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Introduction

An important real-world application of multi-robot systems is multi-robot
patrolling (MRP), where robots must carry out the activity of going through
an area at regular intervals. While MRP algorithms show some maturity in
development, a key potential advantage has been unexamined: the ability
to exploit collective perception of detected anomalies to prioritize security
checks. Here, we examine the performance of unmodified patrolling algo-
rithms listed in Table 1, when they are given the additional objective of
reaching an environmental perception consensus via local pairwise communi-
cation and a quorum threshold.

Figure 1: Trajectory plot of a system of eight robots executing the SEBS
patrol algorithm for over an hour, with each unique color representing a single
robot and its patrol route.

Experimental Methodology
Simulation results are generated using a simulation package that models
agents as a differential drive robot [1]. Robots are capable of local com-
munication between one another within a communication radius, as shown
in a simulation snapshot in Figure 2. Upon visiting a node during a patrol,
agents measure the node for an anomaly, and build a representation of the
world according to the measurements they make, as well as measurements
shared with them via pairwise communication. Agents navigate a graph map
as seen in Figure 4 and decide on nodes to visit based on the patrolling algo-
rithm.

Figure 2: Communication radii of two robot agents patrolling.

Anomaly True and False Positive Results Ranking

(a) 5% Anomaly measurement noise (b) 10% Anomaly measurement noise

(c) 20% Anomaly measurement noise (d) Boxplot of Algebraic Connectivity for algorithms

Figure 3: Subfigures 3a, 3b, 3c show the ranked average performance of patrolling algorithms for different levels of measurement noise across 20
experiments. Red axis is the average count of false positives during a patrol run; blue axis shows proportion of runs that reached consensus on the
particular node containing the anomaly. Subfigure 3d: Algebraic connectivity for each tested algorithm ranked.

Figure 4: “Cumberland” map graph with 40 nodes.

Algorithms Examined

Short name Communication Decentralized?
CBLS Coordination Yes
CGG None No
CR None Yes
DTAG Coordination Yes
DTAP Coordination Yes
GBS Idleness No
HCR None Yes
HPCC None Yes
RAND None Yes
SEBS State Yes

Table 1: Multi-Robot Patrol algorithms examined

Results & Discussion

We examine the behaviour of the patrolling algorithms by interpreting their
differences in algebraic connectivity of the emergent communication networks
between the agents. We calculate an F-score to quantify the performance,
which provides a metric that weighs the agents’ correct (true positive) and
incorrect (false positive) beliefs about the world. It is noted that algorithms
that result in moderate levels of algebraic connectivity in the communication
networks are robust to noise levels and result in high F-scores, this behaviour
is also observed in [2]. The performance of these algorithms are highlighted in
Table 2. Not only are these algorithms able to accurately reach a consensus
on the anomaly, they also record low numbers of false positive events even as
the measurement noise increases. We note that the algorithms that exhibit
the highest communication connectivity (most inter-agent mixing), record the
worst performance in regard to number of false positives.

F-Score
Algorithm 0% Noise 5% Noise 10% Noise 20% Noise

Avg. σ Avg. σ Avg. σ Avg. σ

CBLS 0.962 0.0145 0.949 0.0124 0.916 0.0265 0.871 0.0210
CGG 0.954 0.0323 0.928 0.0462 0.931 0.0217 0.962 0.0257
CR 0.974 0.0008 0.952 0.0167 0.923 0.0181 0.860 0.0314
DTAG 0.914 0.0646 0.910 0.0828 0.883 0.0595 0.818 0.0633
DTAP 0.867 0.1291 0.839 0.1312 0.880 0.0764 0.852 0.1057
GBS 0.962 0.0000 0.951 0.0122 0.924 0.0251 0.875 0.0391
HCR 0.956 0.0200 0.933 0.0275 0.944 0.0335 0.872 0.0372
HPCC 0.974 0.0000 0.951 0.0165 0.922 0.0361 0.881 0.0339
RAND 0.954 0.0025 0.953 0.0129 0.918 0.0260 0.868 0.0314
SEBS 0.970 0.0142 0.935 0.0377 0.936 0.0242 0.902 0.0547
Table 2: Table of performance for patrolling algorithms under different noise
levels, with best two performing algorithms in each noise level bolded.
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