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Abstract 

Non-invasive scanning techniques are vital for threat detection in areas of heavy human traffic to ensure 
civilian safety. Longer waves in the electromagnetic spectrum, such as millimetre waves and terahertz, 
have been successfully deployed in commercial personnel scanning systems. However, these waves 
suffer from lower image resolution due to their longer wavelengths. 

Infrared has a shorter wavelength compared to millimetre waves and terahertz. Infrared has a lower 
penetration potential compared to its counterparts but boosts higher image resolution due to its shorter 
wavelength. Machine learning techniques, i.e., principal component analysis, active contour, and 
Fuzzy-c, were applied to the infrared images to improve the visualization of concealed objects. 

Convolutional neural networks, i.e., ResNet-50, were explored as an automatic classifier for the 
presence of concealed objects. A transfer learning approach was applied to an ImageNet pre-trained 
ResNet-50 model. After preprocessing the IR images using Fuzzy-c, two models were trained, using 
900 and 3082 images, respectively. Evaluating the models using a confusion matrix and receiver 
operating characteristic curve, an area-under-curve of 0.869 and 0.922 was obtained. An optimization 
procedure was used to determine the model threshold, resulting in a prediction error of 19.9% and 
14.9%, respectively. 
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Introduction 

Extremists frequently transport concealed weapons and improvised explosive devices (IEDs) to evade 
security detection while plotting or carrying out potentially harmful actions against civilians or 
authorities. Concealed weapons can be classified into three categories: those with wide-area effects 
(such as poisonous gas or improvised explosive devices), those requiring physical contact (including 
knives and stun guns), and those used at a distance (like guns and rifles) [1]. Because concealed weapons 
are typically not visually apparent, security personnel have faced challenges in ascertaining their 
existence without conducting close physical searches on individuals. 

In high-security zones, a comprehensive body x-ray scanner is frequently employed to identify objects 
concealed on an individual. X-ray technology penetrates the subject, providing a detailed cross-
sectional view of both the individual and any concealed items. These scanners are configured to operate 
from a distance, allowing subjects to be isolated and scanned without their knowledge, potentially 
causing potential perpetrators to either abort their intended attack or bypass the checkpoint altogether 
[1].  

One of the traditional scanning devices is the X-ray detector [2], which emits X-rays with short 
wavelengths (ranging from 10-7 m to 10-9 m), high frequencies (from 3 × 1016 Hz to 3 × 1019 Hz), 
and high energy levels (from 124 keV to 145 eV). X-rays are the most penetrating among all 
electromagnetic scanners, providing comprehensive information about the subject's cross-section. 
Nevertheless, the use of X-ray scanners is gradually being phased out due to potential health risks 
associated with ionizing radiation exposure when human subjects are involved [3-7].  

Security applications have harnessed the use of safer electromagnetic waves characterized by longer 
wavelengths, including millimetre-wave, terahertz, and infrared [1]. Millimetre-wave (MMW) 
technology has found successful application in devices designed for concealed weapons detection [8]. 
The technology has been under active research since the 1950s, initially in the form of radiometers [9]. 
Millimetre-wave (MMW) technology operates within the frequency range of 30–300 GHz, with a 
wavelength ranging from 1 to 10 mm. It is capable of penetrating conditions with low visibility, such 
as fog, to bounce signals off the subject [10-12]. However, MMW is generally characterized as 
narrowband and less effective over longer distances (less than 10 meters), often necessitating proximity 
between the subject and the sensor [13].  

Terahertz (THz), in contrast, is an electromagnetic wave situated between the millimetre-wave (MMW) 
and infrared (IR) spectra. THz boasts a frequency range from 100 GHz to 10 THz and a wavelength 
spanning 3 mm to 30 μm. Both MMW and THz exhibit effective penetration capabilities through 
standard clothing [14]. The achievements of THz technology in security scanning applications have 
culminated in the creation of a commercial personnel scanning system by Thruvision [15, 16].  

Passive IR thermography in security scanning measures the natural IR signature emitted by human 
bodies using an IR camera, without having to expose the subject to any amount of radiation [17]. It also 
does not acquire human interpretable facial features during detection, thus IR scanners safeguard both 
the subject’s health and privacy [17]. Another additional advantage is that a passive IR system does not 
project waves to illuminate the target subject [18], avoiding potential detection using another IR system. 

Passive infrared (IR) thermography has been employed to identify concealed objects on individuals, 
yielding varying degrees of success. In this approach, the human subject serves as the thermal heat 
source, emitting heat that interacts with concealed objects before dissipating through the outermost 
clothing layer. Consequently, areas on the outer clothing layer, where concealed objects are located, 
emit infrared radiation at differing rates, potentially manifesting these objects in thermographic images. 
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One notable advantage of using IR cameras is their relative cost-effectiveness in comparison to MMW 
and THz systems. Furthermore, IR systems operate with shorter wavelengths than MMW and THz 
devices, enabling the potential for higher-resolution images, which permits IR systems to be situated at 
greater distances for image capture [19, 20]. Additionally, IR cameras facilitate high-volume 
applications, as they are capable of simultaneously visualizing numerous individuals and objects in 
large areas. Modern IR cameras typically offer high resolutions, such as 640 × 512 pixels, with a typical 
field of view (FOV) spanning 22 degrees horizontally and 16 degrees vertically [19, 20]. 

Nonetheless, research has demonstrated that signal penetration through clothing increases with 
wavelength [21], resulting in reduced signals when scanning through thicker clothing layers [22-24]. 
Consequently, many attempts to employ electromagnetic waves for concealed object detection have 
gravitated toward MMW or THz technologies due to their superior wave penetration capabilities [14]. 
Despite IR's comparatively limited penetration, resulting in reduced signals reflected from clothing 
surfaces, machine learning (ML) techniques can be harnessed to process IR data, enhancing the 
effectiveness of the detection system. ML methods applied to IR data have previously shown success 
in addressing challenges such as damage detection in composites and object segmentation [25-30]. 

An ideal system should be both portable and capable of standoff and walk-through detection of 
concealed IEDs and weapons, regardless of their size or the layers of clothing covering them. This 
system should possess a wide field of view (FOV) to cover extended distances and deliver precise 
results in large areas, ultimately enabling a faster throughput and a more cost-effective screening 
process. The integration of IR imaging technology with ML data processing algorithms holds the 
potential to encompass all of these essential features. 

This paper addresses, the potential of a ML-based thermal imaging system as a standalone IR detector 
for objects concealed underneath clothing. The paper outlines two objectives: improving the 
visualisation of a concealed object, and automatic detection of concealed objects using convolutional 
neural networks (CNN). Machine learning techniques, such as principal component analysis, Chan-
Vese active contour and Fuzzy-c respectively, for image segmentation and data reduction, thus enabling 
the visualisation of the target object. ResNet-50 was opted as the CNN for classification.  

Methodology 

Data acquisition 
In our experiments, our goal is to replicate a checkpoint detection scenario where a subject walks 
through a predetermined narrow passage at a specific distance from the IR detector. We employed a 
square neoprene rubber target to simulate a concealed IED and utilized layered windproof clothing as 
the outer clothing (Figure 1). A thin layered clothing is worn beneath the concealed object. An image 
of the subject with exposed object is shown in Figure 1 (c). 
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(b) 

 
(c) 

  
 

Figure 1 The concealed object and layered windproof used in the experiments are shown in (a) and (b). The target subject 
wearing a layered windproof with exposed object is shown in (c). 

The FLIR A6750sc Mid Wavelength IR camera was used to capture thermal data. The camera captures 
IR images in 640 × 512 pixels in resolution, operates in the range of 3 - 5 µm waveband with a thermal 
sensitivity of < 20 mK. The IR camera was left on a fixed and stable location for data capture. The 
subject was positioned approximately 3 meters away from the camera to enable better resolution in the 
upper torso area (Figure 2). The ambient temperature during data collection was measured to be at 
22.0 °C. The camera lens was adjusted to focus on the subject's position and fixed prior to data capture. 
For the analysis, one image was captured with the static background, and another was taken with the 
subject in position. 

 
Figure 2 IR camera setup for data collection. 



5 
 

Background removal by Principal Component Analysis 
For this first stage, PCA was used to remove background information, whilst retaining information on 
the subject and object [25]. PCA is a linear dimensionality reduction technique that transforms a set of 
correlated variables (p) into a smaller number (k, where k < p) of uncorrelated variables, called principal 
components (PCs) [23, 24]. Each PC is a linear combination of original variables, and the magnitude 
of coefficients in this linear combination represents the contribution of each original variable to a 
specific PC. PCs are ordered such that the first PC explains the most variance, and each subsequent PC 
explains as much of the remaining unexplained variance as possible. A comprehensive mathematical 
framework of PCA applied to thermal data is found for example in reference [18]. For background 
removal, both the background scene and the image with the subject (with or without the object) were 
processed by PCA. Pixels with large correlated intensity variation between images would have large 
coefficients (by magnitude) for the first PC. In the current work, these pixels corresponded to the region 
occupied by the subject.  

Subject segmentation by Active Contour 
Following PCA, active contour techniques were applied to segment the subject from the background, 
resulting in a clean, noiseless background. The Chan-Vese active contour method was employed, where 
an iterative algorithm updates the shape and position of one or more contours, aiming to ensure that 
pixels inside the contours are as homogeneous to each other as possible, and similarly, pixels outside 
the contours are as homogeneous to each other as possible, but different from those inside [31, 32].  

Information reduction by Fuzzy-c clustering 
The Fuzzy-c method was used as the unsupervised ML technique for clustering of thermal data and 
image segmentation [25]. The Fuzzy-c clustering method require initial cluster centres to initiate cluster 
association, followed by the calculation of distance-based membership scores to indicate how strongly 
each pixel associates to each cluster. Scores are then used to update cluster centres by putting more 
emphasis on pixels that have stronger association. This process is repeated until a stopping criterion is 
reached. 

ResNet-50 Convolutional Neural Network for classification 
ResNet-50[33] was used as the CNN model used to classify the IR images. CNNs are a class of versatile 
deep learning network architecture, commonly used for image classification. For image classification, 
the input image undergoes a series of convolutional, pooling, fully-connected, and classification layers, 
which produces an output of probability values for different classes. 

Usually, when training a CNN model from the ground up, the prevailing recommendation is to ensure 
that the training dataset is at least an order of magnitude larger than the test dataset. This approach 
enhances diversity and helps prevent overfitting [34, 35]. Nonetheless, properly annotated infrared 
datasets for individuals with concealed objects are scarce and are frequently not made available to the 
public. To address the challenge of limited dataset size, we employed a pre-trained ResNet-50 model. 
The model was pre-trained using the ImageNet dataset [36], which contained 1.4 million natural images 
with 1000 classes.  

The transfer learning approach was taken to further train the pre-trained model fit our task. Fuzzy-c was 
used to preprocess both training and test dataset due to improved performance compared to raw images. 
To develop the models, the fully connected layer was fine-tuned using a smaller and a larger dataset 
respectively, corresponding to 900 (462 with and 438 without object) and 3082 (1918 with and 1164 
without object) labelled images. The fundamental principle of the transfer learning approach is that the 
generic features extracted from an extensive dataset (i.e. ImageNet) are transferable and informative 
across diverse datasets. This versatility of learned generic features is a distinctive advantage of deep 
learning, enabling their application in a range of domain-specific tasks even when working with limited 
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datasets [37]. Using MATLAB’s Deep Network Designer, the fully connected layer in the pre-trained 
model was modified to train using a weight learn rate factor and bias learn rate factor of 10. 

For training of the model, transformations were performed by applying rotation by ±45°, reflection on 
the Y-axis, and rescaling by ±25%. Internal validation was performed using 30% of randomly sampled 
training data to monitor the training process. Stochastic gradient descent , SGD was used as the 
optimizer with an initial learning rate of 0.0001, validation frequency of 5, maximum epoch of 20 and 
a mini batch size of 10. Validation accuracies 95.19% and 96.76% were obtained for the small and large 
dataset models respectively. 

To test the model for performance, a dataset independent to both training datasets consisting 850 images 
was used (678 with and 172 without object). For the purpose of building a Receiver-Operator 
Characteristic curve, ROC curve (elaborated below), 344 images (172 with and 172 without object) 
were randomly picked from this dataset. 

 

Figure 3 Confusion matrix for model evaluation. 

For model evaluation, a ROC curve was used. The ROC curve is a 2D diagram that is built using the 
True Positive Rate (TPR) and False Positive Rate (FPR) calculated using metrics from the confusion 
matrix (Figure 3) while applying a tentative cut-off using the predicted probabilities. TPR and FPR are 
given by,  

𝑇𝑃𝑅 =
Σ𝑇𝑃

Σ(𝑇𝑃+𝐹𝑁)
,    (5a)   

𝐹𝑃𝑅 =
Σ𝐹𝑃

Σ(𝐹𝑃+𝑇𝑁)
.    (5b)   

The TPR and FPR are metrics to evaluate the correct predictions of the model. Integrating the ROC 
curve, an area-under curve, AUC can be obtained. The ROC curve was built 10 times for each model, 
where 10 corresponding AUC was obtained. The AUC from the same model was averaged to obtain a 
representative AUC. The AUC is a performance metric for the models, where 0.5 suggests no 
discrimination, 0.7 to 0.8 is considered acceptable, 0.8 to 0.9 is considered excellent, and > 0.9 is 
outstanding [38]. 

Results and discussion 

Object visualisation 
An example of the background image obtained from the IR camera is shown in Figure 4. Temperature 
ranging from 20.6°C and 24.3°C were seen in the figure, corresponding to the artifacts in the 
background.  
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Figure 4 Raw data from IR camera, showing the static background without subject. 

An image of the subject with a concealed object under the windproof is shown in Figure 5 (a). The 
apparent temperature measures between 20.7°C and 34.4 °C, whilst the exposed skin showed 
temperatures above 30.0°C. Around the surface of the clothing on concealed object area, slightly lower 
temperature was observed compared to the overall clothing, consistent with observations from other 
researchers [39-42]. 

PCA was applied by processing both the background and subject images (Figure 4 and Figure 5 (a) 
respectively), followed by reforming the image using the first principal component (Figure 5 (b)). The 
first principal component shows the variation in the pixels between the background and target image. 
The application of Chan-Vese active contour segmentation on the first principal component reformed 
image segments the subject from the background. The pixels retained after active contour segmentation 
were used as markers for information to retain from the raw image. A subject cropped image with ‘clean’ 
background was produced by extracting information from the raw image in Figure 5(a) using the 
segmented markers (Figure 5(c)). 

(a) (b) 
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(c) 

 

Figure 5 An illustration of (a) raw data from IR camera, showing subject with concealed object, (b) first principal 
component, (c) ROI cropped and segmented subject by using the Chan-Vese active contour on PC1. 

Although the concealed object area in Figure 5(c) is faintly visible, it would be challenging for a human 
operator to recognise this in a real detection scenario, where hundreds or more subjects were assessed 
in a consecutive manner. To tackle such challenges, a data reduction technique, Fuzzy-c was used to 
further process the ROI segmented image. In this practice, the image illustration of 256 bins was 
reduced to 16 bins using Fuzzy-c, shown in Figure 6(a). 

The Fuzzy-c algorithm clusters the surface of the skin and background into clusters 16 and 1 
respectively. Considering that the concealed object area is generally lower than the body and average 
surface of the clothing, cluster 2 was used as marker to represent the object area (Figure 6(b)). A shape 
loosely resembling the concealed object Figure 1(a) was seen in Figure 6(b). 

(a) (b) 
Figure 6 Processed images of subject with concealed object., showing (a) Fuzzy-c clustering, and (b) Fuzzy-c with emphasis 

of object area. 

Classification using ResNet-50 
For image classification, all training and validation images were first processed using Fuzzy-c and ROI 
sectioning. This is based on preliminary evaluation which found that the postprocessed image model 
performed better than raw image model.  

Two trained ResNet-50 models were compared: smaller dataset model (900 images) and the larger 
dataset model (3082 images). The larger dataset model contain all images found from the smaller dataset 
model. ROC curves were built 10 times by randomly selecting 172 images with and without object from 
the validation dataset for both models. An average AUC of 0.869 and 0.922 was obtained for the smaller 
and larger dataset Fuzzy-c models respectively (Figure 7). 
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(a) (b) 
Figure 7 A compilation of 10 ROC curves each for the (a) smaller and (b) larger dataset Fuzzy-c models. 

The image label and corresponding model prediction for the validation set were plotted in Figure 8. In 
the smaller dataset model, there were more wrongly predicted labels in the top left (false negative) and 
bottom middle (false positive) of the figure compared to the larger dataset model. 

(a) (b) 
Figure 8 Label and the corresponding prediction from the (a) smaller and (b) larger dataset Fuzzy-c model. 

To determine a cut-off threshold for the model to use in making classification decisions, it is necessary 
to maximize true positives and negatives while minimizing false positives and negatives. The cut-off 
threshold can be optimized by identifying the maximum value in the threshold vs. (TPR – FPR) plot 
(Figure 9). In the case of the small dataset model, the maximum (TPR – FPR) value of 0.6029 
corresponds to a threshold of 0.9825, while for the larger dataset model, the maximum (TPR – FPR) 
value of 0.7017 corresponds to a threshold of 0.9992. These thresholds will then be applied to the 
model's predictions on the validation dataset to quantify model prediction error. 
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(a) (b) 
Figure 9 The threshold vs. (TPR – FPR) plot for the (a) smaller and (b) larger dataset Fuzzy-c models. 

A normalised quantification of label is shown in the form of confusion matrix (Figure 10). Overall, both 
models performed generally well, while the larger dataset model performed better with an overall 14.9% 
error, compared to the 19.9% error in the smaller dataset model. In general, the larger dataset model 
performed better than the smaller dataset model in almost all metrics. The difference in dataset size 
showed that the increase in training dataset can certainly be helpful in improving model accuracy. 
However, it also highlight the effectiveness of transfer learning for model training, where a model 
trained with 900 images (smaller dataset model) managed to perform well with an average AUC of 
0.869 on a validation dataset of 850 images. 

(a) (b) 
Figure 10 Confusion matrix of the normalised labels for the (a) smaller and (b) larger dataset Fuzzy-c models. 

Conclusion 

The paper explores the potential of infrared thermography for the detection of concealed objects on 
human subjects by improving object visualization and using convolutional neural networks, such as 
ResNet-50, for automatic object presence classification. In comparison to unprocessed infrared images, 
additional image processing revealed indications of objects beneath clothing. Machine learning 
techniques, including principal component analysis and Chan-Vese active contour techniques, 
successfully removed background information, isolating the subject within the image. Data reduction 
techniques, such as K-means and Fuzzy-c, improved object area visualization compared to raw data, 
with the latter showing better performance.  

Two ResNet-50 convolutional neural network models were trained using datasets containing 900 and 
3082 images, respectively. The convolutional neural network approach proved to be effective in 
classifying object presence, with the 900-image model achieving an average area-under-the-curve 
(AUC) of 0.869 and the 3082-image model achieving an AUC of 0.922. To further improve 
classification performance, model training with larger dataset is necessary. However, this underscores 
the effectiveness of the transfer learning approach for training CNN models in small or limited dataset 
problems. 
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