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ABSTRACT 

 

Understanding the interaction between surfaces at the intermolecular level in ambient 

conditions is not only a fundamental science, but is of increasing value to water treatment 

systems. Here the uses of the atomic force microscopy (AFM) modified with particles of 

interest are assessed, and compared to bench-scale experimental techniques. In the first 

part of this study, the results from force measurements performed with calcite-modified 

probes in synthetic hard water (SHW) on selected substrates showed there was no 

correlation with macroscale scaling rate experiments. However, unmodified tips showed 

some correlation with non-metal substrates, where carbon coatings (Dymon-iC and 

Graphit-iC) were least adhesive. Although unmodified tips were unlikely to represent one 

of the surfaces of interest in water treatment systems, the findings suggest they can be 

used to screen materials with Ra < 50 nm. Contact angle measurements complemented 

force data, indicating the origin of repulsive forces on carbon coatings was due to 

hydrophilic repulsion because carbon and calcite were highly basic. Enhanced adhesion 

was caused by hydrophobic attraction and the presence of acidic surface groups. In the 

2
nd

 part of this study, force measurements were performed on natural organic matter 

(NOM) polyanions such as humic acid fraction (HAF), fulvic acid fraction (FAF) and 

hydrophilic acid (HPIA) using modified and unmodified tips. The results showed in 

symmetric NOM-NOM interactions with modified tips, HPIA-HPIA dominated both 

adhesion and detachment lengths, while FAF-FAF and HAF-HAF gave similar adhesion 

profiles. It is thought these intermolecular interactions can be transferred to floc size data, 

where HPIA flocs were bigger than FAF flocs. In non-symmetric systems adhesion 

between FAF-NOM was indiscriminate, compared to HAF and HPIA polyanions, 

indicating FAF polyanions were most likely to control coagulation performance during 

NOM removal. 
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Chapter 1     Introduction 

1.1 Background and information 

 

Ever since the atomic force microscope (AFM) was invented by Binnig, Quate and 

Gerber in 1985 for which they received a Nobel prize the following year, it has become a 

highly versatile tool that can be used as a surface profiler (imaging mode) and for 

measuring ultra-small forces (Leite and Herrmann, 2005). The AFM has been applied to 

a number of natural and engineered surfaces which may be electrically conducting or 

insulating with application to water treatment (Considine et al., 2002), biofouling (Wang 

et al., 2004), drug delivery systems (Beach et al., 2002), membrane cleaning (Bowen et 

al., 2000), mineral flotation (Fa et al., 2003) and many more. This is because standard 

AFM tips can be modified to widen the spectrum of materials under investigation, 

effectively making the study more relevant. As a result, modified tips are routinely used 

as a screening tool in applications such as membrane cleaning and colloidal systems 

(Bowen et al., 2000; Adler et al., 2001). 

1.2 Motivation for work 

 

The field of water treatment has recently come under challenges to develop novel 

methods of characterizing materials with optimal performance without using bench-scale 

apparatus that is not always feasible or practical. By modifying AFM tips, in situ 

operation conditions can be tailored at the sub-micron level. For instance, to determine a 

potential link between the macroscale scaling rate experiments at bench scale (performed 

by MacAdam, 2004) and their nanoscale interaction, force measurements were performed 

with modified and unmodified AFM tips. The AFM may also provide a platform for 

studying the interaction of fractionated Natural Organic Matter (NOM) polyanions, by 

quantifying detachment forces between organic polymers at the intermolecular level. To 

assess the interaction between NOM polyanions it was decided to modify AFM tips with 

NOM and other compounds such as poly-L-lysine (PLL) and glycine. 
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1.3 Scope of study 

 

The focus was on using AFM tip modification techniques to measure interaction forces 

between calcite and a series of solid substrates in water, as well as measuring the forces 

between NOM from different geographical sources. For clarity the thesis is divided into 

three major parts: 

1. Identifying a potential link between adhesion force and macroscale scaling rate 

experiments. 

2. Analysis of AFM interaction forces from fractionated organic matter. 

3. Overall benefits/drawbacks of AFM tip modification in water treatment systems. 

1.4 Thesis plan 

A literature review was carried out (Chapter 2) to determine what information could be 

gained from modifying AFM tips, problems of modification (and not modifying), and 

particular applications of tip modification to water treatment. In chapter 4 a total of 

thirteen materials were grouped into high energy (metals) and low energy (non-metals) 

surfaces, and were also characterized into their surface free energies using contact angle 

measurements. Contact angle techniques and the AFM were compared and a potential 

link to the macroscale bench-level experiments was scrutinized. 

 

In the second part of the study, the AFM was used as a proof-of-concept study to explore 

detachment profiles of a series of NOM polyanions from four different sources (Albert 

water treatment works, Penwhirn water reservoir, Widdop and Lower Gorple reservoir) 

(Chapter 5). Detachment profiles will provide chemical signatures of polyanions, which 

might be related to their intramolecular and intermolecular interaction within flocs, their 

reactivity with disinfectants or simply their origin. The information gained may in future 

be used for developing innovative NOM removal strategies. AFM tips were modified 

with poly-L-lysine (Chapter 5, section 5.3.2), isolated NOM fractions (Chapter 5, section 

5.3.3), glycine (Chapter 5, section 5.3.4), adsorbent resins (Chapter 5, section 5.3.5) and 

NOM-coated adsorbent resins (Chapter 5, section 5.3.6). Due to the polymeric nature of 

NOM polyanions, their reactivity was investigated by measuring polyanion pull-off 

length versus adhesion force. This required the use of a MATLAB program written by 
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Rob Boyd to measure fraction pull-off length vs. adhesion force. The analysis and 

findings from these experiments are also discussed in Chapter 5. In an attempt to discuss 

the application of AFM tip modification (Part 3) Chapter 6 gives an overview discussion 

of the above work. The conclusions drawn are provided in Chapter 7. 

 

In an attempt to answer the final part of the project scope, the findings from this 

investigation showed AFM tip modification can be a simple and effective procedure but 

the analysis of force data can be highly complicated when (a) contact area is unknown, (b) 

robustness of the modified tip is in question and (c) the anchoring particle is a highly 

complex organic molecule. However, the benefits associated with tip modification tend to 

outweigh the above drawbacks, and this was apparent from using NOM-modified probes, 

where adhesion forces correlated with macroscale floc size experiments. 
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Chapter 2    Literature Review 

2.1 The Atomic Force Microscope (AFM) 

2.1.1 Basic Operating Principles 

The four main hardware components that are common in all AFM systems are the 

cantilever consisting of the probe tip, a piezoelectric scanner, a detection mechanism and 

feedback electronics including the AFM software (Figure 2.1). The terms cantilever, 

probe and tip are used interchangeably by many AFM users but all are, in fact, very 

different. The ‘tip’ is the only potential ‘atomic’ part that directly interacts with the 

sample, which is mounted to and supported by the ‘cantilever’, that is sometimes visible 

to the naked eye. Both these parts constitute a unified ‘probe’. The piezoscanner is 

usually a cylindrical tube containing a piezoelectric material that expands and contracts in 

a defined way when an electric field is applied across the material, known as the 

piezoelectric effect (Colton et al., 2001).  

 

Figure 2.1 Schematic of an AFM showing the main components of the AFM; the probe, 
piezoscanner, detection system and feedback mechanism.  

 

Piezoelectric materials used in AFM systems are usually ceramics based on lead, 

zirconium and titanium oxides (PZT) due to their strong piezoelectric effect. PZT belong 

to this family of perovskites. Most AFM systems use the transverse piezoelectric effect, 

where the applied electric field E is perpendicular to the direction of 
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expansion/contraction. Piezo translators based on the transverse piezoelectric effect have 

a wide range of sensitivities. For large sample scanners the piezo tube itself has separate 

electrodes for X, Y and Z that are driven by separate circuits to scan precisely in the x-y 

plane in a raster pattern and also in the z direction. 

 

The detection mechanism is based on an optical lever technique, where an optical beam is 

focussed on the cantilever and reflected onto a position-sensitive photodiode detector 

(Figure. 2.1). As the cantilever experiences a force, it bends and displacement of the 

beam on the photodiode is proportional to the applied force. The final critical element to 

AFM systems is the feedback system, which is designed to keep the tip-sample 

interaction constant. 

2.1.2 Imaging mode 

To generate an image, the tip is bought in close proximity to the sample and then raster 

scanned, causing the cantilever to deflect due to changes in surface topography or surface 

forces. There are several imaging modes of which two are most widely used; contact 

mode and tapping mode. The forces acting on the tip and sample vary depending on the 

operating mode and imaging conditions. 

 

In contact mode AFM the tip is essentially dragged across the sample and constant 

cantilever deflection is maintained by a feedback loop that moves the scanner vertically 

at each lateral data point to produce the topographic image (Shi and Zhao, 2004). High 

contact stresses make this mode suitable for rigid materials such as crystals and other 

inorganic materials, while imaging in water overcomes the adverse capillary forces due to 

adsorbed moisture. During tapping mode, the cantilever is oscillated at its resonant 

frequency and amplitude of 20 to 200 nm. The feedback system is set to detect any 

change on oscillation amplitude or phase caused by momentary contact with the surface 

during each oscillation cycle. The advantage of tapping mode is that it operates at lower 

compressive forces than during contact mode, and it eliminates lateral and shear forces 

that may damage soft samples (Henderson, 1994).  
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2.1.3 Force-Displacement Mode 

During force-displacement (F-D) mode the AFM is used as a force-sensing device, 

lowering the tip toward the surface and then retracting the tip to detect interaction forces. 

A schematic of the corresponding force distance curve generated from a single cycle is 

shown in Figure 2.2 (not drawn to scale).  

 

Figure 2.2 Schematic diagram of an ideal force-displacement curve showing the behaviour of 
the cantilever and its deflection during sections of the approach and retract cycle. 

 

The force distance curve shows the vertical cantilever deflection vs. lever sample 

displacement. The displacement is effectively measured between the sample and the 

firmly held back end of the cantilever. A useful way to consider the force profile is the 

simple ‘ball on a weak spring model’, which is shown on the right of Figure 2.2 (Heinz 

and Hoh, 1999). During the approach cycle the tip is lowered (A) and prior to contact 

there is an initial repulsion due to hydration forces in liquids followed by a sudden 

attraction to the surface (point B), thus signifying a negative (attractive) force. This force 

may be of van der Waals (vdW), electrostatic or other origin. Jump-to events result when 

the gradient of attractive forces exceeds the cantilever spring constant and any 

electrostatic repulsive forces that arise when water molecules are squeezed out (Senden 

and Ducker, 1994). As the piezoscanner continues to expand the cantilever bends 

upwards (region B-C) and Born hard-sphere repulsion dominates as the tip is drawn into 

the sample producing the diagonal line, known as the constant compliance region. The 
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displacement direction is then reversed at a time chosen by the user (region C). Upon 

retraction (i.e. moving right in plot), the force becomes negative and the cantilever 

continues to move with the surface as adhesion maintains contact until the spring 

constant exceeds maximum adhesion (or ‘pull-off’) force. As it reaches the lowest point 

in the force curve, the tip loses contact and the cycle is complete (D-E). Notice that the 

distances and forces are not drawn to scale. The resulting adhesion force (N) is calculated 

using Hooke’s law: 

kdF −=     Equation 2.1 

 

Where k is the cantilever spring constant (N/m
-1

) and d is the cantilever deflection (in m). 

Methods of calculating the spring constant are shown in section 2.1.5. 

2.1.4 Uses of the AFM 

The AFM is primarily used to study interaction forces. Therefore, a basic understanding 

of forces acquired between the tip and sample is essential for effective force data analysis. 

The major forces that come into play between the tip and the sample are summarised in 

Table 2.1.  

Table 2.1 Examples of some fundamental intra- and inter-molecular forces that occur between 
molecules or colloidal particles. 

 
Type of force Energy 

(kJ/mol) 
Range (nm) Estimated 

force (n�) 
Reference 

Intramolecular (ionic 

or covalent) 

200-800 

 

0.1-0.2 1-15 

(single 

bond) 

Beyer & Clausen-

Schaumann (2005) 

H-bonding 10-40 

 

0.5 to 3 1-10 Israelachvili, (1992) 

M
o

le
cu

la
r 

Dipoles ~100s 0.5 to 3 10-20 - 

Electrostatic 10 to 100 10s to 100s - Drelich et al., (2004) 

van der Waals 1 to 5 5 to 10 10-20 Goodman and 

Garcia, (1991) 

Solvation/Hydration 1 to 10 < 5 - Drelich et al., (2004) 

C
o

ll
o

id
a

l 

Hydrophobic -8.4 to -11.3 10s to 100s - Butt et al., (2005) 

 Capillary - 10s to 1000s 100 Finot et al., (2001) 

 

The covalent or ionic bonds are by far the strongest, ranging around 500 kJ.mol
-1

 for the 

Au-Au bond. This is compared to 1-15 kJ mol
-1

, for the vdW ‘bond’. Goodman and 

Garcia (1991) used the AFM to measure vdW forces in the region of 10 to 20 nN. The 
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relatively weak vdW forces are quantum mechanical in nature, non-localized and present 

in both neutral and charged molecules. Attractive vdW forces are electrostatic, arising 

from the dipole field of an atom or molecule which is induced by the neighbouring atom 

or molecule that essentially becomes polarised due to this field (Israelachvilli, 1992). For 

this reason they are the longest range non-covalent force (Van Oss, 2003). 

 

When a surface is immersed in liquid, electrical double-layer (EDL) forces arise due to 

electrostatic forces, which may be attractive or repulsive. Because water has a high 

dielectric constant surfaces become charged due to ionization or dissociation of surface 

groups, or by adsorption of ions (Israelachvili, 1992). Surface charge is balanced by 

dissolved counterions which are attracted back to the surface by the ensuing electric field. 

EDL forces decay exponentially with distance as a function of the diffuse ionic double 

layer. Therefore, changes in electrolyte concentration and pH can have a significant effect 

on interaction forces (attractive and adhesion) (Freitas et al., 2001).  

 

Total interaction (VTOT) of attractive vdW and repulsive EDL forces is described by 

DLVO (Derjaguin and Landau, Verweey and Overbeek) theory (Filip et al., 2005). The 

combined action of these two forces is shown schematically in Figure 2.3 using the 

assumption repulsive potentials are positive and attractive potentials are negative. 

 

Separation (nm) 

Figure 2.3 Combination of vdW and EDL forces can be explained by DLVO theory, where A 
indicates the secondary minimum (Israelachvili, 1992). 
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There is a possibility of a ‘secondary minimum’ at high electrolyte concentration, where 

a weaker and potentially reversible adhesion occurs between particles (Figure 2.3). 

Freitas et al., (2001) performed force measurements with glass particles in varying 

electrolyte concentration. They showed good agreement in hydrophilic systems with 

DLVO theory at relatively large separation. 

 

When interacting particles or surfaces are within a few nanometres non-DLVO forces 

come into play that are much stronger than DLVO forces. In hydrophilic systems 

hydrogen bonds occur both intermolecularly and intramolecularly, and at 10-40 kJ.mol
-1

 

are much stronger than the average vdW ‘bond’ (Israelachvili, 1992). There has been 

extensive research using the AFM to measure H-bonds between numerous functional 

groups (Vezenov et al., 2005). 

 

Figure 2.4 shows a selection of forces measured with the AFM and the force laws used to 

interpret them. For instance attractive and retractive cycles during the vdW interaction 

are shown in Figure 2.4a, b. Although capillary forces dominate in air they are eliminated 

in liquid and vacuum environments (Figure 2.4d). Figure 2.4f shows elongated pull-off 

events during polymer-pulling and steric interactions (non-DLVO forces). Abrupt jumps 

during the retraction cycle indicate unwinding or detachment of sections of the polymer. 

For example, this was observed by Sander et al., (2004) with adsorbed Suwannee humic 

acid (SHA, a highly complex organic molecule) on alumina surfaces at pH~6. Bowen and 

Doneva, (2000) performed colloidal force measurements with solid substrates and found 

non-DLVO forces were dominant when double layer effects were present. 

 

Extended DLVO theory considers hydrophobic/hydrophilic interactions (described by 

Van Oss (2003) as acid-base forces) as well as osmotic forces that have been known to 

play an important role in polar media. Hydrophobic forces develop because water around 

hydrophobic surfaces is structured, and strong attraction can be measured (Nalaskowski 

et al., 2003). Brant et al., (2006) performed force measurements on membrane surfaces 

and found extended DLVO theory agreed with force measurements in hydrophilic 
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systems. The authors also found both DLVO and extended DLVO predictions agreed 

with hydrophobic force measurements. 

 

Approach cycle Retraction cycle 
(a) 

 

 

 

(b) 

(c) 

 

 

 

(d) 

(e) 

 

 

 

(f) 

Definition of terms 
 

A Hamaker constant  

a  Monomer length 

D  probe-sample separation 

E  Elastic modulus 

k  Boltzmann’s constant 

L Brush thickness in good 

solvent 

L* Inverse Lamenting function 

N  No. units in polymer 

R  Probe radius 

M Mean distance between 

polymers 

 

 

T  Absolute temperature 

x  Elongation of polymer 

ε  Dielectric permittivity 

γ  SFE of tip-sample 

η  SFE of liquid 

λ  Debye length 

 

 

 

θ  Angle related to geometry of 

tip-sample contact 

σR surface charge density of 

sphere 

σS surface charge density of 

sample 

 

 
Figure 2.4 Force curve examples and subsequent force laws used to interpret them. Forces 

detected are (a) vdW, (b) adhesion, (c) electrostatic, (d) capillary, (e) brush, (f) 
polymer extension, (g) elastic and (h) binding forces. Modified from Heinz and Hoh, 
(1999). 
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Table 2.2 gives a summary of force measurements performed with modified and 

unmodified tips to measure forces given in Table 2.1. Methods of tip modification are 

described in section 2.1.6. A more extensive analysis of force measurements in aqueous 

solution is given by Butt et al., (1995), Van Oss (2003) and Liu et al., (2005). 
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2.1.5 Cantilever calibration 

The ability to experimentally determine the spring constant of AFM, cantilevers is of 

fundamental importance in force-sensitive applications. For rectangular cantilevers, the 

spring constant (in N m
-1

) can be calculated simply from the material properties of an 

end-loaded cantilever : 

3

3

4l

wEt
k =     Equation 2.2 

 

Where E is the Young’s modulus, t is the thickness, l is the length and w is the width of 

the cantilever (Cleveland et al., 1993). However, accurate determination of t which is 

considerably smaller than the width and length for which k is dependent to the third 

power, is extremely difficult. Furthermore, the Young’s modulus compositional 

consistencies may be grossly inaccurate for silicon nitride tips ranging from Si3N4 to 

Si15N4. For the above reasons, spring constants are measured manually, and several 

methods are available and listed in Table 2.3.  

Table 2.3 Summary of resonance and static loading methods used for measuring the spring 
constant (modified from Gibson et al,. (1996)). 

Resonance methods Static loading methods 
Cleveland 

et al., 

(1993) 

Hutter and 

Bechhoefer, 

(1993) 

Sader et al.,  

(1999) 

Senden and 

Ducker, 

(1994) 

Butt et al., 

(1993) 

Li et al., 

(1993) 

 

A B C D E F 

Principles Force vs. 

load 

Shape of 

resonance 

curve vs. 

thermal 

noise 

spectrum 

Relates 

cantilever 

dimensions, 

resonance 

frequency 

and quality 

factor 

Deflection 

vs. load µm 

spheres 

Deflection 

vs. load 

pendulum 

Deflection 

vs. load 

glass fibres 

Claimed 
accuracy 

~10% 10-20% ~10-15% ~15% 30-40% 15-20% 

Userfriendliness Poor Good Good Poor Poor Poor 

Complications Sphere 

placement/ 

Glue affects 

k 

Temperature. 

variations 

low k only 

None System 

calibration 

Sphere 

placement 

Combined 

deflection 

of system 

Needs k of 

standard 

loading 

point 

Potential 
destructiveness 

High Low Low High Medium Low 

 

The methods given in Table 2.3 claim accuracies ranging from 10-40% but some are 

typically more user-friendly than others. Generally, the resonance methods such as that 
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given by Hutter and Bechhoefer (1993) (B in Table 2,3) give better accuracies than the 

static loading methods, are also less destructive and require less equipment. Furthermore, 

the static loading methods place high demands on the dexterity and experience of the user.  

 

Of the resonance methods, Cleveland et al., (1993) (hereafter referred to as the Cleveland 

method) gives one of the best accuracies for beam-shaped cantilevers (~10%) (Table 2.3). 

This method is based on a decrease in the resonant frequency of the modified cantilever 

as the mass on the beam is increased, thus decreasing the spring constant;  

)1()1(
)2(

2

0

2

1

2

vv

M
k

−
= π    Equation 2.3 

 

Where v0 and v1 are the resonant frequencies of the unmodified and modified cantilevers 

and M is the particle mass. However, the problem with this technique is the sphere 

placement and quantity/placement of adhesive could have a significant affect on the 

resonant frequency. Nonetheless, it is routinely used in the majority of AFM studies 

(McNamee et al., 2004) 

 

Sader et al., (1999) proposed the use of an unloaded resonance technique, which entailed 

measurement of the unloaded resonance frequency, the quality factor of the fundamental 

mode of vibration and the plan view dimension. The spring constant is given by: 

2)(1906.0 ffif LQbpk ωωΓ=    Equation 2.4 

 

Where pf is the density of the fluid (given as 1.18 kg/m
3
 for air), b and L is the width and 

length of the cantilever, respectively, Q is the quality factor, Γi is the imaginary 

component of the hydrodynamic function and ωf the fundamental mode resonant 

frequency. Γi is dependent on the Reynolds number Re = pf(2πν) ω
2
/4η, where η is the 

viscosity of the surrounding medium. Unlike the Cleveland method this technique 

eliminates the need to measure the mass of a particle. Furthermore, good accuracies were 

claimed by the author for cantilevers with an aspect ratio (L/b) of 3.3 to 13.7, which were 

used in the present study. When 100-200 µm cantilevers were tested by Sader et al., 

(1999) and compared to the Cleveland method, there was a ~1% variation. 
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More recently, Green et al., (2004) applied a correction to the Cleveland method due to 

difficulties in placing the particle at the end of a tip-less cantilever. The modification took 

account of the distance the particle is placed away (∆L) from the tip: 

3








 ∆−
=

L

LL
kk m     Equation 2.5 

 

Where km is the measured spring constant. The effect of the mass on the resonant 

frequency would therefore be: 

3








 ∆−
=

L

LL
MM mt     Equation 2.6 

 

Where Mt is the mass of the test mass and Mm is the measured test mass.  

 

Using a static loading method Senden and Ducker (1994) measured the static deflection 

of a cantilever under the force of a known end mass. Deflection was measured after 

attaching tungsten beads and again after turning the cantilever upside down to give the 

spring constant: 

X

gR
k

Ω
=

3

8 3ρπ
     Equation 2.7 

 

Where Ω is the deflection calibration, g is the acceleration due to gravity, ρ is the density, 

R is the radius of the spheres and X is the difference in cantilever deflection between the 

rotated and non-rotated measurements. This method has been reported as being very poor 

due to the increased risk of breaking the cantilever when turning the cantilever upside 

down after adding a test mass (Gibson et al., 1996).  

 

When Gibson et al., (2005) compared Sader and Cleveland methods for rectangular 

cantilevers up to 203 µm in length both produced near identical spring constants. As a 

result, it was decided to use the Cleveland method as this only required measuring the 

resonant frequency of the unloaded and loaded cantilever, and not the cantilever 

dimensions, which can vary between cantilevers from the same batch.  
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2.1.6 AFM contact mechanics 

In order to describe fundamental adhesion forces quantitatively, some approximating 

models are used. The interaction between an AFM tip and surface are based on the 

Hertzian theory (developed in 1881) of contact mechanics (Shi and Zhao, 2004). 

Currently, two theoretical models are used to describe contact between a sphere and flat 

surface; Johnson, Kendall and Robert (1971) theory (JKR) and Derjaguin, Muller and 

Toporov theory (DMT) (1975). The JKR approach is confined to forces inside the contact 

area, and is based on the expression: 

1325.1 RWF π=     Equation 2.8 

 

where W132 is the work of adhesion (in J.m
-2

). Calculation of the W132 is described in 

section 3.4.1. The JKR model is applied to adhesion between a large elastic sphere and 

surface, and as a result the theory behaves hysteretically because during unloading a 

‘neck’ links the tip and sample (Figure 2.5b) (Cappella and Dietler, 1999). 

 

Figure 2.5 (a) Deformation of an elastic sphere on a rigid surface during equilibrium following 
Hertz and JKR theory; (b) Elastic adhering about to separate spontaneously from 
adhesive contact during pull-off; and (c) Applicability of DMT model showing 
forces acting outside contact area. Where aJKR and aHERTZ are the contact radius 
following Hertz and JKR theories. Modified from Israelachvili (1992). 

 

In contrast, the DMT model regards long-range contact forces acting along the contact 

area perimeter (highlighted in Figure 2.5c), which is appropriate for rigid solids of small 

radii (Drelich et al., 2004). The effect is an additional probe-sample attraction that 

prevents elastic repulsive forces (unlike JKR theory), and predicts a slightly higher force: 

JKR 

   F 
   R 

aHERTZ 

aJKR aHERTZ 

   F 

JKR 

   R 

   F 

DMT 

   R 

       (a)       (b)           (c) 
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1322 RWF π=      Equation 2.9 

 

Unfortunately, it still remains unclear which model to apply, although Maugis (1992) 

analysed both models and suggested a transition between the two models can be applied 

using the dimensionless parameter µ,  

2

2

132

0

06.2

K

RW

z π
µ =     Equation 2.10 

 

Where K is the reduced Young’s modulus and z0 is the equilibrium size of the atoms at 

contact. The significance of µ has been interpreted as the ratio of elastic deformation 

resulting from adhesion to the effective range of surface forces (Shi and Zhao, 2004). 

When µ ≥ 5, JKR theory is used, otherwise DMT theory is applied if µ ≤ 0.1 (Drelich et 

al., 2004). In light of the Maugis-Dugdale theory (1992), discrepancies on the appropriate 

selection of contact theories still remain (Jacquot and Takadoum, 2001; Leite and 

Herrmann, 2005), and in the next section it will be shown how surface roughness can 

further complicate calculation of theoretical adhesion forces.  

2.1.7 Affect of surface roughness 

Real surfaces are rough which can limit the practical application of JKR and DMT 

models. In a study by Heim et al., (2002), it was determined that force measurements 

were much lower than expected from JKR and DMT theories. It was not until imaging 

that surface roughness was found to play a key role. In another study Leite and Herrmann, 

(2005) measured 13% variation in force measurements taken on a single location of 

atomically smooth mica. In another study by Hodges et al., (2002) they found asperities 

as small as 1 to 2 nm affected adhesion. All these studies show surface roughness effects 

could not be ignored. 

 

The first systematic study for surface roughness effects on adhesion between elastic 

bodies was conducted by Fuller and Tabor in 1976 (Leite and Herrmann, 2005; Tabor, 

1977). The study found asperity height distribution was a major factor during adhesion 

between rough surfaces. Based on asperity height distribution, Rabinovich et al., 

(2000a,b) modelled surface roughness by incorporating the mean peak to peak distance 
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between neighbouring asperities and the root mean square (rms) roughness of the 

substrate (Figure 2.6). The model describes two sets of asperities having a large or short 

wavelength (λ1 and λ2, respectively), each exhibiting a different level of surface 

roughness. Accordingly, larger wavelengths consist of large asperities (r1) while the 

shorter wavelengths consist of smaller asperities. 

 
Figure 2.6 Schematic illustration of the geometric model used by Rabinovich et al., (2000) to 

calculate theoretical adhesion force (Permission obtained from Elsevier Press). 

 

The two asperity scales are characterized by having rms1 and rms2 values, and can both 

be determined experimentally from roughness profiles. Rabinovich et al., (2000a,b) 

applied two approaches for modelling the adhesion force, the vdW approach (equation 

2.11) and the surface energy approach (equation 2.12). 


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
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
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






+








+

+
+

=

H

rmsrms

HAR

Rr

rWR
F t

λ

π
  Equation 2.12 

 

Where R1 is probe tip radius, and r2 and r1 are the radii small and large asperities, 

respectively, having a long-range roughness, λ1. H0 and A is the distance of closest 

approach and Hamaker constant, respectively. The vdW approach was used by Beach et 

al., (2002) using irregular shaped pharmaceutical particles of beclamethasome propionate 

exhibiting high levels of microroughness. The authors found the model predicted accurate 
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adhesion forces between the silanized glass particle on a flat surface but underestimated 

adhesion with peptide and polystyrene particles by an order of magnitude. The anomaly 

was attributed to the deformation of the peptide material and polystyrene particles, and 

their poor representation by the Rabinovich model.  

 

Drelich et al., (2004) applied the Rabinovich model to measure the interaction between 

silanized glass probes in contact with polypropylene substrates with random roughness 

levels. The results gave an average theoretical work of adhesion of ~50 mJm
-2

 with the 

surface energy approach (Equation 2.12), compared to the experimental value of 55 mJm
-

2
. This agreed well with the roughness model. This study and that by Beach et al., (2002) 

indicate the roughness model may not be suitable for surfaces having a complex 

geometry in the microscale. 

 

From an industrial point of view, utilizing smooth particles that are free from surface 

asperities are impractical. However, to reduce surface roughness effects between rigid 

bodies, the probe must be larger than asperities on the probe and surface. For this reason 

probes modified with rigid microparticles reduce surface roughness effects compared to 

unmodified tips. Otherwise, force measurements should be analysed using a suitable 

theoretical model, and to date the Rabinovich (2000) roughness model appears to be the 

most appropriate for application to rigid particles. 

2.1.8 Use of modified tips 

Conventional cantilevers are only manufactured from SiO2 or Si3N4, therefore AFM tips 

must be modified to widen the spectrum of materials to be studied. In addition, tip 

modification overcomes some of the problems associated with unmodified tips as 

modified tips often use well-defined spherical particles (1-100 µm). As a result, they can 

also be modelled using existing contact mechanics theories (Kappl and Butt, 2002). The 

first probe modification technique was applied by Ducker et al.,(1991) and became 

known as the colloidal probe technique, which was the benchmark for driving new 

applications towards force microscopy.  
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2.1.9 Methods of tip modification 

There are several ways of modifying AFM tips of which two were used in this study. In 

the first method a two-part epoxy resin is used to attach silica microparticles, crystals or 

particles coated with the material of interest (Liu et al., 2005). Commonly used resins are 

Epicote 1004®, Loctite® glass bond or Araldite®. Once the resin is transferred to the 

cantilever, the microparticle is attached to the resin with a micromanipulator. This 

technique was used most often in the present study, and a summary of this technique and 

its applications is given in Table 2.4. The other linkage procedure is the physical 

adsorption method, where an adhesion promoter such as poly-L-lysine (positively-

charged) is used to adsorb the particle of interest, which must convey a negative charge 

for successive functionalisation. Other techniques such as self-assembled monolayers 

(SAM’s) and mechanical fixation were not used in this study (Table 2.4).  
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2.1.10 Applications of tip modification 

A summary of the subject areas, the interactions studied, linkage procedure, forces 

measured and the information gained from the force measurements is shown in Table 2.5. 

A majority of the subject areas use epoxy as the linkage procedure because the colloidal 

probe is more applicable to these fields.  
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2.2 Application of the AFM to Water Treatment Systems 

2.2.1 Scaling Systems 

The accumulation of scale deposits is an extensive problem in domestic and industrial 

plants that include shower heads, kettles, water cooling systems and processing 

equipment. Scale acts as an insulator on heat transfer surfaces and reduces the heat 

transfer coefficient and the product’s life expectancy. For instance, a 2 mm layer of scale 

can reduce heat transfer efficiency by up to 47% (Cosslett, 2001). Calcium carbonate 

(CaCO3) is the common scale-forming mineral of which calcite is the primary stable 

polymorph that is deposited as the initial conditioning layer (MacAdam, 2005). Extensive 

research has shown scaling to be a two-stage process, with the first period identified as 

the ‘induction period’ and the second period known as the ‘fouling period’ (Karabelas, 

2002).  

2.2.1.1 Theory of scale formation 

During the induction period a small amount of scale (in inorganic particulate fouling) 

accumulates on the surface without significantly affecting material performance. 

Although the quantity of scale formed is small, it is enough to condition the surface and 

enable a thin layer of scale to form. It is this conditioned layer which is succeeded by the 

‘fouling period’, an overall decrease in the performance of the system. The induction 

period, while often neglected, offers much potential for mitigating fouling and is the 

focus of this section.  

 

The formation of a conditioning layer during the induction period is a balance between 

the deposition and removal of material at the interface between the solid and liquid 

(Fӧrster and Bohnet, 1999). The deposition process is classically viewed as a 

heterogeneous nucleation process, where foreign bodies or impurities act as nucleation 

sites. The energetics of heterogeneous nucleation is described as a modification of 

homogeneous nucleation to account for the different interfaces and precipitation 

processes (Stefanescu, 1990). The energetics of cluster formation in homogeneous 

nucleation is expressed in terms of a surface and volume contribution: 
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VGrrG ∆−=∆ 3

13

2

3

4
4 πγπ    Equation 2.13 

 

Where ∆G is the net free energy change, r
2
 is the radius of the nuclei squared, γ13 is the 

interfacial tension between the solid (subscript 1) and liquid (subscript 2), r
3
 is the 

volume of the nuclei and ∆Gv is the free energy of transformation per unit volume. 

Differences in the dependency on radius of the nuclei provide an activation barrier for 

nucleation, ∆Gcrit that corresponds to a minimum stable nucleus size, rcrit, as given by:  

13

2

3

4
γπ critcrit rG =∆     Equation 2.14 

 

During heterogeneous nucleation foreign bodies such as walls or impurities act to 

promote crystallization by lowering ∆Gcrit, such that: 

 

critcrit GG Φ∆=∆ '
   Equation 2.15 

 

Where the correction (or shape) factor (Φ), ranges from zero to unity depending on the 

affinity of the nucleus to the surface. Volmer (Fӧrster and Bohnet, 1999) shows: 

 

4

)cos1)(cos2( 2θθ −+
=Φ    Equation 2.16 

 

Where θ is the contact angle between the crystalline deposit and the surface. This angle 

corresponds to the wetting angle in liquid/solid/vapour systems, and is given special 

attention. Assuming the nucleus takes the form of a hemispherical cap, the nuclei will 

grow depending on the substrate surface properties, and the points of contact between the 

three interfacial phases (Figure 2.7). 

 

Figure 2.7 Heterogeneous nucleation showing the three interfacial phases (Israelachvili, 1992). 

phase 2 

  θ           phase 1 
phase 3 

γ23 

γ12 

γ13 
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Where each of the subscripts in the three interfacial phases (γ12, γ13 and γ23) is designated: 

phase 1 is the adhesive (or foulant), phase 2 is the surface and phase 3 is the liquid. Since 

the γ23 free energy interface can be determined from contact angle measurements, 

resolving the forces in the horizontal direction in Figure 2.7 we get: 

122313 cos γγθγ −=     Equation 2.17 

 

Also known as Young’s equation, where θ is the contact angle between a probe liquid 

with known surface tension and a solid surface. The methodology used to calculate the 

surface free energy of the interfacial (γxy) and solid (γ2) phases is given in section 3.4.1. 

The relationship between the critical number of nuclei formed per unit time and volume 

(rate of nucleation) can be written based on the Arrhenius equation: (Fӧrster and Bohnet, 

1999): 








 ∆
−=

Tk

G
AJ

B

crithet exp'    Equation 2.18 

 

Where A’ is the pre-exponential factor and kB is the Boltzmann constant. The rate of 

nucleation is proportional to the mass deposition ratio (md) during the induction period: 

.
)/(ln3

16
exp'

233

23

13








Φ−=

sB

d
ccTk

v
Am

γπ
  Equation 2.19 

 

With v the molecular volume, c and cs is the concentration of precipitating material at the 

bulk and surface, respectively. The above equation provides a link between the mass 

deposition rate md and the correction (or shape) factor Φ. Therefore, by using Young’s 

equation (Eq. 2.17), this shows variation of the interfacial free energy provides one 

method of modifying md. As the interfacial free energy (γ12) is directly influenced by the 

surface free energy of the heat transfer surface (γ2), modifying the surface provides an 

alternative route for prolonging the induction period during fouling (Hasson et al., 2003; 

Fӧrster et al., 1999 and Yang et al., 2002).   

 

Numerous research efforts that have focussed on the effect of surface roughness (Keysar 

et al., 1994; Muller-Steinhagen, 2000; Doyle et al., 2002; MacAdam, 2005) and substrate 

surface free energy (Fӧrster et al., 1999; Hasson et al., 2003) on fouling. Many attempts 
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have also been made to produce low adhesive surfaces, which include coatings such as 

Teflon (PTFE), ceramics and diamond-like carbons (DLC). However, such coatings have 

low thermal conductivities so they must be thin enough to permit heat transfer but thick 

enough to withstand the mechanical stresses of heat transfer. 

 

In a recent study by Zhao et al., (2005b), the surface free energy of fluorinated DLC 

coatings were compared and linked to CaSO4 deposition rate. The authors found CaSO4 

deposition was lowest when γ
LW

 (dispersive component) surface free energy of 

fluorinated DLC was reduced to 29 mJ.m
-2

. In addition, the authors found high deposition 

rates on untreated stainless steel heater at 2.9 g/cm
3
 compared to 1.1 g/cm

3
 for fluorinated 

DLC coatings. 

 

Bornhorst et al., (1999) found DLC-sputtered surfaces were less likely to foul (using 

CaSO4), and scale deposits were thinner and easier to remove than untreated stainless 

steel. More importantly, the heat transfer coefficient remained unaffected with DLC. In 

an attempt to link the surface free energy with the low adhesion of CaSO4 to DLC, the 

authors estimated the high contact angle with water was responsible for low CaSO4 

deposition rate. 

2.2.1.2 Theory of surface charge 

Among the three non-covalent forces acting in aqueous media, Lifshitz-van der Waals, 

Lewis acid-base (or electron-acceptor/electron donor) and electrical double layer force, 

the acid-base forces are by far the dominant ones (Van Oss, 2003). Therefore, 

understanding the acid-base properties of oxide covered metals is paramount because 

these forces have been shown to represent 90% of all non-covalent interactions in water 

(Grasso et al., 2002). Oxide-covered metals (where M is any metal) immersed in water 

terminate in an outermost layer of hydroxyl groups (M-OH), and they will remain 

undissociated as long as the pH of the solution is the same as the isoelectric point (IEP) 

of the metal oxide (Barthes-Labrousse, 2002). This is where the surface carries no net 

electrical charge, with equal numbers of H
+
 or OH

-
 or other charged anion/cation 
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adsorbed on the surface. If the pH is less than the isoelectric point, the surface will carry 

a positive surface charge, 

++ −↔+− surfaqsurf MOHHMOH 2)(    Equation 2.20 

 

If the pH is more than the IEP, the surface will acquire a negative charge, 

OHMOOHMOH surfaqsurf 2)( +−↔+− −−
  Equation 2.21 

 

or 

+− +−↔− )(aqsurfsurf HMOMOH    Equation 2.22 

 

In the above example, -MOH2
+
 is the electron acceptor, while –MO

=
 is the electron donor. 

Hence, the hydroxylated oxide layer can become a Lewis acid or base depending on the 

pH of the medium. McCafferty (2001) determined the IEP of several metal oxides by 

measuring the contact angles at the hexadecane/aqueous solution interface as a function 

of the pH of the aqueous phase. The author found the IEP of several metal oxides 

including SiO2, Al2O3, ZnO and Cr2O3 was 2, 9.2, 10 and 5.2, respectively. McCafferty 

(2001) observed the adhesion force (pull-off) of a basic polymer (poly(methyl 

methacrylate) (PMMA) was strongest on acidic oxide films, with the acidic polymer 

(pressure-sensitive adhesive) more adhesive (peel force) to basic oxide films. These 

findings indicate Lewis acid-base forces dominate adhesive forces in an aqueous 

environment. 

2.2.1.3 Application of the AFM to Scaling 

The use of the AFM in force-displacement mode with modified and unmodified tips with 

application to scaling mitigation has been seldom performed. However, in the first study 

of its kind, Finot et al., (1999), gypsum (CaSO4.6H2O) crystal adhesion was performed 

using the AFM in air. With their well-defined shape, different crystal faces of gypsum 

were orientated and mounted on an AFM cantilever. Adhesion between different crystal 

faces showed there was a strong preference of the (-101) crystal face for the other crystal 

faces due to the negatively-charged surface (Finot et al., 1999). Although the motivation 

of the study was not directly linked to gypsum scaling, the possibility of studying crystal 
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adhesion with a common scale-forming mineral (e.g. calcite) using the AFM is of 

fundamental interest. In the same year, Dunn et al., (2004) used the AFM to measure 

forces with an unmodified tip and several substrates in DI water. When adhesion forces 

were plotted against scaling rate a preliminary trend between adhesion force and struvite 

(MgNH4PO4·6H2O) scaling rate was observed, indicating surfaces with greater struvite 

scaling rates produced stronger adhesive forces. These findings were also confirmed 

using a modified struvite probe on PTFE and PMMA, in agreement with bench-scale 

experiments. Although the cantilever was not calibrated, deflection data showed the 

higher scaling material of PTFE produced stronger deflection.  

 

A summary of these experiments are listed in Table 2.6. 

Table 2.6 Summary of force measurements performed with modified and unmodified AFM 
tips with on inorganic surfaces. 

 
Application Forces 

detected 
Tip 

modification 
method 

+ calibration 

Tip 
interaction 

and 
conditions 

Information 
gained 

 
Reference 

Scaling Electrostatic 

vdW 

 

Epoxy resin 

(modified tip 

not calibrated) 

SiO2-

metals/polyme

rs 

Struvite-

Polymers in 

DI water and 

ionic solution 

PTFE and 

stainless steel 

were more 

adhesive to 

SiO2 tip. 

PTFE also 

adhesive to 

struvite 

Dunn et al., 

(2004) 

Crystal 

adhesion 

during plaster 

hardening 

(non-scaling) 

Electrostatic 

Capillary 

vdW 

Epoxy resin SiO2-gypsum 

gypsum-

gypsum in 

relative 

humidity 

ranging from 

10-35% 

Faces (010), 

(120) and 

(101) tested. 

Three forces 

on crystal 

faces 

distinguished. 

Face (101) 

was 

electrostaticall

y more 

adhesive than 

others. 

Finot et al., 

(1999) 

F
o

rc
e-

d
is

p
la

ce
m

en
t 

m
o

d
e 

Geochemical 

properties of 

calcite 

vdW 

Electrostatic 

Unmodified SiO2-calcite Adhesion as 

strongest at 

above and 

below 

isoelectric 

point of 

calcite 

Churchill et 

al., (2004) 
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2.2.2 �atural Organic Matter 

Natural organic matter (NOM) is a ubiquitous mixture of organic material in natural 

waters that has a profound effect on many hydrobiogeochemical processes (Zbytniewski 

and Buszewski, 2005). NOM is microbially (autochthonous) or terrestrially derived 

(allochthonous, from animals, plants and soil matter), and is the commonest organic 

pollutant in source waters. NOM-rich waters are costly to treat because of increased 

demand for coagulants, activated carbon, disinfectants, and increased frequency of 

membrane cleaning. Structurally, NOM is poorly defined because its chemistry is 

dictated by the chemical conditions of the source water. And although harmless in its 

native form, NOM reacts with chlorine to produce potentially carcinogenic disinfection 

by-products (DBPs) such as chloroform, bromoform and dibromochloromethane 

(Panyapinyopol et al., 2005).  

 

NOM removal by coagulation using trivalent ions such as Fe
3+

 and Al
3+

 are well 

established at water treatment works (WTW) (Goslan, 2003). Several mechanisms govern 

coagulation such as (a) charge neutralisation, (b) charge complexation/precipitation and 

(c) adsorption onto OH species (Murray, 2005). Coagulation of NOM is strongly 

influenced by interparticle forces that depend on coagulant concentration, promoting the 

formation of strong aggregates (or flocs) that are resistant to breakage giving greater 

settling rates that are subsequently easier to remove. However, recently there has been an 

increase in fragile flocs that break into smaller flocs with poor removal rates, which was 

found to be due to a characteristic change in NOM chemistry. For instance, when NOM 

was fractionated by commercial ion-exchange (XAD) resins into hydrophobic and 

hydrophilic parts, it was found increasing levels of the highly charged fulvic acid fraction 

(FAF) exerted the most influence on shrinking raw water flocs (Sharp et al., 2006). 

 

Hydrophobic components of NOM consist of humic acid (HA) and fulvic acid (FA) 

fractions while hydrophilic acid (HPIA) and hydrophilic non-acids (HPINA) comprise 

the major hydrophilic components. Hydrophobic acids account for approximately 50% of 

the dissolved organic carbon (DOC) (Owen et al., 1995), although their chemical 
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character varies with source. Following fractionation, fractions can be analysed using a 

range of analytical techniques, ranging from pyrolysis mass spectrometry (Mertig et al., 

1999), ultrafiltration (Mertig et al., 1999), solid-state 
13

C NMR (Mao et al., 2001) 

(Zbytniewski and Buszewski, 2005), fluorescence spectroscopy (Klapper et al., 2002) 

differential scanning potentiometry (Campitelli et al., 2006), atomic force microscopy 

(Guan et al., 2006; Liu et al., 2000) and classical chemical and spectroscopic techniques. 

Reported molecular weights vary from 500-100 000 Da (Thurman, 1985), and the size 

may vary from several nm to several µm depending on solution pH, concentration and 

ionic strength (Guan et al., 2006). 

 

Although the molecular structures of humic acids remain unknown, the functional groups 

and chemical composition are becoming increasingly well characterized (Christy and 

Egeberg, 2000). One of the main properties of humic acids is its large buffering capacity 

at a wide pH range, due to the presence of acidic functional groups. There is general 

consensus that the carboxylic acid functionality dominates the humic acid structure, 

followed by phenolic-OH and enolic groups, giving HA overall a negative charge 

(Campitelli et al., 2006). Imides and amines are also present to some extent. Additional 

functionalities include aromatic C-H, aliphatic C-H and alicyclic C-H, quinines and 

tetrahydrofurans (Table 2.7) amongst the main three (Mao et al., 2001). 

 
Table 2.7 Structural units found experimentally in humic acid from several sources. Modified 

from Mao et al., (2001). 

 
Brief description of chemical groups identified 

Phenols, quinines, aliphatic links; many OH groups 

2 aromatic rings, 1 tetrahydro-furan ring, CH3 on side groups 

4 mainly aromatic blocks 

Aromatic rings linked by long alkyl chains; COOH and OH 

Di- or tri-hydroxyphenol rings bridged by O, (CH2)n NH, N 

Aliphatic and aromatic rings with nucleus and peripheral parts 

Linked aromatic, phenolic, or quinonic rings 

 

Adsorption kinetics of purified Aldrich humic acid (PAHA) (a reference standard 

representative of humic acid) on hydrophilic and hydrophobic surfaces using 

reflectometry have shown that carboxylic acid and phenolic groups are exposed to the 

outside of HA molecules (Avena and Koopal, 1999). They found that at hydrophobic 
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sites, attachment took place through hydrophobic attachment, which required HA 

molecules to rearrange themselves in order to expose the hydrophobic groups. As pH was 

increased, the charge on PAHA increased without affecting the hydrophobic polystyrene 

surface. Attachment rates of PAHA to hydrophilic surfaces (Fe and Al oxides) were fast 

due to the presence of surface hydroxyl groups (Avena and Koopal, 1999). 

2.2.2.1 Application of the AFM to �OM Characterization 

2.2.2.1.1 Imaging Mode 

Although other in-situ techniques such as imaging X-ray (synchrotron) microscopy are 

providing detailed images of NOM (Namjesnik-Dejanovic and Maurice, 2001), AFM 

currently provides the highest resolution for adsorbed structures.  Indeed, X-ray 

(synchrotron) microscopy and AFM are complementary, and show that surface NOM 

conformations are often similar to conformations in solution.  However, the AFM allows 

visualization of NOM colloids during aggregation, adsorption or other morphological 

changes affected by the interaction of ions. More recently, the AFM was used to 

characterize the surface topography and sorption kinetics of different NOM components, 

particularly hydrophobic humic and fulvic acids (Maurice and Namjesnik-Dejanovic, 

1999).  

 

The AFM was the first technique to show how NOM adsorbs in the form of globular 

aggregates on mineral surfaces, and not as monolayers (Maurice and Namjesnik-

Dejanovic, 1999). Furthermore, changes in pH, ionic concentration and NOM 

concentration during AFM imaging indicated the NOM conformation could be modified 

to produce spherical, ring-shaped and linear structures that were sensitive to the solution 

chemistry (Namjesnik-Dejanovic and Maurice, 2001). This was because humic acid 

comprised of mainly carboxylic and phenolic acid groups that were naturally oxidized, 

giving the surface a negative charge (Avena and Koopal, 1999). The addition of 

monovalent and divalent ions to the solution results in the formation of coordination 

complexes between acidic groups of humic substances (Jada et al., 2006). 
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Several authors have also used the AFM to measure the dimensions of immobilised NOM 

fractions in aqueous solution, which are listed in Table 2.8. Imaging of humic and fulvic 

acid fractions has only been performed due to the lack of research of low molecular 

weight of hydrophilic acid (HPIA and HPINA) fractions. Although hydrophilic fractions 

can be removed to some extent, their role in environment is yet to be learned. Tapping 

mode AFM (TM-AFM) was recently used by Balnois et al., (1999) who obtained HA 

from Suwannee river (a standard humic acid solution) and measured heights ranging from 

0.5-2 nm at different ionic strengths. Guan et al., (2006) also performed TM-AFM on 

PAHA, and found the size of humic substances increased with decreasing pH. They also 

found the length and diameter of humic aggregates decreased considerably between pH 5 

and 6, which was partly due to the intermolecular charge effect between HA molecules. 

Several studies have substantiated these findings. For instance, Alvarez-Puebla et al., 

(2004) reported size variation from 50-300 nm of gray humic acid when the pH was 

reduced from 9 to 1.5 (Mertig et al., 1999). 

 

Some of the more fascinating structures were observed by Namjesnik-Dejanovic and 

Maurice (2001) at relatively high NOM concentration using soil fulvic acid (FA) 

(approaching 100 mg C/L) at pH 5, in CaCl2 on mica.  Under these conditions, the 

authors observed sorbed fulvic acid had formed ring-shaped aggregates with diameters on 

the scale of tens of nanometres. This structure may be caused by the hydrophilic ends of a 

single molecule/linear aggregate coming together to lower the energetics of this 

unfavourable configuration (Israelachvili, 1992). Rigid globular structures are favoured at 

low pH, although the linear structure appears less favoured. Spheres, aggregated branches 

and perforated sheets were also observed at high concentration (Maurice and Namjesnik-

Dejanovic, 1999). Some of the chain-like and sheet-like features observed by Maurice 

and Namjesnik-Dejanovic (1999) were consistent with the complex nature of the 

hydrophobic core and hydrophilic terminal (Droppo, 2005). 

 

The majority of TM-AFM images of humic substances were performed on mica due to 

their preference for mineral adsorption through OH complexation (Feng et al., 2005). As 

a result conformations and aggregates of humics/fulvics given in Table 2.8 may 
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potentially be influenced by mineral surface properties. Furthermore, questions remain 

over the affect of imaging artefacts. Consequently, immobilization of NOM fractions on 

different substrates will invariably have an effect on NOM conformation, which may not 

reflect their configuration in bulk water. As the fulvic acid fraction is poorly removed 

during coagulation, studies on different fulvic acid sources will provide an indication of 

why some FA fractions are removed more easily than others. In addition, this can be 

compared to the humic acid fraction which exhibits a very high removal rate. 
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2.2.2.1.2 Force-Displacement Mode 

The study of NOM using force microscopy falls into two categories, (a) where NOM (or 

a model compound) is immobilized on the tip and/or surface and (b) where force 

measurements are performed in NOM-rich waters that are relevant to the process. Most 

AFM studies have focussed on the former because NOM fouling is a major problem in 

reverse osmosis (RO) and ultrafiltration (UF) membranes. Table 2.9 gives a summary of 

force measurements performed with modified and unmodified tips in process relevant 

environments that are related to NOM aggregation phenomena. The majority of probe 

modification techniques use epoxy glue to attach the colloid/coated colloid to the 

cantilever. In all cases, polymer pulling events/adhesion on NOM or with NOM-coated 

tips were identified with changes in solution chemistry in the same way the NOM 

conformation was modified during AFM imaging. For instance, Sander et al., (2004) 

detected polymer pulling events between alumina surfaces with adsorbed Suwannee river 

humic acid (SHA). When force measurements were performed in CaCl2 solution, 

bridging events were observed with adsorbed SHA, and pull-off forces were stronger 

than in the presence of NaCl. These findings linked well with humic acid removal during 

coagulation, and were also consistent with the Schulze-Hardy rule of high valency 

counterions reducing double layer repulsion.  

 

 

In a study by Plaschke et al., (2000), force measurements were performed with humic 

acid-coated AFM tips on mica in the presence and absence of europium electrolyte 

(Eu(III)). Tips were prepared using the mechanical fixation method, by dragging the tip 

onto adsorbed humic acid. Their results gave pull-off forces of 5.4 ± 0.5 nN and 0.7 ± 0.2 

nN in the presence and absence of Eu(III), indicating bridging phenomena between 

humic acid and mica. A common feature of force measurements with NOM-coated tips 

and/or in NOM solutions is their ability to form multiple binding sites largely due to the 

large molecular size and humics negative surface charge. To represent humic acid 

carboxylate-modified latex (CML) particles were used as a surrogate by Lee et al., (2006) 

because model organic compounds mainly comprised of carboxylic functional groups.  
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The authors were particularly interested in foulant-foulant interactions because their 

molecular interaction governed fouling layer thickness and compactness. The CML 

particle was attached to the AFM tip to represent the foulant, while alginate and 

Suwannee River NOM (SRNOM) were used as model organic foulants. Foulant-foulant 

interactions were performed in the presence and absence of Ca
2+

, Mg
2+

 and at various pH. 

They found fouling rate and adhesion forces were stronger at low pH, high ionic 

concentration and in the presence of Ca
2+

, which confirmed intermolecular bridging 

between model foulants. They also found intermolecular adhesion force (and fouling) 

was stronger with alginate than SRNOM, that was attributed to the larger alginate 

molecular network which was dominated by hydrophilic organic macromolecules rather 

than a hydrophobic core. These findings gave a strong correlation between fouling rate, 

determined from flux-decline curves, and adhesion force giving R
2
 values of 0.972 and 

0.933 for runs in NaCl and CaCl2, respectively. The results strongly support the 

suggestion AFM adhesion forces with modified tips can be used as an indicator of fouling 

potential. 

 

In a similar example Li and Elimelech (2004) performed force measurements with CML-

modified AFM tips and fouled/clean nanofiltration (NF) membranes in various solutions 

where SHA was used as the foulant. The authors found excellent correlation between 

measured adhesion force and membrane cleaning, and confirmed Ca
2+

 enhanced NOM 

fouling which was reversed by the removal of Ca
2+

. Furthermore, force measurements 

were performed in the presence of different chemical cleaning agents such as EDTA 

(ethylenediamine tetraacetate), SDS (sodium dodecyl sulphate) and NaOH, which 

strongly correlated with bench-scale fouling/chemical cleaning experiments. As Ca
2+

 is 

present during the filtration process, EDTA was able to form a stronger complex with 

Ca
2+

 than SHA, thus making it easier to remove humic acid from fouled membranes by 

rinsing. These findings and other numerous studies linking intermolecular adhesion force 

to NOM fouling, membrane cleaning and general water treatment systems have 

demonstrated the use of modified tips as an excellent screening tool that not only 

complements existing bench-scale experiments, but also allows for more targeted 

remedial techniques.  
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2.2.3 Biological Systems 

2.2.3.1 Introduction 

This final section of the literature review looks at the field of biofouling, the unwanted 

accumulation of microorganisms, plants, algae and animals on submerged surfaces. It 

will focus on studies where the AFM has been used to understand foulant-surface and 

foulant-foulant interactions, as well as the development of novel coatings in fouling 

prevention. Numerous studies have shown the first stage of biofouling is the adsorption 

of a conditioning film deposited from dissolved organic material or plasma proteins 

(albumin) from serum. Within hours bacteria colonise the film by secreting sticky 

extracellular polymeric substances (EPS), which increases drag in marine systems while 

causing bacterial infection in humans (Callow and Callow, 2002). The outer membrane of 

Gram-negative bacteria is mainly comprised of phospholipids, proteins and 

polysaccharides, where lipopolysaccharides (LPS) form the major component that gives 

bacteria their structural integrity and negative surface charge, which can vary between 

different strains (Burks et al., 2003). Because the EPS and LPS both play an integral role 

in biological fouling, the AFM has been used to investigate both of these surfaces. 

2.2.3.2 Applications of the AFM to biofouling and bacterial adhesion 

Although modified tips increase the range of materials to be studied, force measurements 

with unmodified tips still provides information that is of fundamental and practical 

importance, not least because of its known geometry and chemistry. For instance Callow 

and Callow, (2000) performed force measurements in filter-sterilized seawater with 

silicon nitride tips on the adhesive pad of the green algal spore Enteromorpha Linza. The 

spores secrete an adhesive (a glycoprotein) that gives firm anchorage to the substratum, 

which are commonly found on ships’ hulls causing algal biofouling. During force 

measurements force curves gave characteristic saw-toothed curves with multiple pull-off 

events that were typical of multiple binding regions of glycoproteins. Interestingly, 

freshly-released adhesive from spores gave mean forces of 173 ± 1.7 mN and within 

minute’s adhesion was reduced by 65% due to the curing process. From existing force 

data, it was also found the compressibility of the adhesive was reduced with time giving a 

10-fold increase in Young’s modulus. 



Chapter 2  Literature Review 

 43 

AFM tips have also been modified with marine adhesives such as the hydrophilic Mytilus 

edulis foot protein (Mefp-1 ~ 130 000 Da), because of its adverse effect on marine 

biofouling which are also important for developing synthetic adhesives in solutions 

(Frank and Belfort, 2002). Mefp-1 is one of four proteins that is part of the Eastern blue 

mussel, a good model for understanding marine fouling because it comprises of 3,4-

dihydroxyphenyl-L-alanine (DOPA) residues which are ubiquitous among invertebrates. 

Mefp1 was adsorbed onto silica-modified cantilevers and force measurements were 

performed on silica substrates in different ionic solutions. In solutions containing MgCl2, 

CaCl2 and Na2SO4 multiple pull-off events were common, which are typical for 

biological systems due to metal complexation. Interestingly, multiple events were not 

observed in FeCl3 although adhesion was much stronger possibly due to the oxidation of 

DOPA to o-quinones and then cross-linking to Lys residues present on Mefp-1, These 

results showed the ionic composition of the environment inside the mussel foot could be 

tailored by the mussel to achieve maximum adhesion, and provides further information 

for developing synthetic adhesives. 

 

Since bacteria can adhere to a host of surfaces, bacterial infection is a major problem in 

health and biomedical applications. Escherichia coli is frequently at the forefront of 

many AFM studies because it of its omnipresence in the environment and living systems. 

Ong et al., (1999) performed force measurements using polyethyleneimine (PEI)-coated 

AFM tips modified with E. coli D21f2 (mutant form) and D21 strains in Tris buffer on 

mica, glass, polystyrene and Teflon. The authors found adhesion of D21f2 (hydrophobic 

strain) to Teflon was stronger due to the hydrophobic effect. The hydrophilic strain (D21) 

was more adhesive to hydrophilic surfaces of mica and glass, although it was most 

adhesive to hydrophobic octadecyltrichlorosilane-treated (OTS) glass. The authors found 

this was due to different lipopolysaccharide (LPS) lengths, thus affecting cell surface 

charge and hydrophobicity. These findings showed hydrophobic interactions played the 

dominant role, while vdW and electrostatic interactions were less important. As LPS was 

found to play an important role in bacterial adhesion, additional AFM studies on E. coli 

followed comparing the adhesion of different LPS chain lengths with unmodified tips 

(Burks et al., 2003) 
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AFM tips have also been coated with bovine serum albumin (BSA), the most abundant 

protein in blood plasma that has been extensively studied (Xu and Logan, 2006). 

Albumin adheres unfavourably to implanted biomaterials causing adverse reactions such 

as blood clots and fibrous capsules (Wang et al., 2004). The authors used the SAM’s 

technique for preparing CH3 and OH terminated SAM’s before covalently immobilizing 

BSA. Force measurements were performed in 10 nM phosphate buffered saline (PBS) 

buffer at room temperature on BSA, anti-BSA and different terminal groups. The authors 

found adhesion was strongest to hydrophilic OH-terminated surfaces and anti-BSA, 

which did not correlate with previous observations. More importantly, adhesion was 

weakest to dextran-coated surface, which was most hydrophilic although repulsive steric 

effects were also likely to have played a role. At the time of this study the development of 

non-adhesive coatings for biomaterial surfaces using the AFM was in its infancy, but it 

emphasizes the importance of tip modification in AFM studies. Other studies have 

focussed on the affect of residence time of protein/dextran adhesion on biomaterials using 

the colloidal probe (Xu and Logan, 2006). 

 

In the field of water treatment modified tips were used to perform force measurements on 

the oocyst Crysptosporidium parvum, a major contaminant of drinking water and also an 

enteric pathogen (Considine et al., 2002). Cryptosporidium parvum is a protozoal parasite 

that is ubiquitous in the environment with worldwide distribution and is frequently the 

cause of many disease outbreaks. Silicate glass beads were used to modify tips because 

sand bed filtration is one of the main barriers that offer protection. Force measurements 

were performed at different pH in solutions of KNO3, Ca(NO3)2 and DOC. Pull-off forces 

gave polymer pulling events reaching 250 nm in KNO3 that are characteristic of an 

extended hairy protein layer. It was found on addition of Ca
2+

 and DOC there was 

increased coulombic screening that compressed the protein layer on the oocyst surface, 

thus reducing the adhesion force. This study showed how changing the ionic 

concentration was effective in reducing adhesion between the oocyst and glass beads.
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Chapter 3                       Materials and Methods 

3.1 Chemicals, Solutions and Sample Preparation 

All solutions were obtained from Fisher Scientific and Aldrich Chemicals, UK, of 

analytical grade. The solutions used are summarised in Table 3.1. Synthetic hard water 

(SHW) was prepared by mixing solutions of analytical grade 0.1M CaCl2 with 0.1M 

NaHCO3 (Supplied by Aldrich Chemicals, UK) to achieve the same hardness as a sample 

of hard water obtained from a test site near Attleborough (Norfolk, UK) which exhibited 

a hardness of 310 mg/L of CaCO3. 

3.1.1 Solid specimens 

The thirteen specimens used in the calcite section of this study (see 3.5.1) were in the 

form of 12 mm pipe sections, and were either coated or uncoated with the coating 

specified by the supplier (Teercoatings®). All materials were placed into one of two 

groups, group I which comprised of high energy metals, and group II, which were 

predominantly non-metallic (Table 3,2). Aluminium was in group II because it was not a 

transition metal, unlike the other metals in group I. A full description of the materials 

used and their preparation is listed in Table 3.2.  

 

The purpose of the materials used in the calcite section was to link surface properties 

(including surface topography, SFE and adhesion force) to their rate of CaCO3 scaling 

(see section 3.5.2.6), where all the materials required extensive surface characterization. 

This was why some surfaces were polished (MF steel), abraded (SB and RF steel), 

corroded (used copper pipe specimen) or prepared with variations in coating thickness 

(gold coatings) or simply in their coating technique (Dymon-iC and Graphit-iC). Dymon-

iC and Graphit-iC carbon-based coatings were used because they exhibit a high slide 

wear resistance and low friction in dry conditions, and have shown to reduce scale 

formation at the bench-level (MacAdam, 2005). TiN is a hard, dense, wear resistant 

coating, and is applied mainly for tooling applications.  
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The base materials of stainless steel 306a, aluminium and copper are frequently used for 

the manufacture of heaters and boilers, which were essentially used to be compared to the 

different coating specimens. The ‘used’ copper specimen was effectively analyzed so its 

surface properties can be compared to its unused counterpart. 

 

Table 3.2. Description of materials used for experiments (supplied by Model Products Ltd, 
Bedford, UK). Coatings were prepared by Teercoatings® on stainless steel 
substrates. Solid phase elemental analysis of MF steel and SB steel was performed 
using ESEM-EDX. 

 
Group I Material Description Group II Material Description 
Mirror-finish 

stainless steel 

Model 306a 

(referred to as MF 

steel hereafter) 

Polished to a mirror finish. 

Fe (61%), Cr (17%), C 

(11%), O (10%), Ni (9%) 

and Mn, Mo and Si (<2%). 

Dymon -iC
TM

 

(referred to as 

Dymon-iC 

hereafter) 

Hydrogenated, amorphous 

carbon coating (a-C:H) 

produced by closed-field 

unbalanced magnetron sputter 

ion plating (CFUBMSIP) with 2 

µm thickness. 

Sandblasted 

stainless steel 

Model 306a 

(referred to as SB 

steel hereafter) 

Sand or other abrasive 

blown against substrate. C 

(44%), Fe (24%), O (17%), 

Cr (7%), Ni (3%), Al (3%) 

and Mn, Mo and Si (<2%). 

Graphit-iC
TM

 

(referred to as 

Graphit-iC 

hereafter) 

Hydrogen-free, amorphous, 

carbon-chromium coating (a-C) 

produced by CFUBMSIP with 

2.5 µm thickness. 

Roughened 

stainless steel 

(referred to as RF 

steel hereafter) 

Abraded with sandpaper. 

Model 306a. 

TiN Titanium nitride coating with 3 

µm thickness. 

Gold (0.1 mm) 0.1 mm thick coating of 

gold. 

PTFE Poly(tetrafluoroethylene coating 

of unknown thickness. 

Gold (0.3 mm) 0.3 mm thick coating of 

gold. 

Kettle element 

coating (referred to 

as ‘K. coating’) 

Unspecified coating of 

unknown thickness 

Copper Unused copper pipe. Aluminium Model 608226 

‘Used’ copper Used copper pipe that is 

discoloured due to 

corrosion. 

  

 

3.1.2 Summary of the water treatment works 

Raw water samples were provided by several students, which were collected from four 

different water treatment works (WTW) at various time intervals. Raw water from two 

WTW (Giddop and Lower Gorple reservoirs, Pennine Moorlands, UK) was fractionated 

into NOM components (described in section 3.1.3 and 3.1.4). The fractionated NOM 

components (HAF, FAF and HPIA fractions) of three other samples were provided by Mr 

Mergen (Penwhirn reservoir, Stranraer, Dumfries and Galloway and Albert reservoir 



Chapter 3  Materials and Methods   

 48 

waters, Halifax, Yorkshire, UK) and Dr Goslan (Albert reservoir, 2001) from Cranfield 

University.  

 

Albert water treatment works is fed by an upland peat catchment system. This includes a 

3 stage treatment plant processing a flow of 33,000-55,000 m
3
 d

-1
 on the western side of 

Halifax (Yorkshire, UK), which has drained through a peat catchment system before 

reaching the plant’s reservoir. Widdop Reservoir was built for Halifax Corporation in 

1878, processes 2,877,618 m
-3

 d
-1

 (or 633 million gallons), and along with Lower Gorple 

feed the Albert reservoir that is 10 miles southeast. Lower Gorple is one of two reservoirs 

situated on Black Moor and set in the midst of the Pennine moorland, with a capacity of 

1,033,851 m
3
 d

-1
 (272 million gallons). Widdop and Gorple reservoir water sources will 

also be referred to as ‘feeders’ in this report. Penwhirn WTW is a 4 stage treatment plant 

that processes 13,000-14,000 m
3
 d

-1
. It was established in 1955 and covers the Stranraer 

area (Dumfries & Galloway, UK) treating upland peat water. The organics from Gorple 

and Albert raw waters were extracted and fractionated using XAD8/XAD4 resin 

chromatography, adapted by a method from Malcolm and McCarthy (1992) (Goslan, 

2003) (See section 3.1.3 and 3.1.4).  

3.1.3 Resin Preparation 

XAD-4 and XAD-8 Amberlite resins were prepared using the same procedure. XAD4 

and XAD8 resins are porous, non-polar, highly cross linked styrene divinylbenzene 

copolymer beads used for the adsorption of NOM fractions during fractionation (Aiken et 

al., 1979). The XAD4 beads were used to isolate HPIA, while XAD8 are used to isolate 

HAF and FAF. The resin (200ml) was inserted into a round-bottomed flask (750ml) 

containing methanol (450ml), followed by the addition of 5-6 anti-bumping granules. The 

flask was connected to a reflux condenser and refluxed for 24 hrs. The resin was then 

packed into a fractionation column to produce a single bed volume of resin (~75 ml). The 

resin was rinsed with de-ionized water (15 MΩ) until the DOC level was <2mg/L using a 

Watson Marlow pump (Model 505Da, UK). This normally required rinsing with DI water 

(400ml). The column was then rinsed with 1M NaOH (2.5 bed volumes), followed by the 

equivalent volume of 0.1M HCl acid to remove impurities.  
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3.1.4 Fractionation Procedure 

Raw inlet water (2L) from Lower Gorple and Widdop water reservoirs was passed 

through 0.45µm filter paper (Whatman plc., Maidstone, Kent, UK), acidified to pH 2 

with HCl acid, and then passed through the XAD8 column followed by XAD-4. The 

effluent from the XAD-4 column contained the HPINA fraction. When columns were 

saturated with hydrophobic and HPIA organics on XAD-8 and XAD-4 resins, 

respectively, 0.lM NaOH (~100ml) was passed through each column until all the colour 

was washed off the resins. The eluate from the XAD-4 column was the HPIA fraction. 

The hydrophobics produced from XAD-8 was acidified to pH 1, allowed to settle for 24 

hrs, and then centrifuged. The ensuing supernatant (FAF) was decanted, and the resulting 

residue (HAF) was dissolved in a minimum volume of 0.1M NaOH. The fractions 

produced at the end of the procedure were HAF, FAF, HPIA and HPINA isolates. 

3.1.5 �OM Fraction Immobilization 

Fractions were immobilized onto a glass slide suitable for performing contact angle and 

force measurements using the following procedure. NOM-coated slides were prepared by 

cleaning fresh glass slides in an ethanol bath. Poly-L-lysine (PLL, Supplied by Sigma 

Aldrich, UK) was then used as an adhesion promoter. A 1:10 dilute solution of PLL was 

prepared using distilled water and the clean glass slide was immersed into the PLL 

solution for 5 min. They were then placed into an oven at 60˚C for 1 hour. PLL-coated 

slides were rinsed with ultrapure water (18MΩ) and allowed to dry at room temperature. 

Slides were inserted into a Petri dish containing each of the NOM fractions for 2 hrs, 

washed with ultrapure water then allowed to dry at room temperature before use. 

3.2 AFM tip modification 

AFM cantilevers were used on the Dimension 3000 (SPM) system equipped with a 

NanoScope IIIa controller (Veeco instruments, Santa Barbara, California, USA). All 

AFM cantilevers were obtained from Nanosensors (Wetzlar, Germany). The cantilevers 

used to perform force measurements were model numbers PPP-CONT-50/20. 
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3.2.1 Tip modification in calcite chapter of work 

Three types of calcite modified probes were prepared, calcite-grown tips, calcite-attached 

(CA) tips and calcite-orientated tips.  

3.2.1.1 Calcite-Attached (CA) Tips 

The AFM cantilever (Nanosensors (Wetzlar, Germany) spring constant ranging from 

0.07-0.4 N/m
-1

), was first cleaned with 0.1 M HCl acid for 10 minutes. With the aid of an 

optical microscope the terminal of a clean cantilever was lowered into an epoxy adhesive 

(ZAP, Pacer technology, California, USA) with tweezers for several seconds, after which 

it was removed. A freshly pulled glass probe was inserted into the micromanipulator and 

used to collect a calcite crystal that was prepared earlier and then lowered onto the 

adhesive on the cantilever. The crystal was positioned for about 10-15 seconds to allow 

the adhesive to cure. 

3.2.1.2 Calcite Grown (CG) Tips 

0.1 M Na2CO3 was added to 0.1 M CaCl2 solution to induce CaCO3 precipitation. A 

quarter of the cantilever was introduced into the supersaturated solution and left in 

solution for 5 minutes, after which the cantilever was analyzed for crystal growth either 

on or near the apex. One calcite crystal was then moved in juxtaposition to the tip while 

excess calcite was removed using a freshly pulled glass probe prepared using a PC-10 

glass puller (Narishige Co. Ltd, Tokyo, Japan) with the aid of an MMO-202ND Three-

axis Hanging Joystick Oil Hydraulic micromanipulator (Saitama, Japan) equipped with 

an optical microscope. The cantilever was then re-inserted into the supersaturated droplet 

for a further 20 min. and analysed under the microscope. Excess calcite was removed 

from the back of the cantilever by using a droplet of HCl acid (0.1M). The cantilever was 

allowed to make contact with the droplet with the calcite crystal inserted into the droplet. 

The surface tension of the HCl solution was allowed to bend the cantilever without 

contacting the modified side of the cantilever. The cantilever was held in position for 1 

min. after which the cantilever was withdrawn and then analyzed. The process was 

repeated until all crystals were removed from the back side of the cantilever. 
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3.2.1.3 Calcite-Orientated (CO) Tips 

Several fresh glass probes were prepared using a PC-10 glass puller (Narishige Co. Ltd, 

Tokyo, Japan). Epoxy adhesive (Araldite ®) was collected on a glass probe and 

transferred to the tip/cantilever surface. A calcite crystal (as prepared in section 3.2.1.3) 

was collected with a second glass probe attached to the micromanipulator. The glass 

probe was first inserted into the NaHCO3 solution to moisten the end of the probe and 

promote capillary adhesion to the calcite crystal. The probe was gently lowered onto a 

suitable calcite crystal, and the probe tip was carefully manoeuvred until the crystal 

adhered to the probe through capillary forces. The crystal was then lowered onto the 

adhesive of the AFM probe. Calcite-oriented tips were prepared by moving the crystal on 

the adhesive until the face, corner or edge of the crystal was facing up. 

3.2.2 Tip modification in �OM chapter of work 

AFM tips were modified with poly-L-lysine (PLL), glycine and fractionated NOM 

polyanions. Three types of NOM modified probes were prepared. They were NOM-

modified tips, where the fractions were adsorbed on unmodified tips, resin-modified tips, 

where XAD-4, XAD-8 and MIEX® was attached to an AFM tip with an adhesive and 

NOM-coated resin probes, where the resins were coated in NOM prior to attaching to the 

cantilever. 

3.2.2.1 PLL-modified tips 

A 1:10 solution of PLL was prepared using distilled water and the AFM tip was inserted 

into the solution for 5 minutes by inserting the cantilever portion only into the a droplet 

of PLL solution. The chip was then transferred to the oven for 60 min, at 60˚C. 

3.2.2.2 Glycine-coated tips 

PLL-coated tips prepared in 3.2.2.1 were coated in glycine as follows. The glycine 

solution was prepared by dissolving 2 g of analytical grade glycine (Fisher Scientific, UK) 

in water (10 ml). A droplet of the solution was then placed onto a petri dish and freshly-

prepared PLL-coated tips were inserted into the solution for 1 hr. The tip was then 

removed and rinsed in ultrapure water and stored before use. 
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3.2.2.3 �OM-Modified Tips 

NOM-modified probes were prepared as follows. PLL-coated tips were inserted into a 

Petri dish containing the desired NOM fraction (1:10 dilution was required for HAF due 

to reduced quantities of this fraction) for 2 hrs. The cantilever was then rinsed with 

ultrapure water (18 MΩ) two times before leaving to dry for 2 hours and ready for force 

measurements.  

3.2.2.4 Resin Probes 

AFM tips modified with XAD4, XAD8 and MIEX® resins. MIEX® is a re-usable 

magnetic ion exchange polymer used to remove primarily low MW dissolved organic 

carbon (DOC) (Zhang et al., 2006), used as a pre-treatment method (Singer and Bilky, 

2002; Boyer and Singer, 2006). Using an optical microscope the terminal of a fresh 

silicon cantilever was lowered into an epoxy adhesive (ZAP, Pacer technology, 

California, USA) with tweezers for several seconds, after which it was removed. A 

freshly pulled glass probe was inserted into the micromanipulator and used to collect a 

single resin from a clean glass slide and then lowered onto the adhesive on the cantilever. 

The resin was positioned for about 10-15 seconds to allow the adhesive to cure. 

3.2.2.5 �OM-Coated Resin Probes 

The same procedure used to attach the resins to the tip was used. The resin-attached 

probe was then inserted into the desired NOM solution for 30 minutes. Care was taken 

not to coat the cantilever in NOM so only the resin was inserted into the NOM droplet 

with the aid of an optical microscope. 

3.3 Instrumentation 

3.3.1 Contact Angle Apparatus 

Contact angles (CA) of probe liquids were performed using a Jai-CV-M90 Interlaced 

CCD camera connected to a personal computer. The samples were first cleaned after 

immersing a lens cleaner in methanol and gently wiping the surface of the substrate. The 

samples were then fixed to a plastic base with sellotape about 30 cm from the camera, 

and a 5 ml syringe was held about 10mm above the sample with the aid of a clamp. 
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3.3.2 Scanning probe microscope 

The scanning probe microscope (also called AFM) used to perform all probe 

measurements was the Dimension 3000 system equipped with a NanoScope IIIa 

controller (Veeco instruments, Santa Barbara, California, USA), operated in both air and 

liquid environments. The controller was connected to a PC, equipped with NanoScope 

IIIa software (version 4.42r4). The set-up included two monitors, one for controlling the 

real-time control panel and a second for observing the output signal. A third monitor was 

independently connected to a camera, inserted into the X-Y stage, for observing the 

position of the laser and cantilever relative to the sample. The X-Y stage was placed on a 

hydraulically-controlled bench to eliminate external vibration. The complete set-up of the 

equipment is show in Figure 3.1. 

 

 
(a) 

 
(b) 

 
(c) 

 

 
Figure 3.1. Digital images of the three monitors (a), the AFM stack locked into the stage (b) and 

the stage sitting on the hydraulic bench (c). 
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The AFM stack (or SPM head) is slotted into the computer-controlled X-Y stage. The 

stack (Figure 3.1, model number: DMLS) comprises of laser and photodetector 

adjustment screws for aligning the laser and photodetector, respectively, to the back of 

the cantilever. At the bottom of the SPM stack, four pins are present for inserting the 

cantilever holders. Two types of cantilever holders were used. One for operating in air, 

and the other in fluid, which are shown in Figure 3.2. 

 

Figure 3.2. Digital image of fluid cell (middle, 12 mm diameter) with protective skirt (left) and 
dry cantilever holder (right). 

 

3.3.3 Cantilevers 

All AFM cantilevers were obtained from Nanosensors (Wetzlar, Germany). The 

cantilevers used for specific modes of operation were as follows: 

 

Imaging in air: PPP-NCL-50/20 (tapping mode); PPP-CONT-50/20 (contact 

mode). 

Imaging/F-D mode PPP-CONT-50/20 (contact mode) 

in fluid 

 

3.3.4 Scanning Electron Microscope 

Images of AFM tips modified with calcite and beads were performed using the Philips 

EL30 Environmental Scannning Electron Microscope (ESEM), and performed in water 

vapour mode prior to analysis. All AFM probes were fixed onto a stud before imaging. 
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3.3.5 pH meter 

The pH was measured using the Jenway pH meter with a Merck Gelplas General Purpose 

pH probe. The meter was calibrated using pH 4 and pH 7 buffer solutions prior to pH 

measurements. 

3.4 Analytical Techniques 

3.4.1 Contact angle measurements and surface free energy calculation 

All solid-state samples were cleaned after immersing a lens cleaner in methanol and 

gently wiping the surface of the substrate. The thirteen substrates used in the calcite 

chapter of the study were in the form of 12 mm pipe sections with a length of 80 mm, so 

measurements could be performed on the original uncut specimens (See section 3.5.1 for 

detailed description of materials). In the NOM chapter, immobilized polyanions (see 

3.1.5) were rinsed in ultrapure water before performing contact angles. Samples were 

then fixed to a plastic base with sellotape about 30 cm from the camera. All of the probe 

liquids were HPLC grade (>99.5% purity). Probe liquids were diiodomethane, 1-

bromonaphthalene ethylene glycol, formamide, glycerol, dimethylsulfoxide (Fisher 

Scientific, UK) and ultrapure water (purified using a Barnstead Nanopure II water 

purification system). The probe liquid was collected into a 5 ml syringe and held in 

position about 10 mm above the sample with the aid of a clamp. Miniscule droplets of the 

probe liquid were dispensed from the syringe onto the substrate. A new syringe was used 

for each probe liquid to prevent contamination. An image of the contact angles was taken 

several seconds after dispensing the liquid. A total of 8 drops (about 5µl) of each probe 

liquid was dispensed, each side of symmetrical sessile drops giving a total of 16 contact 

angle measurements. Digital images were taken using Image Pro Plus® The Proven 

Solution™ software once the contact angle stabilized. Measurements were performed 

using the same software (Figure 3.3), and after completing each set of probe liquid 

measurements. 
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Figure 3.3. Digital photograph taken of water on a solid substrate, using Image Pro Plus® The 
Proven Solution™ software. 

 

Having measured the contact angles, the graphical plot (McCafferty, 2002) and matrix 

methods (Van Oss, 2002) were used to calculate the surface free energy (SFE) 

components. The γ
LW

 (dispersive component) was calculated using equation 3.1: 
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The matrix method comprises solutions of equation 3.1 written as a set of three 

simultaneous equations and expressed in matrix form (Van Oss, 2002): 
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Where numerical subscripts (L1, L2, L3) represent the wetting liquid. Equation 3.2 may 

also be written as Ax = b, where A is the matrix containing the surface tension parameters. 

 

By using the Young-Dupre equation (equation 3.1), the idea that the surface free energy 

is the sum of the Lifshitz-van der Waals and Lewis AB (LWAB) contributions, and the 

Good-Girifalco combining rule for interfaces, van Oss, Chaudhury, and Good (Good et 

al., 1992) obtained equation 3.3: 

( ) 




 ++=+





 += +−−+−+

lsls

LW

l

LW

sll

LW

lslW γγγγγγθγγγ 2cos12  Equation 3.3 

 

Where Wsl is the work of adhesion for the solid (s) and liquid (l) phases, θ is the liquid 

contact angle, and γ
+
, γ

-
 and γ

LW
 are the electron-accepting, electron-donating and LW 

surface tension values for the liquid (l) or solid (s), respectively. Equation 3.3 is also 

known as the VCG equation. To calculate the work of adhesion between the foulant and 

substrate in a medium that is analogous to the energy required to detach a foulant (1) 

from a surface (2) in liquid (3), the various works of adhesion must be resolved 

(Israelachvilli, 1992): 

23133312132 WWWWW −−+=     Equation 3.4 

 

Alternately, the work of adhesion (W132) may also be calculated from the following 

expression (Van Oss, 2002): 

 

 

Equation 3.5 

 

 

Where W132 is also related to the adhesion force using equation 2.8 (section 2.1.6). 

3.4.2 AFM imaging 

In the calcite section of the experiments, substrate samples were imaged in water and 

electrolyte solutions using the fluid cell at a room temperature of 22˚C. Substrates were 

first cleaned by dousing a lens cleaner in ethanol and gently wiping the surface prior to 
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mounting the sample on the stage. Imaging was performed in contact mode prior to 

changing to force-distance mode. 

3.4.3 Force measurements 

All force measurements were performed in a liquid environment using the fluid cell, to 

eliminate the capillary forces and amplify the van der Waals and double layer forces. The 

liquids included ultrapure water, de-ionized water and electrolytic solutions. Before 

commencing force measurements, a drop of the liquid was placed onto the fluid cell after 

mounting the cantilever into the holder. A droplet was also applied to the sample. The 

cantilever was then allowed to stabilize in the fluid environment for several minutes until 

stable force curves were generated. Adjustments were made to the real-time control 

panels including the setpoint, scan rate, ramp size, x-y offsets and data centre to generate 

good force curves. Each force curve was comprised of a row of maximum 250 data points 

acquired during vertical movements of approach and retraction of the cantilever. For all 

sets of force curves, a total of 10 random locations were sampled, and 10 force curves 

were performed on each data point to produce 100 force curves in total per sample. 

 

Cantilever calibration was required for force measurements only using two methods. In 

most cases, springs constants were provided by the manufacturer while modified tips 

were calibrated using the resonance techniques only. In the literature review Cleveland et 

al., (1993) gave accuracies to within 10%. The Cleveland method required measuring the 

resonant frequency of the cantilever using the sweep controls on the AFM before and 

after modifying the tip/cantilever, and also measuring the particle diameter and 

calculating its mass. However, resin-modified (XAD4/XAD8/MIEX®) probes were 

calibrated using the thermal noise method (See method B in Table 3.2) due to difficulties 

with the Cleveland method. For instance, calibration of XAD8 resin probes using the 

Cleveland method gave spring constants 100-fold greater than unmodified tips, which 

was significantly greater than the 15-30% uncertainty given in the literature (Ohler, 2007). 

After calculating the spring constant, the measured force was determined using Hooke’s 

law. To convert the raw deflection data (Appendix A) to force data more efficiently, a 

MATLAB® programme was created by Rob Boyd and is given in Appendix B. 
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3.5 Laboratory Experiments 

3.5.1 Calcite Adhesion Experiments 

A series of experiments were conducted to measure the adhesion force of unmodified and 

modified AFM tips on the substrates given in section 3.1.1. These experiments were 

performed to compare different surface chemistries (3.5.1.1), different solution 

chemistries (3.5.1.2 and 3.5.1.3) and the effect of the calcite crystal itself (3.5.1.4 and 

3.5.1.5). 

3.5.1.1 Effect of substrate material on adhesion 

During this experiment two techniques of characterization were performed, contact angle 

and force measurements. Contact angle measurements were performed on all the 

substrates using the technique described in section 3.4.1. Force measurements were 

performed using the fluid cell on each substrate using two unmodified AFM tips on 

random points for each of the samples in ultrapure and synthetic hard waters. This was 

repeated using two types of modified tips. They were calcite-grown (CG) (See 3.2.1.2) 

and calcite-attached (CA) (See 3.2.1.1) tips. 

3.5.1.2 Effect of molar concentration on adhesion 

Force measurements (See section 3.4.3) were performed using the fluid cell on all 

substrates in three different molar solutions of CaCO3, and they were 0.001M, 0.0008M 

and 0.0005M. The experiments were performed in the following order, 0.0005M, 

0.0008M then 0.001M. Each probe was used for all the substrates before changing 

solution and tip. The CA and CG modified probes produced earlier (section 3.2.1.1, 

3.2.1.2) were used for this series of experiments and compared to each other. 

3.5.1.3 Effect of solution pH on adhesion 

The CA and CG tips were used to perform force measurements (section 3.4.3) using the 

fluid cell in 0.001M CaCO3 solutions at pH 7, 8, 9 and 10. The solutions were prepared 

by adding drops of 0.1M NaOH to the 0.001M CaCO3 solution until the desired pH was 

obtained. Three different probe types were compared, calcite-grown, calcite-attached and 

unmodified tips. 
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3.5.1.4 Effect of calcite crystal orientation on adhesion 

Force measurements were performed using a total of six calcite-orientated probes using 

the fluid cell on Mica, mirror-finish stainless steel and Dymon-iC. All measurements 

were performed in synthetic hard water. 

3.5.1.5 Effect of calcite surface defects on adhesion 

Calcite probes were produced using the same procedure shown in section 3.2.1.3. Six 

calcite probes with three levels of surface defects were prepared and tested on Mica, 

mirror-finish stainless steel and Dymon-iC. Force measurements were performed at room 

temperature in synthetic hard water using the fluid cell. 

3.5.1.6 Rapid scaling tests 

This experimental test was conducted by Jitka MacAdam (MacAdam, 2005) on the 

twelve specimens listed in Table 3.2. The experimental rig was constructed by Model 

Products Ltd., and comprised of a plastic tank, a submerged heating element (one of the 

twelve specimens given in Table 3.2) with a removable sleeve, a magnetic stirrer and a 

temperature control unit. Synthetic CaCO3 solutions were used, by preparing CaCl2.H2O 

and NaHCO3 with a hardness (CaCO3) ranging from 100 to 300 mg.L
-1

. The test solution 

was heated to either 42˚C or 70˚C for 45 minutes to complete 1 cycle. The test solution 

was then replaced and the heating element allowed to cool for 15 minutes in the new 

solution. The solution was magnetically stirred throughout the experiment, and after five 

or ten cycles (depending on temperature for all specimens), the sleeve was removed from 

the heater. The adsorbed CaCO3 was dissolved in 0.1% HCl and the calcium content 

analyzed using an Inductively Coupled Plasma Atomic Emission Spectrophotometer 

(ICP-AES).  

3.5.2 �OM Experiments 

NOM-modified glass substrates with the aid of an adhesion promoter were prepared 

using the same procedure described in section 3.2.2.3. A table summarizing the NOM 

experiments performed on immobilized NOM fractions using NOM-modified probes, 

resin-modified probes and NOM-coated resin probes are given in Table 3.2. All force 

measurements were performed in ultrapure water. 
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Chapter 4 Results and Discussion part 1 - Calcite 
Adhesion 

4.1 Substrate topography characterization 

Surface topography of all the materials was assessed using AFM in imaging mode. Figure 

4.1 shows 2D AFM topographical images of all materials and their respective Z range 

values, determined using the AFM software. The 2D images showed 0.1 mm gold, 0.3 

mm gold and MF steel were predominantly uniform, with a few abrasion marks with 

widths ranging from 0.1 to 50 µm due to handling. MF steel was polished by the 

manufacturer, giving a typically homogeneous finish that was absent of any surface 

asperities. Both 2D images of the rough steel samples were illuminated using the AFM 

software due to the very poor contrast of their respective height images (see Appendix C 

for their height images). RF steel displays long cavities, with trenches up to several 

hundred nm deep that were continuous along the pipe. The trenches also varied in width 

from 0.1 to 2-3 µm. In contrast SB steel gave a non-random roughness profile, and 

because the Z-range was 1000 nm, the asperities were much larger than the cavities on 

RF steel.  This was because SB steel was prepared by a process termed ‘sandblasting’, a 

process in which compressed air (or an abrasive) is blown against the substrate to 

produce a highly roughened finish. In contrast RF steel was prepared by mechanically 

abrading with an abrasive (not known), by the manufacturer (Model Products Ltd).  

 

Of the group II materials, Graphit-iC, Dymon-iC and TiN had grainy microstructures that 

were typical of coatings produced by conventional chemical vapour deposition (CVD) 

(Perry, 2000). The grains on Dymon-iC were smaller, uniform and ranged from 0.1-0.2 

µm, while those on TiN and Graphit-iC range from 0.2 to 0.5 µm. Dymon-iC is produced 

in a plasma enhanced CVD process using a hydrocarbon gas precursor, with a greater 

proportion of sp
3
 than sp

2
 bonds (Field et al., 2004). It is thought the dense amorphous 

grains are due to the formation of a lubricious graphite-like transfer layer formed during 

sliding between the counterpart and the coating (Field et al., 2004).  
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The Graphit-iC coating appears more heterogeneous although the coating itself was 

thicker. Aluminium, ‘kettle coating’, clean copper and used copper presented a coarse 

surface finish with larger asperity heights ranging from 0.1 to 0.5 µm. A more detailed 

description of the materials will be provided with their 3-D images.  

 

Figure 4.2 shows 3D-AFM images of all substrate materials, with close-up images giving 

more detailed information while inset images (Z = 1000 nm/div unless stated otherwise) 

permit better comparison between surface. From group I MF steel was most uniform, 

with extremely shallow trenches. Trenches were more visible on the gold-0.1 sample, 

although they were not typical of the coatings itself. The large asperity peaks of the gold-

0.1 also comprised of a certain degree of microroughness. Both copper samples gave a 

wavy-like surface structure, although the unused sample gave reduced height values of 

asperity peaks. RF steel gave a carved appearance on a much grander scale with much 

greater asperity peak heights, as displayed on both 3D images. However, SB steel gave a 

grainy appearance with much larger asperities compared to all the other surfaces, which 

also appeared more random relative to RF steel. The Z ranges for both these images were 

increased compared to the rest of the group materials due to the tall asperity heights. 

 

In group II, ‘k. coating’ gave asperities that were similar to SB steel, along with a large 

distribution of asperities up to several µm in width and 2 µm in height. PTFE exhibited a 

number of cavities (~µm deep) possibly caused by a combination of sample handling and 

the inherent roughness of the base material. In contrast, the grainy microstructures on 

Dymon-iC were much smaller and denser than Graphit-iC, and were highly uniform even 

at 300 nm. Furthermore, cavities on Dymon-iC were visible and up to 200 nm deep. 

Aluminium and TiN gave a similar distribution of surface asperities,  

 

 

 

 

 

 



Chapter 4  Results and Discussion part 1 - Calcite Adhesion

     

 66 

 

Group I 
Mirror-finish stainless steel 

 
                    Z = 100 nm/div                  

Roughened stainless steel 

  
Z = 1000 nm/div (Z = 2000 nm/div for inset) 

0.1 mm Gold 

 
                    Z = 300 nm/div 

0.3mm Gold 

 
              Z = 200 nm/div 

Used copper 

 
                   Z = 300 nm/div 

Sandblasted stainless steel 

 
Z = 1000 nm/div (Z = 2000 nm/div for inset) 

Clean Copper 

  
                   Z = 250 nm/div 

                

 

Z
Z range values 

given in nm/div. 
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Group II 

PTFE 

 
                    Z = 350 nm/div 

Titanium nitride 

 
                   Z = 400 nm/div 

Dymon-iC 

  
                   Z = 350 nm/div 

Aluminium 

 
                  Z = 350 nm/div 

‘kettle coating’ 

 
Z = 1000 nm/div (Z = 2000 nm/div for inset) 

Graphit-iC 

 
                   Z = 350 nm/div 

 
Figure 4.2. 3D AFM topographic images of group I and II materials performed in DI water 

using contact mode. Z-range of inset images is 1000 nm for comparative purposes 
unless stated otherwise.  

 

Table 4.1 gives measured average roughness (Ra) values of all materials obtained from 

five images of each surface, and the difference in surface area compared to the nominal 

area of an atomically flat surface. Ra is the average roughness of profile height deviations 

(peaks and valleys) from the mean line. Ra was also selected because it was least affected 

by much larger asperities present on SB steel, RF steel and ‘k. coating’. 
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Table 4.1. List of surface roughness values (Ra) of materials from lowest to highest and % 
surface area difference. Ra values calculated from an average of five images of 25 x 
25 µm.  

 
Material Group Measured Ra 

values (nm) 
Surface area 

difference (%) 

Gold-0.1mm I 8.74 ± 2.56 0.50 ± 0.71  

MF steel I 10.48 ± 12.24 0.33 ± 0.58 

PTFE II 12.67 ± 3.75 0.50 ± 0.71  

Gold-0.3mm I 13.64 ± 3.18 0.72 ± 0.57 

Copper I 15.36 ± 6.28 0.63 ± 0.31 

Graphit-iC II 18.53 ± 0.03 2.45 ± 0.45 

Dymon-iC II 27.54 ± 33.96 2.57 ± 1.92 

Ti� II 30.66 ± 0.54 3.89 ± 1.19 

Aluminium II 32.13 ± 15.51 2.69 ± 0.81 

‘K. coating' II 75.10 ± 25.63 8.27 ± 5.13 

RF steel I 167.42 ± 83.08 14.13 ± 2.91 

SB steel I 225.41 ± 104.89 27.66 ± 19.47 

Copper-used I 278.20 ± 68.61 26.73 ± 6.77 

 

Generally, group I materials gave a greater range of Ra values from 8.74 to 278.20 nm, 

while group II materials were less dispersed in the 16 to 97 nm range. Literature Ra 

values of stainless steels indicate they can be produced with a wide range of Ra values 

depending on their application (Santos et al., 2004). It can be seen that RF steel, ‘k. 

coating, SB steel and used copper gave high Ra values. This was because the latter two 

materials were covered by abrasion marks with peak height and widths ranging up to 

several µm. The high Ra values were also reflected in their additional surface area, with 

SB steel giving almost an additional 50% when the standard deviation is also considered.  

 

From group II ‘k. coating’ produced the highest Ra value of 75.10 ± 25.63 nm, which was 

indicative of its 3D image. This coating was designed with a certain degree of roughness 

by the manufacturer to enhance bubble formation and reduce material scaling. Measured 

Ra values of Graphit-iC (18.53 ± 0.03 nm) and Dymon-iC (27.54 ± 33.96 nm) made them 

not too dissimilar to MF steel, although the presence of trenches on Dymon-iC was the 

cause of its greater Ra value.  The measured Ra of TiN was 30.66 nm, which was similar 

to aluminium, and the AFM images indicated they exhibited an almost identical surface 

finish.  
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4.2 Contact angle measurements and surface free energy calculation 

Static contact angles (θ) were measured instead of advancing and receding contact angles 

because droplet volume was limited due to the curvature of the 12 mm pipe samples. 

Table 4.2 shows surface free energies of the six probe liquids used in the present study. 

 
Table 4.2. Surface free energies and their components (in mJm-2) of commonly used probe 

liquids  (Van Oss, 2003). 

 
Liquid γL γLW γ - γ+ 

1-bromonaphthalene (B) 44.4 44.4 0 0 

Water (W) 72.8 21.8 25.5 25.5 

Glycerol (G) 64 34 57.4 3.92 

Ethylene glycol (EG) 48 29 47 1.92 

Formamide (F) 58 39 39.6 2.28 

Dimethylsulfoxide (D) 44 36 30 0.5 

 

Figure 4.3 shows the mean contact angles of six probe liquids with different polarities on 

all materials. All materials gave low average contact angle values with 1-

bromonaphthalene due to its low surface tension (γ
L
 = 44.4 mJ.m

-2
) caused by its apolar 

properties that are dominated by vdW forces only. Contact angles ranged from 12 to 25˚ 

and 19 to 44˚ for groups I and II respectively. Group I materials were wetted by the 

apolar 1-Br due to their high surface free energies (Israelachvili, 1992). ‘K. coating’, 

PTFE and aluminium produced were less wetted that their metal and carbon-based 

counterparts.  

 

Water produced the largest average contact angle of 68.62 ± 8.44˚ due to the high surface 

tension (γ
L
 = 72.8 mJ.m

-2
). Generally, hydrophobic materials were ‘k. coating’, PTFE, 

copper, and other materials seen on the right of each group (θ>65˚). Copper contact angle 

was similar to that obtained by Zhao et al., (2005) of 80.9°. Graphit-iC and Dymon-iC 

gave contact angles of 50.67 ± 4.84˚ and 59.30 ± 5.45˚, respectively, and were relatively 

hydrophilic (θ < 65˚) when compared to other materials. In agreement with Ostrovskaya 

et al., (2003) using hydrogenated carbon coatings, the hydrogenated Dymon-iC coating 

was less hydrophilic than non-hydrogenated Graphit-iC. Smaller contact angles were 

observed with D than E, G and F. 
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For dimethylsulfoxide (D) the γ
-
/ γ

+
 ratio is high, and is a potent hydrogen acceptor that 

forms hydrogen bonds with water that was present as a thin film on each substrate 

(Gordeliy et al, 1998). Thus larger contact angles with D indicate greater electron-

donating behaviour on increasingly hydrophobic surfaces due to the absence of water. 

This was apparent for clean Cu and ‘k. coating’. Contact angles with F did not show as 

much variation between the two groups. However, SB steel and RF steel were wetted by 

F, with contact angles of 36.79˚ and 43.15˚, respectively. Similar contact angles for F and 

EG probe liquids were obtained due to their similar acid-base components (Van Oss, 

2002). 

4.2.1 Calculation of γLW (apolar) surface free energies 

The γ
LW

 component was calculated using Equation 3.1. Table 4.3 shows γ
LW

 components 

of group I and II materials using 1-bromonaphthalene. 

 
Table 4.3. Summary of γLW surface free energy components of group I and group II materials. 

Group I γLW (mJ.m-2) Group II γLW (mJ.m-2) 

Copper 40.56 ± 0.87 ‘K coating’ 34.56 ± 1.40 

MF steel 40.88 ± 0.62 PTFE 34.96 ± 2.42 

SB steel 40.67 ± 1.51 Aluminium 36.91 ± 2.21 

RS steel 42.13 ± 0.88 Ti� 41.09 ± 1.34 

Gold-0.3 42.19 ± 1.14 Graphit-iC 41.94 ± 1.36 

Gold-0.1 41.39 ± 0.87 Dymon-iC 41.82 ± 0.45 

Used Copper 43.38 ± 0.45   

 

All samples gave similar γ
LW

 values except PTFE (34.96 mJ.m
-2

) and kettle coating 

(34.55 mJ.m
-2

) and aluminium (36.90 mJ.m
-2

), which were markedly smaller. Low γ
LW

 of 

aluminium was similar to that obtained by Holysz (2000) of 37.4±0.2 mJ.m
-2

 using 

aluminium sheets, due to the presence of an oxide (Al2O3) layer. Unlike the rest of the 

metals, aluminium is a d-block element which has reduced electron density, thus giving 

lower γ
LW

 values than neighbouring metals. Low γ
LW

 values for PTFE was due to its 

reduced Hamaker constant (3.8 x 10
-20 

J), caused by a reduced density of fluorocarbons at 

the terminals. All other materials produced γ
LW

 values ranging from 40 to 43 mJ.m
-2

, of 

which group I metals were similar to the literature (Radelczuk et al., 2002; Fӧrster and 

Bohnet, 2000), indicating the γ
LW

 values were accurate. High γ
LW

 values were typical for 

metal substrates due to strong vdW forces between tightly bound transition metal atoms, 

with Hamaker constant values ranging from 30-50 x 10
-20 

J (Israelachvilli, 1992). TiN, 
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Graphit-iC and Dymon-iC gave γ
LW

 values of 41.09, 41.94 and 41.82 mJ.m
-2

, 

respectively. These values were much greater than the three non-PE-CVD materials. 

Jacquot and Takadoum, (2001) showed markedly lower γ
LW

 values for TiN and Graphit-

iC of 33.2 ± 0.4 and 37.3 ± 0.4 mJ.m
-2

, respectively. This was attributed to larger contact 

angles with B, possibly caused by an increase in hydrogen content of their tested samples. 

4.2.2 Calculation of γ+ and γ- (polar) components using the graphical plot method 

The graphical plot method is based on an x-y plot of equation 3.1a against 3.1b using a 

minimum of two polar liquids, where one liquid must be water (Van Oss, 2003). Figure 

4.4 shows the affect of each liquid of five on the slope (γ
+
) and intercepts (γ

-
) for Dymon-

iC, Graphit-iC and ‘used copper’, where the least squares method was applied to obtain 

the trend line. As water must be one of the polar liquids, each of the remaining liquids 

will have a significant effect on the polar components. 
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Figure 4.4. Linear plot to determine the Lewis acid and basic components of Dymon-iC (♦), 

Graphit-iC (□) and ‘used copper’ (Y) with SD values. Locations of (γ-/γ+)1/2 values 
for probe liquids are highlighted above the plot. 

 

It was clearly observed the gradient used to measure γ
+
 for ‘used copper’ was 

significantly affected by the non-aqueous polar liquids of G and F, when compared to the 

position of D in the plot. This was in contrast to the amorphous carbon coatings, which 

gave similar values for G, F and E relative to W. As a result, depending on the strength of 

           W                        G F     E                         D 

5.0)/( +− γγ
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the interaction between a surface and the probe liquid, polar components will vary 

according to the number and type of probe liquids used. The plot also shows several 

liquids could be used, although there is a minimum of two liquids. 

4.2.2.1 Use of liquid triplets 

The SFE values were calculated from four sets of liquid triplets (i.e. four sets of polar 

liquid pairs used in the graphical plot shown in Figure 4.4). Selection of appropriate 

triplets was based on their condition numbers (Cn). Cn = ||A||1. ||A
-1

||1, where ||A||1 = maxj 

∑3

i
|Ai, j|: Where A is the matrix containing the various surface tension parameters (also 

see Eq. 3.2), A high Cn means a strong sensitivity to solutions (Della Volpe and Siboni, 

2000). Cn values are based on appropriate selection of a liquid triplet having an apolar 

(liquid 1), polar (liquid 2) and non-aqueous polar (liquid 3) properties based on their 

assigned γ
LW

, γ
+
 and γ

-
 values  by Van Oss and Good (1986). The triplets used and their 

respective condition numbers are given in Table 4.4. Problems arise when ‘ill-

conditioned’ triplets are used, which occurs with triplets having Cn values above 10. 

Based on Cn values below 10, Table 4.4 gives four acceptable triplets where the B-W-E 

triplet should give the least number of data errors. 

Table 4.4. Comparison of condition numbers of four triplets (McCafferty, 2002; Della Volpe 
and Siboni, 2000). 

 
Liquid 
triplet 

Condition 
number (Cn) 

B-W-E 6.11 

B-W-G 6.13 

B-W-D 6.83 

B-W-F 7.35 

Average 6.61 

 

Figure 4.5 shows calculated Lewis acid-base surface energy components using the GP 

method from four triplets. High γ
-
 values were routine for the Lewis acid-base technique, 

where surface tension values assigned to the non-aqueous polar probe liquids (E, F, G 

and D) by Van Oss and colleagues (1986) have higher γ
-
 values. Large error bars were 

typical for the γ
+
 component because non-aqueous polar liquids were predominantly 

basic while water had equal values for γ
+
 and γ

-
. Group I materials generally exhibited 
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greater γ
+
 values than group II for all triplets. This was because from group I the 

transition metals were hydroxylated and therefore amphoteric in character.  
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Figure 4.5. Calculated γ+, (top) and γ- (bottom) SFE components of materials using the 

graphical plot method (McCafferty, 2002), obtained from four sets of triplets. *Used 
Copper gave γ+ of 9.09 ± 4.57 mJ.m-2 for BWG triplet. (Cop = Copper; MFs = MF 
steel; RFs = RF steel, SBs = SB steel, K.C. = kettle coating, Dym = Dymon-iC). 

 

Glycerol from the B-W-G triplet significantly increased the γ
+
 component for ‘used 

copper’, PTFE and SB steel to an extent, compared to the other triplets. Formamide (from 

B-W-F) increased γ
+
 for used copper and SB steel more than the other surfaces. This was 

interesting because both surfaces gave high Ra values (Table 3), indicating surface 

asperities composed of polar groups. However the B-W-D triplet substantially reduced 

their γ
+
 component, which was unexpected because dimethylsulfoxide was also a highly 

basic probe liquid, Considering the contrast in γ
+
 and γ

-
 values given by the triplets on SB 
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steel and used copper, this may also be attributed to their highly roughened finish, which 

may be more sensitive to the surface tension of the liquid than their acid-base effects. 

Bearing in mind the corroded copper sample had previously been used during scaling 

experiments (MacAdam, 2005), the surface chemistry was expected to be much different 

to its unused counterpart. Discolouration of the corroded copper sample will also indicate 

the presence of Cu(OH), CuCO3 and Cu(I) oxides that are sensitive to the polar liquids, 

thus contributing to deviations in the γ
+
 and γ

-
 components. The high hygroscopicity of 

dimethylsulfoxide also provides greater interaction with polar groups via hydrogen 

bonding. Surface asperities on SB steel are also likely to adsorb organic contaminants 

from the atmosphere. For instance, carbon-based groups on SB steel may behave as 

electron acceptors, thus increasing the γ
+
 component from 0.45 mJ.m

-2
 for unmodified 

MF steel to 1.09 mJ.m
-2

. Apart from SB steel and ‘used copper’ both γ
+
 and γ

-
 values 

from the rest of the samples gave similar values for all sets of triplets. Clean copper was 

least basic having average γ
-
 value of 11.81 ± 2.27 mJ.m

-2
 compared to its used 

counterpart of 25.21 ± 5.88 mJ.m
-2

. The two gold surfaces gave expectedly similar 

average γ
-
 and γ

+
 values ranging from 0.14 to 0.52 mJ.m

-2
 and 18.89 to 20.52 mJ.m

-2
, 

respectively. This was because the only variation in their preparation was coating 

thickness, and the contact angle measurement is a predominantly surface-sensitive 

technique. In group II ‘k. coating’ was least basic followed by PTFE. 

 

Table 4.5 gives calculated acid-base (γ
AB

) values from the four triplets. Used copper and 

gold gave high values for the combined acid-base component.  

Table 4.5. Calculated acid-base (γAB) SFE values obtained from the average of four triplets. 

 
Group I γAB (mJ.m-2) Group I γAB (mJ.m-2) 

MF steel 5.26 K. coating 2.98 

SB steel 5.50 Aluminium 3.34 

RF steel 5.56 Ti� 3.35 

Gold-0.3mm 5.57 PTFE 4.20 

Gold-0.1mm 6.31 Dymon-iC 5.34 

Clean copper 7.18 Graphit-iC 6.07 

Used copper 16.89   

 

Of the non-metals, Graphit-iC, PTFE and Dymon-iC gave high acid-base component 

values, but these values were highly dependent on their basic surface free energy 
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component (Figure 4.5). When calculated SFE values were compared to the literature, 

there was good consistency for most materials except copper. However, it should be 

emphasized there have been few attempts to use multiple triplets. So the actual SFE 

values were dependent on the triplets as well as the approach used such as the geometric-

mean, harmonic mean or Lewis acid-base method, which was used in this study (van Oss, 

2002). Observation of the total SFE values did not provide any additional information 

regarding specific interactions at the liquid-surface interface so this data was omitted.  

4.2.2.2 Use of multiple liquids 

Figure 4.6 shows SFE values of selected group I and II materials with two to five liquids 

used in the graphical plot. For most materials (group I and II) there was no observable 

pattern on the affect of liquid number on the γ
+
 component. However, dimethylsulfoxide 

caused a significant increase in γ
+
 for selected materials, with a more consistent increase 

in the γ
-
 component. This was largely because of the low surface tension of 

dimethylsulfoxide, where all the solid substrates gave lower contact angles with this 

liquid than any other non-aqueous probe liquid. Although all surfaces were sensitive to 

the surface tension of dimethylsulfoxide, the group I materials were more sensitive to its 

polar groups. And while the γ
-
/γ

+
 ratio of 7.75 for dimethylsulfoxide assigned by Van Oss 

and Good (1986) appeared to be high, more recent acid-base components given by Della 

Volpe and Siboni (2000) gave a much greater γ
-
/γ

+
 ratio of 143.02. This caused the 

locations of the remaining non-aqueous polar liquids to be bunched together, effectively 

making dimethylsulfoxide disproportionately dominate the slope and the γ
+
 component. 

Therefore, one could only use acid-base components given by Della Volpe and Siboni 

(2000) in the absence of dimethylsulfoxide as a probe liquid. For the purpose of this 

study, it was thought the strong monopolarity of dimethylsulfoxide was necessary for 

calculating the γ
+
 surface tension component, and as a result the surface tension 

components given by Della Volpe and Siboni (2000) were not used for the remainder of 

this investigation. 
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Figure 4.6. The calculated γ+ (top) and γ- (below) values obtained using 3, 4, 5 and 6 liquids 

from the GP method. 

 

4.2.2.3 Comparison of the triplet average and sextet methods 

Figure 4.7 shows direct comparisons of γ
-
 and γ

+
 values obtained from the triplet and 

sextet methods for selected materials. It was apparent that calculated γ
-
 and γ

+
 values 

were reduced and increased, respectively, using the triplet average method for most 

materials. Some differences, such as the γ
+
 values for used copper and SB steel were 

significant, while others such as ‘k. coating’ were not. Changes in the γ
-
 values for MF 

steel and Graphit-iC were also significant. Because of these, it was apparent that one of 

the methods either underestimated or overestimated the acidic and/or basic components 

of substrates.  
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Figure 4.7. Comparison of the γ+ and γ- components of selected group I and group II materials 

using the sextet and triplet methods (in mJ.m-2). 
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It was found the main advantage of the triplet average method was that not a single liquid 

dominated both acidic and basic components. This was imperative because the rationale 

behind triplet selection was to reduce the sensitivity of probe liquids on material acid-

base components. Furthermore, the triplet average method gave identical acid/base values 

to the matrix method, which has been the routine methodology used in most SFE 

calculations. In addition, B-W-E, B-W-F and B-W-G triplets gave very large error values 

for the γ
+
 component, which frequently exceeded mean γ

+
 values. However, the B-W-D 

triplet gave lower error values for γ
+
, thus stabilizing them. As a result, D (non-aqueous 

polar liquid) should be included in a triplet without significant contribution to the 

deviations calculated from other triplets. D also appears to be a critical liquid due its 

unique aprotic property (absence of H), which was most sensitive to hydrated surfaces. 

As F, E, G and W form hydrogen bonds internally, dimethylsulfoxide (CH3-S(O)-CH3) 

can only undergo H-bonding to host surfaces. Thus acidic sites may be more sensitive to 

D than the other polar liquids, as confirmed by the high γ
-
/γ

+
 ratio of 143.02 given by 

Della Volpe and Siboni (2000). Finally, the triplet average method gave more robust sets 

of γ
-
 data because both polar liquids (W and E, F, G or D) gave an equal contribution to 

the plot. 

 

The main advantage of using multiple liquids (3 or more in plot) was the contribution of 

each liquid on the slope and intercept was graphically observed (McCafferty, 2002). 

However, D appeared to have an adverse effect on the γ
-
 component for most materials. 

When four/five liquids (4L/5L) were used (excluding D) in the graphical plot, the γ
-
 

component did appear robust enough because there was no significant change in basicity 

of the materials. With the absence of D the 4L/5L sets gave low γ
+
 values for most group 

I materials, which did not seem to reflect their actual acidic (cationic) character. For 

instance, the stainless steels and clean copper were expected to have more acidic sites by 

virtue of the amphoteric character of Fe2O3, Cr2O3 and CuO. When D was used as the 

sixth liquid it correctly increased the ‘relative’ γ
+
 values of these materials but also their 

γ
-
 component. The use of dimethylsulfoxide  in the plot gave a reduction in γ

-
 for the used 

copper sample with little effect on unused copper. This may have been caused by greater 

quantities of Cu(OH)2 on used copper, which formed hydrogen bonds with 
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dimethylsulfoxide. In fact, unused copper and used copper gave opposing acid-base 

character from the two different methods, possibly due to differences in oxidation. A 

summary of the advantages/disadvantages of each method are given in Table 4.6. 

Table 4.6. Summary of advantages and disadvantages of using the triplet average and sextet 
methods for calculating material SFE values. 

 
Method Advantages Disadvantages 

Sextet (or 
multiple 
liquids) 

• Dominance of single liquid 

(e.g. D) can be observed. 

• More than three liquids can 

be displayed in plot. 

• Error values are smaller in 

absence of D. 

• Other liquids can be used 

instead of D. 

• SFE were dominated by D, 

without any increase in γ
+
 

values. 

• Errors in γ
+
 and γ

-
 values were 

amplified with D. 

• D found to be critical for SFE 

calculation. 

• Data cannot be compared to 

matrix method. 

Triplet average • No single liquid dominance 

of γ
+
 and γ

-
 values. 

• D had no adverse effect on 

γ
+
 and γ

-
 values. 

• Use of D increased relative 

acidity of mineral oxide 

surfaces. 

• Average values are no 

different to matrix method. 

• Both polar liquids dominate 

plot, giving more robust 

linear regression. 

• Error values over 100% were 

obtained due to changes in 

gradient for certain triplets. This 

can be resolved by using D in 

another triplet. 

 

It was found the selection of either method (triplet/sextet or multiple liquids) hinged on 

whether D would be used in the calculation. As explained earlier, dimethylsulfoxide was 

found to play a pivotal role for determining acidic behaviour of amphoteric surfaces. 

Therefore, these findings suggest the triplet average method was most appropriate 

because dimethylsulfoxide was sensitive to acidic (cationic) sites, while also reducing the 

error values. The findings also suggest previous attempts in the literature to calculate the 

SFE components of amphoteric surfaces such as mineral oxides may have underestimated 

the contribution of γ
+
 to its acid-base (γ

AB
) character. It must be highlighted that these 

findings were based on the Van Oss and Good liquid SFE components (Table 4.2). 

4.2.3 Theoretical calculation of adhesion using roughness model 

The work of adhesion (W132, mJ.m
-2

) provides a theoretical estimation of the energy 

required to separate two surfaces (subscript 1 and 2) from contact in a medium (subscript 
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3). Having calculated SFE for all base materials, the SFE of calcite was calculated using 

B-W-E and B-W-E-F liquid sets. These are given at the top two rows of Table 4.7, and 

are compared to selected literature values. High γ
-
 values originate from the presence of 

electron donor sites, particularly oxygen groups due to CO3
2-

. In such cases cationic sites 

(Ca
2+

) were either fewer in numbers or positioned beneath the surface monolayer of 

carbonate groups.  Furthermore, the van Oss method (1986) inherently shows all organic 

materials as monopolar, so even though the surface was highly basic, this may have been 

overestimated by the technique used. So, based on the measured and literature SFE 

values, calcite was considered to be a basic foulant (adhesive). 

Table 4.7. SFE values of calcite calculated from contact angle measurements on the calcite 
{104} face using B-W-E-F probe liquids, using the triplet average and four-liquid 
graphical method. Measured values are compared to literature. TLW = thin layer 
wicking.  

 
Method γLW (mJ.m-2) γ+ (mJ.m-2) γ- (mJ.m-2) Reference 

Contact angle   
(B-W-E) 

43.83 0.07 29.55 Measured 

Contact angle 
(B-W-E-F) 

43.83 0.05 30.54 Measured 

Contact angle 

(optically  pure 
calcite) 

40.20 1.30 54.40 Wu et al., (1996) 

TLW (grounded 
calcite) 

29.10 0.50 31.60 Wu et al., (1996) 

TLW (grounded 
calcite) 

48.00 0 79.00 Holysz and 

Chibowski, (1994) 

 

The table shows Wu et al., (1996) also performed contact angle measurements on 

optically clear calcite crystals, but used advancing contact angle measurements. 

Consequently, they calculated greater γ
LW

 values due to the greater advancing contact 

angles measured on calcite. This was because advancing contact angles measure the 

energy of cohesion vs. energy of adhesion between the solid and liquid. They also 

calculated higher γ
+
 and γ

-
 components because their calcite crystal was almost wetted by 

formamide and water. This was possibly due to reduced air exposure time of the crystal 

face between cleavage and contact angle measurements of only several seconds. In the 

present study, several minutes had elapsed before contact angles were performed on the 

surface, which would have resulted in the formation of a water film. Interestingly, Wu et 

al., (1996) calculated different γ
LW

 values on ground calcite using thin layer wicking 
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(TLW) method due a change in surface properties. Thin-layer wicking is performed by 

measuring the rate of capillary rise of the probe liquid through a bed or layer of packed 

particles. Using this method acid-base values were similar possibly due to greater 

exposure of the ground calcite to water vapour. Ground calcite may also exhibit greater γ
+
 

and γ
-
 components than the calcite face due to increased surface area.  

 

Of the other TLW methods used in literature, Holysz and Chibowski, (1994) gave greater 

γ
-
 values on ground calcite with the B-W-F triplet. The precise preparation method was 

not given, but it was likely that calcite was left at room temperature for several hours 

before wicking was performed. This may have resulted in greater penetration depth of the 

probe liquids, resulting in higher γ
-
 values.  

 

Theoretical adhesion force was calculated using the Rabinovich roughness model 

(equation 2.11) (Rabinovich et al., 2000a, 2000b). Tip radius was ~20 nm and Hamaker 

constants of the substrates, silicon and calcite are given in Table 4.8.  

Table 4.8. List of Hamaker constants used in Equation 2.11 to predict the adhesion force based 
on the roughness model (Rabinovich et al., 2000). 

 

Group I 
Material 

Hamaker 
constant 
(x10-19J) Reference 

Group II 
Material 

Hamaker 
constant 
(x10-19J) Reference 

RF steel 3.25 Israelachvili (1992) Dymon-iC 2.38 Turq et al., (2005) 

Gold-0.1 3.25 Israelachvili (1992) Graphit-iC 2.38 Turq et al., (2005) 

MF-steel 3.25 Israelachvili (1992) Al 1.40 Israelachvili (1992) 

Gold-0.3 

3.25 

Israelachvili (1992) Ti� 2.65 

Rabinovich et al., 

(2000) 

SB steel 3.25 Israelachvili (1992) PTFE 0.38 Israelachvili (1992) 

Copper-
new 

3.25 

Israelachvili (1992) K coating 0.38 Israelachvili (1992) 

Copper-
used 

3.25 

Israelachvili (1992) Calcite 0.22 

Cavalier and Larche, 

(2002) 

   Silicon 2.65 

Rabinovich et al., 

(2000) 

 

Using the AFM software each of the parameters; rms1, rms2, λ1 and λ2 were measured at 

ten locations after cross-sectioning the image of each surface. Mean values of W132 were 

used in the calculation. Table 4.9 gives calculated theoretical adhesion forces (F) using 

the Rabinovich roughness model with calcite and silicon adhesives based on the triplet 

average and sextet methods.  
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Negative values indicate repulsive interactions between two materials of similar acid-

base behaviour, which are indicative of the LWAB approach. Theoretical forces ranged 

from -2.54 to 0.75 nN and -1.06 to 1.23 nN to silicon using sextet and triplet methods, 

respectively. This was because the used γ
-
/γ

+
 ratio of calcite was 406 mJ.m

-2
, which was 

four times greater than 85 mJ.m
-2

 for silicon. Thus in water, hydrophilic repulsion 

dominates because a net repulsion results between hydrophilic surfaces (Mantel et al., 

1995 and van Oss, 2003). 

 

Group I materials gave theoretical forces ranging from -1.69 to 2.70 nN and -0.19 to 0.81 

nN for the silicon sextet and triplet methods, respectively. This was essentially due to 

their high γ
-
 value and low γ

+
 values. 

Table 4.9. Summary of theoretical adhesion force between the AFM tip or calcite-coated tip 
and material substrates, calculated using equation 2.11. and comparing the 
percentage deviation with JKR/DMT theories. Calculations were based on liquid 
surface tension parameters obtained from Van Oss et al., (1986). 

 Theoretical adhesion force (n�) Adhesion reduction (%) 
relative to .. 

GROUP 1 Silicon-

triplet 
Calcite-

triplet 

Silicon-

sextet 

Calcite- 

sextet 

JKR  

Theory 
DMT  

Theory 

RF steel -0.19±0.02 0.64±0.12 -1.69±0.31 -1.04±0.19 28.88 (8) 5.17 

Gold-0.1 0.02±0.00 0.92±0.02 -1.63±0.03 -0.90±0.02 26.02 (2) 1.36 

MF-steel 0.31±0.01 1.26±0.01 -1.42±0.01 -0.67±0.01 25.70 (1) 1.49 

Gold-0.3 0.18±0.01 1.13±0.02 -1.32±0.02 -0.56±0.01 26.81 (6) 2.37 

Copper 0.80±0.17 1.84±0.49 -1.91±0.43 -1.37±0.70 26.45 (4) 1.88 

SB steel 0.81±0.02 1.12±0.01 0.98±0.01 1.58±0.01 37.95 (13) 17.27 

Used 
copper 

-0.09±0.00 0.61±0.01 2.70±0.02 3.95±0.04 26.32 (3) 1.77 

GROUP II       
Dymon-iC -1.06±0.18 -0.56±0.01 -2.54±0.10 -2.09±0.09 30.90 (10) 7.80 

Graphit-iC -0.39±0.01 0.44±0.02 -2.23±0.06 -1.56±0.04 34.10 (12) 12.12 

Alumin 0.23±0.01 1.20±0.05 -0.59±0.02 0.30±0.01 26.80 (5) 2.40 

Ti� -0.14±0.00 0.80±0.02 -1.40±0.04 -0.60±0.02 29.10 (9) 5.44 

PTFE 0.96±0.04 1.97±0.03 0.40±0.01 1.37±0.02 27.75 (7) 3.79 

K coating 1.23±0.05 1.86±0.34 0.75±0.14 1.56±0.29 32.54 (11) 10.05 

 

Theoretical adhesion to calcite and silicon was strongest on SB steel and both copper 

substrates, which were the most hydrophobic of group I (θ > 65˚). From group II PTFE 

and ‘k. coating’ exhibited stronger theoretical adhesion with calcite and silicon, both of 

which were also classed as hydrophobic. In light of these findings the general pattern to 

emerge was hydrophilic surfaces were less theoretically adhesive and roughness did not 
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appear to play a significant role. This was because the magnitude of roughness-induced 

adhesion for Graphit-iC/Dymon-iC, and PTFE/‘K.coating’ material pairs was similar.  

 

Generally, all materials showed theoretical adhesion using the roughness model was at 

least 25% smaller than JKR theory. The drop in adhesion force relative to the DMT 

model ranged from 1.49 to 17.27%. Considering the range of Ra values exhibited by all 

materials, differences between JKR theory and the roughness model was relatively small. 

The biggest drop in adhesion from group I was observed for SB steel, while MF steel 

gave the least variation compared to the contact theories. This was because for small 

asperity size, SB steel gave r
2
 values greater than tip radii (20 nm), with MF steel giving 

values an order of magnitude smaller. SB steel and RF steel also gave high Ra values, 

which validated the data. When the reduction in adhesion from the roughness model was 

paired with material roughness (Ra) there was no correlation between roughness and 

theoretical adhesion. Therefore, it was found the roughness model did not accurately 

characterize the mid-range to highly rough substrates. This was reflected by the relatively 

small deviations in theoretical adhesion between mid-high Ra materials and their low Ra 

counterparts. 
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4.3 AFM force measurements 

Force measurements were conducted in three different solution chemistries, synthetic 

hard water (SHW) (section 4.3.1), different (CaCO3) molar concentration (section 4.3.2) 

and at different pH (4.3.3) using both modified (with calcite) and unmodified (SiO2) 

probes. Finally, force measurements were conducted in SHW using modified probes with 

variation in the calcite surface roughness and crystal orientation (4.3.4). Finally, a 

discussion linking measured adhesion force to material substrate is given (4.3.5) 

4.3.1 Adhesion force measurements in SHW 

Figure 4.8 shows ESEM images of three types of AFM tips that were used, unmodified 

(UM), calcite-grown (CG) and calcite-attached (CA) tips. 

 
Unmodified (UM) probe 

 
UM probe (close-up) 

 
Calcite-grown (CG) probe 

 

 

 

 

 

 

 

 

 

 

Calcite-attached (CA) probe 
Figure 4.8. SEM images of unmodified (top) and modified (bottom) probes used during force 

measurements performed in SHW. 

 

The unmodified tip has a radius of curvature of about 20 nm. Contact area of each tip was 

estimated to be 10 nm
2
, 5 µm 

2
 and 2 µm

2
 for the UM, CG and CA probes. Contact area 

for the modified tips was estimated using the ESEM software by measuring the distance 
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from one end of the crystal to the other (Figure 4.8). The respective force measurements 

performed on the group I and II materials using each of the above probes are given in 

Table 4.10. One of each probe was used for all materials to ensure consistency. Generally, 

measured adhesive forces were lower for unmodified tips due to reduced contact area. 

Table 4.10. Average pull-off forces of UM, CG and CA probes on all materials in SHW.  

 
 Measured average pull-off force (n�) 

GROUP I UM tip CG tip CA tip GROUP 
II 

UM tip CG tip CA tip 

RF steel 1.41±0.67 2.62±1.11 2.61±1.11 Dymon-

iC 

0.52±0.47 0.26±0.16 3.05±1.21 

Gold-0.1 2.53±1.07 7.41±3.65 3.70±1.31 Graphit-

iC 

0.66±0.54 3.07±1.76 0.71±0.47 

MF steel 5.63±2.65 1.77±0.64 6.38±1.08 Alum 0.83±0.50 3.83±2.62 5.43±1.87 

Gold-0.3 1.19±0.40 4.32±1.51 3.62±1.25 TiN 1.16±1.06 0.88±0.54 3.55±1.85 

SB steel 5.43±3.63 0.36±0.40 0.87±0.55 PTFE 1.57±0.66 0.65±0.21 1.27±1.05 

Copper** 4.40±1.53 - - Kettle 

coating 

2.34±1.16 3.80±2.17 5.91±3.02 

Used 

Copper* 

0.55±0.67 - -     

Average 3.02±2.11 3.29±1.30 3.43±2.00 Average 1.18±0.68 2.08±1.07 3.32±2.11 

** CG and CA tips had broken prior force measurements.  
* Force data was of poor quality for CG and CA tips. 

 

Stainless steels were most adhesive from group I with less variation in forces measured 

on group II materials. Dymon-iC at 0.52 ± 0.47 nN was least adhesive followed by 

Graphit-iC. ‘K. coating’ was most adhesive with a force of 2.34 ± 1.16 nN. When 

compared to group I materials, TiN, PTFE and ‘k. coating’ produced forces of 1.16, 1.57 

and 2.34 nN, respectively. Frequency distribution plots of group I and II materials with 

the unmodified tip are shown in Figure 4.9. Low adhesion forces on Graphit-iC and 

Dymon-iC correlated with low theoretical adhesion forces (Section 4.2.3), which was in 

agreement with Lewis acid-base theory, where both surfaces were hydrophilic (Van Oss 

et al., 1986). Acid-base theory states the interaction energy between two hydrophobic 

(HB-HB) is stronger than a hydrophobic-hydrophilic (HB-HL), which in turn is stronger 

than two hydrophilic surfaces (HL-HL) in water. To confirm these findings, Kvasnica et 

al., (2006) also measured reduced adhesion forces on DLC films (unknown thickness) of 

76.48 nN using an SiO2 tip compared to 445 nN for Ti-containing nanocrystalline carbon 

film performed in air. 
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Figure 4.9. Frequency distribution of force measurements on selected substrates using the UM 
(top) and CG (below) probes in SHW. 

 

Lifshitz-van der Waals (γ
LW

) values of amorphous carbon-based coatings and stainless 

steels were similar so this was not the driving force behind low adhesion. Acid-base 

forces could explain this disparity. In water both amorphous carbon coatings were likely 

passivated, and competition for H-bonds between negatively charged SiOH
-
 (silanol) and 

oxidised surface groups (C-OH and C(O)OH) (with unknown surface charge) may have 

increased their hydrophilic behaviour (θ < 65˚). This hypothesis is in agreement with the 

wetting behaviour of diamond films that are naturally oxidised (Ostrovskaya, 2002). 

Ostrovskaya (2002) found oxidation increased wetting of diamond-like films while 

hydrogenation reduced wetting by forming strong C-H bonds. However, increased 

oxidation is associated with increased adhesion, as is common with stainless steels. In the 

case of the amorphous carbon coatings this appears to be due to undissociated OH groups 

as a result of carbon’s high electronegativity. Molecular density of C-OH groups was also 

high due to the short C-C bond length (~154 pm), which may have enhanced wetting 

(McMurray, 1995). Although γ
LW

 forces were high for the carbon coatings, their high 

Gold-0.1mm

MF steel

SB steel

Gold-0.1mm

MF steel

SB steel

DLC-graphite

PTFE

'k. coating'

DLC-graphite

PTFE

'k. coating'
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basicity (γ
-
) may have been caused by a greater ratio of undissociated C-OH to 

dissociated C-OH groups, which were available for H-bonding, giving them their 

hydrophilic character. From group I, adhesion to MF steel, gold-0.1mm and unused 

copper with unmodified tips was enhanced, possibly due to increased electrostatic forces 

due to ion-ion interactions. Acid-base forces were found to increase adhesion due to 

ionizable surface groups, in the case of MF steel this was FexOy and CrxOy surface layers. 

This was because OH groups of metal oxides are amphoteric in character so the rate at 

which OH dissociates or protons get added depends on the charge and radius of the metal 

ion. This may have made surfaces more hydrophobic as their contact angles were ≥ 65˚ 

(Mantel et al., 1995), thus increasing adhesion due to hydrophobic-hydrophilic (HL-HB) 

attraction. Li and Logan (2004) also observed Co/Fe/Cr/O-coated surfaces were 

hydrophobic (θ = 62 ± 4˚) and more adhesive to Gram-negative bacteria. To further 

substantiate these findings the most hydrophobic metal with low Ra was unused copper (θ 

> 70˚), which also gave strong adhesion. Acid-base forces were also highest on used 

copper (16.89 mJ.m
-2

), primarily due to a high density of acidic sites (Figure 4.6). 

Therefore, the main difference between MF steel/copper/gold and amorphous carbon 

coatings materials appeared to be hydrophilicity, which provides the first evidence for 

their low adhesion.  

 

Both PTFE and ‘k. coating’ were relatively hydrophobic (θ>70˚) compared to the 

amorphous carbon coatings. Furthermore, ‘k. coating’ gave low acid-base forces (2.98 

mJ.m
-2

) compared to Dymon-iC (5.34 mJ.m
-2

) and Graphit-iC (6.07 mJ.m
-2

). The absence 

of acidic or basic sites on these materials may partly explain strong adhesion to the SiOH
-
 

tip was due to hydrophobic-hydrophilic (HL-HB) attraction. PTFE has also shown to 

retain charge very well, so forces on a previously contacted area will be larger than a new 

surface. As electrostatic forces are longer ranged, they will invariably lead to stronger 

adhesion than short range acid-base forces. Furthermore, with the moderate to high 

surface roughness of PTFE and ‘k. coating’, adhesion was enhanced on both materials. 

 

Observation of the acidity of MF steel and other group I metals showed they gave 

average γ
+
 values ranging from 0.5 to 1 mJ.m

-2
. This was relatively high compared to 0.2 
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to 0.5 mJ.m
-2

 for the amorphous carbon coatings. This difference in acidity may be 

significant. It was assumed MF steel comprised of a mixture of amphoteric FexOy and 

CrxOy groups with IEP values ranging from 6-10 (McGuire et al,. 2006) and 5-6 

(McCafferty, 2002), respectively. The SHW solution had a pH of ~7.5, so MF steel had 

near neutral surface charge during force measurements, although contact angle data 

showed the surface had a level of acidity greater than other group I materials. Used and 

unused copper also gave a much higher ratio of acidic to basic sites than the other 

substrates. As silicon was highly basic (IEP ~ 2), it was deduced adhesion to MF steel 

and copper was driven by electrostatic forces in addition to hydrophobic forces. For SB 

steel adhesion was further enhanced by increased surface area. For example, the tip was 

small enough to slip into valleys to give either a snug or loose fit, which depended on the 

valley’s width. It was considered for SB steel the ratio of tip:valley interacting systems 

was greater than tip:peak interactions, thus giving stronger adhesion.  

 

The calcite grown (CG) probe generally produced a greater range of forces. This ranged 

from 0.1 to 10 nN on group I materials, with strong adhesion to gold-0.1mm in particular.  

MF steel and RF steel were slightly more adhesive peaking at 2 and 3 nN respectively. Of 

the group II materials, Dymon-iC was least and aluminium was most adhesive, peaking at 

0.1 and 3 nN. For aluminium and ‘k. coating’ maximum adhesion reached 10.5 nN and 

13 nN, respectively. For calcite-attached (CA) tips, MF steel, SB steel and RF steel were 

most adhesive. Both gold coatings gave smaller forces, peaking at 0.1-1 nN. For group II 

‘k. coating’ was again the most adhesive, peaking at 5 nN followed by aluminium (peak 3 

nN). Remaining group II materials gave peaks at around 1 and 2 nN, for which Graphit-

iC was least adhesive. 

 

The mechanism of adhesion with calcite probes may also be explained by substrate 

hydrophilicity but this does not clarify disparities between the two calcite probes. As 

calcite in solution is comprised of a mixture of several ionic species, Ca
2+

, CO3
2-

 and 

HCO3
-
 in the presence of potential determining ions, the calcite-substrate speciation 

interface was unpredictable. At pH 7.8 in which experiments were performed, calcite 

exhibits a positive surface charge because research has shown precipitated calcite has an 
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IEP of 9.5 (Churchill et al., 2004). Of the metal oxides, Giesbers et al., (2002) measured 

an IEP of ~4.5 for gold. The gold substrates were also the most adhesive to both calcite 

probes, but gave low adhesivity to the SiOH
-
 tip. However, the chemistry of the oxide 

layer on gold, if present, was unclear. Interestingly, gold surfaces also gave high γ
AB

 

values, so adhesion was possibly driven by acid-base interaction forces that are shorter 

ranged than hydrophilic-hydrophobic forces. SFE calculations showed gold exhibited just 

as much Lewis acidity as MF steel, but was slightly more basic, which resulted in 

increased amphoteric behaviour and stronger adhesion. The complex chemistry of MF 

steel and its potentially variable surface charge makes it difficult to clarify its position on 

its adhesion ranking with calcite. Charge reversal may have increased or decreased 

adhesion based on the relative ratios of Fe/Cr oxides at specific regions. Nevertheless, 

electrostatic forces were also critical to calcite-based adhesion to flat metal oxides. On a 

rough substrate reduced contact area may also result, due to tip-on-peak interactions. 

Contact area at each sampling point will also vary giving a greater range of forces. 

Consequently, SB steel gave lower forces compared to MF and RF steels, which may 

have been caused by calcite interacting with asperity peaks due to the large crystal size. 

This was in contrast to the unmodified tip which exhibited greater interaction with 

valleys of smaller size, thus increasing contact area.  

4.3.2 Adhesion force measurements in varying electrolyte concentration 

This section aims to assess the impact of electrolyte concentration on adhesion so 

absolute adhesion forces are not presented. All materials were tested in varying CaCO3 

concentrations using modified and unmodified tips. The pH at which the measurements 

were performed ranged from 7.24 and 8.24, giving calcite a slight positive charge and 

unmodified tips a negative charge (McCafferty, 2002) (Table 4.11). The range and 

strength of electrostatic interactions were determined by the surface potential and Debye 

length. Debye lengths of the divalent electrolyte used in this study are given in Table 4.11. 

Debye length was shown to increase exponentially with decrease in ionic concentration. 
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Table 4.11. The affect of concentration on Debye length. Also shown is the pH of the solutions 
that were used. 

 
Concentration Debye length (nm) pH 

SHW 2.67 7.8 

0.001M 4.81 8.24 

0.0008M 5.37 7.47 

0.0005M 6.80 7.24 

 

Table 4.12 lists trends observed for each material during adhesion when electrolyte 

concentration was increased from 5x10
-4

M to 0.001M. Data showed most materials gave 

a reduction in adhesion with increased electrolyte concentration, although this was 

restricted to some materials using certain AFM tips. MF steel was most significant 

because four of six probes gave this trend, possibly as a result of its low Ra and high SFE. 

One logical explanation was that in reducing the Debye length (Table 4.11), the electrical 

double layer was compressed, allowing greater surface intimacy.  

Table 4.12. Summary of trends observed for each material from modified (calcite-attached (CA) 
and calcite-grown (CG) and unmodified (UM) tips when electrolyte concentration 
was increased from 0.0005M to 0.001M. 

 
Material Increase in adhesion 

force 
Decrease in 

adhesion force 

R steel  CG1/UM1 

Cu-unused  CG1 

Cu-used   

Gold-0.3 CA1  

Gold-0.1 CG2 UM2 

MF steel  CG1/CA1/CA2/UM2 

SB steel  CG2/UM1 

Graphit-iC   

Dymon-iC CA2 UM1 

Aluminium  CA1 

Ti�  CG1/CA2/UM1 

PTFE  CG1/UM1/UM2 

K coating CG2  

 

As MF steel and tip were negatively charged, both surfaces may have adsorbed Ca
2+

 with 

increasing electrolyte concentration, resulting in repulsive electrostatic interaction and 

reduced adhesion. Three of four calcite-modified tips (CG1, CA1 and CA2) also showed 

this trend, the results of which are given in Figure 4.10. 
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Figure 4.10. Frequency distribution plots of all six probes on MF steel in varying electrolyte 
concentration and (below) showing approach (a) and retract (b) cycles using the 
CG1 probe at three different CaCO3 concentrations.  
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The positively-charged calcite (IEP ~9.5), was expected to adsorb CO3
2-

 ions and 

strongly adhere to Ca
2+

 adsorbed on MF steel. In contrast, there was a reduction in 

adhesion with increasing CaCO3 concentration, which may be attributed to a neutral 

calcite surface with equivalent Ca
2+

 and CO3
2-

 ions. Three approach and retract cycles 

using the CG1 tip on MF steel are shown in Figure 4.10(a,b). At low ionic strength 

(0.0005M), repulsive forces were observed on approach cycles due to double layer 

repulsion (Figure 4.10a), which was compressed at higher electrolyte strength (Figure 

4.10b). The approach cycles also showed the jump-to distance (circled in Figure 4.10a) 

for the low ionic strength solution was about 10 nm, compared to 4-6 nm for the 0.001M 

solution. A schematic showing the effect of charged groups on the double layer during 

approach cycles is given in Figure 4.11. 

 

Figure 4.11. Schematic showing how the addition of a salt compresses the double layer (from 
(left to right), permitting closer contact on approach. 

 

At 0.001M vdW attraction dominated. However, these events were not consistent in all 

locations possibly due to fluctuations in contact area and also the complex topography of 

the calcite crystal used for different probes. This behaviour was also demonstrated by 

Weidenhammer and Jacobasch (1996), using PEEK (poly-(ether ether ketone)) polymer 

substrates. They found with increasing ionic strength of KCl and KOH solutions up to 

0.0005M, adhesion with SiOH
-
 tips was reduced until no interaction (attractive or 

adhesive) was observed. 

 

Several materials gave no trend with increasing ionic concentration, such as both copper 

substrates, Graphit-iC, Dymon-iC, ‘k. coating’ and both gold substrates. A logical 

explanation can be given for used copper, SB steel and 'k .coating’ because these 

materials exhibited high Ra values, which were much greater than the Debye lengths. 
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This was because surface asperities will cause the Debye length to fluctuate, while also 

increasing the surface area for which charged groups will adsorb. However, Graphit-iC 

and Dymon-iC had slightly higher Ra values to MF steel, so their adhesion was expected 

to be less ambiguous.  

 

Both Graphit-iC and Dymon-iC were highly polar coatings that were predominantly basic, 

and were expected to have a preference for Ca
2+

 ions. This was due to the presence of C-

OH and C(O)OH groups on Dymon-iC and surface C-H groups on Graphit-iC. However, 

with increasing ionic concentration there was no increase in Ca
2+

 adsorption to either 

surface, possibly due to the presence of uncharged C-OH (sp
3
) and C(O)OH (sp

2
) groups. 

An additional explanation may be that at 0.001M the pH increased to 8.24, which may 

have affected the surface chemistry of the diamond-like films. Ostrovskaya et al., (2002) 

observed that at pH > 7 amorphous carbon films may corrode due to their increased 

wetting. However, the precise mechanism of the potential adverse effects on the 

amorphous carbon coatings was not known and any significant increase or decrease in 

adhesion with ionic concentration was not observed. Therefore, the behaviour of both 

diamond films remained ambiguous and further research was required. 

 

Both gold substrates also showed adhesion was ambiguous with unmodified and 

modified tips because roughness effects were anticipated to have a negligible effect on 

interaction forces. As both gold substrates and the SiOH
-
 tip were negatively charged, 

repulsion was expected due to adsorption of Ca
2+

. Although adhesion was lower at 

0.001M and larger at 0.0005M, there was no mid-range adhesion at 0.0008M. This may 

have been caused by reduced sensitivity of the gold layer to bulk electrolyte 

concentration possibly caused by changes in surface potential during the adhesive 

interaction. Although acid-base values of gold were high, their high surface free energy 

may have increased surface wettability and caused the double layer to be less structured 

relative to that of MF steel.  

 

It appears adsorbed ions did affect adhesion systematically but this was restricted to MF 

steel, due its low Ra low wettability and negatively-charged surface, which may have 
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caused greater coverage of cations. Gold substrates did not show this trend due to their 

greater wetting. Other substrates showed no affect of electrolyte concentration on 

adhesion due to their high Ra and stronger mechanical effects, which caused 

anions/cations to adsorb on peaks/valleys at insufficient quantities to have any discernible 

double layer interaction. As a result, there is a need to repeat these experiments on 

atomically flat surfaces of the same chemistry to explain their precise interaction 

mechanism. 

4.3.3 Adhesion force measurements at different pH 

The affect of solution pH on adhesion force was tested on selected materials. MF steel, 

Dymon-iC, TiN and SB steel were tested only using modified and unmodified tips at pH 

8, 9 and 10. The materials were selected based on their different surface chemistries and 

surface topographies. Figure 4.12 shows representative force plots on Dymon-iC at pH 8, 

9 and 10, as well as pull-off forces on MF steel, Dymon-iC, TiN and SB steel.  

0

2

4

6

8

10

12

pH-8 pH-9 pH-10

P
u
ll
-o
ff
 f
o
rc
e
 (
n
N
) CG1 CG2

CA1 CA2

U1 U2

 
(a) Dymon-iC 

0

10

20

30

40

50

pH-8 pH-9 pH-10

P
u
ll
-o
ff
 f
o
rc
e
 (
n
N
) CG1 CG2

CA1 CA2

U1 U2

 
(b) (MF steel 

 
Figure 4.12. Histogram showing the distribution of pull-ff forces  on (a) Dymon-iC and (b) MF 

steel.  

 

At the three pH values, no distinct pattern emerged for all substrates using calcite tips. 

However, at pH 9 and 10, CG probes appeared to show an increase in adhesion for 

Dymon-iC and MF steel materials. In the case of MF steel, this may have been caused by 

surface coverage of Ca
2+

 at pH 9 and 10. The surface charge of calcite was approaching 

neutral (~9.5), and at pH 9 and 10 calcite may have exhibited similar surface potentials. 

This may have caused adhesion to peak at pH 9 and 10, as calcite comprised of 

equivalent Ca
2+

 and CO3
2-

 groups while MF steel remained negatively charged. This may 

also explain why adhesion at pH 9 and 10 also peaked for Dymon-iC.  
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With the negatively-charged silica tip, adhesion was stronger at pH 9 to all substrates 

except SB steel. The cause of this behaviour was uncertain because MF steel and TiN 

also carried a negative charge. Adhesion was expected to decrease with increasing pH 

because the surface charge difference between tip and substrate was expected to drop. As 

a result long-range repulsion was expected due to adsorption of Ca
2+

 on both surfaces. 

Even though adhesion dropped at pH 10, the cause of adhesion peaking at pH 9 was 

uncertain. Experiments were performed in the order pH 8, 9 then 10, so measurements 

were performed systematically. Although the risk of cross-contamination was small, 

erosion of the silica tip during force measurements may have increased contact area and 

inadvertently caused adhesion to increase after performing force measurements at pH 8. 

Alternatively, the difference in solution pH was too small to cause any significant change 

to the surface charge of calcite using modified tips. The surface charge of the unmodified 

tip remained highly negative from pH 8 to 10, so any differences in adhesion was likely 

to be caused by differences in contact area than actual surface charge effects.  

4.3.4 Affect of calcite crystal roughness on adhesion 

This section aims to assess the impact of calcite surface roughness on adhesion. In 

section 4.3.1 calcite-modified tips did not adhere to SB steel in the expected trend and 

there was considerable variation between calcite-modified probes on MF steel. 

Furthermore, by varying surface topography this may recreate mechanical effects of 

adhesion on rough substrates. The experiment involved force measurements with 

unmodified tips on calcite surfaces with varying degrees of surface roughness, and with 

the use of calcite-modified probes having various degrees of roughness. 

4.3.4.1 Use of unmodified tips 

Figure 4.13 shows AFM deflection images of atomically flat and rough calcite surfaces 

(Manchester minerals), and estimated locations where force plots were performed. Scan 

areas were 50 x 50 µm, 15 x 15 µm and 5 x 5 µm for surface 1, surface 2 and surface 3, 

respectively. A small scan area was selected for surface 3 after zooming in to a site defect 

which comprised of an etch pit. Surface 2 (Figure 4-13b) was dominated by trench-like 

etch pits that were inter-connected and ranged from 10 to 500 nm. 
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Figure 4.13. AFM deflection images of optically pure calcite {104} showing (a) flat calcite (50 

µm2), (b) calcite with moderate surface roughness (15 µm2) and (c) calcite with 
single large defect (5 µm2). �umbers on images represent locations of force plots. 

 

Ra values indicated surface 3 was significantly rougher than the other two. Figure 4.14 

shows force measurements performed on the three calcite surfaces. Pull-off forces on 

surfaces 1 and 2 were statistically the same, while surface 3 gave a greater distribution of 

forces.  
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Figure 4.14. Frequency distribution graph of force measurements on three calcite {104} surfaces 
with variations in surface defects using an unmodified tip. 

 

Reverting back to the AFM images of surfaces 1 and 2, the presence of microcavities on 

surface 2 did not reflect on pull-off forces, which may have caused little, if any, effect on 

the contact area. Figure 4.15 shows measured pull-off forces at each location for each 

 
(a) surface 1 

 
(b) surface 2 

 
(c) surface 3 
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surface. As expected, there was considerable variation on surface 3 amongst regions and 

at the same location. 
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Figure 4.15. Scatter plot showing the distribution of adhesion forces at all 10 locations of the 
three calcite surfaces. 

 

Surface topography and possibly chemical heterogeneity was the main cause of the large 

distribution of forces on surface 3, and not surface charge. However, the likelihood of 

surface asperities to attract contaminants from the substrate as well as Ca
2+

 and CO3
2-

 

ions from solution disproportionately could not eliminated. On the other hand surface 1 

had an intact crystallographic {104} face that exhibited neutral charge character due to 

the presence of coplanar Ca
2+

 and CO3
2-

 groups. Although surface 2 did exhibit a certain 

level of roughness as presented by the presence of microcavities such as elongated etch 

pits, they were insufficient to cause any increase in surface area during force cycles. 

Furthermore, pull-off forces were subject to the required tip-defect interaction, which was 

not always possible.  

4.3.4.2 Use of modified tips 

Six probes were labelled rough-1, rough-2, intermediate-1, intermediate-2, flat-face-1 and 

flat-face-2 and shown in Figure 4.16(a-f). 
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(a)  Rough-1 (R1) (~10 x 10 µm) 

 
(b)  Rough-2 (R2) (~10 x 15 µm) 

  
(c)  Int. roughness-1 (I1) (~15 x 15 µm) 

 
(d)  Int. roughness-2 (I2) (20 x 20 µm) 

  
(e)  Flat face-1 (F1) (15 x 15 µm) 

 
(f)  Flat-face-2 (F2) (30 x 40 µm) 

Figure 4.16. Optical images of calcite probes with different levels of roughness (a-f) (6 probes 
consist of 2 rough, 2 intermediate and 2 flat calcite surfaces). Scale bar 30 µm. 

 

Figure 4.17 shows attractive/adhesive force data performed on Dymon-iC, MF steel and 

Mica substrates using the six probes. The order of adhesion and attractive forces between 

the different calcite probes was as follows: Rough calcite probes > Intermediate > Flat. 

Compensating for contact area adhesion was 0.081 nN/µm
2
, 0.026 nN/µm

2
 and 0.003 

nN/µm
2
 for rough, intermediate and flat calcite probes, respectively. 
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Figure 4.17. Column chart showing the pull-off (adh.) and attractive (att.) forces between 
modified tips with calcite faces and MF steel, Dymon-iC and mica substrates in 
SHW using six calcite probes with different surface roughness. Inset image shows 
the average adhesion from the two flat crystals because forces were too small. 

 

Figure 4.18 shows measured adhesive/attractive forces on materials using the rough-1 

probe. Adhesion was enhanced on RF steel, with an average force of 168.51 ± 61.67 nN. 

Surface roughness of the calcite crystal on the rough-1 probe was difficult to quantify, 

although the preference for RF steel was clearly due to the interlocking (or topographical) 

interaction between the peaks and valleys of asperities during contact. 
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Figure 4.18. Column chart showing the measured attractive and adhesive forces selected group I 
and II materials using the rough-1 probe. 
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4.3.5 The effect of substrate surface properties/tip modification on adhesion 

The results presented here consistently showed adhesion between an unmodified or 

modified tip and the substrates could not be ranked in a single order. This was because a 

number of contributing factors affect the total adhesive interaction: contact area, acid-

base forces, electrostatic forces, hydrophilicity/hydrophobicity, solution chemistry and 

surface heterogeneity, all of which played a role of varying importance. 

 

Contact area was a key factor in determining the force of adhesion between two surfaces. 

It was anticipated that the unmodified tip would provide a more robust set of force data 

due to its small contact area and greater ability to enter microgrooves of the rough 

substrates and sub-micron asperities of more uniform substrates. In these types of 

experiments, contact area will vary for materials with increasing roughness, but not in a 

linear fashion because of the randomness of tip-on-asperity contacts.  

 

For materials with an Ra < 35 nm surface chemistry was critical to substrate adhesion. In 

the case of diamond-like materials, it was deduced that hydration forces were key to 

preventing adhesion in synthetic hard water due to undissociated C-OH groups. 

Hydrophilic groups (due to high γ
-
 values) were found to reduce acid-base forces, while 

adhesion forces in different molar concentrations were also lowest on amorphous carbon 

coatings. The same force can also explain adhesion of silica tips to hydrophobic PTFE, 

due to uncharged C-F bonds. The low total acid-base SFE of PTFE indicate increased 

adhesion was due to hydrophilic-hydrophobic (HP-HB) attraction. However, force 

measurements in increasing electrolyte concentration showed adhesion decreased with 

increasing ionic concentration for some probes. It was not known whether this was due to 

adsorption of anions/cations on PTFE or the tip or both. Kokkoli and Zukoski (2000) 

found the interaction between a hydrophilic charged surface (-COOH) and a hydrophobic 

uncharged surface (-CH3) in NaCl was purely repulsive. Contrastingly, Freitas et al., 

(2001) observed that interactions between a hydrophobic glass slide (-CH3) and a 

hydrophilic glass bead in KCl solutions were purely attractive, and stronger than the HL-

HL system. As acid-base forces were virtually non-existent on the PTFE surface, it was 

deduced that adhesion was based on the adsorption of ions from solution, thus reducing 
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double layer repulsion. Even in the absence of electrolyte, PTFE was expected to strongly 

adhere to SiOH
-
 due to a net attraction (Freitas et al., 2001). The presence of acidic sites 

on PTFE as well as copper, due to the high γ
+
:γ

-
 ratio, also appears to enhance adhesion 

because calcite was a basic adhesive according to measured and literature SFE values. 

For the remaining materials with Ra > 35 nm, adhesion was dependent on a complex 

interplay of contact area, hydrophilicity, electrostatic forces and heterogeneity, for which 

contact area was the main driving force. 

 

With calcite-modified tips contact area was increased relative to unmodified tips but it 

was difficult to quantify with certainty due to the inherent difficulty of not knowing the 

number and areas of contact regions. At the start of the study two tip preparation methods 

were used, calcite-grown and calcite-attached in synthetic hard water. Both methods gave 

reasonably good material ranking of adhesion but large deviations. This problem was 

exacerbated on SB steel, used copper, RF steel, ‘k. coating’ and PTFE. Furthermore, with 

the attachment of calcite crystals with varying degrees of surface roughness, the order of 

adhesion was modified with relative ease, and contact area could indeed be altered to a 

certain degree. This showed tip modification with calcite crystals was applicable to 

surfaces with Ra not exceeding 30 nm, and beyond this calcite probes should be prepared 

with a single contacting point. For example this may be achieved by growing several 

layers of calcite on an unmodified tip or a bead/sphere, and then attaching the calcite-

coated bead to the tip.  

 

When modified probes were used on amorphous carbon coatings lower forces were not 

always measured. To emphasize this, a summary of the performance of Graphit-iC and 

Dymon-iC with modified tips in comparison to MF steel is given in Table 4.13.  The 

majority of calcite probes used in the different liquids showed that Dymon-iC and 

Graphit-iC were the least adhesive substrates. The mechanism of this behaviour has been 

explained before with SiOH
-
 tips. However, calcite probes that did adhere to Dymon-iC 

and Graphit-iC may not have reflected the physicochemical properties of these surfaces. 

For instance, this may have been caused by the complex calcite-water interface which 
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experienced degradation or even contamination during force measurements (Churchill et 

al., 2004). 

Table 4.13. Summary of Dymon-iC, Graphit-iC and MF steel (as reference) material rankings 
based on adhesion force using modified tips. Low = material in bottom 3 of all 
materials; Medium = material in middle 3 of materials; High = material in top 3 of 
materials. 

Adhesion ranking Variation in 
solution/calcite probe Dymon-iC Graphit-iC MF steel 

(reference) 

SHW 
CA 
CG 

 

High 

Low 

 

Low 

High 

 

High 

Medium 

Different CaCO3 
solutions 
CG 
CA 

 

 

Low 

Medium 

 

 

Low 

Medium 

 

 

Low/Medium 

High 

Different pH conditions 
CG 
CA 

 

Low/Medium 

Low 

 

Low/Medium 

Low 

 

High 

High 

Rough calcite probes 
Flat calcite probes 

Low 

Low 

Low 

Low 

High 

High 

Oriented calcite probes Low Low High 

 

It was well known that silica tips experience wear during force measurements, and it was 

possible calcite probes may have eroded, although it was difficult to confirm this from 

SEM images. Alternately, the extent of oxidation on the two carbon-based films was not 

consistent; therefore it was possible that pockets of hydrophobic regions (such as C-H) 

were present on the coatings which increased their adhesion to calcite due to HB-HL 

interaction. 

4.3.6 Link between theoretical and measured adhesion forces with scaling rate 

experiments 

In the final section of this chapter, it was hypothesized that material surface free energy 

and/or adhesion force measurements may be linked to their scaling rate using a rapid 

scaling methodology performed by Jitka MacAdam (2005). Scaling rate experiments 

were performed on twelve of the thirteen specimens using the procedure given in section 

3.5.1.6. The results are given in Table 4.14 and are presented as g CaCO3 formed per m
2
 

per hour, at a temperature of 72˚C. A detailed discussion of the rate of CaCO3 scaling is 

given by MacAdam (2005), so it will not be given here.  
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Table 4.14. Material scaling rates (in g CaCO3.m
-2.h-1) after classification in group I and II 

materials. 

Group I Scaling rate (g 
CaCO3.m

-2.h-1) 
Group II Scaling rate (g 

CaCO3.m
-2.h-1) 

Gold-0.3mm 6.73 Dymon-iC 3.28 

MF steel 8.33 Graphit-iC 3.42 

Gold-0.1mm 12.78 Ti� 8.26 

RF steel 14.1 PTFE 9.04 

Copper-unused 15.05 Aluminium 9.78 

SB steel 18.81 ‘K. coating’ 15.97 

 

Because surface properties are known to affect the rate of calcium carbonate scaling 

(Keysar et al., 1994), it would be reasonable to assume the rapid scaling experiments 

performed by MacAdam (2005) comprise of both the induction and fouling periods. 

Furthermore, it would also be reasonable to assume the greater the material scaling rate, 

the shorter the induction and fouling periods. Figure 4.19 shows theoretical force (where 

the Rabinovich roughness model was applied) vs. scaling rate for all materials in a single 

plot. It was found the scaling experiment and contact angle measurements gave 

reasonably good similarities between low and some high scaling rate materials but not RF 

steel, gold-0.1mm and copper (highlighted in Figure 4.19). For instance, these materials 

gave high scaling rates but theoretical estimates with the Lewis acid-base (LWAB) 

approach indicated the materials as weakly adhesive.  
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Figure 4.19. Scatter plots of scaling rate vs. work of adhesion with all the materials using the 
triplet (left) and sextet (right) method.  

 

When these three materials were removed from the plot, a better correlation between 

theoretical force and scaling rate was observed (not shown). If roughness had affected 
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material placement then SB steel and ‘k. coating’ should also have been affected. It was 

also reasonable to assume no direct correlation between the two techniques was 

obtainable due to fundamental differences between the two techniques. For instance, in 

scaling rate experiments the quantity of CaCO3 deposited on the surface was taken after 

all the cycles were complete. So once a layer of calcite had covered the material, the 

material exerted little, if any, effect on additional scale deposits forming on the base layer 

of scale. Furthermore, Bornhorst (1999) observed CaSO4 deposits obtained on a 

diamond-like carbon surface were easier to remove than on untreated stainless steel 

heaters during fouling experiments, This indicates that while inorganic deposits will form 

on carbon coated surfaces (amorphous and diamond-like), the strength of adhesion 

between the deposit and the coating will be much less. In addition, from the scaling rate 

data shown in Figure 4.19, it is impossible to know how easy or difficult it was to remove 

the CaCO3 deposits. Consequently, it would have been more applicable to relate the rate 

of scale formation up until a monolayer of scale (predominantly calcite) covers the 

surface, with contact angle measurements. 

 

An interesting observation in the above plot was the link between theoretical adhesion 

and scaling rate was much stronger for materials that gave scaling rates up to 10 g CaCO3 

m
-2

 h
-1

. This can be seen with triplet and sextet methods, where all these materials gave 

Ra values below 35 nm. With increasing Ra the ability to screen surfaces using the contact 

angle technique became problematic, since isolating a segment of these surfaces at the 

micron-scale was not representative of their behaviour at the bench level, where scaling 

rate experiments are performed. Therefore, it was apparent the complex interplay of 

surface roughness and material heterogeneity, which present domains of different surface 

chemistry were responsible for discrepancies between theory and reality. These surfaces 

were likely to have domains where a single droplet can wet grooves as well as sit on 

peaks of the surface, thus affecting the apparent contact angle (He et al., 2004). Because 

the three-phase contact line on a rough substrate was expected to drift on the x-y plane at 

different rates until an optimal angle was obtained, it was difficult to observe when this 

point was reached. However, the majority of these materials gave greater mean contact 

angles than materials with low Ra, so droplets were more likely to sit on peaks, making 
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them less hydrophilic. As SB steel and ‘k. coating’ were most hydrophobic (most of the 

drop sitting on surface peaks), this was why both these materials appeared to fit in the 

trend linking theoretical force with scaling rate seen in the top right of the plots shown in 

Figure 4.19. Therefore, a more precise indicator of scaling rate of a material may be 

provided simply by its water contact angle, although surfaces with high Ra values will 

certainly obscure any trend. 

 

When force measurements with modified and unmodified tips were also plotted against 

scaling rate no trend was observed. This was because the contact area was much smaller 

(at the nanometre for unmodified tips) than contact angles, so the best way to explain this 

behaviour was by grouping materials into metallic/non metallic surfaces with their Ra 

values (Table 4.15).  

Table 4.15: Comparison of scaling rate (numbered from 1-12 low-high) and AFM/contact angle 
measurements based on material Ra values. 

 
 Low Ra Mid Ra High Ra 

�on-metallic Dymon-iC (1) 

Graphit-iC (2) 

PTFE (6) 

‘K. coating’ (11) 

 

 

Metallic Gold-0.1mm (8) 

Gold-0.3mm (3) 

MF steel (5) 

Unused copper 

(10) 

TiN (4) 

Al (7) 

RF steel (9) 

SB steel (12) 

Used copper (not 

tested) 

Scaling rate 
correlation with 
AFM 

Excellent Good Poor 

Scaling rate 
correlation with 
contact angles 

Excellent Good Good 

 

For low Ra materials, force measurements with unmodified and modified tips gave 

excellent correlation of metallic and non-metallic substrates, where adhesion was 

consistently stronger on metallic than non-metal substrates. For instance, silica and 

calcite tips were weakly adhesive to amorphous carbon coatings and strongly to gold-

0.1mm/MF steel. Generally, these substrates gave reproducible forces by virtue of their 

uniform topography and surface chemistry, and the forces that came into play have 

already been discussed. For mid to high Ra substrates, it was no surprise three of the most 

scaling substrates (According to data given in Table 4.14) was in this category. When 
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force measurements were performed on mid to high Ra materials, it was also apparent 

adhesion ranking fluctuated, as demonstrated with modified and unmodified tips in 

particular. Similar to issues affecting the contact angle method, force measurements on 

these materials depended on recurring tip-on-valley interactions to give stronger adhesion, 

but calcite probes gave greater tip-on-peak interactions due to the large crystal size. It 

appears experiments with unmodified tips on medium to high Ra materials represent the 

extreme limit of very low available surface area, which is fundamentally different to the 

experimental conditions of scaling rate. This is precisely why AFM images are performed 

with unmodified tips and not modified tips, because the ultrasmall tip is able to enter the 

smallest of microgrooves and show this as an asperity on the image. The contact 

scenarios is shown in Figure 4.20. 
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Figure 4.20. Schematic showing the affect of modified and unmodified tips on surfaces with 

different Ra values relative to contact area. 

 

When mid to high Ra materials are combined with modified tips with non-planar surface 

profiles, contact area fluctuated (Figure 4.20c). With unmodified tips contact area was 
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somewhat more reproducible, but as shown in Figure 4.20e, subtle changes in contact 

area could still have a dramatic impact on adhesion. The ideal situation for reducing the 

affect of contact area was to use substrates with low Ra relative to the tip (Figure 4.20f) 

or use modified tips with a uniform surface profile (Figure 4.20b), like spherical particles.  

 

Other causes of ambiguity was scaling rate experiments were performed at the elevated 

temperature of 72˚C whilst force measurements were performed at room temperature, so 

materials may have responded differently to these conditions. For instance, at 42˚C MF 

steel exhibited a similar scaling rate to RF steel, but at 72˚C it scaled only half as much 

(MacAdam, 2005). With all other parameters remaining the same, temperature appears to 

promote scaling rate on rough substrates, possibly by enhancing precipitation in asperities 

at the solid liquid interface. For high Ra materials, it can be deduced their increased 

surface area promotes greater lateral calcite growth with stronger mechanical fixation to 

valleys during scaling experiments (Keysar et al., 1994). 

 

There was an attempt to recreate these mechanical effects with the use of rough calcite 

probes, which enhanced adhesion to RF steel. In contrast, low Ra materials promoted few 

mechanical effects and greater surface force effects, which were more applicable to AFM 

studies. Consequently, it may be more appropriate to perform scaling rate experiments 

until a monolayer of calcite precipitates on the substrate. It would then be possible to 

learn the size and topography of calcite crystals precipitated in valleys of rough substrates, 

and then attach crystals to the tip. They may also be compared to crystals precipitated on 

low Ra materials. But due to the difficulties in observing this behaviour it may easier to 

perform time-dependent experiments. On the other hand, a mathematical approach could 

be used, where the surface profile of a given substrate is determined with existing AFM 

imaging and incorporated into a mathematical model based on the Rabinovich roughness 

model.
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Chapter 5 Results and Discussion part 2 - Surface 
Characterization of �OM 

5.1 Introduction 

Natural organic matter is defined as an intricate mixture of organic material present in 

natural waters. It adversely affects many parts of water treatment, including the 

performance of unitary processes (such as adsorption, coagulation and oxidation) and the 

application of disinfectants (Krasner et al., 1989). As a result, process optimization with 

respect to NOM removal has gained a lot more attention (Sharp et al., 2004; Qin et al., 

2006 and Sharp et al., 2006). One of the NOM fractions, humic acid fraction (HAF), has 

been a known precursor for disinfection by-product (DBP) formation (Singer, 1999). A 

more recent study by Kanokkantapong et al., (2006) confirmed hydrophobic fractions 

were more reactive with chlorinated disinfectants than hydrophilic acids (HPIA). 

However, of increasing concern is the formation of halogen-based by–products from 

NOM, of which trihalomethanes (THM's) and haloacetic acids (HAAs) are suspected 

human carcinogens (Black et al., 1996).   

 

The coagulation process is an integral operation to reduce NOM levels in surface waters 

and coagulants most commonly used are iron and aluminium salts. However, removal 

efficiency is variable, depending on the physical and chemical characteristics of the water 

and the operating conditions. In one study Sharp et al., (2006) found NOM’s fractional 

make-up can significantly impact coagulation performance. The authors found the fulvic 

acid fraction (FAF) most resembled bulk water operational characteristics in relation to 

certain floc properties, but was less readily removed using existing coagulation 

techniques. They also found elevated FAF levels control raw water floc size leading to 

poor removal. As hydrophobic FAF is one of the main precursors for DBP formation, it is 

essential FAF’s general reactivity and poor removal efficiency must be addressed at a 

more fundamental level. Therefore, understanding the mechanism of intermolecular 

interactions amongst fractions in situ is an integral part of the present study. The AFM is 

an important tool for investigating detachment profiles of polymeric materials, of which 
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NOM fractions, and particularly humic components, are classically viewed as negatively-

charged, branched polyanions (Christl et al., 2000). In this proof-of-concept experiment 

detachment profiles will provide signatures of polyanions, which might be related to their 

intramolecular and intermolecular interaction within flocs, their reactivity with 

disinfectants or simply their origin. By investigating detachment profiles of immobilized 

NOM polyanions, the information gained may in future be used for developing 

innovative NOM removal strategies. In addition, NOM polyanions immobilized on an 

AFM tip and surface will recreate to a certain extent NOM interactions in situ that are 

absent in conventional analysis of NOM polyanions.  

5.2 Contact angle measurements 

Figure 5.1 shows measured average contact angles of four probes liquids on immobilized 

NOM polyanions, polycationic poly-L-lysine (PLL) and uncoated glass.  
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Figure 5.1. Contact angle values of probe liquids on HAF, FAF and HPIA and glass and PLL 

control surfaces. 

 

Average water contact angles on uncoated glass and PLL were 10.33 ± 2.01˚ and 8.59 ± 

6.16˚, respectively, which were classed as very hydrophilic (contact angle ≤ 10˚). In 
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contrast water contact angle on NOM surfaces were much higher. For example, mean 

water contact angles were 46.34 ± 3.8˚, 43.65 ± 4.9˚ and 32.59 ± 2.5˚ on HAF, FAF and 

HPIA, respectively. The difference between hydrophobic polyanions and HPIA was 

significant (P<0.001) using the Mann Whitney U test, confirming immobilized HAF/FAF 

polyanions were less hydrophilic than HPIA (Aiken et al., 1979). The slightly greater 

hydrophobicity of HAF than FAF is due to humic’s greater molecular weight (Yee et al., 

2006). 

 

Mean contact angles also varied between sources of the same polyanion and sources 

collected at different time intervals. For example, the HAF polyanion from Albert water 

(2006) gave the highest average water contact angle of 63.39 ± 5.64˚, while the 2001 

sampling period was only 39.13 ± 4.69˚. This may be caused by seasonal changes in 

rainfall affecting NOM quantity and composition, which may indicate HAF polyanions 

were larger. Mean contact angles of other sources were in between the two Albert water 

sources. Water contact angle of Widdop and Gorple polyanions were similar, which was 

expected due to their close proximity (2 km). 

 

Contact angles of EG and F on NOM surfaces also gave rise to variation between 

polyanions. Average EG contact angles were 28.72 ± 10.38˚, 9.49 ± 2.73˚ and 18.76 ± 

10.02˚ for HAF, FAF and HPIA, respectively. Unlike water contact angles, the mean EG 

contact angles varied considerably, particularly on HAF and HPIA polyanions. 

Formamide (F) on NOM surfaces gave smaller contact angles compared to EG, due to the 

difference in liquid γ
-
/γ

+
 ratio. 

 

All polyanions were almost wetted by 1-Bromonaphthalene (B), of which FAF gave the 

smallest average contact angle of 4.76 ± 1.12˚. Contact angles on HAF were stable at 

6.60 ± 0.66˚, while HPIA was dispersed with average contact angles of 8.15 ± 3.21˚. Low 

CA of 1-bromonaphthalene was due to the high Lifshitz-Van der Waals surface free 

energy of all hydrophobic polyanions, which is explained in the next section. 
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5.2.1 �OM surface free energy measurements 

The dispersive components of the surface free energy (γ
LW

) were 44.02 to 44.16 mJ.m
-2

 

for HAF, 44.05 to 44.30 mJ.m
-2

 for FAF and 43.36 to 44.28 mJ.m
-2

 for HPIA (Figure 5.2). 

The difference in γ
LW

 values for HAF and FAF was negligible because the hydrophobic 

core of both polyanions was centrally located, while polar groups such as COOH, OH 

and NH2 are surface-specific. 

42

43

44

45

Penwhirn Albert-2001 Albert-2006 Widdop Gorple

γL
W

 (
m

J
.m

-2
)

HAF FAF HPIA

 

Figure 5.2. γLW values of HAF, FAF and HPIA polyanions obtained from five water samples. 

 

Such amphiphilic properties of hydrophobic polyanions are of increasing interest, and 

their micellar conformation has been confirmed with AFM images (Guan et al., 2006). 

For hydrophobic polyanions, Lower Gorple gave the lowest values of 44.02 mJ.m
-2

 (HAF) 

and 44.05 mJ.m
-2

 (FAF). For HPIA, Penwhirn gave the lowest value of 43.36 mJ.m
-2

. 

Both Albert waters gave similar γ
LW

 values for HAF and FAF, but a relatively large 

difference of 0.14 mJ.m
-2

 was observed for HPIA. Average γ
LW

 values of HAF, FAF and 

HPIA were 44.02, 44.05 and 43.63 mJ.m
-2

 for Lower Gorple compared to 44.13, 44.27 

and 43.95 mJ.m
-2

 for Widdop. 

 

Figure 5.3 shows the basic (γ
-
) SFE values of immobilized NOM polyanions and 

glass/PLL controls calculated using the graphical plot method (McCafferty, 2002). PLL 

and glass gave γ
-
 values of 52.26 mJ.m

-2
 and 68.27 mJ.m

-2
, respectively. Glass‘s high 

basicity was due to silanol (SiOH
-
) electron donors, which outnumber deprotonated SiO

2-
 

groups upon hydration. The γ
-
 values of NOM polyanions ranged from 21.55 to 46.43 

mJ.m
-2

, 23.96 to 50.67 mJ.m
-2

 and 36.35 to 62.26 mJ.m
-2

 for HAF, FAF and HPIA, 

respectively.  
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Figure 5.3 Histograms showing the γ- surface free energy values (in mJ.m-2) for the five �OM 

sources and PLL/glass controls. 

 

All NOM polyanions were strong electron-donors, predominantly due to carboxyl, 

alkoxyl and alkyl groups (Senesi et al., 1991). HPIA polyanions from Penwhirn and 

Albert (2001) in particular gave similar γ
-
 values to glass, indicating HPIA was a strong 

electron donor. However, HAF and FAF were mainly aromatic and also comprise of 

electron-withdrawing (EW) terminals such as carboxyl and carbonyl groups on an 

aromatic mainframe (Avena and Koopal, 1999; Campitelli et al., 2006 and 

Kanokkantapong et al., 2006). In the case of HAF, Campitelli et al., (2006) also found 

they comprise of charged phenolic-OH, carboxylic-COOH and quinone groups due to its 

large buffering capacity. 

 

The absence of EW groups on HPIA will reduce the polarity of the OH group, thus 

making it increasingly electron-donating than hydrophobic polyanions (McCormack et al., 

2002). The γ
-
 values were similar to that obtained by Ramos-Tejada et al., (2006) on 

adsorbed polyethyleneimine (PEI) films. 
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The γ
-
 values of HAF was highest for Albert water (2001) and Widdop because both 

surfaces were highly oxidised, and was lowest for Albert (2006). On immobilized FAF, γ
-
 

values were also highest for Albert (2001), while Widdop and Gorple gave similar values. 

For Albert (2001) HPIA polyanions γ
-
 values were highest again and was very similar to 

glass, with the Albert (2006) source least electron-donating. Interestingly, all NOM 

polyanions from Albert (2006) gave the lowest γ
-
 value, which is thought to be due to 

fewer electron donors on the surface. 

 

Figure 5.4 gives acidic (γ
+
) SFE values of immobilized NOM polyanions and glass/PLL 

controls. The γ
+
 SFE values were 0.04 to 0.30 mJ.m

-2
, 0.18 to 0.81 mJ.m

-2
 and 0.03 to 

0.26 mJ.m
-2

 for HAF, FAF and HPIA, respectively. γ
+
 values of PLL and glass were 0.29 

± 0.20 mJ.m
-2

 and 0.03 ± 0.00 mJ.m
-2

, respectively.  
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Figure 5.4. Histograms showing the γ+ SFE values (in mJ.m-2) for the five sources of HAF, FAF, 
HPIA and PLL/glass controls. 

 

Acidic component of PLL was twice as much as glass due to the presence of protonated 

amines (NH3
+
) that are electron acceptors (Watson et al., 2004). It was clear all NOM 

polyanions were weak electron acceptors, with few electron-withdrawing terminals. The 

small γ
+
 values are not unusual, as Ramos-Tejada et al., (2006) also gave low γ

+
 values 

ranging from 0 to 2.5 mJ.m
-2

 on adsorbed PEI films. FAF polyanions were most electron-
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accepting, which is thought to be due to quinone groups that are electron transporters 

(Fulton et al., 2004), as well as ketones, aldehydes and amides (Plaza et al., 2007). 

Quinones are also present on HAF, so γ
+
 values were expected to be similar to FAF. 

Albert (2001) gave the lowest γ
+
 value, which may be linked to fewer quinone moieties 

or their reduction to hydroquinone groups. The feeders gave high γ
+
 values for HPIA, 

which may be caused by an increased density of carboxyl and carbonyl groups on these 

polyanions. 

 

Due to the size and complexity of NOM polyanions, it was problematic to ascertain 

whether immobilized polyanions were in the form of spherical (Guan et al., 2006), ring-

shaped (Namjesnic-Dejanovic and Maurice, (1998) and Liu et al., (2000)) or linear 

aggregates, or if they were uniformly adsorbed or dispersed on PLL. Due to the 

polycationic base, polyanions were expected to adsorb strongly by electrostatic forces 

(Claesson et al., 2005). Nevertheless, imaging of NOM was very difficult because 

adsorbed NOM could get displaced and the underlying PLL base be disturbed by the tip. 

Contact angle measurements gave strong differences in acidic character of adsorbed 

NOM films, where FAF greater γ
+
 values than HAF and HPIA, although absolute values 

were very small compared to the corresponding γ
-
 values. Furthermore, there was 

significant variation between NOM sources. For example, the Penwhirn, Albert-2006 and 

Lower Gorple sources gave the highest γ
+
 values for HAF, FAF and HPIA polyanions, 

respectively. However, all NOM polyanions from Albert (2006) gave the lowest γ
-
 values. 
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5.3 AFM force measurements 

Table 5.1 gives a summary of the probes used during force measurements on 

immobilized NOM, tip characteristics and the rationale behind tip selection. 

Table 5.1 Summary of AFM force measurements performed using both modified and 
unmodified tips, and the motivation for performing such experiments. 

 
Section in 

Thesis 
Tip 

modification 
type 

Reason for tip choice Tip charge Tip radius 
(µm) 

5.3.1 Unmodified 

(silica) tips 

(SiOH
-
) 

Measure differences between  

(a) NOM polyanions and (b) NOM 

sources. 

Compare pull-off lengths to floc 

strength and coagulation. 

To use as a standard tip choice. 

Negative 0.03 

5.3.2 PLL-coated tips 

(NH3
+
): 

Opposite in charge to silica tips so 

useful to compare 

Positive 

 

0.03 

5.3.3 NOM-coated 

tips 

Investigate inter-NOM interaction  Negative 0.03 

5.3.4 Glycine-coated 

(NH2) tips: 

To compare with silica and PLL-

coated tips 

Neutral 0.03 

XAD4 resin Used for fractionation – to isolate 

hydrophilics 

None 55 

XAD8 resin: Used for fractionation – to isolate 

hydrophobics 

None 68 

5.3.5 

MIEX® resin: Used as potential pre-treatment of 

NOM 

None 80 

HAF-coated 

XAD8 resin 

To compare results with HAF-

coated tips 

Negative 55 

FAF-coated 

XAD8 resin 

To compare results with FAF-

coated tips 

Negative 68 

5.3.6 

HPIA-coated 

XAD4 resin 

To compare results with HPIA-

coated tips 

Negative 80 

5.3.1 Silica probe versus �OM surface 

Figure 5.5 shows force cycles of a silica tip on NOM surfaces from Penwhirn water and 

PLL control. Net attractive interactions of varying magnitude were observed on all 

surfaces, indicated by the presence of ‘jump-to’ events (Figure 5.5, left). Hydrophobic 

surfaces were least attractive to the hydrophilic silica tip. Sharp et al., (2006) showed at 

pH 6 hydrophobic polyelectrolytes exhibit a negative zeta potential with high surface 

charge densities, which may repel the SiOH
-
/SiO

2-
 tip via electrostatic repulsion. 

Deprotonation of COOH and phenolic groups on hydrophobic polyanions are thought to 
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be caused by the presence of EW groups linking their conjugated aromatic backbone, 

thus conveying a negative surface charge (Campitelli et al., 2006).  
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Figure 5.5 Force vs. separation approach and retraction cycles of a silica tip on HAF, HPIA, 

FAF polyanions and PLL. 

 

During tip retraction the presence of multiple rupture events meant adhesion forces were 

taken at the first rupture (or pull-off) event known as peak adhesion force, which 

intercepted the y-axis (Figure 5.5, right). Subsequent rupture events diminish with 

increasing length of the pulled polyanion(s), as shown by the reduced force of the second 

peak event on PLL in Figure 5.5, (right) (Luckham, 2004). In the above example, HAF 

pull-off length persisted to 50 nm before detachment, followed by HPIA (42 nm) and 

then FAF (0 to 5 nm).  

 

Figure 5.6a depicts three scenarios during NOM-tip interactions. The schematic shows 

rupture events were dependant on contact area, which may explain the infrequent pulling 

events on NOM. Given the heterogeneous nature of NOM polyanions, the tip may 

interact with NOM ‘tails’, ‘loops’ or compressed micelles, giving different rates of 

extension of the polyanion (Figure 5.6a). This was because some surface groups on an 

isolated polyanion will form monomer-surface contacts, while non-adsorbed segments of 

the polyanion were free to interact with the tip (Haupt et al., 1999 and Claesson et al., 

2005). Furthermore, it was impossible to know if detachment events corresponded to a 

single polyanion or multiple polyanions. 
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      (a) Tip-�OM interaction        (b) Tip-PLL interaction 

Figure 5.6 Schematic of three different configurations of polymer-tip interaction during force 
measurements on �OM (a) and PLL (b). 

 

The polydisperse nature of NOM with multiple functional groups exposed by non-

adsorbed monomers also affects adhesion and pulling rates (Vezenov et al., 2005). Of 

these groups unknown hydrophilic ‘heads’ were orientated to the tip because of the lower 

interfacial free energy at the hydrophilic group/water interface than the hydrophobic 

group/water interface (Israelachvili, 1992). Watson et al., (2004) showed immobilized 

PLL exhibits a brush-like conformation, is less sterically restrained while presenting only 

cationic NH3
+
 terminals (Figure 5.6b). As a result, PLL gave distinct pull-off events due 

to H-bond (SiOH
-
---H-NH2

+
) and predominantly electrostatic (SiO

2-
---

+
NH3) interactions 

(Kwon et al., 2006). 

5.3.1.1 Attractive forces 

Figure 5.7 shows the distribution of attractive forces with one silica tip (U1) on 

immobilized NOM. There was a clear difference between hydrophobic and hydrophilic 

polyanions with respect to attractive forces. For instance, HAF/FAF peaked at ~0.06 to 

0.1 nN, apart from Albert 2001 water. HPIA was considerably more attractive to the tip 

than both hydrophobics with ≥ 35% of measured forces > 0.2 nN. Of all five samples, 

Penwhirn and Albert-2001 were most adhesive with most attractive force > 0.2 nN.  
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Figure 5.7 Histogram showing the distribution plot of attractive forces with a silica tip (u1) on  

(a) HAF, (b) FAF and (c) HPIA from all five samples. 
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5.3.1.2 Adhesion forces 

Figure 5.8 shows frequency distribution plots of adhesion peaks with one silica tip on 

NOM surfaces. Immobilized HAF from feed waters were least adhesive, peaking at 0.5 

nN, while Albert sources were more adhesive peaking at 1 nN. HAF from Penwhirn was 

almost twice as adhesive, with data points spread over 1 to 2 nN. With the 2
nd

 probe, data 

points were spread across the force range on Albert 2001, with other HAF samples 

peaking to 0.5 to 1.5 nN (data not shown). 

 

Immobilized FAF from Penwhirn, Lower Gorple and Albert-2001 peaked at 0.5 nN.  

Widdop and Albert-2006 samples peaked at 1 nN. This adhesion ranking on all sources 

was not maintained with the 2
nd

 probe, although immobilized FAF from Albert 2001 and 

Penwhirn still remained least adhesive from all sources.  

 

Immobilized HPIA from Penwhirn gave the strongest adhesion peaks at 3.5 nN and 4.5 

nN for probes one and two respectively. Other sources gave much lower adhesion peaks 

ranging from 0.5 to 2.5 nN with both probes. Analysis of the peak adhesion force with 

silica tips showed greater variation with hydrophobic polyanions than HPIA. These 

findings illustrate adhesion peaks on hydrophobic surfaces were complicated by their 

multiple functionalities and structurally complex backbone, which did not produce 

reproducible adhesion events. The highly complex nature of hydrophobic surfaces 

indicates subtle differences in functionality and molecular weight between sources can 

have a significant affect on adhesion force. 
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(c) HPIA 
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Figure 5.8 Histogram showing the distributions of adhesion peaks with probe U1 on HAF (a), 

FAF (b) and HPIA (c) from all five samples.  
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5.3.1.3 Pull-off length versus adhesion force 

Figure 5.9 (a, b) shows scatter plots of length vs. pull-off force with silica tips on NOM 

surfaces and PLL controls. Multiple detachment events were observed by the large 

density of data points on the x-axis, while primary adhesion events along the y-axis were 

shorter but more adhesive (see Figure 5.9a on HPIA from Penwhirn).  

 

Generally, PLL gave forces an order of magnitude stronger than NOM polyanions. It was 

thought electrostatic forces were driving adhesion because Watson et al., (2004) found at 

pH 6 lysine monomers on PLL conveyed protonated NH3
+
 groups giving an IEP of 10.5, 

which were attracted electrostatically to SiO
2-

/SiOH
-
 groups on the tip (IEP of 2) 

(McCafferty, 2002). Polycations have also been shown to readily adsorb to negatively 

charged surfaces in low electrolyte conditions (Claesson et al., 2005). Although adhesion 

forces on both controls were similar, probe one gave somewhat weaker forces during 

polymer extension, while probe two gave stronger adhesion. Probe two was less adhesive 

to PLL relative to NOM polyanions, while pull-off lengths were also longer on NOM 

than PLL.  

 

The main difference between probe one and two was NOM polyanions from Lower 

Gorple and Albert (2001) were more adhesive. For instance, on HAF both Albert sources 

gave lengths reaching ~80 nm with probe one, while probe two gave lengths up to 200 

nm on Albert 2001. Both feeders gave pull-off lengths peaking at 40 to 120 nm with 

considerable variation in their pulled lengths using both probes. HAF from Penwhirn 

gave maximum length of 45 nm with probe one and just over 120 nm with probe two, 

with similar density of pull-off length as the feeders. Interestingly, the feeders and 

Penwhirn HAF also gave similar mean water contact angle values (Figure 5.1), which 

may be related to their similar detachment signatures.  
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Immobilized FAF from Albert-2006 and 2001 gave peak lengths of 100 to 160 nm with 

both probes. Both feeders gave peaks of ~80 to 100 nm, which should effectively 

comprise of the same NOM chemistry and molecular size due to their similar SFE values 

(Figure 5.1). Pull-off lengths on FAF from Penwhirn were less consistent, giving lengths 

reaching 50 to 125 nm with both probes. Interestingly, the distribution of adhesion forces 

was similar on all immobilized FAF polyanions, which may indicate functional groups 

between sources were similar but varied in density due to variations in molecular weight.  

 

Pull-off lengths on immobilized HPIA from Albert 2006 reached 80 nm with both silica 

tips. Pull-off lengths from Albert-2001 were less consistent, giving lengths up to 40 nm 

and 170 nm for tips one and two, respectively. The frequency of pull-off events for both 

tips was also in sharp contrast to one another. HPIA from the feeders gave detachment 

lengths of less than 100 nm. Pull-off lengths on Penwhirn HPIA reached 200 nm with 

both probes, showing a strong preference for this source in particular. Table 5.2 

summarises peak adhesion force and pull-off rankings for each source. 

 
Table 5.2 Summary of pull-off lengths and adhesion forces on �OM sources with silica tips. 

 

Source Pull-off lengths Adhesion forces 
Albert-2001 (A01) HAF>FAF=HPIA (U1) 

HPIA>HAF>FAF (U2) 

FAF=HAF>HPIA (U1) 

HAF>HPIA>FAF (U2) 

Albert 2006 (A06) FAF>HPIA>HAF  (U1) 

FAF>HAF>HPIA (U2) 

HAF>HPIA>FAF (U1) 

HPIA>FAF>HAF (U2) 

Penwhirn water (PW) HPIA>FAF=HAF (U1) 

HPIA>HAF>FAF(U2) 

HPIA>HAF>FAF (U1) 

HPIA>HAF>FAF (U2) 

Widdop (WD) HPIA>HAF>FAF (U1) 

HAF>FAF>HPIA (U2) 

HPIA>HAF>FAF (U1) 

FAF>HPIA>HAF (U2) 

Lower Gorple (LG) FAF>HPIA>HAF (U1) 

HPIA>FAF>HAF (U2) 

FAF>HAF>HPIA (U1) 

HPIA>FAF>HAF (U2) 

 

A comparison between Albert water polyanions indicate FAF and HPIA gave similar 

adhesive events and pull-off lengths, while HAF was most adhesive. Although the 

sampling times varied they were expected to have comparable NOM chemistries. 

Surprisingly, feeder sources did not give the same pull-off lengths and peak forces for all 

NOM polyanions, indicating there were subtle variations in their surface chemistry. 

HPIA was shown to dominate pull-off lengths and adhesion force for the majority of 
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NOM polyanions. A column chart showing adhesion forces at each location on HPIA 

polyanions is shown in Figure 5.10.  
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Figure 5.10. Column chart showing the distribution of forces at different locations of HPIA 
polyanions with both unmodified tips (U1 and U2). 

 

The column chart shows HPIA from Penwhirn was consistently more adhesive, and was 

followed by HPIA from Widdop and Gorple. In a study by Rojas et al., (2002) they 

suggest polyanion charge density was the driving force of adsorption. The authors 

observed with reduced polyelectrolyte charge density, adsorbed layer thickness increased, 

leading to longer detachment lengths. As HPIA has been shown by Sharp et al., (2006) to 

be less negatively charged than hydrophobic fractions, it appears electrostatic forces were 
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driving adhesion of HPIA to SiO
2-

 groups on the tip. However, γ
+
 values of Penwhirn 

HPIA were the lowest of the polyanions, so the precise binding mechanism could not be 

established at present. 

5.3.2 Silica/PLL probe versus �OM surface 

Figure 5.11 shows approach and retract cycles of a PLL-coated tip on immobilized 

Penwhirn NOM polyanions.  
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Figure 5.11 Force vs. separation approach and retraction cycles using one PLL-coated tip on 

HAF, FAF, HPIA polyanions and PLL control. 

 

Approach cycles did not give sharp jump-to events observed with silica tips due to the 

reduced density of NH3
+
 groups on the tip. Instead a net repulsion was observed on all 

NOM films prior to snap-on at ~5 to 10 nm. This was because both surfaces were 

compressible and the polycationic tip exhibited a brush-like conformation (Luckham, 

2004). The tip was attracted to NOM polyanions but repulsive to PLL as expected, due to 

hydrophilic (from its low CA with water) and electrostatic repulsion. When 

polyelectrolytes overcame long-range steric repulsion, NH3
+
 groups were expected to 

adhere strongly to FAF, followed by HAF and then HPIA due to differences in 

polyanionic charge density (Rojas et al., 2002). During retraction pull-off forces on FAF 

were strongest, followed by HAF, HPIA, and then PLL (Figure 5.11, right).  The origin 

of FAF’s and HAF’s high charge density is thought to be due to their aromatic backbone 

which controls the dissociation constant of COOH, phenolic OH and other functional 

groups (McCormack et al., 2002). 
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5.3.2.1 Attractive forces 

Figure 5.12 shows frequency distributions of attractive forces with one PLL-coated tip. 

Attractive forces were in the order HPIA>FAF>HAF on all sources except Lower Gorple. 

For instance, HAF, FAF and HPIA from Penwhirn peaked at 0.02, 0.04 and 0.06 nN, 

respectively.  Similarly, Albert-2006 source peaked at 0.04, 0.06 and 0.14 nN for HAF, 

FAF and HPIA, respectively. It was unclear whether this trend was due to steric or 

electrostatic factors, or due to the presence of PLL as the adsorbent. Interestingly, all 

Penwhirn NOM surfaces gave lower attractive force peaks, and particularly HAF. HAF 

from Penwhirn gave the highest γ
+
 values from contact angle data, which indicates 

electrostatic repulsion may have dominated surface forces. However, FAF and HPIA 

from Penwhirn were not highly electron-accepting, so their repulsive interactions could 

not be explained. 

5.3.2.2 Adhesion forces 

Figure 5.13 shows frequency distribution plots of peak adhesion forces using one PLL-

coated tip (probe 2). On FAF polyanions, adhesion forces on both Albert sources and 

Penwhirn water peaked at 0.2 to 0.4 nN. Widdop and Gorple polyanions peaked at 0.6 nN 

and 0.4 nN, respectively.  

 

On HAF polyanions, Albert-2001 sample peaked at ~0.2 nN, while the 2006 sample was 

more adhesive, peaking at 0.6 nN. Penwhirn HAF polyanions peaked at 0.4 nN, while 

Gorple peaked at the much lower force of 0.2 nN. In contrast, the HAF from Widdop was 

more adhesive, peaking at ~0.2 nN.  

 

On HPIA polyanions, adhesion peaks were ~0.6 to 0.8 nN for all samples except Albert-

2006 and Penwhirn samples, which peaked at 0.2 and 0.4 nN, respectively. Albert-2001, 

Widdop and Lower Gorple polyanions peaked at 1, 1 and 0.6 nN, respectively. 

Interestingly, both Lower Gorple and Widdop gave similar adhesion peaks, indicating 

HPIA polyanions had a similar surface chemistry, which was in agreement with their SFE 

values given in Figures 5.3 and 5.4.  
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Figure 5.12 Histogram showing the distribution plot of attractive forces with a PLL coated tip 

on HAF (a), FAF (b) and HPIA (c) from all five samples. 
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Figure 5.13 Histogram showing the distribution plot of peak adhesion forces with a PLL coated 
probe on HAF, FAF and HPIA from all five samples. 
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5.3.2.3 Pull-off length versus adhesion force 

Figure 5.14 (a) and (b) shows pull-off length vs. pull-off force with PLL-coated tips on 

NOM films and PLL. Both PLL controls gave near identical forces and pull-off lengths, 

showing the NH3
+
 groups were stably expressed. PLL tips were more adhesive to NOM 

polyanions than PLL, where forces reached 1 nN, and lengths peaked to about 40 nm.  

 

The profile of the scatter plots on HAF and FAF were most dissimilar to PLL controls, 

which may be due to their anionic surface charge density enhancing electrostatic 

repulsion between the oppositely charged polyelectrolytes (Rojas et al., 2002). HAF/FAF 

polyanions were expected to adsorb more strongly to the PLL base with thinner adsorbed 

layers than HPIA (Rojas et al., 2002). HPIA from Penwhirn in particular gave similar 

pull-off lengths and forces to PLL, where HPIA is known to have a reduced anionic 

charge density than hydrophobic polyanions (Sharp et al., 2006). Interestingly, these 

findings are in agreement with the unmodified tip data, where Penwhirn HPIA was most 

adhesive to and gave longer detachment lengths than the other sources. HPIA polyanions 

from both feeder sources were more adhesive, which may be linked to their greater γ
+
 

values from their contact angle measurements (Figure 5.4), Rojas et al., (2002) also 

showed as the surface charge of polyelectrolytes in highly dilute solutions is reduced the 

surface becomes increasingly heterogeneous as the interaction gets more complicated.  

 

On HAF polyanions trends were more complex, which may be caused by their different 

adsorption profile on PLL. For example, HAF from Widdop gave lengths reaching 50 nm 

and up to 80 nm for Lower Gorple with probe two. Differences were also observed in the 

adhesion force of both feeder sources, where Lower Gorple was more adhesive with 

probe two and Widdop dominated using probe one. Overall, both feeders gave a greater 

density of detachment events than both Albert polyanions. While HAF from Penwhirn 

gave the narrowest range of pull-off lengths. 
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Trends on FAF surfaces were also difficult to identify due to their large variability. For 

instance, probe two on Penwhirn, Albert-2006 and Albert-2001 polymers gave pull-off 

lengths up to 80 nm. However, FAF from the feeders gave strong adhesion with mid-

range pull-off lengths using probe two. Albert-2001 and the feeders gave peak forces 

reaching 2 nN, while the Penwhirn source was markedly smaller at 1 to 1.2 nN with 

probe one. These findings indicate the FAF polymer was difficult to distinguish between 

sources because both tips did not give consistent interactions. This may be attributed to 

the orientation of the FAF on PLL, FAF’s irregular surface charge or the presence of 

voids on the immobilized FAF layer (Liu et al., 2000). 

 

Table 5.3 compares the detachment length and adhesion force of NOM polyanions from 

all five fraction sets. It was clear hydrophobic polyanions dominated adhesion and pull-

off length apart from Albert 2006 polyanions. The Albert-2006 gave similar adhesion and 

pull-off lengths on all NOM surfaces. 

Table 5.3. Summary of average pull-off lengths and peak adhesion forces on all four sources 
using PLL tips. 

 

Source Pull-off lengths Adhesion forces 

Albert 2001 FAF>HAF>HPIA 

FAF>HAF>HPIA 

FAF=HPIA>HAF 

HAF=HPIA>FAF 

Albert 2006 Equal 

Equal 

Equal 

Equal 

Penwhirn water FAF>HAF>HPIA 

Equal 

FAF>HAF=HPIA 

Equal 

Widdop Equal 

FAF>HPIA>HAF 

HAF>FAF>HPIA 

FAF=HPIA>HAF 

Lower Gorple FAF>HAF>HPIA 

HAF>FAF>HPIA 

FAF>HAF=HPIA 

HAF>HPIA>FAF 

 

5.3.3 Silica/PLL/�OM probes versus �OM surface 

Silica tips were coated with Penwhirn polyanions immobilised on PLL to observe inter-

NOM (NOM on NOM) interactions. Penwhirn water was selected due to the greater 

quantity of NOM fractions available at the time of the investigation, and because floc size 

experiments were being conducted with these fractions at the time of these experiments. 
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5.3.3.1 Attractive forces 

Figure 5.15 shows frequency distribution plots of attractive forces with NOM-coated tips 

on NOM polyanions. Attractive forces were in the order HPIA>HAF>FAF, with forces 

peaking at 0.2 nN, 0.5 nN and 0.7 nN on FAF, HAF and HPIA, respectively. Apart from 

FAF-1 and HPIA-1 probes, most probes gave relatively similar attractive forces to HAF. 

On FAF surfaces attractive forces peaked at lower forces compared to HAF, of which 

FAF probes were least attractive to FAF polyanions. This may indicate FAF polyanions 

exhibited long-range electrostatic repulsion due to their charged terminal groups. 

Interestingly, HPIA probes were more attracted to HPIA polyanions, which may indicate 

hydrophilic polyanions were less charged and hydrophilic terminal groups enhanced 

attraction through H-bonding. 

5.3.3.2 Adhesion forces 

Figure 5.16 shows frequency distribution plots of adhesion forces with NOM-coated tips 

on NOM. Generally, the order of adhesion followed the same trend as the order of 

attractive forces shown in the previous section, with HPIA most adhesive and FAF least 

adhesive.  

 

With HAF probes, adhesion was strongest on HAF and HPIA, with most force events 

peaking at over 2 nN. With HPIA-coated tips, there was strong adhesion to HPIA, 

followed by HAF then FAF. Analysis of FAF probes gave adhesion in the order, 

HAF>HPIA>FAF. Both FAF probes gave maximum adhesion peaks on FAF above 2 nN. 

However, the FAF-1 probe was most adhesive to HPIA, with adhesion peaking at 3 nN 

while the second FAF probe gave similar adhesive events to all the polyanions.  
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Figure 5.15 Histogram showing the distribution plot of attractive forces with �OM-coated tips 

on HAF (a), FAF (b) and HPIA (c). 
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Figure 5.16 Histogram showing distribution plots of adhesion forces with �OM-coated tips on 
HAF (a), FAF (b) and HPIA (c). 
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5.3.3.3 Pull-off length versus adhesion force 

Figure 5.17 shows detachment lengths vs. pull-off force for NOM-coated tips on NOM. 

HAF-terminated probes adhered strongly to HPIA with lengths reaching 200 nm. Pull-off 

events on HPIA were also more abrupt shown by the high density of events on the y-axis. 

This indicates primary detachment events were strongest but also more frequent, although 

the location of events on polyanions was impossible to establish. Detachment lengths 

were shortest on FAF, as was the total number of events. Probe HAF-2 on FAF gave 

longer detachment lengths but weaker forces than the HAF-1 probe. Probe two (HAF-2) 

gave shorter lengths than probe 1 on HAF polyanions, although actual forces were similar. 

 

With HPIA-coated tips adhesion forces were strongest on HPIA, matched by lengths 

reaching 200 nm. Pull-off lengths on FAF polyanions at 100 nm were the shortest, 

indicating there were fewer adhesive interactions with FAF or that FAF polyanions were 

shorter and more compressed due to their high charge density (Rojas et al., 2002). FAF 

probes gave similar pull-off lengths on all NOM polyanions, peaking at lengths between 

100 to 120 nm. However, the FAF-1 probe did give several strong primary peak adhesion 

forces on HPIA and HAF polyanions with forces reaching 8 nN, which may have been 

caused by the PLL base.  

 

Some of the more interesting interactions were observed with symmetrical NOM systems. 

For instance, the HPIA-HPIA system gave consistent detachment lengths reaching 220 

nm. In contrast, FAF-FAF and HAF-HAF systems gave peak events within 150 nm, 

although HAF gave several lengths up to 250 nm. These results were also found to be 

significant (p<0.01) using the Mann Whitney U test. Highly charged HAF/FAF 

polyanions may also adsorb strongly to PLL leading to thinner NOM layers (Rojas et al., 

2002). This may show that hydrophobic polyanions were more tightly bound to one 

another, where binding sites on the surface were limited by the constrained aromatic 

backbone. When FAF was imaged on a muscovite surface by Namjesnic-Dejanovic at el., 

(1998), it was shown to adsorb as spherical aggregates ranging from 10-50 nm laterally 

and 2-10 nm in height. These dimensions seem to be consistent with pull-off lengths of 

the FAF-FAF system. 
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5.3.4 Silica/PLL/Glycine probes versus �OM surface 

Glycine-coated tips were prepared to functionalize tips with uncharged NH2 groups (IEP 

about 6). Figure 5.18 shows scatter plots of pull-off length vs. adhesion force for two 

glycine-coated tips on Penwhirn NOM polyanions, PLL and glycine. Also shown are the 

scatter plots using PLL probes for comparative purposes. 

 

For PLL, glycine, FAF, HAF, and HPIA the average number of detachment events/force 

cycle was 1.60, 1.55, 1.49, 1.19 and 1.11, respectively. Detachment lengths reached 200 

nm on PLL, which implies PLL exhibited a coiled/compressed configuration because 

Sawant and Nicolau, (2006) found the height of a PLL monolayer was ~12 nm. The 

scatter plots show adhesion forces and detachment lengths were stronger in the glycine-

PLL system than the PLL-PLL system. This indicates glycine tips comprised of 

uncharged NH2 terminals, because charged NH3
+
 groups are normally repelled by the 

PLL surface. As the monolayer of glycine-terminated PLL- tip and the PLL surface 

varied, their charge densities were not necessarily the same (Giesbers et al., 2002). This 

difference may have enhanced adhesion via electrostatic forces.  

 

The strong glycine-glycine interaction was puzzling because their charge density was 

expected to be similar, although the thickness of the PLL base on both surfaces could not 

be established. However, Giesbers et al., (2002) also found strong adhesion between 

amine-terminated silica surfaces at pH 6 in low electrolyte solutions, and proposed this 

was due to H-bonding between NH2 and NH3
+
 terminals. This was because at pH 6, 

glycine was expected to comprise of predominantly NH2 groups with residual NH3
+
 

groups. Glycine also gave detachment lengths reaching 100 nm, although it was clearly 

the smallest molecule. This may be caused by pulling of the PLL base from the tip and/or 

surface during the retraction cycle. Pull-off lengths on NOM polyanions were in the order 

FAF>HAF>HPIA and forces in the order HAF>FAF=HPIA. Both glycine and FAF gave 

similar peak detachment lengths, although glycine was twice as adhesive with a force of 

1.20 ± 0.61 nN. 
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Figure 5.18 Scatter plot of force vs. pull-off length for glycine-coated (left) and PLL (right) tips 

on polyanions from Penwhirn reservoir. 
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It is thought the origin of glycine’s adhesion to FAF and HAF was due to a combination 

of electrostatic and H-bonding forces. This was because residual NH3
+
 groups may 

adhere to COO
-
 and phenolic-O

-
 groups on FAF and HAF terminals. Giesbers et al., 

(2002) observed adhesion was strongest with the COOH-NH2 system at pH 7 using 

chemical force microscopy, when both surfaces were oppositely charged. The mainly 

uncharged NH2 groups on glycine may contribute to glycine’s adhesion to FAF, HAF and 

HPIA via H-bonding because average forces between NOM polyanions were similar with 

both glycine probes. Although the total number of interactions varied between PLL and 

NOM polyanions, there were no significant differences between adhesion and 

detachment length. 

5.3.5 XAD4/XAD8/MIEX® probes versus �OM surface 

XAD4, XAD8 and MIEX® resins were used to modify AFM tips and analyze the 

detachment signatures with Penwhirn NOM polyanions. Two probes for each resin were 

prepared and Figure 5.19 shows optical images of three of the six resin-modified probes 

used in this section.  

 

 
XAD4 

 

 
XAD8 

 

 
MIEX 

 
Figure 5.19 Optical microscope images (x40) of AFM tips modified with XAD4, XAD8 and 

MIEX® resins showing side (top) and birds-eye views (bottom). Each image was a 
montage produced from images taken at different focal lengths. Scale bar 60 µm. 
Software used to generate image was Auto-Montage (Synoptics Ltd, version 
3.02.005). 
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The XAD8 resin was much larger than XAD4 and MIEX® resins. Pull-off lengths with 

both XAD4 probes were ranked HAF>HPIA>FAF, corresponding to 1.4µm, 1 µm and 

0.9 µm, respectively (Figure 5.20). Pull-off forces followed the same trend. Detachment 

lengths were almost an order of magnitude larger than when unmodified tips were used 

(Figure 5.9a, b). The larger XAD8 resin shown in Figure 5.19 contributed to the unstable 

force profiles given in Figure 5.20. For instance, the XAD8-A gave pull-off lengths of 

1.2µm, 1.2 µm and 0.3 µm for HAF, HPIA and FAF, respectively. The corresponding 

adhesion force was in the order HPIA>FAF>HAF. The second probe gave detachment 

lengths reaching 5.5 µm, 1.8 µm and 0.2 µm for FAF, HAF and HPIA, respectively. 

 

Adhesion force rankings did not follow the same trend as the fractionation process where 

XAD8 normally has a preference for hydrophobic polyanions. This was because the 

conditions used for force measurements differ considerably from those during 

fractionation. During the fractionation of hydrophobic (HPOA) fractions, the solution is 

acidified to pH 2, thus reducing the surface charge of HAF/FAF polyanions. Although 

the hydrophobics remained soluble during adsorption to XAD8, their surface charge was 

effectively modified, while force measurements were performed at pH 6. At pH 6, all 

polyanions exhibited a negative surface charge (Droppo et al., 2005), so their adsorption 

to the uncharged XAD8 resin was not expected to differ by much. In fact the ranking of 

pull-off forces and detachment lengths with both XAD-8 probes fluctuated. Although 

HAF/FAF polyanions did give longer detachment lengths this was effectively due to their 

greater molecular weight. The greater surface area of XAD8 compared to XAD4 resins 

also permits greater contact area with NOM polyanions. 

 

With the MIEX® probe ranking of pull-off length was FAF>HPIA>HAF with values of 

1.2 µm, 1.2 µm and 0.75 µm, respectively. Pull-off forces followed the same order with 

values of 11.65 ± 0.17 nN, 9.43 ± 1.71 nN and 2.63 ± 0.92 nN for FAF, HPIA and HAF, 

respectively. MIEX® pore size at ~45 nm was twice as large as XAD8, but this was 

unlikely to have played the only role.  
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These findings correlated with macroscale fraction removal studies by Fearing et al., 

(2004), where 90% of FAF, 90% of HAF and 75% of HPIA was removed using Albert 

reservoir water. However, quantitative analysis of pull-off events indicated HPIA/HAF 

dominated with 1.54 events/curve with FAF giving only 1.15 events/curve. Like XAD 

resins, the precise cause of this difference was yet to be established. 

5.3.6 Resin/�OM probes versus �OM surface 

Resins used in section 5.3.5 were coated with NOM polyanions from Penwhirn reservoir, 

to compare datasets with NOM-coated tips. The procedure used to attach resins to the tip 

was used, but NOM polyanions were adsorbed to the resin after attachment to the 

cantilever. Figure 5.21 shows scatter plots of six NOM-coated resin probes on 

immobilized NOM. 

 

With FAF-coated probes pull-off lengths were in the order HAF>FAF>HPIA, with 

lengths reaching 200 nm, 100 nm and 150 nm for HAF, FAF and HPIA, respectively. 

Variation in pull-off length between polyanions was relatively small, although HAF was 

most adhesive, peaking at 27 nN. FAF and HPIA gave similar forces, which was 

consistent with both probes. When compared to FAF-coated tips in section 5.3.3, they 

also showed little variation between FAF-coated tips. These findings indicate both 

techniques of FAF polyanion termination were in agreement, confirming FAF’s 

indiscriminate interaction with all NOM polyanions. These findings appear to 

substantiate FAF’s important role in NOM surface interactions and floc formation (Sharp 

et al., 2006). 

 

For HAF-coated probes, pull-off lengths were in the order HPIA>HAF>FAF with lengths 

reaching 1.3 µm, 1.2 µm and 1 µm, respectively. Adhesion forces also gave an identical 

ranking order. There were considerably fewer adhesive events with FAF compared to 

HAF and HPIA. These result also linked with HAF-coated tips, where the same pull-off 

length and adhesion force ranking was obtained. HAF-coated-resins appeared to behave 

consistently, and adhesion ranking was reproducible with both probes. 
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HPIA-coated probes gave pulling lengths in the order HPIA>HAF>FAF with probe one 

and HAF>HPIA>FAF with probe two. Probe two gave longer pulling lengths on HPIA 

prior to the first adhesion peak, which was shown by the large number of data points 

diagonally between the axes. This was because the HPIA polyanion was elongated prior 

to detachment. The adhesion forces were considerably stronger for HPIA followed by 

HAF, and this ranking was similar to that obtained with HPIA-coated tips, confirming 

strong interaction between HPIA-HPIA polyanions.  

5.3.7 Interpretation of detachment signatures with AFM tips 

There were two reasons for using silica and PLL tips. One was to compare measured 

adhesion forces and pull-off lengths, and the other was to test PLL as a model of 

synthetic bridging flocculants. Table 5.4 gives a summary of polyanion dominance 

obtained with silica and PLL-coated tips. 

 
Table .5.4. A summary comparing dominant polyanions using silica and PLL-coated tips. 

 

Silica tip (-ve) PLL tip (+ve)  

Adhesion Length Adhesion Length 
Dominant fraction 

Albert-01 
Albert-06 
Penwhirn 

Lower Gorple 
Widdop 

 

HAF/HPIA 

FAF 

HPIA 
FAF/HPIA 

HPIA/FAF 

 

HAF 

HAF/HPIA 

HPIA 
FAF/HPIA 

HPIA/FAF 

 

FAF/HAF 

Equal 

FAF 

HAF/FAF 

HAF/FAF 

 

FAF 

Equal 

FAF 

FAF/HAF 

FAF/HAF 

 

Silica tips were more adhesive to HPIA polyanions from Penwhirn and both feeders, 

while both Albert samples were adhesive to hydrophobic polyanions. HPIA polyanions 

from Penwhirn were also more hydrophilic (Figure 5,1), making terminal groups more 

accessible, although specific functional groups were not known.  

 

Generally, FAF from hydrophobic polymers gave fewer adhesion events, which indicates 

they were less adhesive to the negatively-charged tip. This is thought to be due to the 

charged anionic terminals on FAF, which may extend farther into the bulk solution, 

resulting in net electrostatic repulsion (Claesson et al., 2005). Moreover, the affinity of 

water molecules to the tip’s residual SiOH
-
 groups has been shown to be much stronger 
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than hydrophobic polyanions (Nalaskowski et al., 2003). The data suggests silica tips can 

be used to probe adhesion forces between HPIA polyanions from different sources, but 

tips were less sensitive to hydrophobic polyanions because they were effectively unable 

to ‘grab’ the polymers. The inability to adhere to hydrophobic polyanions suggests 

adhesion was primarily electrostatic in origin, because surface charge was one of the 

main differences between HPIA and hydrophobic polyanions. 

 

In general, PLL-coated tips were more adhesive to FAF and HAF polyanions from all 

sources, giving longer detachment lengths. This was although attractive forces were 

smaller in magnitude and repulsive to NOM polyanions compared to silica tips. Reduced 

attractive forces were primarily due to the unfavourable entropy associated with 

compressing polymer chains of two modified surfaces (Israelachvili, 1992). Abraham et 

al., (2000) suggested repulsive attractive forces between polyelectrolyte brushes are 

predominantly steric and not electrostatic in origin. Penwhirn polyanions gave the 

smallest mean attractive force, indicating polyanionic length was a contributing factor, 

although their surface charge was not known. HAF and FAF polyanions from Widdop 

gave the strongest mean attractive force. This was also matched by pull-off lengths, 

where hydrophobic Penwhirn polyanions were generally shorter and less adhesive to 

PLL-terminated probes. This difference in adhesion is thought to be related to fraction 

molecular weight and surface chemistry, which varies according to their source (Goslan 

et al., 2003). Consequently, shorter polyanions would not extend as far into the bulk 

solution, thus reducing contact area, which is illustrated in Figure 5.22. 

 

Figure 5.22. Comparison of high MW (left) and low MW �OM polyanions showing increased 
contact area and interaction (highlighted) is prevalent with the high MW polyanions 
from Widdop and Gorple reservoirs. Diagram not to scale. 
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In a study by Yamamoto et al., (2000) they suggested polymer brush density was also a 

probable cause, although the density of NOM polyanions used during this study was not 

known. Generally feeder sources provided more consistent data because they both 

showed FAF polyanions to be longer and/or more adhesive. It was not known whether 

this was due to its surface chemistry or molecular weight. Hence, the binding mechanism 

of PLL to FAF remained unclear although electrostatic forces between deprotonated 

COO
-
/phenolic O

-
 anionic sites with NH3

+
 was likely mechanism (Kollist-Siigur et al., 

2001; Reemtsma and These, 2005). The reduced hydrophobicity of FAF relative to HAF 

from contact angle measurements (Figure 5.1), also suggests there were more hydrophilic 

groups on FAF that were accessible to NH3
+
 terminals on the PLL tip (Yee et al., 2006). 

Consequently, the hydrophilicity of FAF and HAF polyanions was subject to change as 

water was increasingly displaced during approach cycles. 

5.3.8 Interpretation of detachment signatures in �OM-�OM systems 

While silica, PLL- and glycine-coated tips gave some control over the specificity of one 

surface, NOM-coated tips increased the complexity. However, this was a very important 

part of the study because detachment signatures may be linked to their floc size and 

subsequent coagulation performance. A schematic of symmetrical NOM interactions is 

illustrated in Figure 5.23.  

 

Figure 5.23 Schematic of pull-off interaction between HPIA-HPIA (left) and HAF-HAF/FAF-
FAF systems showing longer lengths for HPIA than hydrophobics. Balls (right) 
indicate micellar structure of hydrophobic polyanions. Micelles are for illustrative 
purposes only. 

 

Based on polymer hydrophobicity, HAF-HAF interactions were similar to FAF-FAF 

although rupture events were less tightly bound due to HAF’s greater molecular weight. 
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The hydrophilicity of HPIA may have promoted a branched configuration because 

terminal groups had a greater affinity for water according to contact angle measurements 

(Figure 5.1), enabling polyanions to interact with hydrophilic groups. Furthermore, data 

from unmodified and PLL tips showed Penwhirn HPIA was potentially longer and had a 

less negative surface charge than the other sources. As such, HPIA may be more open in 

contrast to HAF/FAF at the intermolecular level, and the availability of binding sites was 

high, given by L-shaped scatter plots. Polyanions that gave L-shaped scatter plots 

indicate they unwind more easily, while a high density of interactions indicate their 

binding sites are readily available and potentially less compressed. The potentially more 

open structure of HPIA provides aliphatic (predominantly COOH) groups that can bind to 

hydrophilic terminals on HAF/FAF, by hydrogen bonding. This interaction was most 

likely due to the shielding of hydrophobic segments from water.  

 

In non-symmetric systems adhesion between FAF-NOM was indiscriminate, compared to 

HAF and HPIA polyanions. Although studies by Sharp et al., (2006) and Jefferson et al., 

(2004) have indicated the zeta potential and charge density of FAF flocs was most 

negative, it is not known how surface charge was distributed around a single polyanion, 

and whether the polyanion was in a compressed or open configuration on PLL. A clue 

may be provided with approach cycles because FAF was least attractive to NOM 

polyanions. For instance, it was likely FAF polyanions were highly compressed due to 

electrostatic and steric repulsion. This was because Rojas et al., (2002) found with 

increasing charged density of the cationic polyelectrolyte acrylamide-[3-(2-

methylpropionamido)propyl] trimethylammonium chloride (AM-MAPTAC-X) on 

negatively-charged mica, adsorbed polyelectrolyte layer thickness decreased. HAF 

polyanions also gave shorter detachment lengths than HPIA, where HAF also exhibits 

greater anionic surface charge density than HPIA (Sharp et al., 2006). Approach cycles 

on hydrophobic polyanions may also induce a change in the conformation of FAF 

terminals, so as water was displaced polyanions rearrange to expose hydrophobic 

segments, resulting in hydrophobic attraction. These findings suggest FAF polyanions 

were most likely to control coagulation performance during NOM removal, because of its 
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inherent ability to attach to both hydrophilic and hydrophobic terminals. Furthermore, 

Guo and Ma, (2006) found the size of FAF polyanions were highly dependent on solution 

chemistry and adsorbent surface. 

5.3.9 Comparison of tip-modification methods-�OM-coated tips vs. �OM-coated 

resins 

The results obtained with NOM-coated resin showed FAF-coated tips did not 

discriminate between NOM polyanions as well as HAF- and HPIA-coated tips. HAF and 

HPIA-coated tips however, gave similarities in the adhesion and pull-off length rankings 

with NOM-coated tips. Furthermore, the HPIA-HAF interaction appeared to be stronger 

than the HPIA-FAF interaction, which also drew a strong parallel with the NOM coated 

tips. 

 

The NOM-coated resins and NOM-coated tip gave comparable adhesion rankings. 

However, the surface area of resin-modified tips was much greater than silica tips, so the 

high density of rupture events were caused by the pulling of multiple polyanions. 

Considering the length of pulling events, both NOM and PLL polymers were pulled, and 

subsequent events were dependent on which polyanion (NOM or PLL) was the shortest 

during retraction. This level of uncertainty made resin-modified probes unlikely to 

provide information that will be of use in an operational perspective. Nevertheless, in 

order to obtain more consistent force data, it will be interesting to compare this data to 

results obtained from using much smaller resin-modified probes. 

5.3.10 Potential application of detachment signatures to �OM removal 

performance 

As the experiments performed in this investigation were a proof-of-concept study, any 

potential link to macroscale studies was very important, as it would form the basis of 

further studies. The water characteristics that were studied included floc size, floc 

strength and MIEX® data. Floc size and strength data was specific to fractionated water 

from Albert WTW during April-2002-October 2004, January 2006 and from Penwhirn 

WTW in August 2005. MIEX® data was obtained from Maxime Mergen, and involved 
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the study of raw waters from Penwhirn and Albert water reservoirs. Table 5.5 gives floc 

size data and MIEX® data obtained from the specified sources. 

Table 5.5. Summary of parameters used to compare to AFM pull-off forces and pull-off 
lengths. 

 
 Albert WTW Penwhirn 

WTW 

Sampling period April-02-

October-04 

Unknown January 2006 November 

2005 

Reference/source Sharp et al., 

(2006) 

Jefferson et al., 

(2004) 

Maxime 

Mergen 

Maxine 

Mergen 

Floc size (µm) 
HAF 
FAF 
HPIA 
Raw (d50) 

 

723 

532 

759 

 

932 

818 

949 

 

 

 

 

577.69 

 

 

 

 

478.12 

Settling rate (µms-1) 
HAF/FAF/HPIA 

 

1497/710/1492 

 

1.3/1.8/2.5 

  

Floc strength 
HAF 
FAF 
HPIA 
Raw 

 

-0.75 (weak) 

-0.64 (strong) 

-0.74 

-0.52 

  

 

 

 

0.58 

 

 

 

 

0.43 

5.3.10.1 Linking symmetric �OM interactions with floc properties 

It was anticipated floc size can be linked to detachment events from symmetric NOM 

interactions. To date, Sharp et al., (2006) provided the only available data looking at the 

size of fractionated flocs. Floc size, given in Table 5.5 was ranked in the order 

HPIA>HAF>FAF from the Albert WTW. Figure 5.24 shows scatter plots of symmetric 

NOM systems obtained from two NOM-coated tips were in the order HPIA>HAF>FAF, 

which was linked to their apparent floc size, and also the floc breakage rates.  
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Figure 5.24 Scatter plots showing force vs. pull-off length of symmetric �OM systems. 
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The scatter plot of HPIA was L-shaped, indicating polyanions gave strong and weak pull-

off forces during long and short pull-off lengths respectively. Furthermore, HPIA chains 

were highly branched, demonstrated by the high density of events during polymer 

extension, which were nearly twice as long as the adhesive core of hydrophobic 

polyanions. These nano-scale surface-specific interactions may also transfer to the 

macroscale where Jefferson et al., (2004) observed the larger HPIA flocs were fractal-

like, while FAF/HAF was compact. The greater number of holes observed on HPIA flocs 

by Jefferson et al., (2004) may be caused by the greater density of hydrophilic groups 

that have a preference for water. This may also explain when HPIA flocs undergo shear, 

they readily re-combine due to the large number of binding sites on HPIA terminals. The 

more compact FAF flocs were caused by hydrophobic attractive forces between FAF 

polyanions, with charged terminals predominantly orientated to the bulk.  

 

Given how surface-specific interactions can be linked to floc size experiments, it would 

be interesting to investigate a link between the AFM data and raw water floc sizes, which 

comprise of non-fractionated NOM. Raw water floc size experiments using Penwhirn 

water (2005) and Albert water (2006) were performed by Maxime Mergen (Cranfield 

University). Sharp et al., (2006) found raw water floc size was dominated by FAF, so 

pull-off length and adhesion forces are given in reference to FAF using PLL-coated tips. 

Floc sizes (d50 values) were 478.12 µm and 577.69 µm for Penwhirn water and Albert 

water 2006, respectively. However, FAF polyanions from Penwhirn were longer than 

Albert 2006 when PLL tips were used, the cause of which has been explained in section 

5.3.7. Strength factors were 0.58 and 0.43 for Albert-2006 and Penwhirn waters, 

respectively, where 1 is the maximum. Interestingly, peak adhesion forces of FAF 

polyanions from Albert (2006) were considerably stronger, as shown in Figure 5.8b, 

indicating Penwhirn FAF polyanions were either less charged or smaller in size. These 

findings show that adhesion force data on FAF polyanions using PLL-tips may be used as 

an indicator of raw water floc strength. 
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Flocs, in general do not only comprise of organic matter, but also consist of the coagulant, 

which in the examples given above are iron-based Fe(OH)3 coagulants. For FAF 

polyanions, their restricted floc size may be caused by complete charge neutralization of 

Fe
3+

, where densely packed FAF polyanions cause charge reversal, resulting in 

electrostatic repulsion between subsequent FAF flocs. AFM images of FAF polyanions 

have shown it to deposit as micellar structures that are dispersed over the surface, but the 

structure has been shown to change with increasing concentration and solution conditions  

(Namjesnik-Dejanovic and Maurice, 1998). Consequently, FAF floc structure also 

appears to be dependent on the solution conditions, and additional investigation is 

required in order to measure the FAF pull-off lengths and adhesion forces in different 

ionic strengths. 
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Chapter 6     Overview Discussion   

6.1 Application of unmodified tips to water treatment systems 

One of the main objectives of this project was to assess the usefulness of AFM force 

measurements using unmodified AFM tips with application to water treatment systems. 

Unmodified tips are seldom used for probing interfacial interactions with application to 

water treatment because particles of more relevance to the interacting bodies are 

preferred. The significance of using unmodified tips was to assess how relevant this was 

to real-life conditions, and whether the tip must be modified in order to screen materials 

at a very small level for their propensity to scale.  

 

In the calcite section of this study, force measurements were performed in synthetic hard 

water to make the solution more relevant to process-specific environments. 

Measurements were also performed in natural hard water to replicate these conditions, 

but due to contamination of the tip, cantilever and sample, data from the experiments was 

not used. Contamination was unavoidable because natural hard water contained inorganic 

as well as organic material, which deposited on surfaces during force measurements. 

Although samples were cleaned prior to use, they were neither chemically nor 

mechanically modified. When results in synthetic hard water were compared to the 

macroscale scaling rate experiments, they showed there were limitations posed by the use 

of unmodified tips. The small tip dimensions relative to asperity size on many of the 

samples meant contact area was driving adhesion forces at the interface. This was not to 

say contact area was unimportant, but it was found that for RF steel, SB steel, used 

copper, ‘k. coating’ and TiN this seemed to be the main factor driving adhesion. On the 

other hand surface forces and particularly hydrophilic and hydrophobic forces dominated 

interfacial interactions on materials that gave low Ra values. Importantly, force 

measurements with unmodified tips were able to show why amorphous carbon coatings 

were least adhesive, and increasing surface roughness will undoubtedly have a 
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detrimental effect on scaling rate. Therefore, it can be said that the value of unmodified 

tips in probing interfacial interactions that are relevant to applied systems in water 

treatment was limited by the samples’ surface topography. Contact angle measurements 

complemented the AFM data, indicating hydrophilic repulsion due to high electron donor 

(γ
-
) values was preventing adhesion to SiO2 tips. 

 

In the NOM chapter of this project, unmodified tips provided a controlled negatively-

charged surface. The highly complex NOM polyanions used in this study were also 

negatively-charged, so their interaction with silica tips was interesting to observe. As 

NOM polyanions were heterogeneous, flexible and with no well-defined surface structure, 

a greater range of interactions was observed. Ultrapure water was used in these 

experiments to reduce the number of outside influences on the complex interface. The 

findings indicated that there were noticeable differences between NOM polyanions when 

unmodified tips were used. For instance, the extent of polyanion stretching had a 

pronounced affect on pull-off force and detachment length. For instance, detachment 

lengths were longest for HPIA polyanions, which was in agreement with a study by Rojas 

et al., (2002) where they used polycations. Adhesion and detachment lengths on HPIA 

were most similar to the PLL control, with FAF most dissimilar to the control. 

Differences were also observed between HPIA polyanions from different sources, with 

Penwhirn HPIA more adhesive and giving longer detachment lengths. Considering 

polyanion surface charge density controlled adhesion, force measurements on 

immobilized NOM polycations may be used as an indicator of polyanion size, as well as 

surface charge density. Both these properties may be of crucial importance in 

understanding the makeup of the polyelectrolytic proportion of flocs and their influence 

on coagulation performance.  

 

Although unmodified silica tips are unlikely to represent one of the surfaces of interest 

when investigating interfacial interactions in water treatment systems, it has been shown 

that they can be used to screen materials with an Ra<50 nm effectively based on their 

adhesion profile. Also, due to their negative charge, well defined contact area and general 
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robustness, they can also be used to screen polyelectrolytes and other charged surfaces in 

different liquid. 

6.2 Application of modified tips to water treatment 

Nearly all tip modification methods with application to water treatment have focussed on 

optimizing ultrafiltration and nanofiltration membrane performance (Lee and Elimelech, 

2006; Brant et al., 2006 and Li and Elimelech, 2004). Furthermore, tips are normally 

modified with colloids of well defined size and topography. When poorly defined or non-

spherical foulants such as calcium carbonate and gypsum crystals are attached to the 

cantilever, there must be a balance between making experimental conditions relevant to 

fouling, and understanding the limitation of the technique due to contact area. For 

instance, in the calcite section of this project, tips were modified with calcite crystals by 

growing crystals on the tip and by attaching them to the cantilever. Both methods were 

seemingly more relevant to scaling compared to unmodified tips. And although calcite 

surfaces themselves are homogeneous, their orientation on the cantilever was not always 

easy to control, while their surface topography was not always uniform, leading to 

differences in contact area on different substrates. Furthermore, the Ra of substrate 

materials ranged from 10 to 280 nm, which exacerbated problems with regard to contact 

area.  

 

There were also fundamental differences between the rapid scaling experiments and force 

measurements, which have already been discussed in detail. For these reasons, force 

measurements with calcite-modified tips did not give the expected linear correspondence 

with scaling rate experiments, because some materials were more sensitive to surface 

forces than others. Therefore, materials had to be grouped into their Ra values. For 

instance, from the force-sensitive (low Ra) materials, Graphit-iC and Dymon-iC were 

least adhesive whilst PTFE and copper were most adhesive to calcite probes. 

Unsurprisingly, high Ra substrates such as RF steel, SB steel and used copper gave 

greater scaling rates, although force measurements with calcite tips did not necessarily 

show them as highly adhesive. This was effectively because contact area with calcite 
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probes did not recreate many of the interlocking effects that are present when rough 

surfaces scale during the induction period (Keysar et al., 1994). Other reasons may be 

because the calcite crystal size in asperities of scaled substrates may be different to those 

used on calcite probes. 

 

In the NOM chapter of this project, chemically-adsorbed probes were used to study 

interactions between charged and uncharged surfaces with adsorbed NOM polyanions. 

This was central to understanding the interactions between NOM polyanions, differences 

between NOM sources, and how this may be used to optimize coagulation performance 

during NOM removal. These probes were more analogous to unmodified tips by virtue of 

their contact area but exhibited a different surface charge and surface chemistry. As PLL 

was opposite in sign to NOM polyanions, electrostatic forces dominated adhesion to 

NOM polyanions, with PLL having a preference for HAF and FAF. This was in contrast 

to unmodified tips, which gave a preference for HPIA polyanions. The cationic charge on 

the tip was maintained because the tips were repulsive to PLL surfaces in ultrapure water. 

Force measurements with PLL tips were not performed on PLL in between sample 

changes which may give a better indication of the robustness of the PLL layer. The 

quality of the PLL layer and its preference for FAF which have been shown to impart the 

negative surface charge, also means PLL or similar polycations may in future be used as 

a bridging flocculant for the removal of FAF from drinking water (Fellows and Doherty, 

2006). 

 

Because not all fouling particles in water treatment systems, whether crystalline or 

heterogeneous, are of well-defined geometry, topography and/or surface chemistry, AFM 

tips modified with such particles can still be shown to be of great value. This has been 

demonstrated both in the literature (Finot et al., 2001 and Plaschke et al., 2000), and in 

the present study. In this study tips modified with calcite and polymers such as organic 

matter or other polyelectrolyte, gave contrasting force profiles that were unique to their 

colloidal size and surface chemistry. Although the scale of their interactions were 

different, both methods of modification were shown to be effective in screening host 
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materials with varying surface chemistry, and can successfully be applied in numerous 

diagnostic or screening applications. NOM-coated or polymer-coated tips in particular 

were shown to be highly specific due to the intermolecular pulling events, and have been 

shown to recreate some of the colloidal interactions that take place in NOM coagulation 

processes. As a result, there is no doubt tips modified with heterogeneous particles can be 

used as a platform to understand adhesion phenomena that will enhance the ability to 

predict the behaviour of foulants in the environment. 
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Chapter 7  Conclusions 

The main conclusions drawn from the work presented here are: 

 

1. Fundamental differences between bench-scale scaling experiments and 

AFM force measurements dictate whether the induction period and/or 

fouling period of the scaling process can be assessed. The surface-sensitive 

AFM was applicable primarily to the induction period of scaling, where 

surface properties control the rate of nucleation and growth of the deposit. 

This enables the screening of materials by assessing the induction period of 

inorganic scaling, by measuring the adhesion strength of foulants to a range of 

surfaces. In contrast, conventional scaling experiments observe the scaling 

process as a whole, due to difficulties in knowing when the induction period 

ends and the fouling period commences. 

 

2. A noticeable correlation between the theoretical work of adhesion (W132) 

from sextet and triplet methods and macroscale scaling rate experiments 

was obtained with materials giving an Ra below 50 nm and a scaling rate 

of less than 10 g CaCO3 m
-2. h-1

. It was deduced that materials that have a Ra 

of above 50 nm were likely to scale at a greater rate due to surface asperities, 

whereas surface force effects will dominate with materials with a Ra below 50 

nm. Hence, for materials that gave a scaling rate above 10 g CaCO3 m
-2

. h
-1

, 

surface roughness was the driving force enhancing calcite adhesion.  

 

3. Calcite-probe modification did not correlate with macroscale scaling rate 

experiments but unmodified tips showed some correlation for group II 

materials (amorphous carbon coatings, Ti�, aluminium, PTFE and ‘k. 

coating’) only. The material ranking of adhesion force was modified when the 
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quality of the calcite probe was systematically changed. For instance, rough 

calcite probes were adhesive to RF steel and atomically-flat calcite probes 

were less adhesive to rough substrate materials. However, the unmodified tips 

proved more effective but were limited to group II materials only. However, 

contact angles and W132 remain the most appropriate method. 

 

4. Theoretical adhesion calculations with the roughness model (Rabinovich 

et al., 2000a, b) underestimated force measurements to group I (MF steel, 

RF steel, SB steel, both gold samples and both copper samples) materials 

but showed excellent agreement to group II (amorphous carbon coatings, 

Ti�, aluminium, PTFE and ‘k. coating’) materials using silicon as the 

adhesive. The magnitude of adhesion force was accurate to the nearest 0.1 nN 

for group II materials but estimated smaller forces for the group I materials by 

at least an order of magnitude. Furthermore, the roughness model did not 

calculate an increase in adhesion force with increased surface roughness, 

indicating the model can be applied where the interacting system is a sphere-

flat surface with nanoscale roughness. Therefore, the roughness model could 

not be applied to a tip-asperity interaction, where the asperity is either a peak 

or a valley. 

 

5. The origin of repulsive forces on Dymon-iC and Graphit-iC materials was 

due to hydrophilic repulsion while enhanced adhesion was caused by 

hydrophobic attraction. Adhesion forces were significantly reduced on 

Dymon-iC and Graphit-iC with modified and unmodified tips and both 

materials were the most hydrophilic from water contact angle measurements. 

The ratio of γ
-
/γ

+
 of both amorphous carbon coatings materials and calcite was 

similar, resulting in electrostatic repulsion. PTFE and copper, both of which 

gave Ra values below 50 nm, gave water contact angles > 70°. Acidic sites on 

PTFE and copper were also found to enhance adhesion because calcite was 

basic. 
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In the second part of study, the following conclusions can be drawn: 

 

6. NOM characterization with unmodified tips provided the following 

information: 

 

a. Detachment events with silica tips were longer on HPIA polyanions 

from Penwhirn and both feeders, while both Albert samples were 

adhesive to hydrophobic polyanions. HPIA polyanions from Penwhirn 

were also more hydrophilic. Generally, FAF from hydrophobic polymers 

gave fewer adhesion events, which indicates they were less adhesive to the 

predominantly SiO
2-

 charged tip, and electrostatic forces dominated. 

 

7. NOM characterization with modified tips provided the following information. 

a. Using PLL-coated tips, electrostatic forces also dominated 

interactions with �OM polyanions, with PLL having a preference for 

HAF and FAF. This was in contrast to unmodified tips, which gave a 

preference for HPIA polyanions. The cationic charge on the tip was 

maintained because the tips were repulsive to PLL surfaces in ultrapure 

water. PLL tips also gave distinct attractive forces that varied between 

sources. This approach could be used for identifying molecular size of all 

polyanions, as the poly-l-lysine tips were able to distinguish between HAF 

and FAF polyanions from Widdop and Penwhirn water reservoirs. 

b. In symmetric �OM-�OM systems, HPIA-HPIA dominated both 

adhesion and detachment lengths, while FAF-FAF and HAF-HAF 

gave similar adhesion profiles. The hydrophilicity of HPIA may have 

promoted a branched configuration because terminal groups had a greater 

affinity for water according to contact angle measurements. It is thought 

these intermolecular interactions can be transferred to floc size 

experiments, where HPIA flocs were biggest and FAF flocs were smallest. 

In non-symmetric systems adhesion between FAF-NOM was 
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indiscriminate, compared to HAF and HPIA polyanions. These findings 

suggest FAF polyanions were most likely to control coagulation 

performance during NOM removal, because of its inherent ability to attach 

to both hydrophilic and hydrophobic groups. 

c. Glycine-coated tips did not show any significant difference between 

interactions with �OM polyanions, and so are poor quality model 

compounds. The uncharged NH2 terminals also gave similar adhesive and 

polymer-pulling interactions with PLL, indicating the probe gave no 

overall preference for polyanionic or polycationic surfaces. 

d. Like glycine-coated tips, the uncharged XAD resins also gave no 

overall preference for �OM polyanions. Of the resin-modified probes 

the MIEX® resins provided the most robust data set having a preference 

for FAF, and correlated with macroscale NOM removal experiments. 

Adhesion forces were less specific and the reproducibility was poor with 

significant fluctuation between successive probes. As a result, NOM-

coated AFM tips provide the most detailed information regarding a 

fraction’s surface character and potential reactivity with other surfaces. 

However, FAF-coated resins did confirm the reactivity of the FAF fraction 

demonstrating equal adhesion to all the fractions, while HAF and HPIA 

showed preference for themselves. 
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Chapter 8   Future Work 

 

During this research project, it was not always feasible to investigate all ideas or options 

thoroughly, and so a number of suggestions for further research are made: 

 

1. Further investigation on the size of calcite crystals deposited on high and low Ra 

substrates during scaling experiments, so that any difference in crystal size can be 

transferred to force measurements. 

2. Use the contact angle hysteresis approach on substrate materials so that the 

surface free energy values can be compared to those obtained in this project.  

3. Perform force measurements using calcite-modified tips on substrates at elevated 

temperatures, so that these findings may be compared to scaling experiments. 

4. Develop a method of preparing calcite probes so that a monolayer of calcite is 

grown on the AFM tip. These results can provide direct comparison to 

unmodified tips due to similar contact areas. 

5. Perform zeta potential measurements of individual NOM fractions so that 

differences in adhesion and pull-off length can be related to surface charge of 

polyanions. 

6. Perform force measurements on NOM polyanions in the presence of electrolyte, 

and optionally in the presence of coagulants. 

7. Perform imaging of immobilized NOM polyanions using AFM tapping mode, so 

that adsorbed polyanions can be compared to the literature and possibly perform 

force measurements on know locations of the polyanion.  
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Appendix A 
 
\*Force file list 

\Version: 0x04420004 

\Date: 09:38:45 PM Sun Mar 05 2006 

\Start context: FOL 

\Data length: 20480 

\Text:  

\History:  

\Navigator note:  

\*Equipment list 

\Description: Extended D3000 

\Controller: IIIA 

\Microscope: D3000 

\Extender: Basic 

\Serial stage: Yes 

\Vision: None 

\Scanner file: xydmmsg1.scn 

\Profile name: tapping 

\Motor sensitivity: 400 

\Analog 2: User defined 

\*Scanner list 

\Scanner type: Dimension 

\Piezo size: G 

\File name: xydmmsg1.scn 

\Motor direction: Reverse 

\Allow rotation: Allow 

\Piezo cal: 440 

\X sensitivity: 151.906 

\X derate: 0.258557 

\X mag: 1.5 

\X mag1: 0.8 

\X arg: 3.5 

\X round: 0 

\Y sensitivity: 166.673 

\Y derate: 0.338919 

\Y mag: 1.6 

\Y mag1: 1 

\Y arg: 3.5 

\X slow sensitivity: 172.976 

\X slow derate: 0.298243 

\Y fast sensitivity: 152.53 

\Y fast derate: 0.254392 

\X slow-fast coupling: 0.63592 

\X slow-fast coupling derating: 0.000677825 

\Y slow-fast coupling: 0.661592 

\Y slow-fast coupling derating: 0.000732552 

\Fast cal freq: 0.500288 

\Slow cal freq: 0.488563 

\Xs-Yf coupling: 0.131619 

\Xs-Yf coupling derating: 0.000162896 

\Ys-Xf coupling: 0.144045 

\Ys-Xf coupling derating: 0.000201102 

\X offset sens: 280 

\Y offset sens: 280 

\Bias derate: 0 

\@Sens. Zscan: V 15.00000 nm/V 

\@Sens. Current: V 10.00000 nA/V 

\*Ciao scan list 

\Parameter select: Main 

\Operating mode: Force 

\Tip serial number:  

\Scan size: 0 nm 

\X offset: 0 nm 

\Y offset: 0 nm 

\Rotate Ang.: 0 

\Samps/line: 512 

\Lines: 512 

\Y disable: Enabled 

\Aspect ratio: 1:1 

\Bidirectional scan: Disabled 

\Scan line shift: 0 

\Scan rate: 1.00058 

\Tip velocity: 0 

\Minimum scan rate: 0.02 

\Lift rate: 4 

\X drift: 0 

\Y drift: 0 

\Step XY size: 300 

\Cycles: 10 

\Step XY period: 0.005 

\Step size: 3 

\Units: Metric 

\Color table: 12 

\Scope dualtrace: Dual 

\Auto X Sep: 0 

\Auto Y Sep: 0 

\Auto pattern: Linear 

\Auto number: 2 

\Capture direction: Up 

\Capture prelines: 50 

\Engage Setpoint: 1 
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\Drive feedback: Disabled 

\Drive time: 5 

\Drive setpoint: 2 

\Drive gain: 3.82821 

\Profiler profiling: Disabled 

\Profiler length goal: 500 

\Profiler length actual: 0.001 

\Profiler speed: 1 

\Profiler scan time: 0.001 

\Profiler resolution: 0.001 

\Profiler x position: 0 

\Profiler y position: 0 

\Profiler profiler position: 0 

\Profiler direction: Forward 

\Profiler axis: Aux 

\Profiler ramp-up ideal-distance multiplier: 25 

\Profiler ramp-up total-distance minimum: 2 

\Profiler ramp-up total-distance goal: 10 

\Profiler backlash-removal distance: 10 

\Profiler backlash-removal speed: 33 

\Gain start: 32 

\Gain end: 440 

\Gain incr: 1.6 

\Pro. Gain factor: 1.5 

\Max shift: 0.02 

\Lines/gain: 8 

\Gain offset: 0.95 

\Auto Gain: Disabled 

\@InterleaveList: S [InterleaveOffMode] 

"Disabled" 

\@LinearizeList: S [LinearizeOffMode] 

"modeLinearizeOff" 

\@OxideList: S [OxideOffMode] "Open" 

\@MicroscopeList: S [AFMMode] "Contact" 

\@4:SPMFeedbackList: S [SPMFb] "Deflection" 

\@3:SPMFeedbackList: S [SPMFb] "Deflection" 

linked 

\@2:Input feedback: S [] "" 

\@3:Input feedback: S [] "" 

\@Sens. Deflection: V 254.2875 nm/V 

\@Sens. Friction: V 1.000000  

\@Sens. Amplitude: V 1.000000  

\@Sens. Phase: V 1.000000  

\@Sens. Frequency: V 1.000000  

\@Sens. Potential: V 1.000000  

\@Sens. dC/dV: V 1.000000  

\@Sens. Fdback bias: V 1.000000  

\@Sens. In 0: V 1.000000  

\@Sens. Thermal: V 1.000000  

\@Sample period: V (0.1000000 us/LSB) 16.00000 

us 

\@1:Z limit: V [Sens. Zscan] (0.006713867 V/LSB) 

200.0000 V 

\@1:DeflectionLimit: V (20.00000 V/LSB) 

2.500000 V 

\@1:FM igain: V (1.000000 1/LSB)       0  

\@1:FM pgain: V (1.000000 1/LSB)       0  

\@1:AmplitudeLimit: V (20.00000 V/LSB) 

2.500000 V 

\@Lift start height: V [Sens. Zscan] (0.0008136220 

V/LSB) 0.09248047 V 

\@Lift scan height: V [Sens. Zscan] (0.0008136220 

V/LSB) 1.330190 V 

\@Drive height: V [Sens. Zscan] (0.0008136220 

V/LSB)       0 V 

\@2:AFMSetDeflection: V (0.0003051758 V/LSB) 

-0.05000000 V 

\@3:AFMSetDeflection: V (0.0003051758 V/LSB) 

1.000000 V linked 

\@2:TMSetAmplitude: V (0.0003051758 V/LSB) 

2.100695 V 

\@3:TMSetAmplitude: V (0.0003051758 V/LSB) 

2.000000 V linked 

\@2:TMSetDeflection: V (0.0003051758 V/LSB)       

0 V 

\@3:TMSetDeflection: V (0.0003051758 V/LSB) 

1.000000 V linked 

\@2:TMSetPhase: V (0.005493164 deg/LSB) -

0.4445068 deg 

\@3:TMSetPhase: V (0.005493164 deg/LSB)       0 

deg 

\@2:STMSetCurrent: V [Sens. Current] 

(0.0003051758 V/LSB) 0.5000000 V 

\@3:STMSetCurrent: V [Sens. Current] 

(0.0003051758 V/LSB) 10.00000 V 

\@2:cnZmod: V (0.0000152588 1/LSB)       0  

\@3:cnZmod: V (0.0000152588 1/LSB)       0  

linked 

\@2:SPMFbIgain: V (0.03125000 1/LSB) 3.250000  

\@3:SPMFbIgain: V (0.03125000 1/LSB) 2.000000  

linked 

\@2:SPMFbPgain: V (0.03125000 1/LSB) 

3.750000  

\@3:SPMFbPgain: V (0.03125000 1/LSB) 

4.000000  linked 

\@2:SPMFbSgain: V (0.0000305176 1/LSB)       0  

\@3:SPMFbSgain: V (0.0000305176 1/LSB)       0  

linked 

\@2:Drive frequency: V (0.0000058208 kHz/LSB) 

284.5195 kHz 

\@3:Drive frequency: V (0.0000058208 kHz/LSB) 

74.43070 kHz 

\@2:Drive phase: V (0.005493164 deg/LSB) -

32.89856 deg 

\@3:Drive phase: V (0.005493164 deg/LSB)       0 

deg 
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\@2:Lock-in phase: V (0.005493164 deg/LSB) 

90.00000 deg 

\@3:Lock-in phase: V (0.005493164 deg/LSB) 

90.00000 deg 

\@2:Drive amplitude: V (0.6103516 mV/LSB) 

561.1986 mV 

\@3:Drive amplitude: V (0.6103516 mV/LSB) 

988.1962 mV 

\@2:Stray cap adj: V (0.0003051758 V/LSB)       0 

V 

\@3:Stray cap adj: V (0.0003051758 V/LSB)       0 

V 

\@2:AC bias ampl: V (0.0003051758 V/LSB)       0 

V 

\@3:AC bias ampl: V (0.0003051758 V/LSB)       0 

V 

\@2:Fdback bias setpt: V (0.0003051758 V/LSB)       

0 V 

\@3:Fdback bias setpt: V (0.0003051758 V/LSB)       

0 V 

\@2:Bias Frequency: V (0.0000058208 kHz/LSB)       

0 kHz 

\@3:Bias Frequency: V (0.0000058208 kHz/LSB)       

0 kHz 

\@2:DC bias: V (0.0003662109 V/LSB)       0 V 

\@3:DC bias: V (0.0003662109 V/LSB)       0 V 

\@2:Bias: V (0.3051758 mV/LSB) 500.0000 mV 

\@3:Bias: V (0.3051758 mV/LSB)       0 mV 

\@2:Analog 1: V (0.0003051758 V/LSB)       0 V 

\@3:Analog 1: V (0.0003051758 V/LSB)       0 V 

\@2:Analog 2: V (0.0003662109 V/LSB)       0 V 

\@3:Analog 2: V (0.0003662109 V/LSB)       0 V 

\*Ciao force list 

\Scan rate: 1.99298 

\Reverse rate: 1.99298 

\Samps/line: 256 194 

\Ave lines: 1 

\Display mode: Both 

\Trigger mode: Absolute 

\Trig slope: Positive 

\Plot start: 0 

\Plot end: 1 

\Auto start: Enable 

\Auto offset: Enabled 

\Start mode: Calibrate 

\End mode: Retracted 

\Ramp delay: 0 

\Reverse delay: 0 

\Indent setpoint: -1 

\X Rotate: 0.8 

\Scratch length: 100 nm 

\Scratch rate: 1 

 

\Scratch angle: 0 

\Size linked: Off 

\Lift height: 100 

\Columns: 1 

\Rows: 1 

\Column step: 0 

\Row step: 0 

\Capture: Enabled 

\Tip factor: 0 

\True resonance: 286.471 

\Tip type: User 1 

\Feedback type: None 

\Feedback counts: 0 

\@Z scan start: V [Sens. Zscan] (0.006713867 

V/LSB) -26.23724 V 

\@Z scan size: V [Sens. Zscan] (0.006713867 

V/LSB) 15.03758 V 

\@Z step size: V [Sens. Zscan] (0.006713867 

V/LSB) 0.01000000 V 

\@Sample period: V (0.1000000 us/LSB) 35.00000 

us 

\@4:Image Data: S [Deflection] "Deflection" 

\@4:Trig threshold Deflection: V [Sens. Deflection] 

(0.0000381470 V/LSB)       0 V 

\@4:Threshold step Deflection: V [Sens. 

Deflection] (0.0000381470 V/LSB)       0 V 

\@4:Ramp channel: S [Zsweep] "Z" 

\@4:Ramp size Zsweep: V [Sens. Zscan] 

(0.0008136220 V/LSB) 26.66667 V 

\@4:Ramp offset Zsweep: V [Sens. Zscan] 

(0.0008136220 V/LSB) -4.350245 V 

\@4:Feedback value Zsweep: V [Sens. Zscan] 

(0.0008136220 V/LSB)       0 V 

\*Ciao force image list 

\Data offset: 20480 

\Data length: 1024 

\Bytes/pixel: 2 

\Start context: FOL 

\Data type: FORCE 

\Do zoffder: 0 

\Note:  

\Plane fit: 0 0 0 0 

\Frame direction: Up 

\Stage X: 0 

\Stage Y: 0 

\Stage type: N/A 

\Profile length: 0 

\Profile speed [um/s]: 0 

\Samps/line: 256 194 

\Scan line: Main 

\Realtime planefit: Line 

\Offline planefit: Full 
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\Force display mode: Normal 

\Spring constant: 0 

\Separation Scale: 0 

\Force offset: 0 

\Z magnew force: 1 

\Scope coupling: DC 

\Smoothing filter: 0 

\Graph function: i 

\STS I range: 15000 

\STS DLI/DLV range: 10 

\STS DLI/DV range: 10 

\STS DI/DV range: 10 

\STS Log(i) range: 10 

\@4:Image Data: S [Deflection] "Deflection" 

\@Z magnify: C [4:Z scale] 1.000000  

\@4:Z scale: V [Sens. Deflection] (0.0000381470 

V/LSB) 0.1949472 V 

\@4:Z offset: V [Sens. Deflection] (0.0000381470 

V/LSB) -0.4648680 V 

\@Z scan size: V [Sens. Zscan] (0.006713867 

V/LSB) 15.03758 V 

\@4:Ramp size: V [Sens. Zscan] (0.0008136220 

V/LSB) 26.66667 V 

\@4:Ramp offset: V [Sens. Zscan] (0.0008136220 

V/LSB) -4.350245 V 

\*File list end 

�                                                                                                                    
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Appendix B 
 
% A program to read multiple AFM di Force verus distance curves for 

% analysis of adhesion force - for use with the Cranfield D3000 instrument. 

 

% Load in multiple file names 

 

clear all 

close all 

 

[Filenames,Path] = uigetfiles('*.*','Any text'); 

 

% then get number of files loaded 

 

Diment = size(Filenames); 

 

%input spring constant of cantilever 

k=input ('Enter spring constant of cantilever in (N/m): '); 

 

%setup zero array for force 

 

force_data = zeros(Diment(1,2),1); 

force_peak_total = 0; 

length_peak_total = 0; 

total_count_total = 0; 

 

for run = 1:Diment(1,2) 

 

total_counts = 0     

     

Filename = char(Filenames(1,run)); 

     

file = [Path,Filename] 

     

fid=fopen(file,'r'); 

A=fread(fid,'int16'); 

 

%version = input ('specify version of Nanoscope file: (1: ICAL as of feb. 2003, 0: older):   ') 

%                           above line is an optional variation of the program 

%switch version             optional variation 

%case 1                     optional variation 

   

 

frewind(fid);     

for i=1:55 

% goes to \@Sens. Zscan in line 56. Note: 5870/440=13.34== Sens. Zscan 

% 5870 nm is the Max displacement of piezo J, thus this factor converts  

% the piezo displacement from volts to nm 

   line=fgetl(fid); 

 

end    

 

 

   j=findstr(':',line); 
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   Sens_ZScan=str2num(line(j+4:j+11));    

    

frewind(fid);     

for i=1:191 

% goes to \Samps/line (i.e. number of points in force curve) in line 338.  

 

   line=fgetl(fid); 

 

end    

 

 

   j=findstr(':',line); 

   N_points=str2num(line(j+2:j+4));    

 

    

frewind(fid);     

for i=1:229 

   line=fgetl(fid); 

 

end    

 

 

   j=findstr(') ',line); 

   V_Ramp_size=str2num(line(j+1:j+8)); 

    

Zmax=V_Ramp_size*Sens_ZScan;     

 

N=N_points-1; 

 

x=0:Zmax/N:Zmax; 

 

y1=A(10240:10240+N); 

y2=A(10241+N_points:10240+2*N_points); 

 

 

frewind(fid);     

for i=1:266         

     

% goes to line 266, where digital to analog conversion factor ('sensitivity') is given 

% This factor converts the photodiode signal from [LSB units] to [V]. 

 

    line=fgetl(fid); 

 

end    

 

   j=findstr('(',line); 

   Sens_Deflection_AD=str2num(line(j+1:j+12));  

 

 

frewind(fid);     

for i=1:127 

     

% Line above is the V to nm conversion factor ('sensitivity') of photodiode signal    

% It uses the sens. Deflection number given in the graph window of the DI-software. 
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   line=fgetl(fid); 

 

end    

 

 

   j=findstr(':',line); 

   Sens_Deflection=str2num(line(j+4:j+12));  

 

 

Def_ext=y1*Sens_Deflection_AD*Sens_Deflection;      %Deflection extend 

Def_ret=y2*Sens_Deflection_AD*Sens_Deflection;      %Deflection retract 

 

    Def_ext=Def_ext - Def_ext(N_points);   %Def_ext offset to have zero def at start of curve 

    Def_ret = Def_ret - Def_ret(N_points); %Def_ret offset to have zero def at start of curve 

 

%removing slope from Def_ext and Def_ret 

array = (1:N_points); 

x_re = reshape(x,N_points,1); 

x_re_sl = (N_points-70:N_points); 

x_re_sl = reshape(x_re_sl,71,1); 

 

Def_ret_sl = Def_ret(N_points-70:N_points); 

ret_slope = polyfit(x_re_sl,Def_ret_sl,1); 

 

ret_slope_fit = ret_slope(1,2) + ret_slope(1,1)*array; 

ret_slope_fit_b = reshape(ret_slope_fit,N_points,1); 

 

Def_ret_new = Def_ret - ret_slope_fit_b; 

Def_ext_new = Def_ext - ret_slope_fit_b; 

 

F_ext=k*Def_ext_new*1000; 

F_ret=k*Def_ret_new*1000; 

 

F_ret_min = min(F_ret); 

F_ext_min = min(F_ext); 

 

force_data_ret(run,1)=F_ret_min; 

force_date_ext(run,1)=F_ext_min; 

 

 

% Add peak indentification 

 

% First identify noise level from the last 50 data points on the retract 

% curve. 

 

noise_level = 2*(max(F_ret(N_points-50:N_points)) - min(F_ret(N_points-50:N_points))); 

% Find jump points 

posit = 0 

 

for i=1:N_points-1 

    if F_ret(i+1,1)-F_ret(i,1) > noise_level 

        total_counts = total_counts+1 

        posit(total_counts,1) = i 
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        if total_counts > 1 

            if posit(total_counts,1) - posit(total_counts-1,1) < 4 

                total_counts = total_counts-1 

            end 

        end 

    end 

end 

 

if total_counts>1 

     

if posit(end,1)-posit(end-1,1) < 4 

    posit(end,1) = NaN 

end 

end 

 

no_of_peaks(run,1) = total_counts 

 

% determining ideal curve 

 

array = (1:N_points); 

zero_point = find(F_ret<0); 

ideal_curve_data_y = F_ret(1:30); 

ideal_curve_data_x = (1:30); 

ideal_curve_data_x = reshape(ideal_curve_data_x,30,1); 

 

ideal_curve_parameters = polyfit(ideal_curve_data_x,ideal_curve_data_y,1); 

 

ideal_curve = ideal_curve_parameters(1,2) + ideal_curve_parameters(1,1)*array; 

 

figure  

 

plot(x,F_ext,'-b',x,F_ret,'-r',x,F_ret_min,'-g',x,F_ext_min,'-m',x,ideal_curve,'-g','LineWidth',2); 

 

hold on 

force_peak = 0; 

length_peak = 0; 

 

if total_counts >0 

     

for j = 1:total_counts 

    x_j = x(posit(j,1)); 

    F_ret_j = F_ret(posit(j,1)); 

    plot(x_j,F_ret_j,'ko') 

    %measuring force 

    force_peak(j,1) = F_ret_j; 

    %measuring length 

    length_ideal = find(ideal_curve<F_ret_j); 

    length_peak(j,1) = x_j-x(length_ideal(1,1)); 

end 

end 

 

hold off 

 

grid on 
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xlabel('PIEZO DISPLACEMENT (nm)'); 

 

ylabel('FORCE (pN)'); 

 

x_corr = (0.25*max(x)/2); 

y_corr = (max(F_ret)); 

y_corr_2 = 0.8*y_corr; 

 

text(x_corr,y_corr,['Adhesion Force (pN) =', num2str(F_ret_min)]); 

text(x_corr,y_corr_2,['filename  ', Filename]); 

 

if total_counts > 0 

force_peak_total = [force_peak_total;force_peak]; 

length_peak_total = [length_peak_total;length_peak]; 

total_count_total = [total_count_total;total_counts]; 

end 

end 

 

no_of_bars_force = ceil((max(-1*force_peak_total))/200); 

no_of_bars_length = ceil((max(length_peak_total))/20); 

no_of_bars_count = max(total_count_total)+1; 

 

force_hist_raw =  hist(force_peak_total,no_of_bars_force); 

length_hist_raw = hist(length_peak_total,no_of_bars_length); 

counts_hist_raw = hist(total_count_total,no_of_bars_count); 

 

figure 

 

subplot(2,2,1), plot(length_peak_total,force_peak_total,'ro') 

xlabel('length / nm') 

ylabel('force / pN') 

 

subplot(2,2,2), hist(force_peak_total,no_of_bars_force) 

xlabel('force / pN') 

ylabel('no of events') 

 

subplot(2,2,3), hist(length_peak_total,no_of_bars_length) 

xlabel('length / nm') 

ylabel('no of events') 

 

subplot(2,2,4), hist(total_count_total,no_of_bars_count) 

xlabel('events per curve') 

 

length_peak_sort = sort(length_peak_total); 

total_count_sort = sort(total_count_total); 
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Appendix C 
 

RF steel 

 
Z – 2000 nm 

SB steel 

 
Z = 2000 nm 

 


