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ABSTRACT 

Both reference genomes assembled for individual species and large, publicly 

maintained sets of resequenced genomes are of immense value to researchers. 

The former represent important milestones for research involving the species of 

interest and serve as ostensibly static points of reference for other data, while the 

latter serve as catalogues of genetic variation, enabling researchers to place their 

own data in a wider context. However, maintaining sets of resequenced genomes 

and ensuring their integrity as they undergo updates to match any new releases 

of their reference genome poses certain computational challenges, as does 

manipulating and comparing those large sets of genomes in general. 

This work reports on the detection and correction of significant errors which were 

introduced into resequenced tomato data in the course of updating them to a new 

version. It also introduces Tersect, a low-level utility optimized for manipulating 

and comparing large sets of resequenced genomic data, as well as Tersect 

Browser, a Web application which uses the high performance of Tersect, coupled 

with a higher-level indexing and precomputation scheme to allow for interactive 

comparison of large sets of resequenced genomes, giving biologists a tool 

capable of generating visualisations of genetic distance and phylogenetic 

relationships based on whole-genome sequence data from hundreds of genomes 

in seconds rather than hours.  

Keywords:  
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Introgression, Tomato 

 

  



ii 

ACKNOWLEDGEMENTS 

I want to thank my supervisor Dr Fady Mohareb for the endless patience, support, 

and understanding he showed me throughout the project, and for providing me 

with ample opportunities to collaborate on many diverse projects, expanding my 

research horizons and helping me pick up a plethora of useful skills. 

I also want to thank Prof. Andrew Thompson, under whose patient guidance I 

learned to apply my bioinformatician’s toolkit to the real-world problems of plant 

science. 

Special thanks to Corentin Molitor, who shared an office with me for much of my 

project and was always within reach if I needed to trade ideas (or snacks!) with 

someone. Further, I would like to thank all the students whom I have had the 

opportunity to teach during the time I took to complete the thesis, for providing a 

useful distraction from research and writing – I never expected to enjoy teaching! 

Last but not least, I would like to thank my loving family, who supported me and 

helped me stay motivated during the course of my work: my mother Renata, my 

sister Anna, my grandmother Irena, and especially my dear grandfather Henryk, 

who passed away last year. 

  



iii 

TABLE OF CONTENTS 

ABSTRACT ......................................................................................................... i 

ACKNOWLEDGEMENTS.................................................................................... ii 

LIST OF FIGURES ............................................................................................. v 

LIST OF TABLES ............................................................................................... ix 

LIST OF ABBREVIATIONS ................................................................................ x 

1 INTRODUCTION ............................................................................................. 1 

1.1 Background ............................................................................................... 1 

1.2 Aim and objectives .................................................................................... 5 

1.3 Thesis outline ............................................................................................ 6 

1.4 References ............................................................................................... 7 

2 CORRECTING AND VALIDATING VARIANT DATA LIFT-OVER IN 

RESEQUENCED TOMATO GENOMES ............................................................ 9 

2.1 Abstract ..................................................................................................... 9 

2.1.1 Summary ............................................................................................ 9 

2.1.2 Availability .......................................................................................... 9 

2.2 Introduction ............................................................................................. 10 

2.3 Resequenced genome issues ................................................................. 12 

2.4 Reference genome issues ...................................................................... 17 

2.5 Results .................................................................................................... 22 

2.5.1 SNV corrections ............................................................................... 22 

2.5.2 InDel corrections .............................................................................. 22 

2.5.3 Annotation ........................................................................................ 23 

2.5.4 SeqRemap lift-over pipeline ............................................................. 24 

2.6 Discussion .............................................................................................. 30 

2.7 References ............................................................................................. 32 

3 TERSECT: A SET THEORETICAL UTILITY FOR EXPLORING SEQUECE 

VARIANT DATA ............................................................................................... 35 

3.1 Abstract ................................................................................................... 35 

3.1.1 Summary .......................................................................................... 35 

3.1.2 Availability ........................................................................................ 35 

3.2 Introduction ............................................................................................. 36 

3.3 Tersect .................................................................................................... 36 

3.3.1 Interface and command parser ........................................................ 36 

3.3.2 Indexing ............................................................................................ 37 

3.4 Benchmarking ......................................................................................... 42 

3.5 Results and discussion ........................................................................... 43 

3.6 References ............................................................................................. 50 

4 TERSECT BROWSER .................................................................................. 52 

4.1 Abstract ................................................................................................... 52 

4.1.1 Summary .......................................................................................... 52 



iv 

4.1.2 Availability ........................................................................................ 52 

4.2 Introduction ............................................................................................. 53 

4.3 Materials and methods ............................................................................ 55 

4.3.1 Benchmark and test data ................................................................. 55 

4.3.2 Benchmark hardware ....................................................................... 56 

4.3 Implementation ....................................................................................... 57 

4.4 Results and discussion ........................................................................... 69 

4.5 Future work ............................................................................................. 78 

4.6 References ............................................................................................. 79 

5 OVERALL DISCUSSION............................................................................... 84 

5.1 Overview ................................................................................................. 84 

5.2 Lift-over and validation ............................................................................ 84 

5.3 Tersect Browser and Tersect .................................................................. 85 

5.4 References ............................................................................................. 88 

APPENDICES .................................................................................................. 91 

Appendix A Tersect User Manual ................................................................. 92 

Appendix B Tersect Browser Supplementary Figures and Tables .............. 106 

Appendix C Tersect: a set theoretical utility for exploring sequence ........... 111 

Appendix D Mutagenesis of Puccinia graminis f. sp. tritici and Selection of 

Gain-of-Virulence Mutants .......................................................................... 114 

 

 

  



v 

LIST OF FIGURES  

Figure 2-1: Positions of "problem areas" where the reference alleles listed in the 
resequenced genome VCF files hosted by SGN do not match the SL2.50 
sequence, marked in red along the length of chromosomes. .................... 12 

Figure 2-2: Filtered dot plots comparing the SL2.50 (x-axis) and SL2.40 (y-axis) 
sequences of chromosomes 1, 2, 3, and 4 alongside respective "problem 
areas". The blue lines represent reverse complement sequences, indicating 
the presence of reversed scaffolds. The two reversed sequences at the start 
of chromosome 2 effectively form a single "problem area". ....................... 14 

Figure 2-3: Filtered dot plots comparing the SL2.50 (x-axis) and SL2.40 (y-axis) 
sequences of chromosomes 5, 6, 7, and 8 alongside respective "problem 
areas". The blue lines represent reverse complement sequences, indicating 
the presence of reversed scaffolds. Note that chromosome 7 includes no 
reversed scaffolds and thus no problem areas. The group of four 
neighbouring reversed scaffolds in chromosome 8 form a largely contiguous 
"problem area". .......................................................................................... 15 

Figure 2-4: Filtered dot plots comparing the SL2.50 (x-axis) and SL2.40 (y-axis) 
sequences of chromosomes 9, 10, 11, and 12 alongside respective "problem 
areas". The blue lines represent reverse complement sequences, indicating 
the presence of reversed scaffolds. Chromosome 10 includes re-arranged 
scaffolds but no reversed scaffolds and as a result it exhibits no "problem 
areas". The largest scaffold in chromosome 12 was reversed; this may be an 
error in the SL2.50 build (see Reference genome issues). ........................ 16 

Figure 2-5: Diagram of the Chromosome 9 scaffold order and orientation in the 
SL2.40 reference, according to the Shearer et al. paper (FISH), and in the 
SL2.50 reference. Reversed red arrows indicate scaffolds which are 
reversed compared to SL2.40. The relative scaffold sizes are to scale except 
for scaffold 2 (SL2.40sc6916) which would have been too small to see 
clearly. Gap sizes are omitted. .................................................................. 17 

Figure 2-6: Diagram of the Chromosome 12 scaffold order and orientation in the 
SL2.40 reference, according to the Shearer et al. paper (FISH), and in the 
SL2.50 reference. Reversed red arrows indicate scaffolds which are 
reversed compared to SL2.40. The relative scaffold sizes are to scale. Gap 
sizes are omitted. ...................................................................................... 18 

Figure 2-7: Example of an incorrect SNV in the SGN JBrowse genome browser. 
The reference allele C matches the base on the complementary (bottom) 
DNA strand rather than the reference strand. ............................................ 22 

Figure 2-8: Example of an incorrect InDel in the SGN JBrowse genome browser. 
The reference allele matches the reverse of its preceding sequence 
(highlighted in cyan) on the complementary strand, showing that both the 
allele sequences and their positions need to be corrected. ....................... 23 



vi 

Figure 2-9: Diagram of the full SeqRemap lift-over pipeline as used with NUCmer 
whole-genome alignment. The “custom section” of the pipeline, marked in 
red, is a (technically optional) mapping and variant calling step that has to be 
set up externally by the user, to match the pipeline used to generate the 
source VCFs (as closely as possible), hence why the tools (bwa, bcftools) 
are only named as examples. It is used to find variants in the “gaps” 
introduced by novel sequence data in the destination genome. ................ 26 

Figure 3-1: Tersect index file construction diagram. Parts A) and B) show the 
contents of example VCF input files (metadata and certain columns were 
omitted). The first input file contains data for two samples (GEN1 and GEN2) 
and the second file contains data for a single sample (GEN3). All alleles 
contained in a chromosome are stored in a single list as seen in part C). 
Membership of individual alleles in each of the samples is encoded in bit 
arrays as seen in part D), which shows a 32-bit word for the sake of simplicity 
(Tersect uses 64-bit words by default). The most significant bit is set for all 
three bit arrays, indicating that the specific word shown is a literal word (as 
opposed to a fill word – these terms are explained in section below). Note 
that the indices in the chromosome variant table and the sample bit arrays 
match – the lists are parallel. ..................................................................... 40 

Figure 3-2: Diagrammatic example of WAH compression and variant retrieval by 
Tersect. Three words (part A) encode allele contents for 315 successive 
alleles stored in the chromosome variant list shown in part B. The literal 
words encode the indices of variants present in a sample, while the fill word 
records the length of a run of empty words (each corresponding to seven 
absent alleles). The stored binary value is 0b0101011 (decimal 43). With 
seven alleles per word, this can be used to advance the index indicator of 
the variant list by 7 x 43 = 301 positions when the bit array is traversed. Note 
that, while for the sake of simplicity the example uses 8-bit words, Tersect 
uses 64-bit words by default. ..................................................................... 41 

Figure 3-3: Benchmarking results for the identification of variants private to a 
single genome out of subsets of 444 tomato genomes. See Table 3-1 for the 
numeric results. ......................................................................................... 44 

Figure 3-4: Benchmarking results for the intersections of subsets of 56 Solanum 
pimpinellifolium genomes. This is a wild species of tomato closely related to 
the S. lycopersicum, the cultivated tomato and the most numerous wild 
tomato species in the source data sets. The shared variants identified 
through intersection represent alleles typical of S. pimpinellifolium as 
compared to the cultivated tomato reference genome. See Table 3-2 for the 
numeric results. ......................................................................................... 45 

Figure 3-5: Tersect index build time and peak memory usage. It should be noted 
that inclusion time per genome varied significantly due to different variant 
content per genome, evident in the shape of the line. This is also evident in 
Figure 3-6, which traces a very similar path for the input data. The source 
genome list was shuffled to minimize this variation. The peak memory usage 



vii 

is defined as the maximum resident set size. See Table 3-3 for the numeric 
results. ....................................................................................................... 46 

Figure 3-6: Size of input data and generated Tersect index files. Note that the 
sizes of individual per genome data sets vary with the number of variants 
they contain. See Table 3-3 for the numeric results. ................................. 47 

Figure 4-1: Diagram of the distance matrix precomputation process. The size of 
the tomato reference genome chromosome 4 is used alongside four partition 
sizes: 5 Mbp (the smallest and most significant size), 10 Mbp, 25 Mbp, and 
50 Mbp. Note that for the largest size, the partition in fact covers the entire, 
shorter length of the chromosome (47.26 Mbp) instead. Tersect is only used 
to create the smallest partitions, while the rest are generated by adding up 
sub-partitions. This requires all the partition sizes (which can be set by the 
user) to be multiples of the smallest partition size. The “distance” metrics 
stored in the matrices are actually simple counts of the number of SNV 
differences rather than true genetic distance metrics; those are calculated 
downstream. .............................................................................................. 61 

Figure 4-2: Diagram of distance matrix request handling by the Tersect Browser 
back-end. The requested interval is partitioned into a list of smaller intervals, 
for which the distance matrices can be either retrieved from among the 
precomputed partitions or generated de novo by Tersect, and then added 
and subtracted to yield the final distance matrix. Only two (at most) Tersect 
intervals are ever generated for a single request (one at each end of the 
requested interval) and they are always (at most) half the size of the smallest 
precomputed partition. In addition, Tersect will only calculate distance 
matrices for selected accessions, while the stored, precomputed matrices 
have to be filtered to select the appropriate rows and columns. Note that the 
distance metrics used throughout the process are simply the substitution 
(SNV) counts, due to their ease of addition of subtraction. The actual genetic 
distance metrics (Jukes-Cantor distance) are only calculated for the final 
matrix, which is then used downstream for phylogeny inference. .............. 62 

Figure 4-3: Phylogeny inference times for the entire 444-genome tomato data set 
and chromosomal intervals of different sizes as a function of the smallest 
precomputed partition size. One hundred random intervals were generated 
for each of the tested interval sizes (from 1 Mbp to 50 Mbp). The same sets 
of intervals were used to test each precomputed partition size, with fifty 
requests executed for each combination of interval size and smallest partition 
size. The median response times were then recorded for each partition size. 
See Table B-3 for the numeric results ....................................................... 71 

Figure 4-4: Phylogeny inference times for the entire 2548-genome tomato data 
set and chromosomal intervals of different sizes as a function of the smallest 
precomputed partition size. Fifty random intervals (all on chromosome 1) 
were generated for each of the tested interval sizes (from 1 Mbp to 100 Mbp). 
The same sets of intervals were used to test each precomputed partition size, 
with fifty requests executed for each combination of interval size and smallest 



viii 

partition size. The median response times were then recorded for each 
partition size. See Table B-4 for the numeric results. ................................ 72 

Figure 4-5: Time and storage space costs of distance matrix precomputation as 
functions of the smallest partition size. The 444 resequenced tomato genome 
data were used for benchmarking. To create successive partitions larger than 
the smallest, their size was doubled until it was larger than the largest 
chromosome (98.5 Mbp), which is the default approach taken by the data set 
addition script. The time measurements were recorded on a desktop PC and 
would scale according to CPU speed, but the storage size should remain 
invariant for a given data set and partition size. Both cost metrics exhibit a 
component that is inversely proportional to the partition size, but for time this 
is obscured by the mostly constant cost of running Tersect once per genomic 
interval, especially for larger partition sizes. These costs have to be weighed 
against the intended request handling speed (see Figure 4-3) when selecting 
the partition sizes for a particular data set. See Table B-1 for the numeric 
results and Figure B-1 for equivalent data measured for the human data set
 .................................................................................................................. 73 

Figure 4-6: Response time as a function of the number of genomes used in 
phylogeny inference requests for the tomato (A) and human (B) data sets. 
The smallest precomputed partition size used was 1 Mbp for both data sets. 
Twenty requests were made for each tested number of genomes, using 
random subsets of the total genome set and random chromosomal intervals 
(with the length of 10 Mbp) for each request. ............................................ 75 

Figure 4-7: Potential introgression from S. pim LYC2798 or a similar donor into 
the LA2706 (MoneyMaker) and LYC1365 (AllRound) cultivars. The 
introgression, visible against a background of other tomato cultivars, spans 
from approximately 40.50 Mbp to 42.45 Mbp on chromosome 6. Both 
affected cultivars cluster closely with the potential donor within a sharply 
delineated interval. Note that the Introgression Browser article reports the 
same introgression as beginning at 36.75 Mbp, but that is due to its use of 
an older version of the tomato reference (SL2.40). ................................... 76 

Figure 4-8: TGRC gene annotation used to highlight different alleles of the tomato 
uniform ripening gene in Tersect Browser visualisations. The two alleles of 
the gene are marked in red (-- allele) and green (+ allele). The top plot covers 
the first 10 Mbp of chromosome 10, and its phylogenetic tree structure shows 
no obvious relationship with the alleles. The bottom plot covers a smaller 
interval on the same short arm of chromosome 10. The 200 kbp interval 
(2,195,000 – 2,395,000) is centred on the uniform ripening gene locus, and 
it can be seen that the accessions now cluster more closely according to their 
alleles. ....................................................................................................... 77 

  



ix 

LIST OF TABLES 

Table 2-1: Areas in the SGN-hosted resequenced genomes which contain 
variants requiring correction. The areas correspond to the scaffolds which 
were reversed between versions SL2.40 and SL2.50 of the tomato reference 
genome. ..................................................................................................... 13 

Table 2-2: Comparison of the order and orientation of chromosome 9 scaffolds 
between the SL2.40 (based on linkage mapping) genome build, the Shearer 
et al. article (based on BAC-FISH), and the SL2.50 genome build (based on 
the Shearer et al. article). The "reversed" scaffolds were reversed relative to 
their orientation in the SL2.40 build. .......................................................... 18 

Table 2-3: Comparison of the order and orientation of chromosome 12 scaffolds 
between the SL2.40 genome build (based on linkage mapping), the Shearer 
et al. article (based on BAC-FISH), and the SL2.50 genome build (based on 
the Shearer et al. article). The “reversed” scaffolds were reversed relative to 
their orientation in the SL2.40 build. .......................................................... 19 

Table 2-4: Comparison of inter-scaffold gap sizes between the SL2.50 genome 
build and the Shearer et al. BAC-FISH results. The “SL2.50” gap sizes are 
based on the build AGP files, while the “BAC-FISH” gap sizes are based on 
the corrected gap size estimates from the Shearer et al. publication. For each 
pair of scaffolds, “SCAFFOLD A” is the one closer to the short arm of the 
chromosome, and “SCAFFOLD B" is the one closer to the long arm of the 
chromosome. The values of “0” for BAC-FISH replace negative values post-
correction. “N/A” entries appear for pairs of scaffolds which are neighbours 
only in the SL2.50 assembly or the Shearer et al. article, but not in both; this 
is due to the issues with scaffold ordering on chromosome 9 described earlier 
in this section. Particularly large discrepancies in gap sizes are marked in 
bold. ........................................................................................................... 20 

Table 2-5: Size of intervals (in kbp) mapped between pseudomolecules 
(destination chromosomes 0 to 6) during lift over from version SL2.40 of the 
tomato genome to SL4.0 using SeqRemap. .............................................. 29 

Table 2-6: Size of intervals (in kbp) mapped between pseudomolecules 
(destination chromosomes 7 to 12) during lift over from version SL2.40 of the 
tomato genome to SL4.0 using SeqRemap. .............................................. 29 

Table 3-1: Private variant identification benchmark results. ............................. 47 

Table 3-2: Intersection benchmark results. ...................................................... 48 

Table 3-3: Tersect index build metrics. ............................................................. 49 

 

 

  



x 

LIST OF ABBREVIATIONS 

AGP A Golden Path 

API Application programming interface 

AST Abstract syntax tree 

BAC-FISH Bacterial artificial chromosome fluorescent in situ hybridisation  

BGI Beijing Genomics Institute 

CRISPR Clustered regularly interspaced short palindromic repeats 

CSS Cascading Style Sheets 

CSV Comma-separated values 

DOM Document Object Model 

EMS Ethyl methanesulfonate 

FISH Fluorescent in situ hybridisation 

GATK Genome Analysis Toolkit 

GBS Genotyping-by-sequencing 

IGSR The International Genome Sample Resource 

JSON JavaScript Object Notation 

KASP Kompetitive allele specific PCR 

NGS Next-generation sequencing 

ODM Object Document Mapping 

PNG Portable Network Graphics 

QTL Quantitative trait locus 

RAM Random-access memory 

REST Representational state transfer 

SGN Sol Genomics Network 

SIMD Single instruction, multiple data 

SNV Single-nucleotide variant 

TGRC C.M. Rick Tomato Genetics Resource Center 

VCF Variant Call Format 

WAH Word-aligned hybrid (compression) 

WHATWG Web Hypertext Application Technology Working Group 

XOR Exclusive disjunction 

  

  



xi 

  



 

1 

1 INTRODUCTION 

1.1 Background 

Genome sequencing and assembly projects are of central importance to modern 

biological research, with the development of a reference genome for an organism 

representing a particularly essential milestone for research related to that 

organism. A reference genome is crucial not only because of the genetic 

information it contains, but also because it serves as an ostensibly static point of 

reference for other information. Annotations, resequenced genomes, and other 

data sets can be described in terms of the reference genome, using its features 

and coordinates to characterise and locate their own contents. However, due to 

the size, complexity, ploidy, and repetitiveness of most eukaryotic genomes, their 

de novo assemblies, based on current sequencing technologies, do not generally 

reach the stage of absolute “completeness”, and they often retain known 

imperfections such as gaps and scaffolds of unknown chromosomal position or 

orientation (Muñoz et al., 2013). They may also contain hidden errors such as 

mis-assemblies or contamination. As new data, platforms, and methods become 

available, these problems can be addressed, resulting in incremental 

improvements to the reference sequence (Sedlazeck et al., 2018). Still, this also 

means that a reference genome is not yet, in practical terms, a truly static point 

of reference. 

Improvements to a reference genome, while generally desirable, invalidate 

derivative data sets which depend on a previous version of the sequence. To 

correct this, the data sets need to be updated to match the new reference. Large 

sets of resequenced genomes, such as those publicly available for tomato (S. 

Aflitos et al., 2014; Lin et al., 2014) and human (1000 Genomes Project 

Consortium, 2015) can pose particular difficulties here. Repeating the whole 

process of alignment and variant calling for each of the genomes whenever a 

new version of the reference is released, as has been done with human genomes 

from the 1000 Genomes Project (Zheng-Bradley et al., 2017), can be considered 

the gold standard approach, but it is also very computationally expensive, with 

the overall cost increasing with each new resequenced genome. This incentivises 
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the use of quicker, less expensive solutions, such as simply converting the 

coordinates between assemblies, usually based on pairwise alignment between 

them, a process often called “lift-over”. Tools like NUCmer (Marçais et al., 2018) 

and CrossMap (Zhao et al., 2014) are commonly used for lift-over, as are custom 

solutions developed for particular genome assembly projects. However, as the 

lift-over process is potentially error-prone, extra care should be taken to validate 

the results and make note of any artefacts which may arise. Work undertaken as 

part of this thesis, detailed in Chapter 2, led to the discovery of significant errors 

introduced into resequenced tomato genome data through lift-over, which 

highlighted certain important considerations in the processing and validation of 

such large data sets. 

Besides simple validation and correctness, a further consideration when dealing 

with large sets of resequenced genomes is the performance and flexibility of tools 

used to process them. In particular, there exist multiple tools that allow for 

comparing variant content between genomes, such as BCFtools (Danecek et al., 

2021), BEDOPS (Neph et al., 2012), and BEDTools (Quinlan & Hall, 2010). 

However, they are not optimized for the use of large numbers of genomes, such 

as those hosted for tomato by SGN, offering limited flexibility in queries and slow 

performance in such scenarios. Addressing this gap by investigating algorithms 

suitable for flexible, high-performance variant content comparison between large 

numbers of resequenced genomes, and ultimately implementing them in a 

lightweight software tool, was a central goal of this work, culminating in the 

development of Tersect, detailed in Chapter 3. 

Nevertheless, performance improvement is ultimately not a goal in itself. The real 

goal is improving productivity, and human time is more valuable than computer 

time, especially among skilled researchers. The high performance of Tersect, as 

a specialised command-line utility, is only accessible in a direct manner to 

bioinformaticians. In order to share its benefits with the larger biological research 

community, the tool needs to be integrated into some larger system. This 

reasoning is in fact inherent in the design of Tersect as a small, self-contained 

utility, following the UNIX-style system design principles of modularity and 
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composability (Pike & Kernighan, 1984). In the academic context this approach 

has the additional benefit of isolating interesting research problems, such as (for 

Tersect) the development of highly efficient methods for the comparison of variant 

sets in resequenced genomes. Such self-contained software packages can be 

published with a sharp focus on the knowledge gaps being addressed, without 

the distraction of a larger, monolithic application which would, by necessity, 

contain many scientifically uninteresting elements as well. The software can 

subsequently be integrated into the aforementioned larger system (or multiple 

such systems), which can then address different research problems, while 

providing functionalities and, most importantly, interfaces that non-

bioinformaticians can interact with to improve their own productivity. 

It follows that an important threshold to be aimed at when it comes to performance 

improvement is one of interactivity. The change from working with a sequence of 

non-interactive (passive) visualisations over a longer time period to engaging with 

an interactive system is not trivial. The change is qualitative, rather than merely 

quantitative, even though making it possible depends on the entirely quantitative 

measure of latency, itself a product of the system’s performance (Godfrey et al., 

2016). With latencies on the order of seconds rather than minutes or hours, users 

can actively explore and engage with the data, with each transformation of the 

data informing the next while fresh in the user’s mind. Sub-second latencies are 

commonly suggested in research on human-computer interaction as the 

benchmark for a fluid user experience (Shneiderman, 1984), although in practice 

this can be difficult to achieve with large data sets. 

The above means that, depending on the context and distance from the 

interactivity threshold, minor performance improvements to relatively quick 

operations could, in some circumstances, be considered more significant than 

major performance improvements to slow operations. For example, speeding up 

the generation of a visualisation from 100 hours to 2 hours might not have as 

much of an impact as speeding one up from 100 seconds to 2 seconds, even 

though in absolute terms the performance improvement is much larger in the first 

scenario, while in relative terms the improvement is the same in both (a factor of 
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fifty). In the former scenario, visualisation remains a passive process, and 

iterative work with the data would require scheduling separate sessions (at least 

2 hours apart – likely longer in practice) to interpret results. In the latter, 2 seconds 

of latency may be sufficient for interactive work, while having to wait 100 seconds 

for each step would be too slow for active engagement. 

A situation of this sort became evident during research to which the author was 

a contributor, which aimed to map a tomato gene involved in genetic control of 

inflorescence branching, bifurcate flower truss (Silva Ferreira et al., 2018). A tool 

called Introgression Browser was used to demonstrate the origin of the mutant 

allele of interest as an introgression from a wild species, Solanum galapagense. 

This was achieved through visualising the genetic distance and phylogenetic 

relationships in a mapped interval of interest between a mutant line resequenced 

by Cranfield University and publicly available data on resequenced tomato 

genomes, which included closely related wild species (S. Aflitos et al., 2014; Lin 

et al., 2014). 

This was, however, an iterative process, as such visualisations are sensitive to 

the set of genomes used, as well as to the exact position of the interval and its 

segmentation. With each visualisation requiring command-line setup and several 

hours of computation, the overall process of creating the final images took a long 

time and required coordination and consultation between multiple collaborators. 

Steps were undertaken to automate the Introgression Browser plot generation 

setup and improve the speed of visualisation, but despite some performance 

improvements the overall process remained thoroughly non-interactive. It was 

clear that a different algorithmic approach was required to offer the same 

functionality to biologists as an interactive tool. 

Because Tersect is well-optimized for the operations required to calculate genetic 

distance (and, consequently, to infer phylogenies), namely the enumeration of 

discordant sites, this problem was an ideal use case for the tool. Combined with 

other algorithmic approaches commonly used for interactive visualisation in large 

data sets (Godfrey et al., 2016), primarily the precomputation and aggregation of 

indexed partial results, it was used to develop Tersect Browser, an interactive 
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Web application for visualising genetic distance and phylogenetic relationships 

between large numbers of resequenced genomes, as detailed in Chapter 4. 

Alongside providing its core functionality to the biologist community, Tersect 

Browser would also serve as a testbed for assessing the limitations of this 

approach, which could suggest future algorithmic improvements. 

1.2 Aim and objectives 

The overall aim of this thesis was to develop flexible, high-performance 

bioinformatics tools for low-level manipulation of large sets of resequenced 

genomic data, alongside developing methods of interactively applying those tools 

to solving higher-level biological problems related to genome structure and 

phylogenetic relationships. 

Three more specific objectives were defined as follows: 

1. Investigate issues associated with maintaining the integrity of 

resequenced genome data sets across different types of processing to 

ensure the continued validity of data. 

2. Develop and evaluate low-level software optimized for high-performance 

manipulation and comparison of large numbers of resequenced eukaryotic 

genomes. 

3. Develop and evaluate a tool for comparing large numbers of resequenced 

genomes and interactively visualising the phylogenetic relationships and 

genetic distances across their chromosomal structures. 

Note that the objectives depend on each other in sequence, with the second and 

third objectives relying on data validity investigated as part of the first objective, 

and the tool developed to fulfil the third objective relying on the lower-level 

software developed to fulfil the second objective. 

The “evaluation” component of the second and third components relates to 

measuring their performance as well as the identification of potential limitations, 

which may inform future work on further improving the algorithms which were 

used. 
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1.3 Thesis outline 

The thesis uses a “paper format”, with chapters 2, 3, and 4 being organised as 

distinct, self-contained publications forming part of a larger body of research. An 

overview of the contents of each chapter is given below: 

Chapter 1 discusses the general background of the work, the research gaps 

addressed by the individual blocks of work described in the following chapters, 

and how those blocks fit together, as well as the specific aims and objectives as 

well as the structure of the thesis. 

Chapter 2 comprises a report, formatted as a publication, which was circulated 

to address issues with publicly maintained resequenced tomato genome data 

sets, as well as certain apparent deficiencies of one version of the tomato 

reference genome. Errors introduced by a failed lift-over process are diagnosed 

in detail and solutions are provided. This chapter relates to Objective 1. 

Chapter 3 presents a peer-reviewed publication which introduces Tersect, a 

high-performance set theoretical utility for exploring sequence variant data. This 

chapter relates to Objective 2, and the publication is cited below: 

Tomasz J Kurowski, Fady Mohareb, Tersect: a set theoretical utility for 

exploring sequence variant data, Bioinformatics, Volume 36, Issue 3, 1 

February 2020, Pages 934–935 

Chapter 4 presents a publication manuscript intended for submission in the near 

future. It introduces Tersect Browser, a Web application which leverages 

specialized bioinformatics solutions (including Tersect) to provide an interactive 

visualisation system for the comparison of large numbers of resequenced 

genomes. This chapter relates to Objective 3. 

Chapter 5 constitutes an overall discussion of the work, with particular focus on 

the real-world applications of the individual outputs, reasoning about the 

limitations of the implemented solutions based on a critical evaluation of their 

performance, and considerations of likely future work and improvements. 
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2 CORRECTING AND VALIDATING VARIANT DATA 

LIFT-OVER IN RESEQUENCED TOMATO GENOMES 

2.1 Abstract 

2.1.1 Summary 

The tomato reference genome hosted and maintained by the Sol Genomics 

Network is an invaluable resource for plant scientists. Sets of resequenced 

genomes of various tomato lines and close wild relatives mapped to that 

reference are also valuable, providing insights about the history of tomato 

evolution and breeding, as well as representing a repository of data on the 

genomic diversity in tomatoes and a point of comparison for researchers working 

with their own resequenced genomes. The tomato reference genome has seen 

several improved releases over the years. After it was updated from version 

SL2.40 to SL2.50, resequenced genomes hosted by SGN were updated to match 

the new version. However, due to the nature of the lift-over process used, this 

introduced errors into this publicly available repository, which went undetected 

and uncorrected for nearly seventeen months. This publication reports on the 

detection, diagnosis, and ultimately the correction of those lift-over errors, and 

discusses their primary causes. It also introduces SeqRemap, a Python utility 

based on the validation and correction scripts developed during this process, 

which allows for fast, multi-threaded updates of coordinates in large numbers of 

resequenced genomes. 

2.1.2 Availability 

SeqRemap was released under the MIT license and is freely available at 

https://bitbucket.org/cranfieldbix/seqremap.  

  

https://bitbucket.org/cranfieldbix/seqremap
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2.2 Introduction 

The tomato reference genome is hosted and maintained by the Sol Genomics 

Network and has seen continuous updates since the initial build of version SL1.00 

in December 2009, although the version described in the initial article announcing 

the release of the tomato reference genome was SL2.40 (Sato et al., 2012). 

Three more versions have been released since then (SL2.50, SL3.00, and 

SL4.00), with the latest having been assembled de novo from PacBio long reads 

and scaffolded using Hi-C contact maps, as well as validated using Bionano 

optical maps and 10x linked-read sequences (Hosmani et al., 2019). 

SGN also hosts and maintains two large sets of resequenced tomato data, one 

containing 84 tomato accessions from the 150 Tomato Genome ReSequencing 

Project (S. Aflitos et al., 2014), and the other containing 360 tomato accessions 

by the Agricultural Genomic Institute at Shenzhen (Lin et al., 2014). They are 

available for download as VCF files and viewable through a JBrowse genome 

browser, which is a resource widely consulted by biologists who conduct research 

on tomatoes, e.g., as a reference for designing KASP markers or CRISPR 

targets. 

Both data sets have originally been generated using SL2.40 as the reference, but 

they were later updated to version SL2.50, which was released in February 2014. 

According to VCF metadata, this update happened in April 2015, and both 

updated data sets were then shared with the research community. A custom tool 

(Bio-GenomeUpdate, https://github.com/solgenomics/Bio-GenomeUpdate) was 

used to update (lift) variant coordinates from SL2.40 to SL2.50. 

The gold standard approach for updating variants to a different version of an 

assembly would be to simply repeat the entire alignment and variant calling 

pipeline, as has been done for human genomes from the 1000 Genomes Project, 

which were eventually remapped from their original GRCh37 reference to 

GRCh38 (Zheng-Bradley et al., 2017), although it should be noted that before 

that happened, dbSNP also simply lifted the variants to GRCh38 coordinates, 

which served as a temporary solution. Remapping is computationally expensive, 

especially for large numbers of genomes, but it avoids potential issues with the 

https://github.com/solgenomics/Bio-GenomeUpdate
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simple lift-over of coordinates, such as old variant calls no longer matching where 

the reference underwent significant structural or sequence changes, or regions 

which were not present in the previous version missing variants which would have 

been called at those locations. 

However, the use of coordinate lift-over was more justified in the update of 

variants from SL2.40 to SL2.50 than it would be in most circumstances. The 

reference improvements were based on BAC-FISH and optical mapping results, 

which were aimed at establishing a more accurate ordering of scaffold 

sequences, as well as determining their orientation, and estimating the size of 

gaps between scaffolds (Shearer et al., 2014).  

Therefore, the reference version update involved no change in any contiguous 

sequences and no sequence data were added or removed. The only changes 

were scaffolds changing position and orientation, and gap sizes being increased 

from an invariant, placeholder representation of one hundred unknown (N) bases 

placed between each pair of scaffolds to much larger estimates (the total 

pseudomolecule length increased from 781.67 Mbp to 823.94 Mbp, but all the 

added length consisted of unknown bases, representing gaps of a now known 

size). In principle, this meant that coordinate lift-over would be safe from the 

aforementioned issues and essentially equivalent to a complete remapping of the 

data, at a much lower computational cost. 

Early work on a variant set comparison utility, eventually released as Tersect 

(Kurowski & Mohareb, 2019), identified discrepancies in the resequenced tomato 

genomes hosted by SGN. These discrepancies were investigated, leading to a 

discovery that the lift-over process was not executed correctly, and the variants 

listed were in fact incompatible with the SL2.50 reference genome in a number 

of locations. Additionally, certain differences between the SL2.50 reference and 

the published work it was based on were also identified. 

This report documents the issues which were detected, the means of their 

diagnosis, the steps taken to correct them, and the tools developed for this 

purpose. Its initial version was compiled to notify SGN of the issue and to assist 

in correcting the problems with the resequenced tomato data. 
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2.3 Resequenced genome issues 

When novel resequencing data sets generated at Cranfield University and based 

on the SL2.50 tomato reference were compared to resequenced genomes hosted 

by SGN it was discovered that in most chromosomes there exist large and very 

sharply delineated regions (see Figure 2-1) where the Cranfield results did not 

share a single variant with any of the hundreds of available genomes. 

 

Figure 2-1: Positions of "problem areas" where the reference alleles listed in the 

resequenced genome VCF files hosted by SGN do not match the SL2.50 sequence, 

marked in red along the length of chromosomes. 

Through a direct comparison – initially manual, then automated and confirmed 

via a command shell script – between the data fields contained in the VCF files 

hosted by SGN and the sequences in the reference FASTA files, it was found 

that the reference sequence (REF) fields of variants in the problematic regions 

do not match the SL2.50 reference genome, indicating that they are invalid. While 
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the REF sequences matched a complementary sequence on the other strand, 

the VCF specification does not provide any way to indicate strandedness and all 

variants in VCF files are generally assumed to refer to the forward reference 

sequence strand. 

It was then observed that the problematic regions correspond to scaffolds which 

were reversed when the genome was updated from version SL2.40 to SL2.50 

(see Figure 2-2, Figure 2-3, and Figure 2-4). It became apparent that while VCF 

variant coordinates were updated based on the scaffold re-ordering and 

re-orientation, the REF and alternate allele (ALT) sequences of variants in 

re-oriented regions have not been modified to account for the fact that the 

sequence they were originally based on was now on the complementary strand. 

The problem areas are listed in Table 2-1 using SL2.50 coordinates. The 

SGN-hosted variants within those regions required correction. 

Table 2-1: Areas in the SGN-hosted resequenced genomes which contain variants 

requiring correction. The areas correspond to the scaffolds which were reversed 

between versions SL2.40 and SL2.50 of the tomato reference genome. 

CHROMOSOME SCAFFOLD START POSITION END POSITION SIZE 

1 SL2.40sc03666 39,120,195 41,754,221 2.6 Mbp 

2 SL2.40sc04732 1 1,697,214 1.7 Mbp 

2 SL2.40sc04208 2,039,815 3,448,441 1.4 Mbp 

3 SL2.40sc04822 43,731,686 47,848,114 4.1 Mbp 

3 SL2.40sc06911 61,146,040 61,496,644 0.4 Mbp 

4 SL2.40sc05339 11,890,154 13,863,001 2.0 Mbp 

4 SL2.40sc03683 14,334,282 31,929,985 17.6 Mbp 

5 SL2.40sc06155 42,974,962 47,280,334 4.3 Mbp 

6 SL2.40sc06140 10,945,928 11,636,816 0.7 Mbp 

6 SL2.40sc05188 28,400,004 30,805,544 2.4 Mbp 

8 SL2.40sc03749 10,420,999 11,910,359 1.5 Mbp 

8 SL2.40sc04236 12,010,360 26,652,460 14.6 Mbp 

8 SL2.40sc03835 26,690,811 35,108,918 8.4 Mbp 

8 SL2.40sc04701 36,082,319 43,105,760 7 Mbp 

9 SL2.40sc04950 26,613,875 32,385,151 5.8 Mbp 

11 SL2.40sc03752 27,858,571 45,260,389 17.4 Mbp 

12 SL2.40sc04057 36,352,265 61,516,839 25.0 Mbp 
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Figure 2-2: Filtered dot plots comparing the SL2.50 (x-axis) and SL2.40 (y-axis) 

sequences of chromosomes 1, 2, 3, and 4 alongside respective "problem areas". 

The blue lines represent reverse complement sequences, indicating the presence of 

reversed scaffolds. The two reversed sequences at the start of chromosome 2 

effectively form a single "problem area". 
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Figure 2-3: Filtered dot plots comparing the SL2.50 (x-axis) and SL2.40 (y-axis) 

sequences of chromosomes 5, 6, 7, and 8 alongside respective "problem areas". 

The blue lines represent reverse complement sequences, indicating the presence of 

reversed scaffolds. Note that chromosome 7 includes no reversed scaffolds and thus no 

problem areas. The group of four neighbouring reversed scaffolds in chromosome 8 form 

a largely contiguous "problem area". 
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Figure 2-4: Filtered dot plots comparing the SL2.50 (x-axis) and SL2.40 (y-axis) 

sequences of chromosomes 9, 10, 11, and 12 alongside respective "problem 

areas". The blue lines represent reverse complement sequences, indicating the 

presence of reversed scaffolds. Chromosome 10 includes re-arranged scaffolds but no 

reversed scaffolds and as a result it exhibits no "problem areas". The largest scaffold in 

chromosome 12 was reversed; this may be an error in the SL2.50 build (see Reference 

genome issues). 
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2.4 Reference genome issues 

During the investigation of the origins of the VCF file issues described in this 

report, two discrepancies in the positions and order of scaffolds between the 

SL2.50 build of the tomato reference genome and the paper that the genome 

build was based on were found. In addition, in multiple locations the SGN 

document describing the changes (SGN, 2014) matches neither the Shearer et 

al. paper nor the SL2.50 build, which suggests that the differences are the result 

of errors in the genome update process rather than justified but undocumented 

changes. The discrepancies were found in genomes 9 and 12 and are described 

below. 

As shown in Figure 2-5 and detailed in Table 2-2, in chromosome 9 as present 

in the SL2.50 build of the reference genome, the smallest (93 kbp) scaffold 

SL2.40sc06916 is located at the very end, while the Shearer et al. BAC-FISH 

results indicated that its position should be between scaffolds SL2.40sc04777 

and SL2.40sc05269. 

 

Figure 2-5: Diagram of the Chromosome 9 scaffold order and orientation in the 

SL2.40 reference, according to the Shearer et al. paper (FISH), and in the SL2.50 

reference. Reversed red arrows indicate scaffolds which are reversed compared to 

SL2.40. The relative scaffold sizes are to scale except for scaffold 2 (SL2.40sc6916) 

which would have been too small to see clearly. Gap sizes are omitted. 

The discrepancy in chromosome 12 seems much more significant. As shown in 

Figure 2-6 and detailed in Table 2-3, it appears that while the scaffold order is 

consistent with the one suggested by Shearer et al., scaffold SL2.40sc04057 (the 

largest in the chromosome, at 25.2 Mbp) was reversed instead of scaffold 

SL2.40sc04039, resulting in two large sections of chromosome 12 being oriented 

incorrectly. 
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Table 2-2: Comparison of the order and orientation of chromosome 9 scaffolds 

between the SL2.40 (based on linkage mapping) genome build, the Shearer et al. 

article (based on BAC-FISH), and the SL2.50 genome build (based on the Shearer 

et al. article). The "reversed" scaffolds were reversed relative to their orientation in the 

SL2.40 build. 

SCAFFOLD # SCAFFOLD SIZE 
SCAFFOLD ORDER 

SL2.40 BAC-FISH SL2.50 
1 SL2.40sc03771 19 Mbp 1 1 1 
2 SL2.40sc06916 0.1 Mbp 2 4 4 
3 SL2.40sc04950 5.8 Mbp 3 3 reversed 3 reversed 
4 SL2.40sc04008 5.2 Mbp 4 5 5 
5 SL2.40sc04785 2.0 Mbp 5 6 6 
6 SL2.40sc04777 28.2 Mbp 6 2 7 
7 SL2.40sc05269 2.7 Mbp 7 7 8 
8 SL2.40sc03852 1.3 Mbp 8 8 9 
9 SL2.40sc04828 2.5 Mbp 9 9 10 

10 SL2.40sc06214 0.6 Mbp 10 10 2 

 

 

Figure 2-6: Diagram of the Chromosome 12 scaffold order and orientation in the 

SL2.40 reference, according to the Shearer et al. paper (FISH), and in the SL2.50 

reference. Reversed red arrows indicate scaffolds which are reversed compared to 

SL2.40. The relative scaffold sizes are to scale. Gap sizes are omitted. 

The order of the scaffolds suggests that the issue might have been caused by an 

improper order of operations when the chromosome was updated, as it was the 

third scaffold which was reversed – but it was the third scaffold after re-ordering, 

instead of the third scaffold before re-ordering. 

The inter-scaffold gap sizes estimated by Shearer et al. were also found not to 

be fully consistent with the ones present in the SL2.50 build. This can be seen in 

Table 2-4. Most of the discrepancies appear to be due to rounding errors, as the 

values reported by Shearer et al. were rounded to the nearest 100 kbp, while the 

values included in the SL2.50 build appear to have been re-calculated to a higher 
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level of precision. However, for six of the gaps the discrepancies are larger than 

200 kbp, suggesting that rounding may not be their only cause. Additionally, the 

convention used by the SL2.50 release for gaps which are very small or, possibly, 

of an unknown size, appears to be applied inconsistently. Some of such gaps 

were given the size of 100 bp, which is a common convention suggested by the 

AGP format specification (NCBI, 2019), while others were given the size of 

100 kbp. 

Table 2-3: Comparison of the order and orientation of chromosome 12 scaffolds 

between the SL2.40 genome build (based on linkage mapping), the Shearer et al. 

article (based on BAC-FISH), and the SL2.50 genome build (based on the Shearer 

et al. article). The “reversed” scaffolds were reversed relative to their orientation in the 

SL2.40 build. 

SCAFFOLD # SCAFFOLD SIZE 
SCAFFOLD ORDER 

SL2.40 BAC-FISH SL2.50 
1 SL2.40sc04607 16.1 Mbp 1 1 1 

2 SL2.40sc04878 5.7 Mbp 2 8 8 

3 SL2.40sc04057 25.2 Mbp 3 7 reversed 7 

4 SL2.40sc04915 1.6 Mbp 4 2 2 

5 SL2.40sc04757 5.7 Mbp 5 6 6 

6 SL2.40sc04266 1.3 Mbp 6 5 5 

7 SL2.40sc04039 4.9 Mbp 7 3 3 reversed 

8 SL2.40sc06147 1.2 Mbp 8 4 4 

9 SL2.40sc05611 1.2 Mbp 9 9 9 

10 SL2.40sc05380 2.5 Mbp 10 10 10 

It is difficult to say whether the gap size differences described in the previous 

paragraph are the result of errors or informed data curation, as the SL2.50 

release makes no reference to them (SGN, 2014). However, they are not directly 

related to the lift-over errors addressed in this work, as they result only in shifts 

in position, without any sequence re-orientation. 
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Table 2-4: Comparison of inter-scaffold gap sizes between the SL2.50 genome 

build and the Shearer et al. BAC-FISH results. The “SL2.50” gap sizes are based on 

the build AGP files, while the “BAC-FISH” gap sizes are based on the corrected gap size 

estimates from the Shearer et al. publication. For each pair of scaffolds, “SCAFFOLD A” 

is the one closer to the short arm of the chromosome, and “SCAFFOLD B" is the one 

closer to the long arm of the chromosome. The values of “0” for BAC-FISH replace 

negative values post-correction. “N/A” entries appear for pairs of scaffolds which are 

neighbours only in the SL2.50 assembly or the Shearer et al. article, but not in both; this 

is due to the issues with scaffold ordering on chromosome 9 described earlier in this 

section. Particularly large discrepancies in gap sizes are marked in bold. 

CHROMOSOME # SCAFFOLD A SCAFFOLD B GAP [bp] 

SL2.50 BAC-FISH 
1 SL2.40sc04133 SL2.40sc04191 2280000 2400000 

1 SL2.40sc04191 SL2.40sc03666 2130000 1900000 

1 SL2.40sc03666 SL2.40sc03594 570000 600000 

1 SL2.40sc03594 SL2.40sc05010 2120000 2200000 

1 SL2.40sc05010 SL2.40sc05941 510000 300000 

1 SL2.40sc05941 SL2.40sc06917 250000 300000 

1 SL2.40sc06917 SL2.40sc06903 170000 200000 

1 SL2.40sc06903 SL2.40sc04323 210000 200000 

2 SL2.40sc04732 SL2.40sc04208 342600 400000 

2 SL2.40sc04208 SL2.40sc05776 100000 0 

2 SL2.40sc05776 SL2.40sc06593 100000 0 

2 SL2.40sc06593 SL2.40sc04142 3046250 3200000 

2 SL2.40sc04142 SL2.40sc03766 493900 500000 

2 SL2.40sc03766 SL2.40sc03665 1340000 1400000 

3 SL2.40sc04439 SL2.40sc04696 87200 100000 

3 SL2.40sc04696 SL2.40sc05330 100000 0 

3 SL2.40sc05330 SL2.40sc04126 316000 300000 

3 SL2.40sc04126 SL2.40sc04616 2580500 4700000 

3 SL2.40sc04616 SL2.40sc06725 163800 200000 

3 SL2.40sc06725 SL2.40sc04704 741050 800000 

3 SL2.40sc04704 SL2.40sc03721 1094500 200000 

3 SL2.40sc03721 SL2.40sc04822 100 0 

3 SL2.40sc04822 SL2.40sc03806 615000 600000 

3 SL2.40sc03806 SL2.40sc03796 100000 0 

3 SL2.40sc03796 SL2.40sc06911 70000 100000 

3 SL2.40sc06911 SL2.40sc03701 80000 100000 

4 SL2.40sc03604 SL2.40sc05339 296850 300000 

4 SL2.40sc05339 SL2.40sc03683 471280 400000 

4 SL2.40sc03683 SL2.40sc06101 84400 100000 

4 SL2.40sc06101 SL2.40sc04680 29400 0 

4 SL2.40sc04680 SL2.40sc04135 1525200 1600000 

5 SL2.40sc03726 SL2.40sc06155 853750 900000 



 

21 

5 SL2.40sc06155 SL2.40sc03902 100 800000 

6 SL2.40sc04474 SL2.40sc06140 2344700 2400000 

6 SL2.40sc06140 SL2.40sc05383 616250 600000 

6 SL2.40sc05383 SL2.40sc04279 349750 400000 

6 SL2.40sc04279 SL2.40sc05188 100000 0 

6 SL2.40sc05188 SL2.40sc05732 100000 0 

6 SL2.40sc05732 SL2.40sc05054 100000 0 

6 SL2.40sc05054 SL2.40sc03622 100000 0 

7 SL2.40sc03731 SL2.40sc05397 385300 400000 

7 SL2.40sc05397 SL2.40sc03685 2291400 2400000 

7 SL2.40sc03685 SL2.40sc04626 100000 0 

8 SL2.40sc04813 SL2.40sc03770 100000 0 

8 SL2.40sc03770 SL2.40sc04167 518500 500000 

8 SL2.40sc04167 SL2.40sc03749 259000 300000 

8 SL2.40sc03749 SL2.40sc04236 100000 0 

8 SL2.40sc04236 SL2.40sc03835 38350 50000 

8 SL2.40sc03835 SL2.40sc04701 973400 1000000 

8 SL2.40sc04701 SL2.40sc04948 802300 800000 

8 SL2.40sc04948 SL2.40sc03923 43250 0 

9 SL2.40sc03771 SL2.40sc04008 1466000 1500000 

9 SL2.40sc04008 SL2.40sc04950 725500 800000 

9 SL2.40sc04950 SL2.40sc04785 1053250 1100000 

9 SL2.40sc04785 SL2.40sc04777 1250800 1300000 

9 SL2.40sc04777 SL2.40sc05269 100000 N/A 

9 SL2.40sc05269 SL2.40sc03852 100000 0 

9 SL2.40sc03852 SL2.40sc04828 49950 0 

9 SL2.40sc04828 SL2.40sc06214 75300 100000 

9 SL2.40sc06214 SL2.40sc06916 100 N/A 

9 SL2.40sc04777 SL2.40sc06916 N/A 0 

9 SL2.40sc06916 SL2.40sc05269 N/A 0 

10 SL2.40sc05925 SL2.40sc03798 100000 0 

10 SL2.40sc03798 SL2.40sc04872 393600 400000 

10 SL2.40sc04872 SL2.40sc05632 100000 0 

10 SL2.40sc05632 SL2.40sc04199 100000 100000 

10 SL2.40sc04199 SL2.40sc04534 100 0 

11 SL2.40sc03748 SL2.40sc06763 353000 400000 

11 SL2.40sc06763 SL2.40sc04054 534000 600000 

11 SL2.40sc04054 SL2.40sc03752 1310000 1400000 

11 SL2.40sc03752 SL2.40sc06137 70000 100000 

11 SL2.40sc06137 SL2.40sc03876 650000 700000 

12 SL2.40sc04607 SL2.40sc06147 175000 200000 

12 SL2.40sc06147 SL2.40sc04039 100000 0 

12 SL2.40sc04039 SL2.40sc04878 86000 100000 

12 SL2.40sc04878 SL2.40sc04266 554200 600000 

12 SL2.40sc04266 SL2.40sc04757 474550 500000 

12 SL2.40sc04757 SL2.40sc04057 100 800000 

12 SL2.40sc04057 SL2.40sc04915 100000 0 

12 SL2.40sc04915 SL2.40sc05611 70000 100000 
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12 SL2.40sc05611 SL2.40sc05380 100000 0 

2.5 Results 

2.5.1 SNV corrections 

The correction of SNVs was trivial, as it required only the change of REF and ALT 

alleles to complementary bases. No position adjustment was necessary since the 

position (POS) column refers directly to the affected base, and no actual 

sequence reversal was needed due to only individual bases being altered. 

The VCF files for the BGI 360 genomes contain only SNVs with no other type of 

variants included. This made correcting them straightforward, as the only 

modification required was changing allele sequences to their complements. This 

can be seen in Figure 2-7, where the C→T variant required a correction to G→A.  

 

Figure 2-7: Example of an incorrect SNV in the SGN JBrowse genome browser. 

The reference allele C matches the base on the complementary (bottom) DNA strand 

rather than the reference strand. 

2.5.2 InDel corrections 

Correcting insertion and deletion (InDel) variants is considerably more 

complicated than correcting SNVs. In fact, VCF files themselves do not contain 

all the data necessary to make such corrections. This is due to the fact that the 

VCF format specification requires the affected sequence given in the REF and 

ALT fields to be preceded by at least one base not affected by the InDel event. 

In order to be corrected, InDel variants had their positions shifted towards the 

beginning of the chromosome by the number of bases in their reference alleles. 
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The first base of each REF and ALT allele was removed and the remaining 

sequences were replaced with their reverse complements. Finally, the allele 

sequences were prefixed with the preceding base retrieved from the SL2.50 

reference genome. 

Thus, the variant in Figure 2-8 was corrected from AAGGAG→AAGGAGGAG to 

ACTCCT→ACTCCTCCT and had its position shifted by six bases towards the 

beginning of the chromosome. 

 

Figure 2-8: Example of an incorrect InDel in the SGN JBrowse genome browser. 

The reference allele matches the reverse of its preceding sequence (highlighted in cyan) 

on the complementary strand, showing that both the allele sequences and their positions 

need to be corrected. 

As mentioned in the previous section, the BGI 360 genome VCF files do not 

contain any InDel variants, so this section and the associated corrections were 

only necessary for the 84 accessions from the 150 Tomato Genome 

ReSequencing Project (S. Aflitos et al., 2014; Lin et al., 2014). 

2.5.3 Annotation 

The BGI 360 genomes hosted by SGN contain no annotation data, but those from 

the 150 Tomato Genome Resequencing Project have been annotated before 

their mapping to SL2.50 (S. Aflitos et al., 2014). As this annotation was based on 

the SL2.40 sequence and used the old 'EFF field' standard (since replaced by the 
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'ANN field' standard), it was removed. All of the VCF files were then re-annotated 

using SnpEff (Cingolani et al., 2012), based on the SL2.50 annotation database. 

2.5.4 SeqRemap lift-over pipeline 

A Python utility called SeqRemap was implemented based on the validation and 

correction scripts used to solve the issues described in this report. It was 

developed to allow for multi-threaded, concurrent lift-over of variant coordinates 

between two versions of a reference genome in large numbers of VCF files at 

once. Its lift-over functionality can be used both with simple, exact contig matches 

(as in the use case described in this report) and in more complicated scenarios 

requiring whole genome alignment, in which case it attempts to address a major 

shortcoming of lift-over by filling in the gaps created by novel reference 

sequences being introduced. This is achieved through running a specialised 

variant calling pipeline on affected intervals. SeqRemap was used to perform 

lift-over of the 150 Tomato Genome Resequencing Project to the latest (SL4.0) 

version of the tomato genome for internal use at Cranfield University. 

SeqRemap is a Python-based lift-over tool capable of updating VCF variant files 

between different reference genomes (primarily different versions of the same 

reference genome), transforming variant positions and REF / ALT allele bases (if 

required) either on exact matches between contigs or on whole-genome 

alignments generated by NUCmer. The former approach is particularly 

appropriate for work-in-progress eukaryotic genomes whose anchoring and 

pseudomolecule structure, i.e., the position and orientation of contigs and 

scaffolds may be subject to change without significant changes to sequence 

contents. The latter approach is much slower (as it requires whole-genome 

alignment), but capable of handling significant differences in sequence structure 

and contents, such as those between independent de novo genome assemblies, 

including those of different, but related, species. A notable limitation in the latter 

approach, and in lift-over algorithms in general, is that novel sequences 

introduced in the destination genome, such as gaps closed in a new release of a 

reference, will be devoid of any variants in the updated VCF files, as they were 



 

25 

absent in the source genome and could not have any reads mapped to them in 

the original variant calling pipeline. 

SeqRemap seeks to address the aforementioned limitation by using a “gap 

patching” approach, in which a limited variant calling pipeline is executed on the 

novel intervals to “patch” the gaps in VCF files. The process is shown in the 

context of the full pipeline in Error! Reference source not found.. 

Whichever approach is chosen, SeqRemap is designed to allow for rapidly 

updating large numbers of VCF files in parallel through multiprocessing. 

2.5.4.1 Required inputs 

Besides the VCF files to be updated, SeqRemap requires the source and 

destination reference genome sequences as FASTA inputs. These are used to 

identify positional mappings between the two genomes, either through comparing 

sequence hashes (for exact matching) or through whole-genome alignment. As 

individual steps in the pipeline can be executed as separate scripts, it is 

technically possible to provide an externally generated NUCmer delta (or coords) 

file and skip the whole-genome alignment step of the pipeline. While this makes 

the source genome FASTA unnecessary, as it is not used in subsequent steps, 

the destination genome FASTA is always required. 

If the optional “gap patching” functionality is to be used, the BAM read alignment 

files used in the original variant calling pipeline have to be provided. The original 

read FASTQ files can also be provided, which can speed up the pipeline, 

although this is optional as the reads can also be extracted from the BAM files. 
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Figure 2-9: Diagram of the full SeqRemap lift-over pipeline as used with NUCmer 

whole-genome alignment. The “custom section” of the pipeline, marked in red, is a 

(technically optional) mapping and variant calling step that has to be set up externally by 

the user, to match the pipeline used to generate the source VCFs (as closely as 

possible), hence why the tools (bwa, bcftools) are only named as examples. It is used to 

find variants in the “gaps” introduced by novel sequence data in the destination genome. 
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2.5.4.2 Whole-genome alignment and gap patching 

With the full SeqRemap pipeline (see Error! Reference source not found.), the 

source and destination genomes are aligned to each other using NUCmer, using 

a minimum match length of 1000 bases and default settings otherwise. A “coords” 

file containing a summary of alignment region coordinates and identity 

percentages is then extracted and used to generate a “coordinate mapping” 

structure used to translate coordinates between the two sequences, and a “gap 

region” text file containing Samtools-formatted (i.e., chrom:from-to, one region 

per line) interval coordinates corresponding to areas of the destination genome 

that no area of the source genome mapped to. Such regions should correspond 

primarily to novel sequence data, absent from the source genome, and would 

result in “gaps” in resequenced genomes in a basic lift-over pipeline. And identity 

threshold of 99.9% is used to select intervals used in mapping by default, but this 

can be freely adjusted. 

SeqRemap extracts the sequences of gap regions from the destination genome 

(using samtools faidx), creating a “gap reference”. Reads (raw FASTQ files or 

reads extracted from the original BAM files used to generate the source VCFs) 

can then be mapped to this small “reference” sequence. This should be 

significantly faster than aligning to an entire genome. This alignment has to be 

executed separately by the user. The tools and settings used should ideally 

match the original pipeline used to generate the source VCF files; some of the 

settings are likely recorded in the metadata. 

Variant calling on whole-genome reads mapped to a small “gap reference” would 

likely result in very large numbers of false positives, as it would contain many 

read alignments which would have preferentially aligned elsewhere had a proper, 

whole-genome reference sequence been used. The process would also be slow 

due to the volume of data. To avert these problems, SeqRemap uses BAM files 

from the original alignment to the source genome to filter the gap reference 

alignment. Only reads whose mapping quality in the gap reference mapping is 

higher than for any mapping in the original BAM are kept. 
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Filtered gap reference BAM files are then used for variant calling. As with the 

alignment, this is to be executed separately by the user, ideally using tools and 

settings matching the original pipeline. Finally, SeqRemap merges the “gap 

reference” variant calling results with the lift-over results, effectively “patching” 

the gaps with new variants. 

It should be noted that this process is not a replacement for de novo resequencing 

using the destination genome as a reference; that remains the preferable, though 

also significantly slower, method of updating resequenced genome data sets, 

particularly variant discovery and single-variant resolution is required. However, 

this approach may be sufficient for lower-resolution approaches like bulk 

segregant analysis or phylogeny inference, where variant contents are used to 

derive some signal (e.g., one indicating selection or the presence of a potential 

introgressions) and the identity of individual variants may be less important. 

2.5.4.3 Tomato SL2.40 / SL2.50 to SL4.0 lift-over 

SeqRemap has been used internally at Cranfield to update coordinates in 

resequenced tomato genome data sets, primarily ones from the 150 Tomato 

Genome ReSequencing Project, from the SL2.50 (and SL2.40) version, which is 

the latest version of the data hosted by SGN, to the latest (SL4.0) version of the 

tomato genome. 

The size of total intervals mapped between the pairs of chromosome 

pseudomolecules of the two versions are shown in Table 2-5 and Table 2-6. It 

can be seen that the most of the change between the two genome versions 

involved assigning sequences from chromosome 0 to other pseudomolecules. 

This is expected, as the “chromosome 0” pseudomolecule in tomato assemblies 

represents sequence fragments which could not be mapped to any specific 

chromosome. These mappings thus represent gaps being filled and previously 

unplaced sequences having their location identified. 
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Table 2-5: Size of intervals (in kbp) mapped between pseudomolecules 

(destination chromosomes 0 to 6) during lift over from version SL2.40 of the 

tomato genome to SL4.0 using SeqRemap. 

Source 
SL2.40 

Destination SL4.0 

Chr. 0 Chr. 1 Chr. 2 Chr. 3 Chr. 4 Chr. 5 Chr. 6 

Chr. 0 1,119 635 2,840 607 605 399 1,726 

Chr. 1 244 69,283 9 0 0 0 3 

Chr. 2 161 18 44,210 34 5 10 24 

Chr. 3 25 0 0 56,880 0 0 0 

Chr. 4 114 0 13 0 54,111 0 0 

Chr. 5 0 0 0 0 0 48,054 0 

Chr. 6 120 0 0 5 0 0 37,539 

Chr. 7 42 0 5 11 0 0 0 

Chr. 8 1 5 0 7 0 19 0 

Chr. 9 56 0 0 0 0 12 0 

Chr. 10 81 171 0 0 0 0 0 

Chr. 11 48 0 0 0 0 0 0 

Chr. 12 53 0 0 10 0 0 0 

Total lifted 2,062 70,111 47,077 57,554 54,721 48,494 39,292 

Gaps left 7,581 20,753 6,396 7,744 9,739 16,775 7,967 

Note that versions SL2.40 and SL2.50 do not differ in sequence content and are 

essentially equivalent for the purposes of this pipeline; SL2.40 was used 

preferentially, as it was the original version that the SGN-hosted genomes were 

mapped to, and does not contain the large gaps between scaffolds introduced by 

SL2.50, which inflate the apparent pseudomolecule size in comparison with the 

other version. 

Table 2-6: Size of intervals (in kbp) mapped between pseudomolecules 

(destination chromosomes 7 to 12) during lift over from version SL2.40 of the 

tomato genome to SL4.0 using SeqRemap. 

Source 
SL2.40 

Destination SL4.0 

Chr. 7 Chr. 8 Chr. 9 Chr. 10 Chr. 11 Chr. 12 

Chr. 0 2,071 654 631 516 1,226 892 

Chr. 1 3 0 0 2 0 0 

Chr. 2 10 10 0 32 10 0 

Chr. 3 0 0 0 4 0 0 

Chr. 4 0 0 0 0 0 0 

Chr. 5 0 0 0 5 0 0 
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Chr. 6 0 0 0 0 0 0 

Chr. 7 58,145 0 0 0 0 0 

Chr. 8 0 57,285 0 0 0 0 

Chr. 9 0 0 58,684 1 0 3 

Chr. 10 0 0 0 55,115 0 0 

Chr. 11 0 0 0 0 47,151 0 

Chr. 12 0 0 0 0 0 57,999 

Total lifted 60,228 57,948 59,316 55,674 48,387 58,895 

Gaps left 7,655 6,047 9,198 9,119 5,992 7,793 

 

2.6 Discussion 

An initial version of this report was shared with SGN alongside corrected VCF 

files and correction scripts in August 2016, and the flawed variant data sets 

hosted on the SGN site have been replaced with corrected versions by 

September 2016, seventeen months after the errors were introduced. They 

remain the latest publicly hosted version of the data as of January 2022, despite 

no longer matching the latest version of the reference. 

The problems which were encountered highlight the need to validate VCF files 

for strict adherence to the format specification, including REF allele checks, which 

requires providing a reference FASTA file, as VCF files do not contain the 

required information. Only certain validators, such as the ValidateVariants tool 

from GATK (McKenna et al., 2010), provide this option. 

SeqRemap has found usage in research projects conducted at Cranfield 

University. One such project was “Genomics-assisted selection of Solanum 

chilense introgression lines for enhancing drought resistance in tomatoes” 

(BBSRC project reference BB/L011611/1), where it was used for lifting over 

publicly available resequenced genomes originally mapped to SL2.50 for the 

purposes of comparison with new tomato data mapped directly to SL4.0, with the 

results to be used in an upcoming publication. Another project where SeqRemap 

found use was “AdRoot: Genetic control of adventitious rooting in horticultural 

crops” (BBSRC project reference BB/S007970/1), where it was used to allow for 

resequenced data sets to be quickly remapped between different versions of a 
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work-in-progress raspberry genome assembly, as linkage maps and assembly 

versions based on those linkage maps got updated. 

There exist other lift-over tools such as CrossMap (Zhao et al., 2014), UCSC 

liftover (Kuhn et al., 2013), and flo (Pracana et al., 2017). These depend on chain 

files (Kent et al., 2003), which contain equivalent data and can be generated 

based on the NUCmer alignment results used by SeqRemap (Marçais et al., 

2018). An advantage of SeqRemap is that it looks for exact matches between 

contigs first, without necessarily requiring a whole-genome alignment between 

sequence versions. This is, of course, a much simpler scenario than ones which 

involve de novo assemblies rather than merely rearrangements and thus require 

whole-genome alignment. However, this scenario does occur, as in the tomato 

reference genome update between SL2.40 and SL2.50 discussed here, and it 

has posed problems, as evidenced by the resequenced data issues which 

required correction. Indeed, the apparent simplicity of the changes between 

SL2.40 and SL2.50, which clearly did not require whole-genome alignment (and 

thus the use of established lift-over tools), is likely what helped introduce the 

errors through oversights in the custom Bio-GenomeUpdate tool and, alongside 

a lack of output validation, also helped them remain undetected for over a year. 

SeqRemap generates valid results without requiring a time-consuming whole-

genome alignment in this deceptively simple scenario, while also allowing for the 

use of whole-genome alignment data. 

Additionally, the “gap patching” functionality of SeqRemap represents a novel 

functionality unavailable in other lift-over tools, although it is experimental and 

would require additional work and testing to validate its usability. If successful, it 

would address a major limitation of lift-over tools, which is the omission of variants 

in novel regions (Zheng-Bradley et al., 2017).  

The reference genome issues with scaffold mis-ordering and mis-orientation, as 

well as with discrepancies in gap size compared to published BAC-FISH results 

(Shearer et al., 2014) were not addressed prior to the tomato genome SL2.50 

reference being replaced with version SL3.0 in February 2017. They are now 

largely irrelevant, at least for new work, as a result of this replacement. 
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3 TERSECT: A SET THEORETICAL UTILITY FOR 

EXPLORING SEQUECE VARIANT DATA  

3.1 Abstract 

3.1.1 Summary 

Comparing genomic features within a large panel of individuals across the same 

species is nowadays considered a core part of many bioinformatics analyses. 

Such analyses can usually be expressed as a series of complex set theoretical 

operations used to compare, intersect, or extract symmetric differences between 

individuals within a large set of genotypes. Several publicly available tools are 

capable of performing such tasks; however, due to the sheer size of variant sets 

being queried, such tasks can be computationally expensive, with runtimes 

ranging from a few minutes up to several hours, depending on the data set size. 

This makes existing tools unsuitable for interactive data querying or for use as 

part of genomic data visualization platforms, such as genome browsers. Tersect 

is a lightweight, high-performance command-line utility which interprets and 

applies flexible set theoretical expressions to sets of sequence variant data. It 

can be used both for interactive data exploration and as part of a larger pipeline 

thanks to its highly optimized variant data storage and indexing algorithms. 

3.1.2 Availability 

Tersect was implemented in C and released under the MIT license. Tersect is 

freely available at https://github.com/tomkurowski/tersect. 

  

https://github.com/tomkurowski/tersect
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3.2 Introduction 

Large-scale genome resequencing projects such as the 100 000 genome project 

(Turnbull et al., 2018), the 1000 Genomes Project (1000 Genomes Project 

Consortium, 2015) or the 150 Tomato Genome ReSequencing Project (S. Aflitos 

et al., 2014) provide researchers with large-scale references for genetic variation. 

These can be compared with novel data to help identify causal variants and 

QTLs, delimit haplotype blocks and introgressions, or infer phylogenetic 

relationships (Gao et al., 2019). All of those uses require means of filtering and 

comparing the variant contents between large phenotypic groups in order to 

identify concordant and discordant variants. These can be considered 

applications of set theoretical operations such as intersections or unions on sets 

of variants. 

While multiple tools such as BEDOPS (Neph et al., 2012), BCFtools (Danecek et 

al., 2021) and BEDTools (Quinlan & Hall, 2010) offer the option to execute such 

operations, they are relatively inflexible in the complexity of possible queries and 

rely on parsing input files as they are executed, limiting their speed and 

responsiveness. 

We hereby present Tersect, a tool which allows users to construct queries of any 

level of complexity by providing its own declarative query language and 

significantly speeds up their execution using specialized bitmap indices. Queries 

are interpreted, optimized, and executed in a single step, either on entire 

genomes or on selected genomic regions, making the process extremely fast and 

responsive, ideal for an exploratory approach to investigating genome contents. 

3.3 Tersect 

3.3.1 Interface and command parser 

Tersect is a command-line tool and features a command parser which allows a 

user to enter set theoretical expressions operating on genomes (as sets) and 

variants (as set elements) and including set theoretical operations such as 

intersections, unions, and symmetric differences (see Appendix A). These can be 

arranged into queries of arbitrary complexity, including deeply nested 
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expressions, using a simple syntax. Rather than merely executing the parsed 

operations in sequence, Tersect builds an abstract syntax tree (AST) which 

represents the entered expression. The tree can then be optimized to simplify 

and speed up operations. If the user requests data from multiple genomic regions 

using the same command, the same AST is re-used for each. 

3.3.2 Indexing 

Tersect imports VCF file data and uses bitmap indexing to encode binary 

information on the presence or absence of specific variants in each individual 

genome while building up a single unified database of alleles across all collected 

genomes. 

The database is sorted and indexed by position and identity. When traversed in 

order, the stored list of variants is parallel to the per-genome bitmap indices, 

linking the two data structures. The index on variants and their positions allows 

for rapid identification of regions of interest by chromosome and position range, 

while the bitmap indices allow for highly efficient comparisons between genomes, 

leveraging bitwise operations to compare many sites at once. As any given 

genome contains only a relatively small subset of possible alleles, the bitmaps 

are sparse and easily compressed. Tersect uses a variant of the Word-Aligned 

Hybrid lossless compression method (Wu et al., 2006) which allows logical 

operations without an explicit decompression step. 

The variant data and indices are stored in a special index file which only needs 

to be generated once per collection of genomes and can be shared and used 

independently of the source data. Tersect uses a memory-mapped I/O approach 

to access index file contents, allowing for random access to regions of interest 

and limiting the memory footprint of queries. 

A disadvantage of bitmap indexing, shared by Tersect, is the relative inefficiency 

of updating and adding data. This indexing approach is generally best suited to 

read-only applications and is often used in data warehousing. However, the 

stored data (allele identities and presence in genomes) do not frequently change 

over time and are generally added in batches (at least one genome at a time), 
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mitigating such disadvantages. The Tersect index builder uses a highly efficient, 

priority-queue-based merge method, allowing for an index file to be rapidly re-

created. 

3.3.2.1 Index format 

Tersect relies on constructing index / database files to enable it to execute its 

high-performance queries. The files are in a custom binary format and use the 

“tsi” filename extension (standing for tersect index) by default. 

The first fourteen bytes in the index files encode an ASCII representation of the 

TSI file format version used. This is a C-string (i.e., 13 characters followed by a 

null terminator) and “TersectDB 0.2” is currently the only valid value. This is to 

allow for the correct interpretation of the header that follows, and the rest of the 

data contained in the index file. 

 The TSI header contains the following information: 

 Database size in bytes (64-bit unsigned integer) 

 Word size used by the database (16-bit unsigned integer) 

 Offset of the chromosome list data structure (64-bit unsigned integer) 

 Number of chromosomes (32-bit unsigned integer) 

 Offset of the genome list data structure (64-bit unsigned integer) 

 Number of genomes (32-bit unsigned integer) 

 Offset of the free list data structure (64-bit unsigned integer) 

While much of the data they contain is compressed, Tersect index files can still 

be quite large (several gigabytes and more on real data sets). Rather than fully 

parsing them, Tersect uses them as memory-mapped files. The data structures 

they contain refer to each other through offsets from the start of the index file. 

Tersect translates these offsets to pointers based on the mapping location, 

casting the data structures stored in the file into a representation used elsewhere 

in the application. The former ‘internal’ data structures are described in the 

tersect_db_internal.h header, while their ‘public’ interfaces used elsewhere can 

be seen in the tersect_db.h header. 
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Tersect manages memory within the index file using a simple free list and first-fit 

allocation, expanding the file in page-sized chunks if not enough space is 

available. Note that the index file is generally intended to be created in a single 

batch process (in which case there is little fragmentation and no wasted space) 

with very little later modification, such as renaming samples. 

3.3.2.2 Index construction 

To construct an index file, Tersect uses a custom parser to merge the contents 

of input VCF files into per-chromosome lists of alleles. This is done using a priority 

queue algorithm that includes a normalization and local sorting step on each of 

the input files to ensure the variant alleles are stored in a normalized, 

unambiguous order (sorted first by position, then alphabetically by the allele base 

sequences). Single nucleotide variants are encoded using numeric codes for 

each reference/alternate base combination, while larger variants have their 

sequences stored as strings allocated in the index file, with the variant list 

recording the string location offset. An example of the process is shown in Figure 

3-1. 

3.3.2.3 Compression 

Per-sample presence or absence of specific variants of a chromosome is 

encoded in bit arrays using a variant of the Word-Aligned Hybrid (WAH) 

compression algorithm. The primary data structure is stored as a simple array of 

64-bit words corresponding to the entire length of the chromosome. Each of the 

words is either a “literal” word or a “fill” word; this distinction is indicated by the 

most significant bit of each word, which is set for literal words and unset for fill 

words. This leaves 63 bits for other data. 

Literal words use their 63 bits to store the presence (set bit) or absence (unset 

bit) of up to 63 successive variants. Fill words store the length of a run of absent 

variants in multiples of 63, a type of run-length encoding (RLE). Thus, a fill word 

containing the (decimal) number 1 indicates a run of 63 absent variants, number 

2 indicates a run of 126 absent variants, and so on. 
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Note that recording runs of empty words rather than empty bits, while wasteful of 

space, keeps the bits in literal words aligned so that no bit shifting is required to 

conduct binary operations on variants at the same positions. This trades space 

for execution speed. 

 

Figure 3-1: Tersect index file construction diagram. Parts A) and B) show the 

contents of example VCF input files (metadata and certain columns were omitted). The 

first input file contains data for two samples (GEN1 and GEN2) and the second file 

contains data for a single sample (GEN3). All alleles contained in a chromosome are 

stored in a single list as seen in part C). Membership of individual alleles in each of the 

samples is encoded in bit arrays as seen in part D), which shows a 32-bit word for the 

sake of simplicity (Tersect uses 64-bit words by default). The most significant bit is set 

for all three bit arrays, indicating that the specific word shown is a literal word (as opposed 

to a fill word – these terms are explained in section below). Note that the indices in the 

chromosome variant table and the sample bit arrays match – the lists are parallel. 

In classical WAH compression, fill words can be used to indicate runs of either 

set or unset bits (and potentially other patterns), with the type of fill word being 



 

41 

indicated by successive most significant bits. In the Tersect implementation this 

was simplified and limited to only runs of unset bits for several reasons. The 

arrays used for indicating variant contents are very sparse and runs of more than 

63 set bits are rare, making the improvement in compression had they been 

included minor. At the same time, limiting fill word metadata to a single bit flag 

set to 0 means no further flag checks or manipulations are necessary and the 

value stored in the word can be used directly as an integer representing the run 

length. This simplifies the code and yields an improvement in execution speed. A 

diagrammatic representation of the compression can be seen in Figure 3-2. 

 

Figure 3-2: Diagrammatic example of WAH compression and variant retrieval by 

Tersect. Three words (part A) encode allele contents for 315 successive alleles stored 

in the chromosome variant list shown in part B. The literal words encode the indices of 

variants present in a sample, while the fill word records the length of a run of empty 

words (each corresponding to seven absent alleles). The stored binary value is 

0b0101011 (decimal 43). With seven alleles per word, this can be used to advance the 

index indicator of the variant list by 7 x 43 = 301 positions when the bit array is traversed. 

Note that, while for the sake of simplicity the example uses 8-bit words, Tersect uses 64-

bit words by default. 
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While Tersect uses 64-bit words by default, this is a value which can be changed 

at compile-time. Using a word size matching the processor word size (64-bit in 

most architectures common today) is generally the best choice from a 

performance standpoint, as it makes it possible to make better use of SIMD 

(single instruction, multiple data) extended instruction sets to speed up 

operations on bit arrays. However, smaller word sizes may yield superior 

compression due to higher data granularity: with 64-bit words one can only save 

a word of memory when at least 126 successive word-aligned variants are absent 

(and another word for each further 63 such variants), while with 32-bit words a 

word is saved starting with the 62nd absent variant (and another is saved for each 

further 31 such variants). Still, the proportion of metadata (the literal/fill word flag) 

also rises as the word size grows smaller: for 8-bit words, where metadata takes 

up 12.5% of the storage, the memory use actually increases. 

Another consequence of changing the word size is that index files generated by 

Tersect compiled with a certain word size are not compatible with Tersect 

compiled with a different word size. This is why the default word size is set to 64-

bits instead of varying based on architecture. Advanced users are free to fine-

tune this at compile-time, but they will not be able to use the example data sets 

provided with tutorials. 

3.4 Benchmarking 

Tersect was benchmarked against three tools which offer similar functionalities: 

BCFtools (Danecek et al., 2021), BEDTools (Quinlan & Hall, 2010), and BEDOPS 

(Neph et al., 2012). It should be noted that, as they are designed to compare 

variant sets not only to each other but also to other types of data, the last two 

tools focus on positional overlap and intersection between features rather than 

variant identity. This means that overlapping but distinct variants, such as 

different alleles at multi-allelic sites or InDels which span across SNV sites, are 

considered to be intersecting. This can lead to subtly different results delivered 

by the tested tools; however, the benchmarks executed for the purposes of this 

work excluded InDel and multiallelic sites, as they were focused on performance 
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comparisons. The test scenarios were set up to produce identical results in terms 

of variant content between each of the tools. 

The data used for comparison were publicly available tomato genomes from two 

studies (S. Aflitos et al., 2014; Lin et al., 2014), for a total of 444 resequenced 

genomes of tomato cultivars and closely related species. 

Two important shared functionalities were tested: the identification of private 

variants, that is, variants occurring only in a single specific genome out of a 

collection of genomes, and the intersection of a group of genomes to identify 

variants shared by each of them (also known as concordant variants). 

For the former test, subsets of the 444 genomes collection were used. For the 

latter, subsets of 56 S. pimpinellifolium genomes which contain large regions of 

shared variation distinct from the S. lycopersicum reference were used. 

Input data for each of the tools were converted into the most appropriate format 

(e.g., BED for BEDTools) and indexed (where appropriate) prior to the 

benchmarking. This also applies to Tersect, as the time taken to build an index, 

which needs to be done only once, was not included in the test runtimes.  

3.5 Results and discussion 

For the private variant identification benchmark (Figure 3-3), all four applications 

show a linear relationship between the input size (number of genomes) and 

execution time; for Tersect this relationship is partially obscured by the relatively 

slow disk read/write operations which comprise a significant proportion of the 

runtime, especially for small input sizes. This is also the reason why the 

advantage held by Tersect is the smallest for small numbers of genomes (three 

times faster than BEDOPS when identifying private variants in sets of 4 

genomes), and grows for larger inputs (167 times faster than BCFtools when the 

full set of 444 genomes are used). 



 

44 

 

Figure 3-3: Benchmarking results for the identification of variants private to a 

single genome out of subsets of 444 tomato genomes. See Table 3-1 for the numeric 

results. 

For the intersection benchmark, seen in Figure 3-4, the results follow a very 

similar pattern, and all four applications again show a linear relationship between 

the input size (number of genomes) and execution time, though for Tersect the 

result is more distorted, and its execution time actually peaks at the smallest input 

size (two genomes). This is because, as is typical for intersection, the output 

variant set becomes smaller the more genomes are included. For only two 

genomes printing the result takes much longer than computing it. However, even 

for that worst-case scenario, Tersect is approximately three times faster than the 
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next fastest tool (BCFtools). For the largest input size, consisting of 56 genomes, 

Tersect is approximately 120 times faster than BCFtools. 

 

Figure 3-4: Benchmarking results for the intersections of subsets of 56 Solanum 

pimpinellifolium genomes. This is a wild species of tomato closely related to the 

S. lycopersicum, the cultivated tomato and the most numerous wild tomato species in 

the source data sets. The shared variants identified through intersection represent alleles 

typical of S. pimpinellifolium as compared to the cultivated tomato reference genome. 

See Table 3-2 for the numeric results. 
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Index file generation for the largest genome collection (444 genomes) took 

10 minutes (see Figure 3-5), which is fast enough to make Tersect the fastest 

tool even if indexing time were to be included in the benchmark, at least for the 

larger input sizes.  

 

Figure 3-5: Tersect index build time and peak memory usage. It should be noted 

that inclusion time per genome varied significantly due to different variant content per 

genome, evident in the shape of the line. This is also evident in Figure 3-6, which 

traces a very similar path for the input data. The source genome list was shuffled to 

minimize this variation. The peak memory usage is defined as the maximum resident 

set size. See Table 3-3 for the numeric results. 

As seen in Figure 3-6, while Tersect index files follow a linear relationship with 

the size of input data, they are considerably smaller than even compressed VCF 

files. This means that they can potentially serve as a more efficient storage 

medium for variant content data, although it should be noted that Tersect indices 
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discard a lot of data normally stored in VCF files, and the input data cannot be 

recreated in full based on a Tersect index. 

 

Figure 3-6: Size of input data and generated Tersect index files. Note that the sizes 

of individual per genome data sets vary with the number of variants they contain. See 

Table 3-3 for the numeric results. 

Table 3-1: Private variant identification benchmark results. 

 Private variant identification time [seconds] 

Number of 
genomes 

Tersect BCFtools BEDTools BEDOPS 

4 3.03 12.26 108.37 9.42 

24 2.98 28.45 362.75 33.49 

44 2.53 56.69 756.15 99.56 

64 2.84 84.13 1167.93 139.80 
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84 2.94 106.18 1555.52 191.23 

104 2.59 142.92 2152.15 273.26 

124 2.72 173.96 2339.30 325.00 

144 3.13 212.22 2786.44 384.52 

164 2.92 276.66 3506.33 510.79 

184 3.10 318.23 3694.72 581.05 

204 3.20 361.42 4246.82 669.34 

224 3.42 397.74 4652.93 715.00 

244 3.59 447.70 5199.98 788.68 

264 3.96 474.70 5654.76 896.68 

284 4.13 515.08 5804.88 971.73 

304 4.42 553.76 6273.72 1024.31 

324 4.46 609.85 6460.30 1105.54 

344 4.88 654.08 7038.13 1169.67 

364 4.95 712.29 7871.98 1273.92 

384 5.30 766.78 8232.68 1409.26 

404 5.33 844.31 8833.28 1562.77 

424 5.66 900.02 9001.77 1665.46 

444 5.72 956.39 9463.02 1753.81 

Table 3-2: Intersection benchmark results. 

 Intersection time [seconds] 

Number of 
genomes 

Tersect BCFtools BEDTools BEDOPS 

2 1.19 3.58 27.37 6.39 

5 0.48 6.51 81.94 11.19 

8 0.47 11.80 147.65 17.97 

11 0.50 15.69 221.64 27.45 

14 0.46 19.97 293.82 32.06 

17 0.52 24.59 356.10 39.86 

20 0.49 30.79 411.51 47.15 

23 0.56 37.14 501.51 58.73 

26 0.61 43.26 605.98 65.34 

29 0.63 47.62 642.08 72.23 

32 0.64 53.74 705.53 78.06 

35 0.66 57.06 773.71 83.86 

38 0.71 62.44 853.04 91.27 

41 0.59 68.66 888.30 96.49 

44 0.69 72.71 1016.69 102.64 

47 0.65 78.17 1081.67 111.71 

50 0.68 85.04 1122.27 117.50 

53 0.78 86.84 1355.56 124.44 

56 0.77 92.85 1358.65 131.78 
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Table 3-3: Tersect index build metrics. 

Number of 
genomes 

Input VCF.gz size 
[MiB] 

Output Tersect 
index size [MiB] 

Tersect index 
build time [s] 

4 434 257 14.18 

24 826 342 28.98 

44 1479 574 53.76 

64 2040 741 81.05 

84 2483 805 102.43 

104 3225 977 133.75 

124 3677 1057 152.87 

144 4091 1156 170.70 

164 5093 1438 215.84 

184 5585 1539 234.18 

204 6238 1678 267.63 

224 6722 1756 295.59 

244 7356 1884 325.00 

264 7730 1959 343.60 

284 8054 2029 356.33 

304 8590 2120 387.30 

324 9097 2224 404.35 

344 9610 2301 450.60 

364 10505 2440 472.07 

384 11140 2588 518.17 

404 11831 2792 553.02 

424 12099 2864 558.73 

444 12809 2985 600.68 

 

As seen through the benchmarking, Tersect generally performs from three to over 

a hundred times faster than BCFtools, which is generally the fastest of the other 

three applications.  

The difference in performance is more pronounced for larger inputs and this trend 

is likely to continue for data sets larger than those examined in this article. This 

presents a promising outlook for the scalability and future usability of Tersect as 

more genomes are resequenced every year and the volume of available data 

continues to rapidly increase. The runtime of all four tools follows a roughly linear 

relationship with the size of the input. The superior speed of Tersect stems from 

the highly problem-specific optimization and indexing scheme rather than from 

improved algorithmic time complexity in the strict sense. 
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Tersect is the only one among the evaluated tools capable of executing complex 

queries on large real-world data sets in a matter of seconds, making this the tool 

of choice to be used interactively, rather than as part of a batch processing 

pipeline. In combination with the flexible query syntax, this high performance 

offers new possibilities for real-time, exploratory use of the ever-growing volume 

of genomic data being produced today. 
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4 TERSECT BROWSER 

4.1 Abstract 

4.1.1 Summary 

Both the low cost of genome resequencing and the public availability of large sets 

of resequenced genomes, especially ones which include wild accessions, make 

it possible to delimit introgressions and identify their donor species through 

visualising the genetic distance and phylogenetic relationships based on 

whole-genome variant data. While software capable of generating such 

visualisations is available, it is not suitable for fully interactive exploration of the 

data due to the amount of time it takes to analyse such large data sets and the 

fact that any changes in the genome set, or the size and segmentation of an 

investigated interval, requires a recalculation of phylogenetic relationships. 

Tersect Browser is a Web application optimized for generating such 

visualisations in an interactive fashion, responsively recalculating, and displaying 

phylogenetic trees and genetic distance heat maps based on resequenced 

genome data, all in seconds rather than hours. This work presents the tool itself 

alongside examples of its usage, the algorithmic approaches (indexing schemes, 

partial result precomputation and aggregation) which make such performance 

possible, as well as the latency performance metrics on large-scale human and 

tomato data sets. 

4.1.2 Availability 

Tersect Browser was released under the MIT license and is freely available at 

https://bitbucket.org/tomkurowski/tersect-browser 
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4.2 Introduction 

Introgressive hybridisation is an important factor in crop improvement, making it 

possible to transfer valuable traits from related species into cultivars (S. Aflitos et 

al., 2014), but the process of homoeologous recombination can also introduce 

other, often undesirable, genetic material via linkage drag (Qi et al., 2007). Latent 

genetic variation originating from wild species may persist in S. lycopersicum 

lines as poorly characterised, but potentially useful or otherwise interesting, 

cryptic introgressions (Labate & Robertson, 2012). More broadly, the 

characterisation of introgressions is an important factor in investigating the 

evolutionary history of many species, including humans (Evans et al., 2006; 

Nelson et al., 2021). 

Large-scale resequencing of genomes enabled by the low cost of NGS makes 

large sets of variant data (either whole-genome or data with reduced complexity, 

e.g. GBS) an abundant resource, potentially useful in the characterisation of 

introgressions, and software tools such as SPrime (Zhou & Browning, 2021) or 

Introgression Browser (S. A. Aflitos et al., 2015), are now available to take 

advantage of them. Publicly available resequenced genome data sets, such as 

those maintained for tomato (S. Aflitos et al., 2014; Lin et al., 2014) which include 

wild species, can be used to identify donor species even without prior knowledge 

by comparing newly resequenced data with the larger repository (Silva Ferreira 

et al., 2018). 

A software tool of particular value to such work is the aforementioned 

Introgression Browser, a Web application focused on the detection of 

introgressions and identification of the donor parents for introgressed segments 

through the visualisation of genetic distance and phylogenetic relationships 

between genomes using resequenced genome data. However, a significant 

limitation of Introgression Browser is that, despite providing a Web interface, the 

visualisations it generates are relatively static. While users can change the 

genome used as the reference, as well as edit row identifiers and heat map colour 

scales, the set of genomes as well as the interval and segmentation pattern used 

have to be provided when the database is generated and cannot be modified. 
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The entire analysis is precomputed, and user interaction is intended to allow the 

user to customise the visualisation for improved discrimination between samples, 

not to facilitate further analysis within the Web application itself. 

In previous work, where Introgression Browser was successfully used for the 

identification of an introgression from S. galapagense into a domestic tomato line, 

the set of genomes included in the analysis, as well as the size of segments and 

borders of the examined interval had to be adjusted to help delimit the exact 

position of the introgression and improve contrast (Silva Ferreira et al., 2018). As 

reported, this had to be done iteratively, with a new database being created at 

each step. While database creation can be automated using scripts, every such 

step still requires multiple hours of database generation before any result can be 

shown in a browser. A further complication is that, particularly in collaborative 

projects, the most suitable person to administer a Web application and set up 

database generation scripts through a command-line interface (e.g., a 

bioinformatician) is not necessarily the most suitable person to interpret the 

results and decide on the next step (e.g., a geneticist), requiring repeatedly 

coordinating between multiple researchers on top of the computational cost. 

Tools which allow for more interactive visualisation are better suited for this sort 

of iterative work, where the user views the data and decides on the next step 

(selecting a subset, applying some type of projection or aggregation) based on 

what can be seen as a result of the previous one. However, for large data sets, 

such as those in modern genomics, interactive visualisation is difficult to 

implement, requiring specialized algorithms, data indexing schemes, 

precomputation of partial results, or even the use of specialized hardware setups 

such as massively parallel systems (Godfrey et al., 2016). The exact cut-off 

threshold for “interactivity” is difficult to define, but typically an interactive system 

is expected to respond within seconds or, ideally, under a second (Shneiderman, 

1984). 

This work introduces Tersect Browser, a Web application which allows users to 

interactively generate and explore visualisations of genetic distance and 

phylogenetic relationships between large numbers of genomes. To make this 
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possible, it takes advantage of the high-performance of its namesake Tersect, a 

lightweight utility optimized for comparing variant contents between indexed sets 

of resequenced genomes (Kurowski & Mohareb, 2019). The indexing scheme 

used by Tersect allows it to very efficiently find the number of discordant SNV 

sites in any given chromosomal interval, which is sufficient to calculate genetic 

distance between genomes according to the Jukes-Cantor model (Jukes & 

Cantor, 1969). Combined with a further, higher-level precomputation and 

indexing scheme, Tersect Browser can responsively produce ad hoc results 

analogous to those generated by tools like Introgression Browser in a matter of 

seconds rather than hours. 

4.3 Materials and methods 

4.3.1 Benchmark and test data 

Two main sets of data were used to test and benchmark Tersect Browser. The 

first was a set of 444 resequenced tomato genomes, formed by combining two 

publicly available data sets (S. Aflitos et al., 2014; Lin et al., 2014) hosted and 

maintained by the SGN (Fernandez-Pozo et al., 2015). The tomato reference 

genome used for the data was SL2.50. While several newer versions of the 

reference are available (the latest is SL4.0), the publicly hosted data sets have 

not yet been updated to match them. Still, this version of the reference features 

large and well-defined sequence gaps, owing to the contribution of FISH and 

optical mapping data (Shearer et al., 2014), which made it particularly useful for 

the development and testing of gap-handling solutions in Tersect Browser plots. 

The second set of data consisted of 2548 human genomes hosted and 

maintained by the IGSR (Fairley et al., 2019). The data originate from the 1000 

Genomes Project (1000 Genomes Project Consortium, 2015) and have been 

recently updated to the GRCh38 version of the human reference genome (Zheng-

Bradley et al., 2017), which was therefore the reference version used in 

benchmarking Tersect Browser as well. The actual variant data used were limited 

to chromosome 1 for ease of processing, but it should be noted that this should 

not significantly improve the relevant benchmarking metrics, other than in 

lowering the required storage space and data set preparation time. This is 
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because the phylogenetic trees and heat maps generated by Tersect Browser 

correspond to chromosomal intervals rather than whole genomes, meaning that 

no more than one whole chromosome is ever being processed at once. In fact, 

because only the largest (248.96 Mbp) chromosomal sequence is being used, 

this setup provides the worst-case scenario with the highest computational 

demands among human chromosomes – ideal for benchmarking and stress-

testing. Still, for the problems in question the most important metric for 

determining performance is not the sequence size but the number of samples, as 

phylogeny inference requires pairwise comparisons between taxa, and the 

number of such comparisons scales quadratically with the sample count. By this 

metric, the human set of data with its 2548 genomes is far more demanding than 

the 444-genome tomato data set, and provides a more difficult stress-test of 

Tersect Browser’s performance. 

Both sets of data were collected from their respective public repositories as 

compressed VCF files, which were then used to generate the Tersect index files 

provided as inputs to the back-end of the application. 

Tomato accession data have also been extracted from the C.M. Rick Tomato 

Genetics Resource Center (TGRC) database hosted by UC Davis and were used 

to allow for the annotation of tomato genomes. This comprised a snapshot of 

database records for 5586 accessions and 1028 genes, extracted and stored as 

described in Section 4.3.1.3 (TGRCmirror). 

4.3.2 Benchmark hardware 

The Tersect Browser server used for benchmarking was deployed on a typical 

desktop PC with a 2-core Intel Pentium G4600 processor and 24 gigabytes of 

RAM. The storage used for precomputed data was a software RAID 5 array 

composed of hard disk drives. This represents a low-end deployment and 

performance setup, available even to individual researchers intending to set up 

their own private Tersect Browser servers. Dedicated server infrastructure is 

likely to achieve better performance due to not having to share resources with a 

user desktop environment. As the application relies heavily on precomputed and 

temporary file storage, with a read-dominant workload, the use of solid-state 
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storage is also likely to offer improved performance (Agrawal et al., 2008; 

Youngjae et al., 2011). 

4.3 Implementation 

While Tersect Browser is distributed as a monolithic repository for the sake of 

project simplicity, as well the ease of deployment, consistent versioning, and code 

sharing, it in fact consists of two separate applications, each of which contains its 

own project structure and can be deployed independently. The two applications 

represent the front-end and the back-end of the complete Web application 

respectively, and while the former is very much dependent on to the latter to 

function as intended, the back-end server application provides a well-defined 

REST API which could potentially prove useful in other contexts, without the need 

for the Web front-end. In particular, it provides a remote interface for accessing 

the functionalities of Tersect, which is ordinarily a command-line tool. 

Additionally, a wholly separate server application called TGRCmirror was 

implemented alongside Tersect Browser. Through a REST interface, it provides 

tomato accession data based on the TGRC database, which can be used by 

Tersect Browser to annotate and enrich the plots it generates. As the data are 

specific to tomato, TGRCmirror is not an integral part of the general-purpose 

Tersect Browser system, but a working example of how its options can be 

extended through plugins implementing existing, generic interfaces. 

Each of the applications was developed in TypeScript 3.5, a statically typed 

superset of JavaScript, with some use of Python in the deployment and 

precomputed data management scripts. A major benefit of TypeScript was that it 

allowed for the creation of the aforementioned well-defined interfaces, usable for 

effective communication between subsystems and potential future extensions. 

4.3.1.1 Back-end 

The back-end part of Tersect Browser is a NodeJS version 8.4 (NodeJS, n.d.) 

application which uses the Express framework version 4.16.3 (Express, n.d.) to 

serve its functionalities via a REST API (Richardson et al., 2013). Persistent data 

are stored both in the filesystem, which is used for storing Tersect index files and 
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precomputed PHYLIP files (Felsenstein, 1989), and in a MongoDB database 

version 4.2 (MongoDB, n.d.), which is used for storing metadata, saved views 

and phylogenetic trees. The distinction is due to how the data are used – the 

stored files are used through command-line tools (Tersect version 0.12, RapidNJ 

version 2.3.2, Python utilities) launched by the server, while documents stored in 

the database are accessed via ODM provided by the Mongoose library version 

5.3.1 and used directly by the back-end NodeJS application. 

4.3.1.1.1 Data set preparation 

Tersect Browser data sets can be added by an administrator, requiring a set of 

resequenced genomes (either a Tersect index file, or VCF files which will be used 

to create a Tersect index file) alongside configuration settings specifying which 

reference genome to use and other options. A FASTA file may also be provided 

to add a new reference genome to the application; this allows for correct display 

of chromosome sizes and sequence gap locations. Additional sample annotation 

data may also be provided, for example information on the origins of a sample. 

Such extra information can then be used to filter samples or colour-code them in 

the plots Tersect Browser generates. 

4.3.1.1.2 Tersect indexing and distance matrix precomputation 

The most important and novel functionality of Tersect Browser is the ability to 

interactively generate heat maps representing the respective genetic distances 

between large numbers of genomes, alongside trees representing their 

phylogenetic relationships. This means giving users the option to freely adjust the 

position and size of the investigated interval, as well as the bin size used in the 

distance calculations, and to select arbitrary groupings of available accessions 

(genomes) to be considered, with an accession of choice serving as the 

“reference” for heat map distances – all “on the fly”, as close to real time as 

possible, to enable exploratory data analysis. 

To make this possible, Tersect Browser depends on the high performance of 

Tersect and a certain advantage of the method in which the tool stores its index 

data. Because parallel lists of individual variants for each stored genome are 

encoded in (compressed) bit arrays indicating their presence or absence, the 
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Hamming distance between two such bit arrays represents a measure of genetic 

distance between two genomes which can be used to calculate the Jukes-Cantor 

distance, at least when the analysis is restricted to homozygous SNVs and rare 

multiallelic sites are excluded or corrected for. The Hamming distance between 

bit arrays is extremely fast to calculate, because it only requires two processor 

operations – the population count of the result of a bitwise XOR operation. This 

enables Tersect to rapidly generate pairwise genetic distance matrices between 

indexed genomes. While this functionality (as the dist command) has been 

present in Tersect since the initial release of the tool, it was not used as part of 

its core, documented features. Since then, options have been added to allow 

Tersect to output those distance matrices in both PHYLIP and JSON formats, 

directly usable by phylogenetics software and NodeJS applications, respectively. 

While – thanks to the advantages described above – the distance matrix 

calculation by Tersect is fast, it may still not be fast enough to allow for responsive 

plot generation when larger intervals and higher numbers of genomes are used. 

The latter metric is especially problematic, because while the amount of required 

computation grows linearly with the interval size, the number of pairwise 

comparisons grows quadratically with the number of genomes being considered. 

This is not a problem for heat map generation, where only one reference genome 

is compared with each of the others. Said “reference” can either be the actual 

reference genome originally used for resequencing (in Tersect terms, this true 

reference can be represented by a completely zeroed bit array) or any one of the 

resequenced genomes contained in the index. However, the inference of 

phylogenies requires costly pairwise comparisons between all the genomes. 

The amount of required work is reduced by partitioning the chromosomes into 

arbitrarily small intervals (called “partitions”), and precomputing pairwise distance 

matrices for those intervals. The matrices are stored in the file system as PHYLIP 

files, and further precomputed matrices, representing increasingly larger intervals 

up to whole-chromosome size, are then created and stored by adding up the 

smaller distance matrices (“sub-partitions”) which cover the same region. This 

matrix summation can be accomplished very rapidly thanks to the NumPy Python 
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library, and it ensures that Tersect only needs to calculate a pairwise distance 

matrix once for any chromosomal region during the data set preparation stage. A 

diagram of this process is shown in Figure 4-1. 

When a user interacts with Tersect Browser and specifies an interval, the back-

end merely has to retrieve distance matrices for a number of precomputed 

partitions whose combined coverage of the chromosome approximates the 

interval. These can be added or subtracted (trivial heuristics are used to do this 

in as few operations as possible, favouring partitions which cover larger parts of 

the interval) to calculate a combined distance matrix for the interval. Note that – 

in general – the ends of intervals will not fall exactly on the boundaries of the 

smallest partitions. This means that Tersect will still have to generate two new 

distance matrices for small regions at each end of the interval to be included in 

the calculation. However, their combined size will never be larger than the 

smallest precomputed partition. A diagram of this process is shown in Figure 4-2. 

Due to this approach, the size of the smallest partition, arbitrarily specified when 

a data set is added to Tersect Browser, limits the size of the largest (and 

computationally most expensive) Tersect operation that has to be executed when 

generating a pairwise genetic distance matrix for any given interval. This 

parameter can be tuned to make the complete request as fast as required. Any 

increase in speed is primarily at the cost of storage space, as smaller partitions 

will be stored in a larger number of precomputed PHYLIP files (Felsenstein, 

1989). Precomputation time also increases, but this cost is proportionally less 

dramatic for most partition sizes, because the most expensive operation, which 

is the pairwise distance matrix calculation by Tersect, will only happen once per 

any chromosomal interval regardless of partition size. A Python utility (Partition 

Tuner) was developed to help users tune the partition size for a data set to match 

speed and storage requirements by estimating request execution time. This utility 

is included in the Tersect Browser repository and provides estimates of execution 

time by querying the back-end for random intervals of a given size. Such results 

were the basis for generating Figure 4-3 and Figure 4-4, although at present 

Partition Tuner only outputs raw numeric results, which require significant manual 

curation to generate similar figures. 
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Figure 4-1: Diagram of the distance matrix precomputation process. The size of the 

tomato reference genome chromosome 4 is used alongside four partition sizes: 5 Mbp 

(the smallest and most significant size), 10 Mbp, 25 Mbp, and 50 Mbp. Note that for the 

largest size, the partition in fact covers the entire, shorter length of the chromosome 

(47.26 Mbp) instead. Tersect is only used to create the smallest partitions, while the rest 

are generated by adding up sub-partitions. This requires all the partition sizes (which can 

be set by the user) to be multiples of the smallest partition size. The “distance” metrics 

stored in the matrices are actually simple counts of the number of SNV differences rather 

than true genetic distance metrics; those are calculated downstream. 
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Figure 4-2: Diagram of distance matrix request handling by the Tersect Browser 

back-end. The requested interval is partitioned into a list of smaller intervals, for which 

the distance matrices can be either retrieved from among the precomputed partitions or 

generated de novo by Tersect, and then added and subtracted to yield the final distance 

matrix. Only two (at most) Tersect intervals are ever generated for a single request (one 

at each end of the requested interval) and they are always (at most) half the size of the 

smallest precomputed partition. In addition, Tersect will only calculate distance matrices 

for selected accessions, while the stored, precomputed matrices have to be filtered to 

select the appropriate rows and columns. Note that the distance metrics used throughout 

the process are simply the substitution (SNV) counts, due to their ease of addition of 
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subtraction. The actual genetic distance metrics (Jukes-Cantor distance) are only 

calculated for the final matrix, which is then used downstream for phylogeny inference. 

It should be noted that heat maps cannot be precomputed in the same manner 

as the matrices used for phylogeny inference, since users can freely vary bin 

sizes and interval boundary positions, which correspondingly shifts the 

boundaries of bins for which distance metrics are calculated. Each of the 

numerous bins would require a separate recalculation analogous to the one 

conducted for the single interval for which a pairwise distance matrix has to be 

calculated. Heat map distance data are therefore always generated de novo by 

Tersect. The results are then returned directly as counts of differing SNV sites, 

without being processed into genetic distance metrics like the Jukes-Cantor 

distance. This is because they are outputted and sent as textual JSON files, 

meant for direct use by the front-end application. Using counts (which are 

integers) results in much smaller file sizes than if floating point distance metrics 

were to be used. Those are calculated on the front-end, with the additional benefit 

of off-loading that computational cost from the server to the user’s computer. 

4.3.1.1.3 Phylogeny inference 

Tersect Browser uses RapidNJ version 2.3.2 (Simonsen et al., 2008) to generate 

canonical neighbour-joining phylogenetic trees based on the pairwise distance 

matrices for a given genomic interval and set of samples. RapidNJ was chosen 

from among publicly available implementations of the algorithm due to being 

optimized for high performance when using large numbers (up to tens of 

thousands) of taxa (Simonsen et al., 2011). It utilises PHYLIP format files, like the 

ones used elsewhere in the application for storing pairwise distance matrices, 

and returns textual outputs in the Newick format. A diagram of the process for 

generating the input distance matrices used by RapidNJ is shown in Figure 4-2. 

Note that these input PHYLIP files are not persistent – only the Newick-format 

output is reported and stored. 

Generating a phylogenetic tree can be a relatively lengthy process, both in itself 

and, more importantly, through reliance on the upstream creation of an 

appropriate pairwise distance matrix. Instead of attempting to generate a new 
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tree every time, Tersect Browser stores a database entry for each valid request, 

indexed by a data set identifier, chromosome name, interval position, and a list 

of included accessions (genomes). This is enough information to uniquely identify 

a tree, which – once generated – is added to the database entry as a Newick-

formatted string of text. The status of an ongoing tree generation process is also 

continually updated in the database, reporting the percentage of completion (or 

potential errors) until the tree is ready to be retrieved. Any unique tree is therefore 

only ever generated once and can thereafter be immediately retrieved from the 

database when requested, even by users other than the original requestor. 

4.3.1.2 Front-end 

End users of Tersect Browser are intended to use it through a graphical user 

interface accessible through a Web browser. This front-end application was 

developed using the Angular framework version 8.2.1 (Angular, n.d.), which is 

used to provide the overall project structure and user interface, which is styled 

using the PrimeFlex component library version 1.0.0 (PrimeFlex, n.d.). The RxJS 

library version 6.4.0 (RxJS, n.d.) is used extensively to coordinate user inputs 

and asynchronous requests to the back-end made through Angular services. 

Basic diagrams of the interface can be seen in Figure B-2 and Figure B-3. 

4.3.1.2.1 Data requests 

An important feature is that the requests needed to draw the heat map and 

phylogenetic tree are made independently. When both are needed, they can be 

concurrent, but a new phylogenetic tree is only requested when the interval or 

the list of selected genomes change, whereas the heat map has to be updated 

whenever the “reference” genome or bin size changes as well. The phylogenetic 

tree request is generally much slower than heat map requests, and is therefore 

the main determinant of how long a view takes to be displayed, except when the 

back-end is able to fetch a previously generated tree. 

4.3.1.2.2 Heat map generation 

The user can interact both with the overall heat map (e.g., by dragging it with the 

mouse, or zooming it in and out) as well as with its individual values (e.g., by 

hovering over a specific bin to ascertain its exact location). However, the number 
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of bins can be very large – for the 444-tomato genome data set used in 

benchmarking, and the (default) bin size of 50 kbp, there are over 800,000 bins 

to keep track of on chromosome 1 of the tomato genome. The bins are therefore 

not represented as DOM elements (A. van Kesteren, A. Gregor, 2022) or even 

as rectangles in an image as displayed in the application, but as an array of 8-bit 

unsigned integer values between 0 and 255 (Uint8ClampedArray). When the heat 

map is drawn, values representing its currently visible area are extracted from the 

array and transferred to the <canvas> element rendered in the browser through 

the ImageData interface of the Canvas API (Fulton, 2013; WHATWG, 2022). This 

means that bins are drawn as individual pixels. The final, rectangular shape is 

achieved by stretching the canvas through the application of CSS styles for height 

and width in terms of percentages appropriate to the zoom level. This makes the 

drawing process very fast, allowing the browser to make full use of performance-

enhancing features such as hardware acceleration, and significantly limits 

memory usage. As a result, Tersect Browser plots can be drawn, moved, and 

zoomed smoothly even on low-end machines. 

As bins do not have their own DOM elements, the specific bins the user interacts 

with on mouse events (e.g., hovering, clicking, dragging) are determined 

programmatically, based on the position of the mouse relative to the canvas. 

The heat maps are coloured monochromatically based on the distance of each 

bin to a single genome called the “reference”, which can be any of the genomes 

present in the data set, not just the reference genome to which the resequenced 

data were aligned. The data are received from the back-end in the form of a JSON 

object with accession identifiers as keys and arrays containing substitution (SNV) 

counts between each specific accession and the reference as values. It should 

be noted that due to the drawing algorithm described above, the resolution of the 

genetic distance represented in each column of the heat map is limited to 256 

distinct values, from 0 (identical to the reference within the bin) to 255 (furthest 

from the reference within the bin). The SNV counts received by the front-end are 

first used to calculate the Jukes-Cantor genetic distance for each bin. The 

distance metrics are then scaled to the 0 - 255 range on a per-bin basis. 
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A scale tracking chromosomal positions is drawn along the top of the heat map. 

It is zoomed and scrolled in sync with the heat map, although the scrolling is only 

horizontal, with the scale always remaining visible at the top of the plot. A user 

can drag their mouse along the scale to select a smaller interval for a new plot. 

Gaps in the reference genome, identified based on a FASTA file uploaded with 

the data set, are drawn as red rectangles which obscure the relevant gap intervals 

along the length of a chromosome, provided they are larger than a single bin. 

4.3.1.2.3 Phylogenetic tree generation 

Phylogenetic trees generated on the back-end are received as Newick-formatted 

text strings. These are parsed into a graph and drawn on the left side of the 

interface in one of three ways: as accession labels ordered according to the tree 

structure (i.e., in the top-down order they would be drawn in had the tree been 

displayed), as a full, bifurcating tree with branch lengths proportional to genetic 

distance, or as a simplified bifurcating tree with branches of constant length 

(preserving the tree structure but not the distances shown in the full tree). 

4.3.1.2.4 Accession selection and annotation 

A tabular view of all accessions available in a data set can be seen by opening 

the Accession selection overlay in Tersect Browser (see Figure B-3). The 

accessions, listed as rows, can be selected and deselected for use in the 

visualisation through checkboxes. They can also be sorted and filtered based on 

columns, which – alongside the accession’s label obtained from the Tersect index 

file – can contain arbitrary data added alongside the data set in the form of CSV 

files. 

A user can also further annotate the accessions at run-time by adding columns 

through the use of plugins, which implement an “Accession Info Importer” 

interface and are available through buttons added below the main accession 

table. These are meant to contact external resources (e.g., REST APIs) and 

import additional data into the table based on matching some pre-existing 

identifier (e.g., the TGRC accession number). An example of this is the TGRC 

Gene Importer plugin, which allows a user to select a tomato gene listed in the 
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TGRC database. Doing so will add a new column to the accession table, listing 

the gene’s allele for each of the stored tomato accessions (provided they have a 

TGRC accession number). This allows for easy selection or grouping of 

accessions containing specific alleles of TGRC genes. 

Accessions can also be assigned to groups, which can be either defined in a 

JSON file added alongside the data set, or created by a user based on an 

arbitrary selection or column filter. It is possible to assign colours to groups. 

These colours are then used to mark the labels of group members in Tersect 

Browser plots. 

Note that, while columns or groups introduced through CSV or JSON files when 

the data set was first added are available to any user who views said data set, 

any columns or groups added by a user are only visible to people who access 

views shared by that user (see the following section on view sharing). This avoids 

crowding the main view of the data set with annotations from different users, while 

allowing each to create their own, custom view, which they can share with others.  

4.3.1.2.5 View sharing 

Because Tersect Browser is meant to allow users to explore the available data 

sets, generate their own visualisations, and facilitate collaboration, the option to 

save, restore, and share particular states of the Web application (referred to as 

“views”) is an especially important feature. The Tersect Browser interface 

contains a “Share” button, which generates a persistent link (containing a unique 

identifier) to the current view, which can be used to revisit or share a visualisation. 

All of the interface settings at the time of sharing are saved into the back-end 

database and restored upon visiting the link. As the back-end also stores 

previously generated phylogenetic trees, the restored view will generally be 

available immediately, without requiring a new phylogenetic tree to be generated. 

It should be noted that the initial view of a data set, visible when a user accesses 

said data set from the home page of Tersect Browser, is in fact the same sort of 

stored view as the ones generated by pressing the “Share” button. This “default 

view” initially shows all the available accessions and uses the entirety of the first 
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chromosome as the viewed interval, but it can be trivially replaced with any other 

view.  

4.3.1.2.6 Plot export 

A major feature of Tersect Browser is its ability to not only responsively generate 

shareable views of data for the sake of exploratory analysis, but also to export 

publication-quality, high-resolution plots directly from the Web application with 

just a press of a button. At present the only supported export format is PNG. 

The process for exporting plots is similar to the one used to display them in the 

browser, but its individual elements (phylogenetic tree, heat map, scale) are first 

drawn in their entirety on separate, offscreen canvas before being combined at 

the appropriate scale in a final offscreen canvas, from which a data blob is 

extracted and downloaded as a file of the specified format. 

As this process is wholly separate from the actual display of a Web browser, it 

could also be conducted on the server-side of Tersect Browser, but in the current 

implementation it runs on the client-side. This ensures consistency between what 

the user sees rendered on the Web page and the exported images and off-loads 

a relatively costly operation onto the client, but a potential risk is that user 

resources (particularly the available memory) may not be sufficient to render 

larger-resolution plots. This may require further optimization or a transfer of the 

export functionality to the back-end in future versions of Tersect Browser. 

4.3.1.3 TGRCmirror 

The regularly updated database maintained by TGRC contains information on 

individual tomato accessions, including their collection notes (e.g., country, site, 

habitat) and alternative identifiers other than TGRC’s own accession numbers, 

which allows the information to be cross-referenced and combined with other data 

sets. It also stores information on genes and their alleles identified in the 

accessions, alongside notes on the resulting phenotypes. However, these 

resources are difficult to access programmatically, as no publicly accessible API 

is offered, with the data intended to be browsed through a Web-based form 

system. 
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A Web scraping pipeline was implemented and used to extract and parse TGRC 

data on 5586 accessions and 1028 genes (i.e., the entire relevant part of the 

database at the time of writing). The results were stored in a MongoDB database 

and a simple Express-based REST API was implemented to allow for 

programmatic queries to retrieve lists of genes and lists of accessions for which 

the allele of a particular gene has been characterised. The extraction pipeline and 

REST API are collectively called “TGRCmirror” and are intended to provide a 

stable, easily accessible snapshot of a subset of the TGRC database, without 

requiring continuous access to TGRC resources and constant parsing of its 

HTML-formatted contents. 

Additionally, the TGRCmirror pipeline extracts accession information (identifiers, 

collection notes) into a CSV file, which can be added to Tersect Browser 

alongside a tomato data set. This allows the information to be seen and used to 

filter accessions in the Web application’s accession selector control, provided 

matching accession identifiers are available.  

As mentioned in section 4.3.1.2.4, the Tersect Browser front-end interface allows 

for the addition of annotation plugins, which let users add extra columns to the 

accession selector using external REST resources (Richardson et al., 2013). 

TGRCmirror is intended to serve as one example of such a resource, with a 

matching plugin on the front-end of the application used for importing TGRC gene 

data. 

4.4 Results and discussion 

The primary objective of Tersect Browser was to provide a Web application which 

would allow for interactive visualisation of phylogenetic relationships and 

potential introgressions in resequenced genomic data. The main metric for 

evaluating the level of success is therefore the time it takes to generate a new 

visualisation, which should be short enough to allow a user to explore the data in 

“real time”, or as close to that as possible. Phylogeny inference – from generating 

a pairwise genetic distance matrix for a set of genomes and a specific 

chromosomal interval an interval to phylogenetic tree generation – is the slowest 

part of the process and its speed-limiting factor. It was therefore the primary 
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subject of benchmarking, with the time taken to generate a phylogenetic tree 

being measured for different chromosomal intervals and precomputed partition 

settings as shown in Figure 4-3 for the tomato genome data set and Figure 4-4 

for the human genome data set. 

It is evident from the benchmarking that the median response time depends 

primarily on the size of the smallest precomputed partition, rather than on the size 

of the requested interval. This is because neither the number nor the complexity 

of required operations increases appreciably with the interval size: a similar 

number of precomputed matrices (which are themselves based on larger 

intervals, but this does not affect matrix dimensions) needs to be added up to 

create the final distance matrix, and only (up to) two Tersect operations, each of 

a size limited to half the smallest partition, are ever required. The smallest 

precomputed partition size drives performance because it limits the size of 

Tersect operations and allows for more granularity in partition sizes (which must 

be multiples of the smallest partition size). 
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Figure 4-3: Phylogeny inference times for the entire 444-genome tomato data set 

and chromosomal intervals of different sizes as a function of the smallest 

precomputed partition size. One hundred random intervals were generated for each 

of the tested interval sizes (from 1 Mbp to 50 Mbp). The same sets of intervals were used 

to test each precomputed partition size, with fifty requests executed for each combination 

of interval size and smallest partition size. The median response times were then 

recorded for each partition size. See Table B-3 for the numeric results  
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Figure 4-4: Phylogeny inference times for the entire 2548-genome tomato data set 

and chromosomal intervals of different sizes as a function of the smallest 

precomputed partition size. Fifty random intervals (all on chromosome 1) were 

generated for each of the tested interval sizes (from 1 Mbp to 100 Mbp). The same sets 

of intervals were used to test each precomputed partition size, with fifty requests 

executed for each combination of interval size and smallest partition size. The median 

response times were then recorded for each partition size. See Table B-4 for the numeric 

results. 

Additionally, it can be seen that for intervals much smaller (more than two times) 

than the smallest partition size, the response time becomes approximately 

constant. This is because with such large partitions, the precomputed matrices 
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are no longer useful in reconstructing smaller intervals, and the response time 

approaches the execution time of a Tersect request on the whole interval instead. 

Precomputed partition sizes are parameters set by the user, and can therefore 

be adjusted on a per-data set basis to provide a sufficiently fast response time at 

the cost of precomputation time and storage space (see Figure 4-5 and Figure 

B-1). 

 

Figure 4-5: Time and storage space costs of distance matrix precomputation as 

functions of the smallest partition size. The 444 resequenced tomato genome 

data were used for benchmarking. To create successive partitions larger than the 

smallest, their size was doubled until it was larger than the largest chromosome 

(98.5 Mbp), which is the default approach taken by the data set addition script. 

The time measurements were recorded on a desktop PC and would scale 

according to CPU speed, but the storage size should remain invariant for a given 
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data set and partition size. Both cost metrics exhibit a component that is inversely 

proportional to the partition size, but for time this is obscured by the mostly 

constant cost of running Tersect once per genomic interval, especially for larger 

partition sizes. These costs have to be weighed against the intended request 

handling speed (see Figure 4-3) when selecting the partition sizes for a particular 

data set. See Table B-1 for the numeric results and Figure B-1 for equivalent data 

measured for the human data set 

It can be seen that for the tomato data set, a median response time of around 

one second is achievable, while for the much larger human data set, median 

response times under 30 seconds can be reached. Both of these are arguably 

sufficient for interactive work, although the difference in performance highlights 

the role of sample size (i.e., the number of genomes) and suggests that for data 

sets significantly larger than the human one, the algorithms used by Tersect 

Browser may no longer be sufficient for interactive work. 

The relationship between the number of genomes used and execution time is 

visible within individual data sets as well (see Figure 4-6) and is approximately 

linear in such a context, if not when comparing different data sets. The 

measurements made for all the genomes represent the worst-case (slowest) 

scenario, which is why they are suggested as guides to select appropriate 

precomputed partition sizes; this helps guarantee a certain lower bound for 

performance. 
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Figure 4-6: Response time as a function of the number of genomes used in 

phylogeny inference requests for the tomato (A) and human (B) data sets. The 

smallest precomputed partition size used was 1 Mbp for both data sets. Twenty requests 

were made for each tested number of genomes, using random subsets of the total 

genome set and random chromosomal intervals (with the length of 10 Mbp) for each 

request. 

Still, it is clear that even for the same number of genomes, requests using the 

human data set are significantly slower than those using the tomato data set. 

Indeed, the minimum time taken by requests using the human data set (with 4 

genomes) is longer than the time taken by requests using the entire tomato data 

set (with 444 genomes). This is because, even though only the specified 

genomes are being used, precomputed distance matrices still must be parsed in 

their entirety for the relevant rows and columns to be extracted. This constitutes 

a constant computational cost proportional to the total number of genomes. This 

cost could potentially be mitigated by the use of a more sophisticated storage or 

indexing scheme for the precomputed distance matrices.  

Tersect Browser can be used to locate potential introgression sites and identify 

likely donors, as shown in Figure 4-7, which shows a possible introgression from 

Solanum pimpinellifolium LYC2798 (or a similar donor) into chromosome 6 in two 

cultivars, previously identified in a demonstration of the capabilities of 

Introgression Browser (S. A. Aflitos et al., 2015). 
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The TGRC gene annotation functionality (i.e., TGRCmirror and its matching 

front-end plugin) was validated by verifying that relevant known loci could be 

found and highlighted in Tersect Browser visualisations. The tomato u (uniform 

ripening) gene was used for this as seen in Figure 4-8. It was chosen because 

its TGRC allele information was available for a relatively large number of 

accessions present in our data set (34 in total, including 16 accessions annotated 

with a -- genotype and 18 with a + genotype), and because it has been mapped 

to a small region on chromosome 10 (Powell et al., 2012). 

 

 

Figure 4-7: Potential introgression from S. pim LYC2798 or a similar donor into the 

LA2706 (MoneyMaker) and LYC1365 (AllRound) cultivars. The introgression, visible 

against a background of other tomato cultivars, spans from approximately 40.50 Mbp to 

42.45 Mbp on chromosome 6. Both affected cultivars cluster closely with the potential 

donor within a sharply delineated interval. Note that the Introgression Browser article 

reports the same introgression as beginning at 36.75 Mbp, but that is due to its use of 

an older version of the tomato reference (SL2.40). 
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Figure 4-8: TGRC gene annotation used to highlight different alleles of the tomato 

uniform ripening gene in Tersect Browser visualisations. The two alleles of the gene 

are marked in red (-- allele) and green (+ allele). The top plot covers the first 10 Mbp of 

chromosome 10, and its phylogenetic tree structure shows no obvious relationship with 

the alleles. The bottom plot covers a smaller interval on the same short arm of 

chromosome 10. The 200 kbp interval (2,195,000 – 2,395,000) is centred on the uniform 

ripening gene locus, and it can be seen that the accessions now cluster more closely 

according to their alleles. 
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4.5 Future work 

As discussed in the previous section, benchmarking using the 2548-genome 

human data set helped identify the cost of repeatedly parsing precomputed 

distance matrices, which are currently stored in textual PHYLIP files, as a major 

performance-limiting factor when phylogeny inference requests are executed on 

smaller subsets of genomes contained in larger indexes. Storing the same data 

in a more easily parsed binary format or in an indexed database would likely 

mitigate this issue and could be achieved with minimal changes to the pipeline, 

as the only actual step which requires textual inputs is the final phylogenetic tree 

construction with RapidNJ (Simonsen et al., 2008). This would significantly 

improve performance in the typical use case where a user works with smaller 

subsets of a larger data set, and is therefore a high-priority feature to be added 

in future versions of Tersect Browser. 

An obvious avenue for performance improvement that has not been explored in 

the development of the application is parallel computing. This is despite the fact 

that many of the computational problems involved, such as matrix addition, are 

trivially parallelizable. The main reason for this omission is that, being a Web 

application, Tersect Browser is meant for parallel use by multiple users in its 

typical use case. As the server (or servers) will be fulfilling multiple independent 

requests from different users in parallel, computational resources such as 

multiple processors will be used even if the individual requests are fulfilled in a 

strictly sequential manner. Indeed, even for a single user, the requests for heat 

map data and phylogenetic trees are made independently, so that the process of 

plot generation can benefit from this type of primitive parallelism to a limited 

extent. However, it can be argued that for low-volume usage, for example in a 

small research group, it is unlikely for the number of concurrent users and 

requests to be high enough to make good use of the parallel computing resources 

available on modern servers. This has been the case with Tersect Browser as 

deployed at Cranfield University for internal use. In such a use case, individual 

requests could indeed benefit from parallel computing to further improve 

performance. An optional “parallel processing” mode is therefore a likely feature 

to be added in future versions of Tersect Browser. 
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At present the only way to add genomes to Tersect Browser is as part of a Tersect 

index file when a data set is being created. This means that a user cannot simply 

add a single new genome to an existing data set, but instead has to create a new 

data set, using a new index file. This is a limitation that Tersect Browser inherits 

from Tersect, and overcoming it is a feature under active development for that 

tool; it is likely to be resolved for both applications once complete. 

Tersect Browser uses the Jukes-Cantor model to generate its genetic distance 

metrics. This means that the rate of nucleotide substitution is treated as equal for 

all pairs of nucleotides and all sites, with no correction for the higher rate of 

transitional substitutions. This is a consequence of the Tersect Hamming 

distance calculations not differentiating between transitions and transversions. 

However, this could be circumvented, for example by maintaining separate 

Tersect indices for transitions and transversions, which would allow future 

versions of Tersect Browser to support other, more sophisticated genetic 

distance metrics. 

Finally, the usability of Tersect Browser is likely to be significantly improved 

through the addition of an integrated genome browser, allowing users to view 

individual variants present in the interval of interest directly through the 

application’s main interface. The back-end functionality required for this is already 

present, as Tersect can efficiently report the variant contents of individual 

genomes in a stored data set. 
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5 OVERALL DISCUSSION 

5.1 Overview 

All three objectives which were pursued in the thesis have produced outputs with 

real-world impact. Investigation of issues associated with resequenced genome 

validation led to the discovery and correction of major errors in two sets of publicly 

available tomato genome resources used by plant biologists. Among the software 

outputs, Tersect now offers the bioinformatics community the highest 

performance among similar tools when it comes to comparing and otherwise 

operating on large sets of variant data and is usable both as a standalone tool 

and as a building block for creating higher-level applications. Tersect Browser, 

which is one such application, is the first Web tool which can produce fully 

interactive visualisations of phylogenetic relationships and genetic distance 

comparisons between large numbers of genomes based on whole-genome SNV 

data, and is likely to prove useful to biologists in a wide array of analyses, 

including the characterisation of introgressions and pedigree analysis. 

5.2 Lift-over and validation 

The lift-over errors which were the focus of Chapter 2, and which remained 

unnoticed and uncorrected as part of a public resource used by the plant biologist 

community for seventeen months before being fixed, revealed a somewhat lax 

approach to VCF validation in many applications. After all, the problem areas 

covered nearly 15% of the total genome size, and some of the issues could (in 

principle) be seen with the naked eye in the genome browser hosted by SGN 

(see Figure 2-7 and Figure 2-8), which would display the incorrect REF alleles 

alongside the mismatched reference sequence without any errors or warnings. In 

fact, some VCF format validators do not validate REF alleles at all, and would not 

find the errors in question – this notably includes VCFtools, which introduced the 

VCF format in the first place (Danecek et al., 2011). The issue highlights a need 

for stricter validation and the use of tools like GATK’s ValidateVariants (McKenna 

et al., 2010). 
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It is notable that the two resequenced genome data sets maintained by SGN have 

not seen further official updates (at least at the time of writing), despite two new 

versions of the reference genome being released. At least in part this is likely to 

be due to the computational cost that re-doing the alignment and variant calling 

would carry. At the same time the primary alternative – coordinate lift-over – is 

more error prone, which would be compounded by the fact that both of the new 

reference genome versions have been generated de novo, based on new, long-

read data, instead of being modifications of the previous version as in the SL2.40 

to SL2.50 update (Hosmani et al., 2019). The SeqRemap lift-over pipeline 

described in Section 2.5.4 was used to update some of the SGN data to SL4.0 

for internal use at Cranfield University. 

5.3 Tersect Browser and Tersect 

The benchmarking of Tersect Browser demonstrated that it can deliver latencies 

that allow for interactive use even for relatively large data sets that include 

hundreds (for tomato) or even thousands (for human) of genomes. However, 

certain algorithmic limitations also became evident, as the tests revealed the total 

number of genomes to be a limiting performance factor for data sets. This is a 

major issue, as it would be ideal for an interactive system like Tersect Browser to 

allow for all comparable genomes to be stored (and viewed) together, in one data 

set, which could then be arbitrarily filtered by the users as needed. Yet if the total 

number of stored genomes lowers performance even when only a subset is 

visualised, it would instead be better to split the data up into smaller data sets in 

the first place. Still, this issue (or at least its current magnitude) was identified as 

the consequence of the approach used for storing precomputed results, and it 

may be possible to correct it as discussed in Section 4.5.   

Perhaps a more important and harder to address issue, which is partially 

obscured by the limitation discussed above, is that the computational complexity 

of the algorithms used by Tersect Browser scales quadratically with the number 

of genomes. At the same time, the tuneable parameters (precomputed partition 

sizes) offer only linear increases at a significant cost of precomputation time and 

storage space. The 2548-genome human data set, with its ~30 second 
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visualisation times when all the genomes are used, may in fact be near the limit 

of what Tersect Browser can handle in a broadly interactive manner. The use of 

larger data sets will likely require entirely different algorithmic approaches, for 

example the use of incremental or approximate solutions based on sampling the 

data, rather than exact solutions based on all the relevant data (Godfrey et al., 

2016). 

With regards to Tersect, it should first be noted that it was not developed as a 

subsystem of Tersect Browser. Instead, it is Tersect Browser which takes 

advantage of Tersect as the highest-performance, most appropriate tool available 

to deliver the back-end functionality the Web application requires. This distinction 

is important, as Tersect is intended to be a generic, stand-alone utility, usable in 

many different contexts, including other systems and pipelines.  

No steps were therefore taken to allow for closer integration between Tersect and 

Tersect Browser on the side of the smaller application, with the sole exception 

being the addition of JSON as a format option for outputting genetic distance 

calculation results – an unusual priority in format support for a lightweight 

command-line utility, but very useful for downstream use by NodeJS applications, 

being their native object format. 

Tersect has already seen independent use in other projects, including one which 

resulted in a peer-reviewed publication (Kangara et al., 2020), included as 

5.4Appendix D. The work was concerned with developing a procedure for 

generating mutant populations of Puccinia graminis f. sp. tritici spores and 

screening them for gain-of-virulence mutants. Puccinia graminis is a fungal 

pathogen of cereal crops that causes stem rust, responsible for global grain 

losses representing around 1% of the annual wheat yield (Beddow et al., 2013), 

with much larger average losses of 30-40% being recorded on a regional scale 

in the past decade (Saunders et al., 2019). It is reported that, in particularly 

favourable environmental conditions, explosive outbreaks can cause losses as 

high as 50-70% over a region (Schumann & Leonard, 2000). 

Wheat stem rust has seen a resurgence in recent years, linked with the 

emergence of fungal lineages that have overcome several wheat stem resistance 
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genes, and have thus become virulent against certain current cultivars (Olivera 

Firpo et al., 2017; Pretorius et al., 2000). Stacking multiple resistance genes is 

an approach used to maximize the durability of plants to disease (Fukuoka et al., 

2015; Zhang et al., 2009). Individually assessing the functionality of resistance 

genes in a stack requires the use of a matching pathogen effector probe per 

resistance gene, which in turn requires the identification of avirulence genes for 

each effector (Wulff & Moscou, 2014). 

The method optimized by Kangara et al. seeks to aid in identifying candidate 

avirulence genes via ethyl methanesulfonate (EMS) mutagenesis followed by 

sequence comparison, in which independently derived gain-of-virulence mutants 

are expected to exhibit independent mutations in the same genes. Variant calling 

of mutagenized spore sequence data, mapped to a Puccinia graminis f. sp. tritici 

reference genome, was the basis of the sequence comparison. This presented 

an excellent use case for Tersect, which specializes in comparing variant 

contents between samples. In particular, it was used to exclude potential false 

positive variant calls by removing variants which co-occurred in three or more 

(out of seven) samples, as precisely identical mutations are unlikely to have been 

induced independently. The bioinformatics pipeline used in the work was used to 

measure the induced mutation density as a function of mutagen concentration 

and estimate the number of independent mutations required to identify avirulence 

effector genes in Puccinia graminis f. sp. tritici. 

Both the pipeline mentioned above, and other, unpublished work have pointed to 

a certain limitation, arguably a key missing feature in Tersect, resulting from its 

narrow focus. The “sets” considered by Tersect and encoded in its indexing 

scheme are sets of variants, with each set corresponding to some specific 

genome or the result of set theoretical operations on multiple genomes (referred 

to as a “virtual genome”). This is central to its performance and allows the 

declarative query language used by Tersect to be very expressive when it comes 

to comparing sets between genomes. However, the tool is poorly equipped to 

answer queries about sets of genomes and their correspondence to specific 

variants, which is an inversion of the typical Tersect logic. An example would be 



 

88 

attempting to find all genomes which contain a specific variant. The query 

language cannot, at present, express this sort of query directly, and the indexing 

scheme is poorly optimized for answering it. 

A temporary workaround was developed for the purposes of the aforementioned 

publication – a Python wrapper script would convert such an exotic query into a 

much more complex one, which utilised the current syntax of Tersect and called 

the tool multiple times. However, a proper solution would be to add such a feature 

to Tersect directly, ideally with a change or expansion to the current indexing 

scheme to allow for good performance. Conceptually, if one treats a set of parallel 

bit arrays like those stored in Tersect index files as a matrix, a transposition of 

that matrix could serve as an index usable for this sort of “inverted” query. There 

exist methods for such transposition of bitmap indices (Nguyen et al., 2016a, 

2016b), as bitmap indices in general are an established indexing method in 

scientific databases (Sinha et al., 2006). However, no implementation of a 

transposition method specific to the parallel, WAH-compressed bit arrays (Wu et 

al., 2006) used by Tersect currently exists, and creating one would not be trivial. 

It would therefore be necessary to precompute and store two complete sets of bit 

arrays, increasing (approximately doubling) the size of Tersect indices. 

As with Tersect Browser, the above issue demonstrates the limitations of the 

system revealed in confrontation with real-life data, while pointing to an issue 

whose resolution would significantly improve the system.  

5.4 References 

Beddow, J. M., Hurley, T. M., Kriticos, D. J., & Pardey, P. G. (2013). Measuring 

the global occurrence and probabilistic consequences of wheat stem rust. 

HarvestChoice Technical Note, c, 23. 

Danecek, P., Auton, A., Abecasis, G., Albers, C. A., Banks, E., DePristo, M. A., 

Handsaker, R. E., Lunter, G., Marth, G. T., Sherry, S. T., McVean, G., & 

Durbin, R. (2011). The variant call format and VCFtools. Bioinformatics, 

27(15), 2156–2158. https://doi.org/10.1093/bioinformatics/btr330 

Fukuoka, S., Saka, N., Mizukami, Y., Koga, H., Yamanouchi, U., Yoshioka, Y., 



 

89 

Hayashi, N., Ebana, K., Mizobuchi, R., & Yano, M. (2015). Gene pyramiding 

enhances durable blast disease resistance in rice. Scientific Reports, 5. 

https://doi.org/10.1038/srep07773 

Godfrey, P., Gryz, J., & Lasek, P. (2016). Interactive Visualization of Large Data 

Sets. {IEEE} Transactions on Knowledge and Data Engineering, 28(8), 

2142–2157. https://doi.org/10.1109/tkde.2016.2557324 

Hosmani, P. S., Flores-Gonzalez, M., van de Geest, H., Maumus, F., Bakker, L. 

V, Schijlen, E., van Haarst, J., Cordewener, J., Sanchez-Perez, G., Peters, 

S., Fei, Z., Giovannoni, J. J., Mueller, L. A., & Saha, S. (2019). An improved 

de novo assembly and annotation of the tomato reference genome using 

single-molecule sequencing, Hi-C proximity ligation and optical maps. 

https://doi.org/10.1101/767764 

Kangara, N., Kurowski, T. J., Radhakrishnan, G. V, Ghosh, S., Cook, N. M., Yu, 

G., Arora, S., Steffenson, B. J., Figueroa, M., Mohareb, F., Saunders, D. G. 

O., & Wulff, B. B. H. (2020). Mutagenesis of Puccinia graminis f. sp. tritici 

and Selection of Gain-of-Virulence  Mutants. Frontiers in Plant Science, 11, 

570180. https://doi.org/10.3389/fpls.2020.570180 

McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A., 

Garimella, K., Altshuler, D., Gabriel, S., Daly, M., & DePristo, M. A. (2010). 

The Genome Analysis Toolkit: A MapReduce framework for analyzing next-

generation DNA sequencing data. Genome Research, 20(9), 1297–1303. 

https://doi.org/10.1101/gr.107524.110 

Nguyen, X. T., Nguyen, H. T., & Pham, C. K. (2016a). A bit-level matrix transpose 

for bitmap-index-based data analytics. 2016 IEEE 6th International 

Conference on Communications and Electronics, IEEE ICCE 2016, 217–

220. https://doi.org/10.1109/CCE.2016.7562639 

Nguyen, X. T., Nguyen, H. T., & Pham, C. K. (2016b). An FPGA approach for fast 

bitmap indexing. IEICE Electronics Express, 13(4). 

https://doi.org/10.1587/elex.13.20160006 



 

90 

Olivera Firpo, P. D., Newcomb, M., Flath, K., Sommerfeldt-Impe, N., Szabo, L. J., 

Carter, M., Luster, D. G., & Jin, Y. (2017). Characterization of Puccinia 

graminis f. sp. tritici isolates derived from an unusual wheat stem rust 

outbreak in Germany in 2013. Plant Pathology, 66(8), 1258–1266. 

https://doi.org/10.1111/ppa.12674 

Pretorius, Z. A., Singh, R. P., Wagoire, W. W., & Payne, T. S. (2000). Detection 

of virulence to wheat stem rust resistance gene Sr31 in Puccinia graminis. f. 

sp. tritici in uganda. Plant Disease, 84(2). 

https://doi.org/10.1094/PDIS.2000.84.2.203B 

Saunders, D. G. O., Pretorius, Z. A., & Hovmøller, M. S. (2019). Tackling the re-

emergence of wheat stem rust in Western Europe. Communications Biology, 

2(1). https://doi.org/10.1038/s42003-019-0294-9 

Schumann, G. L., & Leonard, K. J. (2000). Stem rust of wheat (black rust). The 

Plant Health Instructor. https://doi.org/10.1094/phi-i-2000-0721-01 

Sinha, R. R., Mitra, S., & Winslett, M. (2006). Bitmap indexes for large scientific 

data sets: A case study. 20th International Parallel and Distributed 

Processing Symposium, IPDPS 2006, 2006. 

https://doi.org/10.1109/IPDPS.2006.1639304 

Wu, K., Otoo, E. J., & Shoshani, A. (2006). Optimizing bitmap indices with 

efficient compression. ACM Transactions on Database Systems, 31(1), 1–

38. https://doi.org/10.1145/1132863.1132864 

Wulff, B. B. H., & Moscou, M. J. (2014). Strategies for transferring resistance into 

wheat: From wide crosses to GM cassettes. Frontiers in Plant Science, 

5(DEC). https://doi.org/10.3389/fpls.2014.00692 

Zhang, N. W., Pelgrom, K., Niks, R. E., Visser, R. G. F., & Jeuken, M. J. W. 

(2009). Three combined quantitative trait loci from nonhost lactuca saligna 

are sufficient to provide complete resistance of lettuce against bremia 

lactucae. Molecular Plant-Microbe Interactions, 22(9), 1160–1168. 

https://doi.org/10.1094/MPMI-22-9-1160 



 

91 

  

APPENDICES 

 

  



 

92 

Appendix A Tersect User Manual 

Tersect is a command-line utility for conducting fast set theoretical operations 

and genetic distance estimation on biological sequence variant data. The tool 

generates index files based on provided variant data (VCF files) which can then 

be used to rapidly execute flexible set theoretical queries and output the resulting 

lists of variants in selected regions. 

Tersect is intended to allow for highly responsive, exploratory interaction with 

variant data as well as for integration with larger tools and pipelines. It follows the 

Samtools/tabix convention for specifying genomic regions which allows for much 

faster operations and more manageable output sizes. 

Tersect can also be used to provide estimates of genetic distance between sets 

of samples, using the number of differing sites as a proxy for distance measures. 

Table of Contents 
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– Genomes 

– Binary operators 

– Genome list 

– Functional operators 

– Regions 

  



 

93 

Installation 

Pre-compiled releases 

Tersect packages and binaries are available for download below: 

Linux 

 64-bit binaries: 

https://github.com/tomkurowski/tersect/releases/download/v0.12.0/ 

tersect-0.12.0-Linux.tar.gz 

 64-bit .deb package (Debian, Ubuntu): 

https://github.com/tomkurowski/tersect/releases/download/v0.12.0/ 

tersect-0.12.0-Linux.deb 

 64-bit .rpm package (Fedora, openSUSE): 

https://github.com/tomkurowski/tersect/releases/download/v0.12.0/ 

tersect-0.12.0-Linux.rpm 

macOS 

 64-bit binaries: 

https://github.com/tomkurowski/tersect/releases/download/v0.12.0/ 

tersect-0.12.0-macOS.tar.gz 

Building Tersect from source 

Building Tersect from source requires CMake version 3.1+ as well as Flex (lexical 

analyzer) version 2.5+ and Bison (parser generator) version 2.6+. 

1. Cloning the repository 

git clone https://github.com/tomkurowski/tersect.git 

2. Building 

For an out-of-source build after cloning the repository use the following 

commands: 

cd tersect 
mkdir build 
cd build 
cmake .. 
make 



 

94 

3. Installing 

This step may require elevated permissions (e.g., prefacing the command with 

sudo). The default installation location for Tersect is /usr/local/bin. 

make install 

Example data 

Two archives containing example Tersect index files (.tsi) are available for 

download below to allow you to try out the utility without needing to create an 

index file yourself. 

The first index contains human genomic variant data for 2504 individuals from the 

1000 Genomes Project. While Tersect is capable of handling the entire human 

genome, the index below is limited to chromosome 1 to make the example 

archive smaller and quicker to download. 

The second index contains tomato genomic variant data for 360 tomato 

accessions from the AGIS Tomato 360 Resequencing Project and 84 accessions 

from the Wageningen UR 150 Tomato Genome ReSequencing Project for a 

combined data set of 444 accessions. Samples have been renamed according to 

a provided key (accession_names.tsv) to make them more informative and 

consistent between the two source data sets. 

Note: the index files provided below are compressed using gzip and need to be 

uncompressed before use. 

 2504 human genomes, chromosome 1: 

https://github.com/tomkurowski/tersect/releases/download/v0.12.0/ 

human_chr1.tsi.gz 

 444 tomato genomes and sample names: 

https://github.com/tomkurowski/tersect/releases/download/v0.12.0/ 

tomato.tsi.gz 

https://github.com/tomkurowski/tersect/releases/download/v0.12.0/ 

accession_names.tsv 

  

https://github.com/tomkurowski/tersect/releases/download/v0.12.0/accession_names.tsv
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Building a Tersect index 

You can build your own Tersect index based on a set of VCF files using the 

tersect build command. You need to provide a name for your index file (a .tsi 

extension will be added if you omit it) as the first argument, followed by any 

number of input VCF files (which may be compressed using gzip) to be included 

in the index. 

Please note that although from a technical point of view, Tersect would work even 

if your VCF files were called against different reference genomes or versions of 

the same reference, the biological context of your theoretical operations will not 

be accurate (depending on how different the reference genomes used). 

Therefore, we strongly recommend using VCF files called against the same 

reference version. 

Example: 

The command below builds a Tersect index file named tomato.tsi which includes 

variants from all vcf.gz files in the data directory. Depending on the input size this 

can take several minutes. 

foo@bar:~$ tersect build tomato.tsi ./data/*.vcf.gz 

Optionally, you can also provide a --name-file input file containing custom 

sample names to be used by Tersect. These names will replace the default 

sample IDs defined in the input VCF header lines. The --name-file should be 

a tab-delimited file containing two columns, the first with the sample IDs to be 

replaced and the second with the names to be used by Tersect. An example is 

shown below: 

TS-1    S.lyc B TS-1 
TS-10   S.lyc B TS-10 
TS-100  S.lyc B TS-100 
TS-101  S.lyc B TS-101 
TS-102  S.lyc B TS-102 
TS-103  S.lyc B TS-103 
TS-104  S.lyc B TS-104 
TS-108  S.lyc B TS-108 
TS-11   S.lyc B TS-11 
TS-110  S.lyc B TS-110 
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You can also modify sample names in an existing Tersect index file by using the 

tersect rename command. 

It is worth noting that the descriptive fields of the VCF files are not stored within 

the Tersect database. The reason for that is once an operation is performed on 

two of more VCF files, these fields will be discarded anyway as they are 

genotype-specific. However, you should be able to retrieve it back by intersecting 

Tersect's output with any VCF files from this list. 

Inspecting a Tersect index 

The data contained in a Tersect index file can be inspected using several 

commands. The tersect chroms command prints information on the number of 

variants present in each of the reference chromosomes as well as the 

chromosome names and size. 

Note: In the absence of a reference file, the length of each chromosome is 

represented by the position of the last variant, which will always be an 

underestimate. 

Example: 

The command below prints the per-chromosome variant content of the example 

Tersect index file named tomato.tsi: 

foo@bar:~$ tersect chroms tomato.tsi 
Chromosome  Length  Variants 
SL2.50ch00  21805702    1343815 
SL2.50ch01  98543411    9965680 
SL2.50ch02  55340384    5189338 
SL2.50ch03  70787603    6741448 
SL2.50ch04  66470926    7257520 
SL2.50ch05  65875078    6830857 
SL2.50ch06  49751619    4870941 
SL2.50ch07  68044764    6868152 
SL2.50ch08  65866627    6504025 
SL2.50ch09  72481975    7102356 
SL2.50ch10  65527500    6712293 
SL2.50ch11  56302478    5367032 
SL2.50ch12  67145147    6719621 

The tersect samples command prints the names of samples present in a Tersect 

index file. These can be either all samples or a subset based on a naming pattern 
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(the --match parameter) and/or on the presence of specific variants 

(the --contains parameter). 

Sample name patterns can include wildcard symbols (*) which match zero or 

more characters. For example, a pattern like "S.lyc*" will match all samples 

whose names begin with "S.lyc". A lone wildcard character matches all samples 

stored in the Tersect index file. 

If you specify a list of variants via the --contains parameter, only samples which 

contain each of those variants will be printed. The variant format should look as 

follows: chromosome:position:ref:alt where ref and alt are reference and 

alternate alleles. Multiple variants can be included, separated by commas (e.g., 

chr1:1245:A:G,chr8:5300:T:A). 

Examples: 

The command below prints the names of samples matching the "S.gal*" 

wildcard pattern contained in the example Tersect index file tomato.tsi. 

foo@bar:~$ tersect samples tomato.tsi -m "S.gal*" 
Sample 
S.gal W TS-208 
S.gal LA1044 
S.gal LA1401 
S.gal LA0483 

The command below prints the names of all samples containing both a T/G SNV 

at position 100642 on chromosome 3 and an A/G SNV at position 5001015 on 

chromosome 6 contained in the example Tersect index file tomato.tsi. 

foo@bar:~$ tersect samples tomato.tsi -c 
"SL2.50ch03:100642:T:G,SL2.50ch06:5001015:A:G" 
Sample 
S.lyc LA1479 
S.pen LA0716 
S.hab LYC4 
S.hab LA0407 
S.hab LA1777 
S.hab LA1718 
S.hab CGN15792 
S.hab PI134418 
S.hab CGN15791 
S.chm LA2695 
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Set operations 

Overview 

Tersect can interpret and display the results of set theoretical commands using 

the tersect view command. This is the primary and most flexible functionality 

of the application and allows the user to construct arbitrarily complex queries. The 

expected format of a tersect view query is as follows: 

tersect view [options] index.tsi QUERY [REGION1...] 

Queries 

A query is a command interpreted and evaluated by Tersect which (if successful) 

prints either a list of variants (if the result is a single genome or virtual genome) 

or a list of genome sample names (if the result is a list of genomes). The simplest 

query consists of a genome name and prints out the variants belonging to that 

genome. More advanced queries can contain complex combinations of 

operations described in the sections below. 

Note: The term virtual genome refers to a collection of variants not representing 

a specific genome - for example, the symmetric difference of two genomes (the 

collection of variants which appear in one but not both genomes). Tersect treats 

these virtual genomes the same way it treats "real" genomes so they can be used 

as operands in nested queries. 

Genomes 

Genomes can be referred to by their sample name, which is either taken from the 

header line of the source VCF file or set by the user either manually (see 

tersect rename) or through a tab-delimited name file (see --name-file in 

tersect build and tersect rename). A sample name can be of any length 

and can include any characters (including whitespace) except for single quotes 

('). However, if a sample name includes whitespace, parentheses, or characters 

used as Tersect operators (-^&|>,\), it has to be surrounded by single quotes. 

If the query is (or results in) a single genome or virtual genome, the variants 

contained by that one genome are printed out. 



 

99 

Example: 

Print out all the variants belonging to the "S.hab LYC4" genome in the tomato.tsi 

Tersect index file: 

foo@bar:~$ tersect view tomato.tsi "'S.hab LYC4'" 
##fileformat=VCFv4.3 
##tersectVersion=0.11.0 
##tersectCommand='S.hab LYC4' 
#CHROM  POS ID  REF ALT QUAL    FILTER  INFO 
SL2.50ch00  391 .   C   T   .   .   . 
SL2.50ch00  416 .   T   A   .   .   . 
SL2.50ch00  734 .   T   G   .   .   . 
SL2.50ch00  759 .   C   T   .   .   . 
SL2.50ch00  771 .   A   G   .   .   . 
SL2.50ch00  778 .   T   A   .   .   . 
... 

Note: The sample name had to be surrounded by single quotes because it 

contains a whitespace character. 

Binary operators 

Tersect supports four basic binary operators. Each operand has to be a single 

genome. All four operators have the same precedence and are left-associative. 

You can use parentheses to enforce precedence other than simple left-to-right. 

Table A-1: Tersect binary operators. 

Operator Name Usage Result 

& intersection 
GENOME1 & 
GENOME2 

Virtual genome containing 
variants found in both GENOME1 

and GENOME2 

| union 
GENOME1 | 
GENOME2 

Virtual genome containing 
variants found in GENOME1, 

GENOME2, or both 

\ difference 
GENOME1 \ 
GENOME2 

Virtual genome containing 
variants found in GENOME1 but 

not in GENOME2 

^ symmetric 
difference 

GENOME1 ^ 
GENOME2 

Virtual genome containing 
variants found in GENOME1 or 
GENOME2 but not in both 
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The result of a binary operation is treated as a single genome (though it does not 

have a sample name) called a virtual genome, which can be used in further 

operations. 

Examples: 

Print out the variants shared by 'S.hua LA1983' and 'S.pim LYC2798': 

foo@bar:~$ tersect view tomato.tsi "'S.hua LA1983' & 'S.pim LYC2798'" 
##fileformat=VCFv4.3 
##tersectVersion=0.11.0 
##tersectCommand='S.hua LA1983' & 'S.pim LYC2798' 
#CHROM  POS ID  REF ALT QUAL    FILTER  INFO 
SL2.50ch00  3235    .   A   G   .   .   . 
SL2.50ch00  3277    .   A   G   .   .   . 
SL2.50ch00  3873    .   C   T   .   .   . 
... 

Print out the variants which appear in only one of 'S.gal LA1044' or 

'S.gal W TS-208': 

foo@bar:~$ tersect view tomato.tsi "'S.gal LA1044' ^ 
'S.gal W TS-208'" 
##fileformat=VCFv4.3 
##tersectVersion=0.11.0 
##tersectCommand='S.gal LA1044' ^ 'S.gal W TS-208' 
#CHROM  POS ID  REF ALT QUAL    FILTER  INFO 
SL2.50ch00  362 .   G   T   .   .   . 
SL2.50ch00  867 .   G   T   .   .   . 
SL2.50ch00  1198    .   G   A   .   .   . 
... 

Print out the variants which appear in 'S.chi CGN15532' but not 

'S.chi CGN15530' or 'S.chi W TS-408': 

foo@bar:~$ tersect view tomato.tsi "'S.chi CGN15532' \ 
'S.chi CGN15530' \ 'S.chi W TS-408'" 
##fileformat=VCFv4.3 
##tersectVersion=0.11.0 
##tersectCommand='S.chi CGN15532' \ 'S.chi CGN15530' \ 
'S.chi W TS-408' 
#CHROM  POS ID  REF ALT QUAL    FILTER  INFO 
SL2.50ch00  1163    .   C   G   .   .   . 
SL2.50ch00  1811    .   C   G   .   .   . 
SL2.50ch00  1818    .   C   A   .   .   . 
... 
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Note: A more convenient way to conduct the same operation on many genomes 

is by using functional operators (see Table A-3). 

Genome list 

Instead of individual genomes, Tersect can also operate on lists of genomes. 

These can be selected using wildcard patterns matching genome sample names, 

with the most general pattern of a lone wildcard operator (*) matching all the 

genomes in the Tersect index file. Individual genomes can also be appended to 

lists using commas (,) or removed from lists using minus signs (-). 

Genome lists can also be filtered (using the > operator) by whether they contain 

a specified list of variants. The variant format should look as follows: 

chromosome:position:ref:alt where ref and alt are reference and alternate 

alleles. Multiple variants can be included, separated by commas (e.g., 

chr1:1245:A:G,chr8:5300:T:A). 

Table A-2: Tersect genome list operators. 

Operator Name Usage Result 

* wildcard PATTERN 
Genome list containing all genomes 

whose sample names match the 
provided wildcard pattern 

, append 
GENOMELIST, 

GENOME 
Genome list containing all genomes 

in GENOMELIST and GENOME 

- remove 
GENOMELIST - 

GENOME 
Genome list containing all genomes 

in GENOMELIST except GENOME 

> superset 
GENOMELIST > 
VARIANTLIST 

Genome list containing all genomes 
in GENOMELIST which contain all 

variants in VARIANTLIST 

Note: Tersect does not distinguish between a genome list which contains only 

one genome and a single genome. The former can be used in binary operations 

and the latter can be used in functional operations or in constructing genome lists. 

If the query is (or results in) a genome list, the list of their genome sample names 

is printed out. 
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Examples: 

Print out all the names of genomes which begin with "S.pim": 

foo@bar:~$ tersect view tomato.tsi "S.pim*" 
S.pim P TS-92 
S.pim P TS-79 
S.pim P TS-77 
S.pim P TS-50 
S.pim P TS-441 
S.pim P TS-440 
S.pim P TS-439 
S.pim P TS-438 
... 

Print out all the names of genomes which contain an A/G single nucleotide variant 

at position 828587 in chromosome 7: 

foo@bar:~$ tersect view tomato.tsi "* > SL2.50ch07:828587:A:G" 
S.lyc C TS-97 
S.lyc C TS-94 
S.pim P TS-79 
S.pim P TS-77 
S.lyc B TS-68 
S.lyc C TS-53 
S.pim P TS-50 
S.pim P TS-441 
... 

Print out all the names of genomes which contain a G/A SNV at position 1590608 

in chromosome 5 and a T/C SNV at position 5230 in chromosome 12, except for 

'S.gal LA1401' and those whose names begin with "S.pim": 

foo@bar:~$ tersect view tomato.tsi "* > 
SL2.50ch05:1590608:G:A,SL2.50ch12:5230:T:C - 
('S.pim*','S.gal LA1401')" 
S.lyc C TS-431 
S.lyc C TS-430 
S.lyc LA1314 
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Functional operators 

Functional operators are used to conduct operations on genome lists instead of 

individual genomes. 

Table A-3: Tersect functional operators. 

Operator Name Usage Result 

union()  
u() 

arbitrary 
union 

union(GENOMELIST)  
u(GENOMELIST) 

Virtual genome 
containing all variants 

contained in any of 
the genomes in 
GENOMELIST 

intersect()  
i() 

arbitrary 
intersection 

intersect(GENOMELIST)  
i(GENOMELIST) 

Virtual genome 
containing all variants 

which appear in 
every genome in 
GENOMELIST 

The result of a functional operation is treated as a single genome (though it does 

not have a sample name). 

Examples: 

Union of all genomes, containing every variant recorded in the tomato.tsi Tersect 

index file: 

foo@bar:~$ tersect view tomato.tsi "u(*)" 
##fileformat=VCFv4.3 
##tersectVersion=0.11.0 
##tersectCommand=u(*) 
#CHROM  POS ID  REF ALT QUAL    FILTER  INFO 
SL2.50ch00  280 .   A   C   .   .   . 
SL2.50ch00  284 .   A   G   .   .   . 
SL2.50ch00  316 .   C   T   .   .   . 
SL2.50ch00  323 .   C   T   .   .   . 
SL2.50ch00  332 .   A   T   .   .   . 
SL2.50ch00  362 .   G   T   .   .   . 
... 

Intersection of all genomes which contain a T/A single nucleotide variant at 

position 12547 in chromosome 12, containing all variants that are shared by each 

of those genomes: 
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foo@bar:~$ tersect view tomato.tsi "i(* > SL2.50ch12:12547:T:A)" 
##fileformat=VCFv4.3 
##tersectVersion=0.11.0 
##tersectCommand=i(* > SL2.50ch12:12547:T:A) 
#CHROM  POS ID  REF ALT QUAL    FILTER  INFO 
SL2.50ch00  16576   .   T   C   .   .   . 
SL2.50ch00  26171   .   G   T   .   .   . 
SL2.50ch00  29880   .   A   G   .   .   . 
SL2.50ch00  37486   .   T   G   .   .   . 
SL2.50ch00  40476   .   G   T   .   .   . 
SL2.50ch00  436850  .   A   G   .   .   . 
... 

Print all the variants which appear only in genome S.hab CGN15792. This is 

achieved by finding the difference of that genome and the union of all genomes 

except S.hab CGN15792: 

foo@bar:~$ tersect view tomato.tsi "'S.hab CGN15792' \ u(* - 
'S.hab CGN15792')" 
##fileformat=VCFv4.3 
##tersectVersion=0.11.0 
##tersectCommand='S.hab CGN15792' \ u(* - 'S.hab CGN15792') 
#CHROM  POS ID  REF ALT QUAL    FILTER  INFO 
SL2.50ch00  1163    .   C   T   .   .   . 
SL2.50ch00  1596    .   G   A   .   .   . 
SL2.50ch00  2048    .   G   A   .   .   . 
SL2.50ch00  2933    .   G   A   .   .   . 
SL2.50ch00  2987    .   A   T   .   .   . 
... 

Regions 

By default, queries are executed, and results are returned for the entire genome. 

However, it is possible to selectively execute a query only on a specified region. 

The familiar tabix/samtools format chromosome:beginPos-endPos is used to 

specify those regions. The coordinates are one-based and inclusive. 

Limiting queries to regions allows for much faster execution since far fewer 

positions need to be processed and printed, capturing only intervals of interest. 

This feature makes it possible to use Tersect's flexible queries as a high-

performance part of a larger pipeline or the back-end of a highly responsive, 

interactive application. 
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Example: 

Print a union, that is, all the variants appearing either in genome 'S.lyc SG16', 

'S.lyc LA1421', or both, from the first 90 kbp of chromosome 2 in the tomato.tsi 

index file: 

foo@bar:~$ tersect view tomato.tsi "'S.lyc SG16' | 'S.lyc LA1421'" 
SL2.50ch02:1-90000 
##fileformat=VCFv4.3 
##tersectVersion=0.11.0 
##tersectCommand='S.lyc SG16' | 'S.lyc LA1421' 
##tersectRegion=SL2.50ch02:1-90000 
#CHROM  POS     ID      REF     ALT     QUAL    FILTER  INFO 
SL2.50ch02      204     .       A       G       .       .       . 
SL2.50ch02      255     .       TCC     TCCC    .       .       . 
SL2.50ch02      255     .       TCC     TCCCC   .       .       . 
SL2.50ch02      2382    .       G       A       .       .       . 
SL2.50ch02      13383   .       G       A       .       .       . 
SL2.50ch02      21752   .       C       T       .       .       . 
SL2.50ch02      24538   .       T       C       .       .       . 
SL2.50ch02      29276   .       G       T       .       .       . 
SL2.50ch02      71245   .       A       C       .       .       . 
SL2.50ch02      73326   .       C       T       .       .       . 
SL2.50ch02      86236   .       C       A       .       .       . 
SL2.50ch02      86601   .       A       G       .       .       . 
SL2.50ch02      86635   .       T       A       .       .       . 
SL2.50ch02      86695   .       T       C       .       .       . 
SL2.50ch02      86769   .       G       A       .       .       . 
SL2.50ch02      87079   .       T       A       .       .       . 
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Appendix B Tersect Browser Supplementary Figures 

and Tables 

 

Figure B-1: Time and storage space costs of distance matrix precomputation as 

functions of the smallest partition size (human genome data set). The 2548 

resequenced human genome data were used for benchmarking. As with the tomato 

benchmarking (see Figure 4-5), successive precomputed partitions were generated by 

doubling the size of the smaller ones until a size larger than the human chromosome 1 

(248.96 Mbp) was reached. The same general pattern is observed, with both metrics 

inversely proportional to partition size and precomputation time varying in a relatively 

narrow range due to close-to-constant computational cost of Tersect queries. See Table 

B-2 for the numeric results. 
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Figure B-2: Diagram of the primary Tersect Browser interface. Part (A) of the 

interface contains controls which allow users to (left to right) select the phylogenetic tree 

display style, open the data set view, select a reference genome, select the 

chromosome, specify a chromosomal interval, select a bin size, zoom the plot in or out, 

download images, and share (export) views. The “Home” button at the top of the page 

returns the user to the index page, where they can select a different data set. Part (B) 

shows the phylogenetic tree for the current interval or simple labels, depending on the 

tree style setting. Individual genome labels can be clicked to select them as a reference 

or remove them from the current view. The tree (or labels) remains synchronized with 

the movements of the heatmap in the vertical axis and in terms of zoom level. Part (C) 

shows the heat map, representing the (binned) distances between each genome to the 

selected reference. The top of the heat map is bordered by a scale; mouse drags on the 

scale allow users to quickly select an interval. Individual bins can also be clicked to set 

interval borders, remove genomes from the view, or select them as the reference.  
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Figure B-3: Diagram of the accession selection interface. This overlay can be 

opened by pressing the data set button in the upper left corner of the main interface. The 

filterable data table contains a row for each genome in the data set, alongside columns 

provided during setup or added through plugins. The “Import TGRC gene…” control at 

the bottom is the entry point to one such (tomato-specific) plugin. Selections can be 

assigned to named groups, which can then be selected or unselected all at once, as well 

as marked with a specific group colour. The selection of genomes used for plot 

generation is updated when the accession selection interface closes. 

 

Table B-1: Distance matrix precomputation metrics for tomato (444 genomes) data. 

Smallest partition 
size [Mbp] 

Precomputation 
time [s] 

Storage space 
usage [MiB] 

Number of 
precomputed 
PHYLIP files 

1 464.73 1486 1698 

2 373.23 811 868 

3 340.74 562 578 

4 329.07 446 450 

5 316.97 353 349 
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6 311.09 305 298 

7 306.72 267 259 

8 306.77 245 237 

9 298.86 203 194 

10 296.95 187 176 

11 295.60 174 164 

12 294.78 164 154 

13 293.79 153 143 

14 292.30 143 133 

15 293.08 137 126 

16 293.30 135 126 

17 289.32 111 103 

18 288.04 104 95 

19 287.75 98 89 

20 290.55 97 88 

 

Table B-2: Distance matrix precomputation metrics for human (2548 genomes, 

restricted to chromosome 1) data. 

Smallest partition 
size [Mbp] 

Precomputation 
time [s] 

Storage space 
usage [MiB] 

Number of 
precomputed 
PHYLIP files 

1 2502.01 12913 500 

3 1681.96 5065 169 

5 1545.87 3137 102 

8 1468.47 1988 63 

11 1446.28 1534 47 

14 1428.10 1273 38 

17 1409.05 1007 30 

20 1406.40 916 27 

 

Table B-3: Pairwise distance matrix generation times for tomato (444 genomes) 

data using different partition sizes and requested interval sizes. 

 Median distance matrix generation time [s] 

Smallest 
partition 

size [Mbp] 

1 Mbp 
intervals 

3 Mbp 
intervals 

5 Mbp 
intervals 

10 Mbp 
intervals 

20 Mbp 
intervals 

50 Mbp 
intervals 

1 0.728 0.771 0.845 0.948 0.992 1.074 

2 0.808 0.862 0.933 0.993 1.036 1.110 

3 0.858 0.910 1.061 1.159 1.163 1.191 
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4 0.856 1.036 1.112 1.282 1.166 1.358 

5 0.865 1.261 1.138 1.358 1.367 1.544 

6 0.796 1.349 1.321 1.561 1.542 1.628 

7 0.806 1.488 1.526 1.586 1.648 1.700 

8 0.761 1.470 1.670 1.714 1.789 1.796 

9 0.756 1.605 1.750 1.871 1.853 1.780 

10 0.720 1.604 1.950 1.708 1.812 2.036 

11 0.736 1.546 2.029 1.982 1.874 2.195 

12 0.740 1.560 2.170 2.078 2.202 2.403 

13 0.745 1.579 2.320 2.257 2.395 2.370 

14 0.740 1.535 2.219 2.257 2.340 2.432 

15 0.737 1.534 2.277 2.598 2.497 2.761 

16 0.723 1.427 2.319 2.726 2.529 2.735 

17 0.730 1.465 2.243 2.703 2.690 2.584 

18 0.727 1.480 2.289 2.834 2.705 2.652 

19 0.721 1.454 2.296 3.189 2.752 3.071 

20 0.700 1.467 2.307 3.398 3.139 3.351 

 

Table B-4: Pairwise distance matrix generation times for human (2548 genomes) 

chromosome 1 data using different partition sizes and requested interval sizes. 

 Median distance matrix generation time [s] 

Smallest 
partition 

size [Mbp] 

1 Mbp 
intervals 

5 Mbp 
intervals 

10 Mbp 
intervals 

20 Mbp 
intervals 

50 Mbp 
intervals 

100 Mbp 
intervals 

1 18.87 22.00 22.67 26.91 27.37 28.82 

3 18.59 22.38 24.41 27.36 30.45 33.52 

5 15.70 24.06 25.07 28.05 30.96 35.17 

8 16.32 31.38 30.62 36.65 36.59 41.62 

11 15.74 36.65 31.58 38.44 43.94 42.48 

14 16.01 38.98 43.33 46.08 47.23 44.07 

17 15.41 40.04 44.80 47.28 49.22 48.85 

20 15.83 40.44 56.71 51.50 64.36 70.78 
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Appendix C Tersect: a set theoretical utility for 

exploring sequence 
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Appendix D Mutagenesis of Puccinia graminis f. sp. 

tritici and Selection of Gain-of-Virulence Mutants 
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