

CRANFIELD UNIVERSITY

Mehmet Bozdal

A Wavelet-based Intrusion Detection System for Controller Area

Network (CAN)

SCHOOL OF AEROSPACE, TRANSPORT AND

MANUFACTURING

Integrated Vehicle Health Management

DOCTOR OF PHILOSOPHY

Academic Year: 2017 - 2021

Supervisor: Prof. Ian K Jennions

Associate Supervisor: Dr. Mohammad Samie

May 2021

CRANFIELD UNIVERSITY

SCHOOL OF AEROSPACE, TRANSPORT AND

MANUFACTURING

Integrated Vehicle Health Management

DOCTOR OF PHILOSOPHY

Academic Year 2017 - 2021

Mehmet Bozdal

A Wavelet-based Intrusion Detection System for Controller Area

Network (CAN)

Supervisor: Prof. Ian K Jennions

Associate Supervisor: Dr. Mohammad Samie

May 2021

© Cranfield University 2021. All rights reserved. No part of this

publication may be reproduced without the written permission of the

copyright owner.

i

It is okay not to be okay…

ii

ABSTRACT

Controller Area Network (CAN), designed in the early 1980s, is the most widely

used in-vehicle communication protocol. The CAN protocol has various features

to provide highly reliable communication between the nodes. Some of these

features are the arbitration process to provide fixed priority scheduling, error

confinement mechanism to eliminate faulty nodes, and message form check

along with cyclic redundancy checksum to identify transmission faults. It also has

differential voltage architecture on twisted two-wire, eliminating electrical and

magnetic noise. Although these features make the CAN a perfect solution for the

real-time cyber-physical structure of vehicles, the protocol lacks basic security

measures like encryption and authentication; therefore, vehicles are vulnerable

to cyber-attacks. Due to increased automation and connectivity, the attack

surface rises over time. This research aims to detect CAN bus attacks by

proposing WINDS, a wavelet-based intrusion detection system. The WINDS

analyses the network traffic behaviour by binary classification in the time-scale

domain to identify potential attack instances anomalies. As there is no standard

testing methodology, a part of this research constitutes a comprehensive testing

framework and generation of benchmarking dataset. Finally, WINDS is tested

according to the framework and its competitiveness with state-of-the-art solutions

is presented.

Keywords:

CAN bus; In-vehicle communication; Automotive security; Automotive attack

surface; Encryption

iii

ACKNOWLEDGEMENTS

Foremost, I would like to thank my sponsor, the Republic of Turkey Ministry of

National Education, for the financial support. I do not think it was possible to have

this opportunity without their support.

I want to thank my supervisors, Prof. Ian Jennions and Dr Mohammad Samie for

their guidance and support. They help me in every aspect of my research and

academic development.

I also want to thank my lovely friends Cordelia and Sohaib, my office mates

Iftikhar and Maulana, my former colleagues Kadir and Emrah, and other Cranfield

mates from all over the world. Their support and faith in me brighten my dark

mood in Cranfield.

Finally, I want to dedicate this work to my parents and express my gratitude to

them. I am aware that they have sacrificed so many things for me. I also thank

my girlfriend Serpil for her support to help me survive during thesis writing and

the pandemic.

iv

TABLE OF CONTENTS

ABSTRACT ... ii

ACKNOWLEDGEMENTS... iii

LIST OF FIGURES ... vi

LIST OF TABLES .. vii

LIST OF EQUATIONS .. viii

LIST OF ABBREVIATIONS .. ix

1 Introduction .. 1

1.1 Research Aim and Objectives ... 3

1.1.1 Problem Description ... 3

1.1.2 Hypothesis ... 4

1.1.3 Aim ... 5

1.1.4 Objectives .. 5

1.2 Research Methodology ... 5

1.2.1 Phase 1: Literature Review .. 6

1.2.2 Phase 2: A Framework for Benchmarking Intrusion Detection

Systems for CAN Bus ... 7

1.2.3 Phase 3: WINDS: A Wavelet-based Intrusion Detection System for

Controller Area Network (CAN) ... 8

1.2.4 Phase 4: Verification and Validation ... 8

1.3 Risks and Mitigations .. 9

1.3.1 Dataset ... 9

1.3.2 Evaluation and Comparative Analysis .. 9

1.4 The Organisation of the Thesis ... 10

1.5 Publications & Activities .. 10

1.5.1 List of Publications ... 10

1.5.2 Training and Networking Activities ... 11

References ... 12

2 Evaluation of CAN Bus Security Challenges ... 15

2.1 Introduction ... 16

2.2 Overview of the Controller Area Network (CAN) 17

2.2.1 Reliable Communication in CAN .. 19

2.3 Vulnerability Assessment of the CAN Protocol 21

2.4 Automotive Attack Surface and Existent Attacks 21

2.4.1 Physical Access Attacks ... 23

2.4.2 Remote Access Attacks ... 25

2.4.3 Privacy in the CAN ... 26

2.5 Counter Measures for CAN Attacks .. 27

2.5.1 Network Segmentation ... 27

2.5.2 Encryption .. 28

2.5.3 Authentication .. 29

v

2.5.4 Intrusion Detection System (IDS) ... 30

2.6 Discussions on CAN Security Research ... 37

2.7 Conclusions .. 37

References ... 38

3 A framework and Comprehensive Benchmarking Dataset for CAN Bus

Intrusion Detection Systems ... 49

3.1 Introduction ... 49

3.2 Testing Framework for CAN IDS .. 51

3.2.1 Performance Evaluation Metrics .. 52

3.2.2 Attack Coverage ... 53

3.2.3 Dependency Test ... 54

3.2.4 Timing Analysis .. 55

3.2.5 Resource Usage .. 56

3.3 CAN Bus Attack Generator and Benchmarking Dataset 57

3.3.1 Attack Generation .. 59

3.3.2 Implementation ... 61

3.3.3 Benchmarking Dataset ... 61

References ... 63

4 WINDS: A Wavelet-based Intrusion Detection System for Controller Area

Network (CAN) ... 67

4.1 Introduction ... 68

4.2 Background ... 69

4.2.1 Wavelet Transform ... 69

4.2.2 Intrusion Detection and Related Work .. 70

4.3 Securing the CAN Network via Wavelet Analysis 75

4.4 Results and Discussions ... 81

4.4.1 Experimental Setup .. 81

4.4.2 Results ... 82

4.5 Future Directions... 90

References ... 92

5 Conclusions and Future Work ... 98

5.1 Addressing the Research Aim and Objectives .. 98

5.2 Future Work .. 100

5.2.1 Integration of Encryption .. 100

5.2.2 Application to Other In-vehicle Network Protocols 100

5.2.3 Machine Learning Implementation ... 100

5.2.4 Intrusion Prevention System (IPS) ... 101

References ... 101

Appendices... 102

vi

LIST OF FIGURES

Figure 1-1 The replica of Benz patent motor car .. 1

Figure 1-2 Methodology flow diagram .. 6

Figure 2-1 Organisation of Chapter 2 ... 16

Figure 2-2 An example of a single two-wire Controller Area Network (CAN). .. 18

Figure 2-3 Classical CAN frame structure. ... 19

Figure 2-4 Signalling in CAN; Node 1 wins arbitration without any disruption. . 19

Figure 2-5 The state diagram of the error confinement mechanism (ECM) in the
CAN bus. ... 20

Figure 2-6 The automotive attack surface. ... 22

Figure 3-1 Organisation of Chapter 3 ... 49

Figure 4-1 Organisation of Chapter 4 ... 67

Figure 4-2 a) Flowchart of signature-based and b) anomaly-based intrusion
detection systems. ... 71

Figure 4-3 Message count of the CAN traffic (top) during a DoS attack and its
wavelet analysis (bottom). ... 76

Figure 4-4 The flowchart of wavelet-based intrusion detection system for in-
vehicle communication. ... 77

Figure 4-5 The wavelet transform of the windowed signal w(t) for single ID during
replay attack (top) and median absolute deviation of W(a,b) (bottom). 79

Figure 4-6 The sensitivity of the WINDS algorithm during various suspension and
DoS attacks. The sensitivity of the algorithm gets better with the rising attack
duration. ... 84

Figure 4-7 The sensitivity of the WINDS algorithm during different replay attacks.
The increased message insertion rate increases the sensitivity while
decreasing the time to detect. .. 85

Figure 4-8 The Receiver Operating Characteristic (ROC) curves for varying
threshold values for RPM spoofing, gear spoofing, and replay attack. 89

Figure 5-1 Organisation of Chapter 5 ... 98

file:///C:/Users/SimonPC/Google%20Drive/Thesis/edit/thesis.docx%23_Toc92200104
file:///C:/Users/SimonPC/Google%20Drive/Thesis/edit/thesis.docx%23_Toc92200114
file:///C:/Users/SimonPC/Google%20Drive/Thesis/edit/thesis.docx%23_Toc92200114
file:///C:/Users/SimonPC/Google%20Drive/Thesis/edit/thesis.docx%23_Toc92200115
file:///C:/Users/SimonPC/Google%20Drive/Thesis/edit/thesis.docx%23_Toc92200115
file:///C:/Users/SimonPC/Google%20Drive/Thesis/edit/thesis.docx%23_Toc92200116
file:///C:/Users/SimonPC/Google%20Drive/Thesis/edit/thesis.docx%23_Toc92200116
file:///C:/Users/SimonPC/Google%20Drive/Thesis/edit/thesis.docx%23_Toc92200117
file:///C:/Users/SimonPC/Google%20Drive/Thesis/edit/thesis.docx%23_Toc92200117
file:///C:/Users/SimonPC/Google%20Drive/Thesis/edit/thesis.docx%23_Toc92200120
file:///C:/Users/SimonPC/Google%20Drive/Thesis/edit/thesis.docx%23_Toc92200120

vii

LIST OF TABLES

Table 1-1 Parameters for locating threads ... 4

Table 2-1 Summary of the Controlled Area Network (CAN) bus attacks. 23

Table 2-2 Methods to secure the CAN bus. ... 27

Table 2-3 Encryption methods for the CAN bus. .. 29

Table 2-4 Automotive anomaly detection sensors [53]. 31

Table 2-5 Comparison of the intrusion detection systems for CAN protocol. ... 35

Table 3-1 Confusion matrix for binary IDS decision ... 52

Table 3-2 Summarisation of open access CAN bus dataset for IDS 58

Table 3-3 Generated synthetic attacks based on Automotive Can Bus Intrusion
Dataset v2 ... 62

Table 3-4 Car-Hacking dataset from real vehicle attack. 63

Table 4-1 Summary of recent intrusion detection systems for CAN bus 72

Table 4-2 Experimental setup specifications .. 82

Table 4-3 The performance of WINDS for the synthetically generated data 83

Table 4-4 Comparison of the WINDS with existing methods using real vehicle
attack data ... 86

viii

LIST OF EQUATIONS

(1-1) .. 3

(3-1) .. 53

(3-2) .. 53

(3-3) .. 53

(3-4) .. 53

(3-5) .. 55

(3-6) .. 55

(4-1) .. 69

(4-2) .. 69

(4-3) .. 70

(4-4) .. 78

(4-5) .. 78

(4-6) .. 78

(4-7) .. 79

(4-8) .. 79

(4-9) .. 80

(4-10) [38] ... 82

ix

LIST OF ABBREVIATIONS

ACK Acknowledgement

CA Collision Avoidance

CAN Controller Area Network

CAN FD CAN Flexible Data-rate

CMAC Cipher-based Message Authentication Code

CRC Cyclic Redundancy Checksum

CSE Cryptographic Service Engine

CSMA Carrier Sense Multiple Access

CSV Comma-Separated Values

CTS Clear to Send

DLC Data Length Code

DNN Deep Neural Network

DOI Digital Object Identifier

DoS Denial-of-Service

ECM Error Confinement Mechanism

ECU Electronic Control Unit

EOF End of Frame

FM Frequency Modulation

FPGA Field-Programmable Gate Array

GAN Generative Adversarial Nets

ID Identifier

IDE Identifier Extension Bit

IDS Intrusion Detection System

IFS Interframe Space

IT Information Technology

LIN Local Interconnect Network

MAC Message Authentication Code

MOST Media Oriented Systems Transport

OBD On-board Diagnostic

OTA Over-the-air

PGN Parameter Group Number

PUF Physical Unclonable Function

x

SOF Start of Frame

REC Received Error Counter

ROC Receiver Operating Characteristic

RTR Remote Transmission Request

RTS Request to Send

TEC Transmitted Error Counter

TPMS Tire Pressure Monitoring System

V2I Vehicle-to-Infrastructure

V2V Vehicle-to-Vehicle

VANET Vehicular Ad Hoc Networks

1

1 Introduction

Carl Benz applied the first patent application for a vehicle powered by a gas

engine in 1886 [1]. The three-wheeled vehicle, in Figure 1, had one cylinder and

was able to reach 10 mph. It was a purely mechanical vehicle; the vehicle industry

has revolutionised since then. Today’s advanced vehicles have extensive

automation with a mesh of sensors and computational systems to improve

functionality and safety. These sensors are controlled by embedded Electronic

Control Units (ECUs), designed for the optimal management of a wide array of

functions ranging from engine control to Anti-lock Braking and Advanced Driver-

Assistance Systems – ABS and ADAS, respectively. According to [2], [3], a

modern automobile is fitted with more than a hundred ECUs, and this number is

envisaged to increase in the future. These ECUs are distributed all around the

vehicle. They communicate with each other via in-vehicle communication

networks, such as Controller Area Network (CAN), FlexRay, Local Interconnect

Network (LIN), and Media Oriented Systems Transport (MOST) [4]. The most

common in-vehicle communication protocol CAN [5] offers advantages such as

cost-effective wiring, immunity to electrical and magnetic interferences, self-

diagnosing, and error correction mechanism.

However, despite these functional benefits, the rising inter-vehicle and intra-

vehicle communications render CAN vulnerable to cyber-attacks. The existing

built-in security features of the CAN bus are primarily designed for ensuring

Figure 1-1 The replica of Benz patent motor car

2

reliable communication, not for cybersecurity; therefore, it cannot prevent the

network from cyberattacks.

The first attack on in-vehicle networks was implemented by Hoppe and Dittman

in 2007[6], [7]. Since then, the attack surface of the vehicle has increased

drastically in parallel to communication networks. In 2015, security researchers

remotely hacked a Jeep Cherokee via a cellular network and were able to control

steering and braking while the vehicle was moving [8]. Various physical and

remote access attacks [9]–[12] demonstrated that the CAN network is

defenceless to any attacks. As a result, the far-reaching implications of

cyberattacks on CAN are anticipated. For instance, the attack on airbags [13] or

ABS systems can jeopardise the driver and passengers' safety. Eventually, it may

affect the car manufacturer’s reputation with substantial financial implications, like

recalls [14]. Tampering of ECUs, e.g., used-cars’ odometer [15], is another

example that may result in dire consequences for the consumers and the

manufacturers. Overcoming such security shortcomings relies on developing

efficient prevention mechanisms, which with the current state of the art, fall into

four categories: network segmentation, encryption, authentication, and Intrusion

Detection Systems (IDSs).

Network segmentation limits access to the critical ECUs by separating them from

the user-accessible network via a gateway ECU. Although the method exists in

commercial vehicles, it is not secure enough to stop adversaries. There are

successful attacks that pass gateway ECU and intrude to the in-vehicle network

[16].

Lack of encryption and authentication is the leading root cause of the CAN

vulnerabilities. Although cryptographic techniques are the direct solution,

implementing such algorithms is not feasible for CAN in automotive applications

because of limited resources (bandwidth, computational power), the need for long

service life, and time constraints. Researchers [17] have shown that current

cryptographic methods are unsuitable for commercial vehicles due to significant

overhead or backward incompatibility.

3

Hence, the problem’s root cause is not feasible to solve by cryptographic

techniques; the problem is mitigated by the Intrusion Detection System (IDS). An

IDS targets to find malicious messages by analysing network traffic and

generates an alert if there is any malicious activity.

1.1 Research Aim and Objectives

1.1.1 Problem Description

Given a vehicular network consisting of N modules allowed to broadcast

messages in format M, there are potential threats in which an unknown adversary

module broadcasts malicious messages with parameters of pattern P, signature

S, and variation V while each parameter is associated with properties of existence

e, strength st and recognised r (described in Table 1-1) and Equation (1-1). The

problem of locating threats falls in utilising a supervisory module that monitors the

messages on the CAN network provisioning to recognise the malicious

messages, among others.

 𝑀𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠 𝑀𝑒𝑠𝑠𝑎𝑔𝑒 = 𝑀(𝑃(𝑒, 𝑠𝑡, 𝑟), 𝑆(𝑒, 𝑠𝑡, 𝑟), 𝑉(𝑒, 𝑠𝑡, 𝑟)) (1-1)

As widely referred to, the supervisory module is the IDS system, which

contributes to evaluating the network traffic against known attacks and

unrecognised activity based on characteristics of the Malicious message given in

Equation (1-1). Determining Message, M, in Equation (1-1) is not a straightforward

task and requires understanding the system's behaviour, the performance of the

driver, and the attackers.

Most current practices limit the IDSs to certain types of attacks mainly to reduce

complexity, while others require highly intensive resources offering slightly robust

performance. Still, none of the existing methods has a vehicle agnostic structure;

therefore, they need training and testing for each vehicle make and model. Apart

from lacking holistic IDS, there is no accepted standard for a testing methodology

which brings many disadvantages.

4

Table 1-1 Parameters for locating threads

Parameter

Name Symbol Description

Behaviour B Statistical or AI model that represents the data and

network traffic and pinpoints anomalies.

Signature S Bit of patterns that match a particular attack’s bit-

sequence found within network packet headers,

data, destination or source network, or in specific

sequences of data or series of packets.

Variation V A shift or change in behaviour (B) or signature (S)

for modelling the data traffic more precisely.

Property

Name Symbol Description

Existence e It represents if a particular parameter is applicable

for modelling a specific message or not.

Strength st Influence of behaviour or signature on a message in

the form of strength or sensitivity.

Recognised r It is an index to the list of recognised behaviour or

signature.

1.1.2 Hypothesis

The vehicular network has rigid timing rules to meet real-time operations. Any

disruption in the system can lead to frequency changes. Frequency analysis tools

like wavelet transform may detect this deviation. Wavelet transform is a powerful

tool to analyse frequency variations over time. Unlike Fourier transform, wavelet

analysis gives spectrum analysis on the time domain. Therefore, it can be used

to identify malicious activities by analysing network traffic. The network traffic of

5

a vehicle is a non-stationary signal. Continuous Wavelet Transform (CWT) is an

excellent tool to analyse the non-stationary signal.

1.1.3 Aim

This research aims to develop a propensity of vehicle-independent detection

capability for IDS by using wavelet analysis. It allows low resource usage and fast

detection time, which are the essential requirements for implementing an IDS in

vehicular systems.

1.1.4 Objectives

To achieve the aim of this research, the following objectives are set out to be met.

1. A literature review to identify gaps and problems regarding CAN security

2. Design and implementation of an IDS for CAN which has the following

criteria:

a. vehicle agnostic implementation

b. ability to detect attacks swiftly

c. low false-positive alarms

3. Data generation to mimic the CAN bus attacks

4. Design and development of a testing framework and attack generation to

demonstrate the ability and limitations of the designed IDS.

1.2 Research Methodology

This research is divided into four phases to achieve research objectives and the

aim, as shown in Figure 1-2. In order to fulfil objectives and achieve the aim, the

literature is surveyed, and research gaps are identified. A Wavelet-based

Intrusion Detection System (WINDS) is proposed. A comprehensive

benchmarking framework is constructed to evaluate the proposed method. Then

WINDS is tested according to this framework. The technique is also compared

with other methods by evaluating on the same network traffic. After the

verification and validation phase, the work is inspected to improve its capabilities.

6

Figure 1-2 Methodology flow diagram

1.2.1 Phase 1: Literature Review

This phase is the beginning of the research process to identify state-of-the-art

solutions and gaps in in-vehicle security. Various topics are studied to obtain the

knowledge to analyse CAN security comprehensively, understanding existing

research, and finding the research gaps. The topics are vulnerabilities of CAN, a

survey on security solutions for in-vehicle networks, and a detailed analysis of

intrusion detection systems. As a result of the literature review, the following

research gaps were identified.

7

i. There are multiple solutions to secure CAN bus, and an intrusion detection

system is the most feasible solution because of the limited resources and

timing constraints. However, none of the existing IDSs has a vehicle-

independent resolution, and most of them require extensive training.

ii. The lack of available datasets is an obstacle to the development of reliable

IDS.

iii. Lack of an accepted benchmarking framework causes improper testing

and misleading results.

Phase 1 helped in defining the aim and objectives of this research. As an outcome

of the literature review, a journal paper and a conference proceeding were

published.

1.2.2 Phase 2: A Framework for Benchmarking Intrusion Detection

Systems for CAN Bus

Benchmarking is essential for researchers, security analysts, and customers. A

good quality benchmark helps researchers and security analysts understand the

strength and limitations of the IDS; therefore, they can focus on improving IDS’

weaknesses. Customers also benefit from benchmarking results and decide on

suitable IDS methodology for their network.

Although researchers proposed various Intrusion Detection Systems (IDSs) to

identify intrusions in the CAN network, there is no accepted testing methodology

and enough dataset. The field is still in its infancy, and produced works lacks

comprehensive evaluation and comparative analysis. A 2018 survey [18] shows

that only 4 out of the 65 surveyed papers compare their works with baseline

methods.

In addition to presenting whether the method works or not, proper testing also

illustrates how well the method works. Lack of standardised testing methodology

causes a variety of problems. First, many IDS solutions are not appropriately

tested, which generates misleading results. The second problem is that it is

difficult to compare existing solutions which hardens researchers’ tasks to

8

evaluate their methodologies. The issue with comparison also hinders reaching

the best IDS.

This phase focused on generating a comprehensive benchmarking dataset and

defining benchmarking criteria covering Objective 3 and Objective 4. The

proposed benchmarking framework assesses an IDS with quantifiable metrics.

Therefore, it is a repeatable and objective testing methodology. The test result is

not a binary output, and it will show the strengths and weaknesses of the IDS

under the test. It identifies the performance metrics and attacks conditions to be

tested. By adopting this approach, IDS solutions can be verified objectively and

efficiently compared with other solutions which use the same benchmarking

framework.

1.2.3 Phase 3: WINDS: A Wavelet-based Intrusion Detection System

for Controller Area Network (CAN)

A novel vehicle agnostic intrusion detection system based on wavelet analysis is

proposed to address the gaps mentioned earlier. This is the main contribution of

this research. The WINDS analyses the CAN-network traffic behaviour using

wavelets, and it can be used as a tool for intrusion detection. To the best of our

knowledge, this is the first attempt applied to vehicular applications.

The proposed wavelet-based IDS does not require training phases, and further,

it is independent of the driver’s driving style.

1.2.4 Phase 4: Verification and Validation

This phase presents the evaluation results of WINDS according to the proposed

benchmarking framework in Phase 2. The WINDS is tested on various scenarios

using real and synthetic attack data. The chapter demonstrates the

competitiveness of WINDS with state-of-the-art methods. It also presents the

vehicle agnostic behaviour of WINDS, which is a significant advantage over

existing solutions. After showing the competitiveness of WINDS, this phase

summarises the current form of the WINDS and presents future works to improve

its capabilities and resource usage. Although WINDS has major vehicle agnostic

behaviour as an advantage over existing solutions, there are some ways to

9

improve it. This can be achieved by focusing on comprehensive thresholding,

analysis of discrete wavelet transforms, detecting infrequent node attacks,

transformation to intrusion prevention system, and optimisation.

1.3 Risks and Mitigations

1.3.1 Dataset

Dataset is a vital element of the research to implement and test the methodology.

However, implementing attacks on a running vehicle has a serious safety risk for

people onboard and the surrounding environment. Therefore, attacks should be

implemented in specialised areas like airports or controlled environments. The

implementation of the attacks is also costly, requiring specialised tools,

insurance, and an actual vehicle. To mitigate these problems, open-source

datasets are used. Although there are a limited number of available datasets and

those datasets have limited variations, a comprehensive benchmarking dataset

can be obtained by synthetically simulating the attacks on available datasets.

In this research, datasets from two independent research centres are used;

“Automotive Controller Area Network (CAN) Bus Intrusion Dataset v2” [19] and

“Car-Hacking Dataset” [20]. More data is generated by mimicking the CAN bus

attacks virtually.

1.3.2 Evaluation and Comparative Analysis

There is no standardised testing methodology and accepted benchmarking

dataset. As a result, it becomes difficult to compare the proposed method with

existing solutions. To overcome this issue, testing methodology in Information

Technology (IT) is studied, and a comprehensive framework is constructed. The

WINDS is tested according to the proposed framework.

To get the comparative analysis, the WINDS is tested on the same dataset, “Car-

Hacking Dataset”, with other methods along with the frequency-based baseline

method. Although used “Car-Hacking Dataset” has some deficiencies and lacks

experimental details, it is a valuable dataset used by many researchers. Hence,

10

the dataset has a limited number of attack conditions; using this dataset cannot

guarantee the judgemental decision, but it can be a comparison.

1.4 The Organisation of the Thesis

The remaining part of this thesis is organised as follows: Chapter 2 presents a

comprehensive literature review of CAN bus security focusing on intrusion

detection systems. Chapter 3 outlines the details of the wavelet-based intrusion

detection system (WINDS) for in-vehicle networks. Then Chapter 4 presents the

data generation and the framework for testing vehicle IDS. Additionally, this

chapter evaluates the WINDS algorithm and compares it with other state-of-the-

art methods. Finally, Chapter 5 concludes the thesis and outlines future

directions.

1.5 Publications & Activities

1.5.1 List of Publications

Journal Papers:

I. M. Bozdal, M. Samie, S. Aslam, I. Jennions, “A Wavelet-based Intrusion

Detection System for Controller Area Network (CAN)”, IEEE Access, 2021.

(DOI: https://doi.org/10.1109/ACCESS.2021.3073057).

II. M. Bozdal, M. Samie, S. Aslam, I. Jennions, “Evaluation of CAN bus

security challenges”, Sensors, 2020. (DOI:

https://doi.org/10.3390/s20082364).

Conference Papers:

I. M. Bozdal, M. Samie, I. Jennions, “A survey on CAN bus protocol: Attacks,

challenges, and potential solutions”, IEEE International Conference on

Computing, Electronics and Communications Engineering, 2018. (DOI:

https://doi.org/10.1109/iCCECOME.2018.8658720)

II. M. Bozdal, M. Randa, M. Samie, I. Jennions, “Hardware trojan enabled

denial of service attack on CAN bus”, 7th International Conference on

Through-life Engineering Services, 2018. (DOI:

https://doi.org/10.1016/j.promfg.2018.10.158)

https://doi.org/10.1109/ACCESS.2021.3073057
https://doi.org/10.3390/s20082364
https://doi.org/10.1109/iCCECOME.2018.8658720
https://doi.org/10.1016/j.promfg.2018.10.158

11

1.5.2 Training and Networking Activities

Numerous courses and activities are attended to keep up to date in the field and

share ideas with the other researchers. Some of the main ones are summarised

below.

IVHM Technical Review Meeting: These meetings are held three times a year,

and all the meetings organised during this PhD research were attended. It allows

to the presentation of research progress to colleagues and industrial partners.

The feedback from the meetings improved the research quality and presentation

skills.

AESIN Security Conference: AESIN is a non-profit organisation recognised by

the Automotive Council UK. It is a response to the explosion of electronics in-car,

which is approaching 50% of vehicle cost. There are specialised conferences

covering a variety of automotive electronics. AESIN Security Conference focuses

on the cyber resilience of connected automobiles. The following meetings were

attended.

• AESIN Security Virtual Conference, 15 July 2020, Online

• AESIN Security Conference, 10 July 2019, Coventry UK

Vector Cybersecurity Symposium: Vector is a leading company that provides

tools, software components, and services for automotive and related industries.

Vector Cybersecurity Symposium brings together state-of-the-art industry

solutions and ongoing academic works. It gives insights into safety and security

integration in practice, security standards, and solutions for automotive

cybersecurity. The following conference was attended.

• Vector Cybersecurity Symposium, 2 - 4 April 2019, Stuttgart

Germany

Europractice Hardware Security Course: It is a five-day hands-on course for

designing secure ICs and systems in different application domains. It covers

security, encryption and security threats, secure implementations resistant to

passive and active attacks, and security building blocks like random number

generators and physically unclonable functions. The following course was taken.

12

• Europractice Hardware Security Course,10-14 December 2018,

Leuven, Belgium

References

[1] Daimler AG, “Benz Patent Motor Car: The first automobile (1885–1886).”

https://www.daimler.com/company/tradition/company-history/1885-

1886.html (accessed Mar. 21, 2021).

[2] E. Hira, “Automotive Electronic Control Unit (ECU) market size share,

2022,” Allied Market Research, 2017.

https://www.alliedmarketresearch.com/automotive-electronic-control-unit-

ecu-market (accessed Jul. 22, 2018).

[3] “‘ECU’ is a three letter answer for all the innovative features in your car:

know how the story unfolded,” Embitel, 2017.

https://www.embitel.com/blog/embedded-blog/automotive-control-units-

development-innovations-mechanical-to-electronics (accessed May 23,

2018).

[4] T. Kosch, C. Schroth, M. Strassberger, and M. Bechler, Automotive

Internetworking. Chichester, UK: John Wiley & Sons, Ltd, 2012.

[5] K. Matheus and T. Königseder, Automotive Ethernet. Cambridge University

Press, 2015.

[6] T. Hoppe and J. Dittman, “Sniffing/Replay Attacks on CAN Buses: A

simulated attack on the electric window lift classified using an adapted

CERT taxonomy,” in Proceedings of the 2nd workshop on embedded

systems security (WESS), 2007, pp. 1–6.

[7] B. Groza and S. Murvay, “Security solutions for the Controller Area

Network: Bringing Authentication to In-Vehicle Networks,” IEEE Vehicular

Technology Magazine, pp. 40–47, 2018.

[8] C. Miller, “Lessons learned from hacking a car,” IEEE Des. Test, vol. 36,

13

no. 6, pp. 7–9, 2019, doi: 10.1109/MDAT.2018.2863106.

[9] S. Fröschle and A. Stühring, “Analysing the capabilities of the CAN

Attacker,” in European Symposium on Research in Computer Security,

Sep. 2017, vol. 10492 LNCS, pp. 464–482, doi: 10.1007/978-3-319-66402-

6_27.

[10] C. Miller and C. Valasek, “A survey of remote automotive attack surfaces,”

2014. Accessed: Mar. 31, 2018. [Online]. Available:

https://www.ioactive.com/pdfs/IOActive_Remote_Attack_Surfaces.pdf.

[11] P.-S. Murvay and B. Groza, “DoS attacks on Controller Area Networks by

fault injections from the software layer,” in Proceedings of the 12th

International Conference on Availability, Reliability and Security - ARES

’17, 2017, vol. 10, pp. 1–10, doi: 10.1145/3098954.3103174.

[12] A. Palanca, E. Evenchick, F. Maggi, and S. Zanero, “A stealth, selective,

link-layer denial-of-service attack against automotive networks,” in

International Conference on Detection of Intrusions and Malware, and

Vulnerability Assessment, Jul. 2017, vol. 10327 LNCS, pp. 185–206, doi:

10.1007/978-3-319-60876-1_9.

[13] J. Dürrwang, J. Braun, M. Rumez, and R. Kriesten, “Security evaluation of

an airbag-ECU by reusing threat modeling artefacts,” in 2017 International

Conference on Computational Science and Computational Intelligence,

CSCI 2017, 2018, pp. 37–43, doi: 10.1109/CSCI.2017.7.

[14] C. Matthews, “Jeep Hack: Fiat recalls 1.4 million vehicles for software fix,”

Fortune, 2015. https://fortune.com/2015/07/24/jeep-cherokee-recall/

(accessed Mar. 27, 2020).

[15] D. Maloney, “Dashboard dongle teardown reveals hardware needed to bust

miles,” Hackaday, 2019. https://hackaday.com/2019/12/16/dashboard-

dongle-teardown-reveals-hardware-needed-to-bust-miles/ (accessed Mar.

21, 2020).

[16] S. Nie, L. Liu, and Y. Du, “Free-Fall : Hacking Tesla from wireless to CAN

14

bus,” in BlackHat USA 2017, 2017, pp. 1–16, Accessed: Nov. 30, 2018.

[Online]. Available: https://www.blackhat.com/docs/us-17/thursday/us-17-

Nie-Free-Fall-Hacking-Tesla-From-Wireless-To-CAN-Bus-wp.pdf.

[17] N. Nowdehi, A. Lautenbach, and T. Olovsson, “In-vehicle CAN message

authentication: An evaluation based on industrial criteria,” in IEEE

Vehicular Technology Conference, 2017, vol. 2017-Septe, pp. 1–7, doi:

10.1109/VTCFall.2017.8288327.

[18] G. K. Rajbahadur, A. J. Malton, A. Walenstein, and A. E. Hassan, “A Survey

of Anomaly Detection for Connected Vehicle Cybersecurity and Safety,” in

IEEE Intelligent Vehicles Symposium, 2018, vol. 2018-June, pp. 421–426,

doi: 10.1109/IVS.2018.8500383.

[19] G. Dupont, A. Lekidis, J. Den Hartog, and S. Etalle, “Automotive Controller

Area Network (CAN) Bus Intrusion Dataset v2,” 4TU.ResearchData, 2019.

https://data.4tu.nl/repository/uuid:b74b4928-c377-4585-9432-

2004dfa20a5d (accessed Dec. 09, 2019).

[20] H. K. Kim, “Car-Hacking Dataset,” Hacking and Countermeasure Research

Lab. https://sites.google.com/a/hksecurity.net/ocslab/Datasets/CAN-

intrusion-dataset (accessed Dec. 01, 2020).

15

2 Evaluation of CAN Bus Security Challenges

The automobile industry no longer relies on pure mechanical systems; instead, it

benefits from intelligent features based on advanced embedded electronics.

Although the rise in electronics and connectivity has improved comfort,

functionality, and safe driving, it has also created new attack surfaces to

penetrate the in-vehicle communication network, which was initially designed as

a close loop system. Although the Controller Area Network (CAN) is the most

widely used communication protocol, it still suffers from various security issues

because of the lack of encryption and authentication. As a result, any

malicious/hijacked node can cause catastrophic accidents and financial loss. This

chapter analyses the CAN bus comprehensively to provide an outlook on security

concerns. First, it gives the CAN protocol details, standardised by ISO 11898-

1:2015. Then, the protocol's vulnerability is assessed based on confidentiality,

integrity, and availability. The chapter continues with existing attacks and

presents a state-of-the-art attack surface. It goes through different solutions that

assist in attack prevention, mainly based on an intrusion detection system (IDS).

The chapter is finalised with a discussion section covering the standardisation of

automotive cybersecurity, industrial products, and obstacles preventing CAN

security research. The organisation of the chapter is presented in Figure 2-1.

16

Figure 2-1 Organisation of Chapter 2

2.1 Introduction

Modern vehicles are equipped with dozens of Electronic Control Units (ECUs) to

improve driving comfort and safety[1][2]. ECUs control most of the car's functions,

including safety-critical ones like engine control, airbag deployment, and anti-lock

braking system. To have safe driving, ECUs should have a reliable

communication network. One of the main in-vehicle communication protocols is

Controller Area Network (CAN). Its well-recognised advantages, such as high

immunity to electrical interference, easy wiring, ability to self-diagnose, and

mitigating errors, make CAN bus suitable for the automobile industry. Although

CAN is resilient to electrical noise and has reliable communication features, it is

still vulnerable to attacks.

The first known attack on the CAN bus was implemented on the electric window

lift in the simulation environment by Hoppe and Dittman in 2007[3]. Since then,

different attack scenarios have been implemented [4]–[7]. While most attacks are

Chapter 2

2.1 Introduction

2.2 Overview of the Controller Area
Network

2.3 Vulnerability Assesment of the CAN
Protocol

2.4 Automotive Attack Surface and
Exisiting Attacks

2.5 Counter Measures for CAN attacks

2.6 Discussions on CAN Security
Research

2.7 Conclusion

17

implemented via physical access to the bus, wireless attacks are increasing. The

wireless attack surface will continue to grow with the new wireless interfaces like

Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I).

Equally alarming is the lack of encryption in CAN, which has a strong bearing on

individual data privacy. By design, CAN is a broadcast network that allows nodes

to capture messages going through the network. An adversary can acquire the

desired data as the broadcasted data is not encrypted. This may lead to an

invasion of privacy, mainly when modern cars are capable of acquiring the driver's

personal information.

According to the 2019 industry survey [8], safety and security are the highest

short-term and mid-term challenges for the automotive industry. Therefore,

extensive studies have been carried out to find possible solutions [3], [9] to the

vulnerabilities of CAN. Some of these studies have performed successful

experimental attacks on passenger cars [4], [5], [10]–[13] and heavy-duty

vehicles [14], [15]. At the same time, researchers have also proposed

preventative methods for such known attacks. These include network

segmentation, encryption, authentication, and intrusion detection systems (IDSs).

In light of the above, this chapter provides a comprehensive literature review with

the following main contributions:

a. Identification of the state-of-the-art and the most potential security

challenges associated with modern vehicles, covering a number of

implemented physical and remote access attacks.

b. Highlighting the attack surfaces of modern vehicles with a critique on

possible future attacks.

c. An in-depth analysis of the current research on CAN security issues

to facilitate their effective and optimal mitigation.

2.2 Overview of the Controller Area Network (CAN)

The CAN bus is a multi-master broadcast communication protocol developed by

Robert Bosch GmbH in the early 1980s. A traditional CAN interface can provide

18

up to 1 Mbps [16]. In 2012, Bosch released the CAN FD (flexible data-rate), which

can achieve 5 Mbps in practice and has a 64-byte payload compared to 8 bytes

in the classical CAN [17]. CAN FD is backwards compatible and can coexist with

classical CAN nodes. Classical CAN and CAN FD are both standardised under

ISO 11898-1:2015.

The single two-wire bus architecture of CAN, as shown in Figure 2-2, reduces

cabling. The distributed architecture of the network provides easy maintenance

and decreases the overall system cost. Moreover, the protocol uses differential

wiring mode, represented by CAN_H and CAN_L, enhancing immunity to noise

and electrical interference. From a logic point of view, signals have two states

(voltage levels): a dominant logic '0' and a recessive logic '1', meaning that the

bus signal remains '0', the dominant logic, as long as one of the nodes releases

logic '0' to the bus. As there is no dedicated clock line, synchronisation is provided

via signal edges and bit-stuffing. The Bit-stuffing rule limits the number of

repeated bits. After five consecutive bits of the same logic level, the next bit must

complement the previous logic level; otherwise, it will cause a protocol error. If

the data has more than five successive corresponding bits, a complement bit is

inserted by the transmitter CAN controller and the receiver ignores it.

Figure 2-2 An example of a single two-wire Controller Area Network (CAN).

The CAN protocol has message-based communication provided via frames, as

shown in Figure 2-3. Each frame has a message identifier field, data field, cyclic

redundancy checksum (CRC), and some control bits. Every node listens to each

19

frame and processes the relevant ones based on the message identifier field,

which is also used for the arbitration.

Figure 2-3 Classical CAN frame structure.

2.2.1 Reliable Communication in CAN

The CAN protocol has a set of built-in features that provide robust

communication. Suppose two nodes start transmitting at the same time. In that

case, the non-destructive arbitration mechanism resolves the conflict by allowing

the highest priority node to continue the transmission without any interruption

(e.g., Node 1 wins arbitration in Figure 2-4, without any disruption, as the dominant

bit overrides the recessive one). Another feature is carrier sense multiple access

with collision avoidance (CSMA/CA), which rules that the nodes have to wait for

a certain amount of inactivity before the transmission. This assists in sensing if

the bus is idle and ensuring that a collision will not occur.

Figure 2-4 Signalling in CAN; Node 1 wins arbitration without any disruption.

The CAN bus has some bit-level and message-level error checking mechanisms.

At the bit level, the transmitter node monitors the bus. An error arises if there is a

difference between the transmitted bit and the one observed on the bus. On the

other hand, the message-level CAN bus error check mechanism includes frame

check over acknowledgement (ACK), cyclic redundancy checksum (CRC), and

end of frame (EOF) fields. After the transmission of a frame, the transmitter node

writes a recessive bit to the ACK field. If a node receives a message correctly, it

20

overwrites the ACK field with a dominant bit; otherwise, the ACK field stays

recessive, which indicates a transmission error. There is up to a 21-bit CRC field

in a CAN frame for data integrity. An error flag will be sent if any node calculates

a different CRC than the transmitter node. The CRC delimiter, ACK delimiter, and

EOF bits have fixed values and must always be recessive. An error is generated

if these bits are dominant during the frame form check.

CAN also prevents the physical errors by disabling the faulty nodes from the bus

traffic with an error confinement mechanism (ECM), as shown in Figure 2-5. The

ECM is facilitated in each node using two error counters known as the received

error counter (REC) and transmitted error counter (TEC). The TEC increases by

eight if an error occurs during the transmission, and REC increases by one if the

error comes during the reception. Every successful transmission or reception of

a frame decreases the responsible counter by one. The counters' default values

are zero, and nodes start at the error active state. A node will enter the error

passive state if the value of the node's counter exceeds 127. In an error passive

state, the node can only write recessive error flags, which will not affect the bus

traffic. The node turns to the bus off state if the TEC counter exceeds 255,

meaning that the affected node will no longer participate in the bus traffic.

TEC > 255

Error
Active

Error
Passive Bus Off

Figure 2-5 The state diagram of the error confinement mechanism (ECM) in the

CAN bus.

21

2.3 Vulnerability Assessment of the CAN Protocol

It is essential to have a vulnerability assessment of a network to highlight security

problems. Therefore, the CAN protocol's vulnerability assessment can be carried

out based on confidentiality, integrity, and availability.

Confidentiality means providing the data only to authorised people. However, the

CAN protocol does not have inherent cryptographic methods to ensure

confidentiality. This allows an intruder to access sensitive user data and cause

an invasion of privacy.

Integrity is the accuracy, completeness, and validity of the data. The CAN bus

has a CRC to verify integrity against transmission errors, but it cannot prevent

data injected by malicious parties, which breaks the integrity. The protocol does

not have a comprehensive integrity check and fails to sustain integrity.

Availability means that authorised users can use the system at all times. Given

the nature of priority-based messaging, if a message with the highest priority is

transmitted/inserted, the network will be inaccessible by the lower priority nodes,

and availability is violated.

The CAN bus failed to pass all three essential security criteria. Thus, it is clear

that the CAN protocol does not have any security measurements against the

attacks.

2.4 Automotive Attack Surface and Existent Attacks

In the 1950s, automotive electronics cost only 1% of the total car cost, while it is

currently 35% and is expected to rise to 50% in 2030 [18]. Although the rise in

electronics has improved comfort, functionality, and driving safety, it has created

new attack surfaces, as shown in Figure 2-6. The protocol itself is defenceless to

attacks; therefore, any exploit in the current/future telematics unit or infotainment

system can disrupt the network, as summarised in Table 2-1.

22

Figure 2-6 The automotive attack surface.

The first CAN bus attack was performed on the power window by Hoppe and

Dittman in 2007 [3], [24]. Since then, numerous attacks have been performed.

These attacks can be categorised as physical access attacks, where the attacker

should access the vehicle physically, or remote attacks, which are implemented

via wireless communication interfaces. Although attacks in the literature are

mainly physical access, some experts have argued that physical access to the

CAN network is not practical [25]. Therefore, current research is primarily

focusing on remote access attacks.

23

Table 2-1 Summary of the Controlled Area Network (CAN) bus attacks.

Ref. DoS Modification 1 Access Type Notes / Root Cause

[4] Y N OBD II
Does not require full CAN

messages

[19] N Y

OBD II, CD,

Bluetooth,

GSM

Systematical experimental

attacks. Indirect access via the

car service computer

[20] N Y
In-direct OBD

II
Attack via a smartphone app

[21] Y Y

Multiple

remote

sources

Remote attack analysis of 21

commercial cars

[5] N Y Wi-Fi, GSM
Access CAN network via a

browser exploit

[14] Y N

OBD II,

compromised

ECU

SAE J1939 data-link layer

exploits

[22] N Y Wi-Fi, GSM
Ransomware attack over the

air

[23] N Y TPMS
Remotely sending false TPMS

data

1 The modification includes replay, impersonation, and bogus information attacks.

2.4.1 Physical Access Attacks

Physical access attacks require direct or indirect access to the CAN bus network.

Direct access can be obtained by the On-Board Diagnostic (OBD) port or a

malicious node. The OBD port is the primary attack surface; hence, it has access

to all nodes, even though network segmentation is used.

24

Koscher et al. [11] manipulated the CAN and controlled various modules,

including essential brake control and engine control modules through the On-

Board Diagnostics II (OBD-II) port. They released the brake and prevented its

activation while the car was running 40 mph by the continuous fuzzing method.

The attack also includes manipulating the instrument cluster with false data,

changing engine parameters and disabling it.

Due to the CAN architecture, any malicious node can listen or send a message

to disrupt the network. The attacks implemented through the OBD port can be

replicated using a malicious node. Palanca et al. [4] applied a selective Denial-

of-Service (DoS) attack on an unmodified 2012 Alfa Romeo Giulietta. The

research showed that any person with physical access to the network could

disrupt it, even with a simple tool. This attack does not require a complete

message transmission; instead, it overwrites the recessive bits and generates a

transmission error. The contribution of this research is that it exploited the

vulnerability of the CAN standard. After this research, an alert (ICS-ALERT-17-

209-01) [26] was announced by the U.S. government. A similar research analysis

was carried out by Murvay and Groza [27] to show the attack's limitations on

different bit rates and breach the authentication methods.

Mukherjee et al. [14] implemented DoS attacks on the SAE J1939 standard [28],

used in heavy-duty commercial vehicles. They performed three separate DoS

attacks: (i) sending too many request messages for a supported Parameter

Group Number (PGN) to overload the recipient ECU, (ii) sending manipulated

false Request to Send (RTS) and causing overflow at the recipient buffer, and (iii)

keeping the connections open via Clear to Send (CTS) messages and occupying

the whole network. This work was one of the first studies to exploit the SAE J1939

specification. Murvay and Groza [15] implemented impersonation and DoS

attacks on SAE J1939. These works showed that SAE J1939 is vulnerable to

protocol-specific attacks in addition to all CAN bus attacks.

There can also be indirect physical access attacks. These attacks require a

physical object to be inserted into the car, but adversaries do not necessarily

have direct access to the network. Checkoway et al. [19] developed an indirect

25

access attack model, which included hacking the car service's IT system and

accessing the CAN via computer. The attack model also included attacking via

multimedia devices (CD, USB, or MP3 player). Hoppe et al. [12] implemented an

attack with a multimedia disc. Although the attack did not breach the CAN, it may

scare the driver by flashing a warning on the screen and playing an alarm signal.

2.4.2 Remote Access Attacks

Nowadays, modern vehicles contain different types of wireless interfaces needed

for communicating with systems such as passive anti-theft, Tire Pressure

Monitoring System (TPMS), Bluetooth, radio data, telematics, and so on. These

wireless interfaces need to communicate with the CAN, usually via a gateway

ECU to protect the network. However, some studies have demonstrated a

gateway ECU hacking and gaining access to the isolated CAN [12].

Checkoway et al. [19] compromised the TPMS, Bluetooth, FM channel, and a

car's cellular network through reverse engineering. They claimed that thieves

could steal vehicles easily as doors could be unlocked through CAN messages.

Woo et al. [20] proposed a remote attack via a malicious self-diagnostic app. If

someone uses a malicious app to monitor/diagnose the vehicle's situation, the

adversary takes control of the vehicle remotely and performs its attack from a

long distance.

Valasek and Miller [21] carried out a remote attack survey on 12 car brands and

21 commercial cars and identified the remote attack surfaces and their difficulties

in compromising each vehicle. The attack was three-staged. The first stage was

to compromise the ECU responsible for a wireless interface. The second stage

was to inject messages to communicate with the safety-critical ECU. The last

stage was to modify the ECU to behave maliciously. While the researchers

believed that the increasing number of cyber-physical systems in the cars would

increase their vulnerabilities, they could not practically verify this because of the

high number of different applications in the vehicles. Furthermore, they also

hacked a Jeep Cherokee remotely and disabled the engine in 2014 [10]. After

this attack, a public announcement that stated the vulnerability of motor vehicles

against remote attacks was published [29].

26

Savage and his team [30] took control of a Chevrolet Corvette's brakes and

windshield wipers via a commercial telematics control unit in 2016. This attack

indicates that the CAN's vulnerability can be penetrated by the aftermarket

equipment and cannot be entirely addressed by the manufacturer [31].

Nie et al. [5] implemented a remote attack on a Tesla Model S in 2016 via wireless

and cellular interfaces. The Keen Security Lab of Tencent [13] discovered

multiple attack surfaces on BMW vehicles, which showed that even high-end

commercially available cars could suffer from cyber-attacks.

Another wireless attack method is over-the-air (OTA) software updates. OTA is a

cost-effective and scalable solution that allows manufacturers to deliver software

updates remotely. However, it is another attack surface where hackers can dive

into the vehicle's communication network. Beek and Samani [22] implemented a

ransomware attack via an OTA update.

The remote attack surface of the modern car is more substantial than the physical

one. With the rising connectivity in vehicles, the number of wireless attack

surfaces is increasing day by day. In the near future, cars will be equipped with

vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communications,

which build vehicular ad hoc networks (VANETs). VANETs aim for traffic

optimisation and collision avoidance. To provide these benefits, VANETs use car

sensors and have wireless connectivity. In VANETs, spoofed messages can be

received or transmitted, and as a result, the in-vehicle communication network

may be disrupted.

2.4.3 Privacy in the CAN

Acquiring CAN network data causes not only safety issues but also the invasion

of privacy. The modern vehicle collects data related to the driver, which passes

through the vulnerable CAN network. An investigation [32] revealed that it was

possible to obtain the car's precise location history and other personal data (log

of phone calls, list of contacts, email addresses, and photos) from the connected

phone. An adversary can steal personal information only by passively listening to

the bus. Furthermore, researchers [33], [34] have shown that it is possible to

27

identify the driver based on the sensory data travelling through the CAN bus.

Therefore, monitoring the in-vehicle network can invade personal privacy.

2.5 Counter Measures for CAN Attacks

The attacks on CAN clearly show that the protocol is very vulnerable and requires

cyber defence mechanisms for safe driving. The studies to solve this problem

have mainly focused on four defence mechanisms: network segmentation,

encryption, authentication, and intrusion detection, summarised in Table 2-2.

Table 2-2 Methods to secure the CAN bus.

Proposed Method Benefits Disadvantages

Network

Segmentation

Limit access to the
end-user

Increased cost, Difficulty in
maintenance

Encryption
Hardened attacks,
Confidential data
transmission

Increased computational power,

Increased traffic, Weak encryption
due to frame size

Authentication Secure data
transmission

Increased computational power,
Increased traffic

Intrusion Detection
Detect anomalies
and attacks

Complicated algorithm design,

Cannot guarantee the security

2.5.1 Network Segmentation

The most straightforward protection mechanism is separating the CAN network

into multiple subnetworks. The segmentation provides control over who can

access a particular subnetwork and reduce the attack's damage by limiting its

spread. The interconnection between subnetworks is controlled via a gateway

ECU. This model currently exists in commercial vehicles. The method is simple

to implement, but it is ineffective if the gateway ECU is compromised or

manipulated like the hacking exhibited in [12]. Kammerer et al. [35] addressed

this issue and proposed a star coupling router with security features. The paper

ignored the security inside a subnetwork, but it is possible to implement a replay

attack in a subnetwork and attack the other subnetworks bypassing the security

check of the router.

28

Researchers at TU München proposed an automotive service bus architecture

[36] whose two-layer architecture was designed to prevent external attacks. The

infotainment system and all vital functions were separated from each other. All

components could send and receive messages, but by default, they could not

send any data as the central ECU allows whom to write to the automotive service

bus.

Network segmentation increases the security level, but it is not sufficient to

protect the CAN. It also makes the maintenance of the system more complicated,

along with the increased cost.

2.5.2 Encryption

The CAN protocol uses a shared broadcast network without a built-in encryption

mechanism. This allows an adversary to eavesdrop on all the nodes and

understand the communication. To prevent this data breach, a lightweight

encryption system should be implemented. Although there are commercial

software-based encryption methods (e.g., Trillium [37], CANcrypt [38]) and

manufacturers have proprietary encryption techniques implemented in cars, there

have been reports claiming that encryption mechanisms in commercially

available vehicles can be broken [39],[40].

The limited data field is one of the problems for secure CAN encryption. This

problem can be overcome by sending multiple CAN frames for a single message

and may solve the problem on low traffic networks. Still, it is not a solution for the

currently rising traffic in automobile CAN networks. Another issue is the limited

computational power of ECUs. If we consider the lifetime of a vehicle, it is

possible to crack a static encryption key. Therefore, dynamic key exchange is

required. However, this is harder to implement and is computationally expensive.

The dynamic key can also cause latency on resource-constrained ECUs, and it

is not acceptable for safety-critical real-time systems.

The different encryption mechanisms proposed are shown in Table 2-3. Doan and

Ganesan [41] implemented hardware-based AES-128 encryption on FPGA chips

for the CAN system. The hardware implementation of the method decreases

29

latency and increases throughput. However, the method changes the legacy ECU

and is not backwards compatible. Another study used Physical Unclonable

Functions (PUFs) [42]. This method can obtain the private key from the physical

characteristics of the ECUs; thus, hiding the key is not a problem. Although the

method solves the problem of generating encryption keys, it also requires

modifying the ECU.

Table 2-3 Encryption methods for the CAN bus.

Ref. Encryption Method Traffic Effect Key

[41] AES-128 and SHA-1 Increased Static Symmetric

[43] XOR No Change Dynamically Synchronised

[42]
AES-256 and Elliptic-

curve Diffie Hellman
Increased Symmetric

[44] XOR No Change Static Symmetric

[45]
Tiny Encryption

Algorithm
Increased Static Symmetric

[46] Triple DES Increased Dynamically Synchronised

Encryption hardens attacks and provides privacy; however, it is not sufficient to

protect the CAN. Even the unbreakable encryption mechanism cannot prevent

replay attacks.

2.5.3 Authentication

It is not possible to identify the sender of a CAN message. If an adversary has

access to the network, they can send malicious messages and all the nodes

accept them as authentic. This attack can be prevented via authentication.

VeCure [47] authentication, which has an acceptable 50 us processing delay, is

based on trust groups where high-trust groups share a symmetric secret key. The

method has a significant advantage with fewer key numbers, corresponding to

the number of trust groups rather than the ECU number. However, it sends an

30

authentication message after every transmitted frame, which doubles the network

traffic. Another drawback of the method is that it cannot protect the system if a

node from the trust group is compromised. LiBrA-CAN [48], proposed by Groza

et al., splits the authentication keys between groups of multiple nodes to improve

efficiency. Although the method is quite successful, it requires high bandwidth

and is not compatible with traditional CAN.

Nowdehi et al. [49] identified five criteria for an authentication method to be

implemented commercially: cost-effectiveness, backward compatibility, support

for vehicle repair and maintenance, sufficient implementation details, and

acceptable overhead. They analysed ten authentication methods in the literature

using them. Not surprisingly, none of the methods could pass all five criteria.

There are also off-the-shelf products providing hardware-based authentication

like the S32K family from NXP [50]. The S32K family has Cryptographic Service

Engine (CSE), a Cipher-based Message Authentication Code (CMAC) to provide

secure authentication. It is a hardware-based system that accelerates the

process drastically. For instance, public-key authentication can be achieved in

less than 100 us [51] with hardware acceleration, while software authentication

takes more than 10 ms, depending on the key size. However, the industry is

currently concerned with the cost of ECUs. With the enhancement of hardware

technology, it is possible to see more hardware-based methods to secure the

CAN.

2.5.4 Intrusion Detection System (IDS)

Implementing security features on a safety-critical real-time system is a difficult

task. Robust cryptographic methods are not feasible due to the limited resources

(memory, bandwidth, and computational power) and time constraints. This leads

to emerging research on intrusion detection system (IDS) for CAN. The main

advantage of IDS is that it usually does not modify the current CAN controller,

and the bus traffic does not increase.

Intrusion detection methods can be categorised as signature-based (misuse)

detection and anomaly-based detection [52]. Signature-based detection checks

31

for known attacks on the database; therefore, it requires regular updates for new

attacks. Although it is quite successful in detecting known attacks, it fails to detect

unknown attacks. Anomaly-based IDS analyses the behaviour of the network and

recognises the deviation from expected behaviour. Accuracy is usually lower than

that of the signature-based. In contrast to signature-based detection, anomaly-

based IDS may detect unknown attacks.

Table 2-4 Automotive anomaly detection sensors [53].

Sensor Description

Formality
Correct message size, header and field size, field delimiters,

checksum, etc.

Location The message is allowed with respect to the dedicated bus system

Range Compliance of payload in terms of data range

Frequency Timing behaviour of messages is approved

Correlation
Correlation of messages on different bus systems adheres to the

specification

Protocol
The correct order, start-time, etc. of internal challenge-response

protocols

Plausibility
Content of message payload is plausible, no infeasible correlation

with previous values

Consistency Data from redundant sources is consistent

There are different parameters that an IDS system can assess on the CAN. Müter

et al. [53] defined eight anomaly detection sensors, as shown in Table 2-4, to

identify the anomalies in a structured way. All these detection sensors were

inspired by the typical behaviour of the CAN bus. Deviation from these sensors'

normal behaviour is the sign of an intrusion, and different IDS solutions use these

sensors to detect intrusions. These solutions can be categorised as

32

time/frequency-based, physical system characteristic, specification-based, and

feature-based.

2.5.4.1 Time/Frequency-Based IDS

Automobiles have rigid safety rules, and most of the ECUs transmit periodic

signals. Any change in the frequency can be interpreted as abnormal behaviour,

in other words, an intrusion. The basic IDS analyses the CAN messages'

frequency as presented in [54][55].

Offset ratio and time interval based IDS [56], proposed by Lee et al., analyses

the response time of the transmitted remote frame where the simple and effective

algorithm can detect attacks and type of attacks; however, the method increases

bus traffic by injecting remote frames for analyses.

The time/frequency analysis provides valuable information about the CAN.

However, the vehicle's situation (e.g., idle, running) and the priority scheme of

the CAN may significantly change the timing information and affect the result of

time/frequency-based IDS. The method cannot detect attacks where the

frequency is not changed, like a masquerade attack in [57].

2.5.4.2 Physical Characteristic Based IDS

The CAN network's physical characteristic may detect intrusions; hence, each

transceiver has a different signal shape even though they transmit the same data.

This can be caused by random manufacturing variations, cabling, and ageing.

In [58], Choi et al. proposed VoltageIDS, which uses unique electrical

characteristics of the CAN signal like a fingerprint. The different locations of the

ECUs with varying lengths of wire results in different resistance [59] and the

resistance changes the signal features. They analysed eight signal features like

positive and negative slope values and voltage values at a dominant level. The

method has zero false-positive rates and can differentiate between attacks and

errors; however, it requires an oscilloscope to gather the network signal and has

heavy signal processing.

33

The CAN does not have a shared master clock, and each ECU uses its own

quartz crystal. Cho and Shin [57] suggested the use of clock skew to detect

intrusions. Although ECUs run the same frequency, they may have random

drifting exceeding 2400 ms in a day [60]. They fingerprinted the transmitter ECU

via the clock skew and detected the intrusions. Although they could reach 97%

of the anomaly detection with a false-positive rate of 0.55%, the method only

worked for the periodic messages. However, this method can be tricked by

mimicking the clock skew, as shown in [61].

The physical characteristic of the CAN provides substantial information about

ECUs. However, environmental factors like temperature and humidity and ageing

of the components can change the physical characteristics; therefore, the IDS

may fail. They can also not detect the attacks from the software layer because

the authenticated ECU will transmit the malicious messages, and the IDS does

not find any changes to the signal characteristics. Similarly, the physical

characteristic-based IDS requires heavy signal processing. As a result, it may

cause latency or require expensive hardware.

2.5.4.3 Specification-Based IDS

Larson et al. [62] suggested specification based attack detection and

implemented specification rules based on the CAN Open protocol. This method

has limited attack detection capability and requires all the ECUs to have

detectors. The method is also not powerful enough to prevent attacks; hence,

there are protocol-compliant attacks like [63].

Studnia et al. [64] proposed a language-based intrusion detection and derived

the network's language characteristic from the ECUs' specifications and

generated the forbidden sequences. If one of these sequences occurs, an

intrusion is detected.

2.5.4.4 Feature-Based IDS

Feature-based system analysis examines the network parameters like busload,

frequency, number of dropped messages, and other parameters like abnormal

messages and payload. This is usually based on artificial intelligence techniques.

34

Generative Adversarial Nets (GAN) based IDS [65] was proposed by Seo et al.,

who used the deep-learning model. The method is easy to expand and difficult to

manipulate by an attacker thanks to a black-box characteristic of the detection

mechanism. Bloom filtering [66], proposed by Groza and Murvay, analysed the

periodicity and payload of CAN messages. This method provides a memory-

efficient analysis of data. Although both methods require heavy computation, they

look promising in terms of tackling the CAN security problem.

Table 2-5 presents the comparison of the IDSs. Each method has a unique feature

to suppress other methods but also comes with a cost. For example, physical

characteristic-based IDS can easily detect an inauthentic node, but it fails to

detect an attack from a software layer. The best IDS system should be a hybrid

system that takes advantage of different methods. Although IDS can mitigate a

security problem, it cannot provide confidentiality. To have complete security,

cryptography is required.

35

Table 2-5 Comparison of the intrusion detection systems for CAN protocol.

Ref.
Algorithm

Analyses
Parameters Advantages Downsides

[65]
Generative

Adversarial Nets
A pattern of CAN ID

CAN train itself for unknown

attacks
Expensive hardware

[67]

Adaptive Network-

based Fuzzy

Inference System

Busload, message

frequency analysis

Detect attack type, simple

solution

Works for simple attacks, updated each

second, needs a feature database

[68] Entropy-based Entropy of IDs, payload
Does not require much

information about traffic data

Very vulnerable to some attacks which

include random bits

[69]
Long Short-term

Memory Networks
Payload Does not require pre-knowledge Does not understand the natural change

[62]
Specification-

based
Protocol policy Less dependency IDS should be placed at every ECU

[70] Hamming Distance Payload Low computation Low detection

[56]
Offset ratio and

time interval
Remote frame timing

Simple efficient algorithm with

low-cost hardware
Increased traffic

36

[71]
Analysis of ID

Sequence
Sequence of ID

Low memory and computation

requirement, detection of inserted

few malicious messages

Very vulnerable to attacks which have a

similar sequence of normal traffic

[58]

Support Vector

Machine and

Boosted Decision

Tree

Electrical signal

Robust to some attack types, first

IDS to differentiate between an

error and an attack

High cost and vulnerability to

environmental changes

[57]
Recursive Least

Squares
Clock skew Robust to some attack types, Only works on periodic signals

[66] Bloom Filtering
Message identifier,

payload

Low memory usage for

membership testing
Complex algorithm

[55]
Probability Density

Function

Reception cycle period

(frequency analysis)
Online learning

Hard to authenticate a non-periodic

message

[54] Flow-based Message frequency Simple algorithm Only works on periodic signals

37

2.6 Discussions on CAN Security Research

Automotive security is getting more attention, and standardisations are coming to

tackle cybersecurity problems. Cybersecurity guidebook for cyber-physical

vehicle systems [72] and the fundamental principles of automotive cybersecurity

specification (PAS 1885:2018) [73] were published by SAE in 2016 and British

Standards Institute in 2018 consecutively. ISO 21434 Automotive Cybersecurity

[74] is under development and expected to be released by 2020.

The CAN protocol has also gained attention from the industry to its vulnerabilities,

and companies are now manufacturing high-end secure ECUs. The Secure

Hardware Extension (SHE) [1] specification developed by the Hersteller Initiative

(HIS) becomes an open standard and is used by many companies in their ECUs

like NXP MPC5646C [51] microcontroller. Some commercial ECUs have built-in

IDS; the NXP TJA115x [75] series can prevent spoofing attacks and be used as

an IDS. There are also commercial proprietary intrusion detection systems

[76],[77].

Although there have been steps taken to protect the CAN, there is still more to

do. The industry does not share some of its research, and academia does not

have enough resources. As such, there are not sufficient attack data and

benchmarks. Implementing attacks on real vehicles can be unfeasible for safety

concerns and costs. To overcome these challenges, there should be more

research on modelling CAN bus attacks like in [78] and creating attack databases

like in [79], [80]. Sharing datasets as an open-source (e.g., like in [65]) will help

researchers; hence working on shared datasets will give a reference point to

compare their research.

2.7 Conclusions

The CAN protocol facilitating ECUs in modern vehicles is not geared up and well-

protected against the complex and evolving nature of cyberattacks. The existing

security features incorporated in vehicles are not fit and adequate to resist and

defy them. This is attributable to the lack of encryption and authentication

mechanisms, which provide multiple opportunities for several types of attacks to

38

materialise and as a result, jeopardise the individual data privacy and the safety

of the vehicle occupants. These blemish the manufacturers' reputation and

downgrade vehicle reliability, followed by substantial financial losses.

It is observed that the existing trend of attacks is mainly physical-access oriented;

however, with the growing connectivity in vehicles, it is also noted a considerable

increase in wireless attacks. This developing trend indicates wireless attacks

outpacing physical access attacks in the near future.

Moreover, an in-depth analysis of the CAN bus vulnerabilities to cyberattacks

points to the limitations posed by the protocol. The root cause evaluation of

various attacks and the critique of potential solutions have revealed the industry

and academia's inadequacies and constraints. They are not driven toward mutual

sharing of an attack database, allocating testing and trial resources, and

developing benchmarks for an open-source.

There are four main countermeasures for CAN attacks: network segmentation,

encryption, authentication, and IDS. They are, however, heavy on overheads with

respect to the availability of the existing resources. Further analysis has revealed

IDS as the most promising option compared to the rest of the solutions above-

mentioned. It is noteworthy that the IDS may not provide complete security, but it

can prevent several CAN vulnerabilities with acceptable overhead. It is presumed

that future vehicles will have IDS solutions not only to secure the vehicle, but also

to provide data to the manufacturer to tackle cyberattacks.

References

[1] P. Mundhenk, "Security for Automotive Electrical / Electronic (E / E)

Architectures," Cuvillier Verlag, 2016.

[2] "'ECU' is a three letter answer for all the innovative features in your car:

know how the story unfolded," Embitel, 2017.

https://www.embitel.com/blog/embedded-blog/automotive-control-units-

development-innovations-mechanical-to-electronics (accessed May 23,

2018).

39

[3] B. Groza and S. Murvay, "Security solutions for the Controller Area

Network: Bringing Authentication to In-Vehicle Networks," IEEE Vehicular

Technology Magazine, pp. 40–47, 2018.

[4] A. Palanca, E. Evenchick, F. Maggi, and S. Zanero, "A stealth, selective,

link-layer denial-of-service attack against automotive networks," in

International Conference on Detection of Intrusions and Malware, and

Vulnerability Assessment, Jul. 2017, vol. 10327 LNCS, pp. 185–206, doi:

10.1007/978-3-319-60876-1_9.

[5] S. Nie, L. Liu, and Y. Du, "Free-Fall : Hacking Tesla from wireless to CAN

bus," in BlackHat USA 2017, 2017, pp. 1–16, Accessed: Nov. 30, 2018.

[Online]. Available: https://www.blackhat.com/docs/us-17/thursday/us-17-

Nie-Free-Fall-Hacking-Tesla-From-Wireless-To-CAN-Bus-wp.pdf.

[6] C. Matthews, "Jeep Hack: Fiat recalls 1.4 million vehicles for software fix,"

Fortune, 2015. https://fortune.com/2015/07/24/jeep-cherokee-recall/

(accessed Mar. 27, 2020).

[7] R. Currie, "Hacking the CAN Bus: Basic Manipulation of a Modern

Automobile Through CAN Bus Reverse Engineering GIAC (GCIA) Gold

Certification," 2017, Accessed: Jun. 03, 2018. [Online]. Available:

https://www.sans.org/reading-room/whitepapers/threats/hacking-bus-

basic-manipulation-modern-automobile-through-bus-reverse-engineering-

37825.

[8] Vector Informatik, "Industry trends 2019: convergence drives

competitiveness and innovation," Stuttgart, 2019. Accessed: Mar. 27, 2019.

[Online]. Available:

https://assets.vector.com/cms/content/consulting/publications/Ebert_Indus

tryTrends2019_Whitepaper.pdf.

[9] J. Liu, S. Zhang, W. Sun, and Y. Shi, "In-vehicle network attacks and

countermeasures: Challenges and future directions," IEEE Netw., vol. 31,

no. 5, pp. 50–58, 2017, doi: 10.1109/MNET.2017.1600257.

40

[10] A. Greenberg, "Hackers remotely kill a jeep on the highway," Wired.com,

2015. https://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/

(accessed Sep. 10, 2018).

[11] K. Koscher et al., "Experimental security analysis of a modern automobile,"

in Proceedings - IEEE Symposium on Security and Privacy, 2010, pp. 447–

462, doi: 10.1109/SP.2010.34.

[12] T. Hoppe, S. Kiltz, and J. Dittmann, "Security threats to automotive CAN

networksPractical examples and selected short-term countermeasures,"

Reliab. Eng. Syst. Saf., vol. 96, no. 1, pp. 11–25, Jan. 2011, doi:

10.1016/j.ress.2010.06.026.

[13] Tencent Keen Security Lab, "Experimental security assessment of BMW

cars: A summary report," Shenzhen, 2018. Accessed: Nov. 30, 2018.

[Online]. Available:

https://keenlab.tencent.com/en/Experimental_Security_Assessment_of_B

MW_Cars_by_KeenLab.pdf.

[14] S. Mukherjee, H. Shirazi, I. Ray, J. Daily, and R. Gamble, "Practical DoS

attacks on embedded networks in commercial vehicles," 2016, vol. 10063,

doi: 10.1007/978-3-319-49806-5.

[15] P. S. Murvay and B. Groza, "Security shortcomings and countermeasures

for the SAE J1939 commercial vehicle bus protocol," IEEE Trans. Veh.

Technol., vol. 67, no. 5, pp. 4325–4339, 2018, doi:

10.1109/TVT.2018.2795384.

[16] R. Bosch, "CAN specification version 2.0," 1991. Accessed: Jun. 04, 2018.

[Online]. Available: http://esd.cs.ucr.edu/webres/can20.pdf.

[17] CSS Electronics, "CAN bus explained," CCS Electronics, 2019.

https://www.csselectronics.com/screen/page/can-fd-flexible-data-rate-

intro/language/en (accessed Jan. 31, 2020).

[18] Statista, "Automotive electronics cost as a percentage of total car cost

worldwide from 1950 to 2030," 2018. Accessed: Jul. 22, 2018. [Online].

41

Available: https://www.statista.com/statistics/277931/automotive-

electronics-cost-as-a-share-of-total-car-cost-worldwide/.

[19] S. Checkoway et al., "Comprehensive experimental analyses of automotive

attack surfaces," in SEC'11 Proceedings of the 20th USENIX conference

on Security, 2011, pp. 6–6, doi: 10.1109/TITS.2014.2342271.

[20] S. Woo, H. J. Jo, and D. H. Lee, "A practical wireless attack on the

connected car and security protocol for in-vehicle CAN," IEEE Trans. Intell.

Transp. Syst., vol. 16, no. 2, pp. 993–1006, 2015, doi:

10.1109/TITS.2014.2351612.

[21] C. Miller and C. Valasek, "A survey of remote automotive attack surfaces,"

2014. Accessed: Mar. 31, 2018. [Online]. Available:

https://www.ioactive.com/pdfs/IOActive_Remote_Attack_Surfaces.pdf.

[22] C. Beek and R. Samani, "DEFCON – Connected sar security," McAfee,

2017. https://securingtomorrow.mcafee.com/other-blogs/mcafee-

labs/defcon-connected-car-security/ (accessed Aug. 18, 2019).

[23] I. Rouf et al., "Security and privacy vulnerabilities of in-car wireless

networks: A tire pressure monitoring system case study.," Proc. USENIX

Secur. Symp., vol. 39, no. 4, pp. 11–13, 2010, doi:

10.1177/004057368303900411.

[24] T. Hoppe and J. Dittman, "Sniffing/Replay Attacks on CAN Buses: A

simulated attack on the electric window lift classified using an adapted

CERT taxonomy," in Proceedings of the 2nd workshop on embedded

systems security (WESS), 2007, pp. 1–6.

[25] B. Rebecca, "Proof-of-concept CarShark software hacks car computers,

shutting down brakes, engines, and more," Popular Science.

https://www.popsci.com/cars/article/2010-05/researchers-hack-car-

computers-shutting-down-brakes-engine-and-more (accessed May 29,

2018).

[26] The National Cybersecurity and Communications Integration Center

42

(NCCIC), "CAN bus standard vulnerability | ICS-CERT," 2017. https://ics-

cert.us-cert.gov/alerts/ICS-ALERT-17-209-01 (accessed Mar. 11, 2019).

[27] P.-S. Murvay and B. Groza, "DoS attacks on Controller Area Networks by

fault injections from the software layer," in Proceedings of the 12th

International Conference on Availability, Reliability and Security - ARES

'17, 2017, vol. 10, pp. 1–10, doi: 10.1145/3098954.3103174.

[28] SAE International, "J1939: Serial control and communications heavy duty

vehicle network," 2018.

https://www.sae.org/standards/content/j1939_201808/ (accessed Dec. 29,

2019).

[29] Federal Bureau of Investigation, "Motor vehicles increasingly vulnerable to

remote exploits," 2016. https://www.ic3.gov/media/2016/160317.aspx

(accessed Aug. 05, 2019).

[30] A. Greenberg, "Hackers cut a Corvette's brakes via a common car gadget,"

Wired, 2015. https://www.wired.com/2015/08/hackers-cut-corvettes-

brakes-via-common-car-gadget/ (accessed Aug. 05, 2019).

[31] I. Foster, A. Prudhomme, K. Koscher, and S. Savage, "Fast and

Vulnerable: A story of telematic failures," 2015, Accessed: Aug. 05, 2019.

[Online]. Available: http://cseweb.ucsd.edu/~savage/papers/WOOT15.pdf.

[32] G. Fowler, "Driving surveillance: What does your car know about you? We

hacked a 2017 Chevy to find out. - The Washington Post," Washingtonpost,

2019. https://www.washingtonpost.com/technology/2019/12/17/what-

does-your-car-know-about-you-we-hacked-chevy-find-out/ (accessed Mar.

19, 2020).

[33] M. Enev, A. Takakuwa, K. Koscher, and T. Kohno, "Automobile driver

fingerprinting," in Proceedings on Privacy Enhancing Technologies, 2016,

no. 1, pp. 34–51, doi: 10.1515/popets-2015-0029.

[34] U. Fugiglando, P. Santi, S. Milardo, K. Abida, and C. Ratti, "Characterising

the 'driver DNA' through CAN bus data analysis," in CarSys 2017 -

43

Proceedings of the 2nd ACM International Workshop on Smart,

Autonomous, and Connected Vehicular Systems and Services, co-located

with MobiCom 2017, 2017, vol. 17, pp. 37–41, doi:

10.1145/3131944.3133939.

[35] R. Kammerer, B. Frömel, and A. Wasicek, "Enhancing security in CAN

systems using a star coupling router," in 7th IEEE International Symposium

on Industrial Embedded Systems, SIES 2012 - Conference Proceedings,

2012, pp. 237–246, doi: 10.1109/SIES.2012.6356590.

[36] Technische Universität München, “The car becomes internet hardware -

TUM,” 2015. https://www.tum.de/nc/en/about-tum/news/press-

releases/details/32277/ (accessed Nov. 21, 2019).

[37] J. Yoshida, "CAN Bus Can Be Encrypted , Says Trillium," EEtimes, 2015.

https://www.eetimes.com/document.asp?doc_id=1328081&page_number

=2 (accessed May 29, 2018).

[38] "CANcrypt - Home." https://www.cancrypt.eu/en/#Basics (accessed May

29, 2018).

[39] "2015 BMW F80 M3 / F82 M4 S55 inline-6 ecu flash dyno results from

Jailbreak Tuning," BimmerBoost, 2014.

https://www.bimmerboost.com/content.php?5101-2015-BMW-F80-M3-

F82-M4-S55-inline-6-ecu-flash-dyno-results-from-Jailbreak-Tuning

(accessed Aug. 05, 2019).

[40] R. Jurnecka, "Cobb Tuning cracks Nissan GT-R's encrypted ECU -

MotorTrend," Motortrend, 2008. https://www.motortrend.com/news/cobb-

tuning-cracks-nissan-gtrs-encrypted-ecu-308/ (accessed Jul. 01, 2019).

[41] T. P. Doan and S. Ganesan, "CAN crypto FPGA chip to secure data

transmitted through CAN FD bus using AES-128 and SHA-1 algorithms

with a symmetric key," 2017, doi: 10.4271/2017-01-1612.Copyright.

[42] A. S. Siddiqui, Y. G. J. Plusquellic, and F. Saqib, "Secure communication

over CANBus," in Midwest Symposium on Circuits and Systems, 2017, vol.

44

2017-Augus, pp. 1264–1267, doi: 10.1109/MWSCAS.2017.8053160.

[43] A. Harel and A. Hezberg, "Optimizing CAN bus security with in-place

cryptography," in SAE Connected and Automated Vehicle Conference

Israel, 2019, pp. 1–12, doi: 10.4271/2019-01-0098.

[44] W. A. Farag, "CANTrack: Enhancing automotive CAN bus security using

intuitive encryption algorithms," 2017, doi:

10.1109/ICMSAO.2017.7934878.

[45] M. Jukl and J. Čupera, "Using of tiny encryption algorithm in CAN-Bus

communication," Res. Agric. Eng., vol. 62, no. 2, pp. 50–55, 2016, doi:

10.17221/12/2015-RAE.

[46] A. Hanacek and M. Sysel, "Design and implementation of an integrated

system with secure encrypted data transmission," in Advances in Intelligent

Systems and Computing, Apr. 2016, vol. 466, pp. 217–224, doi:

10.1007/978-3-319-33389-2_21.

[47] Q. Wang and S. Sawhney, "VeCure: A practical security framework to

protect the CAN bus of vehicles," in 2014 International Conference on the

Internet of Things, IOT 2014, 2014, pp. 13–18, doi:

10.1109/IOT.2014.7030108.

[48] B. Groza, S. Murvay, A. Van Herrewege, and I. Verbauwhede, "LiBrA-CAN:

A lightweight broadcast authentication protocol for controller area

networks," in Lecture Notes in Computer Science (including subseries

Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),

Dec. 2012, vol. 7712 LNCS, pp. 185–200, doi: 10.1007/978-3-642-35404-

5_15.

[49] N. Nowdehi, A. Lautenbach, and T. Olovsson, "In-vehicle CAN message

authentication: An evaluation based on industrial criteria," in IEEE

Vehicular Technology Conference, 2017, vol. 2017-Septe, pp. 1–7, doi:

10.1109/VTCFall.2017.8288327.

[50] NXP, "32-bit automotive general purpose MCUs," NXP.

45

https://www.nxp.com/products/processors-and-microcontrollers/arm-

processors/s32-automotive-platform/32-bit-automotive-general-purpose-

microcontrollers:S32K (accessed Aug. 14, 2019).

[51] R. Soja, "Automotive Security: From standards to implementation," 2014.

Accessed: Aug. 14, 2019. [Online]. Available:

https://www.nxp.com/docs/en/white-paper/AUTOSECURITYWP.pdf.

[52] K. Scarfone and P. Mell, Guide to Intrusion Detection and Prevention

Systems (IDPS), vol. 800–94, no. July. 2012.

[53] M. Müter, A. Groll, and F. C. Freiling, "A structured approach to anomaly

detection for in-vehicle networks," in 6th International Conference on

Information Assurance and Security, IAS 2010, 2010, pp. 92–98, doi:

10.1109/ISIAS.2010.5604050.

[54] A. Taylor, N. Japkowicz, and S. Leblanc, "Frequency-based anomaly

detection for the automotive CAN bus," in World Congress on Industrial

Control Systems Security (WCICSS), 2015, pp. 45–49, doi:

10.1109/WCICSS.2015.7420322.

[55] Y. Hamada, Y. Miyashita, Y. Hata, M. Inoue, and H. Ueda, "Anomaly-based

intrusion detection using the density estimation of reception cycle periods

for in-vehicle networks," SAE Int. J. Transp. Cybersecurity Priv., vol. 1, no.

1, pp. 39–56, 2018, doi: 10.4271/11-01-01-0003.

[56] H. Lee, S. H. Jeong, and H. K. Kim, "OTIDS : A novel intrusion detection

system for in-vehicle network by using remote frame," 2017, [Online].

Available: https://www.ucalgary.ca/pst2017/files/pst2017/paper-

67.pdf%0Ahttp://ocslab.hksecurity.net/Dataset/CAN-intrusion-dataset.

[57] K.-T. Cho and K. G. Shin, "Fingerprinting electronic control units for vehicle

intrusion detection," in 25th USENIX Security Symposium, 2016, pp. 911–

927, Accessed: May 31, 2018. [Online]. Available:

https://www.usenix.org/conference/usenixsecurity16/technical-

sessions/presentation/cho.

46

[58] W. Choi, K. Joo, H. J. Jo, M. C. Park, and D. H. Lee, "VoltageIDS: Low-

level communication characteristics for automotive intrusion detection

system," IEEE Transactions on Information Forensics and Security, vol. 13,

no. 8, 2018.

[59] K.-D. Kang, Y. Baek, S. Lee, and S. H. Son, "An analysis of voltage drop

as a security feature in Controller Area Network," 216AD, Accessed: Mar.

25, 2019. [Online]. Available:

https://pdfs.semanticscholar.org/26c7/ae0d12e7f4dd3a6b8fe6a049e7883

608d004.pdf.

[60] S. Mohalik et al., "Model checking based analysis of end-to-end latency in

embedded, real-time systems with clock drifts," in Proceedings - Design

Automation Conference, 2008, pp. 296–299, doi:

10.1109/DAC.2008.4555826.

[61] S. U. Sagong, X. Ying, A. Clark, L. Bushnell, and R. Poovendran, "Cloaking

the Clock: emulating clock skew in Controller Area Networks," 2017, doi:

10.1109/ICCPS.2018.00012.

[62] U. E. Larson, D. K. Nilsson, and E. Jonsson, "An approach to specification-

based attack detection for in-vehicle networks," in IEEE Intelligent Vehicles

Symposium, Proceedings, 2008, pp. 220–225, doi:

10.1109/IVS.2008.4621263.

[63] W. Si, D. Starobinski, and M. Laifenfeld, "Protocol-compliant DoS attacks

on can: Demonstration and mitigation," 2016, doi:

10.1109/VTCFall.2016.7881182.

[64] I. Studnia, E. Alata, V. Nicomette, M. Kaâniche, and Y. Laarouchi, "A

language-based intrusion detection approach for automotive embedded

networks," Int. J. Embed. Syst., vol. 10, no. 1, pp. 1–12, 2018, doi:

10.1504/IJES.2018.089430.

[65] E. Seo, H. M. Song, and H. K. Kim, "GIDS: GAN based Intrusion Detection

System for In-Vehicle Network," in 2018 16th Annual Conference on

47

Privacy, Security and Trust (PST), Aug. 2018, pp. 1–6, doi:

10.1109/PST.2018.8514157.

[66] B. Groza and P. Murvay, "Efficient intrusion detection with bloom filtering

in Controller Area Networks (CAN)," IEEE Trans. Inf. Forensics Secur.,

vol. PP, no. c, p. 1, 2018, doi: 10.1109/TIFS.2018.2869351.

[67] F. Li, L. Wang, and Y. Wu, "Research on CAN network security aspects

and intrusion detection design," SAE, Sep. 2017. doi: 10.4271/2017-01-

2007.

[68] M. Muter and N. Asaj, "Entropy-based anomaly detection for in-vehicle

networks," in 2011 IEEE Intelligent Vehicles Symposium (IV), 2011, no. IV,

pp. 1110–1115, doi: 10.1109/IVS.2011.5940552.

[69] A. Taylor, S. Leblanc, and N. Japkowicz, "Anomaly detection in automobile

control network data with long short-term memory networks," in

Proceedings - 3rd IEEE International Conference on Data Science and

Advanced Analytics, DSAA 2016, 2016, pp. 130–139, doi:

10.1109/DSAA.2016.20.

[70] D. Stabili, M. Marchetti, and M. Colajanni, "Detecting attacks to internal

vehicle networks through Hamming distance," in 2017 AEIT International

Annual Conference, Sep. 2017, pp. 1–6, doi:

10.23919/AEIT.2017.8240550.

[71] M. Marchetti and D. Stabili, "Anomaly detection of CAN bus messages

through analysis of ID sequences," in IEEE Intelligent Vehicles

Symposium, Proceedings, 2017, pp. 1577–1583, doi:

10.1109/IVS.2017.7995934.

[72] Vehicle Cybersecurity Systems Engineering Committee, "J3061 -

Cybersecurity guidebook for cyber-physical vehicle systems." p. 128, 2016,

doi: 10.4271/J3061_201601.

[73] BSI, PAS 1885:2018 The fundamental principles of automotive cyber

security - Specification. BSI Standards Limited, 2018.

48

[74] ISO, ISO/SAE CD 21434 - Road Vehicles -- Cybersecurity engineering.

2019.

[75] N. Semiconductors, "TJA115x Secure CAN communication without

cryptography," 2019. Accessed: Jan. 31, 2020. [Online]. Available:

www.nxp.com/CAN.

[76] "ECUSHIELD - The only Proven Ready for Integration Automative Cyber

Security Solution." http://tower-sec.com/ecushield/ (accessed Mar. 30,

2018).

[77] "Argus Cyber Security - automotive cyber security." https://argus-sec.com/

(accessed Mar. 30, 2018).

[78] S. Fröschle and A. Stühring, "Analysing the capabilities of the CAN

Attacker," in European Symposium on Research in Computer Security,

Sep. 2017, vol. 10492 LNCS, pp. 464–482, doi: 10.1007/978-3-319-66402-

6_27.

[79] M. Ring, J. Dürrwang, F. Sommer, and R. Kriesten, "Survey on vehicular

attacks - Building a vulnerability database," in 2015 IEEE International

Conference on Vehicular Electronics and Safety, ICVES 2015, 2015, pp.

208–212, doi: 10.1109/ICVES.2015.7396919.

[80] T. Huang, J. Zhou, and A. Bytes, "ATG: An attack traffic generation tool for

security testing of in-vehicle CAN bus," in ACM International Conference

Proceeding Series, 2018, vol. 6, doi: 10.1145/3230833.3230843.

49

3 A framework and Comprehensive Benchmarking

Dataset for CAN Bus Intrusion Detection Systems

This chapter proposes a framework to assess an IDS and the generation of

benchmarking dataset. IDS is becoming the primary choice to address CAN's

vulnerabilities; however, a lack of testing methodology prevents assessing IDS

properly. The testing framework proposed in this chapter presents performance

evaluation metrics for quantitative evaluation with required test conditions,

including various attack types and dependency tests. As vehicles are resource-

constrained cyber-physical systems, resource usage is also considered in the

assessment. The second part of the chapter focuses on attack generation for

benchmarking dataset, which is an essential part of successful testing. Various

attack scenarios are implemented according to the proposed testing framework.

The organisation of the chapter is presented in Figure 3-1.

Figure 3-1 Organisation of Chapter 3

3.1 Introduction

Security of the connected vehicle is a significant concern and researchers are

looking for potential solutions. The most widely used in-vehicle communication

protocol, Controller Area Network (CAN), lacks intrinsic security features like

encryption and authentication; thus, vehicles are vulnerable to cyberattacks.

Researchers proposed various Intrusion Detection Systems (IDSs) to identify

Chapter 3

3.1 Introduction

3.2 Testing Framework for CAN IDS

3.3 CAN Bus Attack Generator and Benchmarking Dataset

50

intrusions and secure the CAN network. Although the research on IDS for CAN

bus is rising exponentially, there is no accepted testing methodology and enough

dataset. The field is still in its infancy and produced works lacks comprehensive

evaluation and comparative analysis. Blevins et al. [1] compared four time-based

IDS by implementing each method on the same dataset. The work presents the

difficulty of comparing methods that use the same parameter. Berger et al. [2]

evaluated the machine learning algorithms to detect anomalies in CAN. However,

the evaluation was not comprehensive as the work only relies on accuracy, which

alone is not reliable. A 2018 survey [3] shows that only four out of the 65 surveyed

papers compare their works with baseline methods. Consequently, it becomes

difficult to verify and compare existing IDS solutions.

The testing should be objective and repeatable with quantifiable metrics to verify

and validate an IDS. Therefore, the framework in this chapter starts with the

quantitative performance metrics. This allows easy comparison between the

various methods. After that, comprehensive test conditions are presented to

assess dependency and attack coverage. Lastly, the framework focuses on two

critical parameters resource usage and timing behaviour.

The viable IDS assessment should be carried out on a comprehensive dataset

with all the variations, including attack types, vehicle models, driving styles.

However, such a data set does not exist. The lack of a publicly available

benchmarking dataset costs time, effort, and money. There are a few reasons

why there is no comprehensive dataset. First, the implementation of attacks on a

vehicle requires a carefully designed testing environment. Some of the attacks

[4] can only be carried out on closed roads (like de-commissioned airport runway)

under high safety measures that still lack the real traffic environment. Second, it

is not always possible to find these datasets because of Intellectual Property (IP)

rights, commercial issues for brands. Although the researchers share very few

datasets, these datasets have numerous problems [5]. This pushes researchers

to use a proprietary dataset that prevents comparison between methods because

generally, attack implementation is not parameterised and each vehicle has

different network characteristics.

51

This chapter has two main objectives: comprehensive testing methodology and

CAN bus attack generation to create benchmarking dataset. At first, the chapter

presents performance evaluation metrics to have a quantitative testing

methodology. Then it shows various test conditions to have a reliable result.

These conditions measure the attack coverage, dependency (to vehicle, driver,

and ECU), resource usage (memory and computational power), and timing

behaviour. Later, the chapter then focuses on the generation of CAN bus attacks

aligned with the testing methodology. The dataset is an essential part of the

testing. If it is not high quality, the testing will fail, and the result will be unreliable.

3.2 Testing Framework for CAN IDS

It is vital to test an IDS to see its capabilities and limitation. Proper testing not

only presents the method works or not, but it also presents how well the method

works. However, there is no standardised or commonly used testing methodology

for automobile IDS solutions. This causes two main problems. First, many IDS

solutions are not appropriately tested, which generates misleading results. The

second problem is that it is difficult to compare existing solutions which hardens

researchers' tasks to evaluate their methodologies. It also hinders reaching the

best IDS.

This chapter presents a repeatable and objective testing methodology to solve

these problems. Before testing an IDS, it is essential to have quantitative

evaluation metrics so that various methods can be objectively compared. As

vehicles are real-time cyber-physical systems with limited resources, the

performance evaluation alone is not sufficient. Each task should be completed by

the deadline to meet real-time constraints by budget microcontrollers, some of

which have only an 8-bit controller and a few kbytes of memory. In this condition,

it is essential to analyse the timing behaviour and resource usage of the IDS in

addition to the correctness of the IDS decision.

After identifying evaluation metrics, an IDS should be tested on datasets,

covering all known attacks with various implementation settings. This will

increase the reliance on the IDS.

52

3.2.1 Performance Evaluation Metrics

The main aim of the IDS is to alert on intrusion; that is what they are designed

for. At the same time, the IDS should not generate an alarm for authentic

messages. Traditionally, accuracy is used to measure performance; however,

accuracy alone may lead to misinterpretations, especially when the data is not

symmetrical. Therefore, we need a more comprehensive assessment. If we have

a binary classifier for the IDS, there are four possible outcomes of the system as

presented in Table 3-1 and explained below:

True Positive (TP): A malicious message detected correctly.

False Positive (FP): An authentic message is detected as a malicious message.

True Negative (TN): An authentic message is detected correctly.

False Negative (FN): A malicious message is regarded as an authentic

message.

Table 3-1 Confusion matrix for binary IDS decision

 Actual Situation

Attack No Attack

ID
S

D
e
c

is
io

n
 Attack TP FP

No

Attack
FN TN

Using this terminology, the sensitivity (recall) of the IDS, which presents the

detection rate of the attacks, can be defined as in Equation(3-2). False Positive

Rate (FPR) in Equation (3-3) indicates the likelihood of false alarms. Precision in

Equation (3-4) presents how reliable the true positive result of the IDS is.

53

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

(3-1)

Sensitivity =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

(3-2)

FPR =
𝐹𝑃

𝑇𝑁 + 𝐹𝑃

(3-3)

 Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

(3-4)

3.2.2 Attack Coverage

There are multiple attack types applied to the in-vehicle networks. Suppose an

attacker has direct access to the CAN bus. In that case, they can read and write

to the CAN network, proceed with overwriting and invalidating legitimate

messages, and further disable a CAN node. In this circumstance, the following

attacks are possible to implement:

Denial of Service (DoS): DoS attack can be carried out by taking advantage of

the CAN arbitration scheme (as described in Section 2.2). Inserting high priority

messages will hold the bus in busy condition and bar the lower priority nodes

from message transmission; therefore, other low-priority nodes cannot access

the network. Murvay presented an example of this attack in [6].

Drop/suspension: The suspension attack prevents legitimate message

transmission by attacking the targeted ECU on the physical or software layers. It

is a subcategory of the DoS attack; hence, it is not possible to get service from

the suspended node. The attack can also be implemented by causing protocol

error which takes advantage of the Error Confinement Mechanism as shown by

Palanca et al. [7]. They disabled an ECU by transmitting dominant bits over the

recessive ones, which infracts the bit-stuffing rule explained in Section 2.2.1.

Fuzzing: An attacker can send random values without any in-depth knowledge

and confuse the network. This attack does not require reverse engineering to

understand the function of each ID; therefore, it is easy to implement. However,

54

it may not cause a functional problem apart from busload; hence inserting fuzzing

messages will increase the frequency of the CAN message like the one in [8].

Replay: An attacker can monitor the CAN messages and send them back to the

network later on, such as [9]. Hence, there is no freshness check on the protocol;

other nodes will accept the replayed message. This attack type generally targets

certain ID/s; therefore, it is also called a targeted ID attack.

The replay attack does not require modification of authentic ECU, so it can be

implemented by any malicious node that uses authentic ECU ID. This will lead to

concurrent message transmission from both authentic and malicious ECUs. As

ECUs accepts the latest messages, the attack will cause unstable system

behaviour. If an attacker wants to transmit certain data to be processed, it should

have an equal or higher frequency value than the authentic messages. The

stealthiest version of replay attack requires malicious message transmission

soon after the legitimate message.

The coverage test determines which attacks can be detected by the IDS under

test. A successful IDS ideally should detect all the attacks mentioned above. Each

attack has different behaviour; therefore, IDS should be tested in each of them to

assess IDS's coverage.

3.2.3 Dependency Test

The characteristic of the in-vehicle network depends on various parameters like

the driver, ECU/ID, vehicle make and model. Each parameter should be

assessed to present the viability of the tested methodology.

3.2.3.1 Vehicle Dependency

Each vehicle make and model has different behaviour by design. For instance,

there can be a few dozen ECUs for low-end vehicles. However, the number can

go further than one hundred for high-end ones. The number of ECUs significantly

change the network traffic. Apart from the number, ECU types and their

configuration also affect traffic. This causes various network traffic patterns for

different vehicles.

55

3.2.3.2 Driver Dependency

When people drive the same vehicle model, each may generate different traffic

because of their driving style, affecting the ECU communication. This effect is so

significant that the driver can be recognised from the network traffic [10], [11]. As

this significant change may affect the IDS result, IDS should be tested for driver

dependency. The test can be carried out using the exact vehicle with different

drivers and implementing various attack conditions.

3.2.3.3 ECU/ID Dependency

ECUs have various configurations to transmit messages. Some transmit

periodically, some are event-driven, and others are sending based on other CAN

frames. The configuration may change based on the vehicle situation (running or

idle), affecting the bus traffic. Each ECU also has different prioritisation

represented by ID number. If a driver activates an ECU with high priority, this may

delay the transmission of the low priority IDs. Therefore, this test is essential for

the time/frequency-based IDS.

3.2.4 Timing Analysis

There are two main parameters for timing analysis. These are time-to-detection

and processing time. The Time-To-Detection (TTD), the time difference between

the attack start and the time that the algorithm detects an attack [12] calculated

by the following formula:

𝑡𝑇𝑇𝐷 = 𝑡𝐷 − 𝑡𝑠 (3-5)

where 𝑡𝑇𝑇𝐷 is TTD, 𝑡𝑠 is the time attack started, and 𝑡𝐷 is the time the algorithm

detected the attack. The average of TTDs results in a key performance indicator

Mean Time-To-Detect (MTTD) calculated by the following formula:

𝑀𝑇𝑇𝐷 =
1

𝑛
 ∑ 𝑡𝑇𝑇𝐷(𝑘)

𝑛

𝑘=1

(3-6)

It is vital to prevent misinformation from spreading and causing disruptions in the

vehicle; therefore, a successful IDS should have low MTTD.

56

The processing time is also an important parameter to evaluate timing behaviour.

Contrary to TTD, which is related to the algorithm and varies by threshold and

other parameters of the IDS, the processing time depends on the hardware and

can be decreased by optimising computational logic. As ECUs have quite

different processors/controllers than personal computers, actual processing time

requires implementing the IDS algorithm on an ECU.

3.2.5 Resource Usage

Vehicles are resource-constrained cyber-physical systems. Distributed ECUs

have limited memory, computational power, and bandwidth. Therefore, optimum

IDS should have low resource usage.

3.2.5.1 Traffic Effect (Bus Load)

Electric vehicles and autonomous vehicles are the future of the vehicle industry,

and those vehicles require higher bandwidth. However, the CAN bus standard is

limited to 1 Mbit/s, and the speed gets significantly slower for low-speed CAN

(ISO 11898-3). With the increased number of ECUs and sensors, the busload

becomes a problem to have reliable communication. CAN-FD[13], which has up

to eight times payload speed improvement, is proposed to overcome this

bottleneck. However, it comes with an increased hardware cost, various

signalling and network topology problems [14]. The arbitration process and other

control bits are still limited to standard CAN because of the backwards

compatibility, which curbs the effective bus speed. Therefore, the bandwidth is

precious, and a successful IDS should not increase the traffic, which causes too

much busload. If an IDS transmits CAN frames to function like in [15], it can

increase traffic, delaying the message transmission from lower IDs.

3.2.5.2 Memory Usage and Computational Power

The ECUs are responsible for various applications; therefore, there is a wide

range of microcontrollers from 8-bit single-core to 32-bit multicore architecture.

Although there are powerful ECUs, most of the ECUs in the vehicle have low-end

processors/microcontrollers with limited memory and computational power

because of the cost (e.g. 9S08SG4[16] which has 4kb memory). Therefore, it is

57

not feasible to design an IDS that demand high memory and computational

power. Resource usage is especially significant for node-based IDS as it requires

each node to have the algorithm running, whereas network-based IDS requires

only the gateway to run the algorithm.

3.3 CAN Bus Attack Generator and Benchmarking Dataset

An essential step for developing an IDS is to test it on comprehensive datasets

on vehicles considering various working conditions, attack models, vehicles

made, and driving styles. The collection of comprehensive datasets requires

running a testing vehicle equipped with measurement instruments on dedicated

roads where safety measures are taken. It is a challenging task and no publicly

available dataset presents all the variations. As a result, there is no standardised

benchmarking data set and the issue is raised by researchers [17]. There are

very few datasets available as open-source, as summarised in Table 3-2.

Although these datasets are very valuable, they have limitations and artefacts [5].

58

 Table 3-2 Summarisation of open access CAN bus dataset for IDS

Dataset Implementation

Type

Advantages Disadvantages

OTIDS [15] Real vehicle Stealthy attacks Additional remote frames,

no label

Survival [18] Real vehicle Labelled attacks on multiple

vehicles

Inadequate data samples,

abrupt change

CANET [17] Simulation Signal attack, stealthy attacks Suitable only for signal-

based IDS

Car-hacking [19] Real vehicle Labelled extended dataset

with comprehensive attack

coverage

Gaps and artefacts in the

data

Intrusion dataset [20] Simulation Clear definition of attack

methodology with

comprehensive attack

coverage, multiple vehicles

Only one attacks instance

for each attack type

59

The most widely used datasets are published by Hacking & Countermeasures

Research Lab (HCRL). CAN Dataset for intrusion detection (OTIDS) [15] has

stealthy attacks, including DoS, fuzzy, and impersonation attacks. The dataset

has a good amount of data with 250 seconds of attack free then attacks are

implemented. Unfortunately, the dataset does not have a label for malicious

frames. There are also a significant number of remote frames inserted to detect

anomalies; therefore, this dataset may behave unexpectedly for some algorithms.

Survival analysis dataset for automobile IDS has five seconds of injected

malicious CAN frames every 20 seconds on three different commercial vehicles.

Therefore, this dataset is suitable for the vehicle dependency test. However, the

implementation of the attacks is causing abrupt changes, and it has a short

duration of attack-free data, which limits the training. Car-hacking dataset [19]

includes the well-recognised attack models, including Denial of Service (DoS),

spoofing, and fuzzy attacks. It is a very long dataset that provides sufficient

attack-free data and many attack instances that last 3-5 seconds. Although the

dataset has artefacts of gaps [2] in the data and attacks are implemented during

vehicle was stationary [5], the research community well deserves this dataset. It

has already been cited for many different research pieces.

3.3.1 Attack Generation

One of the downsides of datasets is the limited number of attacks instances

(usually only one) for each attack model, which is insufficient for testing IDS'

capabilities. The limited test data also causes an overtraining problem, resulting

in significantly poor results on different datasets. To have a reliable dataset, we

studied the CAN traffic for vehicular applications and explored realistic traffics

under various driving scenarios and attack models to get a view for intentionally

extending the initial datasets to the one that covers more comprehensive attack

datasets. The methodology to implement each attack type is as follow:

DoS Attack: The DoS attack can be implemented by inserting high priority CAN

frames. The available datasets implement the DoS attack by inserting messages

that belong to the most priority ID, "0000". However, this can be detected easily

by checking the message IDs. Another downside of these datasets is they have

60

an obvious implementation of DoS attack with a long attack duration. The obvious

attack implementation causes improper testing of IDSs.

We implemented comprehensive DoS attacks. The attacks include traditional

implementation with varying attack duration as well as a stealthier performance

with existing IDs in the CAN network. The attacks were implemented for a period

of 0.25s, 0.5s, and from 1s to 5s with a step size of 1s.

Replay Attack: We implemented replay attacks with various attack strengths and

durations. The inserted malicious message' frequency increases step by step

from the attacked node's base frequency to multiple times faster than the base

frequency for the replay attack.

While implementing replay attacks, we also consider the CAN arbitration scheme

and message timing to get as close as possible to real implementation. For

instance, the algorithm checks the time difference between the targeted ID and

the following message. If the gap between these two messages is lower than the

inserted message transmission time, it will consider an arbitration scheme. The

highest priority ID will transmit, and the lower one will be shifted.

Fuzzy Attack: Two methodologies can be used to implement fuzzy attacks. One

is implementing random CAN messages from random IDs, which is a simple

attack to detect with an ID detector. The second attack is executed with random

messages from only existing IDs. This version is stealthier than the previous one.

Like DoS attack, fuzzy attacks are implemented for a duration of 0.25s, 0.5s, and

from 1s to 5s with a step size of 1s.

Suspension Attack: The suspension attack can be carried out by deleting the

messages related to a particular ID. This action will be like when a node is

silenced; however, it ignores the relationship between the ECUs. The attack can

be implemented with various IDs to test ID/ECU dependency. The suspension

attack is executed for multiple attack durations, similar to other attack types.

61

3.3.2 Implementation

The attack generation method presented in Section 3.3.1 is a framework to

generate a structured benchmarking dataset. It can be used to implement attacks

on existing datasets to create synthetic attacks or a methodology to follow while

injecting the attacks into a running vehicle. As there are difficulties in executing

an attack on an actual vehicle, the benchmarking dataset is generated in a

simulation environment on Matlab.

The open-source datasets from two independent research centres [19], [20],

which are well deserved by the research community and have already been cited

for many different research pieces, are used in the experiment. The Car-hacking

dataset [19] is used without any changes, and the other is used to generate

multiple synthetic attacks. Having multiple datasets allows us to develop a

benchmarking dataset consisting of numerous vehicle models and driving styles

while avoiding manipulation for any dataset.

The open-source datasets contain CAN frames with a timestamp in CSV file

format. The raw data is imported to Matlab, and the code in Appendix A.1 inserts

malicious messages for DoS, replay, and fuzzy attacks according to the

methodology presented in Section 3.3.1. The Matlab code also deletes messages

belonging to the attacked node for suspension attack.

3.3.3 Benchmarking Dataset

By applying the technique to the Automotive Controller Area Network (CAN) bus

intrusion dataset v2 [20], consisting of real CAN traffic from two commercially

available vehicles, comprehensive synthetic attacks are generated, as shown in

Table 3-3. The resulted synthetic attacks allow us to see the capabilities and

limitations of the IDS by testing it on different attack scenarios. The synthetic

attacks summarised in Table 3-3 are more challenging to detect than the original

attacks because attack durations are shorter, and the traffic effect is minimal. It

also provides more attack episodes to have a statistical result.

62

Table 3-3 Generated synthetic attacks based on Automotive Can Bus Intrusion

Dataset v2

Data

Source
Attack Type # of Messages

Malicious

Messages

Attack

Duration

Vehicle 1

Vehicle 2

No attack 2690069

386567

-

-

-

-

Vehicle 1

Vehicle 2

Denial of

Service

806999

115971

4000 - 40000

4000 - 40000

1s to 10 s

1s to 10 s

Vehicle 1

Vehicle 2

Suspension 806999

115971

50 – 500 a

40 – 400 a

1s to 10 s

1s to 10 s

Vehicle 1

Vehicle 2

Replay 806999

115971

8-30

8-30

75 ms

66 ms

 a Number of maliciously deleted messages.

Apart from the synthetic attacks, it is still important to use a real attack dataset to

test the algorithm in a real-world scenario where the targeted vehicle is running.

Although synthetic attacks mimic the real ones, they cannot mimic the knock-on

effect, which may slightly affect the results. The Car-hacking dataset [19], one of

the most widely used dataset, can be used. As the dataset is used in many IDS

research, it also helps to have comparative analysis with other research. As

summarised in Table 3-4, the dataset has data from an actual vehicle while

message injection attacks were performed. DoS attack was implemented by

injecting the highest priority CAN messages, while fuzzing attack was executed

by random CAN ID and payload values. A spoofing attack was implemented by

inserting malicious messages on relevant CAN IDs for Gear and RPM.

63

Table 3-4 Car-Hacking dataset from real vehicle attack.

Attack Type # of Messages Malicious Messages Attack Duration

DoS Attack 3665771 587521 3s to 5s

Gear Spoofing 4443142 597252 3s to 5s

RPM Spoofing 4621702 654897 3s to 5s

Fuzzing Attack 3838860 491847 3s to 5s

References

[1] D. H. Blevins, P. Moriano, R. A. Bridges, M. E. Verma, M. D. Iannacone,

and S. C. Hollifield, “Time-Based CAN Intrusion Detection Benchmark,”

2021, doi: 10.14722/autosec.2021.23013.

[2] I. Berger, R. Rieke, M. Kolomeets, A. Chechulin, and I. Kotenko,

“Comparative study of machine learning methods for in-vehicle intrusion

detection,” in Lecture Notes in Computer Science (including subseries

Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),

vol. 11387 LNCS, Springer Verlag, 2019, pp. 85–101.

[3] G. K. Rajbahadur, A. J. Malton, A. Walenstein, and A. E. Hassan, “A Survey

of Anomaly Detection for Connected Vehicle Cybersecurity and Safety,” in

IEEE Intelligent Vehicles Symposium, 2018, vol. 2018-June, pp. 421–426,

doi: 10.1109/IVS.2018.8500383.

[4] K. Koscher et al., “Experimental security analysis of a modern automobile,”

in Proceedings - IEEE Symposium on Security and Privacy, 2010, pp. 447–

462, doi: 10.1109/SP.2010.34.

[5] M. E. Verma, M. D. Iannacone, R. A. Bridges, S. C. Hollifield, B. Kay, and

F. L. Combs, “ROAD: The Real ORNL Automotive Dynamometer Controller

Area Network Intrusion Detection Dataset (with a comprehensive CAN IDS

dataset survey & guide),” 2020. Accessed: Apr. 17, 2021. [Online].

64

Available: http://energy.gov/downloads/doe-public-access-plan.

[6] P.-S. Murvay and B. Groza, “DoS attacks on Controller Area Networks by

fault injections from the software layer,” in Proceedings of the 12th

International Conference on Availability, Reliability and Security - ARES

’17, 2017, vol. 10, pp. 1–10, doi: 10.1145/3098954.3103174.

[7] A. Palanca, E. Evenchick, F. Maggi, and S. Zanero, “A stealth, selective,

link-layer denial-of-service attack against automotive networks,” in

International Conference on Detection of Intrusions and Malware, and

Vulnerability Assessment, Jul. 2017, vol. 10327 LNCS, pp. 185–206, doi:

10.1007/978-3-319-60876-1_9.

[8] H. Lee, K. Choi, K. Chung, J. Kim, and K. Yim, “Fuzzing CAN packets into

automobiles,” in International Conference on Advanced Information

Networking and Applications, AINA, 2015, vol. 2015-April, pp. 817–821,

doi: 10.1109/AINA.2015.274.

[9] T. Hoppe, S. Kiltz, A. Lang, and J. Dittmann, “Exemplary Automotive Attack

Scenarios: Trojan Horses for Electronic Throttle Control System (ETC) and

Replay Attacks on the Power Window System,” in Proc. Autom. Security

VDI-Berichte Nr. VDI/VW Gemeinschaftstagung Autom. Security, 2007, pp.

165–183, Accessed: Jun. 21, 2019. [Online]. Available:

https://pdfs.semanticscholar.org/d10a/558b9caa8bd41c0112434f3b19eb8

aab2b5c.pdf.

[10] B. Il Kwak, J. Y. Woo, and H. K. Kim, “Know your master: Driver profiling-

based anti-theft method,” in 14th Annual Conference on Privacy, Security

and Trust, 2016, pp. 211–218, doi: 10.1109/PST.2016.7906929.

[11] U. Fugiglando, P. Santi, S. Milardo, K. Abida, and C. Ratti, “Characterizing

the ‘driver DNA’ through CAN bus data analysis,” in CarSys 2017 -

Proceedings of the 2nd ACM International Workshop on Smart,

Autonomous, and Connected Vehicular Systems and Services, co-located

with MobiCom 2017, 2017, vol. 17, pp. 37–41, doi:

10.1145/3131944.3133939.

65

[12] Q. Lin, S. Verwer, R. Kooij, and A. Mathur, “Using datasets from industrial

control systems for cyber security research and education,” in International

Conference on Critical Information Infrastructures Security, 2019, no.

October, pp. 122–133, doi: 10.1007/978-3-030-37670-3_10.

[13] Bosh GmbH, “CAN FD | Bosch Semiconductors.” http://www.bosch-

semiconductors.com/ip-modules/can-ip-modules/can-fd/ (accessed Mar.

21, 2019).

[14] NXP Semiconductors, “TJA1462 CAN Signal Improvement,” 2020.

Accessed: Apr. 23, 2021. [Online]. Available:

https://www.nxp.com/docs/en/white-paper/CANSIGIMP-WP.pdf.

[15] H. Lee, S. H. Jeong, and H. K. Kim, “OTIDS : A novel intrusion detection

system for in-vehicle network by using remote frame,” 2017, [Online].

Available: https://www.ucalgary.ca/pst2017/files/pst2017/paper-

67.pdf%0Ahttp://ocslab.hksecurity.net/Dataset/CAN-intrusion-dataset.

[16] NXP Electronics, “S08SG Family of 8-bit Microcontrollers,” 2009.

Accessed: Apr. 24, 2021. [Online]. Available:

https://www.nxp.com/docs/en/fact-sheet/S08SG8BITMCFS.pdf.

[17] M. Hanselmann, T. Strauss, K. Dormann, and H. Ulmer, “CANet: An

Unsupervised Intrusion Detection System for High Dimensional CAN Bus

Data,” IEEE Access, vol. 8, pp. 58194–58205, 2020, doi:

10.1109/ACCESS.2020.2982544.

[18] M. L. Han, B. Il Kwak, and H. K. Kim, “Anomaly intrusion detection method

for vehicular networks based on survival analysis,” Veh. Commun., vol. 14,

pp. 52–63, Oct. 2018, doi: 10.1016/j.vehcom.2018.09.004.

[19] H. K. Kim, “Car-Hacking Dataset,” Hacking and Countermeasure Research

Lab. https://sites.google.com/a/hksecurity.net/ocslab/Datasets/CAN-

intrusion-dataset (accessed Dec. 01, 2020).

[20] G. Dupont, A. Lekidis, J. Den Hartog, and S. Etalle, “Automotive Controller

Area Network (CAN) Bus Intrusion Dataset v2,” 4TU.ResearchData, 2019.

66

https://data.4tu.nl/repository/uuid:b74b4928-c377-4585-9432-

2004dfa20a5d (accessed Dec. 09, 2019).

67

4 WINDS: A Wavelet-based Intrusion Detection System

for Controller Area Network (CAN)

Vehicles are equipped with Electronic Control Units (ECUs) to increase the

overall vehicular system's functionality and connectivity. However, the rising

connectivity exposes defenceless internal Controller Area Network (CAN) to

cyberattacks. An Intrusion Detection System (IDS) is a supervisory module

proposed for identifying the CAN network's malicious messages without

modifying legacy ECUs and causing the traffic overhead. The traditional IDS

approaches rely on time and frequency thresholding, leading to high false alarms,

whereas state-of-the-art solutions may suffer from vehicle dependency. This

chapter presents a wavelet-based approach to locating the CAN traffic behaviour

change by analysing the CAN network's transmission pattern. The proposed

Wavelet-based Intrusion Detection System (WINDS) is tested on various attack

scenarios using real vehicle traffic from two independent research centres while

expanding toward more comprehensive attack scenarios using synthetic attacks.

The technique is evaluated and compared against the state-of-the-art solutions,

along with the baseline frequency method. Experimental results show that

WINDS offers a vehicle-independent solution applicable for various vehicles

through a unique approach while satisfactorily generating low false alarms. The

organisation of the chapter is presented in Figure 4-1.

Figure 4-1 Organisation of Chapter 4

Chapter 4

4.1 Introduction

4.2 Background

4.3 Securing the CAN Network via Wavelet Analysis

68

4.1 Introduction

The vehicles are getting more connected and autonomous year by year thanks

to communication between Electronic Control Units (ECUs), which controls one

or more vehicle functions such as engine control, telematics control, and airbag

deployment. There are various established in-vehicle communication standards

such as Controller Area Network (CAN), FlexRay, Local Interconnect Network

(LIN), and Media Oriented Systems Transport (MOST) [1]. Among these, CAN is

the most widely used in-vehicle communication protocol [2] because of its

recognised advantages in robustness, suitability for real-time networks, easy

maintenance, and low-cost implementation. However, it does not have any

intrinsic security features to protect against cyberattacks. The vulnerabilities of

the CAN were presented for the first time by Hoppe et al. in 2007 [3], [4]; since

then, researchers have demonstrated a variety of physical and remote access

attacks [5]–[7]. The increasing number of attacks shows that the protocol is

defenceless to cyber attacks.

Although the problem's root cause is a lack of encryption and authentication,

cryptographic methods are not feasible. The problem is mitigated with an

Intrusion Detection System (IDS). IDS can provide adaptable protection by

monitoring the CAN network and labelling the malicious messages without

modifying the legacy ECUs.

Different IDS approaches are applied to mitigate the security problem of the CAN

network. Some of these solutions are developed based on promising machine

learning techniques like Hierarchical Temporal Memory (HTM) [8], Generative

Adversarial Nets (GAN) [9], Long Short-term Memory (LSTM) [10], and other

deep neural networks [11], [12]; however, such methods initially suffer from high

computational power. Additionally, these methods are heavily vehicle dependent

and require specific training for different vehicle makes and models. Similarly,

entropy-based IDSs [13]–[15] need training to detect anomalies. They are also

highly vulnerable to attacks that do not change the entropy, for instance, replay

attacks. Others applied specification-based IDS solutions [16], [17] by creating

rules based on the protocol specification. However, these solutions are protocol-

69

dependent and can fail if an attacker mimics the sequence of messages. Although

IDS promises to address the CAN's vulnerabilities by labelling malicious

messages despite the limited resources, available IDSs have major weaknesses

[18], such as high false-positive rate, vulnerability to certain attack types, and

vehicle dependency. Many IDS solutions do not even consider the detection time,

which has an enormous impact on real-time systems.

Our vision to overcome the problem is to explore techniques that speed up attack

detection time and reduce the IDS' decision-maker unit's dependency on prior

knowledge, with an aim to reduce the rate of false alarms, which ultimately

increases attack detection accuracy. In this regard, the chapter contributes to

identifying malicious messages by analysing network traffic behaviour using

wavelet analysis rather than its frequency value. The main contributions of the

chapter are the followings:

• A novel fast detection wavelet-based IDS for in-vehicle networks

• A vehicle independent IDS approach for attack detection without prior

knowledge

4.2 Background

4.2.1 Wavelet Transform

Wavelet analysis provides a frequency analysis of the signal and gives

information about breakpoints, trends, and self-similarity. It is used in various

fields, including information security, oceanography, medicine, and finance.

Unlike the Fourier Transform, it gives frequency analysis on the time domain.

Continuous Wavelet Transform (CWT) converts signal 𝑓(𝑡) into wavelet

coefficients 𝐹(𝑎, 𝑏) which is a function of scale 𝑎 and position 𝑏 as defined below:

𝐹(𝑎, 𝑏) =
1

√𝑎
 ∫ 𝑓(𝑡)

∞

−∞
 𝜓∗ (

𝑡−𝑏

𝑎
) 𝑑𝑡 [19] (4-1)

where 𝜓 is called mother wavelet, which is any function that satisfies:

∫ 𝜓 (t) 𝑑𝑡
∞

−∞
= 0 [19] (4-2)

70

∫ 𝜓2 (t) 𝑑𝑡
∞

−∞
= 1 [19] (4-3)

Scaling means compressing or stretching the mother wavelet. While the

compressed wavelet provides rapidly changing high-frequency information, the

stretched one gives details of slow changes. The scaling feature offers local and

global details of the signal. Unlike Discrete Wavelet Transform (DWT), which has

a decreasing number of coefficients with increasing scaling factor, CWT has the

same number of coefficients at each scale. This redundancy (i.e. has the exact

time resolution as the original data) of CWT provides a more accurate time-

frequency spectrum.

4.2.2 Intrusion Detection and Related Work

An IDS can be categorised as signature-based and anomaly-based. As shown in

Figure 4-2.a, Signature-based IDS has an attack (signature) database and works

like anti-virus software. If an attack from the database occurs, it can identify the

attack. On the other side, anomaly-based IDS, as shown in Figure 4-2.b,

characterises the system's behaviour and compares it with baseline and alerts if

the deviation from the baseline exceeds a certain threshold. Although signature-

based IDS is quite successful for known attacks, it cannot detect unknown attacks

and requires a regular database update. Hence, it is impossible to know that all

the attacks and regular updates can be a hassle; anomaly-based IDS solutions

have advantages over signature-based ones.

71

As summarised in Table 4-1, the current IDS solutions use various parameters to

analyse the CAN network. Research in [20]–[22] takes advantage of the

network's physical characteristics. Thanks to random manufacturing variations,

cabling, and ageing, each transceiver has a slightly different signature on the

signal even though they transmit the same data. Analysing these signatures gives

the means to identify authentic messages. Although these methods are highly

reliable in a controlled environment, their performance changes significantly

based on environmental changes like temperature. They are also vulnerable to

detect malicious messages from the software layer, as explained in [5].

Figure 4-2 a) Flowchart of signature-based and b) anomaly-based intrusion

detection systems.

72

Table 4-1 Summary of recent intrusion detection systems for CAN bus

Ref. Parameter Algorithm / Method Advantages Downsides

[20] Electrical signal Support vector machine

and boosted decision tree

Robust to some attack types,

differentiate between an error and

an attack

High cost and vulnerability to

environmental conditions

[21] Electrical signal Multilayer perceptron Robust detection of malicious

nodes

High cost and vulnerability to

environmental conditions

[22] Time intervals Recursive least squares

and Cumulative Sum

Identification of attacked ECU Works only for periodic signals,

susceptible to environmental conditions

[9] A pattern of CAN ID Generative adversarial

nets

Robust to attacker manipulation Heavy resource usage, vehicle

dependency

[12] Traffic pattern Deep convolutional

neural network

Better performance than other

machine learning methods

Heavy resource usage

[23] Timing analysis Specification-based Low computational requirement Defining the specifications

[24] Remote frame

Timing

Offset ratio Efficient and straightforward

algorithm with low-cost hardware

Increased traffic

73

[25] Period and payload Bloom filtering Low memory usage High computational power

[26] Time intervals Z-score and ARIMA Minimal training High time-to-detect

74

Müter et al. [27] identify eight anomaly detection sensors that provide the

essential input to structure an in-vehicle network. These are frequency, formality,

location, range, correlation, protocol, plausibility, and consistency. These are not

necessarily physical sensors but are signal processing boxes/tools that process

the CAN bus's network traffic to observe and monitor changes for such

parameters. Any IDS solutions use one or multiple of these sensors. As many

ECUs broadcast CAN frames regularly, frequency is one of the most critical

anomaly detection sensors to characterise the automotive network, if not the best.

An intrusion into the CAN network will disrupt the regularity of the transmissions

and the system's frequency. Although time thresholding is a simple technique to

detect attacks, it can generate a high false-positive rate. On the contrary,

frequency analysis gives more stable information [28]. Therefore, the CAN

network's frequency analysis is a simple but effective IDS solution for resource-

constrained vehicles.

There are multiple pieces of research to assess the time interval and frequency

of the CAN messages. Some of these use basic statistical analysis [29], [30], but

they are highly vehicle-dependent. Machine learning algorithms like One-Class

Support Vector Machine (OCSVM) [31], Gaussian mixture model [32] also

proposed to detect anomalies via frame timing analysis; however, they require a

comprehensive training data set for each vehicle model. ARIMA and Z-score

were proposed [26] to minimise the training phase and vehicle dependency, but

a successful result requires a long window size, which will increase the detection

time. Lee et al. [24] analysed the response time of the ECUs by sending them

remote frames. Their method requires low computational power and is successful

in detecting attacks. The downside of the technique is that it increases bus traffic

by sending remote frames.

On the other hand, wavelet analysis has outstanding performance, mainly due to

its simple procedure, easy computation, and reconstructable decomposition. This

motivated researchers from the IT security domain to benefit [33]–[35]. Spicer

[21] proposed wavelet analysis for CAN bus to complement his noise-content-

based multilayer perceptron IDS with frequency analysis. His implementation was

75

limited to the signal level and analysed the electrical characteristic to identify

different signatures. By fingerprinting ECUs, it is possible to identify the sender

ECU; therefore, the work can also be regarded as an authentication method. The

work presented in this chapter moves beyond Spicer's research and intends to

develop the entire IDS based on wavelet analysis. The WINDS is applied to

message level and analyses behaviour of message frequency, facilitating low-

latency frequency analysis for the CAN network without increasing the network

traffic and training data requirement

4.3 Securing the CAN Network via Wavelet Analysis

The frequency profile contains essential information about CAN messages'

authenticity obtained by the Continuous Wavelet Transform (CWT). CWT is a

powerful tool for the precise localisation of frequency components on the time

axis, useful for identifying irregularities in the CAN network's traffic pattern. In

order to find the signal's behaviour change, WINDS benefits from CWT for

dividing the network pattern, which is a continuous time-series signal, into

different scale components. Then the analysis is further carried out on the scale

domain. Figure 4-3 visualises the CAN traffic and its wavelet representation. The

figure depicts a set of large CWT coefficients located vertically around t =

6.318 (s) where the change (attack) occurs in the signal. The area of large

coefficient values, called the cone of influence, spreads with rising scale but still

centred at t = 6.318 s. It presents us which CWT coefficients are affected by the

signal at that point. Therefore, the proposed WINDS algorithm can detect both

long-time and sudden short-time duration attacks by analysing scales.

76

The WINDS algorithm can be split into four stages, as shown in Figure 4-4: data

collection and preprocessing, behaviour profiling with CWT, anomaly decision,

and parameter initialisation.

Data collection and preprocessing: The first stage is to monitor the CAN traffic

under various no-attack and attack scenarios. This is a time-consuming data

creation task and requires multiple resources and tools. Several research centres

lead such experiments and data collection steps, providing researchers with

valuable datasets. Although open-access datasets might be limited to specific

cases, they can be well extended to comprehensive data by considering various

attack models and understanding the CAN bus system's technical details and the

vehicle's performance. This usually turns in populating the initial experimentally

collected dataset with several synthetic attacks that mimic the real attacks.

Figure 4-3 Message count of the CAN traffic (top) during a DoS attack and its

wavelet analysis (bottom).

77

F
ig

u
re

 4
-4

 T
h

e
 flo

w
c

h
a
rt o

f w
a

v
e
le

t-b
a
s

e
d

 in
tru

s
io

n
 d

e
te

c
tio

n
 s

y
s
te

m
 fo

r in
-v

e
h

ic
le

 c
o

m
m

u
n

ic
a
tio

n
.

78

The preprocessing step starts with windowing the dataset, proceeded with a

feature extraction step, which is usually conducted by the signal-processing tool.

Assuming a windowed data as w(t), it is a collection of messages, M, while each

has a time interval of sampling time ts as in (4-4), representing traces of the

message counted over the previous n samples:

𝑤(𝑡) = { 𝑀𝑡−(𝑛−1)∗𝑡𝑠), 𝑀𝑡−(𝑛−2)∗𝑡𝑠), … ,𝑀𝑡} (4-4)

The WINDS benefits from message count Nw in the CAN traffic in window w within

a specified time interval between 𝑡 and 𝑡 − 𝑡𝑠, where 𝑡𝑠 is the period of the

interval. Hence, we specify a message frequency, 𝑆𝑓, with the following equation,

applied on ith window wi, to account the frequency of message in that window:

𝑁𝑖 = 𝑆𝑓(𝑀𝑤𝑖
) = ∑ 𝑀𝑘

𝑛𝑚𝑎𝑥

𝑘=1

(4-5)

where nmax is the maximum number of messages that a window may have, and

Mk represents the existence of the kth message within the ith window (wi) that is

one if a message exists; otherwise, it is zero. The window is stretched from the

current time to the past, and the analysis is processed frequently. This results in

the featured ith window by the frequency conversion Sf, represented by 𝑤𝑖
𝑆, as in

the following equation:

𝑤𝑖
𝑆 = {𝑁 ∈ 𝑍: ∃𝑁1, . . . , 𝑁𝑛−𝑚𝑎𝑥 ∈ 𝑤 𝑤𝑖𝑡ℎ 𝑁 = 𝑆𝑓(𝑀𝑤𝑖

)} (4-6)

Behaviour profiling: The second stage generates the behaviour profile from the

preprocessed traffic signal using the wavelet transform in (4-1). It transforms 𝑤𝑖
𝑆

to a set of wavelet coefficients 𝑊(𝑎, 𝑏), which is a two-dimension matrix of 𝑛 𝑥 𝑘

where 𝑘 is the highest wavelet scale and n is the window size. To decrease the

complexity and get meaningful data out of all wavelet scales, Mean Absolute

Deviation (MAD) is used, as in (4-7), where L is the length of scale for the chosen

𝑤𝑖
𝑆 after wavelet transformation, j and q denotes a specific component of the

scale as an index, and 𝐴𝑖
𝑀𝐴𝐷 projects the results after applying MAD function on

the scaled component for the ith 𝑤𝑖
𝑆. Therefore, MAD provides the absolute

79

deviations from the mean point and gives information about the wavelet scale

changes in each sample. Figure 4-5 demonstrates an example of MAD

transformation from the wavelet coefficients during a replay attack.

𝐴𝑖
𝑀𝐴𝐷 =

1

𝐿
∑|𝑎𝑗 −

1

𝐿
∑𝑎𝑞

𝐿

𝑞=1

|

𝐿

𝑗=1

(4-7)

Anomaly decision: This is the step for interpreting the wavelet coefficients,

which leads to change point detection, needed for exploring anomalies'

symptoms caused by an attack. The core of anomaly detection is assessing each

window to find behaviour deviations using a thresholding technique. Donoho and

Johnstone [36] proposed a universal threshold 𝜆𝑢 defined as:

 𝜆𝑢 = 𝜎 . √2 log (𝑁) (4-8)

a)

b)

Figure 4-5 The wavelet transform of the windowed signal w(t) for single ID during

replay attack (top) and median absolute deviation of W(a,b) (bottom).

80

where 𝜎 is the standard deviation and N is the number of samples. Donoho and

Johnstone's threshold technique's advantages are slightly limited to denoising the

White Gaussian noise affected signals by finding substantial change.

Mozzaquatro et al. [37] presented that the universal threshold 𝜆𝑢 should be

updated by a constant correction factor 𝜌 to get a better results, (4-9). The

constant correction factor 𝜌 depends to specific applications of interests like

anomaly detection for web attacks, boundary conditions, etc.

 𝜆 = 𝜌 . 𝜆𝑢 (4-9)

It is known so far that thresholding is the crucial element of an IDS so that low

and high thresholds lead to false positives and false negatives results,

respectively. WINDS involves an adaptive thresholding technique for increasing

the accuracy of decisions and calculating a new threshold for each window by

updating the 𝜌 parameter based on each window's MAD value. Finally, the

updated 𝜆 is applied to the anomaly decision process for denoting the values

higher than the threshold as anomalies and so detection of threat. Figure 4-5

visualises the WINDS' thresholding mechanism via an example, demonstrating

the results of converting the wavelet coefficients in Figure 4-5.a into MAD values

in Figure 4-5.b. If any of the MAD values within a window exceeds the threshold,

that window is regarded as malicious.

There are conditions in which MAD produces results equal to zero based on the

specific attack types. An example is when a flooding attack causes suspension

of the messages from lower priority ECUs in the presence of the CAN network's

arbitration mechanism. In such cases, the window spans inside the attack

duration, which causes all the wavelet coefficients to turn to zero, and as a result,

MAD generates zero.

Parameter initialisation: The proposed IDS involves a multi-parameter

optimisation problem that requires extensive time and works to find the best

performance for the WINDS. Instead, the effort is put forward to initialise the

WINDS with the best possible parameters experimentally founded by looking into

the performance when feeding WINDS with various datasets. This stage is run

81

only once for gathering the values of the parameters. At first, the ranges of each

parameter value are chosen and inserted into the parameter pool. These

parameters are wavelet type (Haar and Daubechies), wavelet scale (from 4 to

32), window size (from 32 to 256), window-type (discrete and continuous), sample

time (from 0.5 ms to 3 ms), and threshold (from 1.1 x MAD to 2.2 x MAD of the

current window). The algorithm is then tested for one attack data for each attack

type for all the parameters inserted in the pool. The parameter setting which

provides better performance on average is chosen as experimental parameters.

4.4 Results and Discussions

4.4.1 Experimental Setup

The experiment is carried out by using Matlab software. The continuous wavelet

transform is implemented by using cwt command. Resulting from the parameter

initialisation step mentioned in Section 4.3, we set the parameters with the

specifications given in Table 4-2. The window w(t) includes 128 samples,

consisting of 384 ms network traffic, collected by a sampling time of 3 ms for the

ID-based data segments. The setup is tied for short sampling times, ensuring the

window would be populated with sufficient active data while avoiding information

misses. Short sampling time also results in earlier attack detection, consequently.

The threshold is set to 1.8 x MAD value of the current window. The Haar wavelet,

consisting of shifted and scaled square wave functions, is used as a mother

wavelet in the analysis. The Haar function in (4-10) [38] has the potential for

looking at differences of averages, essentially. The initial scale for Haar wavelet

in this experiment is 16. The source code for WINDS can be found in Appendix

A.2.

82

Table 4-2 Experimental setup specifications

Parameter Value

Number of samples in w(t) 128

Number of messages in a window, N Variable*

Network traffic 384 ms

Sampling time 3 ms

Type of wavelet Haar

Number of scale 16

Constant correlation factor, ρ ∝ to MAD

Threshold 1.8 x MAD

* Number of the messages depends on the traffic and ID of ECU.

𝜓 (𝐻)(𝑡) =

{

 1, 0 ≤ 𝑡 <

1

2
;

−1,
1

2
≤ 𝑡 < 1;

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

(4-10) [38]

4.4.2 Results

The WINDS was tested on two groups of the dataset collected from three

commercial vehicles using the framework mentioned in Section 3. The first

experiment evaluates WINDS capabilities on a broad range of synthetic attacks

with varying attack strength (testing code for WINDS can be found in Appendix

A.3). Then, the second experiment assesses the performance of WINDS on a

real vehicle attack dataset and compares it with existing solutions.

4.4.2.1 Synthetic Attacks – Attack Types

The synthetic attacks allow us to safely implement various attack scenarios,

facilitating the observation of the IDS’ performance and limitation on different

83

attacks by tuning the attack strength and duration. Using such techniques, we

tested WINDS on various attack scenarios, including DoS, suspension, and

replay attacks, along with an attack-free dataset.

The experiment is constructed on splitting the entire network data into segments

based on the ID numbers, then proceed with investigating each ID-based data

separately to get satisfactory results, shown in Table 4-3.

Table 4-3 The performance of WINDS for the synthetically generated data

Data

Source
Attack Type Accuracy Sensitivity FPR Precision

MTTD

(s)

Vehicle 1

Vehicle 2

No attack 0.9997

0.9999

-

-

0.0003

0.0001

-

-

-

-

Vehicle 1

Vehicle 2

Denial of

Service

0.9995

1.0000

0.9982

0.9979

0.0004

0.0004

0.9920

0.9985

0.003

0.006

Vehicle 1

Vehicle 2

Suspension 0.9999

0.9997

0.9980

0.9981

0.0001

0.0003

0.9879

0.9993

0.003

0.006

Vehicle 1

Vehicle 2

Replay 0.9998

0.9997

0.9893

0.9974

0.0001

0.0003

0.9986

0.9863

0.003

0.003

 Mean value of results for the ten datasets.

The attack-free dataset gives information about how IDS will perform and react

in the normal traffic mode by looking into evaluation metrics such as the FPR

rate. It is essential to keep FPR low; otherwise, higher rates generate many false

alarms, which drivers may ignore. Moreover, a higher FPR rate hardens the tasks

of the security team. The WINDS’ FPR rate is kept for less than 0.0004.

Denial of Service (DoS) attack by flooding high-priority messages can

significantly affect network behaviour. Although the attack is implemented by

sending messages with the highest priority (CAN ID ‘000’), it can be detected by

monitoring any ID in the network. The WINDS algorithm successfully detected

84

DoS attacks, with an average attack detection rate of 99.82% and 99.79% for

Vehicle 1 and Vehicle 2, respectively. The detection rate can reach as high as

99.94% for more prolonged attack durations. The attacks were also swiftly

detected in less than 6 ms.

Suspension attack has similar results to DoS attacks, as shown in Figure 4-6. It

could be anticipated the same because the arbitration scheme does not allow

lower priority nodes to transmit when the DoS attack is implemented. Therefore,

the suspension attack mimics the DoS attack. The average sensitivity values for

Vehicle 1 and Vehicle 2 were 99.8% and 99.81%, consecutively.

Figure 4-6 The sensitivity of the WINDS algorithm during various suspension and

DoS attacks. The sensitivity of the algorithm gets better with the rising attack

duration.

Replay attacks were implemented for a short duration of time (75 ms and 66 ms)

with low message insertion rates (from 8 to 30 frames). The results shown in

Figure 4-7 depict that the WINDS algorithm can respond in milliseconds and

successfully detect over 96% of the attacks with almost zero false-positive rate.

The observation is that the algorithm's sensitivity rises with the increased rate of

malicious messages while the TTD decreases.

85

The experimental results show that the sensitivity of the WINDS is correlated with

the attack strength. In general, the sensitivity increases for the longer duration

and more frequent attacks, as seen in Figure 4-7.

Figure 4-7 The sensitivity of the WINDS algorithm during different replay attacks.

The increased message insertion rate increases the sensitivity while decreasing

the time to detect.

4.4.2.2 Comparative Analysis of the WINDS on Real Vehicle Attacks

In the second experiment, WINDS is tested on real-world vehicle attacks and

compared with baseline frequency-based IDS and other existing methods. As

benchmarking dataset has significant importance for reliable testing, WINDS is

tested on the most widely accepted dataset, the Car-hacking dataset [39]; and

compared with the state-of-the-art methods which use the same dataset. These

are GIDS[9], DCNN[12], and SAIDuCANT[23]. GIDS method converts CAN data

into an image and applies generative adversarial nets. The method only uses

CAN ID to speed up image generation. DCNN method applies a deep

convolutional neural network to a two-dimensional binary matrix generated from

the CAN traffic. The third method, SAIDuCANT, is a specification-based IDS as

compared to machine learning-based methods mentioned above. SAIDuCANT

86

Table 4-4 Comparison of the WINDS with existing methods using real vehicle

attack data

Attack Type IDS Accuracy Sensitivity (Recall) Precision

Gear

Spoofing

WINDS 0.9883 0.9845 0.9958

SAIDuCANT 0.8262 0.9702 0.8245

GIDS 0.9620 0.9650 0.9810

DCNN 0.9995 0.9989 0.9999

Frequency-based 0.9273 0.8770 0.9886

RPM

Spoofing

WINDS 0.9926 0.9890 0.9986

SAIDuCANT 0.8033 0.9636 0.8010

GIDS 0.9800 0.9900 0.9830

DCNN 0.9997 0.9994 0.9999

Frequency-based 0.9472 0.9211 0.9815

Fuzzy Attack WINDS 0.8778 0.8339 0.9816

SAIDuCANT 0.8782 0.9958 0.8639

GIDS 0.9800 0.995 0.9730

DCNN 0.9982 0.9965 0.9995

Frequency-based 0.8170 0.7556 0.9599

DoS Attack WINDS 0.9497 0.9415 0.9797

SAIDuCANT 0.9808 1.0000 0.9771

GIDS 0.9790 0.9960 0.9680

DCNN 0.9997 0.9989 1.0000

Frequency-based 0.8711 0.8316 0.9617

87

monitors the network's timing behaviour according to predefined timing

specifications.

The comparison result of WINDS with other state-of-the-art methods for the real-

vehicle attacks is summarised in Table 4-4. Gear spoofing and RPM attacks

directly target certain IDs, and the WINDS can detect 98.45% and 98.90% of

these attacks accordingly and provides over 99% precision for both cases.

The attack detection rate and accuracy decrease for Fuzzy and DoS attacks. This

is partly because these attacks do not target any particular IDs; therefore, they

are not as disruptive as direct attacks like gear or RPM spoofing. While the

WINDS’ sensitivity for the DoS attack is 94.15%, it can decrease to 83.39% for

the fuzzy attack. This is an expected result; hence DoS attack was implemented

using the highest ID number while the fuzzy attack transmits random ID numbers.

Some of these IDs have low priority and have no disruption in transmitting

authentic messages because of the arbitration process.

WINDS is also compared with some alternative methods including frequency-

based IDS, which measures the frequency of attacked ID and generates an alarm

if the threshold exceeds lower or higher threshold bonds. The WINDS

outperforms the frequency-based IDS in all metrics for all attack types. Our

method also generates better results than GIDS and SAIDuCANT methods for

gear and RPM spoofing. On the other hand, these methods have better

performance than WINDS for DoS and Fuzzy attacks. Although DCNN has the

best performance for this dataset, it requires extensive training with attack data;

because it involves a supervised learning method. It is also computationally

expensive and requires GPU acceleration; therefore, it is not feasible to deploy

in a resource-constrained environment.

4.4.2.3 Discussions

An IDS can be implemented as host-based (also known as node-based) or

network-based. In the host-based IDS, each ECU has an integrated IDS and may

dismiss the message according to the IDS decision. However, this requires

additional resources in each ECU. On the other hand, the network-based

88

approach has only one IDS implemented on the gateway ECU. The WINDS is

independent of implementation perspectives, suitable for implementation through

host-based or network-based approaches with the same performance; however,

the required resources would differ. This allows the method to be implemented

on various applications, from low-end resource constraint vehicles as a network-

based IDS to high-end vehicles as an advanced sensor for intrusion prevention

systems in each ECU.

An IDS should satisfy specific requirements for vehicles, which are real-time

safety-critical cyber-physical systems. In short, it should detect attacks correctly

in an acceptable time frame while using limited resources and without causing

false alarms. Therefore, WINDS is assessed based on three criteria: timing

behaviour, success rate, and resource usage.

4.4.2.3.1 Timing Analysis

Successful IDS must detect attacks as soon as possible to prevent propagating

misinformation and causing system misbehaviour. A metric suitable for

measuring the algorithm’s behaviour is TTD, which varies by the parameters like

the sampling time and the threshold. Assessing WINDS by TTD demonstrated

that an increase in the attack strength decreases the detection time, as presented

in Figure 4-7.

 Another key parameter for time analysis is the processing time. Actual

processing time requires implementing the WINDS algorithm on an ECU, which

is not covered in this research. As WINDS can be implemented as a network-

based IDS, this can be ignored even on low-end vehicles using only one high-

end automobile processor on the gateway ECU.

The WINDS algorithm can detect an anomaly in milliseconds. Considering the

delay times in the CAN network [40], the algorithm should be suitable for the real-

time analysis of most ECUs.

89

4.4.2.3.2 Success Rate

As the main parameter, changes in the message frequency should be observed

by WINDS to detect attacks. The method cannot locate, for instance, impersonate

attacks, where a node is suspended, and a malicious node transmits on behalf of

the suspended one by causing the protocol error. However, this can be easily

detected by counting the error frames. In contrast, the proposed algorithm

successfully detects time variations, which enable WINDS to locate all the

flooding attacks by analysing only a single ID even though the attacker targets

different IDs.

The threshold is the most critical parameter that affects the success rate. The

lower threshold value will increase the detection rate, but it will also raise false

alarms. Additionally, the threshold can be adjusted based on IDs and adapted to

the arbitration process of the CAN for increasing the overall performance. This

adaption will decrease the false alarms because lower priority IDs are not as

punctual as the higher priority IDs due to the arbitration mechanism in CAN. The

Receiver Operating Characteristic (ROC) curves in Figure 4-8 depict WINDS’

behaviour for three different attack models: replay attack, gear and RPM spoofing

Figure 4-8 The Receiver Operating Characteristic (ROC) curves for varying

threshold values for RPM spoofing, gear spoofing, and replay attack.

90

attacks. The result shows that WINDS provides a good performance

characteristic.

An alternative way to increase the system’s performance comes from

understanding the driving mode; hence, some ECUs are linked to different driving

modes. Theoretically, the wavelet can detect this change and may give a false

alarm during the transition. After a window passes the transition period, it does

not provide a warning. This requires further investigation and testing on data from

different driving modes.

4.4.2.3.3 Resource Usage

The vehicles have limited bandwidth, memory, and computational power.

Therefore, a feasible IDS should demand low resources. The WINDS does not

transmit any messages, so it does not affect the bandwidth.

The memory usage of WINDS is directly proportional to the window size. It

analyses the timing of the messages and does not need to store data bits. It only

requires a single bit of memory storage as a flag identifying the message that

exists in the given sample time. Therefore, each ID requires n-bit memory equal

to the window size, which is 16 bytes in this experiment. This is a very reasonable

amount, even for low-end ECUs.

The CWT mainly drains computational power. If the scale is increased, the

required power will increase, too. Efficient CWT algorithms are essential for

making the IDS affordable for all ECUs. A way to reduce the algorithm’s

computational cost is to sacrifice some memories when ECU has limited

computational power available. For instance, the n-bit window is not necessarily

required to be transformed to wavelet coefficients as a whole each time. Instead,

updating only some bits from the previous transform is sufficient while keeping

the rest unchanged. A partial updating of the last window results in the new

window, which was expected to be transformed.

4.5 Future Directions

Although the research results demonstrated so far in this chapter through various

tests, analysis, and evaluation are promising, further improvement is achievable

91

by analysing each wavelet scale individually. This additional improvement would

be at the cost of higher complexity and computational needs. It is worth

investigating alternative wavelet-based IDS systems such as Discrete Wavelet

Transforms (DWT) and Maximal Overlap Discrete Wavelet Transform (MODWT),

mainly to reduce computational cost and conduct further assessments and

comparisons with other techniques.

WINDS is limited to analysing system behaviour based on message frequency,

and it is not extended toward nodes transmitting infrequent messages. The

current implementation is not detecting attacks that do not affect the message

frequency, requiring further investigations.

There is still a need for experimenting with real cars, considering various attack

scenarios followed with suitable data collection to generate comprehensive and

efficient datasets. Existing datasets available from open-access research centres

are limited to specific cases, and yet, they do not provide essential system

specifications under test and technical details of testing scenarios. This chapter

successfully demonstrated methods for generating synthetic attacks to overcome

weaknesses from open-access datasets. This is limited to simple cases and

leaves generation complex synthetic attacks, which are needed for sophisticated

attacking scenarios, for future research. Furthermore, it is also crucial to test IDS

on various driver and journey types, meaning that more datasets are needed for

achieving efficient analysis.

The lack of available datasets for various vehicle models also prevents us from

implementing an optimisation process for the parameter decision. Optimisation

on limited datasets will cause overtraining. Therefore, it will be worth investigating

optimisation techniques when we have enough independent datasets to improve

the performance of WINDS.

It is essential to prevent attacks that cause system misbehaviour for safe driving.

The current implementation of WINDS is designed as an intrusion detection

system. To implement a real-time intrusion prevention system, each ID should be

analysed separately to gather its deadline. Then WINDS should be adapted to

respond to the deadline. The prevention mechanisms to invalidate messages

92

also need to be assessed and combined with WINDS. It is also worth mentioning

that the WINDS is implemented on a personal computer. Although the TTD will

be the same, the processing time will vary. Therefore, we aim to apply the WINDS

on an ECU and gather processing time.

References

[1] T. Kosch, C. Schroth, M. Strassberger, and M. Bechler, Automotive

Internetworking. Chichester, UK: John Wiley & Sons, Ltd, 2012.

[2] K. Matheus and T. Königseder, Automotive Ethernet. Cambridge University

Press, 2015.

[3] B. Groza and S. Murvay, “Security solutions for the Controller Area

Network: Bringing Authentication to In-Vehicle Networks,” IEEE Vehicular

Technology Magazine, pp. 40–47, 2018.

[4] T. Hoppe and J. Dittman, “Sniffing/Replay Attacks on CAN Buses: A

simulated attack on the electric window lift classified using an adapted

CERT taxonomy,” in Proceedings of the 2nd workshop on embedded

systems security (WESS), 2007, pp. 1–6.

[5] S. Fröschle and A. Stühring, “Analysing the capabilities of the CAN

Attacker,” in European Symposium on Research in Computer Security,

Sep. 2017, vol. 10492 LNCS, pp. 464–482, doi: 10.1007/978-3-319-66402-

6_27.

[6] C. Miller and C. Valasek, “A survey of remote automotive attack surfaces,”

2014. Accessed: Mar. 31, 2018. [Online]. Available:

https://www.ioactive.com/pdfs/IOActive_Remote_Attack_Surfaces.pdf.

[7] P.-S. Murvay and B. Groza, “DoS attacks on Controller Area Networks by

fault injections from the software layer,” in Proceedings of the 12th

International Conference on Availability, Reliability and Security - ARES

’17, 2017, vol. 10, pp. 1–10, doi: 10.1145/3098954.3103174.

93

[8] C. Wang, Z. Zhao, L. Gong, L. Zhu, Z. Liu, and X. Cheng, “A Distributed

Anomaly Detection System for In-Vehicle Network Using HTM,” IEEE

Access, vol. 6, pp. 9091–9098, 2018, doi:

10.1109/ACCESS.2018.2799210.

[9] E. Seo, H. M. Song, and H. K. Kim, “GIDS: GAN based Intrusion Detection

System for In-Vehicle Network,” in 2018 16th Annual Conference on

Privacy, Security and Trust (PST), Aug. 2018, pp. 1–6, doi:

10.1109/PST.2018.8514157.

[10] A. Taylor, S. Leblanc, and N. Japkowicz, “Anomaly detection in automobile

control network data with long short-term memory networks,” in

Proceedings - 3rd IEEE International Conference on Data Science and

Advanced Analytics, DSAA 2016, 2016, pp. 130–139, doi:

10.1109/DSAA.2016.20.

[11] M. J. Kang and J. W. Kang, “Intrusion detection system using deep neural

network for in-vehicle network security,” PLoS One, vol. 11, no. 6, Jun.

2016, doi: 10.1371/journal.pone.0155781.

[12] H. M. Song, J. Woo, and H. K. Kim, “In-vehicle network intrusion detection

using deep convolutional neural network,” Veh. Commun., vol. 21, p.

100198, Jan. 2020, doi: 10.1016/j.vehcom.2019.100198.

[13] M. Muter and N. Asaj, “Entropy-based anomaly detection for in-vehicle

networks,” in 2011 IEEE Intelligent Vehicles Symposium (IV), 2011, no. IV,

pp. 1110–1115, doi: 10.1109/IVS.2011.5940552.

[14] M. Marchetti, D. Stabili, A. Guido, and M. Colajanni, “Evaluation of anomaly

detection for in-vehicle networks through information-theoretic algorithms,”

2016, doi: 10.1109/RTSI.2016.7740627.

[15] W. Wu et al., “Sliding Window Optimized Information Entropy Analysis

Method for Intrusion Detection on In-Vehicle Networks,” IEEE Access, vol.

6, pp. 45233–45245, 2018, doi: 10.1109/ACCESS.2018.2865169.

[16] U. E. Larson, D. K. Nilsson, and E. Jonsson, “An approach to specification-

94

based attack detection for in-vehicle networks,” in IEEE Intelligent Vehicles

Symposium, Proceedings, 2008, pp. 220–225, doi:

10.1109/IVS.2008.4621263.

[17] I. Studnia, E. Alata, V. Nicomette, M. Kaâniche, and Y. Laarouchi, “A

language-based intrusion detection approach for automotive embedded

networks,” Int. J. Embed. Syst., vol. 10, no. 1, pp. 1–12, 2018, doi:

10.1504/IJES.2018.089430.

[18] G. Dupont, J. Den Hartog, S. Etalle, and A. Lekidis, “Evaluation framework

for network intrusion detection systems for in-vehicle CAN,” in 8th IEEE

International Conference on Connected Vehicles and Expo, ICCVE, 2019,

no. 1, doi: 10.1109/ICCVE45908.2019.8965028.

[19] D. B. Percival and A. T. Walden, Wavelet Methods for Time SeriesAnalysis.

Cambridge University Press, 2013.

[20] W. Choi, K. Joo, H. J. Jo, M. C. Park, and D. H. Lee, “VoltageIDS: Low-

level communication characteristics for automotive intrusion detection

system,” IEEE Transactions on Information Forensics and Security, vol. 13,

no. 8, 2018.

[21] M. Spicer, A. L. Wicks, A. L. Abbott, S. C. Southward, and M. Spicer,

“Intrusion Detection System for Electronic Communication Buses : A New

Approach,” Virginia Polytechnic Institute and State University, 2017.

[22] K.-T. Cho and K. G. Shin, “Fingerprinting electronic control units for vehicle

intrusion detection,” in 25th USENIX Security Symposium, 2016, pp. 911–

927, Accessed: May 31, 2018. [Online]. Available:

https://www.usenix.org/conference/usenixsecurity16/technical-

sessions/presentation/cho.

[23] H. Olufowobi, C. Young, J. Zambreno, and G. Bloom, “SAIDuCANT:

Specification-Based Automotive Intrusion Detection Using Controller Area

Network (CAN) Timing,” IEEE Trans. Veh. Technol., vol. 69, no. 2, pp.

1484–1494, 2019, doi: 10.1109/tvt.2019.2961344.

95

[24] H. Lee, S. H. Jeong, and H. K. Kim, “OTIDS : A novel intrusion detection

system for in-vehicle network by using remote frame,” 2017, [Online].

Available: https://www.ucalgary.ca/pst2017/files/pst2017/paper-

67.pdf%0Ahttp://ocslab.hksecurity.net/Dataset/CAN-intrusion-dataset.

[25] B. Groza and P. Murvay, “Efficient Intrusion Detection With Bloom Filtering

in Controller Area Networks,” IEEE Trans. Inf. Forensics Secur., vol. 14,

no. 4, pp. 1037–1051, Apr. 2019, doi: 10.1109/TIFS.2018.2869351.

[26] A. Tomlinson, J. Bryans, S. A. Shaikh, and H. K. Kalutarage, “Detection of

Automotive CAN Cyber-Attacks by Identifying Packet Timing Anomalies in

Time Windows,” in Proceedings - 48th Annual IEEE/IFIP International

Conference on Dependable Systems and Networks Workshops, DSN-W

2018, 2018, pp. 231–238, doi: 10.1109/DSN-W.2018.00069.

[27] M. Müter, A. Groll, and F. C. Freiling, “A structured approach to anomaly

detection for in-vehicle networks,” in 6th International Conference on

Information Assurance and Security, IAS 2010, 2010, pp. 92–98, doi:

10.1109/ISIAS.2010.5604050.

[28] C. Young, H. Olufowobi, G. Bloom, and J. Zambreno, “Automotive Intrusion

Detection Based on Constant CAN Message Frequencies Across Vehicle

Driving Modes,” in AutoSec 2019 - Proceedings of the ACM Workshop on

Automotive Cybersecurity, co-located with CODASPY 2019, 2019, pp. 9–

14, doi: 10.1145/3309171.3309179.

[29] H. M. Song, H. R. Kim, and H. K. Kim, “Intrusion detection system based

on the analysis of time intervals of CAN messages for in-vehicle network,”

in International Conference on Information Networking, 2016, vol. 2016-

March, pp. 63–68, doi: 10.1109/ICOIN.2016.7427089.

[30] S. Otsuka, T. Ishigooka, Y. Oishi, and K. Sasazawa, Design and the

Reliability Factor. Warrendale, PA: SAE International, 2015.

[31] A. Taylor, N. Japkowicz, and S. Leblanc, “Frequency-based anomaly

detection for the automotive CAN bus,” in World Congress on Industrial

96

Control Systems Security (WCICSS), 2015, pp. 45–49, doi:

10.1109/WCICSS.2015.7420322.

[32] Y. Hamada, M. Inoue, H. Ueda, Y. Miyashita, and Y. Hata, “Anomaly-Based

Intrusion Detection Using the Density Estimation of Reception Cycle

Periods for In-Vehicle Networks,” SAE Int. J. Transp. Cybersecurity Priv.,

vol. 1, no. 1, pp. 39–56, May 2018, doi: 10.4271/11-01-01-0003.

[33] M. Hamdi and N. Boudriga, “Detecting denial-of-service attacks using the

wavelet transform,” Comput. Commun., vol. 30, no. 16, pp. 3203–3213,

2007, doi: 10.1016/j.comcom.2007.05.061.

[34] S.-Y. Ji, B.-K. Jeong, C. Kamhoua, N. Leslie, and D. H. Jeong, “Estimating

Attack Risk of Network Activities in Temporal Domain: A Wavelet

Transform Approach,” in 020 11th IEEE Annual Ubiquitous Computing,

Electronics & Mobile Communication Conference (UEMCON), 2020, pp.

0826–0832, doi: 10.1109/uemcon51285.2020.9298153.

[35] P. Zuraniewski and D. Rincón, “Wavelet Transforms and Change-point

Detection Algorithms for Tracking Network Traffic Fractality,” 2006.

Accessed: Jun. 25, 2019. [Online]. Available:

https://ieeexplore.ieee.org/ielx5/11058/34932/01678244.pdf?tp=&arnumb

er=1678244&isnumber=34932&ref=aHR0cHM6Ly93d3cuZ29vZ2xlLmNvb

S8=.

[36] D. L. Donoho and J. M. Johnstone, “Ideal spatial adaptation by wavelet

shrinkage,” Biometrika, vol. 81, no. 3, pp. 425–455, 1994, doi:

10.1093/biomet/81.3.425.

[37] B. A. Mozzaquatro, R. P. De Azevedo, R. C. Nunes, A. D. J. Kozakevicius,

C. Cappo, and C. Schaerer, “Anomaly-based techniques for web attacks

detection,” J. Appl. Comput. Res., vol. 1, no. 2, pp. 111–120, 2012, doi:

10.4013/jacr.2011.12.06.

[38] G. Peyr, “Mathematical Foundations of Data Sciences,” 2018.

[39] H. K. Kim, “Car-Hacking Dataset,” Hacking and Countermeasure Research

97

Lab. https://sites.google.com/a/hksecurity.net/ocslab/Datasets/CAN-

intrusion-dataset (accessed Dec. 01, 2020).

[40] U. Klehmet, T. Herpel, K. S. Hielscher, and R. German, “Delay bounds for

CAN communication in automotive applications,” in 14th GI/ITG

Conference on Measuring, Modelling and Evaluation of Computer and

Communication Systems, 2008, pp. 1–15.

98

5 Conclusions and Future Work

This PhD research focused on the security of the in-vehicle CAN network. The

thesis has three main contributions. First, it has summarised the literature and

presented vulnerabilities of CAN communication and state-of-the-art research

targeting those vulnerabilities. This will help researchers in the field to grasp the

current state-of-the-art. The second contribution is the testing framework that

assesses performance considering resource usage and timing behaviour. By

creating a framework, this thesis achieves a standard evaluation methodology for

in-vehicle IDS. The final contribution of the thesis is the wavelet-based intrusion

detection system WINDS.

This chapter summarises the thesis and shows the contributions out of this PhD

research. Section 5.1 presents how the research aim and objectives are

achieved. After that, the chapter is finalised with the future research direction for

WINDS and CAN bus security for vehicular applications.

Figure 5-1 Organisation of Chapter 5

5.1 Addressing the Research Aim and Objectives

This research aims to develop a vehicle-independent intrusion detection for

Controller Area Network. The research achieves this aim by fulfilling several

objectives that are given below.

Objective 1: The literature review is the beginning of the research. A

comprehensive literature review was carried out to identify gaps and problems

regarding CAN security. The vulnerabilities of the CAN bus are shown and some

of the attacks are presented in Section 2.4. A case study of the DoS attack via

Chapter 5

5.1 Addressing the Research Aim and Objectives

5.2 Future Work

99

hardware trojan is demonstrated in our paper [1]. Section 2 also presents state-

of-the-art solutions with their limitations. The findings are presented in a

conference [2] and an extended version of it [3] is issued in a journal.

Objective 2: As presented in Section 2.5.4 and Section 4.2.2, the current in-

vehicle IDSs have various problems and almost all of them are vehicle

dependent. Therefore, designed IDS should be trained for each vehicle make and

model. Training IDS for every different vehicle requires an extensive amount of

work. After training and modification, each subsequent IDS should be tested

thoroughly again. A vehicle agnostic wavelet-based solution (WINDS) is

proposed to overcome this issue. The WINDS analyses the short-time history of

CAN traffic by applying wavelet analysis and indicates the change points in the

network traffic. The algorithm can be applied to any vehicle without any

modification. It is tested on multiple datasets with various vehicles to show

WINDS' effectiveness and vehicle independent behaviour. The results show that

WINDS has competitive performance with state-of-the-art solutions. Apart from

the performance, WINDS is also assessed for resource usage and timing

behaviour according to the testing framework presented in Section 3.2.

Objective 3: The reliability of the testing depends on a comprehensive dataset

consisting of different attack models and strengths. If the dataset is not complete,

it can produce misleading results. Although the existing datasets are valuable,

they are not enough to test an IDS and generate statistical results. Section 3.3

address the lack of data problem with synthetic data generation. Existing attack

models are explained and presented with their implementation. The

implementations of some attacks are stealthier than the existing ones, which

allows more reliable testing. The timing of the attacks are also considered and

attacks are implemented at various durations. Applying synthetic attacks to open-

source datasets produce a more comprehensive benchmarking dataset as

presented in Section 3.3.2 and tested in Section 4.4.2.

Objective 4: The number of IDS for CAN bus increases exponentially; however,

there is no standardised testing methodology. As a consequence, many IDSs are

not tested properly. It also makes it difficult to compare results with other existing

100

solutions. Section 3 presents a framework to test an IDS for in-vehicle

communication thoroughly. It aims to solve the comparison problem for CAN bus

IDSs. As a case study, the proposed framework is applied to WINDS and results

are shown in Section 4.

5.2 Future Work

The time and resource restriction of this research limits to further improve the

obtained results and secure in-vehicle communication. Keeping this research

work in perspective, we recommend the following as significantly important future

works.

5.2.1 Integration of Encryption

Although IDS can alert the malicious messages, it cannot prevent eavesdropping;

therefore, it cannot provide confidentiality. To overcome eavesdropping, data

should be encrypted. Many secure encryption techniques can solve

eavesdropping in the IT domain, but none is feasible to be implemented on a

resource-constrained CAN network. A light-weighted encryption technique can

solve the confidentiality problem in CAN.

5.2.2 Application to Other In-vehicle Network Protocols

The WINDS is designed mainly for the CAN network. However, other in-vehicle

communication protocols are also posing a threat to the security of the in-vehicle

network. To have holistic security, these network protocols should be protected

too. This requires further investigation to adapt WINDS to those protocols.

5.2.3 Machine Learning Implementation

The vehicle agnostic behaviour of the WINDS can be enhanced with machine

learning that allows WINDS to interpret data and use it to learn for itself.

Implementing lightweight machine learning techniques will enable WINDS to

automatically learn and improve from experience without being explicitly

programmed.

101

5.2.4 Intrusion Prevention System (IPS)

The WINDS is designed as Intrusion Detection System (IDS), which only alerts

the problems. However, identifying a problem is half the battle; knowing how to

respond appropriately and having the resources in place to do so is equally

important. As a vehicle is a cyber-physical system, implementing IPS will be

possible if the false positive rate decreases to zero. When WINDS is capable of

zero FPR, it should take action and invalidate any unauthentic messages.

Invalidation of messages also requires further investigation.

References

[1] M. Bozdal, M. Randa, M. Samie, and I. Jennions, “Hardware Trojan

Enabled Denial of Service Attack on CAN Bus,” 2018, vol. 16, pp. 47–52,

doi: 10.1016/j.promfg.2018.10.158.

[2] M. Bozdal, M. Samie, and I. Jennions, “A Survey on CAN Bus Protocol :

Attacks , Challenges , and Potential Solutions,” in IEEE International

Conference on Computing, Electronics & Communications Engineering

(iCCECE ’18), Aug. 2018, pp. 201–205, doi:

10.1109/iCCECOME.2018.8658720.

[3] M. Bozdal, M. Samie, S. Aslam, and I. Jennions, Evaluation of can bus

security challenges, vol. 20, no. 8. MDPI AG, 2020, p. 2364.

102

Appendices

Appendix A Source Codes for WINDS Implementation

and Testing

A.1 Source Code for Generating Attacks

The attackGenerator function generates DoS, replay, and suspension attacks.

It has four parameters; canData, attackType, vehicleM, attackDuration.

canData: The raw CAN traffic

attackType: The choice of attack type from DoS, replay, suspension

vehicleM: The vehicle model from the existing dataset, which includes Opel and

Renault

attackDuration: The implement4ed attack duration.

The example usage of the function is presented below:

 attackData= attackGenerator(testing,’dos’,’r’,5);

The code line above implements five seconds of DoS attack on Renault on the

testing dataset.

Table - A1: Source code for attackGenerator function

function attackData =

attackGenerator(canData,attackType,vehicleM,attackDuration)

 attackMultiplier = attackDuration;

 switch attackType
 case 'dos'
 attackData = dosAttack(canData,attackDuration,vehicleM);
 case 'replay'
 attackData = replay(canData,vehicleM,attackMultiplier);
 case 'suspension'
 attackData = suspension(canData,attackDuration,vehicleM);
 end

end

%% DoS Attack Generation %%
function outputDoS = dosAttack (canData, attackDuration,vehicleM)

103

 rawData = canData;

 if vehicleM== 'r'%renault
 attackStart = 1508687506.000236;
 elseif vehicleM == 'o' %opel
 attackStart = 1536574995.000091;
 end

 attackEnd = attackStart + attackDuration;%1508687515.999845;
 attackPeriod = 0.00025; %unit is second - attack data period

 outputBefore= rawData(rawData.time<attackStart,:);
 outputAfter= rawData(rawData.time>attackEnd,:);

 % attack creation
 time = attackStart:attackPeriod: attackEnd;
 id = zeros(size(time));
 data = zeros(size(time));

 outputAttack = table(time', id' , data');

 outputAttack.Properties.VariableNames{1} = 'time';
 outputAttack.Properties.VariableNames{2} = 'id';
 outputAttack.Properties.VariableNames{3} = 'data';

 outputAttack.data = string(outputAttack.data); %make same type

 %combining attack with attack-free data
 outputDoS = [outputBefore;outputAttack;outputAfter];

end

%% replay Attack Generation %%
function outputReplay = replay(canData,vehicleM,attackMultiplier)

 rawData = canData;

 if vehicleM== 'r'%renault
 CANid = '2C6';
 attackStart = 1508687499.839714;
 attackEnd = 1508687499.905626;
 normalPeriod = 0.02;
 elseif vehicleM== 'o' %opel
 CANid = '1A1';
 attackStart = 1536575013.172200;
 attackEnd = 1536575013.247372;
 normalPeriod = 0.025;
 end

 outputBefore= rawData(rawData.time<attackStart,:);
 attackRaw = rawData(rawData.time>=attackStart &

rawData.time<=attackEnd ,:);
 outputAfter= rawData(rawData.time>attackEnd,:);

104

 attackPeriod = normalPeriod/attackMultiplier;
 attack = attackRaw(attackRaw.id==CANid ,:);

 for i=1:size(attack,1)
 attackManipulation((i-1)*attackMultiplier + 1,:) =

attack(i,:);

 for k = 1:attackMultiplier-1
 rowAttack = attack(i,:);
 rowAttack.time = rowAttack.time + attackPeriod;
 attackManipulation((i-1)*attackMultiplier + 1 + k,:) =

rowAttack;
 end

 end

 noAttack = attackRaw(attackRaw.id~=CANid ,:);

 outputAttack = [attackManipulation; noAttack];
 outputAttack = sortrows(outputAttack,'time','ascend');

 outputReplay = [outputBefore;outputAttack;outputAfter];

end

%% suspension Attack Generation %%
function outputSuspension =

suspension(canData,attackDuration,vehicleM)

 if vehicleM== 'r'%renault
 CANid = '2C6';
 attackStart = 1508687499.999696;
 elseif vehicleM== 'o' %opel
 CANid = '1A1';
 attackStart = 1536575000.000097;
 end

 rawData = canData;
 attackEnd = attackStart + attackDuration;%1508687510.000100;

 outputBefore= rawData(rawData.time<attackStart,:);
 attackRaw = rawData(rawData.time>=attackStart &

rawData.time<=attackEnd ,:);
 outputAfter= rawData(rawData.time>attackEnd,:);

 outputAttack = attackRaw(attackRaw.id~=CANid ,:);

 outputSuspension = [outputBefore;outputAttack;outputAfter];

end

105

A.2 Source Code for WINDS

The code to implement WINDS can be found in Table A-2.

Table - A2: Source code for WINDS implementation

load('rawRenaultClio.mat')

global sampleTime
global waveletModel
global coefficient
global waveletLevel

global attackType

sampleTime = 0.003;
waveletModel = 'haar';
coefficient = 1.8;
waveletLevel = 16;

for k = attackType:attackType

 if k==1 %dos
 rawData = attackData;
 attackDuration
 aStart = 1508687506.000236+ 0.022;
 aEnd = 1508687506.000236 + attackDuration - 0.022;
 elseif k==2 %replay
 rawData = attackData;
 aStart = 1508687499.839714;
 aEnd = 1508687499.905626;
 else %suspension
 attackDuration
 rawData = attackData;
 aStart = 1508687499.999696 + 0.03;
 aEnd = aStart + attackDuration-0.05 ;
 end

 rawData = rawData(rawData.id == '2C6',:);

 sampledSignal = frequencyConvertion(rawData,sampleTime);
 ofsetTime = 1508687476.43810;
 attackStart = ceil ((aStart - ofsetTime) / sampleTime) ; %
 attackEnd = floor ((aEnd - ofsetTime) / sampleTime) ;

[accuracy,sensitivity,specificity,TP,TN,FP,FN,TPLocTemp,TNLocTemp,FPLo

cTemp,FNLocTemp] = realTimeFunction

(sampledSignal,attackStart,attackEnd);
 TPLoc(k,1:length(TPLocTemp))=TPLocTemp;
 TNLoc(k,1:length(TNLocTemp))=TNLocTemp;
 FPLoc(k,1:length(FPLocTemp))=FPLocTemp;
 FNLoc(k,1:length(FNLocTemp))=FNLocTemp;
end

106

precision = TP/(TP+FP);
FPR = 1 - specificity;

The realTimeFunction code applies the WINDS algorithm to CAN traffic in real-

time. The function has three parameters as below:

sampledSignal: The raw CAN traffic to be processed

attackStart: The start time of the attack

attackEnd: The end time of the attack

As a result, the function generates the following outputs:

Accuracy: Accuracy of the test

Sensitivity: Sensitivity of the test

Specificity: Specificity of the test

TP: True positive number of the test

TN: True negative number of the test

FP: False positive number of the test

FN: False negative number of the test

TPLoc: True positive location

TNLoc: True negative location

FPLoc: False positive location

FNLoc: False negative location

107

Table - A3: Subfunction of WINDS main file “realTimeFunction”

function

[accuracy,sensitivity,specificity,TP,TN,FP,FN,TPLoc,TNLoc,FPLoc,FNLoc]

= realTimeFunction (sampledSignal,attackStart,attackEnd)

global sampleTime
global waveletModel
global coefficient
global waveletLevel

 shiftSize = 1;
 windowSize = 127;

 %counters
 attackDetectionNumber = 0;
 TP = 0;
 TN = 0;
 FP = 0;
 FN = 0;

 %values
 attackLoc = 0;
 TPLoc = 0;
 TNLoc = 0;
 FPLoc = 0;
 FNLoc = 0;

 delayCalDetector=1;

 for x = (windowSize+1) : shiftSize: (length(sampledSignal) -

windowSize)

 windowedSignal = sampledSignal ((x- windowSize): x);
 wtSignal=

abs(cwt(windowedSignal,1:waveletLevel,waveletModel));

 wtSignal = mad(wtSignal);
 thresholdUp = mean(wtSignal)*coefficient;
 lctUp = find(wtSignal(1:end-1)>thresholdUp);
 lctDown = find(wtSignal(1:end-1)==0);

 attackDetection = ~isempty(lctUp) ||~isempty(lctDown);

 if attackDetection
 attackDetectionNumber = attackDetectionNumber +1;
 attackWindow(attackDetectionNumber) = x;
 end

 if (attackStart) > x || (x-windowSize)>attackEnd % before

any attacks start or after all attacks
 if ~attackDetection %no attack detection
 TN = TN + 1; % True Negative
 TNLoc(TN) = x;
 else %attack detection

108

 FP = FP + 1; %False Positive
 FPLoc(FP)= x;
 end

 else
 if attackDetection %attack detection
 TP = TP + 1; %True Positive
 TPLoc(TP) = x;
 if delayCalDetector
 disp(x)
 disp(attackStart)
 disp(['Time Delay = ',num2str(x-attackStart)])
 delayCalDetector = 0;
 end
 else %no attack detection
 FN = FN + 1; % False Negative
 FNLoc(FN)= x;
 end
 end

 end

 accuracy = (TP+TN)/(TP+FP+TN+FN) ;

 sensitivity = TP / (TP+FN);

 specificity = TN / (FP+TN);
end

frequencyConvertion function takes raw CAN data as a table and calculates the

number of messages at the given time duration. The following example code will

convert rawCAN data into message count in every 0.003 seconds.

 f = frequencyConvertion(rawCan,0.003);

Table - A4: Subfunction of WINDS main file “frequencyConvertion”

function messageInTime = frequencyConvertion(tableIn,timeDuration)

 temp = tableIn;
 temp = sortrows(temp,'time','ascend');
 temp.time = temp.time - temp.time(1); %initial time become zero

 vectorSize = floor (temp.time(end) ./ timeDuration) + 1; % size of

matrix
 messageInTime = zeros(1,vectorSize);

109

 % scan matrix from the beginning to the end
 pointerTime = timeDuration;
 pointer = 1; % point the current position

 for i=1:vectorSize -1

 while temp.time(pointer) < pointerTime
 messageInTime(1,i) = messageInTime(1,i) + 1;
 pointer = pointer + 1;

 if pointer == size(temp,1)
 break
 end
 end

 pointerTime = pointerTime + timeDuration;

 end

end

A.3 Source Code for Testing WINDS

This code generates multiple attacks automatically and applies the WINDS

algorithm to the attacked dataset. Then it produces statistical results for the tests.

Table - A5: Source code for Testing WINDS on multiple datasets

global attackType

load('rawRenaultClio.mat')

attackType =1; %dos
for i=1:10
 attackDuration =i;
 attackData= attackGenerator(testing,'dos','r',attackDuration);
 testRenault
 accD(i)=accuracy;
 senD(i)=sensitivity;
 speD(i)=specificity;
 preD(i)=precision;
 falPoRaD(i) = FPR;
end

accD(i),senD(i),speD(i),preD(i),falPoRaD(i)

%% replay

110

attackType =2;

for i=3:12
 attackDuration =i;
 attackData= attackGenerator(testing,'replay','r',attackDuration);
 testRenault
 accR(i-2)=accuracy;
 senR(i-2)=sensitivity;
 speR(i-2)=specificity;
 preR(i-2)=precision;
 falPoRaR(i-1) = FPR;
end

accR(i),senR(i),speR(i),preR(i),falPoRaR(i)

%% Suspension

attackType =3;

for i=1:10
 attackDuration =i;
 attackData=

attackGenerator(testing,'suspension','r',attackDuration);
 testRenault
 accS(i)=accuracy;
 senS(i)=sensitivity;
 speS(i)=specificity;
 preS(i)=precision;
 falPoRaS(i) = FPR;
end

accS(i),senS(i),speS(i),preR(i),falPoRaS(i)

