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Reservoir Computing for Drone Trajectory Intent

Prediction: A Physics Informed Approach
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Abstract—The design of accurate trajectory prediction algo-
rithms is crucial to implement adequate countermeasures against
drones with anomalous performances. Wrong predictions may
cause high false-positives that compromise safety in national
infrastructures. In this paper, a physics informed reservoir
computing scheme for drone trajectory prediction is proposed.
The approach is comprised of two main complementary learn-
ing algorithms that enhance the prediction and generalization
capabilities: i) a standard reservoir computing scheme for high-
dimensional encoding exploitation and ii) a nonlinear control
scheme that gives a physical feedback to the reservoir weights to
ensure the prediction error is minimized. The nonlinear control
scheme is modelled by the prediction error dynamics and a
feedback linearization controller. Two different physics informed
reservoir computing schemes are proposed which preserve the
reservoir properties and enhance the prediction robustness.
Lyapunov stability theory is used to verify the boundedness and
convergence of the proposed algorithms. Simulation studies and
comparisons are given to verify the proposed approach.

Index Terms—Drones, trajectory prediction, reservoir comput-
ing, nonlinear control, physics informed model

I. INTRODUCTION

Drone detection and prediction has become paramount in

the last decade due to the proliferation of cheaper drone

technology that magnifies the threat in the airspace [1]–[3]. In

terms of intent prediction, two classes can be distinguished:

high-level intent and trajectory intent. Whilst high-level intent

defines the purpose of use of the drone (e.g., surveillance,

delivery, etc.), trajectory intent defines the mission profile

that the drone aims to achieve [4]–[6]. In this paper, we

will focus on trajectory intent prediction. Several technologies

have been developed to address the challenge of predicting

the future trajectory intent which encompasses imagery data,

time-series data, and either physics informed or data-driven

learning models [7]–[9].

Data obtained from radar, lidar or GPS are generally used

to predict the future trajectory of the drone’s hidden mission

profile; specifically, position and linear velocity measurements

[10], [11]. One of the simplest trajectory prediction algorithm

consists in the design of simple state transition models to

estimate future trajectories one-step ahead; which are common

in state estimator techniques such as Kalman Filters and
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their variants [12]–[14]. However, the simplistic nature of this

model can lead to biased predictions and they are not useful

for long-term predictions. This issue has been addressed by

different authors using several machine learning techniques

which are briefly discussed as follows.

A. Related work

Machine Learning models are widely used for regression

tasks and thus, for prediction [15]. Linear or nonlinear regres-

sion architectures are data driven methods that are commonly

used for prediction. In the linear case, a set of polynomial

basis functions are used to adjust the model throughout the

input data which can be computational expensive due to its

solution in the least-squares sense or, equivalently, to the

curse of dimensionality [16]. On the other hand, support

vector machines (SVM) can overcome this issue by using the

Kernel trick that enables non-linear regression tasks [17]. Here,

SVM is a data-hungry algorithm that requires large amount

of data to construct an adequate predictive model. However,

drone’s trajectories are, in most cases, high-nonlinear such that

predicting its future trajectory is difficult in a low-dimensional

feature space.

Neural networks and deep learning architectures have also

been used in the literature for regression tasks with interesting

results [5], [7]. The main advantage of these models is the

extraction of high-dimensional features of the time-series data

to increase the prediction precision. Some of the most famous

approaches are: multilayer perceptron (MLP) [18], residual

network (ResNet) [19], fully and multi-scale convolutional

neural network (FCN, MCNN) [20], [21], recurrent neural

networks (RNN), and reservoir computing (RC). Here, feedfor-

ward architectures such as MLP, ResNet, FCN, and MCNN are

suitable for non-temporal data since they cannot capture time-

dependencies, however some trajectories with linear profiles

can be analysed with these networks. On the other hand,

recurrent neural networks are useful for temporal-data by

incorporating memory in the network [22], [23]. The most

famous approaches are long-short term memory (LSTM) net-

works [24], [25], gate recurrent units (GRU), and transformers

[26]. These models exhibit prediction improvements, however

the computational power is increased due to the recurrent units

training.

Reservoir computing (RC) networks (also known as echo-

state neural networks) are a kind of recurrent networks that

reduces the computational effort with competitive results [27],

[28]. It has an encoder-decoder architecture where the encoder

possesses a reservoir module with sparse connections. Here,

li2106
Text Box
IEEE Transactions on Cybernetics, Available online 4 April 2024
DOI:10.1109/TCYB.2024.3379381


li2106
Text Box
© 2024 IEEE. This is the Author Accepted Manuscript issued with: Creative Commons Attribution License (CC:BY 4.0).  
The final published version (version of record) is available online at DOI:10.1109/TCYB.2024.3379381.  
Please refer to any applicable publisher terms of use.




2

its main advantage is that the input and reservoir weight are

set as random and left untrained whilst the decoder weights

are trained using any linear regression model. One of its

main advantages in comparison with other RNNs is that

reservoir computing methods are explainable by its nature of

design, i.e., we are able to analyse the network properties

by mainly studying the eigenvalues of the reservoir module

that provides rich information of the input trajectories. These

good properties have been exploited in the literature in other

machine learning settings including reinforcement learning,

RNNs, CNNs, and generative adversarial networks [29], [30].

This architecture achieves good results if the reservoir module

provides of high-dimensional and heterogeneous representa-

tion of the trajectories. Otherwise, some authors suggest to

modify the linear decoder module with a nonlinear architecture

such as a MLP or SVM to compensate the lack of richness

of the reservoir module [28], [31], [32]. However, there is

no evidence of real improvement using nonlinear decoder

architectures instead of linear ones. Here, the challenge is

how we can design a reservoir computing method that obtains

a rich high-dimensional representation of the input data to

ensure good generalization. Therefore, in this paper we aim

to provide a solution to this problem by providing a physical

interpretation to the reservoir weights.

In the recent years, improvements for regression models

have been developed. One major improvement consists in

the incorporation of physics informed architectures [33] to

increase the precision of the predictions. Physics informed

neural networks (PINN) [34] and novel trajectory inference

algorithms [35] exploit the physical properties of the system to

infer accurately the trajectory with noise attenuation capabili-

ties. However, knowledge of the exact model of the system (in

this case of the drone) is not available which compromises the

inference results. Hence, an open gap is how we can provide

a physical knowledge to enhance the prediction capabilities

when the drone’s model is unknown. In this paper, we provide

an elegant mechanism to incorporate a physics informed model

from the prediction error of a RC network.

B. Contributions

In view of the above, this paper proposes a physics informed

reservoir computing framework for drone’s trajectory intent

prediction. The approach consists in exploiting the capabilities

of the standard reservoir computing scheme for trajectory

prediction and enhance its precision and robustness by in-

corporating a physics informed model. In this approach, the

reservoir weights are improved by a feedback linearization

controller obtained from a nonlinear physics informed model.

This physics informed model is constructed from the predic-

tion error dynamics between the real drone’s trajectories and

the predicted trajectory. Two novel physics informed reservoir

computing schemes are proposed which maintain the reservoir

computing properties and enhance its robustness. Stability

and boundedness of the proposed approach is assessed using

Lyapunov stability theory. Simulation studies are carried out

with different drone’s trajectory profiles to demonstrate the

effectiveness of the proposed approach.

The contributions of this work with respect to previous

developments for trajectory inference of drones based on data-

driven algorithms are the following:

1) The proposed reservoir computing scheme combines the

merits of data-driven methods with physics informed

models to increase the prediction precision.

2) Only a linear decoder/readout model is required instead

of nonlinear models.

3) The prediction error dynamics is used as a physics

informed model to improve the reservoir weights.

4) Two different physics informed reservoir computing that

preserve noise attenuation capabilities and high precision

are proposed.

5) The proposed approach requires low computational ex-

pense in comparison with recurrent networks.

6) The proposed algorithms are simple to put to work since

only data collected from both the drone’s and reservoir’s

trajectories are used.

The outline of the paper is as follows: Section II defines

the design and properties of reservoir computing schemes.

Section III introduces the proposed physics informed reservoir

computing architectures. Section IV and Section V reports

simulation and experimental studies using different drone’s

trajectories. The conclusions are presented in Section VI.

Throughout this paper, N, R, R
n, R

n×m denote the

spaces of natural numbers, real numbers, real n-vectors, and

real n × m-matrices, respectively; In ∈ R
n×n denotes an

identity matrix of n × n; λmin(A) and λmax(A) denote the

minimum and maximum eigenvalues of matrix A, ⊗ denotes

the Kronecker product, vec(A) is the vectorization of matrix

A, mat(x) is the matrization of the vector x, the norms

‖x‖2 =
√
x⊤x and ‖X‖F =

√
tr{X⊤X} stand for the

Euclidean and Frobenius norms, respectively; tr{·} defines the

trace function, where x ∈ R is a scalar, x ∈ R
n is a vector,

and X ∈ R
n×m is a matrix with n,m ∈ N.

II. BACKGROUND: RESERVOIR COMPUTING SCHEME

The standard reservoir computing scheme for prediction is

giving in Fig. 1. The scheme is divided in three main parts: 1)

an encoder layer that transforms the drone’s trajectories in a

low-dimensional space into a heterogeneous high dimensional

space, 2) a reservoir layer that contains a rich pool of het-

erogeneous dynamics that encapsulate the high-dimensional

features of the drone’s trajectories, and 3) a decoder layer,

also known as readout, that transforms these high-dimensional

features into a low-dimensional representation that matches

with the actual (regression) or future trajectories (prediction).

The reservoir dynamics is modelled as the following differ-

ential neural network

ṙ = σ(Ar +Winx), (1)

where x ∈ R
n is an input vector of the drone’s trajectories,

r ∈ R
r is the reservoir state, A ∈ R

r×r defines the reservoir

weights, Win ∈ R
r×n are the input weights that transform

the low-dimensional representation of the drone’s trajectories

in R
n into a high-dimensional representation in R

r, σ(·) :



3

Drone's trajectories Encoder Reservoir Readout/Decoder

Fig. 1. Standard Reservoir Computing Scheme for Trajectory Prediction

R
r → R

r is a nonlinear activation function, e.g., sigmoid or

hyperbolic tangent. In this paper, we choose σ(·) = tanh(·)
because it is a monotonic differentiable function that regulates

the reservoir states whose image is between -1 and 1, which

is useful for prediction purposes in contrast to other S-shaped

functions. The prediction output in k future steps is then easily

computed by

ŷ = φ(Woutr +w), (2)

where ŷ ∈ R
n is the future prediction output in k steps of

the drone’s trajectories, Wout ∈ R
n×r is the decoder/readout

weights that returns the high dimensional representation of

the reservoir states r into the original low-dimensional rep-

resentation, w ∈ R
n defines the weights of the bias terms,

φ(·) : R
n 7→ R

n can be a feedforward neural network or

a linear model. Therefore, the encoder network possesses

r(n+r) units, whilst the decoder has n(r+1) units. Here, the

number of reservoir units r is a user-design hyperparameter

that depends on the number of input trajectories and the

richness that we aim to inject to the reservoir module.

Remark 1: In standard reservoir computing schemes, both

the input weights Win and reservoir weights A are randomly

generated and left untrained, whilst the decoder weights Wout

are trained using a ridge regression loss function.

Remark 2: Three main hyperparameters [36] in standard

reservoir computing schemes need to be initialized to increase

the generalization capabilities: the input-scaling parameter

win where Win ∈ [−win, win], the sparsity of the reservoir

weights α that defines the proportion of non-zero elements in

the reservoir matrix A, the processing units in the recurrent

layer r, and the spectral radius parameter ρ(A) that describes

the largest eigenvalue of A and that fulfils the next equality

A = ρ(A) · A0

λmax(A0)
, (3)

for some reservoir matrix A0 generated randomly in [−1, 1].
Remark 3: The properties stated in Remark 2 hold for

discrete-time reservoir computing schemes where the eigen-

values lie in the unit circle. However, in continuous time the

reservoir weights matrix must have negative eigenvalues to

ensure stability of the network, i.e., Re{λ(A)} < 0. One

possible solution, and the one we adopted in this paper, is to

construct A as a random negative definite matrix that verifies

A1 =
1

2
(A0 +A⊤

0 ),

A =
A1

λmax(A1)
− αλmax(A1)Ir,

(4)

for some random generated matrix A0 in [0, 1] and α is a

scaling factor that increases/decreases the eigenvalues of A.

Remark 4: The decoder/readout is usually a linear model,

i.e., φ(·) = In. Other representations can be adopted such

as support vector machine (SVM) or a multilayer perceptron

(MLP) network to exploit the heterogeneous dynamics offered

by the reservoir module. However, the literature does not re-

port relevant improvements since they depend on the richness

of the reservoir trajectories.

In this paper, we adopt a linear model of the form

ŷ = Woutr +w. (5)

Define Wdec :=
[
Wout | w

]
∈ R

n×(r+1) which can

be computed by the minimization of the following convex

optimization problem

W ∗
dec = argmin

{Wout,w}

1

2
‖Wdecr̄ − y‖22, (6)

where y ∈ R
n stands for the exact future trajectory and

r̄ = [r⊤, 1]⊤ ∈ R
r+1. Assume that both the reservoir

trajectories and future drone’s trajectories are stored in the

following matrices Y = [y1,y2, · · · ,yk] ∈ R
n×k and R =

[r̄1, r̄2, · · · , r̄k] ∈ R
(r+1)×k. Then the convex optimization

problem can be rewritten as

W ∗
dec = argmin

{Wout,w}

1

2
‖WdecR− Y ‖2F . (7)

Thus, its solution is computed with a standard least-squares

algorithm

W ∗
dec = Y R†. (8)

One of the main weakness of standard reservoir computing

schemes is their poor representation capabilities due to the

random initialization of both the input and reservoir weights.

This lack of robustness is usually compensated by designing

nonlinear decoder architectures to improve the prediction

capabilities of the network. However, the decoder maintain the

robustness problem if the reservoir does not pose a rich enough

heterogeneous dynamics. In this paper, the incorporation of

physical knowledge into the network is proposed to ensure

that the reservoir module is rich enough and it encompasses a

high-dimensional representation of the drone’s trajectories.

 
 
 
 
 

Physics Informed Model

Prediction error dynamics

Fig. 2. Physics Informed Reservoir Computing Scheme



4

III. PHYSICS INFORMED RESERVOIR COMPUTING

A nonlinear control approach is adopted to incorporate

physical knowledge into the reservoir computing scheme.

Here, the physical properties of the system are inferred to

the reservoir weights instead to the decoder weights to exploit

the high heterogeneity of the reservoir structure. The general

scheme of the proposed physics informed reservoir computing

is given in Fig. 2.

The diagram is composed of the standard reservoir com-

puting scheme where an additional feedback loop is added to

enhance the prediction capabilities of the reservoir network.

Here, the prediction error e between the output of the network

and the training input trajectories feeds a nonlinear control

scheme whose output improves the reservoir weights A and,

in consequence, the prediction error e is minimized.

Remark 5: The feedback loop is only used for the network

training phase in order to improve the reservoir weights A.

After training, the new improved weights remain fixed.

According to the Weierstrass approximation theorem [37],

the prediction dynamics of the drone’s trajectories can be

exactly approximated by the following reservoir computing

network

ẏ = Woutσ(A
∗r∗ +Winx) + ε, (9)

where A∗ ∈ R
r×r defines the optimal reservoir weights

matrix, r∗ ∈ R
r stands to the optimal reservoir states using

r units, and ε ∈ R
n is a bounded approximation error that

can be decreased as the number of units in the reservoir

layer increases. In addition, assume that the optimal reservoir

weights can be written as A∗ = A +B∗ for some unknown

matrix B∗ ∈ R
r×r. Then, the reservoir computing dynamics

is slightly modified to

˙̂y = Woutσ((A+B)r +Winx), (10)

where B ∈ R
r×r is a matrix that will be constructed from the

physics informed model. Define the prediction error between

the reservoir computing scheme and the input trajectories as

e = ŷ − y ∈ R
n. Then, the error dynamics is given by

ė =Wout[σ(Winx+ (A+B)r)− σ(Winx+A∗r∗)]− ε.

(11)

From (11) we can observe that the drone’s dynamics has

been incorporated in the error dynamics, which gives a phys-

ical meaning to the prediction error that can be exploited to

improve the reservoir weights.

A. Physics Informed Reservoir Computing (PIRC)

Taylor series expansion are used in the reservoir dynamics

around the vector z0 := (A+B)r +Winx as

σ(A∗r∗ +Winx) ≡ σ(z0) +Dσ(z0)(z − z0) + εσ (12)

where Dσ(z0) = ∂σ(z)
∂z

∣∣∣
z=z0

∈ R
r×r and εσ ∈ R

r is a

second order approximation error. Then, the error dynamics

(11) is equivalently written as

ė =Wout

[
Dσ(z0)((A+B∗)r∗ − (A+B)r + εσ

]
− ε

=−WoutDσ(z0)[Ar̃ +Br̃] + ε̄, (13)

where ε̄ = −WoutDσ(z0)[B̃r∗ − εσ] − ε ∈ R
n, B̃ = B −

B∗ ∈ R
r×r and r̃ = r − r∗ ∈ R

r stand for the error matrix

and the error of the reservoir states. Here r∗ can be computed

with r∗ = W
†
out(y −w).

Define

f(r,x) = −WoutDσ(z0)Ar̃ ∈ R
n,

g(r,x) = −WoutDσ(z0)⊗ r̃⊤ ∈ R
n×r2 ,

u = vec(B) ∈ R
r2 .

(14)

Then the error dynamics (13) can be equivalently written as

ė = f(x, r) + g(x, r)u+ ε̄. (15)

If u is computed as [38]

u = −g†(x, r) (f(x, r) +Ke) , (16)

where K ∈ R
n×n is a diagonal matrix gain which is tuned

small enough to avoid noise excitation. Therefore, the error

dynamics (15) in closed-loop with the control input (16) is

ė = −Ke+ ε̄. (17)

The following theorem establishes the uniform ultimately

boundedness (UUB) [39] of the prediction error trajectories

under the proposed physics informed reservoir computing.

Theorem 1: The prediction error trajectories (15) under the

control input (16) exhibit semi-global asymptotic stability and

converge to a bounded set Sµ of radius µ = ‖ε̄‖2

λmin(K) as t → ∞
and therefore, the prediction error trajectories e are UUB.

Proof: Consider the following Lyapunov function

V =
1

2
e⊤e, (18)

Taking the time-derivative of (18) along the error trajectories

(17) gives

V̇ =− e⊤Ke+ e⊤ε̄

≤− λmin(K)‖e‖22 + ‖ε̄‖2‖e‖2

=− λmin(K)‖e‖2
(
‖e‖2 −

‖ε̄‖2
λmin(K)

)
. (19)

V̇ is negative definite if

‖e‖2 >
‖ε̄‖2

λmin(K)
≡ µ. (20)

There exists a large enough K that ensures that the error

trajectories (17) converges into a bounded set Sµ of radius

µ = ‖ε̄‖2

λmin(K) , i.e., ‖e‖2 ≤ µ as t → ∞ and therefore, the

trajectories of e are UUB. This completed the proof.

After u is computed we need to return it to a r× r matrix

using

B = vec−1(u) ≡ mat(u). (21)

Remark 6: In the training phase we have access to the future

trajectories y such that we can easily compute u. On the other

hand, in the testing phase we do not have access to the future

trajectories and B remains constant throughout the testing

trajectory.
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B. Modified Reservoir Computing (MRC)

One of the main issues of standard reservoir computing

schemes is their nonlinear structure that hinders the design of

mechanisms to improve the reservoir richness. To solve this

issue we propose the following modified reservoir computing

ṙ = Aσ(r) + σ(Winx),
ŷ = Woutr +w.

(22)

This structure is proposed to preserve the noise attenuation

properties of the standard reservoir computing schemes, whilst

writing the reservoir dynamics as a linear parametrizable

model in terms of the reservoir weights A.

Assume the real drone’s trajectories can be exactly repre-

sented under the proposed structure (22) as

ṙ∗ = A∗σ(r∗) + σ(Winx) + εr,

y = Woutr
∗ +w,

(23)

where εr ∈ R
r is a small approximation error. Assume that the

optimal reservoir weights A∗ can be written as A∗ = A+B∗

for some matrix B∗ ∈ R
r×r.

C. Physics Informed Modified Reservoir Computing (PIMRC)

A similar approach can be adopted in the proposed reservoir

computing structure (22) to integrate a physics informed

model. For this purpose, consider that (22) is slightly modified

to
ṙ = (A+B)σ(r) + σ(Winx)
ŷ = Woutr +w.

(24)

Consider the prediction error dynamics between the pro-

posed reservoir computing model (24) and the real drone’s

trajectories (23)

ė =Wout[(A+B)σ(r)−A∗σ(r∗)− εr],

=Wout(A+B)[σ(r)− σ(r∗)] + η, (25)

where η = Wout[B̃σ(r∗)− εr] ∈ R
n. Then define

f(r) = WoutA[σ(r)− σ(r∗)] ∈ R
n,

g(r) = Wout ⊗ [σ(r)− σ(r∗)]⊤ ∈ R
n×r2 .

(26)

If we design a control input of the form (16) and from

the results of Theorem 1, then semi-global stability can be

concluded and the prediction error trajectories e are UUB.

Algorithm 1 summarizes the pseudo-code of the proposed

physics informed reservoir computing.

IV. SIMULATION STUDIES

Several drones’ trajectories with different mission profile

are tested to verify the effectiveness of the approach. The

trajectories are obtained from open-access datasets that cover

different real-world mission profiles (see Table I).

These datasets are already preprocessed such that the

amount of noise is small. In the experiments conducted in this

paper, we add some noise to the measurements to model raw

measurements from sensors. The datasets contain telemetry

data over time such as longitude, latitude, and altitude. These

coordinates are converted into local Cartesian coordinates

for each flight. In addition, the sampling time of the GPS

Algorithm 1 Physics Informed Reservoir Computing for

Drone’s Trajectory Intent Prediction

Input: Random generated matrix A and Win, number of

reservoir units r, gain K, prediction window to construct

the training data X and Y from trajectories of length k.

1: Implement the reservoir dynamics (1) or (22).

2: Collect k samples of the reservoir states r and construct

the matrix R

3: Compute the decoder weights Wdec using (8).

4: Fix the decoder weights Wdec.

5: Construct the physics informed models using (14) or (26).

6: Compute the control u using (16) and reshape the vector

into a matrix using (21).

7: Implement the physics informed reservoir computing us-

ing (10) or (24).

Output: ŷ.

TABLE I
OPEN-ACCESS DATASETS OF DIFFERENT DRONES’ MISSION PROFILES

Dataset Task

UAV Attack [40] Waypoint mapping flights

ALFA [41] Perimeter flights
Drone Identification and Tracking [42] Waypoint flights

Package delivery [43] Package delivery flights
Ardupilot data Custom flights

measurements across each dataset was not consistent, and so

all flights are up-sampled or down-sampled as required to

standardize the sampling time to 100 Hz. We consider different

scenarios and implementations by modifying the number of

input position trajectories. Despite the amount of data is

considerable, we only report the results of specific cases of

study that encompasses the majority of the drones’ mission

profiles. Python 3.9.0 and Matlab 2023a are used to code the

proposed algorithms in an XPS Laptop endowed with NVIDIA

GeForce RTX 2060 with Max-Q Design.

A. Single random trajectory

For visualization simplicity and comparison purposes, con-

sider the raw measurements of a drone’s altitude trajectory.

First, we test some traditional approaches for prediction under

different prediction windows, that is, we predict the next step,

the next 100 steps (equivalent to 1 second), and the next 1000

steps (equivalent to 10 seconds) of the trajectory. We build the

training data and the targets in accordance to the prediction ca-

pability that we want to inject to each model. The models used

are: 1) support vector regression (SVR), 2) MLP, 3) Gaussian

Process Regressor (GPR), 4) convolutional neural networks

with attention layer (CNN-A), 5) long-short term memory

(LSTM), 6) gate recurrent unit (GRU), 7) bidirectional LSTM

(BLSTM), 8) convolutional BLSTM (CBLSTM), 9) CBLSTM

with attention layer (CBLSTM-A), 10) reservoir computing

with linear decoder (RClin), 11) reservoir computing with

SVR decoder (RCSVR), 12) reservoir computing with MLP

decoder (RCMLP), 13) physics informed reservoir computing

(PIRC), 14) modified reservoir computing (MRC), and 15)

physics informed modified reservoir computing (PIMRC).
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Fig. 3. Comparison results of the Trajectory intent prediction for a time-window of 1,000 steps

TABLE II
NUMBER OF TRAINABLE PARAMETERS

Model CNN-A LSTM GRU BLSTM CBLSTM/CBLSTM-A RClin

Parameters 150,101 70,501 65,401 90,951 190,951 5

The SVR models use a Gaussian kernel with the default

parameters, the MLP possesses 3 hidden layers with 50, 30 and

10 neurons, respectively. The GPR uses a square exponential

kernel function with hyperparamenter optimization (which

highly increases the training time). For the reservoir computing

networks, we choose r = 5 processing units and the reservoir

weights are initialized to satisfy (4). For this case study, we

used 50 neurons for each hidden layer of the LSTM, GRU

and CNN networks. For the bidirectional networks, the output

layer contains 100 neurons in order to be consistent with the

weights training. The main task is to predict the future altitude

trajectory of the next 20 seconds (test data). Here, the number

of the proposed neurons are the same for each model such

that the prediction error is small and the predicted trajectory

exhibits noise attenuation.

Table II shows the number of parameters for this simple

experiment. Notice that the number of parameters of each

network is notably high in comparison to the RClin method.

The number of parameters can be reduced by incorporating

regularisation techniques, e.g., dropout and batch normaliza-

tion. However, the number of parameters is still high in

contrast to the RClin method which only needs to compute

the decoder weights. The prediction results in a time window

of 1,000 steps are given in Fig. 3. The training computation

time of each algorithm and the mean-squared error (MSE) of

the predicted data are summarized in Table III.

Different performances can be observed for each approach.

All the methods can predict accurately the future trajectory

by only considering 1-step ahead. However, both the SVR,

MLP, and GRP tend to have an overfitting problem since

these models also predict the noise. The same phenomena

occurs to the GRU, LSTM and its variations, such that the

MSE is small but the predicted trajectory contains large

noise. On the other hand, RC models are high accurate and

exhibit noise attenuation capabilities. The prediction results

for 100-1000 steps show that SVR, MLP and GPR cannot

predict precisely the future trajectory which is consistent

with the reported in the literature since these models cannot

capture time-dependencies. One important result is that the

RClin has better results in comparison to the RCSVR and

RCMLP, which allows to conclude that nonlinear decoder

architectures do not necessarily improve the performance of

the RC despite the fact that the input reservoir trajectories

present enough richness. For the 100 prediction case, all the

recurrent networks outperform the RClin since the reservoir

cannot capture adequately the dynamic properties of the in-

put trajectory for better predictions. The physics informed

approaches notably improves the RClin results where the MRC

and PIMRC outperform the classic RClin and PIRC. For 1000-

steps prediction, the proposed models obtain similar results in

comparison with the models with attention and bidirectional

layers. Here, the reported results demonstrate that RC methods

offer competitive results with less computational effort in

comparison with deep models that require training of a high

number of parameters, whilst in the RC methods the number

of parameters are much smaller. In view of these results,

the sequel of the paper will focus mainly on the proposed

architectures to clearly indicate some of their challenges,

advantages, and disadvantages.

TABLE III
MSE AND COMPUTATION OF DIFFERENT PREDICTORS. THE BEST RESULTS

ARE IN BOLD.

Method
Prediction

1 step 100 steps 1000 steps
MSE Time(s) MSE Time(s) MSE Time(s)

SVR 0.0382 0.1094 0.3067 0.0938 0.5383 0.0469
MLP 0.038 3.7656 0.2909 3.2969 0.4302 3.0156

GPR [44] 0.0377 604.481 0.2820 561.2126 0.4060 115.1689
CNN-A [45] 0.0137 0.5929 0.0163 1.1012 0.0282 3.8951
LSTM [46] 0.0373 2.7243 0.0217 2.9671 0.0301 3.0727
GRU [47] 0.0374 2.1782 0.0218 2.4030 0.0231 2.3810

BLSTM [48] 0.0374 5.2730 0.0217 5.5058 0.0264 4.2507
CBLSTM [49] 0.0107 3.6168 0.0169 3.5191 0.05 5.3497

CBLSTM-A [50] 0.0107 5.7927 0.0146 5.9891 0.0375 7.0823
RClin 0.0213 0.125 0.2081 0.125 0.0277 0.1406

RCSVR 0.0315 0.1562 0.2589 0.2188 0.1017 0.125
RCMLP 0.0267 4.0781 0.5568 3.5469 0.0647 2.4531

PIRC 0.0235 4.25 0.1192 4.1406 0.0291 3.625
MRC 0.0214 0.7344 0.0681 0.8125 0.0303 0.8281

PIMRC 0.0217 6.0625 0.0634 6.0312 0.026 6.2969
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Fig. 4. RClin prediction results with different reservoir weights.

From the RC results, one can conclude that the RClin has

better results and we only need to choose a random negative

definite matrix A, however this is a misleading result (e.g.,

see the 100 steps prediction results). Here, the eigenvalues

of matrix A play a fundamental role in the richness of the

reservoir trajectories, that is, large eigenvalues may lead to a

large prediction error due to the convergent reservoir inner

dynamics. Conversely, small eigenvalues may improve the

richness of the reservoir trajectories but with high probability

to destabilize them in presence of a dominant input dynamics

x. To motivate this fact, consider that the reservoir weights

are initialized as A = −0.1I5 and A = −10I5 and we

want to predict the next 100 steps. The results are given in

Fig. 4. It can be observed that the lack of richness in the

reservoir trajectories yields to poor prediction results. On the

other hand, the prediction precision is enhanced by decreasing

the eigenvalues of A. Therefore, the richness problem can

be improved by adjusting the reservoir weights which can be

achieved using the proposed physics informed architectures.

Here, the PIRC (10), the MRC (22), and the PIMRC (24)

models are compared to show their robustness and prediction

enhancement. The results are shown in Fig. 3 and Table III.

The results show that the prediction precision is maintained

for both the 1-step and 1000-steps cases. For the 100-steps

case, a clear improvement in the prediction results is observed

in comparison to the standard RClin (see Table III). However,

the time-consuming of our approach is increased due to the

computation of u.

B. Independent Trajectories

The main issues of the proposed methodology appear when

the trajectories are independent from each other and the lack of

richness. Here, the reservoir states aim to combine the trajec-

tory features to create a rich pool of trajectories that enhances

the prediction capabilities of the network. However, when the

trajectories are not related to each other and the richness of in-

formation is poor, then the prediction performance is degraded

even for short window predictions. One way to alleviate this

issue is by implementing single trajectory prediction instead

of a joint trajectory prediction. Here, the reservoir states will

contain mainly information of a single trajectory and avoids

to combine information from the other input trajectories. To

show this fact, we draw a random trajectory from the package

delivery dataset and predict the future trajectory only one-

step ahead. In this experiment, we only test the RClin and

PIRC methods to avoid any biased conclusions. The results are

shown in Fig. 5 where the first column shows the one-step joint

prediction results and the second column exhibits the one-step

single prediction results. The results clearly demonstrate that

independent trajectories degrades the performance of the RC

predictors due to the nonlinear combination between the input

trajectories. On the other hand, the single prediction results

show better results, however they are affected by the richness

of the input trajectory. Specifically in the positions in X and Z,

the trajectory is almost constant throughout the length of the

trajectory and thus, the predicted model will not be accurate.

To fix this issue, the input trajectories must be rich enough in

order to excite the modes of the reservoir states that enable a

good generalization of the RC predictor.
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Fig. 5. Predictions of a random package delivery trajectory

Joint prediction of trajectories of independent trajectories

that do not pose enough richness is a challenging task and

topic for further work.

V. EXPERIMENTAL STUDIES

A personal drone is used to conduct real-world testing in a

controlled environment. The control algorithm is designed in

Matlab with an interface with Beagle-Bone-Blue (BBB) chip

processor. The VICON camera system, composed of 25 well-

distributed cameras with different resolutions, is used to track

the position of the drone.

A. Multi-input trajectories

To further motivate the effectiveness of the proposed ap-

proach, consider a 3D-perimeter flight trajectory composed of

10,000 data samples. We use 5,000 samples to train the RClin,

MRC, PIRC, and PIMRC predictors. We use r = 10 units to

obtain a high-dimensional and heterogeneous representation of

the input trajectories. We predict the future trajectory for 1,

100, and 1000 steps.

The predicted trajectories are shown in Fig. 6 and Fig. 7.

The MSE values for each predictor are summarized in Table
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III. The multi-input trajectory results are informative. In con-

trast to the single trajectory results, here the MRC and PIMRC

exhibit more prediction error. After several experiments, we

observe that the richness of the reservoir structure is slightly

degraded by using the linear parametrizable reservoir structure

(22). More units at the reservoir are required to overcome

this issue. On the other hand, the RClin and PIRC show

good trajectory prediction results. It is observed that input

trajectories with high frequencies are difficult to accurately

predict their future values even in the training phase. On

the other hand, if an input trajectory is constant and the

reservoir possesses a large number of units, then the output

is a sinusoidal function with small amplitude centred in the

constant value of the input trajectory. This fact can be observed

in the z results of Fig. 7.

TABLE IV
MSE OF DIFFERENT PREDICTORS UNDER THE NOISE-FREE TRAJECTORY.

THE BEST RESULTS ARE IN BOLD.

Method
MSE Prediction

1 step 100 steps 1000 steps

RClin 2.124e-5 2.794e-4 2.20e-5
PIRC 2.132e-5 2.825e-4 2.20e-5
MRC 0.0157 0.0506 0.0133

PIMRC 0.0157 0.0534 0.0133

The used trajectory is smooth and noise-free such that

only the RClin (under adequate reservoir weights A) can

solve the prediction problem. We add artificially some additive

noise to the flight trajectory to demonstrate the robustness of

the proposed approach. The results are summarized in Table

V. Notice that both physics informed reservoir computing

architectures outperformed the results of RClin and MRC. In

this scenario, the physics informed model improves the rich-

ness of the reservoir to achieve better predictions. Increasing

the number of units decreases the MSE of all the methods,

however the computational complexity is also increased.

TABLE V
MSE OF DIFFERENT PREDICTORS UNDER THE NOISY TRAJECTORY. THE

BEST RESULTS ARE IN BOLD.

Method
MSE Prediction

1 step 100 steps 1000 steps

RClin 2.943e-4 0.0025 2.565e-4
PIRC 2.7097e-4 0.0020 2.544e-4
MRC 0.0160 0.0505 0.0134

PIMRC 0.0158 0.05 0.0135

B. Prediction Improvement

One of the main challenges in drone’s intent prediction is the

randomness of the trajectory throughout the mission profile. In

reservoir computing schemes, the network is capable to predict

the future trajectories (in an acceptable future time) when these

trajectories exhibit a repetitive pattern, e.g., in surveillance,

perimeter flights, waypoint flights, etc. However, when the

drone changes randomly its trajectory then the predictions of

the reservoir computing schemes will be poor. One solution

to incorporate knowledge of the decision making process is

by means of the input signal v ∈ R
m trajectories that drive

(a) 1-step (b) 100-steps

(c) 1000-steps

Fig. 6. RC trajectory prediction results
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Fig. 7. Individual flight trajectory prediction results

the drone to a specific desired performance and destination

[51]–[53]. Here, the control input does not only improve the

richness of the input signals, but also gives information about

the immediate decision making process. To show the above

fact, consider the custom flight trajectory in the X direction

and its respective control signal v shown in Fig. 8.
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(a) Longitude trajectory x
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-20
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20

(b) Control input v

Fig. 8. Custom longitude trajectory

In this experiment, we use r = 10 units and the results

of the RClin are provided. In this case, we do not compare

the physics informed models to avoid biased conclusions. Two

scenarios are considered: Case A- only the longitude trajectory

is used as input data and Case B- both the longitude and

control input trajectories are used as input data to train the

RClin. The trajectory is composed of 5,000 data samples

where 1,500 samples are used to train the RClin and the rest of

data are used for testing purposes. The prediction-window is

of 1-step. In addition, we test the trained RClin with a simple
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waypoint trajectory to show the prediction improvement by

incorporating the control input trajectory. The results of Case

A and Case B are shown in Fig. 9.
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Fig. 9. Prediction results with/without control trajectories

Notice that the results of Case A show that the RClin learns

that approximately every 5 seconds the trajectory changes due

to repetitive frequency of the training data. In the proposed

waypoint trajectory, the RClin prediction starts to oscillate due

to this learned pattern. Here the amplitude of the oscillations

increases as time increases. For Case B the control input

serve as an additional input to incorporate the decision making

process. The MSE error results for the custom and waypoint

trajectories are: 0.0196 and 0.0135 for Case A, and 0.0245

and 0.0053 for Case B. The results show that Case A has a

better MSE result for the custom trajectory in comparison to

Case B because the control input is subject to high overshoots

due to the change of the input trajectory that slightly affects

the prediction. However, a considerable improvement can be

observed for the waypoint trajectory. Here, the control input

adds stability and robustness in the prediction.

The main drawback of using the control input is that is only

suitable for short prediction-windows but not for large ones.

Further work will study the incorporation of model predictive

control techniques to enhance the prediction power of reservoir

computing networks under control input signals.

VI. CONCLUSIONS

In this paper, the trajectory intent prediction of drones is ad-

dressed using continuous-time reservoir computing schemes.

The main contribution of this paper lies in the incorporation

of a physics informed model that enhances the robustness

of standard reservoir computing schemes, whilst maintaining

their richness and noise attenuation capabilities. The physics

model is based on the prediction error dynamics between

the reservoir prediction and the real drone’s trajectories. A

feedback linearization controller is used to update the reser-

voir weights to increase the reservoir richness and improve

the prediction precision. Stability and boundedness of the

proposed techniques are assessed using Lyapunov stability

theory. Simulation studies using different open-access data are

provided to show the advantages and disadvantages of the

proposed methodology. It is demonstrated that linear decoder

models exhibit better performance in comparison to nonlinear

decoder architectures such as Gaussian SVR and MLP. The

reservoir weights play a major role in the final prediction

results which show competitive results compared with deep

models based on CNN and LSTM architectures. On the other

hand, the incorporation of a physics informed model in the

reservoir weights provides robustness into the network. In

addition, it is shown that the addition of the control input

trajectories can enhance the prediction robustness for random

destination profiles.

Future research vectors will focus on reservoir computing

based on model predictive control and high-level intent clas-

sification of drone’s trajectories. Further work is interested

in incorporating additional signals to increase the prediction

accuracy, such as airspeed and external disturbances.
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