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Constructed wetlands as nature-based solutions in managing per-and 
poly-fluoroalkyl substances (PFAS): Evidence, mechanisms, and modelling 
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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• Constructed wetlands (CWs) as nature- 
based solutions are promising to 
remove PFAS. 

• Surface flow CWs perform the highest 
PFAS removal with median value of 
63.8 %. 

• Current dataset cannot support numeri-
cal analysis of PFAS removal pathways. 

• Machine learning models outperform 
mechanistic empirical models for PFAS 
removal. 

• Long-term monitoring of full-scale CWs 
is crucial to improve PFAS removal 
evidence.  
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A B S T R A C T   

Per- and poly-fluoroalkyl substances (PFAS) have emerged as newly regulated micropollutants, characterised by 
extreme recalcitrance and environmental toxicity. Constructed wetlands (CWs), as a nature-based solution, have 
gained widespread application in sustainable water and wastewater treatment and offer multiple environmental 
and societal benefits. Despite CWs potential, knowledge gaps persist in their PFAS removal capacities, associated 
mechanisms, and modelling of PFAS fate. This study carried out a systematic literature review, supplemented by 
unpublished experimental data, demonstrating the promise of CWs for PFAS removal from the influents of 
varying sources and characteristics. Median removal performances of 64, 46, and 0 % were observed in five free 
water surface (FWS), four horizontal subsurface flow (HF), and 18 vertical flow (VF) wetlands, respectively. 
PFAS adsorption by the substrate or plant root/rhizosphere was deemed as a key removal mechanism. Never-
theless, the available dataset resulted unsuitable for a quantitative analysis. Data-driven models, including 
multiple regression models and machine learning-based Artificial Neural Networks (ANN), were employed to 
predict PFAS removal. These models showed better predictive performance compared to various mechanistic 
models, which include two adsorption isotherms. The results affirmed that artificial intelligence is an efficient 
tool for modelling the removal of emerging contaminants with limited knowledge of chemical properties. In 
summary, this study consolidated evidence supporting the use of CWs for mitigating new legacy PFAS con-
taminants. Further research, especially long-term monitoring of full-scale CWs treating real wastewater, is crucial 
to obtain additional data for model development and validation.  
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1. Introduction 

Per- and polyfluoroalkyl substances (PFAS) constitute a group of 
aliphatic compounds on which hydrogen substituents have been 
replaced (totally or partially) with fluorine atoms (Buck et al., 2011). 
Owing to their exceptional thermal stability and hydrophobic/lip-
ophobic properties, PFAS have found widespread applications in diverse 
sectors including aqueous film-forming foams (Leeson et al., 2021) and 
household items such as food packaging, waterproof fabrics, and non- 
stick cookware (Dewapriya et al., 2023). Unfortunately, this extensive 
utilisation since the 1940s has resulted in significant global environ-
mental contamination, affecting both terrestrial (Johnson, 2022) and 
aquatic environments including groundwater, surface water, and coastal 
waters (Podder et al., 2021; Wei et al., 2018). Exposure to PFAS and 
their accumulation in the human body have been associated with 
various adverse health effects, such as immunotoxicity, neurotoxicity, 
and pancreatic tumours (Fenton et al., 2021; Panieri et al., 2022). 
Consequently, tighter regulations have been introduced to tackle PFAS 
contamination worldwide: the US Federal Government limited in 2023 
PFOA and PFOS concentrations in drinking water to <4 ng/L (US EPA, 
2023) and the European Union adopted a total PFAS concentration <
0.5 μg/L in 2021 (EU, 2021). 

Several treatment technologies have been explored to mitigate PFAS 
contamination such as granular activated carbon (GAC) (Belkouteb 
et al., 2020), ion exchange resins (Woodard et al., 2017), membrane 
processes (Lee et al., 2022), chemical oxidation (López-Vázquez et al., 
2024), and incineration (Liu et al., 2023). However, the development of 
cost-effective approaches capable of efficiently reducing PFAS concen-
trations to ppt levels or facilitating PFAS mineralization remains a 
critical gap. The challenge lies in addressing the stability of the car-
bon‑fluorine (C–F) bond, which demands substantial energy (526 kJ/ 
mol) for breakdown (Wang and Liu, 2020). While debates persist con-
cerning the feasibility of microbes capable of transforming PFAS into 
innocuous products (Berhanu et al., 2023; Zhang et al., 2022), an 
innovative development emerged with the work of Huang and Jaffé 
(2019), who reported the successful bioremediation of PFAS by micro-
bial communities containing Acidimicrobium sp. strain A6 (Huang et al., 
2022). There are other studies reporting biodegradation of PFAS 
through various bacterial species that have the ability to defluorinated 
the contaminant such as Gordonia sp. strain NB4-1Y and Pseudomonads 
sp. (LaFond et al., 2023; Berhanu et al., 2023). These studies offer 
valuable insights into exploring a potentially cost-effective approach for 
PFAS removal. 

As a nature-based solution (NBS), constructed wetlands (CWs) have 
been widely used for water and wastewater treatment while simulta-
neously offering environmental, economic, and societal benefits. When 
compared with conventional treatments, studies have shown that CWs 
can exhibit similar or, at times, better performance during the treatment 
of micropollutants including pharmaceuticals and personal care prod-
ucts (Hijosa-Valsero et al., 2010; Li et al., 2014). The efficacy is attrib-
uted to synergies between substrate sorption, biodegradation, and 
phytoremediation processes (Wagner et al., 2023). Studies have indi-
cated a reduction in PFAS concentrations in contaminated water after 
passing through both natural and constructed wetlands (Arslan and 
Gamal El-Din, 2021). Recently, efforts have focused on enhancing PFAS 
removal with the use of innovative wetland substrates (Kang et al., 
2023; Ma et al., 2023; Yu et al., 2023). Nevertheless, the information is 
sparse and difficult to compare, highlighting a need for a systematic 
review to synthesise current state-of-the-art using CWs for PFAS risk 
mitigation and the understanding of potential removal mechanisms and 
pathways to inform future designs. 

The modelling of pollutant removal is fundamental for predicting 
and designing water/wastewater treatment infrastructure, including 
CWs. While conventional CW designs primarily focus on organic matter 
and nutrient removal (Dotro et al., 2017), the evolving landscape of 
stringent discharge regulations has led to increased efforts in 

micropollutant modelling. Previous studies have reported several 
empirical or mechanistic models, such as sorption isotherms and com-
pound degradation (Sima and Jaffé, 2021), mainly based on chemical 
properties of compounds. However, specific efforts dedicated to PFAS 
removal modelling remain limited. Data-driven models, including 
multiple regression and machine learning models, have demonstrated 
advantages in simulating the removal of compounds with mostly un-
known properties (Yaqub et al., 2022). Although promising, the appli-
cation of these models to simulate PFAS remediation within the context 
of CWs remains unexplored. 

To address these knowledge gaps, this study aims to consolidate 
existing evidence, unravel underpinning mechanisms, and apply 
advanced models to support future CW implementation for the removal 
of emerging PFAS contaminants. A comprehensive literature review, 
supplemented by unpublished experimental data, was first conducted to 
showcase the PFAS removal performance and mechanisms in different 
types of CWs. Subsequently, the potential impacts of operational factors 
on PFAS removal were analysed. To enhance applicability and predic-
tive capacity, the development and validation of both empirical and 
data-driven models were carried out. Furthermore, future research 
needs and challenges were identified to facilitate future research and 
implementations. 

2. Methods 

2.1. Dataset collection 

A systematic literature review was conducted using the following 
databases: Web of Science, Scopus, and Google Scholar. Selected key-
words included “constructed wetlands” and/or “nature-based solutions” 
and/or “treatment wetlands”, and “per and polyfluorinated compounds” 
or “PFAS” or “forever chemicals” (TITLE-ABS-KEY). Eight searches were 
conducted for each database totalling to 24 searches and resulting in 138 
hits. After the removal of duplicate results, 40 publications were iden-
tified (Fig. S1, supplementary material). A set of inclusion and exclusion 
criteria was established to select publications discussing PFAS in con-
structed wetlands and exploring their removal pathways. A thorough 
screening of titles and abstracts resulted in 37 relevant publications. 
These were further refined to include studies presenting removal effi-
ciency values or influent and effluent concentrations, resulting in a final 
list of 16 studies. 

In addition to the systematic review, data were collected from three 
outdoor pilot scale vertical flow (VF) wetlands treating real wastewater 
at Cranfield University (UK). One VF wetland (6.25 m2) filled with 
electroconductive media was commissioned in 2020 to treat the primary 
effluent from Cranfield sewage works with the hydraulic loading rate 
(HLR) of 0.16 m/d. The other two VF wetlands (1m2 each) were built in 
2022 to treat the raw sewage. Both systems were operated under French 
treatment wetland conditions, with an HLR of 0.37 m/d for 3 days and 
followed by 7 days of rest. In June 2023, three sampling campaigns were 
conducted across all three systems for PFOA and PFOS analysis. Tripli-
cate samples were collected for both influent and effluent waters of the 
VF systems. Samples were analysed with a SCIEX LC interfaced to Qtrap 
Mass Spectrometer with an electrospray ionisation source (Framingham, 
MA, USA). The details of the system construction, operation, PFAS 
sampling, and PFAS analysis can be found in Text S1 (supplementary 
material). 

2.2. PFAS removal calculations 

The influent/effluent concentrations of individual PFAS substances 
were extracted from the literature and summarised in Table S1. Some 
literature reported the percentage removal of PFAS (%), for those studies 
without reporting removal extents, the percentage removal of PFAS was 
calculated with Eq. (1). To account for the bias caused by the wetland 
size and HLR on the removal performance, the mass load removal (μg/ 
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m2/d) was also calculated based on Eq. (2). 

Removal Efficiency (%) =
Concentrationinfluent − Concentrationeffluent

Concentrationinfluent
*100

(1)  

Mass Load
(
μg

/
m2/

d
)

=
Concentrationinfluent − Concentrationeffluent

1000*Hydraulic Loading Rate
(2) 

Further data was processed with R Studio (R v. 4.1.2) to explore the 
statistical significance of parameters affecting the removal of PFAS. A 
backward stepwise regression procedure was considered where inde-
pendent descriptors were removed to improve the fit of the model. Also, 
a correlation analysis was performed for pairwise comparisons of pa-
rameters to identify any correlated features indicating a positive or 
negative relationship with the removal of PFAS. 

2.3. Modelling 

For modelling purposes, the extracted variables (descriptors) from 
the retrieved studies and Cranfield University’s testing were the 
following: influent and effluent concentration, removal efficiency, PFAS 
species, experimental period, substrate, vegetation, CW type, scale, 
wastewater type, flow rate, HLR, HRT, and CW size. All these descriptors 
were included in the backward stepwise regression (Eq. (3)). The values 
were set as 0, 1, or 2 for unplanned, single culture and hybrid, respec-
tively. Similarly, the value was set to 1 for synthetic wastewater, 2 for 
spiked wastewater, and 3 for pure wastewater. Finally, the values 
describing CW size were 1 for lab scale, 2 for pilot scale, and 3 for full- 
scale systems. The independent descriptors found to be statistically 
significant (α ≤ 0.05) were extracted and used as input parameters in the 
multiple linear regression, multiple polynomial regression, and artificial 
neural network (ANN). 

where a, b, c, d, e, f, g, h, I, j, k, l, m0 were empirical constants. 

2.3.1. Multiple linear and polynomial regression 
Multiple linear regression makes predictions using more than one 

explanatory variable generating a multivariate model between one 
dependent variable (yi) and multiple independent variables (x1 … xn) 
(Bingham and Fry, 2010). Following backward stepwise regression five 
independent variables were introduced to the multiple linear (Eq. (4)) 
and 2nd-degree polynomial regression using the following equations 
(Eq. (5)). 

PFAS Removal (%) = α1*HLR + α2*HRT + α3*Flow rate
+ α4*Experimental period + α5*Substrate + m1

(4)    

where α1−5 β1−10, are m1−2 represent the coefficients associated with 
each regression and each term, and e is the error term. 

2.3.2. Artificial Neural Network (ANN) model 
The multi-layer perception (MLP) type of ANN, similar to what has 

been used by other studies (Lyu et al., 2018) was implemented. The 
configuration of a typical MLP consists of a single input layer, one 
computational layer (hidden), and a single output layer (producing one 
variable: predicted removal). The hidden nodes in the hidden layers use 
the Rectified Linear Activation Unit (ReLU) functions (Eq. (6)). ReLU 
introduces non-linearity to the model; training the model in complex 
patterns of the dataset (Brunton and Kutz, 2019; Chollet, 2021). 

ReLU (x) =

{
x if x > 0
0 if x ≤ 0 (6) 

In this ANN, the entire neural network is connected (Fig. S2). This 
means each node in one layer connects to every node in the next layer. 
The output c of each neuron is: 

c = φ

(
∑

i
wiai + b

)

(7)  

where ai denotes input values and wi the respective weights of each 
neuron, b is the error of the neuron and φ represents the activation 
function. More information can be found under the supplementary 
material. 

For all three models, the input data were randomly split into two 
subsets (4:1 ratio), with the larger subset used for training and the 
smaller subset used for validation. Thus, 144 and 36 data points were 
used to train and validate each model, respectively. The mean absolute 
error (MAE), mean square error (MSE), and root mean square error 

(RMSE) (Eqs. S1-S3, Modelling Method) were used to evaluate the 
precision of all three models during model validation in the present 
study. 

3. Evidence of constructed wetlands for PFAS mitigation 

3.1. Current state of PFAS research in CWs 

The growing concern regarding PFAS contamination has accelerated 
significant research efforts, expanding into the area of CWs for water 
and wastewater treatment. A comprehensive literature examination 
found 16 research articles, along with a recent study at Cranfield Uni-
versity, UK. These studies documented the monitoring of 37 individual 
CW systems (Table 1 and Table S2) which showed different CW sizes 
namely, laboratory scale (0.008–1 m2, 24 system), pilot scale (1–6.25 

PFAS Removal (%) = a*HLR + b*HRT + c*Flow rate + d*Experimental period + e*Substrate + f*PFAS Species + g*Vegetation + h*wastewater type
+ i*constructed wetland type + j*Scale + k*Influent concentration + l*effluent concentration + m0

(3)   

PFAS Removal (%) = β1*HLR + β2*HLR2 + β3*HRT + β4*HRT2 + β5*Flow Rate + β6*Flow Rate2
+ β7*Experimental Period + β8*Experimental Period2

+ β9*Substrate + β10*Substrate2
+ m2 + e

(5)   
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m2, 9 system), and full scale (0.01–311 km2, 4 system). For those studies 
lacking a scale classification, the sizes of 1 and 10 m2 were used as 
thresholds to define lab-scale (< 1 m2), pilot-scale (1–10 m2), and full- 
scale (> 10 m2). Full-scale wetland investigations were conducted in 
China (Chen et al., 2020; Wang et al., 2019), the United States (Zhang 
et al., 2021), and Singapore (Yin et al., 2019, 2017); all of them were 
mature systems with operational records ranging up to 6 years. The 
monitoring of these systems, however, has been short and involved 
limited sampling campaigns mainly due to high analytical costs associ-
ated with PFAS. Current efforts lasting up to one year primarily focus on 

lab-scale and pilot-scale systems, which treated either clean tap water or 
wastewater spiked with PFAS (10 μg/L) (Yin et al., 2019). In this study, 
individual cells in hybrid CWs (Table 1), which measured inlet and 
outlet concentrations, were considered as separate systems for com-
parison between different CW types (Section 3.2). 

Within the current research scope of this review, retrieved studies 
have targeted the removal of 32 types of PFAS, categorised into four 
groups: perfluoroalkyl carboxylic acids (PFCAs), perfluoroalkyl sulfonic 
acids (PFSAs), perfluoroalkane sulfonamides (FASAs), and fluo-
rotelomers (Table S3). Perfluorooctanoic acid (PFOA) and 

Table 1 
Details of the 16 studies retrieved from the systematic literature review and a recent study at Cranfield University, UK.  

Type of CWs Scale Size 
(m2) 

Number of 
studied 
PFAS 

Influent (ng/L) Removal 
efficiencya (%) 

Number 
of 
Systems 

Wastewater 
Matrix 

Monitoring 
period/ 
system’s age 

Country References 

Surface flow/ 
Free water 
surface flow 
(FWS) 
wetlands 

Full- 
Scale 

–  12 0.19–11,550 Negative - 27 %  1 Industrial and 
Domestic 

1 day/ n.a. China Wang et al. 
(2019) 

Full- 
Scale 

311 
(km2)  

8 0–12 Negative - 67 %  1 Stormwater 
Runoff 

1 day/n.a. United 
States 

Zhang et al. 
(2021) 

Lab- 
Scale 

0.0452  12 1000 33.6 % - 88.9 %  3 Synthetic 14 days/2 
months 

China Li et al. 
(2021) 

Lab- 
Scale 

–  8 180–4,300,000 –  3 Stormwater 
Runoff 

3 months/2 
weeks 

United 
States 

Zhang et al. 
(2020) 

Lab- 
Scale 

–  2 200–30,000 –  4 Stormwater 
Runoff 

28 days/2 
weeks 

Australia Awad et al. 
(2022) 

Horizontal 
subsurface 
flow (HF) 
wetlands 

Lab- 
Scale 

1  2 50,000 70–85 %  2 Synthetic 25 days/44 
days 

China Yu et al. 
(2023) 

Pilot- 
Scale 

3  4 4220–81,650 <50 %  1 Groundwater 12 months/ n. 
a. 

Italy Ferrario 
et al. (2022) 

Vertical flow 
(VF) wetlands 

Pilot- 
Scale 

0.2544  92 2–1665 1.2 % - 7.7 %  4 Landfill 
Leachate 

32 days/n.a. United 
States 

Lott et al. 
(2023) 

Lab- 
Scale 

0.0283  2 6500–9300 >96 %  3 Rainwater 5 months/n.a. China Ji et al. 
(2023) 

Lab- 
scale 

0.0491  2 50,000 >50 %  3 Synthetic 225 days /n.a. China Ma et al. 
(2023) 

Lab- 
scale 

0.0491  2 50,000 >90 %  3 Synthetic 100 days/n.a.  Kang et al. 
(2023) 

Lab- 
scale 

0.0079  1 100,000–1,000,000 49.69–73.63 %  2 Synthetic 210 days/3 
months 

China Xiao et al. 
(2023) 

Pilot- 
Scale 

0.4661  1  61–89 % (soil) 
and 5–30 % 
(plant uptake)  

1 Domestic 42 days/ n.a. China Qiao et al. 
(2021) 

Pilot- 
Scale 

1.0 & 
6.25  

2 6.39–1135 Negative – 6.6 %  3 Domestic 3 months/ 2 
years 

United 
Kingdom 

Cranfield 
University 
2023 

Hybrid wetlands Full- 
Scale 

10,000  18 0.07–208.6 61 %  1 Landfill 
Leachate 

11 months /6 
years 

Singapore Yin et al. 
(2017)b 

Full- 
Scale 

–  23 25,900–56,600 21 %  1 Industrial 1 day/ n.a. China Chen et al. 
(2020) 

Lab- 
Scale 

–  1 10,000 –  1 Landfill 
Leachate 

150 days/ n.a. Singapore Yin et al. 
(2019)  

a The removal of individual PFAS compound can be found in Table S1 (supplementary material). 
b Individual HF system was extracted for the comparison study. 

Fig. 1. Percentage removal (a) and load removal (b) of PFAS in free water surface (FWS), horizontal subsurface flow (HF), and vertical flow (VF) wetlands. The lines 
and dots in the box plots represent the median value and individual reported value in the summarised studies (Table S1). 
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perfluorooctane sulfonate (PFOS) are the most regulated PFAS, hence, 
making them the most studied compounds in 27 and 26 CW systems, 
respectively. Four studies focused on evaluating removal capabilities 
and therefore were included in reviewing removal mechanisms (Section 
4) of PFAS through microbial/sediment adsorption (Yin et al., 2019), 
plant uptake (Awad et al., 2022), and microbial degradation (Zhang 
et al., 2020). 

3.2. Performances of PFAS removal in different types of CWs 

Regardless of influent wastewater types and system scale, the median 
percentage removal extents in three different CW types ranked as fol-
lows (Fig. 1a): 64 % free water surface (FWS), 46 % horizontal subsur-
face flow (HF), and 0 % vertical flow (VF). While FWS wetlands emerge 
as the most promising CW for PFAS removal, this configuration 
concurrently shows the larger variances and negative removals down to 
−200 %. Such variances can be attributed to how full-scale systems are 
monitored as compared to the well-controlled lab-scale systems (i.e., HF 
and VF). For instance, sampling campaigns at full-scale usually involve 

the collection of a limited number of grab samples that might not 
accurately reflect the actual system performance as hydraulic retention 
times (HRTs) are not considered. Additionally, PFAS desorption from 
sediments could contribute to the observed negative removal because of 
long-term operation periods. Notably, the median load removal (Fig. 1b) 
remains comparable (between −0.035 to 0.018 μg/m2/d) across all 
three CW types, with VF wetlands displaying the highest variance 
potentially influenced by the adsorption capabilities of diverse sub-
strates. The load removal was significantly lower than those measured 
for persistent pharmaceuticals (e.g., Ofloxacin and Sulfadiazine, 4 μg/ 
m2/d) (Ilyas et al., 2020), demonstrating the recalcitrance of the PFAS 
‘forever chemicals’. Overall, the results demonstrated that CWs can 
safeguard receiving waters by removing PFAS from the influents of 
varying sources and characteristics. 

3.2.1. Free water surface and horizontal subsurface flow wetlands 
Few studies reported influent and effluent PFAS concentrations for 

FWS (five) and HF (four) wetlands (Table S1). Notably, the only reported 
values for full-scale CWs were conducted in two FWS and one HF 

Fig. 2. PFAS concentration range of influent and effluent in free water surface (FWS, a), horizontal subsurface flow (HF, c), and vertical flow (VF, e) wetlands. The 
percentage removal of individual PFAS compounds in FWS (b), HF (d), and VF (f) wetlands. The lines and dots in the box plots represent the median value and 
individual reported value. Note: three studies were excluded due to high spiked concentrations in VF (Xiao et al., 2023; Kang et al., 2023, and Ma et al., 2023) and 
one study in HF (Yu et al., 2023). 
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systems. Measured influent PFAS concentrations (regardless of PFAS 
species) ranged from 0.52 to 12 μg/L in FWS wetlands, and effluent 
concentrations ranged from 0.17 ng/L to 11.17 μg/L (Fig. 2a) reflecting 
the environmentally relevant PFAS levels. Some lab-scale studies used 
PFAS fortified influents so that the highest value was 50 μg/L in HF 
wetland reported by Yu et al. (2023). Excluding this study, influent PFAS 
concentrations in HF wetlands ranged between 0.00007 and 2.7 μg/L; 
similar values were observed in effluents (0.00005 to 2.7 μg/L) (Fig. 2c). 

Most values for full-scale systems treating raw wastewater (landfill 
leachate and industrial effluents) fell at the level of ng/L, reaching as 
low as 0.05 ng/L (Yin et al., 2017). For lab-scale experiments, the 
removal varied between 34 and 99 % (Li et al., 2021). By contrast, the 
PFAS removals in full-scale systems ranged from −200 to 67 % (Wang 
et al., 2019; Zhang et al., 2021). A total of 11 and 19 PFAS species were 
monitored and examined for FWS and HF wetlands, respectively 
(Figs. 2b and d). Although the overall percentage removal of PFAS 
varied widely in both CW types, from −200 to −99 % in FWS wetlands 
and from −17 % and 89 % in HF wetlands, the FWS wetlands achieved 
higher removal capabilities for PFAS compared to HF wetlands. More-
over, long-chain PFAS (e.g. telomers) exhibited higher removal than 
short-chain PFAS (e.g. PFBS, PFBA) as reported by Wang et al. (2019). 
Fluorotelomers tend to break down during treatment producing short- 
chain PFAS as transformation products. This leads to the perception 
that CWs can remove telomers. From this study, it is not possible to 
conclude whether carboxylic acids or sulfonic acids are better removed 
since there is only one measurement available (PFDS, PFHxA, PFHxS, 
PFNA, PFDA, PFHpA in Fig. 3d). For FWS wetlands, most PFAS species 
have a median removal between 10 and 49 % irrespective of their hy-
drophilic functional group. 

3.2.2. Vertical flow wetlands 
In VF wetlands, influent concentrations derived from seven studies 

involving 19 systems ranged from 2 ng/L to 1 mg/L, reaching as low as 
0.9 ng/L in the effluent (Fig. 2e). The wide range of influent PFAS 

concentrations (0.002–1000 μg/L) from three studies was excluded in 
Fig. 2e. Despite more studies conducted in VF wetlands, none were 
implemented at full-scale. The reported 18 PFAS in VF wetlands (Fig. 2f) 
showed no clear pattern, making it challenging to discern whether short- 
chain PFAS (e.g., PFSAs or PFCAs) exhibit better removal over longer- 
chain PFAS (e.g., FOSAs and telomers). This ambiguity could be 
attributed to the varying media used in the different studies which 
potentially hide differences for specific comparisons based on one type 
of media. Nevertheless, N-EtFOSAA and N-MeFOSAA effected higher 
removal rates than PFOA and PFOS. Similarly, telomers containing 
carboxylic acid (5:3 FTCA, 6:3 FTCA, 7:3 FTCA) reached significant 
removals in VF systems compared to those containing a sulfonic acid 
(6:2 FTS). However, such observation does not imply a preferential 
mineralization of PFCAs over PFSAs, as telomers break down into 
shorter-chain PFAS during treatment (Yin et al., 2019). 

Seven VF studies involved ten different substrates or mixtures shown 
in Fig. 3a. The use of GAC or mixtures with gravel exhibited the highest 
percentage removal of PFAS (>95 %). This superior performance can be 
attributed to the adsorption capabilities of GAC, a material widely used 
in drinking water treatment for PFAS mitigation (Belkouteb et al., 
2020). Other media materials or amendments such as magnetite and 
quartz sand, improve organics and nutrient removal (Ma et al., 2023) 
and better PFAS treatment (between 72 and 99 % removal extent) when 
compared to CWs equipped with conventional gravel and sand (between 
−50 and 99 %). An innovative electroconductive material was reported 
to accelerate the removal of nutrients (Ramírez-Vargas et al., 2019) and 
pharmaceuticals (Pun et al., 2019). However, the median removal of 
PFOS in such systems ranged from −37 to 1.2 %. These systems were 
designed to treat real domestic wastewater containing a high variety of 
PFAS concentrations in the influent, Moreover, the results were obtained 
from only three one-day grab sampling events. Longer-term monitoring 
is important to establish robust conclusions for this innovative electro-
conductive material. Moreover, the particle size of the medium in CWs 
may affect the removal of PFAS as this parameter dictates the number of 

Fig. 3. The percentage removal of PFAS in (a) different combinations of substrates in VF systems, (b) upflow and downflow VF systems, and (c) types of plantation. 
The lines and dots in the box plots represent the median value and individual reported value in the summarised studies. 
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available sites for adsorption. Additionally, the medium porosity also 
controls air/O2 transfer as well as the growth of attached biofilms, which 
might contribute to the biodegradation of pollutants. However, the 
current available VF systems contained a similar particle size, which did 
not enable the assessment of the impact of media porosity on PFAS 
removal. 

Beyond traditional down-flow VF, up-flow schemes in VF wetlands 
were investigated. Up-flow systems exhibited significantly higher me-
dian PFAS removal (73 %) compared to down-flow systems (Fig. 3b). 
Under up-flow operation, the systems were saturated, allowing for 
prolonged contact time between influent water and media/microor-
ganisms, potentially enhancing PFAS removal. While promising, up-flow 
VF is not widely adopted in practice due to the high energy requirements 
for pumping water through. The systems will mainly show an anaer-
obic/anoxic environment that limits organic and ammonia removal (Ji 
et al., 2023; Ma et al., 2023). Additionally, solids predominantly accu-
mulate at the bottom of these CWs, posing additional challenges for 
maintenance as compared to traditional down-flow VF wetlands that 
only require surface sludge cleaning. 

4. Impacting factors and PFAS removal mechanisms 

4.1. The impacts of operational conditions 

An examination of operational conditions including flow rate, HRT, 
HLR, experimental period, type of vegetation, wetland type, influent 
concentration, wetland scale, wastewater type and substrate type, was 
conducted through pairwise correlation analysis to assess their impacts 
on PFAS removal (Fig. 4a). Results indicated that wastewater type (cor. 
Coefficient = −0.93), CW scale (cor. Coefficient = −0.85), and hy-
draulic loading rate (HLR, cor. Coefficient = −0.60) exhibited the 
highest negative correlations with PFAS removal, while hydraulic 

retention time (HRT, cor. Coefficient = 0.49) and CW type (cor. Coef-
ficient = 0.60) showed positive correlations. 

Fig. 4b shows high variability in PFAS removal in raw (non-spiked 
wastewater) an expected outcome given the fluctuations of influent 
PFAS concentrations in real wastewater compared to fortified synthetic 
matrices. PFAS removal was higher when using clean water (e.g. tap 
water) as a base compared to spiking in real wastewater (e.g. domestic 
sewage). The result aligns with the knowledge that wastewater, 
comprising a complex matrix with diverse pollutants and fluo-
rotelomers, affects the removal of target compounds (Lenka et al., 
2021). 

A similar trend can be found when considering the impacts of CW 
scales, i.e. lab (<1 m2), pilot (1–6.25 m2), and full (0.01–311 km2) scales 
(Fig. 4c). Full-scale FWS systems exhibited higher variability, and in 
some instances, higher negative removal values compared to lab and 
pilot-scale experiments. These results indicated the challenges and 
highlighted the crucial importance of monitoring full-scale systems, as 
small-scale studies using synthetic wastewater influent may offer unre-
liable insights for real-world applications. In conventional wastewater 
treatment within CWs, high HLR and low HRT typically result in lower 
removal performance for BOD, ammonia (Ghosh and Gopal, 2010), and 
certain organic micropollutants (Ávila et al., 2014). However, it appears 
that the size of wetland does not significantly impact the removal of 
PFAS (Fig. S3). Concerning PFAS removal, statistically insignificant 
negative (Fig. 4d, R2 = 0.07) and positive (Fig. 4e, R2 = 0.4) correlations 
were found between HLR/HRT and PFAS removal, respectively. This 
finding suggests a distinct removal mechanism compared to other pol-
lutants, hinting that the biological treatment process might not be the 
primary contributor. Further insights into potential pathways will be 
explored in the following sections. 

Fig. 4. Correlation plot (a) visualising the pairwise correlation coefficients between 12 operational and experimental parameters. Dark red indicates positively 
correlated variables (values between 0 and 1), whereas yellow indicates negatively correlated variables (values between −1 and 0). The bigger the size of the circles, 
the more intense is the correlation between the two variables (close to extremes −1 and 1). Negative correlation of PFAS removal with (b) wastewater type (−0.93), 
(c) wetland scale (−0.85), and (d) hydraulic loading rate (−0.60). Positive correlation (e) of PFAS removal with hydraulic retention time (0.49). 
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4.2. Substrate sorption 

Previous studies generally agree on the crucial role of substrate 
adsorption in the removal of PFAS, which may facilitate subsequent 
phyto- and biological remediation processes. In contrast to conventional 
wetland gravel media, the mixture of magnetite iron mineral and GAC 
has demonstrated a remarkable increase in PFAS removal (Fig. 3a) (Ji 
et al., 2023; Kang et al., 2023; Ma et al., 2023). The enhancement is 
primarily ascribed to the improved hydrophobic interactions between 
PFAS compounds and the electrode layers of GAC (Ji et al., 2023). 
Moreover, the particle size of GAC is also important with larger particles 
contributing to slower adsorption rates due to prolonged intra-particle 
diffusion of PFAS anions. Therefore, substrates characterised by large 
mesopores, and a higher specific surface area are generally anticipated 
to enhance PFAS adsorption. Beyond the substrate itself, the organic 
matter content in the sediment has been identified as a contributing 
factor to the efficacy of PFAS adsorption (Sima and Jaffé, 2021). Addi-
tionally, PFAS removal is dependent on the pH levels, with acidic con-
ditions typically favouring the process (Lei et al., 2023). On the other 
hand, substrates enriched with minerals have been shown to increase 
plant tolerance to the toxic effects of PFAS and enhance pollutant 
removal. For example, increasing the content of Fe (III) promotes the 
formation of PFAS ligand complexes, thereby facilitating removal 
through the ligand-to-metal charge transfer mechanism (Ma et al., 2023; 
Sun et al., 2021). 

4.3. Phytoremediation 

Wetland plants play a dual role in the removal of pollutants by 
directly contributing to pollutant uptake and indirectly stimulating 
microbial communities and activity through the release of root exudates 
and oxygen (Malyan et al., 2021). Previous studies have proved the ef-
ficacy of phytoremediation processes in CWs for the removal of macro- 
pollutants, pesticides, and metals (Gray and Sedlak, 2005; Weis and 
Weis, 2004; Zhang et al., 2010). It was estimated that a hybrid planta-
tion would exhibit superior removal compared to monocultures due to 
the variety of plants present, contributing to an increased microbial 
community that could potentially enhance PFAS removal. This hy-
pothesis was not supported by the available dataset (Fig. 3c), possibly 
because the results were not derived from comparable studies. 

Distinct plant species exhibit varying levels of PFAS uptake. For 
instance, E. crassipes, characterised by a high root surface area and 
protein content, accumulated a significantly higher amount of PFOS 
(6–1186 mg/kg) compared to C. alternifolius (9–162 mg/kg) when 
exposed to PFOS-contaminated water at concentrations ranging from 1 
μg/L to 10 mg/L (Qiao et al., 2021). Compared to emergent macro-
phytes, Li et al. (2021) suggested that FWS systems with submerged 
macrophytes such as C. demersum may be advantageous for PFAS 
elimination from water. Qiao et al. (2021) stated two primary mecha-
nisms of plant adsorption involving either PFAS absorption to root 
surface tissue or transpiration. Surface tissue absorbance dominates 
plant uptake, particularly for long-chain PFAS. Conversely, short-chain 
PFAS translocate more readily from roots to shoots than long-chain 
counterparts (Sima and Jaffé, 2021), suggesting that aboveground 
plant harvest may enhance short-chain PFAS removal from CWs. How-
ever, the challenge of plant and substrate disposal persists, necessitating 
thermal treatment for the complete mineralization of adsorbed and 
bioaccumulated PFAS (Gagliano et al., 2020). 

4.4. Microbial biodegradation 

Owing to the inherent stability of their chemical structures, volatil-
ization and photocatalytic processes may yield low removal efficiencies 
when treating PFAS (Garg et al., 2021; Sima and Jaffé, 2021). A similar 
limitation applies to the potential contribution of microbial commu-
nities, as biodegradation is unlikely due to the strength of the C–F bond. 

However, Huang and Jaffé (2019) first reported the capability of the 
wetland microbe, Acidimicrobium bacterium A6, to effectively detoxify 
PFAS contaminants. Moreover, various fungal and bacterial strains have 
been isolated and proven capable of PFAS degradation. Nevertheless, 
concerns persist regarding the potential for slow and incomplete 
mineralization of PFAS (Berhanu et al., 2023). More importantly, the 
indigenous microbes in CWs exhibit limited ability for PFAS biodegra-
dation. To address this limitation, the introduction of microorganisms 
capable of degrading specific contaminants has shown promise in 
enhancing the biodegradation of various emerging pollutants like anti-
biotics (Choi et al., 2016). Extending this approach to PFAS, the intro-
duction of defluorination microorganisms adept at utilising methane 
and hydrogen as electron donors could facilitate the breakdown of the 
challenging C–F bond resulting in PFAS biodegradation (Huang and 
Jaffé, 2019). However, further investigations are essential to thoroughly 
evaluate the effectiveness of this strategy (Ji et al., 2020). 

5. PFAS removal modelling: mechanistic and machine learning 
models 

5.1. Mechanistic models (Koc simulation and empirical models) 

Mechanistic models derived from chemical properties and associated 
removal pathways, including adsorption processes (Sima and Jaffé, 
2021), have been used for predicting the removal of various organic 
contaminants such as pesticides and pharmaceuticals (Gatidou et al., 
2017; Ilyas et al., 2021). Despite several attempts to include PFAS in 
these models (Gefell et al., 2022; Rafiei and Nejadhashemi, 2023), no 
studies have been conducted on PFAS removal in CWs for wastewater 
treatment. 

5.1.1. Koc simulation 
The sorption process of organic micropollutants is mainly explained 

in terms of organic carbon partition coefficient values (LogKoc). Vymazal 
and Březinová (2015) applied a rough simulation by correlating LogKoc 
values of 87 pesticides with their removal extents. This work found a 
clear correlation (R2 = 0.162) between removal and LogKoc and high-
lighted the substantial adsorption of pesticides to soil particles in CWs. 
However, the PFAS family comprises over 5000 compounds and pre-
sents a challenge as Koc values are unknown for most of them. We 
managed to obtain the Koc values for 23 PFAS from the studied 32 
compounds (Table S3). Unfortunately, the simulation result was poor 
(R2 = 0.02, Fig. 5a). This discrepancy is partly due to the considerable 
variance in PFAS removal performances and the incomplete data for 
many PFAS compounds, with Koc values derived from estimates rather 
than experimental measurements. Therefore, the subsequent empirical 
model simulations focused exclusively on the extensively studied com-
pounds PFOA and PFOS, leveraging the most available data and known 
chemical properties. 

5.1.2. Linear isotherm model 
Sorption isotherms have proven effective in evaluating the sorption 

in CW of pollutants such as phosphorus and ammonia (Cui et al., 2008; 
Wen-Ling et al., 2011). For these compounds, the linear isotherm model 
(Eq. (8)) (Sima and Jaffé, 2021), which represents the partitioning/ 
sorption of a compound between the liquid and solid phases is directly 
proportional. 

Se = Kd*Cw (8)  

where Kd is the distribution coefficient (mL/g), Se is the pollutant con-
centration in the solids at equilibrium (μg/g), and Cw is the pollutant 
concentration in the water phase at equilibrium (μg/mL). 

Currently, there is very little information on PFAS sorption in CWs. In 
carbon-rich materials, Fabregat-Palau et al. (2022) reported the positive 
influence of material aromaticity on Kd, indicating that sites with 
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π-electron-rich regions are important for PFAS sorption. External vali-
dation of the linear model, with R2 = 0.9, applied to these carbon-rich 
materials obtained an RMSE of 0.53 for predicting Kd. In the current 
study, theoretical linear isotherm Kd values were compiled from the 
literature (Ahrens et al., 2011; Xiao et al., 2017; Zareitalabad et al., 
2013) and used for model implementation. As Se values were not 
consistently reported in all studies, predicted values for 4 PFOA and 6 
PFOS actual values were calculated with Eq. (8); detailed calculations 
are provided in Table S4. The results in Fig. 5b indicated a percentage 
difference higher than 100 between predicted and actual Se values, with 
an average RMSE over 6 × 106, which suggests the inadequacy of the 
linear isotherm model for predicting PFAS removal. 

5.1.3. Non-Linear (Freundlich) Isotherm 
In predicting the adsorption of hydrophobic compounds, non-linear 

models like the Freundlich and Langmuir Isotherms have been more 
commonly used (Ahrens et al., 2011; Fabregat-Palau et al., 2022; Hig-
gins and Luthy, 2006). The preference to use a non-linear sorption 
isotherm for PFAS arises from the intricate sorbet-sorbent interactions, 
such as electrostatic repulsion (Yu et al., 2009). Therefore, the 
Freundlich Isotherm (Eq. (9)) was used to simulate PFAS removal in CWs 
(Sima and Jaffé, 2021). 

Se = KF*CN
w (9)  

where KF and N are Freundlich constants. Higgins and Luthy (2006) 
showed that the sorption of PFAS is nonlinear since Kd values seem to 
decrease with increasing concentration. Similar to the linear isotherm, 
information was derived from literature for KF and N (Table S5). 

Utilising the available dataset, LogSe (ng/g) was plotted for predicted 
and actual concentrations in the substrate at equilibrium for two studies 
(Fig. 5c). Unfortunately, the non-linear isotherm also yielded a poor 
simulation of PFOA and PFOS concentrations, with an average RMSE of 
76. Hence, despite adsorption being acknowledged as a primary PFAS 
removal mechanism, conventional isotherm models (both linear and 
non-linear) prove inadequate in accurately predicting their removal. 
The discrepancies in this instance can be attributed to the absence of 
experimental values for isotherm constants and the small sample size. 

5.1.4. Pseudo-first-order degradation model 
Biodegradation kinetics have extensively applied in CWs for simu-

lating the removal of various micropollutants(Krone-Davis et al., 2013; 
Lv et al., 2016). Despite the challenge of demonstrating the biodegrad-
ability of PFAS in CWs, we applied the pseudo-first-order kinetics (Eq. 
(10)) to predict the PFAS degradation. The k values, unfortunately, were 
only available for PFOA and were derived from 1 publication, with k 
equal to 0.015 h−1 (Xiao et al., 2023). The model was applied across 17 
systems (Table S6), and again, with RMSE ranging from 0.04 up to 74 
when comparing predicted and actual PFAS removals (Fig. 5d). 

Cw = Cw0*e−kt (10)  

where Cw0 is the initial concentration in the aqueous phase (μg/L) and k 
is the rate constant. The rate constant k is dependent on the compound’s 
properties and abiotic factors (i.e., temperature, pH, redox capacity). 

Other mechanistic models, such as the plant uptake model, have 
been developed to simulate the removal of organic micropollutants in 
CWs or phytoremediation processes (Mohammed and Babatunde, 2017). 
However, given the lack of chemical properties information on PFAS and 
the limited studies available for this review, it is not possible to apply a 
plant uptake model for PFOA and PFOS. 

5.2. Data-driven and machine-learning models 

Since there is no need for imputing values of chemical properties, 
data-driven models were employed to predict PFAS removal in CWs as a 
way of avoiding inconsistencies inherent in empirical models. Data- 
driven models have been effectively used for simulating the removal 
of pesticides, total nitrogen, and total phosphorus (Akratos et al., 2009a; 
Kumar and Zhao, 2011; Lyu et al., 2018; Ugya and Meguellati, 2022). A 
common approach involves applying multiple regression on a dataset of 
measured parameters. Another method gaining attention recently is the 
use of machine learning tools, including Artificial Neural Networks 
(ANN) and Self-Organization Maps. To our knowledge, this study is the 
first to apply these data-driven models to PFAS treatment processes in 
CWs. 

The identified variables (Section 2.3) were first used in a thorough 
analysis using a backward stepwise regression to identify the principal 
variables affecting removal. The significant variables identified, 

Fig. 5. (a) Relationship between LogKoc and removal of PFAS. Removal derived from literature data discussed in Sections 3 & 4, n = 109. (b) Linear isotherm: LogSe 
(ng/g) for predicted and actual values, number of studies = 4 and n = 7. (c) Non-linear isotherm (Freundlich Isotherm): LogSe (ng/g) for predicted and actual values, 
number of studies = 2 and n = 4. (d) Degradation pseudo-first-order degradation: LogCw of predicted and actual effluent concentrations of PFOA, n = 17, and number 
of studies = 9. 
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including HLR, HRT, flow rate, experimental period, and substrate 
types, were extracted and employed in linear multiple regression, 
polynomial multiple regression, and the ANN models as input 
parameters. 

All three data-driven models provided much better results (Fig. 6), 
demonstrating the remarkable alignment between predicted and actual 
PFAS removal in diverse CWs when compared to mechanistic models 
(Fig. 5). The linear multiple regression model proved to be the least 
reliable (Fig. 6a) with MAE = 35.4, followed by the 2nd-degree poly-
nomial (MAE = 34.8, Fig. 6b), while the ANN exhibited the highest 
accuracy (MAE = 27.27, Fig. 6c). Although the MAE is lower for ANN, 
the goodness of fit (R2) of ANN is less robust in comparison to the 2nd 
degree polynomial regression. These results showed the advantage of 
data-driven models for predicting PFAS removal, leveraging their in-
dependence from input chemical properties and relying on predictions 
based on measured values. However, it should be noted that the current 
dataset size (180 data points describing 24 compounds) for the ANN 
model development was relatively small in the context of data modelling 
in artificial intelligence. This is a common challenge when adapting 
data-driven models to simulate/predict results in other relevant envi-
ronmental studies. However, the same approaches have been used to 
evaluate the removal of phosphorus (Akratos et al., 2009a) and total 
nitrogen (Akratos et al., 2009b) in treatment wetlands, proving more 
accurate predictions in comparison to mechanistic models. The current 
attempts demonstrated insight into the feasibility of using data-driven 
models and underly the need for further study and collaborative 
research to obtain more data towards more reliable data-driven 
modelling. 

5.3. Perspectives on future model development 

Increasing studies have been made in water sciences to advance our 
understanding of PFAS fate during treatment. However, the complicated 
structure of PFAS featuring both hydrophilic and lipophilic groups poses 
a challenge for accurate modelling. A recent study by Xu et al. (2022) 
introduced a spatial fate model based on convection and diffusion ki-
netics, with a focus on water diffusion and sediment adsorption pro-
cesses. This model can predict the distribution of PFAS in water- 
sediment interfaces, particularly highlighting their accumulation in 
soils. Such insights significantly contribute to unravelling the fate and 
transport mechanisms of these contaminants. However, CWs represent 
more complex systems than traditional biological treatments, like the 
activated sludge process. In addition to the main removal pathways, e.g. 
sorption and biodegradation, any fate model for CWs must include 
various phytoremediation processes. Understanding these processes 
necessitates knowledge about PFAS concentrations in plant roots and 
shoots, transpiration capacities, and lipid content. 

A promising avenue for predicting concentrations in the effluent, 
roots, shoots, and removal efficiencies is the utilisation of data-driven 
models, which have been demonstrated in this study. By establishing 
relationships among measured values, these models offer a compre-
hensive view. Additionally, a hybrid approach involving both data- 

driven and empirical models, such as ANN, can be employed. For 
instance, Akratos et al. (2009b) successfully developed an equation for 
TN removal using ANN. Similar expressions could be derived for PFAS 
removal through an enhanced development of ANN, supported by more 
data points from full-scale system monitoring. 

6. Conclusions 

Among the 37 investigated CWs, FWS wetlands performed as the 
most promising systems for PFAS removal, exhibiting a median per-
centage removal of 63.8 % surpassing HF and VF systems. However, 
FWS displayed the highest variances in percentage removal, partly 
attributed to being primarily full-scale systems dealing with influent 
PFAS fluctuations. The removal of PFAS was found to be negatively 
correlated with wastewater type, wetland scale, and HLR, and positively 
correlated with HRT. Adsorption processes were claimed to be the key 
removal pathway for PFAS in CWs, however, quantitative analysis was 
not possible due to data limitations and a lack of knowledge regarding 
PFAS chemical properties. Mechanistic models failed in predicting PFAS 
removal, while data-driven models, particularly the machine-learning- 
based Artificial Neural Network (ANN), demonstrated superior simula-
tion results. Further research should focus on expanding measured 
values of PFAS in CWs, enabling data-driven models to offer more ac-
curate predictions and enhancing the understanding of underlying 
mechanisms. Ultimately, a synergistic approach employing both 
empirical and data-driven models holds promise as a predictive tool and 
contributes to future system design. 
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