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Abstract Insider attacks are often subtle and slow, posing

the problem of integrating a large volume of event data from

multiple sources over a long period. This paper proposes a

scalable solution to combining evidence from multiple sources,

by maintaining long-term estimates that individuals or nodes

are subverted, rather than retaining event data for post-facto

analysis. These estimates are then used as triggers for more

detailed investigation. We identify essential attributes of event

data, allowing the use of a wide range of indicators, and

show how to apply Bayesian statistics to maintain incremen-

tal estimates without global updating. The paper provides a

theoretical account of the process, a worked example, and a

discussion of its practical implications. The work is couched

in terms of networks and identifying subverted nodes, but is

equally applicable in a social and behavioral context and the

identification of suspect individuals.

1 Introduction

Insider attacks pose a particular threat because of the knowl-

edge, access, and authority of their perpetrators (Randazzo

et al, 2004). Such attacks often involve violations of physi-

cal or operational security, or the misuse of authority; they

may also involve electronic attacks, in which case the ‘elec-

tronic insider’ is as big a threat as a person. It may be safer

for a sophisticated external attacker to subvert an electronic

system, often via social engineering, than directly subvert an
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employee. Such attackers may use technical means to cam-

ouflage an attack, such as indirection or address spoofing

(spo, 1998); however, their most potent weapon in avoiding

detection is patience – the world’s largest credit card fraud

was achieved with a subverted internal system that avoided

discovery for over 17 months (Goodin, 2007).

Subtle attackers are unlikely to launch large-scale scans

or use known exploits; they will seek to avoid any action

that can be immediately identified as an attack. However,

they are likely to cause minor security events: an attacker

may test known passwords, probe for services, or test new

exploits, expecting to hide within the background of user er-

rors, mistakes and other ‘noise’. The problem of detecting

such an attacker is therefore one of accumulating relatively

weak evidence over a long period. This issue is one of the

‘grand challenges’ of the internal attacker problem: “to com-

bine events from one or more sensors, possibly of various

types” while “reduce[ing] data without adversely impacting

detection” (Brackney and Anderson, 2004). This paper pro-

vides a solution to this critical problem.

The work presented here is couched in terms of networks

and systems, and the identification of a subverted node, which

is part of a system that is used by a corrupt insider, or is

acting as an electronic insider for some other party. How-

ever, the approach to characterizing and combining diverse

sources of weak evidence is equally applicable to other prob-

lems in the insider space, such as identifying criminal or es-

pionage threats from behavioral indicators.

This paper provides a process for combining evidence

from various sources based on the application of Bayesian

statistics, identifies attributes that must be available to allow

the combination of evidence from different types of sensor,

and demonstrates the effectiveness of this approach with a

simulated slow-attack on a network.

This paper presents the the results of substantially more

research than its workshop predecessor (Chivers et al, 2009).
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Although the principles and aims are the same, the hypothe-

sis on which the updating algorithm is based has been changed,

resulting in a improved updating factor, which is effective at

resolving some marginal discrimination observed in the pre-

vious results. This paper also includes a significantly larger

realistic simulation, explicit results on the limits of eviden-

tial accumulation, and a discussion on normalization that

justifies the stance that it is not necessary to update scores at

every node following each event.

The paper is organized as follows: Section 2 provides

an overview of the proposed approach, section 3 describes

related work, and the evidential accumulation process is de-

veloped and described in section 4. After a brief explanation

of the simulation approach in section 5, section 6 shows that

the proposed process is well behaved in simple cases, and

that it gives the same estimate of behaviour, regardless of

the size group an individual is associated with; section 7 then

explores the effective limits to updating evidence. Section 8

simulates a challenging insider detection problem, contrasts

the effectiveness of the evidence accumulation process with

a common, but naive, alternative approach, and shows how

the results vary with increasing uncertainty of identification

of nodes that originate events. Section 9 discusses results

and open issues, and the paper is concluded in section 10.

2 Overview

Consider how a human investigator might approach the prob-

lem of accumulating evidence in the network of Figure 1.

The network consists of nodes (A...J) with interconnectivity

as shown. Two minor security events are detected E1, and

E2; they may originate from an operating system alert, in-

trusion detection system, or other form of event detector.

E1

E2

A
B

C

D

F

G

H

I

J

Fig. 1 Intersecting Evidence

Given information about event E1 and the traffic in the

network at the time, the investigator may determine that the

nodes most likely to have originated the event are J, B, A,

C or D. Similarly, when E2 occurs, at a much later date, the

possible originating nodes are D, F and H. Intersecting these

observations suggests node D as a common factor, and this

may be sufficient to trigger intensive monitoring to deter-

mine if it is behaving maliciously.

The data used to identify these security events and their

possible sources is necessarily transient; it may not be pos-

sible to record sufficient traffic to allow this analysis retro-

spectively. However, it is initially sufficient to just identify

nodes that score differently; in the long, slow, game, it is

only necessary to ‘tip off’ a further investigation by identi-

fying one or more nodes whose behaviour may be unusual.

It is not essential to record the events, the traffic from which

they were identified, or even the graphs that identify possi-

ble sources, provided it is possible to somehow accumulate

a ‘score’ for each node in the system.

This approach solves one of the critical issues in identi-

fying slow attacks: how to maintain long-term state. Systems

that try to model the behaviour of individuals, systems or

protocols, are forced to retain large amounts of data, which

limits their scalability. In the approach described here, the

state size is a small multiple of the number of nodes in the

network; this state is readily distributed, and its storage is

feasible, even for organizations with global networks.

The ‘score’ that we propose for each node is the prob-

ability that the node is subverted, based on the application

of Bayesian statistics. This naturally allows incremental up-

dating, and translation of the problem frame from events,

which are related to behaviour, to individual attackers. Sim-

pler schemes, such as the event counting used to introduce

this section, can be shown to be inferior, as demonstrated in

section 8.

In summary, we propose that to identify subtle or inside

attackers:

– The primary objective is to identify nodes for further in-

vestigation.

– Long-term state is restricted to an incremental estimate

of the probability that each node is an attacker.

– Node estimates are updated following every security event,

taking account of transient network information that may

be available at the time of the event.

This process is complementary to conventional intrusion de-

tection using signatures or heuristics. There is no need to

gradually accumulate evidence if the attack is evident. For

example, a high level of network activity due to a worm or

virus provides compelling evidence of an attack, and in this

type of case the secondary investigation is concerned with

incident management, rather than confirmation.

Section 4 describes how node scores are calculated and

maintained, following a brief summary of related work.
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3 Related Work

The use of a tiered approach to insider threat detection, de-

tection followed by a more detailed forensic investigation,

is proposed by Bradford et al (2004). Users are profiled ac-

cording to their function, and deviation from normal be-

haviour triggers more intensive data collection. Sequential

hypothesis testing is proposed to determine whether a pro-

cess is anomalous and more intensive data collection should

be initiated. However, the authors do not show an imple-

mentation of their approach, and remark that it could not be

carried out for “every user regardless”, but itself requires a

“triggering process”.

The problem is the volume of data that must be main-

tained, and this is also a issue with datamining approaches,

which are often proposed as an adjunct to intrusion detec-

tion or audit. Research proposals to alleviate the scalability

issue include improving the quality of the raw data, by dis-

covering better behavioral indicators (Nguyen et al, 2003)

or classifying input features (Chebrolua et al, 2004), the lat-

ter using a Bayesian classifier. An alternative approach by

Staniford et al (2002) is to selectively retain anomalous net-

work data, with the aim of identifying slow network scans.

Anomalous packets are identified based on heuristics devel-

oped from real scans. Other approaches include statistical

filtering, primarily to reduce false alarm rates and support vi-

sualization (Colombe and Stephens, 2004). In essence, how-

ever, all these approaches require the storage of large vol-

umes of event data for later analysis, and the authors them-

selves often identify scalability as a problem (Nguyen et al,

2003).

Aggregation as a means of detecting slow or stealthy at-

tacks has been proposed by Heberlein (2002). His assump-

tion is that slow attacks are still systematic, and the attacker

will eventually repeat the attack many times, possibly against

different targets. Alerts are classified, accumulated, and dis-

played on a visualization grid, and any persistent activity

which raises alerts of the same type over a long period, can

be identified. Although similarly motivated, our work dif-

fers by accumulating evidence of attackers, not of incidents,

removing the restriction that attackers need to repeat simi-

lar attacks. Heberlein’s algorithm is also a counting process,

which we show to be inferior to statistical reasoning.

Other work directed toward the insider problem is fo-

cussed on characterising an attacker’s behaviour. The se-

curity indicators (‘events’) used may range from an indi-

vidual’s buying and travel preferences, to electronic alerts.

For example, Buford et al (2008) propose a comprehensive

framework of ‘observables’ that are used to build a model of

individuals’ behaviour via graph theory. Eberle and Holder

(2009) develop graphs of behavioral events, such as phone

calls, to identify sub-graphs of normal behaviour, which are

used to search for similar but anomalous occurrences. These

approaches offer the advantage of modeling the potential

attacker, and providing interesting insights into observable

behaviour; however, their application may be limited by the

computational cost of graph matching over large datasets, as

well as by data scalability.

Most of the work described above is still formative; net-

work intrusion detection, however, is established in the lit-

erature and supported by both open and propriety products

(Bace and Mell, 2001). An intrusion detection system (IDS)

uses a behavioral model of a system or protocol and detects

anomalous events by either recognizing predefined signa-

tures, or by heuristics. Both approaches have strengths and

weaknesses, but despite the usefulness of IDSs in practice,

they are hampered by a lack of scalability, and tend to gen-

erate large numbers of false positive alerts (Bace and Mell,

2001). From the perspective of this paper, IDSs are an effec-

tive way of generating events which may indicate an attack,

but are unable to maintain sufficient state to identify slow

attacks.

An IDS is not the only possible source of security events;

for example, the behavioral events referenced above, op-

erating system audit trails, and even Honeypots (Spitzner,

2003), which are security traps with no operational func-

tionality, are all possible event sources.

In summary, the challenge of integrating information from

many sources in a manageable and scalable fashion, in or-

der to identify patient internal attackers, is still an important

open question (Brackney and Anderson, 2004).

4 Accumulating Evidence

This section develops the detailed theory necessary to achieve

the method outlined in section 2: to collapse the problem

of attacker identification to updating a single score for each

network node, or user. The section first outlines the eviden-

tial scenario, and the attributes required to characterize se-

curity events. Standard Bayesian updating is summarized,

followed by the development of the process for updating ev-

idence of insider attacks. Finally, the practical issue of relat-

ing this process to real security events is discussed.

Definitions

Node: This paper uses network terminology, without loss

of generality to broader types of human or attack behav-

ior. A node is a network component, such as a user’s end

system, a router, or a user. The equivalent in behaviour

modeling or social networks is an individual.

Event: An event is an alert that indicates a possible security

violation; it may be an anomalous phone call, a failed

connection, or something more certain, such as a known

electronic exploit.

The evidential scenario is presented in Figure 2. Node a is

a network node, and x is an event which is detected some-
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where in the network; there is some evidence that identifies

the nodes that may have originated the event.

Event x
P(Event is an Attack)

Node a
H: Hypothesis that (a) is Subverted

... the set of nodes ...
that may originate x

Event y
...

Fig. 2 The Evidential Scenario

Event x may indicate an attack. Some security events are

almost certainly attacks; however, there are many more that

may be user mistakes, backscatter, or other forms of network

‘noise’. For example, an attempt to connect to a non-existent

webserver is often a simple mistake, but could also be an

attack probe.

In addition to uncertainty about the extent that an event

is an attack, there may also be uncertainty about the origin

of the event. For example, the attacker may be able to spoof

its network address, or the event may only be traceable to

a subnetwork; in a social context only a proportion of the

individuals associated with a particular event (behavioral in-

dicator) may be identifiable. In order to accumulate evidence

from a wide range of different sources, events must be char-

acterized by uniform parameters that describe these various

attributes. We propose that security events can be character-

ized by three parameters:

– P(Attack): the probability that an particular event is caused

by an intentional attack. For an event generated by net-

work intrusion sensors this is the ratio of true positive

alerts to all alerts, which is a standard figure of merit. For

behavioral indicators (e.g. presence at a street demon-

stration) and other system alerts (e.g. failed logins) it is

necessary to estimate the value based on likely event fre-

quencies. In a similar way to estimating risk likelihoods,

it may be sufficient to quantify these frequencies to an

accuracy of an order of magnitude.

– The Causal Node Set: the set of nodes or individuals

that could have originated the event. In a network it may

be possible to associate the event with a packet stream

that originated from an identifiable subnetwork or node.

This may be a static feature of the sensor’s location, or

it may be deduced from the data (the packet source ad-

dress places it in a particular subnetwork), or from dy-

namic system information (e.g. current routing tables).

In the case of behavioral information it is likely to be an

identifiable set of individuals (e.g. visitors to an internet

cafe during a specific period).

– P(Causal): the probability that the event originator is

within the causal node set. It will not always be possi-

ble to identify with certainty the set of nodes or indi-

viduals that contain the event originator. For example,

routing tables or traffic records may suggest that most

packets came from a specific network, but a few came

from elsewhere; the traceability of a packet to a partic-

ular subnetwork may depend on the correct functioning

of routers and firewalls, which themselves have a finite

possibility of being subverted. In the case of behavioral

indicators it may be possible to know the number of peo-

ple involved in an incident, but only positively identify a

fraction of the individuals. All these factors suggest the

need for a quality metric which describes the certainty

that the actual event originator is in the causal set.

Given a sequence of events characterized by these pa-

rameters, we wish to investigate the hypothesis that a partic-

ular node is subverted, or acting as the agent of an attacker.

We will first summarize the standard approach to Bayesian

updating, then show how it can be applied in this case.

4.1 Bayesian Updating

Bayesian updating provides an estimate of the probability

that hypothesis H is true, given an event, x.

P(H|x) =
P(x|H) ·P(H)

P(x)
(1)

This theorem uses P(x|H), the probability of event (x)

given that the hypothesis is true, to update the initial (‘prior’)

estimate of the probability that the hypothesis is true, P(H).

Simple updating of this type is often used in medical di-

agnosis; given knowledge of the probability of a symptom

(the event) given a disease (the hypothesis), it provides a

principled estimate of the likelihood of the disease given the

symptom. It is essentially this change of reference frame –

from symptom to cause – that is needed to identify internal

attackers from their behaviour.

The denominator, P(x), the probability of the event, is

effectively a normalizing factor which ensures that the prob-

abilities of all the possible hypotheses sum to unity. In many

cases, including ours, it is difficult to estimate P(x), and this

is resolved by explicitly normalizing over the hypotheses;

the problem of normalization is discussed further in section

4.2.3, below.

Assuming conditional independence (i.e. that the proba-

bility of an event is conditioned by the hypothesis, but not by

other events that are observed, see section 4.3), the evidence

from several events (e.g. x,y) is combined as follows:
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P(H|x,y) =
P(x|H) ·P(y|H) ·P(H)

N
(2)

Where N is a normalizing factor.

4.2 Combining Evidence from Security Events

The evidential scenario is described at the start of this sec-

tion; in detail, we define:

S The set of all nodes in the system.

#S The total number of nodes in the system.

a,b... Particular network nodes. a,b, ... ∈ S

Ha The Hypothesis that we wish to update: that

node (a) is the node which is subverted, or

being used to mount an attack within the sys-

tem.

x,y... Particular events that may provide evidence

of an attack.

P(Attackx) The probability that a particular event, x,

originates from an intentioned attack.

Cx The causal set of nodes that are likely to have

originated event x.

#Cx The number of nodes in set Cx

P(Cx) The probability that Cx includes the node that

originated the event.

The parameters P(Attackx), the casual node set, Cx, and the

likelihood that the originator is in this set, P(Cx), were de-

scribed in the introduction to this section; they are the three

attributes necessary to characterize an event.

The hypothesis, Ha, assumes that only one node in the

system is subverted; this provides improved discrimination

and normalization over the alternative hypothesis that sev-

eral nodes may be subverted. This is a technical issue and

does not inhibit the practical use of the resulting scores to

identify the (several) most likely attackers.

In order to carry out Bayesian updating as specified in

equation 2, it is necessary to calculate the update factor P(x|Ha),

the prior probability P(Ha), and when required, to normal-

ize the result in such a way that the probabilities across all

nodes sum to unity.

4.2.1 The prior probability

The prior probability is a function of the network node, and

may be estimated in advance for the type of node, or if there

is no basis for distinguishing nodes (see section 4.3, below),

it can be set to 1/#S.

4.2.2 The Bayesian update factor

The update factor P(x|Ha) is the likelihood of the event,

given the hypothesis Ha. Given that event x has been ob-

served, and the hypothesis that a is the only attacker, then

either:

– Event x is an attack, and it came from node a, or

– Event x is not an attack, and it may have originated from

any node.

The probability that x is an attack is the parameter P(Attackx)
that characterizes the event, as described above. The proba-

bility that the event is not an attack (i.e. it is a false positive)

is therefore (1 - P(Attackx)).

Each event is associated with a set of nodes, Cx that is

expected to include the originator of the event. This set di-

vides the population of nodes in the system into two; node

a, which is the subject of the hypothesis, may be a mem-

ber of Cx, or may fall outside that set. If a is in Cx then the

probability that x originated from a is the probability that Cx

includes the originating node, P(Cx), divided by the number

of nodes in the set, #Cx. If a is not in Cx then the probability

that x originated from a is (1 - P(Cx)), divided by the number

of nodes outside Cx, (#S - #Cx).

This allows us to calculate the probability that x is an

attack, and it came from node a. As described above, we

must add the possibility that x is not an attack to obtain the

required update factor:

i f a ∈Cx :

P(x|Ha) =
P(Attackx) ·P(Cx)

#Cx

+(1−P(Attackx)) (3)

i f a /∈Cx :

P(x|Ha) =
P(Attackx) · (1−P(Cx))

#S−#Cx

+(1−P(Attackx))(4)

These factors can be used directly, but they do not quite

meet the need for efficient evidence recording, since apply-

ing them in this form would require the probability estimate

associated with every node to be updated for each event. For

efficiency, and to allow distributed calculation if necessary,

it is very desirable to update only the estimates of nodes that

are within Cx - that is to update only the scores of nodes that

are indicated as possible originators of a particular event.

This is possible by partially normalizing these update fac-

tors, as described in the next section.

4.2.3 Normalizing the result and localizing the update

factor

The naive Bayesian updating process calculates a score which

is the numerator of equation 2 for each node in the system:
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Scorea = P(x|Ha) ·P(y|Ha) ·P(Ha) (5)

Since there is a score for each node in the system, nor-

malising to obtain the required probability for each node is

carried out by dividing by the sum of all the node scores:

P(Ha|x,y) =
Scorea

∑
#S
i=1 Scorei

(6)

This allows probabilities to be recovered from node scores,

when required.

As described above, it is desirable to localize the updat-

ing process; to do this we observe that multiplying all the up-

date factors arising from a given event by a constant has no

effect on the normalized probability. This is trivial to prove:

multiply P(x|Hi) in equation 5 by an arbitrary constant, K,

for all nodes i in S. This multiplies both the numerator and

the denominator of equation 6 by K, which cancel to give the

same normalized probability that would result if the constant

multiplier had not been used.

Our objective is to avoid updating node scores outside

Cx, and this can therefore be achieved by choosing a con-

stant K which sets the update factor for these nodes to unity.

The required constant is the reciprocal of equation 4; by

multiplying equation 3 by this factor we obtain an update

factor that is applied to only the sores of those nodes within

Cx.

∆x =

P(Attackx)·P(Cx)
#Cx

+(1−P(Attackx))

P(Attackx)·(1−P(Cx))
#S−#Cx

+(1−P(Attackx))
(7)

4.3 Evidence accumulation in practice

The forgoing sections provide the necessary theory to allow

the details of security events to be discarded, while retaining

a single score for each node which summarizes the evidence

that the node is an attacker. The algorithm to achieve this is

to:

1. Initialize each node score with its prior probability, P(Ha).
2. For each security event:

(a) Establish the distinguishing parameters: the proba-

bility that the event is an attack, the set of nodes that

are likely to have originated the event (Cx), and the

probability that Cx contains the event originator.

(b) Calculate ∆ from equation (7).

(c) Multiply the score for each node in Cx by ∆ ; do not

update the scores for nodes outside Cx.

3. When required, normalize the resulting node scores us-

ing equation 6, to obtain the probability that each node

is an attacker.

The prior probability is of value if different nodes have

significantly different priors; for example, the difference be-

tween a router and a laptop. In this case the relative differ-

ence between the types of node may be suggested by survey

information. If no information is available, then the priors

can be set to 1/#S.

The three parameters that characterize an event were dis-

cussed in the introduction to section 4.

The assumption of event independence, which is part of

standard Bayesian theory, has some practical consequences

for the choice of event. In many of the fields in which Bayes

applies, items of evidence are not perfectly independent, but

nearly enough so to allow the results to be useful. The choice

of event type should therefore reflect this issue. For example,

in a network attack, a particular sequence of actions may be

closely related (e.g. a known exploit, followed by an outgo-

ing connection that downloads specific malicious software).

Such chains of actions are clearly not independent events,

but are close enough in time to be correlated by an intrusion

system and regarded as a single event (with a high certainty

of being an attack). On the other hand, in a network scan,

which is a series of probes to different network locations, the

individual probes are only interdependent to the extent that

addresses scanned will depend to some extent on past his-

tory. In these situations the designer has a choice whether to

regard them as a separate events, with rather low P(Attack),

or if they occur within a short time interval to regard them

as a single event with a much higher P(Attack).

We are primarily concerned with comparative scores, in

order to identify nodes that are distinctive and require further

investigation. In practice, then, it is sufficient to use Loga-

rithmic scores, simply adding Log(∆ ) to each node indicated

by an event. Equation 6 can still be reconstructed from this

information, but more usually, the highest node score or set

of scores is chosen for further investigation.

The reader may be wondering about the value of calcu-

lating ∆ at all at this stage, since we simply add its loga-

rithm to the score for indicated nodes. However, this differs

significantly from a counting algorithm, where the score for

each node is incremented when it is identified as the possible

source of a security event. The update value, ∆ , character-

izes exactly how much evidence is provided by each event.

This important distinction is illustrated in the worked exam-

ple presented in section 8.

5 Simulation Approach

The sections that follow evaluate the evidence accumula-

tion process described above, partly by further exploration

of equation (7), and partly by simulation. This section briefly

describes the simulation rationale and approach.

It is rare to obtain useful effective network traces from

real systems, especially large systems with subtle attackers.
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Therefore, in order to explore a wide range of different sce-

narios, we use network simulation. In this paper, simulation

is first used to demonstrate properties of the proposed ev-

idence accumulation process, then used to demonstrate its

effectiveness in a complex network whose overall structure

is typical of those we encounter in practice.

The structure of the simulator is presented in fig 3

Activity
Specification

Event Detection
Specification

Traffic
Generator

Evidence
Manager

Normaliser
& Readout

Scores

Output

Calculation
Function

Simulator
Problem

Specification

Test
Method

Fig. 3 The structure of the security event simulator

The simulator behaviour is controlled by two inputs: a

problem specification and a test method. The problem spec-

ification contains two main parts, a description of network

traffic including security related events, and a specification

for how event detection behaves. Traffic is generated by the

simulator at random, within rates set by the specification,

and can be typed to allow different sorts of detectors and

traffic to be simulated simultaneously. The event detection

section specifies what traffic events can be detected, and how

to determine the three key parameters: P(Attackx), Cx, and

P(Cx) for each event.

The test method provides score calculation and normal-

ization functions. Usually these functions implement equa-

tions 7 and 6 respectively, but they can be exchanged with

other methods, allowing exactly comparable results to be ob-

tained; this feature is used to contrast the updating process

proposed here with a counting approach, in section 8.2, be-

low.

The simulator maintains complete separation between

the calculation method and problem specification. It gener-

ates traffic according to the activity specification, which is

then screened for events using the rule structure provided by

the event detection specification. Events detected are pro-

vided to the calculation method, which updates the associ-

ated scores, and when output is required the normalizer can

be employed to recover actual probabilities. In all the ex-

amples in this paper the normalizer is not used, since Log

scores are displayed, as described in section 4.3.

6 Behaviour of evidential accumulation

Before showing a representatively difficult example of in-

sider attack detection in section 8.1, this section explores if

the evidential accumulation process has intuitively appeal-

ing behaviour. Two examples are given, the first explores a

simple network with variable rate attackers, and the second

is concerned with multiple overlapping groups of nodes.

6.1 A simple network

Given a single subnetwork, in which the sender can be read-

ily identified, we explore some key questions for evidence

accumulation:

– Does the evidential process identify an attacker sending

at a slightly higher rate than the background of errors

from normal nodes?

– If the rate of attack increases, is the process stable, and

does it enable the attackers to be identified earlier?

– Does the process accommodate multiple attackers with

different rates of attack (i.e. can one node hide behind

another’s attack)?

We simulate a single subnetwork of 50 nodes, in which

the originating node of an event can be identified with cer-

tainty (i.e. #Cx = 1, and P(Cx) = 1); we assign P(Attack)
an arbitrary probability of 0.083. Time is divided into slots

(e.g. single minutes) and the average background rate of ran-

dom innocent events that may be misinterpreted as attacks is

1/50 per node – in other words, one event per minute. Three

nodes within the subnetwork are designated attackers, and

they generate random attacks at rates of 2, 4 and 8 times the

total background rate.

The scores resulting from this scenario are shown in Fig.

4. All three attack nodes are well distinguished from the

background level of events, which is indicated by the ‘con-

trol’ result, which is the score for a typical innocent node.

As would be expected, if the attack rate is higher, the dis-

crimination improves. The accumulation of evidence is well

behaved, and the higher rate nodes do not interfere with the

accumulation of evidence relating to attackers operating at a

lower rate.
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6.2 Evidence from variable sized overlapping groups of

individuals

Electronic networks are likely to have stable structures, re-

sulting in relatively simple and consistent groups of nodes

(i.e. the sets of Cx) that can be identified as the originator of

an event: for example the individual node, the logical sub-

network, or a local facility network. Under these circum-

stances it is important that the same evidence is accumulated

against two nodes whose behaviour is the same, but who are

usually identified with different size groups of nodes.

This issue becomes more significant when dealing with

social networks where innocent individuals associated with

’events’ (e.g. individuals visiting a specific internet cafe, or

taking a flight to a particular destination) are present by ac-

cident, rather than a result of a fixed network architecture.

These groups of individuals are much more ad-hoc, and the

attackers lie somewhere in their many random intersections.

To investigate how well disparate groups are handled

by the evidential accumulation process, we simulate three

events that identify three radically different sized groups of

individuals (651, 51 and 25). Fig. 5 (a) illustrates the re-

sulting sets of individuals, and the size of two overlaps. All

the individuals in the system generate events at the same

rate (P(event)=0.014), which results in a total of 10 events

per minute from the 700 individuals). The exceptions are

the individuals in the overlaps, who generate events in all

the groups with which they are identified at the same rate

as other group members, so they generate additional events

pro-rata to their group memberships. P(Attack) is .099 for

all events, and the simulation was run for 100,000 minutes.

The resulting scores are given in Fig. 5 (b).

14·3

14·2

14·2

625

1
24

25 25

Group A
(651)

Group B (51)

Group C (25)

28.5

42.7

Membership Scores

a. b.

Fig. 5 Investigating the scores for individuals in different size groups,

with the same behaviour. (a) shows the sizes of the three groups and

their overlaps; (b) gives the final accumulated score for representative

single individuals.

The results show that individuals generating ’false alarms’

at the same rate, but ascribed by the detection process to dif-

ferent sized groups, receive the same score; the small differ-

ences are attributed only to small differences in the random

generation of events. This effective normalization between

different group sizes is an important feature of the proposed

evidence accumulation process, because the objective is to

identify individual behaviour, and avoid simply identifying

individuals on the basis of the groups to which they are

ascribed. Section 8.2, below, provides a dramatic example

of how badly alternative accumulation processes perform if

they do not possess this attribute.

In this case the scores for the individuals in the inter-

section of these groups is predictable, as it arises simply

from the superposition of event rates. The reader should bear

in mind that this section is concerned only with basic be-

haviour. A real social network problem is likely to iden-

tify many more groups, with considerable uncertainty about

their membership, making it rather more difficult to identify

which individuals are potentially significant.

7 Limiting factors for event evidence

The equation for updating evidence can also be used as a

measure of effectiveness for event detectors. Specifically, we

can enquire under what circumstances does an event add in-

formation to our estimate that an individual is an attacker.

The threshold of usefulness of event detection occurs

when ∆ from equation (7) is unity; a value above unity adds

evidence to some hypothesis, below reduces evidence against

any of the identified nodes. We require:

P(Attackx)·P(Cx)
#Cx

+(1−P(Attackx))

P(Attackx)·(1−P(Cx))
#S−#Cx

+(1−P(Attackx))
>= 1 (8)

Multiplying by the denominator of the left hand side, then

subtracting (1−P(Attackx)) from both sides gives:
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P(Attackx) ·P(Cx)

#Cx

>=
P(Attackx) · (1−P(Cx))

#S−#Cx

(9)

Dividing out P(Attackx), and multiplying out the denomina-

tors, we obtain:

(#S−#Cx) ·P(Cx) >= #Cx · (1−P(Cx)) (10)

Adding #Cx ·P(Cx) to both sides, then re-arranging, gives:

P(Cx) >=
#Cx

#S
(11)

This result is shown graphically in Fig. 6.
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Fig. 6 Evidential value is limited by the effective size of the set of

individuals implicated by an event

This result is valid provided P(Attackx) is not zero. Val-

ues of P(Attackx) close to unity provide most evidence,and

as P(Attackx) tends toward zero the update factor approaches

unity, which is to be expected since the weight of evidence

is reducing.

Assuming that P(Attackx) is not approaching zero, then

the factor that limits the value of evidence is the certainty

of estimation of the set of nodes responsible for an event, in

relation to the relative size of that set to the whole popula-

tion. In simple terms the limit can be regarded as the point

at which the whole population is implicated by an event. A

practical illustration of this threshold is given in section 8.3,

which shows how evidence in a representative network be-

haves with decreasing certainty of event attribution.

8 Insider Attacks

This section shows that an insider attack in a representative

network can be identified by the proposed evidence accu-

mulation process, contrasts the principled accumulation of

evidence with a simple counting scheme, and explores how

evidential accumulation behaves as the attribution of nodes

that originate events becomes less certain. All the examples

in this section use the same network and the same simulation

seeds, to provide comparable results.

8.1 A difficult detection problem

The network used in this section is a medium-sized system

(3000 endpoints) with features that are representative of the

problem space, including:

– Sensors with different capabilities; for example, certainty

of detection and ability to identify source nodes.

– Attackers whose rate of attack is significantly below the

background rate of false positive alerts for the system.

– Attacks that employ address spoofing.

An important practical issue is the estimation of the three

parameters that characterize a security event; relating these

to actual systems and assessing the need for accuracy is sub-

ject to ongoing study. To date it has been possible to achieve

realistic results by assigning P(Attack) as a fixed value for a

given sensor within a deployment context, and by creating

a simple rule-set that maps the network connection associ-

ated with an event to a set of nodes, giving Cx and P(Cx),

depending on the configuration and protocol.

The network used in this example is given in Fig. 7.

This network has 3000 nodes, most of which are user sys-

tems located in eleven separate client subnetworks, in sizes

that range from 33 nodes to 500. Two of these subnetworks

have nodes that are subverted and are attacking the system.

The purpose of dividing the clients into several subnetworks

(apart from the fact that this is a standard configuration) is

to contrast the detectability of attackers in different sized

subnetworks, given that in many cases it will be possible

to identify only the subnetwork from which an attack orig-

inated. This arrangement allows us to investigate the scores

accrued for an attack node (3 or 403) versus normally-behaving

nodes in the same subnetwork, and nodes in a control sub-

network of a significantly different size.

Most of the traffic in the system is between the clients

and servers, via the core network. Router and firewall detail

is not shown, and because the object is to investigate evi-

dence accumulation rather than event generation we model

two unspecified types of security event: those that can be

detected within client subnetworks, and events in the server

farm. For example, an event could be an attempt to connect

to an exploitable network port.
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Fig. 7 Test Network

Attackers are expected to generate security events at a

rate that is much lower than the background rate of ‘mis-

takes’ by normal clients, in order to remain undetected. In

the simulation below, time is measured in arbitrary clocks

(e.g. minutes), and the probability of a normal client gen-

erating a security alert in any time slot is 1/20; in other

words the system suffers an average of 150 false alarms ev-

ery minute. In contrast, attackers generate events at a rate of

1/10; one event every 10 minutes.

In addition to the low attack rate, to further avoid detec-

tion, attackers use address spoofing. Events detected outside

the subnetwork containing the attacker can only be assigned

to the whole subnetwork. Only events identified within the

subnetwork containing the attacker (i.e. directed toward nodes

within that subnetwork) can be traced to a specific node.

An outline calculation illustrates the difficulty of this

problem. Consider the attacker at node 3. Viewed from out-

side, the subnetwork can be expected to generate innocent

background events (false alarms) at a rate of 1.6 events per

minute (33 ∗ 1/20). The events generated by the attacker

are distributed at random across the network, so of these,

33/3000 are towards the attacker’s own subnetwork; these

are the only events that can be identified to a particular at-

tacker, and they occur at a rate of one every 909 minutes

(P() = 1/10∗33/3000). The simulation is over 104 minutes;

in this time we expect a total of 1.5 million events in the sys-

tem as whole (104∗33/20) of which 16000 (104∗1.6) can be

ascribed to the attacker’s subnetwork, and just 11 (104/909)

to the attack node.

Given this information the reader could devise a solution

to identify the attacker, but the problem addressed here is

how to use all the available information when the location of

the attacker and the traffic patterns are unknown in advance.

In summary, the event parameters used in the simulation

are:

Cx contains all the nodes in the source subnetwork, unless

the destination of the network message that caused the

event is in the same subnetwork as the source, in which

case Cx contains just the source node.

P(Cx) is set to unity, since Cx includes the node which orig-

inates the traffic. (The effect of varying this parameter is

discussed in section 8.3, below.)

P(Attack) is set to 0.043 for all used locations except the

server nodes, for which a value of 0.0099 is assigned,

and events from a client to its own subnetwork, which

are given a value of 0.076.

These are arbitrary, for the sake of demonstration, al-

though they do reflect likely differences in expectation.

For example, it seems plausible that an incident at a loca-

tion to which most of the traffic is directed is less likely

to be an attack, but in practice that is dependent on the

actual event. The only special feature in the choice of

value is avoiding fractions such as 30/3000 that match

the system topology, although we have not detected any

problems arising from such choices. Varying these pa-

rameters results in different scores, but not at the expense

of overall discrimination.

The network simulator was used to generate random traf-

fic as specified above, and the scores for the resulting se-

curity events were accumulated as described in section 4.3.

The results are shown in Fig. 8.

Fig. 8 shows node scores as they are accumulated. The

nodes shown are attackers (3,403), representative nodes in

the same subnetworks (4,404), and a control node in a large

subnetwork with no attackers (1000). Nodes (3,4) are from
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33-node subnetworks, nodes (403, 404) are from 100-node

subnetworks, and node 1000 is from a 500 node subnetwork,

of which there are 4, which together contain a significant

proportion of the nodes in the network.

The results show that insider attacks can be clearly dis-

tinguished from background noise in the system.

For each size of subnetwork the proposed scoring clearly

distinguishes the attacker as an individual from other nodes

within the same subnetwork. Nodes are similarly scored re-

gardless of the size of the subnetwork in which they reside,

and there there is only a small difference in score between

other nodes in the subnetworks containing attackers and the

control node (approximately 2%), which can be attributed to

attackers slightly raising the score of their own network.

8.2 Contrasting evidence accumulation with event counting

The effectiveness of the approach to evidence accumulation

presented in this paper can be judged by comparison to the

counting algorithm used to introduce section 4, and adopted

by some researchers. The same events are generated with

the same characteristics as described in the previous section,

but the calculation function uses counting rather than evi-

dence accumulation, by simply incrementing node scores if

the node is identified as a possible source of an event (i.e. is

in Cx). The results are presented in in Fig. 9.

On a realistic problem, the counting approach fails in

almost every respect. Attackers are not distinguished from
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Fig. 9 Counting Algorithm Performance

other nodes in their subnetwork. Instead, the primary dis-

tinction is between nodes on the basis of network size; es-

sentially the larger subnetworks generate more background

traffic, so receive a proportionately higher score.

8.3 Uncertainty in identifying the nodes that originate an

attack

The network example, above, assumed that the set of nodes

associated with an attack could be identified with certainty.

Fig. 10 shows the results of a series of simulations, with

varying degree of certainty of attribution of the nodes that

originate each event. For the sake of illustration all events

were given the same P(Cx); in practice this would vary de-

pending on the type of the event and the position in the net-

work where it was detected.

As would be expected, the greater the uncertainty the

lower the overall score. Importantly, the scores remain cor-

rectly ordered; even with high degrees of uncertainty of at-

tribution, the attacking nodes would be identified for further

investigation.

An interesting feature of this simulation is the control

node, whose score decreases more quickly than the others,

eventually becoming negative. Section 7 showed that the

limit of evidential value is at the point where the degree

of uncertainty approximately encompasses the whole net-

work. The control node in this case is in a subnetwork of 500

nodes, in a network with 3000 nodes; equation 11 gives the
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threshold value as P(Cx) = 500/3000 = 0.17, which is con-

sistent with the point at which the simulated score is zero.

The decreasing score of the control node in this example

is therefore a result of the attribution of the origins of events

approaching the size of the whole system. This effect is also

the most likely cause of the small divergence between non-

attacker nodes (subnet 400 diverges a little); however, given

the random nature of the simulation this difference is too

small to justify a claim of significance.

9 Discussion

The proposed evidential updating process is effective be-

cause it relates event evidence to the hypothesis that a node

(or user) is the attacker. This change of reference frame al-

lows event data to be discarded, while retaining the weight

of evidence for attackers. The process scales linearly with

the number of nodes in the system, and is applicable to a

very wide range of systems and circumstances.

Bayesian statistics has been used, rather than the sim-

ple probability ratios that would be suggested if information

theory was employed, in order to effect the change of view-

point from the event to the attacker. The update factor, ∆ ,

importantly takes account of ancillary information such as

the number of nodes that are indicated by the event, and the

degree of certainty in their estimation.

∆ can be used as a figure of merit for sources of informa-

tion; essentially, if ∆ is consistently fractional for a sensor,

then the resulting events will degrade the quantity of avail-

able information, rather than improve it. We show that this

depends on the uncertainty of estimation of the set of event

originators, compared with the size of the overall system.

Essentially, if it is not possible to distinguish between nodes

in the network, the event adds no value. This has important

practical consequences for intrusion system and network de-

sign: as much attention should be given to identifying the

source of events as to the false-alarm rates of sensors.

The attributes described in section 4 (probability of at-

tack, the likely originating nodes of an event, and the prob-

ability that the event originator is in this set) are not specific

to any particular type of event detector, and can be applied at

different levels of abstraction, if necessary within the same

system.

There are a number of practical considerations that are

subject to ongoing study. The first implementation decision

is which real components are regarded as ’nodes’: should

nodes model all network components, just routing compo-

nents and endpoints, or just endpoints such as clients, servers

or users? To date, only endpoint nodes have been consid-

ered; this decision is based on the prior probability of net-

work components originating attacks, and the convenience

in associating events with their possible sources. Further prac-

tical work is also needed to relate the three event parameters

to actual intrusion sensors and networks.

A key practical issue is how to determine which nodes

are a potential source of any particular event, and to what de-

gree. Ideally this assessment would be evidence-based using

recent network history, but although this is feasible in prin-

ciple, it is an open question if this can be achieved in prac-

tice. However, even simple strategies, such as the one used

in section 8.1, provide demonstrable benefit.

10 Conclusion

This paper provides a solution to a critical problem in in-

sider attacker discovery: how to combine events from multi-

ple sensors, and manage the data explosion that is otherwise

needed to support the identification of long-running attacks.

The key concept is to move away from maintaining mod-

els and evidence of behaviour, and instead maintain an incre-

mental assessment for every user/node in the system that the

node is an attacker. This approach is extremely scalable; the

updating algorithm is soundly based in Bayesian statistics,

and avoids the need for global updating after each event. The
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approach is well behaved, in the sense that higher volumes

of attack make detection easier, and in a worked example

which includes several of the difficulties faced in practice, it

significantly outperforms counting algorithms (see section

8.1).

In addition, this work identifies the attributes or param-

eters that need to be standardized for disparate sources of

security event to be combined, allowing the use of a wide

range of different sensors at different levels of abstraction.

The key criteria for a sensor (see section 7) is that it tends

to provide information rather than add confusion, and a side

effect of the updating process presented here is a criteria for

deciding when this is the case.

Research on this approach is ongoing, both using sim-

ulation and relating the work to real sensors. The updating

process described in this paper reflects a change of base hy-

pothesis from our earlier publications, and resolves some

of the open questions and marginal discrimination observed

previously; remaining open questions are described in sec-

tion 9.
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