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ABSTRACT 

 

Regulatory T cells (Tregs) have a central role in the maintenance of tolerance to self-

antigens and the prevention of autoimmune disease.  This study used an integrative 

systems biology approach to identify tolerogenic genes in Tregs which could potentially 

serve as novel therapeutic targets for immunological disorders. 

A consensus Treg gene signature was generated by comparing gene expression in Treg 

vs naïve or conventional T cells across multiple public studies. Ingenuity Pathway 

Analysis software was then used to expand the Treg consensus gene list to include 

interacting proteins accessible to intervention by antibody therapeutics. 

Many viruses co-opt genes for host proteins that modulate the host’s immune system.  It 

is hypothesized that some viruses may have co-opted genes that can induce tolerance, 

allowing the virus to evade elimination by the host’s immune system.  Putative 

tolerogenic genes were therefore selected for further investigation based upon their 

presence in viral genomes.  The presence of human genes in viral genomes was 

investigated by performing a batch reciprocal BLAST search.   

The biological significance of the human vs viral alignments was evaluated by manual 

inspection of the alignments and searching for the presence of shared motifs and protein 

family domains in the viral and human sequences. 

A final list of ten putative tolerogenic genes included genes known to be associated with 

immune function and some already established therapeutic targets for autoimmune 

diseases, as well as four potentially novel therapeutic targets. 

The biological rationale for the putative targets’ involvement in tolerance was explored 

in the context of Treg gene expression and protein-protein interaction (PPI) network 

topology.  A PPI network was generated and annotated with confidence scores for each 

of the interactions.  The Cytoscape plugin JActiveModules was used to find putative 

functional network modules. 
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1 Background and introduction 

 

1.1 Regulatory T cells  

1.1.1 Discovery and identification of regulatory T cells 

The major role of the mammalian immune system is to protect the host from infection 

by pathogenic microorganisms.  As with any reaction, there needs to be an opposing 

regulatory process in place to maintain homeostasis.  Thus, the immuno-protective 

reactions must simultaneously be balanced by suppressive mechanisms to prevent 

inappropriate and excessive immune responses which could be harmful to the host.  

Regulatory T cells (Treg cells) have evolved as a subset of T lymphocytes whose 

function is to modulate potentially deleterious activities of conventional T helper (Th) 

or effector cells (Sakaguchi et al., 2008).   

Immunological tolerance is particularly important in the case of self-tolerance.  The first 

line of self-tolerance is the elimination by negative selection of self-reactive T 

lymphocytes in the thymus, and B lymphocytes in the bone marrow.  Regulatory T cells 

modulate potentially deleterious activities of conventional T helper cells that escape this 

central self-reactivity checking mechanism.   Although the primary role of Treg cells is 

generally considered to be that of preventing autoimmune disease by maintaining self-

tolerance, a number of additional immunosuppressant functions have been suggested as 

being attributable to Tregs for the prevention of immune system responsiveness under 

inappropriate conditions (Corthay, 2009).  These include the suppression of responses 

against innocuous environmental substances seen in allergy and asthma, induction of 

oral tolerance to dietary antigens, induction of maternal tolerance to the foetus, 

protection of commensal bacteria from elimination by the immune system, suppression 

of pathogen-induced immunopathology, suppression of T cell activation triggered by 

weak stimuli, and feedback control of the magnitude of the immune response by 

effector T cells (Corthay, 2009). 
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The concept of T cell-mediated suppression of immune responses has been around for 

over forty years.  In 1969, Nishizuka and Sakakura demonstrated that thymectomy of 

normal mice on the third day of life resulted in the development of organ-specific 

autoimmune disease, resulting in destruction of the ovaries.  Thymectomy on days 1 or 

7 of life did not result in autoimmune disease.  This led to the hypothesis that during the 

first 3 days of life, autoreactive T cells are exported from the thymus; but that later, 

between days 3 and 7, a subset of immunosuppressive T cells emigrate from the thymus 

into the circulation which modulate the autoreactive T cells. If the day 3 mice later 

received transplanted thymocytes or splenocytes from normal mice, the disease was 

prevented.   

In a seminal 1970 study, Gershon and Kondo demonstrated the importance of antigen-

specific suppressor T cells.  However, the subsequent failure to determine specific 

markers to distinguish these suppressor T cells from other T cells, the inability to purify 

them, and uncertainty over the molecular mechanisms of their immunosuppressive 

activity raised doubts about the existence of a distinct lineage, and as a consequence, 

interest in these suppressor T cells waned.  Much later, in 1995, Sakaguchi et al. 

separated a fraction of CD4+ cells which constituted 5-10% of peripheral CD4+ cells 

and constitutively expressed high levels of CD25 (IL2 receptor  chain).  They 

demonstrated that this fraction of cells could prevent autoimmune disease in mice.  

Depletion of these CD4
+
CD25

+ 
cells in mice resulted in autoimmune diseases in 

multiple organs, and subsequent transfer of CD4
+
CD25

+
 cells prevented the 

autoimmunity (Figure 1.1).  A later study (Asano et al., 1996) revealed that these 

CD4
+
CD25

+
 cells did not appear in the periphery until 3 days after birth, and that they 

could prevent autoimmunity in 3 day thymectomized mice when given one week after 

the thymectomy, correlating nicely with the 1969 study by Nishizuka and Sakakura.  

Thus, a specific subset of T cells was finally defined which were eventually named 

regulatory T cells.  A further six years elapsed before the confirmation of their existence 

in humans (Shevach, 2001).  It has since been found that the identification of human 

Treg cells is more problematic, as CD25 is expressed on around a quarter of CD4
+
 T 

cells, and it is thought that only the very highest CD25 expressers possess significant 

suppressive properties (Shevach, 2006).  Hence, simple CD4
+
CD25

+
 sorting is not 

sufficient to precisely identify human Treg populations. 
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Figure 1.1  Effects of Treg deficiency in mice.  T cell suspensions taken from normal mice can be 

depleted of CD25+CD4+ Treg cells and transferred to syngeneic T-cell deficient mice (such as athymic 

nude mice).  The recipient mice spontaneously develop autoimmune disease and inflammatory bowel 

disease and reject tumour cells.  When CD25+CD4+ Tregs are enriched from normal mice and transferred, 

the recipient mice, in addition to inhibition of autoimmune disease, will accept allogeneic skin grafts.   

Figure from Sakaguchi et al. (2008)   

 

A further significant landmark in Treg research was the discovery of Foxp3 (forkhead 

box p3), a member of the forkhead/winged helix family of transcription factors.  Foxp3 

is expressed in naturally occurring Treg cells and is the major regulator of Treg cell 

development and function.  In 2001, the Foxp3 gene was identified as the defective 

gene in the Scurfy mouse, a mutant mouse strain which spontaneously develops severe 

autoimmune disease and inflammation (Brunkow et al., 2001).  The autoimmunity and 

inflammation was caused by hyperactivity of CD4+ cells and over-production of pro-

inflammatory cytokines.  Mutations of the human orthologue, FOXP3, cause a similar 

disease, IPEX (immune dysregulation, polyendocrinopathy, enteropathy, X-linked 



4  

syndrome), which results in multiorgan autoimmune disease, severe allergy and 

inflammatory bowel disease (Sakaguchi et al., 2007).    Similarities between the 

autoimmunity and inflammation produced by Foxp3 defects, and disease caused by 

depleting or manipulating CD25
+
CD4

+
 Treg cells prompted the investigation into the 

possible contribution of Foxp3 to the development or function of Treg cells (Hori et al., 

2003). It was observed that expression of Foxp3 mRNA was predominantly restricted to 

the CD25
+
CD4

+
 population of cells in both the thymus and the periphery.  In vitro 

stimulation of CD25
-
CD4

+
 cells failed to elicit Foxp3 expression, but retroviral gene 

transfer of Foxp3 into CD25
-
CD4

+
 into immature T cells converted them into Treg-like 

cells which displayed similar behaviour to Tregs.  This study indicated that Foxp3 

expression did not occur as a consequence of cell activation, but was necessary for the 

Treg cell development.  Foxp3 has been referred to as a master controller of the 

development and function of natural CD25
+
CD4

+
 Treg cells (Sakaguchi et al., 2007), 

but this hypothesis has been challenged (Hori, 2008).  It has been suggested that rather 

than being the master controller of Treg cell lineage, the function of Foxp3 may be to 

amplify and fix pre-established Treg-associated molecular features (Gavin et al, 2007)  

In contrast to mice, Foxp3 expression in humans may not be completely confined to 

CD25
+
CD4

+
 cells.  It has been observed that human CD25

-
CD4

+
 T cells may express 

Foxp3 mRNA upon T cell receptor (TCR) stimulation, although the expression levels 

are generally much lower and more transient than in natural Treg cells (Walker et al., 

2003; Morgan et al., 2005).  This raises some issues around the notion of Foxp3 being 

used as a definitive Treg marker for human cells.   

Foxp3 appears to control Treg cells by activating or repressing the expression of many 

genes, either directly or indirectly, by binding to other transcription factors such as NF-

AT, NF-kB and AML/Runx1 (Carson et al., 2006).  For example, Foxp3 binding may 

inhibit IL-2 (interleukin 2), IFN(interferon gamma) and IL-4 (interleukin 4) 

expression, and increase expression of cell surface molecules such as CD25, CTLA-4 

(cytotoxic T lymphocyte-associated antigen 4) and GITR (glucocorticoid-induced TNF 

receptor family-related gene), all phenotypes associated with the Treg cells (Carson et 

al., 2006).  
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There are now thought to be many subpopulations of suppressive T cells, including IL-

10-producing suppressor cells Tr1 cells, TGF--producing Th3 cells, and CD8
+
 T cells 

(Shevach, 2006, Tang & Bluestone, 2008).  In addition, naïve T cells from the periphery 

can be induced to express Foxp3 by in vitro T cell receptor stimulation in the presence 

of IL-2 and TGF-.  In mice, these adapt Treg-like immunosuppressive behaviour 

(Huter et al., 2008), whereas in humans, these CD4
+
Foxp3

+ 
cells induced in this manner 

do not possess suppressive properties (Tran et al., 2007).  Non-induced centrally-

derived CD25
+
CD4

+
Foxp3

+ 
Treg cells develop in the thymus and are crucial in the 

maintenance of immune homeostasis and self-tolerance.  These are also referred to as 

natural Tregs,
 
and are the cells upon which this project thesis will be focussed.  

Therefore this introduction will concentrate on this cell type.  

 

1.1.2 Mechanisms of immune suppression by regulatory T cells 

The molecular mechanisms by which Treg cells suppress the actions of other immune 

cells have still not been fully elucidated, but multiple modes of suppression have been 

proposed (Sakauchi et al., 2009).  Tregs are able to repress the proliferation of antigen-

stimulated naïve T cells and prevent their differentiation to effector T cells, as well as 

suppressing the effector activities of differentiated CD4
+
 and CD8

+
 T lymphocytes.  In 

addition, Tregs can repress the activities of multiple immune cells, including B 

lymphocytes, macrophages, dendritic cells, natural killer cells, natural killer T cells, and 

osteoclasts (Sakaguchi et al., 2009).  It is uncertain whether there is a common core 

suppressive mechanism shared by all Treg cells at any time or location, whether 

particular mechanisms kick into action dependent upon the situation or conditions of the 

immune response, or whether these different mechanisms serve to act together, 

synergistically.  Suggested mechanisms of immunosuppression by Tregs include: 

(i) Secretion of immunosuppressive cytokines:  Treg cells produce immunosuppressive 

cytokines such as IL-10, TGF-, galectin-1 and IL-35 (Tang & Bluestone, 2008).   It 

has been shown that in mice with inflammatory bowel disease (IBD) induced by 
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depletion of Treg cells, IL-10 and TGF- contribute to the suppression of the disease 

(Read et al., 2000; Sakaguchi et al., 2009).  In mouse in vivo models, neutralization of 

TGF-and antagonism of the IL-10 receptor prevents Treg-mediated suppression of 

IBD, type I diabetes, leishmania skin infection and transplantation (Tang & Bluestone, 

2008).    

It has also been proposed that Treg cells can induce cytokine deprivation-induced 

apoptosis of effector T cells by ‘consumption’ of IL-2.  Tregs express high levels of 

CD25, the high affinity receptor for IL-2, so they may act as an IL-2 ‘sink’ by 

competing with effector T cells for IL-2 (Pandiyan et al., 2007). 

(ii) Cell to cell contact with effector T cells:  In vitro experiments demonstrating the 

ability of Treg cells to suppress effector T cell proliferation in the absence of antigen-

presenting cells [APCs] (Picirillo & Shevach, 2001), and others that showed their 

inability to suppress proliferation when the two populations are separated by a semi-

permeable membrane (Thornton & Shevach, 1998), led to the proposal that Treg cells 

suppress through direct contact with effector T cells.  One suggested mechanism for 

suppression through cell contact is the killing of effector cells directly through the 

release of granzyme B and perforin (Grossman et al., 2004; Gondek et al., 2005).  Other 

modes of suppression include mechanisms mediated through the release of negative 

signals, such as cyclic AMP (cAMP) and adenosine.  cAMP is a potently 

immunosuppressive signalling molecule which has been shown to be present in large 

amounts in the cytoplasm of Treg cells.  It has been suggested that cAMP could be 

passed onto effector T cells by contact through gap junctions (Bopp et al., 2007).  

Adenosine can bind to adenosine receptors on effector T cells to suppress their activity.  

CD39 (ectonucleoside triphosphate diphosphorylase 1) and CD73 (ecto-5’-nucleotidase) 

which are expressed on the surface of Tregs catalyse the generation of extracellular 

adenosine (Deaglio et al., 2007).  However some studies utilizing imaging analysis have 

demonstrated that Tregs and effector T cells do not interact stably during in vitro and in 

vivo suppression (Tang et al., 2006, Tang & Krummel, 2006).   

 (iii) Modulation of antigen presenting cells:  Tregs can directly interact with dendritic 

cells (DCs). Aggregation of Tregs around DCs allows them to out-compete antigen-
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specific effector T cells, affecting the ability of effector T cells to engage and become 

activated by the DCs (Sakaguchi et al., 2008).  Activated Tregs interacting with the DC 

may also inhibit DC functions such as antigen presentation.  The imaging studies by 

Tang et al. (2006) mentioned in the previous paragraph, while showing that Tregs and 

effector T cells do not interact with each other stably, did demonstrate that Tregs and 

DCs interact, and that their interactions prevent the formation of stable conjugates 

between effector T cells and DCs.  Tregs may also stimulate DCs to produce 

immunosuppressive factors.  Tregs can stimulate DCs to increase the production of the 

enzyme, IDO (indoleamine 2,3-dioxygenase), which catalzyes the conversion of 

tryptophan to kynurenine, which is toxic to neighbouring T cells (Puccetti & Grohmann, 

2007; Tang & Bluestone, 2008).  Tregs may downregulate the expression of CD80 and 

CD86 on APCs, which are co-stimulatory molecules that provide signals required for 

priming and activation of T cells (Sakaguchi et al., 2008).  The production of IDO and 

the downregulation of CD80/86 expression are both dependent on CTLA-4 (Sakaguchi 

et al., 2009). 

 

1.1.3 Regulatory T cells as therapeutic targets 

The preceding sections have illustrated how depletion of Treg cells can lead to a variety 

of autoimmune diseases, as well as inflammatory and allergic diseases.  It can thus be 

inferred that autoimmune disease may develop as a result of Treg cell dysfunction or 

alterations in the balance between Tregs and self-reactive T cells.  Treg cell depletion 

can also have some potentially beneficial effects for the host, such as enhanced 

immunity to tumours and enhanced antimicrobial immunity.  Treg cells may therefore 

be exploited as therapeutic targets for the modulation of pathological immune 

responses.  Augmentation of the functions, development or survival of Tregs may be 

useful for immunosuppressive therapy of diseases such as autoimmunity, allergy and 

IBD, and also the enhancement of foetal-maternal tolerance and the establishment of 

tolerance to organ transplants.  Conversely, reductions in Treg cell numbers, functions, 

their migration or survival could be of benefit for the treatment of cancers and chronic 

infection.   
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This project and thesis will focus on the identification of tolerogenic genes in Treg cells, 

so this section will discuss the potential targeting of Tregs to induce 

immunosuppression in autoimmune disorders.  Currently, the most common approach 

to treating immunological diseases is the administration of immunosuppressive drugs.  

A number of pharmacological agents have been associated with the boosting of Treg 

activity (Ohkura et al., 2011).  Rapamycin is an immunosuppressive drug already in 

clinical use for the prevention of organ transplant rejection.  It acts through inhibition of 

mTOR (mammalian target of rapamycin) signalling.  In vitro studies have shown that 

rapamycin promotes expansion of Treg cells isolated from both healthy subjects and 

patients with type I diabetes, through the selective inhibition of proliferation of effector 

T cells (Battaglia et al., 2006).  The sphingosine 1-phosphate receptor agonist, FTY720 

has also been used to prevent organ transplant rejection, and amongst its 

immunosuppressive mechanisms is an ability to increase Treg cell activity. Retinoic 

acid and aromatase inhibitors have been shown to respectively promote differentiation 

of naïve T cells to Tregs and expansion of Tregs (Ohkura et al., 2011).   

However, the use of immunosuppressant drugs often does not distinguish between 

beneficial and deleterious immune responses, as there is no antigen specificity.  

Immunosuppressive therapy is by necessity, continued throughout a patient’s lifetime, 

as withdrawal of therapy may result in disease relapse.  Pre-clinical experiments in 

mouse models have indicated that the adoptive transfer of Tregs may prevent or cure 

many immunological diseases by restoring self-tolerance (Roncarlo & Battaglia, 2007).  

The potential use of this type of therapy may have several advantages over conventional 

immunosuppressive drugs, as there would be antigen specificity without the general 

suppressive effects. Long term physiological regulation may be induced by the re-

establishment of immunological homeostasis.  The therapy would be patient-specific 

and could be tailored to the particular needs of the patient.     

There are, however, a number of technical issues that would need to be considered with 

this type of therapy.  The Tregs would need to be collected from blood and immediately 

processed.  They would need to be purified to a single population.  As the Foxp3+ 

natural Tregs represent only 5-10% of CD4
+
 cells, they would need to be further 

expanded in vitro.  Tregs are readily expandable in short term culture, but Foxp3 
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expression is not particularly stable in long term cultures (Miyara & Sakaguchi, 2011).  

These technical cell manipulations and reinfusion of the cells into the patient needs to 

be performed with good quality controls in place and under clinical GMP (good 

manufacturing practice) conditions, therefore appropriate facilities need to be in place, 

restricting the number of places equipped to perform this type of therapy (Roncarlo & 

Battaglia, 2007). As a result, this is likely to be an expensive, and therefore 

commercially unattractive therapeutic approach.  Safety also has to be monitored.  The 

possible conversion of Foxp3
+
 Tregs into effector T cells, resulting in worsening of 

disease is a concern.  It has been shown in mice that in an inflammatory environment, 

Tregs may lose Foxp3 expression and become pathogenic Th17 cells (Xu et al., 2007, 

Miyara & Sakaguchi, 2011).  The possibility of uncontrolled cell proliferation and pan-

immunosuppression would also need to be monitored (Roncarlo & Battaglia, 2007).  

Some clinical trials in patients undergoing bone marrow therapy (Roncarlo & Battaglia, 

2007) and human leukocyte antigen (HLA)-haploidentical hematopoietic stem-cell 

transplantation (Di Ianni et al., 2011) have shown promising preliminary results, 

indicating the feasibility of this therapeutic strategy. 

Roncarlo and Battaglia (2007) have suggested that in the future, it may be possible to 

induce or enhance Treg cell function or confer regulatory activity to effector T cells by 

ex vivo transfer of genes.  The transfer of Foxp3 into non regulatory T cells, for example 

may be a possible candidate for consideration.  

In conclusion, the central role of regulatory T cells in maintenance of self-tolerance and 

prevention of autoimmune disease make this cell type an attractive target for 

immunosuppressive drugs. It would appear that current therapeutic strategies for 

immunosuppression are either non-specific, or expensive and technically challenging.  

Therefore, there is a real need for novel therapeutics that would be more selective and 

consequently safer, as well as being cheap and easy to administer.  The identification of 

potential tolerogenic genes and as a corollary, potentially novel molecular targets in 

regulatory T cells, can make a valuable initial contribution towards this goal. 
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1.2 Systems and network biology 

1.2.1 Introduction to systems biology 

Systems biology takes a holistic approach to understanding relationships between the 

components that make up the ‘system’, e.g. the organelle, cell, organ, or whole 

organism.  The behaviours and functions that arise as a result of the interactions of the 

component parts, rather than as a result of a single part of the system, are referred to as 

the emergent properties of the system (Alberghina et al., 2009).  Traditionally, 

particularly in the areas of cellular and molecular biology, research has been carried out 

in an essentially reductionist manner, i.e. by examination of the basic molecular 

components of the system.  Systems biology adopts a top-down approach to 

understanding the structural and dynamic organization of elements of a system at 

various levels of resolution, and how their interactions produce the emergent properties 

of the system.   

The growth of systems biology over the last decade has been accelerated by a number of 

advances (Arrell & Terzic, 2010): 

(i) The sequencing of the human genome in 2001.   

(ii) The availability of comprehensive biological data repositories, e.g. genes, proteins, 

metabolites, protein interaction and biochemical pathway knowledge bases. 

(iii) The development of robust high-throughput techniques, enabling large-scale 

detection, identification and assessment of molecular variability, and the consequent 

expansion in data generation.  These large data sets have resulted from advances in 

technologies such as transcriptomics, proteomics, and metabolomics, and also advances 

in high-throughput imaging. 

(iv) The development of new technologies and computational approaches to analyse 

large amounts of data, and to integrate with network data. 

(v) The standardization of data formats and ontologies 
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(vi) The internet revolution, which has provided the means of rapid dissemination and 

acquisition of knowledge and data.  

People generally understand two things by systems biology:   

 The classical idea of systems biology which is quantitative network modelling 

and simulation  

 Integrative approaches, known as Integrative Systems biology.  This approach 

aims to maximally exploit broad-scale omic datasets, typically by using 

comprehensive protein-interaction networks as an integrative framework for the 

integration and computation of omic data. 

 

1.2.2 Interaction networks 

The development of high-throughput, quantitative, massively parallel technologies has 

provided collections of data which have delivered inventories of the cellular parts and 

information on the stoichiometries of the molecular components of the biological 

system.  This has provided unparalleled resolution into the wiring of cellular signalling.  

Advances in molecular techniques has changed the organizational view of the cell from 

being a “bag of enzymes” to a network of complex, highly inter-connected molecular 

interactions (Vidal et al., 2011).  The full complement of these macromolecular 

interactions in cells constitutes what is known as the interactome.  The challenge now is 

to assemble these components in a systematic manner into functional molecular 

networks that can be used to reveal information on fundamental biological processes, 

how they can become dysregulated by disease and thus predict how a network may 

respond to modulation by therapeutic intervention (Pe’er & Hacohen, 2011).   

Biological network analysis simplifies these complex molecular interaction systems by 

representing them as a simplified mathematical object called a graph, comprising a 

collection of nodes and edges (Albert, 2005).  Elements of the system such as proteins, 

genes or metabolites are represented as the nodes, and the relationships between them 

are represented by the edges, i.e. lines connecting them (Figure 1.2).  The relationships 

may involve physical, regulatory or genetic relationships, the flow of material from a 
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substrate to a product, or other types of relationship, depending upon the type of 

network being represented.  The edges may be uni-directional, bi-directional or non-

directed.  A non-directed edge for example, may be used to represent mutual 

interactions such as a direct physical PPI.  Additional information may be assigned to 

the edges such as positive or negative signs representing activation or inhibition, 

respectively, reaction rates, or confidence levels; or different classes of nodes may be 

represented (Albert, 2005).  A number of approaches can be taken to construct these 

interaction networks (Arrel & Terzic, 2010; Vidal et al., 2011).  For example:  

 de novo from experimental results showing PPIs, using techniques such as yeast 

two hybrid (Y2H) screening, immunoprecipitation or tandem affinity 

purification (TAP)   

 Compilation or curation of pre-existing data available in the literature   

 Systematic high-throughput experimental mapping strategies;  i.e. use of 

software tools that leverage data generated by the methods in the previous two 

points.  Known interactions can be applied to an ‘omic’ data set using pathway 

analysis software such as Ingenuity Pathway Analysis (IPA), Cytoscape, 

MetaCore or Pathway Studio   

 Computational predictions based upon information other than PPIs, such as 

sequence similarities, protein structures and co-regulated genes (e.g. based on 

correlated expression clusters predicted from gene expression data) 

 Reverse engineering; i.e. the use of experimental data sets using numerous 

perturbations for reconstruction of the underlying structure of a network or the 

regulatory relationships between the nodes.   
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Figure 1.2  Network components. Figure from Seebacher & Gavin (2011.)   

 

Interaction networks provide a global scaffold or template for the integration of multiple 

data-types and for overlaying qualitative or quantitative information, facilitating 

mathematical modelling and providing foci for hypothesis generation (Arrel & Terzic, 

2010).  

Network topology can provide valuable information for the identification of molecules 

that are functionally important or critical for network integrity and function.  Most 

nodes have few connections, but some are highly connected to other nodes.  These are 

called hubs.  Proteins may vary their connections with time and location.  There are two 

types of hub: “party hubs” and “date hubs” (Han et al., 2004) [Figure 1.2]. A party hub 

co-expresses and/or co-localizes simultaneously with all its interacting nodes at the 

same time and in the same spatial location.  Date hubs vary their connections with their 

interacting partners at different times and locations (Han et al., 2004).  Party hubs are 

more likely to be the module organizers, acting within the same biological process, 

whereas date hubs are more likely to be module connectors, linking biological 

processes.  Information on these key nodes, particularly in disease-related networks 

could be useful in drug discovery.  If a potential therapeutic target turns out to be a 

highly connected hub molecule, then it may be unsuitable as a drug target, as 
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modulation of its activity may affect many other activities within the cell, giving rise to 

unwanted off-target effects (Kann, 2007).  Molecules corresponding to nodes with 

fewer connections which affect only the pathway involved in the disease may represent 

more suitable therapeutic targets. 

 

1.2.3 Use of data mining and systems biology for target 

identification 

The identification of suitable targets is crucial to the drug discovery process.  Target 

selection without a firm mechanistic rationale is a leading cause of drug attrition rates 

because of poor pharmacokinetic profiles, unexpected toxicity, or because the biological 

hypothesis underlying the target and drug selection was flawed (Butcher, 2003).  

Therefore, during the process of identifying and selecting reliable druggable targets, it is 

important to gain insights into the underlying mechanisms and molecular interactions 

involved in disease processes, so that better targets can be selected.  The construction of 

biological networks and predictive models, and the interpretation of quantitative ‘omic’ 

data in the biological context of PPIs can facilitate this process.  This involves the 

gathering and integration of heterogeneous data types.  The recent advances in systems 

biology have provided a new approach to target identification (Yang et al., 2009).  

Current data mining approaches include text mining of literature databases, microarray, 

proteomic and chemogenomic data mining (Yang et al., 2009).  In the search for new 

targets in regulatory T cells during the present study, transcriptomic data from publicly 

available microarray studies will be used.  Therefore, this section will be confined to the 

discussion of microarray data mining techniques.   

Microarray data mining involves the application of bioinformatics to the analysis of 

microarray data for the identification of gene signatures and/or biological pathways that 

can define a particular phenotype, such as a disease (Ricke et al., 2006).  Two basic 

approaches that can be applied to gene expression data mining are unsupervised 

clustering and supervised classification.  Unsupervised clustering is an exploratory 

approach which aims to determine whether groups of genes or biological samples share 

similar expression patterns.  Supervised classification aims to identify genes that can 
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distinguish between known samples, phenotypes or classes, such as diseased vs non-

diseased samples (Mount & Pandey, 2005).   

The exponential growth in microarray data and the emergence of “open biology” has led 

to the growth in publicly available microarray datasets in open data repositories, such as 

NCBI Gene Expression Omnibus (GEO), Stanford Microarray Database (SMD) and 

EBI Array Express (Galperin & Cochrane, 2011).  The availability of these collections 

of vast numbers of data points has made possible the meta-analysis of multiple 

transcriptomic datasets that address similar biological questions (Kupershmidt et al., 

2010).  Many significant discoveries have been made through meta-analysis of multiple 

gene expression data sets.  For example, the identification of consistently deregulated 

genes in prostate cancer (Rhodes et al., 2002), the identification of gene expression 

profiles in breast cancer (Wirapati et al., 2008) and the identification of candidate 

biomarkers for colorectal cancer (Chan et al., 2008). 

Individual data mining approaches used in isolation are not usually sufficient for 

constructing biological networks and delineating cellular processes.  Improvements can 

be achieved by integration with other data sources, such as PPI data, localization 

information, published literature and phylogenetic information.  It has been shown that 

integration of heterogeneous data types increases the accuracy of gene function 

predictions when compared with single high through-put methods used alone 

(Troyanskaya, 2005).  For example, in the case of gene expression data, key regulators 

of a biological function may not be differentially expressed.  Integration with interaction 

network information allows molecules interacting or connected within the same 

network as differentially expressed gene products to be implicated in a biological 

process (Figure 1.3).  This principle is known as ‘guilt by association’.  Manually 

curated knowledge bases such as KEGG (Kyoto Encyclopedia of Genes and Genomes) 

and interactome databases such as MINT (Molecular Interactions database), DIP 

(Database of Interacting Proteins), BioGrid and InAct have allowed the integration and 

overlaying of gene expression data with known interactions, regulatory relationships 

and biochemical reactions, and their analysis and visualization in the context of 

biological networks.  Specialized pathway analysis software such as Ingenuity Pathway 
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Analysis (IPA), Cytoscape, MetaCore or Pathway Studio has been developed to 

facilitate the mapping of gene expression data to biological networks.   

 

 

 

 

  

Figure 1.3  Regulatory molecules implicated by network analysis 

A. A regulatory molecule “X” that is not differentially expressed can be implicated by its connectivity to 

differentially expressed molecules, in the interaction network. 

B. A differentially expressed molecule “Y” can be identified as a key regulator through its connections to 

key disease-associated molecules and biological processes. Red/green colors denote up/downregulation of 

mRNA. 

Figure from Ramsey et al. (2010)  
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2 Aims and objectives 

The aim of this project is to identify tolerogenic genes in regulatory T cells which could 

potentially serve as novel therapeutic targets for immunological disorders.  This will be 

achieved by utilizing an integrative systems biology approach which will combine gene 

expression and protein interaction data.  Putative tolerogenic genes will ultimately be 

selected for further investigation based upon their presence in viral genomes, as viruses 

are likely candidates to have co-opted genes for host proteins that modulate the immune 

system of the host.  It is hypothesized that some viruses, particularly those that reside in 

the host for a long period of time, may have co-opted genes that can induce tolerance, 

allowing the virus to evade elimination by the host’s immune system.  The 

identification of genes that may control tolerance mechanisms could potentially 

represent targets for a new class of therapeutic that could actually induce tolerance and 

provide long term or permanent control of immune disorders, or even the holy grail of 

long term remission.   

 

These aims will be achieved using the following methods (Figure 2.1):  

 

 

1) Generate a consensus human Treg cell gene signature  

 

 Gene expression data will be mined by selecting transcriptomic datasets 

available in public data repositories which compare gene expression in 

regulatory T cells and non-regulatory CD4
+
 T cells.  Meta-analysis 

across the datasets will be performed to generate a Treg consensus gene 

signature 

 

2) Expand the consensus Treg gene list to include upstream interacting plasma 

membrane-resident proteins and proteins located in the extracellular space  
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 The Ingenuity Pathway Analysis software tool which contains a highly 

comprehensive, manually curated protein interaction network will be 

used for this network expansion. 

 

3) Identify genes in the expanded list that have been integrated into viral genomes. 

 

 Download all available viral genome sequences (viruses hosted in 

humans) from NCBI and write a Perl script to automate the reciprocal 

blasting of the gene list against them. 

 Evaluate the human/viral sequence alignments for potential biological 

significance 

 

 

 

Finally, the biological rationale for each putative target’s involvement in tolerance will 

be explored within the context of the Treg gene expression data and the interaction 

network topology.  This will be achieved by applying the following methods: 

 

 

1) Generate a Treg PPI network with associated confidence scores.  Protein 

interaction data will be obtained from public interaction data repositories by 

querying with the Treg gene signature, and interactions scored using the 

PSISCORE application. 

 

2) Overlay gene expression data from the consensus Treg gene signature.   

 

3) Identify active subnetworks or putative functional modules.  Functional modules 

can be identified as highly connected network regions which show significant 

changes in gene expression.   

The Cytoscape plugin, JActiveModules was used, which utilizes algorithms to 

search for connections between gene expression and network topology. 
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Figure 2.1  Workflow to identify tolerogenic genes  
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3 Methods  

3.1 Generation of a consensus Treg gene signature 

Gene expression data was mined by selecting transcriptomic datasets available in public 

repositories.  The NextBio software tool was utilized (Kuperschmidt et al., 2010).  This 

is a data mining framework, containing a library of gene expression data sourced from 

several public databases, including Gene Expression Omnibus (GEO), Array Express, 

and Stanford Microarray database.   

Studies were selected where Treg CD4
+
 cells were compared with non-Treg (naïve or 

conventional) CD4
+
 cells.  Treg cells are CD4 and CD25-positive.  However, around a 

quarter of all CD4
+
 T cells express CD25, so in isolation, this is not a reliable Treg cell 

marker.  Studies were therefore selected for inclusion in the analysis based upon the 

expression of certain key Treg-associated genes (genes selected in consultation with 

expert immunologists at UCB).  The strict criteria for inclusion in the analysis were that 

Treg cells had to display increased expression of this particular combination of genes.  

Individually these genes may not be reliable markers for Treg cells, but together they 

are good indicators of a Treg phenotype. 

Comparison of multiple studies investigating the same phenomenon allows the 

identification of consistently differentially expressed genes, a so-called consensus Treg 

gene signature; and mitigates the confounding effects of noise in individual gene 

expression studies.  Meta-analysis across the selected Treg v non Treg datasets was 

performed to generate the Treg consensus gene signature. This allows the identification 

of the most consistently and highly regulated genes across multiple datasets.  NextBio 

uses a combination of rank-based enrichment algorithms, ontologies and meta-analysis 

techniques to computationally identify gene signatures.  The two most important 

parameters are the activity level of a gene in each dataset and the specificity (the 

number of datasets in which the gene is active).  Genes which were differentially 

expressed (up or down) in Treg compared to non-Treg cells, in 4 of the 6 studies, were 

selected for subsequent analysis.  This selects for genes that are differentially expressed 
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in a majority of the studies, but provides some degree of margin for allowances to be 

made for hybridization errors or other errors in individual studies.   

 

3.2 Expansion of the Treg gene signature to include interacting 

proteins 

Putative therapeutic targets may potentially be differentially expressed Treg proteins, or 

proteins interacting with a Treg protein that can modulate its activity.  UCB has good 

therapeutic antibody generation capabilities, therefore putative target candidates were 

confined to proteins localized in either the plasma membrane or extracellular space.  

This makes them accessible for modulation by antibody therapeutics.  

 Identification of interacting proteins and the determination of their cellular localizations 

were carried out through the use of the Ingenuity Pathway Analysis tool [IPA] 

(Ingenuity Systems, USA, www.ingenuity.com).  The dataset containing the consensus 

differentially expressed Treg gene identifiers and corresponding expression values was 

uploaded into the application. Each identifier was mapped to its corresponding object in 

the Ingenuity® Knowledge Base.   

Proteins localized in the plasma membrane or extracellular space which directly interact 

with differentially expressed Treg protein products were identified.  IPA provides 

information on cellular localizations of molecules, based upon Gene Ontology (GO) 

cellular compartment annotations.  The IPA application allows a number of filters to be 

set when growing/building a network.  A specific set of filters were applied to limit the 

output to molecules only fulfilling appropriate criteria.   

Differentially expressed Treg proteins and their direct interactors which were expressed 

only in the plasma membrane, extracellular space, or an unknown location were 

selected.  A list of these proteins and corresponding Entrez gene IDs was exported from 

IPA. 
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3.3 Identification of proteins showing homology with viral 

proteins 

3.3.1 Standalone BLAST  

Differentially expressed Treg genes and their interacting partners were filtered based 

upon their presence in virus genomes.  Proteins showing homology with viral proteins 

were identified by performing BLAST (Basic Local Alignment Search Tool) searches 

against a database of viral proteins.  Highest scoring viral hits, i.e. the viral protein 

showing the greatest homology to the human protein were re-blasted against a database 

of human proteins to confirm the hits. This reciprocal BLAST was to ensure that the 

hits were real and that the highest scoring alignment was not, for example, just an 

alignment with another member of the same protein family which is not the true 

homologue. 

To this end, a standalone NCBI BLAST application was used.  This can be freely 

downloaded from the NCBI website: 

ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/ 

 

3.3.2 Creation of local viral and human BLAST databases 

The viral database was created by downloading protein sequences from viral genomes.  

Only genomes from viruses competent for infection of humans were included.  

Accession numbers were obtained from Entrez Genome: 

 (http://www.ncbi.nlm.nih.gov/sites/entrez?db=Genome), and their protein sequences 

retrieved using Batch Entrez (http://www.ncbi.nlm.nih.gov/sites/batchentrez) and 

downloaded in FASTA format.  Note: Only FASTA formatted sequences can be used 

with command line standalone BLAST.   

 

ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/
http://www.ncbi.nlm.nih.gov/sites/batchentrez
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A FASTA formatted sequence consists of a single line called a defline, which is marked 

with a ">" at the beginning of the line, followed by a description of the sequence. The 

defline terminates with a new line, and is followed by the sequence.  Sequence files 

exported from Entrez Batch were found to have an extra heading preceding each 

FASTA protein sequence, comprising the NC_xxxxx RefSeq accession of the viral 

genome from which the protein was derived.  These lines were removed using the 

following command in Linux: 

perl -pi -e 's/^NC_.*//s' fastaFileName.txt 

A database of the complete human protein sequence repertoire as determined by The 

UniProtKB/Swiss-Prot Human Proteome Initiative (HPI) was downloaded: 

ftp://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/taxonomic_divisions 

These sequences are in Swiss-Prot format, so they had to be converted to FASTA 

format.  This was done using the Bioperl module, SeqIO, as follows: 

 

#!/usr/bin/perl -w 

   use Bio::SeqIO; 

 

    $in = Bio::SeqIO->new(-file => "Swiss-Prot_filename" , '-format' => 'swiss'); 

    $out = Bio::SeqIO->new(-file => ">outputfilename.fasta" , '-format' => 'FASTA'); 

    while ( my $seq = $in->next_seq() ) { 

 $out->write_seq($seq); 

    } 

 

Text files containing sequences in FASTA format cannot be used as BLAST databases 

directly.  They must be converted to ‘blastable’ databases by generating BLAST indices 

(essentially the start position of all seed ‘words’ of various lengths), using the 

‘formatdb’ command (in more recent versions of standalone BLAST, formatdb has been 

ftp://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/taxonomic_divisions
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replaced by makeblastdb).  There are a number of command line parameters associated 

with formatdb.  These are outlined in detail in the following document available at the 

NCBI website: 

 http://www.ncbi.nlm.nih.gov/staff/tao/URLAPI/formatdb_fastacmd.html 

The following command was used in Linux to format the viral and human databases: 

formatdb –i filename.fasta –pT –oT –t ”DBname” 

 

-i  Specifies the name of the input file containing the sequences 

-p T  Indicates that the input type is protein (input format T/F [true or false]) 

-o T  Parses deflines and indexes seqIDs. Enables seqID parsing and indexing (input 

format T/F [true or false]) 

-t   Adds a custom title to the database 

As the human protein database for the reciprocal BLAST searches comprised sequences 

from Swiss-Prot, it was necessary to map each of the Entrez IDs for the differentially 

expressed human Treg genes and interactors, obtained from the IPA output (Section 

3.2), to Swiss-Prot IDs.  This was so that human query protein IDs for the first BLAST 

search against the viral protein database could be compared to the human protein hit IDs 

taken from the Swiss-Prot-derived human protein database in the reciprocal BLAST 

search.  This was done using the database identifier mapping tool on the UniProt 

website: 

http://www.uniprot.org/help/mapping?namespace=help&object=mapping&format=tab=

batch   
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3.3.3 Perl and Bioperl for performing batch BLAST searches 

The BLAST program, when run as a command-line utility is referred to as "blastall".  In 

order to facilitate the automation of the execution of BLAST searches, a script was 

developed, using the Perl programming language and Bioperl modules (Appendix A).  

Figure 3.1 shows an overview of the workflow for the BLAST Perl script.  The Bioperl 

project is an open source library of Perl modules for bioinformatics applications 

(www.bioperl.org).  The Bioperl object, StandAloneBlast, which is a wrapper for the 

NCBI standalone BLAST package, was utilized.  SearchIO which is a flexible Bioperl 

module for parsing pairwise alignment objects of various formats, was utilized to 

process the BLAST results.  The parsers for BLAST output are part of SearchIO.   

When using the blastall program/ StandAloneBlast, the BLAST parameters must first 

be set.  There are many parameter options associated with blastall, details of which are 

available at the NCBI website: 

http://www.ncbi.nlm.nih.gov/staff/tao/URLAPI/blastall.html#3  

Stipulate the parameters used by the blastall program by populating an array.  The 

parameters for the present study were set as follows:  

@params_virus = (-p => 'blastp', -d => 'viral_DB.fasta', -o => 'report.bls', -e => '10') 

-p Specifies the type of search.  In this case, blastp, protein querying a protein database. 

-d Specifies the target database(s) 

-o Specifies output file 

-e Specifies Expectation value cutoff (default is ‘10’) 

-b Number of database sequence alignments shown.  Set to ‘1’ so only top hit is returned 

-v Number of one line description of database sequences shown 
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 Figure 3.1  Workflow for batch reciprocal BLAST  
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The query sequences for the first BLAST search were contained in a single file of all the 

sequences of differentially expressed Treg proteins and their interacting proteins.  A 

Bio::Seq object was instantiated for each query sequence in the file.  A StandAloneBlast 

object (a.k.a "factory") was created, and blastall executed by calling the blastall method 

with the blast parameter array. The parsed BLAST output is returned as a BLAST report 

which is a Bio::SearchIO object. SearchIO is used to extract data from the BLAST 

report.  Each BLAST result is composed of a set of hits for the query sequence. Hits are 

sequences in the searched database which align with the query sequence while meeting 

defined search parameters e.g maximum E-value.  Each hit has one or more high-

scoring segment pairs (HSPs), which are significant alignments of the query and hit 

sequence, where significance is defined by E value thresholds.  The significance of a hit 

is ascribed to the E value of the highest scoring HSP.   The search results are therefore 

made up of three main components:  The top level results, the hits, and the HSPs.  Each 

of these outputs have methods associated with them which can be used to obtain 

information about the BLAST results (Tables 3.1-3.3).  The required information on the 

result, hits or HSPs can be specified and output to the screen or saved as a file. 

In order to retrieve the full sequence of all hits for subsequent reciprocal Blasting, the 

‘fastacmd’ command must be used.  This is another database-related tool from the 

standalone BLAST package.  It allows use of formatted BLAST databases for non-

sequence alignment purposes, such as dumping of FASTA sequences, extracting 

information for specific entries, and retrieving specific sequences or subsequences.  

Retrieving specific entries requires the database to be formatted with "-o T" (see section 

3.4.3 above).  fastacmd was used to retrieve the sequences of the top viral hits in the 

first BLAST search, which were then used as input for the second, reciprocal BLAST 

search. 

 

  

 

 

http://bioperl.org/wiki/Module:Bio::Seq
http://bioperl.org/wiki/Module:Bio::SearchIO
http://en.wikipedia.org/wiki/BLAST
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Table 3.1 Methods associated with ‘Result’ objects (from: http://bioperl.org/wiki/HOWTO:SearchIO) 

Object  Method  Example  Description  

Result  algorithm  BLASTX  algorithm string  

Result  algorithm_version  2.2.4 [Aug-26-2002]  algorithm version  

Result  query_name  20521485|dbj|AP004641.2  query name  

Result  query_accession  AP004641.2  query accession  

Result  query_length  3059  query length  

Result  query_description  
Oryza sativa ... 

977CE9AF checksum.  
query description  

Result  database_name  test.fa  database name  

Result  database_letters  1291  
number of residues in 

database  

Result  database_entries  5  number of database entries  

Result  available_statistics  
effectivespaceused ... 

dbletters  
statistics used  

Result  available_parameters  
gapext matrix allowgaps 

gapopen  
parameters used  

Result  num_hits  1  number of hits  

Result  hits   

List of all 

Bio::Search::Hit::GenericHit 

object(s) for this Result  

Result  rewind   

Reset the internal iterator that 

dictates where next_hit() is 

pointing, useful for re-

iterating through the list of 

hits 

 

 

Table 3.2 Methods associated with ‘Hit’ objects (from: http://bioperl.org/wiki/HOWTO:SearchIO) 

Object  Method  Example  Description  

Hit  name  443893|124775  hit name  

Hit  length  331  Length of the Hit sequence  

Hit  accession  443893  

accession (usually when this is a genbank 

formatted id this will be an accession 

number- the part after the gb or emb )  

Hit  description  LaForas hit description  

http://bioperl.org/wiki/Module:Bio::Search::Hit::GenericHit
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sequence  

Hit  algorithm  BLASTX  algorithm  

Hit  raw_score  92  hit raw score  

Hit  significance  2e-022  hit significance  

Hit  bits  92.0  hit bits  

Hit  hsps   
List of all Bio::Search::HSP::GenericHSP 

object(s) for this Hit  

Hit  num_hsps  1  number of HSPs in hit  

Hit  locus  124775  locus name  

Hit  accession_number  443893  accession number  

Hit  rewind   

Resets the internal counter for next_hsp() 

so that the iterator will begin at the 

beginning of the list  

 

 

Table 3.3 Methods associated with ‘HSP’ objects (from: http://bioperl.org/wiki/HOWTO:SearchIO) 

Object  Method  Example  Description  

HSP  algorithm  BLASTX  algorithm  

HSP  evalue  2e-022  e-value  

HSP  expect  2e-022  alias for evalue()  

HSP  frac_identical  0.884615384615385  Fraction identical  

HSP  frac_conserved  0.923076923076923  

fraction 

conserved 

(conservative and 

identical 

replacements aka 

"fraction similar") 

(only valid for 

Protein 

alignments will 

be same as 

frac_identical)  

HSP  gaps  2  number of gaps  

HSP  query_string  DMGRCSSG ..  
query string from 

alignment  

HSP  hit_string  DIVQNSS ...  
hit string from 

alignment  

http://bioperl.org/wiki/Module:Bio::Search::HSP::GenericHSP
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HSP  homology_string  D+ + SSGCN ...  
string from 

alignment  

HSP  length('total')  52  
length of HSP 

(including gaps)  

HSP  length('hit')  50  

length of hit 

participating in 

alignment minus 

gaps  

HSP  length('query')  156  

length of query 

participating in 

alignment minus 

gaps  

HSP  hsp_length  52  

Length of the 

HSP (including 

gaps) alias for 

length('total')  

HSP  frame  0  

$hsp->query-

>frame,$hsp-

>hit->frame  

HSP  num_conserved  48  

number of 

conserved 

(conservative 

replacements, aka 

"similar") 

residues  

HSP  num_identical  46  
number of 

identical residues  

HSP  rank  1  rank of HSP  

HSP  seq_inds('query','identical')  (966,971,972,973,974,975 ...)  
identical positions 

as array  

HSP  
seq_inds('query','conserved-

not-identical')  
(967,969)  

conserved, but 

not identical 

positions as array  

HSP  seq_inds('query','conserved')  
(966,967,969,971,973,974,975, 

...)  

conserved or 

identical positions 

as array  

HSP  seq_inds('hit','identical')  (197,202,203,204,205, ...)  
identical positions 

as array  

HSP  
seq_inds('hit','conserved-

not-identical')  
(198,200)  

conserved not 

identical positions 

as array  

HSP  seq_inds('hit','conserved',1)  (197,202-246)  
conserved or 

identical positions 
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as array, with 

runs of 

consecutive 

numbers 

compressed  

HSP  score  227  score  

HSP  bits  92.0  score in bits  

HSP  range('query')  (2896,3051)  
start and end as 

array  

HSP  range('hit')  (197,246)  
start and end as 

array  

HSP  percent_identity  88.4615384615385   % identical  

HSP  strand('hit')  1  strand of the hit  

HSP  strand('query')  1  
strand of the 

query  

HSP  start('query')  2896  
start position 

from alignment  

HSP  end('query')  3051  
end position from 

alignment  

HSP  start('hit')  197  
start position 

from alignment  

HSP  end('hit')  246  
end position from 

alignment  

HSP  matches('hit')  (46,48)  

number of 

identical and 

conserved as 

array  

HSP  matches('query')  (46,48)  

number of 

identical and 

conserved as 

array  

HSP  get_aln  sequence alignment  
Bio::SimpleAlign 

object  

http://bioperl.org/wiki/Module:Bio::SimpleAlign
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3.3.4 Evaluation of aligned sequences 

Each BLAST result is associated with an E-value (Expect value), which represents the 

number of times a hit of the same score or better would be expected to occur purely by 

chance.  This value is dependent on the lengths of the query sequence and search space 

(database), as well as the identity between the query and target sequences.  The lower 

the E-value, the greater the similarity between the input sequence and the match.  The 

biological significance of the viral and human sequence alignments was also examined.  

This was undertaken by manually examining the sequence alignments.  In particular, by 

examining the alignment of cysteine residues in the sequences where they were present.  

Cysteines form disulphide bridges and so are important in maintaining the tertiary 

structure of proteins.  Mismatches in cysteine content between the human protein and its 

viral homologue may therefore indicate differences in protein folding and function.  In 

addition, the sequences were examined for the presence of shared motifs/domains.  If 

the viral and human protein shared common motifs or domains within their sequences, 

this could indicate shared biological function or membership of similar protein families.  

The presence of motifs and signature domains was examined using the InterproScan 

database, at the EBI: 

http://www.ebi.ac.uk/Tools/pfa/iprscan/ 

 

3.4 Identification of putative functional modules 

A Treg protein interaction network with confidence scores for each interaction, and 

putative active subnetworks were generated as follows: 

(i) 301 differentially expressed Treg proteins comprising the consensus Treg signature 

(see section 3.1) were used to query public PPI databases and generate a custom protein 

interactome. 

(ii) Confidence scores for each of these binary interactions were obtained. 

(iii) The Treg gene expression data was overlaid onto the PPI interactome/network. 
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(iv) Functional modules or active subnetworks were identified. 

 

3.4.1 Protein-protein interaction data sources 

There are many publically available molecular interaction databases; however there is 

often little overlap in their data content (Turinsky et al., 2011).  Therefore, in order to 

generate a comprehensive PPI network, PPI data was obtained from a number of 

different sources.  The PSI (Proteomics Standards Initiative) common query interface 

(PSICQUIC) is an online meta-search resource which allows multiple interaction data 

sources to be queried simultaneously (Aranda et al., 2011): 

http://www.ebi.ac.uk/Tools/webservices/psicquic/view 

A single query is sufficient to retrieve the relevant interaction data from all of the 

interaction data sources.  PSICQUIC utilizes the Molecular Interaction Query Language 

(MIQL), which allows searches for specific organisms, interaction detection methods, 

interaction types, or publication identifiers.  Search results may be clustered if required.  

This will remove redundant interactions from the different source databases, i.e. if the 

same binary interaction between two proteins is found in more than one database, the 

results will be merged into a single interaction. 

PSICQUIC sources its data from a number of different databases.  Only high-quality, 

manually curated data were to be included in the PPI network.  Therefore, rather than 

clustering the results, only data from databases which were selected based upon their 

coverage, content and data curation practices were exported from PSICQUIC.  Data was 

downloaded from results returned from the IntAct, MINT, DIP, MatrixDB and APID 

data repositories.  Results are exported from PSICQUIC in the PSI-MI format, a 

community standard for the representation of molecular interaction data, introduced by 

the Human Proteome Organization Proteomics Standards Initiative (HUPO-PSI).  Two 

PSI-MI compliant formats are supported: PSI-MI XML (PSI molecular interaction 

XML) or PSI-MI TAB (PSI molecular interaction tabular) formats (only MI-TAB if 

more than 200 binary interactions).  The column contents of the MI-TAB format are as 

follows: 
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1. Unique identifier for interactor A, represented as databaseName:ac, where 

databaseName is the name of the corresponding database as defined in the PSI-

MI controlled vocabulary, and ac is the unique primary identifier of the 

molecule in the database. Identifiers from multiple databases can be separated by 

"|". It is recommended that proteins be identified by stable identifiers such as 

their UniProtKB or RefSeq accession number. 

2. Unique identifier for interactor B. 

3. Alternative identifier for interactor A, for example the official gene symbol as 

defined by a recognised nomenclature committee. Representation as 

databaseName:identifier. Multiple identifiers separated by "|". 

4. Alternative identifier for interactor B. 

5. Aliases for A, separated by "|". Representation as databaseName:identifier. 

Multiple identifiers separated by "|". 

6. Aliases for B. 

7. Interaction detection methods, taken from the corresponding PSI-MI 

controlled Vocabulary, and represented as 

databaseName:identifier(methodName), separated by "|". 

8. First author surname(s) of the publication(s) in which this interaction has been 

shown, optionally followed by additional indicators, e.g. "Doe-2005-a". 

Separated by "|". 

9. Identifier of the publication in which this interaction has been shown. 

Database name taken from the PSI-MI controlled vocabulary, represented as 

databaseName:identifier. Multiple identifiers separated by "|". 

10. NCBI Taxonomy identifier for interactor A. Database name for NCBI taxid 

taken from the PSI-MI controlled vocabulary, represented as 

databaseName:identifier. Multiple identifiers separated by "|". Note: In this 

column, the databaseName:identifier(speciesName) notation is only there for 

consistency. Currently no taxonomy identifiers other than NCBI taxid are 
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anticipated, apart from the use of -1 to indicate "in vitro" and -2 to indicate 

"chemical synthesis". 

11. NCBI Taxonomy identifier for interactor B. 

12. Interaction types, taken from the corresponding PSI-MI controlled vocabulary, 

and represented as dataBaseName:identifier(interactionType), separated by "|". 

13. Source databases and identifiers, taken from the corresponding PSI-MI 

controlled vocabulary and represented as databaseName:identifier(sourceName). 

Multiple source databases can be separated by "|". 

14. Interaction identifier(s) in the corresponding source database, represented by 

databaseName:identifier 

15. Confidence score. Denoted as scoreType:value. There are many different types 

of confidence score, but so far no controlled vocabulary. Thus the only current 

recommendation is to use score types consistently within one source. Multiple 

scores separated by "|". 

 

All columns are mandatory, although they will not all necessarily contain data values.     

The UniProt IDs for all of the differentially regulated Treg proteins comprising the 

consensus Treg signature were pasted into the search area.  The results from each of the 

APID, DIP, IntAct, MatrixDB and MINT databases were exported as PSI MI-TAB 

formatted files.  

    

3.4.2 Obtaining confidence scores for PPIs 

The PSI confidence scoring system (PSISCORE) was developed to provide a means for 

assessing the quality and reliability of molecular interaction data.  There are numerous 

methods for determining PPIs, each with their own pros and cons.  For example there 

are many different experimental techniques producing results of varying reliability, 

from high-throughput yeast 2-hybrid studies through to small-scale single protein 

studies, as well as methods utilizing computational predictions.  This makes it difficult 
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to objectively assess the relative strengths of evidence supporting each interaction.  To 

date, there is no community-consensus scoring scheme for molecular interactions.  

PSISCORE is a decentralized system, which utilizes individual servers that apply 

different confidence scoring methods to interaction data.  The user can select which 

scoring method(s) to apply (Figure 3.2). 

 

Figure 3.2  Screenshot showing the PSISCORE web interface and different scoring options 

 

The different scoring options are as follows (descriptions taken from the PSCISCORE 

project website: http://code.google.com/p/psiscore/wiki/Scoring_methods_overview and 

the PSISCORE web viewer:  http://psiscore.bioinf.mpi-inf.mpg.de/): 

 

 

http://code.google.com/p/psiscore/wiki/Scoring_methods_overview
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iRefIndex scores: 

iRefIndex calculates three scores based on the publications that provide evidence for an 

interaction.  

lpr (lowest pmid re-use) defines the lowest number of distinct interactions that a 

publication supporting the interaction is used to support. Low values (e.g. one) indicate 

that at least one of the publications that support an interaction has only reported few (for 

one this means no other) interactions, which is likely the case for low-throughput 

experiments. Range: 0-inf  

hpr (highest pmid re-use) is the highest number of interactions that a publication 

supporting the interaction is used to support. High values indicate that a publication 

describes many other interactions as well, which is likely the case for high-throughput 

methods. Range: 0-inf  

np (number pmids) is the total number of unique publications used to support the 

interaction. Higher values indicate that an interaction has been reported in multiple 

publications.  

Range: 0-inf  

http://irefindex.uio.no/wiki/iRefIndex
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MINT score:  

The MINT score takes into account experimental evidence associated with the 

interaction detection method.  

Range: 0-1  

 

PSISCORE: 

Domain Support – inferred: 

Domain support indicates protein-protein interactions that can be traced to the 

underlying protein domain-domain interactions (DDIs). 'Domain support, inferred' 

contains DDIs from several computational predictions.  

Range 0-1 

 

Domain Support – structural: 

Domain support indicates protein-protein interactions that can be traced to the 

underlying protein domain-domain interactions. 'Domain support, structural' contains 

DDIs from datasets that have been inferred from structural information.  

Range 0-1 

 

BP Score: 

The BPscore is a measure of the functional similarity between two proteins or protein 

families with respect to their biological process annotation of the Gene Ontology.  

Range 0-1 
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MF Score: 

The MFscore is a measure of the functional similarity between two proteins or protein 

families with respect to their molecular function annotation of the Gene Ontology.  

Range 0-1 

 

MI score:  

This score is designed to calculate annotation evidence based on common and minimun 

curated information reporting a molecular interaction experiment.  

 

The result is a score between 0 and 1 per interaction. It will take into account several 

variables: 

  - Number of publications 

  - Experimental detection methods found for the interaction 

  - Interaction types found for the interaction 

 

Each of these variables will be represented by a score between 0 and 1. The importance 

of each variable in the equation will be adjusted using a weight factor. The publication 

score will take into account the different publications supporting the interaction. The 

method score will be calculated using the MI ontology (experimental interaction 

detection terms) giving preference in the equation to terms with higher assigned values. 

The method score will also take into account the diversity of methods reported for the 

interaction.  

Range: 0-1  

 

The MIscore scoring method was utilized in this study.  This takes into account data 

derived from all PSICQUIC data sources for a particular interaction when calculating 

the confidence score. 
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The input to PSISCORE must be a HUPO-PSI-defined file format (i.e. PSI-MI TAB or 

PSI-MI XML).   This file is then sent to the appropriate scoring servers, depending on 

the scoring method(s) selected.  All the calculated scores are then added to the initial 

input file (added to column 15 in the case of a MI TAB file). 

The PSI-MI TAB files exported from PSICQUIC are each individually submitted to the 

PSISCORE web client.  In instances where the file was large, it was first split into 

smaller files of ≤ 2000kb using the Linux ‘split’ command (PSISCORE states it will 

currently not handle files larger than 5120kb, although the size limit was found to be 

actually less than half this): 

split -b 2000k big_file.txt new_file 

 

This will split the file ‘big_file.txt’ into smaller files, each of size 2000kb with the 

names new_fileaa, new_fileab, new_fileac…..etc.  These were later joined back 

together after scoring, using the Linux ‘cat’ function:  

cat scored_new_fileaa.txt scored_new_fileab.txt 

>joined_scored_file.txt 

 

The scored interactions were appended as a new column (column 15) to the input MI-

TAB file.  It should be noted that many interactions were returned with no score 

associated with them, or a score of zero was returned.  The PSISCORE developers and 

administrators of the MIscore server have been informed, and the reasons for this have, 

as yet, not been determined. 

Although all data was returned in the PSI-MI TAB format, the formats for the 

annotation of the molecules in columns 1 and 2 varied, depending on the source 

database from which the data was obtained.  Columns 1 and 2 were formatted as 

follows: 

APID and MINT: 

uniprotkb:P78540  

 

http://www.psidev.info/
http://code.google.com/p/psimi/wiki/PsimiTabFormat
http://www.psidev.info/index.php?q=node/60
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IntAct: 

uniprotkb:Q13451|intact:EBI-306914 

 

DIP: 

dip:DIP-38276N|uniprotkb:P54259  

 

MatrixDB: 

uniprotkb:P16109|matrixdb:P16109 

 

To enable overlaying and integration of other data-types in Cytoscape later (Section 

3.4.5), each of these columns (which will later be represented as nodes in the Cytoscape 

network) must be in the same format, i.e. possess a common identifier.  Columns 1 and 

2 for each of these exported MI TAB files possess a UniProt ID (along with other 

identifiers in the DIP, IntAct and MatrixDB results), so this was selected as the common 

identifier.  

Column 12, contains a description of the interaction type in the following format: 

psi-mi:"MI:0915"(physical association) 

Column 15, added by PSISCORE, contains the confidence score in the following 

format: 

MIscore:0.40116468(psicquic sources including 

APID,ChEMBL,BioGrid,IntAct,DIP,InnateDB,MPIDB,iRefIndex,MatrixDB,MINT,Int

eroporc,Reactome,Reactome-FIs,STRING,BIND,DrugBank) 
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Scripts were therefore written in Perl to parse the UniProt IDs, as well as the interaction 

types and confidence scores for clearer representation in the Cytoscape network later 

(Appendix B).  

 

3.4.3 Generation of a scored PPI network 

The scored interaction data were visualized using Cytoscape, an open source software 

platform for visualizing complex networks and integrating these with any type of 

attribute data (Shannon et al., 2003).  It is available as a platform-independent open-

source Java application, and must be downloaded onto a local computer from the 

Cytoscape website (www.cytoscape.org).   

Cytoscape is able to import data in a number of different formats, including the PSI-MI 

formats.  The PSI-MI TAB-formatted scored interaction data were imported into 

Cytoscape as a ‘Network from a table’ (Figure 3.3).  Columns 1 and 2 were selected as 

the source and target interactions respectively, and column 12 was selected as the 

interaction type.  Column 15 was selected as an edge attribute. 

http://www.cytoscape.org/
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Figure 3.3  Screenshot taken from Cytoscape, showing import of scored interaction data in PSI-MI   

TAB format 

 

Once the network has been imported, proteins are represented as the nodes, and the 

interaction relationships between them are represented by the edges, i.e. lines 

connecting them (a user manual for Cytoscape is available at www.cytoscape.org).  

Clicking on an edge and using the edge attribute viewer in the data panel will display 

the confidence score value.  At this stage, the PPI network was represented as five 

separate networks, one for each of the imported MI TAB files.  There was overlap 

between these networks for many of the interactions, i.e. the same binary interaction 

may be present in more than one database.  In order to obtain a non-redundant PPI 

network, the core Cytoscape plugin, ‘advanced network merge’ was applied to the 

networks, using the ‘union’ operation (Figure 3.4).  This resulted in the creation of a 

single large network. Incorporating interactions from all databases, but with duplicate 

interactions removed.  Duplicate edge removal by Cytoscape is based upon the 
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interaction attributes (column 12 in the MI TAB file).  If two interactions are comprised 

of two identical nodes joined by an identical interaction type it will be removed.  This, 

of course is very much dependent upon the interaction type description attributed to the 

data in the original data source, i.e. unified interaction vocabulary between data sources 

is necessary.  If one data source describes an interaction as ‘physical interaction’ and 

another describes the same interaction as ‘association’, these will be treated as two 

distinct binary interactions and both will be retained.  There is therefore the possibility 

that some duplicate interactions may be retained after network merge. 

 

 

Figure 3.4  Screenshot taken from Cytoscape, showing advanced network merge  
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3.4.4 Identification of putative functional modules 

Functional modules or subnetworks can be identified as highly inter-connected network 

regions enriched for genes that show significant changes in gene expression in Tregs.  

Putative functional modules were identified using the Cytoscape plugin, 

jActiveModules, which uses algorithms to search for connections between gene 

expression and network topology (Ideker et al., 2002).  The plugin can be installed via 

the plugin manager in Cytoscape. 

In order to import gene expression data into Cytoscape, the gene or protein identifier in 

the data file must exactly match the corresponding, previously loaded Cytoscape node 

identifier.  The nodes identifiers in the PPI network generated in section 3.4.4 were 

UniProt IDs.  It was therefore necessary to map the Entrez gene IDs for all the 

consensus, differentially expressed Treg genes to the corresponding UniProt IDs.  The 

jActiveModules plugin will only recognize p-values associated with gene expression 

data.  The mean p-value across the datasets from which the consensus signature was 

calculated for each gene.  Cytoscape will only import expression data if it is in a 

specified format.  The data must be organized as a matrix, with each row representing 

the expression data for one gene.  The first row must provide column labels.  Column 1 

must hold the gene identifier, column 2 must hold arbitrary text such as a description, 

column 3 and subsequent columns contain expression values.  If the data matrix is 

created in a spreadsheet program such as Excel, the columns must be merged into a 

single cell, and the file saved as a text file, having the extension either .mRNA or .pvals.  

The Treg gene expression data file format looked something like this: 

Uniprot_ID Gene_symbol Av_FC Av_pval 

Q5JTZ9  AARS2 -1.715 0.01072425 

P08183  ABCB1 -2.55 0.023475 

O14639  ABLIM1 -0.658 0.01436 

 

Gene expression data was uploaded using the Cytoscape ‘Import expression/attribute 

matrix’ option.   

Once the gene expression data had been imported, jActiveModules plugin was utilized 

to commence the search for putative functional modules. 



46  

Parameters in the General Parameters panel of JActiveModules are: 

“ 

(a) Number of modules – indicates the number of putative modules that will be 

reported 

(b) Adjust score for size – corrects for the fact that a larger module is more likely to 

contain nodes with significant P-values by random chance 

(c) Regional scoring – Instead of scoring only those nodes within the module, the 

neighbouring nodes of the module are also included. 

 

Parameters in the Strategy Panel: 

(a) Search – local (greedy) searches are initiated from single nodes in the network 

(b) Search depth – at each step in the greedy search, this parameter determines how 

close a node must be to the current active module to be considered for inclusion 

(c) Max depth – determines how close a node must be to the initial seed node to be 

considered for inclusion 

(d) Search from selected nodes – by default, a separate search is initiated for each 

node in the network.  Using this option, searches are initiated only from nodes 

selected by the user 

(e)  Anneal – all active modules are discovered simultaneously using the method of 

simulated annealing (Ideker et al., 2002). 

” 

Descriptions taken from (Cline et al., 2007) 

. 

The ‘search’ strategy was selected in the General Parameters panel.  The nodes 

representing the significant viral hits (identified using the strategies described above in 

sections 3.1 - 3.3) were used as seed nodes from which to initiate the search, as 
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information on potential biological functions and significance of those proteins/genes 

were of most interest.  The other parameters were initially kept at the default values 

(Adjust score for size, Regional scoring, Search depth = 1, Max depth = 2), with the 

search depths being adjusted for subsequent runs.  JActiveModules finds the highest-

scoring networks (i.e. the highest-scoring connected subgraphs).  Network scores are 

aggregate Z-scores based on p-values (The Z-score calculation is described in detail by 

Ideker et al., 2002).  The results panel for each run contained a table, with each row 

representing a putative module and an associated Z-score.  Higher Z-scores indicate 

biologically active networks.  Z-scores greater than 3 were considered significant.   

BiNGO (Biological Networks Gene Ontology tool) is a tool, available as a Cytoscape 

plugin, to determine which Gene Ontology (GO) categories are statistically 

overrepresented in a set of genes or a subgraph of a biological network (Maere et al., 

2005).  BiNGO was used to assess if the nodes in the functional modules were enriched 

for biological processes recorded in the GO database (Ashburner et al., 2000). 
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4 Results 

 

In the following sections, there will be reference to four genes that are under 

investigation as potential new targets by UCB.  These data and the identities of these 

genes hereby anonymized as ‘Tolerogenic Genes Of Interest-1, 2, 3 and 4’ (TGOI-1, 

TGOI-2, TGOI-3, TGOI-4). 

The methodology utilized and the numbers of genes/proteins returned at each stage of 

the process are summarized in figure 4.1. 

 

4.1 Generation of a consensus Treg gene signature 

NextBio consists of a library of gene expression studies, each comprising one or more 

biosets.  A bioset is a set of differentially expressed gene data derived from a single 

experiment.  A study is a set of biosets that correspond to a single published research 

paper. 

Nine studies of potential interest were found in NextBio, consisting of a total of twelve 

biosets.  These were studies comparing gene expression in human Treg cells v naïve or 

conventional T cells, as defined by the study authors.  Six studies were sourced from 

GEO, two from Array Express, and one from MACE (transcriptome repository, IHES, 

France).  Of these twelve biosets, six fulfilled the selection criteria for inclusion in the 

analysis, i.e. showed increased expression in Treg cells of the pre-determined 

combination of key Treg-associated genes.  

There were a total of 303 genes that were differentially expressed in Treg cells v non-

Treg cells in at least four out of the six studies.  117 were upregulated in Treg cells 
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Generate a 
consensus human 

Treg gene signature 
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expressed in human 
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6 studies)
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interacting proteins  

against a human viral 

database  then re-
blast top viral hits 
against a human 
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+
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Figure 4.1   Summary of the workflow and processes used to identify putative tolerogenic genes
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compared to non-Treg cells, 186 were downregulated, i.e. showed higher expression in 

non-Treg cells. 

 

4.2 Expansion of the Treg gene signature to include interacting 

proteins 

The 303 differentially expressed Treg genes were uploaded into IPA.  Four of these 

gene identifiers were not mapped by IPA to a molecule in the IPA database.  Two of 

these genes were manually re-annotated and were subsequently successfully mapped by 

IPA.  However, two genes remained unmapped.  These were FLJ23834, a hypothetical 

protein, and RP6-213H19.1, also known as serine threonine protein kinase MST4.  

MST4 and its associated interacting proteins were present in the IPA database, but it 

was unmapped for unknown reasons.  MST4 was therefore analysed separately within 

IPA, and being a nuclear protein was subsequently eliminated from the analysis.  301 

mapped genes were analysed within IPA.  Of these 301 gene products, 65 were 

localized in the nucleus, 107 in the cytosol, 67 in the plasma membrane (PM), 16 in the 

extracellular space and 46 were of unknown localization (Figure 4.2).  Proteins 

localized in the PM and extracellular space were of interest, but proteins in unknown 

locations were also retained to ensure that nothing of potential interest but of unknown 

localization was discarded.  This gave a total of 129 Treg proteins of interest.  387 

proteins localized in the plasma membrane, extracellular space or in unknown locations 

were found to directly interact with the differentially expressed Treg gene products, 

according to the filtering criteria described in the methods (Figure 4.3).  The 129 Treg 

proteins plus 387 interacting proteins gave a total of 516 proteins to take forward to the 

next stage of the analysis.  
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Figure 4.2 The 301 differentially expressed Treg proteins – subcellular localizations 

Red = increased gene expression in Treg cells, Green = decreased gene expression in Treg cells.  Intensity 

of colour is proportional to level of gene expression – darker colour = bigger change in expression 
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Figure 4.3  The 516 differentially regulated Treg proteins + direct interactors.  

Red = increased gene expression in Treg cells, Green = decreased gene expression in Treg cells.  Intensity 
of colour is proportional to level of gene expression – darker colour = bigger change in expression 
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4.3 Search for viral homologues  

The presence of differentially expressed Treg genes in viral genomes was used as a 

filter for identifying putative tolerogenic genes (Figure 4.1).  The first BLAST search 

used the 516 differentially expressed human Treg gene products and their interactors as 

input sequences for alignment against a database of viral proteins.  503 of the human 

proteins aligned with one or more viral proteins.  When the top scoring viral hits for 

each of the human proteins were re-BLASTED back against the database of human 

protein sequences, only 37 human hits were returned which were identical to the 

original query sequence in the initial BLAST.  This number was further reduced to 27 

hits, as 10 of these proteins, after advice from UCB experts in the field, were deemed 

unsuitable as targets and were excluded from the list (Table 4.4).  These 27 human 

proteins with homologous viral sequences could be grouped into four categories:  

Upregulated expression in Treg cells (3 fell into this category) [Figure 4.4], direct 

interactor with an upregulated Treg protein (12) [Figure 4.5], downregulated expression 

in Treg cells (12) [Figure 4.6], and direct interactor with a downregulated Treg protein 

(4) [Figure 4.7].  Some proteins fell into more than one category, i.e. they interacted 

with both downregulated and upregulated Treg proteins: C3, ITGB1 and TGOI-3. 

 

4.4 Evaluation of aligned sequences 

The E-value associated with each BLAST result is a measure of statistical significance, 

representing the number of times the match would be expected to occur purely by 

chance in a search of a database of a particular size.  Statistical significance, however, 

does not always equate to biological significance; in this case preserved function.  

Therefore, further analysis of the alignments to examine the biological significance of 

the viral and human sequence alignments was also undertaken.  The alignments of 

cysteine residues in the sequences were inspected.  Cysteines form disulphide bridges 

and so are important in maintaining the tertiary structure of proteins.  Mismatches in 

cysteine content between the human protein and its viral homologue may therefore 

indicate differences in protein folding and function.  The aligned human and viral 

sequences were also examined for the presence of shared motifs and signature domains.   
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If the viral and human protein shared common motifs or domains within their 

sequences, this could indicate shared biological function or membership of the same 

protein family.   

E values, conservation of cysteine residues and shared protein family domains were 

considered collectively to evaluate whether a human/virus protein alignment was a 

significant hit.  Table 4.5 shows the results of these assessments - favourable values or 

results are shaded yellow, unfavourable or poor values are shaded grey.   Any E value 

below 0.001 was considered a good score, any E value above 0.05 was considered poor.  

Sequences with mismatched cysteine residues in the aligned sequences were coloured 

grey, sequences with aligned cysteines were coloured yellow.  Shared domains or 

motifs were considered a favourable result and so were coloured yellow accordingly.  

Any result that was at all ambiguous was left uncoloured.  By allocating positive and 

negative values to yellow and grey results respectively, a rudimentary score was 

obtained for each sequence alignment.  Each BLAST hit alignment was considered 

individually, and alignments with negative scores were deemed unlikely to represent 

homologous genes with conserved function.   

After this final evaluation and filtering step, the list was reduced to a final list of 10 

candidate genes (Table 4.3).  Most of these genes are already well known to be 

associated with immune functions or are already established therapeutic targets with 

drugs already on the market.  CD80, IL-1 and TNF are well established targets for drugs 

currently on the market for arthritis.  CCR7 and CXCR2 are receptors for chemokines, 

small proteins responsible for controlling directed chemotaxis of cells, particularly 

immune cells.  IL-10 is an anti-inflammatory cytokine.  There were, however, four 

genes (denoted as TGOI-1, -2, -3, -4) which have no associated pre-existing targeted 

therapies, and in some cases little precedent for association with known immune cell 

functions.  These four genes will be taken forward for further evaluation as potential 

novel therapeutic targets by consideration as potential new therapeutic targets by UCB 

scientists.  

Most of the genes in this final list, or their interacting differentially expressed Treg 

genes, have been associated with various forms of human autoimmune disease (Figure 

4.8 & Table 4.4).  The evidence supporting these associations included literature 
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evidence for changes in expression or function in diseased clinical samples. A genetic 

association with autoimmune disease has been observed for some of these putative 

tolerogenic genes.  These include high penetrance, Mendelian inherited genetic variants 

which are recorded in the OMIM (Online Mendelian Inheritance in Man) database.  In 

addition, genome wide association studies (GWAS) have found single nucleotide 

polymorphisms (SNPs) in some of these genes that associate with auto-immune diseases 

(Table 4.4).  

 

4.5 Identification of putative functional modules 

A PPI network comprising 2614 nodes representing proteins, and 5925 edges 

representing binary interactions between proteins was generated in Cytoscape.  Putative 

functional modules were identified using the Cytoscape plugin, JActiveModules.  

Functional modules are highly inter-connected sub-networks which are enriched for 

significantly differentially expressed genes. 

The nodes representing the ten significant viral hits were used as seed nodes from which 

to initiate the search.  When the default parameters, Search depth = 1, Max depth = 2, 

were applied, four modules with significant scores (Z >3) were returned (Table 4.5).  

The search depth was adjusted and further searches carried out so that most of the genes 

of interest were included within the final set of modules.  Details of seven sets of 

functional modules containing the putative tolerogenic genes are shown in Table 4.5.  

These functional modules cannot be shown as they contain details and information on 

functions of the four genes of interest to UCB as potential target candidates.  However, 

an example of modules returned as a result of an alternative search using the six 

precedented viral hits, minus the four genes of interest, is shown in Figure 4.9.  The 

interactions have confidence scores associated with them according to the MIscore 

results returned from PSISCORE.   

The Cytoscape plugin, BiNGO, was used to assess if the nodes in the functional 

modules were enriched for biological processes recorded in the GeneOntology (GO) 

database.  Enriching predicted modules for GO terms describing biological processes 
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offered further information on potential biological functions of modules.  Only the top 

ten functional annotations are shown (Table 4.5) as the lists of results were extensive, 

with hundreds of GO annotations being returned in some cases.  As would be expected, 

most functional modules are enriched for molecules involved in immune cell functions 

(Table 4.5).  Those modules without immune cell functions in their top ten GO 

annotations did include significantly scoring immunity-related GO terms which were 

outside the top ten results listed. 

 

 

 

 

 

 

 

 



57  

 

Table 4.1   Reciprocal BLAST results 

Human 
gene

Viral accession Virus Virus protein description E value % ID of HSP HSP length
Length of query 

participating
in HSP

Number of 
identical amino 

acids

Number of 
conserved 

amino acids

% coverage of 
human protein

ANXA7
NP_050259.1 Human herpesvirus 6 DNA replication [Human herpesvirus 6]

0.088 28.8 80 77 23 37 15.8

CCR7 YP_073753.1 Human herpesvirus 7 envelope glycoprotein UL33 [Human herpesvirus 7] 3.00E-11 21.3 287 282 61 117 74.6

CD2
NP_040870.1 Human adenovirus F

membrane glycoprotein E3 CR1-beta [Human 
adenovirus F]

0.007 27.4 106 93 29 47 26.5

CD79A
YP_002213790.1 Human adenovirus B

membrane glycoprotein E3 CR1-gamma [Human 
adenovirus B]

0.27 28.1 96 94 27 39 41.6

CD80 YP_001129512.1 Human herpesvirus 4 type 2 BARF1 [Human herpesvirus 4 type 2] 2.00E-06 31.6 114 108 36 56 37.5

CD80 YP_401719.1 Human herpesvirus 4 BARF1 [Human herpesvirus 4] 2.00E-06 31.6 114 108 36 56 37.5

C3 NP_042150.1 Variola virus hypothetical protein VARVgp106 [Variola virus] 6.3 29.3 82 82 24 37 4.9

CXCR2 YP_001129433.1 Human herpesvirus 8 ORF74 [Human herpesvirus 8] 8.00E-26 30.3 221 217 67 115 60.3

FAM46C YP_002302228.1 Rotavirus A VP3 [Rotavirus A] 0.15 25.2 127 117 32 58 29.9

GNA12
YP_232989.1 Vaccinia virus virion core protein [Vaccinia virus]

0.72 23.0 122 105 28 58 27.6

GP160
YP_001129392.1 Human herpesvirus 8 ORF39 [Human herpesvirus 8]

0.009 21.8 170 160 37 67 47.3

IL10
YP_001129439.1 Human herpesvirus 4 type 2 BCRF1 [Human herpesvirus 4 type 2]

1.00E-54 73.2 142 142 104 108 79.8

IL10 YP_401634.1 Human herpesvirus 4 BCRF1 [Human herpesvirus 4] 1.00E-54 73.2 142 142 104 108 79.8

IL10 YP_081552.1 Human herpesvirus 5 interleukin-10 [Human herpesvirus 5] 3.00E-07 24.0 171 170 41 68 95.5

IL1R2 YP_233079.1 Vaccinia virus IL-1-beta-inhibitor [Vaccinia virus] 3.00E-34 30.3 314 312 95 146 78.4

IL1R2 NP_042232.1 Variola virus hypothetical protein VARVgp188 [Variola virus] 2.00E-08 24.7 308 299 76 122 75.1

IL1R2 NP_042929.1 Human herpesvirus 6 DNA packaging protein UL32 [Human herpesvirus 6] 0.069 26.0 123 111 32 54 27.9

ITGB1
YP_001911113.1 Whitewater Arroyo virus

glycoprotein G1+G2 precursor [Whitewater Arroyo 
virus]

0.008 39.0 59 58 23 34 7.3

ITGB1
YP_001649226.1 Bear Canyon virus glycoprotein precursor [Bear Canyon virus]

0.12 35.6 59 58 21 31 7.3

LGALS3BP
NP_040510.1 Human adenovirus C control protein E1B 19K [Human adenovirus C]

0.71 29.6 115 111 31 52 19.0

LRP1
NP_620108.1 Langat virus polyprotein [Langat virus]

0.32 27.5 160 143 44 68 3.1

PLXB1
NP_040894.1 Human papillomavirus type 4

hypothetical protein HpV4gp6 [Human 
papillomavirus type 4]

0.067 24.8 157 156 39 64 7.3

PTPRF
NP_040299.1 Human papillomavirus type 6b

regulatory protein E2 [Human papillomavirus type 
6b]

0.39 30.8 91 86 28 35 4.5

RUFY3
YP_081543.1 Human herpesvirus 5 tegument protein UL14 [Human herpesvirus 5]

0.064 29.1 79 74 23 42 15.8

RUFY3
YP_073811.1 Human herpesvirus 7

myristylated tegument protein [Human herpesvirus
7]

0.14 33.8 68 68 23 32 14.5

SG223 YP_068022.1 Human adenovirus E encapsidation protein IVa2 [Human adenovirus E] 1.1 25.3 87 85 22 37 6.1

SG223 NP_040852.1 Human adenovirus F encapsidation protein IVa2 [Human adenovirus F] 1.1 27.1 85 83 23 35 5.9

SORL
NP_043429.1 Human papillomavirus type 50

major capsid protein L1 [Human papillomavirus type 
50]

0.59 29.7 74 66 22 32 3.0

TNFRSF1B NP_042240.1 Variola virus hypothetical protein VARVgp196 [Variola virus] 9.00E-36 39.9 183 176 73 95 38.2

TNFRSF1B YP_233061.1 Vaccinia virus secreted TNF-receptor-like protein [Vaccinia virus] 4.00E-07 40.0 55 55 22 30 11.9

UBP13 NP_042907.2 Human herpesvirus 6 protein U15 [Human herpesvirus 6] 0.098 25.9 81 81 21 39 9.4

UTRO
NP_044592.1 Respiratory syncytial virus Phosphoprotein (P) [Respiratory syncytial virus]

0.71 28.2 85 85 24 37 2.5

UTRO
YP_081540.1 Human herpesvirus 5

DNA packaging tegument protein UL17 [Human 
herpesvirus 5]

3.5 33.3 66 61 22 32 1.8

VLDLR
NP_941979.1 Uukuniemi virus

membrane glycoprotein polyprotein [Uukuniemi
virus]

0.034 22.8 171 165 39 67 18.9

TGOI-1
Virus a ID Virus a

Protein [Virus a ]
5.00E-13 26.8 220 212 59 101 4.8

TGOI-1
Virus b ID Virus b

Protein [Virus b ]
3.00E-12 22.5 338 303 76 147 6.9

TGOI-2
Virus c ID Virus c

Protein [Virus c ]
1.00E-21 56.9 72 72 41 55 23.8

TGOI-3
Virus d ID Virus d

Protein [Virus d ]
0.001 26.6 154 148 41 62 29.4

TGOI-4
Virus f ID Virus e

Protein [Virus e]
5.00E-15 41.0 78 78 32 43 27.6

TGOI-4 Virus g ID Virus f Protein [Virus f ] 9.00E-06 35.5 62 62 22 29 21.9

Human 
gene

Viral accession Virus Virus protein description E value % ID of HSP HSP length
Length of query 

participating
in HSP

Number of 
identical amino 

acids

Number of 
conserved 

amino acids

% coverage of 
human protein

ANXA7
NP_050259.1 Human herpesvirus 6 DNA replication [Human herpesvirus 6]

0.088 28.8 80 77 23 37 15.8

CCR7 YP_073753.1 Human herpesvirus 7 envelope glycoprotein UL33 [Human herpesvirus 7] 3.00E-11 21.3 287 282 61 117 74.6

CD2
NP_040870.1 Human adenovirus F

membrane glycoprotein E3 CR1-beta [Human 
adenovirus F]

0.007 27.4 106 93 29 47 26.5

CD79A
YP_002213790.1 Human adenovirus B

membrane glycoprotein E3 CR1-gamma [Human 
adenovirus B]

0.27 28.1 96 94 27 39 41.6

CD80 YP_001129512.1 Human herpesvirus 4 type 2 BARF1 [Human herpesvirus 4 type 2] 2.00E-06 31.6 114 108 36 56 37.5

CD80 YP_401719.1 Human herpesvirus 4 BARF1 [Human herpesvirus 4] 2.00E-06 31.6 114 108 36 56 37.5

C3 NP_042150.1 Variola virus hypothetical protein VARVgp106 [Variola virus] 6.3 29.3 82 82 24 37 4.9

CXCR2 YP_001129433.1 Human herpesvirus 8 ORF74 [Human herpesvirus 8] 8.00E-26 30.3 221 217 67 115 60.3

FAM46C YP_002302228.1 Rotavirus A VP3 [Rotavirus A] 0.15 25.2 127 117 32 58 29.9

GNA12
YP_232989.1 Vaccinia virus virion core protein [Vaccinia virus]

0.72 23.0 122 105 28 58 27.6

GP160
YP_001129392.1 Human herpesvirus 8 ORF39 [Human herpesvirus 8]

0.009 21.8 170 160 37 67 47.3

IL10
YP_001129439.1 Human herpesvirus 4 type 2 BCRF1 [Human herpesvirus 4 type 2]

1.00E-54 73.2 142 142 104 108 79.8

IL10 YP_401634.1 Human herpesvirus 4 BCRF1 [Human herpesvirus 4] 1.00E-54 73.2 142 142 104 108 79.8

IL10 YP_081552.1 Human herpesvirus 5 interleukin-10 [Human herpesvirus 5] 3.00E-07 24.0 171 170 41 68 95.5

IL1R2 YP_233079.1 Vaccinia virus IL-1-beta-inhibitor [Vaccinia virus] 3.00E-34 30.3 314 312 95 146 78.4

IL1R2 NP_042232.1 Variola virus hypothetical protein VARVgp188 [Variola virus] 2.00E-08 24.7 308 299 76 122 75.1

IL1R2 NP_042929.1 Human herpesvirus 6 DNA packaging protein UL32 [Human herpesvirus 6] 0.069 26.0 123 111 32 54 27.9

ITGB1
YP_001911113.1 Whitewater Arroyo virus

glycoprotein G1+G2 precursor [Whitewater Arroyo 
virus]

0.008 39.0 59 58 23 34 7.3

ITGB1
YP_001649226.1 Bear Canyon virus glycoprotein precursor [Bear Canyon virus]

0.12 35.6 59 58 21 31 7.3

LGALS3BP
NP_040510.1 Human adenovirus C control protein E1B 19K [Human adenovirus C]

0.71 29.6 115 111 31 52 19.0

LRP1
NP_620108.1 Langat virus polyprotein [Langat virus]

0.32 27.5 160 143 44 68 3.1

PLXB1
NP_040894.1 Human papillomavirus type 4

hypothetical protein HpV4gp6 [Human 
papillomavirus type 4]

0.067 24.8 157 156 39 64 7.3

PTPRF
NP_040299.1 Human papillomavirus type 6b

regulatory protein E2 [Human papillomavirus type 
6b]

0.39 30.8 91 86 28 35 4.5

RUFY3
YP_081543.1 Human herpesvirus 5 tegument protein UL14 [Human herpesvirus 5]

0.064 29.1 79 74 23 42 15.8

RUFY3
YP_073811.1 Human herpesvirus 7

myristylated tegument protein [Human herpesvirus
7]

0.14 33.8 68 68 23 32 14.5

SG223 YP_068022.1 Human adenovirus E encapsidation protein IVa2 [Human adenovirus E] 1.1 25.3 87 85 22 37 6.1

SG223 NP_040852.1 Human adenovirus F encapsidation protein IVa2 [Human adenovirus F] 1.1 27.1 85 83 23 35 5.9

SORL
NP_043429.1 Human papillomavirus type 50

major capsid protein L1 [Human papillomavirus type 
50]

0.59 29.7 74 66 22 32 3.0

TNFRSF1B NP_042240.1 Variola virus hypothetical protein VARVgp196 [Variola virus] 9.00E-36 39.9 183 176 73 95 38.2

TNFRSF1B YP_233061.1 Vaccinia virus secreted TNF-receptor-like protein [Vaccinia virus] 4.00E-07 40.0 55 55 22 30 11.9

UBP13 NP_042907.2 Human herpesvirus 6 protein U15 [Human herpesvirus 6] 0.098 25.9 81 81 21 39 9.4

UTRO
NP_044592.1 Respiratory syncytial virus Phosphoprotein (P) [Respiratory syncytial virus]

0.71 28.2 85 85 24 37 2.5

UTRO
YP_081540.1 Human herpesvirus 5

DNA packaging tegument protein UL17 [Human 
herpesvirus 5]

3.5 33.3 66 61 22 32 1.8

VLDLR
NP_941979.1 Uukuniemi virus

membrane glycoprotein polyprotein [Uukuniemi
virus]

0.034 22.8 171 165 39 67 18.9

TGOI-1
Virus a ID Virus a

Protein [Virus a ]
5.00E-13 26.8 220 212 59 101 4.8

TGOI-1
Virus b ID Virus b

Protein [Virus b ]
3.00E-12 22.5 338 303 76 147 6.9

TGOI-2
Virus c ID Virus c

Protein [Virus c ]
1.00E-21 56.9 72 72 41 55 23.8

TGOI-3
Virus d ID Virus d

Protein [Virus d ]
0.001 26.6 154 148 41 62 29.4

TGOI-4
Virus f ID Virus e

Protein [Virus e]
5.00E-15 41.0 78 78 32 43 27.6

TGOI-4 Virus g ID Virus f Protein [Virus f ] 9.00E-06 35.5 62 62 22 29 21.9
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Red = Upregulated in Treg cells

White = interacting protein, viral homologue

TGOI-2
TGOI-3

TGOI-2

TGOI-2

TGOI-3

Figure 4.4   Proteins upregulated in Treg cells with homology to viral proteins 

Figure 4.5   Proteins with homology to viral sequences that interact with

upregulated Treg proteins

Legend for figures 4.4 

& 4.5
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TGOI-1

Figure 4.6   Proteins downregulated in Treg cells with homology to viral proteins 

Figure 4.7   Proteins with homology to viral sequences that interact with

downregulated Treg proteins

Legend for figures 

4.6 & 4.7:

Green = Downregulated in Treg cells

White = interacting protein, viral homologue

TGOI-3

 

 



60  

Table 4.2  Evaluation of aligned sequences 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Yellow = favourable value, Grey = poor value,  White = Inconclusive/not applicable 

E value < 0.001 = yellow, E value > 0.05 =Grey. 

 

 

 

Human 
gene

Virus hit - protein description E value
Matching 

cysteines in hsp?
Superfamily motifs - virus

Number 
yellow

Number 
grey

score (y-g)
Valid 
hit?

ANXA7
DNA replication [Human herpesvirus 6]

0.088 1 yes 1 no none 0 2 -2 NO

CCR7
envelope glycoprotein UL33 [Human herpesvirus 7]

3.00E-11 YES
Family A G protein-coupled receptor-

like
3 0 3 YES

CD2
membrane glycoprotein E3 CR1-beta [Human adenovirus F]

0.007 NO Immunoglobulin 1 1 0 NO

CD79A
membrane glycoprotein E3 CR1-gamma [Human adenovirus B]

0.27 NO Immunoglobulin 0 2 -2 NO

CD80
BARF1 [Human herpesvirus 4 type 2]

2.00E-06 YES Immunoglobulin 3 0 3 YES

BARF1 [Human herpesvirus 4]
2.00E-06 YES Immunoglobulin 3 0 3 YES

C3
hypothetical protein VARVgp106 [Variola virus]

6.3 NO none 0 3 -3 NO

CXCR2

ORF74 [Human herpesvirus 8]

8.00E-26 YES
Family A G protein-coupled receptor-

like
3 0 3 YES

FAM46C
VP3 [Rotavirus A]

0.15 NO none 0 2 -2 NO

GNA12
virion core protein [Vaccinia virus]

0.72 NO none 0 3 -3 NO

GP160
ORF39 [Human herpesvirus 8]

0.009 NO none 0 2 -2 NO

IL10

BCRF1 [Human herpesvirus 4 type 2]

1.00E-54 YES
4-helical cytokines (Interferon/IL-10 

family)
3 0 3 YES

BCRF1 [Human herpesvirus 4]
1.00E-54 YES

4-helical cytokines (Interferon/IL-10 

family)
3 0 3 YES

interleukin-10 [Human herpesvirus 5]

3.00E-07 YES
4-helical cytokines (Interferon/IL-10 

family)
3 0 3 YES

IL1R2

IL-1-beta-inhibitor [Vaccinia virus]
3.00E-34 YES Immunoglobulin 3 0 3 YES

hypothetical protein VARVgp188 [Variola virus]
2.00E-08 YES Immunoglobulin 3 0 3 YES

DNA packaging protein UL32 [Human herpesvirus 6]
0.069 NO none 0 3 -3 NO

ITGB1
glycoprotein G1+G2 precursor [Whitewater Arroyo virus]

0.008 NO none 0 2 -2 NO

glycoprotein precursor [Bear Canyon virus]
0.12 NO none 0 3 -3 NO

LGALS3BP
control protein E1B 19K [Human adenovirus C]

0.71
No cys in hsp

sequence
none 0 2 -2 NO

LRP1
polyprotein [Langat virus]

0.32 NO none 0 3 -3 NO

PLXB1
hypothetical protein HpV4gp6 [Human papillomavirus type 4]

0.067 NO 0 3 -3 NO

PTPRF
regulatory protein E2 [Human papillomavirus type 6b]

0.39 NO none 0 3 -3 NO

RUFY3
tegument protein UL14 [Human herpesvirus 5]

0.064 NO none 0 3 -3 NO

myristylated tegument protein [Human herpesvirus 7]
0.14 NO none 0 3 -3 NO

SG223
encapsidation protein IVa2 [Human adenovirus E]

1.1 1 yes, 1 no
P-loop containing nucleoside 

triphosphate hydrolases
0 2 -2 NO

encapsidation protein IVa2 [Human adenovirus F]

1.1 1 yes, 1 no
P-loop containing nucleoside 

triphosphate hydrolases
0 2 -2 NO

SORL
major capsid protein L1 [Human papillomavirus type 50]

0.59 NO none 0 3 -3 NO

TNFRSF1B
hypothetical protein VARVgp196 [Variola virus]

9.00E-36 YES TNF receptor-like 3 0 3 YES

secreted TNF-receptor-like protein [Vaccinia virus]
4.00E-07 YES TNF receptor-like 3 0 3 YES

UBP13

protein U15 [Human herpesvirus 6]

0.098
No cys in hsp

sequence

none 0 2 -2 NO

UTRO

Phosphoprotein (P) [Respiratory syncytial virus]
0.71 NO none 0 3 -3 NO

DNA packaging tegument protein UL17 [Human herpesvirus 5]
3.5

No cys in hsp

sequence
none 0 2 -2 NO

VLDLR
membrane glycoprotein polyprotein [Uukuniemi virus]

0.034 4 YES; 16 NO none 0 2 -2 NO

TGOI-1
Virus a

5.00E-13 YES Matched domain 3 0 3 YES

Virus b
3.00E-12 YES Matched domain 3 0 3 YES

TGOI-2

Virus c

1.00E-21
No cys in hsp

sequence
Matched domain 2 0 2 YES

TGOI-3
Virus d

0.001 1 yes 1 no Matched domain 1 0 1 YES?

TGOI-4
Virus e

5.00E-15 YES Matched domain 3 0 3 YES

Virus f
9.00E-06 YES Matched domain 3 0 3 YES

Human 
gene

Virus hit - protein description E value
Matching 

cysteines in hsp?
Superfamily motifs - virus

Number 
yellow

Number 
grey

score (y-g)
Valid 
hit?

ANXA7
DNA replication [Human herpesvirus 6]

0.088 1 yes 1 no none 0 2 -2 NO

CCR7
envelope glycoprotein UL33 [Human herpesvirus 7]

3.00E-11 YES
Family A G protein-coupled receptor-

like
3 0 3 YES

CD2
membrane glycoprotein E3 CR1-beta [Human adenovirus F]

0.007 NO Immunoglobulin 1 1 0 NO

CD79A
membrane glycoprotein E3 CR1-gamma [Human adenovirus B]

0.27 NO Immunoglobulin 0 2 -2 NO

CD80
BARF1 [Human herpesvirus 4 type 2]

2.00E-06 YES Immunoglobulin 3 0 3 YES

BARF1 [Human herpesvirus 4]
2.00E-06 YES Immunoglobulin 3 0 3 YES

C3
hypothetical protein VARVgp106 [Variola virus]

6.3 NO none 0 3 -3 NO

CXCR2

ORF74 [Human herpesvirus 8]

8.00E-26 YES
Family A G protein-coupled receptor-

like
3 0 3 YES

FAM46C
VP3 [Rotavirus A]

0.15 NO none 0 2 -2 NO

GNA12
virion core protein [Vaccinia virus]

0.72 NO none 0 3 -3 NO

GP160
ORF39 [Human herpesvirus 8]

0.009 NO none 0 2 -2 NO

IL10

BCRF1 [Human herpesvirus 4 type 2]

1.00E-54 YES
4-helical cytokines (Interferon/IL-10 

family)
3 0 3 YES

BCRF1 [Human herpesvirus 4]
1.00E-54 YES

4-helical cytokines (Interferon/IL-10 

family)
3 0 3 YES

interleukin-10 [Human herpesvirus 5]

3.00E-07 YES
4-helical cytokines (Interferon/IL-10 

family)
3 0 3 YES

IL1R2

IL-1-beta-inhibitor [Vaccinia virus]
3.00E-34 YES Immunoglobulin 3 0 3 YES

hypothetical protein VARVgp188 [Variola virus]
2.00E-08 YES Immunoglobulin 3 0 3 YES

DNA packaging protein UL32 [Human herpesvirus 6]
0.069 NO none 0 3 -3 NO

ITGB1
glycoprotein G1+G2 precursor [Whitewater Arroyo virus]

0.008 NO none 0 2 -2 NO

glycoprotein precursor [Bear Canyon virus]
0.12 NO none 0 3 -3 NO

LGALS3BP
control protein E1B 19K [Human adenovirus C]

0.71
No cys in hsp

sequence
none 0 2 -2 NO

LRP1
polyprotein [Langat virus]

0.32 NO none 0 3 -3 NO

PLXB1
hypothetical protein HpV4gp6 [Human papillomavirus type 4]

0.067 NO 0 3 -3 NO

PTPRF
regulatory protein E2 [Human papillomavirus type 6b]

0.39 NO none 0 3 -3 NO

RUFY3
tegument protein UL14 [Human herpesvirus 5]

0.064 NO none 0 3 -3 NO

myristylated tegument protein [Human herpesvirus 7]
0.14 NO none 0 3 -3 NO

SG223
encapsidation protein IVa2 [Human adenovirus E]

1.1 1 yes, 1 no
P-loop containing nucleoside 

triphosphate hydrolases
0 2 -2 NO

encapsidation protein IVa2 [Human adenovirus F]

1.1 1 yes, 1 no
P-loop containing nucleoside 

triphosphate hydrolases
0 2 -2 NO

SORL
major capsid protein L1 [Human papillomavirus type 50]

0.59 NO none 0 3 -3 NO

TNFRSF1B
hypothetical protein VARVgp196 [Variola virus]

9.00E-36 YES TNF receptor-like 3 0 3 YES

secreted TNF-receptor-like protein [Vaccinia virus]
4.00E-07 YES TNF receptor-like 3 0 3 YES

UBP13

protein U15 [Human herpesvirus 6]

0.098
No cys in hsp

sequence

none 0 2 -2 NO

UTRO

Phosphoprotein (P) [Respiratory syncytial virus]
0.71 NO none 0 3 -3 NO

DNA packaging tegument protein UL17 [Human herpesvirus 5]
3.5

No cys in hsp

sequence
none 0 2 -2 NO

VLDLR
membrane glycoprotein polyprotein [Uukuniemi virus]

0.034 4 YES; 16 NO none 0 2 -2 NO

TGOI-1
Virus a

5.00E-13 YES Matched domain 3 0 3 YES

Virus b
3.00E-12 YES Matched domain 3 0 3 YES

TGOI-2

Virus c

1.00E-21
No cys in hsp

sequence
Matched domain 2 0 2 YES

TGOI-3
Virus d

0.001 1 yes 1 no Matched domain 1 0 1 YES?

TGOI-4
Virus e

5.00E-15 YES Matched domain 3 0 3 YES

Virus f
9.00E-06 YES Matched domain 3 0 3 YES
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Gene Protein name Cellular location

CCR7 Chemokine (C-C motif) receptor 7 PM

CD80 CD80 molecule PM

CXCR2 Chemokine (C-X-C motif) receptor 2 PM

IL10 Interleukin 10 EC

IL1R2 Interleukin 1 receptor, type II PM

TNFRSF1B Tumor necrosis factor receptor superfamily, member 1B PM

TGOI-1 - PM

TGOI-2 - PM

TGOI-3 - PM

TGOI-4 - PM

 

 

Table 4.3   Final list of putative tolerogenic genes 
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Upregulated Treg protein - genetic association with autoimmune disease
Upregulated Treg protein – evidence for association with autoimmune disease

Interacting viral homologue

Interacting viral homologue – evidence for association with autoimmune disease

V Viral homologue

Viral homologue - genetic association with autoimmune disease

Downregulated Treg protein – evidence for association with autoimmune disease

Downregulated Treg protein

Upregulated Treg protein – evidence for association with autoimmune disease

Downregulated Treg protein - genetic association with autoimmune disease

V

V

V

V

V

VVVV

V

Figure 4.8  Association of viral hits and interacting proteins with human autoimmune disease
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Rheumatoid 

arthritis
Type 1 diabetes

Systemic lupus 

erythematosus
Pemphigus/phemigoid Grave's disease

Hashimoto 

thyroiditis

Autoimmune 

haemolytic anaemia
Coeliac disease Sjogren's syndrome

Evidence for genetic association with 

disease?

Upregulated Treg genes

IL10RA  SNP,  RA. dBSNP: rs11032362

CHGB  SNP,  RA. dBSNP: rs236151

IL1R2 (v) 

TNFRSF1B (v) 

CTLA4       IDDM.  OMIM: 601388

SNP,  IDDM. dBSNP: rs3087243

Graves Disease.  OMIM: 275000

Hashimoto's thyroiditis. OMIM: 140300
Coeliac disease 3. OMIM: 609755

Interacting viral homologues

CD80 (v)  

IL10 (v)    RA. OMIM: 180300
TGOI-3 (v) 

Downregulated Treg genes

CCR7 (v) 

MIF  Juvenile RA: OMIM: 604302

IL4R  

TGOI-1 (v)  IDDM SNP

Interacting viral homologues

CXCR2 (v)   

 

Information obtained from IPA and NextBio 

Table 4.4   Putative tolerogenic genes and their interactors – association with autoimmune 

diseases 
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Max search 
depth

Nodes Edges Score
Number of proteins from module 

in GO biological process
Top 10 biological processes - GO ontology

2 80 261 11.4 18 regulation of cell death

17 regulation of apoptosis

17 regulation of programmed cell death

18 cellular component biogenesis

3 regulation of necrotic cell death

7 regulation of cellular response to stress

7 regulation of protein transport

6 regulation of intracellular transport

7 regulation of establishment of protein localization

12 regulation of phosphorus metabolic process

2 27 62 9.08 3 activation of pro-apoptotic gene products

2 primary microRNA processing

4 developmental growth

2 pericardium development

2 SMAD protein complex assembly

2 paraxial mesoderm morphogenesis

2 embryonic foregut morphogenesis

2 foregut morphogenesis

2 positive regulation of cell morphogenesis involved in differentiation

2 positive regulation of epithelial to mesenchymal transition

2 17 37 4.41 6 regulation of cell activation

4 negative regulation of lymphocyte activation

9 immune system process

4 negative regulation of leukocyte activation

4 negative regulation of cell activation

5 negative regulation of cell activation

5 regulation of lymphocyte activation

4 regulation of leukocyte activation

3 negative regulation of immune system process

negative regulation of lymphocyte proliferation

2 6 9 7.65 2 negative regulation of alpha-beta T cell proliferation

3 regulation of lymphocyte proliferation

3 regulation of mononuclear cell proliferation

3 regulation of leukocyte proliferation

2 negative regulation of alpha-beta T cell activation

2 regulation of alpha-beta T cell proliferation

3 regulation of lymphocyte activation

3 regulation of leukocyte activation

3 regulation of cell activation

2 negative regulation of T cell proliferation

3 119 335 17.98 31 regulation of apoptosis

31 regulation of programmed cell death

31 regulation of cell death

47 positive regulation of biological process

43 positive regulation of cellular process

20 positive regulation of apoptosis

20 positive regulation of programmed cell death

78 regulation of cellular process

20 positive regulation of cell death

17 induction of apoptosis

3 31 78 5.56 8 regulation of cell activation

21 regulation of response to stimulus

21 regulation of immune system process

21 positive regulation of cell activation

7 signal transduction

6 positive regulation of biological process

6 regulation of lymphocyte activation

6 regulation of cellular process

7 positive regulation of immune system process

8 immune system process

4 93 259 15.66 8 negative regulation of cell activation

10 regulation of apoptosis

9 regulation of programmed cell death

6 regulation of cell death

15 negative regulation of lymphocyte activation

16 negative regulation of leukocyte proliferation

6 negative regulation of lymphocyte proliferation

25 negative regulation of mononuclear cell proliferation

7 negative regulation of leukocyte activation

11 regulation of lymphocyte proliferation  

Table 4.5   Functional modules generated with JActiveModules.  
       Only the top 10 biological processes for each module are shown 
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(a)

(b)

 

 

 

 

Figure 4.9   Examples of functional modules returned using JActiveModules.   
Six of the final list of tolerogenic genes were used as seed nodes, and a search was 

performed using parameters set as depth=2, max depth from nodes=3.  The network in (a) 

scored 12.71, the network in (b) scored 4.01.  Red nodes = increased expression in Treg 

cells, Green nodes = decreased expression in Treg cells.  Triangular nodes = proteins with 

viral homologues.  Intensity of colour is proportional to gene expression values.  Edges are 

coloured in proportion to confidence scores for the interactions [see legend in (a)] Grey 

edges= no score was returned from PSISCORE.     
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5 Discussion 

 

5.1 Generation of a consensus Treg gene signature 

A consensus Treg gene signature was generated in this study following a meta-analysis 

to compare multiple public Treg vs non-Treg gene expression studies.  Gene expression 

data is inherently noisy due to sample heterogeneity, probe promiscuity, and 

stochasticity of biochemical events such as promoter binding, gene transcription etc. 

This fundamental biological noise is further compounded by variability due to different 

experimental laboratories using different expression platforms.  Public gene expression 

repositories contain thousands of independent studies often with numerous studies 

investigating the same phenomenon. The meta-analysis approach, propounded here, 

exploits the availability of public experimental “replicates” to mitigate the effects of 

errors that occur within a single experiment on a single platform, since the reliability of 

an observation is weighted by its consistency across multiple studies and platforms 

(Kuperschmidt et al., 2010). 

A true consensus gene signature for Treg cells will naturally only be generated if the 

studies included in the meta-analysis are of good quality and do actually reflect a true 

comparison of Treg cells with non-Treg cells.  There is currently no single, definitive 

marker for the identification of Treg cells.  In most of the published studies considered 

for this analysis, Treg cells were isolated from peripheral blood by selecting for T cells 

positive for CD4 and CD25 expression, and also FOXP3 in some cases.  However, 

CD25 is expressed on around a quarter of all CD4
+
 T cells, and it is thought that only 

the very highest CD25 expressers are Treg cells (Shevach, 2006).  Also, in contrast to 

the mouse, FOXP3 expression in humans may not be completely confined to 

CD25
+
CD4

+
 cells.  It has been observed that human CD4

+
 CD25

-
 T cells may express 

FOXP3 mRNA upon T cell receptor (TCR) stimulation, although the expression levels 

are generally much lower and more transient than in Treg cells (Walker et al., 2003; 

Morgan et al., 2005).  Some studies also distinguished between cells expressing high 

and low levels of CD127 (IL-7 receptor α chain), another marker suggested to 

discriminate between Treg and conventional CD4
+
 T cells; but it has been reported that 



67  

upon activation, most CD4
+
 cells downregulate CD127 (Corthay et al., 2009).  Datasets 

were therefore selected for inclusion in the analysis based upon the increased expression 

of a number of pre-determined key Treg-associated genes in combination  This gene 

combination was decided upon in consultation with experts in the field at UCB. 

Individually these genes may not be definitive markers for Treg cells, but together they 

should provide good evidence for a Treg phenotype.   

A similar study was previously carried out at UCB, with the aim of identifying 

tolerogenic genes in the mouse.  In that study, the meta-analysis was performed across 

five datasets, and differential expression of 605 genes was observed in four out of the 

five studies.  This was double the number of consensus genes found in the current study 

where 303 differentially expressed genes were observed in four of six datasets.  This is 

most likely due to the inherent variability often seen in biological samples taken from 

human subjects and may be further compounded by the difficulty of precisely isolating 

Treg immune cells.  It might be expected that highly inbred mouse strains, housed in 

controlled laboratory conditions will represent a far more homogenous population, 

displaying a greater degree of similarity in their gene expression profiles.  Therefore it 

would be expected that more genes would be included in a consensus signature across 

multiple mouse datasets, while less genes would form a consensus across human studies 

with greater inter-dataset variability.   

 

5.2 Expansion of the Treg gene signature to include interacting 

proteins 

In the present study, proteins interacting with Treg gene products were identified using 

IPA software.  A total of 516 Treg proteins and direct interactors were found located in 

the plasma membrane, extracellular space or in unknown locations.  In the previous 

mouse study, interacting proteins were identified using a different software tool called  

Pathway Studio, with which 1176 mouse Treg and interacting proteins were identified.  

The magnitude of the expansion of the gene list is slightly higher in the mouse study 

than in the human study; 94% amplification in the mouse compared to 70% in the 

human.  This difference could be attributed to the different software tools utilized.  The 
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core platform technology used by Pathway Studio is their “MedScan Technology”, 

software that uses text-mining algorithms to automatically extract data from literature 

sources in an unsupervised manner.  In contrast, all information in the IPA database is 

manually reviewed and curated. As well as information from published literature, it also 

includes information from a range of third party sources and databases.  These differing 

approaches to attaining PPI data could result in the IPA software applying more 

rigorous filters to its data acquisition than Pathway Studio, resulting in more 

interactions being excluded from the analysis.  The differences may also conceivably be 

due to there being more hub proteins in the mouse consensus Treg gene list, resulting in 

a greater number of interactions and neighbouring proteins. 

The rationale behind this study was to identify putative tolerogenic genes that could 

become candidate targets for novel therapeutics.  To be useful pharmaceutically, such a 

target needs to be druggable, i.e. it needs to be accessible to putative therapeutic agents.  

In this case, the prospective therapeutic agent will be a monoclonal antibody.  

Monoclonal antibodies are attractive for pharmaceutical companies as they are 

considered to be easier to develop than small molecule drugs (e.g. they have less off-

target effects). The estimated time and cost to bring a monoclonal antibody to the stage 

where it is ready for clinical testing is significantly less than that needed for a traditional 

small molecule drug (Ezzell, 2001).  In the present study, putative targets were selected 

based upon their localization at the cell surface or in the extracellular space, making 

them accessible to antibodies.  IPA provides information on cellular localizations of 

molecules, based upon GO cellular compartment annotations and it was this information 

that was used as our “druggability” filter.   

 

5.3 Search for viral homologues 

Many viruses are known to co-opt genes for host proteins, allowing the virus to 

manipulate detection and elimination by the host immune system.  This is especially 

true for viruses that establish persistent infections and reside in the host for long periods 

of time.  Genes co-opted by a virus may steer us towards powerful points of 

intervention in an immune response.  Treg cells are central to the maintenance of 
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tolerance, so some genes that are specifically differentially expressed in Treg cells may 

be important for tolerogenic mechanisms.  The hypothesis behind the approach taken in 

the present study is that some viruses may have co-opted genes that can induce 

tolerance.  The presence of differentially expressed Treg genes in viral genomes was 

therefore used as a stringent filter to select putative tolerogenic genes from our network 

expanded consensus Treg gene signature.  Interestingly, of the six genes in the final list 

of ten that can be discussed here, four of them (CCR7, CD80, CXCR2 and IL-10) 

aligned with protein sequences present in herpes viruses, viruses known to establish 

persistent infections.  Indeed, herpes viruses have the ability to persist as a lifelong 

latent infection due to their successful coexistence with the host, facilitated by 

numerous mechanisms acquired for modulating the host immune system. 

Human IL-10, an anti-inflammatory cytokine, that aligned with BCRF1 (Bam HI C 

fragment rightward reading frame) protein (also known as viral IL-10 homologue) of 

human herpes virus 4 (Epstein Barr virus [EBV]) and IL-10 protein of herpes virus 5 

(Human Cytomegalovirus [HCMV]).  It has previously been established that herpes 

viruses, such as HCMV and EBV can express their own viral cytokines, or ‘virokines’.  

The IL10 virokine is biologically active and retains the immunosuppressive activities of 

its host counterpart (Hsu et al., 1990; Spencer et al., 2002).  Human IL1R2 and 

TNFRSF1B aligned with proteins present in the poxviruses, vaccinia and variola.  

These IL1R2 (IL-1 receptor) and TNFR (TNF receptor) viral homologues are soluble 

forms of the receptors and have been shown to bind to IL-1 and TNF, respectively, 

acting as a ‘sink’ to reduce the inflammatory effects of these cytokines (Haig, 1998). 

The above-mentioned studies on viral homologues of cytokines and cytokine receptors 

demonstrated that although they shared only 20-30% amino acid identity with their 

human counterparts, immunosuppressive functions were retained.  This raises the issue 

of statistical versus biological significance when evaluating the results of BLAST 

search alignments.  The E value associated with a BLAST result is a measure of the 

statistical significance of the alignment, related to the probability of the alignment 

occurring by chance in a database of a particular size.  The E value is related to the 

lengths of the query sequence and search space (i.e. database size) and identity between 

the query and target sequences.  E-values above 0.01 are generally considered to be 
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dubious.  Statistics do not, however, necessarily reflect biological significance, which 

was in this context equates to protein function.  It is possible that viruses may only need 

to incorporate a small portion of a human gene to retain its vital immuno-modulatory 

functions. Co-opted viral genes may also have become modified and evolved over time 

to continually maintain optimal benefits for virus survival and persistence (Griffin et al., 

2010).  These factors could result in low sequence identity and correspondingly high E 

values, while retaining biologically significant functions.  Increasing the E value 

threshold when setting BLAST parameters may result in statistically insignificant 

alignments, while revealing biologically significant results.  Therefore, rather than 

solely considering the statistical outputs of the BLAST searches, biological significance 

of the BLAST results was also evaluated by manual inspection of the alignments 

between query and hit sequences.  Each alignment was inspected to adjudge the 

conservation of cysteine residues in the sequences. Cysteine is an amino acid important 

in maintaining tertiary structure and function of proteins through its participation in the 

formation of disulphide bridges.  Functional similarity between viral and human 

proteins was further examined by searching for shared functional motifs and protein 

family domains. This approach reduced the candidate list of tolerance gene from 27 to 

10. 

Most of the genes in the final list of ten are already known to be associated with 

immune functions or are established therapeutic targets with drugs already on the 

market.  CCR7 and CXCR2 are receptors for chemokines, small proteins responsible for 

controlling directed chemotaxis or movement of cells, particularly immune cells.  IL-10 

is an anti-inflammatory cytokine.  CD80, the IL-1 receptor (IL-1R) and TNFreceptor 

(TNFR) are well established targets for drugs currently on the market for the 

autoimmune disease, rheumatoid arthritis (RA).   

IL-1 is a pro-inflammatory cytokine that drives joint inflammation in RA.  The drug, 

Anakinra (marketed as ‘Kineret’, Amgen Inc.) is a recombinant IL-1R antagonist which 

competes with IL-1 for binding with the naturally occurring form of the IL1R, thereby 

blocking biologic activities of IL-1, including inflammation and bone resorption, and 

cartilage degradation associated with RA (Furst, 2004).   
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TNF is another pro-inflammatory cytokine. Elevated levels of TNF are found in 

tissues and fluids of patients with autoimmune disease such as rheumatoid arthritis, 

psoriatic arthritis, ankylosing spondylitis, and plaque psoriasis.  A number of biologic 

therapies targeting TNF are currently on the market (Kuek et al., 2007).  Etanercept 

(Enbrel, marketed by Amgen, Pfizer, & Wyeth) is an anti-TNF drug, consisting of an 

engineered TNFR2 dimeric fusion protein.  It acts as a decoy receptor, preventing TNF 

from interacting with natural TNFRs.  There are various anti-TNF monoclonal antibody 

therapeutics on the market, such as Certolizumab (Cimzia, UCB), Adalimumab 

(Humira, Abbott) and Infliximab (Remocade, Centocor & Merck).  

CD80 is expressed on antigen presenting cells and provides a co-stimulatory signal 

necessary for T cell activation.  It is the ligand for CD28, which is expressed on T cells, 

and CTLA-4, which is expressed by Treg cells where it causes attenuation of the co-

stimulatory activation signal.  CTLA-4 coupled to the Fc domain of an immunoglobulin 

G1 molecule blocks this CD80-mediated co-stimulatory pathway, and is marketed as 

Abatacept, or Orencia™ (Bristol Myers Squibb).  It is used for the treatment of rheumatoid 

arthritis (Vincenti & Luggen, 2007).  Another blocker of this pathway, the anti-CD80 

monoclonal antibody, Galiximab (Biogen Idec), has shown efficacy in clinical trials for 

psoriasis (Gottlieb et al., 2004). 

The inclusion of a number of known therapeutic targets for autoimmune diseases in the 

final list of putative tolerogenic genes serves to support the fundamental hypothesis 

underpinning this approach; namely the likely co-option of human immuno-modulatory 

genes by viruses, and validates the method. Although those genes may not provide new 

insights or offer novel targets to be exploited, their presence in the final set of results 

indicates that the methodology enables identification of  genes which may be involved 

in the dysregulation of self-tolerance and that can be successfully targeted 

therapeutically.  Their presence alongside the four genes of interest for further 

consideration puts these four genes in good company, and strengthens the case for their 

potential as new targets. 
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5.4 Identification of putative functional modules 

The biological rationale supporting the involvement of the putative targets in tolerance 

was further explored by generating focused sub-networks that are active in Treg vs non-

Treg cells and are seeded on the putative target proteins.  This was achieved by 

generating a Treg-specific PPI network and obtaining confidence scores for the 

interactions before identifying functional modules within the network. 

The Treg PPI interaction network was generated by consolidating PPI data from a 

number of different PPI data sources.  This was necessary because it has been shown 

that there are low levels of agreement between databases when curating PPI data from 

the same publications, and that there is often little overlap between databases (Turinsky 

et al., 2011).  The PSICQUIC interface, a federated search resource, was used to 

retrieve interaction data from the different interaction data sources.  Data was exported 

from each selected data source for subsequent generation of confidence scores. 

Since completing this study, following a discussion with the developers of PSICQUIC, 

the web interface has been changed, so that when opting to cluster results (remove 

redundant binary interactions where the same interaction is found in more than one 

database), individual data sources can be selected for clustering and not all the returned 

results have to be clustered as previously (see ‘Methods’, Section 3.5.1).  This could 

simplify the workflow, as it would allow redundant interactions to be removed and 

would also standardize the node IDs, as the interacting proteins in the clustered results 

output are all returned with UniProt IDs.  

Similarly to gene expression data, the quality of public PPI data can vary widely 

potentially limiting its utility. There are many different experimental techniques for 

determining molecular interactions, producing results of varying reliability, from high-

throughput yeast 2-hybrid studies through to small-scale single protein studies, as well 

as methods utilizing computational predictions.  Some of these experimental techniques 

are considered more likely to give rise to false positive results than others, particularly 

some high-throughput methods such as yeast 2-hybrid (Sprinzak et al., 2003) and 

affinity purification coupled with tandem mass spectroscopy (TAP-MS) [Lavallee-

Adam et al., 2011).  
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The PSI confidence scoring system (PSISCORE) was developed to provide a means for 

assessing the quality and reliability of molecular interaction data (Aranda et al., 2011).  

The MIscore method takes into account publications supporting an interaction and the 

types and number of experimental techniques used for detecting an interaction.  

Different detection methods are assigned scores for a particular interaction type.  

Experimental techniques considered to be less reliable for determining a particular 

interaction type will score poorly. PSISCORE and the MIscore method were used to 

associate confidence metrics with each edge in the Treg PPI network, enabling the 

network to be flexibly calibrated for accuracy as required. For example, low confidence 

associations could be maintained if the emphasis is on discovery whilst only high-

quality interactions preserved if the requirement is to interpret a finding in the biological 

context of canonical interactions. 

Functional modules or subnetworks can be identified as highly connected network 

regions which show significant changes in gene expression (Cline et al., 2007).  The 

identification of putative functional modules was made possible by the integration of 

Treg gene expression data with the Treg PPI data.  Functional modules are enriched for 

differentially expressed genes but may contain genes that were not in the consensus 

Treg gene signature that are required to connect other differentially expressed genes.  In 

this respect, the results differ to those that would be obtained using clustering 

techniques for gene expression studies that have not been integrated with PPI networks. 

Thus, integration of expression and PPI data may provide improved information on 

biological mechanisms and processes.  It does this by enabling the identification of a 

gene that is not significantly differentially expressed, but may occupy an important 

position in the topology of a PPI network, locally enriched for differentially expressed 

interactors.  

The putative functional modules identified in this study contained most of the ten 

putative tolerogenic genes in the final list, offering richer insight into their possible 

involvement in tolerance via the biological processes represented by the proteins and 

interactions evident in the identified active sub-networks.  Enriching predicted modules 

for GO terms describing biological processes offered further information on potential 
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biological functions of modules, and provides a means of validating module predictions 

(Cline et al., 2007).   

These putative functional modules along with their associated GO biological process 

annotations, provided highly focused distillations of public omic datasets that are 

amenable for further evaluation in collaboration with UCB immunologists. 
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6 Conclusions & future work 

 

6.1 Conclusions 

The aim of this study was to identify putative tolerogenic genes for consideration as 

targets for the development of novel therapeutics for the treatment of immunological 

disorders.  In this respect, the work can be considered to have been successful, in that 

four genes were identified that are now under investigation as potential new targets by 

UCB. 

The methodology used to reveal these potential new targets has been validated to a large 

extent by the inclusion alongside the potentially novel targets, of known targets for 

autoimmune diseases.  

The four candidate genes selected for further evaluation as potential targets have a 

number of associated pros and cons.  Two of them are not readily associated with 

immunity or immune cell function, so could present truly novel targets that perhaps 

have never before been considered.  However, the downside of this is that with so little 

being known about their biology and relevance to immunity, a lot of further scientific 

validation will be required, particularly in the form of ‘wet’ lab work. 

More is known about the roles of the other two genes in immune cell functions.  

However, this advantage carries the accompanying potential downside that the IP 

(intellectual property) space may be more crowded.  One of these known immuno-

modulatory genes was a more ambiguous, borderline viral hit.  The E value (0.001) for 

its BLAST alignment with the viral protein was at the boundary for what is statistically 

considered a good or poor alignment, and the alignment of cysteine residues in the 

human and viral proteins was inconclusive.  It did share an immunoglobulin domain 

with its putative viral homologue, although the immunoglobulin domain is a broad 

structural domain classification and is seen quite frequently in viral genomes.  The 

second of the genes with known immuno-modulatory function had only one piece of 

evidence supporting its interaction with an upregulated Treg gene, observed in a high 
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throughput yeast-2 hybrid screen. Its interaction with a differentially expressed Treg 

gene is therefore not well defined, so again, further investigation and validation will be 

required for this gene before it can be considered for further progression.   

The study has now reached the stage where biologists and laboratory scientists can take 

on the further investigations required for possible progression of these genes as new 

targets. 

To conclude, current immunosuppressive therapies are unsatisfactory for a variety of 

reasons.  This work has successfully provided a novel computational approach for 

identifying putative tolerogenic genes by using viral genomes as a very stringent 

filtering mechanism. These genes that may control tolerance mechanisms could 

potentially represent targets for a new class of therapeutic that could induce tolerance 

and perhaps achieve the ultimate goal of long term remission of autoimmune disease. 

 

6.2 Future work 

There are a few changes and additional investigations that could potentially improve the 

workflow and provide additional insight into the results.  Potential further application of 

the approaches used in the current study is also discussed in this section: 

 Methods to improve the evaluation of the statistical results of the BLAST 

alignments could be further investigated.  All human proteins known to have 

been co-opted by viruses could be BLASTed against viral genomes, and the 

resulting E values examined and evaluated more thoroughly.  This could give a 

more precise idea of the range of E values commonly associated with co-opted 

proteins, information which could be applied to allow a more informed 

evaluation of unknown BLAST viral hits.  

 It may be possible to streamline the workflow involved in generating a PPI 

network with associated confidence scores.  As mentioned in the discussion, 

(Section 5), the web interface for PSICQUIC has recently been changed to 

improve clustering methods within the application. This could simplify the 
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workflow and standardize the node IDs.  Sample files have been sent to the 

developers of PSISCORE and they are currently investigating the reasons for 

many binary interactions being returned with no associated confidence scores.  It 

can be anticipated that these tools will continually improve, which can only 

enhance their application to studies of PPI networks, such as ours, and 

assessment of data quality.  

 It would be interesting to experiment with other applications for analysing 

features of biological networks.  There are many more plugins for Cytoscape for 

the analysis of networks and functional enrichment.  It would be useful to 

examine these in more detail for possible application to our data for gaining 

further insights.   

 In a similar manner to viruses, many parasitic and commensal organisms have 

the ability to modify host immunity.  Helminths are known to produce molecules 

that mimic or modify molecules of the host immune system, which underpins 

their persistence.  In countries endemic for parasitic helminth infections, 

autoimmune and allergic diseases remain relatively rare, so it has been 

hypothesized that helminths may protect against the development of 

autoimmunity and allergy (Harnett & Harnett, 2008).  Tick saliva is known to 

contain a repertoire of components that have anti-haemostatic, anti-

inflammatory and immunomodulatory effects which aids their ability to obtain a 

blood meal from the host (Valenzuela, 2004).  Commensal bacteria have been 

shown to have a role in modulating mucosal immune responses (Forsythe & 

Bienenstock, 2010).  As an extension of the present study, the genomes of 

parasitic organisms or commensal bacteria could be utilized in an analogous 

manner to viral genomes to look for putative modulators of the immune system 

that may provide intervention points in immune disorders. 
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Bioperl homepage:                                                                                                

www.bioperl.org                                                                                                               

(Accessed 18
th

 August 2011) 

 

Bioperl howto page for SearchIO:                                

http://bioperl.org/wiki/HOWTO:SearchIO                                                                 

(Accessed 4
th

 August 2011) 

 

Cytoscape website:                                                                                              

www.cytoscape.org                                                                                                          

(Accessed 17
th

 August 2011) 

 

EBI InterProScan Sequence Search:                                  

http://www.ebi.ac.uk/Tools/pfa/iprscan/                                                                   

(Accessed 12
th

 July 2011)  

 

Ingenuity Systems, Inc website:                                                                       

www.ingenuity.com                                                                                                              

(Accessed 18
th

 August 2011) 

 

NCBI batch Entrez:                                          

http://www.ncbi.nlm.nih.gov/sites/batchentrez                                                          

(Accessed 8
th

 June 2011)  

 

NCBI FTP listing of blast executables:     

ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/                                                  

(Accessed 4
th

 August 2011) 

NCBI genome database:                              

http://www.ncbi.nlm.nih.gov/sites/entrez?db=Genome                                                  

(Accessed August 15th 2011) 
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PSICQUIC: PSI common query interface. 

http://www.ebi.ac.uk/Tools/webservices/psicquic/view                                               

(Accessed 14
th

 August 2011) 

 

PSISCORE project website - Scoring method overview: 

http://code.google.com/p/psiscore/wiki/Scoring_methods_overview                       

(Accessed 18
th

 August 2011) 

 

PSISCOREweb, a web-based client for the PSI confidence scoring system: 

http://psiscore.bioinf.mpi-inf.mpg.de/                                                                         

(Accessed 18
th

 August 2011) 

 

Program Parameters for blastall.  Tao Tao. User Service, NCBI, NLM, NIH 

http://www.ncbi.nlm.nih.gov/staff/tao/URLAPI/blastall.html#3                                 

(Accessed 5
th

 August 2011) 

 

Program Parameters for formatdb and fastacmd- Two BLAST Database Related Tools.   

Tao Tao. User Service, NCBI, NLM, NIH 

http://www.ncbi.nlm.nih.gov/staff/tao/URLAPI/formatdb_fastacmd.html                       

(Accessed 5th August 2011) 

 

Uniprot FTP listing of databases: 

ftp://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/taxonomic_d

ivisions (Accessed 6th June 2011) 

 

Uniprot mapping tools: 

http://www.uniprot.org/help/mapping?namespace=help&object=mapping&format=tab=

batch                                                                                                                                 

(Accessed 27
th

 July 2011) 

http://code.google.com/p/psiscore/wiki/Scoring_methods_overview
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http://www.uniprot.org/help/mapping?namespace=help&object=mapping&format=tab=batch


89  

APPENDIX A – Perl script for BLAST 
 
 
 
#!/usr/bin/perl  -w 
 
 
use strict; 
 
use Bio::Tools::Run::StandAloneBlast; 
use Bio::SearchIO; 
use Bio::SeqIO; 
 
 
###################### 
# 
# INITIALISE VARIABLES 
# 
###################### 
 
my $in_file = "/home/u046594/blast_db/swissprot_human_seqs.fasta"; 
my $virus_file = "/home/u046594/blast_db/viral_DB.fasta"; 
 
# Set blast parameters 
 
my @params_virus = (-p => 'blastp', -d => 'viral_DB.fasta', -o => 'report.bls', -e => '10'); 
my @params_human = (-p => 'blastp', -d => 'humanSeqs_fasta.fasta', -o => 'report.bls', -e => '10'); 
 
# Instantiate blast objects 
 
my $virus_factory = Bio::Tools::Run::StandAloneBlast->new(@params_virus); 
my $human_factory = Bio::Tools::Run::StandAloneBlast->new(@params_human); 
 
my $seqio_object = Bio::SeqIO->new(-file => $in_file); 
 
my $blast_report = ""; 
 
open(my $out, '>', 'hits.txt') or die "failed to open output for write: $!";       # open output file for saving hits 
open(my $out2, '>', 'BLAST_Result_1.txt') or die "failed to open output for write: $!";  # open output file for saving 
results 
open(my $out3, '>', 'BLAST_hsp_result.txt') or die "failed to open output for write: $!";  # open output file for saving 
results hash 
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while (my $seq = $seqio_object->next_seq){ 
 print "Blasting: ", $seq->id, "...\n"; 
 my $SEQid = $seq->id; 
 my @hum_ids= split('\|', $SEQid); 
 my $query_id = $hum_ids[2]; ## Extract Query ID 
 print { $out2 } $query_id,"\t"; 
 my %virus_hit_hash = (); 
 my %virus_hsp_hash = (); 
 $blast_report = $virus_factory->blastall($seq); 
 while (my $result = $blast_report->next_result){ 
  #print ">", $result->query_name() ,"\n"; 
  while (my $hit = $result->next_hit){ 
   $hit->description =~m/\[(.*)\]/;  
   my $virus = $1;  
   my $virus_hit_id = $hit->accession();   
  
   print { $out2 } $result->query_accession(),"\t"; #,$result->query_description(),"\t"; 
   
   # output details about the hits   $seq->id, "\t",   
   print { $out2 }  $hit-> description. "\t", $hit-> accession(),"\t",$virus,"\t",$hit-
>significance(),"\t",$hit->num_hsps(),"\t"; 
 
   # output details about the hsps 
   my $length_total =  $result->query_length; 
   while ( my $hsp = $hit->next_hsp ) { 
    if( $hsp->num_identical >= 20 ) { 
     if ( $hsp->percent_identity >= 20 ) { 
      print { $out2 } $hsp -> percent_identity(),"\t",$hsp -> length(),"\t",$hsp -
>num_identical(),"\t",$hsp ->num_conserved(),"\t",$hsp ->start('hit'),"\t",$hsp ->end('hit'),"\t",$hsp -
>start('query'),"\t",$hsp ->end('query'),"\t",$hsp -> gaps(),"\t", $hsp->length('query'),"\t"; 
  
      # output % coverage (No gaps in aligned query seq) 
      my $length_query =  $hsp->length('query'); 
       
      my $coverage = ($length_query/$length_total)*100;   
      print { $out2 }  $coverage,"\t"; 
      
      # Add to virus hit hash & add to virus hsp info hash 
      
      if (not exists $virus_hit_hash{$virus}){ 
       print ">$virus_hit_id\n"; 
       $virus_hit_hash{$virus} = $virus_hit_id; 
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       $virus_hsp_hash{$virus} = $virus_hit_id."\t". $hit-> description. "\t".$hit-
>significance()."\t".$hsp -> percent_identity() . "\t" . $hsp -> length() ."\t".$hsp->length('query'). "\t" .$hsp -
>num_identical(). "\t" .$hsp ->num_conserved(). "\t".$coverage. "\t". $result->num_hits()."\t". $hit-> num_hsps()."\t". 
$hsp->rank()."\t"; 
      } 
     } 
    } 
    last; 
   } 
  } 
  last; 
 } 
 foreach my $v (keys %virus_hit_hash){ 
       
  open TMP, ">", 'tmp.txt' or die $!; 
  print TMP $virus_hit_hash{$v}, "\n"; 
  system("fastacmd -d viral_DB.fasta -i tmp.txt -p T -o full_seqs_hits.fasta"); 
  my $seqio_virus = Bio::SeqIO->new(-file => 'full_seqs_hits.fasta');  ## Get virus protein sequence 
  my $virus_seq = $seqio_virus->next_seq; 
    
  # Perform reciprocal blast 
   
  my $human_blast_report = $human_factory->blastall($virus_seq); 
  while (my $result = $human_blast_report->next_result){ 
   print "Blast Report\n"; 
   while (my $hit = $result->next_hit){ 
    print "Hit\n"; 
    my $human_hit_id = $hit->accession; 
    if ($human_hit_id eq $query_id){ 
     print { $out } $query_id, "\t", $human_hit_id, "\t", $v, "\n"; 
     print { $out3 } $human_hit_id, "\t", $result->query_accession,"\t", $v, "\t", 
$virus_hsp_hash{$v}, "\n"; 
      
    } 
    last; 
   } 
  } 
 }  
    
  
} 
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close($out); 
close($out2); 
close($out3); 
  
  
 exit; 
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APPENDIX B Perl script for parsing PSICQUIC output.  This sample script was 

for parsing IntAct results, there were slight variations in the scripts for output from 

other databases, depending on the output format of the results   
 
 
#!/usr/bin/perl   
 
use warnings; 
use strict; 
 
my $file = 'scored_INTACT.txt'; 
 
open(INFILE, $file) or die "Can't open file: $!\n"; 
open(my $outfile, '>', 'Intact_parsed_EXTRA.txt');  
my @lines = <INFILE>; 
 
my @wanted; 
 
 foreach $_ (@lines) { 
  my @columns = split('\t', $_); 
    
    # first 2 columns: 
    my $col1 = $columns[0]; 
    my $col2 = $columns[1]; 
     
    # split at start of uniprot id number: 
    my @split_col1 = split ('[\|]', $col1); 
    my @split_col2 = split ('[\|]', $col2); 
     
    my $uniprot_num1= $split_col1[0]; 
    my $uniprot_num2= $split_col2[0]; 
 
    my @split_id1 = split (':', $uniprot_num1); 
    my @split_id2 = split (':', $uniprot_num2); 
      
     
    my $prot_id1 = $split_id1[length(@split_id1)]; 
    my $prot_id2 = $split_id2[length(@split_id2)]; 
     
 
    # interaction type column: 
    my $col12 = $columns[11];   
  
    # split interaction type columns: 
    my @split_col12 = split ('\(', $col12); 
       
    my $interaction_long = $split_col12[1]; 
    my @interaction_short = split ('\)', 
$interaction_long); 
    my $final_interaction= $interaction_short[0];
     
     
    # score column: 
    my $col15 = $columns[14]; 
    # split score column: 
    my @split_col15 = split ('MIscore:', $col15);
        
    my $score_long = $split_col15[1]; 
    my @score_short = split ('\(', $score_long); 
    my $final_score= $score_short[0]; 
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    # replace columns 1 and 2 with the uniprot id 
number defined as prot_id1, prot_id2 
    # (Q,E means escape any special characters in 
the columns, such as |) 
 
     s/\Q$col1\E/$prot_id1/; 
     s/\Q$col2\E/$prot_id2/; 
     s/\Q$col12\E/$final_interaction/; 
     s/\Q$col15\E/$final_score \n/; 
      
    # delete rows without uniprot IDs in first 2 
columns (these are not PPIs, but chemicals and gene promotor IDs) 
    my @fields = split('\t', $_); 
    if ( $fields[0] =~/^[PQO]/and and $fields[1] 
=~/^[PQO]/ ) {     
    push @wanted, $_;   
    print {$outfile} $_;       
    }      
 } 
  
exit; 


