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Robust reinforcement learning (RL) aims to develop algorithms that can effectively handle 

uncertainties and disturbances in the environment. Model-free methods play a crucial role in 

addressing these challenges by directly learning optimal policies without relying on a pre-

existing model of the environment. This abstract provides an overview of model-free methods 

in robust RL, highlighting their key features, advantages, and recent advancements. Firstly, 

we discuss the fundamental concepts of RL and its challenges in uncertain environments. We 

then delve into model-free methods, which operate by interacting with the environment and 

collecting data to learn an optimal policy. These methods typically utilize value-based or 

policy-based approaches to estimate the optimal action-value function or the policy directly, 

respectively. To enhance robustness, model-free methods often incorporate techniques such 

as exploration-exploitation strategies, experience replay, and reward shaping. Exploration-

exploitation strategies facilitate the exploration of uncertain regions of the environment, 

enabling the discovery of more robust policies. Experience replay helps improve sample 

efficiency by reusing past experiences, allowing the agent to learn from a diverse set of 

situations. Reward shaping techniques provide additional guidance to the RL agent, enabling 

it to focus on relevant features of the environment and mitigate potential uncertainties. In 

this paper, a robust reinforcement learning methodology is adapted utilising a novel 

Adversarial Proximal Policy Optimisation (A-PPO) method integrating an Adaptive KL 

penalty PPO. Comparison is made with DQN, DDQN and a conventional PPO algorithm. 

Keywords — model-free, Airsim/Unreal Engine, robust reinforcement learning (RL), robust 

optimization 

I. INTRODUCTION 

Reinforcement learning (RL) is focused on enhancing an agent's actions based on the rewards received from its 

interaction with the environment. The trained agent takes actions, receives rewards from the environment, and 

adjusts its policy accordingly. By continuously interacting with the simulated environment, the agent can 

autonomously learn the optimal policy that maximizes cumulative rewards. RL utilizes the Markov Decision 

Process (MDP) framework to solve the current problem and find an optimal policy. MDP determines the 

probabilities of transitioning between states, which are often estimated using state-transition probabilities. However, 

estimating these probabilities can introduce inaccuracies that may limit the application of MDP in new environments 

or when the model deteriorates. To address this, the use of finite states and actions becomes crucial in decision-

making, considering uncertainties within the state transition probability matrix. An example of a challenge in 

applying reinforcement learning is using drones for various tasks. 

 

The AI research community has shown considerable interest in investigating the vulnerabilities of deep 

reinforcement learning, particularly in light of recent successes in accomplishing diverse robust multi-agent learning 

tasks. While existing work often relies on the traditional adversarial learning framework, which makes strong 

assumptions about the adversary's capabilities, this may not be practical in real-world domains like autonomous 

driving. Assumptions that attackers can easily manipulate input images or interfere with the learning process of 

victim agents may not hold. [1] 
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While attacks involving manipulation of the environment have proven effective in causing a well-trained agent to 

fail at a given task, these attacks are often impractical in real-world scenarios.[2] For instance, in online video 

games, a pre-trained master agent receives input in the form of snapshots of current game scenes. It is challenging 

for attackers to breach game servers, secure permission to manipulate the environment, influence specific pixels in 

the input image, and subsequently launch an expected adversarial attack. Consequently, a novel method has been 

proposed in recent research to attack a proficiently trained agent. [3] 

Unlike attacks relying on environment manipulation, this new approach is tailored for two-agent competitive games, 

where two participant agents vie against each other.  The objective of this attack is to thwart one well-trained agent 

in the game by manipulating the behaviours of the other. Compared to methods involving environment 

manipulation, this novel attack on reinforcement learning is deemed more practical. To exploit the vulnerability of 

the victim agent, this attack does not assume complete control over the environment or observation of the victim 

agent. Instead, it relies on only the free access of the adversarial agent.[4] 

 

Contributions 

While previous research has primarily focused on static obstacles, the objective of this study is to conduct a thorough 

comparison of four distinct reinforcement learning (RL) algorithms—DDQN, A - PPO, and Td3(PPO)—for 

navigating both static and dynamic obstacles. Each algorithm possesses unique characteristics: DQN utilizes Q-

learning and discrete action spaces for RL, A -PPO employs continuous action spaces for RL, and PPO is an on-

policy, policy gradient RL method that also operates with continuous action spaces. The research was conducted 

within a simulated environment provided by AirSim, utilizing Unreal Engine 4 to create diverse training and testing 

environments. The novelty of this study lies in its comprehensive analysis, providing valuable insights into the 

strengths and weaknesses of different RL techniques.  Thus, in this paper, we introduce the first data-efficient, 

robust, model-free RL method-based reinforcement learning policy.  

 

In particular, these are our contributions: 

• We design a new proposed black-box attack training that trains an adversarial agent to exploit the protagonist 

agent in an effective and efficient fashion.  

• Demonstrate a baseline method of PPO to compare with the SA-PPO in a robustness demanding scenario. 

• We compare different model-free methods to the developed model-free method. 

• We show how our approach outperforms non-robust policy and the relative model-free methodologies.  

 

Related Work  

 

A. Robustness Control 

Recently, [5] the concept of robustness has risen significant interest in scenarios driven by data, leading to the 

emergence of robust, model-free reinforcement learning (RL). Robust reinforcement learning (RL) has been the 

subject of investigation from various angles due to the potential presence of uncertainty in each element of RL, 

including observations, actions, transition dynamics, and rewards. One approach in robust RL is the Robust Markov 

decision process (RMDP) [6], which considers the worst-case perturbations in transition probabilities. This concept 

has been further expanded to encompass distributional settings and partially observed MDPs. Robust Markov 

decision processes examine the RL problem in situations where the transition model is affected by recognized and 

limited uncertainties. Parametric uncertainties are often considered, predominantly in the context of model-free 

approaches. Consequently, it is crucial to incorporate these uncertainties into a reinforcement learning agent's 

formulation in order to attain a more resilient dynamic system. 

B. Backgrund on Adversarial Attacks 

   Adversarial attacks have their origin in Adversarial Example attacks to supervised classification systems. Let 𝑥 

be an input and 𝑓 be a classifier model. An Adversarial Example to 𝑓 can be crafted through solving the following 

optimization problem: 

 

min
𝛿

𝑑(𝑥, 𝑥 + 𝛿)                                                                       𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑓(𝑥)𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑒𝑞𝑢𝑎𝑙 𝑓(𝑥 + 𝛿 ) 
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where 𝑑 is a similarity metric. The goal is to look for a minimal perturbation, 𝛿, of an input, 𝑥, that can change the 

class assignment of 𝑓. An adversarial attack is considered a success if it makes the 𝑓 outputs any wrong class. 

According to the different stages of the target model 𝑓, the attacks can be divided into two categories: attacks in the 

training stage, and attacks in the testing/deploying stage, depending on whether the attacks are performed during or 

after the learning of the model 𝑓 [7]. However, in this paper we only focus on attacks in the deployment stage. In 

this stage, adversarial attacks can be divided into white-box attacks and black-box attacks:  

•  White-box attacks: In white-box attacks, the adversaries have total knowledge about the target model 𝑓, 

including algorithm train, data distribution, model parameters. Given a benign input, the attacker can 

compute adversarial examples as an optimization algorithm. The accessing of the model’s internal data for 

white-box attacks corresponds to a strong adversarial capability, but such amount of knowledge of the 

victim’s model is unrealistic in real world applications. 

•  Black-box attacks: they assume a more realistic threat model, where the adversaries have no knowledge 

about target model 𝑓 the adversary is restricted from interacting with 𝑓 via queries and classification 

outputs. It uses this information about input/output pairs to analyse the model’s vulnerability. Although 

most of the attacks are formulated to mislead a classifier in supervised learning, the same principles apply 

in the context of RL. Instead of misleading the classifier 𝑓 to produce a different label prediction for a given 

input 𝑥, the aim is misleading the policy 𝜋 to produce a different action 𝑎 for a given observation 𝑠. In a RL 

context, the adversary attacks a victim trained by a RL algorithm by perturbing the observations to make it 

take non-preferred actions that can result in reduction of the accumulated future rewards. 

 

 

Gaining insight into models is often impractical in numerous real-world applications due to concerns related to 

intellectual property (IP) and support issues. In contrast, black box attacks don't necessitate comprehensive visibility 

into the models but encounter inefficiency and demand an excessive number of queries to generate an adversarial 

sample capable of compromising the evaluated model. In our study, the adversary's objective is to use a 

Reinforcement Learning (RL) agent, with a different training workflow that can learn a policy to make an adversarial 

attack with fewer queries and with a good success rate while maintaining other metrics like distortion at a minimum. 

To accomplish this, we focus on a limited adversary that only has access to the output of the deep neural network 

(DNN). The adversary lacks knowledge about the architectural decisions underlying the DNN, such as the number, 

type, and size of layers, as well as the training data employed to establish the DNN's parameters. These attacks fall 

into the category of black box attacks, wherein adversaries do not require familiarity with the internal specifics of 

a system to undermine its functionality. 

 

C. Robust Policy Optimization 

Most of the research in reinforcement learning (RL) primarily emphasizes its application in competitive games 

rather than focusing on robustness. Nevertheless, the RL framework is equally applicable to robust RL. The key 

distinction lies in the formulation of the opposing player, commonly referred to as the adversary. By incorporating 

strategies to handle uncertainty and disturbances through the adversary, it becomes possible to develop robust agents 

[8]. Introducing adversarial reinforcement learning, which operates on the concept of minimizing the maximum 

potential loss, enables us to address this aspect of robustness. 

 

Our goal is to learn the policy of the RL agent (protagonist) denoted by, 𝜋, such that it has higher reward and better 

robust (generalizes better to variations in test settings). [9] In the standard reinforcement learning setting, for a given 

transition function 𝒫 we can learn policy parameters 𝜃𝜋 such that the expected reward is maximized. 

𝜌(𝜋; 𝜃𝜋, 𝒫) = 𝔼 [∑𝛾𝑡𝑟(𝑠𝑡 , 𝐴𝑡)|𝑠0, 𝜋, 𝒫

𝑇

𝑡=0

] (1) 

In standard-RL settings, the transition function is fixed (since the physics engine and parameters such as mass, 

friction is fixed). However, in our setting, we assume that the transition function will have modeling errors and that 

there will be differences between training and test conditions. Therefore, in our general setting, we should estimate 

policy parameters θ µ such that we maximize the expected reward over different possible transition functions as 

well. 

𝜌(𝜋; 𝜃𝜋) =
𝔼

𝒫
[𝔼 [∑𝛾𝑡𝑟(𝑠𝑡 , 𝐴𝑡)|𝑠0, 𝜋, 𝒫

𝑇

𝑡=0

]]  (2) 



 

II. THE APPROACH TO REINFORCEMENT LEARNING 

The Deep Q-Network (DQN) has demonstrated the ability to be directly trained using raw images, making it a viable 

option for a detect and avoid (DAA) algorithm. However, this architecture tends to overestimate action values and 

requires a lengthy training process to achieve reasonable results. The DQN consists of two networks with identical 

hyperparameters: the evaluation network, which approximates the action value function using 𝑄(𝑠, 𝐴; 𝜃) and the 

target network, which employs 𝑄(𝑠, 𝐴; 𝜃−).  To address the overestimation issue, the Q-values are updated using 

the following equations: 

 

𝑄(𝑠, 𝑎) ← 𝑄𝜋(𝑠, 𝐴) + 𝛼[𝑅𝑡+1 + 𝛾𝑄(𝑠′, 𝐴′) − 𝑄(𝑠, 𝐴) ] (3) 

𝑎 = max
a′

𝑄(𝑠′, 𝐴′) (4) 

𝑞𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 = 𝑄′(𝑠′, 𝐴) (5) 

In traditional DQN, a single stream of fully connected layers is utilized to estimate the 𝑄-value for each action-state 

pair after the convolution layers. However, the dueling network approach introduces two separate streams of fully 

connected layers to compute the value and advantage functions independently [10]. Another variation, known as 

double DQN (DDQN), employs two different Deep Neural Networks: The Deep 𝑄-Network (DQN) and the target 

network, 𝑄𝑡𝑛𝑒𝑡. 

 

𝑄𝑞𝑛𝑒𝑡(𝑠, 𝐴) ← 𝑅𝑡+1 + 𝛾𝑄(𝑠′, 𝐴′) (6) 

𝑎 = max
a′

𝑄𝑞𝑛𝑒𝑡(𝑠′, 𝐴′) (7) 

𝑞𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 = 𝑄𝑡𝑛𝑒𝑡
′(𝑠′, 𝐴) 

 
(8) 

The DDQN updates the 𝑄 -values using equations (6) and (7), and 𝑄estimated is obtained using the target network 

as shown in equation (8). By combining the concepts of the duelling network and double DQN, both the value and 

advantage functions are computed separately using two streams of fully connected layers, which are then combined 

to calculate the 𝑄-values [11]. This architecture typically consists of three convolutional layers and three fully 

connected layers. The convolutional layers have specific filter sizes in terms of height, width, and channel, while 

the fully connected layers are part of the duelling architect. 

 

 

Actor-critic structure. The actor-critic reinforcement learning method integrates both value-based and policy-

based techniques [11]. This approach involves two neural networks and an advantage function, 𝐴𝜋𝜃 . The 

advantage function computes the agent's TD Error or Prediction Error. The actor network functions as a policy 

gradient algorithm, selecting actions at each time step. Conversely, the critic network assesses the Q-value or 

offers guidance on adjustments. While the critic network discerns superior or inferior states, the actor utilizes the 

critic's findings to instruct the agent in seeking favourable states and avoiding unfavourable ones. Using an action-

value function 𝑄𝜋𝜃(𝑠, 𝑎), the critic measures how good the action taken is.  

 

Actor-critic diagram overview can be demonstrated as shown in Figure 1. The solid lines depict a fundamental 

behavioural sequence in which the actor, guided by the policy, selects an action and executes it in the 

environment. Subsequently, the environment provides a new state and a potentially null reward. The dotted lines 

represent the learning process, involving sending the states at two consecutive time points and the reinforcement 

to the critic. The critic utilizes this information to calculate the TD error, which, in turn, is employed by the critic 

to update 𝑉𝑠𝑡
 and relayed to the actor for policy update. In cases where the critic is founded on state-action pairs, it 

also necessitates actions from times t and t+1 to compute the TD error and update 𝑄(𝑠, 𝑎). 



 

 
Fig. 1: Actor-Critic Structure Layout 

 

[11] Through a policy network 𝜋𝜃, the actor controls how the agent behaves. Utilising both these concepts we can 

reproduce the policy gradient as 

 

𝐴𝜋𝜃(𝑠, 𝑎) = 𝑄𝜋𝜃(𝑠, 𝑎) − 𝑣𝜋𝜃
(𝑠) (9) 

  

where,  𝐴𝜋𝜃(𝑠, 𝑎) represents the advantage function, which measures the difference between the Q value for action, 

a in state, s and the average value of that state. 

 

 

Proximal Policy Optimisation (PPO) Algorithm. Employing the actor-critic framework for agent training has 

shown that the actor often encounters significant variability during training, impacting the performance of the 

trained agent. To address this instability in actor training, recent studies suggest the use of the PPO algorithm. 

This algorithm introduces a novel objective function known as the "Clipped surrogate objective function" to 

stabilize actor training. The implementation of this new objective function helps limit policy changes to a narrow 

range. 

 

PPO follows an on-policy learning strategy, where the decision-making policy is updated using a small sample of 

experience obtained from interacting with the environment. After using this batch of experiences to update the 

policy, the experiences are discarded, and a fresh set is collected using the most recent policy revision. The policy 

parameter is updated based on the clipped loss function described in equation (10). This loss function includes a 

hyperparameter e, which determines the extent to which the updated policy should deviate from the previous policy. 

 

𝐿𝑐(𝜃) = 𝐸𝜋𝜃𝑡
[min (𝜎(𝜃)𝑎𝜋𝜃𝑡 , 𝑐𝑙𝑖𝑝(𝜎(𝜃), 1 − 𝜖, 1 + 𝜖)𝐴𝜋𝜃𝑡)] (10) 

  

where 𝜎(𝜃)- probability ratio, 𝐴𝜋𝜃𝑡 – advantage function, 𝜖- hyperparameter. 

 

An alternative approach to the clipped surrogate objective, or even in conjunction with it, is to incorporate a penalty 

on the KL divergence and adjust the penalty coefficient to achieve a specific target value of KL divergence (dtarg) 

during each policy update. Although in our experiments we observed that the KL penalty yielded inferior results 

compared to the clipped surrogate objective, we have included it here as an important baseline. In its simplest form, 

the algorithm follows these steps for each policy update. 

 

 



 

III. ROBUST REINFORCMENT LEARNING APPROACH 

Several architectures DQN is shown to be trainable directly benefit from raw images [12], it provides a valid option 

for a detect and avoid (DAA) algorithm. Although this architecture can eventually achieve reasonable results, it 

tends to overestimate the action, Q, values and takes a long time to train. Given a policy  𝐴𝑡 = 𝜋(𝑠𝑡), the action 

value in terms of a state-action can be defined below.  

 

𝑄(𝑠, 𝑎) = 𝐸[𝑅𝑡|𝑠𝑡 , 𝐴𝑡 , 𝜋] (11) 

 

[13] combines the ideas of dueling network and double Q-network for two streams of fully connected layers which 

are built to compute the value and advantage functions separately, which are finally combined together for 

computing Q-values. 

 

This work aims to train and test both on simulation and experimentally robust reinforcement learning for a single 

agent. Given the Markov decision equation for reinforcement learning, 

𝑅(𝜋, 𝑷) =  𝔼𝜋,𝑷 [∑𝜆𝑡𝑟𝑠𝑡𝑎𝑡
|𝑠0~𝑝0

∞

𝑡=0

] (12) 

 

where 𝑠0 and 𝑝0 the robust policy can be shown as below, 

 

𝜋∗ = 𝑎𝑟𝑔max
𝜋

m𝑖𝑛
�̅�

𝑅(𝜋, 𝑷) (13) 

where a transition kernel P which gives transition probabilities 𝑃𝑠𝑎  ∈ 𝑅+
|𝕊|

for all state-action pair (s, a), some 

rewards 𝑟𝑠𝑎for each state-action pair (s, a) and a discount factor λ ∈ (0, 1). 

 

A-PPO. In the Adversarial MDP (A-MDP), we introduce an adversary 𝑣(𝑠): 𝑆 → 𝑆−1. The role of the adversary is 

to perturb only the state observations of the agent, while the action is still determined by the agent's policy 

𝜋(𝐴|𝑣(𝑠)) It is important to note that the environment still transitions from the true state s, rather than the perturbed 

state ν(s), to the next state. As a result, since 𝑣(𝑠) may differ from s, the action taken by the agent based on 

𝜋(𝐴|𝑣(𝑠)) may not be optimal, allowing the adversary to decrease the reward. In real-world RL problems, this 

adversary can be seen as representing worst-case noise in measurements or uncertainty in state estimation. It is 

worth noting that this scenario differs from a two-player Markov game in which both players observe the 

unperturbed true states of the environment and directly interact with it, and the opponent's actions can impact the 

true state of the game.  

 

As in most general cases where the policy is stochastic, the total variation is hard to compute for most 

distributions. We can use an upper bound using KL divergence. [14] has regularised the KL-divergence over all s 

from sampled trajectories leading to the following adversarial regulizer for PPO, 

 

ℛ𝑃𝑃𝑂 =
1

2
∑ max

𝑠̅∈𝐵(𝑠)

(𝜇𝜃𝜇
(�̅�) − 𝜇𝜃𝜇

(𝑠))
𝑇

∑ (𝜇𝜃𝜇
(�̅�) − 𝜇𝜃𝜇

(𝑠))
∶= 0.5

𝑠

∑ max
𝑠̅∈𝐵(𝑠)

ℛ𝑠( �̅�, 𝜃𝜇)

𝑠

 

 

(14) 

Black-Box A-PPO. Our threat model encompasses a diverse range of use-cases, and therefore, we assess our attack 

across various RL algorithms employing different objective functions. While the evaluation may not cover all 

possible use-cases, it demonstrates the practical feasibility of conducting fully Black-box attacks. Additionally, we 

establish the generalizability of our work by demonstrating the capability to model an agent with an unknown 

objective function, allowing predictions about its future behaviour. Given sufficient observation time, we may 

anticipate the agent's behaviour to an extent that enables disruption, and in certain instances, disruption may occur 

after a known delay. We utilise the seq2seq [15] algorithm for implementation as shown in the algorithm below. 

 

 



 

 
Fig. 2: Algorithm Logic ‘seq2seq’ 

 

Figure 3 depicts the training workflow for both the protagonist and the black box adversary. This workflow allows 

the adversary to depict and predict the protagonist behaviour with the minimal amount of information. 

 

 
 

Fig. 3: Training workflow 

 

 

IV. SIMULATION  

A. Mission Environment 

The objective of this research is to teach drones how to independently navigate around objects that are 

stationary or in motion. To accomplish this goal, a reinforcement learning approach was utilized. The training of a 

drone took place within a virtual setting, and Figure 4 provides a visual representation of the system's architecture 

and its components. The study employed the AirSim simulator's drone, which was integrated into an Unreal 

Engine 4-based simulated world. The models were constructed using Stable Baseline3 (SB3), a pre-existing 

implementation of reinforcement learning algorithms in PyTorch. AirSim facilitated the integration of Python 

with Unreal Engine 4 by offering a client-server plugin. It also provided functionalities for accessing real-time 

sensor inputs and drone control signals. During training, the drone captured in depth images of the environment, 

transmitting them to the Python client as input data for the model. The model, in turn, predicted the next action for 

the drone, which was executed using Python APIs developed by AirSim for drone control.  

Input: 𝑁𝑖𝑡𝑒𝑟 , 𝑁𝑒𝑝𝑖 , 𝜃𝜋, 𝜃𝜋𝑤
, 𝑤0 

Initialize action-value function Q with parameters 𝜃 and policy 𝜋 

Initialize target action value function Q’ with parameters 𝜃′ and policy 𝜋∗ 

for i=1,2… Niter do   

     𝜃𝑖
𝜋 ←  𝜃𝑖−1

𝜋  

     for k=0,1, …,𝑁𝑒𝑝𝑖 do   

        Sample trajectory 𝜏𝑘 = {𝑠𝑡
𝑖 , 𝑤𝑡 , 𝑎𝑡 , 𝑠𝑡+1 } 

         (𝑠𝑡
𝑖 , 𝑎1𝑖 𝑡

, 𝑎2𝑖𝑡
, 𝑟1𝑖𝑡

, 𝑟2𝑖𝑡
) ← (�̅�𝜃𝑖

𝜋 , 𝜋𝜃𝑖
𝜋, 𝜏𝑘) 

     end for  

     𝜃𝑖
�̅� ←  𝜃𝑖−1

�̅�  
    for k=0,1, …,𝑁𝑒𝑝𝑖 do   

         Sample trajectory 𝜏𝑘 = ൛𝑠𝑡
𝑖′, 𝑤𝑡′, 𝑎𝑡′, 𝑠𝑡+1′ൟ

𝑡=0
  from the augmented MDP 

         {൫𝑠𝑡
𝑖 ′, 𝑎1𝑖𝑡

′, 𝑎2𝑖𝑡
′, 𝑟1𝑖𝑡

′, 𝑟2𝑖𝑡
′൯} ← (�̅�𝜃𝑖

𝜋 , 𝜋𝜃𝑖
𝜋, 𝜏𝑘) 

    end for 

Update 𝑄’ with {𝜏0, … , 𝜏𝑁𝑒𝑝𝑖
} 

Set 𝑠𝑡+1 = 𝑠𝑡 , 𝑎𝑡 

Return: 𝜃𝑁𝑖𝑡𝑒𝑟 𝜋
, 𝜃𝑁𝑖𝑡𝑒𝑟𝜋𝑤

, 𝜏𝑁𝑒𝑝𝑖
  

 



 

 

 
Fig. 4: Unreal Engine/Airsim/Python System Architecture 
 

For simulation purposes Unreal Engine/Airsim (Cesium World Dynamic) are used to build a custom 3D dynamic 

world map platform for the UAS, linked to Python. Utilising Airsim platform, three accurate quadcopter models 

(dynamic and aero-propulsion specifications), representative urban scenes (3D OSM Buildings) including sample 

urban objects (buildings, vegetation, vehicles) and airspace intruders (sUAS) can be modelled. The complex 

geometry and noise of real-world environments greatly impacts DAA performance (numerous obstacles) and signal 

propagation. Therefore, the dynamic real-world environment in AirSim/Unreal allows several practical 

considerations. Weather and noise are a critical enabler for the definition of practical considerations within the 

dynamic synthetic environment. 

 

 

 
 
Fig. 5: (a) Synthetic Simulation Environment, Cranfield (Airsim/Cesium and Bing Maps) (b) DAA simulation overview 
 

The obtained results provide a study over the extension of reinforcement learning to real-life experiments through 

optimization and robustness. In addition to ensure compliance with operational requirements with the airspace 

legislation and support sUAS. Software in the loop tests will comprise of several different simulation environments 

these including locations in Airsim/Cesium starting with DARTeC (Digital Aviation Research and Technology 

Centre), Cranfield, UK.  Experimental tests will be carried out in Snowdonia Aerospace Centre, UK. For each test 

mission the flight phases will consist of take-off, cruise, and landing. 

 

These factors define each mission’s success, which are collected and statistically processed for major DAA events, 

enabling effective mitigations.                                                                                     

 



 

Analysis of the findings and simulation results leads to a holistic approach to implementation of sUAS operations, 

focusing on extracting critical DAA capability for safe mission completion, like minimum field-of-view and 

detection probability of the sensor system, and minimum manoeuvrability of the guidance and control system.  

 

B. Practical Considerations 

 

From the obtained results in simulation, the following points are presented to be considered for practical 

applications of the Detect and Avoid systems: 

1. Noise or bias on sensors to detect obstacles: The accuracy of the detection algorithm is influenced by the 

presence of noise and bias in the sensors. Consequently, the performance of the avoidance algorithm is also 

impacted since it relies on the target information estimated by the detection algorithm of the sUAS. The 

presence of noise and unpredictable weather conditions can directly affect the detection of obstacles, leading 

to failures in avoiding them and assessing associated risks.[16] 

2. Computational delay: The ability to detect rapidly quickly and accurately approaching obstacles depends 

on the computational capabilities of the Detect and Avoid (DAA) system. Therefore, it is essential to 

evaluate its performance in reducing and mitigating delays. In software in the loop systems that require 

intensive computing, it becomes crucial to minimize computational delays resulting from complex 

environments. By minimizing lag, the DAA system can achieve improved performance in detecting and 

responding to obstacles.  

3. Weather effects: The attitude control of the sUAS is affected by wind; rain can increase the noise on the 

camera image (detection). Light rain, while within tolerable flight safety conditions, can create noise on 

light-based sensors, and therefore reduce the DAA system capabilities. 

 

V. DISCUSSION  

This section focuses on the training process of the RL agent and presents comparisons between the nominal problem 

and the proposed optimization method based on the simulation results. Additionally, it discusses the challenges 

encountered during experimental tests and addresses the practical considerations discussed in the previous chapter, 

all of which contribute to ensuring safer operations. 

Changing the learning rate affects the instantaneous reward as the variance rate of exploration increases which may 

result in several decreased rewards. Overall, less success is achieved. Prior to training, the hyperparameters were 

defined as given in Table I. 

TABLE I 

 HYPERPARAMETERS OF THE DDQN AGENT 

Hyperparameter Value Description 

training steps 500,000 total number of interactions with environment 

minibatch size 32 stochastic gradient descent step size 

replay memory 100,000 memory size of the most recent buffer 

buffer size 500,000 improve sample efficiency for large buffer 

target factor 𝜏 0.01 update frequency from neural network to target  

learning rate 𝛼 0.00025 optimizer learning rate 

discount factor 𝛾 0.98 balance rate of last reward and historical 

 

From initial training of the A-PPO RL algorithm we can observe that the average Q-value (noise) fluctuate between 

the action points of  𝑄(𝑠, 𝑎) = 1 –  2.2, and therefore is slowly converging to a value of 1.6. The average Q-value  

therefore, hasn’t fully converged hence further work is undergoing to converge and produce further results regarding 

the comparative PPO algorithm.  

 



 

   
 

 

 

Fig. 6: Fixed adversarial attack for A- Adversarial for PPO and A-PPO 

 
The mean return value per 100 episodes describes the sum of all rewards that the agent expects to receive when 

following the policy from the state to the end of the episode. In PPO training the values of p equal to 0.8 and 1.0, 

the performance during test-time significantly declines under non-adversarial conditions. Conversely, when p is set 

to 0.2 and 0.4, policies trained under adversarial attacks exhibit nearly comparable performance to the original 

policy in non-adversarial conditions. However, as we can see the A-PPO has been able to very successfully to cope 

with high adversary attacks of p (Pattack) = 0.8 and 1.0. 

 
Fig. 7: Actor-Critic Structure 
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Number of Iterations Number of Iterations 1e5 1e5 

(b) A-PPO (a) PPO 



 

 

Figure 7 describes the loss of both the actor and the critic. The Actor loss is based on policy gradients with the Critic 

as a state dependent baseline and computed with single-sample (per-episode) estimates. The loss for the 

combination of the actor-critic model can be given as, 

 

𝐿 = 𝐿𝑎𝑐𝑡𝑜𝑟 + 𝐿𝑐𝑟𝑖𝑡𝑖𝑐 

 
(15) 

𝐿𝑎𝑐𝑡𝑜𝑟 = − ∑ 𝑙𝑜𝑔𝜋𝜃(𝑎𝑡|𝑠𝑡)[𝐺(𝑠𝑡 , 𝑎𝑡) − 𝑉𝜃
𝜋(𝑠𝑡)]

𝑇

𝑡=1

 

 

(16) 

 

Where 𝑇- the number of timesteps per episode, 𝑠𝑡-state at timestep, 𝑎𝑡-action, 𝜋𝜃 −the policy parameterized by 𝜃, 

𝑉𝜃
𝜋- is the value function (critic) parameterized by 𝜃, G = 𝐺𝑡 – the expected return for a given state. [17] 

 

The G-V term in the 𝐿𝑎𝑐𝑡𝑜𝑟 represents the advantage function. which indicates how much better an action is given 

a particular state over a random action selected according to the policy 𝜋 for that state. [18-19] 

Fig. 8: Actor-Critic Structure 

 

VI. CONCLUSION 

 

This paper presents a comprehensive review of the state-of-the-art adversarial reinforcement learning 

technologies in conjunction with the simulation of realistic urban scenarios utilising AirSim and Python 

environments. Utilising PPO and the robust counterpart A-PPO, we observed the factor of robustness is crucial to 

avoid unknown factors. Through training the robust counterpart using a black-box theory, the adversarial attacks 

proved to be efficient and successful in manipulating the PPO agent.  During the results we observed that high 

adversarial attacks result in worsened conditions for a non-robust PPO. Different missions are designed and 

https://www.youtube.com/watch?v=EKqxumCuAAY&t=62m23s
https://www.youtube.com/watch?v=EKqxumCuAAY&t=62m23s


 

executed for representative scenes accounting for the common threads for obstacles in the sight of sUAS. 

Reinforcement learning training incorporated relevant factors such as noise on sensors, and dynamic real-world 

environments, including obstructed regions, complete the proposed simulation environment of London and Milton 

Keynes. 

Changes in the dynamic environment settings and implementation of dynamic obstacles have a great impact on 

the manoeuvre of a PPO agent. Robust RL has a better collision success rate compared to conventional RL agent.  

 

In the future this work can be extended including intruder dynamics and to integrate in the worst-case scenarios 

regarding the intruder collision, by implementing and updating the policy in the adversarial agent. Further 

improvements are needed for the collision success rate of the conventional RL and robust RL aiming for no 

collision.  
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