the cell surfaces. 

The flux contributions are obtained by the evaluation of 

those terms on the surfaces. In the cell centred scheme, 

the values on the surfaces are calculated by an 

approximation formulae involving cell centre values. With 

the current procedure these values are found by averaging 

the values at-the cell centres located on either side of 

the surfaces. 

With a uniform grid, this approximation produces the 

fluxes at the centre of the cell faces. In general, 

however, the grid will be distributed nonuniformly 

throughout the flow field because of the geometric 

complexity of the body over which the flow is computed. 

The nonuniformity in general can be described by 

stretching, skewing and shearing of the grid lines. With 
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general grids, the straight averaging approximation 

generates errors since the resulting values are not 

located at the centre of the cell faces. The errors can 

affect the stability and accuracy of the computed 

solution. 

This phenomena is elaborated in a study of 

discretization errors by Rossow, Kroll, Radespiel and 

Scherr (62nd AGARD), Turkel, Yaniev and Landau (1986), and 

Turkel (1986). Rossow (62nd AGARD) investigated the 

accuracy of the cell centre and cell vertex methods. He 

showed that with the cell centre scheme, grid refinement 

can reduce the error from grid stretching but it does not 

reduce those from grid skewness. In contrast, with the 

cell vertex scheme, since the flow variables are evaluated 

at the cell vertices, the effect of the skewness can be 

incorporated into the scheme with no additional errors. 

Turkel, Yaniev and Landau (1986) used the cell centre 

scheme and implemented a more accurate formula than the 

straight averaging one to evaluate the flux terms on the 

cell faces. The improvement introduced was to use linear 

interpolation taking into account the distance between 

cell centres and the cell faces. Turkel (1986) produced 

an extensive analysis of the effects of various schemes 

for arbitrary grids in one dimension. He arrived at_ 

formulations based upon linear interpolation that related 

grid stretching to stability by using the Von Neumann 

method. Skewness was not incorporated in this analysis 

because it is essentially a two or three dimensional 

70 



effect. Steger (1981) investigated a straight averaging 

approximation in finite difference scheme. He concluded 

that the resulting accuracy is sensitive to grid skewing 

and strecthing. 

On the application side, various discretization 

schemes have been used by Martinelli (1987), Holmes and 

Tongs (1985), Arnone and Swanson (1993), Kuntz and 

Lakshminarayana (1992) , and Cheng (1992) in two and three 

dimensional flow. Martinelli (1987) proposed a' 

discretization for the cell centre scheme based upon 

Gauss's theorem. In two dimensions, the discretization 

requires nine neighbouring points for the viscous flux 

evaluation. Since the formulation of the discretization 

incorporates values at grid points, it takes into account 

the grid skewness. The scheme of Holmes and Tongs (1985) 

did not take the nonuniformity of the grid into account. ' 

The discretization in the cell centred scheme by Arnone 

and Swanson(1993) used straight averaging for the inviscid 

terms and followed Martinelli's discretization scheme for, - 

the viscous terms. Kuntz and Lakshminarayana (1992) used 

the finite difference method and evaluated the fluxes by 

straight averaging. For the viscous flux evaluation, 

Cheng(1992) formulated the discretization in the cell 

centre scheme using four neighbouring cells in two 

dimensions and six neighbouring cells in three dimensions. 

It is the most compact scheme, however, the grid skewness 

was not taken into account. 
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The main emphasis of the present work is in the 

discretization of the viscous terms. It starts by 

reviewing the discretization schemes of Martinelli (1987) 

and Cheng (1992) which have been elaborated above. The 

straight averaging approximation used in the current 

scheme will be analyzed. In addition, the linear 

interpolation approximation will also be analyzed to 

understand the improvements that this offers. An improved 

discretization scheme that takes into account the grid 

stretching, skewing and shearing will be formulated and 

analyzed 

Based upon the truncation error expressions, the 

impact of the flow gradient, grid expansion and grid size 

on the error from the grid will be studied. This provides 

the means to reduce the error by modifying the grid. 

Therefore, grid modification is an alternative to adopting 

an improved scheme. The investigation continues with a 

stability analysis that includes time step discretization 

which concentrates on a discussion of mesh Reynolds 

number. In order to broaden the research into spatial 

discretization, the cell vertex scheme based upon the work 

of other researchers is reviewed. Besides reviewing the 

work of Matinelli and Cheng, details of each'topic'of the 

investigation are elaborated in the following sections. 

4.2 Other Schemes 

Other available spatial discretization methods for 

the cell centre scheme that are discussed in this chapter 

are those proposed by Martinelli (1987) and Cheng (1992). 
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This section will concentrate on the discretization of the 

viscous flux only. 

4.2.1 Martinelli's Scheme 

In two dimensions, by using Gauss theorem, the 

derivative can be obtained from 

$ 8I as 
ýz 

ds =f (x, y) ds 
(4.2.1) 

where S is the area and S is the boundary or contour 

In discrete form, it is 

of ý4 
ax 2 (fk+i + fk) (yk+i - yk )} (4.2.2) 

i, ý k=1 

The given values are fk where k is the index of cell face. 

In the implementation of this theorem, Martinelli 

proposed two methods where the integration is performed 

over two different types of control volumes. In the first 

method, the control volume is bounded by two cell vertices 

and two cell centres and fk are values at those locations 

(figure-4.1a). The integration path is along the boundary 

of that control volume with the resulting derivatives 

directly approximated at the cell face centres. This 

method requires averaging cell centre values to obtained 

the fk at the two cell vertices. 

In the second method, the derivatives at the face 

centres are calculated from the average of the derivatives 

at the edges of the face located at the cell vertices 

(figure-4.1b). The derivatives at the cell vertices in, 

turn are calculated by the Gauss theorem around two 
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control volumes. These are formed by lines joining the 

cell centres that surround each of the those two cell 

vertices (figure-4.1. b). 

Since in this scheme the cell vertex variables are 

included in the calculation of the derivatives, this 

scheme is more accurate for skewed grids than the straight 

averaging scheme. It is a nine point scheme in two 

dimensions. 

4.2.2 Cheng Scheme 

This scheme calculates the flow derivatives at te 

cell faces directly from the values at the neighbouring 

cell centers and stores the results at cell corners. The 

flow derivatives, for instance, is 

_ 
'ýi+l, j, k -'Li, j, k 

äz ;+z , i. k Oz (4.2.3) 

In an arbitrary grid, this scheme suffers inaccuracy 

because the derivatives at cell faces are obtained from 

straight averaging of the stored values at cell corners. 

It is five point scheme in two dimensions and seven point 

scheme in three dimensions, therefore it is a more compact 

scheme than Martinelli's scheme. 

4.3 Analysis of the Discretization Scheme 

Analysis of the standard discretization scheme for a 

nonuniform grid is carried out in two dimensions using a 

scalar convection equation, which is, as follows, 

+bau -() 7 ay 8t+a8 (4.3.1) 

where u is a parameter and a and b are convective velocity 
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components. In the integral formulation 

AB 

+ 
fBC 

+ 
CD 

+ 
DA 

(audy - budx) 0 
d fudA+f 

= dt (4.3.2) 

(figure-4.2) where A is cell area 

Evaluating the surface integral by the midpoint rule 
JAB BC 

J 
CD fDA 

+J ++ (audy - budz) = 

(4.3.3) 

u'+2ýý - ui-z, 7) (ayAB - b2AB) + 
(u1+, 

j- u1-z, j) 
(-ayBC + ba BC) 

where the grid lines are sheared but locally parallel 
(figure-4.2). 

Thus, the semi discretized equation is 
dU1"1 

A 
dt + (ui+,, 

i - ui-2, j)(ayAB - bZAB) + 
(Ujj., 

j+z -u{., _i)(-ayBC+bzBC) =0 (4.3.4) 

For a nonsheared grid the semi discretized equation is 

dui, i a 

(ujij 
- ui-; , i) 

(uj, 
i+ 2- ui, j- zI 

dt + h; +b1, =0 (4.3.5) 

where A=hi1j, YAB=lj, xAB=0, YBC=O, xBC=hi 

The following analysis uses the von Neumann and Equivalent 

Partial Differential Equation (EPDE) methods to 

investigate the effects of the truncation error for 

different types of grid non-uniformity, including 

stretching and skewing. 

Von Neumann Method 

The Von Neumann method is an available tool to estimate 

the accuracy and stability of a linear scalar equation. 

This method represents a solution ui'lj as a Fourier series 

U,!, 1 =E jlneIXa=', 3 erx, Yi,! (4.3.6 ) 
X,. Xr 
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where I= 

x. . and yi, j are grid points 

xx and)(y are wave numbers in the x and y 

directions 

Vn is the time dependent amplitude 

n is time step level 

Since the analysis is at semi discretized level, the time 

index n is dropped and the amplitude is normalized to one. 

The real and imaginary parts represent the dissipative and 

oscillatory parts of ui1i respectively. 

Considering each term in the series separately, the 

parameter ui, j becomes 

Uij 
(4.3.7a) 

In trigonometric terms this becomes 

ui, i = cos(X=zi, i + Xyyi, i) + Isin(X: x1,, + Xyyi. j) 
(4.3.7b)' 

This method will be applied in the following sections. 

Equivalent Partial Differential Equation Method (EPDE) 

The Von Neumann method does not directly provide the 

order of the truncation error. In order to obtain the 

order of the error, the trigonometric functions in 

equation (4.3.7b) have to be expanded and high order terms 

neglected. On the other hand, the EPDE method will 

directly provide the order of the truncation error. 

This method uses Taylor expansions of the various 

terms in the neighbourhood of the grid (i, j), see Hirsch 

(1989). From this, the truncation error can be expressed 
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as a summation of derivative terms which in general can be 

written as 
O° iii 

TRUNCATION ERROR = 
(ci u+d; u+e; 

-1 
(u (4.3.8) 

where ci, di and ei depends upon parameters of the grid 

nonuniformity such as grid size, skewed angles, etc. and 

which represent the order of the accuracy. 

4.3.1 Straight Averaging 

Refering to equation (3.3.4d) section 3.3, the cell 

face value in the current version is approximated as 

'ui+1. j +'Li. 
j 

ui+2, j =2 
(4.3.9) 

In an arbitrary grid, ui+l/2, j is not necessarily located 

at the cell faces. Since the finite volume scheme 

approximates flux derivatives by taking the differences of 

the fluxes on the cell faces, this discrepancy will 

introduce an error. 

4.3.1.1 Von Neumann Method 

The application of the Von Neumann method to the straight 

averaging approximation results in the following 

expression for ui+l/2, j 

'ýi, j 
ui+, j=2 {1 + cosxz (zi+i,, - ti, 1) + IsiinXy (yi+t, i - yi, i)} (4-3-10) 

and ui-1/2, j Iui, j+1/2 and uij-1/2 are similarly 

evaluated. 

Uniform Cartesian Grid 

For uniform cartesian grid, ui+1/2, j ' ui-1/2, j' 
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ui, j+1/2 and ui, j_1/2 are exactly located at cell faces 

(figure-4.3). Substituting the expression for ui+l/2, j 

from equation (4.3.10) and others into equation (4.3.5), 

it becomes 

du;. i + Iu= . asinxrh; + b____ 
li 

_0 

(4.3.11) 

The solution is 

ui, j = constant elw't (4.3.11a) 

where 

=a 
sinX=hi + bsinXyl, t hi IJ (4.3 . llb ) 

This generates a dispersive error which results in 

oscillatory solutions in the x and y directions. This 

error is due to odd even decoupling found with the central 

difference scheme. 

Straight Stretched Grid 

Since the grid will not in general be equally spaced, 

we write 
h, +i + hi 

2 
(4.3.12) 

The other directions are defined simlilarly (figure-4.4) 

This will be substituted to equation (4.3.10). Let us 

define flux in x direction as 

F1 = 
U'i+z, i -u=-z 

h' (4.3.13) 

where ui+l/2, j is calculated based upon equation (4.3.9) 

and ui-1/2, j is similarly derived. Substituting'ui+l/2, j 

and ui-1/2, j into equation (4.3.13) and after 
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simplification, the flux becomes 

aut.; hi- 2h; + hi-i h1+l - hi-i 
F, _-h (sin (Xrh; ) 

(co3x(+' 
=4 sin (X., ) 

4+ t 

hi+l - 2hß + hi-I (h1+i - hi-I 
cos (Xtht) 

(3inXx 

4 sinXx 4 

Iah'' (sin (X=h; ) cosxz 
hi+i - 24i + h; 

-i cosX= 
hi+l 4 hi-t 

+ 

cosXs 
(hi+l 4 hi-_ 

1 cos (Xrhi) sinX= __ 
- 24 t -1- CO3) 

1 (4.3.14) 

In order to interpret equation (4.3.14), a Taylor 

expansion about cell i is applied to the terms in the 

bracket. The flux Fi then becomes 

F; =Iau;, i{X=+XZ 
hi+i - 2h; + h. 

_1 +D(h)} (4.3.15) 4h; 

A similar derivation can be carried out for flux in y 

direction. 

In a quasi uniform grid where the grid ratio is 

hi+i 
= 1+0(h) 

h; 

the term 

hi+l - 2h; + h; _1 _O (h) 
h; 

and total flux term reduces to 

F= Iu;, i (axz + bx ) 

(4.3.16) 

(4.3.17) 

(4.3.18) 
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as grid size reduces to zero. 

Thus, for a quasi uniform grid, straight averaging results 

in a consistent discretization scheme. 

In exponential grid where grid ratio is 

(hi+1ht. )l+Q(h) 
hi (4.3.19 

the term 
h1+l - 2h; + h; -, 0O (h) 

h; 
(4.3.20) 

and is not reduced to zero as the grid size reduces to 

zero. Thus, for an exponential grid, the fluxes in the x 

and y directions contain additional terms showing that the 

straight averaging approximation is inconsistent. 

Substituting these fluxes into the semi discretized 

equation, the additional terms generate oscillations 

because they represent imaginary parts of the Fourier 

series terms. 

Skewed Stretched Grid 

With this type of grid, the analysis using the Von 

Neumann method is not attempted because the'geometric 

variables that represent the grid skewness such as skew 

angle, etc are not easily incorporated into the flux 

expressions. However, a study will be carried out using 

the EPDE method in the next section. 

4.3.1.2 Equivalent Partial Differential Equations 

With this method, ui+,, j is expanded as a Taylor 

series about (i, j) which is, as follows, ', 
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_ä 
u+ (x+1- x; )s (82u\ 

-}- O ýh3) ui+l, l - ut, l + (xi+l, J xi,. l) ax 
i, 1 2 Üx2 

''ý (4.3.21) 

ui+1/2, j is evaluated by substituting ui+l, j into equation 

(4.3.9) which leads to 

xi+l, i - x{, i au 
+ 

(xi+1. i - x;., )Z 92U 
+0 (h3) u'+ 2 ,i- 

u`, i +2 öx 4 öxz 

) 

,, 

(4.3.22) 

and ui_1/2, j' ui, j+1/2 and ui, j_1/2 are similarly 

evaluated. 

Uniform Cartesian Grid 

Since the grid is equally spaced 

zs+i, i - 2t, i = hi 
(4.3.23) 

Subsituting this into equation (4.3.22) and using a 

similar derivation for ui_1/2, j, the flux in the x- 

direction will be 

ui+2, i -ui-2, i 
_ 

19U h? ä3u 
4` 

h; ax +3 ax3 -ý' OhJ 

(4.3.24) 

The flux in y direction is similarly derived. Substituting 

the fluxes in x and y directions into equation (4.3.5), 

the equivalent partial differential equation becomes 

2 aui, j +a+ b(ou) = -aL 
( 01,3 Ub 

X3 
3 & 8x :, i ° =, i 

at äs i3 ay ý, i 

+0 (h4,14) 
(4.3.25) 

The lowest order term of the truncation error has odd 
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derivatives of ui1i and is second order in hi. This 

generates a dispersive error which results in an 

oscillatory solution. It reaches the same conclusion as 

the analysis with Von Neumann method but in addition the 

order of the error can be estimated. 

Straight Stretched Grid 

The grid spacing is the same as that given ealier 

which is 

_ 
h1+i + hi 

xi+l, l 2 
(4.3.26) 

By following a similar derivation as in the case with the 

cartesian grid, the flux in the x- direction will be 

u, +i� - ui-l, i 
= 

(au) 
+ 

(li+1 - 2h; + h, 
-i 

au 
. }, h, ax 

,, i 
4h; ax 

,, ý 

(h1+i_2h1+h* 
-I 

hi +l -h i-I a2u 
+O (h3) 

8h; 2 öx2 
t. i (4.3.27) 

A similar derivation can be carried out for the flux in 

the y- direction. The lowest order term in the equivalent 

partial differential equation now contains a coefficient 

h; +1 - 2h; + h; -1 
44i 

(4.3.28) 

This is the same as that found in the analysis by the Von 

Neumann method. Thus, the EPDE method gives the same 

result as the Von Neumann method where the truncation 

error generates oscillations. 

Skewed Stretched Grid 

Figure-4.5 illustrate the grid being considered. 

From equation (4.3.9), the value u'i+1/2, j is expanded as 
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a Taylor series about (i, j) to give 

u= Ui .+ 
hi(+12+ ha4)i, 

j 
+ 

(h'i+l + h; )2 02U 
4 5ý2 

`'i (4.3.29) 

+0 (h3) 

but this value is not the one that goes into the flux 

evaluation in equation (4.3.5). In order to obtain 

ui+1/2, j from u'i+l/2, j ' ui+1/2, j is expanded about 

(i+1/2, j)' which is 

. 30) '+0 
(h2 ) (4.3 c9u 

'ýi+? 
,. i - Ui+ z ,i- 

h'+ý4t 
sins 

(Tý ) 

+I. 

Subsituting equation (4.3.29) into equation (4.3.30), the 

result of a Taylor series expansion of ui+1/2, j about 

(i, j) is as follows, 

öu 
ut+ 

h; +1 + h; 8u (h+1 + h; 
)3ina) z .i 

ut. i +44 
olln 

(! ) 

113 

(h'+1 + hi )2 
sincx 

a2u 
+O (h2) 

(4.3.31) 

8 aCa77 ,. j 
The flux of ui_1/2, j is derived accordingly. 

The total flux in the f- direction is 

ui+l, i - ui-1,3 
_ 

au 
+{ 

h'+1 - 2h; + h; _t 
hi 0ý 

, 
4hi 

+ 
4h1 

} 
aý 

,ii,, 

hi+l + h{ Ötl 
)sina 

4hi 
s, i 

(4.3.32) 

and total flux in the I- direction is derived accordingly. 

Substituting the total fluxes in the f- and II- directions 

into the discretized equation (4.3.5) and after 

simplification, the equivalent partial differential 
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equation is 

äuij 
+a 

au au) L2 _ aý{ 
W- 2hi + hi-i h; - h2 )}('az u 

ät öx :, i 
+b ay i, i 4h` + 4h' s, i -- ) 

%- ---. 0 % 

I ir 

au 1i+1 - 21) + 1; _1 8u 
-} 4h, since 

(T'7 

i, ýý 
-b 41i a'l 

III 
(4.3.33) 

Case a: Algebraic or quasi uniform grid (see equation 

(4.3.16)) 

As the grid sizes h and 1 reduce to zero then the term I 

and term IV reduce to zero. However terms II and III do 

not go zero. Therefore, the application of straight 

averaging for a skewed grid results in an inconsistency in 

a cell where the skewing occurs. Since the truncation 

error contains an odd order derivative, it is dispersive 

and generates oscillations. 

Case b: Exponential grid (see equation(4.3.19)) 

The terms I and IV will not now reduce to zero eventhough 

the grid size h and 1 reduce to zero. In addition, the 

terms II and III also do not reduce to zero. Therefore, 

the scheme is inconsistent with a, dispersive error that 

generates oscillations. The application of the straight 

averaging technique for a skewed stretched grid for the 

test case of flow over a circular arc resulted in an 

oscillatory solution as shown by Rossow, Kroll, Radespiel 

and Scherr (62nd AGARD). 
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4.3.2 Linear interpolation 

The inaccuracy of the straight averaging scheme stems 

from the fact that it is assumed that the cell face lies 

mid way between the cell centres. For a non-uniform grid 

this can be improved by taking into account the distances 

between the face and the cell centres (figure-4.6). 

Assuming a linear variation 

ui+1/2, j 

hi ui+l, j + hi+l ui, j 
(4.3.34) 

hi + hi+1 

where the known values are ui+l,, j and uiti. This 

interpolation was proposed by Turkel (1986). The 

interpolated values are ui+l /2, j and located at cell face 

(i+1/2, j). The accuracy of this interpolation is analyzed 

by the Von Neumann and EPDE methods. 

4.3.2.1 Von Neumann 

The application of the Von Neumann method to the 

linear interpolation approximation results in the 

expression for ui+l/2, j which is as follows 

ui+=j _uti[h; 
{cosX= (x +1, i -x , i) 

+IsinXs (zi+t. ) - z; i)} + h1+1] 
hi + hi+i (4.3.35) 

and ui-1/2, j' ui, j+1/2 and ui, j-1/2 are similarly defined 

Straight Stretched Grid 

As previously defined, the distance between cell 

centres in the x-direction is 

h1+l + h; 
zi+i, i - z1, i =2 (4.3.36) 

and other distance are similarly defined (figure-4.4). 
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Substituting equation (4.3.36) into equation (4.3.35) -° 

leads to 

ui, 1[tt{{COS1(= 1 
h; +2+h; 

1+ IsinXZ h'+2+h; 1+ hi+l] 

U'+ 12 hi + hi+l 

Case a: Quasi uniform or algebraic grid 

The ratio of the grid sizes is 

(4.3.37) 

h`+' 
=1+O(h) and 

h' 
=1+0(h) h; h, -i (4.3.38) 

for O(h) «1 
h`-' 

-1- O(h) 
hi (4.3.39) 

The distance between cell centres (i+l, j) and (i, j) 

becomes 

h. + Z+ ht 
= hi +2 h1O(h) 

(4.3.40) 

Substituting this approximation into equation (4.3.37) 

leads to 

u;, i[h; {cosx=hi + IsinX=h; } + h, +t) uý+, ýý hi + hi+i 

(4.3.41) 

ui-1/2, j' ui, j+1/2 and ui, j-1/2 can be similarly defined. 

Substituting ui+1/2, j, ui-1/2, j' ui, j+1/2 and ui, j1/2 

into the semi discretized equation (4.3.5) and after 

simplification this equation becomes 
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dui, j 
___ 

( 
hi (hi+l 

- 
hi-1) 

(1 
- cosXxhi)+ 

dt + hi l(hi+l + hi) (hi-1 + hi) 

h? - hi+l h; 
-1 

bu; ; 
sin I1+ X=htJ + (hi+l + hi) (hi-i + hi)) li (1J+i + 1j) (1j-i + l; ) 

1ý -1j+l11-l (1 - cosXYli) +I 
(i 

+ (lj+l + 1j) (11-1 +1 i) 
sinXvlil =0 

(4.3.42) 

where 1i is grid size in y-direction. 

The solution of , the equation (4.3.42) can be expressed as 

uij = constant e(W*+1W; )t 

(4.3.43) 

where wr is real part and wi is imaginary part. 

The real part give rise to dissipation or 

amplification effects and the imaginary part to 

oscillatory effects. Dissipation is possible if 

(hi+1 - hi-1) >0 0/' (lj+1 - lj-1) >0 (4.3.44) 

which depends upon the grid expansion or contraction. 

Since the Von Neuman method decomposes the uiti into its 

wave components, the result of the analysis describes the 

effect of the wave propagation in arbitrary grid. If the 

wave propagates in the direction of expansion, it will be 

dissipated. If the wave propagates in the direction of 

contraction, it will be amplified. The direction of the 
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propagation is in the direction of the convective velocity 

which is a vector summation of convective velocities a and 

b along the x- and y-directions. The influence of the 

grid expansion and contraction in x- and y- directions are 

decoupled because the linear averaging formulation is used 

along each direction separately. 

Order of accuracy can not be determined directly 

without expanding the trigonometric terms in equation 

(4.3.42). The EPDE method will be able to determine the 

accuracy and will be discussed in the next section. 

Stretched Skewed Grid 

In addition to the error due to the stretching, the 

application of the linear interpolation technique to a 

stretched, skewed grid will generate additional errors. 

Inclusion of the skewing effect can be incorporated 

through the expression, 

hei ui+l, j + hei+l ui, j 
ui+l/2, j - U)skew (4.3.45) 

h'i + h'i+l 

in two dimensions and with one skewness direction 

(figure-4.6), where now the lengths h! i and hi+1 are 

different from the case of streching only and are shown in 

figure-4.6. The magnitude of (a u) skew 
depends on the 

variation of ui1i in the 1ý - direction. This dependence 

can be expressed as 

u)skew mt (4.3.46) 

where m is the derivative of uilli in the 1l - direction and 

given as follows, 

00 



m= function(ui, j, ui, j+l'ui, j-l, lj'lj+l'lj-1) 

The slope m can be estimated as 

ui+2, 
) 

17 

+U=-2, 
J 

where ui, j+l/2 is defined as 

ui, j+1/2 

ii ui, j+l + 1j+1 i, j 

1i +1 j+1 

(4.3.47) 

ui, j_1/2 follows similarly. 

t is an offset distance due to skewness along cell 

boundary (i+1/2, j). After substituting ui, j+l/2 and 

ui, j_1/2, the result of the manipulation is 

(li+l - cosXvLy) +I (li-t + 21, + litt) s: nXvZýy (ýu)skew It 

" (h1+i + hi) (hi-i + hi) 
(4.3.48) 

Due to the skewness effect, 

h'i # hi 

h i+1 hi+1 (4.3.49) 

In geometrical terms the effect can produce an increment 

in length segment such that, 

hl i= hi + Ah i 
hei+l - hi+l + Ah i+1 (4.3.50) 

The expressions for hi and hi+i are substituted into 

equation (4.3.45) together with (&u) 
skew and after some 

manipulation, the following equation is obtained, 
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dui. v ! u-i'' hi (hi+i - hi-1) - (lj+i - li-i) t 
dt + hi (hi+l + hi) (hi-i + hi ) 

+ 
hihi+l Zýhi+1 

_ 
Oht I (1 - cosX=hi) 

(hi + hi+l) h'i+l hi 

h? - h; +lh, -1 - (1, -1 + 21, + 1, +l) t 
+ 111 + (h1+i + hi) (hi-I + hi) 

hihi+i Lh; bu,, i li (li+i -1, -1) )sinX=h; } +{ 
(hi + h: +i)2 hi hi ji 

((Ij+l 
+ li) (li-i + li) 

(1 - cosXylj) +I1+ 
1j2 

sin; <yl, } =0 (l, +i + li) (li-i + 1ý) 
(4.3.51) 

This equation will be dissipative if 

hi (hi+i - hi-1) - (li+i -1, -1) t hihi+i Ehi+i Ahi 
(hi+t + hi) (hi-1 + hi) (h: + hi+1)2 hi+1 hi 

li 
(4.3.52a) 

(li+i - ji-i )>0 
Ali+i ++ li) 

(4.3.52b) 

The first term of the inequality (4.3.52a) and the 

inequality (4.3.52b) represent stretching effect. The 

second and third terms of the inequality (4.3.52a) 

represent a skewing effect. The second te: m generates an 

amplification effect in a grid expanding in the positive 

direction ie where lj+l > 1j. The third term, which 

depends upon the relative magnitude of o hi+l/h and 

o hi/hi is always positive and generates an amp_. fication 

effect, too. This is based upon observations from 

figure-4.6 and a derivation in appendix-4.1. The skewing 

effect in geometry is represented by the offset distance t 
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which depends on the skew angle and cell length. 

Therefore, the effect of the skewed grid will be 

destablizing if the grid expands towards the skewed 

direction. In this particular case, the skewed direction 

is in the positive coordinate direction. The additional 

term due to the skewing effect is imaginary and is given 

by 

(l; 
-i + 2l; + 1, +l) t_h; h; +1 Ohs+l 

_ 
Oh; 

(4.3.53) + hi) (hi-I + hi) (hi + hj+1)2 hi+t hi 4.3.53) 

This term contributes to the dispersive effect whether it 

is positive or negative. 

The solution of equation (4.3.51) can be represented 

as 

ui j =constant 

(4.3.54) 

The additional error due to skewing affect both in and 

W- compared with the ones from equation (4.3.43). 

4.3.2.2 Equivalent Partial Differential Equation Method 

By following the previous analysis of the Equivalent 

Partial Differential Equation (EPDE) method in subsection 

4.3.1.2, the Taylor expansion of ui+l/2, j about ui0i is 

substituted into equation (4.3.34) and after 

simplification ui+l/2, j is expressed as 

z 
ui+;, j = ui, i + (! ) + hi) 

8z+0 (h3) (). 
+! -h1+i 8 8s ij (4.3.55) 

Even though ui+l/2, j is located at the cell face (i+l/2, j) 

in a skewed grid, it is not located at the centre of that 
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face. 

Straight Stretched Grid 

By substituting the grid spacings from equation 

(4.3.26) and other similar expressions, the flux in the x 

-direction is 

ui+i, J - ui- z, J 
_ 

8u 82u 
+ (hi+l 

- 
hi-1) 

ax2 
+ 

hi äx i, i i, j (4.3.56) 

3u 

48 
[(hi + hi+1)+(hi+1 + hi-1)2] 

ö8x3 
+0 (h3) 

i, j 

and the flux in the y- direction is similarly defined. 

Substituting these fluxes into equation (4.3.5), the 

equivalent partial differential equation is 

au,.; 
+Q 

au 
+b 

au 
- -a (h; +i - h; -i) 

a2u 

at ax ij ay ij ax2 ý. ý 
2 

-b(1j+i -1J-i) 
az 

+O (h2,12) 
äy i, j (4.3.57 

The lowest order terms of the truncation error have an 

even order derivative of ui11i and are first order in h and 

1. These can generate dissipation or amplification 

effects. They will be dissipative if 

a(hi+l hi_i) >0 (4.3.58a) 

and b(1j+1 - 1i-1) >0 (4.3.58b) 

The terms in the bracket are due to the grid expansion. By 

reversing the inequality signs in the above, the terms 

will induce amplification. This is the same conclusion as 

the Von Neumann analysis for this type of the grid. 

Skewed Stretched Grid 

The linear interpolation of equation (4.3.34) is 
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written as 

uli+1/2, j 

hei ui+l, j + ht i+1 ui 
ºj (4.3.59) 

h'i + h'i+l 

where h'i+l, j and h'i1i are defined in figure-4.6. Note 

that since the u'i+l/2, j is not located at the centre of 

the cell face, it is not used in the flux calculation. In 

order to obtain the Taylor expansion of the ui+1/2, j about 

U. j, the tollowing steps are carried out, 

1) Obtain a Taylor expansion for u'i+1/2, j about ui"j by 

using the above interpolation function. 

2) Taylor expand ui+l/2, j about u'i+l/2, j which gives 

ºº2z'1 
ui+;, i - ui+2. i - 

2'sincx 
äu 

+22ºý sind 
au 

-f- 4 (h3) 
n i+z, j z 

(4.3.60) 

Since is skewed angle this expression describes the 

effect of the grid skewness. 

3) Substitute the u' 
I 

and +1/2, j'i+1/2,, j i 
A-IA 

-)'i+1/2, j from results of the step-1 into the 
an 

ui+1/2, j expresssion of step-2 

Thus, ui+1/2, j is 

h; rau h; (6u\ 2 ui+;, i = ui, i +- ainac +0 (h 
2 öý ;, ý 2 ärß i, i (4.3.61) 

Flux ui_1/2, j has similar expression but with skew angle 

=0 since the grid is not skewed between (i-1, j) and (i, j). 

This is also the case for theYt - direction. Substituting 

the fluxes in the - and 11 - directions, the equivalent 

partial differential equation can be written as 
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au;.; au au 
_i 

au au 4 ýa+b-1+ -tans 
at 4977 _,; 2 Cosa ij 2 

(a, 
7 

tO (h2) 4.3.62) 

The lowest order term of the truncation error has an odd 

order derivative of ui1i and zeroth order in the grid 

size. This will generate oscillations and its magnitude 

is independent of the grid size. Therefore, the linear 

interpolation approximation generates inconsistent errors 

which depend on the skew angle. 

4.3.3 Improved Scheme 

An accurate scheme is one that takes into account the 

skewing and streching effects. The grid compactness is 

also an important consideration. The more points a 

discretization scheme incorporates the more spurious modes 

it can suffer. The most compact scheme in three 

dimensions is a seven point scheme and this will be 

investigated. It consists of the cell center with six 

neighbouring cell centers (figure-4.7a). The 

discretization scheme provides information about the 

variation in the value of the variables in the seven point 

configuration. Since this investigation concentrates on 

the viscous discretization, the derivative of the flow 

variables derived from that scheme is the main 

consideration. Any new scheme has to fulfil certain 

i 
4 

criteria in order to provide better accuracy. They are, 

1) The scheme must be symmetric and it must not depend on 

the choice of any coordinate system used. 

2) The first derivative of the variable must not be 
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constant otherwise the second derivative will be zero 

3) An isoparametric transformation must exist in order to 

keep computational time low 

The following analysis explains the reasons for the 

requirements. 

4.3.3.1 Interpolation Function 

In view of the above conditions, a new interpolation 

function is proposed. The local variation is calculated 

by this interpolation function. By considering a local 

Taylor series expansion about a cell centre for the 

interpolation function in Cartesian coordinates, the 

improved interpolation function in three dimensions is 

defined as, 

u(x, y, z)= A1 +A2x +A 3y +A 4z +A5x2 +A6y2 +A7Z2 (4.3.63) 

where u(x, y, z) can be a velocity variable. 

4.3.3.2 Isoparametric function 

The constant Al through A7 can be calculated from 

values of u at seven points. In general, the application 

of this scheme in the whole field requires the calculation 

of a 7X7 matrix inversion for every cell centre. This can 

be avoided if an isoparametric transformation of this 

scheme can be found as Turkel, Yaniv and Landau (1986) has 

done in two dimensions. The general seven point 

configuration is transformed to a diamond configuration 

(figure-4.7b). The mapping functions are 

z(ý,, J, C) = B1 + B2C + B3, l + B4C + BSC2 + B61]2 '+' 
BT(2 (4.3.64a) 

y(Cj7l, C) = Cl +C2e+C3, i+C4C+CSC2 +06,72 +CTC2 (4.3.64b) 

z(f, T,, C) = Dl + D2E + D31, + D4C + DSe2 + D6772 + DTC2 (4.3.64c)" 
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where ,I and 
ý 

are coordinates in the transformed 

space. Bi, Ci and Di of the equation (4.3.64a, b, c) are 

evaluated by substituting the locations of the cell 

centres in ¬, I and c of the transformed space and the 

corresponding values of x, y, z of the physical space. 

With given values of those constants, and the x, y and z 

coordinates of the face centres, the values off ,ý and c 

corresponding to the value of the centre faces can be 

calculated by solving the system of three nonlinear 

equations (4.3.64a, b, c) with three unknown f ,ý, and !ý. 

The evaluation of the viscous derivatives which are 

at the centres of the cell faces are calculated from the`x 

equation (A. 4.2.12) (see appendix-4.2), 

all 
7 ON; 

F. u 
u' ä. 

s-i 

au 
__7 

aN, ý ay 
ý_1 

"' ay 

LU 
_ 

aN; 
az u` az 

i-1 

(4.3.65a) 

(4.3.65b) 

(4.3.65c) 

where ui are the values of the variable at the cell 

centres and where the derivatives of the cell functions 

a Ni/ax, a Ni/ly ,a Ni/a z depend on the values of ý; ý 
, and j' 

corresponding to the location of face centres. Their 

formulation is derived in appendix-4.2. 

Because of the form of the interpolation function of 

the equation (4.3.63), the variable derivatives vary only 

in one coordinate direction namely 
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au 
= A2 + 2A5x (4.3.66a) 

TX 

au 
= A3 + 2A6y (4.3.66b) 

ä-y 
äu 

= 57 _ A4 + 2A; z (4.3.66c) 

4.3.3.3 Scheme 

The seven point scheme provides variables and 

derivatives which depend on the magnitude and location of 

the variables at those seven points. Those points are 

actually located at the cell centres. Since the grid 

nonuniformity will be taken into account, it will be more 

accurate than a discretization scheme that uses straight 

averaging. The improved scheme is basically a quadratic 

interpolation. Because of the utilization of an 

interpolation function, this scheme requires more 

computational time than a straight averaging scheme. 

4.3.3.4 Truncation Error Analysis 

The truncation error analysis for the improved scheme 

using either a coupled or decoupled formulation is 

calculated using the EPDE method. The analysis is carried 

out in two dimensions (but can be extended to three 

dimensions) and for skewed stretched grids only. The 

reason is that the improved scheme is purposely formulated 

to take into account the effect of the grid skewness. 

Decoupled Formulation 

The decoupled formulation is merely an extension of 

linear interpolation which provides quadratic variation in 

each coordinate direction. The evaluation of the cell 

face values along the 3- direction is based upon the 
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expression 

u(ff)=Al +Azý+Asý2 (4.3.67) 

It is the two dimensional version of the improved scheme 

where variation in one coordinate direction is considered 

at a time. Since this is a quadratic equation, it needs 

three given values at known locations in order to obtain 

expressions for Al A2 and AS . In this improved scheme,,,, 

the values are at cell centres located at (i-l, j), (i, j) 

and (i+l, j). These three cell centres are connected by two 

segments of straight lines which meet at a skewed angle 

(figure-4.6). Thus, u varies quadratically along these two 

segments. 

By looking at the geometry of the grid, the resulting 

u, which is located at (i+1/2, j)', not at the face centre 

is 

ºº2 
ui+;, i = Al + AZ 21 

()1AS 
2' 

(4.3.68) 

Coefficient Al , A'2 and A'5 are functions of the cell 

centre values uil'i , ui+l, j and ui_1,, j , grid sizes hi, 

hi-1 and weighted length hi, hi+l (see appendix-4.3). 

This weighted length is the same weighted length as in the 

linear interpolation in the subsection 4.3.2.2. 

The Taylor expansion of u'i+l/2, j about ui+1/2, j will, 

provide the relationship ui+1/2, j in terms of ui+l/2, j and 

skewed angle which is equation (4.3.60). u1! +1/2j and its 

derivatives are obtained from equation (4.3.68). 

Substituting these er sessions back into equation (4.3.60) 
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and after simplication, the values of u at face centre 

(i+1/2, j) is 

ºý 

- 
! 
`sins 

au 

+O (h2) 
Ui+l, j - ui, i +" 

hi au 

2 
(84)i, 

j 2 an 
', 3 (4.3.69) 

Since the grid is not skewed in (i, j) to (i-1, j) direction 

u at the face centre i-1/2, j is 

ý Ui-"j = ui, i + 
h; 
2 

a8ýu 
+0 (h2 

zý i, i (4.3.70) 

The values of u along the ii- direction at the face centre 

(i, j+1/2) and (i, j-1/2) have similar expressions to the 

one at (i-1/2, j) where the cell length in ¬- direction hi 

and the derivatives with respect to f are replaced by the 

cell length in the q- direction, lj and the derivatives 

with respect to q. By substituting the fluxes at the face 

centres (i+l/2, j), (i-1/2, j), (i, j+l/2) and (i, j-1/2) into 

the semi discretized equation (4.3.5) and after 

simplification, the equivalent partial differential 

equation is 

au; .; 
(Ou) au 

_1 
)(9u),,, 1+a 

aý 4977 2 coscx 
-1+ Lana 

C977 

(4.3.71) 

The truncation error, which is the right hand side, is 

zeroth order and dispersive which generates oscillations 

and depends upon the skew angle of but it does not depend 

upon the grid size. Therefore, the decoupled quadratic 

interpolation scheme is inconsistent for a skewed 

stretched grid because the error terms do not go to zero 

as the grid size reduces to zero. The truncation error 
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generated in the skewed stretched grid is not reduced by 

going from linear interpolation to quadratic 

interpolation. This arises from the error generated by the 

imbalance of the fluxes along the direction created by 

, IH. skewing the grid along the same direction. The quadratic 

interpolation does not model the flux imbalance more 

accurately than the linear interpolation. 

Coupled Formulation 

In coupled formulation, the evaluation of the cell 

face value is based upon a two dimensional interpolation' 

in cartesian coordinates x and y which is given by 

u(x, y)= A1+ A2x + A5x2 + A3y + A6y2 (4.3.72) 

describing variation of u in a five point scheme. In this 

formulation, the general curvilinear coordinate can be 

replaced by the cartesian coordinate x and y. Constants 

Al , A2 A5, A3 and A6 are calculated from the known values 

of u at five cell centres (i, j), (i+l, j), (i-l, j), (i, j+l') 

and (i, j-1). It follows that the total flux in the x-F 

direction is 

ui+i, i - ui- 
z ,j_A 

ht z 
(4.3.73a) 

and the total flux in the y- direction is 

u=, i+ 2- ui, i- z_ A3 
lý (4.3.73b) 

where A2 = function(ui+l, j 'ui ,j 'ui-l, j 'ui, j+l 'ui , j-1 

'hi+1' hi' hi-1' 1 j+1 '1j '1j-1' °'ý) 

A3 = function(ui+1, j 'ui, j 'ui-1, j 'lj+l , 1j '1j-1) 
(see appendix-4.3) 
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Expressing u i+l, j, u i-l, j ý, u. j+l ý and u., j-1 as Taylor 

series about u. . then for ui+l, j ' 

ui+,, j=u,. i +2 (hi + hi+i cosa) 
ax 

+2 hi+i sina 
ýy 

ýj. +, ý 

+1 
hi t- hi+lcosa Z 82u 

+ 
(h-'+' 

sina 
(hi + hi+lcosa 22u 

22 OX2 
,, 

22 ayax i, j 

1 h: +t 
Z 62u 

-ý 22 sin« ay2 iii 

(4.3.74) 

This particular expression contains the skew angle ._ 
because the cell centre (i+l, j) is skewed relative to the 

cartesian coordinates x-y (figure-4.8). Other expressions 

for ui-l, j, i , j+l, ui, j-1 do not have terms with the skew 

angle. Substituting back the Taylor series for ui+l, j' 

u i-l, j, u 1., j+l and uij-1 into the total flux expression 
, 

of equation (4.3.73a) and (4.3.73b), then the flux in the 

x- direction is 

= 

83u 
ui+2, i - u=-2, j 

h- 
ax 

+ 
4(hi 

i- h'-1) (hi + hi+icosa) 8z3 

1 
i, j 

1 (h'-1 + h=) hi+isincz function (hi+i, hi, hi-t, li+j, 1}, Ii-i, a) 
93u 

s 

+0 (h3113) (4375) 

As it was mentioned in the above, the flux contains the 

skew angle. The flux in the y- direction is 

1O1 u=, i+2 - uii-2 (2H) 

_+ 24lß 
+ li-i) (l, -}- lj+i) 

(! t_) 

3+ 
(3) 

oly ý, i i, i 

(4.3.76) 
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This flux does not contain the skew angle because the grid 

line is not skewed in the y- direction. 

Substituting the fluxes in the x and y directions 

into the discretzed equation (4.3.5) then the equivalent 

partial differential equation is 

8u,. ß (-au) 
__ 

3 

öt +a öx 
) 
ij 

+b ä0 
(h2' a) äx 

) 
ij 

3 

+0 (h2,12) sina ay3 
) 

ij 
+0 (h3,13) (4.3.77 ) 

The truncation error is second order and dispersive giving 

rise to oscillations. The coupled formulation of the 

improved scheme is consistent because as the grid sizes h 

and 1 are reduced to zero, the truncation error reduces to 

zero. The dominant effect of the skewness is in the second 

term of the right hand side that contains odd order 

derivatives in y and is second order in the grid size h 

and 1. Thus, it generates oscillations in the y direction 

that depend on the grid size h and 1. If the skewness 

diminishes, this term will go to zero. 

After understanding the advantage of the couple 

formulation of the improved scheme, the effect of the 

shearness of the grid is investigated. However, the grid 

lines in each coordinate direction are assumed to be 

parallel. 

-'d 4.3.3.5 Analysis of Sheared G 

Tr: +s analysis is carried out for the coup 

formulation of the improved discretization schc... w. _n a 

sheared skewed stretched grid by using the EPDE method. In 

addition to skew angle a, shear angle ý describes the 
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angle of intersection between two coordinate directions 

(figure-4.2). The two dimensional interpolation in the 

general coordinates and I is 

u(ý, 77) = Al +A2ý+A5 2 +A317+As77 2 
(4.3.78) 

As-it is similar to the previous case where the grid is 

not sheared, the total flux in f and I- direction has the 

same expression as in equation (4.3.73a) and (4.3.73b). 

However, the A2 is also a function of shear angle 9 which 

is as follows, 

A2 = function(ui+1, j 'ui, j ui-l, j 'ui, j+l 'ui, j-1 

'hi+1' hi 'hi-1' lj+l '1j '1j-1 

, 01 0p) 

By expressing ui+1, j' ui-l, j' ui, j+l 

series about ui0lj then for ui+l 
.j 

1 sin (ß - a) äu 
ui+I j= uj, i +2 [hi + hi+i 

sing at 

and ui"j_1 in Taylor 

+h++i since äu 
+0 (h2) (4.3.79) 

2 sing a77 i, i 

This equation is reduced to equation (4.3.74) asf 

approaches 90 degree or the shearness diminishes. Other 

expressions for ui-l, jr uirj+1' ui, j-1 are similar to the 

ones for a nonsheared grid. Substituting the Taylor 

series for ui+l, j' ui_1, j1 ui, j+l and ui,, j_1 into the 

total flux expression, then the flux in the direction 

is 
7 
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Ui+. 
,j- 

Ui-l, 
ýj _ 

azt 1 sin (Q - «) a3u 

h-ö)i, j 
+ 24 

(hi -4- h; -i) 
(hi 

+ hi+i 
sing 3+ 

h1- hiunction (h hihi_ 111 1_ a 
(23U) 

ý 
1'i-hiý -ý1 

fl 
t+le e 1ý )-ale )ý ) is eQý 48 5173 

t. ) 
(4.3.80) 

and the flux in the a- direction is the same as in the-' 

nonsheared grid. Substituting fluxes in the - and 

directions into the semi descritized equation (4.3.4), 

the equivalent partial differential equations is 

aui. i (ayAB - bx. 4B) au (-ayBC + bxBC) au 
_ = at +A 

(Tý 

~ , i 
+A ärß 

I, j 
I sin (Q - a) (aYAB - bzAB) a3u 

{24(hß t ht-t) 
(h1 

+ hý+ý 
sing 

}A 
5ý3 

+ 
i. i 

/ý { 
48 

(hi-1 + hi) hi+l 
sins 

.s 
function (hi+1 

I 
hi, hi-1 

v 
lj+l, lj, lj-1, a, ß)} 

-ayBC + bxBC) u+0 (hs1 js) A ý3 
Ili (4.3.81) 

As the skew angle ovincreases, the coefficients of 

)i, j on the right hand side increase and 
4). 

- and (-a13 

oscillations will tend to increase. As the shear angle 

decreases, those coefficients also increase. Therefore, ' in 

a sheared skewed stretched grid the effects of shear are 

to increase oscillations in the solution. 

4.3.3.6 Convection Diffusion Equation 

The foregoing analysis which uses a scalar convection 

equation as a test model concentrated on the accuracy of 

the convection terms. In order to investigate the accuracy 

of the scheme for the diffusion terms, a scalar 
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convection-diffusion equation is analysed. This analysis 

is also carried out for the coupled formulation of the 

improved discretization for skewed stretched grid by using 

the EPDE method. The equation is, as follows, 

au all au a2u a2u 

- +aaý +bay =µl axe +µZ aye (4.3.82) 

After discretizing the equation with the finite volume 

method, the equation becomes, 

du;, i +Q 
(tL1+1, 

i - Ui-;, i) b 
(uj+xz 

- u;, i- z) = dt hi + 1,, 

cl u 19U)i-l 
--( ax )i+ Ili ay ay) 

(( -lu 
) 

µt hi + µz 2 
1ý (4.3.83) 

The first term on the right hand side which represents 

viscous effect in the x-direction is 

(u`+ "j - u' Z'') a 
Flux in x- direction µý h= µý ax () ' (4.3.84) 

Since this analysis is carried out for the coupled 

formulation in a skewed grid, the flux'in the x-direction 

can be taken from equation (4.3.73a), then the above 
ö (Ui+2, i -ui-z, i) 82u µt 84" 
ax h= µl az2 + 24 

(hi t hi-i) (hi + hi+i cosa) öx4 
ý, ý t h, i 

84u 

48 
(h'-i + hi) hi+1sinac function (h; +i, h>, hi-1' li+i' li, li-i, a) 

(,,, 

y3 

+0 (h3113 
(4.3.85) 

The second term on the right hand side of equation 

(4.3.83) which represents the flux in the y- direction is 

expressed similarly but does not depend on the skew angle. 
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substituting the fluxes in the x and y directior-, the 

equivalent partial differential equation becomes 

au;; all all 82 u aZ u 
-ý-a +b - =µI 2 

+µt 
2 öt öz ý, i ay i aX i ay i .i .i 

O (h2, a) {-a a3. 
+ µi 

a4u 1+0(12) {-b a3u 
+ µz 

aqu 
}+ aX3 ;,; aye ,,; ay3 ,,; ay4 _, j 

2 (83u'\ Ü4 u(3 3) 0 (h, a) {-a ay3 ij 
+141 az OXy3 

;.; 
} +0h ,1 (4.3.86) 

The diffusive truncation error is 

O (h2, a) 
(Al ýX 

+0 (j2) 
(A2 ý4 

y4) (4.3.86a) 

which is second order in h and depends on the skew angle 

and contains even order derivatives. In the convection 

diffusion equation, the improved scheme of the-coupled 

formulation generates an additional higher order 

dissipative error which is second order in the grid size. 

4.4 Alternative Grid Modification 

From the analysis of the truncation error of the 

straight averaging approximation in an arbitrary grid 

discussed in section 4.3.1, it is seen that the error 

depends upon the grid expansion, the grid size and flow 

variable gradients. Instead of adopting an improved 

discretization scheme, the grid used could be modified to 

reduce the truncation error by taking into account that 

dependency. As a test example, the investigation in this 

section is based upon the analysis of a straight stretched 

grid. The flux in the x- direction can be expressed as 
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=+2, ý - Ui-2, j _ 
(au) 

i, j 
+ Cl au + c2 82u ) 

1. ) 

(£9X2 

hi 57 ax 
-I- High Order Terms (4.4.1) 

this equation is taken from equation (4.3.27) where C1, 

and C2 are 

C= 
hi+i - 2hi + hi-i (4.4.2a) 1 4h; 

CZ -_ 
(h=+i + 2hß + hi-i) (hi+l - hi-1) 

16h, (4.4 . 2b) 

Writting the grid size ratio as 

h`+l 
=1+ Et+i (4.4.3a) 

hi 

h' 
1+ Ei-i (4.4.3b) 

hi-I 
where Ei+l and Ei_1 are parameters of the grid expansion 

and E11«1 and Ei_ 1 <1, then we obtain 

Ct = Ej+i - Ei-i (4.4.4a) 

C2 =2 (Es+l + Ei-i) 
E, +1 - E; _1 2+ (4.4.4b) 

2 

By reducing the grid expansion ratio, the grid sizeýor the 

derivative terms in equation (4.4.1), the truncation error 

of the discretized flux can be reduced. 

In an area of high gradient region near a wall, then 

the grid size must be small enough to resolve that 

gradient. However, using this grid resolution everywhere 

would require high computational time and such resolution 

is not necessary in low gradient regions away from the 
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wall such as the free stream region. For economy it is. 

sensible to expand the grid from the high gradient to the 

low gradient regions. 

The truncation error of the straight averaging 

approximation in the straight stretched grid generates an-' 

inconsistency such as the term C1ä 1ýý. It depends 

upon the grid expansion and the first derivatives. Thus, 

for example using a high grid expansion for instance near 

a wall to resolve the boundary layer, where there are high 

gradients, can generate inconsistency. 

By ensuring low grid expansion in the high gradient-' 

regions the C1 can be kept small but the requirement of 

the small grid size to resolve the high flow gradients 

results in high computational cost. This can be avoided by 

increasing the grid size. However, this can generate 

dissipatives error from C2 (äX )iIi since C2 depends on 

grid size hi. Thus, it is important that the generation of 

low grid expansion in high gradient regions must not 

increase other errors in those regions. There must be a 

balance between reduction of the grid expansion and 

increase in the grid size. The first one will be able to 

reduce zero order inconsistency errors and the second one 

will increase first order dissipative errors. 

4.5 Mesh Reynold Number 

In this section, a stability analysis"that includes 

time discretization is carried out for a scalar convection 

diffusion equation. The purpose of the investigation is to 

derive additional stability constraints generated by the 
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time discretization. The scheme used is explicit in time 

and central difference in space or Forward Time and 

Central Space (FTCS) and is applied to the equation. The 

fully discretized equation is 

Ili 
1- 

Ili j+ 
aý 

+- Ui l. j 
+ but j+1 

ýt 2h; 21j 

U l, j - 20j +u1,, ui j-1 - 2'tli, 
j + t4 +1 

-- 
11 

µl 2h1 
+ µz 21j 

By using the Von Neumann stability method, the 

amplification factor is defined as 

ERn+l 
ERn 

(4.5.1) 

(4.5.2) 

where ERn is the error at n time level. It is derived as 

i=1 At '2 X: hi µ20t 2 XYIi 
G= 1+I 

h sinX=h; +bi sin Xylj -4 h2 sin 2+ 22 sin 2 

(4.5.3) 

The scheme will be stable, if IGI < 1, thus 

µ"ßt 'zX: h. µsßi 2Xv1 2 ati i I12 <1 , IGI _ 

j[1 

-4 hZ ain 2+ Iz ain 2+[h sinx: h. +tj 
ji 

(4.5.3a) 

The analysis of this inequality for two extreme conditions 

of high and low frequencies Fouries series components 

leads to stability conditions as shown by Hirsch (1989), 



lL1Lt J120t <1 0 
hi 

+ 1' 2 

0< a2 t. 
t-b2tt <2 

µl µ2 

for high frequency 

for low frequency 

(4.5.4a)' 

(4.5.4b)' 

We assume that the diffusion coefficients Al and 14'ý 2 in x 

- and -y directions respectively are the same namely 

X0 = mal! ]. = /! /2 (4.5.5) 

The high frequency wave corresponds to the smallest wave 

length resolvable in the grid space or ý". As the grid' 

size decreases, the length of the smallest wave decreases 

or the frequency increases such that the first stability 

condition can be violated. In order to satisfy this 

stability condition, the time step has to be decreased. 

However, as the diffusion factor , C/ reduces to zero or the 

equation becomes pure convective the time constraint from 

the high frequency condition is not violated. Thus, the 

high frequency wave is still stable. Also the smallest 

wave will not grow unbounded in FTCS scheme for a pure 

convection equation. However, the high frequency waves can 

grow in a diffusive flow if the grid size is too small or 

if the frequency is too high for a given time step. Let 

us define mesh Reynold numbers parameters as 

R= ah; 
and Ry 

bli 

Fý y FA (4.5.6) 

With these parameters, the second stability condition'for 

the low frequency harmonic can be written as 

u RZ + oyRy <2 (4.5.7a) 
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where 

aLt bit 
ý_ =h and cy = li (4.5.7b ) 

are CFL numbers in the x 

respectively. Therefore, 

low frequency components 

mesh Reynold numbers and 

diffusion factor. It can 

diffusion factor decrease 

- and y- directions 

the stability condition for the 

depends on the product of CFL and 

is governed by the time step and 

be violated easily as the 

es. Since the solution consist of 

waves from low to high frequencies, the diffusion 

stability condition is always required to obtained a 

stable solution. 

4.6 Cell Vertex Scheme 

An alternative to the finite volume cell centred 

scheme is the cell vertex scheme. Instead of locating the 

discretized values at the cell centres, this scheme 

locates those values at the nodal points or cell vertices. 

Accuracy of the cell vertex scheme will be investigated 

for inviscid and viscous flux evaluation. Where possible, 

comparisons of the cell centred and cell vertex schemes 

will be drawn. 

4.6.1 Inviscid Flux Evaluation 

Even though this chapter concentrates on viscous 

discretization, it is beneficial to start with the 

inviscid flux discretization since many of the features 

from the inviscid discretization are applicable to the 

viscous discretization. The inviscid flux used to update a 

cell vertex value is calculated from values that belong to 
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the cells that surround that vertex. Those cells form a1 

super-cell and in three dimensions it consists of eight 

cells and in two dimensions it consist of four cells 

(figure-4.9) . In each cell, the f luxes are evaluated by ., -- 

taking a line integral or trapezoidal rule around the cell 

boundary. The integration directly takes values at the 

cell vertices. This integration technique is equivalent 

to taking the flux differences on opposite cell faces. 

In an arbitrary two dimensional grid, the f luxes at 

the cell faces, obtained from straight averaging of the 

cell vertex values, are exactly located at the cell centre 

faces. However, in the cell centred scheme, the straight 

averaging of the cell centre values will not result in the 

flux that is located at the cell face centre for an 

arbitrary grid. This is a source of error which is 

eliminated with the cell vertex scheme. 

In three dimensions, if the cell faces are not 

rectangular, Rossow, Kroll, Radespiel and Scherr (62nd 

AGARD) show how to evaluate the fluxes at those faces by 

using bilinear interpolation. In the case where the cell 

faces may not be planes, the variation of the normal must 

be taken into account in the integration of the fluxes. By 

dividing the curved cell faces into triangles as was done 

by the above authors, constant normals over the triangular 

faces can be obtained and used in the flux evaluations. 

The fluxes at the cell vertices are calculated from 

the fluxes of the cell components of the super-cell. In 

this calculation, Radespiel, Rossow and Swanson (1989). 
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Radespiel and Rossow (1989), and Martinelli (1987) used an 

averaging technique and Mackenzie (1989), Andrew(1993), 

Crumpton, Macknezie and Morton (1993) used distribution 

functions. Both calculation methods will be discussed in 

the following section. 

4.6.1.1 Averaging of Fluxes 

The averaging that takes into account the geometry of 

the cell component of the super-cell is more accurate than 

the averaging that does not. This statement can be 

validated by analyzing a test function in one dimension. 

The first derivative (YX)i is calculated from the 

derivatives at segment line i-1/2 and i+1/2 (figure-4.10). 

Two cases are disscused 

Case a: Straight Averaging 

This analysis follows that of Radespiel and Swanson(1989) 

and Martinelli (1987). 

Thus, the value (ä) at i is 

L" 
ax ax äx 

I+ 
(4.6.1) 

where 

Ox+ and ax 
ý_ 

- px_ ax i+ _ 1 
(all) 

A Taylor expansion ofabout i gives 

ax 2 axe + (4.6.2) 

and similarly for Substituting back into the 

expression f or (" )i+l/2 and ()i_1/2 gives the result 9X 2X 

(&(2ý)-}-1(Az+-Az_) 
+0(OX: ) 

2 ax (4.6.3) öz ; 8s ; 
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Therefore, the truncation error is first order and 

dissipative for an arbitrary grid. It should be noted 

that the application of the straight averaging scheme in 

the cell centre scheme resulted in an inconsistency for 

arbitrary grid as shown in section 4.3.1. For a quasi 

uniform or algebraic grid where 

Ax_ = Ax+ (1 -{- 0 (Ax+)) (4.6.4) 

then the above derivative becomes 
N2 

+1O (A 2) a+ High Order Terms 
ax ax az ; (4.6.5)r 

Thus the truncation error becomes second order and 

dissipative. As was also shown in section 4.3.1, for the 

cell centre scheme, the straight averaging in a quasi 

uniform grid resulted in consistency and ,a first` order 

dispersive error. 

In a two dimensional case, Martinelli (1987), Ni 

(1982) and Turkel (1986) took the average of the cell 

component residuals in order to obtain the residual at the 

cell vertices using the trapezoidal integration rule 

around the supercells. The residual is in fact, the total' 

flux differences for all cell faces. This can be 

expressed as 

RA+RB+Rc+RD 

4 (4.6.6) 

This, in fact, is equivalent to straight averaging of the 

residuals of the cell components of the super-cell because 

the relative size of those cell components and the 
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geometrical location of the cell vertex in the super-cell 

are not taken into account. ' For an arbitrary grid, this 

averaging gives poor convergence and can even lead to 

divergence as shown by Usab (1983). 

Case b: Weighted averaging 

,,. Hall (1986), Rossow, Kroll, Radespiel and Scherr 

(62nd AGARD) and Mackenzie (1989) calculate the residual 

for the cell vertex from the residuals of the cell 

components by weighting each cell residual by its cell 

area in two dimension or volume in three dimensions. Thus, 

in two dimensions, the residual for the cell vertex (i, j) 

is , 

SARA + SBRB + ScRc + SDRD Rý, ý SA+SB+Sc+SD (4.6.7) 

This averaging give a more robust scheme than the straight 

averaging. It takes information about relative areas but 

it does not take the information about the distance 

between the centres of the cell components and the cell 

vertex. If the areas in the cell components are kept the 

same but the shape of the cells are changed the distances 

between each centre of the cell components and cell vertex 

will change. Thus, this type of averaging is not strictly 

equivalent to linear interpolation. It can be derived 

from a Taylor Galerkin formulation explained by Morton 

(1988). 

4.6.1.2 Distribution Function 

The distribution function mentioned in the above will- 
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transfer residuals that are computed in the cell 

components into one for the cell vertex. The transfer is 

carried out by 

N _ßm_1 
Vol m DmR m :-` R=, i, k EM 

M=1 
Vol m 

(4.6.8) 

. 
Fes, 

F 

where Ri, j, k is cell vertex residual at (i, j, k). M is they 

number of cell components in the super-cell which is eight,, 

in three dimensions. volm is volume of the each cell 

component. Dm is the distribution matrix that'relates 

cells and cell vertices. Rm is the residual of each cell` 

component. This is explained by Crumpton, Mackenzie and 

Morton (1993). 

4.6.2 Viscous Flux Evaluation 

The viscous flux is also calculated from values thi - 
belong to the cells that surround a common vertex that Y°Y 

also form a super-cell. Within that super-cell, an 

auxiliary cell is constructed by connecting'the cell 

centres of the cell components (figure-4.9). 

For viscous flux evaluation, a technique using 

Gauss's theorem was proposed by Martinelli (1987) for a" .; L 

two dimensional case. The viscous residual, which 

contains second order derivatives is calculated by using-a") 

Gauss's theorem for an auxiliary cell boundary. ' The 4 

integration involves first derivatives at the cell 

vertices of the auxiliary cell. Since these cell v: ertices 

are cell centres of the cell components, the derivatives 
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are calculated by taking another integration around the 

cell components. This integration involves values at the 

cell vertices of the cell components. 

Radespiel, Rossow and Swanson (1989) and Radespiel 

and Swanson (1989) proposed a method to obtain the viscous 

residual by taking flux differences of the cell faces. 

This is, in fact, equivalent to the above mentioned 

integration. Instead of averaging the fluxes of all cell 

components of the super-cell in order to obtain the cell 

vertex flux as in the case of the inviscid flux, the 

averaging is only performed for one auxiliary cell face at 

a time. For instance, average value at cell face AB 

(figure-4.9) is 

UA + UB 
2 

(4.6.9) 

This averaging will ensure that the result is located at 

the centre of the face, for instance AB. The viscous flux 

which is located at the cell vertex (i, j) is the 

difference of the flux at the faces of the auxiliary cell 

ABCD (figure-4.9). 

Mackenzie (1989) proposed two methods for the viscous 

flux evaluation in which derivatives are calculated. In 

the first method, an auxiliary cell is constructed by 

connecting four cell vertices and the first derivative is 

calculated by taking trapezoidal integration around this 

cell (figure-4.11). In the second method, the first 

derivatives in the cell components are calculated by 

taking trapezoidal integration around these cells. The 
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derivatives at the cell vertex surrounded by those cells 

are obtained by taking an area average of the cell 

component derivarives. For two dimensional case, this can 

be expressed as 

(8, ßi SAýä=ýc+SB(äi)D+Sc\+SD= 

äx 

(q)(.. 

(4.6.10) SD 

This type of averaging is approximately the same as 

bilinear interpolation. 

4.7 Conclusion 

The requirement to evaluate fluxes at cell faces in 

the finite volume discretization leads to approximation 

formulae involving the stored flow variables as known 

values. In the cell centre scheme, the known values are 

located at the cell centres. The straight averaging 

approximation, which is a standard technique adopted, 

results in an inaccurate solution in a nonuniform grid 

because the approximated values are not located at the 

cell faces. The effects of the grid nonuniformity 

described by stretching, skewing and shearing of the grid 

lines can be analyzed by the Von Neumann and the 

Equivalent Partial Differential Equation (EPDE) methods. 

The truncation error of the straight averaging is 

second order in a uniform grid and first order dispersive 

in an algebraic or quasi uniform grid. In an exponential 

stretched grid and stretched skewed grid, it results in an 

inconsistent scheme. A linear interpolation scheme can be 

used to improve matters, however, in-a straight stretched 
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grid, the truncation error will be first order dissipative 

if the convection is in the direction of the grid 

expansion. On the other hand the error will be amplified 

if the convection is in the direction of the grid 

contraction. In a skewed stretched grid, this 

approximation results in an inconsistent discretization 

scheme. The Von Neumann method shows the destabilizing 

effect of grid skewness ; the EPDE method shows that this 

effect is at higher order level than that causing the 

inconsistency. 

An improved scheme is proposed which is basically 

quadratic interpolation and is analyzed in coupled and 

decoupled formulations for skewed stretched grid. The 

implementation of the decoupled formulation has the same 

overall error as the linear interpolation scheme. The 

reason is that this formulation can not take into account 

the flux imbalance generated by the grid skewness. The 

implementation of the coupled formulation results in a 

second order dispersive error. In a sheared grid, the 

coupled formulation generates an additional dispersive 

error. For a convection diffusion equation, this 

formulation also generates second order dispersive and 

dissipative errors. The dissipative error being generated 

by the discretization of the diffusion terms. 

An alternative approach to reduce truncation errors 

by careful choice of the grid has been investigated. 

Analysis indicates that the truncation error can be 

reduced by constructing a grid with a low grid expansion 
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ratio in high gradient regions and using a high grid 

expansion ratio in low gradient regions. However, the grid 

size in high gradient regions should not be too small in 

order to avoid high computational cost. 

A stability analysis of a fully discretized 

convection diffusion equation for an explicit central 

difference scheme shows that the time step is the 

determining factor. The mesh Reynold number enters the 

stability constraints, being multiplied by the CFL number. 

As an alternative to the cell centre scheme, the cell 

vertex scheme based on published work is reviewed in order 

to understand any accuracy improvement with this scheme 

compared with the cell centre scheme. Straight averaging 

in a two dimensional arbitrary grid results in accurate 

face centre values. However, it will not always be the 

case in three dimensions if the cell surfaces are not 

rectangular. Updating of the cell vertex values is 

obtained from the values of the cell components that meet 

at that vertex and form a super-cell. This is carried out 

by an averaging techniques. 

An analysis of straight averaging in one dimension 

shows that the cell vertex scheme is more accurate than 

the cell centre scheme. However, the implementation of 

this averaging to an arbitrary multidimensional grid can 

result in poor convergence and even lead to divergence. In 

order to produce an accurate and robust scheme, an 

averaging technique has been proposed that takes into 

account the geometry of the cell components. 
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5.0 ARTIFICIAL DISSIPATION 

5.1 Introduction 

The spatial discretization used in solving the three 

dimensional Navier-Stokes equations is central 

differencing. This has the disadvantage of admitting 

oscillations in the solution. In order to control the 

oscillation, artificial dissipation is explicitly added to 

the governing equations. This can result in errors in the 

solution. These errors are characterized by inaccuracies 

in predicting total pressure losses, boundary layer growth 

and shock sharpness in transonic flow calculations. 

The dissipation model adopted in this code is based 

on Jameson's scheme (Jameson, Turkel and Schmith, 1981) 

which consists of a blend of second and fourth order 

dissipations. The accuracy of the scheme depends on the 

grid size, dissipative scaling factors, the second and 

fourth order controlling coefficients and the second and 

fourth order differences of the flow parameters. The 

scaling factors depend upon the cell aspect ratio, the 

controlling coefficients are user input constants and the 

differencing depends upon flow gradients and grid sizes. 

In general three dimensional computation, the grid 

sizes, cell aspect ratios and flow gradients vary 

throughout the whole domain especially in critical areas 

such as the near wall region, leading and trailing edges 

and flow exit region. These parameters will be 

incorporated in the formulation of the improved 

dissipation model so that the dissipation in these regions 
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can be controlled more effectively. Therefore, the 

improved model has the capability to sense the important 

parameters that affect the dissipation in those critical 

regions. 

In this chapter first, the source of the inaccuracy 

with the standard dissipation model and the improvement 

offered by the alternative models proposed by various 

researchers will be assesed. The test cases are inviscid 

Ni's bump (Ni(1982)), a flat plate and a viscous transonic 

two dimensional high pressure turbine blade. Then, the 

above mentioned improved model is proposed. In addition 

to the above test cases, the improved model is also tested 

in three dimensional cases :a subsonic high pressure 

turbine blade, a transonic generic fan blade and a engine 

intake nacelle. 

5.2 Alternative Dissipation Models 

This section summarizes the different approaches 

proposed by various reseachers. 

5.2.1 Models Based on Modifications to the Original 

Scaling Factors 

The standard model of Jameson's dissipation is shown 

in equation (3.4.5) and is reproduced below 

d=+2, i, k 
(Volume) 

- at 
{E2 i+ , J, k 

(Wi+i. 
i, x - W;, i, k) (3.4.5) '+1_ . J, 

-E i+ 2, i, k (iV S+2, i, k - 3W; +l, i, k + 3W,, i, ý. -Nei-l, i, ýt )} 

which contains a scaling factor. In three dimensions, this 

factor actually represents the volume rate , (Vol/, a t) of 

the dissipation flux. 
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5.2.1.1 Standard Scaling Factor 

This scaling factor was originally proposed by 

Jameson, Schmidt and Turkel (1981). In cartesian 

coordinate, this type of scaling factor can be analyzed, 

as follows, 

Total dissipation = dtotal = dx + dy + dz (5.2.1) 

dx represents the dissipation fluxes on the cell faces in 

the x- direction, similarly for dy and dz. Thus, dtotal 

is basically the summation of the differences in the 

three coordinate directions multiplied by a scaling 

factor. By using equation (3.4.10) and neglecting the 

viscous term, the scaling factor 

in x-direction is 

u+c 
Sx = vol (-) (5.2.2a) 

Ax 

in y-direction is 
V+C 

SY = vol (-) (5.2.2b) 
AY 

in z-direction is 
w+c 

Sz = vol (-) (5.2.2c) 
Dz 

For large aspect ratio cells such as those at the near 

wall where Ax» &y and Ax >>4&z,, thus Sx « Sy and Sx 

« Sz. Since the difference in x-direction is multiplied 

by the total scaling factor which is 

S= Sx +Sy + SZ (5.2.3) 

the dissipation in the x-direction can become excessive. 

dX from the decomposition of the standard dissipation is 

dx - S(E 3sx w" E ysx w) (5.2.4) 
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whilst dx with Sx is 

dx = sc ýe E., W -4rz (5.2.5) 

Excessive dissipation component will be generated because 

S» SX. This leads to exessive total dissipation. 

Therefore, the standard dissipation is acceptable only 

where the aspect ratio is not much greater than one. 

5.2.1.2 Decompositions of the Scaling Factor 

The standard scaling factor is decomposed into x, y 

and z directions, see Martinelli (1987) and Swanson and 

Turkel (1987). For instance the second order dissipation 

in the x-direction is 

dx2= Sx 62 (Wi+1,7, k - 2Wi, ], k + Wi-1, ], k) (5.2.6) 

where SX is from equation (5.2.2a) and W is the state 

variable. By using a Taylor expansion, equation (5.2.6) 

can be expressed as 

d= s=EZoz2 äw (5.2.7) 

The analysis for the fourth order dissipation follows the 

same derivation as in the above. For a high aspect ratio 

cell, the dissipation in the x- direction can be very 

small as it is compared with the standard scaling factor, 

which is 

s 
= SE20zZ 

W 
(5.2.8) 

since SX «S 
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Thus, the total dissipation of equation (5.2.1) is 

severely reduced. According to Martinelli (1987), the use 

of the decomposed scaling factor is acceptable for aspect 

ratios of up to 10. 

5.2.1.3 Redistribution of Scaling Factor 

In order to redistribute the scaling factor to each 

coordinate direction, a function which depends upon the 

cell aspect ratio was proposed by Martinelli (1987) and 

Kuntz and. Lakshminarayana (1992). This idea is based on 

the techniques of flux splitting (Van Leer(1977) and 

Stager and Warming(1981)). In the ý- direction of the 

curvilinear coordinate system, the scaling factor becomes 

S :, - (r r)( 
4o1 

) (5.2.9) 
7,5 ý 

where r= 
df ¬, r= 

ät 
and 

Vol 
defined in equation 777 At f 

(3.4.7a). In two dimensions, Martinelli (1987) defined the 

scaling factor as 

0(r 
)=1+ =1r (5.2.10) 

4( r, ) are defined accordingly. 

Kuntz and Lakshminarayana (1992) defined the scaling 

factor in three dimensions as 

0(r, rS' )=(1 r7 +r 
S 

(5.2.11) 

where 0< cK< 1 for equation (5.2.10) and (5.2.11). 
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Cheng (1992) proposed a slight variation to the 

Martinelli scaling factor in three dimensions, as follows, 

ý(r7 r )= 1+ max(rý , rý ) (5.2.12) 

In two dimensions, Cheng's modification reduces to that of 

Martinelli. 

An alternative to Kuntz's aspect ratio function is a 

modified form of the function originated from Cheng's 

aspect ratio function of equation (5.2.11), 

(r7 r)_ [1 + max(r r, )) (5.2.13) 

Refering to equation (5.2.11) and (5.2.13), the 

modified formula is different from that of Kuntz in the 

use of the maximum function. The value of from 

equation (5.2.11) is always more than that from equation 

(5.2.13) because this maximum function eliminates the 

smallest contribution between rh and r 

Following the analysis in sections 5.2.1.2, the 

effect of the distribution function 0 (r) in cartesian 

coordinate in two dimensions can be shown as follows. 

The second order dissipation in x-direction- 

dx(2) Ox 
4t 

E2 (Wi+1, j - 2Wi. j + Wi-l, j) (5.2.14a) 
jr. 

and in y direction 

dY(2) =Y AV tE2 (Wi. 7+1 - 2Wi. j + W(5.2.14b) 

i Using Martinelli model which can be expressed as 
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s r °( 4 
-1 *(SX J 

(5.2.15) 

where Sy/Sx =A tx/, ity represents the cell aspect ratio 

effect, gj 
y 

is expressed accordingly. Using a Taylor 

series expansion and substituting 0x and 0y into 

equation (5.2.14a) and (5.2.14b) respectively the total 

second order dissipation which is the summation of 

equations (5.2.14a) and (5.2.14b) is 

4ýs E? 1 ýx Vol. 1SX2 32W 
- or Vol iy2 tx 2xß a 2y2 (5.2.16) ý' 

The effect of cell aspect ratio on the scaling factors is 

distributed by the function 0X 
and 

ýy 
which depend on 

the ratio Sy/SX. The analysis for the fourth order 

dissipation follows the same derivation as above. 

According to Martinelli, the use of the distributed 

scaling factor is acceptable for aspect ratio of up to 

500. 

The Martinelli and Kuntz models have different 

effects on the dissipation and it will be elaborated in 

the following sections. 

A) Martinelli's Model 

The effect of the Martinelli's aspect ratio function 

on the dissipation for a two dimensional case can be 

illustrated in figure-5.1a. For high aspect ratio cells, 

it can be shown that the dissipation component along the 

length of the cells is reduced and that along the width of 

the cells increased relative to the original (standard 

model). Thus this may result in an increase of the 
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dissipation in some regions. In three dimensions, Cheng 

modified the function by eliminating the smallest aspect 

ratio terms. 

B) Kuntz's Model 

The effect of Kuntz's aspect ratio function on the 

dissipation for a two dimensional case can be illustrated 

in figure-5.1b. For a high aspect ratio cell, it can be 

shown that the dissipation component along both directions 

is reduced. The magnitude of the reduction is 

proportional to the length of the cell in each direction. 

The largest reduction is along the length of the high 

aspect ratio cell and its implementation always results in 

the reduction of the total dissipation. 

5.2.2 Model Based on Velocity Scaling Factor 

Dissipation has to be reduced in high viscous' regions 

in order to obtain physically meaningful results. This 

can be achieved by multiplying the dissipation with a 

velocity scaling function as in Swanson and Turkel (1987), 

and Kuntz and Lakshminarayana (1992). This is 

VV 

LL l J= of 
yre (5.2-17) 

In low velocity regions, this function can also reduce 

dissipation by a suitable choice of the reference 

velocity. Instead of velocity, this function can also be 

defined based on Mach Number. 

5.2.3 Model based on Vorticity Scaling Factor 

In order to reduce the dissipation in high viscous 

regions Hall (1994) uses vorticity as a sensor as follows 
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1 jtu 7) -1+ Fw (5.2.18) 

where Fa 04 14 T AND W =) PX VI 

ýLm J4 4ND Y=. 4 !! -fý"' 
19 Y 

In two dimensions Vx V= jam 
- 

This function is multiplied by the dissipation flux of 

equation (3.4.5). The resulting dissipation fluxes are 

much smaller than the viscous fluxes in the high viscous 

region near to the wall. 

5.2.4 Modification of Scaling Factor based on 

Characteristic Dissipation 

The time dependent Euler equations can be expressed 

in characteritic form which describes the propagation of 

characteristic waves. In one dimension, the Euler 

equation is 

aw+ aF =o Ti äx 
(5.2.19) 

where F is flux vector in the x- direction expressed in 

equation (3.2.1). With Jacobian matrix, it becomes 

1f +A äß 
a (5.2.19a) 

The matrix A1 is the one dimensional version of matrix A 

in appendix-3.1. Diagonalizing matrix A1 and writting the 

equation in decoupled form 

(5.2.20) 

where Q= T-1 W and T is a matrix of eigenvectors 

and-& Q is the diagonal matrix where the elements are the 

eigenvalues of matrix A1: 
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U00 (5.2.21) 
ý. 

Q= O U+G 0 
00U -C 

Thus equation (5.2.20) describes the characteristic wave 

field, the propagating speeds of which are the diagonal 

elements of-/L Q. 
In explicit time marching methods, the convergence of 

the iterative process can be improved upon if each 

characteritic field is marched forward by its 

characteristic time step, which is a function of the 

propagating speed of the characteristic. The speed of 

propagation of the characteristic governs the size of the 

time step. In the standard model, the same scaling factor 

is used for all the characteristic fields. As such the 

slow characterics can get an excessive amount of 

dissipation. With characteristic based dissipation, the 

scaling factor is dependent on the characteric speed which 

will not generate excessive dissipation for the slow 

characteristics, see Pierce (1994). 

5.2.5 Models that aimed at Improving the shock resolutions 

by modifying the Second Order Dissipation 

The second order dissipation is turned on wherever a 

shock exists. The accuracy of the shock in terms of its 

location and strength is strongly influenced by the second 

order dissipation. The following sections present several 

improved versions based on modification to the sensor for 

second order dissipation, the capturing capability of the 

shock and the shock strength. 

30 



5.2.5.1 Model that modify the Sensor for the Second order 

Dissipation 

The standard sensor 6ijk of equation (3.4.5c) does 

not distinguish between expansion and compression waves. 

In order to eliminate the possibility of the 

dissipation being switched on by expansion waves, Jameson 

and Liu (1988) replaced the pressure switch by an entropy 

or a divergence of velocity switch. 

In the ý- direction for the two dimensional case, 

the sensor with the entropy switch becomes 

E 
i, j I SEi+1/2, j - SEi-1/2, j 1 (5.2.22) 

and the sensor with the divergence velocity switch becomes 

si. 
] 

0 

if V. VL <0 

if V. VL> 0 

(5.2.23) 

where Q. VL is the divergence of the local velocity. 

5.2.5.2 Model that Improve on the Shock Capturing 

Capability 

At or near to the shock front, the sensor 

lPt+i, 1 - 2Pi, i + Pi-1,11 
IPi+l, i + 2Pt, i + Pt-i, i I (3.4.5c) 

will detect a change in static pressure which will be 

strong enough to turn on the second order dissipation. In 

the standard model, 

e2 =K2 max( 8 
i, j' s i+l, j) (5.2.24) 
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This sensor is calculated on cell (i, j) and (i+l, j). By 

calculating the sensors over more grid points, the sensors 

are more likely to capture the shock over wider region. 

In this case Kuntz and Lakshminarayana (1992) proposed 

ßc2 =K2 max( Si-1,;, S 
, j, 

Sý 
, j) 

(5.2.25b) i1+1 

and Turkel (1988) proposed 

E2 =K2 max( Si-1, j' 
Si, 

j' 
8 

i+l, j' 
Si+2, 

j) (5.2.25c) 

Thus, the shock capturing capability is increased because 

the shock can be captured over a wider region. 

5.2.5.3 Improvement on the Shock Strength 

The resulting shock wave from the standard model 

tends to be smeared over several grid points. Three 

improvements are available but they may require more 

computational time. 

A) Matrix Dissipation 

The standard scaling factor is the summation of the 

maximum eigenvalue of the Jacobian matrices expressed in 

equation (5.2.3). The Jacobian matrices are 

F 
A=a in the x- direction (5.2.26a) 

aW 

aG B= in the y- direction (5.2.26b) 
13w 

where F. G and W are from equation (3.2.1) 

In cartesian coordinates, the maximum eigenvalue in the x 

- direction is SX of equation (5.2.3) and the ones in the 

other directions are defined accordingly. 

In order to improve the shock sharpness, the maximum 

eigenvalues are replaced by the absolute values of the 
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matrices. This idea comes from the upwind scheme 

discussed by Turkel (1988), Swanson and Turkel (1992), and 

Turkel and Vatsa (1994). Thus the scaling factors become, 

SX =IAI and Sy =IBI (5.2.27) 

The calculation of the absolute values of these matrices 

is quite complicated and is discussed by Turkel and Vatsa 

(1994). 

B) Total Variant Diminishing (TVD) 

Pre-shock overshoot and post-shock undershoot can be 

limited by ensuring TVD property in the solution (Causon, 

1988). The total variation of a variable , for instance 

u, is t 

TV (U) = 
au 

dx 
JI dx 

_cop (5.2.28) 

where TV = Total Variant 

The TVD property will be fulfilled if 

TV(u(x, t2)) < TV(u(x, t1)) for t2 > t1 (5.2.29) 

where t is time (see, Pierce(1994)). 

From equation (5.2.29) a function ty 2 
can be defined as 

2 IPi+t. 
) - 2p.., + Pi - , iI '1+i, j - (1 - w)(IP, +t. ) - P=, iI + IPA,., -p, - 1. ) 1) +w(P. +t, ) + 2p,,, + pi-1, j) 

(5.2.30) 

where u) =a user input constant 

Thus, any overshoot and undershot can be minimized by 

replacing second order coefficient E2 with the function 

y2 because the second order dissipation with' Ip 2 is 

larger than that with 62. Implementation of the TVD 
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function and matrix dissipation will produce low 

dissipation in smooth regions of the flow as well as damp 

out overshoots near shocks (Swanson and Turkel, 1992) . "5.2.6 
Shock Resolution Improvement by Grid Refinement 

By refining the grid, a sharp shock can be obtained 

but the computational time will increase. =.. i 

5.2.7 Controlling the generation of dispersive error 

The formulation of the fourth order dissipation as in 

equation (3.4.5) generates dissipation as well as 

dispersion which can create wiggles in the solution. Iný- 

order to generate dissipation only, the fourth order -- 
dissipation is changed to 

4-4 Vol di+ 
z , 

j, k - Ei+ 2 
, I, 

k 
ýý 

Qt 
)i+1, J, k (Wi+2,1, 

k -2 Wi+1,1, k + Wi, 
3, k )- 

Vol 
Et 

)i-1, i, k(Wi+1, i, k - 2Wi, i, k + Wi-1, i, k)] (5.2.31) 

as presented by Caughey (1988), Turkel (1988)-, and Swason 

and Turkel (1987).. 

However, Caughey found that the solution with the 

fourth order dissipation of equation (5.2.31) is almost,: 

identical to the solution of equation (3.4.5). The 

dispersive error is actually introduced by the second 

order dissipation. 

5.3 Proposed Flow Gradient Dissipation Function 

One of the important factors in the formulation of 

artificial dissipation is the differencing such as second- 

order differencing, I 

S 
i2 W= Wi+l, 7, k - 2Wj, ], k + Wi-l, j, k' (5.3.1) 
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It depends on the grid size and flow derivatives. For a 

given arbitrary function such as the one that describes 

the variation in the flow variables, the derivatives of 

that function will have a contribution to the magnitude of 

the dissipation. The level of its contribution depends 

upon the order of the derivatives in question. Higher 

order derivatives make'greater contribution than lower 

order derivatives. The standard dissipation model which 

contains fourth order derivatives is large in regions of 

large flow gradient such as the leading and trailing edges 

and near wall region. 

A flow gradient correction function is proposed in 

order to reduce the dissipation where the flow gradient is 

high. There is a built-in sensor for detecting the 

variations of flow properties and it is based on Mach 

number difference. In the direction, the function is 

as follows, 

1 
ýf(ý)E), 

+2, i, k = 1+(öEM)I+i, 3, k 
(5.3.2) 

where _ 
IMi+i, i, k - Mi, i, k ýbEM)i+2, ß, k - Min(et 

In order to avoid divergence during the iterative 

process due to insufficient dissipation, the magnitude of 

the gradient function can be controlled either by a factor 

B or by defining a cut off value fD, as elaborated below. 

A) Controlling Factor B 

The magnitude of the sensor 6M is reduced by a factor B 
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1 
f(V)4 =1 

-}-B& M (5.3.3) 3 

where B<1 

B) Cut off values 

By setting B=1, a cut off value can be defined as the 

lower limit of the function along each of the coordinate 

direction. For instance, along the direction 

fD* < f(V) 
s<1 (5.3.4) 

and 0< fDf <1 

If fDy is set to zero , the values of the f(v)¬ will cover 

the entire range of the Mach number variation. .. 
5.4 Implementation of Various Models 

The cell aspect ratio functions of equation (5.2.10), 

through equation (5.2.13) are implemented to study the 

effect of the cell aspect ratio on the accuracy of the 

solution. The ability of the velocity or Mach number 

correction function (5.2.17) to reduce dissipations in the 

near wall region will be verified with the inviscid and 

viscous test cases. As a comparison results with the 

anisotropic factors approach in equation (3.4.5b) will- -. 

also be included in this study. 

The proposed gradient correction function of equation 

(5.3.2) will be implemented to investigate its effect on 

the high viscous region. The result of the dissipation 

modification is represented in all the figures by the 

total dissipation flux of the x- momentum. Note--that the 

dissipative and viscous fluxes are plotted along grid 

points. 
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5.4.1 Test Cases 

An inviscid test case will provide the understanding 

about the geometric effect of the dissipation modification 

since the inaccuracy due to turbulence modelling is 

eliminated. On the other hand, laminar and turbulent cases 

of the flat plate case will'provide understanding of the 

effect of the dissipation on the viscous flow without any 

geometric complexity. 

5.4.1.1 Inviscid Test Case 

This test case is computed for flow over a Ni's bump 

(Ni(1982)) with inlet Mach numbers of 0.5 and 0.675. For 

the first case the flow remains subsonic throughout. For 

the second case the flow becomes transonic and a shock 

wave appears. The second and fourth order dissipation 

coefficient K2 and K4 used are shown in table-5.1 to 

table-5.4. The grid has 78 X 15 points (figure-5.2). The 

cell aspect ratios near to the wall are high with their 

lengths in the flow direction. Inýthe inviscid flow, 

there is no large velocity gradient near to the wall in 

the normal direction. However, a change in the flow 

direction near to the leading and trailing edges 

of the bump will create a large variation of flow 

properties which in time generates a large gradient in 

that direction. Since the dissipation is a function of the 

flow gradient, it will be dominant along the length of the 

high-aspect ratio cells. 

Thus, the total dissipation in the two dimensional 

case is 
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Dj =D+D (5.4.1) 

where the flow direction is along direction 

Near to the leading and trailing edges 

DD (5.4.2) 

where 4 is normal to the wall. 

A) Results with the Aspect Ratio Functionr 

Two aspect ratio functions are implemented. These are 

Kuntz's aspect ratio function of equation (5.2.11) and the 

modified aspect ratio function of equation (5.2.13). The.. '. 

modified function gives more reduction in the dissipation. -. 

than Kuntz's function but the resulting dissipation 

may be too low to obtain a converged solution. Thus, the 

Kuntz's formula is implemented first with the results 

shown in table-5.1. It shows a reduction of the mass mean 

losses for both the subsonic and transonic cases relative- 

to the results with the standard model. However, the 

total pressure generation at the inlet region has 

increased in the transonic case (figure-5.3 and -5.4). 

The magnitude of the scaling factor is a function of 

the cell geometry and propagation speed of the 

characteristics (equation (5.2.2)). This speed is derived- 

from the eigenvalue of the jacobian of'the convective term 

in the governing equations of the flow. It is found thatl 

the influence of the cell geometry on the scaling factor i 

in high Mach number flow regions is small because the .. 
speed of the characteristic is high. In order to obtain. - 
significant improvement with the aspect ratio function, 

the constant a in equation (5.2.11) has to be reduced as., 
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the flow speed increases. Therefore, the constant of in 

the aspect ratio function used for the transonic case is 

0.4 and the one for the subsonic case is 0.6666. The 

detailed explaination is in Appendix-5.1. 

In the subsonic case, the isentropic Mach number 

plots on the bump and the upper boundary for both the 

standard and the modified dissipations are approximately 

the same. The error in the mass flow rate of the standard 

case is slightly lower than that from the modified case. 

In the transonic case, the use of the aspect ratio 

correction function results in a slight improvement in the 

shock sharpness (figure-5.5). The error in the mass flow 

rate is slightly increased. 

In the near wall region, the dominant dissipation D 

is significantly reduced in the leading and trailing edge 

regions for subsonic and transonic cases since it is along 

the length of the high aspect ratio cell (figure-5.6 & 

5.7. ). The plots in these figures are along one grid line 

next to the bump. Near the upper boundary in the area 

where the cell aspect ratio is close to one, the effect of 

the aspect ratio is not significant. However, the 

implementation of the aspect ratio function for subsonic 

and transonic cases still results in the reduction of the 

dissipation in that region (figure-5.8a and b). Even 

though the cell aspect ratio is close to one in the inlet 

and exit regions near to the upper boundary, the 

investigation finds that the scaling factor due to the 

aspect ratio function is less than the standard scaling 
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factor because the value of is less than one. This will 

be shown in the following paragraph. 

In two dimensions, the scaling factor with Kuntz 

model is, 

1T 
ýý oC Vol 

(5.4.4) 

The isotropic scaling factor of the standard version is, 

Vol 1+ dfý 
S-(-I () ' af¬ Gtn (5.4: 5) 

as the aspect ratio ( At /I tq ) approaches one, S¬ is Y 

still less than S since « is less than one. 

In regions away from the bump, the length of the cell 

is along the q- direction. The aspect ratio function"-',, 

reduces the dissipation component along the q- direction-, 

more than it reduces the dissipation component along the' 

f- direction. 

For the subsonic case, the modified aspect ratio 

function (equation (5.2.13)) generates lower total pressure 

loss than the Kuntz's aspect ratio function (table-5.3 "ü 

and figure-5.9). For the transonic case, the modified i-* 

function does not introduce any significant reduction in'-` 

the total pressure loss. 

Since this test case is actually quasi three 

dimensional with one cell thickness in the 
.C -'direction,: 

the rc is not zero. In its implementation, the Kuntz's " 

aspect ratio function is in the form of equation (5.2.11). 

The modified aspect ratio function (equation (5.2.13)) 

eliminates either rI or r5 terms. The result is that the 
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scaling factor of the modified function is less than the 

scaling factor of the Kuntz function. Because of the 

lower o<value for the transonic case compared with the 

value for the subsonic case, that elimination has little 

effect on the modification of the scaling factor. 

B) Results with Mach Number Function 

In this test case, the Mach number function is 

defined as 

f(M) = ML/Mmax (5.4.6) 

The ratio of ML/Mmax is always less than one since 

Mmax is the maximum Mach number in the region. Mutiplying 

the dissipation flux by this ratio evaluated at the cell 

faces results in a reduction of the dissipation. Since 

the Mach number varies, this reduction also varies in the 

region. The Mach number correction function is 

implemented in combination with the aspect ratio function 

due to Kuntz. In order to obtain a converged solution the 

value of the fourth order constant K4 has to be increased 

from the standard value for both the subsonic and 

transonic cases. During the iteration, ML can be very low 

so that the resulting dissipation with standard K4 is too 

low to achieve convergence. The results of the 

implementation of the combination of the aspect ratio and 

Mach number function are shown in table-5.3. 

For the subsonic case, the total pressure loss with 

Mach number function is higher than the total pressure 

loss without Mach number function. This is partly due to 

the fact that a higher value of fourth order constant 
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is needed to obtain a converged solution. Thus, the 

implementation of the Mach number function does not result 

in a more accurate solution. The magnitude of the Mach 

number function is not low enough to compensate for the 

increase in the fourth order dissipation due to the 

increase in the value of the fourth order coefficient, K4.. 

For the transonic case, the total pressure loss 

with the Mach number function is lower than the total 

pressure loss without the Mach number function 

(figure-5.10). The Mach number function is low enough to 

reduce the increase of the fourth order dissipation due to 

the increase of the K4. Almost all of the reduction of 

the dissipation due to Mach number function is in the 

regions of leading and trailing edges of the bump because, 

of the low Mach number in those regions. However, the 

resulting total pressure generation increases. 

C) Results of Grid Refinement 

A sharper shock can be obtained by refining the grid- 

around the shock. The fine grid system is 90 X 24 

(figure-5.11). The fine grid solution has a sharper 

shock, lower total pressure loss and slightly better 

conservation of mass (table-5.4, figure-5.12 & -5.13). 
However, the fine grid computation requires more CPU time. 

This result is computed with the standard dissipation. 

5.4.1.2 Flat Plate Test Case 

In order to eliminate geometric complexity and 

investigate the effect of the dissipation on viscous flow, 

flat plate flow is computed for laminar and turbulent 
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cases. The computation is done with the standard condition 

of zero static pressure gradient along the flat plate. The 

inlet Mach number is equal to 0.5. Two grid systems are 

used with sizes 78 X 61 and 76 X 31 (figure 5.14). 

The laminar flow is computed on both grids whereas 

the turbulent flow is computed only on the second grid 

system because the first grid is not fine enough to 

resolve the boundary layer. The results of the 

computations of the laminar and turbulent flows are 

compared with the Blasius and 1/7th power law solutions 

respectively (White (1974) and Schlichting (1979)). 

A) Results with Standard Model 

The flow is first computed with the standard 

dissipation. In the first grid system, the laminar 

computation can converge without dissipation, but the 

displacement thickness and velocity profile are inaccurate 

in relation to the analytical solution. In the second 

grid system, a small amount of dissipation is required for 

both laminar and turbulent computations. K4 is set to be 

0.0005 for this test case whereas K4 for other test cases 

is 0.008. 

Because the dissipation is only a small amount, the 

viscous fluxes is larger than the dissipation in the high 

viscous region. The laminar cases are computed at 

Reynolds Numbers of 2X105,3X105 and 7X105 with the second 

grid but still show discrepancies in the boundary layer 

velocity profiles. However, the results are still more 

accurate than those with the first grid system 
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(figure-5.15). Therefore, the investigation will continue 

with the second grid only. The turbulent computation also 

shows discrepancies in the skin friction and velocity 

profile at Reynolds Number = 1.221 X 106 (figure-5.16). 

The dissipation is a function of the grid size and 

flow gradient which in the normal y- direction can be ýx 

expressed as 

Sy2yj yWJ (5.4.7) 

(see equation (3.4.3)) 

where the fourth order difference can be expressed as 
SyW =f 

ayw 

y 4Yt 
ayy 

(5.4.8) 

The second order difference is eliminated because this is 

a subsonic case. With the 78 X 61 grid, .y near to the,, -' 

wall is not small enough to reduce the effect of the high, 

flow gradient normal to the wall ( 
y) so that the near QY 

wall differencing is larger than the differencing near to' 

the boundary layer edge. Since the dissipation in"the 

normal direction is the dominating one , the near wall 

dissipation is larger than that at the boundary layer 

edge. 

With the 78 X 31 grid, the near the wall py is so 

small that the differencing near to the wall is smaller 

than the differencing near to the boundary layer edge. 

Thus, the near wall dissipation is smaller than the 

dissipation near to the boundary layer edge. 

B) Results with the Aspect Ratio Function 

In this computation, the aspect ratio function used, 
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is that due to Kuntz with c< set to 0.6666 and 0.0 for the 

laminar case and 0.6666 for the turbulent flow. 

Analysis in the leading edge regions of the laminar 

and turbulent cases shows that the flow gradient along the 

length of the high aspect ratio cell is higher than that 

along the width of the cell. As a consequence, the 

component of the dissipation along to the length of the 

cell is dominating. Thus, the aspect ratio function is 

very effective in reducing the total dissipation in the 

leading edge region. The reduction of the dissipation in 

the laminar case with o< = 0.0 is more than that with ex = 

0.6666 because the aspect ratio function with the first 

value severely reduces the dominant component along the 

length of the high aspect ratio cell. 

For the case with c, 4 = 0.0, the scaling factor is 

redistributed anisotropically. The differences in each 

direction are multiplied by a scaling factor in that 

direction. Since the dissipation component in the 

direction of the length of the high aspect ratio cell is 

reduced significantly which results in significant 

reduction of the total dissipation, the computational 

results show large oscillation in the flow solutions. 

This large oscillation generates high error. Thus, the 

total pressure loss with oe= 0.0 is higher than that 

with o< =. 0.6666. The loss is also higher than that 

without the aspect ratio function (figure-5.17). 

In regions away from the leading edge but still close 

to the solid surface, the flow gradient across the 
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boundary layer results in the dominant dissipation 

component being normal to the wall. The flow gradient 

parallel to the wall is zero because of zero pressure 

gradient. The aspect ratio function will not be effective 

in the boundary layer since the dominant component is 

along the width of the high aspect ratio cell. 

For laminar flow with both values ofcC , the aspect 

ratio function has very little effect in reducing the 

discrepancies in the boundary layer velocity profile in'- 

this region. For the case with o< =0.6666, the 

computational results show reduction in total pressure 

loss. 

For the turbulent flow, the aspect ratio function 

also has very little effect in reducing the above 

mentioned discrepancies in the same region. 

C) Results with the Anisotropic Factor 

By setting the anisotropic factor in the normal 

direction to 0.025, the dissipation in laminar and 

turbulent cases is effectively reduced (figure-5.18). 

However, discrepancies in the boundary layer velocity 

profile still exist. For the laminar flow, the total 

pressure loss is reduced (figure-5.19). 

D) Results with the Velocity Function 

The velocity function of equation (5.2.17) with Vref 

Vinf is implemented together with the aspect ratio 

function. This reduces the dissipation in the boundary 

layer. Because the viscous fluxes are larger than the 

dissipation, the reduction of the dissipation in that 
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region does not have any significant effect on the 

accuracy. 

Also, the implementation of the velocity function 

with quadratic formulation such as 

VL Vt 

J( )_ý Vhf Vnf (5.4.9) 

severely reduces dissipation in the near wall. 

E) Results with the Gradient Function 

The gradient function with controlling factor B 

(equation (5.3.3)) is implemented in combination with 

Kuntz's aspect ratio function. Since the K4 value of 

0.0005 will result in small dissipation relative to other 

cases with higher K4, the reduction of the dissipation due 

to the gradient function is small. 

5.4.2 Two Dimensional Test Case 

5.4.2.1 Computational Result with Standard Dissipation 

Model 

The flow over a two dimensional high pressure (HP) 

turbine blade has been computed for turbulent flow. Flow 

at the inlet is subsonic with supersonic outlet. The 

sheared H-type grid used has grid size 134 X 41 

(figure-5.20). The inlet flow conditions are 

Pt = 159.519 kPa 

Tt = 298.15 °K 

8ý = 56.75 

Exit static pressure, Poutlet- 65.722 kPa 

The dissipation coefficients are K2 = 0.008 and K4 = 0.008 

The mass flow is approximately conserved within 1.57 %. 
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The computed total pressure loss at the exit is 11 % 

whereas the experimental data is about 9 %. 

A contour of flow density clearly shows shocks on 

the suction and pressure sides of the blade (figure-5.21). 

The pressure side trailing edge shock is weak. Velocity 

vectors show that the boundary layer on the suction side 

stays attached. 

Analysis of the computational results shows that the 

dissipation is higher than the viscous fluxes in the 

highly viscous region by factors of 2 to 10. A contour of 

the viscous fluxes of the energy equation indicates that 

the high viscous regions are located near the surface of 

the blade, in the wake region and near leading edge. The 

value of the second order dissipation is high at the 

suction side shock but is zero at the pressure side shock 

because the pressure side shock is too weak to turn on the 

second order dissipation. 

A) Analysis of the Computational Result 

By comparing with the experimental result (Xu, 1986), 

the computational result is inaccurate because the 

boundary layer on the suction surface is not separated, 

the pressure surface shock is too weak and the loss is 

high. 

A. 1) Contributing Factors to the Inaccuracy 

A. 1.1) Effect of Cell Aspect Ratio 

The clustering of grid lines near to the solid wall 

results in cells of high aspect ratio. The scaling factor 

will be high for the dissipation component along the cell 
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length direction in high aspect ratio cells. This 

phenomena is-explained in section 5.2.1.1. Since the 

dissipation in each direction is also dependent on other 

factors such as the flow gradient, grid size, etc., the 

high scaling factor may not result in excessive 

dissipation in that direction. 

A. 1.2) Effect of Grid Refinement 

The grid refinement in the 1/ 
- direction can reduce 

the dissipation. However, the computational results do 

not show this effect because the grid size is not small 

enough to reduce the effect of the flow gradient. The 

detail of the explanation is in the analysis section 

5.4.1.2. 

A. 1.3) Effect of Difference 

In this case, the differencing of the flow parameters 

has a dominant effect. This can be explained by following 

the analysis of the section 5.4.1.2. The fourth 

difference in the approximate normal direction is 

Sy i'V qy 44 jf 
ý--Y 

(5.4.10) 7 an 
where Qn is the grid size. 

In the highly viscous region with the coarse grid used in 

this case, the dominant effect is from the large variation 

of the flow parameters approximately normal to the wall. 

It is approximately normal because the differencing in 

equation (5.4.10) is along the blade to blade direction 

which is not quite normal to the blade surface because of 

the sheared grid. 
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A. 2) Inaccuracy in Flow Phenomena 

A. 2.1) Nonseparated Boundary Layer due to Excessive 

Dissipation 

Since the numerical dissipation is higher than the y 

viscous fluxes, the high dissipation energizes the 

boundary layer so that it is stronger and can overcome the 

adverse pressure gradient on the suction surface of they 

blade. Therefore, the boundary layer is more difficult to 

separate. However, other factors such as turbulent 

modelling or viscous discretization can also contribute'to 

the inaccuracy of the nonseparated boundary layer. 

A. 2.2) Computational Shock Wave 

A. 2.2.1) Shock Strength 

The computed shock on the pressure surf aceýnear to 

the trailing edge is rather weak (figure-5.21). The 

experimental result has a much stronger shock which 

extends all the way to the suction surface of the adjacent 

blade and causes the boundary layer to separate 

(figure-5.22). Factors which affect the shock strength 

include the second order dissipation coefficient and grid 

size. 

A. 2.2.2) Overshoot due to the Domination of Fourth Order 

Dissipation over Second Order Dissipation 

The total dissipation for a cell centre at (i, j, k) 

location is decomposed into the second and fourth order 

dissipations for comparison. On a face located at 

i+1/2, j, k, the dissipation is expressed in equation 

(3.4.5). The second and fourth order dissipations at cell 

faces actually depend on the first and third order 
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differences. 

If there is a discontinuity along the flow direction 

at. face (i+1/2, j), the second order coefficient 

E2 i+1/2, j°/ 0 and the fourth order coefficient 
4M0 

le i+1/2, j 

At'face (i-1/2, j), 

62i-1/2, j = K2 {max( Ö 
j' j)} 

which is equivalent to equation (3.4.5a) where 

S- 
IPi, J-2Pi-l, 7+pi-2, j1 

i-1, j 

(Pi, 7+2pi-lj+pi-2, jl 

and i, j is from equation (3.4.5c) 

(5.4.11) 

(5.4.11a) 

If the variation in p along the flow direction at face 

(i-1/2, j) is so small that the value of the sensor 

and 6j 
i_l,, j are negligible then the second order 

coefficient 
2i-1/2, 

j =0 and fourth order coefficient 
4 #0. 

i-1/2, j If there is no discontinuity in the blade E 

to blade direction E2i, j+1/2 =0 and E4i, j_1/2 
/ 0. 

Thus, the fourth order dissipation is not turned off 

at the faces of (i-1/2, j), (i, j+1/2), and (i, j-1/2). The 

total dissipation at the cell centre is the summation of 

the second and fourth order dissipation at all cell faces. 

Unless `c 
2 71 0 and E4=0 at all cell faces, the fourth 

order dissipation still exists on some of the faces. 

Since in this case the fourth derivative is larger than 

the'second derivative, the fourth order dissipation is 

still dominating even in the presence of shocks. 

According to Jameson (1981), the fourth order-dissipation 
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near the shock introduces overshoots. ;:.. y 

5.4.2.2 Improved Models 

A) Results with Aspect Ratio Function ý. N 

With Kuntz's function, the computation cannot achieve 

convergence since the reduced dissipation is not enough to 

damp out the oscillation in the solution. Thus, the k,. _. 

subsequent computations are done with Cheng's function 

setting <=0.8333. 

On the suction surface, the dissipation component in 

the blade to blade direction is higher than the 

dissipation component in the streamwise direction because 

the gradient in the former is higher than the latter. .., 

This high gradient is generated by the boundary layer 

effect. Since the length of the high aspect ratio cell on 

the suction surface is along the flow direction, Cheng's-. 

aspect ratio function will increase the high dissipation :; 

and decrease the low dissipation components. Thus, the 

total dissipation increases. 

In the exit region, the dissipation component in the 

streamwise direction is higher than the dissipation 

component in the blade to blade direction because of the 

high aspect ratio cell in the flow direction. The aspect 

ratio function reduces the dissipation because the 

dominant component is reduced. 

At the leading and trailing edge regions away from 

the blade surfaces, the dominant dissipation generated by 

the high flow gradient is along the length of the high 

aspect ratio cells which is in the blade to blade 
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direction. Thus, the aspect ratio function reduces the 

dissipation which makes a significant contribution to the 

overall reduction of total pressure loss (figure-5.23). 

B) Results with the Mach Number Function 

In order to reduce the dissipation in the boundary 

layer region such as the near wall region, a Mach number 

function is implemented. However, this function does not 

sufficiently reduce the dissipation because the grid lines 

in that region cannot resolve the boundary layer 

accurately. The computation with the velocity function 

also gives the same results. Kuntz and Lakshminarayana 

(1992) successfully reduced the dissipation in the 

boundary layer by using the velocity function with grid of 

129 X 100 whereas the current computation is with grid of 

134 X 41. Their grid system had a grid line distribution 

fine enough to resolve the boundary layer. 

C) Result with the Anisotropic Factor 

The anisotropic factors in the ¬- and %j - directions 

used for the three test cases of different outlet Mach 

numbers 0.9,1.0, and 1.2 are f ac ¬ =0.5 and face =0.05. 

The reduced dissipation modifies the solution. Because 

the solution is modified, the viscous fluxes is also 

reduced. The ratio of the dissipation with respect to the 

viscous fluxes for the standard solution is almost the 

same as that with the improved model. However, the 

summation of the dissipation and viscous fluxes of the 

improved model is less than that of the standard model. 

Since the accuracy depends upon that summation, the 
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application of the anisotropic factors resulted in the 

reduction of the total pressure loss (figure-5.24) and 

slight improvement in the prediction of the isentropic 

Mach number on the suction side (figure-5.25a and b). 

D) Result with the Gradient Function 

The proposed gradient function of equation (5.3.2) is 

implemented to reduce the dissipation in high flow 

gradient regions. The function with controlling factorýB` 

of equation (5.3.3) is implemented first. This results in 

an increase in dissipation in the near wall region because 

the flow gradient changes but the total pressure loss 

are reduced. The reason is that the effectiveness of the" 

sensor 1ý M is reduced severely because B has to be equalii 

to 0.01 in order to achieve convergence. The flow 

gradient function with cut off values of equation (5.3.2)-, 

is implemented. These cut off values are, 

fD =1 (5.4.12a) 

0.75 < fD <1 (5-4.12b)- 

The result shows that the dissipation is slighly reduced., '. 

and the total pressure loss is also reduced (figure-5.26),. 

5.4.3 Three Dimensional Test Cases 

Three test cases are computed. These are flows over- 

a high pressure turbine blade, a transonic fan blade and, 

an engine intake nacelle. The purpose of implementing the 

gradient and aspect ratio function is to reduce the 

dissipation in critical regions where cell aspect ratio . °m 

and flow gradient are high. 
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5.4.3.1 High Pressure Turbine Test Case 

The flow over three dimensional high pressure turbine 

blade has been computed for turbulence flow. The grid 

used is 97 X 37 X 33, and is of the sheared H typed' 

(figure-5.27). Inlet boundary condition are total 

pressure, Pt = 179.86kPa, total temperature, Tt = 287°K 

with inlet flow angle 9 varying from hub to casing. On 

the outlet plane, a constant static pressure distribution 

is specified. The computation converges with K2 = 0.0 and 

K4 = 0.008. The mass flow is approximately conserved to 

within 1.2 %. The computational result of the mass mean 

total pressure at a distance of approximately 7 mm 

downstream of the trailing edge is 174.7 kPa whereas the 

experimental result is 176 kPa (Jefferson, 1990). There 

is total pressure generation in the blade passage 

(figure-5.28). The plots of isentropic Mach number at a 

mid height section on the suction and pressure side show 

relatively accurate results (figure-5.29). 

A) Analysis of the Computational Result 

Input parameters used for the Kuntz aspect ratio 

function of equation (5.2.11) and gradient function of 

equation (5.3.2) are in table-5.5. In the implementation 

of both functions, the ' value used is the smallest below 

which the computation starts to diverge. In fact, the fD 

cannot be reduced below one. The implementation of the 

aspect ratio function reduces the total pressure loss at 

the exit but it does not eliminate the total pressure 

generation. Whereas the implementation of the flow 
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gradient function results in the increase of the total 

pressure loss at the exit and the elimination of the total 

pressure generation (figure-5.30). 

A. 1) Relationship of Total Pressure Generation, 

Dissipation and Flow Acceleration 

Analysis reveals the existence of positive 

dissipation in regions of flow acceleration which appears 

to result in the total pressure generation. Analysis will 

be carried out for a quasi one dimensional flow through 11 a 

diverging nozzle (Shapiro, (1953)) (figure-5.31) to explain 

this, 

The momentum equation 

pXAX +m VX =pyAy+ mVy + Ff + Fp +D (5.4.13) 

The continuity equation 

m= fXVXAX =f VyAy (5.4.14) 

Substituting equation (5.4.14) into equation (5.4.13) and', 

using the ideal gas law the result gives `. 

pX(1+ M2X)AX = py(1+ M2y)Ay +T f+ Fp +D (5.4.15) 

Normalization with Pt and A and expressing the ratio P/Pt 

and A/A as a function of Mach number, the result is 

Ptxf(MX)AX = Ptyf(My)AY + Ff + Fp +D 

1+, yMi where f(Mr) _ (1 + 'Y-1 M=) ºz 2 

and f(My) is defined accordingly. 

Assuming the total pressure difference as 

Pty = Ptx +4 Pt 

(5.4.16) 

(5.4.16a) 

(5.4.17) 

156 



PtX(f(MX)AX - f(My)Ay) - Ff - Fp -D 
then 4 Pt = (5.4.17a) 

f(My)Ay 

without dissipation and friction force, Ff, a Pt = 0, 

since the rate of change of momentum balances the pressure 

force, FP. 

The acceleration effect comes through the momentum 

flux difference which is 

f(MX) AX - f(My) Ay >0 (5.4.18) 

With the dissipation present, this value will decrease 

because in the presence of the viscous effect the 

acceleration is slowed down. Thus, the imbalance between 

the momentum flux and the forces is created. The addition 

of the positive dissipation will try to rebalance these 

quantities but its magnitude is so large that it also 

generates total pressure. The result of the two 

dimensional turbine blade of section 5.4.2 does not show 

total pressure generation because the dissipation is 

mostly negative. 

A. 2) Analysis of the Computational Result in Various 

Region of the Flow 

The effects of the improved dissipation function is 

elaborated at each of 

figure-5.32. Except 

will be concentrating 

dissipation component 

smaller than the ones 

blade directions. 

the local region depicted in 

Eor the endwall regions, the analysis 

on the midspan region where the 

along the radial direction is 

along the streamwise and blade to 
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A. 2.1) Leading Edge 

In a region away from the blade leading edge, 

designated region A in figure-5.33, the length of the high 

aspect ratio cells is in the blade to blade direction. 

This results in the dominant dissipation component along 

the length of the cells. 

In region B in figure-5.33, the dominant effect of 

the flow deceleration on the flow gradient is along the 

flow direction because of the stagnation point. The 

dominant dissipation is along that direction which is 

along the width of the high aspect ratio cells. 

Therefore, the aspect ratio function is more effective in 

reducing the dissipation in region A than in B. The 

reason is that the direction of the dominant dissipation 

is changing from that along the length to that along the: '' 

width of the high aspect ratio cells. Whereas the 

gradient function is more effective in reducing the 

dissipation in region B than that in A because of the high 

gradient in B (figure-5.34). 

A. 2.2) Suction Surface 

Here the dissipation component in the blade to blade 

direction is dominant near the wall because of the high 

flow gradient in the boundary layer. The dissipation 

component in the flow direction is dominant in the leading 

and trailing edge regions because of the high flow 

gradient in that direction. This component is also 

dominant in the wake because of the high scaling factor in 

the flow direction (figure-5.35). 
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A plot of the dissipation component along the span 

shows that the dominant component in the blade to blade 

direction reaches its maximum near to the midspan blade 

passage. The reason is that the boundary layer is thinner 

near midspan than near to the endwalls. However, the 

dissipation component in the radial direction is dominant 

near to the endwalls because of the gradient inýthe 

endwall boundary layer (figure-5.36). The dissipative 

fluxes are higher than the viscous fluxes in the front 

part but the two become comparable in the rear part of the 

blade (figure-5.37). The reason is that in the front part 

the boundary layer is thin and in the rear part the 

boundary layer is thick. The boundary layer becomes thick 

because of the the diffusion in the flow 

Except for the regions near to the leading and 

trailing edges, the gradient function reduces-the dominant 

component more than it does the nondominant component 

because the former component has higher gradients than the 

latter. The Kuntz's aspect ratio function reduces the 

nondominant component more than the dominant component 

because the first component is along the length of the 

high aspect ratio cell. Therefore, the gradient function 

is more effective in reducing the dissipation than the 

aspect ratio function (figure-5.38). The combination of 

the gradient function and aspect ratio function reduces 

the dissipation even more than the gradient function alone 

(figure-5.39). The plot along the span shows that the 

dissipation reduction due to the gradient function is 
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larger than the one due to the aspect ratio function. 

This plot also shows the effect of the flow gradient 

function where the maximum reduction is achieved in the 

midspan region (figure-5.40). The reduced dissipation-. is=., 

still higher than the viscous fluxes because the viscous-_` 

fluxes are also affected by the modification function 

(figure-5.37). 

A. 2.3) Pressure Surface , ;µx 

The effects of f low gradient, aspect ratio, etc. on'.:. 

the dissipation near to the pressure surface are the same 

as the ones on the suction surface where the dominant 

dissipation is generated by the large flow gradient. This 

is especially so near to the leading and trailing edges, -J-, 

where the dissipation is large. However, the dissipation. 

level is lower than the one on the suction surface. The 

gradient function is more effective in reducing the large= 

dissipation near to the trailing edge than the aspect 

ratio function (figure-5.41). 

A. 2.4) Trailing Edge 

The dissipation is generated by the high flow 

1 

gradient because of the change of flow direction near to-_I 

the trailing edge. However, as one goes from the trailing 

edge to the exit, the flow gradient diminishes because the 

influence of the trailing edge diminishes. Therefore, the 

reduction of the dissipation due to the gradient function 

diminishes (figure-5.42). The aspect ratio function does 

not reduce the dissipation because the dominant component 

is along the width of the high aspect ratio cell. 
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A. 2.5) Exit Region 

The dominant component is in the flow direction 

because of the high aspect ratio cell along that 

direction. In this region, the aspect ratio function is 

more effective in reducing the dissipation than the 

gradient function because the flow gradient is not large 

enough to cause significant dissipation reduction through 

the gradient function (figure-5.43). 

A. 2.6) Endwalls 

The effects of the flow gradient, cell aspect ratio 

etc, on the dissipation in the hub and casing are the 

same. The effect due to the blade surfaces in the corner 

region between the endwalls and the blade surfaces is the 

same as that in midspan. ° The additional effect of the 

endwalls is to increase the dissipation component along 

the radial direction so that it becomes dominant because 

of the high flow gradient generated by the endwall 

boundary layer. In the corner region where the cell 

aspect ratio is high, the width and height of the cells 

which are along the blade to blade and radial direction 

respectively are much smaller than the length. 

The aspect ratio function reduces the dominant 

component'along the width and height of the cell less than 

it reduces the nondominant component along the length of 

the cells. The gradient function reduces the dominant 

component (along the high gradient direction) more than it 

does the nondominant component (along the low gradient 

direction). Therefore, the gradient function is more 
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effective in reducing the dissipation than the aspect ,: 
w. r 

ratio function (figure-5.44). 

In regions away from the blade surfaces, the effect:;, -: 

of the blade surfaces diminishes so that the blade to 

blade direction is no longer dominant. The remaining 

dominant component is that along the height of the cell=. or 

in the radial direction which is still smaller than the :,: 
width and the length of the cells. Thus, the aspect ratio--, - 
function reduces the dominant components less than it-does 

the nondominant ones. The gradient function also reduces, 

the dominant component more than it reduces the 

nondominant one. This is especially the case downstream 

of the trailing edge as illustrated in figure-5.45. 

Therefore, the gradient function is more effective in 

reducing the dissipation than the aspect ratio function, �a 

whereas the combination of the gradient and aspect ratio;,:; 

function is even more effective in reducing the 

dissipation than the gradient function alone. 

Plots of velocity vectors on a meridional plane in 

the middle of the blade passage show the hub boundary ;:, p 
layer separating in the diffusion region as a result of 

the implementation of the combined aspect ratio and 

gradient function (figure-5.46 a and b). This phenomena 

has already been explained for the two dimensional case in 

section 5.4.2.1. 

The dissipation is comparable to the viscous fluxes 

near to the corner of the hub and suction surface but it 

is larger than the viscous fluxes near to the corner of 
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the hub and pressure surface. As the dissipation is 

reduced by the flow gradient function, the viscous fluxes 

are shifted towards positive values. However, the reduced 

dissipation is still dominanting compared with the" 

modified viscous fluxes (figure-5.47). 

A. 3) Secondary Flow of the Computational Result 

The investigation will concentrates on the flow 

phenomena near to the hub on different axial planes 

(figure-5.48). The horseshoe vortices are captured by the 

plot of the secondary velocity at a location downstream of 

the leading edge (figure-5.49a). The suction surface 

vortex stays at the corner of the hub and suction surface 

whereas the'pressure side vortex moves away from the 

pressure side toward the suction side as one traces the 

vortices in the blade passage (figure-5.49 b& c). The 

boundary layer migration is observed to occur in the blade 

passage from pressure side towards the suction surface 

(figure-5.50). This induces a blade to blade flow which 

turns radially upward from the hub to the suction surface 

(Niehuis, Lucking and Stubert, 1990, and Horton, 1990) 

(figure-5.51). This-flow finally wraps around to become a 

passage vortex (figure-5.52). At about this location, 

the suction side horseshoe vortex is dissipated by the 

passage vortex since it rotates in the opposite direction 

to the passage vortex. As the horseshoe vortex from the 

pressure surface moves towards the suction surface, it 

finally merges with the passage vortex since these two 

vortices rotate in"the same direction. 
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The development of the above horseshoe and passage ; r. 

vortices confirms the flow model decribed by Sieverding-; 

and Van den Bosch (1983). They describes the synchronous, 

evolution of the horseshoe and passage vortices obtained: ý,, 

by experimental methods which are also discussed by.,. ",. 

Sieverding (1984 and 1985) and Denton (1993). 

At about half way through the blade-passage, a small 

vortex at the corner of the hub and suction side begins-. to 

develop which rotates in the opposite direction to the .,. 

blade passage vortex (figure-5.54). - t°-r 

The effect of the dissipation reduction is clearly--,, -, -, -.,, 
seen near to the trailing edge which increases the 

vorticity at the corner. This can be explained by the 
m, r 

following analysis. 

Momentum equation 

av p+PT. = -Op+V. T+P_fC 

Vortex identity 

T. VT =O(2)-VXw (5.4.20). 

where U= VXV 

Substituting equation (5.4.20) to equation (5.4.19) and Ft 

analyzing for steady state without external forces, the 

result is 
Z 

Op+p0(v )p(VXZ)+V. r 2 (5.4.21) 

where the viscous term 0. includes the artificial, 

dissipation. 

For a given pressure gradient VP and velocity 

gradient ýý11, the reduction in dissipation will increase,. 
- 
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the vorticity, UJ. Thus, the dissipation will quicken the 

decay of the vortices. As disccused above, the gradient 

function is more effective in reducing the dissipation 

near to the endwalls than the aspect ratio function . 

Thus, the gradient function has greater effect on the 

vortex development than the aspect ratio function. The 

combined aspect ratio and gradient functions will generate 

even higher vortex development than the gradient function 

alone. 

The resulting effect is the growth of the strength of 

the corner vortex with the consequence of decreasing of 

the strength of the passage vortex (figure-5.54). This is 

a consequence of the friction between the corner vortex 

and passage vortex that rotate in the opposite directions. 

The generation of the secondary flow near to the 

casing is similar to the one near to the hub. However, 

there is a radially inward flow towards the hub so that 

the passage vortex near to the casing is being pulled 

towards the hub (Zaccaria and Lakshminarayana (1995)). 

Therefore, the vortex does not rotate the fluid close 

enough to the corner of the suction surface and casing to 

generate the corner vortex. 

At the exit, the reduction of the dissipation by the 

combined aspect ratio and gradient function generate an 

increase in the radial flow. With less viscosity, the 

flow is likely to become more three dimensional 

(figure-5.55). 
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A. 4) Comparison of Computational Wake and Experimental ;,: 

Data 

Contour plots of the total pressure show that the-=-_, 

wake from the computational result is thicker than that,,. 

from the test (Jefferson, 1990) (figure-5.56a & 5.56b). 

The implementation of the aspect ratio function and 

gradient functions or the combination of both functions-'do 

not lead to a reduction of the wake thickness. Most of 

the wake thickness originates from the suction surface 

where the total pressure loss starts to grow significantly_ 

from the leading edge. Improvement of the grid resolution 

in the leading edge region may be able to reduce the wake 

thickness. 

A. 5) Effect of Dissipation Reduction to Exit Whirl Angle. 

A plot of the whirl angle in the radial direction at 

the exit plane indicates flow underturning and overturning 

toward the casing and hub respectively. The effect of the 

cell aspect ratio and flow gradient functions in the wake 

is to increase the underturning and overturning. However, 

the effect of these functions near to the endwalls is to 

decrease the underturning and overturning. This phenomena 

is induced by an increase in the vorticity of the 

secondary flow (figure-5.57). The vertical axis in this 

plot is in millimeters. Thus, the reduction of the 

dissipation due to the aspect ratio and gradient functions 

changes the whirl angle. 

5.4.3.2 Three Dimensional Transonic Fan c 
A three dimensional generic fan blade has been 
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computed. The grid used is 99 X 33 X 33 and of the 

sheared H-type (figure-5.58). Total pressure, total 

temperature and whirl velocity are specified on the inlet 

plane. The total temperature is set constant at 287°K but 

the total pressure and whirl velocity vary radially on the 

inlet plane. At the exit plane, a static pressure 

distribution is speficied. The computation converges with 

K2 = 0.01 and K4 = 0.008. The mass flow is approximately 

conserved to within 1.1 %. The computated total pressure 

loss at the exit is 5.0 % (figure-5.59). An oblique 

shock appears on the leading edge pressure side and merges 

with the normal shock in the blade passage the suction 

surface (figure-5.60). 

A) Analysis of the Computational Result 

Both the gradient function and the aspect ratio 

function of Martinelli are applied here. The 

implementation of Kuntz's aspect ratio function of 

equation (5.2.11) does not achieve convergence because the 

dissipation is reduced in the entire region. On the other 

hand, the three dimensional version of the Martinelli's 

function of equation (5.2.10) increases the dissipation in 

the region where the dominant component is along the width 

of the high aspect ratio cells. 

The cut off value of the gradient function is set to 

be 0.75 for the blade to blade and radial directions, but 

there is no dissipation reduction in the flow direction. 

The constant u( for the aspect ratio function is 0.75. 

The loss shows very little change after implementing the 
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gradient and the combined gradient and aspect ratio 

functions. Since the computation with reduced K41 which,,.,, 

is equal to 0.004, fails to converge, the computational 

result with standard dissipation, where K4 is equal to 

0.008, does not have a large amount of excessive 

dissipation that can be reduced by the modification 

function. The analysis of the result with modified 

dissipation is elaborated as follows: 

A. 1) Analysis of the Dissipation near Suction Surface 

At the front part where the boundary layer -is thin, -; , 

the dissipation is higher than the viscous fluxes and in..., 

the rear part where the boundary layer is thick-the 

dissipation is lower than the viscous fluxes 

(figure-5.61). As the flow enters the diffusion region,,. 

the boundary layer is thickened. The component along the 

blade to blade direction is dominant and the one along the 

radial direction becomes dominant in the rear part of the. 

blade. A plot of the dissipation in the spanwise 

direction shows that the dissipation component along the, 

blade to blade direction reaches its maximum at mid spant 

where the boundary layer is thin and it decreases towards.. 

the endwalls where the boundary layer is thick. In the 

near wall region, the thin boundary layer generates 

steeper gradients than the thick boundary layer. The 

dissipation along the radial direction is also large 

around mid span (figure-5.62). 

The implementation of the. gradient function reduces 

the dissipation because it reduces the component with 
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large gradient which is the dominant one (figure-5.63). 

The results show that the dissipation is larger than the 

viscous fluxes in the front part of the blade. They also 

show that the dissipation is smaller than the viscous 

fluxes in the rear part of the blade (figure-5.64). 

The implementation of the combined aspect ratio and 

gradient functions show less dissipation reduction than 

the implementation of the gradient function alone 

(figure-5.63). This indicates that the magnitude of the 

reduction due to the gradient function is larger than the 

magnitude of the'increment due to the aspect ratio 

function. Thus, the aspect ratio correction to the 

scaling factor has less effect than the gradient 

correction. 

A. 2) Analysis of the Dissipation near Pressure Surface 

The dissipation reaches its maximum value near to the 

leading edge because of large flow gradient, and it is 

larger than the dissipation on the suction surface 

(figure-5.65). This can be clearly seen from the plot of 

the dissipation along the blade to blade direction close 

to the leading edge. The dissipation is large towards the 

pressure surface where the shock stands (figure-5.66). 

The effect of the gradient function on the pressure 

surface is smaller than on the suction surface. 

5.4.3.3 Three Dimensional Engine Intake Nacelle 

The flow through a three dimensional intake nacelle 

has been computed for a turbulence case. The grid used 

is 97 X 18 X 35 and is of C-type (figure-5.67a and b). The 
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flow conditions at the inlet are 

Pt = 101.325 kPa 

Tt = 288°K 

angle of incidence 9i= 21 

and it converges with K2 = 0.0 and K4 = 0.008 

Exit static pressure Pf an = 80kPa and the free stream Mach 

number, Mfree 
stream = 0.35. The computed mass flow isr2 

higher than the experimental data. 

A) Solution with Standard Dissipation 

For a given incidence, the flow is distorted in the, 

radial as well as the circumferential direction. The flow 

distortion can be measured by the distortion coefficientl°: 

DC60 which is defined as follows 

P60 pmean 

DC60 = (5.4.21) 

. 
(1/2) r V2 

This is a measure of the worst mean total pressure-loss.,, 

over a 600 sector at the fan face (Seddon and Goldsmith, -; 

1985). The experimental DC60 is -0.10 and the computed , 

DC60 is -0.0917. 

Plots of streamwise surface isentropic Mach number 

at different circumferential locations indicate inaccuracy 

in the lip region in the inner wall (figure-5.68). 

B) Solution with Modified Dissipation 

The combined gradient and aspect ratio function is 

used because this provided the largest dissipation 

reduction in the earlier high pressure turbine case. The 

cut off values of the gradient function, and the constant 
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cg of the aspect ratio function used are the same as the 

ones in the turbine case. The resulting DC60 is -0.0982. 

The dissipation component along the radial direction 

is dominant because of the flow gradient in that direction 

generated by the boundary layer. The component parallel 

to the wall is large in the inner wall towards the fan 

face and towards the outer exit region. The component 

along the circumferential direction is negligible because 

the flow gradient is negligible (figure-5.69). 

The combined function is effective in reducing the 

dissipation at the different circumferential positions. 

It also smooths out the kink in the dissipation due to the 

geometric changes in the inner wall (figure-5.70a, b). The 

gradient. function significantly reduces the dominant 

component because it is generated by the high gradient. 

The aspect ratio function signicantly reduces the 

nondominant component along the wall because it is along 

the length of the high aspect ratio cells 

In the near wall region at the circumferential 

position where the angle of incidence is almost zero, the 

viscous fluxes are larger than the dissipation from the 

inner lip through to the outer wall. The viscous fluxes 

are also comparable with the dissipation in some parts of 

the inner wall. However, the dissipation is larger than, 

the viscous-fluxes near to the inner wall downstream of 

the lip up to a location where the dissipation plot has a 

kink (figure-5.71a). 

In the near wall region at the circumferential 
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position where the angle of incidence is maximum, the 

viscous fluxes are larger than the dissipation near to the 

inner wall because of the thick boundary layer 

(figure-5.71b). At this position, the flow has to 

overcome the adverse pressure gradient downstream of the" 

shock (figure-5.72). This eventually results in the 

formation of a separation bubble. The boundary layer on- 

the outer wall is thinner than the one on the inner wall; -` 

therefore the viscous fluxes are smaller than the 

dissipation on the outer wall (figure-5.71b). However, the 

viscous fluxes are also comparable with the dissipation 

close to the highlight region. The effect of the 

dissipation reduction is to reduce the viscous fluxes so 

that the dissipation is still higher than the viscous 

f luxes. 

The flow with reduced dissipation has higher 

distortion coefficient than the one with standard 

dissipation which indicates that the flow has higher 

losses. However, the distortion coefficient of the 

reduced dissipation is approaching the experimental 

values. The higher losses are generated by a larger 

separation bubble. In the presence of the adverse 

pressure gradient, the boundary layer with reduced 

dissipation is more likely to produce a larger separation 

bubble. This is shown by a larger extent of reversed flow 

in the velocity profile plot dowmstream of the shock 

(figure-5.73a, b and c) 
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5.5 Conclusion 

The artificial dissipation is shown to be dependent 

on the scaling factors, second and fourth order 

coefficients, flow parameter gradients and the grid 

spacing. With the present test cases, the standard 

version results in discrepancies in losses, shock 

sharpness, nonseparated boundary layer growth°, and total 

pressure generation. The test cases for this 

investigation are Ni's bump, flat plate, two and three 

dimensional high pressure turbine blades, a three 

dimensional fan blade and a three dimensional intake 

nacelle. 

The inviscid Ni's bump flow is computed to 

investigate the effect of the aspect ratio function, Mach 

number function and the grid refinements. In the absence 

of large flow gradient normal to the wall, the dominant 

component of the dissipation is along the length of the 

high aspect ratio cell around the leading and trailing 

edges of the bump. The Kuntz's aspect ratio function is 

very effective in reducing the dominant component of the 

dissipation. Thus, the reduction of the total dissipation 

leads to the reduction of the total pressure losses for 

subsonic and transonic cases and also results in slight 

improvement in shock sharpness for the transonic case. 

The total pressure loss with the combined aspect 

ratio and Mach number function is higher for the subsonic 

case and lower for the transonic case than the one due to 

the aspect ratio function only. The reason is that the 
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fourth order coefficient has to be increased in order to` 

achieve convergence. The implementation of the modified. 

aspect ratio function originating from Cheng results in 

a further reduction of the total pressure loss relative 

to that of Kuntz. Refinement of the grid around the shock 

results in a sharper shock, lower total pressure loss 

and lower mass flow error but it requires more CPU time. ' 

The flat plate is a simple test case for 

investigating the effect of the dissipation on the viscous 

flow in both fine and coarse grids. With the fine grid, 

the grid spacing near to the wall is so small that it 

reduces the effect of the flow gradient to the X= 

dissipation. The computation of both the laminar and 

turbulent flow cases can converge with a small amount of°-` 

dissipation. Therefore, the reduction of dissipation has` 

little effect in reducing the difference in the boundary'-',, " 

layer velocity profile compared to the analytical 

solutions. 

In the near wall region away from the leading edge, 

the dissipation is dominated by the normal component. The 

anisotropic factor reduces the dissipation in the boundary 

layer. The velocity function severely reduces the 

dissipation but the combined gradient and Kuntz's aspect--- 

ratio function only reduces a small amount of the 

dissipation. For laminar flow, the total pressure loss 

is reduced by the aspect ratio function. " In the leading'-' 

edge region, the dissipation component parallel'to the 

wall along the length of the high aspect ratio cells is 
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dominanting. Thus the aspect ratio function reduces the 

total dissipation in this region. 

The computational results of the two dimensional high 

pressure turbine blade with the standard dissipation shows 

inaccuracy in the solution. A comparison with the 

experimental data indicates that the computed shock is 

smeared, suction surface boundary layer separation is not 

predicted and the loss is too high. Analysis of the 

results shows that the dissipation contributes'to the 

inaccuracy. 

In the boundary layer region, the dissipation is 

higher than the viscous fluxes. The high gradient and 

coarse grid size near to the wall in the blade to blade 

direction result in large differences which generate 

dominant dissipation component in that direction. Since 

this component'is actually in the width of the high aspect 

ratio cells, the Cheng's aspect ratio increases the 

dissipation near to the wall. However, this function 

reduces the dissipation near to the leading edge, trailing 

edge and exit region because the dominant component is in 

the length of the high aspect ratio cell. Thus, it 

results in the reduction of losses. The implementation of 

the Kuntz's aspect ratio function does not lead to a 

converged solution because the dissipation is reduced in 

the entire region. The anisotropic factors reduce the 

dissipation in all regions and results in the highest 

reduction of the losses. However, the reduced dissipation 

is still higher than the viscous fluxes. 
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The gradient function with the controlling factor and 

cut off values reduces the losses. Since the case with >; N 

the cut off values provide slight dissipation reduction in 

high viscous region and does not reduce the effectiveness; 

of the gradient sensor, it is implemented in three 

dimensional cases. ;:; » 

The computed results of the three dimensional high ::,. 

pressure turbine blade with the standard dissipation for;; -: 

subsonic turbulent case produces high losses and total 

pressure generation. The gradient function eliminates 

total pressure generation but it results in an increase in 

losses at the exit region. However, the Kuntz Is aspect.., --; 

ratio function cannot eliminate the total pressure 

generation but it slightly reduces the losses at the exit,. 

region. 

The gradient function is more effective in reducing.!: 

the dissipation than the Kuntz's aspect ratio function in,; 

the near wall region, leading and trailing edge regions 

because the dominant component is along the direction of=;; 

high flow gradient. The aspect ratio function is more 

effective in reducing the dissipation than the gradient. = :. 

function near the exit because the effect of the scaling, _- 

factor is large in the dominant component of the 

dissipation. The combined gradient and aspect ratio 

function is more effective in reducing the dissipation 

than the gradient function alone. 

The secondary flow described by the horseshoe, 

passage and corner vortices are captured successfully and; 
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they agree with the experimental observation. The effect 

of the combined gradient and aspect ratio function is an 

increase in the corner vortex strength which results in an 

increased rate of mixing. At the exit plane, this effect 

is described by the increase in radial flow and the change 

of the whirl angle. The accuracy of the wake very much 

depends on the resolution of the boundary layer in the 

leading edge region. 

A three dimensional generic fan is computed to 

investigate the effect of the dissipation reduction in 

transonic flow. However, this particular-case does not 

have excessive dissipation that can be reduced by the 

modification function. Instead of the Kuntz's aspect 

ratio function, the Martinelli's aspect ratio function is 

implemented because the computation with Kuntz's function 

cannot achieve convergence. Near to the wall, the 

gradient function is more effective in reducing the 

dissipation than the combined gradient and aspect ratio 

function because the effect of the gradient is larger than 

the effect of the scaling factor. 

An intake flow at high incidence is computed to 

investigate the effect of the combined gradient and aspect 

ratio function. The loss generated by the flow distortion 

is measured by a distortion coefficient. The predicted 

coefficient is slightly less than the test data. The 

reduction in dissipation due to the combined 

function at the near wall provides better prediction 

because here the flow is more lossy. This is because of 
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lower viscosity where the flow is less capable of ' 

overcoming an adverse pressure gradient generated by the 

shock. This results in a wider region of separation and 

hence higher losses. 

From all of the computational cases several common 

features of the effect of the modification function can be 

summarized in the following paragraph. 

The excessive dissipation component normal to the 

wall is due to the large differences of the flow 

parameters in the boundary layers. The excessive 

dissipation component along the length of the high aspect' 

ratio cell is due to the large scaling factor in that 

direction. The solutions are also inaccurate because the-1' 

dissipation is larger than the viscous fluxes. 

The anisotropic factors have already been implemented 

in the standard version and it effectively reduces the 

excessive total dissipation. The aspect ratio function 

effectively reduces the excessive dissipation component 

along the direction of the cell length through the -'ý 

reduction of the scaling factor. The Mach number or the 

velocity function reduces the dissipation in the boundary 

layer as well as low speed region. "The grid refinement to, 

the near shock leads to increase in the shock sharpness. "-- 

The proposed gradient function effectively reduces the 

excessive dissipation component along the high flow 

gradient region. 
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6.0 EIGENVALUES ANALYSIS 

6.1 Introduction 

A consequence of using the central difference scheme 

in the spatial discretization is that oscillations in the 

solution that grow to cause divergence (Hirsch, 1989). To 

overcome the problem, artificial dissipation is added to 

damp out these oscillations but this generates inaccuracy 

(usually manifest as excessive diffusion and losses). By 

reducing the dissipation, the damping of the oscillation 

becomes less and the convergence of the computation 

becomes slower but the solution becomes more accurate (so 

long as convergence can still be achieved). The intention 

is to balance accuracy and robustness and the method 

proposed here involves selectively reducing the 

dissipation at each grid point, (especially in the 

overdamped region) based on an " eigenvalue" criteria. The 

intention here, therefore, is to develop a robust method 

that will provide a more accurate solution. 

The method involves the use of a matrix technique to 

calculate the eigenvalues for each grid point. These 

values contain information about the stability of the 

scheme (Hirsch, 1989). The addition of the dissipation 

results in reducing the numerical values of the eigenvalue 

spectrum. In general, sufficient dissipation must added 

to make all real parts of eigenvalues negative. Reduction 

of the dissipation increases the numerical values of the 

eigenvalues and eventually some of them may be positive so 

destablizing the scheme. In this way, eigenvalues can be 
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used as a "sensor" to determine how much the dissipation°-, ', 

can be reduced without causing the computation to diverge. 

In other words, the local eigenvalues can be used as a 

means of tailoring the dissipation whilst maintaining 

stability. 

A full implementation of the matrix method* to assess' 
fl. 

the eigenvalues of the two dimensional Navier-Stokes 

equations involves spatial discretization of the flux 

terms providing a semi-discretized equation with both 

I -f transient and steady terms. The transient terms are 

decomposed into a stability matrix (which is actually the 

discretized Jacobian matrix) and a vector which represents 

the discretized state variables. The resulting stabilityj, 

matrix, however, is 16 xnxn (where n is total number of 

grid points) and evaluation of the eigenvalues of this 

matrix is currently prohibitively expensive. 

The objective of utilizing the eigenvalues as sensors 

requires the computation of the eigenvalues at every grid' 

point per iteration within affordable time. Erickson and 

Rizzi (1985), and Mahajan? Dowel and Bliss (1989,1991), 

discussed methods of calculating eigenvalues but the size'' 

of the stability matrix was still 16 xnxn. To overcome 

this problem assumptions are adopted which involve taking 

advantage of the explicit formulation where an approximate 

matrix analysis does not include the influence of the 

neighbouring cells (Santos 1993,1994). This results in n 

4x4 matrices which can be evaluated relatively quickly. 

It should be appreciated, however, that the eigenvalues of 
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the reduced matrix (resulting from the above assumption) 

contain only an approximation of the odd-even decoupling, 

viscous dissipation and nonlinearity influences. 

As already explained, after implementing the 

approximate matrix analysis, the stability matrix is 

reduced to n4x4 matrices (four eigenvalues per point). 

Each state variable such as f, s u, 4v and fe is 

decomposed into four eigenmodes where they depend on all 

four eigenvalues in a manner defined by the eigenvectors. 

Instability then occurs if any of the eigenmodes grow 

without bound and the computation of the Navier-Stokes 

equations requires the addition of artificial dissipation 

to obtain a converged solution where all the real parts of 

the eigenvalues are negative. 

Having assesed the eigenvalues of the system, two 

methods of controlling dissipation are discussed. The 

first method is direct and involves establishing rates of 

convergence (which depends upon eigenvalues) and then 

calculating the necessary dissipation to maintain that 

rate. The method is based upon a system of non-linear 

equations and the method of Inverse Eigenvalue Problem 

(IEP). In order to implement this method, further study is 

required on well posedness of the non-linear equation set. 

In addition, further extension of the IEP is required to 

solve the non-symmetric matrices which characterize the 

stability problem. The second method is indirect and 

based much more simply on reducing dissipation in regions 

of large negative eigenvalues (i. e. overdamped region). 
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This method is implemented for the inviscid f low over Ni's' 

bump (Ni, 1985) and the viscous flow over a two ; M= 

dimensional high pressure turbine blade. 

6.2 Analysis 

6.2.1 Spatial Discretization 
.. f_ 

The implementation of the matrix method to the'Navier, 

Stokes equations requires spatial discretization of the 

flux terms. By following the derivation in section 3.5, a° 

system of linear equations for the entire flow field is 

obtained which is expressed in equation (3.5.6), as 

follows 

dq. 
qi, J + RG Adt 

where 
qll 
q21 

qNl 
q12 
q22 

qi. J : 
qN2 

. 

q1M 
q2M 

qNM 

(3.5.6) 

; 3. 

where N and M are the maximum index of i and "j , 

respectively and the derivation of matrix MG will be 

elaborated in the following paragraph. 

In the two dimensional case, the flux at face 

(i+1/2, j) (represented by equation (3.5.5)) is 
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Flux +1/2, j ={(A+C) A SX - (B+D)A Sy )(qi+l /2'j)/2 
Similar expressions are substituted into equation (3.5.2) 

which is 

Adelt' 
4 

+EHp. Np4iSp=O 
p=1 

MG qi, j can then be expanded as 

Mr41, i = 
{-(A + C)LSs - (B + D)OSy};, i- L qi, j-t + {-(A + C)fS= + (B + D)ASy}i_,, jq'-l ,j 

+[{(A + C)tS= - (B +D)zSy}, +1, j + {-(A +C)LSZ + (B + D)ASy}i_ _ 
{(A + C)fSs + (B + D)fSy}1 j+1 + {-(A + C)ASZ - (B + D)OSy}1, 

_ 1 Jq,,, + 
22 

{(A + C)ASs - (B + D)ASy}, 
+ + {(A + C)AS, + (B + D)ASy},. 

J+=q,, )+i 

(6.2.1) 

Since the viscous Jacobian matrices C and D (in 

equation 6.2.1) contain derivative operators, the terms 

belonging to neighbouring cells qi+l, j, qi-l, j' qi, j+l and 

gi, j_1 are expanded to cover other neighbouring cells 

(figure-6.1) (this is a consequence of the viscous 

discretization scheme adopted). After decomposing MG qi, j 
into matrix (MG) and vector (qi, j) format, the matrix MG 

becomes 

MG = {mi+2, j' mi+1, j' mi, j' mi-1, j' mi-2, j' mi+l, j+i' 

mir? +1' mi-1. j+1' mi+l. ]-1' mi. j-1' mi-1. j-1' mi, j+2' 

mi. 7-2} (6.2.2) 

The size is 16 xnxn where n is the total number of grid 

points. The elements depend upon the inviscid and viscous 

Jacobian matrices. 

The major effects described by the eigenvalues of the 
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matrix MG are i) the odd-even decoupling from the 

convection term, ii) viscous dissipation from the 

diffusion term, and, iii) nonlinearity of the Navier- 

Stokes equations. A detailed analysis of these effects 

will be elaborated by using a test model of a scalar 

equation. 

6.2.1.1 Odd-Even Decoupling 

The background to odd-even decoupling was explained Y 
in section 3.4, and the semi discretized equation (3.4.3) 

which is 

tplu,, ti-f- =0 
W41 

can be expressed in matrix form as 
t 

dU 
+ Mo U= Ro (6.2.3) 

dt 

where 

01u 
-1 01 u2 

-1 01 u2 
a ...... 

M=...... and U= 
0 26 x ...... 

-1 01 
-1 

-1 0 un-1. n 
Thus, U is a vector of the one dimensional' variable ui; 

matrix Mo is an nxn tridiagonal matrix of the form 

M0(l, c, r) where the diagonal element c is zero (n is 

number of grid points) and Ro contains the nonhomogenous 

terms. By incorporating periodic boundary conditions, - the 

eigenvalues can be calculated with the following formula''- 

(Hirsch, 1989) 
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aJ c+(1+r)cos22_ - IN(l -r)sin2r3 (6.2.4) 
nn 

and Ro is zero. 

In this case, c=0,1=-a/ (2 A x) , r=a/ (2 & x) , and IN = V1 

then the eigenvalues are 

A, 
20z 

(IN)sin 2ni (6.2.5) 

where j=1,..., n 

Since all eigenvalues are imaginary, the solution is 

oscillatory. This is, in fact, due to the odd-even 

decoupling because the matrix Mo does not depend on the 

values at the cell i itself. Since all real eigenvalues 

are zero, the matrix method indicates that the time 

evolution of the variable ui in the semi discretized 

equation (6.2.3) is neutrally stable. 

6.2.1.2 Viscous Dissipation 

The diffusion terms generate dissipation which, in 

the Navier Stokes equations, are represented by the 

viscous terms. In order to investigate the viscous 

dissipation, a linear scalar convection-diffusion equation 

is used as a test. This equation has the following form 

aU+a a'1- va? u k fix- T%1 (6.2.6) 

With the finite volume method, this equation is integrated 

and the resulting semi discretized equation is 

Alu Q 
uý+ý-uý-ý 

_y 
Iau1 

_ Ax 
au +=1 X/ äX J-1 Ax (6.2.7) dt 

ýaý,. 

(The values at the faces (i+l/2) and (i-1/2) are 
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approximated by straight averaging). The convection term 

becomes similar to the one in equation (3.4.2) whereas the- 

derivatives of the diffusion term is evaluated in a 

similar manner to the convection terms. Substituting the 

result into equation (6.2.7), for a uniform grid, this: } 

equation becomes 

Äu 
+a 

uA+! (, i-4-1 

tax (6.2. ß) 

By writing the above equation in matrix form, -it ý 

simplifies to 

av _ A MSU+9, 

where the formulation of matrix Ms is 

2'a_ JL ns 
, dXL' ' GXt 2ýSX ý` (6.2.10) 

and its size is nxn (n being the number of grid points) ., ý. 

and again RS contains the nonhomogenous terms. ' This 

matrix is no longer tridiagonal. Because the matrix MS 

contains a diffusion constant ýJ 
, its eigenvalues contain" 

information about the viscous effect. Since the diagonal,, 

elements of matrix MS are not zero, the time evolution of"., - 

ui depends upon ui and its neighbours which provide 

coupling among the values at cell i and its neighbours. 

6.2.1.3 Nonlinearity 

Nonlinear effects are investigated by using'a 

non-linear scalar convection equation as a test model 

which is 
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0+ ar«)1Ux) 
-1 LL ax (6.2.11) 

where a(u) is a function u 

In the finite volume method, this equation is integrated 

and the resulting semi-discretized equation is 

oILý_ 
a14J1U4+k-O4_ U4_44 

_ 
dý ax (6.2.12) 

where ai+1/2 - a(ui+ui+l)/2 

As in the previous section, ui+1/2 is evaluated by a 

straight averaging approximation and in a uniform grid the 

above equation can be written as 

d u4 A- Uý-. 444, - 174-4, u, + u4-tt =0 Ai ; Zdx .2 AX . 2bX (6.2.13) 

By writing the above equation in matrix form then 

dU 
+MLU=RL (1.2Nj 

dt 

For a linear case, variable a does not depend on variable 

u so ai+l/2 ai+l/2 =0 and the above equation then 

becomes the same as equation (3.4.3). In the non-linear 

case, the matrix ML is nxn tridiagonal with the form of 

4.4 -J. 
QA+t- dA- 

I 
Qjf 

1z 4x (6.2.15) 

and RL contains the nonhomogenous terms 

Its eigenvalues contain information about nonlinear 

effects which come from the diagonal elements. Because 

those elements are not zero, the time evolution of ui 

depends upon ui and its neighbours. Thus nonlinear 

effects provide coupling between ui and its neighbours. 
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6.2.1.4 Approximate Formula 

The computation of the eigenvalues of matrix MG of 

equation (3.5.6) with the size 16 xnxn would consume =-' 

considerable computing time and memory. As a first step 

towards reducing this, an approximate method is studied. ".. 

This method discards the dependence of the time evolution 

of ui on its neighbours and was first proposed by Santos, 

(1993 and 1994). 

It should be clear from the above analysis that the'', 

coefficient of the terms belonging to neighbouring` cells'xý 

determine the effect of the odd-even decoupling as well'as 

viscous dissipation. If the terms belonging to the 

neighbouring cell are not included in the calculation of, 
l,, 

the eigenvalues, the resulting eigenvalues will not 

contain the effect of the odd-even decoupling and will not 

represent the full effect of the viscous dissipation. 

Thus, they represent a reduced effect of the viscous 

dissipation and nonlinearity which will be analyzed in the 

following paragraphs. x 

The combination of the viscous dissipation and 

nonlinearity effect can be expressed by combining equation 

(6.2.8) and (6.2.13). Then, the combined equation in semi 

discretized form will be 

UAý r, 4 l dxZ 4X 
),. 

(6.2.16),. -- 

which in matrix form is - 

" du _ + mA L) - R, 4 (6.2.17): 

where the size of the matrix is still nxn. RA contains 
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terms belonging to the neighbouring cells and 

nonhomogenous terms. Thus, the elements of the diagonal 

matrix MA is 

__ (2- v_ a44 a4-l /M* 
6xz 2 AX (6.2.18) 

In this analysis, the variables U and RA can be 

expressed as a summation of the eigenvectors of the matrix 

MA (Tropper, 1969 and Ayres, 1974), which will be 

nn 

U(t) = EU, (t)V(i) RA = >RAjV(i) 
l=1 3=1 

(6.2.19) 

where Uz(t) is the time dependent coefficient of U(t), RAj 

are coefficients of RA, and V(j) are the eigenvectors. 

Following the derivation by Hirsch (1989), the 

solution for U(t) can be expressed as 

n 

u(t) = E[(voi + 
RA' 

)ea; t_ RAj ]y(i) (6.2.20) 
i=1 J 

where Uoj is the coefficient of the expansion of u(t )at 

t=0. Thus, the solution of equation (6.2.20) is the 

summation of n eigenmodes and in order to achieve a 

converged solution none of the modes should grow without 

bound during the iteration. Since the eigenvalues of the 

diagonal matrix MA are the diagonal elements, then 

4 
laZ2 ax (6.2.21) 

At convergence, the eigenvalues must be negative then 
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° 
(QX'' 

24X (6.2.22)"' 

The contribution of the dissipation - (äX1) is always *. k .. _ 
stabilizing. The destabilizing effect come from the 

nonlinearity which depends on 2 Ax 
The value of the variable a(u) of equation (6.2.11), 

at any location contributes to one eigenvalue controlingý 

time evolution of one eigenmode at every ui. It should be 

noted that each element (ui) of vector U depends upon the 

entire eigenvalue spectrum. 

6.3 Navier Stokes Equations 

In the implementation of the above mentioned 

approximate formula to the two dimensional Navier Stokes, ='1° 

equations, each diagonal element of the matrix MA in 

equation (6.2.17) becomes a4x4 matrix. By multiplying 

the matrix MA with a state variable vector the result is a 

system of semi-discretized equations such as 

qll (MJ)11 q11 (RJ)11 

d q21 (MJ)21 q21 (RJ)21 

dt 

Q L MN 
(MJ)MN qMN (RJ)MN 

where M and N are maximum indices of i and j. 

This system of equations is decoupled because the 

time evolution of the variable qi, j depends only on the 

corresponding values of qi, j. Thus, further 

simplification is possible and the system can be-expressedl,, 
, 
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as a series of simple equations of the form 

dqi. J 
MJ qi. ] + RJ (3.5.7) 

dt 

which is, in fact equation (3.5.7) derived in section 3.5. 

Thus, the computation of the eigenvalues has been greatly 

reduced because they are computed from a series of n4x4 

matrices. 

6.3.1 Viscous Jacobian Matrix 

The matrix MJ of the above equation consists of 

contributions from convection and diffusion terms of the 

Navier Stokes equations. From equation (3.2.1) vectors of 

the diffusion terms Fv and Gv can be written as matrix 

operators multiplied by vectors of primitive variables. 

For instance, 

Fv = Mc p 

where 

00 0 0 bp 

M=0 
3µäs 

( 

-3µä= 0 P_ 
Su 

a 0µa µa 0 b by 
y 

at a2 
= 

a3 a4 be 

k at 
p ax 

az = (T= +3 µu 
a+ 

u" 
a 

cl a 
a3 - (rry - 

3pu 
+µv ) 

y 

a4 =k 
p ax 

T: Z =p (3az 3av) y 

au ov Txy=µ( +a") 

(6.3.2) 

(6.3.2a) 
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In order to extract the Jacobian matrices from the 

vectors Fv and Gv (so that they can be expressed as 

equation (3.5.4b)), 

Fv =Cq; Gv =Dq 

the vector of the primitives variables is decomposed into 

the form 

P= Mpq qD (6.3.3) 

where Mpq is a conversion matrix from vector qD to vector 

P which is 

, xt1 
000 

_u 
bp 

1 00 b(Pu) 
Mpq P0P0 and qD = b(Pv) 

} 2 (u2 + v2) (1 -7)U (1 -'Y)v 7-1 b(Pe) 

( 3., 
Substituting P of equation (6.3.3) into equation (6.3.2) 

results in 

Fv = Mc Mpq qD (6.3.5) 

Equation (6.3.2a) shows that the matrix operator Mc must 

be applied to matrix Mpq and vector qD in order to 

represent the full effects of the diffusion terms. Also, 

as Mc is a matrix operator, then 

Fv = Mc operates on Mpq while qD is constant + Mc operates 

on qD while Mpq is constant. 

then 

Fv = Mcpq qD + Mc (Mpq qD) (6.3.6) 

where Mcpq is the result of the first operation and in the 

second term Mc does not operate on Mpq. After some 
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manipulation, the vector Fv become 

Fv (Mcpq + M'cpq )qCq (6.3.7) 

where M'cpq is a matrix which is extracted from the second 

term of equation (6.3.6). The contribution of Mcpq and 

M'cpq can be clearly shown by inspecting an element of the 

matrix C, for instance (see, appendix-3.1) 

C22-µ{4N 
Pý+4 a} 

3 Ox 3 äz (6.3.8) 

where the first term is an element of Mcpq and the second 

term is an element of matrix M'cpq. 

The matrix M'cpq expresses derivatives on the cell 

faces which simulate viscous dissipation. This can be 

shown, for instance, by evaluating the contributions of an 

element of matrix C at face i+l/2, j. By using the same 

element as in the above, the viscous flux will be 

Flux = (C22 q2) (6.3.9) 
ax 

where q2 is equal to p u. Subtituting c22 and q2 into 

equation (6.3.9), then 

I 

Flux =a 
419 7) +4a }Pu (6.3.10) 

öx 3 -ax 3 8x 
In this case, the second term of equation (6.3.10) is 

Second term = 
3ßz {1p} (6.3.11) 

P 
For simplicity assume r =constant (valid for low 

subsonic Mach numbers), then 

Second term =42 3µ 8z 
(6.3.12) 
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This term simulates dissipation originating from the 

viscous terms. 

Since the second matrix M'cpq is diagonally dominant, 

the eigenvalues of that matrix are strongly influenced by 

those diagonal elements. These eigenvalues determine the' 

stability of the computation, therefore these diagonal 

elements contain information about the contribution of the 

viscous dissipation to stability. Thus, comparison of 

these diagonal elements and the element of the matrix NiD 

(representing artificial dissipation, equation (3.5.10a)) 

indicates the influence of the viscous terms and 

artificial dissipation on the stability. 
ti 

If the diagonal elements of the matrix M'cpq are less 

than the elements of the matrix MD in highly viscous 

regions then the viscous term will not be sufficient to 

damp out the oscillations (i. e. the computation will be 

unstable). This phenomena has been observed in the two 

dimensional high pressure turbine blade case discussed in 

chapter 5. If these diagonal elements are more than they 

elements of the matrix MD, then the viscous dissipation 

will dominate convergence. This phenomena has been 

observed in the flat plate case in chapter 5. 

Thus, the ability of the viscous fluxes to damp out 

the oscillation can be estimated by comparing the diagonal 

elements of matrix M'cpq with elements of matrix MD. This 

compares the viscous fluxes with the artificial 

dissipation which is further discussed in chapter 5. 
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6.3.2 Matrix Method 

In the implementation of the matrix method, each 

element of vector qi, j of equation (3.5.7) can be 

expressed as a summation of four eigenmodes. For instance, 

the expression for element r at cell (i, j) is 

4 

P(t) = >[(Poj +ý )eý'st _ 
Rývli) 

j=1 J 
(6.3.13) 

This follows from equation (6.2.20) where Poi and Ri are 

the coefficient of the vector r(t) at time t=0 and 

vector RJ, respectively. vl(j) is the first element of 

eigenvector Vi. The other elements such as 'u, gIv and ce 

can also be expressed as summations of the eigenvectors 

and written in a similar manner. 

These eigenvalues are subject to similar constraints 

to the scalar equations. Therefore, the eigenvalues of 

matrix Mi of equation (3.5.7) contain the influence of 

non-linearity but a reduced effect of the viscous 

dissipation. In general, convergence cannot be achieved 

in the standard Navier-Stokes code without additional 

dissipation being added. 

6.3.3 Dissipation 

With the addition of artificial dissipation, 

converged solutions can be obtained where eigenvalues are 

all negative. The dissipation model adopted expressed in 

equation (3.4.5) can be expanded for the f- direction, 

and in two dimensions it is as follows (Jameson, Schmith, 

and Turkel, 1981), 
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_ 
Vol 2 Vol df (Qt )i+ 

2 
, 
), k'E i+ 

2 , J( ̀qi+l. ) Qi, l) - 
(Qt )i-1. 

), k Et- I 
(Q+"J 

- q+-1. J 

Vol 
Z: t . ci+2, J(qi+z. ý - 3qß+,. j + 3q,. ) - q, -I. j)+ 

Vol 

Et 
)i-2.,, kE, -ij(gi+i. j - 3qß, ) + 39. -I. ) - q, -2. j) 

(6.3.14) 

By expanding the dissipation in the q- direction as in_,, 

equation (6.3.14), the total dissipation will be 

dtotal = df + d, 

which depends upon variable qi, j at 12 locations 

corresponding to the computational molecule required for-' 

the viscous f lux evaluation (figure-6.1). In matrix form", " 

it will be similar to matrix MG of equation (6.2.2). The: 

addition of the dissipation to the semi-discretized 

equation (3.5.6) contributes to the corresponding elements 

of matrix MG so that the eigenvalues at convergence are 

all negative. 

After implementing the approximation formula, the 

semi-discretized equation with the artificial dissipation 

becomes 

Addtj -MT9i, i + R1. j 

where MT is expressed in equation (3.5.10) 

(6.3.15)1.. 

6.4 Dissipation Control 1 

Large negative eigenvalues result in a high rate of 5 

convergence and low level of residual but, the computation'. 

requires large amounts of artificial dissipation so that 

the accuracy of the solution suffers. Such eigenvalues 
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indicate overdamped regions which are the result of 

excessive dissipation that may not be necessary to achieve 

convergence. Methods of dissipation reduction which 

guarantee enough dissipation to achieve convergence will 

now be investigated. 

6.4.1 Characteristic Equation 

The eigenvalues of a matrix are the roots of a 

characteristic equation which is obtained by setting a 

determinant of the matrix equal to zero. The determinant 

of a matrix, M is defined as 

Determinant =I M- )ýI (6.4.1) 

where I is an identity matrix and ) are eigenvalues. 

When the determinant is expanded, it is equivalent to the 

characteristic equation. For a4x4 matrix, this 

equation is a fourth order polynomial. Then 

4 X3 Determinant =X +13 3 +12 %2 +11 N +10 (6.4.2) 

By setting the determinant = 0, the four roots of this 

equation are the eigenvalues of the matrix M. 

In this investigation, the matrix M is equal to 

matrix MT of equation (3.5.10). With the objective of 

modifying the dissipation, the diagonal elements of the 

matrix MT are considered to be the unknowns since the 

dissipation is only from the diagonal elements. Other 

elements are given. Based upon the calculation of the 

determinant of the matrix MT (Spencer, 1978), the 

resulting coefficient 10,11,12, and 13 are non-linear 

functions of the unknown diagonal elements. Since the 

matrix MT is of the form 
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iTh 

M_ 
&0 21 

Ims 1 
/1'º1M ý 

then the non-li 

ov 
/f ZZ 1"2 ; 

A31 mis; 

Aq Whys 

, near funs 

0 
0 
0 

Mfyy (6.4.3) 

: tion is 

13 = M11 + m22 + m33 + m44 (6.4.4a); 

12 = m11m22+m33m44+(m11+m22)(m33+m44)-m32m23 (6.4.4b) 

11 = m11m22(m33+m 44)-m33m44(m11+m22) 

+m32m23(m11+m44) (6.4.4c)- 

10 = m11m22m33m44+(m32m23)m11m44 (6. -4.4d) 

and since the eigenvalues are the roots of the 

characteristic equation, equation (6.4.2) is equal to 

+. l 

By expanding the right hand side, then 

X4 -J, ý, 3t Al' i, -t'l. =>+ r3 tr1 ,\ (6.4.6 ) 
Coefficients (r0, r1, r2, r3) are constant which depend 

upon the given eigenvalues. The equality sign of the 

above equation will be correct if the coefficients of the*" 

left hand side are equal to the corresponding coefficients 

of the right hand side. Then, the system of non-linear -''"ä 

equations of the diagonal elements for the given` Fs 

eigenvalues is 

m11 + m22 + m33 + m44 =' 1 +>%2 + X3 + A4 (6.4 . 7a) k: 1 

m11m22+m33m44+(m11+m22)(m33+m44)-m32m23 

12+3 4+(%1+%2)('#\3+iý4) (6.4.7b)" 

;. ý sýý: 
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m11m22(m33+m44)-m33m44(m11+m22) 

+m32m23(m11+m44) 

%1ýV %ý3+%4)-%3iý4( ý1+>2) (6.4.7c) 

2X3>4 (6.4.7d) m11m22m33m44+(m32m23)m11m44 = >1 11 

The unknowns are the diagonal elements mll, m22, m33, and 

m44 and the eigenvalues are Al, X2, >`3, and A4 

The objective of setting the rate of convergence and 

computing the required dissipation to sustain that rate is 

elaborated in the following section. It is based upon the 

solution of the system of non-linear equations. 

6.4.1.1 Non-linear solution 

In accordance with the above objective, the system of 

non-linear equations is solved iteratively by Newton's 

method which is elaborated in appendix 6.1 (Ralston, 

1965). 

However, methods of finding solutions of system of 

non-linear equations (including the Newton method) do not 

always converge. One difficulty of the iterative Newton 

method is to find initial guess values at the begining of 

the iteration which will lead to convergence. In general, 

there has not been any methods that always results Win a 

converged solution (Ralston, 1965). 

If a method can be defined, then solutions of 

diagonal elements of matrix MT, equation (6.4.7), can be 

obtained for given eigenvalues. From these elements, a 

parameter d1 can be calculated as 

1,99 



m11 mjil = d1 (6.4.8) 

The parameter d1 corresponds to an element of matrix MD of 

equation (3.5.10a) and mj11 is an element of matrix MJ of 

equation(3.5.7a) and other diagonal elements follow 

accordingly. 

Since, in general, the diagonal-elements of matrix M, r 

are 

m11 m22 ý m33 r m44 (6.4.9) 

and the diagonal element of matrix MJ of equation (3.5.7x) 

are = 

mj11 mj22 mj33T mj44 (6.4.10) 

the element of matrix MD are 

dll X d22 54 d33 d44 (6.4.11) 

Also, from equation (3.5.9) MD q1., j can be expanded as ý'_" 

d, 
o dZ 

00 

o 
00 Tu 

Cl-, o fv- 
o Ve) 4.1. (6.4.12) 

Thus d1 belongs to the continuity equation and the'others": 

belong to the other conservation equations. " With the : 

calculated dl, a factor for dissipation reduction is 

defined as 

fd1= d1/ds ` °(6.4.13) 

where ds is an element of matrix MD expressedin equationy 

(3.5.10a). Since these factor are different, the 

dissipation reduction is different for the continuity, 

momentum and energy equations. By applying these factors 
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to the second and fourth order dissipation constants which 

are K2 and K4 of equation (3.4.5a) and (3.4.5b), the 

reduced dissipations for the continuity, momentum and 

energy equations are computed to achieve given rates of 

convergence. This is only a realistic approach, however, 

if a general solution to the non-linear equation can be 

formulated. 

6.4.1.2 Linearized Solution 

Difficulties with the non-linear solution technique 

can often be overcome by linearizing the system of 

non-linear equations (6.4.7a, bc and d). In which case 

the eigenvalues are calculated for a given dissipation. 

Perturbations of the eigenvalues are introduced, 

- >j _ "Ci +, & Ai (6.4.14) 

to observe any reduction in dissipation. The reduction is 

extracted from the perturbation of the diagonal elements 

of matrix MT which is 

mji = mcii +p mii (6.4.15) 

mcii and > 
cj are the diagonal elements of matrix MT and 

eigenvalues calculated for a given dissipation, 

respectively. 0 mii and o> are the perturbations of the 

coressponding parameters where it is assumed that 

Amis 
«1 and 

AAj 
<<l 

'n`>; j (6.4.16) 

Substituting Xi and mii into equation (6.4.7) and 

neglecting high order terms, a system of linear equation 

is obtained and in matrix form is 

Mmtm = MADa + constant (6.4.17) 
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where Mm and M> are functions of mcii and X 
cj 

respectively. If the perturbation of the eigenvalues 

results in large .m or 

Amii 
>1_.. 

mcii 

the linear equations which are represented by equation 

(6.4.17) are ill posed. 

In the computation of the flow, the dissipation can 

be varied continuously from zero to the amount necessary ,, 
to obtain a converged solution, and at each level of 

dissipation the eigenvalues can be computed. The ill posed 

condition means that for small changes of dissipation, 

which in this case is represented by small-changes of the 

diagonal elements of matrix MT, results in large changes., 

in the eigenvalues (or convergence characteristic). This 

also means that small changes in convergence 

characteristic require large changes in dissipation. Inw,, 

general well posed conditions cannot always be guaranteed. 

In order to use the linearized system of equations further 

study is necessary to investigate the well posedness ofä,. 

the above problem (Vemuri and Karplus, 1981). 

6.4.2 Inverse Eigenvalues Problem 

This method has the same objective as in section 

6.4.1 which is to set the rate of convergence or 

eigenvalues and to compute the required dissipation to: _ , 

maintain that rate. In this method, MI is defined tobe a 

square matrix (n x n) where its elements, (miýj)1 are 

functions of parameters di: 
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(mi, j )I = function(di) 

These parameters will be calculated for given eigenvalues 

of matrix MI. In the implementation to the semi- 

discretized equation (6.3.15), matrix MI is equal to 

matrix MT (with the size of 4x 4) and the parameters are 

elements of matrix MD, equation (3.5.10a). The diagonal 

elements of matrix MT are functions of these parameters 

such that 

, mil tdi) pDO 
mý s' 721'4) /ß+Z 30 MT = ým3ý 3L mss; (a) O 

4y, yý ýyyZ yi i ? q, t1I 
(6.4.19) 

where the parameters are dl, d2, d3, and d4. 

Wilkinson (1988) presented an iterative method of 

solution to calculate di for given eigenvalues of the 

matrix MT for a symmetric matrix but the matrix MT is not 

symmetric. Application of this method to non-symmetric 

matrices lead to difficulties in convergence. Further 

study is required to modify this method so that it is 

applicable to a case with a non-symmetric matrix. 

6.4.3 Eigenvalues Control 

Since the dissipation is directly related to the 

eigenvalues, it is proposed to selectively reduce the 

dissipation at each grid point per iteration by using the 

eigenvalues as sensors. The proposed method will reduce 
dissipation in overdamp regions indicated by large 

negative eigenvalues. This is carried out by implementing 
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the following function, 

Kr =1- fr e-m)ý 0 ..: 

(6.4.20) 

K=1- f(2 - e-m>b 
rr) 

ý< 0 

which is plotted in figure-6.2 

Factor fr determines how low the artificial dissipation =l 

can be reduced as the eigenvalues go to large negative 

values. If the majority of eigenvalues are close to zero, 

m will have to be high enough so that the Kr still gives 

variation of the dissipation reduction. Otherwise, 

Kr=1- fr 

which leads to constant dissipation reduction throughout 

the region. 

Since at every grid point at every iteration there-'- 

are four eigenvalues, the input to the reduction function 

equation (6.4.20) is the maximum of the four eigenvalues. ' 

Thus eigenmodes with maximum eigenvalues are sufficiently!, - 

damped whereas the other modes are still overdamped. --t'" 

The eigenvalues are evaluated at the cell centre 

(i, j). Thus, the reduction factor Kr belongs to that cell"' 

centre. However, the dissipation reduction is applied at, 

cell faces such that the reduced dissipation is 
_. , 

d' i+1/2, j Kr(i+1/2, j) di+1/2, j (6.4.21) 

where di+l/2, j is the two dimensional version of equation: 

(3.4.5) and Kr at the cell face can be approximated by 
aFv 

Kr(i+l, i) + K*(i, i) K*(i+z, j) =2 
(6.4.22)' 

This method of dissipation reduction is tested on inviscid 
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and viscous flows as follows. 

6.5 Results and Discussion 

6.5.1 Inviscid Test Case - Ni's Bump 

The inviscid Ni's bump case had been discussed is 

section 5.4.1.1. For subsonic and transonic cases at 

26000 and 13000 iterations respectively, the logarithmic 

root mean square of the residuals of f, fu, pv and fe 

reach sufficiently low levels that the solution is 

converged. All of the real eigenvalues for both cases are 

negative at convergence (figure-6.3 & -6.4). This 

supports the validity of the approximation technique 

introducted in section 6.2.1.4. 

6.5.1.1 Subsonic Case 

This is the first test case for dissipation reduction 

using eigenvalues as a sensor. Through numerical 

experimentation, it was found that suitable factors m and 

fr of equation (6.4.20) are 0.0001 and 0.375 respectively. 

These values will provide the best combination of 

robustness and accuracy. From figure-6.2, the reduction 

factor Kri, j of equation (6.4.20) reduces to 0.25 as, the 

eigenvalues become large and negative, and it goes to one 

as the eigenvalues approach large positive values. 

In this computation, even though the level of 

residual is higher than that for standard dissipation, it 

is low enough that the computation is considered to be 

converged (figure-6.5 & -6.6). The mass mean total 

pressure loss reduces from about 0.5 % to 0.3 % at the 
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exit (figure-6.7). Thus, the reduction in the total 

pressure loss is 40 at the exit. As dissipation reduces 

the oscillations start to appear upstream of the leading 

and trailing edges. Downstream of the trailing edge, 

there are also an increase in oscillation in of the total' 

pressure. These originate from the less well damped 

oscillations due to the effect of the odd-even decouplirig 

of the central difference scheme. The increase in 

oscillation which is concentrated near the leading and 

trailing edges, is partly due to the discretization error 

which is large in these regions. A plot along a grid line 

near to the bump (from inlet to exit) shows that the 

reduction in dissipation occurs especially around the =_. 

leading and trailing edges (figure-6.8) 

The spectrum of the negative eigenvalues move towards` 

the positive side which indicates that the eigenvalue 

control successfully reduces the level of the overdamping. -` 

(figure-6.9). 

6.4.1.2 Transonic Case 

In order to evaluate a standardised function of the 

dissipation reduction in equation (6.4.20) the factors m",. -, 

and fr are kept the same as in the subsonic case. Thus, `: 

the variation for the reduction factor, Kr with respect to 

the eigenvalues is still the same. The'convergence rate''-'-. 

is flatened out at 6000 iterations. However, the ý.. 

computation continues to 13000 iterations because the 

computation with the standard dissipation requires 13000, *., ',,, 

iterations to converge. 
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The level of residual is relatively high compared 

with the level of residual obtained by using the standard 

dissipation (figure-6.10-&--6.11). The solution is 

actually in a pseudo unsteady state. Let us consider the 

fluxes and time rate of change of the state variables 

which are related by 

dU 
-=I+V-D 
dt 

in a converged solution I+V-D '_`. - 0 

with a high residual I+V-DY0 

where U is the state variable-vector, I is the inviscid 

flux vector ,V is the viscous flux vector and D is the 

dissipative flux vector. Thus, in the case with high 

residual, the state varibles in U is still changing with 

respect to time. As a consequence, there are positive 

eigenvalues which are indicated by the plot of four 

eigenvalues near the bump from inlet to exit 

(figure-6.12). The positive eigenvalues located in the 

shock region (where large variation of flow properties 

exists) are not sufficiently damped by the reduced 

dissipation. Even though the solution is still in a 

pseudo-unsteady state, the reduction of the total pressure 

loss is almost the same as that due to the 

implementation of the combined aspect ratio and Mach 

number function in chapter 5. The total pressure loss at 

the exit is reduced from about 1.64 % (with the standard 

dissipation) to about 1.58 % (with the reduced 

dissipation) (figure(6.13). 

207 



In order to study the effect of the dissipation 

reduction on the losses without taking into account the 

shock loss, the shock loss is substracted from the total-. ' 

pressure loss downstream of the shock. Since the shockr, '-` 

loss is about 1.34 %, the loss associated with the 

standard dissipation without shock loss is 0.3 A and the 

one with the reduced dissipation is 0.24 %. The reduction 

of loss excluding shock losses, is therefore 20 %. 

Upstream of the leading edge, however, the reduction of 

dissipation increases the oscillation. On the other hand; 

the oscillation in the leading edge region is reduced., =, In 

front of the shock, the oscillation increases again. A; 

plot along a grid line near the bump from inlet to exit =- ý' 

shows that the reduced dissipation occurs especially --M1 

around the leading and trailing edges and shock regions 

(figure-6.14) ýý,;; y 

The spectrum of the negative'eigenvalues moves 

towards the positive side so that some of the eigenvalues` 

become positive. The eigenvalue control reduces the 

dissipation so that the computation does not'have _.. r 

sufficient dissipation to shift the eigenvalues to the _ -" 
r. 

negative side (figure-6.15). 

6.5.2 Viscous Test Case ,, 

The eigenvalues of the converged two dimensional flow 

over a high pressure turbine blade with the standard 

dissipation have been computed and the real parts of these 

eigenvalues are all negative (figure-6.16). Result with,,, - 
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eigenvalue control is discussed next. 

6.5.2.1 Case a (fr=0.5 and m=0.0001 - equation (6.4.20)) 

With factor fr = 0.5, the artificial dissipation 

reduces to zero when eigenvalues have large negative 

values. The convergence history shows that after 8000 

iterations no further significant reduction is achieved 

(whereas the standard results take 12000 iterations to 

achieve this). However, the level of residual is 

relatively high compared with the level of residual 

obtained by using the standard dissipation (figure-6.17 & 

-6.18). It is also apparent that the solution is in a 

pseudo-unsteady state with some eigenvalues becoming 

positive at least in some iterations. 

However, there is a reduction of the computed total 

pressure loss in the blade passage and wake region. The 

net effect is that the losses reduce from about 11.4 % 

(for the standard dissipation) to about 10.6 % (for the 

reduced dissipation) (figure-6-19). A plot of the 

dissipation along a grid line near the suction surface 

from inlet to exit shows that the reduced dissipation is 

much smaller (figure-6.20) in this region which no doubt 

leads to the slower convergence. Along the same grid 

line, the result with the reduced dissipation shows that 

the viscous dissipation is larger than the artificial 

dissipation (figure-6.21). In this case, the viscous 

dissipation controls the physics of the flow in the near 

wall region (the addition of artificial dissipation being 

unnecessary). 
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The spectrum of the eigenvalues shows the same 

phenomena as in the inviscid transonic case where the 

existence of positive eigenvalues indicates a pseudo 

unsteady state (figure-6.22) 

6.5.2.1 Case b (f 
r=0.375 and m=0.0001 - equation (6.4.20)) 

With fr = 0.375, the reduction factor Kri, j of -equation 

(6.4.20) reduces to 0.25 as the eigenvalues 

approach large negative values. The factor m is the same 

as in the Case (a). The residual again asymptotes at 8000 

iterations (figure-6.23). The level of residual is still 

relatively high compared with the standard dissipation and 

the solution is still pseudo unsteady. 

However, a reduction of the total pressure loss is '° 

apparent in the 

exit, the loss 

dissipation) to 

(figure-6.19). 

side from inlet 

upstream of the 

blade passage and wake region. At the 

reduces from about 11.4 % (with standard 

about 10.5 % (with reduced dissipation) 

A plot along a grid line near the suction 

to exit shows dissipation reduction 

leading edge, in the blade passage and in" 

the wake region close to exit. There is a region 

downstream of the trailing edge where the dissipation '} 

actually increases (figure-6.20). 

The spectrum of the eigenvalues still shows positive'- 

eigenvalues which confirms the pseudo-unsteady state but 

the magnitude of the maximum positive eigenvalues is less 

than that in Case (a) (figure-6.24). Since the lower 

limit of the dissipation in the overdamped region is 

higher than for Case (a), the dissipation in that region 
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of Case (b) is more than for Case (a). This explains the 

reduction of the magnitude of the maximum positive 

eigenvalue because there is more dissipation in Case (b) 

to shift the eigenvalues to negative side than there is in 

Case (a). 

The computation of Case (b) is continued up to 20000 

iterations in order to approach a steady state. This can 

be seen from the change of the total pressure loss which 

diminishes as the iteration number approaches 20000 

(figure-6.25). The residuals do not change as the 

computation is continued further. 

6.5.2.3 Comparison of Case (a) and Case (b) 

The. total pressure loss of Case (b) is lower than the 

total pressure loss of Case (a) although the dissipation 

reduction of Case (b) is limited to one quater of the 

standard dissipation whereas the one for Case (a) can go 

to zero. This can be explained by the higher level of 

unsteadiness of Case (a) and its higher residual. In 

comparing the results of the computation it is important 

to take into account the level of the residuals. 

The rates of convergence depends upon the amount of 

dissipation available to damp out the oscillations. The 

less dissipation available, the slower the computation 

converges. A comparison of the dissipation near the 

suction surface confirms that Case (a) which has virtually 

zero dissipation, has the slowest rate of convergence, 

(figure-6.20). Improvement in the convergence rate is 

obtained by increasing the dissipation but larger computed 
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losses are incurred. 

6.6 Conclusion 

The reduction of artificial dissipation , especially 

in the overdamped regions, have to be balanced between the 

need for accuracy and robustness. 

The implementation of the method presented here to 
t .a:. 

the Navier-Stokes equations results in a semi discretized 

equation from which a stability matrix can be extracted. 

This matrix is actually the discretized Jacobi an' matrix' 

the eigenvalues of which contain information about 

stability since they determine the rate of convergence. 

The addition of the artificial dissipation which is 

necessary to stabilize the Navier-Stokes computation will 

shift the eigenvalues to the negative side and at 

convergence all the eigenvalues are negative. Since the "~- 

computation of the eigenvalues of the stability matrix is 

prohibitively expensive, an approximate analysis is 

adopted to reduce the size of the matrix leading to reduce 

computational time. The eigenvalues of the reduced matrix 

contain information about the reduced effect of the 

viscous dissipation and the effects of`the nonlinearity of 

the Navier-Stokes equations. 

From the calculation of the determinant of the 

stability matrix, a system of non-linear equations 

relating eigenvalues to the dissipation is derived. TYe 

proposed is to set the rate of convergence or first idea 

eigenvalues and calculate the necessary dissipation'týo 

maintain that rate. This requires solution'of the 
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non-linear equations involved which has so far proved 

impractical. Further investigation is necessary to 

formulate a method that can always solve a system of 

non-linear equations. 

In order to overcome the difficulty with the 

non-linear solution, the system of non-linear equation is 

linearized which leads to perturbation equations of 

dissipation. However, the validity of the linearization 

process will not be valid when small changes in 

dissipation lead to large changes in eigenvalues (i. e when 

the problem is not well posed). Further investigation 

about the well posedness of the above problem is required 

before using the system of linearized equations. 

Another approach to implement the first idea is to 

use the Inverse Eigenvalue Problem which can solve the 

dissipation for given eigenvalues of the stability matrix. 

However, the Wilkinson iterative method adopted in this 

investigation is devised for symmetric matrix only. Since 

the stability matrix is non-symmetric further study is 

again required to pursue this method. 

The implemented eigenvalue control is based on 

another idea which reduces the dissipation in overdamped 

regions using eigenvalues as a sensor. A function of 

reduced artificial dissipation is devised which can be 

implemented to reduce the dissipation as the eigenvalues 

go to negative values and is demonstrated. 

The test cases involved are the inviscid flow over 

Ni's bump and the two dimensional viscous flow over 
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a high pressure turbine blade. For the standard converged 

solution all the real parts of the eigenvalues computed'--- 

are negative which in part confirms the validity of the 

approximate method used to obtain the eigenvalues. 

In the implementation of the eigenvalue control to 

the inviscid case, the dissipation is reduced to one 

quarter of the standard dissipation as the eigenvalues go 

to large negative values (in overdamped regions). In the 

subsonic case, the level of residual is acceptably low änd 

the solution is largely converged which is confirmed by--' 

the spectrum of eigenvalues where all real part are 

negative. The reduction of the total pressure loss , 

achieved is 40 %. As the artificialdissipation reduces, ` 

the damping of the odd-even decoupling and discretization 

errors become less, leading to an increase in the 

oscillation of the total pressure, especially around the 

leading and trailing edges. 

In the transonic case, a high level of residual 

manifests itself as a pseudo unsteady state where the iw 

state variables still change with time. An analysis . 
indicates the presence of positive eigenvalues, for 

instance, around the location of shocks apparently because 

the reduced dissipation is insufficient to damp out the 

oscillation. Excluding the shock loss, the reduction of*. 3, 

the total pressure loss is significant at 20 % of outlet; 

dynamic head. The major reduction of the dissipation 

occurs in the regions of the leading and trailing edges, 

and shock. 
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In the implementation of the eigenvalue control to 

the viscous two dimensional flow over the high pressure 

turbine blade, two cases are considered. In the first 

case, the artificial dissipation is reduced to zero as the 

eigenvalues go to large negative values. In the second 

case, instead of reducing to zero, the dissipation is 

reduced to one quater of the standard dissipation. 

In both cases, a high level of residuals results in a 

pseudo-unsteady state as for the transonic case. However, 

as the computation in the second case is continued, the 

results approach a steady state and total pressure losses 

reach a converged value. A reduction of the total 

pressure loss occurs in these cases for both the blade 

passage and wake regions. In the first case, the 

dissipation near the wall is negligibly small so that the 

physical viscous effects control the flow physics. In the 

second case, the dissipation in the same region is less 

than the standard dissipation. However, the viscous flux 

is less than the artificial dissipation and the viscous 

effect does not control the flow physics. 

Since the results of the first and second cases are 

obtained at different convergence level they should not be 

compared directly. However, the total pressure loss of 

the first case is higher than the total pressure loss of 

the second case (which is probabaly a result of 

non-convergence as the dissipation of the first case is 

the smaller). 
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7.0 CONCLUSION 

Collaboration is now becoming attractive in the aerö 

- engine industry as markets are shrinking and the costs 

escalate. One of the most important factors escalating 

costs is technology, but this has to be scrutinized to 

ensure that it will reduce development time and/or cost. 

A collaborative project can most easily be initiated where 

established partners (known to each other) can contribute 

equally with expertise and workshare. New entrants, on -, 

the other hand, need to offer alternative benefits such as 

capital and markets. 

In order to be considered as a partner, however, the 

new entrant has to develop a minimum level of technology 

to participate. In addition, the new entrant will 

eventually have to develop advanced technology so that it' 

will be able to more fully share in the benefits'of 

competitive engine production (which implies a more 

technically developed base). Computational Fluid Dynamics 

(CFD) represents such an advanced technology and is likely 

to be adopted by any new entrant interested in a future 

design role. Chapter 2 discusses the background to such 

an argument. 

The major contribution of this thesis involves the 

analysis and improvement of a numerical method capable of-' 

solving the unsteady Navier stokes equations. The method 

is briefly described in chapter 3 where the governing 

equations (in a three dimensional rotating coordinate 

system) are elaborated. The method involves a cell 
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centred finite volume scheme. The requirement of 

evaluating the cell face value leads to the formulation of 

an interpolation function which better approximates these 

face values from the cell centre values. 

The straight averaging interpolation currently in 

many codes and adopted in the original program generates 

errors for a non-uniform grid system because the resulting 

face values are not located at cell face centres. The 

spatial discretization analysis undertaken uses a Von 

Neumann and Equivalent Partial Differential Equation 

method and the results'show that the truncation error of 

the straight averaging is second order dispersive for 

Cartesian grids, and first order dispersive for algebraic 

or quasi uniform grids. This interpolation is also 

inconsistent with exponentially straight stretched grids 

and skewed stretched grids. It is inconsistent because 

the resulting truncation errors do not reduce to zero as 

the grid size reduces to zero. 

Another approximation generally available is based 

upon linear interpolation. Its implementation in straight 

stretched grids results in a consistent scheme. It is 

first order dissipative if the convection is in the 

direction of the grid expansion and is first order 

non-dissipative if the convection is in the direction of 

the grid contraction. If the scheme is non-dissipative, 

the truncation error will grow. An analysis of this 

interpolation in skewed grids shows that the dominant 

effect of the inaccuracy comes from an inconsistency of 
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the scheme. 

A quadratic interpolation scheme is proposed which -' 

improves the accuracy with skewed grids. This scheme is 

analyzed in coupled and decoupled formulations. In the 

first formulation, the interpolation is carried out 

separately in each coordinate direction whereas in the 

second formulation the interpolation is carried out in all 

coordinate directions simultaneously. Even though the `' 

decoupled formulation improves accuracy for the straight` 

stretched grid, it has the same order of error as linear 

interpolation for a skewed grid. The coupled formulation 

eliminates the inconsistency in a skewed grid and results 

in a second order dispersive error. Z' 

Alternatively, it is shown that instead of using an 

improved discretization scheme, improved accuracy can be 

obtained by constructing low grid expansion in high 

gradient areas and high grid expansion in low gradient 

area. 

In addition to the spatial discretization analyzed in 

the above, time discretization is carried out on the 

convection diffusion equations providing information - 

relating diffusion, grid size and time step. Stability 

constraints can be extracted from this and shown to be 

determined by the time step and not to involve the cell 

based Reynolds number as popularly believed. 

As an alternative to the cell centred scheme, the 

cell vertex scheme based on other work has been reviewed. ' 

In the cell vertex scheme, the straight averaging of the 
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cell vertex values in arbitrary grids results in accurate 

face centred values in two dimensions but errors arise in 

three dimensions. Updated values at a cell vertex are 

calculated from values of the surrounding cells (sharing 

the same cell vertex). The straight averaging used in 

this calculation shows that in one dimension the cell 

vertex scheme is more accurate than the cell centre 

scheme. However, this averaging may lead to divergence in 

multidimensional cases. 

In the study of artificial dissipation reduction, 

several test cases have been examined including Ni's bump, 

flow over a flat plate, two and three dimensional turbine 

blades, a three dimensional fan blade, and a three 

dimensional engine intake nacelle. 

Since the second order dissipation is very much less 

than the fourth order dissipation, the total dissipation 

does not depend on the second order coefficient which 

determines the level of second order dissipation. In all 

the test cases (except for the flat plate) the fourth 

order coefficient which determines the fourth order 

dissipation is the same. Thus, with the same value of the 

fourth order coefficient, the total dissipation may be 

sufficient for some cases but excessive for other cases 

(leading to unrealistic dissipation and losses). It is 

fairly obvious to note that the fourth order coefficient 

will generate sufficient dissipation if the computation 

diverges when that coefficient is reduced, whereas the 

fourth order coefficient will generate excessive 
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dissipation if the computation still converges when that-- 

coefficient is reduced. Changing this coefficient can 

therefore be used to examine the role of dissipation in'' 

the computation of the selected test cases. :.: 

If the results with the standard dissipation 

formulation have excessive dissipation, the correction"i!: ` 

functions developed in the chapter 5 can be very 

effective, for example in the case of three dimensional : t= 

high pressure turbine blade. If the results with the 

standard dissipation formulation have sufficient 

dissipation, the correction functions developed in that 

chapter is not very effective, for example for the three--s 

dimensional fan case. 1a 

The flat plate case has a low value of fourth order. '-, -, 

coefficient and can converge with a small amount of 

dissipation. Thus, the reduction of the dissipation by 
..,.,: 

using the proposed method does not improve computationalý'., - 

accuracy as gauged by the comparison of. computational ..: ý 
boundary layer velocity profile with the analytical one:, -:: y 

The dissipation component along the length of a high' 

aspect ratio cell is large and. -an attempt to correct this:: 

by introducing the cell aspect ratio into the dissipation' 

formulation has been undertaken, as discussed in chapter,., },,. 

5. Several aspect ratio functions attempting to 

accommodate this have been proposed by Martinelli, Kuntz-, _, 

and used by Cheng. It should be noted, however, that y.: 

total dissipation is the sum of all dissipation components 

and that the implementation of the aspect ratio function,,: 

may 
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not necessarily result in the'reduction of total 

dissipation. 

In the two dimensional high pressure turbine blade 

example, the use of Cheng's aspect ratio function 

increases the dissipation near to the wall (because this 

function reduces the non-dominant component, which has an 

excessive scaling factor, and increases the dominant 

component). It is therefore concluded that this function 

cannot improve accuracy in the near wall regions. 

Since Martinelli's aspect ratio function is similar 

to Cheng's aspect ratio function, Martinelli's function 

suffers similarly and for a two dimensional case, Cheng's 

function reduces to the Martinelli's function. 

Furthermore, although Kuntz's aspect ratio function 

reduces all dissipation components, its effectiveness 

depends upon details of the computational case. In all 

test cases, there are regions where the dominant component 

is along the length of the high aspect ratio cell, for 

instance in the leading and trailing edges and exit 

regions. In the leading and trailing edges, the 

dissipation is magnified by changes in the flow direction 

and in the near exit region by the change of velocity. It 

is concluded, however, that as long as the length 

of the high aspect ratio cell is aligned with the flow 

direction then Kuntz's aspect ratio function is effective 

in reducing the dissipation in those region. 

A modified aspect ratio function have been proposed 

which is similar to Kuntz's aspect ratio function, but 
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modifies all dissipation components and reduces that 

already reduced by Kuntz's function. This is confirmed by 

its implementation to the Ni's bump case. 

A velocity or Mach number correction function is ` 

formulated to reduce dissipation in the boundary layer and 

low velocity regions. 

The implementation of the combined Mach number and 

Kuntz's aspect ratio functions in the Ni's bump case 

requires an increase in the fourth order dissipation 

coefficient to achieve convergence. The results show that 

for the transonic case, the total pressure loss with the; " 

combined function is less than that with the aspect ratio 

function alone. However, for the subsonic case, the total 

pressure loss with the combined function is more than that 

with the aspect ratio function alone. The Mach number 

function introduces a larger reduction of dissipation in 

the transonic case than in the subsonic case because there 

is larger variation of Mach number. 

With very fine grids such as that used for the f 1at'- ". 

plate case, the velocity function can severely reduce thei 

dissipation in the near wall region. The application of F: ý 

this function in the cases with coarse grids which do note.. 

resolve the boundary layers (such as the two dimensional-- 

high pressure turbine blade) does not result in 

significant dissipation reduction. 

The formulation of the dissipation terms contains 

second and fourth order differences which depends upon 

grid size and the derivatives of state variables. If the': 
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grid size, for instance near to the wall is not small 

enough to reduce the effect of the high derivatives, the 

dissipation will be large. The required size of the grid 

to reduce this effect can only be computationally afforded 

for the flat plate case. Thus in general, the dissipation 

in critical regions such as near to the wall and around 

leading and trailing edges is large because of large flow 

gradients. Thus, a new correction function has been 

proposed which takes into account the flow gradient. The 

sensor for this function is Mach number difference. 

This function was first tested for the flat plate and 

the two dimensional high pressure turbine cases. The 

total pressure loss in the second case is reduced whereas 

that for the flat plate is not changed. The 

implementation of the combined gradient and aspect ratio 

functions in the three dimensional turbomachinery cases 

leads to a reduction of the dissipation near to the wall 

and leading and trailing edges. The total pressure 

generation in the three dimensional high pressure turbine 

blade is eliminated by this combined function. In the 

three dimensional engine intake case, this function 

reduces the dissipation in the near wall region which 

result in stronger flow reversal (because the flow has 

less energy to overcome the adverse pressure gradient). 

This results in higher losses which agree better with the 

experimental values. 

It is shown that by using anisotropic functions, the 

dissipation along each coordinate direction can be 
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selectively reduced. These factors can be very effective 

if they reduce the dominant dissipation component such äs 

that occuring in the flat plate 'and the two dimensional", 

high pressure turbine blade cases. In addition, the total 

pressure loss in the second case is reduced. 

Since the reduction of the dissipation often leads ~to 

divergence, the following stability investigation has been 

carried out to find a means to balance accuracy and `± 

robustness. 

The implementation of a matrix analysis of the 

Navier-Stokes equations results in a stability matrix from 

which eigenvalues can be calculated. These eigenvalues .. 
relate the dissipation which determines the accuracy and.. 

the rate of convergence which determines the robustness. ",,.. 
- 

Thus, the eigenvalues can be used as sensors to 

selectively reduce the dissipation in the overdamped 

regions (where the local rate of convergence is rv`` 

unnecessarily high). 

Since the idea is to detect the overdamped regions 

and reduce the dissipation during the iteration; -the 

eigenvalues are calculated at every time step. In order' 

to avoid prohibitively expensive computation, - an - 

approximate method to simplify the stability matrix was--- 

adopted. The resulting approximate matrix describes they 

effect of viscous terms and the nonlinearity of the 

Navier-Stokes equations. 

A system of nonlinear equations relating'the 

eigenvalues to the dissipation is derived from the- 

ýý, 

ä . ýý 
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calculation of the determinant of the approximate matrix. 

Thus, these equations can be solved for dissipation for 

given eigenvalues. However, the available solution method 

is not robust enough and a solution cannot always be 

found. The development of a robust solution method for 

systems of nonlinear equations should be pursued. On the 

other hand, an attempt to linearized this system of 

equations and reformulate it as perturbation equations 

encountered problems of well posedness. The reason is 

that perturbations in eigenvalues induce large changes in 

dissipation. Thus, investigation of the well poseness of 

this problem should also be pursued. Another method that 

can solve dissipation for given eigenvalues is the Inverse 

Eigenvalue Problem but this is currently only available 

for a symmetric matrix. Since the approximate matrix is 

not symmetric, further extension of this method is 

required for the non-symmetric matrix. 

In order to use eigenvalues directly as sensors, a 

correction function is proposed which reduces dissipation 

where the eigenvalues are negative. This function is 

implemented for the inviscid Ni's bump and the two 

dimensional high pressure turbine blade cases. The 

computation with the standard dissipation confirms that 

all real eigenvalues are negatives at convergence. 

For the Ni's bump case, the dissipation is reduced to 

one quarter of the standard value as the eigenvalues 

become large and negative. In the subsonic flow, the 

computation converges and all real eigenvalues are 

ZZ 5, 



negative. The total pressure loss is reduced by 40 % but 

the total pressure oscillations increase because of the : ': 

dissipation reduction. In the transonic flow, the 

computation results in pseudo-unsteady oscillations and 

some real eigenvalue are positive. The total pressure 

loss (excluding the shock loss) is reduced by 25 % but'the, j 

total pressure oscillations increase especially in front`': 

of the leading edge and in the region of shock. 

In the turbine blade case, the flow is computed with 

two different levels of dissipation reduction. In the 

first case, the dissipation is reduced all the way to zero 

as the eigenvalues become large and negative. The second 

case is the same as in the Ni's bump case. In both cases, 

the computation results in a pseudo unsteady state and 

some real eigenvalues are positive. However, the level of 

the residuals in the first case are higher than'in the 

second case (the reduction of the dissipation slows downN 

the rate of convergence). 

In the first case, near to the wall, the dissipation 

is negligible and less than the viscous fluxes. In the-- 

second case, the dissipation near to the wall is reduced- 

The total pressure losses in both cases are reduced and , -- 

depend on the level of the residuals. It appears to then', 

author that when comparing computational solutions, the 

level of residuals has to be taken into consideration. 

Overall it is felt that a number of significant and 

current CFD problems have been identified and at least 

partial solutions defined, listed and analyzed. Although 
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this has been undertaken with the scope of a particular 

code, it is felt that the conclusions can be readily 

generalized. 
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APPENDIX-2.1 Stages of Human Resource Development 

U--user 

D=Developer 

S=Software 

H=Hardware 

Stage -A 

-Users have been recruited but they do not have any 

experience. Even though the necessary hardware is 

available, the team will not take any assignment from 

existing design projects. They study basic material that 

quickly makes them capable of doing that assignment. 

Stage -B 

-The team is capable of solving practical problem from 

the design project. The technology is still acquired from 

other sources. There is no technology development. 

Stage -C 

-Developers have just been recruited. The team continues 

with the practical problem but the development work that 

eventually provides the tehnology is started. 
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Stage -D 

-All elements of the development of the technological 

capability is according to plan. At this level, the team 

is capable of taking a development and design project but 

it will take longer than the fully capable team. 

Stage -E 

-At this stage, the team is fully capable and is ready to 

take any projects of development and design, to be 

completed within time and budget. 

°ý 
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APPENDIX-3.1: Jacobian Matrices 

Inviscid Jacobian matrices 
01 

u2 ± v2 (3 -'y) u 'Y- I 
22 A= 

uv v 
-'yeu + (7 - 1) u (u2 + v2) -ye +1 (3u2 + v2) 

00 
(1 -7)v (1 -7) 

u0 
(1 - ^y) uv -yu 

0010 
_ -uv vu0 B- 

u2 + v2 (1 - 7) v (3 - 7) u (1-7) 
22 

-leu + (7 -1) v (u2 + v2) (1 - -y) uv 7e +, 2~ 
(3u2 + v2) -rv 

and viscous Jacobian matrices 

0 0 0 0 

C_ C21 C22 C23 0 

C31 C32 C33 0 

X41 C42 C43 X44 

0 0 0 0 

D d21 d22 d23 0 
d31 d32 d33 0 

d41 d42 d43 d44 

Element of matrix C 

X21 
4a(P)2a(P)4u a 2v a} 
3 az 3 ay 

+3p 
ax -3p ay 

X22-µ{4a(P)+41 
ö} 

3 ax 3p äx 

C23__u{28(P)+218} 3 äy 3p äy 

Q31_µ{e(P)+a(P)+ua +ve} öy 8x p öy p 8x 

C32 +1Ö} _ ýL{ 

aMP 

cJ pay 

C33 = µ{ 
a" °+a} 8z p äi 

2VS 



-v(P92 
a() 

C414-? ')- -(ý-ý____ 
a(°) a+ 

-u 3 P, öx Pr ax Pr äx 9y3 äy 

vau 2uöv 4_ 'y u2 8 
1_ Y) v2 ä7eä+ luv 8} 

p öy +3p äy 3 Pr) p ex - Pr p äi Pr p äz 3 pay 

_ 
4_ a(uP )_y 8(P) a(-) 

_21 
av 4ua_ -r ua v_ a} P 

C42 - µ{ 3 ax Pr ax 
+v ay 3p ay 

+3p ax Pr p ax +p 
öy 

(v ('( 

ý 
8( ) 

-y 
alp 2 alp l äu 211 ÖvÖ+VÖ 

X43 ex Pr (92. - 3u äy p äy -3-p äy Pr p äz p äi 

1 

C44 = Al 

a( 
pý 

-{- 
71Ö 

P, 8t Pr p Tx 

Element of matrix D 

d21__ß{a(P)+a(P)+u 
a 

+v 
a} 

ax ay Pay Pax 

ay Pay 

8(P)8 d23 = µ{ öz p äz } 

{48(P)28(P)+1v 
a 

_2u 
a 

d31 _ _µ3 ay -3 az 3p ay 3p az 
} 

d32 } 249 (19 ) 21 
+ ---I 3 az 3p az 

d33 p +41 
3 öy 3 päz 

2 2- 

a41. µ - 
4- 7 ? ')a-(-)- -r e(P)-ua(°)+? 

va( { (3 
P,. 

) 
äy Pr äy Pr ax äx 3 äx 

2q6 



u3vöx-ý3 
P) 

?8 
-ý1- 

u2 a7eö 
+2uv 

ö} 

P ax PrPy Pr Pay Pr p 8y 3p az 

d42 = µ{8(! 
) 

_' 
-y 8(P) 

_ 
2v8(P) 

+1 
8v 2vö_Yuö+uä} 

äy P,. öy 3 äx p ax 3p äx P, p ay p äy 

d43=µ{4a(P)_-r8(P)+u8(P)_21 au+4va 
_7va+ua} 3 ax P,. ay ax 3p ax 3 -p -ay Pr p ay pax 

d44. 
µ{? 'aýP)+? '1a} Pr ay Pr Pay 
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APPENDIX 4.1 Skewed Grid 

Y 

i+h i+t 
_ 

h'i+l 

sin(lr - 7ý sina 

hi 
_ 

hi 

sin(lr - 7) sin(# - a) 

Wt+1 

sin(# - 7) - 
hi+1 

sin(ir-(ß-a)) 

h' i 
sing h 

` sin(ß -a)" 
sin(ß - 7) ht+ý - 
sin(ß - a)h'+i 

Ah i h' -h= 
sing - sin(Q - cY) h `` sin(# - a) ' 

Oh; +i = hi+i - hi+i = 
(iin(ß - -y) - sin(ß - a) 

sin(ß - a) 

Since 077a 

Ohi+l Ahi 
hi+l hi 
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Appendix-4.2 : Shape Function 

Consider u as a variable in three dimensional space. 

Locally over an element, we approximate the variation as 

u( ý Al +A2 f +A3 # +A4 +A5¬2+A6 
+A7 S2 (A. 4.2.1) 

The value of u at point 1 (figure-4.7a) 

n u1= Al +A2 ý 
1+A3 

' 
14-Aq, 

c 
1+A5f 1+A6 

1+A75 
1 

(A. 4.2.2) 

and other points refer to an element. 

After substituting the coordinates in the transformed 

space, we can write 

[ul, u2ºu3, u4, u5, u6, u7]=[A1, A2ºA3, A4, A5ºA6ºA7][S] (A. 4.2.3) 

where [S] is 7X7 matrix of coordinates of the seven points 

1 1 1 1 1 1 1 
e1 

S2 
ý3 

S4 
ý5 ý6 ý7 

771 772 773 774 775 776 777 
S= (1 (2 C3 C4 (5 (6 (7 

(C1)2 (C2 )2 (C3 )2 (C4 )2 (Cs )2 (C6 )2 (ý " )2 (A. 4.2.4) 
711)2 (i2)2 7%3)2 774)2 (775)2 776)2 (777)2 

1 
((1)2 ((2)2 ((3)2 ((4)2 ((5)2 ((6)2 (7)2 

By inverting the 7X7 matrix on the right hand side, the 

constants A1, A2, A31A4, A5, A6, A7 can be expressed as 

[A1. A2'A3. A41A5'A6, Ai]=[ul, u21u3. u4. u5, u6. u7][Sl-1 

(A. 4.2.5) 

u(5 , %/, S) can then be expressed as 
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1 
ý 

-n 
[A1, A2, A3, A4, A_9, A6, A7] 17 (A. 4.2.6) 

S 2 
.,. 

Z 

5z 

Substitung matrix [A] from equation (A. 4.2.5) into i. 4 

equation (A. 4.2.6) 

Thus 

1 

e 
u(ý )=[ul. u2. u3, u4. u5, u6. u7][S3-1 n 

S2 
f 1Z 

52 

(A. 4.2.7) 

The matrix S is obtained by substituting the value off ,. 11 

, and of the seven points which gives 

1 1 1 1 1 1 1 
1 0 0 -1 0 0 0 
0 1 0 0 -1 0 0 

[S] = 0 0 1 0 0 -1 0 
1 0 0 1 0 0 0 
0 1 0 0 1 0 0 
0 0 1 0 0 1 0 

(A. 4.2.8) 
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The inverse of [S] is 

0 0.5 0 0 0.5 
0 0 0.5 0 0 
0 0 0 0.5 0 

[S] =0 -0.5 0 0 0.5 
0 0 -0.5 0 0 
0 0 0 -0.5 0 
1 0 0 0 1 

Substituting the equation (A. 4.2.9) 

(A. 4.2.7) and multiply the matrices, 

oo 
0.5 0 

0 0.5 
00 (A. 4.2.9) 

0.5- 0 
0 0.5 
11 

into equation 

uVi7l, C) =2 (f +e2)+ 2 (n+772)+ 2 (C+(2)+ 
2 

(-e+e2) 

+2 (-TJ+ý2)+ 
2 

(-(+ 2)+ 2 (1-ýZ 
-7j2-C2) 

(A. 4.2.10) 

7 
By expressing u (f JZ i Ni , the shape functions 

Ni are given by Nl = 2+ 
dz ), N2=(+2), N 32 +( 2) 

N4 = 2(-ý+ý2), N5 = 
2(-%%+7%2)1 

2_ýý 
77 

N6 =2'(-C + 

(A. 4.2.11) 

The derivatives of u with respect to x, y and z are 

au 7 ON; 

8z= 
t=i 

Ox 

8u 
_ý 

8N; 

i-1 
ut 8y 

8u_ 8N; 
8z 

i-1 

ý u' ös 

(A. 4.2.12) 
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The evaluation of 
äX 

, äyý, and ä1 require some 

manipulation because the shape function N1 are function of; 

,I andg 

Write äN ax aN ay öN 8z öN 

aý = ýa2 +aeay +äeaz 
ON äx aN öy aN az aN 

an - n aX +n ay + än az 
aN ax aN ay aN az aN (A. 4.2.13) 
as =C az +C ay +C T- 

Thus, for instance, at point 1 

N= xE yE zE NE 
Ny = x, yo Z17 N, 1 (A. 4.2.14) 

(N= 

zc yc zc Nc 

Since the coordinates x, y, and z can also be 

expressed in terms of the same shape function, their 

derivatives with respect to f, /1 and ý can be expressed 

as 
ax 8N, 8N4 

+ x7 
8N7 

äý x1 

ac 
+ 24 

aý ac 
azxZ NZ+Z5 +17äN7 

n 
077 

aN6 
+ z7 

aN7 Ox 8N3 
+ xs 03 aC aý aý 

(A. 4.2.15)` 

and yf , yj, , yS ,zfzp and z1 follow similarly. 

The derivatives of the shape functions Ni with respect to f 

,ý and c are calculated from equation (A. 4.2.11). The 
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values that correspond to each location are evaluated the 

appropriate f, I and 5 coordinates (figure-4.7a). 
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APPENDIX-4.3 : Formulation of Improved Scheme 

Decoupled Formulation 

In two dimensions, the interpolation 

u( f, %1 )= Al +A2 ý +A15 q 2+A3 
"i 

Flux along the 5- direction at face 

ui+l/2, j =A1 +A2 (h1/2) +A5 (h' 

where 

function is 

+A6 11 2 

(i+1/2, j)' is 

i/2)2 

A, - 2(h1 
+ hi-1)2(u=+i - ui) - (h; + hý+i)2(u, 

-1 - u1) 
2 (h: + h: +1)(hi + hi-1)(hi+1 + h= + hi + hi-1) 

A, = 4(h1 
+ h; -1)(ui+i - u1) + (h'i + h, +3)(ui-i - u, ) A'5 (h; + hý+i)(hi + hi-j)(hý+i + h; + h; + h1-1) 

Coupled Formulation 

Coefficients A2 and AS are replaced by A2 and A5 and 

coordinates fand 7 are replaced by x and y, then 

A2 = ((us+i, i - u+, i)(hi + h1+1)2 - (ui-t, i - ui, i)(hi + hi+icoscx)2 

-ZAshy+, (hi +hi+l )2sina - 
4A6h? 

+i(hi +hi+, )2sin2a}/ 

[(hi + h, 
-1)(hß + hi+tcoscx)(h1-i + 2h1 + hi+icoscx)] 

A3 __ 
2[(l, + lj -1)Z(ui. i+l - u,. j) - (1, + li+1)2(u,. i-1 - u,, 1) 

(1, + l, i-1)(li + l1+1)(li-i + 21, + lj+i )J 
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APPENDIX - 5.1 High Speed Flow Aspect Ratio Function 

For a given high aspect ratio cell, high Mach number can 

reduce the influence of the cell geometry on the aspect 

ratio correction function. For instance, two dimensoinal 

Kuntz's aspect ratio function in 

f- direction is 

oz, 

(IOJ =( 11- 41u ) 0, r n (A. 5.1.1) 

The scaling factor is, 

f-D, REcr oN . "4 
=l ICI C)d 

f 

q-D! cT/oN: 
f)= f/II/+c)4 (A. 5.1.2 ) 

Assume Ivý«IuI then the ratio (_-t) that goes into 
t 

the equation of the aspect ratio correction function is 

7�df 
t en (A. 5.1.3) 

where m= 1+M and M=' << 

Thus for a given cell aspect ratio () 
Al 

4<, 
_ 

(A . 5.1.4 ) 

ätß Mt. L t, ý M<1 
For dissipation in ¬- direction 

ds =S (E2 S2 w- ßc4 s4 W) (A. 5.1.5) 
7i 

where S =(A 
1+ 

n o( 
(A. 5.1.5a) 

4t e t 
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In the standard dissipation model o<= 1. The effect of 

the dissipation reduction due to the aspect ratio function 

is determined by the ratio of the modified scaling factor 

with respect to standard scaling factor, or 

Rr =(1+r )°c-1 (A. 5.1.6) 

where r= dtl. 

For a given oC dhd ýý ýarý1 

Rr)M=1 ) Rr)MG1 (A. 5.1.7) 

where rM!! ,l< rM<1 

From equation (A. 5.1.4), rM. l when the flow is transonic, 

and rM<1 when the flow is subsonic flow. Therefore, for a 

given a, the effect of the dissipation reduction in the 

transonic flow is less than the one in subsonic flow. In 

order to obtain the same effect of the dissipation 

reduction in both flow conditions oK has to be reduced. 

': 
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Appendix - 6.1 Newton Method 

The system of non-linear equations is solved by 

Newton's iterative method, For instance, the system is 

mll + m22 +m33 + m44 =A1 +' 2 +? %3 +X4 (A. 6.1a ) 

m11m22 + m33m44 + (m11 +m22)(m33 +m44) 

- m2 3m3 2-x1 
%2 + %3 

4+ 

(X1 +%2 )(i>3 +>%4) 

m11m22(m33 + m44) + m33m44(m11 + m22) 

+ m32m23(m11 + m44) =i 1ý2(>\3 +A4) 

+ %ý3 %4 ( i\1 + %2 

m11 m22 m33 m44 = OX. 1 
'' 

2d3 
; IN 

4 

which can be written as 

P(mill, m22'm331m44) =0 

q(mill, m22'm33'm44) =0 

r(mill, m22, m33, m44) =0 

(A. 6. lb) 

6.1c) 

(A. 6. lb) 

s(mil, m22, m33, m44) =0 

where m23, m32 and eigenvalues Xi are constant. 

In this method, values of the unknown mil, m22, m33, and 

m44 at iteration n are 

m11 n = M11 n-1 +h n-1 

m22 n = m22 n-1 + kn-1 

M33 n = m33 n-1 + 1n-1 

m44 n = m44 n-i + jn-1 

where h, k, 1, and j have to satisfy 

(A. 6.2) 
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D n-ihn-1 + n-Ikn-1 
^ý? 1 pm2.. 

+ Pm11n-11 n-1 + pm22n-1I n-1 = -Pn-1 (A-6-3. a) 

n-i n-1 n-Ikn-1 
gmll h+ gm22 

+ g33o n-lln-1 + gm44n-17n-1 = -qn-1 (A. 6.3. b) 

n-1 n-1 n-1 n-1 rm11 h+ rm22 k 

+ r: n, -, 
n-1-1 n-1 + r. n44n-1ýn-1 = -rn-1 (A. 6.3. c) 

n-1 n-1 h+ S n-1 n-1 S k 
: n11 m22 

+S m33 
n-1, n-1 + s m. 44 

n-1i n-1 = _sn-1 (A. 6.3. d) 

which can be written in matrix form as 

MD= R (A. 6.4) 

where 00 +, 
ft l 

PMl 
tt 

fAsa f "q. 1 
M-1 A-1 4 ý1f 1 

p 

Y1A19II rlIMI'lZ N , #1133 ýttqN 
-C q, 

M_ 
t1t"+i 1i4W3a : hýryw D 

ýI c»'4 R-- 
x 

5'1n 
i1 

SAN, 
Z Snha; /f4 

Lg y 
5 

,,, yes J, 

and Pmll = a/mll " Others follow accordingly. 

Procedure to calculate m11, m`21 m33, and M44 are 

step 1. Guess initial values of mil, m2`. m33, and m44 

step 2. Calculate matrix M with initial guess values 

step 3. Solve for h, k, 1 and j by using equation (A. 6.4) 

step 4. Update mil, m22, m33, and m44 by using equation :;:: 

(A. 6.2) 
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step 5. Repeat step 1,2,3, and 4 until h, k, i, and j 
V 

diminish 

step 6. Solution are m11, m22, m33, and m44 of equation 

(A. 6.2) 
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Table-2.1 Matrix of Responsibility 

Finance 
Planning & 
Definition Development Implementation 

Human 
Resource x X X x 

Technology x X X x 

Cost X 

Hardware X X 
T 

x 

>j 

_ý t 
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Table-5.1 Results of the application of Kuntz Aspect Ratio 
Function to the inviscid Ni's bump test case 

M K2 K4 Pt Losses pm 

0.5 0 0.008 1. 0.5 % 0.42 % 
0.5 0 0.008 0.6666 0.37 % 0.414 % 

0.675 0.25 0.01 1. 1.64 % 0.93 % 
0.675 0.25 0.01 0.4 1.61 % 1.1 % 

Table-5.2 Results of the application of Modified Aspect 
Ratio Function to the inviscid Ni's bump test 
case 

M K2 K4 
Im< 

Pt Losses f(AR) 

0.5 
0.5 

0 
0 

0.008 
0.008 

0.6666 
0.6666 

0.37 % 
0.33 % 

Kuntz 
Modified 

Table-5.3 Results of the application of Kuntz Aspect Ratio 
and Mach Number Function to the inviscid Ni's 
bump test case 

M K2 K4 
O-e 

Pt Losses f(ML/Mmax) 

0.5 0 0.008 0.6666 0.373 % No 
0.5 0 0.008 0.6666 0.39 % Yes 

0.675 0.25 0.01 0.4 1.61 % No 
0.675 0.25 0.02 0.4 1.58 % Yes 

Table-5.4 Result of the application of Grid Refinement to 
the inviscid Ni's bump test case 

M K2 K4 GRID Pt Losses pm 

0.675 
0.675 

0.25 
0.25 

0.01 
0.01 

78X15 
90X24 

1.64 % 
1.49 % 

0.93 % 
0.89 % 
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Table-5.5 Constant of Modification Function for Three 
Dimensional High Pressure Turbine case 

No fD fD fD Comments 

1 1.0 1.0 1.0 1.0 No Modification 

2 0.75 1.0 1.0 1.0 Aspect Ratio-Function 

3 1.0 0.25 0.0 0.0 Gradient Function 

4 0.75 1.0 0.0 0.0 Aspect and Gradient 
Function 
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Figure-4.1a Martinelli Scheme with 
First Method 
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Figure-5.1a Graphical representation of the effect of 
Martinelli Aspect Ratio Function to the total 
dissipation relative to that from the standard 
model for a high aspect ratio cell. 
f(AR) is Martinelli aspect ratio function 
(equation (5.2.10)) 
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Figure-5.1b Graphical representation of the effect of 
Kuntz Aspect Ratio Function to the total 
dissipation relative to that from the standard 
model for a high aspect ratio cell. 
f(AR) is Kuntz aspect ratio function 
(equation(5.2.11) 

Symbols for figure-5.1a and -5.1b Dt total standard dissipation 
Dt =f- direction standard dissipation (length) 
Dq= q- direction standard dissipation (width) 
D' = total modified dissipation 
D't =f- direction modified dissipation 
D'q _ I- direction modified dissipation 
AD - change in dissipation 
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Figure-5.11 Refined Grid for 
Transonic Flow 
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Figure-5.20 Grid of Two Dimensional 
High Pressure Turbine Blade 



Figure-5.22 Measured Density Contour of the 
Two Dimensional High Pressure Turbine 
(Xu, 1986) 
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Figure-5.27a Grid of Three Dimensional 
High Pressure Turbine Blade 
Blade-to-Blade Plane at Mid Height 
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Figure-5.27b Grid of Three Dimensional 
High Pressure Turbine Blade 
Grid within the Blade Passage 
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Figure-5.27c Grid of Three Dimensional 
High Pressure Turbine Blade: 
Blade-to-Blade Plane Upstream 
of the Leading Edge Region 

Figure-5.27d Grid of Three. Dimensional 
High Pressure Turbine Blade: 
Meridional Plane 
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Figure-5.41 Dissipation near Pressure Surface 
from Inlet to Exit 

-+--+- No modification 
-x--x- Aspect ratio function 
-Y--Y- Gradient function 
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Figure-5.42 Dissipation in the wake 

-+--+- No modification 
-x--x- Aspect ratio function 
-Y--Y- Gradient function 
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along the span 

-+--+- No modification 
-x--x- Aspect ratio function 
-Y--Y- Gradient function 
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Figure-5.44 Dissipation in the Corner of 
the Suction Surface and Hub 

-+--+- No modification 
-x--x- Aspect ratio function 
-Y--Y- Gradient function 
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Figure-5.47 Dissipation and Viscous Fluxes at the 
Corner of the Hub and the Suction Surface 
from Inlet to Exit 

-+--+- Dissipation without modification 
-x--x- Viscous fluxes without modification 
-Y--Y- Dissipation with gradient function 
-K--x- Viscous fluxes with gradient function 

I=ýS 

I= 6z 

23.2V 

s= ýy 
Figure-5.48 Axial Plane Locations 
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Figure-5.49b Horseshoe Vortex at Axial Plane 
1=34 tsee figure-5.48) in the 
Corner of the Hub and the Suction Surface 
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Figure-5.49c Horseshoe vortex at Axial Plane 
I=34 (see figure-5.48) in the 
Corner of the Hub and the Pressure Surface 
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Figure-5.54b Secondary Velocity Vectors 
(enlargement of figure-5.54a) 

SUCTIO 
SURFAC 

3rs 

Figure-5.540 Secondary Velocity Vectors 
near to Trailing edge at 1-75 
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Figure-5.56a Computational Result of wake 
at Axial Position 7 in downstream of 
Trailing Edge (see figure-5.28) 
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Figure-5.56b Experimental Result of wake 
at Axial position 7 mit downstream of 
Trailing Edge (see figure-5.28) 
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Figure-5-58a Fan Grid: Blade-to-Blade Plane 

Figure-S. 58b Fan Grid: Meridional plane 
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Figure-5.58c Fan Grid: Axial Plane in the 
Blade Passage 
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Figure-5: 59 Total Pressure loss of the Fan Case 
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Figure-5.62 Dissipation Component 
along the span 

-+--+- Flow Direction 
-x--x- Blade to blade direction 
-Y--Y- Radial direction 

223 



PAGE 
NUMBERS 
CUT OFF 

IN 
ORIGINAL 



Jb 

32- 

26 
24- 

22 ývSc' 
28 

1B .. x 

is- 

14- - 
"x. 

12 

18 

6- - 

4. 

2 

0 

C 
P 

C 

P 
C 
l 
r 
1 

-ei" -old Ulu -mu -aee -tea -. egZ "e .e 004 
Pc a1CTER (SEE LEGE10) 

Figure-5.63 Dissipation near Suction Surface 
along the Span 

-+--+- No modification 
-x--x- Gradient function 
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Figure-5.64 Dissipation and Viscous Fluxes 
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Suction Surface from Inlet to Exit 
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Figure-5.69 Decomposed Dissipation at the near wall 
region at Upper Circumferential Position 
(see Figure-5.67a & b) 
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Figure-5.70b Dissipation at the near wall Region 
at Lower Circumferential Position 
(see Figure-5.67a & b) 

-+--+- No modification 
-x--x- Aspect ratio and gradient function 
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Figure-5.71a Near Wall Dissipation and Viscous Fluxes 
with the Standard model at Upper 
Circumferential Position 

-+--+- Dissipation 
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Figure-5.71b Near wall Dissipation and Viscous Fluxes 
with the Standard model at Lower 
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residual with Standard Dissipation Model. 
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Figure-6.7 Total Pressuze Loss for the Inviscid 
Ni's Bump Subsonic Case 
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Figure-6.8 Dissipation of the u Component near 
Suction Surface from' inlet to exit 
for Inviscid Subsonic Case 

-+--+- Standard dissipation model 
-x--x- Modified dissipation model 
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Figure-6.10 Logarithmic Root Mean Square of the fu 
residual with Standard Dissipation Model. 
Inviscid Ni's Bump, Transonic case 
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Figure-6.11 Logarithmic Root Mean Square of the Pu 
residual with Modified Dissipation Mödel. 
Inviscid Ni's Bump , Transonic Case 
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Figure-6.12 Line Plots of the Four Zigenvalues (-+--+-), 
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Surface, from Inlet to Exit for the Inviscid 
Ni's Bump, Transonic Case. 
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Figure-6.13 Total Pressure Loss for the Inviscid 
Ni's Bump Transonic Case 

-+--+- Standard dissipation model 
-x--x- Modified dissipation model 
LE = Leading Edge 
TE = Trailing Edge 
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Figure-6.14 Dissipation of the fu Component near 
Suction surface tro: a inlet to exit 
for Inviscid Transonic Case 

-ý--+- Standard dissipation model 
-x--x- Modified dissipation model 
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Figure-6.15 Eigenvalues of the Modified Dissipation models 
Inviscid Ni's Bump at Transonic Condition 

S YO 



" 0I. XZU l 

" "f: 
"`" i 

". " 
"r". 

. "" 

k ". "" 

", " 
/'+. 

"i' 

" 4. 

ö ö 0 to ö 0 
"- . - r- r- . - . - 

x x x x x x LO o 0 0 0 Ln 
*'ý Lý : ii r t+ý 

0 

C) >. 
g 

r , E .4 x 
G. 

"O ° 

" 4 S3 2, A 

a o 

od 
X 
O ;v 
C4 d d ad 

- 
ýO 

' i 
N .c 

)= C Aj r 44 b 

°o ö 
to -4 " r 

N. Qü 
Q 4) 

of °a 
r 
X 

d 
N 

x 0 

34'1 



-_ 

-a 

-a 

-a 
"-a 

ý-a 
N 
c-a V ý-a " 
C-4 
N 
A^ý 
N 
G -ý 

s-s 
-4 

-s 
i 

3 

i 

t 

c 

" 

t 

" 

NI 

" 

" 
L, 06 . mss 

to cr lfrývmfjcms 

Figure-6.17 Logarithmic Root Mean Square of the Pu 
residual with Standard Dissipation Model. 
Two Dimensional High Pressure Turbine Fully 
Viscous Case 
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Figure-6.18 Logarithmic Root Mean Square of the pu 
residual with modified Dissipation Model. 
Two Dimensional High Pressure Turbine 
Viscous Case A 
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Figure-6.19 Total Pressure Loss for the Two Dimensional 
High Pressure Turbine Viscous Case 

-+--+- Standard dissipation model 
-x--x- Modified dissipation model, case A 
-Y--Y- Modified dissipation model, case B 
LE = Leading Edge 
TE = Trailing Edge 
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Figure-6.20 Dissipation of the pu Component near 
Suction Surface frod inlet to exit 
for the Viscous Case 

-+--+- Standard dissipation model 
-x--x- Modified dissipation model, case A 
-y--y- Modified dissipation model, case B 
LE = Leading Edge 
TE i Trailing Edge 
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Figure-6.21 Dissipation and Viscous Fluxes of the 
Component near Suction Surface from 
Inlet to Exit for Viscous Case A 

-+--+- Dissipation 
-x--x- Viscous fluxes 
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Figure-6.22 Eigenvalues of the Modified Dissipation model: 
Two Dimensional High Pressure Turbine 
Viscous Case A 
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Figure-6.23 Logarithmic Root Mean Square of the Fu 
residual with Modified Dissipation Model. 
Two Dimensional High Pressure Turbine 
Viscous Case B 
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Figure-6.26 Eigenvalues of the Modified Dissipation models 
Two Dimensional High Pressure Turbine 
Viscous Case B, iteration = 12000 

3Y-1- 



Irk 

ý 
IC 

Qf Qy ý i a _ 

N 

p 

I 

w 

T 

rJ ý 
ý R 

1 

Z i : i t Z I : t i 
ý 

0,1 tame suss . 0e0s-o1L%Ws»*- a-ZWGD 

S416 

a 
0 
-4 y 

N 

-4 
W 

md 
m IA 
g 

V 

Vm 
MO 
0O 000 
mu coo 
m to 000 
0.4 N100 
W> .4 r/ N 
a 

unu 
. r- 
'V000 4 

OO -4-4-4 Ný JJ4JAj 
aaa 

U1 WWb 
N 0OJQ! 

"&JL 
ýO HHH 

m111 
º+ + IC 9+ 

wiII 


