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Abstract: This work aims at providing a solution to data scarcity by allowing end users to generate
new images while carefully controlling building shapes and environments. While Generative Ad-
versarial Networks (GANs) are the most common network type for image generation tasks, recent
studies have only focused on RGB-to-RGB domain transfer tasks. This study utilises a state-of-the-art
GAN network for domain transfer that effectively transforms a multi-channel image from a 3D scene
into a photorealistic image. It relies on a custom dataset that pairs 360◦ images from a simulated
domain with corresponding 360◦ street views. The simulated domain includes depth, segmentation
map, and surface normal (stored in seven-channel images), while the target domain is composed of
photos from Paris. Samples come in pairs thanks to careful virtual camera positioning. To enhance
the simulated images into photorealistic views, the generator is designed to preserve semantic in-
formation throughout the layers. The study concludes with photorealistic-generated samples from
the city of Paris, along with strategies to further refine model performance. The output samples are
realistic enough to be used to train and improve future AI models.

Keywords: generative AI; GAN; simulation; domain transfer; 360◦ images; perspective augmentation;
photorealism; dataset

1. Introduction

This study tackles the scarcity of comprehensive city datasets by creating a Gen-
erative Adversarial Network (GAN) capable of generating photorealistic images of a
city environment. It does that thanks to a specialised dataset that matches street view
photos with corresponding seven-channel simulated images. This approach allows the
creation/reproduction of scenarios useful for military purposes, with the need to explore
numerous contexts, or autonomous driving with consideration for complex road geometries
as they pose problems with current technologies [1].

This study explores the effectiveness of GANs for domain transfer, leveraging the
custom dataset as a foundational resource. In this dataset, the target domain is composed of
authentic 360◦ photos captured in the city of Paris by crowdsourcing, serving as the ground
truth for the network training phase. In contrast, the simulated domain encapsulates
aspects of a three-dimensional scene, such as depth, colour, and surface normal (their role
is described later). All that information is packed into 360◦ seven-channel images to match
the form of the target domain. This research adopts a paired image strategy, avoiding
reliance on pseudo-ground truth samples. It requires a more rigorous process to position
and rotate a virtual camera to have the simulated sample taken from the exact same point
of view as the authentic photos. Doing so optimises computational resources, ensuring
efficiency to achieve desired performance levels. The 360◦ images cannot be directly fed
into the model as they are too large and impractical, so a transformation that “cuts in”
the image is used, along with basic data augmentation steps. Then, to elevate simulated
images to photorealistic standards, cutting-edge GAN networks are employed, generating
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realistic images from a texture-less 3D environment. The generator network, designed to
preserve semantic information across layers, exhibits great performance, particularly when
uniform inputs are provided, as is often the case in basic 3D representation. To optimise and
evaluate the outputs of the model, different losses and metrics were tested and compared.

Throughout this paper, we dive into the challenges posed by the creation and utilisa-
tion of custom datasets, along with the benefits of working with 360◦ images. We discuss
GAN architectures and their fitting for that specialised task, providing valuable insights
into deep learning model training. After presenting generated results using different meth-
ods, this research highlights strategies to further refine model performance, offering a
comprehensive understanding of the potential and nuances.

Related Works

There are a multitude of ways to synthesise images such as fully convolutional net-
works [2], variational auto-encoder (VAE) [3,4], generative AI using GANs [5–7], or dif-
fusion networks [8,9]. However, the usage of conditional GANs [10] for image-to-image
translation spread out to become one of the premium choices [11–15]. In such models, two
different networks compete against each other. The generator creates realistic images that
are indistinguishable from real images by the discriminator. Their popularity comes from
the adversarial loss, which serves as the mechanism for outsmarting the other network,
thereby achieving more realistic results.

The image-to-image translation conditional GAN can be used for different tasks, such
as image segmentation [13,16,17], image inpainting [14,18,19], style transfer [20–23], or
image super-resolution [24]. Their underlying networks often have the same architecture,
such as a U-net generator, first introduced by Ronnenberg O. [25] for a segmentation task.
It is an encoder–decoder that features a novel way to cope with the disappearance of high-
frequency details in the down-sampling part with long skip connections. It concatenates
the encoder’s feature maps to the input of the same-level layers on the decoder side. This
enables the decoder to access both low-level and high-level features, allowing for more
accurate segmentation and improved localisation. Still using skip connections in ResNet
blocks, Park T. et al. [26] built the SPADE generator that goes away with the encoder and
that effectively generates realistic outputs even when uniform inputs are presented. The
generator does not feature an encoder and works either with a variational auto-encoder to
provide an initial feature vector or with a subsampled map of the input. In the latter case,
the network will be deterministic. Methods to split the workload onto two networks were
used to enable fast-inference models and high-fidelity results, such as in [27], with their
coarse-to-fine architecture. This two-stage network enables greater fidelity at the cost of
lower performances.

When introduced in [5], the GAN discriminator featured a single-scalar prediction
to characterise the output. This simple discrimination technique was also used in [12,13],
but [22] worked with a more precise discriminator that was able to discriminate each
part of an image independently. This so-called PatchGAN [28]—a fully convolutional
network—predicts if a crop (or a patch) of the image is real or fake. This prediction is
performed throughout the whole image convolutionally, giving a non-binary prediction
2D vector. Lastly, Wang T.C. et al. [29] and Cheng C. et al. [19] built on PatchGAN to
create multi-scale discrimination. It was particularly suited for large images and works
by having multiple identical discriminators that are fed the same input with a different
subsampled ratio. Moreover, [19] used a multi-head attention mechanism [30] to have
better context-aware generation. Finally, [31] used multiple different local discriminators
that look at different features of the generated image, creating specialised discriminators
that perform better all together to reproduce the distribution of photos.

However, all the aforementioned studies focus on three-channel RGB images. The
work of Harris-Dewey J. and Klein R. [28] uses higher channel images in a GAN, using
Blender (open-source 3D software available for free at www.blender.org, accessed on
10 May 2023) to simulate multiple layers called passes. These layers represent different

www.blender.org
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physical properties of a scene, such as the depth, surface normal, colour of the elements, or
illumination by artificial light. The physical information provides further context for the
GAN to better interpret the scene and produces realistic global illuminations.

Lastly, the question of ground-truth imagery was raised. Recent works showed that
pseudo-ground truth was enough, as in CycleGAN [32] or MUNIT [32]. In such cases, the
input and ground truth do not need to match and must only belong to their respective
domains. CycleGAN will minimise the cycle error, that is, going from the first domain to
the second domain and back to the first. MUNIT prefers to create a single latent space that
contains the inputs and the ground truths. Hao Z. et al. [33] trained a separate model to
generate the pseudo-ground truth samples that would be later reused to generate video-
consistent images with a SPADE network.

Building on the Harris-Dewey J. and Klein R. sample generation methods in Blender,
the truth samples used in this study were found on Mapillary’s open API, where street
views are freely available and crowdsourced.

The final results presented are realistic enough that the city of Paris can be recognised in
validation samples. Nevertheless, artefacts can give away the fact that they were generated
by an IA, which—in the current climate of misleading content—can be welcomed.

2. Materials and Methods
2.1. Data Preparation
2.1.1. Dataset Overview

The dataset is composed of a file listing every image ID and data, and two fold-
ers with the street views and their simulated counterparts. It includes approximately
22.000 samples and weighs over 22 GB. It is available to download at https://www.kaggle.
com/datasets/marcbresson/paired-street-view-and-simulated-view-in-paris, accessed
on 25 September 2023, and the methodology to recreate similar samples for another city
(or in a larger number) is described on this study’s GitHub repository.

This dataset has three main characteristics. First, it uses 360◦ images for both the
simulated domain and the target domain. It is the most common format for street views
and autonomous driving. Through the mathematical operations described in Section 2.1.3,
we can convert a single 360◦ image into multiple independent perspective images. It is the
main source of data augmentation. Then, both the simulated and target domains match
perfectly. That means that for one street view, we will have a simulated sample from the
exact point of view. A pixel at a specific coordinate will represent the same thing in the two
domains. Lastly, the simulated domain contains a lot of information about the city. Notably,
we have:

• The depth represents how far something is from the camera.
• A colour that hints towards the role something plays in the landscape, such as a street,

footpath, park, or river.
• Surface normal, which represents what direction something is facing.

2.1.2. Data Acquisition

All the results presented in this paper come from data queried over the Parisian
region. Paris was chosen for its numerous street views in Mapillary over multiple seasons,
weather conditions, and traffic conditions. OpenStreetMap also has 3D building data for
Paris, which allows for the generation of the simulated samples in Blender, an open-source
3D software.

Mapillary

Mapillary is a free, open-source project supervised by Meta. Their data source comes
from crowdfunding, where people voluntarily upload image sequences that are geotagged.
They give you access to a free API that allows you to query data for any region. A region
consists of tiles with x, y, and z coordinates, and querying street view data is only possible
on a specific zoom level (level 14), from which we get a list of street views. From there,

https://www.kaggle.com/datasets/marcbresson/paired-street-view-and-simulated-view-in-paris
https://www.kaggle.com/datasets/marcbresson/paired-street-view-and-simulated-view-in-paris
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we can work our way to the image, along with its location and estimated camera rotation.
Mapillary does not use the camera orientation data, and it recomputes the rotation from
the raw camera data and the image output.

Blender

It is possible to import entire cities in 3D in Blender thanks to Open-Street Map, a
crowdfunded and open-source mapping initiative. This initiative includes most of the
buildings in the most popular cities, such as Paris. However, buildings are not necessarily
well represented, which can be a challenge when a city presents a lot of complex architecture.
Once the city is reproduced in the software, street-view counterparts can be generated.
It was particularly hard to apply the correct camera rotation because a lot of 3D rotation
formalisms exist. Unfortunately, neither Mapillary’s documentation nor the team specified
which one was used. Another Meta’s project [34,35] hinted towards a modified version of
the axis-angle rotation vector. It is a three-channel vector, where its norm gives the amount
of rotation around an axis given by the vector’s direction. This discovery came after months
of using a sub-optimal version of rotation, making the virtual camera correctly aligned only
under specific conditions. The new rotation method largely contributed to the increased
photorealism of the generated samples.

To convert a 3D scene to an image, we need render engines that interpret a scene
to output an image. To achieve this task, they have access to a lot of different types of
information (called passes) to generate the desired image. The “Cycle” render engine that
comes with Blender and supports 360◦ images gives 30 passes, notably the depth, the
surface normal, and the diffused colour, as shown in Figure 1.
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Figure 1. The three passes used for this work. The depth gives a sense of scale, the normal indicates
an orientation, and the diffused colour segments the image into types of surfaces. These 3 images are
cut from a larger 360◦ image.

Each of the three passes has its own specificities that need careful attention.
The “depth” pass has only one unbounded channel, between 0 and +infinity. The

value of each pixel is expressed in metres and rarely goes over 600, except for the sky.
Indeed, as it is infinitely far away, the pixel representing the sky had an infinite value that
could be reset to 0 m to avoid compressing the statistical distribution. After this step, the
channel is normalised between 0 and 1 to keep the values on the same scale as the two
other passes.

The “normal” pass has three channels, with values ranging from −1 to 1. It represents
how much the face is colinear with each of the corresponding axis (x, y, and z). The values
are independent of the camera’s rotation. It can be seen as an answer to the question,
“how much is that thing facing North/West/Up?”. This answer will be between −1 (it is
facing the opposite way) and 1. For Figure 1, the values were remapped between 0 and 1,
explaining the grey sky.

Finally, the diffused colour, shortened to “DiffCol” in Blender, represents the colour of
the surface as defined by the Open Street Map. The ground, walls, footpath, water, etc. all
have different colours, which give information analogous to a segmentation map.
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2.1.3. Data Processing and Data Augmentation

Directly learning the mapping between 360◦ images was out of the question because
it would require too many computational resources, and 360◦ images are not common
enough. The choice of using them as samples was justified by the fact that we can “move
around” in such images, hence providing an important data augmentation step. A single
360◦ can give six entirely different perspective images.

The data processing and augmentation consist of four main steps:

• Depth channel remapping from 0 to 1.
• 360◦ equirectangular to perspective transformation.
• Resizing to a fixed size of 256 × 256 px.
• Random horizontal flip.

Perspective Transformation

360◦ images can be tricky to work with as they exist in multiple forms. The most
common one is the equirectangular projection. It keeps vertical lines straight but deforms
horizontal lines around the horizon, as shown in Figure 2.
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Using algorithms, it is possible to extract perspective images (the ones we are most
used to) from an equirectangular image given a yaw, pitch, roll, and field of view. The
algorithm used in this work was modified from Ting-I Hsieh’s work [36] to refine and
optimise the method thanks to hardware acceleration. The idea is to create a map that
indicates where to find a pixel value in the original equirectangular image given an x, y
coordinate point in the perspective image. Hardware acceleration of matrix calculus lowers
the processing time by up to 5 times.

Strangely enough, this process can corrupt the image by placing NaN (not a number)
values for some pixels. It appears to happen only on specific samples, with specific
transformation parameters, and in a random manner. Running a loop of the same sample
transformation would corrupt the output about 5 times out of 200, even when using non-
deterministic Pytorch functions on the CPU. The issue was dealt with by detecting when
corruption happens and rerunning the transformation with new parameters.

Not all viewpoints in the 360◦ image were useful, as looking down would not provide
great samples because we often see what the 360◦ camera was attached to (a cyclist’s helmet,
a car’s roof, etc.). For this reason, parameters were chosen as follows: the yaw evolves
in its full range, from 0 to 360◦; the pitch stays between 0◦ and 60◦ to avoid only having
the sky or the camera mount; the field of view (FOV) ranges between 60◦ and 120◦, which
avoids losing too much quality for shallow FOV, below 60◦, and avoids having too much
distortion when the FOV is too large.
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Random Transformation

There are multiple ways to perform data augmentation on the original dataset. It can
be randomly transformed as the training goes on, or it can be pre-transformed in a step
that happens before the training phase. The first method comes with a few advantages: the
data richness is greater as the same initial sample will be transformed differently for each
epoch, and it does not require huge disc space to store augmented samples.

2.1.4. Data Loading

One of the longest parts of the training phase was loading the samples from the
disc. This step includes loading and decoding the ground truth image and loading and
decompressing the binary simulated images. This bottleneck was mitigated using Pytorch
2.0.1 a machine learning Python library. It provides quick access to multiprocessing through
its ‘Dataloader’ class, where it is possible to offload any data loading or processing without
the Python 3.11 global lock interpreter impairing performance.

The initial idea was to offload all the transformations onto four processes (as many as
there were cores on the available supercomputer), with hardware acceleration enabled. As
it turns out, hardware acceleration in multiprocessing is slower than running the transfor-
mations on the CPU. It probably comes from the GPU being fully solicited by the forward
step and backpropagation of the model. Eventually, two different transformation steps were
involved: one that transformed a sample in the data loading step using multiprocessing,
and the other that transformed the whole batch at once in the main thread, actually used to
put it on the right computational device.

Data Splitting

The 22.000 samples were split into three sub-datasets: one for training containing most
of the samples (80%), another to evaluate the model against new samples (20%), and a last
one containing only 20 never-seen samples for visualisation purposes. Cross-validation
could not be used because of the limited computational resources available.

Batch Size

Due to computation limitations, both in terms of time and power, the batch size was
optimised to minimise the training time. It all started with the realisation that loading
8 samples was twice as long as loading 4 and that the training process benefits from using
larger batches. A small training task was profiled against different batch sizes. The loading
times and model training times were recorded and visualised in Figure 3. It highlights
that in a single process, the model will have to wait for new samples to be loaded when
the batch size is greater than 2. To mitigate this, employing additional processes in the
‘Dataloader’ PyTorch class can reduce the wait time for new samples by the main process.
This graphical method can also be used to find the minimal batch size that will minimise
the overall running time. Indeed, we can see in Figure 3 that a batch size of 4 is the smallest
value for which there is no waiting time with four data loader processes. Nevertheless, a
small batch size can lead to noisier gradients when backpropagating, which can lead to
more unstable training. Conversely, this excess noise can be great for exploration diversity
as more regions of the latent space are explored.

2.2. Network Architectures

This work started around the code source of the infraGAN [37] project, which itself
is forked from CycleGAN [24] and pix2pixHD [29]. It comes with multiple models inte-
grated, such as a ResNet generator, a U-net generator, a PatchGAN discriminator, and a
PixelDiscriminator that gives a pixel-level prediction. Unfortunately, the code base did
not provide a usable Python API and was not adapted to the specificity of this study. It
had to be almost entirely rewritten to accommodate a documented Python API, along with
extensive logging and performance measurements.
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2.2.1. U-Net Generator

The first model tested in this study was the U-net, which is a fully convolutional net-
work. Because of the depth of this architecture, the model is helped by batch normalisation
which is a technique to help with the stability and convergence of the network. Batch nor-
malisation normalises the activations in each layer by subtracting the mean and dividing by
the standard deviation of the mini-batch. By doing so, it helps maintain activations within
a reasonable range, preventing them from becoming too large or too small and ultimately
allowing for a more stable gradient during backpropagation. The U-net also uses skip
connections, as they are particularly useful to preserve fine-grained spatial information
throughout the layers. The encoder extracts high-level information, and the decoder, with
the help of skip connections, refines the segmentation map while considering details from
multiple scales.

2.2.2. Spade Generator

The spade generator [17,26] focuses on generating realistic and high-quality images
by effectively incorporating semantic information into the image synthesis process. Like
the U-net, the SPADE generator also uses skip connections in ResNet-inspired blocks to
capture both local and global contextual information. It introduces two blocks presented in
Figure 4 that constitute the generator shown in Figure 5.

Sensors 2023, 23, x FOR PEER REVIEW 8 of 19 
 

 

 
Figure 4. Architecture of the SPADE block and the SPADE ResNet block. * takes filter_in filters in 
input and outputs min(filter_in, filter_out) filters. ** takes min(filter_in, filter_out) filters in input and 
outputs filter_out filter. 

 
Figure 5. Architecture of the SPADE generator used in this work. 

We can see the repetitive use of the input segmentation map at every stage of the 
network. In this study, the segmentation map is the 7-channel simulated image and is 
resized to match the current convolutional layer dimension. The consistent refeeding of 
the segmentation map into the network is the main explanation for the photorealism this 
model can achieve. To compensate for the richer inputs, the network was used with the 
option “most” and with 128 base filters (the number of filters in the last dark-blue SRB 
block in Figure 5). 

2.2.3. PatchGAN Discriminator 
PatchGAN is a small, fully convolutional network that aims at identifying generated 

samples among the ground truth samples. As Isola P. et al. [22] state, “This discriminator 
tries to classify if each N × N patch in an image is real or fake”. It runs convolutionally 
across each image of the batch, giving a non-binary output that is the average of all the 
predictions, which helps fine-tune the generator to better correct zones where it makes a 
lot of errors. Its architecture is represented in Figure 6. 

  

Figure 4. Architecture of the SPADE block and the SPADE ResNet block. * takes filter_in filters in
input and outputs min(filter_in, filter_out) filters. ** takes min(filter_in, filter_out) filters in input and
outputs filter_out filter.



Sensors 2024, 24, 94 8 of 19

Sensors 2023, 23, x FOR PEER REVIEW 8 of 19 
 

 

 
Figure 4. Architecture of the SPADE block and the SPADE ResNet block. * takes filter_in filters in 
input and outputs min(filter_in, filter_out) filters. ** takes min(filter_in, filter_out) filters in input and 
outputs filter_out filter. 

 
Figure 5. Architecture of the SPADE generator used in this work. 

We can see the repetitive use of the input segmentation map at every stage of the 
network. In this study, the segmentation map is the 7-channel simulated image and is 
resized to match the current convolutional layer dimension. The consistent refeeding of 
the segmentation map into the network is the main explanation for the photorealism this 
model can achieve. To compensate for the richer inputs, the network was used with the 
option “most” and with 128 base filters (the number of filters in the last dark-blue SRB 
block in Figure 5). 

2.2.3. PatchGAN Discriminator 
PatchGAN is a small, fully convolutional network that aims at identifying generated 

samples among the ground truth samples. As Isola P. et al. [22] state, “This discriminator 
tries to classify if each N × N patch in an image is real or fake”. It runs convolutionally 
across each image of the batch, giving a non-binary output that is the average of all the 
predictions, which helps fine-tune the generator to better correct zones where it makes a 
lot of errors. Its architecture is represented in Figure 6. 

  

Figure 5. Architecture of the SPADE generator used in this work.

We can see the repetitive use of the input segmentation map at every stage of the
network. In this study, the segmentation map is the 7-channel simulated image and is
resized to match the current convolutional layer dimension. The consistent refeeding of
the segmentation map into the network is the main explanation for the photorealism this
model can achieve. To compensate for the richer inputs, the network was used with the
option “most” and with 128 base filters (the number of filters in the last dark-blue SRB
block in Figure 5).

2.2.3. PatchGAN Discriminator

PatchGAN is a small, fully convolutional network that aims at identifying generated
samples among the ground truth samples. As Isola P. et al. [22] state, “This discriminator
tries to classify if each N × N patch in an image is real or fake”. It runs convolutionally
across each image of the batch, giving a non-binary output that is the average of all the
predictions, which helps fine-tune the generator to better correct zones where it makes a lot
of errors. Its architecture is represented in Figure 6.
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Given the small images being used (256 × 256 px) in this study, a multiscale discrimi-
nator as presented by WANG T-C et al. [29] was not implemented.

2.3. Loss Functions and Evaluation
2.3.1. Binar Cross-Entropy Adversarial Loss

The adversarial loss term, often referred to as “GAN loss”, is a key component of
GANs. It is used to train the generator to produce realistic and convincing outputs that are
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indistinguishable from real data. The adversarial loss is calculated based on the difference
between the discriminator’s predictions for real street views and the generator’s generated
street views. It essentially quantifies how well the generator is fooling the discriminator.

As suggested in [22,23,28], the adversarial loss term here is the binary-cross-entropy
combined with a sigmoid layer, and it is called “BCEWithLogitsLoss”. It takes the raw
output, called logits (so the output before the activation function), of the discriminator and
applies the BCEWithLogitsLoss with a computation trick that is more numerically stable
than applying the sigmoid activation, and then uses a separate binary cross-entropy loss
function. Its expression for one sample of a batch, with x as the input and y as the target, is
the following:

𝓁(x, y) = y · log σ(x) + (1 − y) · log(1 − σ(x))

The average of 𝓁 over each sample is taken to compute the entire batch loss.

2.3.2. L1 Generator Loss

This loss measures how far from the street view the generated image is. L1 loss
measures the mean absolute error for each element in x and y. It is expressed for a single
sample as:

𝓁(x, y) = |x − y|

When computed for a batch, it is reduced by the mean of the adversarial loss.
L1 loss encourages the generated images to be closer to the ground truth images in

terms of pixel intensity values. This tends to preserve fine details and textures in the
generated images, resulting in sharper and more realistic outputs. Moreover, ref. [22]
demonstrated that the L1 loss penalises larger deviations between the generated and target
images linearly, compared to the quadratic penalty imposed by the L2 loss (mean squared
error). This characteristic helps in preventing the blurring effect that can occur with L2 loss,
where slight errors in pixel values are magnified in the loss calculation.

2.3.3. Cycle Loss

In the first dataset version, the truth sample was not well aligned with the simulated
sample due to the virtual camera being rotated only around one axis. Training a GAN on
these low-quality samples could have resulted in artefacts, especially around the buildings’
edges. For this reason, the cycle loss was implemented to counteract the misalignment,
as it only required ground truth that belongs to the target domain without the necessity
for matching pairs. The key benefit of CycleGAN is the introduction of cycle consistency
loss. This loss ensures that if you translate an image from domain A to domain B and
then back from domain B to domain A, you end up with an image that is similar to the
original. However, the main drawback of this method is the computational resources
needed. Indeed, as the CycleGAN handles both ways of translation, you need twice as
much memory as with a GAN. If it was not an issue on the lighter networks, it caused
crashes on the NVIDIA V100 when the biggest SPADE generators were loaded.

2.3.4. Structural Similarity Index Measure (SSIM)

The SSIM is well suited for realistic image scoring, as it compares three main compo-
nents of image quality: luminance, contrast, and structure.

# Luminance. It measures the similarity of the luminance (brightness) values between
the corresponding pixels in the two images.

# Contrast. It evaluates how well the contrast in the two images matches. It con-
siders the local variations in contrast and aims to capture the relationship between
pixel intensities.

# Structure. It assesses the structural similarity between the images by considering
the correlations between neighbouring pixels. It reflects the spatial arrangement of
features in the images.
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2.3.5. Human Assessment

Another possible evaluation is the human evaluation, often crowdsourced, as in [38]
on online platforms. Users are presented with multiple images and are asked to choose
which one they prefer. Because generated samples present artefacts that are not always
eliminated by loss functions, it is employed to compare the results with other AI models.

3. Results

The tests were all run on a single V100 NVIDIA GPU (manufactured by TSMC), along
with an Intel Xeon processor (manufactured by Intel) with 32 GB of RAM in total. Each run
was limited to 120 h, limiting the training to five days. For context, the SPADE paper had a
5-day training on eight V100 GPUs, with four million samples and a batch size of 32.

Over 120 h, the model trained on more than 6 million samples (15 samples per second).
Inference times were three times lower at just over 40 samples per second. When only
using a laptop CPU for inference (without hardware acceleration), that rate went down to
three samples per second.

3.1. Using the SPADE Generator

This test was run for 330 epochs with a batch size of 2, determined with the graphical
method described in Section 2.1.4. The test ran smoothly but was cut short by the time
limit. The losses were still steadily decreasing on the 330th epoch, as Figure 7 reveals, so
the model could have benefited from a longer training time. At this stage, the network did
not present any sign of overfitting or underfitting.

Sensors 2023, 23, x FOR PEER REVIEW 11 of 19 
 

 

  
(a) (b) 

Figure 7. Loss values for the SPADE generator: (a) shows the total loss values combining the L1 loss 
and the adversarial loss, and (b) only shows the L1 loss values. They are represented on two differ-
ent graphs because of their very different scales. 

However, Figure 8 reveals that the discriminator had trouble fighting against the ad-
versarial loss. The more epochs went by, the less accurate it was. The two validation lines 
for real and generated samples highlight that it struggles, particularly with generated 
samples, but tends to have better accuracy when the input is a real street view. The gen-
erator may learn too fast compared to the discriminator, which could benefit from a higher 
learning rate or two training steps for each generator training step. 

 
Figure 8. Loss values of the discriminator when trained with a SPADE generator. The three valida-
tion curves were smoothed out over 20 samples to represent the situation more clearly, hence the 
plateau in the first 20 epochs. 

Finally, the human assertion you can make in Figure 9 shows that the last two sam-
ples are quite realistic. They are coherent and show windows, trees, and even storefronts. 
We can also notice that they differ a bit in the style of the buildings. With the current 
model, there is no possibility to steer the generated style towards the style of a given im-
age. It is possible to adapt the SPADE generator to also use a style vector alongside the 
input. That would allow the user to ask for a Haussmann style, or Victorian style, by just 
providing an image with such buildings on it. The style vector can also be used to obtain 
results at dawn or during the winter. It also shed light on the remaining issues in this 
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Figure 7. Loss values for the SPADE generator: (a) shows the total loss values combining the L1 loss
and the adversarial loss, and (b) only shows the L1 loss values. They are represented on two different
graphs because of their very different scales.

However, Figure 8 reveals that the discriminator had trouble fighting against the
adversarial loss. The more epochs went by, the less accurate it was. The two validation
lines for real and generated samples highlight that it struggles, particularly with generated
samples, but tends to have better accuracy when the input is a real street view. The
generator may learn too fast compared to the discriminator, which could benefit from a
higher learning rate or two training steps for each generator training step.
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Figure 8. Loss values of the discriminator when trained with a SPADE generator. The three validation
curves were smoothed out over 20 samples to represent the situation more clearly, hence the plateau
in the first 20 epochs.

Finally, the human assertion you can make in Figure 9 shows that the last two samples
are quite realistic. They are coherent and show windows, trees, and even storefronts. We
can also notice that they differ a bit in the style of the buildings. With the current model,
there is no possibility to steer the generated style towards the style of a given image. It is
possible to adapt the SPADE generator to also use a style vector alongside the input. That
would allow the user to ask for a Haussmann style, or Victorian style, by just providing
an image with such buildings on it. The style vector can also be used to obtain results at
dawn or during the winter. It also shed light on the remaining issues in this dataset. The
misalignments between the target and the simulated image, especially when considering
the building edges, are big. Unfortunately, there is no handy solution yet, except for helping
Mapillary’s team develop a refined algorithm to find the exact camera coordinates and
rotation vector. Six more examples of generated samples can be found in Figure A5.
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3.2. Comparison against Other Models

This well-working SPADE generator was compared with other existing models, with
both metric evaluations and human evaluation. The competing models are a CycleGAN
with its two spade generators having a lower base filter number to fit in memory; a seven-
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level deep U-net; and finally, the same SPADE generator but optimised with hinge loss. All
generated samples can be seen in Appendix A.

The SSIM scores presented in Table 1 put the CycleGAN first, well ahead of the other
models. However, the visual inspection of Figure 10 shows that, if the CycleGAN outputs a
refined representation of the building on the left, it totally misses out on the building on
the right. The high score of that model can be explained by its mechanism, which makes
the generated image resemble the target a lot. On the other hand, the SPADE that uses the
hinge loss fails to achieve realistic outputs but does capture the sky along with greenery.
The model with the lowest score is actually the one that produces the most realistic samples.
It is likely that the SPADE + L1 loss model found a balance between resembling the target
image to lower the L1 loss and generating realistic images to fool the discriminator. It
highlights the difficulty of finding the right metric to evaluate a model.

Table 1. SSIM scores for tested models.

SPAPE + L1 Loss CycleGAN + L1 Loss U-Net + L1 Loss SPADE + Hinge Loss

0.2860 0.8327 0.3584 0.3208
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Figure 10. Last generated samples for the (a) SPADE + L1 generator, (b) the CycleGAN, (c) the U-net
generator, and (d) the SPADE + hinge generator.

For all the models, the generator was left untouched. However, the differences in
its performance between the variations are notable as shown in Table 2. The weaker
discriminator that focuses on distinguishing real street views from fake ones is once again
CycleGAN. However, the contrast in the SPADE + hinge loss’s discriminator prediction is
particularly impressive, leading to the conclusion that the discriminator was not challenged
enough but the generator was. In Figure 11b–d, we can distinguish the sky taking a special
place in the prediction.

Table 2. Binary cross-entropy scores for the tested model’s discriminators.

SPAPE + L1 Loss CycleGAN + L1 Loss U-Net + L1 Loss SPADE + Hinge Loss

0.6952 0.7159 0.5185 0.5045
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3.3. Ablated Model

An ablation study was conducted to underline the role and influence of having extra
depth and normal information in the inputs. Training has been performed by feeding the
SPADE generator only the “DiffCol” pass, which represents a basic segmentation map. To
accommodate the important decrease in input data, from 7 channels to just 3, the number
of base filters has been reduced to 64. However, the number of upsampling layers was kept
the same. This ablated model was trained on 265 epochs, with a batch size of 1.

The losses of the generator and the discriminator of this ablated model drawn in
Figure 12 seem to tell two different stories. On the one hand, the adversarial loss (Figure 12a)
increases, particularly after epoch 125. On the other hand, the discriminator validation loss
on generated samples (Figure 12b) increases a lot after the 125th epoch, suggesting that the
discriminator is not able to flag a generated sample as such.
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The produced outputs of this ablated model are not realistic and are presented in
Figure 13. Throughout the epoch, the network did not generate consistent results. Each
new epoch had a totally different “style”. However, the sky was often well drawn with
clouds and a light blue colour.
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4. Discussion and Future Work

As seen in Section 3.1, the generated samples are very convincing, with proper building
contours, facades, and a sky with a few clouds. However, the already-photorealistic results
could certainly be improved. The samples were not all perfectly aligned, and some of them
were outright irrelevant as they were not showing the city. Furthermore, the discriminator
was maybe a bit too weak, and due to the different contexts present on a single image (sky,
buildings, and streets), a context-aware discriminator as in [19] could be implemented to
have a more efficient backward pass.

4.1. New Loading Mechanism

One of the bottlenecks of the training pipeline was the decoding of the image files that
were saved in binary format, or PNG. For every new epoch, every sample needed to be
decoded again, which impaired the performance for low batch size values. Considering
the use of billions of images to train new diffusion models, it can be assumed that better
techniques exist to load and augment images efficiently.

4.2. Better Discrimination

Considering the challenges faced during this study, the results are really promising.
Nevertheless, it was noticed that on the SPADE generator, the discriminator was not strong
enough against the generator. It could benefit from hyperparameter tuning, mainly to
achieve faster training.

4.3. Video Stability

This model was never intended to be as video stable as the GANcraft (which also uses
a SPADE network). However, considering it can be used in the automotive industry, it
could be interesting to make the generated samples stable in the time dimension. It would
allow the creation of seamless videos, which would be more useful to train autonomous
driving models.

4.4. An Even Better Dataset

A few samples present in this dataset are not relevant enough to be seen by the
model during training. For instance, there is one sample in front of an ATM where the 3D
representation does not match the scene at all. A manual sorting beforehand could discard
such samples to ease the training process and avoid artefacts in generated images.

The lack of metrics in the dataset makes the sample’s quality evaluation complicated.
For instance, a metric could rely on the DiffCol pass, which gives enough context to explain
how well a simulated sample is aligned with its matching street view. Due to the inherent
characteristics’ variations between the two, real street views may benefit from preprocessing
to smooth out plane surfaces and highlight the edges, as they contain more information
about alignment. This quality evaluation could be used to remove the worst samples to
improve the overall quality of the dataset.

Finally, in the 3D model of Paris used to generate the simulated images, a few buildings
were missing, as shown in Figure A4. A new 3D data source could improve the generation
of samples by having better fitted simulated samples and maybe even more details, such as
the 3D roof’s shape, as in Google Earth, or trees.

5. Conclusions

The creation of a custom dataset was a huge task on its own, and the dataset has
undergone a lot of improvements with the project moving forward. In its latest version, it
simulates samples in their full numerical range (using 16 bits floats) that are aligned with
their street view counterparts. The simulated domain comes in seven channels to represent
depth, surface normal, and a segmentation map. As highlighted by the ablated model, this
additional data are hugely beneficial for the generator network compared to regular RGB
images. The trained GAN successfully enables the effortless generation of realistic images
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of street views. The results obtained with the SPADE generator are quite promising, and
such a model could suit the automotive industry. Autonomous driving AI could be trained
on samples generated by this model representing specific road configurations that are too
rare in real life to be properly trained on.

Despite the good results, multiple solutions to improve the model’s stability and
produce style-oriented results were proposed. These solutions could allow the model to
produce non-human-discernibly generated samples.

The code is open source, documented, and under a creative commons licence inherited
from the SPADE project. https://github.com/MarcBresson/Individual-Research-Project,
accessed on 18 October 2023.
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