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Introduction
Imaging cargo containers at ports in this country is an important task. Gravity gradiometry
is a sensing technique which does not rely on using radiation to find fissile material, but
instead uses only density. This makes it possible to detect suspect dense materials includ-
ing any shielding that may be hidden inside cargo containers. Gravity gradiometry can
provide better resolution than straightforward gravity readings, with the trade-off being
less penetration power. Once measurements have been made external to the container, a
density distribution must then be reconstructed.

A level set method uses a level set function to define two distinct regions based on the sign
of the function at each point, the boundary being where the function is zero. It then uses a
gradient-based iterative method to allow the shape to deform to better fit the data.

Genetic algorithms are methods which draw inspiration from the process of natural se-
lection using steps such as crossover and mutation. By limiting the population size and
by use of a reparameterisation the algorithm can work at the speed required for the time-
constraints we have. Both methods have their strengths and weaknesses when applied to
this real-life problem.

The Level Set Model
In our problem the whole domain is a cargo container, which we will denote by Ω. Our
hope is to find a small region of high density material within Ω if there is such a region
to be found. Denote this region as D ⊂ Ω. The unknowns of the problem are the density
distribution of the cargo container, denoted by ρ, and the domain D.

We could simplify the problem and assume we know the density in the two regions, and
that it is a constant in both, ρi in D and ρe in Ω\D. So now the unknown is simply the
domain D. Next the function φ : Ω → R

φ(x) =

{
φ(x) ≤ 0 for all x ∈ D
φ(x) > 0 for all x ∈ Ω\D (1)

is called the level set representation of D.

Gradient Based Inversion
An array of sensors will be used on the outer edge of the cargo container in the form of a
sensor gate the cargo container passes through which can measure the gradient of gravity
in all three coordinate directions. The gravitational potential of a point source is known to
be

Φ =
ĝm

|r − r0|
(2)

where m is the mass of the point source and ĝ = 6.672× 10−8m3/g/s2 is the gravitational
constant. Calculating the second differential of Φ we store the measurements in a vector
d.

Next we use a finite element approximation of the cargo container, and divide it up into
discrete cuboid elements known as voxels. The gravitational effect of each voxel is stored
in a matrix G. The residual between calculated and measured data is

R(ρ) = Gρ− d. (3)

A suitable measure of the size of the residual is known as the cost functional

J (ρ) =
1

2
||R(ρ)||2Da =

1

2
〈R(ρ),R(ρ)〉Da . (4)

An iterative method is then employed

φ(n+1) = φ(n) + τδφ on ∂D (5)

where δφ is found using the steepest descent method and τ is a chosen step length which
suitably reduces the cost functional. Smoothing can also be used on the update.

Figure 1: Level set method at various stages. Top-left is actual location. Second from left on top is the
starting point and it continues right from there.

Genetic Algorithm Based Inversion
A genetic (or learning) algorithm relies on three main stages: selection, crossover and
mutation, as described below and in Charbonneau [2002].

• Randomly select a density distribution ρ = (ρ1, ρ2, · · · , ρnv) from (0, ρmax).

• Reduce each voxel value to the interval (0, 1) and concatenate a chosen amount, nd, of
the digits into one string, known as a chromosome

chromosome = ρ̂1,1 ρ̂1,2 · · · ρ̂1,nd ρ̂2,1 ρ̂2,2 · · · ρ̂nv,nd. (6)

• Create a population of chromosomes in this way and assign a fitness to each one based
on how well they fit the data.

• Let n = nv ∗ nd. Select two chromosomes based on fitness (higher fitness lead to
higher probability of being chosen) and choose a random k ∈ (1, n). The crossover
stage involves cutting each chromosome at gene k and swapping the strings

chromosome1 = c11 c12 · · · c1k−1 c2k · · · c2n (7)
chromosome2 = c21 c22 · · · c2k−1 c1k · · · c1n. (8)

• To avoid stagnation each gene has a probability pmut that it will mutate, which is chosen
due to current diversity.

• When the population of the offspring matches that of the parents the method begins
again. However the best fitting parent is allowed to survive and replace one offspring to
aid convergence.

An Extended Level Set Model
The genetic algorithm on a voxel basis is slow and so we must take steps to improve it.
First we follow the colour level set approach, which involves multiple level set functions
defining multiple domains as used in Natasha Irishina and Moscoso [2010]

•D1 = {x : φ1(x) ≤ 0} (air/wood)

•D2 = {x : φ1(x) > 0 and φ3(x) ≤ 0} (plastics, some metals)

•D3 = {x : φ1(x) > 0 and φ2(x) > 0 and φ3(x) > 0} (iron, steel)

•D4 = {x : φ1(x) > 0 and φ2(x) ≤ 0} (lead).

Each level set function is made up of radial basis functions

φ(a, b, c,x) =
m∑
i=1

a exp

(
− 1

2c2
||x− b||22

)
(9)

to reduce the number of unknowns.

Figure 2: Top layer is actual location of objects. Bottom layer is reconstructed location.

Summary and Conclusions
Given enough time the genetic algorithm should find the global minimum. However we
cannot specify how long this is since it varies even when running for the same example,
and it is difficult to know when it has converged.

Gradient-based algorithms work much faster and slow down when approaching a min-
imum, but it is possible to find a local minimum instead. Also the weighting used to
counteract the lack of penetration power can have an effect.
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