Enhanced CASSI Snapshot Imager Using Dual Prism Dispersion

Objective: Achieve A Tuneable-Spectral-Channel Snapshot Imaging System Using Dual-Prism

Introduction

- Coded Aperture Snapshot Spectral Imaging (CASSI) has been proposed as a snap shot multispectral imaging system capable to acquire spectral and spatial information simultaneously.
- The system exploits the theory of compressive sensing to recover spatial and spectral information through the multiplex of coded data obtained by a coded aperture mask. Current CASSI system utilises either a single equilateral prism or double Amici prism as the dispersion optics.
- Limitations of current CASSI system: The spectral wavelengths of the system are fixed due to the non-linear dispersions in the single prism/Amici.
- Proposed: a dual-prism for the CASSI which provides a tuneable-spectral-channel snapshot imaging system.
- The spectral wavelengths can be tuned by adjusting the air gap between the dual prisms.
- Aberrations due to chromatic, spherical and astigmatism will be dealt with in the future work.

Single Equilateral Prism:
Simply follows Snell's law
\square Optical $n_{1} \sin (\alpha)=n_{2} \sin (\beta)$
Optical axis are not on-axis

Double Amici Prism:
\square Central wavelength is undeviated through the prism
Missing spectral channels in reconstruction

Dual-Prism:
\square Incident angle = Exit angle
\square Adjustable air gap
Fewer prisms and Less light
propagation loss
\square Refractive Relationships inside prism
$\sin \left(\alpha_{1}\right)=n_{2} * \sin \left(\beta_{1}\right)$
$\beta_{2}=180^{\circ}-\varphi_{1}-\varphi_{2}-\beta_{1}$
$\sin \left(\alpha_{2}\right)=n_{2} * \sin \left(\beta_{2}\right)$
$\alpha_{3}=\alpha_{2}$
$\sin \left(\beta_{3}\right)=\sin \left(\alpha_{3}\right) / n_{2}$
$\beta_{4}=180^{\circ}-\varphi_{1}-\varphi_{2}-\beta_{3}$
$\sin \left(\alpha_{4}\right)=n_{2} * \sin \left(\beta_{4}\right)$

Simulations and Analysis

Ray tracing of Dual-prism system in TracePro

- Three incident rays @ 550nm from $66.20^{\circ}, 68.20^{\circ}$ and 70.20° into the prism The interaction where three rays focus is not exactly a single point

Ray tracing of Dual-prism system in TracePro
Three incident rays @ $550 \mathrm{~nm}, 400 \mathrm{~nm}$ and 700 nm from $66.20^{\circ}, 68.20^{\circ}$ and
70.20° into the prism
The focal plane is not a plane due to the axis shift

After calculations in Matlab, the system parameters are adjusted to minimise the errors in focusing The material is N -BK7
$\varphi_{1}=85.90^{\circ}$ and $\varphi_{2}=73.70^{\circ}$ $\varphi_{1}=85.90^{\circ}$ and $\varphi_{2}=73.70^{\circ}$
Length of prism bottom is 7.5 mm Length of prism bottom,
prism height is 20 mm ,
prism height is 20 mm ,
Initial air gap is 5.8484 mm ,
\square Incident angle range 0.8°
Central light source height is 10 mm \square Height difference between sources $\Delta=$ 0.5 mm

Dispersion characteristics of Dual-prism system as function of air gap from +0 mm to +10 mm compared with UV-CASSI reference data.

Band	Dual-prism System Air gap + Omm	Dual-prism System Air gap + 5mm	Dual-prism System Air gap + 10 mm	uv-CAssI System
400 nm	-0.0357mm	-0.0638mm	-0.0919mm	-0.2117mm
450 nm	-0.0197mm	-0.0351mm	-0.0506mm	-0.1208mm
500nm	-0.0083mm	-0.0149mm	-0.0215mm	-0.0526
550 nm	Omm	Omm	Omm	Omm
600 nm	0.0065 mm	0.0115 mm	0.0166 mm	0.0426 mm
650 nm	0.0116 mm	0.0207 mm	0.0298mm	0.0753mm
700nm	0.0158mm	0.0282mm	0.0406 mm	0.1051 mm

Conclusion

- The purpose of the proposed dual-prism design is to enhance CASSI system's image reconstruction in terms of tuneable spectral channels.
- Dual-prism system avoids anamorphic distortion of the single prism system and it utilises two prisms instead of three prisms in double amici prism system.
- The dispersion on the unit pixels of focal plane array can be adjustable through the width of air gap between two prisms to realise a tuneable-spectral-channel snapshot imaging system.
- Future work involves system optimisation and aberration reduction.

Mr. Mengjia Ding, Dr. Peter WT Yuen*(supervisor) Centre for Electronic Warfare, Information \& Cyber Cranfield University

m.ding@cranfield.ac.uk, *p.yuen@cranfield.ac.uk

