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Abstract: 
Navigafion using low-cost inerfial sensors cosfing less than £1 each is generally considered impossible. 

With various measurement error contribufions, the velocity and posifion esfimates from these sensors 

drift exponenfially with fime. By simulafing the sensor, we show how the zero bias error is the most 

serious contributor. The zero bias is known to change with temperature due to dissimilar 

thermomechanical characterisfics of materials in the sensor’s construcfion and others have shown this 

trend to be nonlinear, exhibit hysteresis and unique to each sensor. This is a problem because it 

suggests error compensafion by modelling (software level), or sensor redundancy (hardware level) will 

be ineffecfive. From temperature experiments on three of the same low-cost sensors, we show that 

temperature-bias responses are indeed unique and nonlinear but may be opposing between sensors. 

Furthermore, we show that one can get lucky and obtain a sensor with an axis that is relafively 

insensifive to temperature. This is encouraging because it supports the idea that an inerfial 

measurement unit comprised of an array of inerfial sensors can be fused to provide higher accuracy 

measurements than a single sensor operafing alone. Lastly, we idenfify a threat to this idea we call 

temperature shock and suggest how it can be avoided. While the contribufions of this work are 

intended to improve the accuracy of human posifion tracking, their impact extends to any field where 

lengthy periods of posifion tracking under Global Posifioning System (GPS) denial is required. 

1. Introducfion 
Tracking the posifions of humans and vehicles in GPS denied environments is in ever-increasing 

demand. By 2050 for example, more than two thirds of the world’s populafion will inhabit built-up 

areas where mulfipath and signal fading can interfere with measurements crucial for localisafion 

(Ritchie & Roser, 2018). A lack of accurate posifion tracking of emergency responders can be 

parficularly serious and, in some cases, have fatal consequences (Anderson, 1999; Fire Brigades Union, 

2007). The vulnerability of GPS to spoofing and jamming is also a concern in the use of uninhabited 

aerial systems (UASs) for marifime patrol and crifical infrastructure inspecfion (C4ADS, 2019; Lee et 

al., 2016). 

1.1 Alternafive Technologies 
Ultrawideband (UWB) posifion tracking systems are an aftracfive GPS alternafive. Their signals are 

difficult to detect and jam by operafing close to the noise floor power level, give posifioning with 

decimetre accuracy and have operafing ranges of several 100s of metres (Gunia et al., 2016; Jimenez 

Ruiz & Seco Granja, 2017). However, like posifioning systems that use visible fiducials (Bhargavapuri et 

al., 2019), photodiodes (Sitole et al., 2020; Welch et al., 2001), radio frequency idenfificafion (RFID) 

(De Cillis et al., 2020) and wireless fidelity (Wi-Fi) (Woodman & Harle, 2009), they require pre-

deployment of certain components into the environment for their operafion. In many situafions where 

ad hoc tracking is required, this is not a pracfical approach. 

Although visual odometry (VO) systems are capable of tracking natural features (Nabavi-Chashmi et 

al., 2023), there are circumstances where such features are not visible in the camera frame such as 

operafing in poorly lit environments like mines (Kanellakis & Nikolakopoulos, 2016). Other cases where 

VO may fail include edge-case operafing condifions such as foggy (Bijelic et al., 2019), smoky (Saputra 



et al., 2019) and dusty environments (Khaftak et al., 2019). While thermal imaging cameras have been 

used by firefighters for improving situafional awareness, use around fuel and petroleum fires has been 

reported to hinder their efficacy (Fire Brigades Union, 2007). 

1.2 Inerfial Sensors 
Compared with the menfioned technologies, inerfial sensors are self-contained sensors, meaning they 

operate independently of any supporfing infrastructure (Noureldin et al., 2013). This is because they 

use Newton’s laws which are ever-present. Inerfial sensors generally refer to accelerometers and 

gyroscopes, measuring specific force and angular velocity of the sensor frame relafive to the inerfial 

reference frame. Inerfial measurement units (IMUs) usually contain triads of mutually orthogonal 

accelerometers and gyroscopes and, thanks to micro-electromechanical systems (MEMS) 

manufacturing, low-cost, lightweight, low power IMUs can be found in most electronic devices. Unlike 

GPS however, posifion cannot be esfimated in an absolute sense but relafive to a known inifial posifion 

by a process of dead reckoning (Verplaetse, 1996). This is a problem as, convenfionally, the current 

posifion esfimate is derived from a cumulafive sum of the previous measurements (integrafion) which 

may be sampled a few hundred fimes every second. Thus, even small measurement errors accumulate 

in the esfimated posifion resulfing in divergence from the true posifion. Although this rate of 

divergence is sufficiently small for navigafion and strategic grade sensors, these are orders of 

magnitude more expensive and not commercially available off the shelf (Yole Developpement, 2020). 

Figure 1 shows a commercial off the shelf inerfial sensor package. 

 

 

 

The measurement errors menfioned can be random or systemafic. As random errors are assumed to 

be uncorrelated in fime and unpredictable, the focus of this work is on the lafter. 

1.3 Systemafic Inerfial Sensor Errors 
Table 1 shows the systemafic errors commonly cited in low-cost inerfial sensor datasheets. 

 

Table 1. Systemafic sensor errors for low-cost inerfial sensors. 

Sensor error: Descripfion: Cause: 

Zero bias The offset in the measurement 
when no input is applied. 

Materials with dissimilar thermomechanical 
characterisfics used in construcfion (Zhang 
et al., 2007). 

Scale factor The mulfiplicafive term relafing the 
change in the output signal to the 
change in the measured input. 

Temperature changing the sfiffness of 
sensor’s flexures. 

Cross-axis 
sensifivity 

Nonorthogonality and 
misalignment of the sensor axes. 

Manufacturing imperfecfions (Hiller et al., 
2021). 

Figure 1. An MPU-6050 inerfial sensor. 



While datasheets for low-cost IMUs such as the MPU-6050 provide figures for typical zero bias, scale 

factor and cross-axis sensifivity errors, it is unclear which of these is the biggest contributor and hence 

the most worthy of compensafion. 

While zero bias and scale factor errors can be compensated using roufines such as those in (Glueck et 

al., 2014), these will become invalid as the sensor temperature changes. This can be caused by changes 

in the ambient temperature or sensor self-heafing as show in Figure 2. 

 

 

 

Two approaches to temperature compensafion in literature are either hardware or software based. 

Software based solufions involve modelling the temperature-bias response to apply compensafion 

afterwards. In (Khankalantary et al., 2021) and (Gang-Qiang et al., 2023), mathemafical models were 

proposed to compensate for the bias variafion but did not address the issue of hysteresis. (Vandemeer 

et al., 2003) acknowledged hysteresis in the bias as the most important temperature dependent 

behaviour as it is complex, having both memory and direcfion dependence. Although their proposed 

model showed promising experimental results, performance under sudden temperature changes was 

not explored. 

Hardware based solufions such as those in (Lemmerhirt et al., 2019; Yang et al., 2017) involve the 

addifion of a temperature control system to ensure the sensor remains at a constant temperature 

during operafion. Although improvements in the bias were demonstrated, they rely on specialised 

electronics manufacturing techniques in their implementafions. A low-cost hardware-based approach 

invesfigated by (Marfin et al., 2013; Yuksel et al., 2010) proposed placing sensors with correlated 

temperature-bias responses with their axes opposing such that the average measurement nulls the 

error. In doing so, the error compensafion task focusses less on trying the predict the temperature bias 

response of the sensors, and rather seeks to find sensors that have similar or opposing responses. 

This work builds on this idea by invesfigafing the temperature-bias responses from mulfiple low-cost 

MPU-6050 inerfial measurement units. 

The contribufions of this work are thus: 

 The modelling of an accelerometer to idenfify the most significant measurement error source. 

 Displaying the temperature-bias response from three of the same IMUs, suggesfing intelligent 

fusion that may enable compensafion. 

 An invesfigafion of the effects of humidity and sudden temperature changes on sensor biases. 

Figure 2. MPU-6050 under thermal camera. (a) off, (b) on. 



2. Method 

2.1 Idenfificafion of the most significant measurement error. 
To idenfify the most significant error in the inerfial sensor measurements, a three-axis accelerometer 

was modelled in MATLAB shown in Figure 3 with error sources highlighted in red. 

 

 

Inputs to the model were ideal sensed accelerafions corresponding to the sensor traversing a flat 

rounded-square path measuring 1.5 m x 1.5 m. Individual error contribufions were then added to the 

sensor model according to their descripfion in the MPU-6050 sensor’s datasheet. 

2.2 Temperature-bias Experiments 
For obtaining the temperature-bias responses of the inerfial sensors, a Sanyo Gallenkamp 

environmental chamber was used which allowed control of temperature and humidity. 

The inerfial sensors were mounted onto a breadboard which was approximately levelled using an 

inclinometer. Supporfing electronic components were mounted outside of the working area of the 

chamber wherever possible to ensure the responses observed were due to temperature variafions of 

the sensors themselves. Figure 4 shows the chamber and sensor setup. 

 

 

 

 

 

 

 

 

Four experiments carried out in the chamber were: a sweep across the sensor’s operafing range (-20°C 

to 70°C), cycles between 0°C and 20°C, a linear decrease in relafive humidity from 90% to 20% for a 

constant temperature of 35°C and a sudden change in the rate of temperature change. The 

temperature sweep experiment was carried out to validate the extent of the temperature-bias 

Figure 3. Three-axis accelerometer model. 

Figure 4. (a) Environmental chamber, (b) setup of mulfiple inerfial sensors. 



variafion quoted in the MPU-6050 datasheet, the temperature cycling experiment simulated the effect 

of walking between indoor and outdoor environments and the humidity test was a curiosity to see if 

humidity influenced sensor biases. The last experiment was inspired by the warning against sudden 

temperature changes reported in (Vandemeer et al., 2003). 

3. Results 

3.1 Assessment of various systemafic error sources 
Table 2 shows the sensor errors added and their effect on mean squared accelerafion error, amse. 

 

Table 2. Sensor errors added to the accelerometer model. 

Sensor error: Descripfion in datasheet: amse (ms-2): 

Zero bias ±40mg (between 0°C and 70°C) 0.134 
Scale factor ±1.4% (between 0°C and 70°C) 0.030 
Cross-axis sensifivity ±2% 0.042 

 

3.2 Experimental Results using Environmental Chamber 
Figure 5 shows the results of the temperature sweep experiment. In this experiment, relafive 

humidity was treated as a free variable. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Figure 6 shows temperature and bias variafion for three cycles of the chamber temperature between 

0°C and 20°C. As in the previous experiment, humidity was not controlled. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7, shows the bias variafion in three inerfial sensors for an approximately linear decrease in 

humidity from 90% to 20% over four hours. A constant temperature of 35°C was maintained with 

deviafion less than ±0.5°C over this run. 

 

 

 

 

Figure 5. (a) Temperature fime plot, (b) gyro x-axis bias plot, (c) gyro y-axis bias plot, (d) gyro z-axis 
bias plot, (e) accelerometer x-axis bias plot and (f) accelerometer y-axis bias plot. 

Figure 6. (a) Temperature fime plot, (b) gyro x-axis bias plot, (c) gyro y-axis bias plot, (d) gyro z-axis 
bias plot, (e) accelerometer x-axis bias plot and (f) accelerometer y-axis bias plot. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Lastly, Figure 8 shows the bias variafion of each axis of the inerfial sensor for a sudden change in the 

rate of change of temperature.  

 

 

 

 

 

 

 

 

 

 

Figure 7. (a) Relafive humidity-fime plot, (b) gyro x-axis bias plot, (c) gyro y-axis bias plot, (d) gyro z-
axis bias plot, (e) accelerometer x-axis bias plot and (f) accelerometer y-axis bias plot. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. Discussion 
The mean squared accelerafion errors shown in Table 1 suggest that the zero bias error is the most 

significant error contributor to the accelerometer measurements, giving mean squared velocity errors 

approximately four fimes larger than the errors in scale factor and misalignment. 

The temperature-bias plots for the sweep over the sensor’s operafing range in Figure 5 shows the 

variability in responses between the sensors and their axes. This variability is greater in the gyroscopes 

than the accelerometers. Of the gyroscopes, the x-axis of IMU 3 showed the largest bias, reaching a 

maximum value of 0.1 rads-1 corresponding to 2.3% of the full-scale range of the sensor. In contrast, 

the z-axis gyroscope of IMU 1 (Figure 5(d)) reached a maximum bias of 0.0017 rads-1 (about 60 fimes 

lower). The same variability in responses was not observed between accelerometers where a 

maximum bias of about 0.13 ms-2 was aftained (corresponding to 0.7% of full-scale range) compared 

with a minimum of 0.025 ms-2 (about 4 fimes lower). Interesfingly, the accelerometer responses 

between IMUs 2 and 3 appeared as reflecfions in the temperature axis suggesfing that there may be 

some ufility in their fusion as a means of nulling the error. Figure 9 shows what the effect of this could 

be for this experiment where bias variafion is reduced approximately sevenfold as a result. The cause 

of these opposing responses is hypothesised to be due to differences in orientafion of the individual 

Figure 8. (a) Time plot, (b) gyro x-axis bias plot, (c) gyro y-axis bias plot, (d) gyro z-axis bias plot, (e) 
accelerometer x-axis bias plot and (f) accelerometer y-axis bias plot. 



accelerometers on the MEMS chip during manufacture. This could be confirmed by decapsulafing the 

sensors and looking at their structure under a microscope. 

 

 

 

 

 

 

 

 

 

 

 

The thermal cycling plots in Figure 6 show the repeatability problem in the responses and why a simple 

polynomial fit may become ineffecfive as a means of compensafion. The bow-fie shaped plots do not 

directly overlap and instead, appear translated and skewed between thermal cycles. This supports 

what has been reported previously in literature that bias responses resemble hysteresis loops whose 

size is governed by the range of temperatures and their rate of change. 

The results in Figure 7 show how humidity also affects inerfial sensor zero biases. In the worst cases, 

bias varied by 0.005 rads-1 in the gyros (0.1% of full scale range) and 0.05 m/s2 (about 0.25% of the full 

scale range) in the accelerometers. Humidity thus appears to affect the accelerometer biases more 

than the gyroscope biases. The details of the gyroscope’s construcfion in (Seeger et al., 2010), suggest 

that this could be because the gyroscopes are hermefically sealed but the accelerometers are not. 

Humidity may be a cause for the repeatability problem seen in the thermal cycling. Future work will 

therefore hermefically seal one the sensor packages using epoxy resin and observe the resulfing 

response to thermal cycling to see if an improvement in repeatability can be achieved. Referring to 

Figure 7(e) and (f) it can be seen how IMUs 2 and 3 also have opposing responses to humidity. 

Lastly, in Figure 8 the effect of a sudden change in the rate of change of temperature at 11 minutes is 

observed. In Figure 8(b) and (d), the gyroscope axes of IMU 1 are seen to have no discernible impact 

on bias despite the sudden change in rate. This demonstrates the worth of performing such 

experiments as sensors with more desirable characterisfics can be idenfified from even a small batch 

(in this case of only three sensors). While in previous experiments, the opposing nature of responses 

from IMUs 2 and 3 were noted with a view of using this to null the temperature induced bias error, the 

sudden change in the rate of change of temperature may cause this compensafion technique to fail. 

Referring to Figure 8(f), while IMUs 2 and 3 inifially had opposing responses, after the sudden change 

in rate, the response of IMU 2 has the same direcfion as that of IMU 3 (region circled green). The errors 

may therefore become reinforced instead of nulled as a result. This may be avoided by adding thermal 

inerfia to the sensors such that they do not experience these sudden temperature changes. 

 

Figure 9. Effect of fusing responses from IMUs 2 and 3 for the temperature sweep experiment. 



 

 

 

  

 

 

 

 

 

5. Conclusion 
This work explored the measurement errors affecfing low-cost inerfial sensors, specifically the MPU-

6050 was subject to invesfigafion. 

Simulafion of accelerometers with typical temperature-induced bias errors demonstrated how it 

resulted in a larger measurement error compared with scale factor and axis misalignment errors. 

Based on the data from the three IMUs, the experiments demonstrated how: 

 The sensor-to-sensor temperature bias responses varied approximately 15 fimes more 

between the gyroscopes than the accelerometers. One gyroscope was found to have an 

aftracfive flat temperature-bias response. 

 Certain accelerometer axes had opposing temperature-bias responses suggesfing their 

summafion could help reduce the error by as much as sevenfold. 

 The accelerometers were affected more by humidity than the gyroscopes. Those sensors with 

opposing temperature-bias responses also had opposing humidity-bias responses suggesfing 

their fusion may help compensate for humidity effects as well as temperature. 

 Sudden changes in the rate of temperature change should be avoided in such a fusion scheme 

as it may cause opposing responses to become correlated which would reinforce the bias error. 

Adding thermal inerfia to the sensor structure may help avoid this. 
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