Collective Anomaly Perception During Multi-Robot Patrol: Constrained Interactions Can Promote Accurate Consensus

Zachary R. Madin

Advisors: Jonathan Lawry, Edmund R. Hunt School of Engineering Mathematics & Technology, University of Bristol

Introduction

An important real-world application of multi-robot systems is multi-robot patrolling (MRP), where robots must carry out the activity of going through an area at regular intervals. While MRP algorithms show some maturity in development, a key potential advantage has been unexamined: the ability to exploit collective perception of detected anomalies to prioritize security checks. Here, we examine the performance of unmodified patrolling algorithms listed in Table 1, when they are given the additional objective of reaching an environmental perception consensus via local pairwise communication and a quorum threshold.

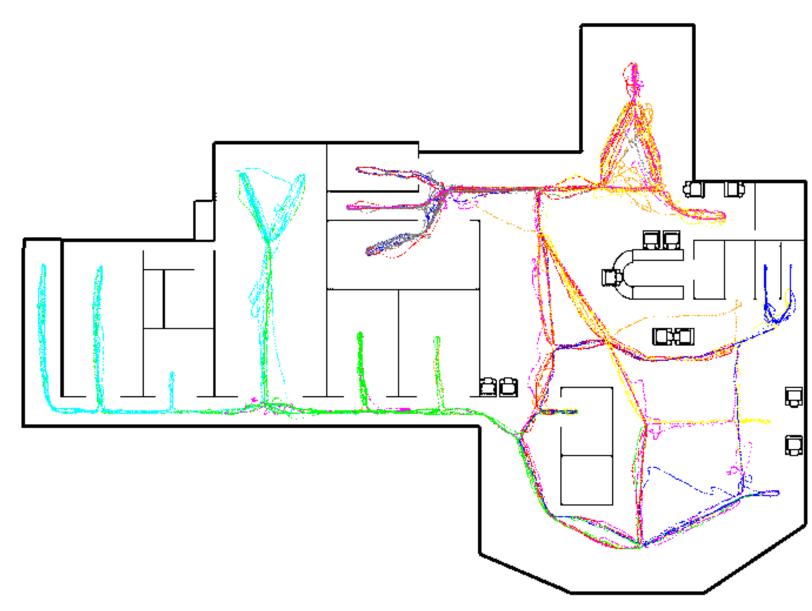


Figure 1: Trajectory plot of a system of eight robots executing the SEBS patrol algorithm for over an hour, with each unique color representing a single robot and its patrol route.

Experimental Methodology

Simulation results are generated using a simulation package that models agents as a differential drive robot [1]. Robots are capable of local communication between one another within a communication radius, as shown in a simulation snapshot in Figure 2. Upon visiting a node during a patrol, agents measure the node for an anomaly, and build a representation of the world according to the measurements they make, as well as measurements shared with them via pairwise communication. Agents navigate a graph map as seen in Figure 4 and decide on nodes to visit based on the patrolling algorithm.

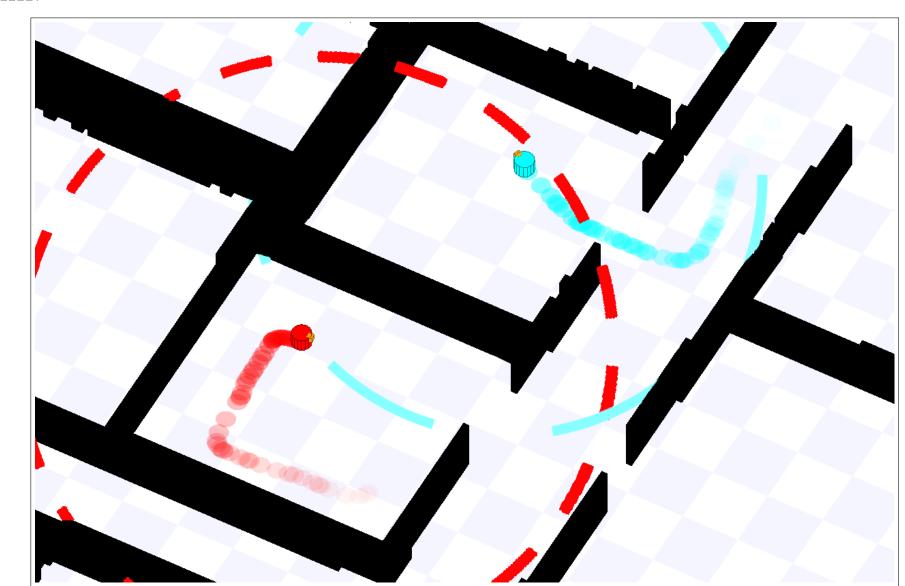
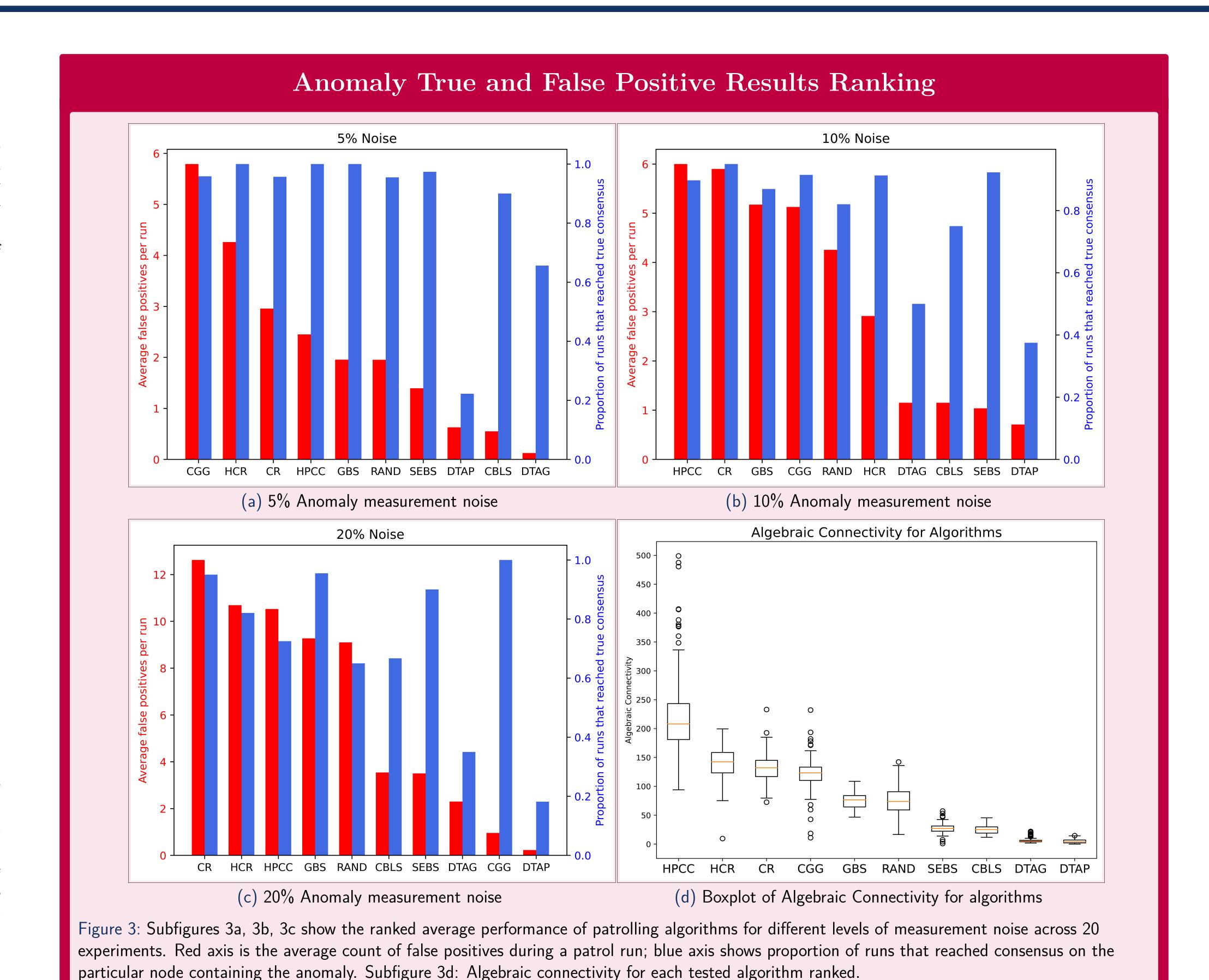


Figure 2: Communication radii of two robot agents patrolling.



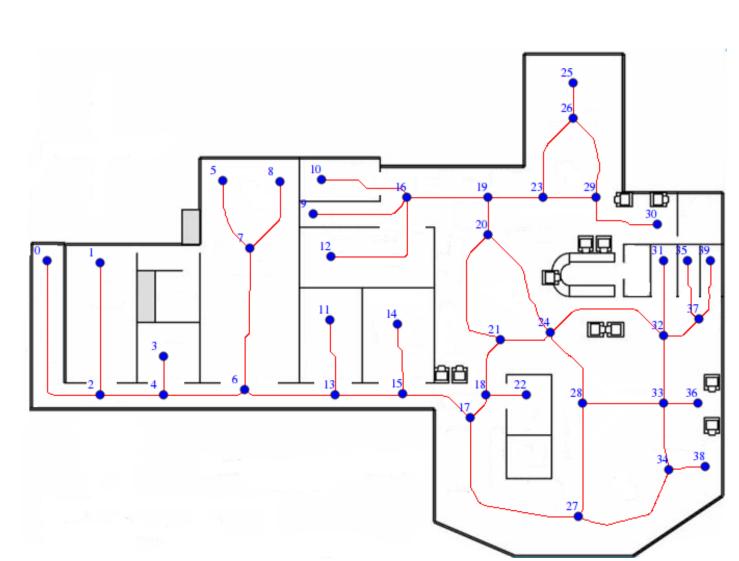


Figure 4: "Cumberland" map graph with 40 nodes.

Algorithms Examined

Short name	Communication	Decentralized?		
CBLS	Coordination	Yes		
CGG	None	No		
CR	None	Yes		
DTAG	Coordination	Yes		
DTAP	Coordination	Yes		
GBS	Idleness	No		
HCR	None	Yes		
HPCC	None	Yes		
RAND	None	Yes		
SEBS	State	Yes		

Table 1: Multi-Robot Patrol algorithms examined

Results & Discussion

We examine the behaviour of the patrolling algorithms by interpreting their differences in algebraic connectivity of the emergent communication networks between the agents. We calculate an F-score to quantify the performance, which provides a metric that weighs the agents' correct (true positive) and incorrect (false positive) beliefs about the world. It is noted that algorithms that result in moderate levels of algebraic connectivity in the communication networks are robust to noise levels and result in high F-scores, this behaviour is also observed in [2]. The performance of these algorithms are highlighted in Table 2. Not only are these algorithms able to accurately reach a consensus on the anomaly, they also record low numbers of false positive events even as the measurement noise increases. We note that the algorithms that exhibit the highest communication connectivity (most inter-agent mixing), record the worst performance in regard to number of false positives.

	F-Score								
Algorithm	0% Noise		5% Noise		10% Noise		20% Noise		
	Avg.	σ	Avg.	σ	Avg.	σ	Avg.	σ	
CBLS	0.962	0.0145	0.949	0.0124	0.916	0.0265	0.871	0.0210	
CGG	0.954	0.0323	0.928	0.0462	0.931	0.0217	0.962	0.0257	
CR	0.974	0.0008	0.952	0.0167	0.923	0.0181	0.860	0.0314	
DTAG	0.914	0.0646	0.910	0.0828	0.883	0.0595	0.818	0.0633	
DTAP	0.867	0.1291	0.839	0.1312	0.880	0.0764	0.852	0.1057	
GBS	0.962	0.0000	0.951	0.0122	0.924	0.0251	0.875	0.0391	
HCR	0.956	0.0200	0.933	0.0275	0.944	0.0335	0.872	0.0372	
HPCC	0.974	0.0000	0.951	0.0165	0.922	0.0361	0.881	0.0339	
RAND	0.954	0.0025	0.953	0.0129	0.918	0.0260	0.868	0.0314	
SEBS	0.970	0.0142	0.935	0.0377	0.936	0.0242	0.902	0.0547	

Table 2: Table of performance for patrolling algorithms under different noise levels, with best two performing algorithms in each noise level bolded.

References

[1] David Bina Siassipour Portugal.

Effective Cooperation and Scalability in Multi-Robot Teams for Automatic Patrolling of Infrastructures.

PhD thesis, Universidade de Coimbra (Portugal), Portugal, September 2013.

[2] Mohamed S. Talamali, Arindam Saha, James A. R. Marshall, and Andreagiovanni Reina.

When less is more: Robot swarms adapt better to changes with constrained communication.

Science Robotics, 6(56):eabf1416, July 2021.

Acknowledgements

ZRM is supported by a University of Bristol PhD Scholarship. ERH is supported by the Royal Academy of Engineering under the Research Fellowship programme. Simulations were performed on UoB Self-Service Cloud.

Contact Information

- Corresponding Author: Zachary R. Madin
- Email: zachary.madin@bristol.ac.uk