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Abstract

Facility requirements describe how the capacity of a facility should be adjusted over time to meet

the expected future demand levels. Practitioners use them to determine the strategic development

of airport passenger terminal facilities. The generation of facility requirements is extraordinarily

complex, since (i) airport strategic planning is subject to high levels of uncertainty due to the

extremely long planning horizons considered, and (ii) investments in infrastructure are subject

to irreversibility. This study presents a strategic capacity planning framework consisting of two

modules, by means of which stochastically optimal facility requirements for airport passenger

terminal facilities can be determined. The demand module is applied first. Its purpose is twofold:

on the one hand, to create annual aggregated demand scenarios of an airport by means of geometric

Brownian motion. On the other hand, to convert these scenarios into facility-specific design hour

loads with the help of linear regression models. Subsequently, the capacity expansion problem

module is used to determine conventional and flexible facility requirements that maximize the

net present value of an airport passenger terminal facility. For this purpose, both conventional

and flexible capacity expansion problem models, presented in the literature, are adapted to the

needs of airport strategic planning. Subsequently, they are solved with evolutionary optimization

algorithms. The framework is applied to a real-world planning example of the existing check-

in facilities at Zurich Airport. The aim of the planning example is to compare flexible facility

requirements with conventional facility requirements in terms of their economic value, and to

investigate how sensitive the proposed models are to variations in several input factors. The results

suggest that flexible facility requirements are generally more valuable than conventional facility

requirements. Moreover, the models applied in this study respond to changes in input factors in a

similar way to comparable models documented in the literature.
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Chapter 1

Introduction

1.1 Background and problem statement

On 19 November 1999, the Spanish Ministry of Public Works and Transportation im-

plemented the Plan Director del aeropuerto Adolfo Suárez Madrid-Barajas (Ministerio

de Transportes Movilidad y Agenda Urbana, 1999) which is the master plan that defines

the strategic development and future expansion of Madrid Barajas Airport up to the year

2025. Based on an inventory of the infrastructure operational in the year 1999 as well as

a forecast specifying demand until the year 2025, airport planners specified in detail how

the aerodrome’s capacity should be adjusted in order to meet the anticipated traffic levels

in the years to come. To outline the expected future demand levels, a forecast was drawn

up by specialists. To this end, "future demand was forecasted as a linear, causal rela-

tionship with [gross domestic product] GDP forecasts" (Sismanidou & Tarradellas, 2017,

p. 190). Based on this, planners created three different demand scenarios: a baseline scen-

ario, an optimistic and a pessimistic scenario which differed from the baseline by +10 %

or -10 %, respectively (Sismanidou & Tarradellas, 2017). In general, the demand outlook

for the airport was promising; the baseline predicted a marked increase in demand from

27.5 million annual passengers in 1999 to 70.8 million annual passengers in 2025 (Min-

isterio de Transportes Movilidad y Agenda Urbana, 1999). For this reason, the Spanish

1



CHAPTER 1. INTRODUCTION 2

government decided to ratify a number of strategic airport expansion projects in response

to the anticipated demand levels. Among other things, the available building space of the

five terminals of Barajas Airport was expanded to over one million square metres at a cost

of 6.2 billion Euros. This expanse increased the capacity of the terminals by an additional

35 million annual passengers (Sismanidou & Tarradellas, 2017).

In retrospect, we know that the 1999 demand forecast was inaccurate at best. As il-

lustrated in Figure 1.1, it turned out that the forecast underestimated the actual observed

demand from 1999 to 2011, only to overestimate demand for the period after 2011. Sub-

sequently, given the strategic planning decisions made in 1999, Madrid Barajas Airport

has never been able to fully capitalise on opportunities when economic conditions were

favourable. Moreover, when times changed and demand collapsed, all these expansion

projects had already been implemented, leaving the airport stranded with significant over-

capacity that was not justified in any way.
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Figure 1.1: Comparison between forecasted and observed annual aggregated demand for
Madrid Barajas Airport. Aggregated demand is expressed in million passengers per an-
num (MPPA). Note: Forecast data is based on information provided in Sismanidou and
Tarradellas (2017), observed demand data is sourced from AENA (2021).

The 1999 master plan of Madrid Barajas Airport and the problems resulting thereof

are a prime example that the task of capacity planning in the domain of airport stra-
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tegic planning (ASP) is extraordinarily complex. A particularly demanding task is the

determination of facility requirements, which systematically describe and quantify capa-

city shortfalls resulting from the imbalance between the supply and forecasted demand

(Federal Aviation Authoriy [FAA], 2015, 2018; International Air Transport Association

[IATA], 2017; International Civil Aviation Organization [ICAO], 1987). More precisely,

facility requirements can be viewed as schedules which define when and in what fashion

a specific part of the infrastructure is to be extended, re-dimensioned, or even dismantled

in such a way that the expected future demand levels will be met. To create facility re-

quirements, airport planners need two basic inputs: (i) an inventory of the operational

infrastructure at the time of planning and (ii) a demand forecast describing the expected

demand levels of the facilities for which the requirements are to be created.

The description of an inventory is a comparatively simple task. In fact, airport planners

only have to count and categorise the operational infrastructure and quantify its capabil-

ities, e.g. throughput rates, operating costs, etc. The preparation of a demand forecast,

on the other hand, is considerably more complex. In a first step, planners often create

so-called aggregated demand forecasts, which describe the expected future number of

passengers or air traffic movements (ATM) per year. This aggregated "data can already

be useful for the [creation] of facility requirements of [selected infrastructure], such as

stands and gates, as well as the preliminary sizing of the required floor space for passen-

ger terminals" (Waltert et al., 2021, p. 1). However, to determine facility requirements

for airport passenger terminal facilities, airport planners must convert annual aggregated

demand data into so-called design load demand figures. "As the term implies, design

loads describe the anticipated demand levels for shorter periods of time. These time peri-

ods are determined in such a way that infrastructure is designed with sufficient capacity to

process demand at a defined level of service throughout the year, avoiding the risk of over-

design in the few instances when extreme peaks may occur (De Neufville et al., 2013).

Depending on the type of facility for which requirements should be defined, design loads

are either specified for a day, an hour, or even shorter intervals (Kennon et al., 2016)"
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(Waltert et al., 2021, p. 1). To this end, IATA (2017) and Tošić (1992) suggested to use

the aggregated demand over a design hour to determine facility requirements of passenger

terminal facilities such as check-ins or security checkpoints.

Given an inventory as well as a demand forecast specifying design loads, decision

makers (DM) need to determine the required adaptations for the capacity of an airport

passenger terminal facility over the entire planning horizon of an ASP project. In doing

this, the provision of over-capacity as well as under-capacity should be always avoided.

Over-capacity, which describes the provision of too much capacity, is economically not

acceptable, since facilities tend to be underutilised or remain even unused over long peri-

ods of time. Needless to say, this is not a wise investment decision. Neither to be recom-

mended is under-capacity, describing the provision of not enough capacity. In such cases,

the facility cannot meet its assigned demand volume and is therefore likely to be subject

to delays and congestion. Consequently, airport planners must determine the exact limits

of capacity for a facility over the entire planning horizon. This planning task, which is

carried out not only at airports, but also for a wide range of other infrastructure, is an

optimization problem known in the literature as the capacity expansion problem (CEP)

(Luss, 1982; Martínez-Costa et al., 2014; Van Mieghem, 2003).

The most simple form of CEP considers both economies of scale (EoS) savings as well

as the opportunity costs of capacity adjustments. EoS savings describe cost advantages

that arise because the average unit price for infrastructure usually decreases as a func-

tion of the magnitude of the capacity adjustment. For this reason, to capitalise most on

potential EoS savings, a single large capacity adjustment is most beneficial. However, in-

vestment in capacity comes with opportunity costs as well: substantial amounts of money

are tied up in infrastructure, which means that it cannot be used in any other way. From

this point of view, it may be more sensible to defer an investment in capacity and invest

the money more profitably elsewhere. In the case of opportunity costs, not one single

large project, but rather a number of small expansion projects carried out as far into the

future as possible is favourable. Consequently, CEP must consider the "trade-off between
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the economies-of-scale savings of large expansion sizes versus the opportunity cost of

installing capacity before it is needed" to determine the optimal schedule for capacity

adjustments for a facility (Van Mieghem, 2003, p. 273).

The application of CEP for airports in general and airport passenger terminal facilities

in particular is made more difficult by both the irreversibility of investments as well as the

extremely long planning horizons that ASP is subject to. Airports and airport passenger

terminals belong to a class of infrastructure which is referred to in the literature as en-

gineering systems. In short, engineering systems are "complex systems in the aerospace,

defence, energy, housing, telecommunications, and transportation industries" that often

perform essential functions in our society and have long life cycles of 20 or more years

(Cardin, 2014, p. 2). Investments in engineering systems are often irreversible; once

such a system is in place, the investment costs are seldom salvageable (Dixit & Pindyck,

2012). For instance, once built, a runway or an airport terminal cannot be dismantled to

be sold and rebuilt at another location. Consequently, once an investment has been made,

it cannot usually be reversed or corrected in any way. Additionally, the exceptionally

long planning horizons and life-cycles of engineering systems make strategic planning

even more complicated. Because of the prolonged periods of time that have to be taken

into consideration, one cannot predict with any certainty what the future may bring. In

fact, the strategic planning of engineering systems is plagued by the uncertainty of future

developments in demand, technology, politics, regulations, demographics, etc.

Based on the seminal paper of Manne (1961), a large number of conventional CEP

models, most of which are deterministic and stochastic models proposing to solve the

CEP, have been presented in the literature (Geng & Jiang, 2009; Julka et al., 2007; Luss,

1982; Martínez-Costa et al., 2014; Van Mieghem, 2003; Wu et al., 2005). Most applic-

ations of conventional CEP models focus on strategic planning applications in the man-

ufacturing, telecommunications or service industries (Martínez-Costa et al., 2014). Few

authors present applications of conventional CEP models in the context of ASP. Exem-

plary are Solak (2007) and Solak et al. (2009), who presented a holistic airport terminal
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capacity planning model, and Sun (2016) and Sun and Schonfeld (2015, 2016, 2017), who

developed a series of capacity planning models for airport facilities in general. Further ex-

amples are the facility-specific modelling approaches for the strategic capacity planning

of airport gates (Chen & Schonfeld, 2013), and for baggage carousels (Yoon & Jeong,

2015).

Deterministic CEP models can only deal with one single scenario of the future, while

stochastic models are, to some extent, able to take into account the uncertainty which

strategic planning projects is subject to. Conventional CEP models are characterised by

their definition of optimal facility requirements in the form of a single capacity vector.

This capacity vector specifies a precise schedule that describes when and how the capa-

city of the system should be changed. This is a major drawback, even for stochastic CEP

models, because the conventional facility requirements determined in this process are

fixed and subsequently applied to all future scenarios, irrespective of how they actually

develop. Consequently, the application of conventional and therefore inflexible facility re-

quirements "may result in project failure . . . if the actual demand [or other factors subject

to uncertainty are] significantly different from [what was] anticipated" (Hu et al., 2018,

p. 254). For this reason, facility requirements are needed that are able to adapt flexibly

to changing circumstances. Or in other words, facility requirements that are not identical

for all future scenarios, but can be adapted individually.

To introduce flexibilities in the strategic planning of engineering systems, Trigeorgis

(1996) suggests the application of real options which "[represent] a right, but not an oblig-

ation . . . to do something at [sic] under predefined arrangements" at a future point in time

(De Neufville, 2003, p. 7). Real options are either sources of managerial flexibility, as

they provide system owners with the right but not the obligation to buy, sell, expand and

contract systems (Chambers, 2007; Kincaid et al., 2012), or design features that are inten-

tionally built into engineering systems with the aim of allowing for physical changes of

the system itself (Wang & De Neufville, 2005). Real options have proven to be valuable,

since they enable system owners and DM both to capitalise on future opportunities as well
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as to mitigate or avert negative risks based on how future uncertainty turns out (Cardin,

2014; De Neufville, 2000). Indeed, the literature reports that flexible system designs per-

form between 10 % to 30 % better financially than inflexible, i.e. conventional, system

designs (De Neufville & Scholtes, 2011).

Unfortunately, real options cannot be integrated into conventional CEP models. Even

though conventional CEP models can determine stochastically optimal facility require-

ments which consider uncertainty to a certain degree, conventional models consider only

"passive management" (Schachter & Mancarella, 2016), which results in rigid capacity

adjustment schedules that are not able to "adapt if the actual situations do not follow the

modelled scenarios" (Cardin & Hu, 2016, p. 2). Just recently, however, a few authors

have extended conventional CEP models to flexible CEP models which allow the gen-

eration of stochastically optimal flexible facility requirements by means of real options.

Flexible CEPs have been applied to a number of different engineering systems, such as

multi-storey car parks (De Neufville et al., 2006), nuclear power plants (Cardin, Zhang

et al., 2017), on-shore liquid natural gas production facilities (Cardin et al., 2015), emer-

gency medical services infrastructure (Zhang & Cardin, 2017) or waste-to-energy systems

(Cardin & Hu, 2016; Cardin, Xie et al., 2017; Hu et al., 2018; Xie et al., 2014; Zhao et al.,

2018). To the author’s best knowledge, however, flexible CEP models have never been

applied in the context of ASP in general and of airport passenger terminal facilities, such

as check-in facilities, security checkpoints, etc., in particular.

1.2 Aim and objectives

In the light of these gaps in the literature, this study aims to develop, test and apply a

strategic capacity planning framework which enables airport planners and DM to determ-

ine optimal facility requirements for airport passenger terminal facilities in the context of

ASP. This planning framework consists of two main modules:

(i) a demand module; this is used to determine future aggregated annual demand scen-
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arios for an airport and also to convert these aggregated figures into design hour

loads for airport passenger terminal facilities.

(ii) a CEP module; this is used to determine stochastically optimal facility requirements

for airport passenger terminal facilities.

Subsequently, the objectives of this study are:

(i) to examine, develop, test and apply a methodology which allows to both determine

annual aggregated demand forecast scenarios for an airport, as well as to convert

these numbers into the design hour loads (DHL) of individual airport passenger

terminal facilities;

(ii) to examine, develop, test and apply a methodology which allows to determine

stochastically optimal facility requirements for airport passenger terminal facilit-

ies in the context of ASP;

(iii) to apply the proposed strategic capacity planning framework to a real-world plan-

ning example in which conventional and flexible facility requirements for a check-in

facility at Zurich International Airport (ZRH) Airport are determined;

(iv) to compare flexible facility requirements for existing check-in facilities at ZRH

Airport with conventional facility requirements in terms of their economic value;

(v) to investigate which factors influence conventional and flexible facility require-

ments for the check-in facilities at ZRH Airport and also the extent of this influence.

1.3 Original contributions

This study contributes to science in a number of ways:

(i) It presents an annual aggregated demand model which enables airport planners to

sample a large number of plausible future passenger demand scenarios. The sug-
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gested approach is not per se a novel concept, but rather an application of existing

methods from the field of engineering systems literature in the context of ASP.

(ii) A ratio-based design hour model is put forward. This model enables the efficient

conversion of annual aggregated demand forecast scenarios into design hour load

forecasts for airport passenger terminal facilities. The proposed method makes use

of real, disaggregated and automatically collated (big) input data describing pas-

senger flows in airport terminals. These two concepts, the ratio-based model for the

determination of the DHL of individual passenger terminal facilities and also the

means by which input data is collected and processed can be considered scientific

innovation. A scientific article in the Journal of Air Transport Management has

been published for this part of this study, see Waltert et al. (2021).

(iii) Conventional and flexible CEP models presented in the literature are adapted for ap-

propriate use in the context of ASP for airport passenger terminal facilities. While

conventional CEP models have been used for ASP-related purposes, the application

of flexible CEP models to determine stochastically optimal flexible facility require-

ments for airport passenger terminal facilities is a scientific novelty.

(iv) The proposed strategic capacity planning framework for airport passenger terminal

facilities is applied in a relevant planning example in order to determine facility

requirements for existing check-in facilities at ZRH Airport. In the course of this

planning example, flexible facility requirements are compared with conventional

facility requirements in terms of their economic value as well as their sensitivity to

variation in several factors, such as demand and technology.

1.4 Scope of thesis

This study is application-oriented: the strategic capacity planning framework presented

in this work has been developed with practical applications in the field of ASP in mind.
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To this end, a quantitative strategic planning approach for the determination of optimal

facility requirements of airport passenger terminal facilities is put forward. As such, all

the models presented in this study aim to assist practitioners in their daily work, be they

airport planners, managers and decision makers. The mathematical methods employed,

in particular the solvers and solution procedures required for the CEP models, have been

applied from the airport planner’s point of view. Therefore, this work does not aim to fur-

ther develop the theoretical foundation of the methods applied, but rather to describe their

application in the context of ASP. By means of a planning example, which is based on

the determination of optimal facility requirements for existing check-in facilities at ZRH

Airport, the models presented are applied, tested and validated. In doing so, a relevant

example is used to illustrate how the proposed strategic capacity planning framework can

be applied in practice.

1.5 Thesis structure

The study is organised as follows: Chapter 2 provides an overview of the literature per-

taining to a strategic capacity planning framework for airport passenger terminal facilit-

ies. To this end, the literature review covers the areas of ASP in general, the modelling

of design hour load demand, the notion of flexibility in engineering systems, the recog-

nition and modelling of uncertainty, as well as the evaluation and selection of facility

requirements by means of conventional and flexible CEP models. The research questions

of this study, which pertain to three different research areas, are presented in Chapter 3.

Subsequently, Chapter 4 sets out the methodology for the proposed strategic capacity

planning framework for airport passenger terminal facilities. This chapter is divided into

4 parts, each of which deals with one component of the proposed strategic capacity plan-

ning framework. These are: (i) the annual aggregated demand model, which is used to

create demand scenarios for airports, (ii) the DHL model, which is used to convert the an-

nual aggregated demand scenarios into facility-specific DHL scenarios, (iii) the valuation
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model, which allows the objective economic evaluation of facility requirements, and (iv)

capacity expansion problem models, which can be used to determine both optimal conven-

tional and optimal flexible facility requirements for airport passenger terminal facilities.

In Chapter 5, the strategic capacity planning framework is then applied to a real-world

planning example on check-in facilities at ZRH Airport. The main findings of this study

and their implications are discussed in Chapter 6. Finally, Chapter 7 both summarises and

concludes this study as well as highlights opportunities for future research.



Chapter 2

Literature review

This chapter reviews the relevant literature in four sections. Section 2.1 provides an over-

view of classical and flexible approaches taken to conduct ASP, followed by an in-depth

discussion of the processes applied to determine facility requirements for airport passen-

ger terminal facilities. The theoretical background to the topics of engineering systems as

well as real options, which are the actual building blocks of flexible infrastructure, are dis-

cussed in Section 2.2. Section 2.3 addresses the recognition and modelling of uncertainty.

Here, the focus is on the creation of demand scenarios for airports and airport passenger

terminal facilities. These scenarios serve as the input for conventional and flexible CEP

models which are then used to determine stochastically optimal facility requirements for

airport passenger terminal facilities. The actual processes, methods and techniques ap-

plied to evaluate and finally select which facility requirements are optimal, are reviewed

in Section 2.4. Here, the methods applied in both conventional and flexible CEP models

are discussed. Finally, Section 2.5 identifies and summarises the gaps in the literature.

2.1 Airport strategic planning

The environment in which airports operate is constantly evolving. These circumstances

have a direct influence on the "size, quantity, and type of airport facilities needed to ac-

commodate future demand" (FAA, 2015, p. 48). The processes which describe how air-

12
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ports adapt to new conditions are usually summarised under the term airport planning.

More specifically, airport planning is conducted on three different decision levels refer-

ring to distinct time horizons, the operational level, the tactical level and the strategic

level. According to Shuchi et al. (2012), operational airport planning covers planning

activities which are carried out on a daily or weekly basis and have a direct impact on cur-

rent operations, such as the scheduling of staff or infrastructure opening times. Tactical

planning encompasses a time horizon of 2 to 5 years (Shuchi et al., 2012) and deals with

capacity adjustments within existing facilities, buildings or airport perimeters (Magalhães

et al., 2020). Strategic planning is defined by De Neufville et al. (2013, p. 83) as a "discip-

lined process for analysing the current situation of a business activity, and identifying the

vision of how that entity should position itself regarding its customers and competitors".

Hence, strategic planning is strongly linked to an enterprise’s business strategy in such a

way that decisions carried out under strategic planning activities have a direct impact on

the future shape of an organisation and its business model (Kwakkel et al., 2008). Thus,

ASP can be regarded as an umbrella term for all activities airport operators or regulat-

ory bodies take in order to define the future perimeter, shape, function and form of an

aerodrome on a planning horizon of typically 20 to 50 years (FAA, 2015; IATA, 2017;

ICAO, 1987; Shuchi et al., 2012). This comprises decisions on how facilities should be

extended, expanded or, if need be, decommissioned (Magalhães et al., 2017, 2020). As

a means of conducting ASP, the literature distinguishes two different planning doctrines:

the classical ASP approach and the flexible ASP approach, both of which are discussed

in more detail in the next section.

2.1.1 Classical and flexible airport strategic planning approaches

The classical ASP approach, also known as master planning, is discussed in detail by FAA

(2015), IATA (2017) and ICAO (1987). As such, a master plan "presents the planner’s

conception of the ultimate development of a specific airport" (ICAO, 1987, p. 1–2). In

other words, a master plan describes how an existing aerodrome should be adjusted, or a
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greenfield site built, so that future demand levels can be properly met with the appropriate

levels of capacity throughout the whole planning horizon.

There is no universally accepted definition of the master planning process in the lit-

erature. However, virtually all authors describe the planning process in a similar way.

For example, a detailed overview of the master planning process is given in IATA (2017),

which is then summarised and simplified by De Neufville et al. (2013) in the following

five steps:

(i) Inventory. The inventory or site evaluation is the basis of any master planning

project. For an inventory, airport planners compile a detailed description of the

current state of existing airport infrastructure (De Neufville et al., 2013; IATA,

2017). According to IATA (2017), an inventory consists of an evaluation of the

conditions of both the physical and non-physical characteristics of all the facilities

(FAA, 2018), an assessment of the current service conditions and levels of service

provided as well as an analysis of the capacity of these facilities. For instance, for

an airport passenger terminal facility, planners gather information on the available

number of servers, desks, service lanes, the building space used for queues, waiting

and circulation, the costs of operation and maintenance or the remaining useful life

of facilities (IATA, 2017). At the same time, areas of the airport which are well

suited for future expansions or extensions are identified in the inventory.

(ii) Demand Forecast. ASP activities are usually based on (an) annual aggregated de-

mand forecast(s), which specify the expected annual levels of future traffic in terms

of total passengers and ATMs. Demand forecast data is provided for the entire plan-

ning horizon of an ASP project, which is referred to in this study as T . The planning

horizon is usually divided into a finite number of planning phases t = 1,2, . . . ,T .

In classic ASP, a point forecast, which describes the single most probable future

demand outlook for every planning phase D = [D1,D2, . . . ,DT ], is elicited and sub-

sequently used.
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(iii) Facility Requirements. Facility requirements describe and quantify capacity short-

falls which result from the imbalance between the supply of capacity (identified by

means of the inventory) and future levels of demand (described by means of demand

forecasts) for airport facilities (FAA, 2015, 2018; IATA, 2017; ICAO, 1987). More

specifically, facility requirements can be viewed as schedules which define when

and in what fashion a specific part of the infrastructure is to be adjusted by means

of expansions, extensions or reductions of capacity (FAA, 2015; IATA, 2017).

(iv) Development of Alternatives. An alternative describes one viable way of imple-

menting the facility requirements identified without being a detailed construction

plan (ICAO, 1987). For instance, airport planners might consider various terminal

configurations, such as linear concepts, pier concepts, satellite concepts, etc., or

buildings with different numbers of storeys as different alternatives. The develop-

ment of alternatives depends heavily on a number of strategic choices, such as the

business strategy of an airport, governmental policies, regulations, environmental

constraints, the business model of the home base carrier, market entries of new

airlines, technological advances, etc.

(v) Selection. All the alternatives generated in step (iv) are evaluated in terms of their

operational, environmental and financial impacts. Subsequently, airport planners

select the most viable alternative for future implementation. For this option, a so-

called development plan – also known as the master plan – is outlined. This master

plan provides detailed information on how and when exactly this option can be

implemented (IATA, 2017).

The classical ASP process is used at various airports and can therefore be considered

an industry standard. The 1999 master plan of Madrid Barajas Airport presented in

Chapter 1 is a prime example of strategic plans determined by means of the classical

ASP process. Despite its frequent use in practice, however, scholars criticise classical

ASP as being "fundamentally flawed", "unrealistic", "irresponsible" (De Neufville et al.,
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2013, p. 82) or "inadequate" (Burghouwt & Huys, 2003, p. 41). It is argued that master

planning in its original form leads to a "fairly static view of the industry" (De Neufville,

2008, p. 37), something which "cannot be justified" in our very dynamic world of today

(Burghouwt & Huys, 2003, p. 41). Here, two main points are criticised in the literature,

namely (i) the need to include uncertainty in classical ASP and (ii) the lack of flexibility

of the master plan itself.

Classical ASP does not explicitly consider uncertainty. In fact, classical ASP is based

on the single most probable forecast of the future in terms of traffic levels, technology,

political or social developments, etc. This approach is criticised in the literature because

there is much evidence to show that long-term planning is strongly affected by uncertainty.

For instance, medium and long-term demand forecasts covering planning horizons of 5

to 10 years routinely differ from the actual traffic development by 20 % or more (De

Neufville et al., 2013; Nishimura, 1999). For longer planning periods, Maldonado (1990)

reports forecast errors in the range of 34 % to 210 % for demand outlooks covering 15

years. Furthermore, according to Walker et al. (2013), forecasts do not consider sudden

changes and disruptions of a trend, such as the 9/11 terrorism attacks (Blunk et al., 2006)

or the COVID-19 pandemic (Sun et al., 2020), both of which resulted in a significant

global economic downturn. For these reasons, scholars argue that point forecasts should

always be considered "wrong" (De Neufville, 2008; De Neufville et al., 2013; Flyvbjerg

et al., 2003).

In addition to the inadequate or even lack of consideration of uncertainty, the actual

structure of the master plan is also criticised in the literature. A master plan can be seen

as a blueprint that defines exactly how and when an airport is going to be developed fur-

ther in the future. Such a linear document, however, is rigid and does not allow DMs and

planners to flexibly respond to new circumstances without impairing the entire planning.

Therefore, the literature calls for the definition of strategic plans that are designed and for-

mulated in such a way that they can be flexibly adapted to constantly changing conditions

without having to be drawn up from scratch every time (Magalhães et al., 2017).
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Indeed, to remedy the shortcomings of classical ASP, the literature suggests the intro-

duction of flexible ASP methods which take into account uncertainty as well as allowing

for the definition of flexible strategic plans. In this kind of process, uncertainty can be

included by considering not only one single point forecast but rather a (very large) num-

ber of different scenarios of the future, of which "neither [no] one [is] more plausible

than the other" (Chambers, 2007, p. 60). Furthermore, by means of flexible ASP, air-

port infrastructure which "enable[s] the airport owners to respond easily and effectively

to the range of scenarios that might occur" is put forward (De Neufville, 2008, p. 53).

As a result, flexible planning is adjustable and capable of adapting to new circumstances

(Burghouwt, 2007; Kwakkel et al., 2008) at the "maximum value for money of investment

used" (Magalhães et al., 2017, p. 377).

The literature review on flexible ASP approaches presented by Magalhães et al. (2017)

lists three distinct planning methods that enable the determination of flexible plans: dy-

namic strategic planning (DSP), flexible strategic planning (FSP) and adaptive airport

planning (AASP). DSP is proposed by De Neufville et al. (2013) as a fully compatible

add-on to the classical ASP process presented above. Rather than relying on point fore-

casts, DSP considers a large number of different scenarios which describe probable fu-

tures. Furthermore, instead of defining fixed facility requirements covering the entire

planning horizon as described in the classical ASP process, only so-called first-phase

capacity developments are determined in DSP. This refers exclusively to infrastructure

changes that can be implemented immediately or in the near future. All other decisions

regarding capacity adjustments will be made at a later date. In this way, planners are cap-

able of constantly adapting both their planning as well as the operational infrastructure to

the current needs of an airport.

Similarly to DSP, Burghouwt (2007) and Burghouwt and Huys (2003) suggest FSP

as a flexible ASP concept complementary to the master planning process. To this end,

FSP includes a number of methods enabling flexibility, such as real options, multi-future

robustness and back-casting, contingency planning, scanning and experimentation or di-
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versification (Burghouwt, 2007). According to Magalhães et al. (2017), FSP can be seen

as an evolution of DSP, which, however, has not been applied to real-world, practical ASP

projects yet (Kwakkel et al., 2010).

Kwakkel et al. (2008), Kwakkel (2010) and Kwakkel et al. (2010, 2012) introduce

AASP, which is a flexible ASP approach based on the stepwise adaptive policy-making

approach presented by Walker et al. (2001). As such, adaptive policy-making describes a

planning process in which organisations or individuals continuously "apply new inform-

ation and ideas to policy" (Busenberg, 2001, p. 173). Therefore, AASP is based on an

initial basic policy, which, if need be, is subsequently modified with predefined potential

actions in response to current developments in demand, technology, politics, the environ-

ment, etc. (Kwakkel et al., 2010).

Irrespective of whether a classic or flexible ASP approach is applied, the definition of

facility requirements requires the availability of an inventory of the operational infrastruc-

ture as well as (a) forecast(s) specifying the anticipated future development of demand and

other factors. For this reason, the next section focuses on facility requirements in more

detail.

2.1.2 Facility requirements

Airports aim to provide always exactly the right amount of capacity over the entire plan-

ning horizon of an ASP project. Thus, airport operators attempt to avoid mismatches

between the supplied capacity and that actually required by finding the optimal trade-

off between the provision of over-designed and under-designed capacity. Over-designed

capacity describes the condition when more infrastructure is made available than would

actually be needed to handle demand. This leads to under-utilised infrastructure, since,

even during peak times, parts of the facility are likely to remain unused. Clearly, the pro-

vision of over-designed capacity is not acceptable from an economic point of view. In

contrast, under-designed capacity describes the situation when too little infrastructure is

made available and when an airport or a facility, especially during peak times, is unable to
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maintain the service quality promised to stakeholders, e.g. average waiting time per pas-

senger, building area provided to each passenger, etc. The consequence of under-designed

capacity may be an increased probability of congestion and delays, which airport operat-

ors usually want to prevent as much as possible.

To avoid capacity mismatches, airport operators can either take short-term or long-

term measures. In the short-term, airport operators can introduce, adapt or improve the

allocation of capacity to users by regulating the access to the airport by means of slots,

fees or taxes (Oum et al., 2004; Oum & Zhang, 1990; Zhang & Zhang, 2010). There is

also some further leeway by optimizing the allocation of staff. Physical adjustments of

airport capacity, however, can usually only be made as long-term measures, as changes

to the infrastructure are always associated with (sometimes very) long lead times (Xiao

et al., 2013). This study will only consider long-term capacity adjustments. Short-term

capacity adjustments are expressly not addressed with any further mention.

In order to plan the long-term capacity development of an infrastructure, airport plan-

ners specify so-called facility requirements. Facility requirements can be viewed as sched-

ules which, based on the quantification of capacity shortfalls resulting from imbalances

between the future demand and supply for airport infrastructure, describe when and how

existing facilities shall be adjusted (FAA, 2015, 2018; IATA, 2017; ICAO, 1987). In this

context, this study distinguishes between conventional facility requirements and flexible

facility requirements.

Conventional facility requirements for an airport passenger terminal facility can be

viewed as schedules which define when and how the capacity of the facility should be

adjusted by means of expansion and extension or, if need be, the decommissioning and

removal of existing infrastructure. Facility requirements could theoretically be defined in

such a way that capacity can be continuously adjusted over the entire planning horizon.

However, to simplify the determination of facility requirements, time is often discretised

into a finite number of planning phases t = 0,1, . . . ,T , where T refers to the planning ho-

rizon of the ASP project and t = 0 to the initial conditions which all planning activities are
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based upon. Consequently, conventional facility requirements for an airport passenger ter-

minal facility i can be formally described with a capacity vector Ki = [Ki,1,Ki,2, . . . ,Ki,T ].

The elements Ki,t of this vector specify the operational capacity of facility i in planning

phase t, e.g. 5 check-in desks or 2 security checkpoints in planning phase 3. Once con-

ventional facility requirements are created, they cannot be adapted to changing circum-

stances. If future conditions are different from those assumed during planning, the entire

planning process has to be undertaken again. Thus, flexible facility requirements must be

created for the purpose of flexible planning.

The definition of flexible facility requirements is a more complex matter. Instead of

defining capacity vectors, flexible facility requirements are usually formulated as decision

rules (Cardin, 2014; Cardin & Hu, 2016; Cardin, Xie et al., 2017). A decision rule is a

guideline for airport planners and DMs which prescribes exactly how the infrastructure

is to be modified should certain factors, such as demand, change. Because it is only

a decision rule and not a predefined capacity vector which is specified, flexible facility

requirements can take uncertainty into account. As a result, flexible facility requirements

allow the creation of plans that are adaptable to changing circumstances.

In light of the above-mentioned trade-off between the provision of over-designed and

under-designed capacity, airport planners are interested in determining optimal facility

requirements. To this end, the literature considers a facility requirement as optimal, when

it leads either to a maximum net present value (NPV), to maximum profits or to minimum

costs over the entire planning period (Martínez-Costa et al., 2014). The definition of

optimal facility requirements is not a simple matter. It is an optimization problem known

in the literature as the capacity expansion problem (CEP) (Freidenfelds, 1981; Manne,

1961; Martínez-Costa et al., 2014; Van Mieghem, 2003).

The models used to solve the CEP are collectively referred to as CEP models. Conven-

tional CEP models are reviewed in Section 2.4.3 and flexible CEP models are discussed

further in Section 2.4.4. The remainder of this section discusses the input required for

conventional and flexible CEP models; these are level of service (LoS) and DHL demand.
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LoS determines how much capacity is needed so that, given a certain volume of traffic, a

facility is neither considered over-designed nor under-designed. DHL, on the other hand,

describes the traffic levels used by airport planners to size and design airport facilities.

2.1.3 Levels of service

According to De Neufville et al. (2013, p. 564) "[LoS] refers to the quality of the context

in which a service takes place". Following Martel and Seneviratne (1990) and Senevir-

atne and Martel (1991), a number of different qualitative and quantitative performance

measures can be used to describe the service level provided in airport passenger terminals

and facilities (Correia & Wirasinghe, 2004; De Neufville et al., 2013; FAA, 2018). Qual-

itatively, descriptors which are somewhat subjective, such as the cleanliness of a facility,

the level of safety, the passenger comfort experienced, the information provided to pas-

sengers or the complexity of the procedure(s), may contribute to the perceived quality of

service. Quantitatively, the quality of service can be objectively measured with a number

of performance indicators, such as the waiting times experienced, average processing and

service times, queue lengths, passenger densities, the level of congestion, the available

number of seating options, walking distances, walking speeds, etc.

As pointed out by Correia and Wirasinghe (2004, p. 5), almost all qualitative and

therefore subjective LoS measures presented in the literature are insufficient, since they

(i) "cannot assess the passenger perceptions about these values" and (ii) are not capable of

providing reasonable correlations between qualitative and quantitative performance meas-

ures for airport passenger terminal facilities. Therefore, given the sheer complexity of the

concept of quality of service, most airport planners apply LoS measures which are based

on quantitative measures only (Correia & Wirasinghe, 2004). In fact, the quantitative

LoS measures proposed in IATA’s airport development reference manual find widespread

application in most real-world airport terminal planning projects (IATA, 2017). For this

reason, IATA’s LoS measures are often considered the de facto industry standard (Ashford

et al., 2013; De Neufville et al., 2013; Kazda & Caves, 2007).
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The LoS concept used by IATA (2017) is based on research conducted by the High-

way Research Board in the United States (National Academies of Sciences, Engineering,

and Medicine, 1965), which focused on specifying levels of service for highways by de-

scribing the relationship between the observed average speed of cars and the rate of flow

on the highway. In a similar manner, IATA (2017) defines service quality for airport pas-

senger terminal facilities using two different metrics, namely spatial and temporal LoS

standards. While spatial standards define the relationship between space available per

passenger with the level of service actually experienced, temporal standards refer to ac-

ceptable waiting times experienced by passengers. In essence, IATA (2017) expresses

spatial and temporal LoS in terms of three distinct categories: over-design, optimum and

sub-optimum. For instance, a check-in facility meets an optimal LoS standard, i.e. an

optimum LoS category, if the facility is designed in such a way that during its design hour

(see Section 2.1.4) passengers experience an average queueing time between 10 min to

20 min, and are provided with 1.3 m2 to 1.8 m2 terminal space on average while queueing

(IATA, 2017). If passengers experience longer waiting times and/or are provided with less

queueing space, the facility is considered to be sub-optimal. On the other hand, a facility

is over-designed if shorter waiting times are observed and/or more queueing space per

passenger is provided. Consequently, IATA (2017) advises airport planners to design and

size airport passenger terminal facilities in such a way that the both the observed temporal

and spatial LoS standards meet the optimal target LoS.

Target LoS standards are often subject to contractual agreements between airports

and their partners, e.g. handling agents, airlines, etc. For this reason, target levels of

service cannot usually be influenced by planners, but must rather be accepted as given.

Consequently, planners must determine the capacity level of a facility at which, given a

certain traffic volume, the target LoS can be met. In order to do so, practitioners have sev-

eral methods at their disposal, such as analytical queueing models, rule-of-thumb models,

discrete-event simulation models, agent-based simulation models and system dynamics

models. These models are all described in the following paragraphs.
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Analytical queueing models are based on queueing theory (Fitzsimmons et al., 2008;

Hopp & Spearman, 2011; Newell, 2013), which allows the prediction of the average

queue lengths and waiting times in passenger terminal facilities in steady state condi-

tions. For ASP applications in the area of passenger terminal facilities, holistic models

covering the entire terminal or numerous passenger terminal facilities (Andreatta et al.,

2007; Brunetta et al., 1999; McKelvey, 1988), as well as facility-specific models, such as

for gates (Chen & Schonfeld, 2013), check-in (Bevilacqua & Ciarapica, 2010), security

checkpoints (Dorton & Liu, 2016; Hu & Chen, 2017) or baggage claim areas (De Barros

& Wirasinghe, 2004) are mentioned in the literature.

Rule-of-thumb models are empirical in nature, as they are based on years of observa-

tion and experience. Probably the most important contribution to the body of literature on

rule-of-thumb models is provided in IATA (2017). IATA’s model allows the determination

of the required capacity level of an airport passenger terminal facility given temporal and

spatial target LoS and DHL demand levels. While rule-of-thumb models find wide ap-

plication in the industry, they have only been rarely used in academia, such as in Nõmmik

and Antov (2017).

Discrete event simulation (DES) models enable to model dynamic processes and sys-

tems by means of the description of a sequence of events which modify the state of the

system accordingly. An event may occur at a certain point in time which triggers the trans-

ition from one state of the system to another one (Cassandras & Lafortune, 2009; Law et

al., 2000). For airport passenger terminal applications, the literature lists holistic DES

model applications, such as in Beck (2011), Brunetta and Jacur (1999), Gatersleben and

Van der Weij (1999), Guizzi et al. (2009), Hee and Zeph (1998), Lim (2008), Verbraeck

and Valentin (2002) and Yamada et al. (2017), as well as facility-specific applications,

such as for check-in (Appelt et al., 2007; Joustra & Van Dijk, 2001), security checkpoints

(Dorton & Liu, 2016; Kierzkowski & Kisiel, 2017; Pendergraft et al., 2004; Van Boekhold

et al., 2014; Wilson et al., 2006) or waiting rooms (Ju et al., 2007).

In agent-based models (Bonabeau, 2002; Law et al., 2000), the dynamics of sys-
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tems are reproduced by considering a number of autonomous agents, such as passengers,

pieces of luggage or vehicles, which move through a passenger terminal or a facility.

Agent-based passenger terminal models are presented by Fonseca i Casas et al. (2014),

Ma (2013), Ma et al. (2011) and Schultz and Fricke (2011).

Finally, system dynamics models (Forrester, 1994; Sterman, 2002) are continuous

simulation models in which the state of a system is modelled continuously over time,

usually by means of differential equations. In the field of airport passenger terminals,

system dynamics models are presented by Manataki and Zografos (2009a, 2009b, 2010)

and Suryani et al. (2010).

Complex models such as discrete event simulation models, agent-based models and,

to a certain extent, system dynamics models, allow airport planners to analyse airport

passenger terminal processes and facilities at high levels of detail. However, this level

of detail implies that the models require large numbers of input factors and are also of-

ten very intensive computationally. In contrast, analytical queueing models and rule-of-

thumb models are based on simplifications, generalisations and assumptions, which both

reduce the requirements on the input factors and enable faster calculation times. In the

domain of ASP, where large numbers of different future scenarios must be analysed in

an efficient manner, the use of such simple models can be advantageous compared to

complex models, due to their simplicity, flexibility to adapt to different scenarios, faster

run-times, and the limited number of required inputs (Janic, 2007). Moreover, given the

large extent of uncertainty which ASP is subject to, the imperfections and simplifications

introduced by simple models are usually negligible. For this reason, it is easy to under-

stand why simple rule-of-thumb models, such as the capacity model published in IATA

(2017), are very popular in the industry.

2.1.4 Design hour loads

In addition to a defined target LoS, airport planners need information on the expected

future demand levels for an airport passenger terminal facility so that corresponding fa-
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cility requirements can be created. For most ASP projects the first step is, as mentioned

in Section 2.1.1, to create aggregated demand forecasts. However, for the design, plan-

ning and sizing of airport passenger terminal facilities these aggregated figures must be

converted into so-called design load demands (Ashford et al., 2013; De Neufville et al.,

2013; IATA, 2017; Landrum & Brown et al., 2010). In this context, Waltert et al. (2021)

state the following:

As the term implies, design load describes [sic] the anticipated demand

levels for short periods of time. These time periods are determined in such

a way that infrastructure is designed with sufficient capacity to process de-

mand at a defined LoS throughout the year, avoiding the risk of over-design

in the few instances when extreme peaks may occur (De Neufville et al.,

2013). Depending on the type of facility for which requirements should be

defined, design loads are either specified for a day, an hour or even shorter

intervals (Kennon et al., 2013). Interestingly, there is no standard method to

determine design load that is universally accepted by researchers and prac-

titioners (Ashford, 1988). Often, the selection of a specific method depends

on the individual preferences of the airport operator, authorities and other

stakeholders.

In fact, to determine facility requirements of passenger terminal facilities,

a DHL, which is the aggregated demand over the period of the design hour,

is normally used (IATA, 2017; Tošić, 1992). A number of different defini-

tions for DHL exist in the literature (De Neufville et al., 2013; FAA, 2018;

IATA, 2017; ICAO, 1987; Kennon et al., 2013; Kincaid et al., 2012). Defini-

tions which are widely used are the standard busy rate (SBR), the busy hour

rate (BHR) or the typical peak hour passengers (TPHP). The SBR is defined

as the “30th highest hour of passenger flow . . . [which is the flow] that is

surpassed by only 29 hours of operation[s]” for the entire year (Ashford et

al., 2013, p. 32). The BHR is the “busiest hour for which the cumulative
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hourly traffic exceeds 5 per cent of the annual traffic” (Psaraki-Kalouptsidi,

2010, p. 141) and the TPHP is defined as “the peak hour of the average peak

day of the peak month” (Ashford et al., 2013, p. 34). Given these different

definitions of DHL, practitioners are recommended to select an appropriate

measure with care. Indeed, research indicates that, for instance, the BHR is a

more robust measure than the SBR, since “the percentages of passenger en-

countering flow rates greater then [sic] the SBR can easily vary from under

2 % at large airports to over 10 % at smaller ones” (Matthews, 1995, p. 58).

(pp. 1–2)

Waltert et al. (2021) further explain that:

. . . [t]o define the relationship between DHL for airport terminal facilit-

ies and annual demand, it is necessary to understand the underlying demand

functions, which describe how the facilities are frequented by passengers.

Airport passenger terminals are complex systems consisting of a set of facil-

ities (e.g. check-in, security checkpoints, emigration, immigration, baggage

claim areas, etc.) which are frequented by a number of different passenger

flows. Large hub airports usually accommodate different types of passen-

ger flows, such as local and transit, as well as domestic and international.

While local passengers either commence or terminate their journey at the air-

port, transit passengers only change airplanes. Domestic passengers are not

subject to passport control or customs checks, while for international passen-

gers usually the opposite is true1. Similarly, transit passengers are usually

not required to use check-in facilities, and in case of passengers connecting

between arriving and departing domestic flights, neither passport control nor

immigration checks are required. For this reason, each passenger terminal fa-

cility is subject to an individual demand function, which, due to downstream

1In Europe, airports in the Schengen area usually differentiate between Schengen vs. Non-Schengen
passengers, which can be viewed as an equivalent to Domestic vs. International passengers.
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propagation of passenger flows, strongly depends on demand functions of

other facilities in terms of magnitude, mix and timing. Therefore, the demand

function of a passenger terminal facility is an amalgam of different passenger

flows scheduled to use the facility. Consequently, this makes the estimation

of the DHL for an individual passenger terminal facility especially challen-

ging. To this end, the literature mentions two distinct methods to estimate

DHLs for passenger terminal facilities: (i) the design day schedule method,

and (ii) the ratio method.

With the design day schedule method, airport planners create future flight

schedules that specify departing and arriving aircraft, their payload, sched-

uled times, aircraft types, etc. for a number of design days in the future.

In order to do this, current determinants of demand, such as fleet and air-

line mixes, load factors, transit rates or arrival distributions are extrapolated

(IATA, 2017; Kennon et al., 2016; Kennon et al., 2013; Robertson et al.,

2002). Design day schedules are then used as inputs for discrete-event simu-

lation models (Gatersleben & Van der Weij, 1999; Saffarzadeh & Braaksma,

2000), agent-based simulations models (Hee & Zeph, 1998; Ma et al., 2011),

accelerated time simulation models (Roanes-Lozano et al., 2004) or queueing

theory models (Janic, 2007; McKelvey, 1988); these models are capable of

reproducing the dynamics of the passenger flows and consequently determ-

ining the relevant DHLs for all airport passenger terminal facilities. It is for

this reason that the design day schedule method is extensively used in airport

strategic planning. Especially to model highly disaggregated passenger types

or passenger flows (e.g. international vs. domestic passenger, local vs. transit

passengers, etc.), the design day schedule method can be advantageous. How-

ever, airport planners have to be aware that the determination of design day

schedules is a challenging and complex process which requires substantial

input of resources, given the large number of factors to be considered.
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The ratio method on the other hand, is based on the assumption that the

ratio ρ between the design hour demand di,t (i.e. the DHL) for airport pas-

senger terminal facility i and the aggregated annual demand Dt in year t can

either be described with a constant ratio ρi,

di,t = ρiDt (2.1)

or, more generally, with a linear regression model (Horonjeff et al., 2010),

di,t = f (Dt ,βi)+ εt (2.2)

where βi is a vector of unknown coefficients and εt is an error term. The

unknown ratio ρi in [Equation 2.1] and the unknown coefficients βi of [Equa-

tion 2.2] are estimated with an appropriate approximation method, such as

the least squares method. In order to do so, a (large) dataset of historic ob-

servations for both the DHL di,t of facility i and the annual demand Dt for a

number of years t = 1,2, . . . ,T is required. Once these unknown coefficients

of a ratio-based model are estimated, it can be subsequently used by airport

planners to translate future annual demand forecasts into DHL forecast fig-

ures with relative ease.

Due to its simplicity, the ratio-based method has been widely used in

airport strategic planning, especially for passenger terminals. For instance,

in FAA advisory circular 150/5360–7 (cancelled) produced a series of con-

stant ratios between the TPHP and annual passenger volumes for US airports.

Similarly, the UK Civil Aviation Authority defined a number of constant ratio

values which specify the SBR measure as a function of ATM (Ashford et al.,

2013). See Table 2.1 for a summary of commonly used figures.

Matthews (1995) suggested a linear model to forecast peak hour demand

at airports operated by the British Airport Authority (BAA, now operating
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Aggregated annual passengers Dt ρ as % of annual demand

≥30.000×106 0.035
20.000–29.999×106 0.040
10.000–19.999×106 0.045
1.000–9.999×106 0.050
0.500–0.999×106 0.080
0.100–0.499×106 0.130
≤0.100×106 0.200

Table 2.1: Typical peak hour passengers as defined in FAA AC 150/5360-7 (cancelled).
Note: Adapted from Ashford et al. (2013, p. 34).

under Heathrow Airport Holding). Matthews correlated DHL with demand

patterns on different time scales (hourly, monthly and day of the week). Wang

and Pitfield (1999) estimated the coefficients of a linear regression model to

describe the relationship between the overall DHL and annual throughput of

all departing passengers for 48 Brazilian airports. Similarly, Urbatzka and

Wilken (1997) estimated the coefficients of a linear regression model which

relates design hour movements to annual ATM. Subsequently, this model has

been used to estimate the runway capacities of a number of German airports.

Psaraki-Kalouptsidi (2010) applied the ratio method to a number of “holi-

day destination” airports on Greek islands which are associated with highly

seasonal demand patterns. In order to better represent local conditions and

characteristics, Psaraki-Kalouptsidi applied the k-means algorithm to gener-

ate clusters of airport types based on their hourly demand pattern. In addition

to using annual ATM as an independent variable in their model, Wilken et al.

(2011) incorporated variables categorizing airports according to their number

and layout of runways and whether the airport in question is slot coordinated

or not. The same method was used by Gelhausen et al. (2013), who identified

which hub airports are currently capacity constrained or are most probably

going to be so in the future.

The ratio method makes use of the fact that often the relationship between



CHAPTER 2. LITERATURE REVIEW 30

annual aggregated demand and the DHL demand of an airport facility can be

described with a single ratio. As long as airport planners verify this assump-

tion with real-world data, the method offers a number of strengths, which can

be exploited accordingly. Most importantly, the ratio method requires less in-

put data and parametrisation than the design day schedule method. The ratio

method is reasonably robust with regard to its ability to handle exceptional

and unpredictable events, such as the COVID-19 pandemic or the 9/11 terror-

ism attacks, since statistical outliers can easily be removed from the dataset of

observations2. Moreover, new information, such as observations describing

a new year, can be added without difficulty, thus enabling airport planners to

keep their datasets and models up to date.

The ratio method, as it is presented in the literature, treats the airport

and its underlying systems as blackboxes for which no prior knowledge is

required for the modelling process. In fact, since it is a purely data-driven

method, simply a large enough number of historic observations on annual de-

mand and DHL are required to determine appropriate ratios or to estimate the

coefficients of a regression model. However, in the context of emerging mar-

kets, where growth levels can be quite exceptional, historic observations are

only of limited value to describe future demand. For any given airport, as an-

nual demand volume grows, the absolute peak loads become less pronounced

since demand is more equally distributed over time (De Neufville et al., 2013;

IATA, 2017). Moreover, for many airports the total number of ATMs per year

is limited due to constraints imposed for operational, legal, environmental or

political reasons, which leads to saturation effects. For instance, the runway

configuration of an airport, which determines the available number and ori-

entation of runways, defines the absolute maximum annual ATM that can be

accommodated (FAA, 2015; ICAO, 1987). Indeed, the declared capacity of

2The robustness of the method is only given, if the traffic patterns which ultimately define the DHL
remain unchanged after a large-scale outlier event.
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an aerodrome, which is the capacity that considers all bottlenecks on the air-

side and the landside, is often substantially lower than the absolute maximum

capacity of the runway system, especially if the runway system is not the

most relevant constraining element. For instance, the capacity of Amsterdam

Schiphol Airport is capped by Dutch law at 500,000 movements per annum

(Schiphol Group, 2019). Similarly, at Zurich (ZRH) Airport political consid-

erations limit runway capacity to approximately 70 hourly movements. Ber-

ster et al. (2015) suggest that airlines often schedule larger airframes to and

from airports which are capacity saturated. Consequently, capacity saturation

seems to have a rather direct impact on the average number of passengers per

ATM, which in turn should be accordingly treated in a ratio-based modelling

approach.

The ratio method appears only to have been applied to define DHLs more

generally, such as the DHL for all departing passengers, rather than for spe-

cific airport passenger terminal facility sub-sets (e.g. check-in, the security

checkpoints or the immigration facility, etc.). This is most probably due to

a lack of access to datasets which include detailed passenger flows in and

out of terminal facilities. With conventional methods, such as surveys, the

systematic collection of passenger flow data in terminal facilities over the

course of many years may not be practical. In recent years however, some

airport operators have started to collect data from automated passenger track-

ing systems (PTS) which measure passenger influx in and outflux from fa-

cilities as well as the movement of passengers within the terminal. These

observations are carried out (i) in a conventional way by utilizing boarding

pass readers, turnstiles, light barriers, etc., (ii) by tracking the Bluetooth or

Wifi-signal of mobile and portable devices carried by passengers, such as

the “SPOPS” system (Hansen et al., 2009), or “SITA iFlow” (Nikoue et al.,

2015; Société Internationale de Télécommunications Aéronautiques [SITA],



CHAPTER 2. LITERATURE REVIEW 32

2013) or (iii) by tracking the movement of passengers with the help of ste-

reoscopic optical sensors and image recognition algorithms (Hänseler, 2020).

As a consequence, large datasets describing passenger flows in airport pas-

senger terminals can be and have been accumulated, which demonstrates the

potential for these to be used for airport strategic planning applications (Raff

& Wicki, 2019).

In the literature there is an emerging body of contributions dealing with

the application of PTS data in airport planning. Schultz and Fricke (2011)

employed data originating from a video-based PTS to determine a stochastic

model of passenger movements in terminals describing tactical decision mak-

ing and route choice by passengers. Hansen et al. (2009) reported on the

application of the SPOPS PTS at Copenhagen Airport, which is used to pre-

dict passenger flows and the resulting queue length and congestion levels in

terminal facilities in real-time. The SPOPS system is used by the airport op-

erator to manage resources and staffing as well as to provide passengers with

detailed information on their expected waiting times at the facilities. Fur-

thermore, Hansen et al. (2009) studied privacy concerns related to Bluetooth-

based PTS in airport terminals tracking passenger movements within certain

terminal areas for a limited period of time. Nikoue et al. (2015) used [an-

onymised] Wifi-based tracking data which describes the walking speed of

passengers as well as the timing and magnitude of passenger flows obtained

with SITA’s “iFlow tool”. This data was used to model the arrival process

at the immigration facility of Sydney International Airport in Australia. Bal-

akrishnan et al. (2016) proposed that by using passenger tracking and loc-

alization data, airports might be better capable of monitoring demand and

managing staffing in the future. Marzuoli et al. (2018) and Monmousseau

et al. (2019) used a combination of mobile phone localization data (call detail

records) and social media data (Twitter) to analyse the impact of weather-
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related disruptions on air transportation and airport operations in particu-

lar. Monmousseau et al. (2020) applied the same method to measure the

drastic impact of the COVID-19 pandemic on airport operations. Burrieza

et al. (2019) used call detail records in combination with airport surveys to

characterize airport users (e.g. to distinguish between arriving, departing or

transit passengers or to identify visitors and staff, etc.). Finally, in the wake of

the COVID-19 pandemic, Hänseler (2020) presented a method for the auto-

matic monitoring of social distancing discipline based on measurement data

gathered with the XOVIS passenger tracking system. PTS data has yet to be

applied to airport strategic planning contexts more generally, and in particular

to the determination of facility-specific DHLs. (pp. 2–4)

2.2 Flexibility in engineering systems

The flexible ASP approaches and frameworks introduced in Section 2.1.1 are based on

the idea of "change-resilient" strategic plans, which should provide airport infrastructure

with the ability to "adapt to variations in demand and other conditions" (Magalhães et al.,

2017, p. 366). The desire to provide flexible and adaptive infrastructure is not an airport-

specific phenomenon. Rather, the introduction of flexibilities in strategic plans are of

central importance for a whole class of infrastructure known in the literature as engineer-

ing systems. According to Cardin (2014, p. 2), engineering systems are "complex systems

in the aerospace, defence, energy, housing, telecommunication, and transportation indus-

tries" which often take up essential functions in our society and have long life cycles of

20 or even more years. Given these long planning horizons, the life cycle performance

of engineering systems is significantly affected by uncertainty driven by "environmental,

demographic, market, regulatory, and technological forces" (Cardin & Hu, 2016, p. 1).

Moreover, investments in engineering systems tend to be irreversible: once a system is

built, it is usually (at least partially) impossible to recover or salvage the associated invest-
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ment costs (Dixit & Pindyck, 2012; Trigeorgis, 1996; Van Mieghem, 2003). Investment

decisions that have transpired in hindsight to be wrong can therefore only be corrected at

a very high cost.

According to the literature, flexible engineering systems are much better at dealing

with uncertainty and the irreversibility of investments than conventional engineering sys-

tems. In fact, flexible engineering systems are capable of "increas[ing their] expected

economic value by providing . . . adaptive strategies to respond to uncertainties most prof-

itably" (Cardin et al., 2015, p. 255). Indeed, the literature reports that flexible engineering

systems usually result in a 10 % to 30 % higher financial performance over their entire

life cycle than conventional, i.e. non-flexible, engineering systems (Cardin, 2014; De

Neufville & Scholtes, 2011).

This section deals with the basic concept of flexible engineering systems. Section 2.2.1

provides an overview on how the term flexibility is defined in the literature. Section 2.2.2

explains how engineering systems can be made flexible by means of real options, while

Section 2.2.3 introduces a number of concepts and frameworks which allow system plan-

ners and decision makers to build flexibility into engineering systems.

2.2.1 Definition of flexibility

The literature defines flexibility in engineering systems in a number of different ways.

For example, Hu and Cardin (2015, p. 122), with reference to Fricke and Schulz (2005),

define a flexible engineering system as a system which is capable of "chang[ing] easily in

the face of uncertainty". According to Saleh et al. (2002, p. 4), a flexible system is "able to

modify its mode of operation or its attributes", while for Dempsey et al. (1997), flexibility

in an engineering system is given by its ability to adjust continuously and constantly.

De Neufville (2008, p. 53) points out that flexibility of an engineering system is ensured

by the provision and installation of "technical features that enable the owners to change,

easily and inexpensively, the configuration of their facility to meet new needs".

The definitions of flexible engineering systems and flexible ASP are much alike. The
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literature on flexible planning of airports, and airport passenger terminals in particular,

is reviewed by Magalhães et al. (2017), who present a number of different interpreta-

tions of how scholars define flexibility in the context of ASP. For Kwakkel et al. (2008,

p. 22), flexible ASP "is an approach for making plans, particularly for infrastructure de-

velopments, that can be easily adjusted over time to the actual situation and conditions".

Magalhães et al. (2013, p. 4) define flexibility in airport planning as the "ability to have an

infrastructure as mutable as possible to adapt to future needs with minimal investment".

Further, for Edwards (2005, p. 85), flexible airport infrastructure is capable of "acco-

modat[ing to] changes that can rarely be anticipated". In summary, flexible engineering

systems, and by analogy flexible airport passenger terminal facilities, provide system de-

signers with options that allow them to exercise flexibility by adapting and adjusting the

(airport) system, in order to meet the needs at a future point in time. The actual tools

which allow the introduction of flexibility to engineering systems are real options, and

these are reviewed in the following section.

2.2.2 Real options

The concept of real options is based on options used in finance. As such, an option

"represents a right, but not an obligation . . . to do something at [sic] under predefined

arrangements" at a future point in time (De Neufville, 2003, p. 7). An option is a contract

between a buyer and a seller, which defines the costs of exercising the option in advance.

To acquire an option, the buyer pays the seller a premium, which is a fee. In finance,

two basic types of options exist: call options and put options (Brealey et al., 2018). A

call option constitutes the right, but not obligation, to buy an asset, such as a share, a

commodity, etc. at a predefined and fixed exercise or strike price at a future point in time,

even if the current market price is higher. In contrast, a put option represents the right,

but not obligation, to sell an asset at a certain strike price. Thus, call options provide

the buyer with the possibility to capitalise on opportunities, while put options can act as

a form of insurance, which reduce the downside risks of an investment. Consequently,
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options are tools by means of which the risk of an investment can be managed. Indeed,

options have a value that increases with the increasing risk of an investment (Amram &

Kulatilaka, 1998; De Neufville, 2003).

Real options differ from options used in finance in such a way as they "deal with phys-

ical things rather than financial contracts" (De Neufville, 2003, p. 9). To this end, real

options are used to "modify projects" (Brealey et al., 2018, p. 269), since they provide

owners and planners of engineering systems with the "right, but not the obligation, to

change a system easily in the face of uncertainty" (Cardin, Zhang et al., 2017, p. 228).

Real options are the tools that practitioners have at their disposal to make engineering

systems flexible (Cardin, 2014; De Neufville & Scholtes, 2011; Geltner & De Neufville,

2018). Similar to financial options, real options allow owners to (i) avert the risk of

negative developments, and they (ii) provide them with the option to capitalise on op-

portunities (De Neufville, 2008). For this reason, real options add value to engineering

systems (Geltner & De Neufville, 2018; Schwartz & Trigeorgis, 2004).

The literature differentiates between real options on systems and real options in sys-

tems (Cardin & De Neufville, 2009; Wang & De Neufville, 2005), which will be discussed

individually in the following sections.

2.2.2.1 Real option on systems

Real options on systems are a source of managerial flexibility, as they provide system

owners with the right, but not obligation, to buy, sell, expand and contract systems (Cham-

bers, 2007; Kincaid et al., 2012). According to Wang and De Neufville (2005), real op-

tions on systems consider the underlying technical systems as blackboxes. Consequently,

practitioners need to have neither in-depth technical knowledge nor a solid understanding

of the system in order to be able to properly exercise a real option on a system.

Trigeorgis (1996) presents a number of generic real option strategies, some of which

are applicable to ASP, while others are more suitable for other fields of application. In

the following, a short overview of generic strategies is given. The option to defer refers
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to the right to wait and postpone an investment decision on an engineering system to a

future point in time until enough information for well informed decision making is avail-

able (Kincaid et al., 2012). This option is especially beneficial for infrastructure projects

due to the irreversibility of investments in engineering systems (Chambers, 2007). The

time-to-build option encourages staged developments in which an investment in an en-

gineering system is divided into a number of sub-projects which are based on each other.

This way, instead of deploying the system’s entire capacity at once from the start, each

future stage is an option which can be realised if required and/or desired. In ASP, the

concept of staged developments is well-established, since most airport development pro-

grammes are formulated as a series of sequential projects (De Neufville et al., 2013; FAA,

2015; Horonjeff et al., 2010; IATA, 2017). The option to alter the operating scale enables

flexible adjustments of an engineering system by means of expansion, extension or con-

traction of the system’s capacity or output. This option is ideally suited to ASP, since

in this discipline planning should be based on infrastructure that can be flexibly adjusted

at a later date (Butters, 2010). The option to abandon provides owners with the flexib-

ility to withdraw and sell an engineering system at salvage value3. The option to switch

enables the flexible adjustment of the outputs of a facility according to the current needs

of the market. Further, the option to switch may provide planners with the opportunity

to produce the same output with different inputs, or to accommodate different custom-

ers, markets and missions. The growth option constitutes of a current or early investment

in future technology, which if successful, enables further growth in the future, e.g. the

strategic acquisition of land for future development projects.

2.2.2.2 Real option in systems

Real options in systems are design features which are deliberately built into a system

in order to provide owners, planners and DMs with the flexibility to change and adapt

the underlying system. As mentioned by Wang and De Neufville (2005), real options in

3It should be borne in mind that engineering systems often have a very small salvage value due to the
irreversibility of investments (Dixit & Pindyck, 2012).
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system aim at changing the system itself. For this reason, decision makers and planners

require in-depth technical knowledge of the system in order to be able to design and exer-

cise real options in systems efficiently and effectively. In the literature, various examples

of real options in engineering systems are presented. De Neufville et al. (2006) and Zhao

and Tseng (2003) present the case of a multi-storey car park whose foundation is built

in such a way that, at a later point in time, additional storeys can be added to the facil-

ity. Clearly, investors pay a premium during the initial construction, since the structure

is over-designed for the initial stage of the build. However, depending on how the future

evolves, owners are provided with the flexibility to substantially increase the capacity of

the multi-storey car park. De Weck et al. (2004) discuss the application of real options in a

system for a communications satellite network which is made flexible by means of staged

capacity deployments. Cardin and De Neufville (2009) and Geltner and De Neufville

(2018) showcase the application of real options in systems for office buildings in the cit-

ies of Chicago and Vancouver. These buildings are built in such a way that additional

floors can be added at a later date. Chambers (2007) discusses the case of the 25 de Abril

Bridge in Lisbon, Portugal, which, when built in 1962, was structurally designed in such

a way that a second deck could be added. Indeed, this real option was exercised in 1999,

when the bridge, which initially hosted a 4-lane highway, was retrofitted with additional

railroad tracks.

It is worth mentioning that the differentiation between real options on systems and real

option in systems is sometimes quite difficult or even impossible because combinations of

real options in and on systems are often applied. For instance, the "multi-storey car parks

case" presented by De Neufville et al. (2006) is based on the combination of a real option

in a system, i.e. the over-design of the foundation so that parking decks can be added at

a later date, as well as the options to defer an investment and a time-to-build option, i.e.

staged development.
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2.2.2.3 Applications of real options in ASP

A number of airport-related applications of real options have been documented in the

literature. One method that is often used by airport planners is landbanking. This in-

volves buying strategic land reserves in advance and reserving them for potential future

projects (Chambers, 2007). The actual decision to carry out a project on the purchased

land can then be deferred to a future point in time. For instance, De Neufville (1991)

reports on a successful application of landbanking for a potential replacement airport

of Sydney Kingsford Smith International Airport in Australia. Magalhães et al. (2013)

mention Athens International Airport in Greece, where only half of the airport was built

initially and the required land for the other half was secured by means of landbanking.

Similarly, Butters (2010) reports on the strategic expansion plan of Dublin Airport in Ire-

land, which, dependent on future demand levels and traffic mixes, provides for a flexible

expansion of terminals and piers. Xiao et al. (2017) introduce an airport capacity plan-

ning model which allows the determination of the optimal trade-off between the airport

capacity to be built initially versus the size of the landbanking area to be acquired. When

the concept of reserving areas and space for future developments is applied within (exist-

ing) terminal buildings, it is referred to as buffer spaces (Butters, 2010). Within already

existing buildings, buffer space can either remain unused until it is finally converted into

a complete facility, or buffer space can be made available for interim uses.

Another way of enabling flexibility is to plan modular airport facilities; this refers

to standardised elements and units which can be built and connected with each other in

a repetitive manner (Kincaid et al., 2012; Shuchi et al., 2012). According to Shuchi

(2016), a modular terminal design allows for the construction of airport terminal facilities

which are expandable, flexible, cost-effective and can be rapidly built. Modular buildings

and facilities have already been used in ASP. For instance, the terminal of Southampton

Airport in the UK is built in such a modular way which "facilitates future expansions that

could be easily achieved without disruptions on the existing operations" (Shuchi et al.,

2012, p. 6).
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According to Shuchi et al. (2012) and Shuchi (2016), connected buildings and tem-

porary facilities are further measures to enable flexibility. In connected terminals, oper-

ations can be moved from one area of the building to another without major disruptions

to airport and passenger processes. Furthermore, connected buildings, as they are, for

instance, to be found at Amsterdam Schiphol Airport, San Francisco International Air-

port and Singapore Changi International Airport, allow facility expansions without the

introduction of split operations, i.e. the fragmentation of services and processes between

different buildings, which could lead to a deterioration of the service quality perceived

by customers (Shuchi et al., 2012; Shuchi, 2016). Temporary facilities are infrastructure

that is purposely made available for limited periods of time. They are often based on

simple constructions or, as described by Shuchi (2016), are inflatable building structures.

Temporary facilities can be particularly advantageous for airports that are exposed to high

demand uncertainty (De Neufville et al., 2013; Shuchi, 2016). This is for instance the case

for aerodromes where low-cost airlines comprise a large part of the traffic (De Neufville,

2008). Practical applications of temporary airport buildings based on simple structures

can be found at Berlin Schönefeld Airport, Amsterdam Schiphol Airport or Malta Interna-

tional Airport (Neptunus Structures [Neptunus], 2021). Similarly, the airports of Boston

and Los Angeles make use of inflatable buildings as a temporary means of providing

additional passenger terminal and maintenance facilities (Shuchi, 2016).

Finally, shared-use, mixed-use or common-use facilities are also often used to intro-

duce flexibility in airport passenger terminals. Shared-use and mixed use facilities can

be accessed by various users, e.g. airlines, aircraft types, passenger types and used for

a number of different functions, e.g. for arrivals and departures, or international and do-

mestic passengers (De Neufville & Belin, 2002). For instance, flexible gate lounges, also

known as swing gates, are equipped with movable walls that allow airport operators to

make facilities accessible for different types of passengers, such as international or do-

mestic passengers (De Neufville, 2008; Shuchi et al., 2012). Shared-use facilities allow

airports to adjust and manage the capacity of airport infrastructure both in the short-term
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as well as in the long-term at relatively low costs. According to Kincaid et al. (2012) and

Landrum & Brown et al. (2010), shared-use facilities have already being used at various

airports, such as Vancouver International Airport, Dallas Fort Worth International Airport

and Denver International Airport.

Common-use terminal equipment (CUTE) and common-use self-service (CUSS) are

standardised information technology (IT)-systems and equipment which can be used by

a number of different users. These infrastructure types allow airports to avoid the use of

facilities only by individual airports or handling agents, but to make the facility available

to all stakeholders simultaneously. Airport Council International (ACI, 2020a) recom-

mends that airports use common-use equipment whenever possible, as this can reduce

infrastructure requirements. Indeed, the potential capacity gains given by the flexibility

of common-user systems can be significant. For instance, at Geneva Airport in Switzer-

land, the introduction of common-use systems improved the effectiveness of the check-in

facility by about 25 % (Chambers, 2007).

2.2.3 Enabling flexibility in engineering systems

Various approaches are presented in the literature that enable planners and decision makers

to develop, evaluate and plan flexible engineering systems. This section discusses the

most important contributions to the literature on this topic.

Cardin (2014, p. 1) proposes a "taxonomy of systematic procedures" based on five

phases, which aims to enable flexibility for engineering systems. First, planners determ-

ine a so-called standard or baseline design, which is a conventional, i.e. inflexible, design

of an engineering system. At later stages of the process, the baseline design is used to

evaluate and benchmark flexible design configurations. In a second step, known as uncer-

tainty recognition, drivers of uncertainty are identified and described appropriately (see

Section 2.3). Given a baseline design and a description of uncertainty, planners then focus

on the concept generation in a third step. At this stage, planners create so-called candid-

ate flexibilities, which are flexible system designs based on real options in system and/or
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real options on systems. With a number of candidate flexibilities at hand, DM perform

a design space exploration in a fourth step, usually in comparison with the baseline, in

which "the most valuable [flexible] systems design concepts and decision rules to oper-

ate the system" are determined (Cardin, 2014, p. 17). Methods that can be used for the

evaluation of candidate flexibilities and subsequent selection of the most appropriate sys-

tem design are presented in Section 2.4. The last step of Cardin’s taxonomy is process

management, which aims at providing the conditions which are required to successfully

generate flexibilities and also facilitating, i.e. safeguarding, an environment in which flex-

ible design concepts can be implemented and exercised at later points in time. In this way,

owners and planners ensure that design flexibilities remain available in the future.

In addition to the methodology of Cardin (2014), the literature contains a number of

other relevant contributions on approaches that enable flexibility in engineering systems.

De Neufville and Scholtes (2011) suggest a method similar to the one presented by Cardin

(2014), which, however, consists only of four distinct phases: (i) estimating the distribu-

tion of future possibilities, in which sources of uncertainty are identified and described

appropriately; (ii) identifying candidate flexibilities, which deals with the determination

of flexible system designs; (iii) evaluating and choosing flexible designs, which deals with

the evaluation of designs and the selection of the best design; and (iv) implementing flexib-

ility, which ensures that design flexibilities remain available in the future. Hu and Cardin

(2015) propose a methodology which is also based on four phases: (i) initial design, (ii)

dependency and uncertainty analysis, (iii) flexible design opportunities identification and

(iv) flexibility valuation. Finally, De Neufville (2008) and De Neufville et al. (2006) both

mention and apply a three-phased process for the implementation of flexibility in sys-

tems engineering which consists of (i) the recognition of the range of uncertainty, (ii) the

definition of flexible design opportunities and (iii) the analysis of design opportunities.

Although some of the approaches mentioned above come with a differing number
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of phases, different names for the phases, or assignments of activities to phases4, all

these approaches share the same goal; they intend to establish flexibilities in engineering

systems. For this purpose, all the approaches mentioned in the literature suggest a similar

course of action, which can be summarised as follows: (i) recognition and modelling of

uncertainty, (ii) identification of candidate flexibilities, and (iii) evaluation and selection

of candidate flexibilities. The recognition and modelling of uncertainty as well as the

evaluation and selection of candidate flexibilities will be discussed further in Sections 2.3

and 2.4, while candidate flexibilities and real options applied in the context of ASP have

already been discussed in Section 2.2.2.

2.3 Recognition and modelling of uncertainty

Because the life cycles of engineering systems are extremely long, the performance of

these facilities is significantly influenced by uncertainty (Cardin, 2014; Cardin et al.,

2007; De Neufville & Scholtes, 2011; De Weck et al., 2004; Eckert et al., 2009; Mi-

kaelian et al., 2011; Nilchiani & Hastings, 2007). Consequently, owners and planners of

engineering systems are best advised to acknowledge "the fundamental reality that [they]

cannot predict the future precisely" (De Neufville & Scholtes, 2011, p. 34). This section

provides a definition of the term uncertainty as well as an overview of how drivers of un-

certainty for engineering systems can be identified and classified. Furthermore, drivers of

uncertainty affecting ASP in general, and ASP of airport passenger terminals in particu-

lar, are discussed in more detail. This section concludes with an overview of the methods

which allow mathematical modelling and the description of uncertainty.

4For instance, Cardin (2014) explicitly deals with the generation of a baseline design in the first phase,
while De Neufville and Scholtes (2011) integrate the baseline generation in the third phase evaluating and
choosing flexible designs. Or, as another example, the approaches presented by De Neufville (2008), De
Neufville et al. (2006) and Hu and Cardin (2015) do not explicitly cover the step process management as
proposed by Cardin (2014).
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2.3.1 Definition of uncertainty

Uncertainty can be generally defined as "any departure from the unachievable ideal of

complete determinism" (Walker et al., 2003, p. 4). In this context, a distinction can be

made between different types of uncertainty: known uncertainty, unknown uncertainty,

uncertainty in the data and uncertainty in the description (De Weck et al., 2007; Hastings

& McManus, 2005). Known uncertainty refers to data or information which is measurable

or observable, while the opposite is true for unknown uncertainty. Uncertainty in the

data refers to missing, inaccurate, wrong or inconsistent measurements and observations.

Uncertainty in the description refers to uncertainty which arises due to incomplete or

unclear definitions. In this study, the focus is on known sources of uncertainty as only

these can be described by means of historical observation and knowledge.

2.3.2 Recognition of uncertainty

ASP is subject to a large number of different sources of known uncertainty, which can

either be classified as endogenous uncertainty or exogenous uncertainty (De Weck et al.,

2007; Halpern, 2017). Endogenous uncertainty has its origin within a system, such as an

airport, while exogenous uncertainty originates from outside of a system.

2.3.2.1 Endogenous uncertainty

According to De Weck et al. (2007), uncertainty from (i) a product context and (ii) from a

corporate context is endogenous. Uncertainty from a product context arises for instance

due to technological risks, reliability of a product or technology, as well as unconsidered

interaction between different technologies and/or products. Uncertainty from a product

context is well covered in the literature on airport planning and operation. Kincaid et al.

(2012, p. 14) point out that "developments in aircraft technology, air traffic control, and

passenger facilitation can have implications for traffic levels and airport capacity". For

instance, De Barros and Wirasinghe (1998) and Lim (2008) examined how an airport pas-
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senger terminal’s capacity is affected by the introduction of very large aircraft, such as the

Airbus A380. Further, the impact of technical and procedural improvements in the air-

craft turnaround process may affect airport passenger terminal facilities (Schmidt, 2017).

Another source of uncertainty is future developments in the area of IT, which are expec-

ted to have a major impact on the degree of automation of airport processes (Ashford et

al., 2011). For instance, so-called self-service processes in use at check-in, immigration

or emigration facilities affect the required capacity levels (Castillo-Manzano & López-

Valpuesta, 2013; Shuchi et al., 2012). According to Kalakou et al. (2015, p. 203), a

number of key IT technologies such as "identity management and biometrics, near field

communications, big data analytics and smartphone applications" promise capacity gains.

Additionally, uncertainty originates from what customers may expect from an airport pas-

senger terminal in the future. On this issue, Landrum & Brown et al. (2010, p. 76) mention

potential future trends in the area of concessions and "food and beverage trends", which

would ultimately require airport operators to fundamentally adapt the design of passenger

terminal buildings.

Uncertainty in a corporate context includes unforeseen changes of contractual agree-

ments or changes of the corporate strategy. For instance, Burghouwt (2007, p. 188),

with reference to Genus (1995), explains that "airport management may have vague or

non-specified strategies, goals and objectives at the beginning and during the planning

process", which may lead to increased levels of uncertainty for ASP. As an example, the

privatisation of airports as well as mergers and acquisitions can affect ASP projects in a

significant way (Burghouwt, 2007; Kwakkel et al., 2010). Additionally, Butters (2010)

and IATA (2017) mention that the environment in which an airport operates can be a ma-

jor source of uncertainty. For example, the allocation and availability of resources, e.g.

staffing, maintenance activities, cleaning, etc., can affect the operational efficiency and

efficacy of an airport in a substantial way (IATA, 2017).
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2.3.2.2 Exogenous uncertainty

Exogenous uncertainty originates from outside of a company or organisation, namely

from (i) a market context, (ii) a political and cultural context or (iii) a use context (De

Weck et al., 2007). Uncertainty in the market context most prominently originates from

an under-estimation or an over-estimation of demand as well as errors in the actual fore-

casting methods. Besides that, airports are subject to uncertainty due to competition with

other airports, customers decisions, such as an airline’s decision to launch or withdraw

services, as well as volatilities in revenues, costs and the economy in general. Demand

uncertainty manifests itself in the overall volume of traffic, the traffic mix and the peaking

characteristics of traffic. According to Kincaid et al. (2012) and Kwakkel et al. (2010),

the aggregated volume of traffic, expressed in the total number of passengers per annum,

total number of ATM, air cargo volumes, etc., is both volatile over time and susceptible

to trend breakers, such as the 9/11 terrorist attacks. Indeed, historic evidence shows that

with increasing volatility of demand, the ability of airport planners to create a consist-

ent demand outlook is reduced significantly (Burghouwt, 2007; De Neufville & Barber,

1991).

Besides the absolute volume of demand, it is also the mix and type of traffic, which

poses a major source of uncertainty. The mix and type of traffic describes what the traffic

comprises, such as "domestic versus international, origin/destination (O/D) versus con-

necting, low cost carrier (LCC) versus full service/legacy carrier, turboprop versus re-

gional jet versus large jets, and so forth" (Kincaid et al., 2012, p. 14). It is well known

that the mix and type of traffic strongly depends on the business and network decisions

of the airlines frequenting an airport. For instance, LCCs are known for "routinely ex-

periment[ing] with alternative, non-traditional destinations" (De Neufville, 2008, p. 52),

which makes secondary airports often rather dependent on traffic generated by LCCs

(Chambers, 2007; Jimenez et al., 2017). Again, a network airline might decide to pro-

mote an O/D airport to a hub (or vice versa), which ultimately has an impact on the

demand patterns, and thus requires airports to adjust their infrastructure (IATA, 2017;



CHAPTER 2. LITERATURE REVIEW 47

Landrum & Brown et al., 2010). For passenger terminal facilities in particular, changes in

the traffic mix and type can substantially influence the capacity needed to meet demand.

Thus, a change in the ratio between domestic and international passengers affects pas-

senger flows through the immigration and emigration facilities, which ultimately defines

their required capacities.

The timing and magnitude of traffic peaks are subject to uncertainty as well (Burg-

houwt, 2007; De Neufville & Belin, 2002). While large airports and mature hubs tend to

be capacity saturated (see Section 2.1.4), and therefore less prone to peaking-related un-

certainty, smaller airports are often strongly affected by even small changes in the peaking

pattern (Chambers, 2007). At large airports which already handle a lot of traffic, the ad-

dition of a single flight scheduled to operate during the peak period has a less significant

impact on traffic flows during this time interval than is the case at a small airport, where an

additional flight affects the total peak load in a more pronounced way. A further point is

that airports are in competition with each other, which poses another source of uncertainty

(IATA, 2017). This is especially true for so-called multi airport systems, where multiple

airports share large parts of their catchment area (De Neufville et al., 2013). Finally, un-

certainty in the behaviour of passengers may have an influence on facility requirements

as well. For instance, the average number of pieces of baggage carried per passenger,

which affects the design and sizing of check-in facilities and baggage handling system

(BHS)s, is subject to uncertainty. It has been found that the number of pieces of baggage

carried per passenger "tends to vary by world region based on cultural factors", and has

significantly decreased over recent years "due to additional security requirements as well

as fees on checked baggage" (IATA, 2017, p. 34).

Global, regional or local economic conditions and economic cycles can lead to un-

certainty (Burghouwt, 2007; Kincaid et al., 2012; Magalhães et al., 2013). In the past,

it has been shown that during periods of economic growth air traffic tends to grow faster

than the economy, while it decreases more rapidly in times of economic downturn (Kin-

caid et al., 2012). Airports "that serve communities whose economy is dominated by one
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particular industrial activity, or by a single company’s business activities" are particularly

vulnerable to the general state of the economy (Landrum & Brown et al., 2010, p. 22).

Moreover, the deregulation of the aviation market led to increased demand volatility (De

Neufville & Barber, 1991), since, according to De Neufville et al. (2013, p. 94) "barriers

to changes in prices, frequency in services, and routes [were removed]". Kwakkel et al.

(2010) expect both the dynamics and the volatility of the market to increase even more

in the future thanks to global efforts to liberalise the market, for instance through open

sky treaties. Finally, uncertainty in general market conditions may affect energy prices

(De Neufville, 2008; IATA, 2017) or the cost of capital (Burghouwt, 2007; Magalhães

et al., 2013) and construction (De Neufville et al., 2013; Flyvbjerg et al., 2003; Knudsen,

1977), which, in turn, can strongly impact airports and their strategic plans.

2.3.3 Modelling of uncertainty

In an ASP project not all sources of uncertainty can be taken into account for a number

of reasons. For one thing, there are too many potential sources of uncertainty, and for

another, not all sources of uncertainty are of equal importance. Therefore, planners need

to focus on the sources of uncertainty that they feel will most affect the planning success

of an ASP project. Once these sources of uncertainty have been identified and selected

for further consideration, planners need to outline them with appropriate mathematical

models. For this purpose, the literature presents a number of different methods to model

uncertainty, which are categorised by Cardin (2014) and De Weck et al. (2007) as either

formal approaches or as practical procedures.

2.3.3.1 Formal approaches

According to De Weck et al. (2007), formal approaches are based on the application of: (i)

probability theory, such as by expressing the relative likelihood of occurrence of events or

outcomes, (ii) Bayesian probability, such as by expressing probabilities based on Bayes’

theorem, which allows one to reassess the plausibility of a statement in the light of new
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information, (iii) possibility theory, such as fuzzy logic (Zadeh, 1978), or (iv) Dempster-

Shafer theory; this is "based on belief functions and plausible reasoning, which is used

to combine separate pieces of information (evidence) to calculate the probability of an

event" (De Weck et al., 2007, p. 7). The first three approaches can be used if planners

have a solid understanding and knowledge of the drivers of the uncertainty they aim to

model. Therefore, planners require well-founded information on the (joint) probability

distributions of the drivers of uncertainty in order to apply one of these methods. In

practical planning applications, probability theory, Bayesian probability and possibility

theory are regularly applied in order to determine inputs for models, such as starting

conditions or parameters. In contrast, Dempster-Shafer belief functions (Dempster et

al., 1967; Shafer, 1976) are less frequently applied in the domain of ASP. However, it

should be emphasised here that, unlike other formal approaches, which are heavily reliant

on the availability of input data, Dempster-Shafer belief functions are to be favoured

for applications where no or only limited information on the sources of uncertainty is

available.

2.3.3.2 Practical procedures

Practical procedures can be divided into two distinct subgroups according to whether

a source of uncertainty is modelled with continuous real-valued variables or by means

of discrete events. Continuous real-valued approaches describe the parameter(s) of un-

certainty with real-valued random variables (De Weck et al., 2007). To this end, both

diffusion models and lattice models find application in the literature (Cardin, 2014).

Diffusion models. Diffusion models are solutions of stochastic differential equations in

which at least one term is a stochastic process. Stochastic differential equations are widely

used to model time-dependent processes which are subject to both deterministic trends,

also called drifts, as well as stochastic influences. In the literature on engineering systems,

geometric Brownian motion (GBM) is the most popular diffusion model used to describe
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sources of uncertainty (De Weck et al., 2007). According to Alexander (2008) and Seydel

(2006), a GBM is defined as any solution of the following stochastic differential equation

dXt

Xt
= µdt +σdWt (2.3)

where Xt describes the state of a property, such as the demand of an airport at time t.

µ is the percentage drift rate, which is a parameter describing the constant deterministic

growth rate of the property X , while σ is a parameter quantifying the constant percentage

volatility of X . Finally, Wt is a Wiener process, which is also called Brownian motion. As

such, a Wiener process is a stochastic process which has the following properties: (i) W0,

which is Wt at t = 0, is defined as W0≡ 0, (ii) the increments of Wt are normally distributed

with a mean of zero and a variance of t2− t1: Wt2 −Wt1 ∼N (0, t2− t1), given points in

time t2 > t1, (iii) all increments of the process over non-overlapping time intervals are

independent and (iv) Wt is a continuous process (Gubner, 2006; Seydel, 2006). According

to Ross (2014), Equation 2.3 mentioned above has the following analytical solution for

an arbitrary initial value X0:

Xt = X0 · exp
((

µ− σ2

2

)
t +σWt

)
. (2.4)

As can be inferred from Equation 2.4, the logarithm of the ratio between Xt and X0

follows a term which consists of two parts: (i) a deterministic part which is characterised

by the percentage drift µ and (ii) a stochastic part which represents random changes in

the process by means of Brownian motion. Thus, Xt is a random variable which follows a

log-normal distribution.

In order to model a variable subject to uncertainty by means of GBM, both the mean

percentage drift µ and the volatility σ must be estimated accordingly. De Weck et al.

(2007) and Mun (2002) propose the estimation of the average percentage drift µ by means

of the average observed relative change of X , and the volatility σ with the observed stand-

ard deviation of the relative change of the variable of interest. With a parametrised GBM,
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planners can now create so-called paths, also known as scenarios, that describe possible

future evolutions of the uncertain variable over a certain period of time. Because GBM

is based on a random process, there are an infinite number of such paths. Therefore, for

practical applications, planners usually sample, i.e. generate realisations of the random

process by means of Monte Carlo simulation, a large but finite number of paths (De Weck

et al., 2007). In order to cover as many of the potential future developments as possible,

the literature recommends the creation of between 2000 and 10000 individual scenarios

(Cardin et al., 2015; Cardin, Xie et al., 2017; De Neufville et al., 2006; Geltner & De

Neufville, 2018; Hu et al., 2018; Hu et al., 2020; Hu & Guo, 2019).

Most probably, the best known application of GBM is in the Black-Scholes model

(Black & Scholes, 1973), which is a model for the valuation of (European-style) financial

options. Besides that, GBM is used in numerous applications in order to model stock

prices (Reddy & Clinton, 2016), the price of natural resources, such as for wood (Thorsen,

1999), future cash flows of an airport (Pereira et al., 2006), electric power consumption

(Marathe & Ryan, 2005), etc. In the literature focusing on the applications of real options

in engineering systems, GBM is considered by some authors as "the conventional way" to

model uncertainty (Cardin et al., 2015, p. 257). Indeed, GBM is widely used in flexible

engineering systems applications, where it is used to model demand (Cardin & Hu, 2016;

Cardin, Xie et al., 2017; De Neufville et al., 2006; Hu & Cardin, 2015; Hu et al., 2018;

Jin et al., 2011; Suh et al., 2007; Zhang, 2016; Zhao et al., 2018), disposal costs (Hu et al.,

2018), or the price of real estate (Geltner & De Neufville, 2018).

Even though the application of GBM to model factors subject to uncertainty is ap-

praised by the literature, the method comes with deficiencies that are worth mentioning.

First, it is assumed that the percentage drift µ and the percentage variability σ are constant

properties, which, as illustrated by Marathe and Ryan (2005), is an assumption which does

not always hold under real-world conditions. Second, GBM assumes continuity in time,

meaning that jumps or discontinuities from one state to another cannot be modelled. For

this reason, planners must be sure that the processes they model by means of GBM are
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continuous. Because GBM represents the growth of a variable X by means of a log-normal

growth process, extremely rare events, such as a market crash, are under-represented or

even missing altogether. The log-normal distribution underlying GBM is not skewed,

which means that it is symmetric about the mean. Consequently, it is assumed, for ex-

ample, that extreme positive and negative growth rates have the same probability, but this

is often not the case in practical applications. And finally, diffusion models require a large

number of samples to be drawn, which can lead to greater complexity (Cardin, 2014).

Lattice models. In lattice models, time is considered a discrete quantity. Thus, in con-

trast to diffusion models, a quantity X is not represented continuously, but the state of

X is described exclusively for a discrete number of points in time. Lattice models are

based on a tree-like structure, i.e. starting from a predefined initial state X0 in time period

t = 0, a tree describing the evolution of possible states of X over time t is constructed.

From each time period to the next, the state of X can thereby only change according to a

number of previously defined paths, all of which have a given probability of occurrence.

For instance, as illustrated in Figure 2.1, in a binomial lattice model, the state of Xt can

only evolve to Xt+1 according to two distinct paths, known as u (up) and d (down), which

occur with probabilities p and 1− p, respectively5.

According to Chambers (2007), a binomial lattice model is statistically equivalent to

a GBM for ∆ t → 0 and t → ∞ if the following conditions apply for the up-movement u,

down-movement d and probability p:

u = exp(σ
√

∆ t)

d =
1
u

p =
1
2
+

µ
√

∆ t
2σ

.

(2.5)

5Besides binomial lattices, the literature also mentions trinomial and multinomial lattice models. In
a trinomial lattice, the state of X might evolve through 3 paths with assigned probabilities of occurrence,
while in a multinomial lattice, more than 3 paths are available. As a consequence, however, as the number
of possible paths increases, the complexity of the tree increases accordingly.
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Figure 2.1: Example of recombining binomial tree. One sample path is indicated in blue.

The lattice depicted in Figure 2.1 is recombining, where at each node the up and down

movements are symmetrical in magnitude but different in sign. This yields trees where,

for instance at time period t = 2, the middle mode is identical for the up bifurcation of

X0d in t = 1 and the down bifurcation of X0u in t = 1. Consequently, the number of nodes

in the tree and the number of paths to the same outcome are significantly reduced. In

contrast, if a downward movement following an upward movement does not lead to the

same state of X as when the process is carried out in the opposite direction, the resulting

tree is called a non-recombining tree. Non-recombining trees, however, become very

complicated (or bushy) with an increasing number of periods t.

In order to know which states the variable X can reach at which points in time or via

which paths these states can be reached, the entire tree must be determined. This process

can be very time-consuming and computationally intensive, especially when many points

in time and/or complex tree structures are considered. Therefore, it is advisable to limit

the number of periods in a lattice model. For instance, De Weck et al. (2007) point out

that for a small tree, e.g. 5 time periods, lattice models prove to be computationally more

efficient than GBMs, while Kwok (2008) mentions that the opposite is true for large trees,

where GBM can lead to better results in less computational time. Another disadvantage of

lattice models is the fact that the simultaneous modelling of several variables is extremely

limited (Cardin, 2014). For this reason, Mun (2002) explains that lattice models are better
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suited for problems where only one single source of uncertainty is considered, while GBM

is better capable of handling several sources of uncertainty.

Lattice models find wide application in the evaluation of (real) options, see Sec-

tion 2.4. To model uncertainty for engineering system-based applications, however, lattice

models are not used as often as GBM. Nevertheless, Chambers (2007) uses a binomial

tree to model uncertainty in airport demand, Chaize (2003) and De Weck et al. (2004)

model uncertain demand for communication satellites, Moel and Tufano (1999) model

uncertainty in copper prices and Khansa and Liginlal (2009) model uncertainty in cash

flow.

Discrete events. To model discrete events which are subject to uncertainty, such as

earthquakes, changes in policies or regulations, severe weather events, etc., the applica-

tion of either decision trees or scenario planning is recommended by the literature (Cardin,

2014; De Neufville, 1990; De Weck et al., 2007). A decision tree is a conceptual device

based on an enumeration which describes how an uncertain variable can evolve over a

number of decision nodes (similar to the nodes of the tree). At each decision node, the

uncertain variable can change its value or state based on a set of probable alternatives or

possible outcomes (De Neufville, 1990; Hansson & Hadorn, 2016). For instance, Cham-

bers (2007) presents a decision tree to model demand for an airport when considering the

uncertainty of market entries of low cost carriers. Scenario planning, also known as the

Delphi method (Helmer, 1967), is based on the generation of a limited number of scen-

arios by means of expert knowledge and opinion. These scenarios are defined in such a

way that they capture the entire range of "future worlds that might occur" (De Weck et al.,

2007, p. 10). Unlike most methods presented above, scenario planning does not require

large sets of input data, but rather relies on expert knowledge. However, the definition

of a scenario is usually a complex, complicated and lengthy task, which binds substantial

personal resources (Cardin, 2014). In the literature on flexible engineering systems, scen-

ario planning is infrequently mentioned. An example is provided by Silver and De Weck
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(2007), who describe uncertain future demand for heavy lift launch vehicles for space

exploration by means of scenario planning.

2.4 Evaluation and selection of facility requirements

Given both the candidate flexibilities for an engineering system as well as the factors of

uncertainty that have been identified and modelled by means of the methods presented in

Section 2.3, airport planners and DMs must determine which system design, i.e. which

candidate flexibility, is most beneficial. In Section 2.2.3, planners are advised to com-

pare the performance of all candidate flexibilities with the performance of an inflexible

baseline design. This allows DMs to select the candidate flexibility that achieves the best

performance. This candidate flexibility is the one that should then be implemented.

In Section 2.4.1, methods are presented that can be used to quantitatively and ob-

jectively describe the economic performance of candidate flexibilities. Such a valuation

method can be used to compare candidate flexibilities with the performance of the in-

flexible baseline design. Cost and revenue functions applied in the valuation model are

reviewed in Section 2.4.2. Furthermore, an economic evaluation model serves as the

foundation for both conventional and flexible CEP models, which are used in turn to cre-

ate optimal facility requirements for airport passenger terminal facilities. Conventional

CEP models are reviewed in Section 2.4.3, while Section 2.4.4 is dedicated to flexible

CEP models.

2.4.1 Economic evaluation of facility requirements

To evaluate the quality of candidate flexibilities or facility requirements, DMs must be

capable of "estimating how much [a certain] choice [,i.e. a facility requirement or candid-

ate flexibility,] may be worth" (De Neufville, 1990, p. 198). By conducting a ranking of

all evaluated choices "by some index of merit" and finally selecting the option which per-

forms best, the optimal facility requirement is selected accordingly (De Neufville, 1990,
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p. 198). The literature, as reviewed by Remer and Nieto (1995a, 1995b), presents vari-

ous indices of merit that can be used to evaluate facility requirements from an economic

perspective. As such, the indices can be assigned to 5 different groups: (i) net present

value methods, (ii) rate of return methods, (iii) ratio method, (iv) payback methods and

(v) accounting methods.

2.4.1.1 Net present value methods

The net present value (NPV)-method, often also referred to as the discounted cash flow

(DCF)-method, is based on the assumption that the economic performance of a system, a

facility, an asset, a project, etc. can be assessed with the discounted sum of all future cash

flows. Cash flows can be either costs Ct or revenuesRt which are incurred at certain points

in time t. Because the NPV method compares cash flows that occur at different points in

time, the so-called time value of money must be taken into account in each case. The time

value of money quantifies the opportunity costs of spending money rather than either sav-

ing it or investing it in some (more profitable) ways. As explained by De Neufville (1990,

p. 204), "a dollar now and a dollar later are not the same". Indeed, future money is usually

worth less, since (i) a "dollar today can be invested to start earning interest immediately"

(Brealey et al., 2018, p. 14), and (ii) "future money might not materialize in full or at all,

since the future is uncertain" (Geltner & De Neufville, 2018, p. 2). Consequently, cash

flows occurring at different points in time can only be compared with each other once

they have been discounted, which means that they have to be brought to a common point

in time. For this reason, DMs and planners often determine the present value of future

cash flows. For this purpose, the present value PV (·) of a revenueRt or cost Ct occurring

at point in time t is calculated with these compound amount formulae6

PV (Rt) =
Rt

(1+δ )t PV (Ct) =
Ct

(1+δ )t (2.6)

6The compound amount formula is used to calculate the present value of a cash flow which occurs after
t periods. To calculate the present value in a continuous way, the continuous amount formula, which is
defined as PV (Rt) =Rt exp(−δ t) and PV (Ct) = Ct exp(−δ t), can be applied accordingly.
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where 0≤ δ ≤ 1 is the discount rate, which "represents the way money now is worth

more than money later" (De Neufville, 1990, p. 205). As such, the discount rate δ "ac-

count[s] for time and risk", i.e. the opportunity costs of future cash flows (Geltner &

De Neufville, 2018, p. 2). The discount rate is a pivotal parameter which significantly

affects the resulting present values (De Neufville, 1990). To illustrate matters, the earlier

(from the present day) a cash flow occurs and the lower the discount rate, the higher is the

resulting present value, while the opposite is true for high values of δ and/or cash flows

emerging in the far future (De Neufville & Scholtes, 2011). Consequently, the selection

of a reasonable and realistic discount factor is not a trivial matter, but rather a topic of

ongoing investigations and discussions in the literature (Brealey et al., 2018).

The discount rate is the rate of return applied to adjust future cash flows to their present

value. As such, the discount rate should always be equal or greater than the internal cost of

capital of a company (De Neufville, 1990). For the choice of an appropriate discount rate,

many authors therefore recommend using the weighted average cost of capital (WACC)

after taxation, which "represents the average cost return expected by the owners and banks

that finance a project" (De Neufville & Scholtes, 2011, p. 201). Other scholars recom-

mend defining the discount rate based on the sum of the risk free rate and a risk premium

(Geltner & De Neufville, 2018). With this method the risk free rate specifies the interest

rate, and thus the return that an investment with zero risk, such as a government issued

bond, yields. The risk premium, on the other hand, quantifies "what the market ’offers’

to investors as the amount of extra expected return . . . that compensates investors for

taking on the risk associated with the given investment" (Geltner & De Neufville, 2018,

p. 18). For many practical applications, however, planners cannot choose a discount rate

at all, but rather have to apply a value which is imposed by a competent authority or the

management. Therefore, there is no such thing as a universally applicable discount rate,

but rather the choice of an appropriate value is company-specific. Nevertheless, there

are certain general tendencies: De Neufville (1990, p. 230) points out that discount rates

are usually "lower in industries regulated by the government than for companies that are
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not", since activities involving the government are usually subject to less risk than this is

the case in solely industry-driven undertakings. Here, De Neufville states that companies

in the private sector typically apply discount rates in the range of 10 % to 15 %, while

the discount rate for state-regulated companies is often less than 10 %. However, these

figures appear to be rather high for the current market conditions in which the risk-free

rate is substantially lower than it used to be 30 years ago (Organisation for Economic

Co-operation and Development [OECD], 2021).

Under the assumption that (i) the discount rate δ is known and constant over the entire

planning horizon T for which an engineering system shall be evaluated, and (ii) future

costs and revenues can be forecasted for all planning phases t = 1,2, . . . ,T considered,

the net present value NPV of a project, an asset, a system, etc., is defined as

NPV =−C0 +
T

∑
t=1

1
(1+δ )t (Rt−Ct) (2.7)

where C0 specifies the initial costs of a project occurring at t = 0. Equation 2.7 can

thus be applied to calculate the NPV of an airport passenger terminal facility i. It is

assumed that for facility i both the future operational capacity Ki = [Ki,1,Ki,2, . . . ,Ki,T ]

as well as the expected DHL demand levels di = [di,1,di,2, . . . ,di,T ] are known for all

planning phases t = 1,2, . . . ,T considered in an ASP project. Consequently, the NPV is

defined as

NPV (Ki,di) =−C0 +
T

∑
t=1

1
(1+δ )t (Ri,t(di,t ,Ki,t)−Ci,t(di,t ,Ki,t)) (2.8)

where revenues Ri,t(di,t ,Ki,t) and costs Ci,t(di,t ,Ki,t) are assumed to be a function of

DHL demand di,t and operational capacity Ki,t in planning period t.

In the valuation of projects using the DCF-method, DMs are advised to accept projects

with a positive NPV and reject those which result in negative NPVs, since projects with a

positive NPV add value to a company. If there are more than one project alternative with

positive NPVs to choose from, DMs should select the variant that comes with the highest
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NPV.

Because of its universal applicability, certain scholars see the DCF-method as the

"workhorse" of infrastructure project evaluation methods (Geltner & De Neufville, 2018,

p. 2). This explains why the DCF-method is widely used for the evaluation of infrastruc-

ture and real estate projects in general (De Neufville, 1990; De Neufville & Scholtes,

2011; Geltner & De Neufville, 2018). Besides this, the method is also applied in other

areas, such as in the chemical engineering industry (Garrett, 2012), for the planning of

railway and highway infrastructure (Milenković et al., 2016; Rogers & Enright, 2016),

electricity supply infrastructure (Khatib, 2003), etc. For airport-related applications, the

DCF-method also finds widespread acceptance, such as for example to analyse refurbish-

ment options for airport passenger terminals (Parker et al., 2011), to evaluate airport se-

curity infrastructure (Stewart & Mueller, 2014) or to evaluate the re-utilisation of airports

(Nikoloudis et al., 2017).

2.4.1.2 Rate of return methods

Rate of return methods calculate the discount rate required for a project to achieve a NPV

of zero. Rates of return can therefore be regarded as benchmarks: if the rate of return

achieved by a project is higher than the cost of capital of a company, an investment is

profitable. For airport-related infrastructure projects, rate of return methods have been

applied for instance for the determination of (fair) return rates for shareholders of airports

(Carney & Mew, 2003; Chaudhuri et al., 2015), the evaluation of airport capacity options

(Irvine et al., 2015) or for airport parking facilities (Javid & Seneviratne, 2000).

2.4.1.3 Ratio methods

Ratio methods evaluate a project by comparing two measures with each other. The cost-

benefit ratio method, which compares the costs of a project with the expected benefits, is

most popular. While experience shows that capturing costs is straightforward, quantify-

ing the benefits can sometimes be complicated (Remer & Nieto, 1995b). In the United
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States, airport infrastructure projects which are funded through the Airport Improvement

Program of the FAA and whose volume exceeds 10 million US Dollars, must be eval-

uated with a cost-benefit analysis, as documented in FAA (2019). Similarly, Jorge and

de Rus (2004) present a framework for the evaluation of airport infrastructure projects by

means of cost-benefit analyses. In the context of ASP-related applications, cost-benefit

analyses have been applied to evaluate airport improvements (Landau et al., 2010), taxi-

way infrastructure projects (Daniel, 2002), baggage carousels (Yoon & Jeong, 2015) or

airport security infrastructure (Stewart & Mueller, 2014).

2.4.1.4 Payback methods

Payback methods examine how long a project has to generate revenues until the initial

expenses are recouped (Remer & Nieto, 1995b). Payback methods find some application

in the area of airport infrastructure projects, such as the evaluation of multi-airport sys-

tems (De Neufville, 1995) or the selection of airports which are suitable for an expansion

(Berawi et al., 2018).

2.4.1.5 Accounting methods

Finally, accounting methods are "primarily accounting concepts of a project’s profitab-

ility" Remer and Nieto (1995b, p. 116), such as "accounting profit, book value, average

book value and depreciation". Airport-related applications of accounting methods are not

further discussed in this study, since they are usually company-specific.

For the evaluation of facility requirements, not all of the indices of merit listed above

are used equally often in the literature. Indeed, according to Luss (1982), Martínez-Costa

et al. (2014) and Van Mieghem (2003), most studies on the conventional CEP use (i)

the net present value of an organisation or a project, (ii) the present value of the total

resulting operating profit or (iii) the sum of the present values of all incurring costs. All

of these methods are based (at least in part) on describing the future costs and revenues

of a system or project. For this reason, the next section examines the costs and revenues
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that can transpire over the entire planning period of engineering systems in general and

airport passenger terminal facilities in particular.

2.4.2 Cost and revenue functions

In CEP models, a large number of different cost and revenue sources of engineering sys-

tems are taken into account. For a good overview, the reader is referred to Geng and Jiang

(2009), Julka et al. (2007), Martínez-Costa et al. (2014), Van Mieghem (2003) and Wu

et al. (2005). In this section, costs and revenues relevant for airport passenger terminal

facilities are discussed in more detail.

2.4.2.1 Installation costs

Installation costs, or investment costs, describe the costs arising from the installation of

∆Ki units of capacity at facility i. As explained by Luss (1982), installation costs CIt

can be described by a number of different cost functions, such as the fixed charge cost

function or the power cost function. Fixed charge installation costs for airport passenger

terminal facility i are defined as

CIt (∆Ki,t) =





0 if ∆Ki,t = 0

ci0 + ciK∆Ki,t if ∆Ki,t > 0
(2.9)

where ∆Ki,t = Ki,t−Ki,t−1 describes the capacity adjustment for facility i in planning

phase t, ci0 are the fixed costs associated with any capacity adjustment irrespective of

∆Ki,t , while ciK are unit installation costs which describe the average cost per unit of

capacity. In airport-related applications, fixed charge installation cost functions have been

used by Chen and Schonfeld (2013) in order to describe the installation costs of new

airport gates, by Solak et al. (2009) for airport passenger terminal facilities, as well as

by Sun (2016) and Sun and Schonfeld (2015, 2016, 2017) to model installation costs of

airport infrastructure in general.
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To capture EoS effects, which describe the decreasing marginal costs of large capacity

adjustments, a power cost function in the following form is often applied in the literature

(Luss, 1982; Van Mieghem, 2003)

CIt (∆Ki,t) = ciK · (∆Ki,t)
αK (2.10)

where 0 < αK ≤ 1 is the EoS factor, which describes the extent of the savings that

are achieved by EoS. At αK = 1, no EoS savings are experienced, while at 0 < αK < 1,

EoS savings are realised. Indeed, the closer the value chosen for αK is to zero, the more

pronounced are the EoS savings. According to Cardin and Hu (2016), a reasonable range

for αK for real-world engineering system projects is 0.6 < αK ≤ 1.

2.4.2.2 Operating costs

Operating costs describe the costs that arise from the operation and maintenance of a facil-

ity. To this end, Martínez-Costa et al. (2014) differentiate between production-operating

costs and holding-maintenance costs. While the former consist basically of processing

and production costs (Bihlmaier et al., 2009; Geng et al., 2009; Mitra et al., 2014) or

material, labour and overhead costs (Thomas & Bollapragada, 2010), the latter specify

the costs of keeping an inventory (Geng et al., 2009; Luss, 1984; Zhang et al., 2012), as

well as maintenance costs (Luss, 1982; Rajagopalan, 1998).

Most authors model operating costs as a linear function of operational capacity Ki,t

and/or demand di,t

COt (Ki,t) = coK,iKi,t COt (Ki,t ,di,t) = coK,iKi,t + cod,idi,t (2.11)

where coK,i and cod,i are the unit operating costs per unit of capacity and demand,

respectively. In airport planning applications, operating costs as defined in Equation 2.11

are used by a number of authors. For instance, Sun (2016) and Sun and Schonfeld (2015,
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2016, 2017) model operating costs of airport facilities, Ju et al. (2007) determine operating

costs of passenger terminal facilities, or Adacher and Flamini (2020) and Adacher et al.

(2017) calculate the operating costs of facilities used by departing passengers in an airport

passenger terminal and check-in desks in particular.

2.4.2.3 Delay costs

When facilities are experiencing high levels of utilisation, which happens when demand is

close to or even above the maximum throughput of a system, congestion and delays occur.

The relationship between the utilisation of a facility and the expected level of delay which

may result is extremely non-linear: the closer demand is to the maximum throughput of a

plant, the faster waiting times and queues grow (De Neufville et al., 2013).

In order to quantify the disadvantages caused by congestion, delay costs are often

specified. The determination of such costs depends significantly on the system under

consideration. In systems where storable goods are produced, for example in manufactur-

ing, delay-related costs can arise due to shortages, inventories and back-orders (Angelus

& Porteus, 2002; Atamtürk & Hochbaum, 2001; Martínez-Costa et al., 2014; Rajagopalan

& Swaminathan, 2001; Van Mieghem, 2003). However, in applications where "goods"

cannot be stored, such as in communication networks or in the service industry, the use of

inventories and stocks is not a viable option. As such, it is impossible to store telephone

calls or to backlog passengers in an airport passenger terminal. In these circumstances,

two distinct methods to specify delay-related costs are mentioned in the literature: (i)

pricing the experienced waiting times, or (ii) pricing the provision of over-capacity or

under-capacity.

The first approach, which is based on two steps, considers the discomfort and incon-

venience which customers are exposed to in a congested facility. In the first step, the

expected (average) waiting time of the customers is estimated by either applying analyt-

ical models, queueing system models or simulation models (Wu & Mengersen, 2013). In

a second step, the estimated waiting times are transformed into waiting-related costs.
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Regarding analytical models, the literature presents approaches to estimate conges-

tion levels by means of approximation functions and queueing system models. As can

be inferred from the name, approximation functions estimate the non-linear relationship

between utilisation and delay. For instance, Solak (2007) and Solak et al. (2009) use tri-

angular, parabolic and half-elliptical functions to approximate the relationship between

the passenger flow rate through a passenger terminal facility and the resulting maximum

delay experienced by passengers. In a similar manner, walking times in passageways are

approximated using a deterministic function which expresses free-flow walking speed as a

function of pedestrian density. Sun (2016) and Sun and Schonfeld (2015, 2016, 2017) ap-

ply non-decreasing and convex "facility performance functions", i.e. an analytical model,

to describe the relationship between capacity utilization and delays.

Queueing system models are based on a mathematical description of the non-linear

relationship between utilisation and delay (Hopp & Spearman, 2011). For airport-related

applications, a large number of different queueing system model types are presented, both

deterministic as well as stochastic in nature (Wu & Mengersen, 2013). For instance, Chen

and Schonfeld (2013) apply a M/G/1 queueing system7 to model delay costs experienced

at congested airport gates and Suryani et al. (2010) approximate delay costs of congested

runways with an M/G/1 queueing system.

Analytical models and queueing system models are based on simplifications and as-

sumptions, for which reason these models usually require very little computing time.

However, with analytical models and queueing system models it is not possible to con-

sider dynamic effects affecting congestion and delays. For example, the estimation of

delays for a number of interconnected and interdependent passenger terminal facilities

can be very challenging or even impossible. In order to take such complex dependen-

cies into account, simulation models, such as DES models are used in the literature. For
7The literature uses Kendall’s notation to classify queueing system models. This notation is based on

three parameters: A/B/m. A describes the arrival process used, B specifies the service time distribution and
m denotes the number of servers of a queueing system. For the M/G/1 queueing system mentioned here,
this means that the arrival process is memoryless and described with a Poisson process, the service times
are generally distributed and the queueing system consists of one single server (Hopp & Spearman, 2011).
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instance, Yoon and Jeong (2015) present a capacity planning model for the baggage carou-

sels of Seoul Incheon International Airport which makes use of a DES model to simulate

delay levels in function of the provided capacity level and demand. However, planners

must be aware that simulation models often come with high computational requirements

and an increased need for input and parametrisation (Janic, 2007).

Once the waiting times have been estimated with one of the approaches mentioned

above, delay costs can be determined accordingly. In practice, the determined average

waiting time is often multiplied with an estimated unit delay cost, which quantifies the

cost of a hour’s wait of a single passenger. According to Sun and Schonfeld (2015)

and Yoon and Jeong (2015), suitable values for unit delay costs applicable to airport

applications are provided in Jorge and de Rus (2004) or Martín and Voltes-Dorta (2011).

The second approach to quantify delay costs mentioned in the literature is based on

the collection of penalty costs for oversized and/or undersized systems. Here, both the

provision of unneeded capacity which remains unused over large periods of time as well

as the provision of too little capacity which can lead to delays and congestion, is penal-

ised. Saffarzadeh and Braaksma (2000) present an "optimum resource utilization model

for passenger terminal buildings" which couples a DES model of the terminal with a ca-

pacity planning model. For given demand and capacity levels, Saffarzadeh and Braaksma

determine the resulting LoS of the passenger terminal facilities with the DES model. If

sub-optimal LoS levels are achieved, this circumstance is sanctioned with penalty costs.

For this purpose, the provision of too many or too few units is determined and multiplied

with a corresponding unit penalty cost which is based on "historical data" and determined

with "engineering judgement" (Saffarzadeh & Braaksma, 2000, p. 77).

2.4.2.4 Revenues

Various CEP models also consider revenuesRt (Hiller & Shapiro, 1986) or the net profits

generated by a company, a process or facility (Chen & Lu, 2012; Geng et al., 2009; Lim,

Abdul Manan et al., 2013; Lim, Manan et al., 2013; Wang et al., 2008). In airport-
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related applications, the literature often estimates revenues generated from passengers by

multiplying the number of passengers, i.e. the demand, with a constant unit revenue factor

(Ju et al., 2007).

2.4.3 Conventional capacity expansion problem

DMs are interested in determining facility requirements which are optimal. This refers

to facility requirements that lead to the best value of the index of merit selected, such as

the largest NPV, the greatest profits or the lowest costs. For this reason, the selection of

optimal facility requirement is an optimization problem known as the capacity expansion

problem (CEP). This section explains how optimal conventional facility requirements can

be determined using so-called conventional CEP models. Section 2.4.4 then discusses the

flexible CEP models that can be used to determine optimal flexible facility requirements.

As explained in Section 2.1.2, conventional facility requirements can be viewed as

schedules which define when (timing) and how (size, types) capacity is adjusted by means

of expansions and extensions or, if need be, the decommissioning and removal of exist-

ing infrastructure in order to meet demand over a certain planning horizon T of a stra-

tegic planning project (Luss, 1982; Van Mieghem, 2003). For airport passenger terminal

facility i conventional facility requirements can therefore be formally expressed with a

capacity vector Ki = [Ki,1,Ki,2, . . . ,Ki,T ], which specifies the operational capacity Ki,t in

each planning period t = 1,2, . . . ,T . Thus, the goal of a conventional CEP model is to

determine the optimal capacity vector K∗i , which ultimately leads to the highest value

of the index of merit selected. The resulting optimization problem is often complicated

by the fact that capacity is usually considered indivisible (Dixit & Pindyck, 2012; Van

Mieghem, 2003), which means that it can only be provided in whole units8. Furthermore,

capacity is a non-negative property by definition, meaning that the provision of negative

capacity is not possible. Consequently, each element Ki,t of capacity vector Ki must be a

8For example, airports can only install either 3 or 4 check-in desks, and consequently, it is impossible
to install 3.2 check-in desks.
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non-negative integer

Ki,t ∈ N0 = {0,1,2, . . .}. (2.12)

The literature presents a large number of different types of conventional CEP models.

The simplest CEP models are based on the seminal paper of Manne (1961), which "con-

sider[s] the trade-off between the economies-of-scale savings of large expansion sizes

versus the cost of installing capacity before it is needed" in order to determine when

and how capacity should be adjusted best over time in order to meet demand (Luss,

1982, p. 908). While Manne (1961) focuses solely on capacity expansions, the literat-

ure also mentions conventional CEP models that allow for capacity reductions (Eppen

et al., 1989), capacity replacement, depreciation and degradation (Rajagopalan, 1998),

infrastructure renewal (Benedito et al., 2016), technology replacement (Wang & Nguyen,

2017), outsourcing (Rajasekharan & Peters, 2000) or a combination of these. Besides the

timing and sizing of capacity adjustments, CEP models might also consider the types of

capacity and the location where capacity is to be provided best (Martínez-Costa et al.,

2014; Van Mieghem, 2003). CEP models which consider more than one type of capacity,

such as different machines or different technologies are known as multi-type CEP models.

Such models are, for example, presented by Ahmed and Sahinidis (2003) and Karabuk

and Wu (2003). In contrast, multi-location CEP models consider the provision of capa-

city at different geographic locations (Bhutta et al., 2003; Bihlmaier et al., 2009; Eppen

et al., 1989; Fleischmann et al., 2006; Shulman, 1991). Consequently, multi-location

CEP models often also deal with transportation issues, since they are often applied to

global manufacturing problems, such as the optimal definition of a global car production

network (Fleischmann et al., 2006). For most ASP-related purposes, both multi-type as

well as multi-location CEP models can be ignored, since airports usually do not deal with

various types of capacity provided simultaneously, (e.g. different means to conduct the

security check of passengers), and operate at one location only.

In the literature, a distinction is made between three different CEP model types: (i)
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stationary models, (ii) infinite time horizon models and (iii) finite time horizon models.

Stationary models determine optimal capacity levels independently of time by applying

queueing models or newsvendor models (Van Mieghem, 2003). They are best suited for

applications in industries with short life cycles, such as the high-tech industry (Wu et al.,

2005). For ASP applications, however, stationary capacity planning models might not be

suitable due to the comparatively long life cycles of airport infrastructure.

Infinite time horizon models aim to determine optimal capacity levels over an infin-

ite planning horizon. The most fundamental infinite horizon capacity planning model is

presented in the seminal paper by Manne (1961), who determines the optimal capacity re-

lief size and relief interval given deterministic demand. For a more in-depth overview on

infinite time horizon CEP models, the reader is referred to Freidenfelds (1981) and Luss

(1982). To the author’s best knowledge, infinite time horizon capacity planning models

have not been applied in the field of ASP.

Finite time horizon models, which are reviewed by Martínez-Costa et al. (2014), are

defined for a planning horizon T , which is further divided into a finite number of planning

periods t = 1,2, . . . ,T . Finite time horizon models "seek answers for when and how much

capacity to build in a dynamically changing environment", which explains their frequent

use in the literature (Wu et al., 2005, p. 130). The basic structure of a finite time horizon

model is shown below using the example of a CEP model for an airport passenger terminal

facility i. The example is based on the assumption that the NPV is used as the index of

merit. For a general overview on the topic and for further information on applications of

conventional CEP models in other fields, the reader is referred to Geng and Jiang (2009),

Julka et al. (2007), Martínez-Costa et al. (2014), Van Mieghem (2003) and Wu et al.

(2005).

The literature further distinguishes between deterministic and stochastic CEP mod-

els. Deterministic CEP models do not consider uncertainty or the "stochastic nature of

the inputs and parameters of the [model’s] formulation", while the opposite is true for

stochastic CEP models (Martínez-Costa et al., 2014, p. 73).
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2.4.3.1 Deterministic capacity expansion problem

Deterministic CEP models do not take into account inputs or parameters that are subject

to uncertainty but assume only one single version of the future. Assuming that (i) DHL

demand di for airport passenger terminal facility i is known for all planning periods t

within a given planning horizon T , and (ii) the NPV of facility i has been selected as the

index of merit by which facility requirements are evaluated, a deterministic finite time

horizon CEP model for facility i is defined as follows:

arg max
Ki

NPV (Ki,di) (2.13a)

s.t. Ki,t ∈ N0 (2.13b)

where capacity vector Ki = [Ki,1,Ki,2, . . . ,Ki,T ] is the decision variable of the optimiz-

ation problem. To ensure indivisibility and non-negativity of capacity, all elements Ki,t of

the capacity vector are restricted to N0, as indicated in Constraint 2.13b. Further, arg max

denotes an operation that chooses Ki such that the objective function, i.e. NPV (Ki,di),

is maximized.

The inputs, i.e. the demand, and the constraints of the above-mentioned model are

deterministic, and, as previously mentioned, deterministic CEP models are not capable of

considering uncertainty. Indeed, Model 2.13 is based on the formulation of one single ver-

sion of the future, expressed with DHL demand vector di. Therefore, planners quite often

use average values for parameters or single most probable future outlooks as input data

for deterministic CEP models. However, this approach is somewhat problematic, since

one might "fall into the trap of the flaw of averages" (De Neufville & Scholtes, 2011,

p. 16). The flaw of averages, also known as Jensen’s inequality, states that the evaluation

of a design or a model based on the expected or average scenario is generally not equal9

to the expectancy of the evaluations of all possible scenarios describing probable future

9Please note that inequality does not hold when the function or model is linear.
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developments (Savage & Markowitz, 2009). In order to take all possible future devel-

opments into account, inputs or parameters of CEP models must therefore be described

stochastically.

2.4.3.2 Stochastic capacity expansion problem

To consider uncertainty, the deterministic CEP presented in Model 2.13 is extended to

a stochastic CEP model by means of a stochastic program, in which the objective func-

tion, the inputs or the constraints are subject to uncertainty that is expressed with (multi-

dimensional) random variables ξ ∼ F . The random variables are assumed to follow

known probability distributions F (Bakker et al., 2020). The goal of a stochastic pro-

gramming model is to determine the stochastically optimal value of the decision variable.

This refers to the value of the decision variable that minimizes or maximizes the expected

value E [·] of the objective function. Therefore, Model 2.13 can be extended to a stochastic

CEP model as follows:

arg max
Ki

Eξ∼F [NPV (Ki,ξ)] (2.14a)

s.t. Ki,t ∈ N0 (2.14b)

Stochastic CEP models are either expressed as two-stage or as multi-stage problems,

both of which are based on the concept of recourse. In a two-stage stochastic CEP model,

some capacity expansion decisions are taken prior to the observation of any uncertainty,

and as a consequence of these decisions, the expected value of the objective function is

minimized or maximized after the uncertainty has been disclosed. In this way, decisions

made at the first stage can be optimized by means of recourse actions at the second stage.

Multi-stage stochastic CEP models are a generalisation of two-stage models (Birge &

Louveaux, 2011) which allow DMs to "capture the dynamics of real-world decision mak-

ing" better (Bakker et al., 2020, p. 3). As such, in a multi-stage stochastic program,
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recourse decisions are made sequentially in such a way that "every recourse decision [in

stage t] will be selected based on the expected value of this decision for stage t− 1 as-

suming that every future decision will be optimal" (Torres-Rincón et al., 2021, p. 5). In a

multi-stage case, random variable ξ is extended to a stochastic process whose realisations

follow a known probability distribution F .

2.4.3.3 Deterministic counterpart to the stochastic capacity expansion problem

Stochastic CEP are very hard to solve, especially if the probability distributions under

examination are continuous and the model consists of multiple stages. For this reason,

so-called scenario-trees (Dupačová et al., 2000) are often introduced in order to discret-

ise the underlying stochastic process by means of a number of scenarios s = 1,2, . . . ,S

which describe possible realisations of the stochastic process over all stages or plan-

ning phases t = 1,2, . . . ,T . In this study, a scenario s is expressed by means of vector

ξs =
[
ξ s

1 ,ξ
s
2 , . . .ξ

s
T
]
. By introducing a finite number of scenarios ξs, the stochastic CEP

model presented in Equations 2.14 can be transformed into its deterministic counterpart

(Bakker et al., 2020), which is defined as follows:

arg max
Ki

S

∑
s=1

ps (NPV (Ki,ξ
s)) (2.15a)

s.t. ξs ∈Ω , (2.15b)

Ki,t ∈ N0, (2.15c)

p1 = p2 = . . .= pS, (2.15d)

0≤ ps ≤ 1, (2.15e)

S

∑
s=1

ps = 1 (2.15f)

where ps expresses the occurrence probability of scenario ξs, which, for the purpose

of this study, is equal for all scenarios.
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2.4.3.4 Solution procedures

Solving a conventional CEP model means that the optimal value of the decision variable

is determined. Unfortunately, the literature does not present one universally applicable

solution procedure but rather a large number of different solution procedures, some of

which are very application-specific.

Deterministic CEP models expressed as linear programs can be solved with special

algorithms, such as the simplex algorithm (Dantzig, 1955). Quite often, however, con-

ventional CEP models are too complex to be solved within reasonable time. For this

reason, authors introduce so-called relaxations, which are simplifications of the optimiz-

ation problem that allow for a more efficient solution procedure. For example, an integer

program can be relaxed to a linear program. Another way to simplify an optimization

problem is to divide it into several small sub-problems, which are easier to solve (Birge &

Louveaux, 2011). Moreover, the objective functions of non-linear CEP models, e.g. non-

linear cost functions, are often relaxed by means of linear approximations, as for instance

carried out by Sun and Schonfeld (2015).

Stochastic CEP models are even more complex to solve than deterministic CEP mod-

els. For this reason, stochastic CEP models are often converted into their deterministic

counterparts by the introduction of a finite number of scenarios of uncertainty in order

to simplify the solution procedure. Subsequently, the deterministic counterpart can be

further simplified with the above-mentioned methods for deterministic CEP models.

According to Martínez-Costa et al. (2014), the solution procedures applied in the lit-

erature have evolved over time. Before the year 2000, a majority of authors applied either

approximate algorithms or heuristics. Approximate algorithms are efficient procedures

based on a mathematical proof that enable the determination of good solutions to the op-

timization problem whose distance to the optimal solution is less than a guaranteed value.

In contrast, heuristics, which can also be used to determine good solutions, cannot provide

any information on the quality of the solution. After the year 2000, authors predomin-

antly used commercial solvers, such as CPLEX, Xpress-MP or the solver of Microsoft
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Excel (Martínez-Costa et al., 2014). For very complex problems which, for instance,

have non-linear objective functions, a large number of variables and/or large numbers of

constraints, Martínez-Costa et al. (2014) report the usage of the genetic algorithm (GA),

which is a meta-heuristic belonging to the class of evolutionary algorithms. GAs enable

the near-optimal solution of complex optimization problems by means of processes ob-

servable in natural evolution, i.e. selection, reproduction, crossover and mutation (Bäck,

1996; Fogel, 2006; Holland, 1992; Michalewicz, 2013).

2.4.3.5 Applications of conventional CEP models

Conventional CEP models are used for a large number of applications, such as among

others in manufacturing (Julka et al., 2007; Martínez-Costa et al., 2014), the heavy in-

dustries (Ulstein et al., 2006), the electronics and semiconductor industry (Geng & Jiang,

2009; Wu et al., 2005), the chemical or pharmaceutical industry (Mitra et al., 2014),

the automotive industry (Bihlmaier et al., 2009; Fleischmann et al., 2006), the consumer

goods industry (Rajagopalan & Swaminathan, 2001), telecommunications (Gendreau et

al., 2006), the oil industry (MirHassani & Noori, 2011), electricity and power generation

(Parpas & Webster, 2014), network design (Pimentel et al., 2013), urban transportation

network design (Farahani et al., 2013), urban water resource systems (Mortazavi-Naeini

et al., 2014) or seaports (Dekker et al., 2011).

In terms of airport-related applications, a number of relevant studies are mentioned in

the literature. Solak (2007) and Solak et al. (2009) present a holistic passenger terminal

CEP model which considers the capacity of the terminal to be optimal if the processing

and walking times for passengers are as short as possible. This model is based on a

multi-commodity flow network by means of which the processing and walking times are

determined, subject to the provided capacities and stochastic demand. To simplify the

non-linear relationship between facility utilisation and delays, Solak (2007) and Solak

et al. (2009) make use of analytical approximation functions. Their proposed multi-stage

stochastic CEP model is subsequently solved with a specifically developed heuristics solu-
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tion algorithm. Sun (2016) and Sun and Schonfeld (2015, 2016, 2017) present stochastic

CEP models for airport facilities such as airport terminals, runways and cargo facilities;

these aim to minimize the sum of investment, operational and delay costs incurred over

the entire planning horizon. Here, delay costs, which are modelled as non-linear func-

tions, are linearised with the outer-approximation technique, and subsequently the model

is solved by means of commercial solvers such as CPLEX (Sun & Schonfeld, 2015, 2017)

or FICO-Xpress (Sun & Schonfeld, 2016).

In addition to these models mentioned above, which can be applied to several different

airport (terminal) facilities, the literature also covers facility-specific CEP models. Chen

and Schonfeld (2013) determine optimal capacity for airport passenger terminal gates by

means of an analytical model which enables planners to determine the optimal timing

and sizing of gate capacity adjustments in such a way that the total system costs are

minimized. For this model, which considers uncertainty in demand and construction lead

times, an analytical solution is presented. Finally, Yoon and Jeong (2015) suggest a CEP

model for the determination of optimal facility requirements for the baggage carousels at

Seoul International Airport in the Republic of Korea. Facility requirements are considered

to be optimal if they maximize the cost-benefit ratio of the facility. The benefits of an

expansion project are quantified in the potential savings in waiting times experienced

by passengers. To this end, a DES model of the baggage carousel facility is used to

calculate the resulting waiting times as a function of the provided capacity and demand.

In terms of costs, Yoon and Jeong use construction and installation costs of capacity

adjustments. Because only 23 different candidate flexibilities are considered, optimal

capacity is determined with the enumeration technique.

2.4.4 Flexible capacity expansion problem

Conventional CEP models come with a serious limitation; they do not consider manage-

ment interactions (Čulík, 2016; Schachter & Mancarella, 2016). Indeed, with conven-

tional CEP models, one single (stochastically) optimal capacity vector is defined and then
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applied. Therefore, conventional facility requirements prevent DMs from adapting the

plans to changing circumstances as uncertainty is disclosed. Put differently, conventional

facility requirements do not allow planners "to capitalize on good fortune or to mitigate

loss" (Brealey et al., 2008, p. 58), since they are not able to "adapt if the actual situations

do not follow the modelled scenarios" (Cardin & Hu, 2016, p. 2). Because conventional

facility requirements are rigid and do not allow for management interaction, they cannot

be used for flexible engineering systems which are based on real options.

This section describes how to create facility requirements for flexible engineering

systems. Such flexible facility requirements are able to take into account active decision-

making processes. Thus, flexible facility requirements give planners and DMs the possib-

ility to adapt the engineering system to changing circumstances as uncertainty unfolds.

This capability enables flexible facility requirements to increase the value of an engin-

eering system (Brealey et al., 2008; De Neufville et al., 2008; Geltner & De Neufville,

2018; Schachter & Mancarella, 2016). In fact, studies have shown that engineering sys-

tems planned with flexible facility requirements perform between 10 % to 30 % better

financially than systems planned with conventional facility requirements (De Neufville &

Scholtes, 2011).

2.4.4.1 Real option analysis

To evaluate the economic value of real options, so-called real options analysis (ROA)-

methods, which are in essence adaptations of valuation methods for financial options,

are applied (Trigeorgis, 1996). According to Borison (2005), Mun (2002) and Schachter

and Mancarella (2016), the literature categorises ROA methods either as (i) closed-form

analytical equations, (ii) lattice models or (iii) simulation models.

Closed-form analytical equations, such as the Black-Scholes options pricing model

(Black & Scholes, 1973), allow planners to estimate the price and therefore the value of

a (European style10) financial option. The Black-Scholes-Model is based on a system of

10A European style option is a financial option which can only be exercised at its expiration date.



CHAPTER 2. LITERATURE REVIEW 76

stochastic partial differential equations which "can be solved given a set of input assump-

tions" (Mun, 2002, p. 139). As such, the Black-Scholes model is "exact, quick, and easy

to implement" (Mun, 2002, p. 188). However, it is "very specific in nature, with limited

modelling flexibility", since it is specifically designed for an application with European

options in mind (Mun, 2002, pp. 123–124).

To overcome the limited applicability of closed-form analytical equations, discrete-

time approaches, known as lattice models, have been developed by Cox et al. (1979). In

lattice models, the period up to the expiration date of an option is discretised into a finite

number of intervals. Then the uncertain evolution of the price of an asset is modelled

with a tree-like structure, i.e. a lattice, see Section 2.3.3. Given a lattice that describes all

possible paths that the price of an option can take until reaching its expiration date, the

value of an option is determined backwards, i.e. from the leaf nodes of the tree to the root

node, in a backward induction process (Kang et al., 2016; Mun, 2002). Lattice models are

simple to implement (at least binomial lattices) and flexible in their application. However,

due to the fact that the tree must be described in its entirety, trees covering large numbers

of intervals tend to be computationally demanding (Mun, 2002; Schachter & Mancarella,

2016). Furthermore, the assumption that option prices can only change by means of

predefined paths might not hold for all practical applications (Mun, 2002).

To estimate real option values of very complex problems, the literature suggests the

use of Monte Carlo simulation approaches (Boyle, 1977). With this procedure a large but

finite number of possible paths describing the future evolution of the price of an option

are randomly sampled by means of a Monte Carlo simulation. For each price path the

exercise value of the option can be determined. Subsequently, by averaging the discounted

exercise values of all scenarios, the value of the option today can be determined (Ross

et al., 2012). In contrast to the Black-Scholes model and lattice models, Monte Carlo

simulation models are capable of considering multiple sources of uncertainty which can

"take any distribution shape" (Schachter & Mancarella, 2016, p. 265).

In the literature, ROA-methods are often applied to evaluate the value of research and
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development projects (Hartmann & Hassan, 2006; IJzerman et al., 2017; Perlitz et al.,

1999; Weeds, 2002), patents (Schwartz, 2004), corporate strategies (Driouchi & Bennett,

2012; Smit & Trigeorgis, 2007), or to evaluate the value of investments in IT technology

(Benaroch, 2002; Chen, Zhang et al., 2009), smart grids and energy systems (Pless et al.,

2016; Schachter & Mancarella, 2016), or utilities (Marques et al., 2015), etc. There is also

a substantial body of literature focusing on airport-specific applications of ROA-methods,

for example to evaluate airport expansions (Balliauw & Onghena, 2020; Morgado et al.,

2011; Oliveira et al., 2020; Smit, 2003; Xiao et al., 2017; Xiao et al., 2013, 2016), airport

construction projects (Chambers, 2007; Neiva, 2009; Pereira et al., 2006), investments

in air transportation infrastructure (Miller & Clarke, 2003, 2007, 2010), or to conduct

cost-benefit analyses for airport projects (Rivey, 2007).

Even though ROA-based models have been used extensively, the application of stand-

ard ROA-models for engineering systems in general and the capacity planning of engin-

eering systems in particular is criticised in the literature for a number of reasons. Cardin,

Xie et al. (2017, p. 2) explain that these ROA-models usually "[rely] on assumptions that

apply well to finance, but not necessarily to an engineering setting". Most importantly,

path independence, which is a fundamental assumption of most lattice models, might not

hold in the context of engineering systems (Cardin, Xie et al., 2017; Cardin, Zhang et al.,

2017; Chambers, 2007; De Neufville & Scholtes, 2011; Wang & De Neufville, 2005).

Path independence applied in standard lattice models states that "an increase followed by

a decrease in the uncertain parameter leads to the same result as a decrease followed by an

increase" (Chambers, 2007, p. 144). In strategic capacity planning, however, it cannot be

assumed that DMs would decide in the same manner for both paths. On the contrary, dif-

ferent paths usually lead to completely different decision sequences. Furthermore, classic

ROA is based on the assumption that options can be "bought and sold in a free market"

(Chambers, 2007, p. 45). However, engineering systems are, unlike most financial as-

sets, not tradable assets. Indeed, there exists no market in which engineering systems,

such as nuclear power plants, highways, runways or airport passenger terminals can be
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bought and sold. For these reasons, Cardin, Zhang et al. (2017) conclude that standard

ROA-methods are not applicable for the evaluation of flexible engineering systems. The

literature alternatively suggests the use of decision rules.

2.4.4.2 Decision rules

To overcome the above-mentioned limitations of traditional ROA-models, a number of

authors propose evaluating flexible engineering systems by means of "decision analysis

and Monte Carlo simulations" (Cardin, Xie et al., 2017, p. 2). In essence, these methods

are based on the simulation of a large number of scenarios ξs =
[
ξ s

1 ,ξ
s
2 . . . ,ξ

s
T
]

which

describe possible paths of future developments of a variable or factor that is subject to

uncertainty. For each scenario, the behaviour of how DMs exercise the real options of an

engineering system, i.e. the flexibility of the system, is modelled by means of decision

rules Dθ, which are "heuristic-triggering mechanisms" (Cardin, Xie et al., 2017, p. 1)

that "[aim] to emulate the decision-making process" of human beings (Cardin, Zhang et

al., 2017, p. 227). Accordingly, "a decision rule can be abstracted as a function . . . that

maps each scenario of uncertainty . . . to a capacity sequence" (Cardin & Hu, 2016, p. 3).

Applied to the example of airport passenger terminal facility i, a decision rule Dθ is a

function which, for each scenario of uncertainty ξs, specifies the optimal operational ca-

pacity Ks
i,t to be provided in planning period t, given (i) the history or the path of the

already disclosed uncertainty ξs
[t] =

[
ξ s

1 ,ξ
s
2 , . . . ,ξ

s
t
]

at point in time t, and (ii) the opera-

tional capacity Ks
i,t−1 at the beginning of period t

Ks
i,t =Dθ

(
ξs
[t],K

s
i,t−1

)
(2.16)

where θ = [θ1,θ2, . . .] is the parameter vector of decision rule Dθ. Both the structure

and form of the decision rule, as well as the parametrisation θ are unknown. Therefore,

optimal flexible facility requirements for an engineering system are determined by finding

both the best decision rule and the best parameters of this rule which ultimately "select[s]

the best strategy for deploying capacity flexibly over time and space" (Cardin & Hu, 2016,
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p. 2).

In the literature, four different types of decision rules are presented: conditional-go

decision rules (Cardin & Hu, 2016; Cardin et al., 2015; Cardin, Xie et al., 2017; Cardin,

Zhang et al., 2017; Zhang & Cardin, 2017), linear decision rules (Cardin, Xie et al.,

2017), non-linear decision rules (Georghiou et al., 2019) and constant decision rules

(Cardin, Xie et al., 2017). Conditional-go decision rules are similar to if-then-else state-

ments used in computer programming. The if -statement is used to check certain condi-

tions, such as whether the observed demand is higher than the current maximum possible

throughput of a facility. Should the if statement be fulfilled, certain actions, which are

defined in the then-part of the rule, are executed. Otherwise, the actions specified in the

else-part of the rule are applied. In linear decision rules, the decision to be taken in plan-

ning period t and scenario s depends linearly on the already disclosed uncertainty ξs
[t] and

the state of the system at the beginning of period t which is expressed in terms of the

operational capacity Ks
i,t−1. Similarly, in a non-linear decision rule, a non-linear mapping

function which depends on the disclosed uncertainty and the state of the system at the

beginning of period t is applied. In contrast, in constant decision rules, the decision in

phase t does not depend on the disclosed uncertainty up to stage t.

In the literature on flexible CEP models, the conditional-go decision rule finds wide

application. For instance, conditional-go decision rules are used to evaluate flexible en-

gineering systems that contain real options, such as multi-storey car parks (De Neufville

et al., 2006), nuclear power plants (Cardin, Zhang et al., 2017), on-shore liquid natural gas

production facilities (Cardin et al., 2015), infrastructure for emergency medical services

(Zhang & Cardin, 2017) or waste-to-energy systems (Cardin & Hu, 2016; Cardin, Xie et

al., 2017; Hu et al., 2018; Xie et al., 2014; Zhao et al., 2018). Most probably, conditional-

go decision rules enjoy such frequent use as their if-then-else-structure "provides planners

with straightforward and intuitive guidance" (Zhang & Cardin, 2017, p. 121). In contrast,

linear, non-linear and constant decision rules are less frequently applied. One example is

when Cardin, Xie et al. (2017) suggest a flexible CEP model for a waste-to-energy sys-
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tem in Singapore where capacity expansion decisions for one component of the system

are determined with a linear decision rule. Further, Hu et al. (2020) and Hu and Guo

(2019) use linear and non-linear decision rules, which they call "reward functions", in

order to determine optimal flexible facility requirements for a waste-to-energy system in

Singapore. The works of Hu et al. (2020) and Hu and Guo (2019) are discussed further in

Section 2.4.4.4.

Similar to conventional facility requirements, the determination of optimal flexible

facility requirements presents an optimization problem, which aims to determine the de-

cision rule that maximizes the expected net present value (ENPV) of an engineering sys-

tem (Cardin & Hu, 2016; Cardin et al., 2015; Cardin, Xie et al., 2017; De Neufville et al.,

2006; Hu et al., 2020; Hu & Guo, 2019; Xie et al., 2014) or which minimizes the total

costs of the system (Cardin, Zhang et al., 2017; Zhang & Cardin, 2017). In the literat-

ure, two different approaches are used to determine optimal flexible facility requirements.

Both approaches, which are referred to in this study as the empirical approach and the

generative approach, are discussed below.

2.4.4.3 Empirical approach

In an empirical decision rule-based approach, the structure of the decision rule Dθ is

defined a-priori11 by "experienced experts" (Hu et al., 2018, p. 256). Given the struc-

ture of the decision rule, the aim of a flexible CEP model is subsequently to determine

optimal values for all parameters θ∗ = [θ ∗1 ,θ
∗
2 , . . .] of the rule. Consequently, following

the basic principles of CEP models, the parameter vector is considered optimal if the

ENPV of the engineering system is maximized, the profit is maximized or the total costs

are minimized. To solve the optimization problem at hand, the literature mentions the

use of (i) simulation-based methodologies, (ii) stochastic programming models and (iii)

evolutionary optimization algorithms.

Monte Carlo simulation-based methodologies are strongly connected with the concept

11Cardin, Kolfschoten et al. (2013) present methods which allow the systematic definition and determ-
ination of decision rules on an empirical basis.
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of enumeration, in which a number of different potential solutions to the optimization

problem at hand, called solution candidates, are tested one after another. The solution

candidates can either describe a certain system configuration (De Neufville et al., 2006;

Hu & Cardin, 2015) or the parametrisation of a decision rule (Cardin et al., 2015). De

Neufville et al. (2006) present a case study for flexible multi-storey car parks, which

can be expanded at a later point in time by adding additional building levels. Given

a conditional-go decision rule whose parameters are assumed to be known a-priori, De

Neufville et al. use the enumeration method to test which flexible system design leads to

the greatest ENPV of the system. With this method each individual system design is eval-

uated separately, and the configuration resulting in the highest system value is selected for

implementation. In a similar manner, Hu and Cardin (2015) evaluate a number of central-

ised and decentralised flexible system designs for a waste-to-energy plant in Singapore.

Based on a pre-defined conditional-go decision rule which has been parametrised by ex-

perts, Hu and Cardin identify the system design which results in the highest ENPV from

a total of 2000 scenarios of potential future demand. Cardin and Hu (2016) and Cardin

et al. (2015) determine the optimal parametrisation of a conditional-go decision rule ap-

plied to a waste-to-energy plant in Singapore by means of the enumeration technique. To

limit the computational effort needed to solve the problem, the real-valued parameters

are discretised and upper and lower boundaries are introduced. Subsequently, all possible

combinations of the parameter vector are tested one after another and the parameter vector

which leads to the best performing system in terms of the resulting ENPV of the system

is selected for implementation. While the enumeration technique is simple and can be

implemented in a straightforward fashion, this method has the disadvantage that the ex-

haustive evaluation of the entire solution space is computationally demanding. For this

reason, enumeration does not usually perform well with problems that have large solution

spaces (Cardin et al., 2015).

Stochastic programming models for flexible CEP model based on the empirical ap-

proach are presented by Cardin, Xie et al. (2017), Cardin, Zhang et al. (2017), Xie et
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al. (2014), Zhang and Cardin (2017) and Zhao et al. (2018). As explained by Shapiro

et al. (2014) and Xie et al. (2014), multi-stage stochastic programming models must be

used for flexible CEP models, as this is the only way to embed decision rules. Xie et al.

(2014) present a flexible CEP model for a waste-to-energy plant in Singapore for which

a stochastically optimal conditional-go decision rule is determined using a multi-stage

stochastic programming model. In this case, Xie et al. consider two sources of uncer-

tainty describing the demand for the system: the total amount of waste, modelled with

GBM, and the recycling rate, modelled with a stochastic S-curve function. A similar flex-

ible CEP model focusing on the same waste-to-energy plant in Singapore is presented by

Cardin, Xie et al. (2017). This model considers two independent sources of uncertainty

(food waste and organic waste, both modelled with GBM) and allows for the inclusion

of two different types of flexibility. The models proposed by Cardin, Xie et al. (2017)

and Xie et al. (2014) are solved by means of Lagrangian decomposition, which tends

to be "time consuming if the number of scenarios [of uncertainty] is large" (Zhao et al.,

2018, p. 555). Zhao et al. (2018) extended the works of Cardin, Xie et al. (2017) to

a multi-facility flexible CEP model, which enables the consideration of adjustment and

switching options. Moreover, this study takes into account annually recurring fixed costs,

such as operating costs. Zhao et al.’s model is solved with a decomposition algorithm

that is coupled with a stochastic approximation algorithm, which, according to the au-

thors, enables savings in both computation time and memory usage. Zhang and Cardin

(2017) suggest the application of a flexible CEP model for emergency medical services

which is based on a multi-facility stochastic programming model. Uncertain demand for

emergency medical services is expressed in terms of the incident arrival rate, here mod-

elled with GBM. Using conditional-go decision rules, multiple flexible strategies such

as the phased provision of capacities at different locations or flexible one-site capacity

expansions are studied. To solve the proposed model, Zhang and Cardin apply a hybrid

heuristic, which consists of a combination of Bender’s decomposition and a branch and

bound algorithm. Cardin, Zhang et al. (2017) also present a conditional-go decision rule-
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based flexible CEP model for nuclear power plants. The proposed approach here is based

on a multi-stage stochastic programming model which is capable of considering two inde-

pendent sources of uncertainty (electricity demand and the public’s acceptance of nuclear

technology) as well as three different flexible strategies (phasing of initial capacity in-

stallations, on-site expansions and life extensions of existing infrastructure). This model

is subsequently solved with the branch and bound algorithm and the CPLEX solver. Al-

though the solution procedures mentioned above are widely used in the field of flexible

CEP models, they tend to be quite complex, since, the decision rules must be captured in

the constraints of the model (Hu et al., 2018). Furthermore, the required computational

resources must always be kept in mind. Especially if a large number of scenarios of un-

certainty are considered, the problems to be solved tend to become very large in terms of

the number of their constraints and variables, which increases the risk that such models

become "unsolvable within a reasonable time" (Zhang & Cardin, 2017, p. 138).

To address the drawbacks of the solution procedures mentioned above, some authors

have suggested approaches which are based on evolutionary optimization algorithms.

Evolutionary optimization algorithms come with a number of advantages, such as (i) their

ability to solve optimization problems with large solution spaces in an efficient manner

and (ii) their capability of being able to handle non-linear objective functions and con-

straints (Bäck et al., 2018; Kramer, 2017). Hu et al. (2016) and Hu et al. (2018) propose

a flexible CEP model for a waste-to-energy plant in Singapore where the optimal para-

meters of a conditional-go decision rule Dθ are determined with a differential evolution

algorithm. This is a continuous global optimization algorithm based on the concepts of

evolutionary optimization (Price et al., 2006; Price, 2016). In this way, an initial popula-

tion of solution candidates describing the potential parameter vectors is evolved over the

course of a number of generations in order to determine the optimal parameter vector θ∗

of the decision rule.

The empirical approach comes with one major disadvantage: the structure of the de-

cision rule is defined a-priori based on expert knowledge. For this reason it is theoretically



CHAPTER 2. LITERATURE REVIEW 84

possible that the optimal solution can never be described using the chosen structure of the

decision rule (Hu et al., 2018). In order to find the global optimum, not only must the

optimal parametrisation be determined, but also the optimal structure of a decision rule.

This is the focus of the generative approach, which will be discussed in the next section.

2.4.4.4 Generative approach

Hu et al. (2020) and Hu and Guo (2019) present flexible CEP models based on a gener-

ative approach in which both the stochastically optimal structure and parametrisation of

decision rules are determined. To solve the optimization problem at hand, both studies

apply gene expression programming (GEP), which is an evolutionary algorithm originally

developed by Ferreira (2001). GEP enables the "automatic generation of computer pro-

grams", such as heuristic rules, formulae, logical rules, mathematical expressions, etc. by

applying "nature-inspired operators such as mutation and crossover" (Hu & Guo, 2019,

p. 989), the optimal structure as well as the optimal parametrisation of these computer

programs are determined in an iterative procedure.

Both Hu et al. (2020) and Hu and Guo (2019) apply a GEP-based modelling approach

to determine optimal flexible facility requirements for a waste-to-energy plant in Singa-

pore. The decision rule and its parametrisation are considered optimal in both studies if

the ENPV of the plant is maximized over 5000 demand scenarios which are generated us-

ing GBM. The results suggest that, for decision rules created with the GEP-based model,

the waste-to-energy plant has a slightly higher ENPV than when conditional-go decision

rules are used. However, the results show a rather large variance, which, according to the

authors, is an indication for the complexity of the optimization problem at hand.

2.5 Gap analysis

With regards to the strategic capacity planning framework for airport passenger terminal

facilities proposed in this study, the following gaps in the literature can be identified:
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Annual aggregated demand model. The literature on the recognition and modelling

of uncertainty is well established. Especially in the field of flexible engineering systems,

GBM is routinely used by many authors to generate large numbers of demand scenarios.

For this reason, the theoretical foundations do not require further development to achieve

the goals of this study. Rather, the available methods for the modelling of uncertainty

need to be applied in the context of ASP in order to determine future annual aggregated

passenger demand scenarios for an airport.

DHL demand model. To specify facility requirements for airport passenger terminal fa-

cilities, future annual aggregated demand forecasts must be converted into facility-specific

DHL figures. The literature indicates two methods to achieve this goal, namely, the design

day schedule method and the ratio method. The design day schedule is based on the de-

termination of fictitious flight schedules for future days, which makes the method unsuit-

able for an efficient conversion of annual aggregated demand figures into DHL figures. In

contrast, the ratio method "aims to model the relationship between the DHL and annual

demand by means of constant ratios or regression models" (Waltert et al., 2021, p. 1),

which makes the method perfectly suitable for such a conversion. "The ratio method is

well documented in the literature and has found widespread application in airport strategic

planning, where it is predominantly used to define overall DHL, which is the DHL of all

departing, arriving or transit passengers in a passenger terminal" (Waltert et al., 2021,

p. 2). However, to the author’s best knowledge, the following gaps in the literature exist:

• ". . . the ratio method has yet to be applied to determine DHLs for specific airport

passenger terminal facilities, e.g., check-in facilities, the security checkpoints, the

border control facilities, etc." (Waltert et al., 2021, p. 2). Such a facility-specific

application of the ratio-based method must necessarily take into account so-called

capacity saturation effects, which occur at airports whose runway capacity is con-

strained for a number of reasons, e.g. due to operational, legal, environmental or

political limitations.



CHAPTER 2. LITERATURE REVIEW 86

• There is no ratio-based DHL model which is founded on actual, disaggregated and

automatically collated (big) input data describing passenger flows in airport termin-

als.

Conventional and flexible CEP models. The literature on conventional CEP models is

already very extensive. Also in the field of airport applications, there are already several

authors who have published corresponding models. Therefore, with regard to conven-

tional facility requirements for airport passenger terminal facilities, no gap in the literat-

ure can be identified. However, the methods available in the literature need to be adapted

and subsequently applied for the strategic capacity planning framework presented in this

study.

In the area of flexible CEP models, on the other hand, the situation is different. Few

authors have used both the empirical approach and the generative approach to determine

stochastic optimal flexible facility requirements for a number of different engineering

systems, such as nuclear power plants, liquid natural gas facilities or waste-to-energy

plants. To the best of the author’s knowledge, however, the literature mentions no relevant

scientific work dealing with the generation of flexible facility requirements for airport

passenger terminal facilities.



Chapter 3

Research areas and research questions

In this chapter, the research questions investigated in this study are presented. Based on

the aims and objectives defined in Section 1.2, three research areas are defined; these deal

with (i) the demand module, (ii) the CEP module and (iii) the practical application of the

strategic capacity planning framework developed in this thesis.

Research area 1 – Demand models. The first research area focuses on the demand

module, which consists of two different demand models that allow airport planners to

determine both annual aggregated demand scenarios for an airport, as well as the DHL

demand scenarios for a certain airport passenger terminal facilities. As discussed in Sec-

tion 2.3.3, the literature on models to determine annual aggregated demand scenarios,

such as GBM, is already quite extensive. In contrast, the conversion of annual aggregated

traffic into the DHL demand of an individual airport passenger terminal facility using the

ratio-based approach, which takes into account the capacity saturation of airports, is not

documented in the literature. Consequently, the research questions (RQs) of research area

1 are:

RQ1. How can annual aggregated demand scenarios for ASP purposes be generated by

means of GBM in the case of an individual airport?

RQ2. How to determine DHL demand scenarios for an individual airport passenger ter-
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minal facility by means of the ratio-based model that is based on aggregated annual

demand scenarios and passenger flow observations acquired with an automated

PTS?

RQ3. How can the ratio-based modelling method be applied at airports where the runway

system is capacity constrained?

Research area 2 – Facility requirements. The second research area deals with the CEP

module, which consists of a number of conventional and flexible CEP models by means

of which conventional and flexible facility requirements for airport passenger terminal

facilities can be generated. While conventional CEP models have already been applied in

the literature to determine facility requirements for airport passenger terminal facilities,

flexible CEP models, irrespective of whether they are based on the empirical approach or

on the generative approach, have not yet been applied in the context of ASP. The RQs for

research area 2 are therefore as follows:

RQ4. Is it possible to adjust and subsequently apply existing conventional CEP models

for the determination of conventional facility requirements for airport passenger

terminal facilities?

RQ5. How can existing flexible CEP models based on either the empirical or the generat-

ive approach be modified in such a way that they can be used for the determination

of flexible facility requirements for airport passenger terminal facilities?

Research area 3 – Planning example ZRH Airport. The third research area of this

study focuses on the application of the proposed strategic capacity planning framework

for airport passenger terminal facilities in a real-world ASP planning example. In the

course of this planning example, conventional and flexible facility requirements for the

check-in facilities ZRH Airport in Switzerland are determined. The facility requirements

created in this process are compared with each other in terms of the value they add to the
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system. Furthermore, the sensitivity of the proposed CEP models is tested accordingly.

Thus, the RQs of research area 3 are as follows:

RQ6. Is there a value in defining flexible facility requirements for the check-in facilities

at ZRH Airport? If so, how much more valuable are flexible facility requirements

compared to conventional facility requirements?

RQ7. What are the factors of greatest influence on facility requirements for check-in fa-

cilities at ZRH Airport?

RQ8. How are facility requirements for check-in facilities at ZRH Airport affected by

changes in these factors?



Chapter 4

Methodology

This chapter describes the methodology used for the strategic capacity planning frame-

work for airport passenger terminal facilities presented in this study. The structure of the

framework, which is illustrated in Figure 4.1, can be divided into two distinct modules, a

demand module and a CEP module.

The demand module is used to generate annual aggregated demand forecasts for an

airport and subsequently to convert these figures into DHL demand forecasts for specific

airport passenger terminal facilities. To this end, Section 4.1 describes the GBM-based

aggregated annual demand model, which is used to determine large numbers of scenarios

describing possible future traffic developments at airports. Section 4.2 then introduces

the unsaturated DHL model and the saturated DHL model, which allow the conversion

of annual aggregated demand scenarios into DHL demand scenarios for specific airport

passenger terminal facilities.

The CEP module consists of a valuation model as well as a number of conventional

and flexible CEP models. The valuation model presented in Section 4.3 is used to es-

timate the financial value of a given facility requirement of an airport passenger terminal

facility in terms of its resulting NPV over the entire planning horizon of an ASP project.

Section 4.4 introduces a total of four conventional and flexible CEP models used to gen-

erate stochastically optimal facility requirements for airport passenger terminal facilities.
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The conventional CEP models include the so-called baseline model and the fixed model.

The baseline model is used exclusively for benchmarking purposes. It permits an object-

ive comparison of the financial value of facility requirements created with different CEP

models. The fixed model allows the determination of conventional facility requirements

for passenger terminal facilities in the form of stochastically optimal capacity vectors.

The flexible models include the conditional-go decision rule model, which is based on

the empirical approach, and the reward function decision rule model, which is based on

the generative approach. Both models enable the determination of stochastically optimal

flexible facility requirements in the form of decision rules.

Inventory, parametrisation, historic demand observations

Annual aggregated demand model (GBM)

DHL model (unsaturated & saturated DHL model)

Valuation model

Baseline model Fixed model Conditional-go
decision rule model

Reward function
decision rule model

Compare economic performance of candidate flexibilities (ENPV, VaG, VaR, VoF, etc.), 
test sensitivity of the models

Find stochastically 
optimal initial

capacity adjustment
Find stochastically 

optimal capacity vector
Find stochastically optimal 

decision rule
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Figure 4.1: Proposed structure of strategic capacity planning framework consisting of a
demand module and a CEP module.

4.1 Aggregated annual demand model

For most ASP projects, demand is expressed in the form of annual aggregated demand

forecasts; these either specify the total number of passengers arriving and departing over
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the course of a year or the total number of ATMs handled at an airport in any year. The

literature on engineering systems suggests diffusion models or lattice models in order to

generate scenarios for annual aggregated demand forecasts (De Weck et al., 2007). Based

on the literature overview presented in Section 2.3, it was decided to apply a diffusion

model, or more precisely GBM, to model the annual aggregated passenger demand of an

airport.

Demand over the entire planning horizon of an ASP project at a given airport can

be expressed with a demand vector D = [D1,D2, . . . ,DT ]. The elements Dt of vector D

specify annual aggregated demand for planning periods t = 1,2, . . . ,T . Demand observed

at time t = 0 is designated as D0 and is assumed to be known. The change in demand from

planning period t to planning period t +1 is quantified with ∆Dt = Dt+1−Dt . According

to De Weck et al. (2007) and Mun (2002), the ratio between ∆Dt and Dt can be expressed

with GBM12 as

∆Dt

Dt
= µD∆ t +σD∆Wt (4.1)

where ∆ t is the interval between planning periods t and t+1, µD is the percentage drift

rate of demand, σD is the percentage volatility of demand and ∆Wt refers to independent

and identically distributed (i.i.d.) increments of the Wiener process13.

To apply the model presented in Equation 4.1 to the generation of annual aggregated

passenger demand forecast scenarios for an airport, it must be parametrised accordingly.

To this end, the parameters D0, µD and σD must be determined. Normally, initial demand

D0 is assumed to be the aggregated traffic volume of the year in which the forecast is

made. The percentage drift rate and the percentage volatility are estimated on the basis of

a number of historical annual aggregated passenger demand observations. According to

De Weck et al. (2007), the mean drift rate µ̂D can be estimated with the sample mean of

the observed historical data, while the volatility σ̂D is estimated with the sample standard

12Please note: De Weck et al. (2007, p. 8) describe Equation 4.1 as "the time-discretized version of
GBM".

13A Wiener process is often also referred to as Brownian motion.
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deviation. The accuracy of these estimates depends largely on the number of historical

demand observations used for the determination. According to Ahn and Fessler (2003),

the standard error of the mean estimator σ̂µD can be estimated as follows:

σ̂µD =
σ̂D√

n
(4.2)

where n refers to the number of observations. Moreover, following Harding et al.

(2014) the standard error of the standard deviation estimator σ̂σD can be approximated as

σ̂σD ≈
σ̂D√

2(n−1)
. (4.3)

For practical applications, Croghan et al. (2017) mention that at least n = 100 histor-

ical observations should be used to properly estimate the parameters of a GBM, while an

even larger sample size in the order of magnitude of n = 1000 observations is preferable.

However, since the focus of this study is on annual aggregated demand data from airports,

it was not possible to take such large datasets into account, as the available data basis is

simply not large enough. To this end, a sample size of n = 11 has been applied in this

study.

Once the parameters of the proposed annual aggregated demand model, namely D̂0,

µ̂D and σ̂D, have been estimated for a certain airport, planners are capable of determining a

set Ω = {ξ1,ξ2, . . . ,ξS} of randomly generated annual aggregated demand scenarios ξs =
[
ξ s

1 ,ξ
s
2 , . . . ,ξ

s
T
]

with Equation 4.1. Each vector ξs ∈ Ω describes a possible aggregated

annual passenger demand scenario for the airport of interest over all planning periods t

considered in an ASP project.

4.2 Design hour demand model

To determine facility requirements for an airport passenger terminal facility, airport plan-

ners require information on its expected future DHL demand levels. For this reason, the
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aggregated annual passenger demand forecasts generated with the model presented in

Section 4.1 must be converted into facility-specific DHL forecasts. For this conversion,

a DHL model based on the ratio method, see Section 2.1.4, is presented in this section.

The proposed model consists of two sub-models: (i) the unsaturated DHL model, which

is used for airports that are not capacity constrained, and (ii) the saturated DHL model,

which is used for airports whose runway system allows only a limited number of ATMs

per year. Most of this section is based on the paper of Waltert et al. (2021), which was

written and published as part of this study.

4.2.1 Input data

To develop the DHL models presented in this study, Waltert et al. (2021) explain that:

. . . input data originating from ZRH Airport and an equally sized European

airport, referred to as Airport 2, have been used. The dataset provided by

ZRH Airport covers the years 2009–2019, while the data provided by Airport

2 covers the years 2012–2019. As such, the data provided can be divided into

three distinct subsets: Annual data, ATM data and passenger flow data. The

annual data provides passenger and ATM information aggregated on a yearly

basis. To this end, the total number of enplanements (ATM and passengers)

and the total number of departing passengers (the sum of local outbound and

transit passengers) is provided. ATM data specifies the time of each move-

ment and the number of local and transit passengers carried. Finally, pas-

senger flow data, which is obtained by means of a passenger tracking system

(PTS), describes the number of passengers entering a terminal facility [i in

function of time of day]. (p. 4)

For the application proposed in this study, "PTS data originating from [automated]

boarding pass readers installed at the entrance of the security [checkpoint facilities]" at

ZRH Airport and Airport 2 has been used due to its availability, good data quality and and
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seamless recording over the above-mentioned observation periods (Waltert et al., 2021,

p. 5). It is assumed that the PTS data describing the influx in the security checkpoint is

also applicable to describe the DHL of the check-in facility, since (i) all local passengers,

i.e. the passengers using the check-in facility, are obliged to scan their tickets at the

automated boarding pass reader to gain access to the security checkpoint and (ii) at both

airports, the security checkpoint is located directly downstream of the check-in facilities.

Consequently, the passenger flows in the check-in and security checkpoint facility are

almost similar in magnitude and only show a slight time offset, which, however, can be

neglected for the application presented in this study. Waltert et al. (2021) further elaborate

as follows:

The observed passenger influx data, which is measured with a PTS for

facility i . . . [and planning phase t], is expressed with a time series dP
i,t =

{dP
i,t, j}

n j
j=1, where j = 1,2, . . . ,n j refers to 5-minute interval segments within

year t. Each segment contains data on the total influx of passengers in the

facility (e.g., number of passengers entering the security checkpoint from

11:45 to 11:50 on 02.04.2020)14. Subsequently, to smooth the 5-minute in-

terval data, a w-moving sum d
P
i,t is defined as a new time series on dP

i,t by

applying the movsum function provided in Matlab. The movsum function

calculates the moving average for a sliding window of size w, which, for the

application presented here, is selected specifically to ensure that each window

covers 60 min of data (i.e. ±30 min around the timestamp of the 5-minute in-

terval). In [Figure 4.2] an example of the observed data dP
i,t for the security

checkpoint at ZRH Airport is shown as blue dots, while the moving sum d
P
i,t

is displayed as a red line. (Note, the data is plotted on two different y-axes).

(p. 4)

14Assuming a year with 365 days, n j =
365d·24h·60min

5min = 105120
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Figure 4.2: Observed 5-minute and hourly passenger inflows in security checkpoint at
ZRH Airport. From Waltert et al. (2021, p. 4).

4.2.2 Calculation of DHL for passenger terminal facility

According to Waltert et al. (2021), the DHL of passenger terminal facilities is calculated

as follows:

Both in the industry and in academia there is no consensus on a univer-

sally applicable definition of the DHL. The literature suggests that the BHR,

which is defined as “the value of passenger flow for which 5 % of the pas-

sengers encounter a flow rate at this level or above” (Matthews, 1995, p. 57),

is a more typical peak hour and should therefore be predominantly used for

airport design (De Neufville et al., 2013). However, there are airports which

apply the SBR, which in most cases tends to be higher than the BHR (Mat-

thews, 1995). Subsequently, the selection of an appropriate DHL definition

is usually carried out on a case-by-case and an airport-by-airport basis.
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To meet this circumstance, the unsaturated and saturated DHL models

presented in [Sections 4.2.3 and 4.2.4] can be applied to all DHL definitions

without loss of generality. However, to provide the reader with a real-world

example of the proposed planning methodology, the DHL definition as it is

applied at ZRH Airport is used in this paper. At ZRH Airport the DHL for

airport passenger terminal facilities is determined by means of the SBR re-

ferring to the 20th highest hour of passenger flow of the entire year. This con-

trasts with the literature, which recommends using the 30th highest hour for

the SBR (Ashford et al., 2013; Matthews, 1995). According to ZRH Airport,

the rationale behind opting for the SBR based on the 20th hour is grounded

on considerations regarding the public’s perception of service quality. Due

to the operational concept of the local hub airline, most passenger terminal

facilities at ZRH Airport experience only one daily peak period, whose dura-

tion is usually rather short. Consequently, by selecting a very restricting 20th

highest hour for the DHL, the number of days on which customers might

experience unacceptable service levels during this daily peak period can be

limited significantly.

In light of this, for the purpose of this study the SBR for terminal facility

i at [ZRH Airport or Airport 2] and for year t is calculated as follows. In a

first step, the w-moving sum time series d
P
i,t of the observed passenger influx

for facility i in year t is sorted in a descending order of the magnitudes of

the observations. Then, this ordered list of hourly values is modified in an

iterative procedure, which is referred to as the rolling maximum algorithm.

Starting with the first value of the ordered list, which refers to the highest ob-

served hourly passenger influx of the entire year, all values within ±30 min

from the timestamp of the first element of the list are removed from the list.

Consequently, the algorithm iteratively applies the same procedure to the next

element of the modified list until the end of the list is reached. An example
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is provided in [Figure 4.3], where the blue shaded elements of the ordered

list are removed as they are within the specified time period of the first ele-

ment of the list. In this way an ordered list of the maximum observed hourly

passenger influxes into the facility of interest is generated. Finally, the SBR

of facility i . . . in year t, which is denoted as di,t , is defined by selecting the

20th highest element of the list modified with the rolling maximum algorithm.

(pp. 4–5)

...

...
01.01.2019 08:40
01.01.2019 08:45
01.01.2019 08:50
...
...

...

...
1250
1298
1185
...

Timestamp Influx [PAX/h] Timestamp Influx [PAX/h]

19.04.2019 11:40
10.10.2019 12.10
19.04.2019 12:05
19.04.2019 11:35
19.04.2019 13:25
07.07.2019 14:00
...

5890
5710
5709
5586
5472
5457
...

MOVING SUM (OBSERVED DATA) ORDERED MOVING SUM
Timestamp Influx [PAX/h]

19.04.2019 11:40
10.10.2019 12.10
19.04.2019 13:25
07.07.2019 14:00
...
...

5890
5710
5472
5457
...
...

ROLLING MAX(HOURLY SUM)

sorting rolling
maximum

Figure 4.3: Proposed calculation procedure for DHL data based on observational data.
From Waltert et al. (2021, p. 6).

4.2.3 Unsaturated DHL model

According to Waltert et al. (2021), the unsaturated DHL model is defined as follows:

Given the availability of (i) the observed DHL di,t for airport passenger

terminal facility i . . . in year t for unsaturated demand conditions and (ii)

the aggregated annual number of passengers Dt (see [Figure 4.4]), the trans-

formation function of a linear regression model, called the unsaturated DHL

model, is set out below:

dUS
i,t = β

US
i,0 +β

US
i,1 · lnDt + ε

US
t (4.4)

where βUS
i,0 and βUS

i,1 are unknown coefficients of the linear regression model

which are estimated with the ordinary least squares method in such a way that
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error term εUS
t is minimized. In order to achieve better correlation between

the model and the observed data, the natural logarithm of annual demand Dt

is used in the proposed transformation function.
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Figure 4.4: Observed DHL (20th peak hour) for ZRH Airport and Airport 2. From Waltert
et al. (2021, p. 6).

The unsaturated linear DHL model is based on the rather simplistic as-

sumption that the observed DHL is solely dependent on annual demand. In

reality however, the theoretical maximum magnitude of the facility DHL is

limited by a set of constraints, such as (i) the capacity provided by the runway

system, (ii) the fleet mix operating from airport j, (iii) the average percentage

of passengers using facility of interest i per ATM and (iv) the ratio between

passengers per ATM during the peak period for which the SBR is defined and

the annual average of passengers per ATM. By means of the saturated DHL
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model the circumstances of such capacity constraints are taken into account.

(p. 5)

4.2.4 Saturated DHL model

Waltert et al. (2021) define the saturated DHL model as follows:

Many international airports are capacity constrained in terms of their run-

way system, which may only permit a maximum number of take-offs and

landings per hour (De Neufville et al., 2013). Once this limit is reached,

an airport can only grow to accommodate additional ATMs through substan-

tially altering the performance of its runway system, for instance by building

a new runway or by adopting new rules for runway usage, such as abolishing

night curfews. Considering the airports included in this paper, the maximum

hourly departure throughput of the runway system µR is known to be 44 and

41 movements per hour for ZRH Airport and Airport 2 respectively.

The number of passengers per ATM is limited and determined by a num-

ber of factors, among others the scheduled fleet mix of the airlines frequenting

an airport. [Figure 4.5] shows the situation for 60 international airports15, de-

picting the relationship between the average number of passengers per ATM

and the annual passengers as well as the number of runways available at the

respective airport. This number is used as a readily available proxy for the

maximum throughput of a runway system. It can be inferred from [Fig-

ure 4.5] that the average number of passengers per ATM (i) seems to rise

asymptotically to a certain limit value and (ii) appears to be influenced by the

available number of runways at an airport.
15[Figure 4.5] is based on annual traffic data for both passengers and ATM of the following international

airports: ABQ, AGP, AMS, ARN, ATH, ATL, AUH, BCN, BHX, BKK, BOS, BRU, BUD, BUR, CAN,
CGN, CPH, DAL, DEN, DUB, DXB, EDI, FRA, GLA, HAM, HKG, ICN, LAX, LGA, LGW, LHR, LIN,
LIS, LTN, MAD, MAN, MCI, MEL, MUC, MXP, ORD, ORY, OSL, PBI, PDX, PEK, PER, PMI, PRG,
PVD, PVG, SAT, SFO, SIN, STN, SVO, SYD, VIE, WAW, YYZ and ZRH. The raw data has been sourced
from (i) the Airport Statistics and Data Centre of Airport Council International (ACI) (https://aci.aero/
data-centre/, Accessed: 28 December 2020) and (ii) Wikipedia.

https://aci.aero/data-centre/
https://aci.aero/data-centre/
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Figure 4.5: Average passengers per ATM in function of annual aggregated passengers of
an airport and available number of runways. From Waltert et al. (2021, p. 6).

Consequently, this study uses a linear regression model to express the re-

lationship between the annual average number of passengers per ATM PAXAT Mt

for ZRH Airport and Airport 2 versus the annual aggregated demand Dt meas-

ured in passengers, the year of observation t and the number of runways avail-

able at an airport of interest nR. The transformation function of the proposed

model is shown in [Equation 4.5]:

PAXAT Mt = β
PA
0 +β

PA
1 lnDt +β

PA
2 t +β

PA
3 nR + ε

PA
t (4.5)

where β PA
0 ,β PA

1 ,β PA
2 and β PA

3 are unknown coefficients and εt is the error term

which is assumed to be normally distributed.

The linear regression model proposed in [Equation 4.5] specifies PAXAT Mt ,

which is the annual average number of passengers per ATM. To determine the
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DHL of facility i, the number of passengers per ATM using facility i during

the design hour which is denoted as PAXAT Mdh
i,t must be known. The rela-

tionship between PAXAT Mdh
i,t and PAXAT Mt can then be described by means

of ratio ri,t

ri,t =
PAXAT Mdh

i,t

PAXAT Mt
. (4.6)

For the purpose of this study, historic observations of PAXAT Mdh
i,t for

ZRH Airport and Airport 2 are determined with PTS data originating from

boarding pass readers installed at the entrance of the security checkpoints as

well as ATM data provided by the airports. [Figure 4.6] depicts observational

data for ri,t measured at ZRH Airport and Airport 2 by means of boxplots

in which the median of the observed ratio is illustrated with a red horizontal

line.

As can be inferred from [Figure 4.6], the ratios ri,t for ZRH Airport and

Airport 2 seem to be subject to fluctuations and outliers. For reasons of sim-

plicity in this study it is assumed that ri,t can be modelled with a constant

which is estimated with the median of the observed data for ri,t . The median

has been chosen since it is known to be less susceptible to outliers than, for

instance, the arithmetic mean.

Finally, the saturated DHL model for facility i is expressed as

dSA
i,t = µR ·PAXAT Mt

(
Dt , t,nR, β̂

PA
0 , β̂ PA

1 , β̂ PA
2 , β̂ PA

3

)
· r̂i (4.7)

where µR is the maximum departure throughput capacity. This depends

on the maximum number of take-offs per hour which can be handled by the

runway system of an airport. β̂ PA
0 , β̂ PA

1 , β̂ PA
2 and β̂ PA

3 refer to the coefficient

estimates of the linear regression model introduced in [Equation 4.5] and r̂i is
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Figure 4.6: Example for ratio r between PAXAT Mdh
i,t and PAXAT Mt for ZRH Airport and

Airport 2. From Waltert et al. (2021, p. 6).

the estimated value of ratio ri. As such, for ZRH Airport, a ratio of r̂i = 0.88

and for Airport 2, a ratio r̂i = 0.97 is estimated. (p. 5)

4.2.5 Conversion of annual aggregated demand into DHL demand

With a fully parametrised DHL model for airport passenger terminal facility i, annual

aggregated passenger demand scenarios ξs =
[
ξ s

1 ,ξ
s
2 , . . . ,ξ

s
T
]

created with the annual ag-

gregated demand model presented in Section 4.1 can be converted into facility-specific

DHL scenarios ds
i =

[
ds

i,1,d
s
i,2, . . . ,d

s
i,T

]
. In order to do so, all annual aggregated de-

mand scenarios ξs are first converted into an unsaturated DHL demand vector ds,US
i =

[
ds,US

i,1 ,ds,US
i,2 , . . . ,ds,US

i,T

]
by using the unsaturated DHL model defined in Equation 4.4.

They are also converted into a saturated DHL demand vector ds,SA
i =

[
ds,SA

i,1 ,ds,SA
i,2 , . . . ,ds,SA

i,T

]

by making use of the saturated DHL model specified in Equation 4.7. In a second step,
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a DHL demand vector ds
i =

[
ds

i,1,d
s
i,2, . . . ,d

s
i,T

]
for facility i is created by comparing the

unsaturated and saturated demand DHL vectors as follows:

ds
i,t =





ds,US
i,t , if ds,US

i,t ≤ ds,SA
i,t

ds,SA
i,t , otherwise.

(4.8)

For each planning phase t, a distinction is made as to whether unsaturated demand

ds,US
i,t of facility i is less or greater than saturated demand ds,SA

i,t . If unsaturated demand

is less or equal to saturated demand, the facility is not affected by the airport system’s

capacity saturation. Consequently, the results of the unsaturated DHL model are used.

However, for planning phases in which saturated demand ds,SA
i,t is greater than unsaturated

demand ds,US
i,t , the results of the saturated DHL model are applied. By repeating the

procedure specified in Equation 4.8 for all sampled scenarios ξs ∈ Ω , annual aggregated

demand forecasts of a given airport are converted into DHL demand forecasts for the

airport passenger terminal facility i located at this airport.

4.3 Economic evaluation of facility requirements

As reviewed in Section 2.4.1, a number of indices of merit are available in order to eco-

nomically evaluate facility requirements for engineering systems. Following the literat-

ure, for instance De Neufville and Scholtes (2011) and Geltner and De Neufville (2018),

it was decided to evaluate facility requirements for airport passenger terminal facilities

with the NPV in this study.

As discussed in Section 2.4.1, the NPV is defined as the sum of all discounted cash

flows, i.e. costs Ct and revenues Rt , which accumulate for a project or a system over a

defined period of time

NPV =−C0 +
T

∑
t=1

1
(1+δ )t (Rt−Ct) (4.9)

where δ is the discount rate and C0 are initial costs incurred at t = 0. Equation 4.9
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can be extended to apply to airport passenger terminal facilities. For this purpose, it

is assumed that costs incurred and revenues generated by an airport passenger terminal

facility i (i) can be forecasted, and (ii) depend mainly on the operational capacity Ki of

facility i as well as its DHL demand di. Consequently, the NPV of facility i is defined as

follows:

NPV (Ki,di) =−Ci,0 (∆Ki,0,∆Ai,0)+
T

∑
t=1

(
1

(1+δ )t [Ri,t(di,t ,Ki,t)−Ci,t(di,t ,Ki,t)]

)

(4.10)

where Ci,0 (∆Ki,0,∆Ai,0) refers to the initial installation costs incurred due to the in-

stallation of ∆Ki,0 units of capacity and/or ∆Ai,0 units of building space at t = 0. For

the remainder of this section, the revenue functionsRi,t and cost functions Ci,t applied in

Equation 4.10 are discussed in more detail.

4.3.1 Cost functions

Function Ci,t specifies the costs of facility i that are incurred during the design hour of

planning phase t. Based on the works of Sun and Schonfeld (2015, 2016, 2017), the

cost function Ci,t used in this study consists of 3 different sub-functions, as shown in

Equation 4.11:

Ci,t =CIi,t +COi,t +CPi,t . (4.11)

The sub-functions are (i) installation costs CIi,t , (ii) operating costs COi,t and (iii)

delay-related costs, which are referred to as penalty costs CPi,t in this study. In the fol-

lowing, all the cost drivers are considered individually.

4.3.1.1 Installation costs

Installation costs CIi,t are incurred when the capacity of a facility is adjusted by ∆Ki,t units

of capacity and/or ∆Ai,t units of building space. In this case, the installation cost function
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consists of two terms: CI∆K
i,t describes installation costs generated by an adjustment of

∆Ki,t units of capacity, while CI∆A
i,t quantifies installation costs by building space changes

to the amount of ∆Ai,t :

CIi,t =CI∆K
i,t +CI∆A

i,t . (4.12)

Installation costs due to capacity adjustments. CI∆K
i,t describes the costs incurred if

the operational capacity of facility i is changed by ∆Ki,t = Ki,t −Ki,t−1 units of capacity.

According to the literature reviewed in Section 2.4.2, a number of different types of in-

stallation cost functions are available. In this study, a combination of a fixed charge func-

tion and a power cost function, see Equations 2.9 and 2.10, is used. Besides EoS effects,

project overhead costs, which typically arise in infrastructure projects due to planning and

managerial tasks, are also considered for the determination of installation costs. In this

study, overhead costs are modelled by means of a fixed percentage pohd
i of the installation

costs. Consequently, the installation costs for adjusting the capacity of facility i by ∆Ki,t

units of capacity are defined as

CI∆K
i,t =





(1+pohd
i )·ci+K,i·(∆Ki,t)

αK

ht
, if ∆Ki,t ≥ 0

(1+pohd
i )·ci−K,i·(∆Ki,t)

αK

ht
, if ∆Ki,t < 0

(4.13)

where ci+K,i are unit installation costs for capacity expansions, ci−K,i are unit dismantling

costs for capacity reductions and αK is the EoS factor for units of capacity of facility i. It

should be noted that installation costs are divided by the total number of operational hours

ht in planning period t. The installation costs per operating hour, i.e. the design hour, are

thus calculated.

Installation costs due to building space adjustments. Every change in the operational

capacity of a facility by ∆Ki,t results in an adjustment of the required building space by

∆Ai,t =Ai,t−Ai,t−1. The building area required by a passenger terminal facility comprises
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of the following factors: (i) space for the servers, i.e. check-in desks, baggage carousels,

etc., (ii) queueing space for passengers and (iii) circulation space. The required building

space for servers is defined as ∆Ki,t ·AK , where AK is the required building space per

server. According to the rule-of-thumb model presented in IATA (2017), building space

required for passengers queueing in front of a facility depends on the expected maximum

number of passengers Qmax
i in the queue, the LoS space standard AQ,i, which specifies

the minimal space provided for each passenger in the queue as well as the temporal LoS

standard MQTi, which specifies the acceptable average maximum queueing time per pas-

senger in the queue. Following IATA (2017), Qmax
i is approximated as

Qmax
i = QF (MQTi) ·di,t ·PKi (4.14)

where QF is a correction factor for the calculation of Qmax
i , di,t is the DHL demand

and PKi is the peak 30-minute factor, which expresses the percentage of passengers that

are handled within the 30 busiest minutes of the design hour16. The correction factor QF

is defined as a piecewise function of the maximum queueing time MQTi, as defined in

Table 4.1.

MQTi [min] QF CF

3 0.120 1.22
4 0.151 1.21
5 0.183 1.15

10 0.289 1.06
15 0.364 1.01
20 0.416 1.00
25 0.453 1.00
30 0.495 1.00

Table 4.1: Correction factor for demand variability CF and factor QF for the calculation
of Qmax

i . Adapted from IATA (2017, p. 237).

16A peak 30-minute factor of PKi = 50% means that the actual load during the design hour is equally
distributed, since 50 % of all passengers are handled with the 30 busiest minutes of the design hour, while
the other 50 % of the passengers are handled in the remaining 30 minutes of the design hour. However,
a peak 30-minute factor of PKi = 100% describes the situation, where all passengers handled during the
design hour are processed within the 30 busiest minutes, while during the other 30 minutes, no passengers
at all are processed. If not otherwise mentioned, in this study a peak 30-minutes factor of PKi = 50% is
assumed and applied.
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Finally, circulation space consists of building areas required in order to facilitate the

efficient movement of passengers within the premises of a facility. In airport planning,

circulation space is usually specified as the percentage pcirc
i of the total building space of a

facility which defines how much additional space is required for the circulation of passen-

gers. Consequently, the building space adjustment ∆Ai,t caused by a capacity adjustment

of ∆Ki,t , can be described as follows:

∆Ai,t =
(
1+ pcirc

i
)

︸ ︷︷ ︸
circulation

·(∆Ki,t ·AK︸ ︷︷ ︸
servers

+Qmax
i ·AQ,i︸ ︷︷ ︸

queue

). (4.15)

In accordance with Equation 4.13, installation costs due to the adjustment of ∆Ai,t

units of building space in facility i and planning period t are subsequently defined as

CI∆A
i,t =





(1+pohd
i )·ci+A,i·(∆Ai,t)

αA

ht
, if ∆Ai,t ≥ 0

(1+pohd
i )·ci−A,i·(∆Ai,t)

αA

ht
, if ∆Ai,t < 0

(4.16)

where ci+A,i are unit installation costs for space expansion, ci−A,i are unit dismantling

costs for space reductions, αA is the EoS factor for units of building space in facility i and

ht specifies the number of operational hours of facility i in planning period t.

Initial installation costs. Initial installation costs Ci,0 arise when the capacity and the

building space of facility i are adjusted at t = 0 by ∆Ki,0 and ∆Ai,0. Initial installation

costs are calculated by means of Equations 4.13 and 4.16.

4.3.1.2 Operational costs

Operational costs COt specify the costs of operation of facility i during the design hour of

planning period t. In this study, operating costs consist of four distinct terms: (i) operating

costs per passenger, (ii) operating costs per units of capacity Ki,t , (iii) operating costs per

unit of building space Ai,t and (iv) operating costs per unit of building space used for retail

purposes AR,i,t . Consequently, in accordance with the literature reviewed in Section 2.4.2,
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operating costs are defined with the following linear function

COi,t = di,t · cod +Ki,t · coK +Ai,t · coA +AR,i,t · coR (4.17)

where cod,coK,coA and coR are unit operating costs per unit of demand di,t , capacity

Ki,t , building space Ai,t and retail space AR,i,t . All unit operating cost factors are specified

per operating hour ht .

4.3.1.3 Penalty costs

Following the works of Saffarzadeh and Braaksma (2000), penalty costs CPi,t are incurred

if the operational number of units of capacity Ki,t is either considered over-designed or

under-designed. Costs of over-designing the infrastructure arise if more infrastructure is

provided than required, while costs of under-design arise if not enough infrastructure is

provided. Therefore, penalty costs due to infrastructure under-design can be viewed as a

means of translating congestion and delays into a monetary penalty, since the probability

for delays is higher if the capacity of a system does not meet demand. In contrast, penalty

costs due to infrastructure over-design can be viewed as an approach to penalise the pro-

vision of infrastructure which is not or only rarely used during the design hour, something

which is inefficient from an economical point of view.

In this study, capacity is described as over-designed or under-designed if the resulting

average waiting time experienced by passengers queueing for a facility i during the design

hour of planning phase t fails to achieve temporal target LoS standard which is considered

optimal by IATA (2017). The optimal target LoS range is defined by parameters MQT min
i

and MQT max
i as indicated in Figure 4.7. Both MQT min

i and MQT max
i are parameters which

can either be obtained from IATA (2017) or specified by airport planners to reflect local

needs.

Once the optimal LoS range has been defined, the possibility of under-design or over-

design can be determined. If the average waiting time experienced by passengers dur-

ing the design hour is shorter than MQT min
i , the infrastructure is considered to be over-
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Figure 4.7: Definition of over-designed and under-designed capacity for determination of
penalty costs CPt .

designed. If, however, average waiting times occur that are longer than MQT max
i , too

little infrastructure has been provided and the facility is therefore considered to be under-

designed. The capacity threshold levels where over-design or under-design conditions

are reached can be determined using the rule-of-thumb capacity model provided by IATA

(2017). Thus, given DHL demand di,t of facility i in planning period t, average processing

time PTi of facility i as well as the peak 30-minute factor PKi, the over-design threshold

level Kdi,t and the under-design threshold level Kbi,t are calculated as follows:

Kdi,t =
di,t ·PKi · PTi

60

30+MQT min
i

Kbi,t =
di,t ·PKi · PTi

60
30+MQT max

i
. (4.18)

If Ki,t , which is the operational capacity of facility i in planning phase t, is either

greater than the over-design threshold level Kdi,t or less than the under-design threshold

level Kbi,t , penalty costs are incurred. According to Saffarzadeh and Braaksma (2000),

penalty costs are defined as follows:

CPi,t =





(
Ki,t−Kdi,t

)αP · cpdi , if Ki,t ≥ Kdi,t
(

Kbi,t−Ki,t

)αP · cpbi , if Ki,t < Kbi,t

(4.19)

where αP is a coefficient used to express the non-linearity of delay-related costs, as

proposed by Sun (2016) and Sun and Schonfeld (2015, 2016, 2017). In this way, the provi-

sion of only slightly too much or slightly too little infrastructure can be priced differently
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from the provision of greatly over-sized or under-sized infrastructure. Furthermore, cpdi is

the unit penalty cost for one over-designed unit of capacity and cpbi is the unit penalty cost

for one under-designed unit. For this reason, parameters cpdi and cpbi must be determined

by planners accordingly.

4.3.2 Revenue functions

FunctionRi,t specifies revenues generated by facility i during the design hour in planning

period t. Following the literature reviewed in Section 2.4.2, the revenue of an airport

passenger terminal facility is thereby modelled with the following linear function

Ri,t = di,t · rPAX ,i +Ki,t · rK,i (4.20)

where rPAX ,i refers to unit revenues per design hour passenger, and rK,i are unit reven-

ues per unit of operational capacity Ki,t . Both unit revenues are expressed per operational

hour. For airport passenger terminal facilities, unit revenues per passenger are usually

generated through passenger fees, while unit revenues per unit of capacity result from

utilisation and rental fees paid by handling agents, airlines and other stakeholders.

The planning example, see Section 5, introduces flexible airport passenger terminal

facilities which contain buffer spaces. These buffer spaces can be used temporarily for the

provision of retail, food and beverage services. The revenues generated by offering such

retail-related services can also be captured with a linear function. Thus, Equation 4.20

can be extended in the following way:

Ri,t = di,t · rPAX ,i +Ki,t · rK,i +AR,i,t · rR,i (4.21)

where AR,i,t is the buffer space in square meters and rR,i is the average retail revenue

per unit of retail area per operational hour.
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4.4 Capacity expansion problem models

In this section, four different CEP models for airport passenger terminal facilities are

presented. The conventional CEP models discussed in Section 4.4.1 are used to determine

stochastically optimal conventional facility requirements, while the flexible CEP models

introduced in Section 4.4.2 allow the determination of stochastically optimal flexible fa-

cility requirements. As illustrated in Figure 4.8, conventional facility requirements are

created for systems which do not contain real options and are therefore not flexible. Con-

ventional facility requirements are described in the form of a single stochastically optimal

capacity vector K∗i which maximizes the ENPV of a facility over all scenarios of uncer-

tainty ξs ∈Ω and planning phases t considered.

ξ1, ξ2,...,ξS

Aggregated
Demand

DHL
Demand

CEP
Model

Capacity
Vector

d1, d2,...,dS Ki
* Ki

*

ξ1, ξ2,...,ξS d1, d2,...,dS K1,*, K2,*,...,KS,*
i i i

Conventional
Facility 
Requirements

Flexible
Facility 
Requirements

Optimal Decision
Rule

iii

iii

Figure 4.8: Generation process of conventional and flexible facility requirements for air-
port passenger terminal facilities by means of conventional and flexible CEP models.

In contrast, flexible CEP models are capable of determining optimal facility require-

ments for flexible engineering systems which make use of real options. Instead of defining

one single stochastically optimal capacity vector, flexible CEP models aim to determine

a stochastically optimal decision rule. For each scenario of uncertainty ξs ∈ Ω , the de-

cision rule is applied on an individual basis to generate one single corresponding capacity

vector K1
i ,K2

i , . . . ,KS
i . In the following, the NPV of the system for scenario s is calcu-

lated based on demand specified in scenario ξs and capacity vector Ks
i . Consequently, the

decision rule is considered optimal if the resulting ENPV of the system over all scenarios

of uncertainty is maximized.
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4.4.1 Conventional CEP models

The conventional CEP models presented in this section are based on the deterministic

counterpart of the stochastic CEP model presented in Equations 2.15 on page 71. Given

the economic evaluation model for airport passenger terminal facilities proposed in the

previous section, see Equation 4.10 on page 105, the deterministic counterpart of the

stochastic CEP model is extended to

arg max
Ki

S

∑
s=1

ps

(
−Ci,0(∆Ki,0,∆Ai,0)+

T

∑
t=1

1
(1+δ )t

(
Ri,t(ds

i,t ,Ki,t)−Ci,t(ds
i,t ,Ki,t)

)
)

(4.22a)

s.t. ξs ∈Ω , (4.22b)

ds
i,t = f (ξ s

i,t ,PAXAT Mt ,µR, r̂i), (4.22c)

Ki,t ∈ N0, (4.22d)

p1 = p2 = . . .= pS, (4.22e)

0≤ ps ≤ 1, (4.22f)

S

∑
s=1

ps = 1 (4.22g)

where, Constraint 4.22b specifies annual aggregated demand scenarios created by

means of the GBM-based model introduced in Section 4.1 and Constraint 4.22c defines

how scenarios ξs ∈ Ω are converted into DHL demand scenarios by means of the DHL

model documented in Section 4.2. Constraint 4.22d ensures indivisibility as well as non-

negativity of capacity. Furthermore, Constraints 4.22e, 4.22f and 4.22g define the prob-

ability of occurence of all demand scenarios.

Based on the deterministic counterpart of the stochastic CEP model shown above,

two conventional CEP models are developed in this study: (i) the baseline model, which

will be solely used for benchmarking purposes and (ii) the fixed model, which is used to

determine stochastically optimal conventional facility requirements for airport passenger
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terminal facilities. In the following, the baseline model and the fixed model are discussed

in detail. Additionally, a solution procedure is presented for both models.

4.4.1.1 Baseline model

Due to the baseline model being used for benchmarking purposes only, results generated

with the fixed model, as well as the flexible CEP models introduced in Section 4.4.2.1,

can be evaluated for their solution quality and for the value they add to the system, see

Section 5.1.4.

Model formulation. The baseline model is founded on the assumption that the capacity

of a facility can only be adjusted at time t = 0 by amount ∆Ki,0. After this initial capacity

adjustment, the capacity remains at a constant level of Ki,1 = Ki,2 = . . . = Ki,T = K′i,0 =

Ki,0+∆Ki,0 for the remaining duration of the ASP project. Thus, the CEP model presented

in Equations 4.22 is simplified as follows:

arg max
∆Ki,0

S

∑
s=1

ps

(
−Ci,0(∆Ki,0,∆Ai,0)+

T

∑
t=1

1
(1+δ )t

(
Ri,t(ds

i,t ,K
′
i,0)−Ci,t(ds

i,t ,K
′
i,0)
)
)

(4.23a)

s.t. K′i,0 = Ki,0 +∆Ki,0, (4.23b)

ξs ∈Ω , (4.23c)

ds
i,t = f (ξ s

i,t , t,PAXAT Mt ,µR, r̂i), (4.23d)

Ki,t ∈ N0, (4.23e)

−Ki,0 ≤ ∆Ki,0 ≤ ∆Kmax
i , (4.23f)

p1 = p2 = . . .= pS, (4.23g)

0≤ ps ≤ 1, (4.23h)

S

∑
s=1

ps = 1 (4.23i)
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where Constraint 4.23b defines the capacity adjustment at time t = 0. The magnitude

of this adjustment is limited by Constraint 4.23f. All other constraints are identical with

the deterministic counterpart of the stochastic CEP model presented above. The aim of

the baseline model is to find ∆K∗i,0, which is the stochastically optimal value for the initial

capacity increment, so as to ensure that the ENPV of the system over all scenarios of

uncertainty ξs ∈ Ω is maximized. With the solution procedure documented below, the

optimal value for ∆Ki,0 is determined accordingly.

Proposed solution procedure. Capacity is considered both indivisible as well as non-

negative, as specified in Constraint 4.23e. Because K′i,0 must not be negative, the mag-

nitude of ∆Ki,0 is limited by Constraint 4.23f. To solve CEP models in which the number

of potential solutions, also called solution candidates, is limited and known, the enu-

meration method is often used in practice, such as in Cardin and Hu (2016) and Cardin

et al. (2015) and De Neufville et al. (2006). Here, enumeration is an umbrella term for

algorithms that evaluate each possible solution candidate one by one and subsequently

select the best one.

Software implementation. To solve the baseline model, Algorithm 1 has been de-

veloped for this study. The algorithm, implemented in the Python programming language

(version 3.7.7), can be divided into two phases: an initialisation phase and a loop. During

the initialisation phase, the parameters of the algorithm, such as the initially available ca-

pacity Ki,0, the maximum capacity adjustment size ∆Ki,max, etc. are set. Next, S random

demand scenarios are sampled with the annual aggregated demand model introduced in

Section 4.1 and assigned to set Ω . The annual aggregated demand scenarios are conver-

ted into facility-specific DHL demand scenarios by means of the DHL model. Given the

demand scenarios, the proposed algorithm loops over all feasible solution candidates as

specified in Constraint 4.23f in order to evaluate their fitness in an iterative procedure. To

this end, for each solution candidate, i.e. each feasible value of ∆Ki,0, the resulting ENPV

for facility i is calculated over all the demand scenarios d1,d2, . . . ,dS. Once the fitness of
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all feasible solution candidates has been evaluated, the solution candidate which results

in the highest ENPV is considered the optimal solution candidate ∆K∗i,0.

Algorithm 1 Enumeration-based solver for baseline model
1: procedure BASELINESOLVER

2: Initialise Ki,0 . Initial capacity
3: Initialise ∆Kmax

i . Upper bound for capacity development
4: ENPV ∗← 0
5: ∆K∗i,0← 0
6: Sample scenarios Ω ← ξs . Annual aggregated demand model
7: Generate DHL scenarios (d1,d2, . . . ,dS) . DHL model
8: for ∆Ki,0 =−Ki,0 to ∆Kmax

i do
9: for s = 1 to S do

10: NPV s← NPV (∆Ki,0,ds)
11: end for
12: ENPV (∆Ki,0)← E

[
NPV 1,NPV 2, . . . ,NPV S]

13: if ENPV (∆Ki,0)> ENPV ∗ then . Keep best performing candidate
14: ENPV ∗← ENPV (∆Ki,0)
15: ∆K∗i,0← ∆Ki,0
16: end if
17: end for
18: return ∆K∗i,0,ENPV ∗ . Best solution candidate and corresponding ENPV
19: end procedure

4.4.1.2 Fixed model

The fixed model is used to create conventional and stochastically optimal facility require-

ments for an airport passenger terminal facility i. The facility requirements created with

the fixed model are expressed in the form of a single stochastically optimal capacity vec-

tor K∗i =
[
K∗i,1,K

∗
i,2, . . . ,K

∗
i,T

]
. This means that the same optimal capacity vector is applied

to all demand scenarios ξs ∈Ω , regardless of the future development of the factors which

are subject to uncertainty.

Model formulation. In contrast to the baseline model, the fixed model allows for ca-

pacity adjustments in all planning phases t = 1,2, . . . ,T . Therefore, the decision variable

of the fixed model is capacity vector Ki. Consequently, the stochastic counterpart of the

CEP model presented in Equations 4.22 is adjusted as follows for the fixed model:
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arg max
Ki

S

∑
s=1

ps

(
−Ci,0(∆Ki,0,∆Ai,0)+

T

∑
t=1

1
(1+δ )t

(
Ri,t(ds

i,t ,Ki,t)−Ci,t(ds
i,t ,Ki,t)

)
)

(4.24a)

s.t. ξs ∈Ω , (4.24b)

ds
i,t = f (ξ s

i,t , t,PAXAT Mt ,µR, r̂i), (4.24c)

Ki,t ∈ N0, (4.24d)

∆Ki,t = Ki,t−Ki,t−1, (4.24e)

−∆Kmax
i ≤ ∆Ki,t ≤ ∆Kmax

i , (4.24f)

p1 = p2 = . . .= pS, (4.24g)

0≤ ps ≤ 1, (4.24h)

S

∑
s=1

ps = 1 (4.24i)

where capacity is non-negative and indivisible as stated in Constraint 4.24d. Moreover,

capacity adjustments ∆Ki,t are defined in Constraint 4.24e and subsequently limited by

Constraint 4.24f to a set of solution candidates. Since every capacity vector Ki consists

of T elements which can each take on values from −∆Kmax
i to ∆Kmax

i including zero, the

number of potentially feasible capacity vectors, also referred to as the solution space of

the fixed model, is (2∆Kmax
i + 1)T . This can result in the solution space becoming very

large. For instance, if ∆Kmax
i = 50 units and T = 20 planning phases, the resulting size of

the solution space is 10120.

Proposed solution procedure. Because the solution space of the fixed model is signi-

ficantly larger than that of the baseline model, it is computationally inefficient to use an

enumeration-based solution procedure. For the determination of near-optimal solutions

of the fixed model, a GA is applied, since, as discussed in Section 2.4.3.4, GAs are espe-

cially suitable for application within complex CEP models, i.e. models with large solution
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spaces, non-linear objective functions and non-linear constraints.

GAs belong to the class of evolutionary optimization algorithms, which are based

on the three key principles of natural evolution; heredity, variation and selection (Bäck,

1996; Fogel, 2006; Holland, 1992; Michalewicz, 2013). In a GA, a population of solution

candidates, also referred to as phenotypes, is modified over a finite number of generations

g = 0,1, . . . ,G by means of natural evolution in such a way that increasingly better solu-

tions to an optimization problem emerge. Each solution candidate describes a possible

solution for the optimization problem, which, in the case of the fixed model, are capacity

vectors that satisfy Constraints 4.24d, 4.24e and 4.24f. For the actual solution procedure

of a GA, phenotypes must be first converted with an encoding function into corresponding

genotypes, which are then represented as chromosomes. In case of the fixed model, chro-

mosomes are defined as vectors x = [x1,x2, . . . ,xT ] whose elements xt are referred to as

genes. The genes of chromosomes used for the fixed model express the capacity adjust-

ment ∆Ki,t = Ki,t −Ki,t−1 of facility i in planning period t. Consequently, the encoding

function for the fixed model, which transforms a phenotype Ki into a genotype x, i.e. a

chromosome, is expressed as

x = [Ki,1−Ki,0,Ki,2−Ki,1, . . . ,Ki,T −Ki,T−1]

x = [∆Ki,1,∆Ki,2, . . . ,∆Ki,T ] = [x1,x2, . . . ,xT ]

(4.25)

where Ki,0 is the operational capacity at t = 0, which is a parameter of the fixed model.

To decode a chromosome x into a phenotype Ki, an iterative procedure, defined in Equa-

tion 4.26, is applied. For this purpose, each element Ki,t of the capacity vector forming a

solution candidate Ki is calculated recursively as

Ki,t = Ki,t−1 + xt . (4.26)

Given the genetic representation of solution candidates introduced above, the actual

solution procedure of GAs can be discussed. This basically consists of two distinct phases

as illustrated in Figure 4.9 and Algorithm 2: the random generation of an initial popula-



CHAPTER 4. METHODOLOGY 119

tion of solution candidates and the evolutionary cycle (Bäck et al., 2018; Kramer, 2017).

Initial Population
Generation

Fitness
Evaluation

CrossoverMutation

Termination 
Condition?

Current
Population

Selection

Best 
Chromosome

Initial Phase Evolutionary Cycle Result(s)

Yes

No

Near-optimal
solution

Figure 4.9: Basic principle and structure of a genetic algorithm based on an initial phase,
the evolutionary cycle and the determination of a near-optimal solution.

Generation of initial population. In GAs, a population P(g) =
(
x1,g,x2,g, . . . ,xM,g

)

consisting of m = 1,2, . . . ,M chromosomes xm,g evolves over the course of g = 0,1, . . . ,G

generations. Here, parameter M denotes the number of chromosomes of a population and

parameter G the maximum number of generations. To initialise the solution procedure

of a GA in generation g = 0, an initial population P(0) of randomly generated solution

candidates must be sampled. The literature suggests creating the chromosomes of the ini-

tial population in such a way that a large portion of the solution space of the optimization

problem is covered (Kramer, 2017). For the fixed model, the genes from the chromo-

somes of the initial population are integers which are randomly sampled with uniform

probability from the following set of feasible capacity adjustments denoted as

e = {−∆Kmax
i ,−∆Kmax

i +1, . . . ,∆Kmax
i }. (4.27)

Besides the generation of an initial population, annual aggregated demand scenarios

ξs ∈ Ω as well as DHL demand scenarios d1,d2, . . . ,dS are created with the annual ag-

gregated demand model introduced in Section 4.1 as well as the DHL demand model

presented in Section 4.2. At this point, it is important to mention that for all generations,

an identical set of demand scenarios is used.

Evolutionary cycle. As soon as an initial population P(0) of randomly sampled chro-
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mosomes is available, the evolutionary cycle can commence. In a first step, all the chro-

mosomes of the current population, which is the initial population in the first iteration of

the evolutionary cycle, are evaluated for their fitness. The fitness of a chromosome is a

measure of how well a certain solution candidate solves the optimization problem at hand.

To determine their fitness value, all the chromosomes must first be decoded into pheno-

types, i.e. capacity vectors, using Equation 4.26. Then, the capacity vectors are evaluated

with the objective function of the fixed model, which is given in Equation 4.24a. In this

way, the fitness value of the capacity vectors corresponds to their respective ENPV over

all demand the scenarios generated initially.

Algorithm 2 Basic procedure for GA
1: procedure GA
2: g← 0 . g refers to the generation
3: Initialise P(g) . Create initial population
4: while not terminating conditions do
5: Evaluate P(g)
6: Create P′(g) from P(g) with selection operator
7: Create P′′(g) from P′(g) with crossover operator
8: Create P′′′(g) from P′′(g) with mutation operator
9: P(g+1)← P′′′(g)

10: Check termination conditions
11: g← g+1
12: end while
13: return best solution candidate
14: end procedure

Once all the chromosomes of the current population P(g) have been evaluated for their

fitness, an offspring population P(g+1) is created by means of three different genetic op-

erators, namely (i) the selection operator, (ii) the crossover operator and (iii) the mutation

operator:

• The selection operator is responsible for selecting chromosomes from population

P(g) in order to form population P′(g). The selection procedure is conducted as

a random experiment in which chromosomes with high fitness values have higher

chances to be selected for population P′(g). In this study, the tournament selec-

tion method with a tournament size of 4 is used. Tournament selection is simple
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to implement and it can be applied in parallel computing applications (Bäck et al.,

2018). These features are important for the actual software implementation, as it

makes use of parallel computing capabilities to reduce the runtime of the proposed

solution procedure. Another selection operator used in this study is elitism, which

copies the best performing solution candidate of population P(g) directly into pop-

ulation P(g+1). In this way, the best performing solution candidate of the current

generation is preserved.

• The crossover operator combines genetic information of two randomly selected

parental chromosomes from offspring population P′(g) in order to form two new

child chromosomes, which are subsequently assigned to population P′′(g). Thereby,

the parental chromosome’s likelihood of being selected depends on their corres-

ponding fitness value: the higher their fitness, the higher the probability of being

selected. The crossover process is repeated until population P′′(g) contains the

same number of chromosomes as population P(g). In this study, the two-point

crossover method is applied, since this is capable of preserving "important building

blocks", i.e. segments within chromosomes (Bäck et al., 2018, p. 71). This fea-

ture is considered important, given the fact that chromosomes of the fixed model

describe the timely evolution of capacity adjustments of facility i.

• The mutation operator randomly alters the information in genes of all chromosomes

of population P′′(g) with probability pM, which is a parameter of the GA (Bäck,

1996; Bäck et al., 2018). Population P′′′(g) is generated by applying the mutation

operator to every chromosome of population P′′(g). In this study, a uniform muta-

tion operator, which replaces the value of a gene with a randomly selected value

from set e, is defined in Equation 4.27 where each element of set e has an identical

likelihood of being drawn.

Termination condition(s). After the successful application of the genetic operators,

offspring population P(g+1) is created as P(g+1) = P′′′(g). Before repeating the whole
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evolutionary cycle once again, the GA checks whether one or more termination condi-

tions have been reached in generation g. In this study, only one termination condition is

checked, namely, whether the maximum number of generations G, which is a parameter

of the fixed model, has already been reached. Consequently, once the maximum number

of generations has been reached, the whole evolutionary cycle is terminated and the best

solution candidate of population P(G), i.e. the chromosome with the highest fitness value

in population P(G), is returned as the near-optimal solution of the fixed model. If the

termination conditions have not been reached, the generation counter g is incremented by

one and the entire evolutionary cycle is implemented once again.

Software implementation. The proposed GA to solve the fixed model has been im-

plemented in the Python programming language (version 3.7.7) by making use of the

eaSimple GA solver provided in the DEAP package (version 1.3) (Fortin et al., 2012).

The software is written in such a way that the evaluation of the solution candidates can

be carried out on several CPU cores in parallel. This allows for a significant reduction in

computing time.

4.4.2 Flexible CEP models

As reviewed in Section 2.4.4, the literature presents two different ways to form flexible

CEP models which are here referred to as the empirical approach and the generative ap-

proach. The empirical approach is concerned with determining the stochastically optimal

parametrisation of a decision rule, whereas the generative approach is concerned with de-

termining both the optimal structure of a decision rule and its optimal parametrisation. In

this chapter, both approaches are used to create flexible CEP models for airport passen-

ger terminal facilities. To this end, the following models are presented in this study: the

conditional-go decision rule model (CGDRM) which is based on the empirical approach,

and the reward function decision rule model (RFDRM) which is based on the generative

approach.
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4.4.2.1 Conditional-go decision rule model

A number of different conditional-go decision rule-based flexible CEP models for flex-

ible engineering systems are discussed in the literature (Cardin & Hu, 2016; Cardin et al.,

2015; Cardin, Xie et al., 2017; Cardin, Zhang et al., 2017; Hu et al., 2018; Xie et al.,

2014; Zhao et al., 2018). The model presented in this study is an airport passenger ter-

minal facility-specific adaptation of the flexible CEP model documented in Cardin and

Hu (2016), Cardin et al. (2015) and Hu et al. (2018).

A conditional-go decision rule Dθ permits the creation of a scenario-specific capacity

vector Ks
i for every scenario of uncertainty ξs ∈ Ω . Such a scenario-specific capacity

vector Ks
i is created in an iterative process in which, starting at planning phase t = 1,

the operational capacity Ks
i,t of facility i in planning phase t and scenario s is defined

with decision rule Dθ based on (i) the parametrisation of the decision rule specified by

parameter vector θ= [θ1,θ2], (ii) the operational capacity Ks
i,t−1 available at the beginning

of planning phase t and (iii) the history of the already disclosed uncertainty ds
i,[t].

In this study, the GBM-based annual aggregated demand model is used to create scen-

arios of uncertain aggregated passenger demand ξs ∈ Ω . By means of the DHL demand

model, annual aggregated demand is subsequently converted into DHL demand di of fa-

cility i. Therefore, the history of the already disclosed uncertainty in period t is expressed

as DHL demand ds
i,[t] =

[
ds

i,1,d
s
i,2, . . . ,d

s
i,t

]
. By making use of a conditional-go decision

rule, operational capacity Ks
i,t of facility i in planning phase t and scenario s can be form-

ally expressed as

Ks
i,t =Dθ

(
ds

i,[t],K
s
i,t−1

)
. (4.28)

To decide how much capacity Ks
i,t is provided in planning phase t and scenario s, the

following process is applied within the conditional-go decision rule. In a first step, the

throughput τs
i,t−1 of the entire facility i at the beginning of planning phase t and scenario

s is estimated as follows:
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τ
s
i,t−1 = Ks

i,t−1 ·µK,i (4.29)

where Ks
i,t−1 is the operational capacity at the beginning of planning phase t and µK,i

is the average unit throughput of one unit of capacity of the facility i, e.g. the throughput

of one single check-in desk or one security checkpoint line. Typically, unit throughput is

expressed in the unit of passenger per hour. Then, the throughput surplus T S is estimated

on the basis of the difference between the facility’s throughput τs
i,t−1 and the observed

DHL demand ds
i,t of facility i in scenario s and planning phase t:

T S = τ
s
i,t−1−ds

i,t . (4.30)

Given throughput surplus T S, the actual if-then-else operator is implemented. Here,

the logical operator checks whether the throughput surplus T S of facility i is smaller than

a threshold value, which is defined as θ2 units of capacity times the unit throughput µK,i:

T S < θ2 ·µK,i. (4.31)

If Statement 4.31 applies, the conditional-go decision rule adjusts the operational ca-

pacity of facility i in planning phase t to Ks
i,t = Ks

i,t−1 +θ1 units. Otherwise, capacity is

not adjusted in planning phase t. By repeating this decision process for every planning

phase t = 1,2, . . . ,T , a scenario-specific capacity vector Ks
i is determined by means of

conditional-go decision rule Dθ.

Model formulation. The conditional-go decision rule is integrated into the determin-

istic counterpart of the stochastic CEP model presented in Equations 4.22 on page 113.

The resulting flexible CEP model, which is referred to as the CGDRM in this study, is

expressed as follows:
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arg max
θ

S

∑
s=1

ps

(
−Ci,0(∆Ki,0,∆Ai,0)+

T

∑
t=1

1
(1+δ )t

(
Ri,t(ds

i,t ,K
s
i,t)−Ci,t(ds

i,t ,K
s
i,t)
)
)

(4.32a)

s.t. Ks
i,t =Dθ

(
ds

i,[t],K
s
i,t−1

)
, (4.32b)

ξs ∈Ω , (4.32c)

ds
i,t = f (ξ s

t , t,PAXAT Mt ,µR, r̂i), (4.32d)

ds
i,[t] =

[
ds

i,1,d
s
i,2, . . . ,d

s
i,t
]
, (4.32e)

Ks
i,t ∈ N0, (4.32f)

−∆Kmax
i ≤ ∆Ks

i,t ≤ ∆Kmax
i , (4.32g)

p1 = p2 = . . .= pS, (4.32h)

0≤ ps ≤ 1, (4.32i)

S

∑
s=1

ps = 1 (4.32j)

The objective of the CGDRM is to determine the stochastically optimal parameter

vector θ∗ for conditional-go decision rule Dθ in such a way that the ENPV of airport

passenger terminal facility i is maximized over the entire planning period of an ASP

project. The conditional-go decision rule is defined in Constraint 4.32b. The history of

the disclosed uncertainty is specified in Constraint 4.32e. The remaining constraints of

the CGDRM are identical with the fixed model, see Equations 4.24 on page 116.

The size of the solution space of the CGDRM is defined by parameters θ1 and θ2.

As mentioned above, both θ1 and θ2 refer to a number of units of capacity for facility i.

Consequently, both elements of the parameter vector must be integers. To further restrict

the solution space of the CGDRM, it is assumed that, in accordance with Constraint 4.32g,

θ1 and θ2, are limited to the following set

θ1,θ2 ∈ {−∆Kmax
i ,−∆Kmax

i +1, . . . ,∆Kmax
i } (4.33)
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which has a cardinality of 2∆Kmax
i +1. Consequently, given the fact that the parameter

vector θ consists of 2 elements which can both take on 2∆Kmax
i + 1 different values,

(2∆Kmax
i +1)2 feasible solution candidates for the CGDRM exist. For instance, if ∆Kmax

i

is set to 50 units, 1012 feasible solution candidates exist.

Theoretically, both the enumeration method used for the baseline model, as well as the

GA could be applied to near-optimally solve the CGDRM. However, especially for large

values of Kmax
i , the enumeration method would involve very long computing times, which

should be avoided as far as possible for practical reasons. Since a GA-based solution

procedure has already been used for the fixed model, it was decided to solve the CGDRM

by means of a GA as well. This provides planners with a robust solution procedure that

can efficiently find a solution for the CGDRM, even in the case of relatively large values

for ∆Kmax
i .

Proposed solution procedure. The GA-based solution procedure proposed for the CG-

DRM is largely identical to the solution procedure of the fixed model, see Figure 4.9 on

page 119 and Algorithm 2. For this reason, only the differences between the two imple-

mentations are discussed in more detail in this section.

Genetic representation. Feasible solution candidates of the CGDRM are parameter

vectors θ whose elements are integers which are further restricted to the set specified in

Equation 4.33. The phenotypes are encoded into chromosomes x with Equation 4.34. The

same function is used to decode chromosomes x into parameter vectors θ:

x = θ = [θ1,θ2] . (4.34)

Generation of initial population. The initial population of chromosomes P(0) of the

CGDRM is randomly generated. To do this, the genes of all chromosomes generated in

this process are assigned a randomly selected value from the set of feasible values for θ1

and θ2 defined in Equation 4.33. Each element of this set has the same probability being

selected in this process.
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Evolutionary cycle. By means of Algorithm 3, all the chromosomes (x1,g, . . . ,xM,g) of

the current population P(g) are evaluated for their fitness. Algorithm 3 must be provided

with DHL scenarios d1
i ,d2

i , . . . ,dS
i for facility i, which are created17 before the GA is

executed. For the evaluation of all the populations of chromosomes, the same set of

demand scenarios is used.

Algorithm 3 Evaluation in CGDRM
1: procedure EVALUATECGDRM(P(g),d1

i ,d2
i , . . . ,dS

i )
2: Initialise µK,i . Get unit throughput of facility i
3: Initialise Ki,0 . Get the initially installed capacity
4: for xm,g ∈ P(g) do . Loop over all chromosomes of population P(g)
5: θm,g =

[
θ1,m,g,θ2,m,g

]
← f (xm,g) . Decode chromosome to get θm,g

6: for s = 1 to S do . Loop over all scenarios s
7: T S← 0
8: Ks

i,0← Ki,0 . Set initially operational capacity
9: for t = 1 to T do . Loop over all planning phases t to create Ks

i
10: τs

i,t−1← Ks
i,t−1 ·µK,i . Facility throughput in phase t−1

11: T S← τs
i,t−1−ds

i,t . Throughput surplus
12: if T S < θ2 ·µK,i then . If statement
13: Ks

i,t ← Ks
i,t−1 +θ1 . Then statement

14: else
15: Ks

i,t ← Ks
i,t−1 . Else statement

16: end if
17: end for
18: NPV s

m,g← NPV (Ks
i ,d

s
i ) . Get NPV of scenario s and rule Dθm,g

19: end for
20: ENPVm,g← E

[
NPV 1

m,g, . . . ,NPV S
m,g
]

. Get fitness of xm,g
21: end for
22: return (ENPV1,g, . . . ,ENPVM,g) . Return fitness values of population P(g)
23: end procedure

To evaluate a chromosome xm,g ∈ P(g) for its fitness, it is first decoded by means of

Equation 4.34 in order to get parameter vector θm,g =
[
θ1,m,g,θ2,m,g

]
. Then, a scenario-

specific capacity vector Ks
i is created by means of the conditional-go decision rule Dθm,g .

Here, the logical if-then-else operator specified in Equations 4.28 to 4.31 is applied. Given

Ks
i and ds

i , the resulting NPV s
m,g of facility i for scenario s and decision rule Dθm,g can be

computed. By repeating this process for all scenarios s = 1,2, . . . ,S, the NPV of every

17DHL demand scenarios are created with the annual aggregated demand model introduced in Sec-
tion 4.1 and the DHL model presented in Section 4.2 before the GA is executed.



CHAPTER 4. METHODOLOGY 128

scenario given by decision rule Dθm,g is determined accordingly. Subsequently, by cal-

culating the arithmetic mean of all the scenario-specific NPVs, the ENPVm,g over all the

scenarios, which is used as the fitness value of chromosome xm,g, is derived.

Once all the chromosomes of the current population P(g) have been evaluated for

their fitness, an offspring population P(g+ 1) is generated by means of genetic operat-

ors. In this way, the CGDRM uses almost the same genetic operators as the fixed model.

Chromosomes are selected with tournament selection of tournament size 4. In addition,

elitism, analogous to the fixed model, is applied. Crossover is implemented with the one

point crossover method in which the genetic information of two parental chromosomes

is exchanged in order to form two child chromosomes (Bäck et al., 2018). Finally, the

uniform mutation operator is applied to replace the values of some genes of some chro-

mosomes with a randomly selected value from the set specified in Equation 4.33.

Termination condition(s). The evolutionary cycle is repeated until the maximum num-

ber of generations G, which is a parameter of the CGDRM, has been reached. The

best performing chromosome of population P(G) is subsequently selected as as the near-

optimal solution θ∗ = [θ ∗1 ,θ
∗
2 ] of the CGDRM.

Software implementation. The proposed GA to solve the CGDRM has been imple-

mented in the Python programming language (version 3.7.7) by making use of the eaSimple

GA solver provided in the DEAP package (version 1.3) (Fortin et al., 2012). The software

is written in such a way that the evaluation of the solution candidates can be carried out

on several CPU cores in parallel. This allows for a reduction in computing time.

4.4.2.2 Reward function decision rule model

The second flexible CEP model presented in this study is based on the generative ap-

proach, in which both the optimal structure of a decision rule as well its optimal paramet-

risation are determined. The generative approach-based CEP model for airport passenger

terminal facilities presented in this study is an adaptation of the the works of Hu et al.
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(2020) and Hu and Guo (2019), who designed their model for a waste-to-energy plant in

Singapore. Instead of using a conditional-go decision ruleD, Hu et al. (2020) and Hu and

Guo (2019) employ a non-linear decision rule L, see Section 2.4.4.2, which they refer

to as a reward function, in order to inform DMs on how to optimally adjust the capacity

of an engineering system. For this reason, this flexible CEP model is called the reward

function decision rule model (RFDRM). In the following, the mode of operation of the

RFDRM is explained in more detail.

For each scenario of uncertainty ξs ∈ Ω generated with the annual aggregated de-

mand model presented in Section 4.1 and the DHL model introduced in Section 4.2 as

well as for every planning phase t = 1,2, . . . ,T , DMs determine the operational capacity

of airport passenger terminal facility i with the reward function L. In this process, the

reward function L decides whether and how the operational capacity of facility i should

be adjusted, i.e. expanded or contracted. For all of these adjustment decisions, DMs can

choose from a finite set of adjustment options e = {e1,e2, . . . ,ene}. Set e must be defined

in advance and contains all capacity adjustments which are considered feasible by the

airport planners. For instance, airport planners could define that capacity can be adjusted

by e = {−1,0,1,2,5} units of capacity. All other capacity adjustment options, e.g. an

adjustment by 4 units, are considered infeasible and can therefore not be implemented.

Consequently, capacity Ks
i,t of facility i in scenario s and planning phase t can be written

as

Ks
i,t = Ks

i,t−1 + el , el ∈ {e1,e2, . . . ,ene} (4.35)

where Ks
i,t−1 is the operational capacity at the beginning of planning phase t in scen-

ario s and ne specifies the number of adjustment options defined in set e. To determine

which adjustment option el ∈ e should be implemented in planning phase t and scenario

s, reward function L is used to assign a priority index λ s
l,t to each member of the set e

(Hu et al., 2020). In order to do so, the features Vl of option el ∈ e are considered. Ac-

cording to Hu and Guo (2019), features are objective descriptors of option el , such as the
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investment costs associated with el . In line with the works of Hu et al. (2020) and Hu and

Guo (2019), the following features of options el ∈ e are considered in this study: (i) the

capacity adjustment itself, which is denoted as el , (ii) the operational capacity Ks
i,t−1 at

the beginning of planning phase t in scenario s, (iii) the installation costs CI(el) associ-

ated with option el and (iv) the disclosed uncertainty ξ s
i,t in planning phase t of scenario

s, which is expressed in terms of the disclosed DHL demand ds
i,t . Hu and Guo (2019) also

consider the available resources, i.e. the maximum permissible capacity of facility i, as a

fifth feature. However, for this study it was decided not to use the available resources as

a feature, since maximum capacity is somehow controlled through the elements of set e,

see Equation 4.3518.

Thus, for every scenario s and planning phase t, the priority index λ s
l,t of option el ∈ e

is calculated as follows:

λ
s
l,t = L

(
ds

i,[t],Vl

)
, Vl = {el,Ks

i,t−1,CI(el),ds
i,t} (4.36)

where ds
i,[t] refers to the history of the disclosed DHL demand for facility i in planning

phase t and scenario s. The option es,∗
l,t which results in the highest reward function value

λ s
l,t for all el ∈ e in planning phase t and scenario s is subsequently chosen for implement-

ation. Hence, the operational capacity Ks
i,t of facility i is expressed as

Ks
i,t = Ks

i,t−1 + es,∗
l,t = Ks

i,t−1 + argmax
el∈e

(
λ

s
l,t

)
(4.37)

where argmaxel∈e

(
λ s

l,t

)
refers to the adjustment option el ∈ e which leads to the

highest priority index. By iteratively repeating this selection process for all planning

phases t = 1,2, . . . ,T , a capacity vector Ks
i for scenario s is created.

18Since the number of planning phases is finite, the maximum possible capacity is given as Kmax
i =

Ki,0 +max(e) · T , while the minimum capacity is given as Kmin
i = Ki,0−min(e) · T . The largest and the

smallest element of e are indicated with max(e) and min(e), respectively.
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Model formulation. The actual form, structure, and parametrisation of the non-linear

decision rule L presented in Equation 4.36 has intentionally not been specified. Indeed,

the objective of the RFDRM is to determine the stochastically optimal structure and para-

metrisation of reward function L in such a way that the ENPV of passenger terminal

facility i is maximized over all scenarios of uncertainty ξs ∈ Ω . Following Hu and Guo

(2019) and Hu et al. (2020), the deterministic counterpart of the stochastic CEP model

presented in Equations 4.22 on page 113 is subsequently extended as follows in order to

integrate reward function L:

arg max
L

S

∑
s=1

ps

(
−Ci,0(∆Ki,0,∆Ai,0)+

T

∑
t=1

1
(1+δ )t

(
Ri,t(ds

i,t ,K
s
i,t)−Ci,t(ds

i,t ,K
s
i,t)
)
)

(4.38a)

s.t. Ks
i,t = Ks

i,t−1 + argmax
el∈{e1,...,ene}

(
λ

s
l,t

)
, (4.38b)

λ
s
l,t = L

(
ds

i,[t],Vl

)
, (4.38c)

Vl ∈ {el,Ks
i,t−1,CI(el),ds

i,t}, (4.38d)

ξs ∈Ω , (4.38e)

ds
i,t = f (ξ s

t , t,PAXAT Mt ,µR, r̂i), (4.38f)

ds
i,[t] =

[
ds

i,1,d
s
i,2, . . . ,d

s
i,t
]
, (4.38g)

Ks
i,t ∈ N0, (4.38h)

p1 = p2 = . . .= pS, (4.38i)

0≤ ps ≤ 1, (4.38j)

S

∑
s=1

ps = 1 (4.38k)

where Constraints 4.38b, 4.38c and 4.38d integrate reward function L in the RFDRM.



CHAPTER 4. METHODOLOGY 132

Proposed solution procedure. In line with Hu et al. (2020) and Hu and Guo (2019),

gene expression programming (GEP) algorithm is applied in this study to determine the

optimal structure and parametrisation of the reward function L. GEP is an evolutionary

optimization algorithm, similar to the GA, which is however capable of evolving com-

puter programs, i.e. mathematical formulae, logical rules, etc. (Ferreira, 2001). Hereafter,

the proposed solution procedure is presented in more detail. In a first step, the genotypes

and phenotypes used in the proposed GEP approach are explained. Further, the generation

of an initial population, as well as the evolutionary cycle is described.

Genetic representation. According to Ferreira (2006) and Zhong et al. (2017), the

solution candidates used in GEP are computer programs which are encoded by means

of fixed-length chromosomes x. Each of these chromosomes have two distinctive parts:

a head and a tail. While the head of a chromosome consists of genes which are either

so-called functions or terminals, the genes of the tail are formed entirely of terminals. As

the name implies, functions are mathematical functions such as the addition or subtrac-

tion operators. Terminals, on the other hand, can either be input variables or constants.

Functions and terminals that the GEP algorithm may use must be defined in a respective

set. The set of all functions Ψ defines which mathematical functions are permitted to be

used in the solution candidates. Following Hu et al. (2020) and Hu and Guo (2019), set

Ψ applied in this study contains the following mathematical operators: addition, subtrac-

tion, multiplication and protected division. This protected division is a modified division

operator which yields to zero in case of a division by zero (Hu et al., 2020).

Ψ = {ADD,SUB,MUL,PDIV} (4.39)

Valid input variables are specified in the set of terminals Γ , which, for the application

proposed in this study, consists of all elements in set Vl

Γ =Vl = {el,Ks
i,t−1,CI(el),ds

i,t}. (4.40)



CHAPTER 4. METHODOLOGY 133

Chromosomes x are decoded into computer programs by means of the width-first

search scheme, where the computer program is expressed in terms of an expression tree

(Zhong et al., 2017). To explain the decoding method, the following chromosome is con-

sidered as an example:

x =


ADD,MUL,PDIV,SUB,ds

i,t ,MUL
︸ ︷︷ ︸

Head

,el,Ks
i,t−1,d

s
i,t ,d

s
i,t ,CIt ,CIt ,el︸ ︷︷ ︸

Tail


 . (4.41)

The first gene of the head, which, in the example presented in Equation 4.41, is the

addition operator, is expanded as the first node of the expression tree, see Figure 4.10.

Then, this first node is further expanded into u sub-nodes, where u refers to the maximum

arity of the functions defined in Ψ . The term arity refers to the number of arguments

the functions defined in Ψ take. In this study, the maximum arity is set to u = 2. Con-

sequently, the two child nodes of the addition operator are expanded by considering genes

2 and 3 of the example chromosome. As illustrated in Figure 4.10, these genes contain

the multiplication and the protected division operator. Then, the procedure of expanding

nodes is repeated for all the genes located in the head of the chromosome. Once the head

has been completely expanded, the elements of the tail are assigned from left to right to all

still empty children nodes of the expression tree. Since terminals act as the leaves of the

expression tree, they cannot be further expanded. It is possible that some genes in the tail

of the chromosome are not assigned to a leave and therefore remain unused. The decod-

ing process is finished when the expression tree has no more empty leaves and therefore

cannot be expanded further. Consequently, chromosome x has been transformed into a

corresponding expression tree which describes both the structure and parametrisation of

reward function L. For instance, the example chromosome presented in Equation 4.41

can be transformed into the following reward function:

L = Ks
i,t−1ds

i,t− (ds
i,t)

2 +
ds

i,tCIt(el)

el
. (4.42)
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+

/

el·

CItds
i,t

·

ds
i,t-

ds
i,tKs

i,t−1

Figure 4.10: Expression tree relating to the chromosome defined in Equation 4.41.

In order to ensure that a valid expression-tree can be generated from each chromo-

some, Ferreira (2006) stipulated that the length of the head and the length of the tail of

the chromosomes must be fixed. Given the maximum arity u of the functions, the number

of genes in the head nHead and the number of genes in the tail nTail of a chromosome are

related to each other as follows (Ferreira, 2006):

nTail = nHead · (u−1)+1. (4.43)

At this point, it is important to mention that for the application proposed in this study

only a decoding function is needed. There is no need to encode expression trees into

chromosomes.

Generation of initial population. Similar to the GA-based approaches used for the

fixed model and the CGDRM, an initial population P(0) of chromosomes must be gen-

erated on a random basis for the GEP algorithm-based solution approach which is used

for the RFDRM as well. In a first step, the length of the chromosomes is to be defined.

In line with Hu and Guo (2019), the length of the head of the chromosomes has been set

to nHead = 8 genes. Then, with a maximum arity of u = 2, the length of the tail of the

chromosomes is determined with Equation 4.43 as nTail = 8 · (2−1)+1 = 9 genes. This

leads to fixed-length chromosomes which contain nHead + nTail = 17 genes. In a second

step, M chromosomes are generated randomly, where the values of the genes located in
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the heads of the chromosomes are sampled with uniform probability from sets Γ and Ψ ,

while for the tail the values of the genes are randomly sampled from the set of terminals

Γ only.

Evolutionary cycle. Before starting the evolutionary cycle of the GEP algorithm,

which to a large extent is identical with evolutionary cycle of the GA, all scenarios of un-

certainty ξs ∈Ω are generated by means of the aggregated annual demand model defined

in Section 4.1 and the DHL model introduced in Section 4.2. These scenarios remain un-

changed for the entire evolutionary cycle, and once these scenarios are given, the actual

evolutionary cycle is initiated.

All the chromosomes xm,g of the current population P(g) are evaluated for their fitness

with Algorithm 4. To this end, each chromosome xm,g is first decoded into a correspond-

ing reward function Lm,g by means of the width-first search scheme introduced above.

Next, using the resulting reward function Lm,g, a capacity vector Ks
i is created for every

scenario of uncertainty, where the procedure explained in Equations 4.36 and 4.37 is ap-

plied. Given Ks
i and ds

i , the resulting NPVs
m,g of facility i for scenario s is calculated. By

repeating this process for all scenarios s = 1, . . . ,S, the NPV of every scenario is calcu-

lated with the decision rule L = f (xm,g) accordingly. Subsequently, by calculating the

arithmetic mean of all scenario-specific NPVs
m,g, the ENPV over all the scenarios, which

is ENPVm,g, is used to express the fitness of chromosome xm,g.

Once all the chromosomes of the current population P(g) have been evaluated for their

fitness, an offspring population P(g+ 1) is generated by means of genetic operators. In

contrast to the GA, GEP uses four different genetic operators, namely (i) selection, (ii)

crossover, (iii) mutation and (iv) transposition.

• Selection. Similar to the GA used for the fixed model and the CGDRM, tournament

selection with a tournament size of 4 is used to form population P′(g). Additionally,

with the help of elitism, the best performing chromosome of population P(g) is

directly copied into the offspring population P(g+1).

• Crossover. According to Zhong et al. (2017), a combination of both one-point and
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Algorithm 4 Evaluation in RFDRM
1: procedure EVALUATERFDRM(P(g),d1

i ,d2
i , . . . ,dS

i )
2: Initialise Ki,0 . Get initial capacity of facility i
3: Initialise e←{e1,e2, . . . ,ene} . Define set of adjustment options
4: for xm,g ∈ P(g) do . Loop over all chromosomes of population P(g)
5: Lm,g = f (xm,g) . Decode chromosome to get reward function
6: for s = 1 to S do . Loop over all scenarios s
7: Ks

i,0← Ki,0 . Set initially operational capacity
8: for t = 1 to T do . Loop over all planning phases t to create Ks

i
9: for el ∈ e do . Loop over adjustment options el

10: Vl ←{el,Ks
i,t−1,CI(el),ds

i,t} . Populate set Vl

11: λ s
l,t ← Lm,g

(
ds

i,[t],Vl

)
. Calculate priority index for el

12: end for
13: Ks

i,t ← Ks
i,t−1 + argmaxel∈e

(
λ s

l,t

)
. Select el with highest λ s

l,t value
14: end for
15: NPV s

m,g← NPV (Ks
i ,d

s
i ) . Get NPV of scenario s and rule L = f (xm,g)

16: end for
17: ENPVm,g← E

[
NPV 1

m,g, . . . ,NPV S
m,g
]

. Get fitness of xm,g
18: end for
19: return (ENPV1,g, . . . ,ENPVM,g) . Return fitness values of population P(g)
20: end procedure

two-point crossover is applied to combine the genetic information of two parental

chromosomes of population P′(g) at random in order to form population P′′(g).

• Mutation. Chromosomes in the population P′′(g) are subject to uniform mutation

with a probability of pM in order to form population P′′′(g). The mutation operator

used for GEP ensures that elements of a chromosome head can only be mutated into

other feasible values for terminals and functions as defined in sets Γ and Ψ , while

elements in the chromosome tail must only be allowed to randomly take values as

defined in set Γ .

• Transposition. Transposition is a genetic operator applied specifically in GEP al-

gorithms when it randomly moves fragments of a chromosomes to other positions

within the same chromosome. With transposition, population P′′′′(g) is generated.

As suggested by Ferreira (2001, 2006) and Zhong et al. (2017), two different types
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of transposition operators are applied in this study: IS transposition19 and RIS trans-

position20 (Ferreira, 2001, 2006; Zhong et al., 2017). The gene transposition oper-

ator, which is applied to solution candidates consisting of more than one chromo-

some, is not applied in this study, since solution candidates of the RFDRM consist

only of one single chromosome.

Termination condition(s). After successfully applying all the genetic operators men-

tioned above, offspring population P(g+1) is created as P(g+1) =P′′′′(g). As is the case

for the fixed model and the CGDRM, the evolutionary cycle of the RFDRM is terminated

as soon as the maximum number of generations G has been reached. Subsequently, the

best performing chromosome of population P(G) is considered the near-optimal solution

of the RFDRM. If the termination conditions are not met, the entire evolutionary cycle of

the GEP algorithm is executed once again.

Software implementation. The proposed GEP algorithm to solve the RFDRM has been

implemented in the Python programming language (version 3.7.7) by making use of the

gep_simple GEP solver provided in the GEPPY package (version 0.1.2) (Gao, 2018).

The software is written in such a way that the evaluation of the solution candidates can

be carried out on several CPU cores in parallel. This allows for a reduction in computing

time.

19IS transposition refers to insertion sequence transposition, which is responsible for moving small
snippets of a chromosome to a random position within the head of the same chromosome.

20RIS transposition refers to root insertion sequence, which is responsible for moving small segments
of the head of a chromosome to the beginning of the head of the chromosome.
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Planning example

In this chapter, the strategic capacity planning framework presented in Section 4 is applied

in a real-world strategic planning example to determine facility requirements for existing

check-in facilities at ZRH Airport. To simplify matters, this planning example focuses

exclusively on the check-in facilities at ZRH Airport. However, it is important to note that

the strategic capacity planning framework proposed in this study can be applied without

loss of generality both to other airport passenger terminal facilities at ZRH Airport, such

as security checkpoints or baggage carousels, as well as at other airports.

Following the general structure of the capacity planning framework proposed in Sec-

tion 4, this planning example consists of two main parts: (i) the generation of demand

scenarios and (ii) the determination and comparison of optimal facility requirements for

a number for system designs, i.e. candidate flexibilities, for existing check-in facilit-

ies at ZRH Airport by means of conventional and flexible CEP models. The chapter

is organised as follows: Section 5.1 presents and summarises the planning principles

underlying this example. ZRH Airport and the check-in facility for which facility re-

quirements are determined are briefly introduced. There follows an explanation of which

sources of uncertainty and candidate flexibilities are taken into account, and how facil-

ity requirements that were created with different CEP models are compared by means of

their value of flexibility (VoF). Section 5.2 presents the inventory of the check-in facilit-

138
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ies considered and the parametrisation of the models used in the course of this planning

example. Subsequently, annual aggregated passenger demand scenarios for ZRH Airport

and DHL demand scenarios for the check-in facility in focus are calculated and presented

in Section 5.3. In Section 5.4, conventional and flexible facility requirements for a total of

three different candidate flexibilities for check-in facilities at ZRH Airport are determined

by means of the fixed model, the CGDRM and the RFDRM. Following this, the facility

requirements generated in this process are compared with each other with the help of the

baseline model results. Further, the facility requirements created with the fixed model,

the CGDRM and the RFDRM, are examined for their sensitivity to changes in input and

parameters. Finally, Section 5.5 discusses the observed solution performance of the CEP

models presented.

5.1 Planning principles

5.1.1 System description

ZRH is Switzerland’s largest airport. In 2019, 77 airlines provided flight connections to

138 European and 65 intercontinental destinations (Flughafen Zürich AG [FZAG], 2020).

Also, ZRH handled 31.5 million passengers in 2019, making it the 72nd largest aerodrome

in the world (ACI, 2020b). To meet this traffic volume, ZRH Airport has two terminals,

Terminal 1 and Terminal 2. Terminal 1 is predominantly used by Swiss International

Airlines and its Star Alliance partners, while the remaining traffic is handled in Terminal

2.

Most airport passenger terminal facilities at ZRH Airport, such as the security check-

points, the immigration facilities or the emigration facilities, are operated as common-use

facilities. Check-in facilities, however, are an exception due to the fact that a majority

of the check-in desks are dedicated to airlines, airline alliances or handling agents. In

fact, hub carrier Swiss International Airlines and its Star Alliance partner airlines use two

dedicated check-in facilities almost exclusively: Check-in 1 located in Terminal 1 and
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Check-in 3 situated next to the airport’s railway station in Terminal 2, see Figure 5.1.

Figure 5.1: General map of ZRH Airport showing the location of Terminals 1 and 2 and
Check-in 1, 2 and 3. Note: The map was created by the author based on aerial photographs
of ZRH Airport obtained through https://www.google.com/maps/.

For this planning example, it is assumed that Check-in 1 as well as Check-in 3 are

located in the same building and that the joint facility requirements for both facilities

are determined. Thus, the term Check-in 1 and 3, which refers to the combined facil-

ity requirements, is used for the remainder of this planning example. In practice, airport

planners often create such combined facility requirements, as this can simplify the cre-

ation of planning alternatives; these describe how facility requirements can actually be

implemented at an airport, see Section 2.1.1. It should be noted that in Chapter 4, the

subscript i is used to refer to a generic passenger terminal facility, whereas in this chapter

subscript i is replaced with CH whenever Check-in 1 and 3 is explicitly referred to.

https://www.google.com/maps/
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5.1.2 Sources of uncertainty

ASP is subject to uncertainty from a number of different sources, as reviewed in Sec-

tion 2.3.2. For this planning example, it was decided to further consider two specific

sources of uncertainty, namely (i) uncertainty in demand and (ii) uncertainty in the ser-

vice rate of check-in facilities.

Uncertainty in demand can be rather significant, especially when long planning ho-

rizons are considered. As mentioned in Section 2.1, Maldonado (1990) reports forecast

errors in the range of 34 % to 210 % for demand outlooks covering 15 years. For this

reason, the importance of demand uncertainty is highlighted in guidance material for air-

port planners (IATA, 2017; Kennon et al., 2013; Kincaid et al., 2012; Landrum & Brown

et al., 2010), also in the scientific literature on strategic airport planning (Burghouwt,

2007; De Neufville et al., 2013), as well as in the literature on CEP models (Freidenfelds,

1981; Geng & Jiang, 2009; Julka et al., 2007; Luss, 1982; Martínez-Costa et al., 2014;

Van Mieghem, 2003; Wu et al., 2005). Annual aggregated passenger demand scenarios

are generated for this planning example by means of the GBM-based annual aggregated

demand model introduced in Section 4.1. These annual aggregated demand scenarios

are subsequently converted into DHL demand scenarios for Check-in 1 and 3 with the

unsaturated DHL model and the saturated DHL model introduced in Section 4.2.

The second source of uncertainty selected for further consideration is the average pro-

cess or service rate of check-in facilities. This service rate describes how many passengers

are handled on average per time unit, e.g. per hour, by an airport passenger terminal fa-

cility. Here, both procedural and technological factors may potentially affect the average

service rate of a check-in facility (Ashford et al., 2013; IATA, 2017). Procedural factors

consider, for instance, the introduction of new safety-related measures, which could slow

down the check-in process. On the other hand, technological advances, such as web-based
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check-in21, have the potential to increase the average throughput of a check-in desk.

In this study, the influence of uncertainty, here in the average service rate µK,CH of

check-in desks, on optimal facility requirements created with CEP models is not examined

by means of scenarios of uncertainty ξs ∈Ω , but rather by means of sensitivity analyses.

The reason for this decision lies in the fact that the literature on the creation of scenarios

of uncertainty for the service rate of check-in desks is, at best, limited. Regarding the

modelling of the uncertain influence of procedural aspects on the service rate of check-in

desks, there is, to the best of the author’s knowledge, no scientific literature available. As

to technological factors, a large body of literature on technological innovation diffusion

is available (Meade & Islam, 2006). To model technological change and innovation, vari-

ous methods, such as agent-based models (Dawid, 2006), logistic models (Grübler et al.,

1999) or "scenario analysis, portfolio theory, and multi-criteria optimization" (Grübler

& Fuss, 2012, p. 10) are proposed in the literature. For example, Halpern et al. (2021)

discuss the effects of the digital transformation on airports, while Ueda and Kurahashi

(2014) present an agent-based model that examines the adoption of self-service techno-

logy at check-in. Unfortunately, however, the literature, in applying these methods to

airport processes, does not focus on methods which allow the generation of scenarios of

uncertainty applicable in the context of this study.

5.1.3 Candidate flexibilities

Candidate flexibilities describe flexible system designs based on real options on systems

and/or real options in systems. Airport passenger terminal-related implementations of

real options presented in the literature have been reviewed in Section 2.2.2. Based on

this review, three candidate flexibilities were selected that are suitable for application

21As pointed out by IATA (2017), the check-in process is in the midst of a fundamental transformation
which is largely driven by the advance of the Internet-based technology. While in the past passengers
conducted their entire check-in process on site, web-based technology will offer airports and handling
agents the possibility of outsourcing large parts of the check-in process to Internet-based services (Lu et al.,
2011). Further, Wilson (2019) expects that in future an ever-increasing segment of passengers will not
require classical check-in infrastructure at airports any longer. Instead, it is expected that passengers will
predominantly use self-service infrastructure by means of mobile devices.
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on Check-in 1 and 3. These candidate flexibilities, which are hereafter referred to as

Evaluation 1, Evaluation 2 and Evaluation 3, are defined as follows:

(i) Evaluation 1 deals with the implementation of real options on systems in Check-in 1

and 3. Of the generic real options strategies reviewed in Section 2.2.2, only a subset

is applicable to airport passenger terminal facilities22. It was therefore decided to

examine whether and how the future development of Check-in 1 and 3 can be made

flexible with the option to defer and the option to alter the operating scale. For this

reason, it is assumed that systems which are equipped with the option to alter the

scale inherently include the options to expand and to contract, as this is considered

the basic functionality of this option.

(ii) Evaluation 2 is an extension of Evaluation 1. Given the basic flexibilities intro-

duced in Evaluation 1, i.e. the option to defer and the option to alter the scale, the

possibility of developing Check-in 1 and 3 in a modular way is analysed. Modu-

larisation, as introduced in Section 2.2.2, refers to the definition and deployment of

airport infrastructure by means of well-defined and standardised building blocks,

facilities or units which can be installed or removed in a repetitive manner (Kincaid

et al., 2012). For this study, a module used for check-in facilities is considered to

consist of a predefined number of check-in desks as well as the necessary building

space for check-in desks as well as for queueing and circulation of passengers.

(iii) Evaluation 3 is an extension of Evaluation 1. Given the basic flexibilities intro-

duced in Evaluation 1, i.e. the option to defer and the option to alter the scale, the

introduction and usage of buffer space in Check-in 1 and 3 is analysed. A buffer

space is a building area that is reserved for future use as a facility. Until a buffer

22Trigeorgis (1996) also mentions the option to abandon, the option to switch inputs and outputs and
corporate growth options. Engineering systems often have a very low salvage value, which can make
the application of the option to abandon difficult or even impossible. The option to switch inputs and
outputs is not applicable to Check-in 1 and 3 since the check-in process has no inputs and outputs other
than passengers. Finally, the corporate growth option is usually reserved for projects and systems in the
high-tech industry sector as well as for companies which have a strong focus on research and development
(Trigeorgis, 1996).
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space is converted into a complete facility airport passenger terminal facility, the

space either remains unused or is put to interim use, such as for the provision of

retail, food and beverage services. To make use of buffer spaces, airport planners

must either initially plan, design and build passenger terminals with buffer spaces in

mind, or they must designate and reserve existing building areas as buffer spaces.

For check-in facilities in particular, buffer space must be planned in such a way

that the check-in facility that will be created can be connected to the BHS. For this

reason, installation costs for buffer space come with a cost premium which covers

all expenses resulting from the required integration with the BHS.

Table 5.1 summarises all real options investigated for Check-in 1 and 3 in this study.

Real option Evaluation 1 Evaluation 2 Evaluation 3

Options to defer & alter X X X
Modular development X
Buffer space X

Table 5.1: Candidate flexibilities evaluated in the proposed planning example on Check-in
1 and 3 at ZRH Airport.

5.1.4 Value of flexibility

For the candidate flexibilities introduced above, both conventional and flexible facility

requirements for Check-in 1 and 3 at ZRH Airport are determined. Conventional facility

requirements are created with the baseline model and fixed model, while flexible facility

requirements are generated with the CGDRM and RFDRM. Facility requirements that

have been created with different CEP models can be compared with each other by means

of their value of flexibility (VoF) (Cardin, 2014; Cardin & Hu, 2016; Cardin et al., 2015;

De Neufville & Scholtes, 2011; Geltner & De Neufville, 2018), which is defined as fol-

lows:

VoFFlexible System = max
(
ENPVFlexible System−ENPVBenchmark,0

)
(5.1)
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where ENPVFlexible System and ENPVBenchmark describe the ENPV of a flexible engin-

eering system and a conventional system acting as a benchmark, respectively. For the

purpose of this planning example, the VoF of facility requirements generated with the

fixed model, the CGDRM or the RFDRM is defined as follows

VoFFixed Model = ENPVFixed Model−ENPVBaseline

VoFCGDRM = ENPVCGDRM−ENPVBaseline

VoFRFDRM = ENPVRFDRM−ENPVBaseline.

(5.2)

In contrast to the literature, the definition of VoF applied in this study also allows

for negative values. This extension of Equation 5.1 permits an objective evaluation of

facility requirements that perform worse than the benchmark. Furthermore, the VoF is

also calculated for conventional facility requirements which are created with the fixed

model. From a purely technical point of view, the term value of flexibility is incorrect in

this case, as conventional facility requirements are not flexible by definition. However,

since the calculation procedure specified in Equation 5.2 is identical for all CEP models

and the term VoF is well established in the literature, it was decided to keep the term VoF,

even when applied to conventional facility requirements.

5.2 Inventory and parametrisation

This section comprises of the inventory of Check-in 1 and 3 at ZRH Airport as well as

references to the parametrisation applied to the demand and CEP models used in the

context of this planning example. Unless otherwise mentioned, information which the

inventory and the parametrisation presented in this section is based on was provided by

the planning department of Flughafen Zürich AG (FZAG).
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Inventory. In 2019, a total of 45 check-in desks23 were available in Check-in 1, while

there were 33 desks in Check-in 3 (FZAG, 2020). Of the 78 check-in desks in Check-in

1 and 3, 69 desks were dedicated to Swiss International Airlines and its Star Alliance

partner airlines. Based on the actual infrastructure usage in 2019, it was found that of

the 78 check-in desks, 53 desks were used by Swiss International Airlines and its partner

airlines during the design hour of the year 2019. Check-in desks installed at ZRH Airport

require on average a building space area of AK,CH = 7m2. Further, based on operational

experience of FZAG, the average process time per passenger at a Check-in 1 and 3 is

known to be PTCH = 60s/PAX, which corresponds to an average service rate of µK,CH =

60PAX/h for each check-in desk.

As summarised in Table 5.2, the total building area occupied by Check-in 1 and 3 is

4051 m2 and can be allocated to the following uses: 506 m2 is taken up by the check-

in desks themselves, 1423 m2 is area allocated for passengers in queues and 2122 m2 is

circulation area for passengers and staff. At present, no building areas are designated as

buffer space.

Concerning service quality, FZAG applies the LoS concept presented in IATA (2017),

see Section 2.1.3. FZAG considers a check-in facility to be optimally designed if the

average maximum queueing time (MQT) experienced by passengers during the design

hour is between MQT min
CH = 5min/PAX and MQT max

CH = 10min/PAX. FZAG also aims

to provide each passenger with an individual queueing space of AQ,CH = 2m2/PAX on

average.

Table 5.3 summarises the observed demand in the years 2009 to 2019 at ZRH Airport

in general, and for Check-in 1 and 3 in particular. Columns ATM
yr , Dt and DCH,t , refer

to the observed total annual aggregated demand in ATMs, total annual aggregated pas-

23Besides conventional check-in desks, a total of 26 self-service check-in machines were available in
Check-in 1 and 3 in 2019. According to the planning specifications of FZAG, no facility requirements for
self-service machines are determined in this study. Based on statements from planning experts at FZAG,
self-service check-in equipment can be easily integrated into existing check-in facilities due to the small
footprint of the devices.
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Item Unit Available in 2019 Used in 2019

Circulation area m2 2122 2122
Waiting area m2 1423 1423
Desk area m2 506 506
Total Building Area m2 4051 4051
Check-in desks desks 69 53

Table 5.2: Inventory of Check-in 1 and 3 facilities used by Swiss International Airlines
and partner airlines at ZRH Airport.

sengers and total annual aggregated local-outbound24 passengers using Check-in 1 and 3,

respectively. Column PAXAT Mdh
CH,t refers to the average number of passengers per ATM

during the design hour of year t who have used Check-in 1 and 3. Finally, column dCH,t

refers to the observed DHL demand of Check-in 1 and 3.

The aggregated demand data as well as PAXAT Mdh
CH,t have been provided by FZAG.

DHL demand for Check-in 1 and 3 was determined by the author by applying the fol-

lowing procedure. In a first step, PTS data describing passenger influx to the boarding

pass control facility at ZRH Airport for the years 2009 to 2019 was analysed using the

rolling maximum algorithm presented in Section 4.2.2. Since the boarding pass control

facility is located after Check-in 1 and 3, it is assumed that the temporal distribution of

demand at both facilities is very similar. However, in terms of volume, demand at check-

in is expected to be less pronounced than at the boarding pass control facility, since not

all local-outbound passengers have to use the check-in facility. Indeed, some passengers

travel without luggage and can therefore proceed directly to the security checkpoint fa-

cility upon arrival at the airport. For this reason, FZAG assumes that only pCH = 80%

of all passengers passing through the boarding pass control facility also use check-in. In

a second step, DHL demand for Check-in 1 and 3 was determined according to Waltert

et al. (2021):

. . . by means of the SBR referring to the 20th highest hour of passenger

flow of the entire year. This contrasts with the literature, which recommends

24Local-outbound passengers includes all travellers who start their journey at an airport. Transit passen-
gers are not counted as local-outbound passengers.
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using the 30th highest hour for the SBR (Ashford et al., 2013; Matthews,

1995). According to ZRH Airport, the rationale behind opting for the SBR

based on the 20th hour is grounded on considerations regarding the public’s

perception of service quality. Due to the operational concept of the local hub

airline, most passenger terminal facilities at ZRH Airport experience only one

daily peak period, whose duration is usually rather short. Consequently, by

selecting a very restricting 20th highest hour for the DHL, the number of days

on which customers might experience unacceptable service levels during this

daily peak period can be limited significantly. (p. 4)

Year ATM
yr Dt DCH,t PAXAT Mdh

CH,t dCH,t

Unit ATM MPPA MPPA PAX per ATM PAX/h

2009 223333 21.91 3.458 79 3239
2010 227815 22.85 3.699 92 3302
2011 238569 24.31 4.026 115 3785
2012 233064 24.79 4.095 106 3958
2013 228314 24.85 4.327 100 3810
2014 230652 25.45 4.484 110 4396
2015 231095 26.25 4.785 85 4059
2016 235931 27.61 5.045 104 4212
2017 236418 28.27 5.296 88 4507
2018 244430 31.08 5.891 92 4452
2019 243115 31.48 6.066 109 4892

Table 5.3: Observed annual aggregated passengers and air traffic movements at ZRH
Airport and DHL demand of Check-in 1 and 3 for the years 2009 to 2019.

Parametrisation. The demand models and CEP models used in this study need to be

parametrised. For this purpose, parameters provided by FZAG are used. The reader is

referred to Appendix A for an overview an all parameters applied.
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5.3 Generation of demand scenarios

Demand scenarios are generated in a process consisting of two steps: First, annual ag-

gregated passenger demand scenarios for ZRH Airport are created by means of the annual

aggregated demand model presented in Section 4.1. Next, the annual aggregated demand

scenarios are converted into DHL demand scenarios for Check-in 1 and 3 with the unsat-

urated DHL model and the saturated DHL model introduced in Sections 4.2.3 and 4.2.4,

respectively.

5.3.1 Annual demand model

For ASP projects, planning horizons of typically 20 to 50 years are selected, see Sec-

tion 2.1. This planning example considers a planning horizon of T = 20 years, which

is further divided into 20 equally spaced planning phases t = 1,2, . . . ,20. Annual ag-

gregated demand scenarios ξs are created for ZRH Airport using the annual aggregated

demand model introduced in Section 4.1. Each scenario ξs =
[
ξ s

1 ,ξ
s
2 , . . . ,ξ

s
T
]

is a vec-

tor consisting of 20 elements ξ s
t which each describe annual aggregated demand in year

t. For this planning example, the future aggregated annual demand scenarios for ZRH

Airport are based on the observed demand in the year 2019. Thus, demand of the years

2020 and 2021, which turned out to be exceptionally low due to the economic downturn

following COVID-19, is not taken into account for the generation of future demand scen-

arios. Demand for air transportation is expected to return to 2019 levels in the coming

years (Eurocontrol, 2021). However, it is currently uncertain when future demand will

again surpass the 2019 level. For this reason, the time axes of all plots presented in this

study are labelled with planning phases t only and do not refer to specific years. In this

way, the results presented in this study can be used at a later date when demand recovers.

The annual aggregated demand model is based on a GBM model, which requires

appropriate parametrisation for the initial annual aggregated demand D0, the average per-

centage drift rate µD and the percentage volatility σD. D0 is assumed to be equal to the
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observed annual demand in year 2019, which is D̂0 = 31478748PAX. Further, accord-

ing to De Weck et al. (2007), µD and σD can be estimated with the sample mean and

the sample standard deviation of the observed relative demand growth Dt+1
Dt

, respectively.

Given the observed annual passenger demand data for years 2009 to 2019 presented in

column Dt of Table 5.3, percentage drift and volatility of demand growth at ZRH Airport

are estimated as µ̂D = 3.723% and σ̂D = 2.699%. The standard error of the estimated

drift rate is quantified by means of Equation 4.2 as σ̂µD = 0.814%, while the standard

error of the estimated volatility is approximated with Equation 4.3 as σ̂σD ≈ 0.604%.

Finally, a set Ω = {ξ1,ξ2, . . . ,ξS} consisting of S= 5000 independent realisations25 of

annual aggregated passenger demand scenarios ξs is generated with the annual aggregated

demand model. In Figure 5.2, 100 randomly selected annual passenger demand vectors

ξs ∈Ω generated by this process are depicted for illustrative purposes.
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Figure 5.2: Annual aggregated passenger demand scenarios for ZRH Airport. The figure
depicts 100 randomly selected realisations of ξs ∈Ω .

25As mentioned in Section 2.3.3.2, the literature recommends the generation of 2000 to 10000 independ-
ent demand scenarios.
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5.3.2 DHL model

The annual aggregated passenger demand scenarios ξs ∈ Ω are converted into DHL de-

mand scenarios ds
CH by means of the unsaturated and saturated DHL models introduced

in Section 4.2.

5.3.2.1 Unsaturated model for Check-in 1 and 3 at ZRH Airport

The unknown coefficients βUS
CH,0 and βUS

CH,1 of the unsaturated DHL model, see Equa-

tion 4.4 on page 98, are estimated with the ordinary least squares method, given a total

of 11 observations of annual aggregated demand Dt at ZRH Airport and DHL demand

dCH,t of the check-in facilities as indicated in Table 5.3. A coefficient of determination of

R2 =0.845 and a root mean squared error of RSME =279 are achieved by the linear re-

gression model underlying the unsaturated DHL model. Thus, the unknown coefficients

of the model are estimated as β̂US
CH,0 =−8.76×104 (p < 0.05) and β̂US

CH,1 =5.34×103

(p < 0.05).

In Figure 5.3, the observed annual aggregated passenger demand data for ZRH Air-

port is illustrated "with blue . . . dots, while the best fit of the unsaturated DHL model,

[which is] based on the transformation function mentioned in [Equation 4.4 on page 98],

is displayed as a red line . . . . [T]he corresponding 95 % confidence interval [of the un-

saturated DHL model] is illustrated with black dashed lines" (Waltert et al., 2021, p. 6).

Further, the observed DHL versus the predicted DHL plot in Figure 5.3 depicts residuals

of the unsaturated DHL model.The predicted DHL expresses the response of the unsatur-

ated DHL model, given the observed DHL demand from years 2009 to 2019 as the inputs

of the model.

5.3.2.2 Saturated model for Check-in 1 and 3 at ZRH Airport

For the saturated DHL model, see Section 4.2.4, the following inputs are required: (i) the

parametrisation of the passenger per air traffic movement (PAXATM) model, (ii) ratio r̂CH

and (iii) the maximum departure throughput capacity µ̂R of the runway system of ZRH
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Figure 5.3: Unsaturated DHL model for Check-in 1 and 3 at ZRH Airport fitted to ob-
served DHL data for years 2009 to 2019. Adapted from Waltert et al. (2021, p. 7).

Airport.

The unknown coefficients β PA
0 ,β PA

1 ,β PA
2 and β PA

3 of the PAXATM model, see Equa-

tion 4.5 on page 101, are estimated with the ordinary least squares method by fitting the

model to the dataset depicted in Figure 4.5 on page 101. The runway system at ZRH Air-

port consists of 3 runways, on which, however, aircraft movements cannot take place at

the same time for operational and political reasons. For this reason, the PAXATM model

is fitted to a subset of the above-named dataset, namely to data of airports with only 2 and

3 runways.

The PAXATM model fits the data (764 observations) with a coefficient of determ-

ination of R2 = 0.751 and a RSME of 18.6. Subsequently, the estimated parameters of

the PAXATM model are β̂ PA
0 =−2.52×103 (p < 0.05), β̂ PA

1 =4.18×102 (p < 0.05),

β̂ PA
2 =9.72×10−1 (p < 0.05) and β̂ PA

3 =−1.57×102 (p < 0.05). The left diagram in
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Figure 5.4 depicts how well the parametrised PAXATM model fits the "input data of

airports with 2 to 3 runways (blue dots). The data of ZRH Airport . . . is highlighted in

magenta . . . . The best model fit, in this case for an airport with 2 runways, is displayed as

a red line, while the 95 % confidence interval is shown with black dashed lines" (Waltert

et al., 2021, p. 6). Further, similar to Figure 5.3, the right diagram in Figure 5.4 illustrates

the residuals of the PAXATM model.
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Figure 5.4: Fitted PAXATM Model to 764 PAXATM observations of airports with 2 and
3 runways and for year 2019. From Waltert et al. (2021, p. 7).

To estimate ratio rCH which expresses the relationship between PAXAT Mdh
CH,t and

PAXAT Mt , observational data of ZRH Airport and Airport 2 presented in Figure 4.6 on

page 103 is used. From the data presented in Figure 4.6, it can be inferred that ratio rCH

is somewhat volatile, since it covers a range between 0.7 to 1.3 Thus, it was decided to

approximate the value of the ratio for Check-in 1 and 3 at ZRH Airport at r̂CH = 1.00.

Finally, according to Waltert et al. (2021, p. 5), "the maximum departure throughput capa-
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city of the runway system [µ̂R of ZRH Airport] is known to be 44 . . . [aircraft] movements

per hour."

5.3.2.3 Conversion of annual demand scenarios to DHL demand scenarios

Given both the unsaturated DHL model and the saturated DHL model parametrised for

Check-in 1 and 3 at ZRH Airport, the annual aggregated passenger demand scenarios

ξs ∈ Ω presented in Section 5.3.1 are converted into corresponding DHL scenarios ds
CH

for Check-in 1 and 3, where the procedure described in Section 4.2.5 is applied. In Fig-

ure 5.5, 100 randomly selected DHL demand scenarios for Check-in 1 and 3 are depicted

for illustrative purposes. For every DHL demand scenario ds
CH , the part of the scenario

determined with the unsaturated DHL model is plotted in red, while the saturated DHL

demand part is drawn in black.
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Figure 5.5: DHL demand scenarios for Check-in 1 and 3 at ZRH Airport. Red lines refer
to results of the unsaturated DHL model, while black lines refer to results of the saturated
DHL model. Figure shows 100 randomly selected DHL demand scenarios.
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5.4 Evaluation of candidate flexibilities

In this section, optimal facility requirements for three different candidate flexibilities for

Check-in 1 and 3 defined in Section 5.1.3 are presented. In a first step, the input vari-

ables and parameters which have a particularly strong influence on the results of the CEP

models used to determine facility requirements are identified in Section 5.4.1. Secondly,

Evaluation 1, 2 and 3 are carried out successively in Sections 5.4.2, 5.4.3 and 5.4.4. For

this purpose, optimal conventional and flexible facility requirements for Check-in 1 and

3 are determined by means of the fixed model, the CGDRM and the RFDRM. These

facility requirements are compared with the outputs of the baseline model in order to de-

termine their resulting VoF. Also, the conventional and flexible facility requirements are

examined for their sensitivity to changes in the input variables and parameters that have

been identified as particularly influential.

5.4.1 Sensitivity analysis of CEP models

The results of a CEP model depend significantly on the parameters used. In this section,

the parameters that have a large influence on the models’ results are determined by means

of a sensitivity analysis. Starting from the default parametrisation defined in Appendix A,

the effect of a change of the value of a single parameter on the result of the CEP models is

quantified ceteris paribus26. In order to estimate the influence of the parametrisation on

the CEP model’s results, the fixed model, the CGDRM and the RFDRM are used to create

optimal facility requirements for Check-in 1 and 3 and Evaluation 127. In a first step, the

resulting ENPV of the facility requirements determined with all the CEP models, given

default parametrisation, hereafter denoted as ENPVDefault, are calculated. In a second

step, the parameters of the demand and NPV valuation models are modified on an indi-

vidual basis, i.e. ceteris paribus, by ±10 % from their default value. For each parameter

26Ceteris paribus is Latin for "every thing else being equal".
27The sensitivity analysis has been conducted for S = 5000 independent realisations of aggregated an-

nual passenger demand scenarios ξs ∈Ω .
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variation, the ENPVs of the resulting optimal facility requirements, which are referred to

as ENPVVariation in the following, are determined. Finally, the influence of a parameter

variation on the results of the CEP models is quantified as ENPVVariation−ENPVDefault.

The larger this difference becomes, the stronger is the influence of the parameter on the

results of the CEP models.

In the literature, e.g. De Neufville and Scholtes (2011) or Mun (2002), the results of

a sensitivity analysis are often illustrated with a tornado diagram. A tornado diagram is

a horizontal bar diagram that shows how the parameters influence the outputs of a model.

For this purpose, the relative change of the model’s result, i.e. the change in the ENPV of

Check-in 1 and 3 caused by the change in a parameter’s value, is considered. The bars of

the tornado diagram are ordered in such a way that the parameter which has the greatest

influence on a model’s outputs is displayed at the top of the tornado diagram, while the

least important parameter is shown at the bottom. In this way, a funnel-like diagram

structure results, which originally gave the diagram its name. Also, to show in which

way a parameter affects the results, solid bars indicate how the CEP model is affected by

a +10 % change of the parameter, while white bars depict the model’s response given a

change of −10 %.

In Figure 5.6, the results of the sensitivity analysis conducted for the fixed model are

summarised. From data presented in Figure 5.6, it can be inferred that revenue function

parameters rPAX ,CH and rK,CH affect the output of the fixed model most. The model’s

response to positive and negative changes of the revenue function parameters is almost

symmetrical, which, according to De Neufville and Scholtes (2011), is an indication that

the parameters are not subject to the flaw of averages. For most of the remaining paramet-

ers, however, asymmetries can be observed. This is an indication that some parameters are

subject to the flaw of averages, as discussed in Section 2.4.3. Considering the magnitude

of the influence, it can be stated that, besides the above-mentioned parameters of the rev-

enue function, the discount rate δ and the EoS parameter αK have the greatest effect on

the fixed model. Figure 5.6 also suggests that variations in the parameters of the annual
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Figure 5.6: Tornado diagram depicting the results of a sensitivity analysis carried out for
the fixed model for Check-in 1 and 3 and Evaluation 1.

aggregated demand model, µD and σD, affect the output of the fixed CEP model only

marginally. While σD appears to affect the results nearly symmetrically, negative changes

in µD seem to influence the model’s result more than positive ones. Further, the fixed

model is more resistant to changes in parameters specifying the penalty cost function, i.e.

MQT max
CH , cpdCH , cpbCH and µK,CH .

The identical sensitivity analyses have also been carried out for the CGDRM and the

RFDRM. Detailed results of these are shown in Figures B.1 and B.2 in Appendix B. The

tornado diagrams of the fixed model, the CGDRM and the RFDRM presented show very

similar results, both in the order of the significant parameters and in the magnitude of the
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numbers presented. For this reason, it is assumed that the data shown in Figure 5.6 is

representative for all CEP models used in this planning example.

Based on the data shown in Figure 5.6, it was decided to examine the influence of the

discount rate δ , the EoS parameter αK and αA, the annual aggregated demand parameters

µD and σD, and also the average service rate µK,CH in more detail in Evaluations 1, 2

and 3. Parameters δ , αK and αA have been selected for further investigation given their

strong influence on the CEP models’ results. The influence of variations in the annual

aggregated demand parameters µD and σD as well as the average service rate µK,CH are

examined in more detail, since, as stated in Section 5.1.2, demand and the service rate

of check-in desks are subject to uncertainty. Finally, despite their strong influence on the

model results, revenue function parameters rPAX ,CH and rK,CH are not considered further

in this study, since they are controlled exclusively by FZAG, i.e. through the airport

charges regulation document (FZAG, 2021), etc.

5.4.2 Evaluation 1 – Options to defer and alter the scale

Evaluation 1 considers the option to defer and the option to alter the scale of the fu-

ture development of Check-in 1 and 3 at ZRH Airport. Based on S = 5000 independent

realisations of annual aggregated passenger demand scenarios for a planning horizon of

T = 20 years and the default parametrisation presented in Section 5.2 and Appendix A,

conventional as well as flexible facility requirements are determined with the fixed model,

the CGDRM and the RFDRM.

5.4.2.1 Optimal facility requirements

The optimal solution candidates generated with the CEP models for Evaluation 1 as well

as the resulting ENPVs of Check-in 1 and 3 are summarised in Table 5.4. Optimal facil-

ity requirements determined with the baseline model and the fixed model are expressed

in terms of capacity vectors. The baseline model proposes that airport planners add

∆K∗CH,0 = 28 check-in desks to Check-in 1 and 3 at t = 0, while the fixed model determ-



CHAPTER 5. PLANNING EXAMPLE 159

ines an optimal capacity vector K∗CH , which specifies the required number of check-in

desks for all planning phases t. In contrast, the CGDRM and the RFDRM specify optimal

flexible facility requirements by means of decision rules. For the CGDRM, the optimal

parametrisation of conditional-go decision rule Dθ is θ ∗1 = 7desks and θ ∗2 = −1desk.

Consequently, expressed in terms of the logical IF-THEN-ELSE operator, airport planners

would be advised to add 7 check-in desks to the system as soon as the difference between

the throughput τs
CH,t of the check-in facility and the observed DHL demand ds

CH,t in plan-

ning phase t is less than −1 desk multiplied by the unit service rate µK,CH . Given the

comparatively small solution space of the CGDRM, the near-optimal results determined

with the proposed GA-based solution procedure was compared with the ground truth,

which was obtained by means of enumeration. It was thus confirmed that the quality of

the near-optimal solution generated with the GA was very good, as it is identical to the

ground truth. For the RFDRM, the optimal decision rule L∗ used to calculate the priority

index λ s
l,t of adjustment options28 el ∈ e is defined as a function of both the difference

between capacity Ks
CH,t−1 and DHL demand ds

CH,t , as well as the installation costs of

option el .

Figure 5.7 shows the above-mentioned optimal facility requirements for Check-in 1

and 3 in graphical form as a capacity deployment plot. This is a figure that specifies how

capacity is adjusted best over time. Conventional facility requirements are defined as ca-

pacity vectors which are identical for all demand scenarios. For this reason, the optimal

capacity deployment sequence for the baseline model and the fixed model is indicated

by a grey and a red solid line, respectively. Flexible facility requirements, however, are

defined as optimal decision rules that result in an independent capacity deployment se-

quence for each demand scenario. For the sake of readability, not all the capacity deploy-

ment sequences for flexible facility requirements are plotted, but rather the probability

that a certain capacity level is operational at a certain planning phase t is indicated by

means of bubbles. The larger the area of these bubbles, the greater the probability that the

28For Evaluation 1, the set of adjustment options e was defined as follows: e = {0,1,2, . . . ,50}. See
Appendix A for a complete overview and description of all parameters applied in Evaluation 1.
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Figure 5.7: Optimal capacity deployment sequences for Check-in 1 and 3 and Evaluation
1.

operational capacity of Check-in 1 and 3 will have this value at a respective point in time.

Blue bubbles in Figure 5.7 refer to the capacity deployment of the CGDRM, while green

bubbles refer to the RFDRM. The capacity deployment sequences based on the optimal

conventional and flexible facility requirements for Check-in 1 and 3 can be compared

with planning data provided by FZAG. Currently, FZAG uses a simple capacity planning

model which is based on a linear regression model. This model29 allows the determin-

ation of a capacity deployment sequence for Check-in 1 and 3 based on a DHL demand

scenario. The solid black line in Figure 5.7 indicates the capacity deployment sequence

according to FZAG’s model for an average demand scenario, while the black dashed lines

represent the capacity deployment sequences for the 10 % and 90 % percentile demand

scenarios.

Table 5.4 further shows that for Evaluation 1 flexible facility requirements for Check-

in 1 and 3 lead to a higher ENPV of the system than conventional facility requirements.

29The capacity planning model employed by FZAG is not a CEP model. For this reason, this model
does not allow the determination of optimal facility requirements, but rather only allows the conversion of
a DHL demand into a capacity vector by means of a linear regression model.
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As such, facility requirements created with the CGDRM perform best for Evaluation

1, resulting in an ENPV of 11180.70 Swiss Franc (CHF). In relative terms, the ENPV of

facility requirements determined with the CGDRM is 0.58 % higher than the ENPV of the

RFDRM, and is 4.05 % higher than the fixed model and 5.90 % higher than the baseline

model.

Model Optimal facility requirement ENPV [CHF]

Baseline ∆K∗CH,0 = 28 10 557.00
Fixed Model K∗CH = [ 55,56,60,61,64,65,69,74,76,76,

76,81,83,84,85,85,85,85,87,87 ]

10 745.80

CGDRM θ∗ = [7,−1] 11 180.70
RFDRM L∗ = Ks

CH,t−1 ·
Ks

CH,t−1−ds
CH,t

CI(el)−2∗ds
CH,t ·(Ks

CH,t−1−ds
CH,t)

11 115.70

Table 5.4: Best solution candidates of the baseline model, the fixed model, the CGDRM
and the RFDRM for Check-in 1 and 3 and Evaluation 1.

The fixed model, the CGDRM and the RFDRM are solved by means of evolutionary

optimization algorithms, which generate minimally different near-optimal solutions for

each implementation of the solver. The results shown above are the near-optimal solu-

tion of one single run of the solvers. In order to investigate how much the solutions of

the models differ between separate runs of the solvers, the CEP models were executed

for Evaluation 1 in 5 independent runs. It transpired that the baseline model yields to a

constant ENPV of 10557.0 CHF in all 5 simulation runs. The results of the other mod-

els show slight variations over the 5 runs: the fixed model leads to a mean ENPV of

10700.98 CHF with a standard deviation of 167.27 CHF, the CGDRM to a mean ENPV

of 11161.50 CHF with a standard deviation of 18.50 CHF and the RFDRM to a mean

ENPV of 11078.08 CHF with a standard deviation of 73.88 CHF. The numeric results of

these 5 independent simulation runs can be found in Table B.1 in Appendix B. Due to (i)

the resulting minimal differences in the different runs of the CEP models and (ii) the time

consumption necessary with the solvers, see Section 5.5, it was decided not to implement

batch runs for Evaluation 2 and Evaluation 3.
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5.4.2.2 Simulation results

The solid lines in Figure 5.8 depict so-called target curves (De Neufville & Scholtes,

2011) which, by means of cumulative probability distributions, indicate the NPV of

Check-in 1 and 3 over all the analysed scenarios of uncertainty, given the optimal fa-

cility requirements determined for Evaluation 1. To this end, target curves express the

probability that optimal facility requirements lead to a NPV of Check-in 1 and 3 which is

lower than or equal to a certain threshold level. The dashed lines in Figure 5.8 indicate

the resulting ENPVs of the optimal facility requirements of Check-in 1 and 3 determined

for Evaluation 1.

Flexible engineering systems allow practitioners to both capitalise on potential future

opportunities as well as to mitigate or the avert negative risks of future developments. The

extent to which facility requirements have this capability is often measured by means of

the value at gain (VaG), the value at risk (VaR), as well as the minimum and maximum

NPV values achieved over all scenarios. In this study, the VaG is defined as the cumu-

lative NPV probability of 90 %, which corresponds to the 90th percentile, while the 10th

percentile refers to the VaR30. As shown in Figure 5.8 and Table 5.5, the optimal facil-

ity requirements determined with the CGDRM outperform all other models in terms of

their VaG and VaR for Evaluation 1. Interestingly, flexible facility requirements determ-

ined with the CGDRM and the RFDRM result in nearly equal VaR values, indicating a

similar capacity to avert risks. Columns min. NPV and max. NPV in Table 5.5 indicate

the minimum and maximum NPV achieved by all facility requirements determined for

Evaluation 1. For both minimum and maximum NPV, flexible facility requirements per-

form significantly better than conventional facility requirements. Finally, the column VoF

summarises the resulting VoF which is calculated as defined in Equation 5.2. It is notice-

able that flexible facility requirements lead to significantly higher VoF than conventional

30The definition of the VaG and VaR used in this study is in line with a large part of the literature
(Cardin et al., 2015; De Neufville & Scholtes, 2011; Geltner & De Neufville, 2018). However, it has to be
mentioned, that there are some authors, such as Cardin (2014), who define the VaG and the VaR as the 95th

and the 5th percentile, respectively
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facility requirements which were created with the fixed model.
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Figure 5.8: Target curves (solid lines) and resulting ENPV (dashed lines) of optimal fa-
cility requirements determined with the baseline model (grey), the fixed model (red), the
CGDRM (green) and the RFDRM (blue) for Check-in 1 and 3 and Evaluation 1.

Model ENPV min. NPV max. NPV VaG VaR VoF

Baseline 10 557.0 7770.6 11 723.3 11 134.3 9893.8 -
Fixed Model 10 745.8 7975.3 11 283.7 11 099.8 10 238.2 188.8
CGDRM 11 182.2 9779.4 12 273.2 11 588.1 10 712.4 625.2
RFDRM 11 115.7 9903.3 12 079.2 11 478.9 10 711.4 558.7

Best CGDRM RFDRM CGDRM CGDRM CGDRM CGDRM

Table 5.5: Key statistics for Check-in 1 and 3 and Evaluation 1. All figures are given in
CHF.

In the literature, a standard two-sided z-test for mean is often conducted in order to

check whether two target curves created with different CEP models differ significantly

from each other (Cardin & Hu, 2016). In this way, the null hypothesis of equal ENPVs

resulting from facility requirements generated with different CEP models is tested. For

Evaluation 1, the ENPV of facility requirements created with the fixed model, the CG-

DRM and the RFDRM are compared in a number of z-tests. The results of all z-tests
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performed are summarised in Table 5.6. Any z-tests with a p-value of less than 1 % are

rejected, which means that the simulation results of all the CEP models are significantly

different.

Fixed Model CGDRM RFDRM
Test-Stat. p-value Test-Stat. p-value Test-Stat. p-value

Baseline −20.8 p < 0.01 −71.0 p < 0.01 −65.9 p < 0.01
Fixed Model - - −59.6 p < 0.01 −53.4 p < 0.01
CGDRM - - - - +10.2 p < 0.01

Table 5.6: Two-sided z-test for mean for the results of optimal facility requirements de-
termined with the fixed model, the CGDRM and the RFDRM for Check-in 1 and 3 and
Evaluation 1.

5.4.2.3 Sensitivity analysis

To determine how the parametrisation of the CEP models influences optimal facility re-

quirements for Check-in 1 and 3, three different sensitivity analyses were conducted: (i)

a two-way sensitivity analysis to quantify the impact of the discount rate δ and the EoS

parameters αK and αA, (ii) a two-way sensitivity analysis to determine how the percentage

drift rate µD and volatility parameter σD affect the results and (iii) a one-way sensitivity

analysis to study the impact of the average service rate µK . The results of the two-way

analyses are depicted in Figures 5.9 and 5.10, while the one-way analysis is shown in

Figure 5.11.

Discount rate and EoS parameter. Optimal facility requirements for Check-in 1 and 3

were created with discount rates in a range of δ = 0.02,0.04, . . . ,0.20 and EoS parameter

values αK = αA = 0.7,0.8,0.9,1. For all other parameters, default values as defined in

Appendix A were used. The resulting ENPV and VoF of Check-in 1 and 3 are shown in

Figure 5.9. The diagrams in the left column of Figure 5.9 indicate the resulting ENPVs

of facility requirements determined with the fixed model (red lines), the CGDRM (green

lines) and the RFDRM (blue lines), while the diagrams in the right column depict the

resulting VoF. The discount rate δ is plotted on the horizontal axes of the diagrams, while
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Figure 5.9: Influence of discount rate δ and EoS parameters αK and αA on ENPV and
VoF of Check-in 1 and 3 for Evaluation 1.

different values for αK and αA are indicated by means of various line styles. All in all,

the performance of conventional and flexible facility requirements throughout the above-

mentioned ranges of the discount rate and EoS parameters are somewhat similar: The

ENPV of Check-in 1 and 3 is negatively affected by both an increase in discount rate δ

and an increase in the value of EoS parameters αK and αA.

Except for scenarios with discount rates δ larger than approximately 15 %, the VoF

of the fixed model, the CGDRM and the RFDRM is positively affected by an increase in

EoS parameter values. Where δ is larger than approximately 15 % and the values of αK

and αA are close to 1, an increase in the EoS parameter values tends to result in a slight

decrease of the VoF. Regarding the influence of the discount rate on the VoF, the results
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show that changes in the discount rate δ tend to lead to more pronounced variations of

the VoF if αK and αA are close to 1. Additionally, the VoF is positively affected by an

increase in the discount rate if δ is smaller than a certain threshold value, while above this

threshold value, the opposite applies. The results suggest that this threshold value, which

lies in the range of approximately δ = 7% to 12 %, depends on the CEP model and the

EoS parameter value.
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Figure 5.10: Influence of drift rate µD and volatility σD on ENPV and VoF of Check-in 1
and 3 for Evaluation 1.

Percentage drift rate and demand volatility. In Figure 5.10, the results of the two-way

sensitivity analysis for percentage drift rate parameter values µD = 0.02,0.04, . . . ,0.20

and volatility parameter values σD = 0.04,0.08,0.12 are illustrated. The diagrams in the

left column of the figure depict the resulting ENPVs of facility requirements determined
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with the fixed model, the CGDRM and the RFDRM, while the diagrams in the right

column show the corresponding VoF. For both conventional as well as flexible facility

requirements, the ENPV of Check-in 1 and 3 appears to be positively affected if µD is in-

creased, while the opposite is true for an increase in σD. Furthermore, it is also noticeable

that flexible facility requirements lead to higher ENPV values than conventional facility

requirements.

With regards to the VoF, a clear distinction must be made between the results of the

fixed model and those of the flexible CEP models. Throughout the tested range of the per-

centage drift rate parameter, the fixed model’s VoF increases almost linearly as a function

of µD. Moreover, it appears to be only weakly dependant on the volatility parameter σD.

On the contrary, the flexible models’ VoF seem to depend non-linearly on µD. Where val-

ues of µD are below a certain threshold, VoF decreases with increasing drift rate. Above

this threshold, the opposite is true for an increasing percentage drift rate. The results

indicate that this threshold rises with increasing volatility; at σD = 4%, the threshold is

located at about µD = 5%, while at σD = 12%, the threshold is in the region of µD = 10%.

It should also be noted that for all the tested values of µD and σD flexible facility require-

ments lead to higher VoF values than the fixed model. Especially at low percentage drift

rates and high demand volatility, flexible facility requirements lead to substantially higher

VoF values than for facility requirements determined with the fixed model.

Average service rate. Figure 5.11 illustrates how the ENPV and the VoF of optimal

facility requirements for Check-in 1 and 3 are affected by variations of the average service

rate of the check-in desks in a range of µK,CH = 46,48, . . . ,86 PAX/h. The results suggest

that the ENPV of all CEP models is negatively affected by an increase in the service rate

µK,CH . Particularly noteworthy is the fact that above a service rate of approximately

74 PAX/h, the ENPV of facility requirements created with the fixed model decreases

significantly more pronouncedly than it is the case for flexible facility requirements.

Regarding the VoF, the fixed model and the RFDRM show somewhat similar be-
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haviour. Below a certain threshold value of µK,CH , the VoF increases with increasing

µK,CH , while above this threshold, the VoF decreases. As can be seen in Figure 5.11, this

threshold value is located approximately at µK,CH = 74PAX/h for the fixed model and

µK,CH = 66PAX/h for the RFDRM. The VoF of facility requirements determined with

the CGDRM, however, is negatively influenced by an increase in the service rate through-

out most of the examined range of µK,CH . Moreover, the CGDRM results in the highest

VoF values of all the CEP models.
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Figure 5.11: Influence of average service rate µK on ENPV and VoF of Check-in 1 and 3
for Evaluation 1.

5.4.3 Evaluation 2 – Modular development

Evaluation 2 extends Evaluation 1 by additionally allowing for modular development of

Check-in 1 and 3. A module is considered a standardised unit consisting of a predefined

number of check-in desks, building space for these units as well as building space for

queues and circulation of passengers and staff. The size of a module is specified with

parameter em, which determines the number of check-in desks belonging to one single

module. Based on S = 5000 independent annual aggregated passenger demand scen-
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arios for a planning horizon of T = 20yr and the default parametrisation presented in

Section 5.2 and Appendix A, conventional as well as flexible facility requirements are

determined for Check-in 1 and 3 for module sizes in a range of em = 1,2, . . .35 check-in

desks. In order to allow for modular development, the CEP models presented in this study

have to be slightly adapted as follows:

• Baseline model. The baseline model determines the optimal initial capacity adjust-

ment ∆KCH,0 which is restricted as defined by Constraint 4.23f, see Equations 4.23

on page 114. To allow for modular development, ∆KCH,0 is further restricted to

0 units, ±em units or a multiple of ±em units, but within the bounds of −Ki,0 and

∆Kmax
i .

• Fixed model. As explained in Section 4.4.1.2, feasible solution candidates of the

fixed models are chromosomes that determine the capacity adjustment ∆Ki,t from

planning phase t to phase t +1. All capacity adjustments that are considered feas-

ible for non-modularised development are described by Constraint 4.24f, see Equa-

tions 4.24 on page 116. Thus, in order to allow for modular check-in development

in Evaluation 2, ∆Ki,t is further restricted to 0 units,±em units or a multiple of±em

units, but within the bounds of ±∆Kmax
i .

• CGDRM. For the CGDRM, the size of capacity adjustments is controlled through

parameter θ1, which ultimately defines by how many units of capacity a system

is adjusted by the conditional-go decision rule. Feasible values for θ1 for non-

modularised development are defined in Equation 4.33 on page 125. To allow for

modular development of Check-in 1 and 3, the set defining feasible values for θ1 is

subsequently further limited to 0 units, ±em units or a multiple of ±em units, but

within the bounds of ±∆Kmax
i .

• RFDRM. As mentioned in Section 4.4.2.2, feasible capacity adjustment options el

for the RFDRM are defined in set e = {e1,e2, . . . ,ene}. Following the same con-

siderations as for the fixed model and the CGDRM, set e used for the RFDRM is
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further limited to 0 units, ±em units or a multiple of ±em units for the evaluation of

modular development of Check-in 1 and 3, but within the bounds of ±∆Kmax
i .

5.4.3.1 Optimal facility requirements

Table 5.7 summarises the optimal solutions of all the CEP models for modular develop-

ment of Check-in 1 and 3 with module sizes in a range of em = 1,5,10,15, . . . ,35 check-in

desks. The optimal solution of the baseline model is ∆K∗CH,0 = 28 desks, irrespective of

the module size em. In contrast, the optimal solutions of the other CEP models depend on

the value of em. In case of the fixed model, small values for em result in optimal capacity

vectors which call for frequent capacity adjustments. In contrast, large values for em fa-

vour capacity vectors in which capacity is rarely adjusted. The optimal parametrisation

θ∗ = [θ ∗1 ,θ
∗
2 ] of the conditional-go decision rule determined with the CGDRM is affected

by the value of em as well. For em = 1, the optimal capacity increment θ ∗1 is larger than em,

while for all other module sizes, the capacity increment θ ∗1 is equal to em. Regarding the

optimal threshold value θ ∗2 , the results suggest that with an increasing value of em, θ ∗2 in-

creases too. Finally, the optimal reward function L∗ seems to be dependant on em as well.

Unfortunately, the identification of patterns is complex. It is noteworthy, however, that all

optimal reward functions shown in Table 5.7 consist either of terms
(

Ks
CH,t−1−ds

CH,t

)
or

(
ds

CH,t−Ks
CH,t−1

)
.

The ENPV and VoF of the optimal facility requirements for Check-in 1 and 3 for

Evaluation 2 are shown in Table 5.8 for module sizes of em = 1,2, . . . ,35 and default

parametrisation. The ENPV of facility requirements created with the baseline model do

not depend on em, while the opposite is true for the ENPV and the VoF of the other

models. Each CEP model generates the highest ENPV and VoF at a different value for e∗m:

the fixed model reaches a maximum ENPV of 11149.80 CHF and VoF of 572.20 CHF at

e∗m = 15, the CGDRM achieves a maximum ENPV of 11190.20 CHF and VoF of 612.50

CHF at e∗m = 1 and e∗m = 7, while the RFDRM results in a maximum ENPV of 11194.50

CHF and VoF of 616.9 CHF at e∗m = 17. Furthermore, it is worth mentioning that for
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Figure 5.12: Optimal capacity deployment sequences for Check-in 1 and 3 and Evaluation
2 at optimal module size e∗m.

high values of em, the ENPV and VoF of the fixed model, the CGDRM and the RFDRM

decrease strongly. For detailed numerical results regarding the ENPV, VoF, VaG, VaR

and minimum and maximum NPV achieved in Evaluation 2, the reader is referred to

Table B.2 in Appendix B.

Figure 5.12 depicts the optimal capacity deployment sequences for Check-in 1 and

3 and Evaluation 2 at the optimal module sizes31 e∗m determined above. The solid lines

refer to the capacity deployment sequence of optimal conventional facility requirements,

the bubbles to the optimal capacity deployment of flexible facility requirements and the

black lines to validation data provided by FZAG. Section 5.4.2 explains in more detail

how to read this capacity deployment plot.

31For the CGDRM, an optimal module size of e∗m = 7 check-in desks has been selected for Figure 5.12.
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5.4.3.2 Simulation results

Figure 5.13 depicts target curves generated with the fixed model, the CGDRM and the

RFDRM for Evaluation 2 and S = 5000 scenarios of uncertainty. Each target curve sum-

marises the simulation results for module sizes in a range of em = 1,2, . . . ,35. The simula-

tion results for em = 1 are displayed with a bold line, while the target curves for em > 1 are

illustrated with thin lines. All target curves whose corresponding ENPVs is larger than or

equal to 0.98 times the ENPV of the best performing module size e∗m, subsequently called

ENPV max, are coloured in red, green and blue, respectively. In contrast, target curves

which lead to an ENPV of less than 0.98 ·ENPV max are drawn in grey. Additionally, the

ENPV of the target curve for em = 1 is illustrated with a dashed line and ENPV max is

indicated with a dash-dotted line.

For the fixed model, the target curve for em = 1 is to the left of all red-coloured target

curves, which indicates that the other coloured target curves, and thus larger module sizes,

perform better. The opposite applies for the CGDRM and the RFDRM32, where with

increasing EoS factor values, the very small module sizes are favourable. Furthermore, it

is particularly noticeable in Figure 5.13 that for αK = αA = 0.8 the resulting target curves

are situated closer together than for EoS parameter values of 1.

5.4.3.3 Sensitivity analysis

To examine how the results for Evaluation 2 shown above are affected by variations in a

number of parameters, the following sensitivity analyses were conducted: (i) a two-way

sensitivity analysis to quantify the impact of the discount rate δ and the EoS parameters

αK and αA, (ii) a two-way sensitivity analysis to determine how the drift rate µD and the

volatility parameter σD affect the results and (iii) a one-way sensitivity analysis to study

the impact of the average service rate µK .

32For EoS factor values of 0.8 there are a few coloured target curves which perform slightly better than
the target curve for em = 1
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em Baseline Fixed Model CGDRM RFDRM
ENPV ENPV VoF ENPV VoF ENPV VoF

1 10 577.6 10 760.7 183.1 11 190.2 612.5 11 126.5 548.9
2 10 577.6 10 828.6 251.0 11 164.8 587.1 11 040.9 463.2
3 10 577.6 10 943.8 366.2 11 165.2 587.6 11 074.7 497.1
4 10 577.6 11 063.0 485.3 11 164.8 587.1 11 123.2 545.6
5 10 577.6 10 952.2 374.6 11 104.9 527.2 11 168.6 591.0
6 10 577.6 11 068.1 490.5 11 164.8 587.1 11 134.5 556.9
7 10 577.6 10 899.1 321.4 11 190.2 612.5 11 172.6 595.0
8 10 577.6 11 007.6 429.9 11 142.1 564.5 11 109.5 531.9
9 10 577.6 10 982.0 404.4 11 165.2 587.6 11 144.1 566.5

10 10 577.6 11 101.0 523.3 11 080.1 502.5 11 053.7 476.1
11 10 577.6 11 123.4 545.8 11 126.1 548.5 11 048.5 470.9
12 10 577.6 11 020.1 442.5 11 164.8 587.1 11 119.3 541.7
13 10 577.6 10 906.0 328.3 11 084.2 506.5 11 065.5 487.8
14 10 577.6 11 061.8 484.1 10 989.4 411.8 10 966.5 388.9
15 10 577.6 11 149.8 572.2 10 996.7 419.1 11 037.0 459.4
16 10 577.6 10 964.6 387.0 11 112.4 534.8 10 891.2 313.5
17 10 577.6 11 032.7 455.0 11 160.7 583.1 11 194.5 616.9
18 10 577.6 10 988.1 410.4 11 139.3 561.7 11 082.9 505.3
19 10 577.6 10 917.9 340.2 11 054.6 476.9 11 025.7 448.1
20 10 577.6 10 822.8 245.1 10 958.6 380.9 10 948.6 370.9
21 10 577.6 10 717.7 140.0 10 865.0 287.4 10 815.5 237.9
22 10 577.6 10 637.3 59.7 10 775.5 197.8 10 753.2 175.6
23 10 577.6 10 560.7 −16.9 10 688.9 111.3 10 661.2 83.6
24 10 577.6 10 538.0 −39.7 10 605.1 27.4 10 457.0 −120.7
25 10 577.6 10 660.8 83.2 10 530.9 −46.8 10 416.3 −161.3
26 10 577.6 10 757.2 179.6 10 459.9 −117.7 10 570.0 −7.6
27 10 577.6 10 827.4 249.7 10 476.7 −101.0 10 714.0 136.3
28 10 577.6 10 872.1 294.4 10 556.8 −20.9 10 636.1 58.4
29 10 577.6 10 891.9 314.2 10 664.6 87.0 10 740.9 163.3
30 10 577.6 10 888.2 310.6 10 770.2 192.5 10 834.8 257.2
31 10 577.6 10 862.3 284.7 10 844.0 266.4 9859.5 −718.1
32 10 577.6 10 826.1 248.4 10 871.8 294.2 10 849.7 272.0
33 10 577.6 10 773.8 196.2 10 852.8 275.2 10 792.0 214.3
34 10 577.6 10 706.8 129.1 10 798.2 220.6 10 713.1 135.5
35 10 577.6 10 627.9 50.2 10 725.7 148.0 10 620.9 43.3

Table 5.8: ENPV and VoF of facility requirements of Check-in 1 and 3 generated for
Evaluation 2 at αK = αA = 0.8 and δ = 0.04. All figures are given in CHF.
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Figure 5.13: Target curves representing simulation results for Evaluation 2 for module
sizes em = 1, . . . ,35, EoS parameters αK = αA = 0.8,1.0 and a discount rate of δ = 0.04.
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Discount rate and EoS parameter. Figure 5.14 shows how EoS parameters values αK

and αA as well as the discount rate δ affect the ENPV of optimal facility requirements

for Check-in 1 and 3 determined with the fixed model, the CGDRM and the RFDRM

for module sizes in a range of em = 1,2, . . . ,35. The CEP models were executed for

δ = 0.04,0.12 and EoS parameter values of αK = αA = 0.7,0.9,1. The observed ENPVs

of the fixed model, the CGDRM and the RFDRM models are plotted with red, green

and blue dots for δ = 0.04 and similarly coloured triangles for δ = 0.12. The results

of the baseline model are indicated with grey dots and triangles. The black dashed lines

in each diagram depict smoothed ENPV functions, which were generated with a fitted

polynomial of the 7th degree33. Moreover, ENPV max is indicated with a large, coloured

diamond. Finally, the area between ENPV max and 0.98 ·ENPV max is coloured in red,

green and blue, respectively.

Data shown in Figure 5.14 suggests that the ENPV of a modular check-in system

depends on the value of the EoS parameter. Generally, increasing EoS parameter values,

i.e. waning EoS savings, lead to a reduction of the ENPV of the system. Moreover, at low

EoS values, the ENPV of the check-in system seems to decrease less quickly in function

of an increasing minimum module size em. At high EoS parameter values, the ENPV

of flexible facility requirements decreases faster and more pronouncedly in function of

increasing em than that of the conventional facility requirements. Concerning the discount

rate δ , Figure 5.14 suggests that higher discount rates lead to a decrease of the ENPVs of

Check-in 1 and 3 and an amplification of the above-mentioned deterioration of the ENPV

in function of em.

Regarding the VoF, it can be derived from Figure 5.14 that an increase in the EoS

parameter value affects the VoF of the facility requirements for em = 1 and e∗m in a positive

way. For the discount rate δ , a distinction must be made between the results of the fixed

model and the flexible CEP models. For the fixed model, the discount rate has a positive

influence on the VoF: the higher the discount rate, the higher the VoF. With flexible facility

33The fitted polynomial was generated with function np.polyfit of the NumPy package for the Python
programming language (Harris et al., 2020).
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Figure 5.14: ENPV of Check-in 1 and 3 versus module size em for discount rates δ =
0.04,0.12 and EoS parameter values αK = αA = 0.7,0.9,1.0.

requirements, the VoF is positively influenced by an increase in the discount rate at low

EoS parameter values. At high EoS parameter values, however, only the VoF of the

CGDRM is positively influenced, while the VoF of the RFDRM is negatively influenced

by increasing discount rates. Selected values for em = 1 and e∗m can be found in Tables B.2

and B.3 in Appendix B. Furthermore, numerical values for ENPV and VoF occurring at

various values of αK,αA and δ are presented in Table B.4 in Appendix B.

Percentage drift rate, demand volatility and average service rate. Figure 5.15 de-

picts how variations in the percentage drift rate µD, the demand volatility parameter σD

and the average service rate µK affect the ENPVs of optimal facility requirements created

with the fixed model, the CGDRM and the RFDRM for Evaluation 2. The diagrams in
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the left and the centre column of Figure 5.15 contain the results of a two-way sensitiv-

ity analysis for drift rates of µD = 0.04,0.12 and demand volatilities of σD = 0.04,0.12,

while diagrams in the right column summarise the resulting ENPV for average service

rates of µK = 50,60 and 70 PAX/h.
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Figure 5.15: Influence of drift rate µD, demand volatility σD and average service rate µK
of check-in desk on the ENPV of facility requirements for Check-in 1 and 3 module sizes
in a range of em = 1,2, . . . ,35.

The resulting ENPVs of the fixed model, the CGDRM and the RFDRM show a rather

constant behaviour throughout the entire range of em for all the tested values of µD and

σD. In line with the results of Evaluation 1, higher average demand growth rates result

in higher ENPVs of the facility requirements, while higher demand volatility parameter

values lead to lower ENPVs. Additionally, the results suggest that flexible facility require-

ments are less affected by changes in the demand volatility parameter σD than conven-
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tional ones. Furthermore, demand volatility σD seems to influence the results less when

the percentage drift rate µD is high. The data presented in Figure 5.15 suggests that the

VoF of facility requirements depends positively on an increase in the percentage drift rate

µD. An increase in volatility σD for facility requirements created with the fixed model

leads to a decrease in VoF, while the opposite is true for flexible facility requirements.

Exact numerical values for ENPV and VoF can be found in Table B.5 in Appendix B.

Regarding the impact of the average service rate µK,CH , results presented in Fig-

ure 5.15 suggests that for em = 1,2, . . . ,20, the ENPV of all facility requirements gen-

erated are reasonably stable. For em > 20 check-in desks, however, the ENPV seems to

be negatively influenced by increasing values of µK,CH : ENPV decreases markedly for

µK,CH = 50,70, while for systems with µK,CH = 60 a wave-like movement is evident.

Regarding the VoF, no clear trends can be identified for facility requirements determined

with the fixed model. For flexible facility requirements, however, it can be seen that up

to module sizes of approximately em = 20 the VoF is positively affected by an increase

in the service rate, while the opposite is the case for em > 20. Exact numerical values for

ENPV and VoF can be found in Table B.6 in Appendix B.

5.4.4 Evaluation 3 – Buffer space

To evaluate the buffer space option for Check-in 1 and 3, the CEP models do not require

to be adjusted, but are executed using the same configuration as in Evaluation 1. While

for Evaluation 1, the available buffer space has been set to 0 m2, the total size of the buf-

fer space available for Evaluation 3 is controlled by means of two parameters: (i) the size

of the buffer space which is already available at t = 0, i.e. the buffer size identified in

the inventory, and (ii) the size of the buffer space, which is purposely built or allocated

at t = 0. Please note that the CEP models used in this study do not allow for the con-

struction of additional buffer space for all planning periods after t = 0. As defined in the

inventory, Check-in 1 and 3 are currently not equipped with buffer spaces. Thus, the size

of the buffer space is controlled exclusively through parameter AR,CH,0, which defines the



CHAPTER 5. PLANNING EXAMPLE 180

buffer space installed at t = 0. As buffer spaces have to be built in such a way that they

can be connected with the BHS at a later date, the installation costs per square metre of

buffer space are 20 % higher than the unit installation costs of regular terminal space.

Moreover, buffer space come with unit operating costs for maintenance and cleaning of

coR = 0.05CHF/m2/h. For an overview on all parameters applied, the reader is referred

to Appendix A.

Concerning the generation of revenues by means of buffer spaces, Evaluation 3 con-

siders two distinct cases: (i) the installation of buffer space which remains unused until

it is transformed into a check-in facility, and (ii) the installation of buffer space, which is

temporarily used for the provision of retail, food and beverage services, until it is trans-

formed into a check-in facility. For the first case, the average revenue generated by one

square meter of buffer space rR,CH is 0 CHF/m2/h, while for the second case, FZAG

assumes average retail revenues of rR,CH = 0.652CHF/m2/h, see Appendix A.

5.4.4.1 Optimal facility requirements

Optimal solutions of the fixed model, the CGDRM and the RFDRM for Check-in 1 and 3

and Evaluation 3 are summarised in Tables 5.9 and 5.10 for a number of different values of

buffer size AR,CH,0. Table 5.9 contains the results for buffer space which is not utilised for

retail purposes, while Table 5.10 summarises optimal facility requirements for facilities

in which the buffer is temporarily used for retail. Irrespective of whether the buffer space

is utilised for retail or not, the optimal solution of the baseline model is ∆K∗CH,0 = 28

desks. For the other CEP models, however, the optimal solutions depend on AR,CH,0.

For conventional facility requirements created with the fixed model, differences between

check-in facilities containing buffers with retail utilisation versus buffers without retail

utilisation are evident. For systems that have a large buffer space with retail utilisation,

the capacity of Check-in 1 and 3 is expanded less throughout the entire planning horizon

than for systems that have an equally large buffer space without retail utilisation. For

example, if 3000 m2 buffer space is created in Check-in 1 and 3, the capacity at the end
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of the planning horizon for a system in which the buffer is used on a temporary basis for

the provision of retail services is 84 desks, while the capacity in a system whose buffer is

not used for retail services is 93 desks.

The optimal parametrisation θ∗ = [θ ∗1 ,θ
∗
2 ] of the conditional-go decision rule determ-

ined with the CGDRM for Evaluation 3 depends on the utilisation of the buffer space.

Regarding capacity increment parameter θ1, the magnitude of θ ∗1 is positively influenced

by an increasing size of a buffer which is not used for retail services, while θ ∗1 is negatively

affected by larger buffer spaces temporarily used for retail purposes. The optimal value

of threshold parameter θ ∗2 is reduced for both buffer types with increasing buffer sizes.

Interestingly, for a system containing a buffer with retail utilisation, the optimal value of

parameter θ ∗2 is slightly lower than for a system with a buffer without retail utilisation. In

terms of the optimal reward function L∗ determined with the RFDRM, no patterns and

dependencies can be identified. As such, the optimal reward function terms determined

for Evaluation 3 appear to be less complex than the ones identified for Evaluation 2. Fur-

ther, it is noticeable that function
Ks

CH,t−1
Ks

CH,t−1−ds
CH,t

was determined as optimal decision rule for

both systems containing buffer spaces with and without temporary retail utilisation for a

number of different initial buffer size values.

An overview of the achieved ENPV and VoF of all the CEP models for buffer spaces

of size 0 m2, 750 m2, 1500 m2 and 3000 m2 can be found in Table 5.11.
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Buffer Model
Without retail utilisation With retail utilisation
ENPV VoF ENPV VoF

0 m2

Baseline 10 525.7 10 525.7
Fixed Model 10 602.8 77.1 10 602.8 77.1
CGDRM 11 210.8 685.1 11 210.8 685.1
RFDRM 11 099.7 574.0 11 099.7 574.0

750 m2

Baseline 10 016.0 16 662.9
Fixed Model 10 564.2 548.2 12 769.8 −3893.1
CGDRM 10 986.2 970.2 13 271.2 −3391.7
RFDRM 10 890.3 874.3 13 347.7 −3315.2

1500 m2

Baseline 9380.4 22 674.2
Fixed Model 10 066.3 685.9 17 581.1 −5093.0
CGDRM 10 645.8 1265.5 18 181.5 −4492.6
RFDRM 10 464.0 1083.6 18 181.6 −4492.5

3000 m2

Baseline 8026.3 34 613.8
Fixed Model 8815.2 788.9 29 563.4 −5050.4
CGDRM 9357.0 1330.7 30 163.5 −4450.3
RFDRM 9149.3 1123.0 30 166.5 −4447.3

Table 5.11: ENPV and VoF of Check-in 1 and 3 for Evaluation 3 and buffer space with
and without retail utilisation. All ENPV and VoF figures are provided in CHF.

The optimal capacity deployment sequences for Check-in 1 and 3 and Evaluation 3

are illustrated in Figure 5.16 for buffer space without retail utilisation and in Figure 5.17

for buffer space with temporary retail utilisation. The solid lines refer to the capacity

deployment sequence of optimal conventional facility requirements, the bubbles to the

optimal capacity deployment of flexible facility requirements and the black lines to val-

idation data provided by FZAG. Section 5.4.2 explains in more detail how to read this

capacity deployment plot.

5.4.4.2 Simulation results

Figure 5.18 depicts target curves of stochastically optimal flexible and conventional facil-

ity requirements for Check-in 1 and 3 and Evaluation 3 determined with the fixed model,

the CGDRM and the RFDRM. The diagrams in the left column of the figure summar-

ise the results for a percentage drift rate of µD = 0.04, while in the right column, res-
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Figure 5.16: Optimal capacity deployment sequences for Check-in 1 and 3 and Evaluation
3 for buffer size of AR,CH,0 = 1000m2 in which no retail services are provided.
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Figure 5.17: Optimal capacity deployment sequences for Check-in 1 and 3 and Evaluation
3 for buffer size of AR,CH,0 = 1000m2 in which temporary retail services are provided.



CHAPTER 5. PLANNING EXAMPLE 186

ults for µD = 0.12 are shown. The first row of diagrams depicts the results for a buf-

fer space of AR,CH,0 = 0m2, the second row for AR,CH,0 = 750m2 and the third row for

AR,CH,0 = 1500m2. Target curves plotted as thin lines show results for buffer without

retail utilisation, while bold lines illustrate results for buffer space with retail utilisation.
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Figure 5.18: Simulation results for Check-in 1 and 3 and Evaluation 3 for buffer of size
AR,CH,0 = 0,750,1500m2, in which no retail services are provided (left column) and in
which retail services are provided (right column).

As illustrated in Figure 5.18 and summarised in Table B.7 (see Appendix B), the

ENPV of Check-in 1 and 3 appears to depend on the size of the initially allocated buffer

space AR,CH,0, the percentage drift rate µD and on whether the provision of temporary

retail services is permitted or not. Generally, flexible facility requirements lead to higher

ENPVs than facility requirements determined with the fixed model. Moreover, for facil-

ities in which buffer space cannot be used for the provision of temporary retail services,
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the ENPV of the system is reduced with increasing buffer size. This effect is also clearly

noticeable in Figure 5.19. In contrast, if retail is allowed, the ENPV of the system is

positively affected by an increasing buffer size. As illustrated in Figure 5.19, the ENPV

functions of all the CEP models but the baseline model can be divided into two distinct

sections: a section in which the ENPV of facility requirements increase only slightly and

a section in which the ENPV increases almost linearly with the buffer size. The transition

between these sections occurs at buffer sizes of approximately AR,CH,0 = 1000m2 for

µD = 0.04 and AR,CH,0 = 2000m2 for µD = 0.12, respectively. The ENPV of the baseline

model appears to increase linearly in function with the buffer size. Furthermore, it can

also be seen in Figure 5.18 that at high percentage drift rates µD, the difference between

the ENPV of a system in which the buffer is used for the provision of retail services and

a system in which the buffer space is not utilised for the provision of retail services is

less pronounced than for low percentage drift rates. Exact numerical values concerning

Figure 5.18 can be found in Table B.7 in Appendix B.

5.4.4.3 Sensitivity analysis

To examine how the results for Evaluation 3 shown above are affected by variations in

a number of parameters, three different sensitivity analyses were conducted: (i) a two-

way sensitivity analysis to determine how the percentage drift rate µD and the demand

volatility parameter σD affect the results, (ii) a two-way sensitivity analysis to quantify

the impact of the discount rate δ and EoS parameters αK and αA, as well as (iii) a one-way

sensitivity analysis to study the impact of the average service rate µK .

Percentage drift rate and demand volatility. Figure 5.19 shows how the percentage

drift rate µD and the demand volatility parameter σD affect the ENPV of facility require-

ments for Check-in 1 and 3 determined with the fixed model, the CGDRM and the RF-

DRM for different buffer space sizes in a range of AR,CH,0 = 0,500, . . .3500m2. For buffer

space which does not allow for the provision of temporary retail services, the ENPV is
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positively affected by an increase in the percentage drift rate of demand µD, while the

opposite applies for an increase in the volatility of demand σD. For facilities in which the

buffer space can be temporarily used for retail purposes, the ENPV is negatively affected

by both an increase in the drift rate µD and in the demand volatility parameter σD.
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Figure 5.19: Influence of average retail revenue rR,CH , percentage drift rate µD and de-
mand volatility σD on the ENPV for Check-in 1 and 3 and Evaluation 3. Results for buffer
space without retail utilisation are depicted in the diagrams in the left column, while res-
ults for buffer space with retail utilisation are shown in the right column of diagrams.

The results shown in Figure 5.19 suggest that the VoF of a system with buffer space

without retail utilisation is positively influenced by an increase in the percentage drift

rate µD, while the opposite is true for a buffer with retail utilisation. Furthermore, it can

be seen that for buffer spaces without retail utilisation, the VoF of conventional facility

requirements determined with the fixed model is negatively influenced by an increase in
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demand volatility σD, while the opposite is true for flexible facility requirements. For

buffer spaces with retail utilisation, an increase in volatility leads to an increase in VoF

for the majority of all facility requirements generated34. The exact ENPV and VoF figures

can be found in Table B.7 in Appendix B.

Discount rate, EoS parameter and average service rate. The impact of variations

in the discount rate δ , the EoS parameters αK and αA as well as the average service

rate of a check-in desk µK,CH on the ENPV of both flexible and conventional facility

requirements for Check-in 1 and 3 is presented in Figure 5.20. The sensitivity of the

models to variations in δ , αK and αA is shown in the diagrams in the left and middle

columns of Figure 5.20, while the CEP models’ dependence on changes in µK,CH are

depicted in the diagrams in the right column. Moreover, the top row of diagrams presents

the data for buffer space which is not temporarily used for retail purposes, while the

bottom row of diagrams summarises the results for buffer space where temporary retail

services are provided.

An increase in the discount rate δ affects the ENPV of Check-in 1 and 3 negatively,

irrespective of whether the buffer space allows for the provision of temporary retail ser-

vices or not. With increasing buffer space size, however, the negative influence of an

increasing discount rate is reduced. An increase in EoS parameters values αK and αA, i.e.

waning EoS effects, have a negative effect on the ENPV of optimal facility requirements

for Check-in 1 and 3 which have buffer spaces. With regard to the VoF, it can be seen that

an increase in the EoS parameter value leads to an increase in the VoF. The influence of

the discount rate δ on the VoF depends on the buffer type: for buffer spaces that do not

permit retail utilisation, an increase in the discount rate δ leads to a decrease of the VoF,

while the opposite is the case for buffer space with retail utilisation. Exact ENPV and

VoF figures can be found in Table B.8 in Appendix B.

Finally, the ENPV of facility requirements for Check-in 1 and 3 seems to depend

34An increase in demand volatility σD affects the VoF of facility requirements determined with the fixed
model slightly negative for small buffer space sizes.
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Figure 5.20: Influence of the discount rate δ and the EoS parameters αK and αA (left and
centre column) as well as the service rate µK,CH (right column) on the ENPV of Check-in
1 and 3 for Evaluation 3.

only very weakly on changes in the service rate µK,CH . To this end, for buffer spaces

without retail utilisation, an increasing service rate leads to a slight decrease in ENPV,

while the opposite is true for buffer spaces with retail utilisation. Moreover, it can be

seen that for systems that contain a buffer space without retail utilisation, the VoF of

conventional facility requirements increase with increasing service rates µK,CH , while the

opposite applies for flexible facility requirements. For facilities that have a buffer space

with retail utilisation, an increase in the service rate leads to an increase in VoF. Exact

ENPV and VoF figures can be found in Table B.9 in Appendix B.
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5.5 Solution performance

The GAs used for the near-optimal solution of the fixed model and the CGDRM, as well

as the GEP applied for the RFDRM belong to the class of evolutionary optimization al-

gorithms, in which the optimal solution to a problem is approximated in an iterative pro-

cedure over the course of a number of generations. As soon as the termination conditions

of the GA and GEP are reached, the best available solution at that time is designated as

the near-optimal solution of the optimization problem at hand.

In practical applications, users have to determine for how many generations an evolu-

tionary algorithm should be executed. In this way, a trade-off must be found between the

required solution time and the accuracy of the solution. If the algorithm is terminated too

early, the near-optimal solution obtained is very likely to be of poor quality. However, if

the algorithm is terminated too late, there is a good chance that a considerable amount of

computing time will be invested without substantially improving the quality of the solu-

tion. Consequently, the solution procedure should be carried out as often as necessary to

determine a sufficiently accurate solution, but as little as possible to save computing time.

The left diagram in Figure 5.21 depicts how the ENPV of the best solution candidate

for Evaluation 1 is improved over the number of generations g of the GA applied for the

fixed model, the CGDRM and GEP used by the RFDRM. The right diagram in Figure 5.21

illustrates the computing time required to reach a certain number of generations g. For

the data shown in Figure 5.21, all the CEP models were provided with 5000 demand

scenarios as well as default parametrisation, as defined in Appendix A. Furthermore, the

CEP models were solved in 5 independent simulation runs on an 27” iMac from the year

2017 with a 4.2 GHz quad core Intel core i7 processor and 32 GB RAM. Consequently,

the data shown in Figure 5.21 are average values over the 5 simulation runs.

Concerning the solution convergence of the CEP models, the data depicted in Fig-

ure 5.21 suggests that the CGDRM and the RFDRM requires approximately 20 and 50
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Figure 5.21: Solution convergence (left) and time required to acquire solution (right) of
the fixed model, the CGDRM and the RFDRM. All results are average values over 5
independent runs of the solvers generated for Evaluation 1.

generations, respectively, to converge to a stable solution35. The solution of the fixed

model is stable after roughly 100 generations. Regarding the time required to achieve a

near-optimal solution, the fixed model and the CGDRM show similar results: the fixed

model requires on average 77.5 s to process 100 generations and 154.8 s for 200 gen-

erations, while the CGDRM requires on average 100.3 s and 200.6 s, respectively. In

contrast, the RFDRM takes on average 1718.6 s for 100 generations and 3378.8 s for 200

generations.

35For this study, a stable solution is assumed if the relative change of the ENPV of the best performing
solution candidate from generation g to generation g+ 1 is less than 0.1 %. Please note that the literature
often applies significantly smaller values to define stagnation. For instance, Kramer (2017) suggests to
terminate a genetic algorithm if the relative improvement of the fitness value of the best chromosome from
population g to population g+ 1 is less than 10−8. However, it was decided that by choosing a relatively
large value to define stagnation, the solution time can be positively influenced, while the solution quality is
still acceptable for an application in the context of ASP.
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Discussion

This chapter discusses both the methods presented in Chapter 4 as well as the planning

example introduced in Chapter 5. To this end, the discussion is organised as follows: Sec-

tions 6.1, 6.2 and 6.3 discuss the research areas 1, 2 and 3, respectively. The implications

of this study are outlined in Section 6.4.

6.1 Research area 1 – Demand models

Research area 1 is concerned with the demand module, which consists of models used

to create annual aggregated passenger demand scenarios by means of GBM as well as

the conversion of these scenarios into airport passenger terminal facility-specific DHL

demand vectors. For this purpose, two models were developed in this study, namely the

annual aggregated demand model and the DHL demand model, which are each discussed

below.

6.1.1 Annual aggregated demand model

The annual aggregated demand model enables airport planners to create large numbers of

scenarios describing future annual aggregated passenger demand for an airport and there-

fore provides answers to research question RQ1. The GBM-based methodology proposed

193
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in this study has proven to be very effective, computationally efficient and straightfor-

ward to apply in practice. Moreover, the suggested method does not require any special

software, as it could also be implemented in a spreadsheet. The scenarios created with

the annual aggregated demand model for ZRH Airport correspond to initial expectations

and are comparable with similar results presented in the literature on flexible engineering

systems (Cardin & Hu, 2016; Cardin et al., 2015; Cardin, Xie et al., 2017; De Weck et al.,

2007; Geltner & De Neufville, 2018; Hu et al., 2018; Hu et al., 2020; Hu & Guo, 2019;

Mun, 2002). Without major adaptations, the model presented in this study could also be

used for the generation of scenarios for other factors subject to uncertainty in the context

of ASP, such as the number of future ATMs per year or future aggregated annual freight

volumes.

At this point, it must be pointed out that the GBM-based annual aggregated demand

model is rather simplistic, since it is based exclusively on past passenger volume obser-

vations and does not take into account any other factors influencing demand. For this

reason, it cannot replace the already well-established methods used to generate demand

forecasts for airports, such as time series or trend extrapolations (Doganis, 2013; Kazda

& Caves, 2007; Vasigh et al., 2018), consensus forecasts, market share forecasts (Euro-

control, 2018; Federal Aviation Administration [FAA], 2021) or econometric forecasts

(Chen, Chang et al., 2009; De Neufville et al., 2013; Kazda & Caves, 2007; Profillidis,

2000). However, a GBM-based model would be able to complement the above-mentioned

forecasting methods by facilitating the creation of large numbers of demand forecast scen-

arios. For example, a GBM-based model could have been used to create demand scenarios

for the Madrid Barajas Airport master planning example introduced in Chapter 1. In this

example, instead of creating just three scenarios, airport planners could have created a

large number of different demand scenarios with a small workload. Thus, the annual ag-

gregated demand mode presented in this study is a tool that can be perfectly integrated

into the methods and planning processes already used at airports today.

GBM-based models have certain limitations in terms of (i) their parameters, (ii) as-
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sumptions regarding the distribution of the input data and (iii) the missing capacity to

represent jumps in the variable which is to be modelled. Regarding the estimation of

the parametrisation of GBM-based models, the literature recommends using the largest

possible dataset of historical observations of the variable to be modelled. As mentioned

in Section 4.1, Croghan et al. (2017) suggest at least 100 or even better 1000 historical

observations of the variable in question should be examined. For the generation of an-

nual aggregated demand scenarios of airports, however, this requirement is impossible to

meet, due to a lack of available data. In this study, demand observations from 11 consec-

utive years are used to parametrise the annual aggregated demand model. At first glance,

this data basis appears to be rather limited. However, when compared with similar stud-

ies mentioned in the literature on flexible engineering systems, such as Cardin and Hu

(2016), Cardin, Xie et al. (2017) and Hu et al. (2018), Hu et al. (2020), it is noticeable

that these works are limited in a similar way. In addition, the standard errors for the drift

rate and volatility estimated in this study are 0.814 % and 0.603 %, respectively, which is

acceptable36. Thus, it is assumed that the approach chosen in this study is viable as long

as practitioners are aware of the fact that their planning is founded on a limited data basis.

GBM further assumes that both the percentage drift rate µ and the percentage volat-

ility σ of the variable to be modelled are constant. Although this assumption allows for

the postulation of relatively simple models, it might not be appropriate for all types of ap-

plications. Especially the volatility parameter σ is often subject to variations in function

of time as well as other micro-economic or macro-economic variables. In this regard, an

example relevant to ASP is presented by Marathe and Ryan (2005), who show that the

volatility of airline passenger data is time dependent due to cyclical and seasonal demand

patterns. In order to model time-dependent volatility, the use of so-called stochastic volat-

ility models could be considered (Andersen, 2007; Broto & Ruiz, 2004; Taylor, 1994). In

these models, volatility is not represented as a constant parameter, but is rather modelled

36If 100 observations were used as suggested by Croghan et al. (2017), the estimated standard error
would be σ̂µD = 0.270% and σ̂σD ≈ 0.192%. With 1000 observations, the estimated standard error is
σ̂µD = 0.085% and σ̂σD ≈ 0.060%.
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by means of a stochastic process. As such, stochastic volatility models have already been

used extensively in the field of financial options valuation. However, to the best of the

author’s knowledge, there are no documented applications of stochastic volatility models

in the context of ASP.

Another point to consider is the distribution of the variable to be modelled. GBM

is based on the assumption that ratio Dt
D0

follows a log-normal distribution (Ross et al.,

2012). This assumption needs to be verified for the variable to be modelled based on

historical observations. However, because only a dataset covering 11 consecutive years

is available in this study, this assumption could not be verified. Rather, it was assumed

that the distribution of the input data is according to specifications, which is a procedure

that has also been applied by other studies on flexible engineering systems (Cardin & Hu,

2016; Cardin, Xie et al., 2017; Hu et al., 2018; Hu et al., 2020). Further, because GBM

is based on a log-normal distribution, extremely rare events such as a stock market crash

can only be reproduced to a very limited extent. By replacing the log-normal distribution

which GBM is based on with a log-Student-t distribution, as proposed by Nkemnole and

Abass (2019), rare events could be modelled better.

Finally, another limitation of GBM is that no jumps can be modelled (Mun, 2002).

In the context of the application presented in this study, jumps describe instantaneous

changes in demand, which can occur at airports due to, e.g. the market entry or the

withdrawal of an airline. Especially at airports where LCCs have a large share of the

market, such sudden changes in demand can be observed (Chambers, 2007; Jimenez et

al., 2017). In order to remedy this deficiency of GBM-based models, it would be feasible

to examine the application of so-called jump diffusion processes. In this respect, GBM

has been extended to allow for abrupt jumps which are often modelled with a Poisson

process. While jump diffusion is frequently used for the valuation of financial options

(Kou, 2002; Merton, 1976) and also for the valuation of real options (Mun, 2002), the

literature covers to the author’s best knowledge no ASP related applications.



CHAPTER 6. DISCUSSION 197

6.1.2 DHL demand model

In order to convert annual aggregated demand scenarios into airport passenger terminal

facility-specific DHL demand scenarios, the DHL model presented in Section 4.2 is ap-

plied in this study. This DHL model consists of two sub-models: the unsaturated DHL

model and the saturated DHL model. While "the unsaturated DHL model considers the

relationship between observed passenger flows in the terminal and aggregated annual de-

mand data, [...] the saturated DHL model includes several operational constraints which

limit the actual DHL [of an airport passenger terminal facility], such as limitations in the

runway system or the fleet mix operating at an airport" (Waltert et al., 2021, p. 1). Thus it

can be seen that the DHL model provides answers to research questions RQ2 and RQ3.

In terms of the DHL demand scenarios generated for Check-in 1 and 3, the results

presented in Section 5.3.2 are in line with expectations and show annual aggregated de-

mand scenarios can be converted into DHL demand scenarios for airport passenger ter-

minal facilities in an efficient and effective manner. Regarding the results presented in

Figure 5.5 on page 154, it is particularly noticeable that the volatility of the generated

DHL scenarios seems to depend on the DHL model type. As can be inferred from Fig-

ure 5.5, data calculated with the unsaturated DHL model (red lines) shows higher vari-

ability than data calculated with the saturated DHL model (black lines). The unsaturated

DHL model converts the annual aggregated demand scenarios of an airport directly into

a DHL demand scenario of a facility. Thus, DHL demand determined with the unsatur-

ated DHL model shows the same volatility as the annual aggregated demand data. DHL

demand determined with the saturated DHL model, however, further depends on the ca-

pacity of an airport’s runway system as well as on the average number of passengers per

aircraft movement, i.e. is dependent on the aircraft types. Both factors have a dampening

effect on the volatility of the resulting DHL demand, as they restrict the maximum pos-

sible traffic volumes. For this reason, the results of the saturated DHL model are subject

to less volatility.

The fact that capacity saturation tends to lead to less DHL demand volatility might
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positively influence the success of strategic plans for airport passenger terminal facilit-

ies. Less volatility means less uncertainty and thus a higher probability that the facility

requirements determined will prove to be correct in hindsight. Therefore, even though

airports are usually interested in avoiding capacity saturation for economic reasons, this

study shows that capacity saturation can lead to positive effects for the strategic planning

of airport passenger terminal facilities.

The DHL model is founded on the ratio-based approach, which is an "empirical data-

driven method that aims to model the relationship between the DHL [of an airport pas-

senger terminal facility] and annual [aggregated] demand [of an airport] by means of

constant ratios or regression models" (Waltert et al., 2021, p. 2). Thus, the DHL model is

simple and intuitive, as the method is based solely on the assumption that the relationship

between the annual traffic volume and the DHL of a facility can be expressed by means of

a ratio. Apart from the availability of a set of measurement data describing both the annual

aggregated demand and the facility-specific DHL demand, no further inputs are needed

for the unsaturated DHL model. The need for additional input data is also limited for the

saturated DHL model, which relies on supplementary data that is either available in the

public domain or information which can be provided by an airport’s planning department

without difficulty.

This study proposes the application of passenger flow data collected with a PTS in

order to determine the DHL of an airport passenger terminal facility. To this end, there

is a novel approach presented which demonstrates how (big) data that is automatically

collected by means of a PTS can be used for planning tasks in the context of ASP. In

order to determine DHL demand to a high degree of accuracy, passenger flow data must

be recorded as continuously as possible over several years. Collecting data in this way is

only possible if the measurement is fully automated, for example by means of a PTS. If

such data were generated by means of human measurement, the data collection process

would be far too expensive and most probably of substantially lower accuracy.

For the strategic planning application presented in this study, it can be argued that
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the ratio-based approach suggested is more advantageous for airports than the design day

schedule method. The ratio-based method allows for a direct conversion of annual aggreg-

ated demand into facility-specific DHL demand in only one step, which is both efficient

as well as straightforward. The design day schedule method, however, is based on two

working steps, both of which are labour-intensive. In a first step, fictitious flight schedules

for future design days or design weeks are created based on a substantial amount of in-

put data. In order to describe future flight schedules, planners have to make assumptions

on future traffic patterns, aircraft types in use, future user groups, etc. Also, specialised

software is often used to create design day flight plans. In a second step, design day

schedules are converted into airport passenger terminal facility-specific DHLs. This is

a complex task, for which airport planners often use discrete-event simulation models,

agent-based simulation models, accelerated time simulation models or queueing theory

models (Waltert et al., 2021).

Another advantage of the DHL model is its versatility. Due to its generic structure,

the DHL model can be applied to various airport passenger terminal facilities. In order

to parametrise the DHL model for a different airport passenger terminal facility, airport

planners only need a sufficiently large dataset characterising the passenger flow through

this facility. Moreover, the DHL model can not only be applied to ZRH Airport, but rather

to any airport, regardless of the DHL definition in use at these aerodromes. On this matter,

Waltert et al. (2021, p. 9) write that "in this study the SBR has been used to determine

the DHL of an airport facility, since this is the method used at ZRH Airport. Without

any loss in generality however, the methodology presented in this [document] can also be

applied to other DHL definitions, such as the BHR [or the TPHP], which are used at other

airports".

Regarding the structure and parametrisation of the proposed DHL model, Waltert et

al. (2021) discuss the following topics:

The unsaturated DHL model is based on a transformation function as

[suggested in Equation 4.4 on page 98] which considers the natural logar-
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ithm of the annual demand. During intensive testing this type of transform-

ation function was found to be the most optimal in terms of performance.

This is most probably due to the fact that with increasing traffic, the growth

of the DHL is often less pronounced (De Neufville et al., 2013; Kennon et

al., 2013). Large airports might apply certain pricing schemes such as peak-

pricing or congestion pricing to control demand, or regional flights may be

substituted with rail connections (Berster et al., 2015). Moreover, especially

at airports with either high traffic volumes or capacity constraints, the hourly,

daily, monthly and seasonal variation in the number of flights, and thereby

also the variation in the number of passengers per unit time becomes less

pronounced with increasing annual demand. This has a direct impact on the

growth of the DHL (Reichmuth et al., 2011; Wilken et al., 2011). Unfor-

tunately, however, the effects reported in the literature cannot be fully con-

firmed in this study, since no input data originating from international airports

with an annual demand of more than 50 million passengers is available. Con-

sidering the quality of fit of the unsaturated DHL model, [see Section 5.3.2],

the model for ZRH [Airport] is significant at the 5 % level.

The saturated DHL model is based on three components: the hourly de-

parture throughput capacity of an airport, the linear regression model describ-

ing the average number of passengers per ATM and the model for ratio ri.

Considering the departure throughput capacity of an airport, it is important to

acknowledge that even though the method proposed in this paper assumes the

presence of a single value for µR, the actual throughput of a runway system

is a dynamic property which depends on the runway configuration currently

in use, weather conditions, the fleet mix, the share of departures and arrivals,

etc. (De Neufville et al., 2013). For this reason, it is advisable to use various

different values of µR in order to explore the influence of runway capacity

on the output of the saturated DHL model. The model for the average num-
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ber of passengers per ATM is based on data sourced from Airport Council

International and Wikipedia. Based on results presented in [Figure 4.5 on

page 101 and Figure 5.4 on page 153], it can be inferred that the relationship

between the average number of passengers per movement and annual passen-

gers may approach a certain limit value. This observation is supported by the

literature. According to Berster et al. (2015), airlines tend to schedule air-

craft with higher seat capacity to airports with high(er) demand and airports

which are capacity constrained. Since the variety of aircraft types, especially

in the wide-body aircraft market segment is limited, there will be a natural

limit of maximum possible number of passengers per ATM. Indeed, Berster

et al. (2015) report that in the case of Emirates Airlines, which operates al-

most exclusively large wide-body aircraft, the average number of passengers

per ATM is approximately 240.

Additionally, one of the independent variables considered for the average

passenger per ATM model is the number of runways available at an airport.

This variable has been chosen as a proxy for the maximum throughput of a

runway system, since it is readily available in the public domain. Neverthe-

less, airport planners must handle this variable with care for real-world ap-

plications. In reality, airports with multiple runways often only operate some

of the available runways simultaneously. Consequently, the proposed model

might not fully reflect daily operations. To partially cope with this deficiency,

the results presented in [Section 5.3.2, and Figure 5.4 on page 153] are solely

based on input data covering airports with 2 or 3 operational runways, since

at ZRH Airport and Airport 2 no more than 3 runways are available for use.

[Moreover], the existence of estimated ratios ri whose value is close to 1

(see [Section 4.2.4]) or even larger than 1 is especially interesting, since one

could assume that this should not be possible. In reality the opposite is true,

as ratio ri combines two separate effects in one single constant, namely (i) the
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number of passengers using facility i per ATM and (ii) the ratio of design hour

passengers per ATM to annual average ATM per ATM. While the first effect

can never exceed an aircraft’s capacity, it is perfectly legitimate to assume

a higher utilization of aircraft during peak periods than the yearly average.

Finally, for reasons of simplicity, it has been decided to estimate ratio ri with

the median of the observed data rather than applying a more sophisticated re-

gression model. Given the fact that the DHL models presented in this [study]

are applied in the area of airport strategic planning, which is subject to signi-

ficant uncertainty, such a simplification is justifiable, as long as the planners

are aware of the accompanying limitations. (pp. 7–8)

The fact that factor r can be volatile in practical applications is, however, a limitation

of the DHL model. Factor ri depends on PAXAT Mdh
i,t which refers to the average num-

ber of passengers per ATM using facility i during the design hour of planning phase t.

At small airports, or at airport passenger terminal facilities that are frequented by only

a few passengers, e.g. a check-in facility for first class passengers, it is possible that

slight changes in the demand structure during the design hour, e.g. one ATM per design

hour more or less, can have a large influence on PAXAT Mdh
i,t and thus also on factor ri.

Therefore, practitioners need to be aware that factor ri can be subject to substantial fluc-

tuation. For precisely this reason, planning experts at FZAG assume that factor rCH can

be estimated as r̂CH = 1 for the planning example presented in Chapter 5.

Because of its sensitivity to changes in the demand structure, airport planners can use

factor ri to create and investigate what-if scenarios. By deliberately changing the value

of factor ri, airport planners can evaluate how the DHL of an airport passenger terminal

facility is affected by changes in the demand pattern during the design hour. For instance,

planners could therefore evaluate how the market entry of a LCC airline or the termination

of operations of a hub carrier influences the DHL of a specific airport passenger terminal

facility. In a similar manner, the impact of sudden changes in the fleet mix operated from

an airport on the DHL of a facility could be assessed.
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6.2 Research area 2 – Facility requirements

At the core of research area 2 are research questions RQ4 and RQ5, which ask whether

conventional and flexible CEP models presented in the literature can be adapted in such

a way that conventional and flexible facility requirements for airport passenger terminal

facilities can be created. The discussion of research area 2 is divided into two parts:

Section 6.2.1 focuses on the valuation model, while all the CEP models presented in this

study are discussed in Section 6.2.2.

6.2.1 Valuation model

The CEP models presented in this study use the valuation model in order to evaluate

facility requirements. According to the literature (De Neufville, 1990; De Neufville &

Scholtes, 2011; Martínez-Costa et al., 2014; Van Mieghem, 2003), the valuation model is

based on the DCF method, which is referred to by certain scholars as the "workhorse" of

infrastructure project evaluation methods (Geltner & De Neufville, 2018, p. 2). Because

this method is so widely used in the literature, it can be assumed that its use in this study

is appropriate and correct. Nevertheless, in terms of the valuation model as applied in this

study, three specific issues require further discussion: (i) the interpretation and definition

of the NPV function, (ii) the selection, structure and parametrisation of the cost functions,

and (iii) the selection, structure and parametrisation of the revenue functions.

Definition of the NPV function. The NPV of a project or facility is defined as the

discounted sum of all cash flows accumulating over a period of time, see Section 2.4.1.

In contrast, the NPV function applied in this study considers exclusively cash flows that

arise during the design hours of the planning phases t. All other periods of time, and thus

all other cash flows, have been omitted. Therefore, from a purely technical perspective,

it is not the NPV of an airport passenger terminal facility that is calculated, but rather

the sum of all discounted cash flows that amass during the design hours. Nevertheless, it

was decided to use the term NPV in this study, because the structure of the NPV formula
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applied in this document, see Equation 4.10 page 105, is identical with the NPV function

presented in the literature (De Neufville, 1990; De Neufville & Scholtes, 2011; Geltner

& De Neufville, 2018). Furthermore, the restriction of the NPV function to the design

hours applied in this work can be justified, since the NPV is used exclusively for the

comparison of different facility requirements, but not for the actual financial evaluation

of the project in the context of corporate finance, e.g. in determining the net profit or net

loss of a project.

Because the NPV function used in this study refers exclusively to the design hours,

the resulting ENPVs of optimal facility requirements for Check-in 1 and 3 presented

in Chapter 5 must be interpreted in this context. According to Cardin (2014) and De

Neufville and Scholtes (2011), flexible engineering systems have been shown to perform

between 10 % and 30 % better in economical terms than comparable conventional sys-

tems. Although flexible designs for Check-in 1 and 3 presented in this study show better

performance than their conventional counterparts, the magnitude of the benefits men-

tioned in the literature are not attained. For instance, in Evaluation 1, the ENPV of the

flexible facility requirements determined with the CGDRM is only 5.90 % higher than

the baseline model result, while the flexible facility requirements determined with the

RFDRM show a 5.29 % better performance over the baseline model. Thus, the results

presented in this study are significantly lower than the values published in the literature.

An explanation for this can be found in the definition of NPV which is used in this work.

During the design hour, airport passenger terminal facilities experience "peak traffic but

not . . . absolute maximum traffic" (De Neufville et al., 2013, p. 539). The facilities are

therefore well utilised, which often leads to increased levels of congestion and delay.

Revenues and costs are determined exclusively for these operating conditions in order to

estimate the NPV of the airport passenger terminal facility. The revenue function imple-

mented in this study depends linearly on DHL demand. Thus, increased demand levels

automatically lead to increased revenue. As for costs, however, congestion-related pen-

alty costs are expected to be disproportionally higher during the design hours compared
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with an average operating hour, since the relationship between the utilisation of an air-

port passenger terminal facility and the resulting level of congestion is to a great extent

non-linear, see Section 2.4.2. Thus, the difference between revenues and costs, which de-

termines the NPV of an engineering system to a large extent, is smaller during the design

hour than during an average operating hour. This may explain why the benefits of flexible

facility requirements obtained in this study are lower than the values mentioned in the

literature.

Cost functions. The proposed valuation model considers installation, operational and

penalty cost functions. The functions applied to model installation and operational costs

are commonly used in the literature. Of particular note is the way in which (i) installation

costs for changes in building space requirements and (ii) penalty costs are estimated. As

reviewed in Section 2.1.3, the literature presents several methods to determine the space

requirements ∆Ai,t given a capacity adjustment of ∆Ki,t . The calculation approach pro-

posed in this study is based on the rule-of-thumb model presented in IATA (2017), and is

capable of estimating the required building space through a series of simple calculations

and assumptions. Nevertheless, this type of calculation is not as accurate as a DES model

or an agent-based model (Wu & Mengersen, 2013). However, the accuracy of the model

is of little importance in the proposed application, since all the advantages in terms of

precision offered by complex models are usually outweighed by the high levels of un-

certainty ASP is subject to. Furthermore, complex models are computationally expensive

and often require proprietary software; both of these difficulties can be circumvented with

the rule-of-thumb model applied in this study.

In order to monetise the negative effects of congestion and delays on the perceived

service quality, so-called penalty costs are established. In the literature, two different

approaches to calculate congestion-related costs are mentioned. The first approach mon-

etises congestion by multiplying the expected waiting times experienced by passengers

with the value of time, which quantifies the monetary value of an hour’s wait for a single
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passenger. Although certain authors, such as Sun and Schonfeld (2015) and Yoon and

Jeong (2015), use this approach to quantify delay-related costs, it is ultimately ques-

tionable whether the passenger’s wait of some period of time can be quantified in terms

of money, since passengers experience waiting times differently (Durrande-Moreau &

Usunier, 1999; Van Hagen, 2011). Moreover, it can also be argued that the costs of

passengers’ waiting time should not be considered in the calculation of the NPV of an

airport passenger terminal facility, since these costs refer to the users, but not to the actual

infrastructure.

The second approach proposed by the literature is based on charging penalty costs

when too much or not enough capacity is provided. This approach, originally proposed by

Saffarzadeh and Braaksma (2000) for an application in the context of operational airport

planning, is used in this study. The advantage of this method is that delay-related costs

can be directly linked to the operational infrastructure that is available at a certain facility.

In contrast to monetised waiting times, it can be argued that such costs may be included

in the NPV calculation as they relate to the capacity of an airport passenger terminal

facility. The parametrisation of the penalty cost function is most probably the weak point

of the proposed method. There is no reference in the literature to the parameter values for

the penalty cost function, but there must rather be determined by the planners in a trial-

and-error process. This process, which requires "engineering judgement" (Saffarzadeh &

Braaksma, 2000, p. 77), leaves room for ambiguity and errors. However, the sensitivity

analysis conducted in Section 5.4.1 showed that the results of the CEP models presented

in this study are only dependent to a small degree on the parametrisation of the penalty

cost function. Thus, it can be assumed that any inaccuracies in the parametrisation of the

penalty cost function have only a marginal effect on the results of the CEP models37.

Revenue functions. In this study, revenues generated by airport passenger terminal fa-

cilities are attributed to three different sources: revenues from airport charges and taxes
37Saffarzadeh and Braaksma (2000) come to a similar conclusion. As such, Saffarzadeh and Braaksma

explain that it is not the absolute values of the parameters of the penalty cost functions which affect the
results, but rather the relative relationship between the parameters.
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paid by passengers, revenues from user charges paid by handling agents and airlines, and

revenues originating from the provision of food, beverage and retail services. In all three

cases, the estimation of revenues is based on linear functions. Although this approach is

simplistic, it corresponds exactly to the methods documented in the literature, see Sec-

tion 2.4.2. Revenues generated by the provision of retail, food and beverage services

deserve special attention. The retail revenue function used in this study assumes that rev-

enues are solely dependent on the size of the building space allocated for retail purposes.

While this model structure does facilitate a first approximation of the retail revenues,

many important factors that significantly influence retail revenues are neglected. There

is, therefore, scope for improved retail revenue models to be applied taking into account

additional factors, such as the location where the services are provided, the actual types

of services offered, demographic factors, time of the year, etc. (Chen et al., 2020; Davis

et al., 2018; Volkova, 2009).

6.2.2 CEP models

In this study, four different CEP models were developed and presented; these are used

to determine which stochastically optimal conventional and flexible facility requirements

for airport passenger terminal facilities. For this purpose, both conventional and flexible

CEP models mentioned in the literature were adapted so that they can be applied in an

ASP-related context. In the following section, all four CEP models presented in this study

are discussed individually.

Baseline model. The baseline model is formed on the assumption that the capacity of

a facility is adjusted by ∆Ki,0 units at time t = 0 only. After this initial adjustment, the

capacity of a facility can no longer be changed. It is clear that this assumption is far from

realistic, as no practitioner would ever plan a facility under these principles. However, the

baseline model was not designed to create realistic facility requirements, but rather the

results are used exclusively to determine the VoF of facility requirements created with the
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fixed model, the CGDRM and the RFDRM.

The baseline model consists of one single decision variable, ∆Ki,0, whose feasible

values are extensively limited. For this reason, the solution space of the baseline model is

comparatively small, and thus the application of an enumeration-based solution proced-

ure is computationally viable. It could well be questioned whether a better performing

solution procedure might be applied, i.e. one which generates optimal solutions in less

computing time and/or one which does not need to evaluate each solution candidate on an

individual basis. However, it is questionable whether the extra effort required to determ-

ine a more efficient solution procedure is worthwhile, as the baseline model is exclusively

used for benchmarking purposes and not for the evaluation of large numbers of different

candidate flexibilities. Consequently, it might make more sense to design more efficient

solution procedures for CEP models, by means of which a large number of different sys-

tem designs can be investigated, or for CEP models that have large solution spaces. It is

because of this problem of large solution spaces that evolutionary algorithms are used for

the fixed model, the CGDRM and the RFDRM.

Fixed model. The fixed model is based on the adaptation of conventional CEP models

presented in the literature (Freidenfelds, 1981; Geng & Jiang, 2009; Julka et al., 2007;

Luss, 1982; Martínez-Costa et al., 2014; Van Mieghem, 2003; Wu et al., 2005). The solu-

tion of the fixed model is a stochastically optimal capacity vector K∗i which specifies the

optimal capacity of a facility i in all planning phases t. The results of the fixed model are

thus easy to understand and comprehend for practitioners, since capacity vectors describe

precisely when and how a certain infrastructure is to be adjusted.

From a practitioner’s perspective, the proposed GA-based solution procedure is par-

ticularly noteworthy. Because GAs are especially well suited for the determination of

near-optimal solutions of complex, non-linear and heavily constrained optimization prob-

lems (Bäck, 1996; Fogel, 2006; Holland, 1992; Michalewicz, 2013), the author believes

that GAs are particularly appropriate for an application in the context of the fixed model.
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GAs allow the formulation and definition of objective functions, constraints and inputs

in a flexible manner. For example, the objective function of the fixed model does not

need to be linearised or approximated38. This enables airport planners to tackle practical

problems without having to develop complex models and solution methods or to make

highly simplifying assumptions. Furthermore, various open-source software implement-

ations for GA solvers are available, such as the DEAP software library for the Python

programming language used in this study, thus avoiding the use of (expensive) propri-

etary software. Finally, the basic principles of evolutionary optimization algorithms are

straightforward and can be explained to the interested layman without further ado. This

can be rather useful for practical applications in the context of ASP, since decision makers

might prefer solutions and methods that are simple, clear and comprehensible from their

point of view.

As shown in Figure 5.21 on page 192, the fixed model comes with a faster solution

time than the CGDRM and the RFDRM. Moreover, the results suggest that the fixed

model converges to a stable near-optimal solution within approximately 100 generations.

Both facts are clear indications that the solution procedure proposed for the fixed model

is efficient and effective. As is the case for all GA-based solution procedures, however,

no reliable statements can be made about the accuracy of the determined near-optional

solution(s). If such accuracy specifications were needed, approximate algorithms could be

used as an alternative solution procedure, see Section 2.4.3.4. However, it is questionable

whether such highly accurate solutions are even needed at all for the application proposed

in this study. ASP is characterised by a high degree of uncertainty and long planning

horizons, which means that the solutions identified, i.e. the optimal facility requirements,

do not have to be highly precise, but only good enough given the circumstances.

Conditional-go decision rule model. The CGDRM is based on the empirical approach,

in which planners define the structure of a decision rule based on a priori knowledge and
38Please note that CEP models for ASP purposes presented in the literature routinely apply linearisations

and approximations. For instance, linearisations are proposed by Sun and Schonfeld (2015, 2016, 2017),
while Solak (2007) and Solak et al. (2009) apply approximations.
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practical experience. The stochastically optimal parametrisation of the decision rule is

subsequently determined by means of an appropriate solution procedure. For the CGDRM

presented in this study, a conditional-go decision rule, which is based on a logical if-then-

else operator, was selected for a number of reasons. First, conditional-go decision rules

have often been used in the literature on flexible engineering systems and are therefore

already well established in the scientific community. In fact, the CGDRM presented in

this study is based on the basic structure of flexible CEP models presented in the works of

Cardin and Hu (2016), Cardin et al. (2015) and Hu et al. (2018). Secondly, conditional-go

decision rules are easy to understand; this facilitates their acceptance by decision makers

for practical applications. Finally, conditional-go decision rules are simple to apply, as

DMs only need to follow the decision rule in each planning phase and act according to

the outcomes of the rule.

The conditional-go decision rule used in this study is quite simplistic, only taking

into account DHL demand ds
i,t in planning period t and the operational capacity Ks

i,t−1 of

facility i that is available at the beginning of the planning period t of scenario s. There-

fore, there is great potential to extend and potentially improve the applied conditional-go

decision rule with a number of measures. First, the rule could consider not only inform-

ation referring to planning period t, but several planning phases t, t−1, t−2, . . .39. Also,

additional factors, such as installation and operational costs, revenues, the temporal and

spatial target LoS, as well as the observed LoS, could be considered in a conditional-go

decision rule. Moreover, it would also be interesting to consider dependencies between

different passenger terminal facilities, e.g. the knock-on effect of delays in a passenger

terminal.

Despite the rather limited solution space of the CGDRM, a GA is used for the solution

procedure. One reason for choosing a GA to solve the CGDRM in this study was to

benefit from synergies with the solution procedure proposed for the fixed model. Further,

a GA allows the conditional-go decision rule, i.e. the if-then-else operator, to be directly

39This approach has been applied for example by Cardin, Xie et al. (2017).
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integrated into the objective function by means of software that is implemented during

the solution process. Moreover, the fact that the conditional-go decision rule is expressed

in software provides planners with the opportunity to adapt, modify and change the rule

on a flexible basis. Finally, in comparison with other solution approaches for conditional-

go decision rule-based CEP models mentioned in the literature, a GA-based approach is

much simpler and more straightforward than other solution procedures documented in the

literature. For example, Zhao et al. (2018) present a multi-facility CEP based on a multi-

stage stochastic model, in which a conditional-go decision rule is integrated by means of

the constraints the optimisation problem is subject to. Using such an approach results in

a significantly more complex model structure and solution procedure.

Reward function decision rule model. The RFDRM is a flexible CEP model based

on the generative approach in which the optimal structure of a decision rule as well as

its optimal parametrisation are determined. Thus, the RFDRM is undoubtedly the most

complex of all CEP models for airport passenger terminal facilities presented in this study.

This is manifest in the fact that a very specific solver, namely the GEP algorithm, is used

to determine stochastically optimal flexible facility requirements for the RFDRM.

Theoretically, the generative approach comes with one big advantage over the empir-

ical approach; because both the optimal structure and the parametrisation of a decision

rule are determined during the solution procedure, globally optimal flexible facility re-

quirements can be determined. This is not possible with a CEP model based on the em-

pirical approach, since the structure of the decision rule is determined in advance. Thus,

it is possible that with the chosen structure of an empirical approach-based decision rule

the global optimum can never be reached.

Although the generative approach addresses the shortcomings of the empirical ap-

proach mentioned above, the RFDRM does have certain limitations. In the literature (Hu

et al., 2020; Hu & Guo, 2019) as well as in this study, flexible CEP models based on

the generative approach are solved with the GEP algorithm in which computer programs
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encoded in fixed-length chromosomes are evolved over a number of generations. The use

of the GEP algorithm brings to light limitations because, on the one hand, the chromo-

somes have a fixed length and, on the other hand, the genes of the chromosomes can only

take on values that are specified in predefined sets. In the GEP algorithm, an individual

chromosome is decoded into exactly one computer program, i.e. a decision rule, using the

width-first search scheme method. This means that longer chromosomes have the poten-

tial to represent more complex computer programmes than shorter chromosomes. Since

the length of chromosomes is fixed, it can be inferred that the complexity of the computer

programs which can be represented with GEP is also limited. In addition, the genes of

the chromosomes may only take on values that are defined in the appropriate sets of ter-

minals Γ and functions Ψ . This leads to a further restriction of the number of potentially

possible chromosomes and therefore also the number of encodable computer programs

(Ferreira, 2001, 2006; Zhong et al., 2017). It could be proposed to increase the length of

the chromosomes as well as the number of elements in the sets Ψ and Γ in order to encode

both a larger number and more complex computer programmes. In both cases, however,

this would involve an extension of the solution space, which could negatively affect the

solution time of the GEP algorithm. Moreover, neither of these measures actually solve

the problem, as the number of possible chromosomes remains limited.

Another limitation of the GEP algorithm is that the solution procedure is based on a

priori knowledge, since the elements in the sets Ψ and Γ have to be defined by practi-

tioners based on empirical knowledge. This limitation cannot be bypassed, since GEP is

based on the fact that both sets are known and defined. However, possible extensions of

the two sets could be considered. The set of functions Ψ already contains all basic oper-

ators40 and is therefore difficult to extend. However, the set of terminals Γ applied in this

study would most probably be suitable for extensions. For the application proposed in

this study, Γ consists of the features Vl of adjustment options el ∈ e. Additional features,

such as target and observed LoS, operational costs, delay-related costs or revenues could

40The set of functions Ψ includes the addition, subtraction, multiplication and protected division oper-
ators
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be considered. Whatever additional elements might be proposed, practitioners must take

into account that each additional element in sets Ψ and Γ increases the solution space of

the RFDRM, a fact which might negatively affect the required solution time.

The evaluation of a population of chromosomes with the RFDRM takes about 10

times longer than with the fixed model or the CGDRM, see Figure 5.21 on page 192. This

shows, together with the fact that the RFDRM reaches a stable solution after about 50

generations, while the CGDRM is stable after 20 generations, that the solution procedure

of the RFDRM is comparatively inefficient.

Regarding the optimal reward functions generated by the RFDRM in general, the res-

ults presented in this study neatly demonstrate that reward functions are comprehensible

and their application in ASP is quite straightforward. Indeed, the optimal reward functions

generated in this work are simple mathematical terms which are easily comprehensible for

laypersons. In comparison to conditional-go decision rules, however, it is noticeable that

reward functions are much more difficult to handle for practitioners. In other words, there

is no intuitive feeling of what a reward function actually means. Someone who has no

detailed knowledge of the GEP algorithm and therefore does not know how stochastically

optimal reward functions are determined, could therefore imagine that these decision rules

are randomly generated. In practice, this could lead to decision makers not trusting the

results of the RFDRM, even if the rules have been generated according to specifications.

This could mean that DMs and owners would not apply reward functions in practice.

6.3 Research area 3 – Planning example ZRH Airport

Research area 3 centres on the practical application of the strategic capacity planning

framework presented in this study. For this purpose, the aggregated demand model, the

DHL demand model as well as the conventional and flexible CEP models are used in a

planning example to determine facility requirements for Check-in 1 and 3 at ZRH Airport.

Research area 3 also focuses on answering research question RQ6, which deals with the
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advantages of flexible facility requirements for Check-in 1 and 3 in comparison with con-

ventional facility requirements, as well as RQ7 and RQ8, which address the sensitivity of

the presented CEP models. Therefore, this section is divided into two parts: Section 6.3.1

discusses the comparison of conventional and flexible facility requirements for Check-in

1 and 3, while Section 6.3.2 focuses on the sensitivity of the CEP models.

6.3.1 Comparison of conventional and flexible facility requirements

In this study, the fixed model, CGDRM and RFDRM are used to determine conventional

and flexible facility requirements for Check-in 1 and 3 at ZRH Airport. These models

require a number of inputs and parameters, which must be provided by airport planners.

Unfortunately, however, various parameters, such as the share of airport charges allocated

to the check-in facility or the exact number of check-in desks used during the design hour

in planning phase t = 0, are either unknown to the planning experts of FZAG or cannot

be measured precisely, but rather have to be estimated with engineering judgement or

assessed based on operational experience. This reveals an important limitation of all CEP

models; the more precise and detailed the models are, the more inputs and parameters

have to be specified, which, however, cannot always be achieved at the desired level of

accuracy. Practitioners must therefore be aware that the results obtained with the CEP

models presented in this study are not highly accurate, but are simply approximations. In

awareness of this general limitation of the CEP models presented here, Evaluation 1, 2

and 3 will be discussed separately below.

6.3.1.1 Evaluation 1 – Option to defer & option to alter scale

Evaluation 1 considers the option to defer and the option to alter the scale of the fu-

ture development of Check-in 1 and 3 at ZRH Airport. As such, these real options on

systems are understood as the basic building blocks of flexibility which Evaluation 2

and Evaluation 3 are based on. The results clearly show that flexible facility require-

ments for Check-in 1 and 3 perform better than conventional facility requirements in
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Evaluation 1. This is explained by the following. First, the resulting ENPV and VoF of

flexible facility requirements are significantly41 higher than the corresponding results of

conventional facility requirements: the CGDRM and the RFDRM lead to facility require-

ments which result in an ENPV which is 5.90 % and 5.29 % higher than the ENPV of

facility requirements determined with the baseline model. In comparison, conventional

facility requirements determined with the fixed model perform only 1.79 % better than

the baseline model. However, as discussed in Section 6.2.1, the major drawback is that

flexible facility requirements for Check-in 1 and 3 perform less well than comparable en-

gineering systems mentioned in the literature42. Secondly, the target curves of flexible

facility requirements for Evaluation 1, see Figure 5.8 on page 163, are to the right of

the target curves for conventional facility requirements. This indicates that, in general,

flexible facility requirements are economically more valuable than conventional facility

requirements. It is particularly striking that the difference between the VaR of flexible

facility requirements and the VaR of the baseline model is greater than the difference in

VaG between the models. One reason for this could be that the option to defer and the

option to alter the scale, which are both examined in Evaluation 1, are especially advant-

ageous in poor market conditions. This finding, which is also supported by the literature

(Cardin & Hu, 2016; Hu et al., 2016; Zhao et al., 2018), is plausible, since the options

to defer and to alter the scale provide decision makers with the opportunity to wait for

better market conditions, which is particularly valuable when a system has not yet been

built. Once a system is built, however, only the option to alter the scale provides airport

planners the flexibility to make adjustments. Yet, this flexibility is seriously limited by

the irreversibility of investments in capacity.

A comparison of flexible facility requirements created with the CGDRM and the RF-

DRM for Evaluation 1 shows that both models lead to almost identical VaR. Both models

can thus cope similarly well with unfavourable market conditions. In a good market envir-

41The results of the CEP models for Evaluation 1 are significantly different, as has been demonstrated
with standard two-sided z-test for mean.

42The literature indicates that flexible engineering systems present between 10 % and 30 % better eco-
nomic performance (Cardin, 2014; De Neufville & Scholtes, 2011; Nembhard & Aktan, 2009).
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onment, however, the application of conditional-go decision rules leads to a higher VaG

than flexible facility requirements based on reward functions. It would be interesting to

compare these findings with the literature. Unfortunately, however, neither Hu and Guo

(2019) nor Hu et al. (2020), which are the only contributions in the literature where re-

ward function models are applied, compare the results of reward function-based facility

requirements with conditional-go decision rule-based requirements at the desired level of

detail.

6.3.1.2 Evaluation 2 – Modularisation

Evaluation 2 extends Evaluation 1 by additionally considering modular future develop-

ment of Check-in 1 and 3. The modular development of airport terminals and facilities is

one of the ways in which flexibilities can be introduced in these systems (Kincaid et al.,

2012; Shuchi et al., 2012; Shuchi, 2016). Modularisation allows buildings and facilities

to be expanded easily, as the interfaces between individual modules are clearly defined.

With regard to the results of Evaluation 2, it is noticeable that the choice of large(r)

module sizes for Check-in 1 and 3 is especially beneficial for conventional facility re-

quirements. In contrast, flexible facility requirements do not seem to benefit from large

modules. For conventional facility requirements determined with the fixed model, modu-

larisation leads to a significant improvement of the system’s ENPV of 405 CHF compared

with the optimal solution determined in Evaluation 1. For flexible facility requirements,

however, modularisation improves the ENPV of Check-in 1 and 3 only marginally by

8 CHF for the CGDRM and 11 CHF for the RFDRM, respectively.

With regard to the optimal module size, the results of this study clearly show that prac-

titioners cannot plan according to the principle of the bigger, the better, but they rather

have to determine the optimal module size e∗m on a case by case basis. In general, the

results suggest that module sizes which are too large significantly reduce the ENPV and

VoF of facility requirements for Check-in 1 and 3. One explanation for this could be

that larger modules limit the flexibility of planning, since the capacity of the system can
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then only be changed in large, but not small steps. Maintaining this planning flexibility

seems to be particularly important for flexible facility requirements, which can be illus-

trated especially well by the target curves in Figure 5.13 on page 175. For flexible facility

requirements, the target curves for a module size of em = 1 are, in almost all cases, to the

right of the target curves for em > 1. This is an indication that large(r) module sizes are

only advantageous in very rare cases for flexible facility requirements. This finding coin-

cides with Miller and Clarke (2010, p. 72), who conclude that "[flexible] strategies with

small . . . capacity increase are likely to have a higher expected NPV"43. For conventional

facility requirements determined with the fixed model, however, target curves for em > 1

and em for which the resulting ENPV is greater than or equal to 0.98 ·ENPV max are to

the right of the target curve for em = 1. Thus, modularisation tends to be beneficial for

conventional facility requirements as long as the module size is selected appropriately.

The results of this study indicate that planners must clearly distinguish between the

benefits of modularisation from a planning and architectural perspective (common inter-

faces, expandability, etc.) and benefits in terms of the financial value of modules (ENPV,

VoF). Modules allow airport terminals and facilities to be expanded and adapted easily.

They are therefore of great importance for the planning and design of buildings and fa-

cilities. With regard to the financial value of facility requirements, however, practitioners

must be aware that modularisation is not simply a carte blanche for highly valuable fa-

cilities. For conventional facility requirements, the optimal module size must be chosen

carefully and flexible facility requirements seem to benefit from module sizes em > 1 only

in very specific circumstances. This finding is highly relevant for (the) practical applica-

tion, as the use of modularisation is mentioned in the literature as a means of introducing

flexibility in ASP (Kincaid et al., 2012).

43Miller and Clarke (2010) examine investments in air transportation in general.
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6.3.1.3 Evaluation 3 – Buffer space

Evaluation 3 extends Evaluation 1 with the ability to determine optimal facility require-

ments for Check-in 1 and 3 that take buffer space into account. For the discussion of the

results, a clear distinction is made between applications in which buffer space remains

unused until it is converted into a facility versus buffer space which is temporarily used

for the provision of retail services.

Buffer space without retail utilisation. Buffer space which is not used for retail pur-

poses gives planners the flexibility to expand an airport passenger terminal facility at a

later date without having to create new building space. This capability can be very at-

tractive from a planning perspective, as it allows practitioners to respond effectively and

efficiently to relatively short-term fluctuations in demand. From a financial perspect-

ive, however, the results presented in this study show that the planning of buffer space

without retail utilisation has only a limited benefit. In principle, the creation of buffer

space without retail utilisation is the exact opposite of a deferral of an investment. Al-

though EoS savings can certainly be made by initially creating larger building spaces, an

early investment in buffer space is also associated with opportunity costs: the investment

in buffer space ultimately binds capital that could be used elsewhere. This effect is intens-

ified by the fact that (high) premiums are incurred for buffer space, as it must be ensured

that a future facility can be connected to or integrated with other facilities at a later date.

For example, in case of Check-in 1 and 3, buffer space must be designed in such a way

that it can be connected to the BHS at any future point in time. These cost premiums are a

potential explanation for the observation that the ENPV of Check-in 1 and 3 planned with

buffer space without retail utilisation is lower for all tested CEP models than comparable

values achieved in Evaluation 1 44. Nevertheless, the results presented in this study show

that the creation of buffer space without retail utilisation can still make sense in certain

44Despite the inferior performance compared to Evaluation 1, it must be mentioned here that for Eval-
uation 3 flexible facility requirements lead to significantly higher ENPV and VoF values than conventional
facility requirements generated with the fixed model.
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situations. It can be inferred from Figure 5.19 that the inclusion of relatively small buf-

fer spaces without retail utilisation in Check-in 1 and 3 is worthwhile for flexible facility

requirements generated with the CGDRM if market conditions are characterised by high

demand growth, i.e. a high percentage drift rate µD. Practitioners must therefore carefully

examine whether the application of buffer spaces without retail purpose is meaningful for

a certain application or not.

Buffer space with retail utilisation. The situation is different for buffer space with

retail purpose. For Figure 5.19 it can be inferred that as the size of the buffer space

increases, the ENPV of conventional and flexible facility requirements for Check-in 1 and

3 increases as well. Further, the results clearly show that creating small buffer spaces with

retail utilisation is not worthwhile, rather planners should opt for larger buffer spaces. One

explanation for this is probably the fact that small buffer spaces have to be converted into a

facility relatively quickly and therefore the space cannot be utilised for the more lucrative

interim retail usage for a sufficiently long time. However, practitioners must be aware

that the results presented in this study can be misleading to a certain degree. it could be

inferred that it is advantageous to create the largest possible buffer space with retail use.

This, however, is not correct, since the size of the buffer space should be chosen so that

at the end of the planning horizon of the ASP project the entire space is utilised. Given

the cost premiums, it is certainly not advisable to plan large retail areas, i.e. shopping

centres, by the creation of buffer space with retail utilisation. Instead, for the construction

of retail outlets, planners should plan with normal building space.

The results further indicate that the fixed model, the CGDRM and the RFDRM result

in negative VoF for almost all buffer sizes tested. In other words, when planning with

buffer spaces to be used for retail, the baseline model generates the best results in terms

of ENPV. This is, however, not an advantage, but rather a limitation of the baseline model.

The baseline model is founded on the assumption that the capacity of an airport passenger

terminal facility can only be adjusted at time t = 0, while no adjustments may be made
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in any subsequent planning phases. Consequently, the buffer space made available at

time t = 0 would never be converted into a complete airport passenger terminal facility.

Thus, the buffer space generates retail revenue over the entire planning horizon of the

ASP project, which has a positive effect on the ENPV and also explains the low VoF of

the facility requirements of the other CEP models.

6.3.2 Sensitivity of optimal facility requirements

The parameters which the results of the CEP models are sensitive to were identified with

the help of a tornado diagram, see Figure 5.6 on page 157 (and Figures B.1 and B.2

in Appendix B). In the course of the sensitivity analysis performed for this study, the

discount rate δ , the EoS parameters αK and αA, the percentage drift rate of demand µD,

the volatility of demand σD and the average service rate µK,CH were selected for further

analysis. With the exception of the average service rate µK,CH , the same parameters

were identified in this study as in comparable works mentioned in the literature (Cardin,

Bourani et al., 2013; Cardin & Hu, 2016; Cardin et al., 2015; Cardin, Zhang et al., 2017;

Hu & Cardin, 2015; Hu et al., 2020; Zhang & Cardin, 2017).

Besides the above-mentioned parameters, the results of the CEP models are also sens-

itive to changes in the parameters of the revenue function. In this study, however, it was

decided not to investigate the influence of the revenue function parameters on facility

requirements for Check-in 1 and 3 in more detail. The reason for this is that the paramet-

risation of the revenue function is not affected by extrinsic factors, but rather controlled

exclusively by an airport operator, i.e. FZAG in the presented planning example. In-

deed, the parameters referring to passenger and user charges are determined exclusively

by FZAG by means of the airport charges regulation document (FZAG, 2021).

The remainder of this section discusses the sensitivity of Evaluation 1, 2 and 3 to

changes and variations in the discount rate δ , the EoS parameters αK and αA, the per-

centage drift rate of demand µD, the volatility of demand σD and the average service rate

µK,CH .
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Discount rate. The ENPV of Check-in 1 and 3 is negatively affected by an increasing

discount rate δ in Evaluations 1, 2 and 3. This finding is in line with results of other

studies presented in the literature on flexible engineering systems (Cardin, Bourani et al.,

2013; Cardin & Hu, 2016; Cardin, Zhang et al., 2017; Hu & Cardin, 2015; Zhang &

Cardin, 2017) as well as the theory (De Neufville, 1990; De Neufville & Scholtes, 2011;

Geltner & De Neufville, 2018; Trigeorgis, 1996).

In the context of ASP, the applicable discount rate value is often predefined by an

overriding authority. For instance, FZAG is required by the Swiss Federal Office of Civil

Aviation to apply a discount rate of between 3.5 % and 4 %, see S&P Global Ratings

(S&P, 2019) and Appendix A. Consequently, practitioners usually have little influence on

the discount rate and have to work with the status quo. One consequence of low discount

rates can be that certain real options are less valuable. For example, the value of the option

to defer an investment in capacity, which is used in Evaluations 1, 2 and 3, is especially

advantageous at high discount rates, as high discount rates favour a delay of investments

(Cardin & Hu, 2016).

EoS parameter. An increase of the EoS parameter values, which is associated with a

decrease in the magnitude of the experienced EoS savings, has a negative impact on the

ENPV and a positive effect on the VoF of optimal facility requirements for Check-in 1

and 3 in all Evaluations conducted in this study. This is in line with the findings of Cardin

and Hu (2016), Cardin et al. (2015) and Hu and Cardin (2015).

If the EoS parameters αK and αA have a high value, then fewer or even no cost savings

can be made with large capacity adjustments. This leads to the fact that the average

installation cost of capacity adjustments tends to be higher with increasing EoS parameter

values, which explains the above-mentioned observed reduction of the ENPV for both

flexible as well as conventional facility requirements. Therefore, as originally reported by

Manne (1961), decision makers are best advised to opt for small capacity adjustments in

conditions where no or only small EoS savings can be made. This effect can be clearly
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illustrated by the example of conventional facility requirements for Evaluation 2: with

increasing EoS parameter values, the optimal module size e∗m for facility requirements

created with the fixed model decreases, as can be inferred from Figure 5.13 on page 175.

The VoF of optimal facility requirements for Check-in 1 and 3 increases with in-

creasing EoS parameter values. The reason for this can be found in the baseline model,

which only allows for a single, usually very large capacity adjustment at time t = 0.

Consequently, with increasing EoS parameter values, the ENPV of facility requirements

generated with the baseline model decreases, which in turn manifests itself in an increase

of the VoF of the facility requirements determined with the other CEP models.

Percentage drift rate of demand. The results of this study indicate that an increas-

ing drift rate of demand µD leads to higher ENPV and VoF for all candidate flexibilities

except for buffer spaces with retail utilisation, where the opposite applies. The higher

ENPV of the facility requirements can be explained thus; a higher percentage drift rate

leads on average to a higher DHL demand of an airport passenger terminal facility, which

ultimately has a positive effect on passenger-related revenues and thus also on the ENPV.

The observed increase in VoF depends on the performance of the baseline model. A

higher drift rate leads to either a larger capacity adjustment ∆Ki,0 at time t = 0 or, if plan-

ners choose not to provide more capacity, to an increased probability of under-designed

capacity towards the end of the planning horizon of an ASP project. Both cases lead to

higher costs, which have a negative effect on the ENPV of facility requirements created

with the baseline model and thus a positive impact on the VoF of the other models.

Further, this study clearly demonstrates that flexible engineering systems are better

able to cope with percentage drift rate variations on the entire tested range of µD, since

flexible facility requirements result in consistently higher ENPV and VoF values than

facility requirements created with the fixed model. All these findings are consistent with

the literature (Cardin et al., 2015; Cardin, Zhang et al., 2017; Hu et al., 2020; Zhang &

Cardin, 2017).
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For facilities equipped with buffer space with retail utilisation, a higher percentage

drift rate leads to a lower ENPV and VoF. Higher demand growth increases the likeli-

hood that a buffer space will have to be converted into a passenger terminal facility more

quickly. Consequently, the buffer spaces can be used for less time to generate lucrative

retail revenues, which explains the negative impact on an increase in µD on ENPV and

VoF.

Percentage volatility of demand. An increasing volatility of demand σD causes future

demand to be subject to higher levels of uncertainty, which, as the results of this study

indicate, have a negative impact on the ENPV of facility requirements for Check-in 1 and

3. To explain the decreasing ENPV with higher demand uncertainty, a distinction must be

made between conventional and flexible facility requirements. With conventional facility

requirements, a higher demand uncertainty leads to a greater probability of the provision

of sub-optimal capacity, which, due to the characteristics of conventional facility require-

ments, can no longer be changed. This leads to higher penalty costs and therefore a

declining ENPV. In contrast, flexible facility requirements for Check-in 1 and 3 can cope

well with changes in (unexpected) demand growth, as the candidate flexibilities examined

in this study have their strengths in this respect (deferral, expansions, etc.). However, if

demand decreases, only a limited number of mitigating measures can be taken due to the

irreversibility of investments in capacity. Consequently, large-scale over-capacity is cre-

ated in the event of an unexpected decline in demand, which in turn leads to high penalty

costs. This may explain why the ENPV of flexible facility requirements declines when

demand uncertainty is high.

Of particular note is the way in which the VoF of facility requirements is influenced by

increasing percentage volatility. For all candidate flexibilities examined except for buffer

spaces with retail utilisation, it can be seen that the VoF of flexible facility requirements

is positively influenced by increasing percentage volatility, while the opposite applies for

conventional facility requirements. The results of this study are thus in line with the
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findings presented in the literature (Cardin, Bourani et al., 2013; Cardin et al., 2015;

Cardin, Zhang et al., 2017; Hu & Cardin, 2015; Hu et al., 2020; Xiao et al., 2017; Zhang

& Cardin, 2017). Indeed, the increasing VoF of flexible facility requirements as a result

of an increase in demand volatility shows very clearly that, as explained by Amram and

Kulatilaka (1998) and De Neufville (2003), real options have more value when the levels

of uncertainty are high.

The results of this study indicate that if Check-in 1 and 3 is equipped with buffer

space in which temporary retail services are offered, the VoF of the system decreases

with increasing demand volatility. This raises the question of whether real options do not

function "as intended" in this situation? The reason for decreasing VoF with increasing

volatility is not a potential failure of the real options, but rather the influence of the retail

revenues, which affect the ENPV of Check-in 1 and 3 significantly, especially if the buffer

space is expansive. Because retail revenues are modelled exclusively as a function of

DHL demand in this study, the revenues and therefore the ENPV of Check-in 1 and 3

are strongly influenced by the volatility of demand σD. Therefore, airport planners must

be aware that in market conditions which are subject to large demand uncertainty the

installation of large buffer spaces that allow for temporary retail usage is associated with

risks that can only be mitigated to a limited extent by flexible planning.

Average service rate. The results presented in this study suggest that the ENPV of

Check-in 1 and 3 is negatively affected by an increase of the average service rate µK,CH

of a check-in desk. This finding is somewhat counter-intuitive, as it would probably be

inferred that with an increasing average higher service rate of check-in desks and thus

higher productivity of the facility, the capacity required to handle a given DHL demand at

a predefined target LoS would decrease. This would result in lower installation and oper-

ation costs, which would have a positive impact on the ENPV. Results suggest, however,

that cost savings realised by increased levels of productivity of the check-in facility are

most probably cancelled out by lost revenues and higher penalty costs. Because fewer



CHAPTER 6. DISCUSSION 225

check-in desks are needed to meet target LoS at higher service rates, the revenue gener-

ated by fees paid by handling agents and airlines decreases with increased service rates.

Further, it is possible that at very high service rates the initially installed operational ca-

pacity of Check-in 1 and 3, i.e. the capacity of the facility identified in the inventory, is

found to be over-designed. Thus, (high) penalty costs may be incurred from the planning

phase t = 0. This effect is clearly illustrated in Figure 5.11 on page 168: above a certain

service rate value, the ENPV of Check-in 1 and 3 decreases markedly. Therefore, the im-

pact of a changing service rate on a system’s ENPV is rather complex and multi-faceted,

which probably also explains the fluctuations in the dependency between ENPV and the

service rate observed in Evaluations 2 and 3.

6.4 Implications

This study has a number of implications for ASP in general as well as for facility require-

ments for airport passenger terminal facilities and candidate flexibilities in the context of

ASP in particular.

Implications for ASP in general. The strategic capacity planning framework presen-

ted in this study is a tool that can be used directly by practitioners for real-world planning

applications in the context of ASP. In the past, airport planners routinely created facility

requirements by hand, based on empirical knowledge and simple rule-of-thumb mod-

els. This people-driven planning process comes with several disadvantages. The manual

creation of facility requirements is extremely labour-intensive. It therefore ties up a lot

of resources which could be used otherwise. Because the process is so time-consuming

and elaborate, airport planners in the past were not able to evaluate and test all theoret-

ically possible facility requirements, but rather had to limit themselves to only creating

and investigating a small number of feasible solution candidates. Consequently, it was

not possible for planners to evaluate a large number of scenarios of uncertainty, simply

because they did not have the tools and methods to do so.
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With the introduction of the strategic capacity planning framework presented in this

study, the manner in which facility requirements for airport passenger terminal facilities

are evaluated and selected in practice has been fundamentally changed. This study de-

scribes a planning methodology that enables the determination of facility requirements

through a data-driven rather than a people-driven process. The implications of such a

data-driven process are manifold.

First, a data-driven planning process is less expensive, faster and, arguably, more pre-

cise. The labour-intensive evaluation and selection of facility requirements is delegated to

a computer which can conduct such a monotonous task with greater accuracy, in less time

and at a fraction of the cost that would be incurred if humans were commissioned with

the planning. Moreover, to the author’s best knowledge this gives practitioners the un-

precedented opportunity to determine facility requirements for airport passenger terminal

facilities that are truly optimal in terms of a selected index of merit, due to the fact that

not only a few selected facility requirements are evaluated, but rather the entire solution

space.

Secondly, the work of practitioners has been fundamentally changed by the introduc-

tion of the strategic capacity planning framework presented in this study. In the past,

most planning processes in the domain of ASP were dependent on the input, knowledge,

expertise and intervention of planning experts, since the necessary data basis was often

very limited or was not available. For example, it was not possible to measure the DHL

of specific airport passenger facilities, but airport planners were resigned to accepting

approximations that were based on rough calculations and empirical knowledge. Con-

sequently, it was almost impossible to determine strategic plans on an objective basis,

as the planning methodology was firmly based on subjective opinion, individual exper-

ience and personal preference. With the introduction of a data-driven planning process,

however, the roles and responsibilities of practitioners has changed fundamentally. Air-

port planners and decision makers can contribute their expertise and knowledge to the

development, parametrisation and testing of the models, for example by selecting and
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designing the index of merit by which facility requirements are evaluated, as well as as-

sessing, validating and interpreting the results. The actual preparation of plans and the

decision-making, however, is done by the computer.

Finally, this study presents a new method, by means of which (big) data collected

from multiple data sources by means of a PTS can be used for ASP purposes. To date,

PTS data has been used exclusively in the field of tactical and operational planning of

airports, for example to manage the staffing of airport passenger terminal facilities in real

time (Balakrishnan et al., 2016), to monitor the performance of a facility in terms of the

achieved LoS (Hansen et al., 2009), etc. To the best of the author’s knowledge, this study

is therefore the first to use passenger flow data collected with a PTS for an application in

the field of ASP. Thus, the methods presented in this study enable the planning of ASP

projects based on objective facts, mathematical models and historical evidence.

The realisation that PTS data can be used not only for operational and tactical plan-

ning purposes, but also for ASP-related applications should also be of great importance

and interest to the manufacturers of PTS equipment. On the one hand, the utilisation

of PTS data for strategic planning purposes represents a new use case that has not yet

been recognised as such by the manufacturers. Experience shows that such companies

are constantly searching for new and promising applications for data collected with their

equipment. Therefore, manufacturers might be interested in promoting this use case for

their own marketing purposes. On the other hand, it is quite conceivable that the applica-

tion of PTS data presented in this study will also create an incentive for airports to further

invest in PTS equipment. In fact, airports may be interested in improving existing PTS

installations to include greater coverage areas within airport passenger terminal buildings

and to improve the accuracy of measurements. Moreover, airports might be interested in

using PTS equipment in facilities and processes that have not yet been within this scope.

Implications regarding facility requirements. In this study, both optimal conventional

and optimal flexible facility requirements for Check-in 1 and 3 at ZRH Airport are de-
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veloped and compared. To the best of the author’s knowledge, this is the first time that

flexible facility requirements for airport passenger terminal facilities have been presented

and simultaneously tested in an application which is relevant for ASP-related purposes.

Based on the results presented in this study, it can be argued that flexible facility require-

ments based on decision rules represent a paradigm shift in the way strategic planning of

airport (passenger terminal) facilities is conducted.

The literature on flexible ASP argues that the classical master planning process is

fundamentally flawed, because neither uncertainty nor flexibility is sufficiently well con-

sidered. While uncertainty can be taken into account in strategic planning by generating

large numbers of scenarios that describe how the future could evolve, flexibility can be

included in ASP by means of real options. There is extensive literature on both topics.

However, until now there was no tool or method available that could take into account

both uncertainty and flexibility in the determination of strategic plans for airport (passen-

ger terminal) facilities. Through the introduction of flexible facility requirements based

on decision rules, the above-mentioned weaknesses of classical ASP can be remedied.

Flexible facility requirements thus represent the long sought-after means by which prac-

titioners can determine flexible strategic plans. Based on the methodology presented in

this study, it is possible to consider and plan airport (passenger terminal) facilities in the

context of ASP that "change easily in the face of uncertainty" (Hu & Cardin, 2015, p. 122)

and are "able to modify its mode of operation or its attributes" (Saleh et al., 2002, p. 4).

From past experience, most practitioners are still used to facility requirements be-

ing specified in the form of (optimal) capacity vectors, i.e. as conventional facility re-

quirements which define the chronological order in which future capacity adjustments

are scheduled. Consequently, most strategic plans are still formulated along the lines of

how much capacity is needed and when must the capacity be adjusted? This conventional

way of formulating facility requirements becomes obsolete with the introduction of flex-

ible facility requirements, since capacity vectors are the by-product of the decision rules.

Therefore, the central focus of flexible facility requirements is on how to define optimal
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decision rules? This means that the introduction of flexible facility requirements in the

domain of ASP will set out great challenges for practitioners, irrespective of whether they

are airport planners, decision makers or system owners. In a first step, practitioners need

to recognise that conventional facility requirements have a fundamental weakness that

cannot be remedied. Indeed, it is impossible to create conventional facility requirements

that can be flexibly adapted to changing circumstances. Airport planners must therefore

be prepared to fundamentally change the way they define strategic planning by working

with flexible facility requirements. This implies that airport planners will need further

training, for instance on topics such as the creation of scenarios of uncertainty, valuation

models, CEP models, etc., in order to have the methodological tools at their disposal to

be able to define flexible facility requirements. For airport planners, the introduction and

application of flexible facility requirements thus requires a willingness to learn.

Owners and decision makers must also be prepared and willing to apply flexible facil-

ity requirements. The practical application of flexible facility requirements in the context

of ASP means that the decision-making authority of management and owners will be

restricted to a certain degree. When flexible facility requirements are used, capacity ad-

justment decisions are no longer made by people, but by decision rules. Owners and

managers should not intervene in the decision-making process, but rather have a super-

visory role. On the one hand, this requires decision makers to be willing to (at least

partially) relinquish their decision-making authority. On the other hand, owners and man-

agers must also trust the decision rules. It is of no use, if, at the time a decision is made,

DMs over-rule an optimal decision rule. In this case, a decision rule that is (near) optimal

would be replaced with a subjectively made decision. In the event that decision makers

do not trust a decision rule, it would therefore be more reasonable for the decision rule

to be determined anew using the strategic capacity planning framework presented in this

study. For example, such a revision of the optimal flexible facility requirements can be

especially judicious if the existing decision rule(s) is/are already a few years old, or if the

assumptions on which the decision rules are based have fundamentally changed.
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Implications for candidate flexibilities. In this study, three different candidate flexib-

ilities for Check-in 1 and 3 at ZRH Airport were tested and compared in Evaluations 1, 2

and 3. In general, it was found that flexible facility requirements lead to a higher ENPV

than comparable conventional facility requirements. One most interesting finding of this

study is that not all candidate flexibilities mentioned in the literature have a positive effect

on the value of a flexible engineering system or are only favourable under very specific

circumstances. For instance, the results of Evaluation 2 suggest that the planning of large

modules with a size of em > 1 is only worthwhile for conventional facility requirements.

For flexible facility requirements, however, the smallest possible module size should be

selected so as to maximize the value of the engineering system. This implies that air-

port planners should not assume that the candidate flexibilities mentioned in the literature

automatically increase the value of an engineering system. In any case, the benefits for

the engineering system should be assessed before implementing candidate flexibilities. It

is exactly for this purpose that the capacity planning framework presented in this study

can be applied.
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Conclusion and Outlook

7.1 Conclusion

The main aim of this study was to develop, test and apply a strategic capacity planning

framework which enables practitioners to determine optimal flexible and conventional fa-

cility requirements for airport passenger terminal facilities in the context of ASP. Facility

requirements describe when and how the capacity of facilities should be adjusted over

time to meet the expected future demand levels. The definition of facility requirements

can be extraordinarily complex for several reasons. First, ASP is carried out for extremely

long planning horizons ranging from 20 to 50 years, which means that it is strongly af-

fected by uncertainty concerning potential future developments in demand, technology,

politics, regulations, demographics, etc. For this reason, practitioners can only estimate

how much capacity airport passenger terminal facilities will require in the future at the

time of preparation of a strategic plan. Second, investments in infrastructure are (partially)

irreversible. This means that once an airport passenger terminal facility has been built,

the invested capital can only be salvaged to a rather limited extent. Subsequently, given

the prevailing uncertainty as well as the irreversibility of investments in infrastructure,

practitioners face the risk of drawing up strategic plans which turn out to be ’wrong’ in

hindsight and which, once investments have been made, can only be changed with great

231
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difficulty.

To mitigate this risk, the literature suggests planning engineering systems such as air-

port passenger terminal facilities in a flexible way. By making use of real options, which

represent a "right, but not an obligation . . . to do something at [sic] under predefined ar-

rangements" at a future point in time, flexible engineering systems are capable of adapting

to changing circumstances and needs as factors subject to uncertainty are disclosed over

time (De Neufville, 2003, p. 7). For flexible engineering systems, facility requirements

cannot be defined in the conventional way as capacity vectors that specify when and how

the operational capacity should be adjusted. Instead, practitioners have to create so-called

flexible facility requirements which make use of decision rules that describe how prac-

titioners should best exercise the implemented real options. The literature mentions the

determination of flexible facility requirements for several engineering systems, such as

waste-to-energy plants or on-shore liquid natural gas production facilities. However, to

the author’s best knowledge, the determination of flexible facility requirements for airport

passenger terminal facilities has not been covered yet.

In light of this gap in the literature, this study explores the development of a strategic

capacity framework for airport passenger terminal facilities. This framework comprises

of two modules: (i) a demand module, which consists of the annual aggregated demand

model as well as the DHL demand model, and (ii) a CEP module, which consists of

a valuation model as well as a number of conventional and flexible CEP models. The

strategic capacity planning framework was applied to a real-world planning example on

the existing check-in facilities at ZRH Airport. This study is divided into three research

areas which cover the demand module, the CEP module and the planning example.

Research area 1 focussed on the development of demand models for both annual ag-

gregated demand of an airport as well as passenger terminal facility-specific DHL de-

mand. These models were necessary for the creation of the input data for the CEP mod-

els. By means of the annual aggregated demand model, which is based on GBM, large

numbers of aggregated passenger demand scenarios for an airport can be created. Sub-
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sequently, these aggregated scenarios can be converted into airport passenger terminal

facility-specific DHL demand scenarios by means of the DHL demand model, which is

based on the ratio-method. The DHL model describes the relationship between annual

aggregated demand and DHL demand with a linear regression model that considers ca-

pacity saturation of airports whose annual number of ATMs "is limited due to constraints

imposed for operational, legal, environmental or political reasons" (Waltert et al., 2021,

p. 2).

Research area 2 focussed on the adaptation of existing CEP models to allow them to

determine the optimal conventional and optimal flexible facility requirements for airport

passenger terminal facilities, based on the demand scenarios generated in research area 1.

For this purpose, this study assumed that facility requirements were optimal if the ENPV

of an airport passenger terminal facility were maximized over the entire planning horizon

of an ASP project. Two of the CEP models presented in this study, the baseline model

and the fixed model, were conventional CEP models that expressed facility requirements

in terms of capacity vectors. Whereas the other two CEP models, the CGDRM and the

RFDRM, were flexible models that described facility requirements by means of decision

rules. The baseline model assumed that the capacity of a facility could only be changed

initially. As such, the baseline model was used in this study for benchmarking purposes

only, so that the results of the other CEP models could be compared with each other. The

fixed model defined the optimal capacity adjustment sequence, i.e. an optimal capacity

vector, for an airport passenger terminal facility over the entire planning horizon of an

ASP project. The CGDRM was based on the empirical approach, in which the structure

of a decision rule was defined in advance based on a priori knowledge of practitioners.

The CGDRM was subsequently used to find the optimal parametrisation of this decision

rule. The RFDRM was based on the generative approach, in which both the optimal

structure of the decision rule and its optimal parametrisation were determined. To ob-

tain optimal facility requirements, the baseline model employed an enumeration-based

algorithm, while the other CEP models presented in this study relied on evolutionary op-
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timization algorithms. To this end, the fixed model and the CGDRM applied the GA,

while the RFDRM employed the GEP algorithm.

Research area 3 addressed the application and testing of the proposed strategic capa-

city planning framework by means of a real-world planning example on Check-in 1 and

3 at ZRH Airport. The planning example has two objectives: (i) to determine whether

flexible facility requirements for Check-in 1 and 3 are economically more valuable than

conventional facility requirements, as well as (ii) to identify the input factors to which the

results of the CEP models are most sensitive and to quantify this influence.

To compare conventional with flexible facility requirements, three different candidate

flexibilities for Check-in 1 and 3, referred to as Evaluation 1, 2 and 3, were considered.

In general, the results of this study indicate that flexible system designs for Check-in 1

and 3 are more valuable than conventional ones. However, since the evaluation model

applied in this study considered exclusively cash flows that occurred during the design

hours but not the entire planning period, the resulting advantage of flexible facility re-

quirements over their conventional counterparts in terms of ENPV were somewhat lower

in this study than values reported in comparable studies on flexible engineering systems.

In Evaluation 1, which Evaluations 2 and 3 are based on, the option to defer and the

option to alter the scale were examined. The results of this study indicated that these two

real options were particularly suitable to capitalise on opportunities in growing market

conditions. However, once a system was built, the risks of weak market developments

could only be averted and mitigated to a limited extent due to the irreversibility of invest-

ments. Evaluation 2 considered the modular development of Check-in 1 and 3 by means

of well-defined and standardised units consisting of check-in desks as well as associated

building space. This study revealed that practitioners need to select the size of modules

with care in order to maximize the economic value of a system. Interestingly, for con-

ventional facility requirements, the definition of larger module sizes proved beneficial.

Whereas for flexible facility requirements, a small module size was preferable in most

cases. Evaluation 3 examined the usage of buffer spaces in airport passenger terminal
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facilities. Thereby, a distinction was made between buffer spaces that were temporarily

used for the provision of retail services and buffer spaces which remained unused until

they were converted into a fully operational airport passenger terminal facility. The res-

ults of this study suggested that the application of buffer space without retail utilisation

in Check-in 1 and 3 was only worthwhile in a market environment characterised by high

growth rates. In contrast, buffer space with retail utilisation was rewarding in all market

environments. However, airport planners should avoid over-designing buffer spaces with

retail utilisation due to potentially high-cost premiums.

The sensitivity analysis demonstrated that facility requirements for Check-in 1 and

3 at ZRH Airport were sensitive to changes in the discount rate, the EoS parameter, the

percentage drift rate of demand, the volatility of demand as well as the average service

rate. Moreover, the results indicated that the sensitivity of the CEP models used in this

study was in line with the literature on flexible engineering systems.

This study contributes to knowledge in several ways. In research area 1, an ASP-

specific application of GBM that allows the creation of annual aggregated demand scen-

arios for airports is presented. These scenarios can be converted into airport passenger

terminal facility-specific DHL demand scenarios by means of a ratio-based model, which

is a scientific novelty. For this reason, an article on the DHL demand model has been pub-

lished in the Journal of Air Transport Management, see Waltert et al. (2021). Research

area 2 addresses conventional and flexible CEP models specifically tailored for an applic-

ation in the context of ASP for airport passenger terminal facilities. Flexible CEP models

for ASP purposes are novel. Finally, research area 3 shows how the proposed strategic

capacity planning framework can be applied in practice. In this context, it was shown that

flexible planning is economically advantageous for Check-in 1 and 3 at ZRH Airport.

This study has various implications. The way strategic plans for airport passenger

terminal facilities are prepared is fundamentally changed by the framework presented in

this study. As such, a planning methodology is suggested that enables the determination

of facility requirements through a data-driven process, rather than a people-driven one.



CHAPTER 7. CONCLUSION AND OUTLOOK 236

This means that planning decisions are no longer made by humans on a subjective basis,

but rather by means of mathematical models that are based on big data. For the prac-

titioners it means that their role is redefined. They transition from a planning role to a

supervisory function in which they oversee the automated planning process and provide

their knowledge and expertise to the development, parametrisation and testing of the mod-

els. Planners and DMs will however have to evaluate and validate the results obtained by

applying the models. However, flexible facility requirements have not yet been used in

ASP. For this reason, practitioners must first be trained in the creation and application of

flexible facility requirements. Finally, this study has shown that not all candidate flexib-

ilities advertised in the literature automatically increase the value of an airport passenger

terminal facility. Consequently, before implementing candidate flexibilities, practitioners

are advised to always assess the merits of flexible system designs, for instance with the

framework presented in this study.

7.2 Outlook

The strategic capacity planning framework presented in this study could be used either

without or only with minor adaptations to determine flexible facility requirements for (i)

any airport passenger terminal facility, e.g. security checkpoints or baggage carousels,

(ii) any airport infrastructure, e.g. aircraft parking stands or cargo facilities, and (iii)

any candidate flexibilities, e.g. shared-use facilities or temporary facilities. Moreover,

the framework, or rather all models belonging to the framework, can also be applied to

airports other than ZRH Airport without loss of generality. This study is the first to ad-

dress flexible facility requirements for airport passenger terminal facilities in the context

of ASP. Consequently, there is a large potential for further research in this area. This

includes, for example, the following aspects:

(i) The decision rules used to specify flexible facility requirements can be further de-

veloped and improved. For instance, decision rules should be capable of better
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emulating the real-world decision-making process. In the form in which decision

rules are applied in this study, only observations and information referring to plan-

ning period t are considered for decision-making. In real-world decision making,

however, DMs usually also take into account both data from the past45, i.e. in-

formation referring to planning periods t−1, t−2, . . ., and forecasts for the future,

i.e. data for planning periods t + 1, t + 2, . . .. Furthermore, decision rules can be

improved by further investigating which input factors, e.g. demand, costs, etc., are

particularly suitable for consideration in the rules. For this purpose, the list of input

factors suggested by Hu et al. (2020) may be extended accordingly. Conditional-go

decision rules can be further improved by both allowing for the implementation of

more complex rules, e.g. switch-case operators, as well as by enabling the consid-

eration of interdependencies between engineering systems, e.g. the propagation of

delays in passenger terminals. Regarding the generative approach, there is a need

for research aimed at making reward functions more approachable and tangible for

practitioners. Furthermore, it is conceivable that other types of mathematical and

logical operators, such as if-then-else operators, can be implemented in the generat-

ive approach. Finally, facility requirements that are based on the empirical approach

must be further compared with facility requirements that are based on the generat-

ive approach. To date, only Hu et al. (2020), Hu and Guo (2019) and this study

have contributed to the scientific discourse on this topic.

(ii) As described in this study, large amounts of data originating from different sources

can be merged and subsequently used for ASP purposes. The emerging potential

for planning, whether at the operational, tactical or strategic level, has yet to be

fully acknowledged, understood and exploited by academia as well as the aviation

industry, i.e. airlines, airports, handling agents, suppliers, authorities, etc. In par-

ticular, the approach presented in this study to use (big) data for strategic planning

45Some studies on this extension have already been published. For example, Cardin, Xie et al. (2017)
consider information regarding to planning periods t, t − 1, t − 2, . . . in a linear decision rule used for the
strategic planning of a gasifier of a waste-to-energy plant.
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can be extended by considering additional data sources, or by using new data col-

lection methods. Additional data sources can be accessed through the exchange

of data between different stakeholders in the aviation industry. Moreover, the data

basis used in this study could also be expanded by integrating data collected with

other or new means of measurement. For example, Waltert et al. (2021, p. 9) write,

". . . the usage of passenger movement data obtained through optical tracking sys-

tems would be particularly interesting, since this could offer additional insights for

airport planners (e.g., dwell times, queue lengths, movement patterns, etc.)"

(iii) As explained in Section 5.1.2, this study refrained from the generation of scenarios

of uncertainty for service rates of airport passenger terminal facilities, as literature

on this topic is limited. Subsequently, this study can be extended by developing

methods that enable the generation of such scenarios of uncertainty. These methods

might consider both procedural changes at the airport passenger terminal facility in

question as well as effects of technological innovation diffusion.

(iv) This study is based on an evaluation model in which the NPV of a facility is estim-

ated based on demand during all design hours within a planning horizon. All other

operating hours are explicitly not considered. By developing a ratio-based model

that enables the estimation of demand not only during the design hour, but the de-

mand for a certain airport passenger terminal facility during all operating hours,

the valuation model and thereby the CEP models presented in this study could be

significantly improved. Such a ratio-based model should be able to estimate the cu-

mulative probability function describing the hourly passenger inflow into an airport

passenger terminal facility, see Matthews (1995), based on both a large number of

passenger flow observations as well as historic data specifying annual aggregated

passenger demand of an airport.
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Appendix A

Default parametrisation of models

This appendix summarises all parameters and constraints applied in all models used the

course of this study. In Appendix A.1, all parameters of the annual aggregated demand

model are presented and Appendix A.2 summarises the parameters of the DHL model.

The parametrisation of the NPV valuation model is summarised in and Appendix A.3 and

Appendix A.4 focuses on the parametrisation of the solvers applied for the CEP model.

A.1 Annual aggregated demand model

Based on data provided in Table 5.3 on page 148, parameters µD, σD and D0 of the annual

aggregated demand model have been estimated. To this end, initial annual aggregated

demand is assumed to be equal to the observed annual demand in year 2019, which is

D̂0 = 31478748PAX. Moreover, percentage drift and volatility of demand growth at ZRH

Airport are estimated as µ̂D = 3.723% and σ̂D = 2.699%. For the planning example on

Check-in 1 and 3 at ZRH Airport, i.e. Evaluations 1, 2 and 3, a total of S = 5000 annual

aggregated passenger demand scenarios for ZRH Airport were created.
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A.2 DHL demand model

This section provides the parametrisation applied in this study for the unsaturated DHL

model and the saturated DHL model.

A.2.1 Unsaturated DHL model

The coefficients of the unsaturated DHL model have been estimated by means of the

ordinary least squares method, based on 11 demand observations for ZRH Airport, see

Table 5.3 on page 148. The unknown coefficients of the unsaturated DHL model are

subsequently estimated as β̂US
CH,0 =−8.76×104 (p < 0.05) and β̂US

CH,1 =5.34×103 (p <

0.05).

A.2.2 Saturated DHL model

The parametrisation of the saturated DHL model is as follows:

• Coefficients of the PAXATM model. The unknown coefficients of the PAXATM

model were estimated using the ordinary least square method based on the dataset

shown in Figure 4.5 on page 101. The PAXATM model fits the data (764 observa-

tions) with a coefficient of determination of R2 = 0.751 and a RSME of 18.6. The

parameters of the PAXATM model are estimated as β̂ PA
0 =−2.52×103 (p < 0.05),

β̂ PA
1 =4.18×102 (p< 0.05), β̂ PA

2 =9.72×10−1 (p< 0.05) and β̂ PA
3 =−1.57×102

(p < 0.05).

• Ratio r̂CH = 1.00. Ratio rCH is estimated on the basis of the information provided

in Figure 4.6 on page 103. Because the observed values of rCH shown in this figure

have a high variability, it was decided to estimate ratio rCH at a value of r̂CH = 1.00.

• Maximum departure throughput capacity µ̂R = 44ATM/h. According to informa-

tion provided by FZAG, the maximum departure throughput capacity of the runway

system of ZRH Airport is equal to µ̂R = 44ATM/h.
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A.3 Valuation model

For the valuation model, a distinction is made between general parameters and parameters

used for the revenue and cost functions.

A.3.1 General parametrisation

The general parametrisation of the valuation model is as follows:

• Discount factor δ = 4%. To calculate the NPV of airport infrastructure, ZRH Air-

port is required by the Swiss Federal Office of Civil Aviation, which is the competent

authority in Switzerland, to apply a discount factor δ between 3.5 % to 4 % (S&P,

2019). For this study, a discount factor of δ = 4% is used.

• Operational hours per year ht = 6205h. The NPV valuation model for airport pas-

senger terminal facilities presented in Section 4.3 considers all costs and revenues

per operating hour. In this study, it is assumed that every year consists of 365 days,

during which the check-in facilities are in operation for 17 hours, i.e. from 05:00 to

22:00 local time. Consequently, every year consists of ht = 6205 operating hours.

• Maximum acceptable queuing time. FZAG specifies the optimal temporal target

LoS for the maximum waiting time of an economy class passenger during check-in

as greater than or equal to MQT min
CH = 5min and less than or equal to MQT max

CH =

10min.

• Space per queuing passenger. FZAG specifies the optimal spatial target LoS for the

space provided per passenger queueing up in front of a check-in desk or facility as

AQ,CH = 2m2/PAX.

• Average building space required for one single check-in desk AK,CH = 7m2. Ac-

cording to information provided by FZAG, check-in desks currently in operation at

ZRH Airport have an average length of 3.5 m and an average width of 2 m. This

results in an average space requirement per check-in desk of AK,CH = 7m2.
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• Average process time of check-in desk PTCH = 60s/PAX. According to information

provided by FZAG, the average process or service time of a single check-in desk is

PTCH = 60s/PAX.

• Average service rate of check-in desk µK,CH = 60PAX/h. According to information

provided by FZAG, the average process or service rate of a single check-in desk is

µK,CH = 60PAX/h. Note: the service rate µK,CH is the reciprocal of the service

time PTCH .

A.3.2 Revenue function

The revenue function of the valuation model is parametrised as follows:

• Unit revenues per passenger rPAX ,CH = 0.1CHF/PAX. Unit revenues per passen-

ger rPAX ,CH describe the average revenue per passenger at Check-in 1 and 3 at ZRH

Airport. According to FZAG (2021), ZRH Airport collects an airport charge of

21 CHF/PAX from each departing passenger. Unfortunately, the airport charges

regulation document does not further specify in which manner the total charge is

attributed to the processes and services provided to passengers (FZAG, 2021). For

the purpose of this study, FZAG assumes an average revenue per passenger gener-

ated in Check-in 1 and 3 of rPAX ,CH = 0.1CHF/PAX.

• Unit revenues per check-in desk and operational hour rK,CH = 7.06CHF/desk/h.

The revenues generated by a single check-in desk during one operating hour is

derived from information provided in FZAG (2021) which specifies that handling

agents and airlines are charged a fee of 120 CHF per day for the usage of a single

check-in desk. Consequently, assuming 365 working days per year and 6205 annual

operational hours, the following average revenue per desk and hour results:

rK,CH =
120CHF ·365days

6205h
= 7.06CHF/desk/h.
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• Average retail, food, and beverage revenue per unit of retail area rR,CH = 0.652

CHF/m2/h. ZRH Airport offers a total retail area of 33200 m2 (FZAG, 2020).

Further, according to FZAG (2019), the airport generated in 2019 aggregated rev-

enues of 114211000 CHF from the provision of retail services, and 20129000 CHF

from the provision of food and beverage services. Subsequently, by diving the total

revenues for retail, food and beverage by the available retail area as well as the

number of operational hours per year, the average retail revenue per square metre

and hour is estimated as follows:

rR,CH =
114211000CHF+20129000CHF

33200m2 ·6205h
0.652CHF/m2/h.

A.3.3 Installation cost function

The installation cost function of the valuation model is parametrised as follows:

• Unit installation costs for check-in desks ci+K,CH = 600000CHF/desk. Based on

years of operational experience, FZAG estimates the installation costs for one single

check-in desk at 600000 CHF/desk. This figure includes both the actual installa-

tion costs of the switch and all integration costs, e.g. with the BHS.

• Unit dismantling costs for check-in desks ci−K,CH = 2000000CHF/desk. Dismant-

ling costs include all costs incurred in the physical decommissioning of a facility.

Based on years of operational experience, FZAG assumes an average unit dismant-

ling cost of ci−K,CH = 2000000CHF/desk.

• Unit installation costs for check-in area ci+A,CH = 5000CHF/m2. According to

FZAG, the average installation (or construction) cost per square metre of airport

passenger terminal building space is ci+A,CH = 5000CHF/m2. For check-in facilities

in which buffer spaces are used, see Evaluation 3 in Section 5.4.4, a cost premium

of 20 % is applied in order to cover any future integration costs with the BHS.

Consequently, for buffer space area, installation costs of ci+A,CH = 6000CHF/m2
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apply. Note: the cost premium of 20 % applied in this study corresponds to figures

reported in the literature (Cardin & Hu, 2016; Lin et al., 2013).

• Unit dismantling costs for check-in area ci−A,CH = 50000CHF/m2. Dismantling

costs include all costs incurred in the case of the physical decommission of airport

passenger terminal building space. Based on years of operational experience, FZAG

assumes unit dismantling costs for check-in area of ci−A,CH = 50000CHF/m2.

• Economies of scale parameter for check-in desks and building space αK = αA =

0.8. According to the literature, reasonable values for αK and αA are in a range of

0.6 to 1 (Cardin & Hu, 2016). In this study, an EoS parameter value of αK = αA =

0.8 is applied.

• Percentage overhead costs on total installation costs pohd
CH = 15%. According to

FZAG, the average overhead costs for capacity expansion projects at ZRH Airport

correspond to approximately 15 % of the total expenses of a project.

• Percentage of circulation space on total facility space pcirc
CH = 57.8%. According

to an evaluation carried out by FZAG, 57.8 % of the area of the existing check-in

facilities at ZRH Airport is used for circulation.

A.3.4 Operational cost function

The operational cost function of the valuation model is parametrised as follows:

• Unit operating costs per check-in desk coK,CH = 0.345CHF/desk/h. To estimate

the unit operating costs of a check-in desk, FZAG assumes that a total of 5 full time

equivalents (FTEs) are required to maintain all 210 check-in desks currently in

operation at ZRH Airport. Under the assumption of yearly salary costs and social

security contributions of 90000 CHF per FTE and 6205 annual operating hours,
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coK,CH is calculated as:

coK,CH =
5FTE ·90000CHF/yr
210desks ·6205h/yr

= 0.345CHF/desk/h.

• Unit operating costs per unit of check-in facility space coA,CH = 0.011CHF/m2/h.

FZAG assumes that 10 FTEs are required to maintain and clean the total check-

in area installed at ZRH Airport, which is 13272 m2, resulting in an average unit

operating cost coA,CH of:

coA,CH =
10FTE ·90000CHF/yr

13272m2 ·6205h/yr
= 0.011CHF/m2/h.

• Unit operating costs per unit of buffer space coR = 0.05CHF/m2/h. Operating

costs for buffer space include costs for maintenance and cleaning. The value used

for coR is based on an assumption made by FZAG.

• Unit operating costs per unit of demand cod,CH = 0CHF/PAX. According to

FZAG, no unit operating costs per passenger cod are incurred.

A.3.5 Penalty cost function

The parametrisation of the penalty cost function was determined in a trial-and-error pro-

cess. The application of such a trial-and-error process is in line with the recommend-

ations of Saffarzadeh and Braaksma (2000). The penalty cost function of the valuation

model applied in this study is parametrised as follows:

• Provision of one over-designed check-in desk cpdCH = 5CHF/desk/h. FZAG as-

sumes a penalty cost of 5 CHF per hour for every over-designed check-in desk. The

selected value for cpdCH is based on an assumption.

• Provision of one under-designed check-in desk cpbCH = 25CHF/desk/h. FZAG

assumes a penalty cost of 25 CHF per hour for every over-designed check-in desk.



APPENDIX A. DEFAULT PARAMETRISATION OF MODELS 274

The selected value for cpdCH is based on an assumption. Note: the penalty costs

for operating the facility with under-designed capacity was deliberately chosen to

be higher than the penalty costs for operating the facility with over-designed capa-

city. The reason for this decision is that in a facility with under-designed capacity,

the probability of congestion and delays is greater than in a facility that is over-

designed.

• Coefficient αP = 1.2. The coefficient αP in the penalty cost function is used to

model non-linear effects between the provision of capacity and the resulting levels

of delay. For this study, the value of the coefficient was set to αP = 1.2.

A.4 CEP models and solvers

The constraints applied to solve the proposed CEP models are summarised in Table A.1.

Table A.2 contains all parameters applied for the GA applied to solve the fixed model and

the CGDRM as well as the GEP used to solve the RFDRM.
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Supplementary results
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Figure B.1: Tornado diagram depicting the results of a sensitivity analysis carried out for
the CGDRM for Check-in 1 and 3 and Evaluation 1.
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Figure B.2: Tornado diagram depicting the results of a sensitivity analysis carried out for
the RFDRM for Check-in 1 and 3 and Evaluation 1.
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Model Run Optimal Solution ENPV

Baseline

1 ∆K∗CH,0 = 28 10557.0
2 ∆K∗CH,0 = 28 10557.0
3 ∆K∗CH,0 = 28 10557.0
4 ∆K∗CH,0 = 28 10557.0
5 ∆K∗CH,0 = 28 10557.0

Fixed Model

1 K∗CH =[ 57,64,65,65,69,72,73,74,76,76,
76,76,77,80,80,84,84,84,90,90 ]

10580.3

2 K∗CH =[ 59,64,64,64,65,65,67,69,76,77,
79,79,79,80,86,87,88,88,89,93 ]

10484.4

3 K∗CH =[ 59,59,59,63,63,71,76,78,81,83,
83,83,83,83,83,83,83,85,85,85 ]

10901.3

4 K∗CH =[ 56,63,64,65,67,70,70,70,75,75,
79,79,81,81,81,81,82,83,84,84 ]

10747.7

5 K∗CH =[ 53,59,60,62,66,69,69,71,75,75,
75,75,84,85,85,85,86,86,87,87 ]

10791.2

CGDRM

1 θ∗ = [11,−2] 11139.0
2 θ∗ = [9,−1] 11153.9
3 θ∗ = [7,−1] 11180.7
4 θ∗ = [7,−1] 11180.7
5 θ∗ = [12,−1] 11153.2

RFDRM

1 L∗ = (Ks
i,t−1−ds

i,t)

Ks
i,t−1∗el+ds

i,t
11159.2

2 L∗ = Ks
i,t−1∗(Ks

i,t−1−el)

(Ks
i,t−1−ds

i,t)
11022.9

3 L∗ = Ks
i,t−1

Ks
i,t−1−ds

i,t∗(e2
l +1)

11158.8

4 L∗ = Ks
i,t−1∗ds

i,t
Ks

i,t−1−ds
i,t

11022.9

5 L∗ = −Ks
i,t−1∗ds

i,t

−Ks
i,t−1∗(Ks

i,t−1−ds
i,t)+e2

l
11026.6

Table B.1: Optimal conventional and flexible facility requirements for Evaluation 1 de-
termined in 5 independent executions of the solvers of the baseline model, the fixed model,
the CGDRM and the RFDRM. ENPV figures are provided in CHF.
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Model em α ENPV min max VaG VaR VoF

em = 1
Fixed 1 0.8 10 761 8112 11 308 11 108 10 250 183
CGDRM 1 0.8 11 190 9549 12 008 11 593 10 714 612
RFDRM 1 0.8 11 126 9515 11 917 11 483 10 727 549

e∗m
Fixed 16 0.8 11 150 8273 11 774 11 520 10 612 572
CGDRM 17 0.8 11 190 9549 12 008 11 593 10 714 612
RFDRM 17 0.8 11 194 9290 12 115 11 645 10 655 617

em = 1
Fixed 1 1.0 9733 6995 10 373 10 109 9204 821
CGDRM 1 1.0 10 019 8749 10 787 10 308 9712 1107
RFDRM 1 1.0 10 215 8950 10 858 10 484 9912 1303

e∗m
Fixed 4 1.0 9929 7394 10 502 10 262 9449 1017
CGDRM 1 1.0 10 019 8749 10 787 10 308 9711 1107
RFDRM 1 1.0 10 215 8950 10 858 10 484 9912 1303

Table B.2: Simulation results for Evaluation 2 for module size em = 1 and e∗m. EoS
parameters αK = αA = 0.8,1.0 and discount rate δ = 0.04. All other parameters are
default. ENPV, min, max, VaG, VaR and VoF figures are provided in CHF.

Model em α ENPV min max VaG VaR VoF

em = 1
Fixed 1 0.8 5533 4427 5843 5708 5295 612
CGDRM 1 0.8 5795 5156 6075 5924 5657 874
RFDRM 1 0.8 5778 5174 6005 5879 5665 857

e∗m
Fixed 7 0.8 5674 4425 5967 5837 5440 753
CGDRM 1 0.8 5795 5156 6075 5924 5657 874
RFDRM 1 0.8 5778 5174 6005 5879 5665 857

em = 1
Fixed 1 1.0 5064 3940 5386 5243 4823 965
CGDRM 1 1.0 5241 4570 5566 5330 5146 1141
RFDRM 1 1.0 5356 4957 5648 5432 5280 1257

e∗m
Fixed 2 1.0 5065 3884 5333 5234 4830 966
CGDRM 4 1.0 5241 4899 5531 5329 5158 1142
RFDRM 1 1.0 5356 4957 5648 5432 5280 1257

Table B.3: Simulation results for Evaluation 2 for module size em = 1 and e∗m. EoS
parameters αK = αA = 0.8,1.0 and discount rate δ = 0.12. All other parameters are
default. ENPV, min, max, VaG, VaR and VoF figures are provided in CHF.
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em = 5 em = 10 em = 20 em = 30
ENPV VoF ENPV VoF ENPV VoF ENPV VoF

α = 0.7

Baseline 11 051 11 051 11 051 11 051
Fixed 11 426 375 11 469 418 11 358 308 11 335 284
CGDRM 11 510 459 11 510 459 11 483 433 11 277 227
RFDRM 11 512 462 11 501 450 11 442 392 11 177 126

α = 1.0

Baseline 8912 8912 8912 8912
Fixed 9887 975 9779 867 8721 −191 9151 238
CGDRM 9983 1070 9634 722 8968 56 8728 −184
RFDRM 9928 1016 9555 643 8810 −102 8754 −159

δ = 0.04

Baseline 9892 9892 9892 9892
Fixed 10 483 590 10 557 665 10 021 128 10 211 319
CGDRM 10 641 748 10 482 590 10 173 280 9985 93
RFDRM 10 619 727 10 414 521 10 155 263 9859 −33

δ = 0.12

Baseline 4510 4510 4510 4510
Fixed 5336 826 5180 670 4928 418 4777 267
CGDRM 5531 1022 5391 882 5018 509 4743 234
RFDRM 5496 987 5403 894 4741 231 4247 −262

Table B.4: Simulation results for Evaluation 2. EoS parameter value α = 0.7,1.0 and
discount rate δ = 0.04,0.12. All other parameters are default. ENPV and VoF figures are
provided in CHF.
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em = 5 em = 10 em = 20 em = 30
ENPV VoF ENPV VoF ENPV VoF ENPV VoF

µD = 0.04

Baseline 10 526 10 526 10 526 10 526
Fixed 10 905 380 10 961 435 10 809 283 10 819 293
CGDRM 11 150 624 11 150 624 11 037 512 10 693 168
RFDRM 11 168 643 11 149 624 11 029 504 10 641 115

µD = 0.12

Baseline 11 623 11 623 11 623 11 623
Fixed 12 390 767 12 675 1052 12 863 1240 12 776 1153
CGDRM 12 611 988 12 611 988 12 611 988 12 607 985
RFDRM 12 345 722 12 582 959 12 569 946 12 827 1204

σD = 0.04

Baseline 10 526 10 526 10 526 10 526
Fixed 10 905 380 10 961 435 10 809 283 10 819 293
CGDRM 11 150 624 11 150 624 11 037 512 10 693 168
RFDRM 11 168 643 11 149 624 11 029 504 10 641 115

σD = 0.12

Baseline 8657 8657 8657 8657
Fixed 8819 162 8955 299 8761 105 8785 128
CGDRM 10 296 1640 10 296 1640 10 112 1455 9744 1088
RFDRM 10 346 1690 10 207 1550 10 074 1418 9650 993

Table B.5: Simulation results for Evaluation 2. Percentage drift rate of demand µD =
0.04,0.2 and demand volatility σD = 0.04,0.12. All other parameters are default. ENPV
and VoF figures are provided in CHF.

em = 5 em = 10 em = 20 em = 30
ENPV VoF ENPV VoF ENPV VoF ENPV VoF

µK,CH = 50

Baseline 10 857 10 857 10 857 10 857
Fixed 11 328 471 11 382 525 11 130 273 10 932 76
CGDRM 11 544 687 11 293 436 11 282 426 11 211 354
RFDRM 11 192 335 11 312 456 11 269 412 11 204 347

µK,CH = 70

Baseline 10 451 10 451 10 451 10 451
Fixed 10 913 462 10 964 513 10 892 441 10 266 −185
CGDRM 10 998 546 10 977 526 10 977 526 10 436 −15
RFDRM 11 019 568 11 015 564 10 903 452 10 243 −209

Table B.6: Simulation results for Evaluation 2. Average service rate of check-in desk
µK,CH = 50,70 passengers per hour. All other parameters are default. ENPV and VoF
figures are provided in CHF.
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Appendix C

Software documentation

The software required for the annual aggregated demand model introduced in Section 4.1

and the DHL demand model presented in Section 4.2 is written in the Python program-

ming language (version 3.7.7). An overview of the structure of the software is given in

Figure C.1.

The baseline model, the fixed model, the CGDRM and the RFDRM, which are de-

scribed in Section 4.4, are also written in the Python programming language (version

3.7.7). The solver of the baseline model, which is based on the enumeration technique,

is written by the author. The fixed model and the CGDRM are solved near-optimally

with the eaSimple GA solver provided in the DEAP package, version 1.3 (Fortin et al.,

2012). The RFDRM is near-optimally solved with the gep_simple GEP solver provided

in the GEPPY package, version 0.1.2 (Gao, 2018). An overview of the structure of

the software for the CEP models presented in this study is given in Figure C.2. Please

note, the software used for this study is published in the following repository: https:

//github.zhaw.ch/wate/StrategicCapacityFramework.
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Figure C.1: Software structure of annual aggregated demand model and DHL demand
model.
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Figure C.2: Software structure of conventional and flexible CEP models developed and
implemented in this study.
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