

CRANFIELD UNIVERSITY

TOMASZ JANUSZ KUROWSKI

DEVELOPING NOVEL BIOINFORMATICS TOOLS AND

PIPELINES FOR WORKING WITH REFERENCE GENOMES AND

LARGE SETS OF RESEQUENCED GENOMES

SCHOOL OF WATER, ENERGY AND ENVIRONMENT

Agrifood

PhD

Academic Year: 2015 - 2022

Supervisor: Dr Fady Mohareb

January 2022

CRANFIELD UNIVERSITY

SCHOOL OF WATER, ENERGY AND ENVIRONMENT

Agrifood

PhD

Academic Year 2015 - 2022

TOMASZ JANUSZ KUROWSKI

Developing novel bioinformatics tools and

pipelines for working with reference genomes and

large sets of resequenced genomes

Supervisor: Dr Fady Mohareb

January 2022

This thesis is submitted in partial fulfilment of the requirements for

the degree of Doctor of Philosophy

(NB. This section can be removed if the award of the degree is

based solely on examination of the thesis)

© Cranfield University 2022. All rights reserved. No part of this

publication may be reproduced without the written permission of the

copyright owner.

i

ABSTRACT

Both reference genomes assembled for individual species and large, publicly

maintained sets of resequenced genomes are of immense value to researchers.

The former represent important milestones for research involving the species of

interest and serve as ostensibly static points of reference for other data, while the

latter serve as catalogues of genetic variation, enabling researchers to place their

own data in a wider context. However, maintaining sets of resequenced genomes

and ensuring their integrity as they undergo updates to match any new releases

of their reference genome poses certain computational challenges, as does

manipulating and comparing those large sets of genomes in general.

This work reports on the detection and correction of significant errors which were

introduced into resequenced tomato data in the course of updating them to a new

version. It also introduces Tersect, a low-level utility optimized for manipulating

and comparing large sets of resequenced genomic data, as well as Tersect

Browser, a Web application which uses the high performance of Tersect, coupled

with a higher-level indexing and precomputation scheme to allow for interactive

comparison of large sets of resequenced genomes, giving biologists a tool

capable of generating visualisations of genetic distance and phylogenetic

relationships based on whole-genome sequence data from hundreds of genomes

in seconds rather than hours.

Keywords:

Comparative genomics, Genotyping, SNP, SNV, Variant Call Format,

Introgression, Tomato

ii

ACKNOWLEDGEMENTS

I want to thank my supervisor Dr Fady Mohareb for the endless patience, support,

and understanding he showed me throughout the project, and for providing me

with ample opportunities to collaborate on many diverse projects, expanding my

research horizons and helping me pick up a plethora of useful skills.

I also want to thank Prof. Andrew Thompson, under whose patient guidance I

learned to apply my bioinformatician’s toolkit to the real-world problems of plant

science.

Special thanks to Corentin Molitor, who shared an office with me for much of my

project and was always within reach if I needed to trade ideas (or snacks!) with

someone. Further, I would like to thank all the students whom I have had the

opportunity to teach during the time I took to complete the thesis, for providing a

useful distraction from research and writing – I never expected to enjoy teaching!

Last but not least, I would like to thank my loving family, who supported me and

helped me stay motivated during the course of my work: my mother Renata, my

sister Anna, my grandmother Irena, and especially my dear grandfather Henryk,

who passed away last year.

iii

TABLE OF CONTENTS

ABSTRACT ... i

ACKNOWLEDGEMENTS.. ii

LIST OF FIGURES ... v

LIST OF TABLES ... ix

LIST OF ABBREVIATIONS .. x

1 INTRODUCTION ... 1

1.1 Background ... 1

1.2 Aim and objectives .. 5

1.3 Thesis outline .. 6

1.4 References ... 7

2 CORRECTING AND VALIDATING VARIANT DATA LIFT-OVER IN

RESEQUENCED TOMATO GENOMES .. 9

2.1 Abstract ... 9

2.1.1 Summary .. 9

2.1.2 Availability .. 9

2.2 Introduction ... 10

2.3 Resequenced genome issues ... 12

2.4 Reference genome issues .. 17

2.5 Results .. 22

2.5.1 SNV corrections ... 22

2.5.2 InDel corrections .. 22

2.5.3 Annotation .. 23

2.5.4 SeqRemap lift-over pipeline ... 24

2.6 Discussion .. 30

2.7 References ... 32

3 TERSECT: A SET THEORETICAL UTILITY FOR EXPLORING SEQUECE

VARIANT DATA ... 35

3.1 Abstract ... 35

3.1.1 Summary .. 35

3.1.2 Availability .. 35

3.2 Introduction ... 36

3.3 Tersect .. 36

3.3.1 Interface and command parser .. 36

3.3.2 Indexing .. 37

3.4 Benchmarking ... 42

3.5 Results and discussion ... 43

3.6 References ... 50

4 TERSECT BROWSER .. 52

4.1 Abstract ... 52

4.1.1 Summary .. 52

iv

4.1.2 Availability .. 52

4.2 Introduction ... 53

4.3 Materials and methods .. 55

4.3.1 Benchmark and test data ... 55

4.3.2 Benchmark hardware ... 56

4.3 Implementation ... 57

4.4 Results and discussion ... 69

4.5 Future work ... 78

4.6 References ... 79

5 OVERALL DISCUSSION... 84

5.1 Overview ... 84

5.2 Lift-over and validation .. 84

5.3 Tersect Browser and Tersect .. 85

5.4 References ... 88

APPENDICES .. 91

Appendix A Tersect User Manual ... 92

Appendix B Tersect Browser Supplementary Figures and Tables 106

Appendix C Tersect: a set theoretical utility for exploring sequence 111

Appendix D Mutagenesis of Puccinia graminis f. sp. tritici and Selection of

Gain-of-Virulence Mutants .. 114

v

LIST OF FIGURES

Figure 2-1: Positions of "problem areas" where the reference alleles listed in the
resequenced genome VCF files hosted by SGN do not match the SL2.50
sequence, marked in red along the length of chromosomes. 12

Figure 2-2: Filtered dot plots comparing the SL2.50 (x-axis) and SL2.40 (y-axis)
sequences of chromosomes 1, 2, 3, and 4 alongside respective "problem
areas". The blue lines represent reverse complement sequences, indicating
the presence of reversed scaffolds. The two reversed sequences at the start
of chromosome 2 effectively form a single "problem area". 14

Figure 2-3: Filtered dot plots comparing the SL2.50 (x-axis) and SL2.40 (y-axis)
sequences of chromosomes 5, 6, 7, and 8 alongside respective "problem
areas". The blue lines represent reverse complement sequences, indicating
the presence of reversed scaffolds. Note that chromosome 7 includes no
reversed scaffolds and thus no problem areas. The group of four
neighbouring reversed scaffolds in chromosome 8 form a largely contiguous
"problem area". .. 15

Figure 2-4: Filtered dot plots comparing the SL2.50 (x-axis) and SL2.40 (y-axis)
sequences of chromosomes 9, 10, 11, and 12 alongside respective "problem
areas". The blue lines represent reverse complement sequences, indicating
the presence of reversed scaffolds. Chromosome 10 includes re-arranged
scaffolds but no reversed scaffolds and as a result it exhibits no "problem
areas". The largest scaffold in chromosome 12 was reversed; this may be an
error in the SL2.50 build (see Reference genome issues). 16

Figure 2-5: Diagram of the Chromosome 9 scaffold order and orientation in the
SL2.40 reference, according to the Shearer et al. paper (FISH), and in the
SL2.50 reference. Reversed red arrows indicate scaffolds which are
reversed compared to SL2.40. The relative scaffold sizes are to scale except
for scaffold 2 (SL2.40sc6916) which would have been too small to see
clearly. Gap sizes are omitted. .. 17

Figure 2-6: Diagram of the Chromosome 12 scaffold order and orientation in the
SL2.40 reference, according to the Shearer et al. paper (FISH), and in the
SL2.50 reference. Reversed red arrows indicate scaffolds which are
reversed compared to SL2.40. The relative scaffold sizes are to scale. Gap
sizes are omitted. .. 18

Figure 2-7: Example of an incorrect SNV in the SGN JBrowse genome browser.
The reference allele C matches the base on the complementary (bottom)
DNA strand rather than the reference strand. .. 22

Figure 2-8: Example of an incorrect InDel in the SGN JBrowse genome browser.
The reference allele matches the reverse of its preceding sequence
(highlighted in cyan) on the complementary strand, showing that both the
allele sequences and their positions need to be corrected. 23

vi

Figure 2-9: Diagram of the full SeqRemap lift-over pipeline as used with NUCmer
whole-genome alignment. The “custom section” of the pipeline, marked in
red, is a (technically optional) mapping and variant calling step that has to be
set up externally by the user, to match the pipeline used to generate the
source VCFs (as closely as possible), hence why the tools (bwa, bcftools)
are only named as examples. It is used to find variants in the “gaps”
introduced by novel sequence data in the destination genome. 26

Figure 3-1: Tersect index file construction diagram. Parts A) and B) show the
contents of example VCF input files (metadata and certain columns were
omitted). The first input file contains data for two samples (GEN1 and GEN2)
and the second file contains data for a single sample (GEN3). All alleles
contained in a chromosome are stored in a single list as seen in part C).
Membership of individual alleles in each of the samples is encoded in bit
arrays as seen in part D), which shows a 32-bit word for the sake of simplicity
(Tersect uses 64-bit words by default). The most significant bit is set for all
three bit arrays, indicating that the specific word shown is a literal word (as
opposed to a fill word – these terms are explained in section below). Note
that the indices in the chromosome variant table and the sample bit arrays
match – the lists are parallel. ... 40

Figure 3-2: Diagrammatic example of WAH compression and variant retrieval by
Tersect. Three words (part A) encode allele contents for 315 successive
alleles stored in the chromosome variant list shown in part B. The literal
words encode the indices of variants present in a sample, while the fill word
records the length of a run of empty words (each corresponding to seven
absent alleles). The stored binary value is 0b0101011 (decimal 43). With
seven alleles per word, this can be used to advance the index indicator of
the variant list by 7 x 43 = 301 positions when the bit array is traversed. Note
that, while for the sake of simplicity the example uses 8-bit words, Tersect
uses 64-bit words by default. ... 41

Figure 3-3: Benchmarking results for the identification of variants private to a
single genome out of subsets of 444 tomato genomes. See Table 3-1 for the
numeric results. ... 44

Figure 3-4: Benchmarking results for the intersections of subsets of 56 Solanum
pimpinellifolium genomes. This is a wild species of tomato closely related to
the S. lycopersicum, the cultivated tomato and the most numerous wild
tomato species in the source data sets. The shared variants identified
through intersection represent alleles typical of S. pimpinellifolium as
compared to the cultivated tomato reference genome. See Table 3-2 for the
numeric results. ... 45

Figure 3-5: Tersect index build time and peak memory usage. It should be noted
that inclusion time per genome varied significantly due to different variant
content per genome, evident in the shape of the line. This is also evident in
Figure 3-6, which traces a very similar path for the input data. The source
genome list was shuffled to minimize this variation. The peak memory usage

vii

is defined as the maximum resident set size. See Table 3-3 for the numeric
results. ... 46

Figure 3-6: Size of input data and generated Tersect index files. Note that the
sizes of individual per genome data sets vary with the number of variants
they contain. See Table 3-3 for the numeric results. 47

Figure 4-1: Diagram of the distance matrix precomputation process. The size of
the tomato reference genome chromosome 4 is used alongside four partition
sizes: 5 Mbp (the smallest and most significant size), 10 Mbp, 25 Mbp, and
50 Mbp. Note that for the largest size, the partition in fact covers the entire,
shorter length of the chromosome (47.26 Mbp) instead. Tersect is only used
to create the smallest partitions, while the rest are generated by adding up
sub-partitions. This requires all the partition sizes (which can be set by the
user) to be multiples of the smallest partition size. The “distance” metrics
stored in the matrices are actually simple counts of the number of SNV
differences rather than true genetic distance metrics; those are calculated
downstream. .. 61

Figure 4-2: Diagram of distance matrix request handling by the Tersect Browser
back-end. The requested interval is partitioned into a list of smaller intervals,
for which the distance matrices can be either retrieved from among the
precomputed partitions or generated de novo by Tersect, and then added
and subtracted to yield the final distance matrix. Only two (at most) Tersect
intervals are ever generated for a single request (one at each end of the
requested interval) and they are always (at most) half the size of the smallest
precomputed partition. In addition, Tersect will only calculate distance
matrices for selected accessions, while the stored, precomputed matrices
have to be filtered to select the appropriate rows and columns. Note that the
distance metrics used throughout the process are simply the substitution
(SNV) counts, due to their ease of addition of subtraction. The actual genetic
distance metrics (Jukes-Cantor distance) are only calculated for the final
matrix, which is then used downstream for phylogeny inference. 62

Figure 4-3: Phylogeny inference times for the entire 444-genome tomato data set
and chromosomal intervals of different sizes as a function of the smallest
precomputed partition size. One hundred random intervals were generated
for each of the tested interval sizes (from 1 Mbp to 50 Mbp). The same sets
of intervals were used to test each precomputed partition size, with fifty
requests executed for each combination of interval size and smallest partition
size. The median response times were then recorded for each partition size.
See Table B-3 for the numeric results ... 71

Figure 4-4: Phylogeny inference times for the entire 2548-genome tomato data
set and chromosomal intervals of different sizes as a function of the smallest
precomputed partition size. Fifty random intervals (all on chromosome 1)
were generated for each of the tested interval sizes (from 1 Mbp to 100 Mbp).
The same sets of intervals were used to test each precomputed partition size,
with fifty requests executed for each combination of interval size and smallest

viii

partition size. The median response times were then recorded for each
partition size. See Table B-4 for the numeric results. 72

Figure 4-5: Time and storage space costs of distance matrix precomputation as
functions of the smallest partition size. The 444 resequenced tomato genome
data were used for benchmarking. To create successive partitions larger than
the smallest, their size was doubled until it was larger than the largest
chromosome (98.5 Mbp), which is the default approach taken by the data set
addition script. The time measurements were recorded on a desktop PC and
would scale according to CPU speed, but the storage size should remain
invariant for a given data set and partition size. Both cost metrics exhibit a
component that is inversely proportional to the partition size, but for time this
is obscured by the mostly constant cost of running Tersect once per genomic
interval, especially for larger partition sizes. These costs have to be weighed
against the intended request handling speed (see Figure 4-3) when selecting
the partition sizes for a particular data set. See Table B-1 for the numeric
results and Figure B-1 for equivalent data measured for the human data set
 .. 73

Figure 4-6: Response time as a function of the number of genomes used in
phylogeny inference requests for the tomato (A) and human (B) data sets.
The smallest precomputed partition size used was 1 Mbp for both data sets.
Twenty requests were made for each tested number of genomes, using
random subsets of the total genome set and random chromosomal intervals
(with the length of 10 Mbp) for each request. .. 75

Figure 4-7: Potential introgression from S. pim LYC2798 or a similar donor into
the LA2706 (MoneyMaker) and LYC1365 (AllRound) cultivars. The
introgression, visible against a background of other tomato cultivars, spans
from approximately 40.50 Mbp to 42.45 Mbp on chromosome 6. Both
affected cultivars cluster closely with the potential donor within a sharply
delineated interval. Note that the Introgression Browser article reports the
same introgression as beginning at 36.75 Mbp, but that is due to its use of
an older version of the tomato reference (SL2.40). 76

Figure 4-8: TGRC gene annotation used to highlight different alleles of the tomato
uniform ripening gene in Tersect Browser visualisations. The two alleles of
the gene are marked in red (-- allele) and green (+ allele). The top plot covers
the first 10 Mbp of chromosome 10, and its phylogenetic tree structure shows
no obvious relationship with the alleles. The bottom plot covers a smaller
interval on the same short arm of chromosome 10. The 200 kbp interval
(2,195,000 – 2,395,000) is centred on the uniform ripening gene locus, and
it can be seen that the accessions now cluster more closely according to their
alleles. ... 77

ix

LIST OF TABLES

Table 2-1: Areas in the SGN-hosted resequenced genomes which contain
variants requiring correction. The areas correspond to the scaffolds which
were reversed between versions SL2.40 and SL2.50 of the tomato reference
genome. ... 13

Table 2-2: Comparison of the order and orientation of chromosome 9 scaffolds
between the SL2.40 (based on linkage mapping) genome build, the Shearer
et al. article (based on BAC-FISH), and the SL2.50 genome build (based on
the Shearer et al. article). The "reversed" scaffolds were reversed relative to
their orientation in the SL2.40 build. .. 18

Table 2-3: Comparison of the order and orientation of chromosome 12 scaffolds
between the SL2.40 genome build (based on linkage mapping), the Shearer
et al. article (based on BAC-FISH), and the SL2.50 genome build (based on
the Shearer et al. article). The “reversed” scaffolds were reversed relative to
their orientation in the SL2.40 build. .. 19

Table 2-4: Comparison of inter-scaffold gap sizes between the SL2.50 genome
build and the Shearer et al. BAC-FISH results. The “SL2.50” gap sizes are
based on the build AGP files, while the “BAC-FISH” gap sizes are based on
the corrected gap size estimates from the Shearer et al. publication. For each
pair of scaffolds, “SCAFFOLD A” is the one closer to the short arm of the
chromosome, and “SCAFFOLD B" is the one closer to the long arm of the
chromosome. The values of “0” for BAC-FISH replace negative values post-
correction. “N/A” entries appear for pairs of scaffolds which are neighbours
only in the SL2.50 assembly or the Shearer et al. article, but not in both; this
is due to the issues with scaffold ordering on chromosome 9 described earlier
in this section. Particularly large discrepancies in gap sizes are marked in
bold. ... 20

Table 2-5: Size of intervals (in kbp) mapped between pseudomolecules
(destination chromosomes 0 to 6) during lift over from version SL2.40 of the
tomato genome to SL4.0 using SeqRemap. .. 29

Table 2-6: Size of intervals (in kbp) mapped between pseudomolecules
(destination chromosomes 7 to 12) during lift over from version SL2.40 of the
tomato genome to SL4.0 using SeqRemap. .. 29

Table 3-1: Private variant identification benchmark results. 47

Table 3-2: Intersection benchmark results. .. 48

Table 3-3: Tersect index build metrics. ... 49

x

LIST OF ABBREVIATIONS

AGP A Golden Path

API Application programming interface

AST Abstract syntax tree

BAC-FISH Bacterial artificial chromosome fluorescent in situ hybridisation

BGI Beijing Genomics Institute

CRISPR Clustered regularly interspaced short palindromic repeats

CSS Cascading Style Sheets

CSV Comma-separated values

DOM Document Object Model

EMS Ethyl methanesulfonate

FISH Fluorescent in situ hybridisation

GATK Genome Analysis Toolkit

GBS Genotyping-by-sequencing

IGSR The International Genome Sample Resource

JSON JavaScript Object Notation

KASP Kompetitive allele specific PCR

NGS Next-generation sequencing

ODM Object Document Mapping

PNG Portable Network Graphics

QTL Quantitative trait locus

RAM Random-access memory

REST Representational state transfer

SGN Sol Genomics Network

SIMD Single instruction, multiple data

SNV Single-nucleotide variant

TGRC C.M. Rick Tomato Genetics Resource Center

VCF Variant Call Format

WAH Word-aligned hybrid (compression)

WHATWG Web Hypertext Application Technology Working Group

XOR Exclusive disjunction

xi

1

1 INTRODUCTION

1.1 Background

Genome sequencing and assembly projects are of central importance to modern

biological research, with the development of a reference genome for an organism

representing a particularly essential milestone for research related to that

organism. A reference genome is crucial not only because of the genetic

information it contains, but also because it serves as an ostensibly static point of

reference for other information. Annotations, resequenced genomes, and other

data sets can be described in terms of the reference genome, using its features

and coordinates to characterise and locate their own contents. However, due to

the size, complexity, ploidy, and repetitiveness of most eukaryotic genomes, their

de novo assemblies, based on current sequencing technologies, do not generally

reach the stage of absolute “completeness”, and they often retain known

imperfections such as gaps and scaffolds of unknown chromosomal position or

orientation (Muñoz et al., 2013). They may also contain hidden errors such as

mis-assemblies or contamination. As new data, platforms, and methods become

available, these problems can be addressed, resulting in incremental

improvements to the reference sequence (Sedlazeck et al., 2018). Still, this also

means that a reference genome is not yet, in practical terms, a truly static point

of reference.

Improvements to a reference genome, while generally desirable, invalidate

derivative data sets which depend on a previous version of the sequence. To

correct this, the data sets need to be updated to match the new reference. Large

sets of resequenced genomes, such as those publicly available for tomato (S.

Aflitos et al., 2014; Lin et al., 2014) and human (1000 Genomes Project

Consortium, 2015) can pose particular difficulties here. Repeating the whole

process of alignment and variant calling for each of the genomes whenever a

new version of the reference is released, as has been done with human genomes

from the 1000 Genomes Project (Zheng-Bradley et al., 2017), can be considered

the gold standard approach, but it is also very computationally expensive, with

the overall cost increasing with each new resequenced genome. This incentivises

2

the use of quicker, less expensive solutions, such as simply converting the

coordinates between assemblies, usually based on pairwise alignment between

them, a process often called “lift-over”. Tools like NUCmer (Marçais et al., 2018)

and CrossMap (Zhao et al., 2014) are commonly used for lift-over, as are custom

solutions developed for particular genome assembly projects. However, as the

lift-over process is potentially error-prone, extra care should be taken to validate

the results and make note of any artefacts which may arise. Work undertaken as

part of this thesis, detailed in Chapter 2, led to the discovery of significant errors

introduced into resequenced tomato genome data through lift-over, which

highlighted certain important considerations in the processing and validation of

such large data sets.

Besides simple validation and correctness, a further consideration when dealing

with large sets of resequenced genomes is the performance and flexibility of tools

used to process them. In particular, there exist multiple tools that allow for

comparing variant content between genomes, such as BCFtools (Danecek et al.,

2021), BEDOPS (Neph et al., 2012), and BEDTools (Quinlan & Hall, 2010).

However, they are not optimized for the use of large numbers of genomes, such

as those hosted for tomato by SGN, offering limited flexibility in queries and slow

performance in such scenarios. Addressing this gap by investigating algorithms

suitable for flexible, high-performance variant content comparison between large

numbers of resequenced genomes, and ultimately implementing them in a

lightweight software tool, was a central goal of this work, culminating in the

development of Tersect, detailed in Chapter 3.

Nevertheless, performance improvement is ultimately not a goal in itself. The real

goal is improving productivity, and human time is more valuable than computer

time, especially among skilled researchers. The high performance of Tersect, as

a specialised command-line utility, is only accessible in a direct manner to

bioinformaticians. In order to share its benefits with the larger biological research

community, the tool needs to be integrated into some larger system. This

reasoning is in fact inherent in the design of Tersect as a small, self-contained

utility, following the UNIX-style system design principles of modularity and

3

composability (Pike & Kernighan, 1984). In the academic context this approach

has the additional benefit of isolating interesting research problems, such as (for

Tersect) the development of highly efficient methods for the comparison of variant

sets in resequenced genomes. Such self-contained software packages can be

published with a sharp focus on the knowledge gaps being addressed, without

the distraction of a larger, monolithic application which would, by necessity,

contain many scientifically uninteresting elements as well. The software can

subsequently be integrated into the aforementioned larger system (or multiple

such systems), which can then address different research problems, while

providing functionalities and, most importantly, interfaces that non-

bioinformaticians can interact with to improve their own productivity.

It follows that an important threshold to be aimed at when it comes to performance

improvement is one of interactivity. The change from working with a sequence of

non-interactive (passive) visualisations over a longer time period to engaging with

an interactive system is not trivial. The change is qualitative, rather than merely

quantitative, even though making it possible depends on the entirely quantitative

measure of latency, itself a product of the system’s performance (Godfrey et al.,

2016). With latencies on the order of seconds rather than minutes or hours, users

can actively explore and engage with the data, with each transformation of the

data informing the next while fresh in the user’s mind. Sub-second latencies are

commonly suggested in research on human-computer interaction as the

benchmark for a fluid user experience (Shneiderman, 1984), although in practice

this can be difficult to achieve with large data sets.

The above means that, depending on the context and distance from the

interactivity threshold, minor performance improvements to relatively quick

operations could, in some circumstances, be considered more significant than

major performance improvements to slow operations. For example, speeding up

the generation of a visualisation from 100 hours to 2 hours might not have as

much of an impact as speeding one up from 100 seconds to 2 seconds, even

though in absolute terms the performance improvement is much larger in the first

scenario, while in relative terms the improvement is the same in both (a factor of

4

fifty). In the former scenario, visualisation remains a passive process, and

iterative work with the data would require scheduling separate sessions (at least

2 hours apart – likely longer in practice) to interpret results. In the latter, 2 seconds

of latency may be sufficient for interactive work, while having to wait 100 seconds

for each step would be too slow for active engagement.

A situation of this sort became evident during research to which the author was

a contributor, which aimed to map a tomato gene involved in genetic control of

inflorescence branching, bifurcate flower truss (Silva Ferreira et al., 2018). A tool

called Introgression Browser was used to demonstrate the origin of the mutant

allele of interest as an introgression from a wild species, Solanum galapagense.

This was achieved through visualising the genetic distance and phylogenetic

relationships in a mapped interval of interest between a mutant line resequenced

by Cranfield University and publicly available data on resequenced tomato

genomes, which included closely related wild species (S. Aflitos et al., 2014; Lin

et al., 2014).

This was, however, an iterative process, as such visualisations are sensitive to

the set of genomes used, as well as to the exact position of the interval and its

segmentation. With each visualisation requiring command-line setup and several

hours of computation, the overall process of creating the final images took a long

time and required coordination and consultation between multiple collaborators.

Steps were undertaken to automate the Introgression Browser plot generation

setup and improve the speed of visualisation, but despite some performance

improvements the overall process remained thoroughly non-interactive. It was

clear that a different algorithmic approach was required to offer the same

functionality to biologists as an interactive tool.

Because Tersect is well-optimized for the operations required to calculate genetic

distance (and, consequently, to infer phylogenies), namely the enumeration of

discordant sites, this problem was an ideal use case for the tool. Combined with

other algorithmic approaches commonly used for interactive visualisation in large

data sets (Godfrey et al., 2016), primarily the precomputation and aggregation of

indexed partial results, it was used to develop Tersect Browser, an interactive

5

Web application for visualising genetic distance and phylogenetic relationships

between large numbers of resequenced genomes, as detailed in Chapter 4.

Alongside providing its core functionality to the biologist community, Tersect

Browser would also serve as a testbed for assessing the limitations of this

approach, which could suggest future algorithmic improvements.

1.2 Aim and objectives

The overall aim of this thesis was to develop flexible, high-performance

bioinformatics tools for low-level manipulation of large sets of resequenced

genomic data, alongside developing methods of interactively applying those tools

to solving higher-level biological problems related to genome structure and

phylogenetic relationships.

Three more specific objectives were defined as follows:

1. Investigate issues associated with maintaining the integrity of

resequenced genome data sets across different types of processing to

ensure the continued validity of data.

2. Develop and evaluate low-level software optimized for high-performance

manipulation and comparison of large numbers of resequenced eukaryotic

genomes.

3. Develop and evaluate a tool for comparing large numbers of resequenced

genomes and interactively visualising the phylogenetic relationships and

genetic distances across their chromosomal structures.

Note that the objectives depend on each other in sequence, with the second and

third objectives relying on data validity investigated as part of the first objective,

and the tool developed to fulfil the third objective relying on the lower-level

software developed to fulfil the second objective.

The “evaluation” component of the second and third components relates to

measuring their performance as well as the identification of potential limitations,

which may inform future work on further improving the algorithms which were

used.

6

1.3 Thesis outline

The thesis uses a “paper format”, with chapters 2, 3, and 4 being organised as

distinct, self-contained publications forming part of a larger body of research. An

overview of the contents of each chapter is given below:

Chapter 1 discusses the general background of the work, the research gaps

addressed by the individual blocks of work described in the following chapters,

and how those blocks fit together, as well as the specific aims and objectives as

well as the structure of the thesis.

Chapter 2 comprises a report, formatted as a publication, which was circulated

to address issues with publicly maintained resequenced tomato genome data

sets, as well as certain apparent deficiencies of one version of the tomato

reference genome. Errors introduced by a failed lift-over process are diagnosed

in detail and solutions are provided. This chapter relates to Objective 1.

Chapter 3 presents a peer-reviewed publication which introduces Tersect, a

high-performance set theoretical utility for exploring sequence variant data. This

chapter relates to Objective 2, and the publication is cited below:

Tomasz J Kurowski, Fady Mohareb, Tersect: a set theoretical utility for

exploring sequence variant data, Bioinformatics, Volume 36, Issue 3, 1

February 2020, Pages 934–935

Chapter 4 presents a publication manuscript intended for submission in the near

future. It introduces Tersect Browser, a Web application which leverages

specialized bioinformatics solutions (including Tersect) to provide an interactive

visualisation system for the comparison of large numbers of resequenced

genomes. This chapter relates to Objective 3.

Chapter 5 constitutes an overall discussion of the work, with particular focus on

the real-world applications of the individual outputs, reasoning about the

limitations of the implemented solutions based on a critical evaluation of their

performance, and considerations of likely future work and improvements.

7

1.4 References

Aflitos, S., Schijlen, E., De Jong, H., De Ridder, D., Smit, S., Finkers, R., Wang,
J., Zhang, G., Li, N., Mao, L., Bakker, F., Dirks, R., Breit, T., Gravendeel, B.,
Huits, H., Struss, D., Swanson-Wagner, R., Van Leeuwen, H., Van Ham, R.
C. H. J., … Peters, S. (2014). Exploring genetic variation in the tomato
(Solanum section Lycopersicon) clade by whole-genome sequencing. Plant
Journal, 80(1), 136–148. https://doi.org/10.1111/tpj.12616

Consortium, G. P., Auton, A., Abecasis, G. R., Altshuler, D. M., Durbin, R. M.,
Abecasis, G. R., Bentley, D. R., Chakravarti, A., Clark, A. G., Donnelly, P.,
Eichler, E. E., Flicek, P., Gabriel, S. B., Gibbs, R. A., Green, E. D., Hurles,
M. E., Knoppers, B. M., Korbel, J. O., Lander, E. S., … National Eye Institute,
N. I. H. (2015). A global reference for human genetic variation. Nature,
526(7571), 68–74. https://doi.org/10.1038/nature15393

Danecek, P., Bonfield, J. K., Liddle, J., Marshall, J., Ohan, V., Pollard, M. O.,
Whitwham, A., Keane, T., McCarthy, S. A., Davies, R. M., & Li, H. (2021).
Twelve years of SAMtools and BCFtools. GigaScience, 10(2).
https://doi.org/10.1093/gigascience/giab008

Godfrey, P., Gryz, J., & Lasek, P. (2016). Interactive Visualization of Large Data
Sets. {IEEE} Transactions on Knowledge and Data Engineering, 28(8),
2142–2157. https://doi.org/10.1109/tkde.2016.2557324

Lin, T., Zhu, G., Zhang, J., Xu, X., Yu, Q., Zheng, Z., Zhang, Z., Lun, Y., Li, S.,
Wang, X., Huang, Z., Li, J., Zhang, C., Wang, T., Zhang, Y., Wang, A.,
Zhang, Y., Lin, K., Li, C., … Huang, S. (2014). Genomic analyses provide
insights into the history of tomato breeding. Nature Genetics, 46(11), 1220–
1226.
https://doi.org/10.1038/ng.3117\rhttp://www.nature.com/ng/journal/v46/n11/
abs/ng.3117.html#supplementary-information

Marçais, G., Delcher, A. L., Phillippy, A. M., Coston, R., Salzberg, S. L., & Zimin,
A. (2018). {MUMmer}4: A fast and versatile genome alignment system.
{PLOS} Computational Biology, 14(1), e1005944.
https://doi.org/10.1371/journal.pcbi.1005944

Muñoz, J. F., Gallo, J. E., Misas, E., McEwen, J. G., & Clay, O. K. (2013). The
eukaryotic genome, its reads, and the unfinished assembly. FEBS Letters,
587(14), 2090–2093. https://doi.org/10.1016/j.febslet.2013.05.048

Neph, S., Kuehn, M. S., Reynolds, A. P., Haugen, E., Thurman, R. E., Johnson,
A. K., Rynes, E., Maurano, M. T., Vierstra, J., Thomas, S., Sandstrom, R.,
Humbert, R., & Stamatoyannopoulos, J. A. (2012). BEDOPS: High-
performance genomic feature operations. Bioinformatics, 28(14), 1919–
1920. https://doi.org/10.1093/bioinformatics/bts277

Pike, R., & Kernighan, B. W. (1984). {TheUNIXSystem}: Program Design in

8

{theUNIXEnvironment}. {AT}{\&}T Bell Laboratories Technical Journal,
63(8), 1595–1605. https://doi.org/10.1002/j.1538-7305.1984.tb00055.x

Quinlan, A. R., & Hall, I. M. (2010). BEDTools: A flexible suite of utilities for
comparing genomic features. Bioinformatics, 26(6), 841–842.
https://doi.org/10.1093/bioinformatics/btq033

Sedlazeck, F. J., Lee, H., Darby, C. A., & Schatz, M. C. (2018). Piercing the dark
matter: bioinformatics of long-range sequencing and mapping. Nature
Reviews Genetics, 19(6), 329–346. https://doi.org/10.1038/s41576-018-
0003-4

Shneiderman, B. (1984). Response Time and Display Rate in Human
Performance with Computers. ACM Comput. Surv., 16(3), 265–285.
https://doi.org/10.1145/2514.2517

Silva Ferreira, D., Kevei, Z., Kurowski, T., de Noronha Fonseca, M. E., Mohareb,
F., Boiteux, L. S., & Thompson, A. J. (2018). BIFURCATE FLOWER TRUSS:
a novel locus controlling inflorescence branching in tomato contains a
defective MAP kinase gene. Journal of Experimental Botany, 69(10), 2581–
2593. https://doi.org/10.1093/jxb/ery076

Zhao, H., Sun, Z., Wang, J., Huang, H., Kocher, J. P., & Wang, L. (2014).
CrossMap: A versatile tool for coordinate conversion between genome
assemblies. Bioinformatics, 30(7), 1006–1007.
https://doi.org/10.1093/bioinformatics/btt730

Zheng-Bradley, X., Streeter, I., Fairley, S., Richardson, D., Clarke, L., & Flicek,
P. (2017). Alignment of 1000 Genomes Project reads to reference assembly
GRCh38. GigaScience, 6(7), 1–8.
https://doi.org/10.1093/gigascience/gix038

9

2 CORRECTING AND VALIDATING VARIANT DATA

LIFT-OVER IN RESEQUENCED TOMATO GENOMES

2.1 Abstract

2.1.1 Summary

The tomato reference genome hosted and maintained by the Sol Genomics

Network is an invaluable resource for plant scientists. Sets of resequenced

genomes of various tomato lines and close wild relatives mapped to that

reference are also valuable, providing insights about the history of tomato

evolution and breeding, as well as representing a repository of data on the

genomic diversity in tomatoes and a point of comparison for researchers working

with their own resequenced genomes. The tomato reference genome has seen

several improved releases over the years. After it was updated from version

SL2.40 to SL2.50, resequenced genomes hosted by SGN were updated to match

the new version. However, due to the nature of the lift-over process used, this

introduced errors into this publicly available repository, which went undetected

and uncorrected for nearly seventeen months. This publication reports on the

detection, diagnosis, and ultimately the correction of those lift-over errors, and

discusses their primary causes. It also introduces SeqRemap, a Python utility

based on the validation and correction scripts developed during this process,

which allows for fast, multi-threaded updates of coordinates in large numbers of

resequenced genomes.

2.1.2 Availability

SeqRemap was released under the MIT license and is freely available at

https://bitbucket.org/cranfieldbix/seqremap.

https://bitbucket.org/cranfieldbix/seqremap

10

2.2 Introduction

The tomato reference genome is hosted and maintained by the Sol Genomics

Network and has seen continuous updates since the initial build of version SL1.00

in December 2009, although the version described in the initial article announcing

the release of the tomato reference genome was SL2.40 (Sato et al., 2012).

Three more versions have been released since then (SL2.50, SL3.00, and

SL4.00), with the latest having been assembled de novo from PacBio long reads

and scaffolded using Hi-C contact maps, as well as validated using Bionano

optical maps and 10x linked-read sequences (Hosmani et al., 2019).

SGN also hosts and maintains two large sets of resequenced tomato data, one

containing 84 tomato accessions from the 150 Tomato Genome ReSequencing

Project (S. Aflitos et al., 2014), and the other containing 360 tomato accessions

by the Agricultural Genomic Institute at Shenzhen (Lin et al., 2014). They are

available for download as VCF files and viewable through a JBrowse genome

browser, which is a resource widely consulted by biologists who conduct research

on tomatoes, e.g., as a reference for designing KASP markers or CRISPR

targets.

Both data sets have originally been generated using SL2.40 as the reference, but

they were later updated to version SL2.50, which was released in February 2014.

According to VCF metadata, this update happened in April 2015, and both

updated data sets were then shared with the research community. A custom tool

(Bio-GenomeUpdate, https://github.com/solgenomics/Bio-GenomeUpdate) was

used to update (lift) variant coordinates from SL2.40 to SL2.50.

The gold standard approach for updating variants to a different version of an

assembly would be to simply repeat the entire alignment and variant calling

pipeline, as has been done for human genomes from the 1000 Genomes Project,

which were eventually remapped from their original GRCh37 reference to

GRCh38 (Zheng-Bradley et al., 2017), although it should be noted that before

that happened, dbSNP also simply lifted the variants to GRCh38 coordinates,

which served as a temporary solution. Remapping is computationally expensive,

especially for large numbers of genomes, but it avoids potential issues with the

https://github.com/solgenomics/Bio-GenomeUpdate

11

simple lift-over of coordinates, such as old variant calls no longer matching where

the reference underwent significant structural or sequence changes, or regions

which were not present in the previous version missing variants which would have

been called at those locations.

However, the use of coordinate lift-over was more justified in the update of

variants from SL2.40 to SL2.50 than it would be in most circumstances. The

reference improvements were based on BAC-FISH and optical mapping results,

which were aimed at establishing a more accurate ordering of scaffold

sequences, as well as determining their orientation, and estimating the size of

gaps between scaffolds (Shearer et al., 2014).

Therefore, the reference version update involved no change in any contiguous

sequences and no sequence data were added or removed. The only changes

were scaffolds changing position and orientation, and gap sizes being increased

from an invariant, placeholder representation of one hundred unknown (N) bases

placed between each pair of scaffolds to much larger estimates (the total

pseudomolecule length increased from 781.67 Mbp to 823.94 Mbp, but all the

added length consisted of unknown bases, representing gaps of a now known

size). In principle, this meant that coordinate lift-over would be safe from the

aforementioned issues and essentially equivalent to a complete remapping of the

data, at a much lower computational cost.

Early work on a variant set comparison utility, eventually released as Tersect

(Kurowski & Mohareb, 2019), identified discrepancies in the resequenced tomato

genomes hosted by SGN. These discrepancies were investigated, leading to a

discovery that the lift-over process was not executed correctly, and the variants

listed were in fact incompatible with the SL2.50 reference genome in a number

of locations. Additionally, certain differences between the SL2.50 reference and

the published work it was based on were also identified.

This report documents the issues which were detected, the means of their

diagnosis, the steps taken to correct them, and the tools developed for this

purpose. Its initial version was compiled to notify SGN of the issue and to assist

in correcting the problems with the resequenced tomato data.

12

2.3 Resequenced genome issues

When novel resequencing data sets generated at Cranfield University and based

on the SL2.50 tomato reference were compared to resequenced genomes hosted

by SGN it was discovered that in most chromosomes there exist large and very

sharply delineated regions (see Figure 2-1) where the Cranfield results did not

share a single variant with any of the hundreds of available genomes.

Figure 2-1: Positions of "problem areas" where the reference alleles listed in the

resequenced genome VCF files hosted by SGN do not match the SL2.50 sequence,

marked in red along the length of chromosomes.

Through a direct comparison – initially manual, then automated and confirmed

via a command shell script – between the data fields contained in the VCF files

hosted by SGN and the sequences in the reference FASTA files, it was found

that the reference sequence (REF) fields of variants in the problematic regions

do not match the SL2.50 reference genome, indicating that they are invalid. While

13

the REF sequences matched a complementary sequence on the other strand,

the VCF specification does not provide any way to indicate strandedness and all

variants in VCF files are generally assumed to refer to the forward reference

sequence strand.

It was then observed that the problematic regions correspond to scaffolds which

were reversed when the genome was updated from version SL2.40 to SL2.50

(see Figure 2-2, Figure 2-3, and Figure 2-4). It became apparent that while VCF

variant coordinates were updated based on the scaffold re-ordering and

re-orientation, the REF and alternate allele (ALT) sequences of variants in

re-oriented regions have not been modified to account for the fact that the

sequence they were originally based on was now on the complementary strand.

The problem areas are listed in Table 2-1 using SL2.50 coordinates. The

SGN-hosted variants within those regions required correction.

Table 2-1: Areas in the SGN-hosted resequenced genomes which contain variants

requiring correction. The areas correspond to the scaffolds which were reversed

between versions SL2.40 and SL2.50 of the tomato reference genome.

CHROMOSOME SCAFFOLD START POSITION END POSITION SIZE

1 SL2.40sc03666 39,120,195 41,754,221 2.6 Mbp

2 SL2.40sc04732 1 1,697,214 1.7 Mbp

2 SL2.40sc04208 2,039,815 3,448,441 1.4 Mbp

3 SL2.40sc04822 43,731,686 47,848,114 4.1 Mbp

3 SL2.40sc06911 61,146,040 61,496,644 0.4 Mbp

4 SL2.40sc05339 11,890,154 13,863,001 2.0 Mbp

4 SL2.40sc03683 14,334,282 31,929,985 17.6 Mbp

5 SL2.40sc06155 42,974,962 47,280,334 4.3 Mbp

6 SL2.40sc06140 10,945,928 11,636,816 0.7 Mbp

6 SL2.40sc05188 28,400,004 30,805,544 2.4 Mbp

8 SL2.40sc03749 10,420,999 11,910,359 1.5 Mbp

8 SL2.40sc04236 12,010,360 26,652,460 14.6 Mbp

8 SL2.40sc03835 26,690,811 35,108,918 8.4 Mbp

8 SL2.40sc04701 36,082,319 43,105,760 7 Mbp

9 SL2.40sc04950 26,613,875 32,385,151 5.8 Mbp

11 SL2.40sc03752 27,858,571 45,260,389 17.4 Mbp

12 SL2.40sc04057 36,352,265 61,516,839 25.0 Mbp

14

Figure 2-2: Filtered dot plots comparing the SL2.50 (x-axis) and SL2.40 (y-axis)

sequences of chromosomes 1, 2, 3, and 4 alongside respective "problem areas".

The blue lines represent reverse complement sequences, indicating the presence of

reversed scaffolds. The two reversed sequences at the start of chromosome 2

effectively form a single "problem area".

15

Figure 2-3: Filtered dot plots comparing the SL2.50 (x-axis) and SL2.40 (y-axis)

sequences of chromosomes 5, 6, 7, and 8 alongside respective "problem areas".

The blue lines represent reverse complement sequences, indicating the presence of

reversed scaffolds. Note that chromosome 7 includes no reversed scaffolds and thus no

problem areas. The group of four neighbouring reversed scaffolds in chromosome 8 form

a largely contiguous "problem area".

16

Figure 2-4: Filtered dot plots comparing the SL2.50 (x-axis) and SL2.40 (y-axis)

sequences of chromosomes 9, 10, 11, and 12 alongside respective "problem

areas". The blue lines represent reverse complement sequences, indicating the

presence of reversed scaffolds. Chromosome 10 includes re-arranged scaffolds but no

reversed scaffolds and as a result it exhibits no "problem areas". The largest scaffold in

chromosome 12 was reversed; this may be an error in the SL2.50 build (see Reference

genome issues).

17

2.4 Reference genome issues

During the investigation of the origins of the VCF file issues described in this

report, two discrepancies in the positions and order of scaffolds between the

SL2.50 build of the tomato reference genome and the paper that the genome

build was based on were found. In addition, in multiple locations the SGN

document describing the changes (SGN, 2014) matches neither the Shearer et

al. paper nor the SL2.50 build, which suggests that the differences are the result

of errors in the genome update process rather than justified but undocumented

changes. The discrepancies were found in genomes 9 and 12 and are described

below.

As shown in Figure 2-5 and detailed in Table 2-2, in chromosome 9 as present

in the SL2.50 build of the reference genome, the smallest (93 kbp) scaffold

SL2.40sc06916 is located at the very end, while the Shearer et al. BAC-FISH

results indicated that its position should be between scaffolds SL2.40sc04777

and SL2.40sc05269.

Figure 2-5: Diagram of the Chromosome 9 scaffold order and orientation in the

SL2.40 reference, according to the Shearer et al. paper (FISH), and in the SL2.50

reference. Reversed red arrows indicate scaffolds which are reversed compared to

SL2.40. The relative scaffold sizes are to scale except for scaffold 2 (SL2.40sc6916)

which would have been too small to see clearly. Gap sizes are omitted.

The discrepancy in chromosome 12 seems much more significant. As shown in

Figure 2-6 and detailed in Table 2-3, it appears that while the scaffold order is

consistent with the one suggested by Shearer et al., scaffold SL2.40sc04057 (the

largest in the chromosome, at 25.2 Mbp) was reversed instead of scaffold

SL2.40sc04039, resulting in two large sections of chromosome 12 being oriented

incorrectly.

18

Table 2-2: Comparison of the order and orientation of chromosome 9 scaffolds

between the SL2.40 (based on linkage mapping) genome build, the Shearer et al.

article (based on BAC-FISH), and the SL2.50 genome build (based on the Shearer

et al. article). The "reversed" scaffolds were reversed relative to their orientation in the

SL2.40 build.

SCAFFOLD # SCAFFOLD SIZE
SCAFFOLD ORDER

SL2.40 BAC-FISH SL2.50
1 SL2.40sc03771 19 Mbp 1 1 1
2 SL2.40sc06916 0.1 Mbp 2 4 4
3 SL2.40sc04950 5.8 Mbp 3 3 reversed 3 reversed
4 SL2.40sc04008 5.2 Mbp 4 5 5
5 SL2.40sc04785 2.0 Mbp 5 6 6
6 SL2.40sc04777 28.2 Mbp 6 2 7
7 SL2.40sc05269 2.7 Mbp 7 7 8
8 SL2.40sc03852 1.3 Mbp 8 8 9
9 SL2.40sc04828 2.5 Mbp 9 9 10

10 SL2.40sc06214 0.6 Mbp 10 10 2

Figure 2-6: Diagram of the Chromosome 12 scaffold order and orientation in the

SL2.40 reference, according to the Shearer et al. paper (FISH), and in the SL2.50

reference. Reversed red arrows indicate scaffolds which are reversed compared to

SL2.40. The relative scaffold sizes are to scale. Gap sizes are omitted.

The order of the scaffolds suggests that the issue might have been caused by an

improper order of operations when the chromosome was updated, as it was the

third scaffold which was reversed – but it was the third scaffold after re-ordering,

instead of the third scaffold before re-ordering.

The inter-scaffold gap sizes estimated by Shearer et al. were also found not to

be fully consistent with the ones present in the SL2.50 build. This can be seen in

Table 2-4. Most of the discrepancies appear to be due to rounding errors, as the

values reported by Shearer et al. were rounded to the nearest 100 kbp, while the

values included in the SL2.50 build appear to have been re-calculated to a higher

19

level of precision. However, for six of the gaps the discrepancies are larger than

200 kbp, suggesting that rounding may not be their only cause. Additionally, the

convention used by the SL2.50 release for gaps which are very small or, possibly,

of an unknown size, appears to be applied inconsistently. Some of such gaps

were given the size of 100 bp, which is a common convention suggested by the

AGP format specification (NCBI, 2019), while others were given the size of

100 kbp.

Table 2-3: Comparison of the order and orientation of chromosome 12 scaffolds

between the SL2.40 genome build (based on linkage mapping), the Shearer et al.

article (based on BAC-FISH), and the SL2.50 genome build (based on the Shearer

et al. article). The “reversed” scaffolds were reversed relative to their orientation in the

SL2.40 build.

SCAFFOLD # SCAFFOLD SIZE
SCAFFOLD ORDER

SL2.40 BAC-FISH SL2.50
1 SL2.40sc04607 16.1 Mbp 1 1 1

2 SL2.40sc04878 5.7 Mbp 2 8 8

3 SL2.40sc04057 25.2 Mbp 3 7 reversed 7

4 SL2.40sc04915 1.6 Mbp 4 2 2

5 SL2.40sc04757 5.7 Mbp 5 6 6

6 SL2.40sc04266 1.3 Mbp 6 5 5

7 SL2.40sc04039 4.9 Mbp 7 3 3 reversed

8 SL2.40sc06147 1.2 Mbp 8 4 4

9 SL2.40sc05611 1.2 Mbp 9 9 9

10 SL2.40sc05380 2.5 Mbp 10 10 10

It is difficult to say whether the gap size differences described in the previous

paragraph are the result of errors or informed data curation, as the SL2.50

release makes no reference to them (SGN, 2014). However, they are not directly

related to the lift-over errors addressed in this work, as they result only in shifts

in position, without any sequence re-orientation.

20

Table 2-4: Comparison of inter-scaffold gap sizes between the SL2.50 genome

build and the Shearer et al. BAC-FISH results. The “SL2.50” gap sizes are based on

the build AGP files, while the “BAC-FISH” gap sizes are based on the corrected gap size

estimates from the Shearer et al. publication. For each pair of scaffolds, “SCAFFOLD A”

is the one closer to the short arm of the chromosome, and “SCAFFOLD B" is the one

closer to the long arm of the chromosome. The values of “0” for BAC-FISH replace

negative values post-correction. “N/A” entries appear for pairs of scaffolds which are

neighbours only in the SL2.50 assembly or the Shearer et al. article, but not in both; this

is due to the issues with scaffold ordering on chromosome 9 described earlier in this

section. Particularly large discrepancies in gap sizes are marked in bold.

CHROMOSOME # SCAFFOLD A SCAFFOLD B GAP [bp]

SL2.50 BAC-FISH
1 SL2.40sc04133 SL2.40sc04191 2280000 2400000

1 SL2.40sc04191 SL2.40sc03666 2130000 1900000

1 SL2.40sc03666 SL2.40sc03594 570000 600000

1 SL2.40sc03594 SL2.40sc05010 2120000 2200000

1 SL2.40sc05010 SL2.40sc05941 510000 300000

1 SL2.40sc05941 SL2.40sc06917 250000 300000

1 SL2.40sc06917 SL2.40sc06903 170000 200000

1 SL2.40sc06903 SL2.40sc04323 210000 200000

2 SL2.40sc04732 SL2.40sc04208 342600 400000

2 SL2.40sc04208 SL2.40sc05776 100000 0

2 SL2.40sc05776 SL2.40sc06593 100000 0

2 SL2.40sc06593 SL2.40sc04142 3046250 3200000

2 SL2.40sc04142 SL2.40sc03766 493900 500000

2 SL2.40sc03766 SL2.40sc03665 1340000 1400000

3 SL2.40sc04439 SL2.40sc04696 87200 100000

3 SL2.40sc04696 SL2.40sc05330 100000 0

3 SL2.40sc05330 SL2.40sc04126 316000 300000

3 SL2.40sc04126 SL2.40sc04616 2580500 4700000

3 SL2.40sc04616 SL2.40sc06725 163800 200000

3 SL2.40sc06725 SL2.40sc04704 741050 800000

3 SL2.40sc04704 SL2.40sc03721 1094500 200000

3 SL2.40sc03721 SL2.40sc04822 100 0

3 SL2.40sc04822 SL2.40sc03806 615000 600000

3 SL2.40sc03806 SL2.40sc03796 100000 0

3 SL2.40sc03796 SL2.40sc06911 70000 100000

3 SL2.40sc06911 SL2.40sc03701 80000 100000

4 SL2.40sc03604 SL2.40sc05339 296850 300000

4 SL2.40sc05339 SL2.40sc03683 471280 400000

4 SL2.40sc03683 SL2.40sc06101 84400 100000

4 SL2.40sc06101 SL2.40sc04680 29400 0

4 SL2.40sc04680 SL2.40sc04135 1525200 1600000

5 SL2.40sc03726 SL2.40sc06155 853750 900000

21

5 SL2.40sc06155 SL2.40sc03902 100 800000

6 SL2.40sc04474 SL2.40sc06140 2344700 2400000

6 SL2.40sc06140 SL2.40sc05383 616250 600000

6 SL2.40sc05383 SL2.40sc04279 349750 400000

6 SL2.40sc04279 SL2.40sc05188 100000 0

6 SL2.40sc05188 SL2.40sc05732 100000 0

6 SL2.40sc05732 SL2.40sc05054 100000 0

6 SL2.40sc05054 SL2.40sc03622 100000 0

7 SL2.40sc03731 SL2.40sc05397 385300 400000

7 SL2.40sc05397 SL2.40sc03685 2291400 2400000

7 SL2.40sc03685 SL2.40sc04626 100000 0

8 SL2.40sc04813 SL2.40sc03770 100000 0

8 SL2.40sc03770 SL2.40sc04167 518500 500000

8 SL2.40sc04167 SL2.40sc03749 259000 300000

8 SL2.40sc03749 SL2.40sc04236 100000 0

8 SL2.40sc04236 SL2.40sc03835 38350 50000

8 SL2.40sc03835 SL2.40sc04701 973400 1000000

8 SL2.40sc04701 SL2.40sc04948 802300 800000

8 SL2.40sc04948 SL2.40sc03923 43250 0

9 SL2.40sc03771 SL2.40sc04008 1466000 1500000

9 SL2.40sc04008 SL2.40sc04950 725500 800000

9 SL2.40sc04950 SL2.40sc04785 1053250 1100000

9 SL2.40sc04785 SL2.40sc04777 1250800 1300000

9 SL2.40sc04777 SL2.40sc05269 100000 N/A

9 SL2.40sc05269 SL2.40sc03852 100000 0

9 SL2.40sc03852 SL2.40sc04828 49950 0

9 SL2.40sc04828 SL2.40sc06214 75300 100000

9 SL2.40sc06214 SL2.40sc06916 100 N/A

9 SL2.40sc04777 SL2.40sc06916 N/A 0

9 SL2.40sc06916 SL2.40sc05269 N/A 0

10 SL2.40sc05925 SL2.40sc03798 100000 0

10 SL2.40sc03798 SL2.40sc04872 393600 400000

10 SL2.40sc04872 SL2.40sc05632 100000 0

10 SL2.40sc05632 SL2.40sc04199 100000 100000

10 SL2.40sc04199 SL2.40sc04534 100 0

11 SL2.40sc03748 SL2.40sc06763 353000 400000

11 SL2.40sc06763 SL2.40sc04054 534000 600000

11 SL2.40sc04054 SL2.40sc03752 1310000 1400000

11 SL2.40sc03752 SL2.40sc06137 70000 100000

11 SL2.40sc06137 SL2.40sc03876 650000 700000

12 SL2.40sc04607 SL2.40sc06147 175000 200000

12 SL2.40sc06147 SL2.40sc04039 100000 0

12 SL2.40sc04039 SL2.40sc04878 86000 100000

12 SL2.40sc04878 SL2.40sc04266 554200 600000

12 SL2.40sc04266 SL2.40sc04757 474550 500000

12 SL2.40sc04757 SL2.40sc04057 100 800000

12 SL2.40sc04057 SL2.40sc04915 100000 0

12 SL2.40sc04915 SL2.40sc05611 70000 100000

22

12 SL2.40sc05611 SL2.40sc05380 100000 0

2.5 Results

2.5.1 SNV corrections

The correction of SNVs was trivial, as it required only the change of REF and ALT

alleles to complementary bases. No position adjustment was necessary since the

position (POS) column refers directly to the affected base, and no actual

sequence reversal was needed due to only individual bases being altered.

The VCF files for the BGI 360 genomes contain only SNVs with no other type of

variants included. This made correcting them straightforward, as the only

modification required was changing allele sequences to their complements. This

can be seen in Figure 2-7, where the C→T variant required a correction to G→A.

Figure 2-7: Example of an incorrect SNV in the SGN JBrowse genome browser.

The reference allele C matches the base on the complementary (bottom) DNA strand

rather than the reference strand.

2.5.2 InDel corrections

Correcting insertion and deletion (InDel) variants is considerably more

complicated than correcting SNVs. In fact, VCF files themselves do not contain

all the data necessary to make such corrections. This is due to the fact that the

VCF format specification requires the affected sequence given in the REF and

ALT fields to be preceded by at least one base not affected by the InDel event.

In order to be corrected, InDel variants had their positions shifted towards the

beginning of the chromosome by the number of bases in their reference alleles.

23

The first base of each REF and ALT allele was removed and the remaining

sequences were replaced with their reverse complements. Finally, the allele

sequences were prefixed with the preceding base retrieved from the SL2.50

reference genome.

Thus, the variant in Figure 2-8 was corrected from AAGGAG→AAGGAGGAG to

ACTCCT→ACTCCTCCT and had its position shifted by six bases towards the

beginning of the chromosome.

Figure 2-8: Example of an incorrect InDel in the SGN JBrowse genome browser.

The reference allele matches the reverse of its preceding sequence (highlighted in cyan)

on the complementary strand, showing that both the allele sequences and their positions

need to be corrected.

As mentioned in the previous section, the BGI 360 genome VCF files do not

contain any InDel variants, so this section and the associated corrections were

only necessary for the 84 accessions from the 150 Tomato Genome

ReSequencing Project (S. Aflitos et al., 2014; Lin et al., 2014).

2.5.3 Annotation

The BGI 360 genomes hosted by SGN contain no annotation data, but those from

the 150 Tomato Genome Resequencing Project have been annotated before

their mapping to SL2.50 (S. Aflitos et al., 2014). As this annotation was based on

the SL2.40 sequence and used the old 'EFF field' standard (since replaced by the

24

'ANN field' standard), it was removed. All of the VCF files were then re-annotated

using SnpEff (Cingolani et al., 2012), based on the SL2.50 annotation database.

2.5.4 SeqRemap lift-over pipeline

A Python utility called SeqRemap was implemented based on the validation and

correction scripts used to solve the issues described in this report. It was

developed to allow for multi-threaded, concurrent lift-over of variant coordinates

between two versions of a reference genome in large numbers of VCF files at

once. Its lift-over functionality can be used both with simple, exact contig matches

(as in the use case described in this report) and in more complicated scenarios

requiring whole genome alignment, in which case it attempts to address a major

shortcoming of lift-over by filling in the gaps created by novel reference

sequences being introduced. This is achieved through running a specialised

variant calling pipeline on affected intervals. SeqRemap was used to perform

lift-over of the 150 Tomato Genome Resequencing Project to the latest (SL4.0)

version of the tomato genome for internal use at Cranfield University.

SeqRemap is a Python-based lift-over tool capable of updating VCF variant files

between different reference genomes (primarily different versions of the same

reference genome), transforming variant positions and REF / ALT allele bases (if

required) either on exact matches between contigs or on whole-genome

alignments generated by NUCmer. The former approach is particularly

appropriate for work-in-progress eukaryotic genomes whose anchoring and

pseudomolecule structure, i.e., the position and orientation of contigs and

scaffolds may be subject to change without significant changes to sequence

contents. The latter approach is much slower (as it requires whole-genome

alignment), but capable of handling significant differences in sequence structure

and contents, such as those between independent de novo genome assemblies,

including those of different, but related, species. A notable limitation in the latter

approach, and in lift-over algorithms in general, is that novel sequences

introduced in the destination genome, such as gaps closed in a new release of a

reference, will be devoid of any variants in the updated VCF files, as they were

25

absent in the source genome and could not have any reads mapped to them in

the original variant calling pipeline.

SeqRemap seeks to address the aforementioned limitation by using a “gap

patching” approach, in which a limited variant calling pipeline is executed on the

novel intervals to “patch” the gaps in VCF files. The process is shown in the

context of the full pipeline in Error! Reference source not found..

Whichever approach is chosen, SeqRemap is designed to allow for rapidly

updating large numbers of VCF files in parallel through multiprocessing.

2.5.4.1 Required inputs

Besides the VCF files to be updated, SeqRemap requires the source and

destination reference genome sequences as FASTA inputs. These are used to

identify positional mappings between the two genomes, either through comparing

sequence hashes (for exact matching) or through whole-genome alignment. As

individual steps in the pipeline can be executed as separate scripts, it is

technically possible to provide an externally generated NUCmer delta (or coords)

file and skip the whole-genome alignment step of the pipeline. While this makes

the source genome FASTA unnecessary, as it is not used in subsequent steps,

the destination genome FASTA is always required.

If the optional “gap patching” functionality is to be used, the BAM read alignment

files used in the original variant calling pipeline have to be provided. The original

read FASTQ files can also be provided, which can speed up the pipeline,

although this is optional as the reads can also be extracted from the BAM files.

26

Figure 2-9: Diagram of the full SeqRemap lift-over pipeline as used with NUCmer

whole-genome alignment. The “custom section” of the pipeline, marked in red, is a

(technically optional) mapping and variant calling step that has to be set up externally by

the user, to match the pipeline used to generate the source VCFs (as closely as

possible), hence why the tools (bwa, bcftools) are only named as examples. It is used to

find variants in the “gaps” introduced by novel sequence data in the destination genome.

27

2.5.4.2 Whole-genome alignment and gap patching

With the full SeqRemap pipeline (see Error! Reference source not found.), the

source and destination genomes are aligned to each other using NUCmer, using

a minimum match length of 1000 bases and default settings otherwise. A “coords”

file containing a summary of alignment region coordinates and identity

percentages is then extracted and used to generate a “coordinate mapping”

structure used to translate coordinates between the two sequences, and a “gap

region” text file containing Samtools-formatted (i.e., chrom:from-to, one region

per line) interval coordinates corresponding to areas of the destination genome

that no area of the source genome mapped to. Such regions should correspond

primarily to novel sequence data, absent from the source genome, and would

result in “gaps” in resequenced genomes in a basic lift-over pipeline. And identity

threshold of 99.9% is used to select intervals used in mapping by default, but this

can be freely adjusted.

SeqRemap extracts the sequences of gap regions from the destination genome

(using samtools faidx), creating a “gap reference”. Reads (raw FASTQ files or

reads extracted from the original BAM files used to generate the source VCFs)

can then be mapped to this small “reference” sequence. This should be

significantly faster than aligning to an entire genome. This alignment has to be

executed separately by the user. The tools and settings used should ideally

match the original pipeline used to generate the source VCF files; some of the

settings are likely recorded in the metadata.

Variant calling on whole-genome reads mapped to a small “gap reference” would

likely result in very large numbers of false positives, as it would contain many

read alignments which would have preferentially aligned elsewhere had a proper,

whole-genome reference sequence been used. The process would also be slow

due to the volume of data. To avert these problems, SeqRemap uses BAM files

from the original alignment to the source genome to filter the gap reference

alignment. Only reads whose mapping quality in the gap reference mapping is

higher than for any mapping in the original BAM are kept.

28

Filtered gap reference BAM files are then used for variant calling. As with the

alignment, this is to be executed separately by the user, ideally using tools and

settings matching the original pipeline. Finally, SeqRemap merges the “gap

reference” variant calling results with the lift-over results, effectively “patching”

the gaps with new variants.

It should be noted that this process is not a replacement for de novo resequencing

using the destination genome as a reference; that remains the preferable, though

also significantly slower, method of updating resequenced genome data sets,

particularly variant discovery and single-variant resolution is required. However,

this approach may be sufficient for lower-resolution approaches like bulk

segregant analysis or phylogeny inference, where variant contents are used to

derive some signal (e.g., one indicating selection or the presence of a potential

introgressions) and the identity of individual variants may be less important.

2.5.4.3 Tomato SL2.40 / SL2.50 to SL4.0 lift-over

SeqRemap has been used internally at Cranfield to update coordinates in

resequenced tomato genome data sets, primarily ones from the 150 Tomato

Genome ReSequencing Project, from the SL2.50 (and SL2.40) version, which is

the latest version of the data hosted by SGN, to the latest (SL4.0) version of the

tomato genome.

The size of total intervals mapped between the pairs of chromosome

pseudomolecules of the two versions are shown in Table 2-5 and Table 2-6. It

can be seen that the most of the change between the two genome versions

involved assigning sequences from chromosome 0 to other pseudomolecules.

This is expected, as the “chromosome 0” pseudomolecule in tomato assemblies

represents sequence fragments which could not be mapped to any specific

chromosome. These mappings thus represent gaps being filled and previously

unplaced sequences having their location identified.

29

Table 2-5: Size of intervals (in kbp) mapped between pseudomolecules

(destination chromosomes 0 to 6) during lift over from version SL2.40 of the

tomato genome to SL4.0 using SeqRemap.

Source
SL2.40

Destination SL4.0

Chr. 0 Chr. 1 Chr. 2 Chr. 3 Chr. 4 Chr. 5 Chr. 6

Chr. 0 1,119 635 2,840 607 605 399 1,726

Chr. 1 244 69,283 9 0 0 0 3

Chr. 2 161 18 44,210 34 5 10 24

Chr. 3 25 0 0 56,880 0 0 0

Chr. 4 114 0 13 0 54,111 0 0

Chr. 5 0 0 0 0 0 48,054 0

Chr. 6 120 0 0 5 0 0 37,539

Chr. 7 42 0 5 11 0 0 0

Chr. 8 1 5 0 7 0 19 0

Chr. 9 56 0 0 0 0 12 0

Chr. 10 81 171 0 0 0 0 0

Chr. 11 48 0 0 0 0 0 0

Chr. 12 53 0 0 10 0 0 0

Total lifted 2,062 70,111 47,077 57,554 54,721 48,494 39,292

Gaps left 7,581 20,753 6,396 7,744 9,739 16,775 7,967

Note that versions SL2.40 and SL2.50 do not differ in sequence content and are

essentially equivalent for the purposes of this pipeline; SL2.40 was used

preferentially, as it was the original version that the SGN-hosted genomes were

mapped to, and does not contain the large gaps between scaffolds introduced by

SL2.50, which inflate the apparent pseudomolecule size in comparison with the

other version.

Table 2-6: Size of intervals (in kbp) mapped between pseudomolecules

(destination chromosomes 7 to 12) during lift over from version SL2.40 of the

tomato genome to SL4.0 using SeqRemap.

Source
SL2.40

Destination SL4.0

Chr. 7 Chr. 8 Chr. 9 Chr. 10 Chr. 11 Chr. 12

Chr. 0 2,071 654 631 516 1,226 892

Chr. 1 3 0 0 2 0 0

Chr. 2 10 10 0 32 10 0

Chr. 3 0 0 0 4 0 0

Chr. 4 0 0 0 0 0 0

Chr. 5 0 0 0 5 0 0

30

Chr. 6 0 0 0 0 0 0

Chr. 7 58,145 0 0 0 0 0

Chr. 8 0 57,285 0 0 0 0

Chr. 9 0 0 58,684 1 0 3

Chr. 10 0 0 0 55,115 0 0

Chr. 11 0 0 0 0 47,151 0

Chr. 12 0 0 0 0 0 57,999

Total lifted 60,228 57,948 59,316 55,674 48,387 58,895

Gaps left 7,655 6,047 9,198 9,119 5,992 7,793

2.6 Discussion

An initial version of this report was shared with SGN alongside corrected VCF

files and correction scripts in August 2016, and the flawed variant data sets

hosted on the SGN site have been replaced with corrected versions by

September 2016, seventeen months after the errors were introduced. They

remain the latest publicly hosted version of the data as of January 2022, despite

no longer matching the latest version of the reference.

The problems which were encountered highlight the need to validate VCF files

for strict adherence to the format specification, including REF allele checks, which

requires providing a reference FASTA file, as VCF files do not contain the

required information. Only certain validators, such as the ValidateVariants tool

from GATK (McKenna et al., 2010), provide this option.

SeqRemap has found usage in research projects conducted at Cranfield

University. One such project was “Genomics-assisted selection of Solanum

chilense introgression lines for enhancing drought resistance in tomatoes”

(BBSRC project reference BB/L011611/1), where it was used for lifting over

publicly available resequenced genomes originally mapped to SL2.50 for the

purposes of comparison with new tomato data mapped directly to SL4.0, with the

results to be used in an upcoming publication. Another project where SeqRemap

found use was “AdRoot: Genetic control of adventitious rooting in horticultural

crops” (BBSRC project reference BB/S007970/1), where it was used to allow for

resequenced data sets to be quickly remapped between different versions of a

31

work-in-progress raspberry genome assembly, as linkage maps and assembly

versions based on those linkage maps got updated.

There exist other lift-over tools such as CrossMap (Zhao et al., 2014), UCSC

liftover (Kuhn et al., 2013), and flo (Pracana et al., 2017). These depend on chain

files (Kent et al., 2003), which contain equivalent data and can be generated

based on the NUCmer alignment results used by SeqRemap (Marçais et al.,

2018). An advantage of SeqRemap is that it looks for exact matches between

contigs first, without necessarily requiring a whole-genome alignment between

sequence versions. This is, of course, a much simpler scenario than ones which

involve de novo assemblies rather than merely rearrangements and thus require

whole-genome alignment. However, this scenario does occur, as in the tomato

reference genome update between SL2.40 and SL2.50 discussed here, and it

has posed problems, as evidenced by the resequenced data issues which

required correction. Indeed, the apparent simplicity of the changes between

SL2.40 and SL2.50, which clearly did not require whole-genome alignment (and

thus the use of established lift-over tools), is likely what helped introduce the

errors through oversights in the custom Bio-GenomeUpdate tool and, alongside

a lack of output validation, also helped them remain undetected for over a year.

SeqRemap generates valid results without requiring a time-consuming whole-

genome alignment in this deceptively simple scenario, while also allowing for the

use of whole-genome alignment data.

Additionally, the “gap patching” functionality of SeqRemap represents a novel

functionality unavailable in other lift-over tools, although it is experimental and

would require additional work and testing to validate its usability. If successful, it

would address a major limitation of lift-over tools, which is the omission of variants

in novel regions (Zheng-Bradley et al., 2017).

The reference genome issues with scaffold mis-ordering and mis-orientation, as

well as with discrepancies in gap size compared to published BAC-FISH results

(Shearer et al., 2014) were not addressed prior to the tomato genome SL2.50

reference being replaced with version SL3.0 in February 2017. They are now

largely irrelevant, at least for new work, as a result of this replacement.

32

2.7 References

Aflitos, S., Schijlen, E., De Jong, H., De Ridder, D., Smit, S., Finkers, R., Wang,

J., Zhang, G., Li, N., Mao, L., Bakker, F., Dirks, R., Breit, T., Gravendeel, B.,

Huits, H., Struss, D., Swanson-Wagner, R., Van Leeuwen, H., Van Ham, R.

C. H. J., … Peters, S. (2014). Exploring genetic variation in the tomato

(Solanum section Lycopersicon) clade by whole-genome sequencing. Plant

Journal, 80(1), 136–148. https://doi.org/10.1111/tpj.12616

Cingolani, P., Platts, A., Wang, L. L., Coon, M., Nguyen, T., Wang, L., Land, S.

J., Lu, X., & Ruden, D. M. (2012). A program for annotating and predicting

the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome

of Drosophila melanogaster strain w 1118; iso-2; iso-3. Fly, 6(2), 80–92.

https://doi.org/10.4161/fly.19695

Hosmani, P. S., Flores-Gonzalez, M., van de Geest, H., Maumus, F., Bakker, L.

V, Schijlen, E., van Haarst, J., Cordewener, J., Sanchez-Perez, G., Peters,

S., Fei, Z., Giovannoni, J. J., Mueller, L. A., & Saha, S. (2019). An improved

de novo assembly and annotation of the tomato reference genome using

single-molecule sequencing, Hi-C proximity ligation and optical maps.

https://doi.org/10.1101/767764

Kent, W. J., Baertsch, R., Hinrichs, A., Miller, W., & Haussler, D. (2003).

Evolution’s cauldron: Duplication, deletion, and rearrangement in the mouse

and human genomes. Proceedings of the National Academy of Sciences of

the United States of America, 100(20), 11484–11489.

https://doi.org/10.1073/pnas.1932072100

Kuhn, R. M., Haussler, D., & James Kent, W. (2013). The UCSC genome browser

and associated tools. Briefings in Bioinformatics, 14(2), 144–161.

https://doi.org/10.1093/bib/bbs038

Kurowski, T. J., & Mohareb, F. (2019). Tersect: a set theoretical utility for

exploring sequence variant data. Bioinformatics, 36(3), 934–935.

https://doi.org/10.1093/bioinformatics/btz634

33

Lin, T., Zhu, G., Zhang, J., Xu, X., Yu, Q., Zheng, Z., Zhang, Z., Lun, Y., Li, S.,

Wang, X., Huang, Z., Li, J., Zhang, C., Wang, T., Zhang, Y., Wang, A.,

Zhang, Y., Lin, K., Li, C., … Huang, S. (2014). Genomic analyses provide

insights into the history of tomato breeding. Nature Genetics, 46(11), 1220–

1226.

https://doi.org/10.1038/ng.3117\rhttp://www.nature.com/ng/journal/v46/n11/

abs/ng.3117.html#supplementary-information

Marçais, G., Delcher, A. L., Phillippy, A. M., Coston, R., Salzberg, S. L., & Zimin,

A. (2018). {MUMmer}4: A fast and versatile genome alignment system.

{PLOS} Computational Biology, 14(1), e1005944.

https://doi.org/10.1371/journal.pcbi.1005944

McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A.,

Garimella, K., Altshuler, D., Gabriel, S., Daly, M., & DePristo, M. A. (2010).

The Genome Analysis Toolkit: A MapReduce framework for analyzing next-

generation DNA sequencing data. Genome Research, 20(9), 1297–1303.

https://doi.org/10.1101/gr.107524.110

NCBI. (2019). AGP Specification v2.1. Bethesda (MD): National Library of

Medicine (US), National Center for Biotechnology Information.

https://www.ncbi.nlm.nih.gov/assembly/agp/AGP_Specification/

Pracana, R., Priyam, A., Levantis, I., Nichols, R. A., & Wurm, Y. (2017). The fire

ant social chromosome supergene variant Sb shows low diversity but high

divergence from SB. Molecular Ecology, 26(11), 2864–2879.

https://doi.org/10.1111/mec.14054

Sato, S., Tabata, S., Hirakawa, H., Asamizu, E., Shirasawa, K., Isobe, S.,

Kaneko, T., Nakamura, Y., Shibata, D., Aoki, K., Egholm, M., Knight, J.,

Bogden, R., Li, C., Shuang, Y., Xu, X., Pan, S., Cheng, S., Liu, X., … Fabra,

U. P. (2012). The tomato genome sequence provides insights into fleshy fruit

evolution. Nature, 485(7400), 635–641. https://doi.org/10.1038/nature11119

SGN. (2014). “Updated tomato genome assembly based on FISH results” pdf

document.

34

ftp://ftp.sgn.cornell.edu/genomes/Solanum_lycopersicum/assembly/build_2.

50/DotPlots.pdf

Shearer, L. A., Anderson, L. K., de Jong, H., Smit, S., Goicoechea, J. L., Roe, B.

A., Hua, A., Giovannoni, J. J., & Stack, S. M. (2014a). Fluorescence in situ

hybridization and optical mapping to correct scaffold arrangement in the

tomato genome. 4(8), 1395–1405. https://doi.org/10.1534/g3.114.011197

Shearer, L. A., Anderson, L. K., de Jong, H., Smit, S., Goicoechea, J. L., Roe, B.

A., Hua, A., Giovannoni, J. J., & Stack, S. M. (2014b). Fluorescence in situ

hybridization and optical mapping to correct scaffold arrangement in the

tomato genome. G3 (Bethesda, Md.), 4(8), 1395–1405.

https://doi.org/10.1534/g3.114.011197

Zhao, H., Sun, Z., Wang, J., Huang, H., Kocher, J. P., & Wang, L. (2014).

CrossMap: A versatile tool for coordinate conversion between genome

assemblies. Bioinformatics, 30(7), 1006–1007.

https://doi.org/10.1093/bioinformatics/btt730

Zheng-Bradley, X., Streeter, I., Fairley, S., Richardson, D., Clarke, L., & Flicek,

P. (2017). Alignment of 1000 Genomes Project reads to reference assembly

GRCh38. GigaScience, 6(7), 1–8.

https://doi.org/10.1093/gigascience/gix038

35

3 TERSECT: A SET THEORETICAL UTILITY FOR

EXPLORING SEQUECE VARIANT DATA

3.1 Abstract

3.1.1 Summary

Comparing genomic features within a large panel of individuals across the same

species is nowadays considered a core part of many bioinformatics analyses.

Such analyses can usually be expressed as a series of complex set theoretical

operations used to compare, intersect, or extract symmetric differences between

individuals within a large set of genotypes. Several publicly available tools are

capable of performing such tasks; however, due to the sheer size of variant sets

being queried, such tasks can be computationally expensive, with runtimes

ranging from a few minutes up to several hours, depending on the data set size.

This makes existing tools unsuitable for interactive data querying or for use as

part of genomic data visualization platforms, such as genome browsers. Tersect

is a lightweight, high-performance command-line utility which interprets and

applies flexible set theoretical expressions to sets of sequence variant data. It

can be used both for interactive data exploration and as part of a larger pipeline

thanks to its highly optimized variant data storage and indexing algorithms.

3.1.2 Availability

Tersect was implemented in C and released under the MIT license. Tersect is

freely available at https://github.com/tomkurowski/tersect.

https://github.com/tomkurowski/tersect

36

3.2 Introduction

Large-scale genome resequencing projects such as the 100 000 genome project

(Turnbull et al., 2018), the 1000 Genomes Project (1000 Genomes Project

Consortium, 2015) or the 150 Tomato Genome ReSequencing Project (S. Aflitos

et al., 2014) provide researchers with large-scale references for genetic variation.

These can be compared with novel data to help identify causal variants and

QTLs, delimit haplotype blocks and introgressions, or infer phylogenetic

relationships (Gao et al., 2019). All of those uses require means of filtering and

comparing the variant contents between large phenotypic groups in order to

identify concordant and discordant variants. These can be considered

applications of set theoretical operations such as intersections or unions on sets

of variants.

While multiple tools such as BEDOPS (Neph et al., 2012), BCFtools (Danecek et

al., 2021) and BEDTools (Quinlan & Hall, 2010) offer the option to execute such

operations, they are relatively inflexible in the complexity of possible queries and

rely on parsing input files as they are executed, limiting their speed and

responsiveness.

We hereby present Tersect, a tool which allows users to construct queries of any

level of complexity by providing its own declarative query language and

significantly speeds up their execution using specialized bitmap indices. Queries

are interpreted, optimized, and executed in a single step, either on entire

genomes or on selected genomic regions, making the process extremely fast and

responsive, ideal for an exploratory approach to investigating genome contents.

3.3 Tersect

3.3.1 Interface and command parser

Tersect is a command-line tool and features a command parser which allows a

user to enter set theoretical expressions operating on genomes (as sets) and

variants (as set elements) and including set theoretical operations such as

intersections, unions, and symmetric differences (see Appendix A). These can be

arranged into queries of arbitrary complexity, including deeply nested

37

expressions, using a simple syntax. Rather than merely executing the parsed

operations in sequence, Tersect builds an abstract syntax tree (AST) which

represents the entered expression. The tree can then be optimized to simplify

and speed up operations. If the user requests data from multiple genomic regions

using the same command, the same AST is re-used for each.

3.3.2 Indexing

Tersect imports VCF file data and uses bitmap indexing to encode binary

information on the presence or absence of specific variants in each individual

genome while building up a single unified database of alleles across all collected

genomes.

The database is sorted and indexed by position and identity. When traversed in

order, the stored list of variants is parallel to the per-genome bitmap indices,

linking the two data structures. The index on variants and their positions allows

for rapid identification of regions of interest by chromosome and position range,

while the bitmap indices allow for highly efficient comparisons between genomes,

leveraging bitwise operations to compare many sites at once. As any given

genome contains only a relatively small subset of possible alleles, the bitmaps

are sparse and easily compressed. Tersect uses a variant of the Word-Aligned

Hybrid lossless compression method (Wu et al., 2006) which allows logical

operations without an explicit decompression step.

The variant data and indices are stored in a special index file which only needs

to be generated once per collection of genomes and can be shared and used

independently of the source data. Tersect uses a memory-mapped I/O approach

to access index file contents, allowing for random access to regions of interest

and limiting the memory footprint of queries.

A disadvantage of bitmap indexing, shared by Tersect, is the relative inefficiency

of updating and adding data. This indexing approach is generally best suited to

read-only applications and is often used in data warehousing. However, the

stored data (allele identities and presence in genomes) do not frequently change

over time and are generally added in batches (at least one genome at a time),

38

mitigating such disadvantages. The Tersect index builder uses a highly efficient,

priority-queue-based merge method, allowing for an index file to be rapidly re-

created.

3.3.2.1 Index format

Tersect relies on constructing index / database files to enable it to execute its

high-performance queries. The files are in a custom binary format and use the

“tsi” filename extension (standing for tersect index) by default.

The first fourteen bytes in the index files encode an ASCII representation of the

TSI file format version used. This is a C-string (i.e., 13 characters followed by a

null terminator) and “TersectDB 0.2” is currently the only valid value. This is to

allow for the correct interpretation of the header that follows, and the rest of the

data contained in the index file.

 The TSI header contains the following information:

 Database size in bytes (64-bit unsigned integer)

 Word size used by the database (16-bit unsigned integer)

 Offset of the chromosome list data structure (64-bit unsigned integer)

 Number of chromosomes (32-bit unsigned integer)

 Offset of the genome list data structure (64-bit unsigned integer)

 Number of genomes (32-bit unsigned integer)

 Offset of the free list data structure (64-bit unsigned integer)

While much of the data they contain is compressed, Tersect index files can still

be quite large (several gigabytes and more on real data sets). Rather than fully

parsing them, Tersect uses them as memory-mapped files. The data structures

they contain refer to each other through offsets from the start of the index file.

Tersect translates these offsets to pointers based on the mapping location,

casting the data structures stored in the file into a representation used elsewhere

in the application. The former ‘internal’ data structures are described in the

tersect_db_internal.h header, while their ‘public’ interfaces used elsewhere can

be seen in the tersect_db.h header.

39

Tersect manages memory within the index file using a simple free list and first-fit

allocation, expanding the file in page-sized chunks if not enough space is

available. Note that the index file is generally intended to be created in a single

batch process (in which case there is little fragmentation and no wasted space)

with very little later modification, such as renaming samples.

3.3.2.2 Index construction

To construct an index file, Tersect uses a custom parser to merge the contents

of input VCF files into per-chromosome lists of alleles. This is done using a priority

queue algorithm that includes a normalization and local sorting step on each of

the input files to ensure the variant alleles are stored in a normalized,

unambiguous order (sorted first by position, then alphabetically by the allele base

sequences). Single nucleotide variants are encoded using numeric codes for

each reference/alternate base combination, while larger variants have their

sequences stored as strings allocated in the index file, with the variant list

recording the string location offset. An example of the process is shown in Figure

3-1.

3.3.2.3 Compression

Per-sample presence or absence of specific variants of a chromosome is

encoded in bit arrays using a variant of the Word-Aligned Hybrid (WAH)

compression algorithm. The primary data structure is stored as a simple array of

64-bit words corresponding to the entire length of the chromosome. Each of the

words is either a “literal” word or a “fill” word; this distinction is indicated by the

most significant bit of each word, which is set for literal words and unset for fill

words. This leaves 63 bits for other data.

Literal words use their 63 bits to store the presence (set bit) or absence (unset

bit) of up to 63 successive variants. Fill words store the length of a run of absent

variants in multiples of 63, a type of run-length encoding (RLE). Thus, a fill word

containing the (decimal) number 1 indicates a run of 63 absent variants, number

2 indicates a run of 126 absent variants, and so on.

40

Note that recording runs of empty words rather than empty bits, while wasteful of

space, keeps the bits in literal words aligned so that no bit shifting is required to

conduct binary operations on variants at the same positions. This trades space

for execution speed.

Figure 3-1: Tersect index file construction diagram. Parts A) and B) show the

contents of example VCF input files (metadata and certain columns were omitted). The

first input file contains data for two samples (GEN1 and GEN2) and the second file

contains data for a single sample (GEN3). All alleles contained in a chromosome are

stored in a single list as seen in part C). Membership of individual alleles in each of the

samples is encoded in bit arrays as seen in part D), which shows a 32-bit word for the

sake of simplicity (Tersect uses 64-bit words by default). The most significant bit is set

for all three bit arrays, indicating that the specific word shown is a literal word (as opposed

to a fill word – these terms are explained in section below). Note that the indices in the

chromosome variant table and the sample bit arrays match – the lists are parallel.

In classical WAH compression, fill words can be used to indicate runs of either

set or unset bits (and potentially other patterns), with the type of fill word being

41

indicated by successive most significant bits. In the Tersect implementation this

was simplified and limited to only runs of unset bits for several reasons. The

arrays used for indicating variant contents are very sparse and runs of more than

63 set bits are rare, making the improvement in compression had they been

included minor. At the same time, limiting fill word metadata to a single bit flag

set to 0 means no further flag checks or manipulations are necessary and the

value stored in the word can be used directly as an integer representing the run

length. This simplifies the code and yields an improvement in execution speed. A

diagrammatic representation of the compression can be seen in Figure 3-2.

Figure 3-2: Diagrammatic example of WAH compression and variant retrieval by

Tersect. Three words (part A) encode allele contents for 315 successive alleles stored

in the chromosome variant list shown in part B. The literal words encode the indices of

variants present in a sample, while the fill word records the length of a run of empty

words (each corresponding to seven absent alleles). The stored binary value is

0b0101011 (decimal 43). With seven alleles per word, this can be used to advance the

index indicator of the variant list by 7 x 43 = 301 positions when the bit array is traversed.

Note that, while for the sake of simplicity the example uses 8-bit words, Tersect uses 64-

bit words by default.

42

While Tersect uses 64-bit words by default, this is a value which can be changed

at compile-time. Using a word size matching the processor word size (64-bit in

most architectures common today) is generally the best choice from a

performance standpoint, as it makes it possible to make better use of SIMD

(single instruction, multiple data) extended instruction sets to speed up

operations on bit arrays. However, smaller word sizes may yield superior

compression due to higher data granularity: with 64-bit words one can only save

a word of memory when at least 126 successive word-aligned variants are absent

(and another word for each further 63 such variants), while with 32-bit words a

word is saved starting with the 62nd absent variant (and another is saved for each

further 31 such variants). Still, the proportion of metadata (the literal/fill word flag)

also rises as the word size grows smaller: for 8-bit words, where metadata takes

up 12.5% of the storage, the memory use actually increases.

Another consequence of changing the word size is that index files generated by

Tersect compiled with a certain word size are not compatible with Tersect

compiled with a different word size. This is why the default word size is set to 64-

bits instead of varying based on architecture. Advanced users are free to fine-

tune this at compile-time, but they will not be able to use the example data sets

provided with tutorials.

3.4 Benchmarking

Tersect was benchmarked against three tools which offer similar functionalities:

BCFtools (Danecek et al., 2021), BEDTools (Quinlan & Hall, 2010), and BEDOPS

(Neph et al., 2012). It should be noted that, as they are designed to compare

variant sets not only to each other but also to other types of data, the last two

tools focus on positional overlap and intersection between features rather than

variant identity. This means that overlapping but distinct variants, such as

different alleles at multi-allelic sites or InDels which span across SNV sites, are

considered to be intersecting. This can lead to subtly different results delivered

by the tested tools; however, the benchmarks executed for the purposes of this

work excluded InDel and multiallelic sites, as they were focused on performance

43

comparisons. The test scenarios were set up to produce identical results in terms

of variant content between each of the tools.

The data used for comparison were publicly available tomato genomes from two

studies (S. Aflitos et al., 2014; Lin et al., 2014), for a total of 444 resequenced

genomes of tomato cultivars and closely related species.

Two important shared functionalities were tested: the identification of private

variants, that is, variants occurring only in a single specific genome out of a

collection of genomes, and the intersection of a group of genomes to identify

variants shared by each of them (also known as concordant variants).

For the former test, subsets of the 444 genomes collection were used. For the

latter, subsets of 56 S. pimpinellifolium genomes which contain large regions of

shared variation distinct from the S. lycopersicum reference were used.

Input data for each of the tools were converted into the most appropriate format

(e.g., BED for BEDTools) and indexed (where appropriate) prior to the

benchmarking. This also applies to Tersect, as the time taken to build an index,

which needs to be done only once, was not included in the test runtimes.

3.5 Results and discussion

For the private variant identification benchmark (Figure 3-3), all four applications

show a linear relationship between the input size (number of genomes) and

execution time; for Tersect this relationship is partially obscured by the relatively

slow disk read/write operations which comprise a significant proportion of the

runtime, especially for small input sizes. This is also the reason why the

advantage held by Tersect is the smallest for small numbers of genomes (three

times faster than BEDOPS when identifying private variants in sets of 4

genomes), and grows for larger inputs (167 times faster than BCFtools when the

full set of 444 genomes are used).

44

Figure 3-3: Benchmarking results for the identification of variants private to a

single genome out of subsets of 444 tomato genomes. See Table 3-1 for the numeric

results.

For the intersection benchmark, seen in Figure 3-4, the results follow a very

similar pattern, and all four applications again show a linear relationship between

the input size (number of genomes) and execution time, though for Tersect the

result is more distorted, and its execution time actually peaks at the smallest input

size (two genomes). This is because, as is typical for intersection, the output

variant set becomes smaller the more genomes are included. For only two

genomes printing the result takes much longer than computing it. However, even

for that worst-case scenario, Tersect is approximately three times faster than the

45

next fastest tool (BCFtools). For the largest input size, consisting of 56 genomes,

Tersect is approximately 120 times faster than BCFtools.

Figure 3-4: Benchmarking results for the intersections of subsets of 56 Solanum

pimpinellifolium genomes. This is a wild species of tomato closely related to the

S. lycopersicum, the cultivated tomato and the most numerous wild tomato species in

the source data sets. The shared variants identified through intersection represent alleles

typical of S. pimpinellifolium as compared to the cultivated tomato reference genome.

See Table 3-2 for the numeric results.

46

Index file generation for the largest genome collection (444 genomes) took

10 minutes (see Figure 3-5), which is fast enough to make Tersect the fastest

tool even if indexing time were to be included in the benchmark, at least for the

larger input sizes.

Figure 3-5: Tersect index build time and peak memory usage. It should be noted

that inclusion time per genome varied significantly due to different variant content per

genome, evident in the shape of the line. This is also evident in Figure 3-6, which

traces a very similar path for the input data. The source genome list was shuffled to

minimize this variation. The peak memory usage is defined as the maximum resident

set size. See Table 3-3 for the numeric results.

As seen in Figure 3-6, while Tersect index files follow a linear relationship with

the size of input data, they are considerably smaller than even compressed VCF

files. This means that they can potentially serve as a more efficient storage

medium for variant content data, although it should be noted that Tersect indices

47

discard a lot of data normally stored in VCF files, and the input data cannot be

recreated in full based on a Tersect index.

Figure 3-6: Size of input data and generated Tersect index files. Note that the sizes

of individual per genome data sets vary with the number of variants they contain. See

Table 3-3 for the numeric results.

Table 3-1: Private variant identification benchmark results.

 Private variant identification time [seconds]

Number of
genomes

Tersect BCFtools BEDTools BEDOPS

4 3.03 12.26 108.37 9.42

24 2.98 28.45 362.75 33.49

44 2.53 56.69 756.15 99.56

64 2.84 84.13 1167.93 139.80

48

84 2.94 106.18 1555.52 191.23

104 2.59 142.92 2152.15 273.26

124 2.72 173.96 2339.30 325.00

144 3.13 212.22 2786.44 384.52

164 2.92 276.66 3506.33 510.79

184 3.10 318.23 3694.72 581.05

204 3.20 361.42 4246.82 669.34

224 3.42 397.74 4652.93 715.00

244 3.59 447.70 5199.98 788.68

264 3.96 474.70 5654.76 896.68

284 4.13 515.08 5804.88 971.73

304 4.42 553.76 6273.72 1024.31

324 4.46 609.85 6460.30 1105.54

344 4.88 654.08 7038.13 1169.67

364 4.95 712.29 7871.98 1273.92

384 5.30 766.78 8232.68 1409.26

404 5.33 844.31 8833.28 1562.77

424 5.66 900.02 9001.77 1665.46

444 5.72 956.39 9463.02 1753.81

Table 3-2: Intersection benchmark results.

 Intersection time [seconds]

Number of
genomes

Tersect BCFtools BEDTools BEDOPS

2 1.19 3.58 27.37 6.39

5 0.48 6.51 81.94 11.19

8 0.47 11.80 147.65 17.97

11 0.50 15.69 221.64 27.45

14 0.46 19.97 293.82 32.06

17 0.52 24.59 356.10 39.86

20 0.49 30.79 411.51 47.15

23 0.56 37.14 501.51 58.73

26 0.61 43.26 605.98 65.34

29 0.63 47.62 642.08 72.23

32 0.64 53.74 705.53 78.06

35 0.66 57.06 773.71 83.86

38 0.71 62.44 853.04 91.27

41 0.59 68.66 888.30 96.49

44 0.69 72.71 1016.69 102.64

47 0.65 78.17 1081.67 111.71

50 0.68 85.04 1122.27 117.50

53 0.78 86.84 1355.56 124.44

56 0.77 92.85 1358.65 131.78

49

Table 3-3: Tersect index build metrics.

Number of
genomes

Input VCF.gz size
[MiB]

Output Tersect
index size [MiB]

Tersect index
build time [s]

4 434 257 14.18

24 826 342 28.98

44 1479 574 53.76

64 2040 741 81.05

84 2483 805 102.43

104 3225 977 133.75

124 3677 1057 152.87

144 4091 1156 170.70

164 5093 1438 215.84

184 5585 1539 234.18

204 6238 1678 267.63

224 6722 1756 295.59

244 7356 1884 325.00

264 7730 1959 343.60

284 8054 2029 356.33

304 8590 2120 387.30

324 9097 2224 404.35

344 9610 2301 450.60

364 10505 2440 472.07

384 11140 2588 518.17

404 11831 2792 553.02

424 12099 2864 558.73

444 12809 2985 600.68

As seen through the benchmarking, Tersect generally performs from three to over

a hundred times faster than BCFtools, which is generally the fastest of the other

three applications.

The difference in performance is more pronounced for larger inputs and this trend

is likely to continue for data sets larger than those examined in this article. This

presents a promising outlook for the scalability and future usability of Tersect as

more genomes are resequenced every year and the volume of available data

continues to rapidly increase. The runtime of all four tools follows a roughly linear

relationship with the size of the input. The superior speed of Tersect stems from

the highly problem-specific optimization and indexing scheme rather than from

improved algorithmic time complexity in the strict sense.

50

Tersect is the only one among the evaluated tools capable of executing complex

queries on large real-world data sets in a matter of seconds, making this the tool

of choice to be used interactively, rather than as part of a batch processing

pipeline. In combination with the flexible query syntax, this high performance

offers new possibilities for real-time, exploratory use of the ever-growing volume

of genomic data being produced today.

3.6 References

Aflitos, S., Schijlen, E., De Jong, H., De Ridder, D., Smit, S., Finkers, R., Wang,

J., Zhang, G., Li, N., Mao, L., Bakker, F., Dirks, R., Breit, T., Gravendeel, B.,

Huits, H., Struss, D., Swanson-Wagner, R., Van Leeuwen, H., Van Ham, R.

C. H. J., … Peters, S. (2014). Exploring genetic variation in the tomato

(Solanum section Lycopersicon) clade by whole-genome sequencing. Plant

Journal, 80(1), 136–148. https://doi.org/10.1111/tpj.12616

Consortium, G. P., Auton, A., Abecasis, G. R., Altshuler, D. M., Durbin, R. M.,

Abecasis, G. R., Bentley, D. R., Chakravarti, A., Clark, A. G., Donnelly, P.,

Eichler, E. E., Flicek, P., Gabriel, S. B., Gibbs, R. A., Green, E. D., Hurles,

M. E., Knoppers, B. M., Korbel, J. O., Lander, E. S., … National Eye Institute,

N. I. H. (2015). A global reference for human genetic variation. Nature,

526(7571), 68–74. https://doi.org/10.1038/nature15393

Danecek, P., Bonfield, J. K., Liddle, J., Marshall, J., Ohan, V., Pollard, M. O.,

Whitwham, A., Keane, T., McCarthy, S. A., Davies, R. M., & Li, H. (2021).

Twelve years of SAMtools and BCFtools. GigaScience, 10(2).

https://doi.org/10.1093/gigascience/giab008

Gao, L., Gonda, I., Sun, H., Ma, Q., Bao, K., Tieman, D. M., Burzynski-Chang, E.

A., Fish, T. L., Stromberg, K. A., Sacks, G. L., Thannhauser, T. W., Foolad,

M. R., Diez, M. J., Blanca, J., Canizares, J., Xu, Y., van der Knaap, E.,

Huang, S., Klee, H. J., … Fei, Z. (2019). The tomato pan-genome uncovers

new genes and a rare allele regulating fruit flavor. Nature Genetics, 51(6),

1044–1051. https://doi.org/10.1038/s41588-019-0410-2

Lin, T., Zhu, G., Zhang, J., Xu, X., Yu, Q., Zheng, Z., Zhang, Z., Lun, Y., Li, S.,

51

Wang, X., Huang, Z., Li, J., Zhang, C., Wang, T., Zhang, Y., Wang, A.,

Zhang, Y., Lin, K., Li, C., … Huang, S. (2014). Genomic analyses provide

insights into the history of tomato breeding. Nature Genetics, 46(11), 1220–

1226.

https://doi.org/10.1038/ng.3117\rhttp://www.nature.com/ng/journal/v46/n11/

abs/ng.3117.html#supplementary-information

Neph, S., Kuehn, M. S., Reynolds, A. P., Haugen, E., Thurman, R. E., Johnson,

A. K., Rynes, E., Maurano, M. T., Vierstra, J., Thomas, S., Sandstrom, R.,

Humbert, R., & Stamatoyannopoulos, J. A. (2012). BEDOPS: High-

performance genomic feature operations. Bioinformatics, 28(14), 1919–

1920. https://doi.org/10.1093/bioinformatics/bts277

Quinlan, A. R., & Hall, I. M. (2010). BEDTools: A flexible suite of utilities for

comparing genomic features. Bioinformatics, 26(6), 841–842.

https://doi.org/10.1093/bioinformatics/btq033

Turnbull, C., Scott, R. H., Thomas, E., Jones, L., Murugaesu, N., Pretty, F. B.,

Halai, D., Baple, E., Craig, C., Hamblin, A., Henderson, S., Patch, C., O’Neill,

A., Devereau, A., Smith, K., Martin, A. R., Sosinsky, A., McDonagh, E. M.,

Sultana, R., … Caulfield, M. J. (2018). The 100{\hspace{0.167em}}000

Genomes Project: bringing whole genome sequencing to the {NHS}. BMJ,

k1687. https://doi.org/10.1136/bmj.k1687

Wu, K., Otoo, E. J., & Shoshani, A. (2006). Optimizing bitmap indices with

efficient compression. ACM Transactions on Database Systems, 31(1), 1–

38. https://doi.org/10.1145/1132863.1132864

52

4 TERSECT BROWSER

4.1 Abstract

4.1.1 Summary

Both the low cost of genome resequencing and the public availability of large sets

of resequenced genomes, especially ones which include wild accessions, make

it possible to delimit introgressions and identify their donor species through

visualising the genetic distance and phylogenetic relationships based on

whole-genome variant data. While software capable of generating such

visualisations is available, it is not suitable for fully interactive exploration of the

data due to the amount of time it takes to analyse such large data sets and the

fact that any changes in the genome set, or the size and segmentation of an

investigated interval, requires a recalculation of phylogenetic relationships.

Tersect Browser is a Web application optimized for generating such

visualisations in an interactive fashion, responsively recalculating, and displaying

phylogenetic trees and genetic distance heat maps based on resequenced

genome data, all in seconds rather than hours. This work presents the tool itself

alongside examples of its usage, the algorithmic approaches (indexing schemes,

partial result precomputation and aggregation) which make such performance

possible, as well as the latency performance metrics on large-scale human and

tomato data sets.

4.1.2 Availability

Tersect Browser was released under the MIT license and is freely available at

https://bitbucket.org/tomkurowski/tersect-browser

https://bitbucket.org/tomkurowski/tersect-browser

53

4.2 Introduction

Introgressive hybridisation is an important factor in crop improvement, making it

possible to transfer valuable traits from related species into cultivars (S. Aflitos et

al., 2014), but the process of homoeologous recombination can also introduce

other, often undesirable, genetic material via linkage drag (Qi et al., 2007). Latent

genetic variation originating from wild species may persist in S. lycopersicum

lines as poorly characterised, but potentially useful or otherwise interesting,

cryptic introgressions (Labate & Robertson, 2012). More broadly, the

characterisation of introgressions is an important factor in investigating the

evolutionary history of many species, including humans (Evans et al., 2006;

Nelson et al., 2021).

Large-scale resequencing of genomes enabled by the low cost of NGS makes

large sets of variant data (either whole-genome or data with reduced complexity,

e.g. GBS) an abundant resource, potentially useful in the characterisation of

introgressions, and software tools such as SPrime (Zhou & Browning, 2021) or

Introgression Browser (S. A. Aflitos et al., 2015), are now available to take

advantage of them. Publicly available resequenced genome data sets, such as

those maintained for tomato (S. Aflitos et al., 2014; Lin et al., 2014) which include

wild species, can be used to identify donor species even without prior knowledge

by comparing newly resequenced data with the larger repository (Silva Ferreira

et al., 2018).

A software tool of particular value to such work is the aforementioned

Introgression Browser, a Web application focused on the detection of

introgressions and identification of the donor parents for introgressed segments

through the visualisation of genetic distance and phylogenetic relationships

between genomes using resequenced genome data. However, a significant

limitation of Introgression Browser is that, despite providing a Web interface, the

visualisations it generates are relatively static. While users can change the

genome used as the reference, as well as edit row identifiers and heat map colour

scales, the set of genomes as well as the interval and segmentation pattern used

have to be provided when the database is generated and cannot be modified.

54

The entire analysis is precomputed, and user interaction is intended to allow the

user to customise the visualisation for improved discrimination between samples,

not to facilitate further analysis within the Web application itself.

In previous work, where Introgression Browser was successfully used for the

identification of an introgression from S. galapagense into a domestic tomato line,

the set of genomes included in the analysis, as well as the size of segments and

borders of the examined interval had to be adjusted to help delimit the exact

position of the introgression and improve contrast (Silva Ferreira et al., 2018). As

reported, this had to be done iteratively, with a new database being created at

each step. While database creation can be automated using scripts, every such

step still requires multiple hours of database generation before any result can be

shown in a browser. A further complication is that, particularly in collaborative

projects, the most suitable person to administer a Web application and set up

database generation scripts through a command-line interface (e.g., a

bioinformatician) is not necessarily the most suitable person to interpret the

results and decide on the next step (e.g., a geneticist), requiring repeatedly

coordinating between multiple researchers on top of the computational cost.

Tools which allow for more interactive visualisation are better suited for this sort

of iterative work, where the user views the data and decides on the next step

(selecting a subset, applying some type of projection or aggregation) based on

what can be seen as a result of the previous one. However, for large data sets,

such as those in modern genomics, interactive visualisation is difficult to

implement, requiring specialized algorithms, data indexing schemes,

precomputation of partial results, or even the use of specialized hardware setups

such as massively parallel systems (Godfrey et al., 2016). The exact cut-off

threshold for “interactivity” is difficult to define, but typically an interactive system

is expected to respond within seconds or, ideally, under a second (Shneiderman,

1984).

This work introduces Tersect Browser, a Web application which allows users to

interactively generate and explore visualisations of genetic distance and

phylogenetic relationships between large numbers of genomes. To make this

55

possible, it takes advantage of the high-performance of its namesake Tersect, a

lightweight utility optimized for comparing variant contents between indexed sets

of resequenced genomes (Kurowski & Mohareb, 2019). The indexing scheme

used by Tersect allows it to very efficiently find the number of discordant SNV

sites in any given chromosomal interval, which is sufficient to calculate genetic

distance between genomes according to the Jukes-Cantor model (Jukes &

Cantor, 1969). Combined with a further, higher-level precomputation and

indexing scheme, Tersect Browser can responsively produce ad hoc results

analogous to those generated by tools like Introgression Browser in a matter of

seconds rather than hours.

4.3 Materials and methods

4.3.1 Benchmark and test data

Two main sets of data were used to test and benchmark Tersect Browser. The

first was a set of 444 resequenced tomato genomes, formed by combining two

publicly available data sets (S. Aflitos et al., 2014; Lin et al., 2014) hosted and

maintained by the SGN (Fernandez-Pozo et al., 2015). The tomato reference

genome used for the data was SL2.50. While several newer versions of the

reference are available (the latest is SL4.0), the publicly hosted data sets have

not yet been updated to match them. Still, this version of the reference features

large and well-defined sequence gaps, owing to the contribution of FISH and

optical mapping data (Shearer et al., 2014), which made it particularly useful for

the development and testing of gap-handling solutions in Tersect Browser plots.

The second set of data consisted of 2548 human genomes hosted and

maintained by the IGSR (Fairley et al., 2019). The data originate from the 1000

Genomes Project (1000 Genomes Project Consortium, 2015) and have been

recently updated to the GRCh38 version of the human reference genome (Zheng-

Bradley et al., 2017), which was therefore the reference version used in

benchmarking Tersect Browser as well. The actual variant data used were limited

to chromosome 1 for ease of processing, but it should be noted that this should

not significantly improve the relevant benchmarking metrics, other than in

lowering the required storage space and data set preparation time. This is

56

because the phylogenetic trees and heat maps generated by Tersect Browser

correspond to chromosomal intervals rather than whole genomes, meaning that

no more than one whole chromosome is ever being processed at once. In fact,

because only the largest (248.96 Mbp) chromosomal sequence is being used,

this setup provides the worst-case scenario with the highest computational

demands among human chromosomes – ideal for benchmarking and stress-

testing. Still, for the problems in question the most important metric for

determining performance is not the sequence size but the number of samples, as

phylogeny inference requires pairwise comparisons between taxa, and the

number of such comparisons scales quadratically with the sample count. By this

metric, the human set of data with its 2548 genomes is far more demanding than

the 444-genome tomato data set, and provides a more difficult stress-test of

Tersect Browser’s performance.

Both sets of data were collected from their respective public repositories as

compressed VCF files, which were then used to generate the Tersect index files

provided as inputs to the back-end of the application.

Tomato accession data have also been extracted from the C.M. Rick Tomato

Genetics Resource Center (TGRC) database hosted by UC Davis and were used

to allow for the annotation of tomato genomes. This comprised a snapshot of

database records for 5586 accessions and 1028 genes, extracted and stored as

described in Section 4.3.1.3 (TGRCmirror).

4.3.2 Benchmark hardware

The Tersect Browser server used for benchmarking was deployed on a typical

desktop PC with a 2-core Intel Pentium G4600 processor and 24 gigabytes of

RAM. The storage used for precomputed data was a software RAID 5 array

composed of hard disk drives. This represents a low-end deployment and

performance setup, available even to individual researchers intending to set up

their own private Tersect Browser servers. Dedicated server infrastructure is

likely to achieve better performance due to not having to share resources with a

user desktop environment. As the application relies heavily on precomputed and

temporary file storage, with a read-dominant workload, the use of solid-state

57

storage is also likely to offer improved performance (Agrawal et al., 2008;

Youngjae et al., 2011).

4.3 Implementation

While Tersect Browser is distributed as a monolithic repository for the sake of

project simplicity, as well the ease of deployment, consistent versioning, and code

sharing, it in fact consists of two separate applications, each of which contains its

own project structure and can be deployed independently. The two applications

represent the front-end and the back-end of the complete Web application

respectively, and while the former is very much dependent on to the latter to

function as intended, the back-end server application provides a well-defined

REST API which could potentially prove useful in other contexts, without the need

for the Web front-end. In particular, it provides a remote interface for accessing

the functionalities of Tersect, which is ordinarily a command-line tool.

Additionally, a wholly separate server application called TGRCmirror was

implemented alongside Tersect Browser. Through a REST interface, it provides

tomato accession data based on the TGRC database, which can be used by

Tersect Browser to annotate and enrich the plots it generates. As the data are

specific to tomato, TGRCmirror is not an integral part of the general-purpose

Tersect Browser system, but a working example of how its options can be

extended through plugins implementing existing, generic interfaces.

Each of the applications was developed in TypeScript 3.5, a statically typed

superset of JavaScript, with some use of Python in the deployment and

precomputed data management scripts. A major benefit of TypeScript was that it

allowed for the creation of the aforementioned well-defined interfaces, usable for

effective communication between subsystems and potential future extensions.

4.3.1.1 Back-end

The back-end part of Tersect Browser is a NodeJS version 8.4 (NodeJS, n.d.)

application which uses the Express framework version 4.16.3 (Express, n.d.) to

serve its functionalities via a REST API (Richardson et al., 2013). Persistent data

are stored both in the filesystem, which is used for storing Tersect index files and

58

precomputed PHYLIP files (Felsenstein, 1989), and in a MongoDB database

version 4.2 (MongoDB, n.d.), which is used for storing metadata, saved views

and phylogenetic trees. The distinction is due to how the data are used – the

stored files are used through command-line tools (Tersect version 0.12, RapidNJ

version 2.3.2, Python utilities) launched by the server, while documents stored in

the database are accessed via ODM provided by the Mongoose library version

5.3.1 and used directly by the back-end NodeJS application.

4.3.1.1.1 Data set preparation

Tersect Browser data sets can be added by an administrator, requiring a set of

resequenced genomes (either a Tersect index file, or VCF files which will be used

to create a Tersect index file) alongside configuration settings specifying which

reference genome to use and other options. A FASTA file may also be provided

to add a new reference genome to the application; this allows for correct display

of chromosome sizes and sequence gap locations. Additional sample annotation

data may also be provided, for example information on the origins of a sample.

Such extra information can then be used to filter samples or colour-code them in

the plots Tersect Browser generates.

4.3.1.1.2 Tersect indexing and distance matrix precomputation

The most important and novel functionality of Tersect Browser is the ability to

interactively generate heat maps representing the respective genetic distances

between large numbers of genomes, alongside trees representing their

phylogenetic relationships. This means giving users the option to freely adjust the

position and size of the investigated interval, as well as the bin size used in the

distance calculations, and to select arbitrary groupings of available accessions

(genomes) to be considered, with an accession of choice serving as the

“reference” for heat map distances – all “on the fly”, as close to real time as

possible, to enable exploratory data analysis.

To make this possible, Tersect Browser depends on the high performance of

Tersect and a certain advantage of the method in which the tool stores its index

data. Because parallel lists of individual variants for each stored genome are

encoded in (compressed) bit arrays indicating their presence or absence, the

59

Hamming distance between two such bit arrays represents a measure of genetic

distance between two genomes which can be used to calculate the Jukes-Cantor

distance, at least when the analysis is restricted to homozygous SNVs and rare

multiallelic sites are excluded or corrected for. The Hamming distance between

bit arrays is extremely fast to calculate, because it only requires two processor

operations – the population count of the result of a bitwise XOR operation. This

enables Tersect to rapidly generate pairwise genetic distance matrices between

indexed genomes. While this functionality (as the dist command) has been

present in Tersect since the initial release of the tool, it was not used as part of

its core, documented features. Since then, options have been added to allow

Tersect to output those distance matrices in both PHYLIP and JSON formats,

directly usable by phylogenetics software and NodeJS applications, respectively.

While – thanks to the advantages described above – the distance matrix

calculation by Tersect is fast, it may still not be fast enough to allow for responsive

plot generation when larger intervals and higher numbers of genomes are used.

The latter metric is especially problematic, because while the amount of required

computation grows linearly with the interval size, the number of pairwise

comparisons grows quadratically with the number of genomes being considered.

This is not a problem for heat map generation, where only one reference genome

is compared with each of the others. Said “reference” can either be the actual

reference genome originally used for resequencing (in Tersect terms, this true

reference can be represented by a completely zeroed bit array) or any one of the

resequenced genomes contained in the index. However, the inference of

phylogenies requires costly pairwise comparisons between all the genomes.

The amount of required work is reduced by partitioning the chromosomes into

arbitrarily small intervals (called “partitions”), and precomputing pairwise distance

matrices for those intervals. The matrices are stored in the file system as PHYLIP

files, and further precomputed matrices, representing increasingly larger intervals

up to whole-chromosome size, are then created and stored by adding up the

smaller distance matrices (“sub-partitions”) which cover the same region. This

matrix summation can be accomplished very rapidly thanks to the NumPy Python

60

library, and it ensures that Tersect only needs to calculate a pairwise distance

matrix once for any chromosomal region during the data set preparation stage. A

diagram of this process is shown in Figure 4-1.

When a user interacts with Tersect Browser and specifies an interval, the back-

end merely has to retrieve distance matrices for a number of precomputed

partitions whose combined coverage of the chromosome approximates the

interval. These can be added or subtracted (trivial heuristics are used to do this

in as few operations as possible, favouring partitions which cover larger parts of

the interval) to calculate a combined distance matrix for the interval. Note that –

in general – the ends of intervals will not fall exactly on the boundaries of the

smallest partitions. This means that Tersect will still have to generate two new

distance matrices for small regions at each end of the interval to be included in

the calculation. However, their combined size will never be larger than the

smallest precomputed partition. A diagram of this process is shown in Figure 4-2.

Due to this approach, the size of the smallest partition, arbitrarily specified when

a data set is added to Tersect Browser, limits the size of the largest (and

computationally most expensive) Tersect operation that has to be executed when

generating a pairwise genetic distance matrix for any given interval. This

parameter can be tuned to make the complete request as fast as required. Any

increase in speed is primarily at the cost of storage space, as smaller partitions

will be stored in a larger number of precomputed PHYLIP files (Felsenstein,

1989). Precomputation time also increases, but this cost is proportionally less

dramatic for most partition sizes, because the most expensive operation, which

is the pairwise distance matrix calculation by Tersect, will only happen once per

any chromosomal interval regardless of partition size. A Python utility (Partition

Tuner) was developed to help users tune the partition size for a data set to match

speed and storage requirements by estimating request execution time. This utility

is included in the Tersect Browser repository and provides estimates of execution

time by querying the back-end for random intervals of a given size. Such results

were the basis for generating Figure 4-3 and Figure 4-4, although at present

Partition Tuner only outputs raw numeric results, which require significant manual

curation to generate similar figures.

61

Figure 4-1: Diagram of the distance matrix precomputation process. The size of the

tomato reference genome chromosome 4 is used alongside four partition sizes: 5 Mbp

(the smallest and most significant size), 10 Mbp, 25 Mbp, and 50 Mbp. Note that for the

largest size, the partition in fact covers the entire, shorter length of the chromosome

(47.26 Mbp) instead. Tersect is only used to create the smallest partitions, while the rest

are generated by adding up sub-partitions. This requires all the partition sizes (which can

be set by the user) to be multiples of the smallest partition size. The “distance” metrics

stored in the matrices are actually simple counts of the number of SNV differences rather

than true genetic distance metrics; those are calculated downstream.

62

Figure 4-2: Diagram of distance matrix request handling by the Tersect Browser

back-end. The requested interval is partitioned into a list of smaller intervals, for which

the distance matrices can be either retrieved from among the precomputed partitions or

generated de novo by Tersect, and then added and subtracted to yield the final distance

matrix. Only two (at most) Tersect intervals are ever generated for a single request (one

at each end of the requested interval) and they are always (at most) half the size of the

smallest precomputed partition. In addition, Tersect will only calculate distance matrices

for selected accessions, while the stored, precomputed matrices have to be filtered to

select the appropriate rows and columns. Note that the distance metrics used throughout

the process are simply the substitution (SNV) counts, due to their ease of addition of

63

subtraction. The actual genetic distance metrics (Jukes-Cantor distance) are only

calculated for the final matrix, which is then used downstream for phylogeny inference.

It should be noted that heat maps cannot be precomputed in the same manner

as the matrices used for phylogeny inference, since users can freely vary bin

sizes and interval boundary positions, which correspondingly shifts the

boundaries of bins for which distance metrics are calculated. Each of the

numerous bins would require a separate recalculation analogous to the one

conducted for the single interval for which a pairwise distance matrix has to be

calculated. Heat map distance data are therefore always generated de novo by

Tersect. The results are then returned directly as counts of differing SNV sites,

without being processed into genetic distance metrics like the Jukes-Cantor

distance. This is because they are outputted and sent as textual JSON files,

meant for direct use by the front-end application. Using counts (which are

integers) results in much smaller file sizes than if floating point distance metrics

were to be used. Those are calculated on the front-end, with the additional benefit

of off-loading that computational cost from the server to the user’s computer.

4.3.1.1.3 Phylogeny inference

Tersect Browser uses RapidNJ version 2.3.2 (Simonsen et al., 2008) to generate

canonical neighbour-joining phylogenetic trees based on the pairwise distance

matrices for a given genomic interval and set of samples. RapidNJ was chosen

from among publicly available implementations of the algorithm due to being

optimized for high performance when using large numbers (up to tens of

thousands) of taxa (Simonsen et al., 2011). It utilises PHYLIP format files, like the

ones used elsewhere in the application for storing pairwise distance matrices,

and returns textual outputs in the Newick format. A diagram of the process for

generating the input distance matrices used by RapidNJ is shown in Figure 4-2.

Note that these input PHYLIP files are not persistent – only the Newick-format

output is reported and stored.

Generating a phylogenetic tree can be a relatively lengthy process, both in itself

and, more importantly, through reliance on the upstream creation of an

appropriate pairwise distance matrix. Instead of attempting to generate a new

64

tree every time, Tersect Browser stores a database entry for each valid request,

indexed by a data set identifier, chromosome name, interval position, and a list

of included accessions (genomes). This is enough information to uniquely identify

a tree, which – once generated – is added to the database entry as a Newick-

formatted string of text. The status of an ongoing tree generation process is also

continually updated in the database, reporting the percentage of completion (or

potential errors) until the tree is ready to be retrieved. Any unique tree is therefore

only ever generated once and can thereafter be immediately retrieved from the

database when requested, even by users other than the original requestor.

4.3.1.2 Front-end

End users of Tersect Browser are intended to use it through a graphical user

interface accessible through a Web browser. This front-end application was

developed using the Angular framework version 8.2.1 (Angular, n.d.), which is

used to provide the overall project structure and user interface, which is styled

using the PrimeFlex component library version 1.0.0 (PrimeFlex, n.d.). The RxJS

library version 6.4.0 (RxJS, n.d.) is used extensively to coordinate user inputs

and asynchronous requests to the back-end made through Angular services.

Basic diagrams of the interface can be seen in Figure B-2 and Figure B-3.

4.3.1.2.1 Data requests

An important feature is that the requests needed to draw the heat map and

phylogenetic tree are made independently. When both are needed, they can be

concurrent, but a new phylogenetic tree is only requested when the interval or

the list of selected genomes change, whereas the heat map has to be updated

whenever the “reference” genome or bin size changes as well. The phylogenetic

tree request is generally much slower than heat map requests, and is therefore

the main determinant of how long a view takes to be displayed, except when the

back-end is able to fetch a previously generated tree.

4.3.1.2.2 Heat map generation

The user can interact both with the overall heat map (e.g., by dragging it with the

mouse, or zooming it in and out) as well as with its individual values (e.g., by

hovering over a specific bin to ascertain its exact location). However, the number

65

of bins can be very large – for the 444-tomato genome data set used in

benchmarking, and the (default) bin size of 50 kbp, there are over 800,000 bins

to keep track of on chromosome 1 of the tomato genome. The bins are therefore

not represented as DOM elements (A. van Kesteren, A. Gregor, 2022) or even

as rectangles in an image as displayed in the application, but as an array of 8-bit

unsigned integer values between 0 and 255 (Uint8ClampedArray). When the heat

map is drawn, values representing its currently visible area are extracted from the

array and transferred to the <canvas> element rendered in the browser through

the ImageData interface of the Canvas API (Fulton, 2013; WHATWG, 2022). This

means that bins are drawn as individual pixels. The final, rectangular shape is

achieved by stretching the canvas through the application of CSS styles for height

and width in terms of percentages appropriate to the zoom level. This makes the

drawing process very fast, allowing the browser to make full use of performance-

enhancing features such as hardware acceleration, and significantly limits

memory usage. As a result, Tersect Browser plots can be drawn, moved, and

zoomed smoothly even on low-end machines.

As bins do not have their own DOM elements, the specific bins the user interacts

with on mouse events (e.g., hovering, clicking, dragging) are determined

programmatically, based on the position of the mouse relative to the canvas.

The heat maps are coloured monochromatically based on the distance of each

bin to a single genome called the “reference”, which can be any of the genomes

present in the data set, not just the reference genome to which the resequenced

data were aligned. The data are received from the back-end in the form of a JSON

object with accession identifiers as keys and arrays containing substitution (SNV)

counts between each specific accession and the reference as values. It should

be noted that due to the drawing algorithm described above, the resolution of the

genetic distance represented in each column of the heat map is limited to 256

distinct values, from 0 (identical to the reference within the bin) to 255 (furthest

from the reference within the bin). The SNV counts received by the front-end are

first used to calculate the Jukes-Cantor genetic distance for each bin. The

distance metrics are then scaled to the 0 - 255 range on a per-bin basis.

66

A scale tracking chromosomal positions is drawn along the top of the heat map.

It is zoomed and scrolled in sync with the heat map, although the scrolling is only

horizontal, with the scale always remaining visible at the top of the plot. A user

can drag their mouse along the scale to select a smaller interval for a new plot.

Gaps in the reference genome, identified based on a FASTA file uploaded with

the data set, are drawn as red rectangles which obscure the relevant gap intervals

along the length of a chromosome, provided they are larger than a single bin.

4.3.1.2.3 Phylogenetic tree generation

Phylogenetic trees generated on the back-end are received as Newick-formatted

text strings. These are parsed into a graph and drawn on the left side of the

interface in one of three ways: as accession labels ordered according to the tree

structure (i.e., in the top-down order they would be drawn in had the tree been

displayed), as a full, bifurcating tree with branch lengths proportional to genetic

distance, or as a simplified bifurcating tree with branches of constant length

(preserving the tree structure but not the distances shown in the full tree).

4.3.1.2.4 Accession selection and annotation

A tabular view of all accessions available in a data set can be seen by opening

the Accession selection overlay in Tersect Browser (see Figure B-3). The

accessions, listed as rows, can be selected and deselected for use in the

visualisation through checkboxes. They can also be sorted and filtered based on

columns, which – alongside the accession’s label obtained from the Tersect index

file – can contain arbitrary data added alongside the data set in the form of CSV

files.

A user can also further annotate the accessions at run-time by adding columns

through the use of plugins, which implement an “Accession Info Importer”

interface and are available through buttons added below the main accession

table. These are meant to contact external resources (e.g., REST APIs) and

import additional data into the table based on matching some pre-existing

identifier (e.g., the TGRC accession number). An example of this is the TGRC

Gene Importer plugin, which allows a user to select a tomato gene listed in the

67

TGRC database. Doing so will add a new column to the accession table, listing

the gene’s allele for each of the stored tomato accessions (provided they have a

TGRC accession number). This allows for easy selection or grouping of

accessions containing specific alleles of TGRC genes.

Accessions can also be assigned to groups, which can be either defined in a

JSON file added alongside the data set, or created by a user based on an

arbitrary selection or column filter. It is possible to assign colours to groups.

These colours are then used to mark the labels of group members in Tersect

Browser plots.

Note that, while columns or groups introduced through CSV or JSON files when

the data set was first added are available to any user who views said data set,

any columns or groups added by a user are only visible to people who access

views shared by that user (see the following section on view sharing). This avoids

crowding the main view of the data set with annotations from different users, while

allowing each to create their own, custom view, which they can share with others.

4.3.1.2.5 View sharing

Because Tersect Browser is meant to allow users to explore the available data

sets, generate their own visualisations, and facilitate collaboration, the option to

save, restore, and share particular states of the Web application (referred to as

“views”) is an especially important feature. The Tersect Browser interface

contains a “Share” button, which generates a persistent link (containing a unique

identifier) to the current view, which can be used to revisit or share a visualisation.

All of the interface settings at the time of sharing are saved into the back-end

database and restored upon visiting the link. As the back-end also stores

previously generated phylogenetic trees, the restored view will generally be

available immediately, without requiring a new phylogenetic tree to be generated.

It should be noted that the initial view of a data set, visible when a user accesses

said data set from the home page of Tersect Browser, is in fact the same sort of

stored view as the ones generated by pressing the “Share” button. This “default

view” initially shows all the available accessions and uses the entirety of the first

68

chromosome as the viewed interval, but it can be trivially replaced with any other

view.

4.3.1.2.6 Plot export

A major feature of Tersect Browser is its ability to not only responsively generate

shareable views of data for the sake of exploratory analysis, but also to export

publication-quality, high-resolution plots directly from the Web application with

just a press of a button. At present the only supported export format is PNG.

The process for exporting plots is similar to the one used to display them in the

browser, but its individual elements (phylogenetic tree, heat map, scale) are first

drawn in their entirety on separate, offscreen canvas before being combined at

the appropriate scale in a final offscreen canvas, from which a data blob is

extracted and downloaded as a file of the specified format.

As this process is wholly separate from the actual display of a Web browser, it

could also be conducted on the server-side of Tersect Browser, but in the current

implementation it runs on the client-side. This ensures consistency between what

the user sees rendered on the Web page and the exported images and off-loads

a relatively costly operation onto the client, but a potential risk is that user

resources (particularly the available memory) may not be sufficient to render

larger-resolution plots. This may require further optimization or a transfer of the

export functionality to the back-end in future versions of Tersect Browser.

4.3.1.3 TGRCmirror

The regularly updated database maintained by TGRC contains information on

individual tomato accessions, including their collection notes (e.g., country, site,

habitat) and alternative identifiers other than TGRC’s own accession numbers,

which allows the information to be cross-referenced and combined with other data

sets. It also stores information on genes and their alleles identified in the

accessions, alongside notes on the resulting phenotypes. However, these

resources are difficult to access programmatically, as no publicly accessible API

is offered, with the data intended to be browsed through a Web-based form

system.

69

A Web scraping pipeline was implemented and used to extract and parse TGRC

data on 5586 accessions and 1028 genes (i.e., the entire relevant part of the

database at the time of writing). The results were stored in a MongoDB database

and a simple Express-based REST API was implemented to allow for

programmatic queries to retrieve lists of genes and lists of accessions for which

the allele of a particular gene has been characterised. The extraction pipeline and

REST API are collectively called “TGRCmirror” and are intended to provide a

stable, easily accessible snapshot of a subset of the TGRC database, without

requiring continuous access to TGRC resources and constant parsing of its

HTML-formatted contents.

Additionally, the TGRCmirror pipeline extracts accession information (identifiers,

collection notes) into a CSV file, which can be added to Tersect Browser

alongside a tomato data set. This allows the information to be seen and used to

filter accessions in the Web application’s accession selector control, provided

matching accession identifiers are available.

As mentioned in section 4.3.1.2.4, the Tersect Browser front-end interface allows

for the addition of annotation plugins, which let users add extra columns to the

accession selector using external REST resources (Richardson et al., 2013).

TGRCmirror is intended to serve as one example of such a resource, with a

matching plugin on the front-end of the application used for importing TGRC gene

data.

4.4 Results and discussion

The primary objective of Tersect Browser was to provide a Web application which

would allow for interactive visualisation of phylogenetic relationships and

potential introgressions in resequenced genomic data. The main metric for

evaluating the level of success is therefore the time it takes to generate a new

visualisation, which should be short enough to allow a user to explore the data in

“real time”, or as close to that as possible. Phylogeny inference – from generating

a pairwise genetic distance matrix for a set of genomes and a specific

chromosomal interval an interval to phylogenetic tree generation – is the slowest

part of the process and its speed-limiting factor. It was therefore the primary

70

subject of benchmarking, with the time taken to generate a phylogenetic tree

being measured for different chromosomal intervals and precomputed partition

settings as shown in Figure 4-3 for the tomato genome data set and Figure 4-4

for the human genome data set.

It is evident from the benchmarking that the median response time depends

primarily on the size of the smallest precomputed partition, rather than on the size

of the requested interval. This is because neither the number nor the complexity

of required operations increases appreciably with the interval size: a similar

number of precomputed matrices (which are themselves based on larger

intervals, but this does not affect matrix dimensions) needs to be added up to

create the final distance matrix, and only (up to) two Tersect operations, each of

a size limited to half the smallest partition, are ever required. The smallest

precomputed partition size drives performance because it limits the size of

Tersect operations and allows for more granularity in partition sizes (which must

be multiples of the smallest partition size).

71

Figure 4-3: Phylogeny inference times for the entire 444-genome tomato data set

and chromosomal intervals of different sizes as a function of the smallest

precomputed partition size. One hundred random intervals were generated for each

of the tested interval sizes (from 1 Mbp to 50 Mbp). The same sets of intervals were used

to test each precomputed partition size, with fifty requests executed for each combination

of interval size and smallest partition size. The median response times were then

recorded for each partition size. See Table B-3 for the numeric results

72

Figure 4-4: Phylogeny inference times for the entire 2548-genome tomato data set

and chromosomal intervals of different sizes as a function of the smallest

precomputed partition size. Fifty random intervals (all on chromosome 1) were

generated for each of the tested interval sizes (from 1 Mbp to 100 Mbp). The same sets

of intervals were used to test each precomputed partition size, with fifty requests

executed for each combination of interval size and smallest partition size. The median

response times were then recorded for each partition size. See Table B-4 for the numeric

results.

Additionally, it can be seen that for intervals much smaller (more than two times)

than the smallest partition size, the response time becomes approximately

constant. This is because with such large partitions, the precomputed matrices

73

are no longer useful in reconstructing smaller intervals, and the response time

approaches the execution time of a Tersect request on the whole interval instead.

Precomputed partition sizes are parameters set by the user, and can therefore

be adjusted on a per-data set basis to provide a sufficiently fast response time at

the cost of precomputation time and storage space (see Figure 4-5 and Figure

B-1).

Figure 4-5: Time and storage space costs of distance matrix precomputation as

functions of the smallest partition size. The 444 resequenced tomato genome

data were used for benchmarking. To create successive partitions larger than the

smallest, their size was doubled until it was larger than the largest chromosome

(98.5 Mbp), which is the default approach taken by the data set addition script.

The time measurements were recorded on a desktop PC and would scale

according to CPU speed, but the storage size should remain invariant for a given

74

data set and partition size. Both cost metrics exhibit a component that is inversely

proportional to the partition size, but for time this is obscured by the mostly

constant cost of running Tersect once per genomic interval, especially for larger

partition sizes. These costs have to be weighed against the intended request

handling speed (see Figure 4-3) when selecting the partition sizes for a particular

data set. See Table B-1 for the numeric results and Figure B-1 for equivalent data

measured for the human data set

It can be seen that for the tomato data set, a median response time of around

one second is achievable, while for the much larger human data set, median

response times under 30 seconds can be reached. Both of these are arguably

sufficient for interactive work, although the difference in performance highlights

the role of sample size (i.e., the number of genomes) and suggests that for data

sets significantly larger than the human one, the algorithms used by Tersect

Browser may no longer be sufficient for interactive work.

The relationship between the number of genomes used and execution time is

visible within individual data sets as well (see Figure 4-6) and is approximately

linear in such a context, if not when comparing different data sets. The

measurements made for all the genomes represent the worst-case (slowest)

scenario, which is why they are suggested as guides to select appropriate

precomputed partition sizes; this helps guarantee a certain lower bound for

performance.

75

Figure 4-6: Response time as a function of the number of genomes used in

phylogeny inference requests for the tomato (A) and human (B) data sets. The

smallest precomputed partition size used was 1 Mbp for both data sets. Twenty requests

were made for each tested number of genomes, using random subsets of the total

genome set and random chromosomal intervals (with the length of 10 Mbp) for each

request.

Still, it is clear that even for the same number of genomes, requests using the

human data set are significantly slower than those using the tomato data set.

Indeed, the minimum time taken by requests using the human data set (with 4

genomes) is longer than the time taken by requests using the entire tomato data

set (with 444 genomes). This is because, even though only the specified

genomes are being used, precomputed distance matrices still must be parsed in

their entirety for the relevant rows and columns to be extracted. This constitutes

a constant computational cost proportional to the total number of genomes. This

cost could potentially be mitigated by the use of a more sophisticated storage or

indexing scheme for the precomputed distance matrices.

Tersect Browser can be used to locate potential introgression sites and identify

likely donors, as shown in Figure 4-7, which shows a possible introgression from

Solanum pimpinellifolium LYC2798 (or a similar donor) into chromosome 6 in two

cultivars, previously identified in a demonstration of the capabilities of

Introgression Browser (S. A. Aflitos et al., 2015).

76

The TGRC gene annotation functionality (i.e., TGRCmirror and its matching

front-end plugin) was validated by verifying that relevant known loci could be

found and highlighted in Tersect Browser visualisations. The tomato u (uniform

ripening) gene was used for this as seen in Figure 4-8. It was chosen because

its TGRC allele information was available for a relatively large number of

accessions present in our data set (34 in total, including 16 accessions annotated

with a -- genotype and 18 with a + genotype), and because it has been mapped

to a small region on chromosome 10 (Powell et al., 2012).

Figure 4-7: Potential introgression from S. pim LYC2798 or a similar donor into the

LA2706 (MoneyMaker) and LYC1365 (AllRound) cultivars. The introgression, visible

against a background of other tomato cultivars, spans from approximately 40.50 Mbp to

42.45 Mbp on chromosome 6. Both affected cultivars cluster closely with the potential

donor within a sharply delineated interval. Note that the Introgression Browser article

reports the same introgression as beginning at 36.75 Mbp, but that is due to its use of

an older version of the tomato reference (SL2.40).

77

Figure 4-8: TGRC gene annotation used to highlight different alleles of the tomato

uniform ripening gene in Tersect Browser visualisations. The two alleles of the gene

are marked in red (-- allele) and green (+ allele). The top plot covers the first 10 Mbp of

chromosome 10, and its phylogenetic tree structure shows no obvious relationship with

the alleles. The bottom plot covers a smaller interval on the same short arm of

chromosome 10. The 200 kbp interval (2,195,000 – 2,395,000) is centred on the uniform

ripening gene locus, and it can be seen that the accessions now cluster more closely

according to their alleles.

78

4.5 Future work

As discussed in the previous section, benchmarking using the 2548-genome

human data set helped identify the cost of repeatedly parsing precomputed

distance matrices, which are currently stored in textual PHYLIP files, as a major

performance-limiting factor when phylogeny inference requests are executed on

smaller subsets of genomes contained in larger indexes. Storing the same data

in a more easily parsed binary format or in an indexed database would likely

mitigate this issue and could be achieved with minimal changes to the pipeline,

as the only actual step which requires textual inputs is the final phylogenetic tree

construction with RapidNJ (Simonsen et al., 2008). This would significantly

improve performance in the typical use case where a user works with smaller

subsets of a larger data set, and is therefore a high-priority feature to be added

in future versions of Tersect Browser.

An obvious avenue for performance improvement that has not been explored in

the development of the application is parallel computing. This is despite the fact

that many of the computational problems involved, such as matrix addition, are

trivially parallelizable. The main reason for this omission is that, being a Web

application, Tersect Browser is meant for parallel use by multiple users in its

typical use case. As the server (or servers) will be fulfilling multiple independent

requests from different users in parallel, computational resources such as

multiple processors will be used even if the individual requests are fulfilled in a

strictly sequential manner. Indeed, even for a single user, the requests for heat

map data and phylogenetic trees are made independently, so that the process of

plot generation can benefit from this type of primitive parallelism to a limited

extent. However, it can be argued that for low-volume usage, for example in a

small research group, it is unlikely for the number of concurrent users and

requests to be high enough to make good use of the parallel computing resources

available on modern servers. This has been the case with Tersect Browser as

deployed at Cranfield University for internal use. In such a use case, individual

requests could indeed benefit from parallel computing to further improve

performance. An optional “parallel processing” mode is therefore a likely feature

to be added in future versions of Tersect Browser.

79

At present the only way to add genomes to Tersect Browser is as part of a Tersect

index file when a data set is being created. This means that a user cannot simply

add a single new genome to an existing data set, but instead has to create a new

data set, using a new index file. This is a limitation that Tersect Browser inherits

from Tersect, and overcoming it is a feature under active development for that

tool; it is likely to be resolved for both applications once complete.

Tersect Browser uses the Jukes-Cantor model to generate its genetic distance

metrics. This means that the rate of nucleotide substitution is treated as equal for

all pairs of nucleotides and all sites, with no correction for the higher rate of

transitional substitutions. This is a consequence of the Tersect Hamming

distance calculations not differentiating between transitions and transversions.

However, this could be circumvented, for example by maintaining separate

Tersect indices for transitions and transversions, which would allow future

versions of Tersect Browser to support other, more sophisticated genetic

distance metrics.

Finally, the usability of Tersect Browser is likely to be significantly improved

through the addition of an integrated genome browser, allowing users to view

individual variants present in the interval of interest directly through the

application’s main interface. The back-end functionality required for this is already

present, as Tersect can efficiently report the variant contents of individual

genomes in a stored data set.

4.6 References

A. van Kesteren, A. Gregor, M. (2022). DOM Living Standard.

https://dom.spec.whatwg.org/

Aflitos, S. A., Sanchez-Perez, G., De Ridder, D., Fransz, P., Schranz, M. E., De

Jong, H., & Peters, S. A. (2015). Introgression browser: High-throughput

whole-genome SNP visualization. Plant Journal, 82(1), 174–182.

https://doi.org/10.1111/tpj.12800

Aflitos, S., Schijlen, E., De Jong, H., De Ridder, D., Smit, S., Finkers, R., Wang,

J., Zhang, G., Li, N., Mao, L., Bakker, F., Dirks, R., Breit, T., Gravendeel, B.,

80

Huits, H., Struss, D., Swanson-Wagner, R., Van Leeuwen, H., Van Ham, R.

C. H. J., … Peters, S. (2014). Exploring genetic variation in the tomato

(Solanum section Lycopersicon) clade by whole-genome sequencing. Plant

Journal, 80(1), 136–148. https://doi.org/10.1111/tpj.12616

Agrawal, N., Prabhakaran, V., Wobber, T., Davis, J. D., Manasse, M., &

Panigrahy, R. (2008). Design tradeoffs for SSD performance. Proceedings

of the 2008 USENIX Annual Technical Conference, USENIX 2008, 57–70.

Angular. (n.d.). https://angular.io/

Consortium, G. P., Auton, A., Abecasis, G. R., Altshuler, D. M., Durbin, R. M.,

Abecasis, G. R., Bentley, D. R., Chakravarti, A., Clark, A. G., Donnelly, P.,

Eichler, E. E., Flicek, P., Gabriel, S. B., Gibbs, R. A., Green, E. D., Hurles,

M. E., Knoppers, B. M., Korbel, J. O., Lander, E. S., … National Eye Institute,

N. I. H. (2015). A global reference for human genetic variation. Nature,

526(7571), 68–74. https://doi.org/10.1038/nature15393

Evans, P. D., Mekel-Bobrov, N., Vallender, E. J., Hudson, R. R., & Lahn, B. T.

(2006). Evidence that the adaptive allele of the brain size gene microcephalin

introgressed into Homo sapiens from an archaic Homo lineage. Proceedings

of the National Academy of Sciences, 103(48), 18178–18183.

https://doi.org/10.1073/pnas.0606966103

Express. (n.d.). https://expressjs.com/

Fairley, S., Lowy-Gallego, E., Perry, E., & Flicek, P. (2019). The International

Genome Sample Resource (IGSR) collection of open human genomic

variation resources. Nucleic Acids Research, 48(D1), D941–D947.

https://doi.org/10.1093/nar/gkz836

Felsenstein, J. (1989). PHYLIP-Phylogeny inference package. Cladistics, 5, 164–

166.

Fernandez-Pozo, N., Menda, N., Edwards, J. D., Saha, S., Tecle, I. Y., Strickler,

S. R., Bombarely, A., Fisher-York, T., Pujar, A., Foerster, H., Yan, A., &

Mueller, L. A. (2015). The Sol Genomics Network (SGN)-from genotype to

81

phenotype to breeding. Nucleic Acids Research, 43(D1), D1036–D1041.

https://doi.org/10.1093/nar/gku1195

Fulton, S. (2013). {HTML5} Canvas (2nd ed.). O’Reilly Media.

Godfrey, P., Gryz, J., & Lasek, P. (2016). Interactive Visualization of Large Data

Sets. {IEEE} Transactions on Knowledge and Data Engineering, 28(8),

2142–2157. https://doi.org/10.1109/tkde.2016.2557324

Jukes, T. H., & Cantor, C. R. (1969). Evolution of Protein Molecules. In

Mammalian Protein Metabolism (pp. 21–132). Elsevier.

https://doi.org/10.1016/b978-1-4832-3211-9.50009-7

Kurowski, T. J., & Mohareb, F. (2019). Tersect: a set theoretical utility for

exploring sequence variant data. Bioinformatics, 36(3), 934–935.

https://doi.org/10.1093/bioinformatics/btz634

Labate, J. A., & Robertson, L. D. (2012). Evidence of cryptic introgression in

tomato (Solanum lycopersicum L.) based on wild tomato species alleles.

BMC Plant Biology, 12(1), 133. https://doi.org/10.1186/1471-2229-12-133

Lin, T., Zhu, G., Zhang, J., Xu, X., Yu, Q., Zheng, Z., Zhang, Z., Lun, Y., Li, S.,

Wang, X., Huang, Z., Li, J., Zhang, C., Wang, T., Zhang, Y., Wang, A.,

Zhang, Y., Lin, K., Li, C., … Huang, S. (2014). Genomic analyses provide

insights into the history of tomato breeding. Nature Genetics, 46(11), 1220–

1226.

https://doi.org/10.1038/ng.3117\rhttp://www.nature.com/ng/journal/v46/n11/

abs/ng.3117.html#supplementary-information

MongoDB. (n.d.). https://www.mongodb.com/

Nelson, T. C., Stathos, A. M., Vanderpool, D. D., Finseth, F. R., Yuan, Y., &

Fishman, L. (2021). Ancient and recent introgression shape the evolutionary

history of pollinator adaptation and speciation in a model monkeyflower

radiation (Mimulus section Erythranthe). {PLOS} Genetics, 17(2), e1009095.

https://doi.org/10.1371/journal.pgen.1009095

82

NodeJS. (n.d.). https://nodejs.org/

Powell, A. L. T., Nguyen, C. V, Hill, T., Cheng, K. L., Figueroa-Balderas, R., Aktas,

H., Ashrafi, H., Pons, C., Fernández-Muñoz, R., Vicente, A., Lopez-Baltazar,

J., Barry, C. S., Liu, Y., Chetelat, R., Granell, A., Van Deynze, A.,

Giovannoni, J. J., & Bennett, A. B. (2012). Uniform ripening encodes a

Golden 2-like transcription factor regulating tomato fruit chloroplast

development. Science (New York, N.Y.), 336(6089), 1711–1715.

https://doi.org/10.1126/science.1222218

PrimeFlex. (n.d.). https://www.primefaces.org/primeflex/

Qi, L., Friebe, B., Zhang, P., & Gill, B. S. (2007). Homoeologous recombination,

chromosome engineering and crop improvement. Chromosome Research,

15(1), 3–19. https://doi.org/10.1007/s10577-006-1108-8

Richardson, L., Amundsen, M., & Ruby, S. (2013). Restful web {APIs}. O’Reilly

Media.

RxJS. (n.d.). https://rxjs.dev/

Shearer, L. A., Anderson, L. K., de Jong, H., Smit, S., Goicoechea, J. L., Roe, B.

A., Hua, A., Giovannoni, J. J., & Stack, S. M. (2014). Fluorescence in situ

hybridization and optical mapping to correct scaffold arrangement in the

tomato genome. 4(8), 1395–1405. https://doi.org/10.1534/g3.114.011197

Shneiderman, B. (1984). Response Time and Display Rate in Human

Performance with Computers. ACM Comput. Surv., 16(3), 265–285.

https://doi.org/10.1145/2514.2517

Silva Ferreira, D., Kevei, Z., Kurowski, T., de Noronha Fonseca, M. E., Mohareb,

F., Boiteux, L. S., & Thompson, A. J. (2018). BIFURCATE FLOWER TRUSS:

a novel locus controlling inflorescence branching in tomato contains a

defective MAP kinase gene. Journal of Experimental Botany, 69(10), 2581–

2593. https://doi.org/10.1093/jxb/ery076

Simonsen, M., Mailund, T., & Pedersen, C. (2011). Inference of Large

83

Phylogenies Using Neighbour-Joining. CCIS, 127.

https://doi.org/10.1007/978-3-642-18472-7_26

Simonsen, M., Mailund, T., & Pedersen, C. N. S. (2008). Rapid Neighbour-

Joining. In K. A. Crandall & J. Lagergren (Eds.), Algorithms in Bioinformatics

(pp. 113–122). Springer Berlin Heidelberg.

WHATWG. (2022). HTML Living Standard - 4.12.5 The canvas element.

https://html.spec.whatwg.org/multipage/canvas.html

Youngjae, K., Gupta, A., Urgaonkar, B., Berman, P., & Sivasubramaniam, A.

(2011). HybridStore: A Cost-Efficient, High-Performance Storage System

Combining SSDs and HDDs. 227–236.

https://doi.org/10.1109/MASCOTS.2011.64

Zheng-Bradley, X., Streeter, I., Fairley, S., Richardson, D., Clarke, L., & Flicek,

P. (2017). Alignment of 1000 Genomes Project reads to reference assembly

GRCh38. GigaScience, 6(7), 1–8.

https://doi.org/10.1093/gigascience/gix038

Zhou, Y., & Browning, S. R. (2021). Protocol for detecting introgressed archaic

variants with SPrime. STAR Protocols, 2(2), 100550.

https://doi.org/https://doi.org/10.1016/j.xpro.2021.100550

84

5 OVERALL DISCUSSION

5.1 Overview

All three objectives which were pursued in the thesis have produced outputs with

real-world impact. Investigation of issues associated with resequenced genome

validation led to the discovery and correction of major errors in two sets of publicly

available tomato genome resources used by plant biologists. Among the software

outputs, Tersect now offers the bioinformatics community the highest

performance among similar tools when it comes to comparing and otherwise

operating on large sets of variant data and is usable both as a standalone tool

and as a building block for creating higher-level applications. Tersect Browser,

which is one such application, is the first Web tool which can produce fully

interactive visualisations of phylogenetic relationships and genetic distance

comparisons between large numbers of genomes based on whole-genome SNV

data, and is likely to prove useful to biologists in a wide array of analyses,

including the characterisation of introgressions and pedigree analysis.

5.2 Lift-over and validation

The lift-over errors which were the focus of Chapter 2, and which remained

unnoticed and uncorrected as part of a public resource used by the plant biologist

community for seventeen months before being fixed, revealed a somewhat lax

approach to VCF validation in many applications. After all, the problem areas

covered nearly 15% of the total genome size, and some of the issues could (in

principle) be seen with the naked eye in the genome browser hosted by SGN

(see Figure 2-7 and Figure 2-8), which would display the incorrect REF alleles

alongside the mismatched reference sequence without any errors or warnings. In

fact, some VCF format validators do not validate REF alleles at all, and would not

find the errors in question – this notably includes VCFtools, which introduced the

VCF format in the first place (Danecek et al., 2011). The issue highlights a need

for stricter validation and the use of tools like GATK’s ValidateVariants (McKenna

et al., 2010).

85

It is notable that the two resequenced genome data sets maintained by SGN have

not seen further official updates (at least at the time of writing), despite two new

versions of the reference genome being released. At least in part this is likely to

be due to the computational cost that re-doing the alignment and variant calling

would carry. At the same time the primary alternative – coordinate lift-over – is

more error prone, which would be compounded by the fact that both of the new

reference genome versions have been generated de novo, based on new, long-

read data, instead of being modifications of the previous version as in the SL2.40

to SL2.50 update (Hosmani et al., 2019). The SeqRemap lift-over pipeline

described in Section 2.5.4 was used to update some of the SGN data to SL4.0

for internal use at Cranfield University.

5.3 Tersect Browser and Tersect

The benchmarking of Tersect Browser demonstrated that it can deliver latencies

that allow for interactive use even for relatively large data sets that include

hundreds (for tomato) or even thousands (for human) of genomes. However,

certain algorithmic limitations also became evident, as the tests revealed the total

number of genomes to be a limiting performance factor for data sets. This is a

major issue, as it would be ideal for an interactive system like Tersect Browser to

allow for all comparable genomes to be stored (and viewed) together, in one data

set, which could then be arbitrarily filtered by the users as needed. Yet if the total

number of stored genomes lowers performance even when only a subset is

visualised, it would instead be better to split the data up into smaller data sets in

the first place. Still, this issue (or at least its current magnitude) was identified as

the consequence of the approach used for storing precomputed results, and it

may be possible to correct it as discussed in Section 4.5.

Perhaps a more important and harder to address issue, which is partially

obscured by the limitation discussed above, is that the computational complexity

of the algorithms used by Tersect Browser scales quadratically with the number

of genomes. At the same time, the tuneable parameters (precomputed partition

sizes) offer only linear increases at a significant cost of precomputation time and

storage space. The 2548-genome human data set, with its ~30 second

86

visualisation times when all the genomes are used, may in fact be near the limit

of what Tersect Browser can handle in a broadly interactive manner. The use of

larger data sets will likely require entirely different algorithmic approaches, for

example the use of incremental or approximate solutions based on sampling the

data, rather than exact solutions based on all the relevant data (Godfrey et al.,

2016).

With regards to Tersect, it should first be noted that it was not developed as a

subsystem of Tersect Browser. Instead, it is Tersect Browser which takes

advantage of Tersect as the highest-performance, most appropriate tool available

to deliver the back-end functionality the Web application requires. This distinction

is important, as Tersect is intended to be a generic, stand-alone utility, usable in

many different contexts, including other systems and pipelines.

No steps were therefore taken to allow for closer integration between Tersect and

Tersect Browser on the side of the smaller application, with the sole exception

being the addition of JSON as a format option for outputting genetic distance

calculation results – an unusual priority in format support for a lightweight

command-line utility, but very useful for downstream use by NodeJS applications,

being their native object format.

Tersect has already seen independent use in other projects, including one which

resulted in a peer-reviewed publication (Kangara et al., 2020), included as

5.4Appendix D. The work was concerned with developing a procedure for

generating mutant populations of Puccinia graminis f. sp. tritici spores and

screening them for gain-of-virulence mutants. Puccinia graminis is a fungal

pathogen of cereal crops that causes stem rust, responsible for global grain

losses representing around 1% of the annual wheat yield (Beddow et al., 2013),

with much larger average losses of 30-40% being recorded on a regional scale

in the past decade (Saunders et al., 2019). It is reported that, in particularly

favourable environmental conditions, explosive outbreaks can cause losses as

high as 50-70% over a region (Schumann & Leonard, 2000).

Wheat stem rust has seen a resurgence in recent years, linked with the

emergence of fungal lineages that have overcome several wheat stem resistance

87

genes, and have thus become virulent against certain current cultivars (Olivera

Firpo et al., 2017; Pretorius et al., 2000). Stacking multiple resistance genes is

an approach used to maximize the durability of plants to disease (Fukuoka et al.,

2015; Zhang et al., 2009). Individually assessing the functionality of resistance

genes in a stack requires the use of a matching pathogen effector probe per

resistance gene, which in turn requires the identification of avirulence genes for

each effector (Wulff & Moscou, 2014).

The method optimized by Kangara et al. seeks to aid in identifying candidate

avirulence genes via ethyl methanesulfonate (EMS) mutagenesis followed by

sequence comparison, in which independently derived gain-of-virulence mutants

are expected to exhibit independent mutations in the same genes. Variant calling

of mutagenized spore sequence data, mapped to a Puccinia graminis f. sp. tritici

reference genome, was the basis of the sequence comparison. This presented

an excellent use case for Tersect, which specializes in comparing variant

contents between samples. In particular, it was used to exclude potential false

positive variant calls by removing variants which co-occurred in three or more

(out of seven) samples, as precisely identical mutations are unlikely to have been

induced independently. The bioinformatics pipeline used in the work was used to

measure the induced mutation density as a function of mutagen concentration

and estimate the number of independent mutations required to identify avirulence

effector genes in Puccinia graminis f. sp. tritici.

Both the pipeline mentioned above, and other, unpublished work have pointed to

a certain limitation, arguably a key missing feature in Tersect, resulting from its

narrow focus. The “sets” considered by Tersect and encoded in its indexing

scheme are sets of variants, with each set corresponding to some specific

genome or the result of set theoretical operations on multiple genomes (referred

to as a “virtual genome”). This is central to its performance and allows the

declarative query language used by Tersect to be very expressive when it comes

to comparing sets between genomes. However, the tool is poorly equipped to

answer queries about sets of genomes and their correspondence to specific

variants, which is an inversion of the typical Tersect logic. An example would be

88

attempting to find all genomes which contain a specific variant. The query

language cannot, at present, express this sort of query directly, and the indexing

scheme is poorly optimized for answering it.

A temporary workaround was developed for the purposes of the aforementioned

publication – a Python wrapper script would convert such an exotic query into a

much more complex one, which utilised the current syntax of Tersect and called

the tool multiple times. However, a proper solution would be to add such a feature

to Tersect directly, ideally with a change or expansion to the current indexing

scheme to allow for good performance. Conceptually, if one treats a set of parallel

bit arrays like those stored in Tersect index files as a matrix, a transposition of

that matrix could serve as an index usable for this sort of “inverted” query. There

exist methods for such transposition of bitmap indices (Nguyen et al., 2016a,

2016b), as bitmap indices in general are an established indexing method in

scientific databases (Sinha et al., 2006). However, no implementation of a

transposition method specific to the parallel, WAH-compressed bit arrays (Wu et

al., 2006) used by Tersect currently exists, and creating one would not be trivial.

It would therefore be necessary to precompute and store two complete sets of bit

arrays, increasing (approximately doubling) the size of Tersect indices.

As with Tersect Browser, the above issue demonstrates the limitations of the

system revealed in confrontation with real-life data, while pointing to an issue

whose resolution would significantly improve the system.

5.4 References

Beddow, J. M., Hurley, T. M., Kriticos, D. J., & Pardey, P. G. (2013). Measuring

the global occurrence and probabilistic consequences of wheat stem rust.

HarvestChoice Technical Note, c, 23.

Danecek, P., Auton, A., Abecasis, G., Albers, C. A., Banks, E., DePristo, M. A.,

Handsaker, R. E., Lunter, G., Marth, G. T., Sherry, S. T., McVean, G., &

Durbin, R. (2011). The variant call format and VCFtools. Bioinformatics,

27(15), 2156–2158. https://doi.org/10.1093/bioinformatics/btr330

Fukuoka, S., Saka, N., Mizukami, Y., Koga, H., Yamanouchi, U., Yoshioka, Y.,

89

Hayashi, N., Ebana, K., Mizobuchi, R., & Yano, M. (2015). Gene pyramiding

enhances durable blast disease resistance in rice. Scientific Reports, 5.

https://doi.org/10.1038/srep07773

Godfrey, P., Gryz, J., & Lasek, P. (2016). Interactive Visualization of Large Data

Sets. {IEEE} Transactions on Knowledge and Data Engineering, 28(8),

2142–2157. https://doi.org/10.1109/tkde.2016.2557324

Hosmani, P. S., Flores-Gonzalez, M., van de Geest, H., Maumus, F., Bakker, L.

V, Schijlen, E., van Haarst, J., Cordewener, J., Sanchez-Perez, G., Peters,

S., Fei, Z., Giovannoni, J. J., Mueller, L. A., & Saha, S. (2019). An improved

de novo assembly and annotation of the tomato reference genome using

single-molecule sequencing, Hi-C proximity ligation and optical maps.

https://doi.org/10.1101/767764

Kangara, N., Kurowski, T. J., Radhakrishnan, G. V, Ghosh, S., Cook, N. M., Yu,

G., Arora, S., Steffenson, B. J., Figueroa, M., Mohareb, F., Saunders, D. G.

O., & Wulff, B. B. H. (2020). Mutagenesis of Puccinia graminis f. sp. tritici

and Selection of Gain-of-Virulence Mutants. Frontiers in Plant Science, 11,

570180. https://doi.org/10.3389/fpls.2020.570180

McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A.,

Garimella, K., Altshuler, D., Gabriel, S., Daly, M., & DePristo, M. A. (2010).

The Genome Analysis Toolkit: A MapReduce framework for analyzing next-

generation DNA sequencing data. Genome Research, 20(9), 1297–1303.

https://doi.org/10.1101/gr.107524.110

Nguyen, X. T., Nguyen, H. T., & Pham, C. K. (2016a). A bit-level matrix transpose

for bitmap-index-based data analytics. 2016 IEEE 6th International

Conference on Communications and Electronics, IEEE ICCE 2016, 217–

220. https://doi.org/10.1109/CCE.2016.7562639

Nguyen, X. T., Nguyen, H. T., & Pham, C. K. (2016b). An FPGA approach for fast

bitmap indexing. IEICE Electronics Express, 13(4).

https://doi.org/10.1587/elex.13.20160006

90

Olivera Firpo, P. D., Newcomb, M., Flath, K., Sommerfeldt-Impe, N., Szabo, L. J.,

Carter, M., Luster, D. G., & Jin, Y. (2017). Characterization of Puccinia

graminis f. sp. tritici isolates derived from an unusual wheat stem rust

outbreak in Germany in 2013. Plant Pathology, 66(8), 1258–1266.

https://doi.org/10.1111/ppa.12674

Pretorius, Z. A., Singh, R. P., Wagoire, W. W., & Payne, T. S. (2000). Detection

of virulence to wheat stem rust resistance gene Sr31 in Puccinia graminis. f.

sp. tritici in uganda. Plant Disease, 84(2).

https://doi.org/10.1094/PDIS.2000.84.2.203B

Saunders, D. G. O., Pretorius, Z. A., & Hovmøller, M. S. (2019). Tackling the re-

emergence of wheat stem rust in Western Europe. Communications Biology,

2(1). https://doi.org/10.1038/s42003-019-0294-9

Schumann, G. L., & Leonard, K. J. (2000). Stem rust of wheat (black rust). The

Plant Health Instructor. https://doi.org/10.1094/phi-i-2000-0721-01

Sinha, R. R., Mitra, S., & Winslett, M. (2006). Bitmap indexes for large scientific

data sets: A case study. 20th International Parallel and Distributed

Processing Symposium, IPDPS 2006, 2006.

https://doi.org/10.1109/IPDPS.2006.1639304

Wu, K., Otoo, E. J., & Shoshani, A. (2006). Optimizing bitmap indices with

efficient compression. ACM Transactions on Database Systems, 31(1), 1–

38. https://doi.org/10.1145/1132863.1132864

Wulff, B. B. H., & Moscou, M. J. (2014). Strategies for transferring resistance into

wheat: From wide crosses to GM cassettes. Frontiers in Plant Science,

5(DEC). https://doi.org/10.3389/fpls.2014.00692

Zhang, N. W., Pelgrom, K., Niks, R. E., Visser, R. G. F., & Jeuken, M. J. W.

(2009). Three combined quantitative trait loci from nonhost lactuca saligna

are sufficient to provide complete resistance of lettuce against bremia

lactucae. Molecular Plant-Microbe Interactions, 22(9), 1160–1168.

https://doi.org/10.1094/MPMI-22-9-1160

91

APPENDICES

92

Appendix A Tersect User Manual

Tersect is a command-line utility for conducting fast set theoretical operations

and genetic distance estimation on biological sequence variant data. The tool

generates index files based on provided variant data (VCF files) which can then

be used to rapidly execute flexible set theoretical queries and output the resulting

lists of variants in selected regions.

Tersect is intended to allow for highly responsive, exploratory interaction with

variant data as well as for integration with larger tools and pipelines. It follows the

Samtools/tabix convention for specifying genomic regions which allows for much

faster operations and more manageable output sizes.

Tersect can also be used to provide estimates of genetic distance between sets

of samples, using the number of differing sites as a proxy for distance measures.

Table of Contents

• Overview

• Table of Contents

• Installation

– Pre-compiled releases

• Linux

• macOS

– Building Tersect from source

1. Cloning the repository

2. Building

3. Installing

• Example data

• Building a Tersect index

• Inspecting a Tersect index

• Set operations

– Overview

– Queries

– Genomes

– Binary operators

– Genome list

– Functional operators

– Regions

93

Installation

Pre-compiled releases

Tersect packages and binaries are available for download below:

Linux

 64-bit binaries:

https://github.com/tomkurowski/tersect/releases/download/v0.12.0/

tersect-0.12.0-Linux.tar.gz

 64-bit .deb package (Debian, Ubuntu):

https://github.com/tomkurowski/tersect/releases/download/v0.12.0/

tersect-0.12.0-Linux.deb

 64-bit .rpm package (Fedora, openSUSE):

https://github.com/tomkurowski/tersect/releases/download/v0.12.0/

tersect-0.12.0-Linux.rpm

macOS

 64-bit binaries:

https://github.com/tomkurowski/tersect/releases/download/v0.12.0/

tersect-0.12.0-macOS.tar.gz

Building Tersect from source

Building Tersect from source requires CMake version 3.1+ as well as Flex (lexical

analyzer) version 2.5+ and Bison (parser generator) version 2.6+.

1. Cloning the repository

git clone https://github.com/tomkurowski/tersect.git

2. Building

For an out-of-source build after cloning the repository use the following

commands:

cd tersect
mkdir build
cd build
cmake ..
make

94

3. Installing

This step may require elevated permissions (e.g., prefacing the command with

sudo). The default installation location for Tersect is /usr/local/bin.

make install

Example data

Two archives containing example Tersect index files (.tsi) are available for

download below to allow you to try out the utility without needing to create an

index file yourself.

The first index contains human genomic variant data for 2504 individuals from the

1000 Genomes Project. While Tersect is capable of handling the entire human

genome, the index below is limited to chromosome 1 to make the example

archive smaller and quicker to download.

The second index contains tomato genomic variant data for 360 tomato

accessions from the AGIS Tomato 360 Resequencing Project and 84 accessions

from the Wageningen UR 150 Tomato Genome ReSequencing Project for a

combined data set of 444 accessions. Samples have been renamed according to

a provided key (accession_names.tsv) to make them more informative and

consistent between the two source data sets.

Note: the index files provided below are compressed using gzip and need to be

uncompressed before use.

 2504 human genomes, chromosome 1:

https://github.com/tomkurowski/tersect/releases/download/v0.12.0/

human_chr1.tsi.gz

 444 tomato genomes and sample names:

https://github.com/tomkurowski/tersect/releases/download/v0.12.0/

tomato.tsi.gz

https://github.com/tomkurowski/tersect/releases/download/v0.12.0/

accession_names.tsv

https://github.com/tomkurowski/tersect/releases/download/v0.12.0/accession_names.tsv

95

Building a Tersect index

You can build your own Tersect index based on a set of VCF files using the

tersect build command. You need to provide a name for your index file (a .tsi

extension will be added if you omit it) as the first argument, followed by any

number of input VCF files (which may be compressed using gzip) to be included

in the index.

Please note that although from a technical point of view, Tersect would work even

if your VCF files were called against different reference genomes or versions of

the same reference, the biological context of your theoretical operations will not

be accurate (depending on how different the reference genomes used).

Therefore, we strongly recommend using VCF files called against the same

reference version.

Example:

The command below builds a Tersect index file named tomato.tsi which includes

variants from all vcf.gz files in the data directory. Depending on the input size this

can take several minutes.

foo@bar:~$ tersect build tomato.tsi ./data/*.vcf.gz

Optionally, you can also provide a --name-file input file containing custom

sample names to be used by Tersect. These names will replace the default

sample IDs defined in the input VCF header lines. The --name-file should be

a tab-delimited file containing two columns, the first with the sample IDs to be

replaced and the second with the names to be used by Tersect. An example is

shown below:

TS-1 S.lyc B TS-1
TS-10 S.lyc B TS-10
TS-100 S.lyc B TS-100
TS-101 S.lyc B TS-101
TS-102 S.lyc B TS-102
TS-103 S.lyc B TS-103
TS-104 S.lyc B TS-104
TS-108 S.lyc B TS-108
TS-11 S.lyc B TS-11
TS-110 S.lyc B TS-110

96

You can also modify sample names in an existing Tersect index file by using the

tersect rename command.

It is worth noting that the descriptive fields of the VCF files are not stored within

the Tersect database. The reason for that is once an operation is performed on

two of more VCF files, these fields will be discarded anyway as they are

genotype-specific. However, you should be able to retrieve it back by intersecting

Tersect's output with any VCF files from this list.

Inspecting a Tersect index

The data contained in a Tersect index file can be inspected using several

commands. The tersect chroms command prints information on the number of

variants present in each of the reference chromosomes as well as the

chromosome names and size.

Note: In the absence of a reference file, the length of each chromosome is

represented by the position of the last variant, which will always be an

underestimate.

Example:

The command below prints the per-chromosome variant content of the example

Tersect index file named tomato.tsi:

foo@bar:~$ tersect chroms tomato.tsi
Chromosome Length Variants
SL2.50ch00 21805702 1343815
SL2.50ch01 98543411 9965680
SL2.50ch02 55340384 5189338
SL2.50ch03 70787603 6741448
SL2.50ch04 66470926 7257520
SL2.50ch05 65875078 6830857
SL2.50ch06 49751619 4870941
SL2.50ch07 68044764 6868152
SL2.50ch08 65866627 6504025
SL2.50ch09 72481975 7102356
SL2.50ch10 65527500 6712293
SL2.50ch11 56302478 5367032
SL2.50ch12 67145147 6719621

The tersect samples command prints the names of samples present in a Tersect

index file. These can be either all samples or a subset based on a naming pattern

97

(the --match parameter) and/or on the presence of specific variants

(the --contains parameter).

Sample name patterns can include wildcard symbols (*) which match zero or

more characters. For example, a pattern like "S.lyc*" will match all samples

whose names begin with "S.lyc". A lone wildcard character matches all samples

stored in the Tersect index file.

If you specify a list of variants via the --contains parameter, only samples which

contain each of those variants will be printed. The variant format should look as

follows: chromosome:position:ref:alt where ref and alt are reference and

alternate alleles. Multiple variants can be included, separated by commas (e.g.,

chr1:1245:A:G,chr8:5300:T:A).

Examples:

The command below prints the names of samples matching the "S.gal*"

wildcard pattern contained in the example Tersect index file tomato.tsi.

foo@bar:~$ tersect samples tomato.tsi -m "S.gal*"
Sample
S.gal W TS-208
S.gal LA1044
S.gal LA1401
S.gal LA0483

The command below prints the names of all samples containing both a T/G SNV

at position 100642 on chromosome 3 and an A/G SNV at position 5001015 on

chromosome 6 contained in the example Tersect index file tomato.tsi.

foo@bar:~$ tersect samples tomato.tsi -c
"SL2.50ch03:100642:T:G,SL2.50ch06:5001015:A:G"
Sample
S.lyc LA1479
S.pen LA0716
S.hab LYC4
S.hab LA0407
S.hab LA1777
S.hab LA1718
S.hab CGN15792
S.hab PI134418
S.hab CGN15791
S.chm LA2695

98

Set operations

Overview

Tersect can interpret and display the results of set theoretical commands using

the tersect view command. This is the primary and most flexible functionality

of the application and allows the user to construct arbitrarily complex queries. The

expected format of a tersect view query is as follows:

tersect view [options] index.tsi QUERY [REGION1...]

Queries

A query is a command interpreted and evaluated by Tersect which (if successful)

prints either a list of variants (if the result is a single genome or virtual genome)

or a list of genome sample names (if the result is a list of genomes). The simplest

query consists of a genome name and prints out the variants belonging to that

genome. More advanced queries can contain complex combinations of

operations described in the sections below.

Note: The term virtual genome refers to a collection of variants not representing

a specific genome - for example, the symmetric difference of two genomes (the

collection of variants which appear in one but not both genomes). Tersect treats

these virtual genomes the same way it treats "real" genomes so they can be used

as operands in nested queries.

Genomes

Genomes can be referred to by their sample name, which is either taken from the

header line of the source VCF file or set by the user either manually (see

tersect rename) or through a tab-delimited name file (see --name-file in

tersect build and tersect rename). A sample name can be of any length

and can include any characters (including whitespace) except for single quotes

('). However, if a sample name includes whitespace, parentheses, or characters

used as Tersect operators (-^&|>,\), it has to be surrounded by single quotes.

If the query is (or results in) a single genome or virtual genome, the variants

contained by that one genome are printed out.

99

Example:

Print out all the variants belonging to the "S.hab LYC4" genome in the tomato.tsi

Tersect index file:

foo@bar:~$ tersect view tomato.tsi "'S.hab LYC4'"
##fileformat=VCFv4.3
##tersectVersion=0.11.0
##tersectCommand='S.hab LYC4'
#CHROM POS ID REF ALT QUAL FILTER INFO
SL2.50ch00 391 . C T . . .
SL2.50ch00 416 . T A . . .
SL2.50ch00 734 . T G . . .
SL2.50ch00 759 . C T . . .
SL2.50ch00 771 . A G . . .
SL2.50ch00 778 . T A . . .
...

Note: The sample name had to be surrounded by single quotes because it

contains a whitespace character.

Binary operators

Tersect supports four basic binary operators. Each operand has to be a single

genome. All four operators have the same precedence and are left-associative.

You can use parentheses to enforce precedence other than simple left-to-right.

Table A-1: Tersect binary operators.

Operator Name Usage Result

& intersection
GENOME1 &
GENOME2

Virtual genome containing
variants found in both GENOME1

and GENOME2

| union
GENOME1 |
GENOME2

Virtual genome containing
variants found in GENOME1,

GENOME2, or both

\ difference
GENOME1 \
GENOME2

Virtual genome containing
variants found in GENOME1 but

not in GENOME2

^ symmetric
difference

GENOME1 ^
GENOME2

Virtual genome containing
variants found in GENOME1 or
GENOME2 but not in both

100

The result of a binary operation is treated as a single genome (though it does not

have a sample name) called a virtual genome, which can be used in further

operations.

Examples:

Print out the variants shared by 'S.hua LA1983' and 'S.pim LYC2798':

foo@bar:~$ tersect view tomato.tsi "'S.hua LA1983' & 'S.pim LYC2798'"
##fileformat=VCFv4.3
##tersectVersion=0.11.0
##tersectCommand='S.hua LA1983' & 'S.pim LYC2798'
#CHROM POS ID REF ALT QUAL FILTER INFO
SL2.50ch00 3235 . A G . . .
SL2.50ch00 3277 . A G . . .
SL2.50ch00 3873 . C T . . .
...

Print out the variants which appear in only one of 'S.gal LA1044' or

'S.gal W TS-208':

foo@bar:~$ tersect view tomato.tsi "'S.gal LA1044' ^
'S.gal W TS-208'"
##fileformat=VCFv4.3
##tersectVersion=0.11.0
##tersectCommand='S.gal LA1044' ^ 'S.gal W TS-208'
#CHROM POS ID REF ALT QUAL FILTER INFO
SL2.50ch00 362 . G T . . .
SL2.50ch00 867 . G T . . .
SL2.50ch00 1198 . G A . . .
...

Print out the variants which appear in 'S.chi CGN15532' but not

'S.chi CGN15530' or 'S.chi W TS-408':

foo@bar:~$ tersect view tomato.tsi "'S.chi CGN15532' \
'S.chi CGN15530' \ 'S.chi W TS-408'"
##fileformat=VCFv4.3
##tersectVersion=0.11.0
##tersectCommand='S.chi CGN15532' \ 'S.chi CGN15530' \
'S.chi W TS-408'
#CHROM POS ID REF ALT QUAL FILTER INFO
SL2.50ch00 1163 . C G . . .
SL2.50ch00 1811 . C G . . .
SL2.50ch00 1818 . C A . . .
...

101

Note: A more convenient way to conduct the same operation on many genomes

is by using functional operators (see Table A-3).

Genome list

Instead of individual genomes, Tersect can also operate on lists of genomes.

These can be selected using wildcard patterns matching genome sample names,

with the most general pattern of a lone wildcard operator (*) matching all the

genomes in the Tersect index file. Individual genomes can also be appended to

lists using commas (,) or removed from lists using minus signs (-).

Genome lists can also be filtered (using the > operator) by whether they contain

a specified list of variants. The variant format should look as follows:

chromosome:position:ref:alt where ref and alt are reference and alternate

alleles. Multiple variants can be included, separated by commas (e.g.,

chr1:1245:A:G,chr8:5300:T:A).

Table A-2: Tersect genome list operators.

Operator Name Usage Result

* wildcard PATTERN
Genome list containing all genomes

whose sample names match the
provided wildcard pattern

, append
GENOMELIST,

GENOME
Genome list containing all genomes

in GENOMELIST and GENOME

- remove
GENOMELIST -

GENOME
Genome list containing all genomes

in GENOMELIST except GENOME

> superset
GENOMELIST >
VARIANTLIST

Genome list containing all genomes
in GENOMELIST which contain all

variants in VARIANTLIST

Note: Tersect does not distinguish between a genome list which contains only

one genome and a single genome. The former can be used in binary operations

and the latter can be used in functional operations or in constructing genome lists.

If the query is (or results in) a genome list, the list of their genome sample names

is printed out.

102

Examples:

Print out all the names of genomes which begin with "S.pim":

foo@bar:~$ tersect view tomato.tsi "S.pim*"
S.pim P TS-92
S.pim P TS-79
S.pim P TS-77
S.pim P TS-50
S.pim P TS-441
S.pim P TS-440
S.pim P TS-439
S.pim P TS-438
...

Print out all the names of genomes which contain an A/G single nucleotide variant

at position 828587 in chromosome 7:

foo@bar:~$ tersect view tomato.tsi "* > SL2.50ch07:828587:A:G"
S.lyc C TS-97
S.lyc C TS-94
S.pim P TS-79
S.pim P TS-77
S.lyc B TS-68
S.lyc C TS-53
S.pim P TS-50
S.pim P TS-441
...

Print out all the names of genomes which contain a G/A SNV at position 1590608

in chromosome 5 and a T/C SNV at position 5230 in chromosome 12, except for

'S.gal LA1401' and those whose names begin with "S.pim":

foo@bar:~$ tersect view tomato.tsi "* >
SL2.50ch05:1590608:G:A,SL2.50ch12:5230:T:C -
('S.pim*','S.gal LA1401')"
S.lyc C TS-431
S.lyc C TS-430
S.lyc LA1314

103

Functional operators

Functional operators are used to conduct operations on genome lists instead of

individual genomes.

Table A-3: Tersect functional operators.

Operator Name Usage Result

union()
u()

arbitrary
union

union(GENOMELIST)
u(GENOMELIST)

Virtual genome
containing all variants

contained in any of
the genomes in
GENOMELIST

intersect()
i()

arbitrary
intersection

intersect(GENOMELIST)
i(GENOMELIST)

Virtual genome
containing all variants

which appear in
every genome in
GENOMELIST

The result of a functional operation is treated as a single genome (though it does

not have a sample name).

Examples:

Union of all genomes, containing every variant recorded in the tomato.tsi Tersect

index file:

foo@bar:~$ tersect view tomato.tsi "u(*)"
##fileformat=VCFv4.3
##tersectVersion=0.11.0
##tersectCommand=u(*)
#CHROM POS ID REF ALT QUAL FILTER INFO
SL2.50ch00 280 . A C . . .
SL2.50ch00 284 . A G . . .
SL2.50ch00 316 . C T . . .
SL2.50ch00 323 . C T . . .
SL2.50ch00 332 . A T . . .
SL2.50ch00 362 . G T . . .
...

Intersection of all genomes which contain a T/A single nucleotide variant at

position 12547 in chromosome 12, containing all variants that are shared by each

of those genomes:

104

foo@bar:~$ tersect view tomato.tsi "i(* > SL2.50ch12:12547:T:A)"
##fileformat=VCFv4.3
##tersectVersion=0.11.0
##tersectCommand=i(* > SL2.50ch12:12547:T:A)
#CHROM POS ID REF ALT QUAL FILTER INFO
SL2.50ch00 16576 . T C . . .
SL2.50ch00 26171 . G T . . .
SL2.50ch00 29880 . A G . . .
SL2.50ch00 37486 . T G . . .
SL2.50ch00 40476 . G T . . .
SL2.50ch00 436850 . A G . . .
...

Print all the variants which appear only in genome S.hab CGN15792. This is

achieved by finding the difference of that genome and the union of all genomes

except S.hab CGN15792:

foo@bar:~$ tersect view tomato.tsi "'S.hab CGN15792' \ u(* -
'S.hab CGN15792')"
##fileformat=VCFv4.3
##tersectVersion=0.11.0
##tersectCommand='S.hab CGN15792' \ u(* - 'S.hab CGN15792')
#CHROM POS ID REF ALT QUAL FILTER INFO
SL2.50ch00 1163 . C T . . .
SL2.50ch00 1596 . G A . . .
SL2.50ch00 2048 . G A . . .
SL2.50ch00 2933 . G A . . .
SL2.50ch00 2987 . A T . . .
...

Regions

By default, queries are executed, and results are returned for the entire genome.

However, it is possible to selectively execute a query only on a specified region.

The familiar tabix/samtools format chromosome:beginPos-endPos is used to

specify those regions. The coordinates are one-based and inclusive.

Limiting queries to regions allows for much faster execution since far fewer

positions need to be processed and printed, capturing only intervals of interest.

This feature makes it possible to use Tersect's flexible queries as a high-

performance part of a larger pipeline or the back-end of a highly responsive,

interactive application.

105

Example:

Print a union, that is, all the variants appearing either in genome 'S.lyc SG16',

'S.lyc LA1421', or both, from the first 90 kbp of chromosome 2 in the tomato.tsi

index file:

foo@bar:~$ tersect view tomato.tsi "'S.lyc SG16' | 'S.lyc LA1421'"
SL2.50ch02:1-90000
##fileformat=VCFv4.3
##tersectVersion=0.11.0
##tersectCommand='S.lyc SG16' | 'S.lyc LA1421'
##tersectRegion=SL2.50ch02:1-90000
#CHROM POS ID REF ALT QUAL FILTER INFO
SL2.50ch02 204 . A G . . .
SL2.50ch02 255 . TCC TCCC . . .
SL2.50ch02 255 . TCC TCCCC . . .
SL2.50ch02 2382 . G A . . .
SL2.50ch02 13383 . G A . . .
SL2.50ch02 21752 . C T . . .
SL2.50ch02 24538 . T C . . .
SL2.50ch02 29276 . G T . . .
SL2.50ch02 71245 . A C . . .
SL2.50ch02 73326 . C T . . .
SL2.50ch02 86236 . C A . . .
SL2.50ch02 86601 . A G . . .
SL2.50ch02 86635 . T A . . .
SL2.50ch02 86695 . T C . . .
SL2.50ch02 86769 . G A . . .
SL2.50ch02 87079 . T A . . .

106

Appendix B Tersect Browser Supplementary Figures

and Tables

Figure B-1: Time and storage space costs of distance matrix precomputation as

functions of the smallest partition size (human genome data set). The 2548

resequenced human genome data were used for benchmarking. As with the tomato

benchmarking (see Figure 4-5), successive precomputed partitions were generated by

doubling the size of the smaller ones until a size larger than the human chromosome 1

(248.96 Mbp) was reached. The same general pattern is observed, with both metrics

inversely proportional to partition size and precomputation time varying in a relatively

narrow range due to close-to-constant computational cost of Tersect queries. See Table

B-2 for the numeric results.

107

Figure B-2: Diagram of the primary Tersect Browser interface. Part (A) of the

interface contains controls which allow users to (left to right) select the phylogenetic tree

display style, open the data set view, select a reference genome, select the

chromosome, specify a chromosomal interval, select a bin size, zoom the plot in or out,

download images, and share (export) views. The “Home” button at the top of the page

returns the user to the index page, where they can select a different data set. Part (B)

shows the phylogenetic tree for the current interval or simple labels, depending on the

tree style setting. Individual genome labels can be clicked to select them as a reference

or remove them from the current view. The tree (or labels) remains synchronized with

the movements of the heatmap in the vertical axis and in terms of zoom level. Part (C)

shows the heat map, representing the (binned) distances between each genome to the

selected reference. The top of the heat map is bordered by a scale; mouse drags on the

scale allow users to quickly select an interval. Individual bins can also be clicked to set

interval borders, remove genomes from the view, or select them as the reference.

108

Figure B-3: Diagram of the accession selection interface. This overlay can be

opened by pressing the data set button in the upper left corner of the main interface. The

filterable data table contains a row for each genome in the data set, alongside columns

provided during setup or added through plugins. The “Import TGRC gene…” control at

the bottom is the entry point to one such (tomato-specific) plugin. Selections can be

assigned to named groups, which can then be selected or unselected all at once, as well

as marked with a specific group colour. The selection of genomes used for plot

generation is updated when the accession selection interface closes.

Table B-1: Distance matrix precomputation metrics for tomato (444 genomes) data.

Smallest partition
size [Mbp]

Precomputation
time [s]

Storage space
usage [MiB]

Number of
precomputed
PHYLIP files

1 464.73 1486 1698

2 373.23 811 868

3 340.74 562 578

4 329.07 446 450

5 316.97 353 349

109

6 311.09 305 298

7 306.72 267 259

8 306.77 245 237

9 298.86 203 194

10 296.95 187 176

11 295.60 174 164

12 294.78 164 154

13 293.79 153 143

14 292.30 143 133

15 293.08 137 126

16 293.30 135 126

17 289.32 111 103

18 288.04 104 95

19 287.75 98 89

20 290.55 97 88

Table B-2: Distance matrix precomputation metrics for human (2548 genomes,

restricted to chromosome 1) data.

Smallest partition
size [Mbp]

Precomputation
time [s]

Storage space
usage [MiB]

Number of
precomputed
PHYLIP files

1 2502.01 12913 500

3 1681.96 5065 169

5 1545.87 3137 102

8 1468.47 1988 63

11 1446.28 1534 47

14 1428.10 1273 38

17 1409.05 1007 30

20 1406.40 916 27

Table B-3: Pairwise distance matrix generation times for tomato (444 genomes)

data using different partition sizes and requested interval sizes.

 Median distance matrix generation time [s]

Smallest
partition

size [Mbp]

1 Mbp
intervals

3 Mbp
intervals

5 Mbp
intervals

10 Mbp
intervals

20 Mbp
intervals

50 Mbp
intervals

1 0.728 0.771 0.845 0.948 0.992 1.074

2 0.808 0.862 0.933 0.993 1.036 1.110

3 0.858 0.910 1.061 1.159 1.163 1.191

110

4 0.856 1.036 1.112 1.282 1.166 1.358

5 0.865 1.261 1.138 1.358 1.367 1.544

6 0.796 1.349 1.321 1.561 1.542 1.628

7 0.806 1.488 1.526 1.586 1.648 1.700

8 0.761 1.470 1.670 1.714 1.789 1.796

9 0.756 1.605 1.750 1.871 1.853 1.780

10 0.720 1.604 1.950 1.708 1.812 2.036

11 0.736 1.546 2.029 1.982 1.874 2.195

12 0.740 1.560 2.170 2.078 2.202 2.403

13 0.745 1.579 2.320 2.257 2.395 2.370

14 0.740 1.535 2.219 2.257 2.340 2.432

15 0.737 1.534 2.277 2.598 2.497 2.761

16 0.723 1.427 2.319 2.726 2.529 2.735

17 0.730 1.465 2.243 2.703 2.690 2.584

18 0.727 1.480 2.289 2.834 2.705 2.652

19 0.721 1.454 2.296 3.189 2.752 3.071

20 0.700 1.467 2.307 3.398 3.139 3.351

Table B-4: Pairwise distance matrix generation times for human (2548 genomes)

chromosome 1 data using different partition sizes and requested interval sizes.

 Median distance matrix generation time [s]

Smallest
partition

size [Mbp]

1 Mbp
intervals

5 Mbp
intervals

10 Mbp
intervals

20 Mbp
intervals

50 Mbp
intervals

100 Mbp
intervals

1 18.87 22.00 22.67 26.91 27.37 28.82

3 18.59 22.38 24.41 27.36 30.45 33.52

5 15.70 24.06 25.07 28.05 30.96 35.17

8 16.32 31.38 30.62 36.65 36.59 41.62

11 15.74 36.65 31.58 38.44 43.94 42.48

14 16.01 38.98 43.33 46.08 47.23 44.07

17 15.41 40.04 44.80 47.28 49.22 48.85

20 15.83 40.44 56.71 51.50 64.36 70.78

111

Appendix C Tersect: a set theoretical utility for

exploring sequence

112

113

114

Appendix D Mutagenesis of Puccinia graminis f. sp.

tritici and Selection of Gain-of-Virulence Mutants

115

116

117

118

119

120

121

122

123

124

125

126

127

128

	ABSTRACT
	ACKNOWLEDGEMENTS
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ABBREVIATIONS
	1 INTRODUCTION
	1.1 Background
	1.2 Aim and objectives
	1.3 Thesis outline
	1.4 References

	2 CORRECTING AND VALIDATING VARIANT DATA LIFT-OVER IN RESEQUENCED TOMATO GENOMES
	2.1 Abstract
	2.1.1 Summary
	2.1.2 Availability

	2.2 Introduction
	2.3 Resequenced genome issues
	2.4 Reference genome issues
	2.5 Results
	2.5.1 SNV corrections
	2.5.2 InDel corrections
	2.5.3 Annotation
	2.5.4 SeqRemap lift-over pipeline
	2.5.4.1 Required inputs
	2.5.4.2 Whole-genome alignment and gap patching
	2.5.4.3 Tomato SL2.40 / SL2.50 to SL4.0 lift-over

	2.6 Discussion
	2.7 References

	3 TERSECT: A SET THEORETICAL UTILITY FOR EXPLORING SEQUECE VARIANT DATA
	3.1 Abstract
	3.1.1 Summary
	3.1.2 Availability

	3.2 Introduction
	3.3 Tersect
	3.3.1 Interface and command parser
	3.3.2 Indexing
	3.3.2.1 Index format
	3.3.2.2 Index construction
	3.3.2.3 Compression

	3.4 Benchmarking
	3.5 Results and discussion
	3.6 References

	4 TERSECT BROWSER
	4.1 Abstract
	4.1.1 Summary
	4.1.2 Availability

	4.2 Introduction
	4.3 Materials and methods
	4.3.1 Benchmark and test data
	4.3.2 Benchmark hardware

	4.3 Implementation
	4.3.1.1 Back-end
	4.3.1.1.1 Data set preparation
	4.3.1.1.2 Tersect indexing and distance matrix precomputation
	4.3.1.1.3 Phylogeny inference

	4.3.1.2 Front-end
	4.3.1.2.1 Data requests
	4.3.1.2.2 Heat map generation
	4.3.1.2.3 Phylogenetic tree generation
	4.3.1.2.4 Accession selection and annotation
	4.3.1.2.5 View sharing
	4.3.1.2.6 Plot export

	4.3.1.3 TGRCmirror

	4.4 Results and discussion
	4.5 Future work
	4.6 References

	5 OVERALL DISCUSSION
	5.1 Overview
	5.2 Lift-over and validation
	5.3 Tersect Browser and Tersect
	5.4 References

	APPENDICES
	Appendix A Tersect User Manual
	2. Building
	3. Installing
	Appendix B Tersect Browser Supplementary Figures and Tables
	Appendix C Tersect: a set theoretical utility for exploring sequence
	Appendix D Mutagenesis of Puccinia graminis f. sp. tritici and Selection of Gain-of-Virulence Mutants

