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ABSTRACT 

Controller Area Network (CAN), designed in the early 1980s, is the most widely 

used in-vehicle communication protocol. The CAN protocol has various features 

to provide highly reliable communication between the nodes. Some of these 

features are the arbitration process to provide fixed priority scheduling, error 

confinement mechanism to eliminate faulty nodes, and message form check 

along with cyclic redundancy checksum to identify transmission faults. It also has 

differential voltage architecture on twisted two-wire, eliminating electrical and 

magnetic noise. Although these features make the CAN a perfect solution for the 

real-time cyber-physical structure of vehicles, the protocol lacks basic security 

measures like encryption and authentication; therefore, vehicles are vulnerable 

to cyber-attacks. Due to increased automation and connectivity, the attack 

surface rises over time. This research aims to detect CAN bus attacks by 

proposing WINDS, a wavelet-based intrusion detection system. The WINDS 

analyses the network traffic behaviour by binary classification in the time-scale 

domain to identify potential attack instances anomalies. As there is no standard 

testing methodology,  a part of this research constitutes a comprehensive testing 

framework and generation of benchmarking dataset. Finally, WINDS is tested 

according to the framework and its competitiveness with state-of-the-art solutions 

is presented. 
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1 Introduction 

Carl Benz applied the first patent application for a vehicle powered by a gas 

engine in 1886 [1]. The three-wheeled vehicle, in Figure 1, had one cylinder and 

was able to reach 10 mph. It was a purely mechanical vehicle; the vehicle industry 

has revolutionised since then. Today’s advanced vehicles have extensive 

automation with a mesh of sensors and computational systems to improve 

functionality and safety. These sensors are controlled by embedded Electronic 

Control Units (ECUs), designed for the optimal management of a wide array of 

functions ranging from engine control to Anti-lock Braking and Advanced Driver-

Assistance Systems – ABS and ADAS, respectively. According to [2], [3], a 

modern automobile is fitted with more than a hundred ECUs, and this number is 

envisaged to increase in the future. These ECUs are distributed all around the 

vehicle. They communicate with each other via in-vehicle communication 

networks, such as Controller Area Network (CAN), FlexRay, Local Interconnect 

Network (LIN), and Media Oriented Systems Transport (MOST) [4]. The most 

common in-vehicle communication protocol CAN [5] offers advantages such as 

cost-effective wiring, immunity to electrical and magnetic interferences, self-

diagnosing, and error correction mechanism.  

However, despite these functional benefits, the rising inter-vehicle and intra-

vehicle communications render CAN vulnerable to cyber-attacks. The existing 

built-in security features of the CAN bus are primarily designed for ensuring 

Figure 1-1 The replica of Benz patent motor car 
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reliable communication, not for cybersecurity; therefore, it cannot prevent the 

network from cyberattacks. 

The first attack on in-vehicle networks was implemented by Hoppe and Dittman 

in 2007[6], [7]. Since then, the attack surface of the vehicle has increased 

drastically in parallel to communication networks. In 2015, security researchers 

remotely hacked a Jeep Cherokee via a cellular network and were able to control 

steering and braking while the vehicle was moving [8]. Various physical and 

remote access attacks [9]–[12] demonstrated that the CAN network is 

defenceless to any attacks. As a result, the far-reaching implications of 

cyberattacks on CAN are anticipated. For instance, the attack on airbags [13] or 

ABS systems can jeopardise the driver and passengers' safety. Eventually, it may 

affect the car manufacturer’s reputation with substantial financial implications, like 

recalls [14]. Tampering of ECUs, e.g., used-cars’ odometer [15], is another 

example that may result in dire consequences for the consumers and the 

manufacturers. Overcoming such security shortcomings relies on developing 

efficient prevention mechanisms, which with the current state of the art, fall into 

four categories: network segmentation, encryption, authentication, and Intrusion 

Detection Systems (IDSs).  

Network segmentation limits access to the critical ECUs by separating them from 

the user-accessible network via a gateway ECU. Although the method exists in 

commercial vehicles, it is not secure enough to stop adversaries. There are 

successful attacks that pass gateway ECU and intrude to the in-vehicle network 

[16]. 

Lack of encryption and authentication is the leading root cause of the CAN 

vulnerabilities. Although cryptographic techniques are the direct solution, 

implementing such algorithms is not feasible for CAN in automotive applications 

because of limited resources (bandwidth, computational power), the need for long 

service life, and time constraints. Researchers [17] have shown that current 

cryptographic methods are unsuitable for commercial vehicles due to significant 

overhead or backward incompatibility. 
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Hence, the problem’s root cause is not feasible to solve by cryptographic 

techniques; the problem is mitigated by the Intrusion Detection System (IDS). An 

IDS targets to find malicious messages by analysing network traffic and 

generates an alert if there is any malicious activity. 

1.1 Research Aim and Objectives 

1.1.1 Problem Description 

Given a vehicular network consisting of N modules allowed to broadcast 

messages in format M, there are potential threats in which an unknown adversary 

module broadcasts malicious messages with parameters of pattern P, signature 

S, and variation V while each parameter is associated with properties of existence 

e, strength st and recognised r (described in Table 1-1) and Equation (1-1). The 

problem of locating threats falls in utilising a supervisory module that monitors the 

messages on the CAN network provisioning to recognise the malicious 

messages, among others.  

 𝑀𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠 𝑀𝑒𝑠𝑠𝑎𝑔𝑒 =  𝑀(𝑃(𝑒, 𝑠𝑡, 𝑟), 𝑆(𝑒, 𝑠𝑡, 𝑟), 𝑉(𝑒, 𝑠𝑡, 𝑟))  (1-1) 

As widely referred to, the supervisory module is the IDS system, which 

contributes to evaluating the network traffic against known attacks and 

unrecognised activity based on characteristics of the Malicious message given in 

Equation (1-1). Determining Message, M, in Equation (1-1) is not a straightforward 

task and requires understanding the system's behaviour, the performance of the 

driver, and the attackers. 

Most current practices limit the IDSs to certain types of attacks mainly to reduce 

complexity, while others require highly intensive resources offering slightly robust 

performance. Still, none of the existing methods has a vehicle agnostic structure; 

therefore, they need training and testing for each vehicle make and model. Apart 

from lacking holistic IDS, there is no accepted standard for a testing methodology 

which brings many disadvantages.   
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Table 1-1 Parameters for locating threads 

Parameter 

Name Symbol Description 

Behaviour B Statistical or AI model that represents the data and 

network traffic and pinpoints anomalies. 

Signature S Bit of patterns that match a particular attack’s bit-

sequence found within network packet headers, 

data, destination or source network, or in specific 

sequences of data or series of packets. 

Variation V A shift or change in behaviour (B) or signature (S) 

for modelling the data traffic more precisely. 

Property 

Name Symbol Description 

Existence e It represents if a particular parameter is applicable 

for modelling a specific message or not. 

Strength st Influence of behaviour or signature on a message in 

the form of strength or sensitivity. 

Recognised r It is an index to the list of recognised behaviour or 

signature. 

1.1.2 Hypothesis 

The vehicular network has rigid timing rules to meet real-time operations. Any 

disruption in the system can lead to frequency changes. Frequency analysis tools 

like wavelet transform may detect this deviation. Wavelet transform is a powerful 

tool to analyse frequency variations over time. Unlike Fourier transform, wavelet 

analysis gives spectrum analysis on the time domain. Therefore, it can be used 

to identify malicious activities by analysing network traffic. The network traffic of 
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a vehicle is a non-stationary signal. Continuous Wavelet Transform (CWT) is an 

excellent tool to analyse the non-stationary signal.  

1.1.3 Aim 

This research aims to develop a propensity of vehicle-independent detection 

capability for IDS by using wavelet analysis. It allows low resource usage and fast 

detection time, which are the essential requirements for implementing an IDS in 

vehicular systems. 

1.1.4 Objectives 

To achieve the aim of this research, the following objectives are set out to be met. 

1. A literature review to identify gaps and problems regarding CAN security 

2. Design and implementation of an IDS for CAN which has the following 

criteria: 

a. vehicle agnostic implementation 

b. ability to detect attacks swiftly 

c. low false-positive alarms 

3. Data generation to mimic the CAN bus attacks 

4. Design and development of a testing framework and attack generation to 

demonstrate the ability and limitations of the designed IDS.   

1.2 Research Methodology 

This research is divided into four phases to achieve research objectives and the 

aim, as shown in Figure 1-2. In order to fulfil objectives and achieve the aim, the 

literature is surveyed, and research gaps are identified. A Wavelet-based 

Intrusion Detection System (WINDS) is proposed. A comprehensive 

benchmarking framework is constructed to evaluate the proposed method. Then 

WINDS is tested according to this framework. The technique is also compared 

with other methods by evaluating on the same network traffic. After the 

verification and validation phase, the work is inspected to improve its capabilities.  
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Figure 1-2 Methodology flow diagram 

1.2.1 Phase 1: Literature Review 

This phase is the beginning of the research process to identify state-of-the-art 

solutions and gaps in in-vehicle security. Various topics are studied to obtain the 

knowledge to analyse CAN security comprehensively, understanding existing 

research, and finding the research gaps. The topics are vulnerabilities of CAN, a 

survey on security solutions for in-vehicle networks, and a detailed analysis of 

intrusion detection systems. As a result of the literature review, the following 

research gaps were identified.  
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i. There are multiple solutions to secure CAN bus, and an intrusion detection 

system is the most feasible solution because of the limited resources and 

timing constraints. However, none of the existing IDSs has a vehicle-

independent resolution, and most of them require extensive training. 

ii. The lack of available datasets is an obstacle to the development of reliable 

IDS. 

iii. Lack of an accepted benchmarking framework causes improper testing 

and misleading results. 

Phase 1 helped in defining the aim and objectives of this research. As an outcome 

of the literature review, a journal paper and a conference proceeding were 

published. 

1.2.2 Phase 2: A Framework for Benchmarking Intrusion Detection 

Systems for CAN Bus 

Benchmarking is essential for researchers, security analysts, and customers. A 

good quality benchmark helps researchers and security analysts understand the 

strength and limitations of the IDS; therefore, they can focus on improving IDS’ 

weaknesses. Customers also benefit from benchmarking results and decide on 

suitable IDS methodology for their network.   

Although researchers proposed various Intrusion Detection Systems (IDSs) to 

identify intrusions in the CAN network, there is no accepted testing methodology 

and enough dataset. The field is still in its infancy, and produced works lacks 

comprehensive evaluation and comparative analysis. A 2018 survey [18]  shows 

that only 4 out of the 65 surveyed papers compare their works with baseline 

methods.  

In addition to presenting whether the method works or not, proper testing also 

illustrates how well the method works. Lack of standardised testing methodology 

causes a variety of problems. First, many IDS solutions are not appropriately 

tested, which generates misleading results. The second problem is that it is 

difficult to compare existing solutions which hardens researchers’ tasks to 
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evaluate their methodologies. The issue with comparison also hinders reaching 

the best IDS.  

This phase focused on generating a comprehensive benchmarking dataset and 

defining benchmarking criteria covering Objective 3 and Objective 4. The 

proposed benchmarking framework assesses an IDS with quantifiable metrics. 

Therefore, it is a repeatable and objective testing methodology. The test result is 

not a binary output, and it will show the strengths and weaknesses of the IDS 

under the test. It identifies the performance metrics and attacks conditions to be 

tested. By adopting this approach, IDS solutions can be verified objectively and 

efficiently compared with other solutions which use the same benchmarking 

framework. 

1.2.3 Phase 3: WINDS: A Wavelet-based Intrusion Detection System 

for Controller Area Network (CAN) 

A novel vehicle agnostic intrusion detection system based on wavelet analysis is 

proposed to address the gaps mentioned earlier. This is the main contribution of 

this research. The WINDS analyses the CAN-network traffic behaviour using 

wavelets, and it can be used as a tool for intrusion detection. To the best of our 

knowledge, this is the first attempt applied to vehicular applications.  

The proposed wavelet-based IDS does not require training phases, and further, 

it is independent of the driver’s driving style. 

1.2.4 Phase 4: Verification and Validation 

This phase presents the evaluation results of WINDS according to the proposed 

benchmarking framework in Phase 2. The WINDS is tested on various scenarios 

using real and synthetic attack data. The chapter demonstrates the 

competitiveness of WINDS with state-of-the-art methods. It also presents the 

vehicle agnostic behaviour of WINDS, which is a significant advantage over 

existing solutions. After showing the competitiveness of WINDS, this phase 

summarises the current form of the WINDS and presents future works to improve 

its capabilities and resource usage. Although WINDS has major vehicle agnostic 

behaviour as an advantage over existing solutions, there are some ways to 
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improve it. This can be achieved by focusing on comprehensive thresholding, 

analysis of discrete wavelet transforms, detecting infrequent node attacks, 

transformation to intrusion prevention system, and optimisation. 

1.3 Risks and Mitigations 

1.3.1 Dataset 

Dataset is a vital element of the research to implement and test the methodology. 

However, implementing attacks on a running vehicle has a serious safety risk for 

people onboard and the surrounding environment. Therefore, attacks should be 

implemented in specialised areas like airports or controlled environments. The 

implementation of the attacks is also costly, requiring specialised tools, 

insurance, and an actual vehicle. To mitigate these problems, open-source 

datasets are used. Although there are a limited number of available datasets and 

those datasets have limited variations, a comprehensive benchmarking dataset 

can be obtained by synthetically simulating the attacks on available datasets. 

In this research, datasets from two independent research centres are used; 

“Automotive Controller Area Network (CAN) Bus Intrusion Dataset v2” [19] and 

“Car-Hacking Dataset” [20]. More data is generated by mimicking the CAN bus 

attacks virtually. 

1.3.2 Evaluation and Comparative Analysis 

There is no standardised testing methodology and accepted benchmarking 

dataset. As a result, it becomes difficult to compare the proposed method with 

existing solutions. To overcome this issue, testing methodology in Information 

Technology (IT) is studied, and a comprehensive framework is constructed. The 

WINDS is tested according to the proposed framework.  

To get the comparative analysis, the WINDS is tested on the same dataset, “Car-

Hacking Dataset”, with other methods along with the frequency-based baseline 

method. Although used “Car-Hacking Dataset” has some deficiencies and lacks 

experimental details, it is a valuable dataset used by many researchers. Hence, 
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the dataset has a limited number of attack conditions; using this dataset cannot 

guarantee the judgemental decision, but it can be a comparison. 

1.4 The Organisation of the Thesis 

The remaining part of this thesis is organised as follows: Chapter 2 presents a 

comprehensive literature review of CAN bus security focusing on intrusion 

detection systems. Chapter 3 outlines the details of the wavelet-based intrusion 

detection system (WINDS) for in-vehicle networks. Then Chapter 4 presents the 

data generation and the framework for testing vehicle IDS. Additionally, this 

chapter evaluates the WINDS algorithm and compares it with other state-of-the-

art methods. Finally, Chapter 5 concludes the thesis and outlines future 

directions. 

1.5  Publications & Activities 

1.5.1  List of Publications 

Journal Papers: 

I. M. Bozdal, M. Samie, S. Aslam, I. Jennions, “A Wavelet-based Intrusion 

Detection System for Controller Area Network (CAN)”, IEEE Access, 2021. 

(DOI: https://doi.org/10.1109/ACCESS.2021.3073057). 

II. M. Bozdal, M. Samie, S. Aslam, I. Jennions, “Evaluation of CAN bus 

security challenges”, Sensors, 2020. (DOI: 

https://doi.org/10.3390/s20082364). 

Conference Papers: 

I. M. Bozdal, M. Samie, I. Jennions, “A survey on CAN bus protocol: Attacks, 

challenges, and potential solutions”, IEEE International Conference on 

Computing, Electronics and Communications Engineering, 2018. (DOI: 

https://doi.org/10.1109/iCCECOME.2018.8658720) 

II. M. Bozdal, M. Randa, M. Samie, I. Jennions, “Hardware trojan enabled 

denial of service attack on CAN bus”, 7th International Conference on 

Through-life Engineering Services, 2018. (DOI: 

https://doi.org/10.1016/j.promfg.2018.10.158) 

https://doi.org/10.1109/ACCESS.2021.3073057
https://doi.org/10.3390/s20082364
https://doi.org/10.1109/iCCECOME.2018.8658720
https://doi.org/10.1016/j.promfg.2018.10.158
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1.5.2 Training and Networking Activities 

Numerous courses and activities are attended to keep up to date in the field and 

share ideas with the other researchers. Some of the main ones are summarised 

below. 

IVHM Technical Review Meeting: These meetings are held three times a year, 

and all the meetings organised during this PhD research were attended. It allows 

to the presentation of research progress to colleagues and industrial partners. 

The feedback from the meetings improved the research quality and presentation 

skills.  

AESIN Security Conference: AESIN is a non-profit organisation recognised by 

the Automotive Council UK. It is a response to the explosion of electronics in-car, 

which is approaching 50% of vehicle cost. There are specialised conferences 

covering a variety of automotive electronics. AESIN Security Conference focuses 

on the cyber resilience of connected automobiles. The following meetings were 

attended.  

• AESIN Security Virtual Conference, 15 July 2020, Online 

• AESIN Security Conference, 10 July 2019, Coventry UK 

Vector Cybersecurity Symposium: Vector is a leading company that provides 

tools, software components, and services for automotive and related industries. 

Vector Cybersecurity Symposium brings together state-of-the-art industry 

solutions and ongoing academic works. It gives insights into safety and security 

integration in practice, security standards, and solutions for automotive 

cybersecurity. The following conference was attended.  

• Vector Cybersecurity Symposium, 2 - 4 April 2019, Stuttgart 

Germany 

Europractice Hardware Security Course: It is a five-day hands-on course for 

designing secure ICs and systems in different application domains. It covers 

security, encryption and security threats, secure implementations resistant to 

passive and active attacks, and security building blocks like random number 

generators and physically unclonable functions. The following course was taken. 



12 

• Europractice Hardware Security Course,10-14 December 2018, 

Leuven, Belgium 
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2 Evaluation of CAN Bus Security Challenges 

The automobile industry no longer relies on pure mechanical systems; instead, it 

benefits from intelligent features based on advanced embedded electronics. 

Although the rise in electronics and connectivity has improved comfort, 

functionality, and safe driving, it has also created new attack surfaces to 

penetrate the in-vehicle communication network, which was initially designed as 

a close loop system. Although the Controller Area Network (CAN) is the most 

widely used communication protocol, it still suffers from various security issues 

because of the lack of encryption and authentication. As a result, any 

malicious/hijacked node can cause catastrophic accidents and financial loss. This 

chapter analyses the CAN bus comprehensively to provide an outlook on security 

concerns. First, it gives the CAN protocol details, standardised by ISO 11898-

1:2015. Then, the protocol's vulnerability is assessed based on confidentiality, 

integrity, and availability. The chapter continues with existing attacks and 

presents a state-of-the-art attack surface. It goes through different solutions that 

assist in attack prevention, mainly based on an intrusion detection system (IDS). 

The chapter is finalised with a discussion section covering the standardisation of 

automotive cybersecurity, industrial products, and obstacles preventing CAN 

security research. The organisation of the chapter is presented in Figure 2-1.  



16 

 

Figure 2-1 Organisation of Chapter 2 

2.1 Introduction 

Modern vehicles are equipped with dozens of Electronic Control Units (ECUs) to 

improve driving comfort and safety[1][2]. ECUs control most of the car's functions, 

including safety-critical ones like engine control, airbag deployment, and anti-lock 

braking system. To have safe driving, ECUs should have a reliable 

communication network. One of the main in-vehicle communication protocols is 

Controller Area Network (CAN). Its well-recognised advantages, such as high 

immunity to electrical interference, easy wiring, ability to self-diagnose, and 

mitigating errors, make CAN bus suitable for the automobile industry. Although 

CAN is resilient to electrical noise and has reliable communication features, it is 

still vulnerable to attacks.  

The first known attack on the CAN bus was implemented on the electric window 

lift in the simulation environment by Hoppe and Dittman in 2007[3]. Since then, 

different attack scenarios have been implemented [4]–[7]. While most attacks are 

Chapter 2

2.1 Introduction

2.2 Overview of the Controller Area 
Network

2.3 Vulnerability Assesment of the CAN 
Protocol

2.4 Automotive Attack Surface and 
Exisiting Attacks

2.5 Counter Measures for CAN attacks

2.6 Discussions on CAN Security 
Research
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implemented via physical access to the bus, wireless attacks are increasing. The 

wireless attack surface will continue to grow with the new wireless interfaces like 

Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I).  

Equally alarming is the lack of encryption in CAN, which has a strong bearing on 

individual data privacy. By design, CAN is a broadcast network that allows nodes 

to capture messages going through the network. An adversary can acquire the 

desired data as the broadcasted data is not encrypted. This may lead to an 

invasion of privacy, mainly when modern cars are capable of acquiring the driver's 

personal information. 

According to the 2019 industry survey [8], safety and security are the highest 

short-term and mid-term challenges for the automotive industry. Therefore, 

extensive studies have been carried out to find possible solutions [3], [9] to the 

vulnerabilities of CAN. Some of these studies have performed successful 

experimental attacks on passenger cars [4], [5], [10]–[13] and heavy-duty 

vehicles [14], [15]. At the same time, researchers have also proposed 

preventative methods for such known attacks. These include network 

segmentation, encryption, authentication, and intrusion detection systems (IDSs). 

In light of the above, this chapter provides a comprehensive literature review with 

the following main contributions: 

a. Identification of the state-of-the-art and the most potential security 

challenges associated with modern vehicles, covering a number of 

implemented physical and remote access attacks. 

b. Highlighting the attack surfaces of modern vehicles with a critique on 

possible future attacks. 

c. An in-depth analysis of the current research on CAN security issues 

to facilitate their effective and optimal mitigation. 

2.2 Overview of the Controller Area Network (CAN) 

The CAN bus is a multi-master broadcast communication protocol developed by 

Robert Bosch GmbH in the early 1980s. A traditional CAN interface can provide 
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up to 1 Mbps [16]. In 2012, Bosch released the CAN FD (flexible data-rate), which 

can achieve 5 Mbps in practice and has a 64-byte payload compared to 8 bytes 

in the classical CAN [17]. CAN FD is backwards compatible and can coexist with 

classical CAN nodes. Classical CAN and CAN FD are both standardised under 

ISO 11898-1:2015. 

The single two-wire bus architecture of CAN, as shown in Figure 2-2, reduces 

cabling. The distributed architecture of the network provides easy maintenance 

and decreases the overall system cost. Moreover, the protocol uses differential 

wiring mode, represented by CAN_H and CAN_L, enhancing immunity to noise 

and electrical interference. From a logic point of view, signals have two states 

(voltage levels): a dominant logic '0' and a recessive logic '1', meaning that the 

bus signal remains '0', the dominant logic, as long as one of the nodes releases 

logic '0' to the bus. As there is no dedicated clock line, synchronisation is provided 

via signal edges and bit-stuffing. The Bit-stuffing rule limits the number of 

repeated bits. After five consecutive bits of the same logic level, the next bit must 

complement the previous logic level; otherwise, it will cause a protocol error. If 

the data has more than five successive corresponding bits, a complement bit is 

inserted by the transmitter CAN controller and the receiver ignores it. 

 

 

Figure 2-2 An example of a single two-wire Controller Area Network (CAN). 

The CAN protocol has message-based communication provided via frames, as 

shown in Figure 2-3. Each frame has a message identifier field, data field, cyclic 

redundancy checksum (CRC), and some control bits. Every node listens to each 
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frame and processes the relevant ones based on the message identifier field, 

which is also used for the arbitration. 

 

Figure 2-3 Classical CAN frame structure. 

2.2.1 Reliable Communication in CAN 

The CAN protocol has a set of built-in features that provide robust 

communication. Suppose two nodes start transmitting at the same time. In that 

case, the non-destructive arbitration mechanism resolves the conflict by allowing 

the highest priority node to continue the transmission without any interruption 

(e.g., Node 1 wins arbitration in Figure 2-4, without any disruption, as the dominant 

bit overrides the recessive one). Another feature is carrier sense multiple access 

with collision avoidance (CSMA/CA), which rules that the nodes have to wait for 

a certain amount of inactivity before the transmission. This assists in sensing if 

the bus is idle and ensuring that a collision will not occur. 

 

Figure 2-4 Signalling in CAN; Node 1 wins arbitration without any disruption. 

The CAN bus has some bit-level and message-level error checking mechanisms. 

At the bit level, the transmitter node monitors the bus. An error arises if there is a 

difference between the transmitted bit and the one observed on the bus. On the 

other hand, the message-level CAN bus error check mechanism includes frame 

check over acknowledgement (ACK), cyclic redundancy checksum (CRC), and 

end of frame (EOF) fields. After the transmission of a frame, the transmitter node 

writes a recessive bit to the ACK field. If a node receives a message correctly, it 
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overwrites the ACK field with a dominant bit; otherwise, the ACK field stays 

recessive, which indicates a transmission error. There is up to a 21-bit CRC field 

in a CAN frame for data integrity. An error flag will be sent if any node calculates 

a different CRC than the transmitter node. The CRC delimiter, ACK delimiter, and 

EOF bits have fixed values and must always be recessive. An error is generated 

if these bits are dominant during the frame form check. 

CAN also prevents the physical errors by disabling the faulty nodes from the bus 

traffic with an error confinement mechanism (ECM), as shown in Figure 2-5. The 

ECM is facilitated in each node using two error counters known as the received 

error counter (REC) and transmitted error counter (TEC). The TEC increases by 

eight if an error occurs during the transmission, and REC increases by one if the 

error comes during the reception. Every successful transmission or reception of 

a frame decreases the responsible counter by one. The counters' default values 

are zero, and nodes start at the error active state. A node will enter the error 

passive state if the value of the node's counter exceeds 127. In an error passive 

state, the node can only write recessive error flags, which will not affect the bus 

traffic. The node turns to the bus off state if the TEC counter exceeds 255, 

meaning that the affected node will no longer participate in the bus traffic. 

TEC > 255

Error 
Active

Error 
Passive Bus Off

 

Figure 2-5 The state diagram of the error confinement mechanism (ECM) in the 

CAN bus. 
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2.3 Vulnerability Assessment of the CAN Protocol 

It is essential to have a vulnerability assessment of a network to highlight security 

problems. Therefore, the CAN protocol's vulnerability assessment can be carried 

out based on confidentiality, integrity, and availability. 

Confidentiality means providing the data only to authorised people. However, the 

CAN protocol does not have inherent cryptographic methods to ensure 

confidentiality. This allows an intruder to access sensitive user data and cause 

an invasion of privacy. 

Integrity is the accuracy, completeness, and validity of the data. The CAN bus 

has a CRC to verify integrity against transmission errors, but it cannot prevent 

data injected by malicious parties, which breaks the integrity. The protocol does 

not have a comprehensive integrity check and fails to sustain integrity. 

Availability means that authorised users can use the system at all times. Given 

the nature of priority-based messaging, if a message with the highest priority is 

transmitted/inserted, the network will be inaccessible by the lower priority nodes, 

and availability is violated. 

The CAN bus failed to pass all three essential security criteria. Thus, it is clear 

that the CAN protocol does not have any security measurements against the 

attacks. 

2.4 Automotive Attack Surface and Existent Attacks 

In the 1950s, automotive electronics cost only 1% of the total car cost, while it is 

currently 35% and is expected to rise to 50% in 2030 [18]. Although the rise in 

electronics has improved comfort, functionality, and driving safety, it has created 

new attack surfaces, as shown in Figure 2-6. The protocol itself is defenceless to 

attacks; therefore, any exploit in the current/future telematics unit or infotainment 

system can disrupt the network, as summarised in Table 2-1. 
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Figure 2-6 The automotive attack surface. 

The first CAN bus attack was performed on the power window by Hoppe and 

Dittman in 2007 [3], [24]. Since then, numerous attacks have been performed. 

These attacks can be categorised as physical access attacks, where the attacker 

should access the vehicle physically, or remote attacks, which are implemented 

via wireless communication interfaces. Although attacks in the literature are 

mainly physical access, some experts have argued that physical access to the 

CAN network is not practical [25]. Therefore, current research is primarily 

focusing on remote access attacks. 
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Table 2-1 Summary of the Controlled Area Network (CAN) bus attacks. 

Ref. DoS Modification 1 Access Type Notes / Root Cause 

[4] Y N OBD II 
Does not require full CAN 

messages 

[19] N Y 

OBD II, CD, 

Bluetooth, 

GSM 

Systematical experimental 

attacks. Indirect access via the 

car service computer 

[20] N Y 
In-direct OBD 

II 
Attack via a smartphone app 

[21] Y Y 

Multiple 

remote 

sources 

Remote attack analysis of 21 

commercial cars 

[5] N Y Wi-Fi, GSM 
Access CAN network via a 

browser exploit 

[14] Y N 

OBD II, 

compromised 

ECU 

SAE J1939 data-link layer 

exploits 

[22] N Y Wi-Fi, GSM 
Ransomware attack over the 

air 

[23] N Y TPMS 
Remotely sending false TPMS 

data 

1 The modification includes replay, impersonation, and bogus information attacks. 

2.4.1 Physical Access Attacks 

Physical access attacks require direct or indirect access to the CAN bus network. 

Direct access can be obtained by the On-Board Diagnostic (OBD) port or a 

malicious node. The OBD port is the primary attack surface; hence, it has access 

to all nodes, even though network segmentation is used. 
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Koscher et al. [11] manipulated the CAN and controlled various modules, 

including essential brake control and engine control modules through the On-

Board Diagnostics II (OBD-II) port. They released the brake and prevented its 

activation while the car was running 40 mph by the continuous fuzzing method. 

The attack also includes manipulating the instrument cluster with false data, 

changing engine parameters and disabling it. 

Due to the CAN architecture, any malicious node can listen or send a message 

to disrupt the network. The attacks implemented through the OBD port can be 

replicated using a malicious node. Palanca et al. [4] applied a selective Denial-

of-Service (DoS) attack on an unmodified 2012 Alfa Romeo Giulietta. The 

research showed that any person with physical access to the network could 

disrupt it, even with a simple tool. This attack does not require a complete 

message transmission; instead, it overwrites the recessive bits and generates a 

transmission error. The contribution of this research is that it exploited the 

vulnerability of the CAN standard. After this research, an alert (ICS-ALERT-17-

209-01) [26] was announced by the U.S. government. A similar research analysis 

was carried out by Murvay and Groza [27] to show the attack's limitations on 

different bit rates and breach the authentication methods. 

Mukherjee et al. [14] implemented DoS attacks on the SAE J1939 standard [28], 

used in heavy-duty commercial vehicles. They performed three separate DoS 

attacks: (i) sending too many request messages for a supported Parameter 

Group Number (PGN) to overload the recipient ECU, (ii) sending manipulated 

false Request to Send (RTS) and causing overflow at the recipient buffer, and (iii) 

keeping the connections open via Clear to Send (CTS) messages and occupying 

the whole network. This work was one of the first studies to exploit the SAE J1939 

specification. Murvay and Groza [15] implemented impersonation and DoS 

attacks on SAE J1939. These works showed that SAE J1939 is vulnerable to 

protocol-specific attacks in addition to all CAN bus attacks. 

There can also be indirect physical access attacks. These attacks require a 

physical object to be inserted into the car, but adversaries do not necessarily 

have direct access to the network. Checkoway et al. [19] developed an indirect 
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access attack model, which included hacking the car service's IT system and 

accessing the CAN via computer. The attack model also included attacking via 

multimedia devices (CD, USB, or MP3 player). Hoppe et al. [12] implemented an 

attack with a multimedia disc. Although the attack did not breach the CAN, it may 

scare the driver by flashing a warning on the screen and playing an alarm signal. 

2.4.2 Remote Access Attacks 

Nowadays, modern vehicles contain different types of wireless interfaces needed 

for communicating with systems such as passive anti-theft, Tire Pressure 

Monitoring System (TPMS), Bluetooth, radio data, telematics, and so on. These 

wireless interfaces need to communicate with the CAN, usually via a gateway 

ECU to protect the network. However, some studies have demonstrated a 

gateway ECU hacking and gaining access to the isolated CAN [12]. 

Checkoway et al. [19] compromised the TPMS, Bluetooth, FM channel, and a 

car's cellular network through reverse engineering. They claimed that thieves 

could steal vehicles easily as doors could be unlocked through CAN messages. 

Woo et al. [20] proposed a remote attack via a malicious self-diagnostic app. If 

someone uses a malicious app to monitor/diagnose the vehicle's situation, the 

adversary takes control of the vehicle remotely and performs its attack from a 

long distance. 

Valasek and Miller [21] carried out a remote attack survey on 12 car brands and 

21 commercial cars and identified the remote attack surfaces and their difficulties 

in compromising each vehicle. The attack was three-staged. The first stage was 

to compromise the ECU responsible for a wireless interface. The second stage 

was to inject messages to communicate with the safety-critical ECU. The last 

stage was to modify the ECU to behave maliciously. While the researchers 

believed that the increasing number of cyber-physical systems in the cars would 

increase their vulnerabilities, they could not practically verify this because of the 

high number of different applications in the vehicles. Furthermore, they also 

hacked a Jeep Cherokee remotely and disabled the engine in 2014 [10]. After 

this attack, a public announcement that stated the vulnerability of motor vehicles 

against remote attacks was published [29]. 
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Savage and his team [30] took control of a Chevrolet Corvette's brakes and 

windshield wipers via a commercial telematics control unit in 2016. This attack 

indicates that the CAN's vulnerability can be penetrated by the aftermarket 

equipment and cannot be entirely addressed by the manufacturer [31]. 

Nie et al. [5] implemented a remote attack on a Tesla Model S in 2016 via wireless 

and cellular interfaces. The Keen Security Lab of Tencent [13] discovered 

multiple attack surfaces on BMW vehicles, which showed that even high-end 

commercially available cars could suffer from cyber-attacks. 

Another wireless attack method is over-the-air (OTA) software updates. OTA is a 

cost-effective and scalable solution that allows manufacturers to deliver software 

updates remotely. However, it is another attack surface where hackers can dive 

into the vehicle's communication network. Beek and Samani [22] implemented a 

ransomware attack via an OTA update. 

The remote attack surface of the modern car is more substantial than the physical 

one. With the rising connectivity in vehicles, the number of wireless attack 

surfaces is increasing day by day. In the near future, cars will be equipped with 

vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communications, 

which build vehicular ad hoc networks (VANETs). VANETs aim for traffic 

optimisation and collision avoidance. To provide these benefits, VANETs use car 

sensors and have wireless connectivity. In VANETs, spoofed messages can be 

received or transmitted, and as a result, the in-vehicle communication network 

may be disrupted. 

2.4.3 Privacy in the CAN 

Acquiring CAN network data causes not only safety issues but also the invasion 

of privacy. The modern vehicle collects data related to the driver, which passes 

through the vulnerable CAN network. An investigation [32] revealed that it was 

possible to obtain the car's precise location history and other personal data (log 

of phone calls, list of contacts, email addresses, and photos) from the connected 

phone. An adversary can steal personal information only by passively listening to 

the bus. Furthermore, researchers [33], [34] have shown that it is possible to 
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identify the driver based on the sensory data travelling through the CAN bus. 

Therefore, monitoring the in-vehicle network can invade personal privacy. 

2.5 Counter Measures for CAN Attacks 

The attacks on CAN clearly show that the protocol is very vulnerable and requires 

cyber defence mechanisms for safe driving. The studies to solve this problem 

have mainly focused on four defence mechanisms: network segmentation, 

encryption, authentication, and intrusion detection, summarised in Table 2-2. 

Table 2-2 Methods to secure the CAN bus. 

Proposed Method Benefits Disadvantages 

Network 

Segmentation 

Limit access to the 
end-user 

Increased cost, Difficulty in 
maintenance 

Encryption 
Hardened attacks, 
Confidential data 
transmission 

Increased computational power, 

Increased traffic, Weak encryption 
due to frame size 

Authentication Secure data 
transmission 

Increased computational power, 
Increased traffic 

Intrusion Detection 
Detect anomalies 
and attacks 

Complicated algorithm design, 

Cannot guarantee the security 

2.5.1 Network Segmentation 

The most straightforward protection mechanism is separating the CAN network 

into multiple subnetworks. The segmentation provides control over who can 

access a particular subnetwork and reduce the attack's damage by limiting its 

spread. The interconnection between subnetworks is controlled via a gateway 

ECU. This model currently exists in commercial vehicles. The method is simple 

to implement, but it is ineffective if the gateway ECU is compromised or 

manipulated like the hacking exhibited in [12]. Kammerer et al. [35] addressed 

this issue and proposed a star coupling router with security features. The paper 

ignored the security inside a subnetwork, but it is possible to implement a replay 

attack in a subnetwork and attack the other subnetworks bypassing the security 

check of the router. 
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Researchers at TU München proposed an automotive service bus architecture 

[36] whose two-layer architecture was designed to prevent external attacks. The 

infotainment system and all vital functions were separated from each other. All 

components could send and receive messages, but by default, they could not 

send any data as the central ECU allows whom to write to the automotive service 

bus. 

Network segmentation increases the security level, but it is not sufficient to 

protect the CAN. It also makes the maintenance of the system more complicated, 

along with the increased cost. 

2.5.2 Encryption 

The CAN protocol uses a shared broadcast network without a built-in encryption 

mechanism. This allows an adversary to eavesdrop on all the nodes and 

understand the communication. To prevent this data breach, a lightweight 

encryption system should be implemented. Although there are commercial 

software-based encryption methods (e.g., Trillium [37], CANcrypt [38]) and 

manufacturers have proprietary encryption techniques implemented in cars, there 

have been reports claiming that encryption mechanisms in commercially 

available vehicles can be broken [39],[40]. 

The limited data field is one of the problems for secure CAN encryption. This 

problem can be overcome by sending multiple CAN frames for a single message 

and may solve the problem on low traffic networks. Still, it is not a solution for the 

currently rising traffic in automobile CAN networks. Another issue is the limited 

computational power of ECUs. If we consider the lifetime of a vehicle, it is 

possible to crack a static encryption key. Therefore, dynamic key exchange is 

required. However, this is harder to implement and is computationally expensive. 

The dynamic key can also cause latency on resource-constrained ECUs, and it 

is not acceptable for safety-critical real-time systems. 

The different encryption mechanisms proposed are shown in Table 2-3. Doan and 

Ganesan [41] implemented hardware-based AES-128 encryption on FPGA chips 

for the CAN system. The hardware implementation of the method decreases 
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latency and increases throughput. However, the method changes the legacy ECU 

and is not backwards compatible. Another study used Physical Unclonable 

Functions (PUFs) [42]. This method can obtain the private key from the physical 

characteristics of the ECUs; thus, hiding the key is not a problem. Although the 

method solves the problem of generating encryption keys, it also requires 

modifying the ECU. 

Table 2-3 Encryption methods for the CAN bus. 

Ref. Encryption Method Traffic Effect Key 

[41] AES-128 and SHA-1 Increased Static Symmetric 

[43] XOR No Change Dynamically Synchronised 

[42] 
AES-256 and Elliptic-

curve Diffie Hellman 
Increased Symmetric 

[44] XOR No Change Static Symmetric 

[45] 
Tiny Encryption 

Algorithm 
Increased Static Symmetric 

[46] Triple DES Increased Dynamically Synchronised 

Encryption hardens attacks and provides privacy; however, it is not sufficient to 

protect the CAN. Even the unbreakable encryption mechanism cannot prevent 

replay attacks. 

2.5.3 Authentication 

It is not possible to identify the sender of a CAN message. If an adversary has 

access to the network, they can send malicious messages and all the nodes 

accept them as authentic. This attack can be prevented via authentication. 

VeCure [47] authentication, which has an acceptable 50 us processing delay, is 

based on trust groups where high-trust groups share a symmetric secret key. The 

method has a significant advantage with fewer key numbers, corresponding to 

the number of trust groups rather than the ECU number. However, it sends an 
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authentication message after every transmitted frame, which doubles the network 

traffic. Another drawback of the method is that it cannot protect the system if a 

node from the trust group is compromised. LiBrA-CAN [48], proposed by Groza 

et al., splits the authentication keys between groups of multiple nodes to improve 

efficiency. Although the method is quite successful, it requires high bandwidth 

and is not compatible with traditional CAN. 

Nowdehi et al. [49] identified five criteria for an authentication method to be 

implemented commercially: cost-effectiveness, backward compatibility, support 

for vehicle repair and maintenance, sufficient implementation details, and 

acceptable overhead. They analysed ten authentication methods in the literature 

using them. Not surprisingly, none of the methods could pass all five criteria. 

There are also off-the-shelf products providing hardware-based authentication 

like the S32K family from NXP [50]. The S32K family has Cryptographic Service 

Engine (CSE), a Cipher-based Message Authentication Code (CMAC) to provide 

secure authentication. It is a hardware-based system that accelerates the 

process drastically. For instance, public-key authentication can be achieved in 

less than 100 us [51] with hardware acceleration, while software authentication 

takes more than 10 ms, depending on the key size. However, the industry is 

currently concerned with the cost of ECUs. With the enhancement of hardware 

technology, it is possible to see more hardware-based methods to secure the 

CAN. 

2.5.4 Intrusion Detection System (IDS) 

Implementing security features on a safety-critical real-time system is a difficult 

task. Robust cryptographic methods are not feasible due to the limited resources 

(memory, bandwidth, and computational power) and time constraints. This leads 

to emerging research on intrusion detection system (IDS) for CAN. The main 

advantage of IDS is that it usually does not modify the current CAN controller, 

and the bus traffic does not increase. 

Intrusion detection methods can be categorised as signature-based (misuse) 

detection and anomaly-based detection [52]. Signature-based detection checks 
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for known attacks on the database; therefore, it requires regular updates for new 

attacks. Although it is quite successful in detecting known attacks, it fails to detect 

unknown attacks. Anomaly-based IDS analyses the behaviour of the network and 

recognises the deviation from expected behaviour. Accuracy is usually lower than 

that of the signature-based. In contrast to signature-based detection, anomaly-

based IDS may detect unknown attacks. 

Table 2-4 Automotive anomaly detection sensors [53]. 

Sensor Description 

Formality 
Correct message size, header and field size, field delimiters, 

checksum, etc. 

Location The message is allowed with respect to the dedicated bus system 

Range Compliance of payload in terms of data range 

Frequency Timing behaviour of messages is approved 

Correlation 
Correlation of messages on different bus systems adheres to the 

specification 

Protocol 
The correct order, start-time, etc. of internal challenge-response 

protocols 

Plausibility 
Content of message payload is plausible, no infeasible correlation 

with previous values 

Consistency Data from redundant sources is consistent 

There are different parameters that an IDS system can assess on the CAN. Müter 

et al. [53] defined eight anomaly detection sensors, as shown in Table 2-4, to 

identify the anomalies in a structured way. All these detection sensors were 

inspired by the typical behaviour of the CAN bus. Deviation from these sensors' 

normal behaviour is the sign of an intrusion, and different IDS solutions use these 

sensors to detect intrusions. These solutions can be categorised as 
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time/frequency-based, physical system characteristic, specification-based, and 

feature-based. 

2.5.4.1 Time/Frequency-Based IDS 

Automobiles have rigid safety rules, and most of the ECUs transmit periodic 

signals. Any change in the frequency can be interpreted as abnormal behaviour, 

in other words, an intrusion. The basic IDS analyses the CAN messages' 

frequency as presented in [54][55]. 

Offset ratio and time interval based IDS [56], proposed by Lee et al., analyses 

the response time of the transmitted remote frame where the simple and effective 

algorithm can detect attacks and type of attacks; however, the method increases 

bus traffic by injecting remote frames for analyses. 

The time/frequency analysis provides valuable information about the CAN. 

However, the vehicle's situation (e.g., idle, running) and the priority scheme of 

the CAN may significantly change the timing information and affect the result of 

time/frequency-based IDS. The method cannot detect attacks where the 

frequency is not changed, like a masquerade attack in [57]. 

2.5.4.2 Physical Characteristic Based IDS 

The CAN network's physical characteristic may detect intrusions; hence, each 

transceiver has a different signal shape even though they transmit the same data. 

This can be caused by random manufacturing variations, cabling, and ageing. 

In [58], Choi et al. proposed VoltageIDS, which uses unique electrical 

characteristics of the CAN signal like a fingerprint. The different locations of the 

ECUs with varying lengths of wire results in different resistance [59] and the 

resistance changes the signal features. They analysed eight signal features like 

positive and negative slope values and voltage values at a dominant level. The 

method has zero false-positive rates and can differentiate between attacks and 

errors; however, it requires an oscilloscope to gather the network signal and has 

heavy signal processing. 
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The CAN does not have a shared master clock, and each ECU uses its own 

quartz crystal. Cho and Shin [57] suggested the use of clock skew to detect 

intrusions. Although ECUs run the same frequency, they may have random 

drifting exceeding 2400 ms in a day [60]. They fingerprinted the transmitter ECU 

via the clock skew and detected the intrusions. Although they could reach 97% 

of the anomaly detection with a false-positive rate of 0.55%, the method only 

worked for the periodic messages. However, this method can be tricked by 

mimicking the clock skew, as shown in [61]. 

The physical characteristic of the CAN provides substantial information about 

ECUs. However, environmental factors like temperature and humidity and ageing 

of the components can change the physical characteristics; therefore, the IDS 

may fail. They can also not detect the attacks from the software layer because 

the authenticated ECU will transmit the malicious messages, and the IDS does 

not find any changes to the signal characteristics. Similarly, the physical 

characteristic-based IDS requires heavy signal processing. As a result, it may 

cause latency or require expensive hardware. 

2.5.4.3 Specification-Based IDS 

Larson et al. [62] suggested specification based attack detection and 

implemented specification rules based on the CAN Open protocol. This method 

has limited attack detection capability and requires all the ECUs to have 

detectors. The method is also not powerful enough to prevent attacks; hence, 

there are protocol-compliant attacks like [63]. 

Studnia et al. [64] proposed a language-based intrusion detection and derived 

the network's language characteristic from the ECUs' specifications and 

generated the forbidden sequences. If one of these sequences occurs, an 

intrusion is detected. 

2.5.4.4 Feature-Based IDS 

Feature-based system analysis examines the network parameters like busload, 

frequency, number of dropped messages, and other parameters like abnormal 

messages and payload. This is usually based on artificial intelligence techniques. 
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Generative Adversarial Nets (GAN) based IDS [65] was proposed by Seo et al., 

who used the deep-learning model. The method is easy to expand and difficult to 

manipulate by an attacker thanks to a black-box characteristic of the detection 

mechanism. Bloom filtering [66], proposed by Groza and Murvay, analysed the 

periodicity and payload of CAN messages. This method provides a memory-

efficient analysis of data. Although both methods require heavy computation, they 

look promising in terms of tackling the CAN security problem. 

Table 2-5 presents the comparison of the IDSs. Each method has a unique feature 

to suppress other methods but also comes with a cost. For example, physical 

characteristic-based IDS can easily detect an inauthentic node, but it fails to 

detect an attack from a software layer. The best IDS system should be a hybrid 

system that takes advantage of different methods. Although IDS can mitigate a 

security problem, it cannot provide confidentiality. To have complete security, 

cryptography is required. 
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Table 2-5 Comparison of the intrusion detection systems for CAN protocol. 

Ref. 
Algorithm 

Analyses 
Parameters Advantages Downsides 

[65] 
Generative 

Adversarial Nets 
A pattern of CAN ID 

CAN train itself for unknown 

attacks 
Expensive hardware 

[67] 

Adaptive Network-

based Fuzzy 

Inference System 

Busload, message 

frequency analysis 

Detect attack type, simple 

solution 

Works for simple attacks, updated each 

second, needs a feature database 

[68] Entropy-based Entropy of IDs, payload 
Does not require much 

information about traffic data 

Very vulnerable to some attacks which 

include random bits 

[69] 
Long Short-term 

Memory Networks 
Payload Does not require pre-knowledge Does not understand the natural change 

[62] 
Specification-

based 
Protocol policy Less dependency IDS should be placed at every ECU 

[70] Hamming Distance Payload Low computation Low detection 

[56] 
Offset ratio and 

time interval 
Remote frame timing 

Simple efficient algorithm with 

low-cost hardware 
Increased traffic 
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[71] 
Analysis of ID 

Sequence 
Sequence of ID 

Low memory and computation 

requirement, detection of inserted 

few malicious messages 

Very vulnerable to attacks which have a 

similar sequence of normal traffic 

[58] 

Support Vector 

Machine and  

Boosted Decision 

Tree 

Electrical signal 

Robust to some attack types, first 

IDS to differentiate between an 

error and an attack 

High cost and vulnerability to 

environmental changes 

[57] 
Recursive Least 

Squares 
Clock skew Robust to some attack types, Only works on periodic signals 

[66] Bloom Filtering 
Message identifier, 

payload 

Low memory usage for 

membership testing  
Complex algorithm 

[55] 
Probability Density 

Function 

Reception cycle period 

(frequency analysis) 
Online learning 

Hard to authenticate a non-periodic 

message 

[54] Flow-based Message frequency Simple algorithm Only works on periodic signals 
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2.6 Discussions on CAN Security Research 

Automotive security is getting more attention, and standardisations are coming to 

tackle cybersecurity problems. Cybersecurity guidebook for cyber-physical 

vehicle systems [72] and the fundamental principles of automotive cybersecurity 

specification (PAS 1885:2018) [73] were published by SAE in 2016 and British 

Standards Institute in 2018 consecutively. ISO 21434 Automotive Cybersecurity 

[74] is under development and expected to be released by 2020. 

The CAN protocol has also gained attention from the industry to its vulnerabilities, 

and companies are now manufacturing high-end secure ECUs. The Secure 

Hardware Extension (SHE) [1] specification developed by the Hersteller Initiative 

(HIS) becomes an open standard and is used by many companies in their ECUs 

like NXP MPC5646C [51] microcontroller. Some commercial ECUs have built-in 

IDS; the NXP TJA115x [75] series can prevent spoofing attacks and be used as 

an IDS. There are also commercial proprietary intrusion detection systems 

[76],[77]. 

Although there have been steps taken to protect the CAN, there is still more to 

do. The industry does not share some of its research, and academia does not 

have enough resources. As such, there are not sufficient attack data and 

benchmarks. Implementing attacks on real vehicles can be unfeasible for safety 

concerns and costs. To overcome these challenges, there should be more 

research on modelling CAN bus attacks like in [78] and creating attack databases 

like in [79], [80]. Sharing datasets as an open-source (e.g., like in [65]) will help 

researchers; hence working on shared datasets will give a reference point to 

compare their research. 

2.7 Conclusions 

The CAN protocol facilitating ECUs in modern vehicles is not geared up and well-

protected against the complex and evolving nature of cyberattacks. The existing 

security features incorporated in vehicles are not fit and adequate to resist and 

defy them. This is attributable to the lack of encryption and authentication 

mechanisms, which provide multiple opportunities for several types of attacks to 
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materialise and as a result, jeopardise the individual data privacy and the safety 

of the vehicle occupants. These blemish the manufacturers' reputation and 

downgrade vehicle reliability, followed by substantial financial losses. 

It is observed that the existing trend of attacks is mainly physical-access oriented; 

however, with the growing connectivity in vehicles, it is also noted a considerable 

increase in wireless attacks. This developing trend indicates wireless attacks 

outpacing physical access attacks in the near future. 

Moreover, an in-depth analysis of the CAN bus vulnerabilities to cyberattacks 

points to the limitations posed by the protocol. The root cause evaluation of 

various attacks and the critique of potential solutions have revealed the industry 

and academia's inadequacies and constraints. They are not driven toward mutual 

sharing of an attack database, allocating testing and trial resources, and 

developing benchmarks for an open-source. 

There are four main countermeasures for CAN attacks: network segmentation, 

encryption, authentication, and IDS. They are, however, heavy on overheads with 

respect to the availability of the existing resources. Further analysis has revealed 

IDS as the most promising option compared to the rest of the solutions above-

mentioned. It is noteworthy that the IDS may not provide complete security, but it 

can prevent several CAN vulnerabilities with acceptable overhead. It is presumed 

that future vehicles will have IDS solutions not only to secure the vehicle, but also 

to provide data to the manufacturer to tackle cyberattacks. 
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3 A framework and Comprehensive Benchmarking 

Dataset for CAN Bus Intrusion Detection Systems 

This chapter proposes a framework to assess an IDS and the generation of 

benchmarking dataset. IDS is becoming the primary choice to address CAN's 

vulnerabilities; however, a lack of testing methodology prevents assessing IDS 

properly. The testing framework proposed in this chapter presents performance 

evaluation metrics for quantitative evaluation with required test conditions, 

including various attack types and dependency tests. As vehicles are resource-

constrained cyber-physical systems, resource usage is also considered in the 

assessment. The second part of the chapter focuses on attack generation for 

benchmarking dataset, which is an essential part of successful testing. Various 

attack scenarios are implemented according to the proposed testing framework. 

The organisation of the chapter is presented in Figure 3-1. 

 

Figure 3-1 Organisation of Chapter 3 

3.1 Introduction 

Security of the connected vehicle is a significant concern and researchers are 

looking for potential solutions. The most widely used in-vehicle communication 

protocol, Controller Area Network (CAN), lacks intrinsic security features like 

encryption and authentication; thus, vehicles are vulnerable to cyberattacks. 

Researchers proposed various Intrusion Detection Systems (IDSs) to identify 

Chapter 3

3.1 Introduction

3.2 Testing Framework for CAN IDS

3.3 CAN Bus Attack Generator and Benchmarking Dataset
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intrusions and secure the CAN network. Although the research on IDS for CAN 

bus is rising exponentially, there is no accepted testing methodology and enough 

dataset. The field is still in its infancy and produced works lacks comprehensive 

evaluation and comparative analysis. Blevins et al. [1] compared four time-based 

IDS by implementing each method on the same dataset. The work presents the 

difficulty of comparing methods that use the same parameter. Berger et al. [2] 

evaluated the machine learning algorithms to detect anomalies in CAN. However, 

the evaluation was not comprehensive as the work only relies on accuracy, which 

alone is not reliable. A 2018 survey [3]  shows that only four out of the 65 surveyed 

papers compare their works with baseline methods. Consequently, it becomes 

difficult to verify and compare existing IDS solutions. 

The testing should be objective and repeatable with quantifiable metrics to verify 

and validate an IDS. Therefore, the framework in this chapter starts with the 

quantitative performance metrics. This allows easy comparison between the 

various methods. After that, comprehensive test conditions are presented to 

assess dependency and attack coverage. Lastly, the framework focuses on two 

critical parameters resource usage and timing behaviour. 

The viable IDS assessment should be carried out on a comprehensive dataset 

with all the variations, including attack types, vehicle models, driving styles. 

However, such a data set does not exist. The lack of a publicly available 

benchmarking dataset costs time, effort, and money. There are a few reasons 

why there is no comprehensive dataset. First, the implementation of attacks on a 

vehicle requires a carefully designed testing environment. Some of the attacks 

[4] can only be carried out on closed roads (like de-commissioned airport runway) 

under high safety measures that still lack the real traffic environment. Second, it 

is not always possible to find these datasets because of Intellectual Property (IP) 

rights, commercial issues for brands. Although the researchers share very few 

datasets, these datasets have numerous problems [5]. This pushes researchers 

to use a proprietary dataset that prevents comparison between methods because 

generally, attack implementation is not parameterised and each vehicle has 

different network characteristics.  
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This chapter has two main objectives: comprehensive testing methodology and 

CAN bus attack generation to create benchmarking dataset. At first, the chapter 

presents performance evaluation metrics to have a quantitative testing 

methodology. Then it shows various test conditions to have a reliable result. 

These conditions measure the attack coverage, dependency (to vehicle, driver, 

and ECU), resource usage (memory and computational power), and timing 

behaviour. Later, the chapter then focuses on the generation of CAN bus attacks 

aligned with the testing methodology. The dataset is an essential part of the 

testing. If it is not high quality, the testing will fail, and the result will be unreliable.  

3.2 Testing Framework for CAN IDS 

It is vital to test an IDS to see its capabilities and limitation. Proper testing not 

only presents the method works or not, but it also presents how well the method 

works. However, there is no standardised or commonly used testing methodology 

for automobile IDS solutions. This causes two main problems. First, many IDS 

solutions are not appropriately tested, which generates misleading results. The 

second problem is that it is difficult to compare existing solutions which hardens 

researchers' tasks to evaluate their methodologies. It also hinders reaching the 

best IDS.  

This chapter presents a repeatable and objective testing methodology to solve 

these problems. Before testing an IDS, it is essential to have quantitative 

evaluation metrics so that various methods can be objectively compared. As 

vehicles are real-time cyber-physical systems with limited resources, the 

performance evaluation alone is not sufficient. Each task should be completed by 

the deadline to meet real-time constraints by budget microcontrollers, some of 

which have only an 8-bit controller and a few kbytes of memory. In this condition, 

it is essential to analyse the timing behaviour and resource usage of the IDS in 

addition to the correctness of the IDS decision. 

After identifying evaluation metrics, an IDS should be tested on datasets, 

covering all known attacks with various implementation settings. This will 

increase the reliance on the IDS. 
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3.2.1 Performance Evaluation Metrics 

The main aim of the IDS is to alert on intrusion; that is what they are designed 

for. At the same time, the IDS should not generate an alarm for authentic 

messages. Traditionally, accuracy is used to measure performance; however, 

accuracy alone may lead to misinterpretations, especially when the data is not 

symmetrical. Therefore, we need a more comprehensive assessment. If we have 

a binary classifier for the IDS, there are four possible outcomes of the system as 

presented in Table 3-1 and explained below: 

True Positive (TP): A malicious message detected correctly.  

False Positive (FP): An authentic message is detected as a malicious message.  

True Negative (TN): An authentic message is detected correctly.  

False Negative (FN): A malicious message is regarded as an authentic 

message. 

Table 3-1 Confusion matrix for binary IDS decision 

 Actual Situation 

Attack  No Attack 

ID
S

 

D
e
c

is
io

n
 Attack TP FP 

No 

Attack 
FN TN 

 

Using this terminology, the sensitivity (recall) of the IDS, which presents the 

detection rate of the attacks, can be defined as in Equation(3-2). False Positive 

Rate (FPR) in Equation (3-3) indicates the likelihood of false alarms. Precision in 

Equation (3-4) presents how reliable the true positive result of the IDS is.  

 



53 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

(3-1) 

Sensitivity =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(3-2) 

FPR = 
𝐹𝑃

𝑇𝑁 + 𝐹𝑃
 

(3-3) 

 Precision =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

(3-4) 

3.2.2 Attack Coverage 

There are multiple attack types applied to the in-vehicle networks. Suppose an 

attacker has direct access to the CAN bus. In that case, they can read and write 

to the CAN network, proceed with overwriting and invalidating legitimate 

messages, and further disable a CAN node. In this circumstance, the following 

attacks are possible to implement: 

Denial of Service (DoS): DoS attack can be carried out by taking advantage of 

the CAN arbitration scheme (as described in Section 2.2). Inserting high priority 

messages will hold the bus in busy condition and bar the lower priority nodes 

from message transmission; therefore, other low-priority nodes cannot access 

the network. Murvay presented an example of this attack in [6]. 

Drop/suspension: The suspension attack prevents legitimate message 

transmission by attacking the targeted ECU on the physical or software layers. It 

is a subcategory of the DoS attack; hence, it is not possible to get service from 

the suspended node. The attack can also be implemented by causing protocol 

error which takes advantage of the Error Confinement Mechanism as shown by 

Palanca et al. [7]. They disabled an ECU by transmitting dominant bits over the 

recessive ones, which infracts the bit-stuffing rule explained in Section 2.2.1. 

Fuzzing: An attacker can send random values without any in-depth knowledge 

and confuse the network. This attack does not require reverse engineering to 

understand the function of each ID; therefore, it is easy to implement. However, 



54 

it may not cause a functional problem apart from busload; hence inserting fuzzing 

messages will increase the frequency of the CAN message like the one in [8]. 

Replay: An attacker can monitor the CAN messages and send them back to the 

network later on, such as [9]. Hence, there is no freshness check on the protocol; 

other nodes will accept the replayed message. This attack type generally targets 

certain ID/s; therefore, it is also called a targeted ID attack. 

The replay attack does not require modification of authentic ECU, so it can be 

implemented by any malicious node that uses authentic ECU ID. This will lead to 

concurrent message transmission from both authentic and malicious ECUs. As 

ECUs accepts the latest messages, the attack will cause unstable system 

behaviour. If an attacker wants to transmit certain data to be processed, it should 

have an equal or higher frequency value than the authentic messages. The 

stealthiest version of replay attack requires malicious message transmission 

soon after the legitimate message.  

The coverage test determines which attacks can be detected by the IDS under 

test. A successful IDS ideally should detect all the attacks mentioned above. Each 

attack has different behaviour; therefore, IDS should be tested in each of them to 

assess IDS's coverage. 

3.2.3 Dependency Test 

The characteristic of the in-vehicle network depends on various parameters like 

the driver, ECU/ID, vehicle make and model. Each parameter should be 

assessed to present the viability of the tested methodology.  

3.2.3.1 Vehicle Dependency 

Each vehicle make and model has different behaviour by design. For instance, 

there can be a few dozen ECUs for low-end vehicles. However, the number can 

go further than one hundred for high-end ones. The number of ECUs significantly 

change the network traffic. Apart from the number, ECU types and their 

configuration also affect traffic. This causes various network traffic patterns for 

different vehicles.  
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3.2.3.2 Driver Dependency 

When people drive the same vehicle model, each may generate different traffic 

because of their driving style, affecting the ECU communication. This effect is so 

significant that the driver can be recognised from the network traffic [10], [11]. As 

this significant change may affect the IDS result, IDS should be tested for driver 

dependency. The test can be carried out using the exact vehicle with different 

drivers and implementing various attack conditions.  

3.2.3.3 ECU/ID Dependency 

ECUs have various configurations to transmit messages. Some transmit 

periodically, some are event-driven, and others are sending based on other CAN 

frames. The configuration may change based on the vehicle situation (running or 

idle), affecting the bus traffic. Each ECU also has different prioritisation 

represented by ID number. If a driver activates an ECU with high priority, this may 

delay the transmission of the low priority IDs. Therefore, this test is essential for 

the time/frequency-based IDS. 

3.2.4 Timing Analysis 

There are two main parameters for timing analysis. These are time-to-detection 

and processing time. The Time-To-Detection (TTD), the time difference between 

the attack start and the time that the algorithm detects an attack [12] calculated 

by the following formula: 

𝑡𝑇𝑇𝐷 =  𝑡𝐷 − 𝑡𝑠 (3-5) 

where 𝑡𝑇𝑇𝐷 is TTD,  𝑡𝑠 is the time attack started, and 𝑡𝐷 is the time the algorithm 

detected the attack. The average of TTDs results in a key performance indicator 

Mean Time-To-Detect (MTTD) calculated by the following formula:  

𝑀𝑇𝑇𝐷 = 
1

𝑛
 ∑ 𝑡𝑇𝑇𝐷(𝑘)

𝑛

𝑘=1

 
(3-6) 

It is vital to prevent misinformation from spreading and causing disruptions in the 

vehicle; therefore, a successful IDS should have low MTTD.  
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The processing time is also an important parameter to evaluate timing behaviour. 

Contrary to TTD, which is related to the algorithm and varies by threshold and 

other parameters of the IDS, the processing time depends on the hardware and 

can be decreased by optimising computational logic. As ECUs have quite 

different processors/controllers than personal computers, actual processing time 

requires implementing the IDS algorithm on an ECU. 

3.2.5 Resource Usage 

Vehicles are resource-constrained cyber-physical systems. Distributed ECUs 

have limited memory, computational power, and bandwidth. Therefore, optimum 

IDS should have low resource usage. 

3.2.5.1 Traffic Effect (Bus Load) 

Electric vehicles and autonomous vehicles are the future of the vehicle industry, 

and those vehicles require higher bandwidth. However, the CAN bus standard is 

limited to 1 Mbit/s, and the speed gets significantly slower for low-speed CAN 

(ISO 11898-3). With the increased number of ECUs and sensors, the busload 

becomes a problem to have reliable communication. CAN-FD[13], which has up 

to eight times payload speed improvement, is proposed to overcome this 

bottleneck. However, it comes with an increased hardware cost, various 

signalling and network topology problems [14]. The arbitration process and other 

control bits are still limited to standard CAN because of the backwards 

compatibility, which curbs the effective bus speed. Therefore, the bandwidth is 

precious, and a successful IDS should not increase the traffic, which causes too 

much busload. If an IDS transmits CAN frames to function like in [15], it can 

increase traffic, delaying the message transmission from lower IDs. 

3.2.5.2 Memory Usage and Computational Power  

The ECUs are responsible for various applications; therefore, there is a wide 

range of microcontrollers from 8-bit single-core to 32-bit multicore architecture. 

Although there are powerful ECUs, most of the ECUs in the vehicle have low-end 

processors/microcontrollers with limited memory and computational power 

because of the cost (e.g. 9S08SG4[16] which has 4kb memory). Therefore, it is 
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not feasible to design an IDS that demand high memory and computational 

power. Resource usage is especially significant for node-based IDS as it requires 

each node to have the algorithm running, whereas network-based IDS requires 

only the gateway to run the algorithm. 

3.3 CAN Bus Attack Generator and Benchmarking Dataset 

An essential step for developing an IDS is to test it on comprehensive datasets 

on vehicles considering various working conditions, attack models, vehicles 

made, and driving styles. The collection of comprehensive datasets requires 

running a testing vehicle equipped with measurement instruments on dedicated 

roads where safety measures are taken. It is a challenging task and no publicly 

available dataset presents all the variations. As a result, there is no standardised 

benchmarking data set and the issue is raised by researchers [17]. There are 

very few datasets available as open-source, as summarised in Table 3-2. 

Although these datasets are very valuable, they have limitations and artefacts [5]. 
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               Table 3-2 Summarisation of open access CAN bus dataset for IDS 

Dataset Implementation 

Type 

Advantages Disadvantages 

OTIDS [15] Real vehicle Stealthy attacks Additional remote frames, 

no label 

Survival [18] Real vehicle Labelled attacks on multiple 

vehicles 

Inadequate data samples, 

abrupt change 

CANET [17] Simulation Signal attack, stealthy attacks Suitable only for signal-

based IDS 

Car-hacking [19] Real vehicle Labelled extended dataset 

with comprehensive attack 

coverage 

Gaps and artefacts in the 

data 

Intrusion dataset [20] Simulation Clear definition of attack 

methodology with 

comprehensive attack 

coverage, multiple vehicles 

Only one attacks instance 

for each attack type 
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The most widely used datasets are published by Hacking & Countermeasures 

Research Lab (HCRL). CAN Dataset for intrusion detection (OTIDS) [15] has 

stealthy attacks, including DoS, fuzzy, and impersonation attacks. The dataset 

has a good amount of data with 250 seconds of attack free then attacks are 

implemented. Unfortunately, the dataset does not have a label for malicious 

frames. There are also a significant number of remote frames inserted to detect 

anomalies; therefore, this dataset may behave unexpectedly for some algorithms. 

Survival analysis dataset for automobile IDS has five seconds of injected 

malicious CAN frames every 20 seconds on three different commercial vehicles. 

Therefore, this dataset is suitable for the vehicle dependency test. However, the 

implementation of the attacks is causing abrupt changes, and it has a short 

duration of attack-free data, which limits the training. Car-hacking dataset [19] 

includes the well-recognised attack models, including Denial of Service (DoS), 

spoofing, and fuzzy attacks. It is a very long dataset that provides sufficient 

attack-free data and many attack instances that last 3-5 seconds. Although the 

dataset has artefacts of gaps [2] in the data and attacks are implemented during 

vehicle was stationary [5], the research community well deserves this dataset. It 

has already been cited for many different research pieces. 

3.3.1 Attack Generation 

One of the downsides of datasets is the limited number of attacks instances 

(usually only one) for each attack model, which is insufficient for testing IDS' 

capabilities. The limited test data also causes an overtraining problem, resulting 

in significantly poor results on different datasets. To have a reliable dataset, we 

studied the CAN traffic for vehicular applications and explored realistic traffics 

under various driving scenarios and attack models to get a view for intentionally 

extending the initial datasets to the one that covers more comprehensive attack 

datasets. The methodology to implement each attack type is as follow: 

DoS Attack: The DoS attack can be implemented by inserting high priority CAN 

frames. The available datasets implement the DoS attack by inserting messages 

that belong to the most priority ID, "0000". However, this can be detected easily 

by checking the message IDs. Another downside of these datasets is they have 
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an obvious implementation of DoS attack with a long attack duration. The obvious 

attack implementation causes improper testing of IDSs.  

We implemented comprehensive DoS attacks. The attacks include traditional 

implementation with varying attack duration as well as a stealthier performance 

with existing IDs in the CAN network. The attacks were implemented for a period 

of 0.25s, 0.5s, and from 1s to 5s with a step size of 1s. 

Replay Attack: We implemented replay attacks with various attack strengths and 

durations. The inserted malicious message' frequency increases step by step 

from the attacked node's base frequency to multiple times faster than the base 

frequency for the replay attack. 

While implementing replay attacks, we also consider the CAN arbitration scheme 

and message timing to get as close as possible to real implementation. For 

instance, the algorithm checks the time difference between the targeted ID and 

the following message. If the gap between these two messages is lower than the 

inserted message transmission time, it will consider an arbitration scheme. The 

highest priority ID will transmit, and the lower one will be shifted.  

Fuzzy Attack: Two methodologies can be used to implement fuzzy attacks. One 

is implementing random CAN messages from random IDs, which is a simple 

attack to detect with an ID detector. The second attack is executed with random 

messages from only existing IDs. This version is stealthier than the previous one. 

Like DoS attack, fuzzy attacks are implemented for a duration of 0.25s, 0.5s, and 

from 1s to 5s with a step size of 1s. 

Suspension Attack: The suspension attack can be carried out by deleting the 

messages related to a particular ID. This action will be like when a node is 

silenced; however, it ignores the relationship between the ECUs. The attack can 

be implemented with various IDs to test ID/ECU dependency. The suspension 

attack is executed for multiple attack durations, similar to other attack types.  
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3.3.2 Implementation 

The attack generation method presented in Section 3.3.1 is a framework to 

generate a structured benchmarking dataset. It can be used to implement attacks 

on existing datasets to create synthetic attacks or a methodology to follow while 

injecting the attacks into a running vehicle. As there are difficulties in executing 

an attack on an actual vehicle, the benchmarking dataset is generated in a 

simulation environment on Matlab. 

The open-source datasets from two independent research centres [19], [20], 

which are well deserved by the research community and have already been cited 

for many different research pieces, are used in the experiment. The Car-hacking 

dataset [19] is used without any changes, and the other is used to generate 

multiple synthetic attacks. Having multiple datasets allows us to develop a 

benchmarking dataset consisting of numerous vehicle models and driving styles 

while avoiding manipulation for any dataset. 

The open-source datasets contain CAN frames with a timestamp in CSV file 

format. The raw data is imported to Matlab, and the code in  Appendix A.1 inserts 

malicious messages for DoS, replay, and fuzzy attacks according to the 

methodology presented in Section 3.3.1. The Matlab code also deletes messages 

belonging to the attacked node for suspension attack. 

3.3.3 Benchmarking Dataset 

By applying the technique to the Automotive Controller Area Network (CAN) bus 

intrusion dataset v2 [20], consisting of real CAN traffic from two commercially 

available vehicles, comprehensive synthetic attacks are generated, as shown in 

Table 3-3. The resulted synthetic attacks allow us to see the capabilities and 

limitations of the IDS by testing it on different attack scenarios. The synthetic 

attacks summarised in Table 3-3 are more challenging to detect than the original 

attacks because attack durations are shorter, and the traffic effect is minimal. It 

also provides more attack episodes to have a statistical result. 
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Table 3-3 Generated synthetic attacks based on Automotive Can Bus Intrusion 

Dataset v2 

Data 

Source 
Attack Type  # of Messages 

Malicious 

Messages  

Attack 

Duration 

Vehicle 1 

Vehicle 2 

No attack 2690069 

386567 

- 

- 

- 

- 

Vehicle 1 

Vehicle 2 

Denial of 

Service 

806999 

115971 

4000 - 40000 

4000 - 40000 

1s to 10 s 

1s to 10 s 

Vehicle 1 

Vehicle 2 

Suspension 806999 

115971 

50 – 500 a 

40 – 400 a 

1s to 10 s 

1s to 10 s 

Vehicle 1 

Vehicle 2 

Replay 806999 

115971 

8-30 

8-30 

75 ms 

66 ms 

  a Number of maliciously deleted messages.  

Apart from the synthetic attacks, it is still important to use a real attack dataset to 

test the algorithm in a real-world scenario where the targeted vehicle is running. 

Although synthetic attacks mimic the real ones, they cannot mimic the knock-on 

effect, which may slightly affect the results. The Car-hacking dataset [19], one of 

the most widely used dataset, can be used. As the dataset is used in many IDS 

research, it also helps to have comparative analysis with other research. As 

summarised in Table 3-4, the dataset has data from an actual vehicle while 

message injection attacks were performed. DoS attack was implemented by 

injecting the highest priority CAN messages, while fuzzing attack was executed 

by random CAN ID and payload values. A spoofing attack was implemented by 

inserting malicious messages on relevant CAN IDs for Gear and RPM.  
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Table 3-4  Car-Hacking dataset from real vehicle attack. 

Attack Type  # of Messages Malicious Messages  Attack Duration 

DoS Attack 3665771 587521 3s to 5s 

Gear Spoofing 4443142 597252 3s to 5s 

RPM Spoofing 4621702 654897 3s to 5s 

Fuzzing Attack 3838860 491847 3s to 5s 
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4 WINDS: A Wavelet-based Intrusion Detection System 

for Controller Area Network (CAN) 

Vehicles are equipped with Electronic Control Units (ECUs) to increase the 

overall vehicular system's functionality and connectivity. However, the rising 

connectivity exposes defenceless internal Controller Area Network (CAN) to 

cyberattacks. An Intrusion Detection System (IDS) is a supervisory module 

proposed for identifying the CAN network's malicious messages without 

modifying legacy ECUs and causing the traffic overhead. The traditional IDS 

approaches rely on time and frequency thresholding, leading to high false alarms, 

whereas state-of-the-art solutions may suffer from vehicle dependency. This 

chapter presents a wavelet-based approach to locating the CAN traffic behaviour 

change by analysing the CAN network's transmission pattern. The proposed 

Wavelet-based Intrusion Detection System (WINDS) is tested on various attack 

scenarios using real vehicle traffic from two independent research centres while 

expanding toward more comprehensive attack scenarios using synthetic attacks. 

The technique is evaluated and compared against the state-of-the-art solutions, 

along with the baseline frequency method. Experimental results show that 

WINDS offers a vehicle-independent solution applicable for various vehicles 

through a unique approach while satisfactorily generating low false alarms. The 

organisation of the chapter is presented in Figure 4-1. 

 

Figure 4-1 Organisation of Chapter 4 

Chapter 4

4.1 Introduction

4.2 Background

4.3 Securing the CAN Network via Wavelet Analysis
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4.1 Introduction 

The vehicles are getting more connected and autonomous year by year thanks 

to communication between Electronic Control Units (ECUs), which controls one 

or more vehicle functions such as engine control, telematics control, and airbag 

deployment. There are various established in-vehicle communication standards 

such as Controller Area Network (CAN), FlexRay, Local Interconnect Network 

(LIN), and Media Oriented Systems Transport (MOST) [1]. Among these, CAN is 

the most widely used in-vehicle communication protocol [2] because of its 

recognised advantages in robustness, suitability for real-time networks, easy 

maintenance, and low-cost implementation. However, it does not have any 

intrinsic security features to protect against cyberattacks. The vulnerabilities of 

the CAN were presented for the first time by Hoppe et al. in 2007 [3], [4]; since 

then, researchers have demonstrated a variety of physical and remote access 

attacks [5]–[7]. The increasing number of attacks shows that the protocol is 

defenceless to cyber attacks. 

Although the problem's root cause is a lack of encryption and authentication, 

cryptographic methods are not feasible. The problem is mitigated with an 

Intrusion Detection System (IDS). IDS can provide adaptable protection by 

monitoring the CAN network and labelling the malicious messages without 

modifying the legacy ECUs.  

Different IDS approaches are applied to mitigate the security problem of the CAN 

network. Some of these solutions are developed based on promising machine 

learning techniques like Hierarchical Temporal Memory (HTM) [8], Generative 

Adversarial Nets (GAN) [9], Long Short-term Memory (LSTM) [10], and other 

deep neural networks [11], [12]; however, such methods initially suffer from high 

computational power. Additionally, these methods are heavily vehicle dependent 

and require specific training for different vehicle makes and models. Similarly, 

entropy-based IDSs [13]–[15] need training to detect anomalies. They are also 

highly vulnerable to attacks that do not change the entropy, for instance, replay 

attacks. Others applied specification-based IDS solutions [16], [17] by creating 

rules based on the protocol specification. However, these solutions are protocol-
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dependent and can fail if an attacker mimics the sequence of messages. Although 

IDS promises to address the CAN's vulnerabilities by labelling malicious 

messages despite the limited resources, available IDSs have major weaknesses 

[18], such as high false-positive rate, vulnerability to certain attack types, and 

vehicle dependency. Many IDS solutions do not even consider the detection time, 

which has an enormous impact on real-time systems. 

Our vision to overcome the problem is to explore techniques that speed up attack 

detection time and reduce the IDS' decision-maker unit's dependency on prior 

knowledge, with an aim to reduce the rate of false alarms, which ultimately 

increases attack detection accuracy. In this regard, the chapter contributes to 

identifying malicious messages by analysing network traffic behaviour using 

wavelet analysis rather than its frequency value. The main contributions of the 

chapter are the followings: 

• A novel fast detection wavelet-based IDS for in-vehicle networks 

• A vehicle independent IDS approach for attack detection without prior 

knowledge 

4.2 Background 

4.2.1 Wavelet Transform 

Wavelet analysis provides a frequency analysis of the signal and gives 

information about breakpoints, trends, and self-similarity. It is used in various 

fields, including information security, oceanography, medicine, and finance. 

Unlike the Fourier Transform, it gives frequency analysis on the time domain. 

Continuous Wavelet Transform (CWT) converts signal 𝑓(𝑡) into wavelet 

coefficients 𝐹(𝑎, 𝑏) which is a function of scale 𝑎 and position 𝑏 as defined below:  

𝐹(𝑎, 𝑏) =
1

√𝑎
  ∫ 𝑓(𝑡)

∞

−∞
 𝜓∗ (

𝑡−𝑏

𝑎
)  𝑑𝑡   [19] (4-1) 

where 𝜓 is called mother wavelet, which is any function that satisfies: 

∫ 𝜓 (t) 𝑑𝑡
∞

−∞
= 0      [19] (4-2) 
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∫ 𝜓2 (t) 𝑑𝑡
∞

−∞
= 1   [19] (4-3) 

Scaling means compressing or stretching the mother wavelet. While the 

compressed wavelet provides rapidly changing high-frequency information, the 

stretched one gives details of slow changes. The scaling feature offers local and 

global details of the signal. Unlike Discrete Wavelet Transform (DWT), which has 

a decreasing number of coefficients with increasing scaling factor, CWT has the 

same number of coefficients at each scale. This redundancy (i.e. has the exact 

time resolution as the original data) of CWT provides a more accurate time-

frequency spectrum. 

4.2.2 Intrusion Detection and Related Work 

An IDS can be categorised as signature-based and anomaly-based. As shown in 

Figure 4-2.a, Signature-based IDS has an attack (signature) database and works 

like anti-virus software. If an attack from the database occurs, it can identify the 

attack. On the other side, anomaly-based IDS, as shown in Figure 4-2.b, 

characterises the system's behaviour and compares it with baseline and alerts if 

the deviation from the baseline exceeds a certain threshold. Although signature-

based IDS is quite successful for known attacks, it cannot detect unknown attacks 

and requires a regular database update. Hence, it is impossible to know that all 

the attacks and regular updates can be a hassle; anomaly-based IDS solutions 

have advantages over signature-based ones. 
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As summarised in Table 4-1, the current IDS solutions use various parameters to 

analyse the CAN network. Research in [20]–[22] takes advantage of the 

network's physical characteristics. Thanks to random manufacturing variations, 

cabling, and ageing, each transceiver has a slightly different signature on the 

signal even though they transmit the same data. Analysing these signatures gives 

the means to identify authentic messages. Although these methods are highly 

reliable in a controlled environment, their performance changes significantly 

based on environmental changes like temperature. They are also vulnerable to 

detect malicious messages from the software layer, as explained in [5]. 

Figure 4-2 a) Flowchart of signature-based and b) anomaly-based intrusion 

detection systems. 
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Table 4-1 Summary of recent intrusion detection systems for CAN bus 

Ref. Parameter Algorithm / Method Advantages Downsides 

[20] Electrical signal Support vector machine 

and boosted decision tree 

Robust to some attack types, 

differentiate between an error and 

an attack 

High cost and vulnerability to 

environmental conditions 

[21] Electrical signal Multilayer perceptron Robust detection of malicious 

nodes 

High cost and vulnerability to 

environmental conditions 

[22] Time intervals Recursive least squares 

and Cumulative Sum  

Identification of attacked ECU Works only for periodic signals, 

susceptible to environmental conditions  

[9] A pattern of CAN ID Generative adversarial 

nets 

Robust to attacker manipulation Heavy resource usage, vehicle 

dependency 

[12] Traffic pattern Deep convolutional 

neural network 

Better performance than other 

machine learning methods 

Heavy resource usage 

[23] Timing analysis Specification-based Low computational requirement Defining the specifications 

[24] Remote frame 

Timing 

Offset ratio Efficient and straightforward 

algorithm with low-cost hardware 

Increased traffic 
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[25] Period and payload Bloom filtering Low memory usage High computational power 

[26] Time intervals Z-score and ARIMA Minimal training High time-to-detect 
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Müter et al. [27] identify eight anomaly detection sensors that provide the 

essential input to structure an in-vehicle network. These are frequency, formality, 

location, range, correlation, protocol, plausibility, and consistency. These are not 

necessarily physical sensors but are signal processing boxes/tools that process 

the CAN bus's network traffic to observe and monitor changes for such 

parameters. Any IDS solutions use one or multiple of these sensors. As many 

ECUs broadcast CAN frames regularly, frequency is one of the most critical 

anomaly detection sensors to characterise the automotive network, if not the best. 

An intrusion into the CAN network will disrupt the regularity of the transmissions 

and the system's frequency. Although time thresholding is a simple technique to 

detect attacks, it can generate a high false-positive rate. On the contrary, 

frequency analysis gives more stable information [28]. Therefore, the CAN 

network's frequency analysis is a simple but effective IDS solution for resource-

constrained vehicles. 

There are multiple pieces of research to assess the time interval and frequency 

of the CAN messages. Some of these use basic statistical analysis [29], [30], but 

they are highly vehicle-dependent.  Machine learning algorithms like One-Class 

Support Vector Machine (OCSVM) [31], Gaussian mixture model [32] also 

proposed to detect anomalies via frame timing analysis; however, they require a 

comprehensive training data set for each vehicle model. ARIMA and Z-score 

were proposed [26] to minimise the training phase and vehicle dependency, but 

a successful result requires a long window size, which will increase the detection 

time. Lee et al. [24] analysed the response time of the ECUs by sending them 

remote frames. Their method requires low computational power and is successful 

in detecting attacks. The downside of the technique is that it increases bus traffic 

by sending remote frames. 

On the other hand, wavelet analysis has outstanding performance, mainly due to 

its simple procedure, easy computation, and reconstructable decomposition. This 

motivated researchers from the IT security domain to benefit [33]–[35]. Spicer 

[21] proposed wavelet analysis for CAN bus to complement his noise-content-

based multilayer perceptron IDS with frequency analysis. His implementation was 
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limited to the signal level and analysed the electrical characteristic to identify 

different signatures. By fingerprinting ECUs, it is possible to identify the sender 

ECU; therefore, the work can also be regarded as an authentication method. The 

work presented in this chapter moves beyond Spicer's research and intends to 

develop the entire IDS based on wavelet analysis. The WINDS is applied to 

message level and analyses behaviour of message frequency, facilitating low-

latency frequency analysis for the CAN network without increasing the network 

traffic and training data requirement 

4.3 Securing the CAN Network via Wavelet Analysis 

The frequency profile contains essential information about CAN messages' 

authenticity obtained by the Continuous Wavelet Transform (CWT). CWT is a 

powerful tool for the precise localisation of frequency components on the time 

axis, useful for identifying irregularities in the CAN network's traffic pattern. In 

order to find the signal's behaviour change, WINDS benefits from CWT for 

dividing the network pattern, which is a continuous time-series signal, into 

different scale components. Then the analysis is further carried out on the scale 

domain. Figure 4-3 visualises the CAN traffic and its wavelet representation. The 

figure depicts a set of large CWT coefficients located vertically around t =

6.318 (s)  where the change (attack) occurs in the signal. The area of large 

coefficient values, called the cone of influence, spreads with rising scale but still 

centred at t = 6.318 s. It presents us which CWT coefficients are affected by the 

signal at that point. Therefore, the proposed WINDS algorithm can detect both 

long-time and sudden short-time duration attacks by analysing scales. 



 

76 

The WINDS algorithm can be split into four stages, as shown in Figure 4-4: data 

collection and preprocessing, behaviour profiling with CWT, anomaly decision, 

and parameter initialisation.  

Data collection and preprocessing: The first stage is to monitor the CAN traffic 

under various no-attack and attack scenarios. This is a time-consuming data 

creation task and requires multiple resources and tools. Several research centres 

lead such experiments and data collection steps, providing researchers with 

valuable datasets. Although open-access datasets might be limited to specific 

cases, they can be well extended to comprehensive data by considering various 

attack models and understanding the CAN bus system's technical details and the 

vehicle's performance. This usually turns in populating the initial experimentally 

collected dataset with several synthetic attacks that mimic the real attacks.

Figure 4-3 Message count of the CAN traffic (top) during a DoS attack and its 

wavelet analysis (bottom). 
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The preprocessing step starts with windowing the dataset, proceeded with a 

feature extraction step, which is usually conducted by the signal-processing tool. 

Assuming a windowed data as w(t), it is a collection of messages, M, while each 

has a time interval of sampling time ts as in (4-4), representing traces of the 

message counted over the previous n samples: 

𝑤(𝑡) = { 𝑀𝑡−(𝑛−1)∗𝑡𝑠),  𝑀𝑡−(𝑛−2)∗𝑡𝑠), … ,𝑀𝑡} (4-4) 

The WINDS benefits from message count Nw in the CAN traffic in window w within 

a specified time interval between 𝑡 and 𝑡 −  𝑡𝑠, where 𝑡𝑠 is the period of the 

interval. Hence, we specify a message frequency, 𝑆𝑓, with the following equation, 

applied on ith window wi, to account the frequency of message in that window: 

𝑁𝑖 = 𝑆𝑓(𝑀𝑤𝑖
) = ∑ 𝑀𝑘

𝑛𝑚𝑎𝑥

𝑘=1

 

(4-5) 

where nmax is the maximum number of messages that a window may have, and 

Mk represents the existence of the kth message within the ith window (wi) that is 

one if a message exists; otherwise, it is zero. The window is stretched from the 

current time to the past, and the analysis is processed frequently. This results in 

the featured ith window by the frequency conversion Sf, represented by 𝑤𝑖
𝑆, as in 

the following equation: 

𝑤𝑖
𝑆 = {𝑁 ∈ 𝑍: ∃𝑁1, . . . , 𝑁𝑛−𝑚𝑎𝑥 ∈ 𝑤 𝑤𝑖𝑡ℎ 𝑁 = 𝑆𝑓(𝑀𝑤𝑖

)} (4-6) 

Behaviour profiling: The second stage generates the behaviour profile from the 

preprocessed traffic signal using the wavelet transform in (4-1). It transforms 𝑤𝑖
𝑆 

to a set of wavelet coefficients 𝑊(𝑎, 𝑏), which is a two-dimension matrix of 𝑛 𝑥 𝑘 

where 𝑘 is the highest wavelet scale and n is the window size. To decrease the 

complexity and get meaningful data out of all wavelet scales, Mean Absolute 

Deviation (MAD) is used, as in (4-7), where L is the length of scale for the chosen 

𝑤𝑖
𝑆 after wavelet transformation, j and q denotes a specific component of the 

scale as an index, and 𝐴𝑖
𝑀𝐴𝐷 projects the results after applying MAD function on 

the scaled component for the ith 𝑤𝑖
𝑆. Therefore, MAD provides the absolute 
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deviations from the mean point and gives information about the wavelet scale 

changes in each sample. Figure 4-5 demonstrates an example of MAD 

transformation from the wavelet coefficients during a replay attack. 

𝐴𝑖
𝑀𝐴𝐷 =

1

𝐿
∑|𝑎𝑗 −

1

𝐿
∑𝑎𝑞

𝐿

𝑞=1

|

𝐿

𝑗=1

                      

(4-7) 

 

Anomaly decision: This is the step for interpreting the wavelet coefficients, 

which leads to change point detection, needed for exploring anomalies' 

symptoms caused by an attack. The core of anomaly detection is assessing each 

window to find behaviour deviations using a thresholding technique. Donoho and 

Johnstone [36] proposed a universal threshold 𝜆𝑢 defined as:  

          𝜆𝑢 = 𝜎 . √2 log (𝑁) (4-8) 

a) 

b) 

Figure 4-5 The wavelet transform of the windowed signal w(t)   for single ID during 

replay attack (top) and median absolute deviation of W(a,b) (bottom). 
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where 𝜎 is the standard deviation and N is the number of samples. Donoho and 

Johnstone's threshold technique's advantages are slightly limited to denoising the 

White Gaussian noise affected signals by finding substantial change. 

Mozzaquatro et al. [37] presented that the universal threshold 𝜆𝑢 should be 

updated by a constant correction factor 𝜌 to get a better results, (4-9). The 

constant correction factor 𝜌 depends to specific applications of interests like 

anomaly detection for web attacks, boundary conditions, etc. 

 𝜆 = 𝜌 . 𝜆𝑢 (4-9) 

It is known so far that thresholding is the crucial element of an IDS so that low 

and high thresholds lead to false positives and false negatives results, 

respectively. WINDS involves an adaptive thresholding technique for increasing 

the accuracy of decisions and calculating a new threshold for each window by 

updating the 𝜌 parameter based on each window's MAD value. Finally, the 

updated 𝜆 is applied to the anomaly decision process for denoting the values 

higher than the threshold as anomalies and so detection of threat. Figure 4-5 

visualises the WINDS' thresholding mechanism via an example, demonstrating 

the results of converting the wavelet coefficients in Figure 4-5.a into MAD values 

in Figure 4-5.b. If any of the MAD values within a window exceeds the threshold, 

that window is regarded as malicious. 

There are conditions in which MAD produces results equal to zero based on the 

specific attack types. An example is when a flooding attack causes suspension 

of the messages from lower priority ECUs in the presence of the CAN network's 

arbitration mechanism. In such cases, the window spans inside the attack 

duration, which causes all the wavelet coefficients to turn to zero, and as a result, 

MAD generates zero. 

Parameter initialisation: The proposed IDS involves a multi-parameter 

optimisation problem that requires extensive time and works to find the best 

performance for the WINDS. Instead, the effort is put forward to initialise the 

WINDS with the best possible parameters experimentally founded by looking into 

the performance when feeding WINDS with various datasets. This stage is run 
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only once for gathering the values of the parameters. At first, the ranges of each 

parameter value are chosen and inserted into the parameter pool. These 

parameters are wavelet type (Haar and Daubechies), wavelet scale (from 4 to 

32), window size (from 32 to 256), window-type (discrete and continuous), sample 

time (from 0.5 ms to 3 ms), and threshold (from 1.1 x MAD to 2.2 x MAD of the 

current window). The algorithm is then tested for one attack data for each attack 

type for all the parameters inserted in the pool. The parameter setting which 

provides better performance on average is chosen as experimental parameters.    

4.4 Results and Discussions 

4.4.1 Experimental Setup 

The experiment is carried out by using Matlab software. The continuous wavelet 

transform is implemented by using cwt command. Resulting from the parameter 

initialisation step mentioned in Section 4.3, we set the parameters with the 

specifications given in Table 4-2. The window w(t) includes 128 samples, 

consisting of 384 ms network traffic, collected by a sampling time of 3 ms for the 

ID-based data segments. The setup is tied for short sampling times, ensuring the 

window would be populated with sufficient active data while avoiding information 

misses. Short sampling time also results in earlier attack detection, consequently. 

The threshold is set to 1.8 x MAD value of the current window. The Haar wavelet, 

consisting of shifted and scaled square wave functions, is used as a mother 

wavelet in the analysis. The Haar function in (4-10) [38] has the potential for 

looking at differences of averages, essentially. The initial scale for Haar wavelet 

in this experiment is 16. The source code for WINDS can be found in Appendix 

A.2. 
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Table 4-2 Experimental setup specifications 

Parameter Value 

Number of samples in w(t) 128 

Number of messages in a window, N Variable* 

Network traffic 384 ms 

Sampling time 3 ms 

Type of wavelet Haar 

Number of scale 16 

Constant correlation factor, ρ ∝ to MAD 

Threshold 1.8 x MAD 

* Number of the messages depends on the traffic and ID of ECU.  
 
 
 

𝜓 (𝐻)(𝑡) =

{
 
 

 
 1, 0 ≤ 𝑡 <

1

2
;

−1,
1

2
≤ 𝑡 < 1;

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

   

(4-10) [38] 

4.4.2 Results 

The WINDS was tested on two groups of the dataset collected from three 

commercial vehicles using the framework mentioned in Section 3. The first 

experiment evaluates WINDS capabilities on a broad range of synthetic attacks 

with varying attack strength (testing code for WINDS can be found in Appendix 

A.3). Then, the second experiment assesses the performance of WINDS on a 

real vehicle attack dataset and compares it with existing solutions.  

4.4.2.1 Synthetic Attacks – Attack Types 

The synthetic attacks allow us to safely implement various attack scenarios, 

facilitating the observation of the IDS’ performance and limitation on different 
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attacks by tuning the attack strength and duration. Using such techniques, we 

tested WINDS on various attack scenarios, including DoS, suspension, and 

replay attacks, along with an attack-free dataset. 

The experiment is constructed on splitting the entire network data into segments 

based on the ID numbers, then proceed with investigating each ID-based data 

separately to get satisfactory results, shown in Table 4-3. 

Table 4-3 The performance of WINDS for the synthetically generated data 

Data 

Source 
Attack Type Accuracy Sensitivity FPR Precision 

MTTD 

(s) 

Vehicle 1 

Vehicle 2 

No attack 0.9997 

0.9999 

- 

- 

0.0003 

0.0001 

- 

- 

- 

- 

Vehicle 1 

Vehicle 2 

Denial of 

Service 

0.9995 

1.0000 

0.9982 

0.9979 

0.0004 

0.0004 

0.9920 

0.9985 

0.003 

0.006 

Vehicle 1 

Vehicle 2 

Suspension 0.9999 

0.9997 

0.9980 

0.9981 

0.0001 

0.0003 

0.9879 

0.9993 

0.003 

0.006 

Vehicle 1 

Vehicle 2 

Replay 0.9998 

0.9997 

0.9893 

0.9974 

0.0001 

0.0003 

0.9986 

0.9863 

0.003 

0.003 

  Mean value of results for the ten datasets.  

The attack-free dataset gives information about how IDS will perform and react 

in the normal traffic mode by looking into evaluation metrics such as the FPR 

rate. It is essential to keep FPR low; otherwise, higher rates generate many false 

alarms, which drivers may ignore. Moreover, a higher FPR rate hardens the tasks 

of the security team. The WINDS’ FPR rate is kept for less than 0.0004. 

Denial of Service (DoS) attack by flooding high-priority messages can 

significantly affect network behaviour. Although the attack is implemented by 

sending messages with the highest priority (CAN ID ‘000’), it can be detected by 

monitoring any ID in the network. The WINDS algorithm successfully detected 
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DoS attacks, with an average attack detection rate of 99.82% and 99.79% for 

Vehicle 1 and Vehicle 2, respectively. The detection rate can reach as high as 

99.94% for more prolonged attack durations. The attacks were also swiftly 

detected in less than 6 ms.  

Suspension attack has similar results to DoS attacks, as shown in Figure 4-6. It 

could be anticipated the same because the arbitration scheme does not allow 

lower priority nodes to transmit when the DoS attack is implemented. Therefore, 

the suspension attack mimics the DoS attack. The average sensitivity values for 

Vehicle 1 and Vehicle 2 were 99.8% and 99.81%, consecutively. 

 

Figure 4-6 The sensitivity of the WINDS algorithm during various suspension and 

DoS attacks. The sensitivity of the algorithm gets better with the rising attack 

duration. 

Replay attacks were implemented for a short duration of time (75 ms and 66 ms) 

with low message insertion rates (from 8 to 30 frames). The results shown in 

Figure 4-7 depict that the WINDS algorithm can respond in milliseconds and 

successfully detect over 96% of the attacks with almost zero false-positive rate. 

The observation is that the algorithm's sensitivity rises with the increased rate of 

malicious messages while the TTD decreases.  
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The experimental results show that the sensitivity of the WINDS is correlated with 

the attack strength. In general, the sensitivity increases for the longer duration 

and more frequent attacks, as seen in Figure 4-7. 

 

Figure 4-7 The sensitivity of the WINDS algorithm during different replay attacks. 

The increased message insertion rate increases the sensitivity while decreasing 

the time to detect. 

4.4.2.2 Comparative Analysis of the WINDS on Real Vehicle Attacks 

In the second experiment, WINDS is tested on real-world vehicle attacks and 

compared with baseline frequency-based IDS and other existing methods. As 

benchmarking dataset has significant importance for reliable testing, WINDS is 

tested on the most widely accepted dataset, the Car-hacking dataset [39]; and 

compared with the state-of-the-art methods which use the same dataset. These 

are  GIDS[9], DCNN[12], and SAIDuCANT[23]. GIDS method converts CAN data 

into an image and applies generative adversarial nets. The method only uses 

CAN ID to speed up image generation. DCNN method applies a deep 

convolutional neural network to a two-dimensional binary matrix generated from 

the CAN traffic. The third method, SAIDuCANT, is a specification-based IDS as 

compared to machine learning-based methods mentioned above. SAIDuCANT  
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Table 4-4 Comparison of the WINDS with existing methods using real vehicle 

attack data 

Attack Type IDS Accuracy Sensitivity (Recall) Precision 

Gear 

Spoofing 

WINDS 0.9883 0.9845 0.9958 

SAIDuCANT 0.8262 0.9702 0.8245 

GIDS 0.9620 0.9650 0.9810 

DCNN 0.9995 0.9989 0.9999 

Frequency-based 0.9273 0.8770 0.9886 

RPM 

Spoofing 

WINDS 0.9926 0.9890 0.9986 

SAIDuCANT 0.8033 0.9636 0.8010 

GIDS 0.9800 0.9900 0.9830 

DCNN 0.9997 0.9994 0.9999 

Frequency-based 0.9472 0.9211 0.9815 

Fuzzy Attack WINDS 0.8778 0.8339 0.9816 

SAIDuCANT 0.8782 0.9958 0.8639 

GIDS 0.9800 0.995 0.9730 

DCNN 0.9982 0.9965 0.9995 

Frequency-based 0.8170 0.7556 0.9599 

DoS Attack WINDS 0.9497 0.9415 0.9797 

SAIDuCANT 0.9808 1.0000 0.9771 

GIDS 0.9790 0.9960 0.9680 

DCNN 0.9997 0.9989 1.0000 

Frequency-based 0.8711 0.8316 0.9617 
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monitors the network's timing behaviour according to predefined timing 

specifications. 

The comparison result of WINDS with other state-of-the-art methods for the real-

vehicle attacks is summarised in Table 4-4. Gear spoofing and RPM attacks 

directly target certain IDs, and the WINDS can detect 98.45% and 98.90% of 

these attacks accordingly and provides over 99% precision for both cases. 

The attack detection rate and accuracy decrease for Fuzzy and DoS attacks. This 

is partly because these attacks do not target any particular IDs; therefore, they 

are not as disruptive as direct attacks like gear or RPM spoofing. While the 

WINDS’ sensitivity for the DoS attack is 94.15%, it can decrease to 83.39% for 

the fuzzy attack. This is an expected result; hence DoS attack was implemented 

using the highest ID number while the fuzzy attack transmits random ID numbers. 

Some of these IDs have low priority and have no disruption in transmitting 

authentic messages because of the arbitration process.     

WINDS is also compared with some alternative methods including frequency-

based IDS, which measures the frequency of attacked ID and generates an alarm 

if the threshold exceeds lower or higher threshold bonds. The WINDS 

outperforms the frequency-based IDS in all metrics for all attack types. Our 

method also generates better results than GIDS and SAIDuCANT methods for 

gear and RPM spoofing. On the other hand, these methods have better 

performance than WINDS for DoS and Fuzzy attacks. Although DCNN has the 

best performance for this dataset, it requires extensive training with attack data; 

because it involves a supervised learning method. It is also computationally 

expensive and requires GPU acceleration; therefore, it is not feasible to deploy 

in a resource-constrained environment. 

4.4.2.3 Discussions 

An IDS can be implemented as host-based (also known as node-based) or 

network-based. In the host-based IDS, each ECU has an integrated IDS and may 

dismiss the message according to the IDS decision. However, this requires 

additional resources in each ECU. On the other hand, the network-based 
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approach has only one IDS implemented on the gateway ECU. The WINDS is 

independent of implementation perspectives, suitable for implementation through 

host-based or network-based approaches with the same performance; however, 

the required resources would differ. This allows the method to be implemented 

on various applications, from low-end resource constraint vehicles as a network-

based IDS to high-end vehicles as an advanced sensor for intrusion prevention 

systems in each ECU. 

An IDS should satisfy specific requirements for vehicles, which are real-time 

safety-critical cyber-physical systems. In short, it should detect attacks correctly 

in an acceptable time frame while using limited resources and without causing 

false alarms. Therefore, WINDS is assessed based on three criteria: timing 

behaviour, success rate, and resource usage.  

4.4.2.3.1 Timing Analysis 

Successful IDS must detect attacks as soon as possible to prevent propagating 

misinformation and causing system misbehaviour. A metric suitable for 

measuring the algorithm’s behaviour is TTD, which varies by the parameters like 

the sampling time and the threshold. Assessing WINDS by TTD demonstrated 

that an increase in the attack strength decreases the detection time, as presented 

in Figure 4-7. 

 Another key parameter for time analysis is the processing time. Actual 

processing time requires implementing the WINDS algorithm on an ECU, which 

is not covered in this research. As WINDS can be implemented as a network-

based IDS, this can be ignored even on low-end vehicles using only one high-

end automobile processor on the gateway ECU. 

The WINDS algorithm can detect an anomaly in milliseconds. Considering the 

delay times in the CAN network [40], the algorithm should be suitable for the real-

time analysis of most ECUs. 
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4.4.2.3.2 Success Rate 

As the main parameter, changes in the message frequency should be observed 

by WINDS to detect attacks. The method cannot locate, for instance, impersonate 

attacks, where a node is suspended, and a malicious node transmits on behalf of 

the suspended one by causing the protocol error. However, this can be easily 

detected by counting the error frames. In contrast, the proposed algorithm 

successfully detects time variations, which enable WINDS to locate all the 

flooding attacks by analysing only a single ID even though the attacker targets 

different IDs. 

The threshold is the most critical parameter that affects the success rate. The 

lower threshold value will increase the detection rate, but it will also raise false 

alarms. Additionally, the threshold can be adjusted based on IDs and adapted to 

the arbitration process of the CAN for increasing the overall performance. This 

adaption will decrease the false alarms because lower priority IDs are not as 

punctual as the higher priority IDs due to the arbitration mechanism in CAN. The 

Receiver Operating Characteristic (ROC) curves in Figure 4-8 depict WINDS’ 

behaviour for three different attack models: replay attack, gear and RPM spoofing 

Figure 4-8 The Receiver Operating Characteristic (ROC) curves for varying 

threshold values for RPM spoofing, gear spoofing, and replay attack. 
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attacks. The result shows that WINDS provides a good performance 

characteristic. 

An alternative way to increase the system’s performance comes from 

understanding the driving mode; hence, some ECUs are linked to different driving 

modes. Theoretically, the wavelet can detect this change and may give a false 

alarm during the transition. After a window passes the transition period, it does 

not provide a warning. This requires further investigation and testing on data from 

different driving modes. 

4.4.2.3.3 Resource Usage 

The vehicles have limited bandwidth, memory, and computational power. 

Therefore, a feasible IDS should demand low resources. The WINDS does not 

transmit any messages, so it does not affect the bandwidth. 

The memory usage of WINDS is directly proportional to the window size. It 

analyses the timing of the messages and does not need to store data bits. It only 

requires a single bit of memory storage as a flag identifying the message that 

exists in the given sample time. Therefore, each ID requires n-bit memory equal 

to the window size, which is 16 bytes in this experiment. This is a very reasonable 

amount, even for low-end ECUs. 

The CWT mainly drains computational power. If the scale is increased, the 

required power will increase, too. Efficient CWT algorithms are essential for 

making the IDS affordable for all ECUs. A way to reduce the algorithm’s 

computational cost is to sacrifice some memories when ECU has limited 

computational power available. For instance, the n-bit window is not necessarily 

required to be transformed to wavelet coefficients as a whole each time. Instead, 

updating only some bits from the previous transform is sufficient while keeping 

the rest unchanged. A partial updating of the last window results in the new 

window, which was expected to be transformed. 

4.5 Future Directions 

Although the research results demonstrated so far in this chapter through various 

tests, analysis, and evaluation are promising, further improvement is achievable 
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by analysing each wavelet scale individually. This additional improvement would 

be at the cost of higher complexity and computational needs. It is worth 

investigating alternative wavelet-based IDS systems such as Discrete Wavelet 

Transforms (DWT) and Maximal Overlap Discrete Wavelet Transform (MODWT), 

mainly to reduce computational cost and conduct further assessments and 

comparisons with other techniques. 

WINDS is limited to analysing system behaviour based on message frequency, 

and it is not extended toward nodes transmitting infrequent messages. The 

current implementation is not detecting attacks that do not affect the message 

frequency, requiring further investigations. 

There is still a need for experimenting with real cars, considering various attack 

scenarios followed with suitable data collection to generate comprehensive and 

efficient datasets. Existing datasets available from open-access research centres 

are limited to specific cases, and yet, they do not provide essential system 

specifications under test and technical details of testing scenarios. This chapter 

successfully demonstrated methods for generating synthetic attacks to overcome 

weaknesses from open-access datasets. This is limited to simple cases and 

leaves generation complex synthetic attacks, which are needed for sophisticated 

attacking scenarios, for future research. Furthermore, it is also crucial to test IDS 

on various driver and journey types, meaning that more datasets are needed for 

achieving efficient analysis. 

The lack of available datasets for various vehicle models also prevents us from 

implementing an optimisation process for the parameter decision. Optimisation 

on limited datasets will cause overtraining. Therefore, it will be worth investigating 

optimisation techniques when we have enough independent datasets to improve 

the performance of WINDS. 

It is essential to prevent attacks that cause system misbehaviour for safe driving. 

The current implementation of WINDS is designed as an intrusion detection 

system. To implement a real-time intrusion prevention system, each ID should be 

analysed separately to gather its deadline. Then WINDS should be adapted to 

respond to the deadline. The prevention mechanisms to invalidate messages 
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also need to be assessed and combined with WINDS. It is also worth mentioning 

that the WINDS is implemented on a personal computer. Although the TTD will 

be the same, the processing time will vary. Therefore, we aim to apply the WINDS 

on an ECU and gather processing time. 
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5 Conclusions and Future Work 

This PhD research focused on the security of the in-vehicle CAN network. The 

thesis has three main contributions. First, it has summarised the literature and 

presented vulnerabilities of CAN communication and state-of-the-art research 

targeting those vulnerabilities. This will help researchers in the field to grasp the 

current state-of-the-art. The second contribution is the testing framework that 

assesses performance considering resource usage and timing behaviour. By 

creating a framework, this thesis achieves a standard evaluation methodology for 

in-vehicle IDS. The final contribution of the thesis is the wavelet-based intrusion 

detection system WINDS.  

This chapter summarises the thesis and shows the contributions out of this PhD 

research. Section 5.1 presents how the research aim and objectives are 

achieved. After that, the chapter is finalised with the future research direction for 

WINDS and CAN bus security for vehicular applications.  

 

Figure 5-1 Organisation of Chapter 5 

5.1 Addressing the Research Aim and Objectives 

This research aims to develop a vehicle-independent intrusion detection for 

Controller Area Network. The research achieves this aim by fulfilling several 

objectives that are given below. 

Objective 1: The literature review is the beginning of the research. A 

comprehensive literature review was carried out to identify gaps and problems 

regarding CAN security. The vulnerabilities of the CAN bus are shown and some 

of the attacks are presented in Section 2.4. A case study of the DoS attack via 

Chapter 5

5.1 Addressing the Research Aim and Objectives

5.2 Future Work
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hardware trojan is demonstrated in our paper [1]. Section 2 also presents state-

of-the-art solutions with their limitations. The findings are presented in a 

conference [2] and an extended version of it [3] is issued in a journal. 

Objective 2: As presented in Section 2.5.4 and Section 4.2.2, the current in-

vehicle IDSs have various problems and almost all of them are vehicle 

dependent. Therefore, designed IDS should be trained for each vehicle make and 

model. Training IDS for every different vehicle requires an extensive amount of 

work. After training and modification, each subsequent IDS should be tested 

thoroughly again. A vehicle agnostic wavelet-based solution (WINDS) is 

proposed to overcome this issue. The WINDS analyses the short-time history of 

CAN traffic by applying wavelet analysis and indicates the change points in the 

network traffic. The algorithm can be applied to any vehicle without any 

modification. It is tested on multiple datasets with various vehicles to show 

WINDS' effectiveness and vehicle independent behaviour.  The results show that 

WINDS has competitive performance with state-of-the-art solutions. Apart from 

the performance, WINDS is also assessed for resource usage and timing 

behaviour according to the testing framework presented in Section 3.2. 

Objective 3: The reliability of the testing depends on a comprehensive dataset 

consisting of different attack models and strengths. If the dataset is not complete, 

it can produce misleading results. Although the existing datasets are valuable, 

they are not enough to test an IDS and generate statistical results. Section 3.3 

address the lack of data problem with synthetic data generation. Existing attack 

models are explained and presented with their implementation. The 

implementations of some attacks are stealthier than the existing ones, which 

allows more reliable testing. The timing of the attacks are also considered and 

attacks are implemented at various durations. Applying synthetic attacks to open-

source datasets produce a more comprehensive benchmarking dataset as 

presented in Section 3.3.2 and tested in Section 4.4.2. 

Objective 4: The number of IDS for CAN bus increases exponentially; however, 

there is no standardised testing methodology. As a consequence, many IDSs are 

not tested properly. It also makes it difficult to compare results with other existing 
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solutions. Section 3 presents a framework to test an IDS for in-vehicle 

communication thoroughly. It aims to solve the comparison problem for CAN bus 

IDSs. As a case study, the proposed framework is applied to WINDS and results 

are shown in Section 4.  

5.2 Future Work 

The time and resource restriction of this research limits to further improve the 

obtained results and secure in-vehicle communication. Keeping this research 

work in perspective, we recommend the following as significantly important future 

works. 

5.2.1 Integration of Encryption 

Although IDS can alert the malicious messages, it cannot prevent eavesdropping; 

therefore, it cannot provide confidentiality. To overcome eavesdropping, data 

should be encrypted. Many secure encryption techniques can solve 

eavesdropping in the IT domain, but none is feasible to be implemented on a 

resource-constrained CAN network. A light-weighted encryption technique can 

solve the confidentiality problem in CAN. 

5.2.2 Application to Other In-vehicle Network Protocols 

The WINDS is designed mainly for the CAN network.  However, other in-vehicle 

communication protocols are also posing a threat to the security of the in-vehicle 

network.  To have holistic security, these network protocols should be protected 

too. This requires further investigation to adapt WINDS to those protocols.  

5.2.3 Machine Learning Implementation 

The vehicle agnostic behaviour of the WINDS can be enhanced with machine 

learning that allows WINDS to interpret data and use it to learn for itself. 

Implementing lightweight machine learning techniques will enable WINDS to 

automatically learn and improve from experience without being explicitly 

programmed. 
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5.2.4 Intrusion Prevention System (IPS) 

The WINDS is designed as Intrusion Detection System (IDS), which only alerts 

the problems. However, identifying a problem is half the battle; knowing how to 

respond appropriately and having the resources in place to do so is equally 

important. As a vehicle is a cyber-physical system, implementing IPS will be 

possible if the false positive rate decreases to zero. When WINDS is capable of 

zero FPR, it should take action and invalidate any unauthentic messages. 

Invalidation of messages also requires further investigation.  
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Appendices 

Appendix A Source Codes for WINDS Implementation 

and Testing 

A.1 Source Code for Generating Attacks 

The attackGenerator function generates DoS, replay, and suspension attacks. 

It has four parameters; canData, attackType, vehicleM, attackDuration.  

canData: The raw CAN traffic 

attackType: The choice of attack type from DoS, replay, suspension 

vehicleM: The vehicle model from the existing dataset, which includes Opel and 

Renault 

attackDuration: The implement4ed attack duration. 

The example usage of the function is presented below: 

    attackData= attackGenerator(testing,’dos’,’r’,5); 

The code line above implements five seconds of DoS attack on Renault on the 

testing dataset. 

Table - A1: Source code for attackGenerator function 

 

function attackData = 

attackGenerator(canData,attackType,vehicleM,attackDuration) 

  
    attackMultiplier = attackDuration; 

  
    switch attackType 
        case 'dos' 
            attackData = dosAttack(canData,attackDuration,vehicleM); 
        case 'replay' 
            attackData = replay(canData,vehicleM,attackMultiplier); 
        case 'suspension' 
            attackData = suspension(canData,attackDuration,vehicleM); 
    end 

  
end 

  
%% DoS Attack Generation %% 
function outputDoS = dosAttack (canData, attackDuration,vehicleM) 
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    rawData = canData; 

     
    if vehicleM== 'r'%renault 
        attackStart = 1508687506.000236; 
    elseif vehicleM == 'o' %opel 
        attackStart = 1536574995.000091; 
    end 

     
    attackEnd = attackStart + attackDuration;%1508687515.999845; 
    attackPeriod = 0.00025; %unit is second - attack data period 

  
    outputBefore= rawData(rawData.time<attackStart,:); 
    outputAfter= rawData(rawData.time>attackEnd,:); 

  
    % attack creation 
    time = attackStart:attackPeriod: attackEnd; 
    id = zeros(size(time)); 
    data = zeros(size(time)); 

  
    outputAttack = table( time',  id' , data'); 

  
    outputAttack.Properties.VariableNames{1} = 'time'; 
    outputAttack.Properties.VariableNames{2} = 'id'; 
    outputAttack.Properties.VariableNames{3} = 'data'; 

  
    outputAttack.data = string(outputAttack.data ); %make same type 

  
    %combining attack with attack-free data 
    outputDoS = [outputBefore;outputAttack;outputAfter]; 

  
end 

 
%% replay Attack Generation %% 
function outputReplay = replay(canData,vehicleM,attackMultiplier) 

  
    rawData = canData; 

     
    if vehicleM== 'r'%renault 
        CANid = '2C6'; 
        attackStart = 1508687499.839714; 
        attackEnd = 1508687499.905626; 
        normalPeriod = 0.02; 
    elseif vehicleM== 'o' %opel 
        CANid = '1A1'; 
        attackStart = 1536575013.172200; 
        attackEnd = 1536575013.247372; 
        normalPeriod = 0.025; 
    end 

  

  
    outputBefore= rawData(rawData.time<attackStart,:); 
    attackRaw = rawData(rawData.time>=attackStart &             

rawData.time<=attackEnd ,:); 
    outputAfter= rawData(rawData.time>attackEnd,:); 
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    attackPeriod = normalPeriod/attackMultiplier; 
    attack = attackRaw(attackRaw.id==CANid ,:); 

  
    for i=1:size(attack,1) 
        attackManipulation((i-1)*attackMultiplier + 1,:) = 

attack(i,:); 

  
        for k = 1:attackMultiplier-1 
            rowAttack = attack(i,:); 
            rowAttack.time =  rowAttack.time + attackPeriod; 
            attackManipulation((i-1)*attackMultiplier + 1 + k,:) = 

rowAttack; 
        end 

  
    end 

  
    noAttack = attackRaw(attackRaw.id~=CANid ,:); 

  
    outputAttack = [attackManipulation; noAttack]; 
    outputAttack = sortrows(outputAttack,'time','ascend'); 

  
    outputReplay = [outputBefore;outputAttack;outputAfter]; 

     
end 

 
%% suspension Attack Generation %% 
function outputSuspension = 

suspension(canData,attackDuration,vehicleM) 
 

    if vehicleM== 'r'%renault 
        CANid = '2C6'; 
        attackStart = 1508687499.999696;  
    elseif vehicleM== 'o' %opel 
        CANid = '1A1'; 
        attackStart = 1536575000.000097; 
    end 

  
    rawData = canData; 
    attackEnd = attackStart + attackDuration;%1508687510.000100; 

  
    outputBefore= rawData(rawData.time<attackStart,:); 
    attackRaw = rawData(rawData.time>=attackStart & 

rawData.time<=attackEnd ,:); 
    outputAfter= rawData(rawData.time>attackEnd,:); 

  
    outputAttack = attackRaw(attackRaw.id~=CANid ,:); 

  
    outputSuspension = [outputBefore;outputAttack;outputAfter]; 

  
end 
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A.2 Source Code for WINDS 

The code to implement WINDS can be found in Table A-2. 

Table - A2: Source code for WINDS implementation 

 
load('rawRenaultClio.mat') 

   
global sampleTime   
global waveletModel  
global coefficient  
global waveletLevel 

  
global attackType 

  
sampleTime = 0.003; 
waveletModel = 'haar'; 
coefficient = 1.8; 
waveletLevel = 16; 

  

  
for k = attackType:attackType 

  
    if k==1 %dos 
        rawData = attackData; 
        attackDuration 
        aStart = 1508687506.000236+ 0.022;  
        aEnd = 1508687506.000236 + attackDuration - 0.022; 
    elseif k==2 %replay 
        rawData = attackData;  
        aStart = 1508687499.839714; 
        aEnd = 1508687499.905626; 
    else %suspension 
        attackDuration 
        rawData = attackData;  
        aStart = 1508687499.999696 + 0.03; 
        aEnd = aStart + attackDuration-0.05 ;  
   end 

    
    rawData = rawData(rawData.id == '2C6',:); 

  
    sampledSignal = frequencyConvertion(rawData,sampleTime); 
    ofsetTime = 1508687476.43810; 
    attackStart = ceil ((aStart - ofsetTime) / sampleTime ) ; % 
    attackEnd   = floor ((aEnd - ofsetTime ) / sampleTime ) ;  
   

[accuracy,sensitivity,specificity,TP,TN,FP,FN,TPLocTemp,TNLocTemp,FPLo

cTemp,FNLocTemp ] = realTimeFunction 

(sampledSignal,attackStart,attackEnd ); 
    TPLoc(k,1:length(TPLocTemp))=TPLocTemp; 
    TNLoc(k,1:length(TNLocTemp))=TNLocTemp; 
    FPLoc(k,1:length(FPLocTemp))=FPLocTemp; 
    FNLoc(k,1:length(FNLocTemp))=FNLocTemp; 
end 
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precision = TP/(TP+FP); 
FPR = 1 - specificity; 

 

 

The realTimeFunction code applies the WINDS algorithm to CAN traffic in real-

time. The function has three parameters as below: 

sampledSignal: The raw CAN traffic to be processed 

attackStart: The start time of the attack 

attackEnd: The end time of the attack 

As a result, the function generates the following outputs: 

Accuracy: Accuracy of the test 

Sensitivity: Sensitivity of the test 

Specificity: Specificity of the test 

TP: True positive number of the test 

TN: True negative number of the test 

FP: False positive number of the test 

FN: False negative number of the test 

TPLoc: True positive location 

TNLoc: True negative location  

FPLoc: False positive location 

FNLoc: False negative location 
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Table - A3: Subfunction of WINDS main file  “realTimeFunction” 

  

function 

[accuracy,sensitivity,specificity,TP,TN,FP,FN,TPLoc,TNLoc,FPLoc,FNLoc] 

= realTimeFunction (sampledSignal,attackStart,attackEnd) 

    
global sampleTime   
global waveletModel  
global coefficient  
global waveletLevel 

  
    shiftSize = 1; 
    windowSize = 127; 

  

    %counters      
    attackDetectionNumber = 0; 
    TP = 0;  
    TN = 0; 
    FP = 0; 
    FN = 0; 

  
    %values 
    attackLoc = 0; 
    TPLoc = 0; 
    TNLoc = 0; 
    FPLoc = 0; 
    FNLoc = 0; 

     
    delayCalDetector=1; 

     
    for  x = (windowSize+1) : shiftSize: (length(sampledSignal) - 

windowSize) 

  
        windowedSignal = sampledSignal ( (x- windowSize): x ); 
        wtSignal= 

abs(cwt(windowedSignal,1:waveletLevel,waveletModel)); 

          
        wtSignal = mad(wtSignal); 
        thresholdUp = mean(wtSignal)*coefficient;  
        lctUp = find(wtSignal(1:end-1)>thresholdUp);  
        lctDown = find(wtSignal(1:end-1)==0);  

 
        attackDetection = ~isempty(lctUp) ||~isempty(lctDown); 

         
        if attackDetection 
            attackDetectionNumber = attackDetectionNumber +1; 
            attackWindow(attackDetectionNumber) = x; 
        end 

  
        if (attackStart) > x  || (x-windowSize )>attackEnd   % before 

any attacks start or after all attacks 
            if ~attackDetection %no attack detection 
                TN = TN + 1; % True Negative 
                TNLoc(TN) = x; 
            else  %attack detection 
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                FP = FP + 1; %False Positive 
                FPLoc(FP)= x; 
            end 

  
        else  
            if attackDetection %attack detection  
                TP = TP + 1; %True Positive 
                TPLoc(TP) = x;    
                if delayCalDetector 
                    disp(x) 
                    disp(attackStart) 
                    disp(['Time Delay = ',num2str(x-attackStart)]) 
                    delayCalDetector = 0; 
                end 
            else     %no attack detection 
                FN = FN + 1;  % False Negative 
                FNLoc(FN)= x; 
            end 
        end 

  
    end 

  
    accuracy = (TP+TN)/(TP+FP+TN+FN) ;  

  
    sensitivity = TP / (TP+FN); 

  
    specificity = TN / (FP+TN); 
end 

 

 

 

frequencyConvertion function takes raw CAN data as a table and calculates the 

number of messages at the given time duration. The following example code will 

convert rawCAN data into message count in every 0.003 seconds. 

 f = frequencyConvertion(rawCan,0.003); 

 

Table - A4: Subfunction of WINDS main file  “frequencyConvertion” 

 
function messageInTime = frequencyConvertion(tableIn,timeDuration) 

  
    temp = tableIn; 
    temp = sortrows(temp,'time','ascend'); 
    temp.time = temp.time - temp.time(1); %initial time become zero 

  
    vectorSize = floor (temp.time(end) ./ timeDuration) + 1; % size of 

matrix 
    messageInTime = zeros(1,vectorSize); 
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    % scan matrix from the beginning to the end 
    pointerTime = timeDuration; 
    pointer = 1; % point the current position  

     
    for i=1:vectorSize -1 

         
       while temp.time(pointer) < pointerTime 
           messageInTime(1,i) = messageInTime(1,i) + 1; 
           pointer = pointer + 1; 

            
           if pointer == size(temp,1) 
               break 
           end 
       end 

        
       pointerTime = pointerTime + timeDuration; 

        
    end 

     
end 

 

 

A.3 Source Code for Testing WINDS 

This code generates multiple attacks automatically and applies the WINDS 

algorithm to the attacked dataset. Then it produces statistical results for the tests. 

Table  - A5: Source code for Testing WINDS on multiple datasets 

 
global attackType 

  
load('rawRenaultClio.mat') 

  
attackType =1; %dos 
for i=1:10 
    attackDuration =i; 
    attackData= attackGenerator(testing,'dos','r',attackDuration); 
    testRenault 
    accD(i)=accuracy; 
    senD(i)=sensitivity; 
    speD(i)=specificity; 
    preD(i)=precision; 
    falPoRaD(i) = FPR; 
end 

  
accD(i),senD(i),speD(i),preD(i),falPoRaD(i) 

  
%% replay 
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attackType =2; 

  
for i=3:12 
    attackDuration =i; 
    attackData= attackGenerator(testing,'replay','r',attackDuration); 
    testRenault 
    accR(i-2)=accuracy; 
    senR(i-2)=sensitivity; 
    speR(i-2)=specificity; 
    preR(i-2)=precision; 
    falPoRaR(i-1) = FPR; 
end 

  
accR(i),senR(i),speR(i),preR(i),falPoRaR(i) 

  
%% Suspension 

  
attackType =3; 

  
for i=1:10 
    attackDuration =i; 
    attackData= 

attackGenerator(testing,'suspension','r',attackDuration); 
    testRenault 
    accS(i)=accuracy; 
    senS(i)=sensitivity; 
    speS(i)=specificity; 
    preS(i)=precision; 
    falPoRaS(i) = FPR; 
end 

  
accS(i),senS(i),speS(i),preR(i),falPoRaS(i) 

 

 

 

 


