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ABSTRACT 

Autonomous vehicles free drivers from driving and allow them to engage in some 

non-driving related activities. However, the engagement in such activities could 

reduce their awareness of the driving environment, which could bring a potential 

risk for the takeover process in the current automation level of the intelligent 

vehicle. Therefore, it is of great importance to monitor the driver's behaviour when 

the vehicle is in automated driving mode. 

This research aims to develop a computer vision-based driver monitoring system 

for autonomous vehicles, which characterises driver behaviour inside the vehicle 

cabin by their visual attention and hand movement and proves the feasibility of 

using such features to identify the driver's non-driving related activities. This 

research further proposes a system, which employs both information to identify 

driving related activities and non-driving related activities. A novel deep learning-

based model has been developed for the classification of such activities. A 

lightweight model has also been developed for the edge computing device, which 

compromises the recognition accuracy but is more suitable for further in-vehicle 

applications. The developed models outperform the state-of-the-art methods in 

terms of classification accuracy. This research also investigates the impact of the 

engagement in non-driving related activities on the takeover process and 

proposes a category method to group the activities to improve the extendibility of 

the driving monitoring system for unevaluated activities. The finding of this 

research is important for the design of the takeover strategy to improve driving 

safety during the control transition in Level 3 automated vehicles.  
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1 Introduction 

Autonomous vehicles (AVs) as known as self-driving vehicles refer to vehicles 

that could sense the environment, make decisions, and control themselves to 

drive safely with limited or no human driver assistance [1]. In recent years, 

considerable progress in the AVs has been made with the significant advances 

in sensing devices, artificial intelligence algorithms and the internet of things in 

autonomous driving. Despite lots of efforts have been made and resources have 

been invested by the automotive industry, fully autonomous driving is not realistic 

yet. The commercialised technology on the current market focuses on the 

advanced driver assistance systems (ADASs) that cover the features such as 

braking control and lane assist. Based on the capability of the AVs, the 

automation level has been defined by the Society of Automotive Engineers (SAE) 

[2]. 

1.1 Automation level 

The driving automation has been classified into 6 levels from fully manual driving 

to fully automated driving defined by SAE, as presented in Figure 1-1.  

 Level 0 No driving automation: the vehicle is purely controlled by the 

human driver. Most of the current vehicles on the road are at this level. 

 

Figure 1-1 Automation levels defined by SAE [3] 



 

17 

 Level 1 Driver assistance: for certain driving scenarios, either the lateral 

or the longitudinal motion can be controlled by the vehicle. 

 Level 2 Partial driving automation: for certain driving scenarios, both the 

lateral and the longitudinal motion of the dynamic driving task (DDT) can 

be controlled by the vehicle. The driver is expected to keep monitoring the 

driving environment and execute the appropriate response.  

 Level 3 Conditional driving automation: for certain driving scenarios, the 

vehicle could achieve the entire DDT and monitor the driving environment 

with the expectation that the driver executes the appropriate response for 

the requests to intervene triggered by system failure.  

 Level 4 High driving automation: for certain driving scenarios, the vehicle 

performs the entire DDT without the expectation of the driver intervention 

in most circumstances.  

 Level 5 Full driving automation: The AV performs the entire DDT 

unconditionally. The vehicle requires no human attention and intervention. 

Based on this definition, most of the current ADASs implemented vehicles are 

qualified as Level 2. In 2021, Both Daimler's Mercedes-Benz and BMW claimed 

that Level 3 will be deployed in the coming S-class and 7 series. Meanwhile, the 

development and the test of the Level 4 automation mainly focus on some specific 

use cases such as Waymo Level 4 autonomous truck which is designed for freight 

hauling on the highway, and Toyota e-Palette autonomous shuttle which aims to 

operate in the athletes’ villages of the Tokyo 2020 Olympic and Paralympic 

Games. 

1.2 Traffic safety 

One of the most important aims of developing AVs is to reduce traffic accidents 

on the road. From the report produced by the National Highway Traffic Safety 

Administration (NHTSA), 94% of fatal traffic accidents are caused by human error 

[3]. Fully automated driving is considered to have the capability of eliminating 

human error in traffic. However, robust automated driving has not been achieved 

yet. The immature design of the current road-testing AVs still causes the accident. 

Recorded by the California Department of Motor Vehicles (DMV), on California 
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public roads, from 2014 to January 2020, there are 168 reported AVs collision 

cases, in which the vehicles were in automatic driving mode [4]. In Japan, the 

operation of the Level 4 autonomous shuttles has been suspended due to an 

accident that injured a visually impaired athlete. Moreover, the accident caused 

by commercial AVs even cost lives. In 2016, a Tesla Model S with the Autopilot 

(an ADASs) engaged collided with and travelled under a trailer at 74 mph and 

then stopped after colliding with two chain-link fences and a utility pole [5]. The 

driver was killed, even there was sufficient sight distance to afford time for the 

driver to act to prevent the crash. In 2018, a Tesla Model X with the Autopilot 

engaged crashed the attenuator of the road at a speed of 70.8 mph, then struck 

by 2 following vehicles and caught the fire [6]. The investigation presents that the 

Autopilot system has not detected the vehicle is in an improper position on the 

road and did not provide any type of warning. The vehicle data showed that 

before the crash the driver’s hands have not been detected on the steering wheel 

for 6 seconds. The phone usage data also suggests that the driver was playing a 

game before the crash. It should be noted that in both fatalities, the driver’s 

distraction is considered as the main factor that caused the accidents. The drivers 

were engaging in some non-driving related activities (NDRAs) such as watching 

movies and playing games, which made them has limited awareness of the 

hazard ahead and they have not taken any emergency braking or evasive 

steering to avoid the collision.  

1.3 Motivation and research gaps 

In conditional driving automation, the driver does not need to take the object and 

event detection and response (OEDR) task [2]. The system is required to monitor 

the driving environment, detect and recognise the objects and events and take 

the proper action against such objects and events. However, the driver is 

expected to respond to the request to intervene issued by the vehicle. It means, 

in some driving scenarios, the driver could take his/her eyes off the road and 

engage in some NDRAs such as playing games, reading and sending email but 

they need to prepare to takeover if the vehicle fails to complete the DDT. The 

engagement of the NDRAs could reduce the driver’s monitoring capability of the 
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surrounding environment and the attention to the driving task, which could carry 

high risks to other road traffic participants if the driver is required to control the 

vehicle for an emergency event. In the Tesla fatalities, the overtrust and 

overreliance of the drivers on the vehicle automation system make them 

prolonged disengage in the DDT and immerse in some NDRAs. When the crash 

happened, they were neglectful of the forward environment and did not take any 

action. In the current and following automation level (level 2 and level 3), the 

driver is responsible for monitoring the driving environment and the automation 

system, and takeovering the vehicle if the intervention is requested. Therefore, 

the driver’s behaviour, especially NDRAs, need to be monitored to avoid the 

prolonged disengagement of DDT. The impact of the NDRAs engagement on the 

driver’s takeover also needs to be evaluated for the proper design of the takeover 

modality to secure a smooth and safe control transition. 

The research gaps are listed as below: 

 The existing driver monitoring systems mainly focus on the NDRAs 

recognition and most of the methods extract the features from the driver’s 

body gesture, which lacks the estimation of the driver’s visual attention. 

There is limited literature on the recognition of driving-related activities 

(DRAs), which is important to evaluate the driver’s situation awareness 

before the takeover. 

 The activities investigated in the existing NDRAs recognition research and 

the public driver distraction dataset are normally easy to be differentiated 

in the spatial domain, such as eating, calling, watching movies, etc. There 

is a lack of research on the classification of the high-similarity activities, 

typing on the phone and playing games, which could have different levels 

of mental demands that affect the driver’s takeover quality. The employed 

methods are mainly image-based. Very limited research focus on the 

driver’s behaviour characterisation in the spatio-temporal domain. 

 Most of the existing deep learning-based methods are developed on the 

high-performance workstation. There is very limited research on the 

development of lightweight systems in this field, which is important for in-
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vehicle applications. There is a lack of inference latency evaluation on the 

edge computing device.  

 The research on the impact evaluation of the NDRAs engagement on the 

takeover process is limited and specific on individual activity, which limits 

the extendibility of the driver monitoring system for the unevaluated 

NDRAs.  

1.4 Aims and Objectives 

1.4.1 Aim 

This thesis aims to develop an Artificial Intelligence (AI) enabled solution to 

characterise the driver’s behaviour of NDRAs engagement and understand its 

impact on the driver’s take-over performance in the level 3 automated driving 

vehicle. Specifically, the Computer Vision, Machine Learning and Deep Learning 

approaches will be used to characterise the driver-object interaction behaviour.   

1.4.2 Objectives 

The aim will be achieved by meeting the following 6 objectives.  

1.4.2.1 Literature review 

This thesis investigated the NDRAs that the driver could engage in the automated 

driving vehicle and the state-of-the-art computer vision-based methods that are 

used for activity identification or recognition. It also reviewed the experiment 

setup for evaluation of the NDRAs’ implication in the take-over process. The style 

of this thesis is paper-format, and the literature review is delivered in each 

individual paper chapter. 

1.4.2.2 Visual attention related NDRAs recognition 

The human eye focus reflects their visual attention, localisation of which in the 

vehicle cabin could help to identify whether the driver is checking the driving 

environment or engaging with some visual related NDRAs, such as phone using, 

tablet using, centre console interacting. This objective links to Chapter 1.  
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1.4.2.3 Hand gesture based NDRAs recognition 

The located visual attention is not sufficient to classify the specific NDRAs with 

the same object, for instance, playing games or watching movies with a phone. 

Analysing the pattern of the interaction between the driver and the object/device, 

specifically, the hand gesture could improve the recognition performance. This 

objective links to Chapter 3. 

1.4.2.4 Fusion of visual attention and hand movement for NDRAs/DRAs 
recognition 

The driver’s gaze focus and hand behaviour could be combined for better 

detection of the NDRAs engagement and refined activity classification. The fusion 

of these two feeds could achieve the driver’s behaviour recognition inside the 

vehicle cabin. This objective links to Chapter 4. 

1.4.2.5 Development of the efficient NDRAs recognition system for edge 
computing 

Fast and continuous recognition of the driver’s NDRAs engagement could help 

evaluate the driver’s situation awareness and mental state before the take-over 

process, which requests the system is efficient and able to be executed in the 

edge computing device. This objective links to Chapter 5. 

1.4.2.6 Investigation of the NDRAs’ implication on the take-over quality  

The investigation of the impact of specific NDRAs on the take-over process could 

support determining the modality of the take-over request and design of the 

Human-Machine Interaction (HMI) for a safe and smooth control transition. This 

objective links to Chapter 6. 

1.5 Experiment summary 

In this research, a series of experiments have been done for evaluating the 

recognition of different types of NDRAs and the takeover performance. A brief 

introduction has been given in this section from the perspectives of experiment 

design, experiment platform, and produced NDRAs dataset. The detail will be 

illustrated in the following chapters. 
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1.5.1 Experiment design 

Several experiments have been done for the objectives of visual-related NDRAs 

recognition, hand gesture-based NDRAs recognition, driver behaviour monitoring 

(fusion of visual attention and hand movement), and takeover performance 

evaluation.  

1.5.1.1 Experiments for visual-related NDRAs recognition 

Two experiments were conducted separately: 

1. Visual attention estimation experiment: this experiment is a feasibility 

study for mapping the driver’s visual attention. Driver’s facial information 

and the view that mimics the driver’s view has been captured by a dual-

camera system.  

2. NDRAs engagement experiment: this experiment records the driver’s 

behaviour mainly the head movement during the visual-related NDRAs 

engagement.  

1.5.1.2 Experiment for hand gesture-based NDRAs recognition 

3. Hand gesture based NDRAs experiment: this experiment aims to explore 

the participant’s hand movement pattern during the NDRAs engagement.  

1.5.1.3 Experiment for driver behaviour monitoring during automated 
driving 

4. Driver behaviour monitoring experiment: this experiment employed 2 

cameras to capture the participants head and hand movement while the 

vehicle is in automated driving. The participants were required to engage 

in some NDRAs when the vehicle is driving automatically, and they were 

allowed to check the road during the engagement.  

1.5.1.4 Experiment for takeover performance evaluation 

5. Takeover performance evaluation experiment: this experiment aims to 

evaluate the impact of the NDRAs engagement on the takeover process 

during automated driving.  
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1.5.2 Experiment platform 

1.5.2.1 Data collection platform 

1. The Land Rover Discovery 4: this vehicle stayed stationary during the 

experiment. 

2. The Land Rover Discovery 5: this vehicle was modified to accommodate 

both autonomous and human driving. To ensure safety, a steering wheel 

and a set of pedals were added in the back seat, which allows a safety 

driver to intervene and override the autonomous system.  

1.5.2.2 Data process platform 

1. Workstation: A PC with an Intel i7 9700k CPU, 32GB memory and an 

NVIDIA GeForce RTX 2080 GPU. 

2. Workstation: A PC with an Intel i9 10900k CPU, 64GB memory and an 

NVIDIA Quadro RTX 8000 GPU. 

3. Edge computing devices: Three Jetson modules, including Jetson Nano, 

Jetson TX2 and Jetson AGX Xavier, were evaluated.  

1.5.3 NDRAs dataset 

There are 3 NDRAs datasets produced in this research. These evaluated 

activities were selected by considering the outcomes from surveys  [7], [8]. 

1. Visual related NDRAs dataset 

This dataset focuses on the activities that require visual attention 

engagement. There are 5 different NDRAs in this dataset which are reading 

books, watching movies with a cell phone, sending an E-mail by using a 

laptop, playing games with a tablet and interacting with the centre console to 

select a radio channel. Each NDRAs required the participant’s eye gaze 

interaction with different objects like books, phones, etc. There are 6 

participants in this dataset. The video data were captured by two cameras, 

which cover both the participant’s facial information and the view inside the 

vehicle cabin.  

2. Hand gesture related NDRAs dataset 
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This dataset focuses on the activities that require the participant’s hand 

engagement with the object. There are 10 NDRAs in this dataset, which 

includes 5 activities browsing websites, sending emails, playing games, 

reading, and watching videos with 2 objects phone and tablet. A total of 10 

participants were recruited for this experiment. The video data was captured 

by a camera, which was mounted on the roof of the vehicle between two front 

seats and face to the driver.  

3. Driver behaviour dataset 

This dataset includes not only NDRAs but also the DRAs. It captures the 

driver’s head and hand movement with 2 cameras. There are 6 activities 

involved in this dataset, which are 4 types of NDRAs and 2 types of DRAs. 

The evaluated NDRAs are reading news, watching videos, playing games and 

answering questionnaires using a tablet. The DRAs are road checking and 

driving. 14 participants were recruited for this experiment. The videos were 

recorded in different weather and lighting conditions including sunny, cloudy, 

rainy and snowy.  

1.6 Thesis structure 

In this thesis, computer vision-based methods are researched and employed to 

monitor the driver’s behaviour due to their property of low cost, non-intrusive and 

well-accepted generalisation, which is promising for further application in AVs. 

The activities that the driver could engage in inside the vehicle cabin can be 

categorised as DRAs and NDRAs. DRAs refer to the driver’s driving activity and 

environment sensing activity. NDRAs studied in existing researches and surveys 

normally include calling, reading, playing games, watching movies, eating and 

sleeping, etc [8], [9]. When the vehicle is driving automatically, the driver is 

constrained in the seat, the pattern of the DRAs/NDRAs engagement can be 

characterised as the interaction between the driver and the semantic objects, 
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such as the tablet, phone, and wing mirrors. Figure 1-2 presented the features 

that could be used for activity recognition. For the DRAs, the driver always checks 

the driving environment. The driver’s head and gaze movement contain the 

attention information, which indicates the engagement of the DRAs and reflects 

its awareness of the driving environment [10]. Moreover, the recognition of the 

driving activity requests the interaction between the driver’s hand/arm movement 

and the steering wheel. The NDRAs recognition could be more complicated and 

challenging since the driver’s behaviour could be similar during the activity 

engagement. The driver’s hand movement pattern when he/she is interacting with 

some objects needs to be studied. Therefore, the investigation of the driver’s 

attention, hand movement and semantic objects in the vehicle is necessary for 

monitoring the driver’s behaviour.   

The structure of the thesis is presented in Figure 1-3. The main part of the thesis 

is contributed by 4 published journal papers, 1 journal paper under review and 1 

published conference paper. Driver’s behaviour inside the vehicle cabin is 

 

Figure 1-2 Valuable features for driver behaviour monitoring  
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characterised as head and hand movement. Based on these features, Chapter 1  

(2 papers included) and 3 explore the ways to recognise some types of NDRAs. 

Chapter 1 proposed a gaze estimation and mapping-based method to identify the 

visual-related NDRAs. Chapter 3 consider the NDRAs recognition a pure 

classification problem based on the driver’s hand movement. These two chapters 

prove the feasibility of using driver’s visual attention and hand movement to 

recognise some certain NDRAs, respectively. Furthermore, Chapters 4 and 5 

combine both driver’s head and hand movement to achieve driver behaviour 

recognition, which is not only limited to the NDRAs recognition. It can also 

determine whether the driver engages in some DRAs like road-checking. 

Specifically, Chapter 4 proposes a novel action recognition method through 

extracting the spatial-temporal features from videos. Chapter 5 further presents 

an efficient model to achieve behaviour monitoring with edge computing devices, 

which aims to be used in real vehicle applications. Chapter 6 proposes a method 

 

Figure 1-3 Thesis structure 
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to category the NDRAs into different groups and investigated the impact of the 

NDRAs engagement on the takeover process at both group and individual levels. 

Such a study could guide the further design of the takeover strategy and modality. 

The experiment setting and employed NDRAs datasets for each chapter are 

presented in Table 1-1. In the end, Chapter 7 discusses the outcomes of the 

research in terms of its impact on the real world and gives a general conclusion 

and future work. 
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2  Visual attention-related NDRAs recognition 

This chapter introduces a method to recognise the visual attention-related 

NDRAs based on the estimation of the driver’s gaze, which is based on two 

published papers:  

1. L. Yang, K. Dong, A. J. Dmitruk, J. Brighton, and Y. Zhao, “A Dual-Cameras-

Based Driver Gaze Mapping System With an Application on Non-Driving 

Activities Monitoring,” IEEE Trans. Intell. Transp. Syst., vol. 21, no. 10, pp. 4318–

4327, Oct. 2020, doi: 10.1109/TITS.2019.2939676.  

2. L. Yang, K. Dong, Y. Ding, J. Brighton, Z. Zhan, and Y. Zhao, “Recognition of 

visual-related non-driving activities using a dual-camera monitoring system,” 

Pattern Recognit., vol. 116, p. 107955, Aug. 2021, doi: 

10.1016/j.patcog.2021.107955. 

2.1 Object-based NDRAs recognition with the gaze mapping 
system 

2.1.1 Introduction 

In a Level 3 automated vehicle, according to the SAE (J3016) Automation Levels 

definition, the driver could engage in some non-driving related activities (NDRAs) 

when the vehicle is under the automated driving mode [1].  However, since the 

level of full automation has not been reached, the driver is still expected to 

respond appropriately to a takeover request from the vehicle [2]. NDRAs could 

affect the driver’s hazard awareness and a high attention level on the NDRA could 

result in a negative effect on driving quality [3] or even accidents during the 

transition of control between the vehicle and driver [4], [5]. Therefore, the effect 

of various NDRAs on takeover quality needs to be investigated and evaluated.  

In recent years, some studies have been reported to evaluate the take-over 

performance (e.g. reaction time and driving quality) after switching from NDRAs 

[6], [7] and the effects of Human-Machine Interaction (HMI) design supporting this 

activity switch and monitoring the driving environment [8].  There is very limited 

literature investigating the identification and tracking of NDRAs automatically. 

Sivak and Schoettle [9] reported that the main NDRAs that drivers engage in the 
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UK are reading (9.9%), sleeping (9.4%), texting or talking with friends (7.1%), 

working (6.4%) and watching movies (5.4%).  Since NDRAs in a level 3 and 

above automated vehicle are diverse and the type and engaged duration of 

NDRAs will lead to different take-over performance [4], it is necessary to 

classify/identify and track them automatically for designing an intelligent HMI for 

takeover. 

As objects and human poses are feature-rich, human-object interaction has been 

widely investigated in the early stages of human action recognition [10], [11], 

through the integration of object recognition, pose estimation and action 

identification [12]. For successful NDRA identification, the driver is constrained 

on the seat, space limitation and body occultation pose a challenge for driver 

action estimation. Le et al. [13] proposed a convolutional neural network (CNN)-

based approach to achieve the driver behaviour parsing. It localises some body 

parts of the driver like head, hand, etc. by semantic segmentation in still images 

to achieve the detection of some actions, such as hands on steering wheel and 

hands on phone. Several deep learning-based approaches have been proposed 

for video-based human action recognition, with the development of artificial 

intelligence in multi-object detection [10]. Such approaches extend object 

detection to action detection through the multi-stream CNN, which combines the 

spatial and temporal information [14], [15]. It recognises the action by using the 

moving parts of the human body instead of pose estimation. Some CNN-based 

approaches have been proposed for the NDRA or secondary task recognition in 

recent years. Xing et al. [16] used the image of the driver’s body by removing the 

background, as the input of the CNN model to recognise NDRAs. Eraqi et al. [17] 

extended inputs by including raw images, skin-segmented images, face images, 

hands images, and “face+hands” images. Then trained CNN model for each 

stream is further used to obtain the final prediction using a genetic algorithm 

based on their outputs. Yang et al. [18] proposed a 2-stream CNN based system, 

which extracts the spatial features from raw images and the movement features 

from the corresponding optical flow images to achieve NDRA recognition. 

However, such CNN-based NDRA recognition approaches mainly focus on 

encoding the specific movement of the driver. It lacks the capability of tracking 
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the driver’s visual attention. Studying the driver’s visual attention can directly 

determine whether the driver is engaging in NDRAs, which is important to develop 

an intelligent HMI design for a safe take-over. As most NDRAs (e.g. reading, 

texting, working and watching movies) require interaction between objects (e.g. 

book, tablet, or dashboard) and the human eye (gaze), this chapter proposes a 

novel framework for gaze-related NDRA identification and tracking that consists 

of three parts: object recognition, gaze estimation and an activity classifier.  

Several object detection frameworks have been proposed such as YOLO [19] 

and Faster R-CNN [20].  These frameworks can recognise a few general objects 

in real-time, but they lack semantic segmentation and accurate outliner detection. 

Since object segmentation is needed in this proposed framework, the Mask R-

CNN [21] is used as part of the proposed framework. The eye gaze features have 

been applied in some applications of advanced driver-assistance systems 

(ADAS) for the purpose of distraction and fatigue detection [22], [23] or gaze 

attention estimation [24]. The developed gaze estimation systems mainly focus 

on the modelling of the eye-gaze based on the image captured by the camera, 

which is in front of the human face [25], [26]. Since the image used in these 

systems have no further information about the activity that the driver could 

engage in. It can not be used directly for driver behaviour recognition. The 

applications of gaze estimation for ADAS are normally driver gaze zone 

estimation [27]. Fridman et al. [28] allocated the driver’s gaze into different 

regions by extracting their facial features with a single camera. Xiao and Feng 

[29] proposed a driver’s visual attention system by using a smartphone, in this 

method, the rear camera is used to capture the moving object and the front 

camera is used to estimate the driver’s gaze.  The view of the rear camera is 

divided into 9 zones, and the system aims to check if the driver is aware there is 

a moving object inside these zones.  Both studies made a fixed assumption 

between the eye gaze direction and the driver’s behaviour, which is not applicable 

for characterisation of NDRAs due to its high complexity and uncertainty. 

Therefore, to further implement the gaze estimation method into NDRAs 

recognition, the estimated gaze needs to be mapped into a view, which contains 

the driver’s behaviour in the vehicle cabin.  
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This chapter presents a non-intrusive and cost-effective dual-camera based 

NDRA identification and tracking framework. It maps the driver’s eye gaze, 

achieved by the first/front camera facing the driver, and the object scene is 

captured by the second/rear camera, using a complex system modelling 

technique, called Volterra Non-linear Regressive with eXogenous inputs (VNRX) 

model. The object is automatically recognised and located through the Mask R-

CNN algorithm. Based on the mapped gaze and the location of the segmented 

object, an activity classier using the sliding time window technique is proposed to 

identify and track the type of NDRA.  

2.1.2 Methodology 

2.1.2.1 Framework architecture 

The proposed framework has 3 components: gaze mapping, object recognition 

and an NDRA classifier.  As shown in Figure 2-1, the driver’s gaze is estimated 

by a dual-camera system. The front camera is used to capture and extract the 

driver’s facial and gaze features which are used to estimate the gaze which is 

then mapped into the scene of the rear camera and visualised by a heat map.  

The estimated gaze location in the scene of the rear camera helps define a region 

of interest (ROI) for object recognition, which will significantly reduce the 

recognition time and increase the accuracy and success rate. The recognition 

result shows the object label, confidence score and location of each object 

 

Figure 2-1 The proposed framework for NDRA identification that consists of three 

parts: gaze mapping, object recognition and activity classifier 
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represented by an object-mask list. The sliding time window technique is used to 

construct a novel NDRA classifier for decision-making through considering the 

historic information of eye gaze location and recognised object masks. The 

details of each part are introduced below. 

2.1.2.2 Gaze estimation  

2.1.2.2.1 System framework 

The framework of the gaze estimation system is divided into four steps including 

video acquisition, feature extraction, gaze mapping and heat map visualisation. 

As shown in the flowchart illustrated by Figure 2-2, the first feed of video is 

captured through a camera placed in front of the driver, as indicated by Camera 

1, to capture the facial features including eye gaze and head movement. The 

second feed of video is captured through a camera placed above the driver, 

referred to as Camera 2 in Figure 2-2, to mimic the driver’s view. The driver’s 

gaze directions along with other parameters including face location and 

orientation are extracted based on videos from Camera 1. These parameters are 

considered as the inputs of the model for gaze mapping. The proposed method 

tends to include the driver’s facial features as more as possible and let the later 

modelling/mapping process determine which features should be included for 

Figure 2-2 The flowchart of the gaze mapping system. There are two processes in 

this system including calibration in red and testing in blue 
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estimating the output, the mapped location of eye gaze in images of Camera 2. 

The mapping model calibration is to establish a model to represent the 

relationship between the face features in images of Camera 1 and eye-gaze 

locations on images of Camera 2. In the calibration (or training) process, the eye-

gaze location in images of Camera 2 is known using markers placed on the 

vehicle. This chapter assumes that the gaze is a region with an approximately 

Gaussian distribution which represents the driver’s observation intensity [30]. 

Gaussian noise with a pre-set sigma is therefore applied on the marker locations 

on images from Camera 2, as the known outputs of training data. From the 

system identification point of view, adding noise to the desired output can reduce 

overfitting and improve model generalisation. A large value of sigma will reduce 

the accuracy of fitting but improve the model generalisation. In this research, the 

 
(a) 

 

 
(b) 

Figure 2-3 (a) The spatial distribution of the markers in Land Rover Discovery 4 for 

the in-vehicle experiment. (b) The spatial distribution of the markers in laboratory 

for the indoor experiment 
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sigma value was chosen as 10 pixels to achieve the optimal balance.  Once this 

relationship is established, this model can be deployed on face features extracted 

from a testing video of Camera 1 and produce a mapping on the scene captured 

by Camera 2.  

Considering the NDRA as a dynamical process, this study focuses on the eye 

gaze on a certain time window and a form of the heat map is proposed for 

visualisation. The details of each step are presented below. 

2.1.2.2.2 Video acquisition 

The Land Rover Discovery 4 was used as the test vehicle. Camera 1 is located 

in the windshield in front of the driver. The location of Camera 2 is set on the top 

of the driver towards the windscreen. The markers shown in Figure 2-3 (a) were 

placed on the strategic locations inside the vehicle including the dashboard, side 

mirrors, rear-view mirror, windscreen, multimedia display and steering wheel etc. 

These locations are fixed and friendly for the driver to look at. In this study, a total 

number of 12 markers were used. 

Before implementing the system in the vehicle, a feasibility study has been 

conducted in the laboratory to better evaluate the performance of the proposed 

system. The layout of the cameras is the same as mentioned above. Ten markers 

are located randomly and shown in Figure 2-3 (b). It should be noted that there 

are 4 markers on the monitor which has a shorter distance to Camera 2. 

For both experiments, the employed cameras were Garmin Virb Action Camera. 

Camera 1 provides the video with a resolution of 1024×768 pixels and 24 frames 

per second. Since a wider field of view is requested for Camera 2, the resolution 

is set as 1440×1080 pixels and the temporal resolution remains the same value. 

2.1.2.2.3 Feature Extraction 

In recent years, several gaze and head tracking methods have been proposed 

[31], [32]. As one of the most popular open-source facial analysis tools, 

OpenFace is utilized for the purpose of extracting the features of the driver’s gaze 

and head due to its fine performance and robustness. It is capable of facial 

landmark detection and action unit recognition, head pose and eye-gaze 
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estimation [25], [33]. The algorithm starts with face detection then is followed by 

the 68 facial landmarks detection. These landmarks are used to estimate the 

head pose and track the eye gaze. The process is illustrated in Figure 2-4. 

Conditional Local Neural Fields (CLNF) framework is utilized as a shape 

registration approach for detecting the facial landmarks [34]. There are two 

components for CLNF which are Point Distribution Model (PDM) and patch 

experts. PDM captures variations of the landmark shape and the local 

appearance variations of each landmark are captured by patch experts. For head 

pose estimation, the orthographic camera projection is used to project the 3D 

representation of facial landmarks. The SynthesEyes training dataset [35] is used 

to train the PDM and CLNF patch experts for the eye-region registration task. 

Once the eye and the pupil are located, the data are used to calculate the gaze 

vector for each eye. The gaze estimation ability of this model is validated by the 

MPIIGaze dataset [36]. The performance of this approach on driver monitoring 

has been evaluated in the research of Zhao et al. [37]. 

Considering the complexity and uncertainty of the driver’s behaviours during 

NDRAs, this chapter proposes to use both head information and gaze information 

 

Figure 2-4 OpenFace facial behaviour analysis process 
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to build up the gaze heat map. The selected parameters are divided into two 

categories: the head pose related parameters (HRPs) and the gaze related 

parameters (GRPs). HRPs include the position of the detected head with respect 

to Camera 1, denoted by pose_Tx, pose_Ty and pose_Tz, and head orientation 

in 3D, denoted by pose_Rx, pose_Ry and pose_Rz. GRPs include the 

information of the gaze direction in radians, denoted by gaze_angle_x and 

gaze_angle_y. The direction vector is an average value for both eyes in world 

coordinates. 

2.1.2.2.4 Feature Mapping 

This research proposes to use the orthogonal least squares (OLS) algorithm to 

establish the correspondence between the face features based on the coordinate 

of Camera 1 and the eye gaze mapping based on the coordinate of Camera 2. 

This is an approach that has been used in nonlinear system identification where 

OLS searches through all possible candidate model terms to select the most 

effective ones to build the model. The significance of each selected model term 

is measured by the ERR index which indicates how much of the change in the 

system response, in percentage, can be accounted for by including the relevant 

model terms. This capability is important for this study because the facial features 

have been extracted as more as possible to ensure the proposed system can 

accommodate the diversity of driver’s behaviour, meanwhile, we need to avoid 

producing an over-complex model that over-fits the training data and produces 

relatively poor testing performance. This algorithm allows us to only select the 

important face features for modelling to reach the balance between model 

complexity and gaze estimation performance. Furthermore, the capability to 

accommodate nonlinear modelling is important to cope with the distortion of 

images of Camera 2, which is the by-product where a wide field of view is 

required.   

The Volterra Non-linear Regressive with eXogenous inputs (VNRX) model, also 

known as nonlinear finite impulse response (NFIR) model, is used in this research 

to represent a multi-inputs and single-output system, where the inputs are the 

facial features and the output is the eye gaze location on images of Camera 2. It 
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should be noted that the eye gaze location includes two values: x and y, which 

will be modelled independently. The models can be expressed as: 

𝑍 = 𝑓 (𝑋 , 𝑋 , … , 𝑋 ) + 𝜀  (2-1) 

𝑍 = 𝑓 (𝑋 , 𝑋 , … , 𝑋 ) + 𝜀  (2-2) 

where 𝑋 , 𝑋 , … , 𝑋  are the face features; 𝑛  is the number of collected face 

features; 𝑍  and 𝑍  are the eye gaze location in x and y direction respectively; 𝑓  

and 𝑓  are some unknown linear or nonlinear mappings link the inputs and 

output; 𝜀  and 𝜀  are module residual.  

Consider a function in a linear form:  

𝑌(𝑘) = 𝜃 𝑝 (𝑘), 𝑘 = 1,2, … , 𝑀 (2-3) 

where 𝑌(𝑘) is the system output (eye gaze location in x or y direction), 𝑝 (𝑘) are 

regressors constructed by input variables, 𝜃  is the vector of unknown coefficients 

of regressions to be estimated, 𝑀  denotes the number of data points in the 

training data set, and 𝑁 denotes the number of terms in the model that is yet to 

be determined. If the model order is set as 𝑞, the candidate term set where 𝑝 (𝑘) 

select from, denoted by 𝐶, can be expressed 

𝐶 = 𝐶 ∪ 𝐶 ∪ … ∪ 𝐶 ∪ … ∪ 𝐶  (2-4) 

where 𝐶  is the linear term set, expressed as  

𝐶 = 𝑋  (2-5) 

and 𝐶  is the 2nd order nonlinear term set, expressed as 

𝐶 = 𝑋 𝑋  (2-6) 

and 𝐶  is the 𝑙  order nonlinear term set, expressed as 
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𝐶 = … 𝑋  (2-7) 

Equation (2-3) is re-written as 

𝑌 = 𝑃Θ (2-8) 

where 

𝑌 =

𝑦(1)
𝑦(2)

⋮
𝑦(𝑀)

, 𝑃 =

⎣
⎢
⎢
⎡

𝑝 (1)

𝑝 (2)
⋮

𝑝 (𝑀)⎦
⎥
⎥
⎤

, Θ =

𝜃(1)
𝜃(2)

⋮
𝜃(𝑀)

 (2-9) 

and 𝑃 (𝑘) = 𝑝 (𝑘), 𝑝 (𝑘), … , 𝑝 (𝑘) . Matrix 𝑃  can be decomposed as 𝑃 =

𝑊 × 𝐴 where 

𝑊 =

𝑤 (1) 𝑤 (1) … 𝑤 (1)
𝑤 (2) 𝑤 (2) … 𝑤 (2)

⋮ ⋱ ⋱ ⋮
𝑤 (𝑀) 𝑤 (𝑀) … 𝑤 (𝑀)

  (2-10) 

and 𝐴 = {𝑎 } is an upper triangular matrix with unity diagonal elements. Equation 

(2-4) is then rewritten as 

𝑌 = 𝑊𝐺 (2-11) 

where 𝐺 = 𝐴Θ = [𝑔 𝑔 … 𝑔 ] . Equation (2-11) is now ready to represent 

the relation between 𝑌 and 𝐺.  

We then estimate the importance of each model term to the variation of the 

system output. Initially, set values 𝑎 = 0 for 𝑖 ≠ 𝑗 (A then becomes an identity 

matrix), so 𝑤 (𝑘) = 𝑝 (𝑘), and calculate 𝑔  as 

𝑔 =
∑ 𝑤 (𝑘)𝑦(𝑘)

∑ 𝑤 (𝑘)
 (2-12) 

For 𝑗 = 2,3, … , 𝑀, set 𝑎 = 1 and then calculate 
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𝑎 =
∑ 𝑤 (𝑘)𝑝 (𝑘)

∑ 𝑤 (𝑘)
 (2-13) 

where 𝑖 = 1,2, … , 𝑗 − 1. Next, the algorithm calculates 

𝑤 (𝑘) = 𝑝 (𝑘) − 𝑎 𝑤 (𝑘) (2-14) 

and  

𝑔 =
∑ 𝑤 (𝑘)𝑦(𝑘)

∑ 𝑤 (𝑘)
 (2-15) 

The ERR value for each term 𝑝  is finally defined as 

𝐸𝑅𝑅 =
𝑔 ∑ 𝑤 (𝑘)

∑ 𝑦 (𝑘)
 (2-16) 

Values of ERR range always from 0% to 100%. The larger the ERR the higher 

dependence between the {𝑝 } terms and the output. Therefore, it is an indicator 

to represent the importance of each term (constructed by the face features as 

inputs) to the output. 

The estimation of the coefficient of each selected term can be computed from 

𝜃 = 𝑔

𝜃 = 𝑔 − 𝑎 𝜃 , 𝑖 = 𝑁 − 1, … ,1
 (2-17) 

Through the above algorithm, a polynomial model based on Equation (2-3) can 

be established for each direction of the eye gaze location. The models can then 

be used for estimation of eye gaze location by given the face features.  

2.1.2.2.5 Heat Map Visualisation 

The heat map is a common visualisation approach to represent the spatial 

distribution of the data [38]. This research assumes that the eye gaze at a certain 

time or frame (𝑡 ) can be represented by a circle which is defined by three 

parameters: 𝑥 (𝑡) and 𝑦 (𝑡), the location of the centre, and 𝑑, the diameter of the 
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circle. The spatial distribution inside the circle follows the Gaussian distribution. 

The value of 𝑑 is affected by the image resolution of Camera 2. It was set as 40 

pixels for gaze visualisation.   

Considering at the frame 𝑡, the eye gaze centred at (𝑥 (𝑡), 𝑦 (𝑡)), the intensity of 

the pixel(𝑥, 𝑦) in the heat map, where 𝑥 − 𝑥 (𝑡) + 𝑦 − 𝑦 (𝑡) ≤ 𝑑 , can be 

defined as 

𝑆(𝑥, 𝑦, 𝑡) = e
(  

( ( )) ( ( ))
)

∗ 100%      
(2-18) 

The intensity of the pixels unsatisfied with the constraints is set as 0. 

To represent the trajectory of gaze, this study integrates the gaze spatial 

distribution within a certain time window [𝑡 − ℎ, 𝑡], where 𝑡 is the number of the 

frame and ℎ is the window length. The accumulated eye gaze can be written as 

𝑆 (𝑥, 𝑦, 𝑡) =
1

ℎ
𝑆(𝑥, 𝑦, 𝑡 − 𝑖) (2-19) 

To better visualise the gaze trajectory in real-time, this research proposes a 

weighted accumulation of eye gaze to construct the trajectory, written as 

𝑆 (𝑥, 𝑦, 𝑡) =
1

ℎ
𝑆(𝑥, 𝑦, 𝑡 − 𝑖) ∗ (1 −

𝑖

ℎ
) (2-20) 

The value of 𝑆 (𝑥, 𝑦, 𝑡) and 𝑆 (𝑥, 𝑦, 𝑡) is between 0 and 1. The window length ℎ 

can be adjusted in terms of various applications. 

2.1.2.3 Object recognition 

CNN-based algorithms have achieved critical advances for the object recognition 

problem. The object recognition models based on CNNs can be categorised into 

two different types: one-stage and two-stage. Two-stage models such as Faster 

R-CNN [20] and Mask R-CNN [21] usually produce higher accuracy than one-

stage models such as YOLO [19] and SSD [39] but they perform under lower 

detection speed. To match the requirement of this framework, this chapter selects 

the Mask R-CNN model, which is an extension of the Faster R-CNN model for 
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pixel-to-pixel instance segmentation task. There are two reasons for this 

selection: 1) compared with the recent frameworks training the COCO dataset, 

Mask R-CNN outperforms Faster R-CNN, YOLO and SSD in terms of accuracy 

and the speed is acceptable; 2) Mask R-CNN extends previous frameworks and 

locates exact pixels of each object instead of only bounding boxes, which is 

important for this study because the region of the object must be accurate to 

determine if the eye gaze is located in this region. 

Instance segmentation is a challenging task that combines two independent 

processes: object detection and semantic segmentation. The multi-task scheme 

could create spurious edges and produce systematic errors in overlapping 

instances [40]. To solve this problem, Mask R-CNN extends Faster R-CNN by 

adding a branch for predicting segmentation masks in a pixel-to-pixel manner, in 

parallel with the existing branch for classification and bounding box regression. 

The core operation in Faster R-CNN for attending to instances, RoIPool, performs 

coarse spatial quantisation for feature extraction [41]. To fix the misalignment, 

Mask R-CNN replaces the RoIPool layer with a simple and quantisation-free layer 

which is called RoIAlign and faithfully preserves exact spatial locations. The 

RoIAlign layer uses bilinear interpolation to compute the exact values of the input 

features at four regularly sampled locations in each ROI bin and then performs 

max or average pooling on features. In spite of being a seemingly minor change, 

RoIAlign improves mask accuracy significantly. The proposed Mask R-CNN 

architecture is illustrated in Figure 2-5. It should be noted that the input image is 

Figure 2-5 The Mask R-CNN architecture for the object recognition 
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a cropped image considering the eye gaze. The size of this ROI is a parameter 

to set considering the size of the targeted objects. 

There are several implementations of Mask R-CNN so far. This research selected 

the maskrcnn_benchmark for the proposed system due to its best performance 

in training and inference. Maskrcnn_benchmark is up to twice as fast as a 

Detectron while matching and exceeding Detectron accuracy [42]. There are 5 

NDRAs (involving 5 types of objects) considered in this chapter where the phone, 

the laptop, and the book can be detected with the COCO-pre-trained model, but 

a tablet and car interior cannot be detected with this pre-trained model. A 

dedicated database was then created for the latter cases. The dataset consists 

of 200 images acquired from the rear camera for each object including tablet, 

control console, wing mirror, windscreen, rear-view mirror, and dashboard. We 

selected the ResNet-101-FPN as the backbone network and trained these data 

starting with a learning rate of 0.001, which was divided by 10 after every 30 

epochs. The total number of epochs was set as 100. All training works were 

implemented on an NVIDIA Quadro P6000 graphics card machine which has 24 

GB DDR5X memory.  

2.1.2.4 Activity classifier 

The hypothesis of this study is that activities that required visual attention can be 

identified by estimating the driver’s gaze and recognising the object that is gazed 

on. Therefore, the inputs of the classifier are the representation of the driver’s 

gaze map and the recognised object-masks (there could be multiple objects in 

the ROI). Considering that the driver’s behaviour during the engagement of 

NDRA is continuous, the historical temporal information is crucial for activity 

recognition. The proposed classifier employs the sliding time window technique 

to enhance the resilience to noise. 

The driver’s gaze trajectory with a certain time window ℎ is presented in Equation 

(2-20). For further decision making, the trajectory of gaze is binarized as: 

𝑆 (𝑥, 𝑦, 𝑡) =  
1 
0 

𝑖𝑓 𝑆 (𝑥, 𝑦, 𝑡) ≥ 𝑇

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (2-21) 
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where 𝑇  is the threshold. 

The object could be easily occulted by the driver’s hand during the NDRA 

engagement, which could lead to the poor performance of object recognition. To 

increase the robustness of overall performance, the recognised object-masks are 

estimated based on the historical information within the time window. The list of 

the segmented mask of objects at the time 𝑡 , expressed as 𝑁(𝑥, 𝑦, 𝑡) =

{𝑁 (𝑥, 𝑦, 𝑡), 𝑁 (𝑥, 𝑦, 𝑡), … , 𝑁 (𝑥, 𝑦, 𝑡)}, is a set of binary images, where 𝑘 is the total 

number of recognised objects. Since the ROI to produce 𝑁(𝑥, 𝑦, 𝑡) is selected 

based on the gaze location 𝑍(𝑡), to create an object-mask within a time window 

ℎ, an offset needs to be considered as the selected ROI could be different for 

each time step. The revised mask for the 𝑖  object by removing the offset can be 

expressed as: 

𝑁 , (𝑥, 𝑦, 𝑡) = 𝑁 𝑥 − 𝑍 (𝑡), 𝑦 − 𝑍 (𝑡), 𝑡  (2-22) 

The final recognised object-mask for the 𝑖  object is achieved by calculating the 

union of all masks for this object within this window. It can be expressed as 

𝑁 (𝑥, 𝑦, 𝑡) = 𝑁 , (𝑥, 𝑦, 𝑡 − 𝑗) (2-23) 

Finally, the intersection of the binarized trajectory of gaze 𝑆 (𝑥, 𝑦, 𝑡) and each 

recognised object-mask 𝑂𝑁 (𝑥, 𝑦, 𝑡) is calculated. The one that has the maximal 

area of intersection is selected as the recognised class 𝑙, which can be written as 

𝑙(𝑡) = argmax‖𝑆 (𝑥, 𝑦, 𝑡)  ∩ 𝑂𝑁 (𝑥, 𝑦, 𝑡)‖   (2-24) 

where  ‖∙‖ indicates the operation to calculate the area. 

2.1.3 Results 

In this section, the performance of the gaze estimation, object recognition and the 

NDRAs identification is given. Specifically, the gaze estimation system is 

evaluated in both laboratory and vehicle. 
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2.1.3.1 Gaze estimation 

2.1.3.1.1 Indoor experiment 

Two tests were conducted in this experiment based on the level of freedom of 

head movement. In the first test, the participant was asked to gaze at the 10 

markers one by one avoiding moving head forwards or backwards, so the shift of 

eye gaze was primarily achieved by head rotation. In the second test, the 

participant was given more freedom of head movement and both rotation and 

translation were allowed, aiming to simulate the increased complexity and 

uncertainty of head movement during NDRAs. The participant was required to 

gaze at each marker for at least 5 seconds. The data of the transition period when 

moving from one marker to another was removed. A total number of 1000 frames 

(100 frames per marker) were selected for training and testing. For each marker, 

70% of data were randomly selected for training and the remaining 30% of data 

were for testing.  

 

Figure 2-6 Histograms of the facial features of the training data for the model 

calibration of the first test of the indoor experiment 
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Figure 2-6 presents the histograms of eight facial features of the training data in 

the first test. It can be observed that the head rotation movement is within 0.5 rad 

in pitch (pose_Rx) and yaw (pose_Ry). The roll movement of the head (pose_Rz) 

is relatively small, within 0.15 rad, which is expected because there is not much 

rolling movement required to scan all markers. The variation of head position in 

the z-axis (pose_Tz), indicating the distance from the head to Camera 1, is within 

30 mm. Although the translation of head was limited in this test, the head rotation 

caused a small variation of head depth. 

Table 2-1 shows an example of the estimated 2nd-order nonlinear models of gaze 

in X and Y directions. The number of the model term is limited to 10. The model 

term is ranked based on the ERR value which represents the importance of each 

model term to the variation of gaze. It can be observed from Table 2-1 that the 

most important term is ‘constant’ for both X and Y which refers to the baseline of 

the head movement and relates to the initial state of the participant. As expected, 

the second important term is the gaze angle for the considered direction. It is 

interesting to observe that HRPs also make a significant contribution to the 

model, which suggests that both HRPs and GRPs must be considered due to the 

complexity of human behaviour and the distortion of cameras. To quantify the 

performance of the proposed system in the first test, the produced models were 

Table 2-1 An example of the estimated 2nd order nonlinear model for the first test 

of the indoor experiment 

Model X Y 

Priority Model term Coefficient Model term Coefficient 

1 constant 811.25 constant 528.27 

2 gaze_angle_x -1582.93 gaze_angle_y 474.31 

3 pose_Tz* pose_Rx 53.43 pose_Tx -2.03 

4 gaze_angle_y -917.28 pose_Tx* pose_Rx -35.57 

5 pose_Tx -0.58 gaze_angle_x 465.13 

6 pose_Tx* pose_Rx -46.94 gaze_angle_y* gaze_angle_y 821.15 

7 pose_Rx 853.26 pose_Ty* pose_Ty 0.21 

8 pose_Rx* pose_Ry -4419.04 gaze_angle_y* pose_Rz 16140.28 

9 pose_Ry 450.32 gaze_angle_x* gaze_angle_y -2771.10 

10 gaze_angle_y* pose_Tz -62.47 pose_Rx 1248.56 
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applied in the testing data and the Root Mean Square Error (RMSE) of the 

estimated gaze location and the centre of marker (without adding Gaussian 

noise) for all markers was computed to represent the model accuracy. Since the 

testing data were randomly selected, this process was repeated 1000 times to 

ensure statistical significance. Table 2-2 provides the mean (overall accuracy of 

the model) and the standard deviation (precision of model) of the 1000 calculated 

accuracies for two tests. The size of the markers in the mapping frame is 37 pixels 

(28.8 mm). From the results of the first test in Table 2-2, it can be observed that 

the error of gaze estimation in the X direction is 11.89±9.00 pixel (9.25±7.00 mm), 

while for the Y direction the error is smaller with a value of 9.22±6.55 pixel 

(7.17±5.10 mm). The errors of both directions are well smaller than the marker 

size, which indicates a fine performance of the proposed system when the head 

translation is limited. The performance of the Y direction is better than the X 

direction. This observation is reasonable because the makers cover a larger 

range of the X direction which leads to a higher level of distortion. The 

accumulated eye gaze map, calculated by Equation (2-19), is presented in Figure 

2-7 (a),  where all estimated gaze points well fall into the markers, although there 

are some slight shifts between the centre of the gaze circle and the centre of the 

markers.  

In the second test, the head movement was more complex by introducing both 

translation and rotation of the head. It has been observed from Table 2-3 that the 

head position in the z-axis (pose_Tz) has a variation of 210 mm, which is 7 times 

Table 2-2 Model performance comparison of the indoor experiment 

Term 
Root Mean Square Error 

Pixel Millimetre 

Test1_X 11.89 ± 9.00 9.25 ± 7.00 

Test1_Y 9.22 ± 6.55 7.17 ± 5.10 

Test2_X 27.33±14.29 21.26 ± 11.12 

Test2_Y 20.71±11.51 16.11 ± 8.95 
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higher than the first test. The ranges of other features are similar to the ones of 

the first test. The second test aims to test the flexibility of the proposed mapping 

algorithm against the diverse head movement of NDRAs. Table 2-4 presents an 

example of the estimated 2nd-order nonlinear models of gaze in X and Y 

directions. The number of the model term is limited to 10. It can be observed that 

the top 2 terms are the same as the ones of the first test, however, HRPs make 

more contribution to the model evident by more appearance in the selected model 

terms, particularly pose_Tz. As shown in Table A-1 and Table A-2 in Appendix, 

the proportion of ERR of HRPs in the X direction is increased from 0.55% in the 

first test to 5.88% in the second test. The proposed algorithm successfully 

 
(a) 

 

 
(b) 

Figure 2-7 (a) The accumulated eye gaze mapping for the first test of the indoor 

experiment. (b) The accumulated eye gaze mapping for the second test of the 

indoor experiment 
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demonstrated flexibility by selecting terms including pose_Tz to reflect the 

increased variation of head translation. 

Table 2-2 also shows the quantified performance of the second test, using the 

same approach as the first test. It is shown that the RMSE in the X direction is 

27.33±14.29 pixel (21.26 ± 11.12 mm) and 20.71±11.51 pixel (16.11 ± 8.95 mm) 

for the Y direction. As expected, the overall performance is not as good as the 

first test due to the increased complexity of head behaviour, but the error is still 

smaller than the marker size (28.8 mm). It is interesting to observe that the 

performance in X and Y directions are similar for this case which suggests that 

the interference caused by camera distortion is overtaken by the interference 

caused by severe head movement. Figure 2-7 (b) illustrates the accumulated eye 

gaze map for the second test. In comparison with Figure 2-7 (a), the regions of 

the gaze estimation are larger and more irregular but still well cover the majority 

markers. It can be observed from Figure 2-7 that the visualised results of the 4 

markers on the monitor which have a shorter distance to Camera 2 than other 

markers also show a similar performance, which demonstrates the robustness of 

the proposed system in terms of the depths of the object.   

Table 2-3 The data range comparison of the extracted facial features of the training 

data of the indoor experiment 

Features The first test The second test 

Gaze_angle_x [-0.35, 0.15] rad [-0.35, 0.25] rad 

Gaze_angle_y [0.08, 0.38] rad [0.1, 0.4] rad 

Pose_Tx [30, 110] mm [25, 115] mm 

Pose_Ty [-110, -70] mm [-108, -70] mm 

Pose_Tz [750, 780] mm [660, 870] mm 

Pose_Rx [-0.05, 0.35] rad [-0.05, 0.38] rad 

Pose_Ry [-0.1, 0.45] rad [-0.25, 0.45] rad 

Pose_Rz [-0.14, 0.04] rad [-0.14, 0.07] rad 
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2.1.3.1.2 In-vehicle experiment 

In this experiment, a wider field of view of Camera 2 in comparison to the in-door 

experiment was used due to limited space in the vehicle, which inevitably 

introduced more distortion on images. Furthermore, 12 markers were laid out on 

the regions of interest, which have more diverse distances to the plane of Camera 

2 in comparison with the indoor tests. Due to these factors, a more sophisticated 

model is required to cope with the increased complexity. Therefore, a 3rd-order 

Table 2-4  An example of the estimated 2nd order nonlinear model for the second 

test of the indoor experiment 

Model X Y 

Priority Model term Coefficient Model term Coefficient 

1 constant 776.76 constant 545.12 

2 gaze_angle_x -2253.33 gaze_angle_y 1612.76 

3 pose_Tz* pose_Ry 1.92 gaze_angle_x -207.97 

4 pose_Tx* pose_Tx 0.04 pose_Tz* pose_Tz -0.01 

5 pose_Ry -863.78 pose_Tx* pose_Rx -27.94 

6 pose_Tx -5.23 gaze_angle_y* gaze_angle_y 3018.13 

7 gaze_angle_x* pose_Tz -2.32 pose_Tx* pose_Ty 0.23 

8 pose_Rz -62.47 pose_Ry* pose_Rz -2826.91 

9 gaze_angle_x* pose_Rz 987.56 pose_Ry -432.25 

10 pose_Tz 0.46  pose_Ty 2.89 

 

Table 2-5 Model performance of the in-vehicle experiment 

Term 
Root Mean Square Error 

Pixel Millimetre 

X 7.80 ± 5.99 12.00 ± 9.22 

Y 4.64 ± 3.47 7.14 ± 5.34 
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nonlinear model was estimated with the number of the model term of 25. It should 

be noted that in this experiment the participant was asked to scan the markers 

with the limited translation of head, as the first indoor test. The approach to select 

the training and testing data was the same as the indoor experiment.  

As shown in Table 2-5, the RMSE in X and Y direction is 12.00± 9.22 mm and 

7.14±5.34 mm respectively, which is well smaller than the marker size (28.8 mm). 

The performance is better than the first indoor test with a cost of increased model 

complexity. The error in the Y direction is almost half of that of the X direction 

which is due to the head movement range in the X direction being much larger 

than the range in the Y direction. The interference of distortion is therefore more 

significant in the X direction. The accumulated eye gaze mapping is visualised in 

Figure 2-8,  which clearly demonstrates the fine performance of the proposed 

system.  

2.1.3.2 Object recognition 

A pre-trained Mask R-CNN model provides 81 categories based on the COCO 

dataset, which was used to recognise the book, the cell phone and the laptop.  

 

Figure 2-8 The accumulated eye gaze mapping for the vehicle experiment 
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The automatic ROI (with a size of 640×480 pixels) selection module based on the 

mapped gaze location was applied in this framework. In Figure 2-9, the dotted 

lines represent the object recognition performance with the automatic selection 

of ROI against different values of the confidence threshold while the solid lines 

represent those without ROI. It can be clearly seen that the recognition success 

rate with ROI is consistently higher than that without ROI for all ranges of the 

confidence threshold across three types of objects. This is probably due to the 

reduced interference of other objects in the raw image. It is expected that 

following the increase of the confidence threshold, the recognition success rate 

decreases. It is shown in Figure 2-9 that when the threshold is 0.6, the recognition 

success rates with ROI for all 3 kinds of objects are above 80%.  A low confidence 

threshold leads to a high risk of misrecognition of the object, which could result 

in the accuracy decrease of NDRA identification, and it will also increase the 

system computational cost. A high confidence threshold leads to a high risk of 

missing the targeted object, which results in the failure of NDRA identification. To 

 

Figure 2-9 Comparison of object recognition performance based on the different 

confidence threshold for book, phone and laptop 
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balance this trade-off, the confidence threshold for the below results was set as 

0.6.  

Figure 2-10 plots the performance comparison of object recognition for images 

with and without ROI for each participant. An increase in the success rate is 

shown and is significant for all participants and objects. It should be noticed that 

the success rate of participant 4 with ROI for book recognition is around 44%, the 

reason is addressed below. The success rates of participant 5 for laptop 

recognition are almost 0% due to a heavy occlusion caused by cloth.  

Table 2-6 shows the overall performance of both accuracy and processing time 

by averaging all participants. Phone recognition shows the highest success rate 

(93.10%), probably due to the smallest size of the object. From phone, book, to 

laptop, the object size becomes bigger, and it is observed that the success rate 

becomes lower. This is because a large object has a high possibility of being 

covered by the human body, which leads to high dissimilarity with the training 

 

Figure 2-10 Object recognition performance comparison for raw image and ROI 

implemented image based on all participants 
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data. An increment of more than 30% has been observed in terms of the average 

success rate with the gaze-based ROI detection implemented. The average 

processing time for all objects decreases from 0.460s to 0.185s with a time 

reduction percentage of 60%. There is no significant difference in processing time 

in terms of the type of object. 

For a tablet and vehicle interior, since a dedicated training database was 

developed for a specific tablet and vehicle only, the success rates are almost 

100%. To extend its application on other types of tablets and vehicles, much more 

training data are required, which is not the focus of this research.  

2.1.3.3 NDRAs identification and analysis 

The recognised object mask and the gaze trajectory map were used to identify 

the type of NDRA that the driver is engaging in. Table 2-7 presents the 

identification accuracy of 5 tested NDRAs for all participants. For the NDRA of 

reading a book, the average accuracy is 85.04% with a standard deviation of 

19.56%. The high value of standard deviation is caused by the result of participant 

4 which is only 43.07%. High identification accuracy has been achieved for the 

NDRAs of playing phone and playing tablet, with an averaged value of 90.11% 

and 99.64% respectively. The standard deviations across participants are less 

than 10%. The performance of the NDRA of working on a laptop is more than 

85% except for participant 5 caused by the failure of object recognition due to 

cloth occlusion. The average accuracy of the NDRA of interacting with the centre 

Table 2-6 Comparison of performance of object recognition for data with and 

without ROI 

Object 
Success rate Processing time per image (s) 

Without ROI With ROI Without ROI With ROI 

Book 34.20% 85.66% 0.462 0.191 

Phone 68.07% 93.10% 0.443 0.181 

Laptop 65.01% 80.00% 0.476 0.183 

Average 55.76% 86.25% 0.460 0.185 
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console is 83.00%, which is relatively lower than others and the reason that will 

be explained below.  

Table 2-8 presents the contribution of the error caused by object recognition and 

gaze mismatch, which provides a deeper insight into how the object recognition 

and gaze trajectory estimation affect the prediction results. For the NDRA of 

reading a book, ER is larger than EM for all the participants. Specifically, the low 

NDRAs recognition accuracy of participant 4 is mainly caused by object 

recognition failure (53.49%). For the NDRA of playing a phone, ER for participant 

2 shows a high value, which is 22.53%. Apart from that, the EM is larger than ER,  

Table 2-7 NDRAs identification accuracy for all participants 

NDRAs 
Participants 

Average 
1 2 3 4 5 6 

Reading a book 99.80% 100.00% 88.74% 43.07% 84.67% 93.94% 85.04% ± 19.56% 

Playing a phone 100.00% 72.78% 92.26% 91.14% 87.40% 97.08% 90.11% ± 8.75% 

Working on a laptop 96.35% 77.98% 81.51% 79.96% 6.26% 96.56% 73.10% ± 30.82% 

Playing a tablet 100.00% 100.00% 98.68% 100.00% 99.17% 100.00% 99.64% ± 0.53% 

Interacting with 
centre console 

96.66% 86.17% 80.09% 70.84% 76.54% 87.71% 83.00% ± 8.34% 

 

Table 2-8 Error contribution of the NDRAs. ER and EM refers to the error caused 

by recognition failure and mismatch, respectively 

NDRAs 

Participants 

1 2 3 4 5 6 

ER EM ER EM ER EM ER EM ER EM ER EM 

Reading a 
book 

0% 0.20% 0% 0% 8.44% 2.82% 53.49% 3.44% 10.12% 5.21% 3.45% 2.61% 

Playing a 
phone 

0% 0% 22.53% 4.69% 1.15% 6.59% 1.98% 6.88% 5.11% 8.49% 0.94% 1.98% 

Working 
on a laptop 

0.66% 2.99% 10.20% 11.82% 8.15% 10.34% 9.62% 10.42% 88.89% 4.85% 1.19% 2.25% 

Playing a 
tablet 

0% 0% 0% 0% 0% 1.32% 0% 0% 0% 0.83% 0% 0% 

Interacting 
with centre 
console 

0% 3.34% 0% 13.83% 0% 19.92% 3.54% 25.62% 0% 23.46% 0% 12.29% 
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which suggests that the inaccurate gaze estimation is the main contribution of the 

NDRAs recognition failure. Since the size of the phone is normally small, 

enlarging the diameter of the estimated gaze region could increase the NDRAs 

identification accuracy. The main contribution of the low playing a laptop 

recognition accuracy is the body occultation, which affects the recognition of the 

object recognition (especially for participant 5) and also the NDRAs identification 

(the occulted object cannot match with the right gaze map). For the NDRA of 

interacting with the centre console, the recognition error is mainly caused by 

unmatching. It is because of a lower gaze estimation accuracy.  

Figure 2-11 presents some snapshots of eye gaze mapping and object 

recognition, which suggests that in most of the cases the eye gaze is well located 

Figure 2-11 NDRAs identification visualisation examples. These images are 

cropped from raw images for appropriate visualisation 
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inside the recognised object. For participant 5 who is working on a laptop, it can 

be seen that the estimated gaze is inside the laptop while the laptop is failed to 

be recognised, which could be solved by adjusting the position of the rear 

camera. For the NDRA of reading a book, the book cannot be consistently 

recognised, for example with participant 4, which is suffering from the shadow 

and strong illumination caused by the sun. This interference reduces the accuracy 

of the book recognition and further affects the performance of NDRA 

identification.  This is the main reason that the identification result of reading a 

book for participant 4 (43.07%) is significantly lower than the results of others.   

Compared with other NDRAs, the behaviour during interacting with the centre 

console shows a different pattern. The eye gaze is not always well located in the 

 

 

Figure 2-12 NDRAs identification and tracking for all participants. Five activities 

are distinguished by different colours of the background 
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centre of the centre console although the object is always well recognised, which 

leads to a relatively low NDRA identification accuracy. There is a relatively large 

head rotation and body movement towards the left side which lead to a relatively 

large error of gaze mapping.  

To show the performance of NDRA tracking, the blue bar in Figure 2-12 

represents the successful identification of NDRAs. It should be noted that only 

the middle 40 s for each NDRA was analysed which justifies the large blank areas 

at the beginning and ending stages of each NDRA. It can be observed that there 

are some discrete failures of identification due to failed object recognition or 

inaccurate gaze estimation. An additional reason could be that the participants 

are looking away from the object, which is highly possible in real applications. To 

improve the accuracy of tracking, a large time window size in the classifier is 

suggested. However, it will sacrifice the performance of tracking the rapid change 

of NDRAs.   

2.1.3.4 Comparison with the state-of-the-art 

The proposed approach has been compared with some state-of-the-art methods 

from the perspective of both action recognition and specific NDRAs recognition, 

which are 

(1) ResNet-50 [43]. It has a 50 layer 2D CNN architecture and achieves the action 

classification in the spatial domain. A pre-trained model on the ImageNet dataset 

is employed in this study. 

(2) Two-stream CNN-based approach (2-stream) [18] for NDRAs recognition. 

This method uses the information of both the RGB image stream and its 

associated current and historical optical flow frames to achieve the classification 

of the NDRAs. 

(3) 3D ResNets-18 (R3D18) [44]. It is based on ResNes-18 architecture that 

mainly utilises the 3D residual block in the whole network to encode the spatial-

temporal information for action recognition.  
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(4) (2+1)D ResNets  (R(2+1)D) [45]. It factorises the 3D residual block in R3D18 

into a 2D spatial residual block and a 1D temporal residual block. Compared to 

the 3D convolution with the same number of parameters, such a structure 

doubles the number of nonlinearities, which improves the model’s capability of 

representing complex functions. 

All methods were tested on the collected NDRA data. As mentioned before, 40s 

video data for each activity and each participant was used for NDRA recognition, 

which was split into 40 instances. All training and testing data were extracted from 

the rear camera by cropping a region that covers the human-object interaction. 

There are a total of 1200 instances in the dataset. k-fold cross-validation is 

employed to evaluate the models’ performance based on the participants, where 

k is set as 3 in this study. For each k, data of 4 participants were used for training 

and the remaining 2 participants for testing.  

The results are presented in Table 2-9. It can be observed that the proposed 

method achieves similar performance with other state-of-the-art methods, where  

ResNet-50 has relatively low accuracy. It should be noted that, firstly, most of the 

existing NDRAs recognition methods, including the selected 4 methods, focus on 

the hand interaction between the driver and the object. Such methods lack the 

investigation of the driver’s visual attention, which could lead to a misdetection of 

NDRA engagement since the driver could check the road with their hand holding 

the object. The awareness of the driving environment is also important for the 

take-over strategy. Secondly, although the proposed method uses deep learning 

methods, it is fundamentally different from other compared methods. This method 

tends to be transparent and the type of activity is determined by considering the 

location of eye gaze and the type of object with the gaze. There is no further 

Table 2-9 Comparison of the proposed method with 4 state-of-the-art methods on 

the NDRA dataset 

Method ResNet-50[43] 2-stream[18] R3D18[44] R2+1D[45] Ours 

Accuracy 81.8% 86.3% 86.5% 85.3% 86.2% 
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training process required to include a new type of activity. However, other 

compared methods will have to be trained again to include more activities. 

Thirdly, compared with the proposed method, the deep learning-based methods 

normally take a longer time to provide a prediction as information within a certain 

time window is used, which could slow down the system response. 

2.1.4 Discussion 

The performance of the proposed framework is largely affected by two factors: 

the accuracy of the driver’s gaze estimation and the success rate of object 

recognition.  

For the gaze estimation system, the order of the model and the number of the 

model term determine the model complexity which affects its performance. Table 

2-10  presents the model performance based on different model orders, where 

the number of the model term was set as 20. It can be observed that the RMSE 

in the X direction has been reduced from 56.49 pixels to 10.39 pixels, equal to an 

81.6% improvement of accuracy when the 2nd order model is used instead of the 

linear model. When the model complexity is increased from 2nd order to 3rd 

order, the increment of mode performance is much less significant (13% 

improvement). A similar pattern has been observed in the Y direction. On the one 

hand, the model is preferred to be as simple as possible to a) ensure low 

computational time for real-time applications, and b) avoid the over-fitting 

problem. On the other hand, the model should be sophisticated enough to cope 

with the interference of camera distortion and head movement. For all tests 

conducted in this study, the 2nd order nonlinear is appropriate. However, the 

Table 2-10 Model performance based on different model order for the in-vehicle 

experiment 

Term 
Root Mean Square Error (pixel) 

X Y 

Linear 56.49 ± 11.09 20.21 ± 7.91 

2nd order 10.39 ± 7.50 5.94 ± 4.49 

3rd order 9.04 ± 6.77 4.87 ± 3.66 
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optimal model order can be different if a different camera is used. Generally 

speaking, a camera with high distortion requires a high order of model and more 

number of model terms. All these observations can be applied to the number of 

the selected model term. It is suggested to select the model as simple as possible 

as long as the error of estimation is smaller than the markers. If a high resolution 

of eye gaze mapping is required, smaller markers should be used.  

The selection of the markers’ location affects the system performance. In the 

vehicle experiment, some strategic locations were chosen such as the 

windscreen, wing mirrors, steering wheel and dashboard aiming to cover popular 

areas which the driver is often gazing on. Figure 2-13 plots the RMSE of 

estimated gaze on markers against the percentage of the distance from markers 

to the centre of the image to the image size. It can be seen that there is an 

average error of around 6 pixels for the markers around the centre, and the error 

increases following the increment of distance with an approximately quadratic 

 

Figure 2-13 The model accuracy against the change of the marker locations, 

which suggests the influence of t distortion 
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relationship. This observation is clear evidence that the model performance is 

affected by distortion of the lens. Apart from the distortion, another reason for 

relatively poor performance on the edge of the image is caused by the OpenFace 

algorithm. When the driver gazes at the area around the edge of the image from 

Camera 2, the head rotation is usually large. The accuracy of facial features 

extracted by Camera 1 is compromised because some landmarks are hidden or 

partly visible. Using multiple cameras to capture the driver’s facial features can 

address the problem but will increase the complexity and cost of the system. 

For object recognition, there are a few challenges:  

 To extend the universality of various models of a certain type of object, a 

large dataset such as COCO should be used. The dataset also should 

consider the diverse range of NDRAs. 

 The main difference in object recognition between this study and other 

studies is that the driver is usually holding the object which inevitably leads 

to occlusion by hands or body if the camera position is not appropriate. 

The confidence level of recognition will be reduced. The confidence 

threshold, therefore, must be selected carefully. This problem is especially 

significant for small objects.  

 The location of the rear camera must consider two factors: avoiding the 

occlusion of the human body on the object and reducing the noise caused 

by illumination. This problem is especially significant for large objects. 

 Sunlight will cause the reflection of glass-surface objects such as the 

phone, the laptop and the tablet. It could decrease the recognisability or 

confidence score of object recognition. 

 Other developed action recognition algorithms, which has the potential 

application for NDRA recognition, usually focus on the driver’s hand 

location or the interaction between hand and object/device. However, in 

the real driving scenario, the driver is engaging in NDRA while observing 

surrounding situations. The proposed approach directly measures the 

driver’s visual attention, which is crucial for further evaluation of the driver’s 

awareness of the driving environment for a safe take-over transition. 
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2.1.5 Conclusions 

This chapter proposes a dual-camera based NDRAs identification framework that 

benefits from computer vision, nonlinear system modelling and deep learning. It 

has been successfully demonstrated that this framework can identify the NDRAs 

which require visual attention.  The main strengths of this technique are: 

 The error of the gaze estimation system in the in-vehicle experiment for 

the X and Y direction is 7.80±5.99 pixels and 4.64±3.47 pixels respectively 

with an image resolution of 1440×1080 pixels. 

 NDRAs required visual attention can be identified by inferring the object 

that the driver is looking at. The average success rate of this proposed 

framework is 86.18%. The performance is affected by both object 

recognition and gaze estimation, which could be further improved through 

creating the specific dataset for training and better locating the rear 

camera. 

 The proposed gazed-based ROI module embedded in this framework 

contributes about a 30% improvement of average success rate and about 

a 60% decrease of processing time.  The size of this ROI can be 

customised according to the resolution of the rear camera.  

 The proposed active classifier improves the resilience to noise, such as 

the object can not be recognised suddenly due to occultation, by using a 

sliding time window. 

 The research of driver distraction in a human-driving vehicle can benefit 

from this study. The proposed system can be used to detect the driver’s 

distraction behaviour by extending the types of objects to recognise, such 

as side mirror checking behaviour, dashboard checking behaviour, etc.  

The main limitations are: 

 The proposed framework is not applicable to the NDRAs without visual 

attention, such as listening to music. 

 The gaze estimation model could be subjective. A calibration process 

therefore is suggested for each driver before testing. Achieving a generic 

model to remove the calibration process requires further studies.   
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 As a camera-based approach, the performance of object recognition 

suffers from noise caused by harsh illumination, surface reflection and 

object occultation. 

 It should be noted that the proposed solution is only based on the object 

that the driver is engaging in. It cannot show whether the driver is watching 

a video or texting a message when a phone is used. To refine these 

NDRAs, further studies are required.  

 A potential problem to apply it in a driving vehicle is the facial feature 

extraction will be compromised due to the potential heavy movement of 

the driver body and camera movement caused by poor road condition 

For future work, with the increasing computational capability of portable devices 

like mobile, some existing lightweight models for object recognition can be used 

for a portable device-based real-time NDRA recognition system. Furthermore, the 

tracking of NDRAs could determine the duration of the engagement. The impact 

of different durations for various NDRAs on driver’s state and take-over 

performance needs to be evaluated, which is crucial for further design of take-

over strategy to achieve the smooth and safe take-over transition. 
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3 Hand gesture based NDRAs recognition 

This chapter is based on the published paper: L. Yang et al., “A refined non-

driving activity classification using a two-stream convolutional neural network,” 

IEEE Sens. J., vol. 21, no. 14, pp. 1–1, 2020, doi: 10.1109/JSEN.2020.3005810. 

3.1 Introduction 

Freely engaging in non-driving related activities (NDRAs) may be allowed in the 

future when the driver is driving a level 3 automated driving vehicle [1]. According 

to the definition of the SAE (J3016) Automation Levels [2], the driver should 

respond appropriately to the request to intervene. However, the engagement of 

NDRAs could reduce the driver’s perceptual and cognitive capability on driving 

and situation awareness, which could result in a negative impact on the take-over 

response [3]. From the perspective of driving safety, Kim et al. [4] suggested 

when the take-over request is given by the vehicle, the driving performance after 

the take-over could be affected by the driver’s age, gender and experience, but 

the status before the take-over might be more relevant. Although some 

approaches [4], [5] have been proposed in recent years to directly evaluate the 

driver’s mental workload, the evaluated accuracy is not satisfactory due to the 

lack of convincible ground truth. The evaluation of the workload could be 

subjective and it is hard to be quantified. The further research results show that 

different types of NDRA and driving scenarios could cause different cognitive 

loads of the driver which affect the performance of the take-over quality and take-

over time [6], [7]. For instance, visual related activities tended to take a longer 

reaction time than auditory related activities [8]. To achieve high-quality take-over 

and safety enhancement [9], it is therefore crucial to precisely identify, distinguish 

and track the type of NDRA that the driver is engaging in, then to evaluate the 

status and attention level or workload for the improvement of vehicle safety and 

operational efficiency. However, there is very limited literature focusing on that. 

Analogous to NDRAs, secondary tasks as non-driving related tasks have been 

widely researched in human-driving in recent years. Li and Busso [10] claimed 

that secondary tasks can be recognised by evaluating the driver’s mirror-
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checking action. However, when the driver is doing NDRAs in an automated 

driving vehicle, the frequency of the mirror-checking will significantly decline. 

Therefore, this action is not considered an appropriate indicator for NDRA 

recognition. Jin et al. [11] proposed to recognise 6 secondary tasks (Bluetooth 

calls, cell phone calls, sending text messages, operating car-mounted players, 

chatting and singing) by combining both extracted eye movement and vehicle 

state characteristics. Martin et al. [12] presented a 3-stream recurrent neural 

network (RNN) system based on the driver’s upper body pose. This system 

evaluates the transient skeleton movement, the spatial relationship of body parts 

and the knowledge about the vehicle interior to recognise 6 secondary tasks 

(drinking from a bottle, eating, using a phone for texting, making a call and 

reading a book). Xing et al. [13] collected both the colour and depth images of 

the driver’s behaviour inside the vehicle cabin. Besides, the Kinect recorded the 

3-D head rotation angles and the upper body joint position. A feedforward neural 

network (FFNN) was established to analyse the collected data and identify the 

secondary tasks. All these studies can recognise some kinds of secondary tasks 

like using a phone, operating the car-mounted player and chatting while driving 

manually. They presume that the primary task is driving which limits the diversity 

and continuity of the secondary tasks. These methods, therefore, cannot be 

directly applied for recognising NDRAs with high complexity and uncertainty. 

Yang et al. [1] proposed a dual-cameras based drive gaze mapping system that 

could be used to recognise some NDRAs with visual attention by mapping the 

gaze on the object that the driver is engaging in. However, such an object-based 

recognition approach can only identify that the driver is interacting with a phone 

but cannot recognise whether the driver is watching a movie (passive interaction) 

or playing a game (active interaction). The level of the driver’s engagement in 

these activities in terms of perception and cognition is different according to the 

interaction mode, which leads to different performance after the take-over. The 

activities like reading or watching videos are considered passive-interaction 

activities since the driver intakes the information passively. But some like texting 

and playing games request a strong active interaction between the device and 

the driver. Consequently, the interaction mode could result in a different workload 
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of the driver [4], [8]. A further refinement of NDRAs classification in terms of 

object/device and task is therefore highly essential to design a more intelligent 

and efficient take-over process. This chapter proposes a novel region of interest 

(ROI) based 2-stream (visual scene and optical flow) convolutional neural 

network system to achieve this target through identifying both the device that the 

driver is engaging in and the task (e.g. reading, playing a game, watch a movie, 

emailing etc.) simultaneously. 

3.2 Methodology 

3.2.1 System Architecture 

In the early stage of human action recognition, the human-object interaction has 

been widely researched, through the integration of object recognition, pose 

estimation and action identification [14], [15]. For the NDRAs recognition, the 

movement restriction and the body occultation enhance the difficulty of human 

pose estimation since the driver is sitting on the seat. Object detection methods 

can also be used to recognise some actions inside a vehicle such as hands-on-

steering-wheel or using a phone [16]. Such methods recognise the human body 

parts and the object by sematic instance segmentation. With the development of 

multi-object detection, several CNN-based approaches have been proposed for 

action recognition in video. The achievements have been made from the 

perspective of the CNN framework or network design [17]–[19]. The evaluation 

of such existing researches is based on representative video datasets, such as 

HMDB-51 [20], UCF-101 [21], Kinetics [22]. These researches focus on the 

classification of actions with distinctive features like cutting in the kitchen, swing, 

archery etc. [21].  However, in this chapter, we focus on the classification of those 

phone-using and tablet-using NDRAs with high similarities. Such NDRAs happen 

inside of a vehicle and the driver is constrained on the seat. The spatial moving 

scale and intensity of activities are quite lower and harder to distinguish than the 

distinctive ones abovementioned. In this chapter, we propose that the 

classification process can be divided into 3 steps. In the first step, by extracting 

the ROI of the raw image captured by the camera, the interaction between the 

driver and the object can be limited to a region, which is helpful to reduce the 
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noise and the processing time. The second step is to classify the object or device 

the driver is operating on. It relies on the analysis of the object’s spatial 

information. The last step is to indicate how the driver interacts with the object 

based on pattern recognition. It is achieved by motion estimation. The last 2 steps 

can be run in parallel. The final result is given by fusing the 2 steps.    

The flowchart of the system is illustrated in Figure 3-1, where the proposed 

system contains two modules: the ROI selection module and the 2-stream CNN 

module. The input frames are collected by a camera which is mounted on the roof 

of the vehicle to ensure that the object and hands are captured. The ROI module 

provides a region of human-object interaction (highlighted in Figure 3-1), which 

aims to significantly reduce the processing time and background noise for the 2-

stream CNN module, and furtherly improve the classification accuracy. Then the 

detected ROI is fed into the 2-stream CNN module. The input of the spatial stream 

is from the RGB images and the input of the temporal stream is from a stack of 

optical flow frames which represent the motion between two adjacent frames 

within a certain time window. Then the prediction scores of the spatial and 

temporal streams will be fused to promote the final NDRA classification result. 

3.2.2 ROI Selection 

The raw RGB frames captured by the camera carry abundant information from 

both inside and outside of the vehicle. When we attempt to characterise and 

identify NDRAs, the most important parts are the object operated by the driver 

and the pattern of the driver’s behaviour, especially the figures and hands. This 

 

Figure 3-1 The proposed framework for NDRAs recognition that consists two 

parts: ROI selection module and 2-stream CNN module 
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module aims to extract a region covering these parts from the raw frame due to 

two reasons. The first benefit is to help achieve real-time or near real-time 

performance. The size of the images fed into CNN should be small and 

informative. To keep the details of useful information, cropping the useless 

background is better than downsizing. The second benefit is to eliminate 

background noise. The scene change on the window during driving could 

introduce interference to pattern recognition. To achieve these aims, the raw 

frame is initially analysed by an object recognition algorithm, Mask R-CNN. It is 

a state-of-the-art object instance segmentation algorithm that could classify 

objects and localise them in pixels [23]. Comparing with the methods which can 

only provide a bounding box to localise the object, this algorithm offers a more 

accurate boundary as a mask on the recognised object, which is crucial to 

determine whether the driver is engaging in the object. The details are presented 

in Figure 3-2. In this module, Mask R-CNN is applied to recognise the driver and 

potential objects which could be involved in NDRAs, along with the masks. Then 

the ROI is selected based on the centre of the overlapping or connected area 

between human and object. The cropped frame will then be used as an input of 

 

Figure 3-2 The flowchart of the ROI selection module 
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the 2-stream CNN module. If there is no ROI detected, the following module will 

not be activated, which suggests there is no related object or person in the scene, 

or the person and the object are recognised but the person is not interacting with 

it. For the estimation of optical flow, it is assumed that the location of the ROI 

within the time window does not change over time. If the object or driver is not 

detected or the ROI location difference between the last frame and current frame 

is smaller than a pre-set threshold, the current ROI will be the same as the ROI 

in the last frame. The ROI will only be updated if the location change exceeds the 

threshold. The threshold was set as 40 pixels in this study. The size of the ROI is 

customisable. In this case, the size was set as 320 × 320 pixels, where the raw 

image size is 1920 × 1440 pixels.  

3.2.3 Optical Flow Estimation 

Optical flow information has wide applications in studying vision-related tasks 

such as human pose estimation [24], video classification [25] and action 

recognition [26]. The rich motion information can be used to characterise the 

driver’s behaviour between two adjacent frames. Compared to other optical flow 

estimation tools like DeepFlow [27] and Flow Fields [28], FlowNet 2.0 achieves 

the finest estimation performance. It provides the end-to-end optical flow 

estimation with convolutional networks [29]. The motion vector of each pixel is 

visualised by colour coding. The detail can be found in  [30].  

The processed optical flow frames for both raw and ROI frames are presented in 

Figure 3-3. The optical flow frame extracted from two adjacent raw frames 

includes the pixel motion from various moving sources, e.g., human, device, 

outside scene. We assume that the driver’s behaviour associated with the device 

trajectory is the most important factor, particularly, the hand movement, to 

determine the task as detailed as possible. The obtained information from the 

optical flow frame can be categorised into 4 parts: scene change outside the 

window, body movement, device movement, and system noise, as marked in 

Figure 3-3. From the optical flow frame, a moving vehicle and a pedestrian 

outside the window can be observed and regarded as outside noise. There is 

also some system noise on the right side of the frame. All this information has no 
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strong relevance to the pattern of the driver’s behaviour. It can be considered as 

noises that could result in a negative effect on the performance of the temporal 

stream. It should be noted that although the driver’s head and arm movement 

could be related to NDRAs it is relatively subjective and ignored in this study. In 

contrast, the optical flow of the ROI frames provides clear features related to the 

driver’s hand and object movement. It is therefore used as one of the inputs for 

the 2-stream CNN module. 

 

Figure 3-3 The comparison of the optical flow frame performance between raw 

frames and ROI frames 
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3.2.4 2-stream CNN  

The challenge of action recognition in a still RGB image is that it cannot provide 

spatiotemporal features [18]. Particularly for NDRA recognition, common 

methods like pose estimation and scene recognition are not applicable. The driver 

is constrained on the seat and the only moving parts of the driver are the hands 

or head. The features extracted from the still image are not enough to differentiate 

most of NDRAs. In recent years, several CNN-based action recognition 

architectures have been proposed to improve the ability to capture the 

spatiotemporal features and increase the accuracy of the action recognition in 

videos, such as CNN with long short-term memory (LSTM) [31], 3D CNN [17], 2-

stream CNN [19] and 2-stream 3D CNN [22]. The temporal stream of the 2-

stream architecture offers the features of movement in the time domain and helps 

to identify the driver’s behaviour. However, the state-of-the-art algorithm provided 

by the 3D CNN model in the 2-stream architecture requests large-scale datasets 

due to the complexity of the network [32]. Unlike the representative datasets 

mentioned above, the dataset used in this study is relatively small. One of the 

differences in data is that the features of the driver’s behaviour are constrained 

in a small region. A complex network could increase the training burden and 

easily lead to an overfitting problem. Hence, a 2-stream architecture with 2D CNN 

model is proposed in this chapter. To achieve a better recognition performance, 

the CNN model in the 2-stream architecture is built based on the Residual 

Network (ResNet) due to its strong capability of training deeper networks [33].  

The architecture of the CNN module is presented in Figure 3-4. The input of the 

spatial stream is a single ROI RGB frame at the current time and the input of the 

temporal stream is a stack of 10 optical flow frames (equals to 0.42s with a 

sample rate of 24 fps) on ROI calculated from 11 adjacent frames including the 

current frame. Traditionally, the input of the temporal stream is a stack of two-

channel frames (two vectors). For an arbitrary pixel (𝑢, 𝑣) in a single frame at the 

time 𝑡, the motion vector of this pixel is denoted as (𝑝 (𝑢, 𝑣)⃗, 𝑝 (𝑢, 𝑣)⃗). The input 

for the temporal stream is denoted as 𝑆 (𝑢, 𝑣, 𝑐), where 𝑐 indicates the channel 

index. The corresponding input stack can be expressed as follow: 
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𝑆 (𝑢, 𝑣, 2𝑘 − 1) =  𝑝 ⃗(𝑢, 𝑣)

𝑆 (𝑢, 𝑣, 2𝑘) =  𝑝 ⃗(𝑢, 𝑣)
 (3-1) 

where 𝑢 = [1, 𝑤], 𝑣 = [1, ℎ], 𝑘 = [1, 𝑁], 𝑤 and ℎ are the width and height of the 

frame respectively, 𝑁 denotes the number of the frame inside the stack. 

In this study, we visualise the optical flow with colour coding. The vector field is 

then converted from two channels into three RGB channels. The input stack for 

the current frame 𝑡 can then be expressed as follow: 

⎩
⎨

⎧𝑆 (𝑢, 𝑣, 3𝑘 − 2) =  𝑝 ⃗(𝑢, 𝑣)

𝑆 (𝑢, 𝑣, 3𝑘 − 1) =  𝑝 ⃗(𝑢, 𝑣)

𝑆 (𝑢, 𝑣, 3𝑘) =  𝑝 ⃗(𝑢, 𝑣)

 (3-2) 

The number of optical flow frames in the stack, 𝑁, is configurable. It depends on 

how much historical information is required. Its performance will be addressed 

and discussed below.  

ResNet-50 models are then built for both streams independently. There are 5 

groups of convolution layers shown in Figure 3-4. In the convolutional layer 1, 

Figure 3-4 The architecture of ResNet 50 CNN. There are three types of 

convolutional blocks in this network, which are detailed in the bottom graph and 

indicated as different colours 
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both models extract 64 feature maps from the input. The difference between 

these 2 streams is the input, which is a 3-channel RGB image for the spatial 

stream or a 30-channel optical flow stack for the temporal stream. The last 4 

convolution layer groups are made up of 3 types of residual block, which are 

shown at the bottom of Figure 3-4. The design of the shortcut structure in the 

block can be expressed as: 

𝑥 =  F(𝑥 , {𝑊 }) + 𝑥  (3-3) 

where 𝑥  is the input of the layer 𝑙. F(𝑥 , {𝑊 }) represents the function where the 

residual mapping is learned. Such residual structure alleviates the problem of 

exploding and vanishing gradient and usually achieves good performance in a 

deeper network [33]. 

The training process started with a pre-trained ResNet-50 model. The loss 

function used in training can be described as: 

𝐿𝑜𝑠𝑠(𝑥, 𝑙𝑎𝑏𝑒𝑙) =  −𝑥[𝑙𝑎𝑏𝑒𝑙] + log 𝑒( [ ])  (3-4) 

where 𝑥 is the output that has been one hot encoded. 𝑙𝑎𝑏𝑒𝑙 is the true class. 𝑗 is 

the index of the classes. The stochastic gradient descent (SGD) algorithm is used 

as an optimizer [34], which can be expressed as: 

𝑤 = 𝑤 −   γ∇ L(𝑧 , 𝑤 ) (3-5) 

where 𝑛 is the number of iteration. The gradient descent method focuses on the 

randomly picked mini-batch 𝑧 . The loss L is minimised bases on the gradient of 

the weight vector 𝑤 and the chosen gain γ. Furthermore, the learning rate is 

controlled in the training process. It starts with a high learning rate to accelerate 

the process and then reduces when the loss of the validation dataset stops 

improving.  

After the training process, the trained model assesses the prediction scores of 

both streams. Finally, both scores are fused through a model expressed as: 
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𝑆 =  
𝑅

∑ |𝑅 |
+

𝑂

∑ |𝑂 |
 (3-6) 

where 𝑆  is the fusion score, 𝑅  is the prediction score from the spatial CNN 

module, 𝑂 is the prediction score from the temporal stream, 𝑖 is the class index, 

and 𝑛 is the number of NDRAs class. 

3.2.5 Experiment Setup and Performance Validation 

A Land Rover Discovery 4 was used as the test vehicle. The employed camera 

was the Garmin Virb Action Camera which was mounted on the roof of the vehicle 

between two front seats. The resolution of the camera was set as 1920 × 1440 

pixels and images were sampled at 24 frames per second (fps). A PC with an 

Intel i7 9700k CPU, 32GB memory and an NVIDIA GeForce RTX 2080 GPU was 

employed for all deep learning related work. 

During the experiment, the vehicle stayed stationary. A total of 10 participants (6 

male and 4 female) were recruited for this experiment. The participants’ age is in 

Table 3-1 The NDRAs that drivers want to do in automated driver vehicle [35] 

NDRAs U.S. China India Japan U.K. Australia 

Read 14% 10.8% 11.1% 8.4% 9.9% 8.3% 

Text or talk 12.7% 21.5% 16.3% 11.0% 7.1% 10.1% 

Sleep 8.8% 11.2% 5.1% 18.9% 9.4% 9.0% 

Watch movies 7.8% 1.7% 13.4% 9.2% 5.4% 7.3% 

Work 6.2% 5.6% 17.7% 1.0% 6.4% 6.5% 

Play games 2.6% 1.4% 2.3% 1.8% 2.5% 2.5% 

Other 1.8% 0.7% 0.8% 0.3% 2.2% 1.3% 
 

Table 3-2 Categories for NDRAs recognition 

Term Browsing 
websites 

Sending 
emails 

Playing 
games 

Reading 
Watching 

videos 

Phone PB PE PG PR PV 

Tablet TB TE TG TR TV 
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a range from 22 to 26. They were requested to sit on the driving seat with the 

fastened seat belt and used the phone and tablet to conduct the selected 

activities one by one. Each activity lasted 1 minute. As shown in Table 3-1, Sivak 

and Schoettle [35] suggested that the common NDRAs are reading, texting, 

working, watching movies and playing games. From this survey, a total of 10 

types of NDRA were identified and evaluated in this experiment, as presented in 

Table 3-2. The class of each activity is presented in 2 capital letters for the 

convenience of the result presentation. The first letter refers to the object (P and 

T stand for phone and tablet respectively), and the second letter refers to the 

task. For instance, PE refers to sending emails using a phone. Auditory guidance 

using Google Cloud Text-to-Speech was provided in this experiment to ensure 

consistency across all participants.  

In this experiment, the participants need some time to follow the auditory guide 

for the NDRAs transition. Therefore, only the middle 40 seconds video was used 

for training, validation and testing. Each video has been split into 20 segments 

with a length of 2 seconds for each segment. There are 2000 segments in total 

for all participants and all NDRAs. From these segments, 64% of them was 

randomly selected for the training process, 16% of them was used for the 

validation process and 20% of them was used for the testing process. In the 

training process, 1 instance was randomly picked from each segment for both 

streams. The validation process was activated after each training epoch to adjust 

some hyperparameters like learning rate. 3 instances were randomly picked from 

each segment for both streams in this process. The testing process happened 

after the training process to evaluate the performance of the system. The 

following analysis is based on the results of the testing process 

3.3 Results 

3.3.1 Two Streams 

An example of input frames for the 2-stream CNN module for each NDRA is 

presented in Figure 3-5, where the first column is the raw image with a full 

resolution, the second column is RGB images of the selected ROI as the spatial 

stream, and the remaining columns are the optical flow frames as the temporal 
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stream. From the RGB images of ROI, the difference can be observed between 

the phone-related activities and the tablet-related activities. The difference 

includes (a) the size of the object, (b) the distance between the object and the 

driver’s body, and (c) the hand gesture. Therefore, the spatial stream should be 

able to differentiate the first 5 NDRAs and the last 5 NDRAs. However, this 

difference between the first 4 phone-related activities is dramatically dropped. It 

can be predicted that the classification accuracy for these 4 activities will be 

relatively low if only the spatial stream is applied. Furthermore, it can be seen that 

Figure 3-5 Examples of raw frame and input frames of 2-stream CNN module. There 

is some overlap between optical flow frames to fit the figure size 
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there is some reflection on the screen of the phone and the tablet. The change of 

illumination could affect the spatial information of the object while the driver is 

doing the same NDRA, which could furtherly bring a negative impact on the 

classification performance.  

The optical flow frames contain more information on the driver’s motion 

behaviour. It can be seen that activities like PB, PR, and TR involve one hand 

most of the time. Meanwhile, some activities like PE, PG, TB, TE, and TG need 

two hands for interaction. Another dimension of the difference between the two-

hand related activities is the hands and fingers movement. For example, the 

different colour pattern between PE and PG suggests a different interaction mode 

with the device. The driver’s behaviour on these NDRAs can be differentiated by 

the movement vectors of the hands and fingers which are represented by colours 

and their accumulation in the time domain. It also should be noticed that the 

optical flow stream is sensitive to the relatively high-frequency interaction for 

NDRAs like playing games, sending emails. For some other NDRAs like watching 

videos or reading, particularly with the tablet, the driver may stay with the same 

pose for a long time without any movement, as shown in TR and TV. 

3.3.2 Classification Performance 

The classification performance of the spatial stream only is presented in Figure 

3-6. It can be found that phone-related activities can be easily distinguished from 

tablet-related activities, evidenced by zero error. However, for the classification 

among the phone-related activities or the tablet-related activities, the 

performance is not satisfactory. For PB, PE, PG and PR, the recall is lower than 

50%, more than half of the true instance has not been recognised. TB and TR 

are difficult to be differentiated as well. This indicates that the spatial stream is 

not able to offer a persuasive NDRA classification for the same object. Besides, 

it can be observed that the value of both recall and precision for watching videos 

by phone (PV) and tablet (TV) are high, which suggests a reliable NDRA 

classification. The reason is that the way how participants interact with objects is 

quite special. When participants are conducting some activities like browsing 

websites or sending emails, they usually hold the phone or tablet vertically. 



 

85 

However, for watching videos, most participants hold the phone or tablet 

horizontally. Comparing with the phone-related NDRAs, the tablet-related NDRAs 

classification shows a better performance in the spatial stream for both recall and 

precision. The content on the tablet’s screen may have a contribution to the 

classification while that is not available for the phone, as shown in Figure 3-5.  

Figure 3-7 presents the confusion matrix of the classification using the temporal 

stream only. The recall of most NDRAs is around 75%, except TR. Almost half of 

the true instance has been predicted as PR, which is because both NDRAs lack 

movement. The precision of most NDRAs is above 80%, while the precision of 

PR is only 38.6% Both recall and precision of sending emails are the highest 

(above 90%) no matter using a phone (PE) and tablet (TE). This is contributed 

by the special interaction mode in comparison with others.  

Figure 3-6 Confusion matrix of NDRAs recognition for the spatial stream. The 

precision and recall for each class are presented in the bottom and right of the 

figure, respectively, where the blue colour indicates the true value and the 

orange colour indicates the false value 
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The fusion result of the proposed 2-stream approach is shown in Figure 3-8, 

which demonstrates a significant improvement for all NDRAs in contrast to the 

results of any single stream. The classification error among the NDRAs with the 

same object has been dramatically reduced. The overall accuracy is presented 

in Table 3-3. The overall accuracy has been improved from 61.0% (the spatial 

stream only) to 90.5%. Specifically, for the phone-related activities, the accuracy 

has been improved from 49.0% to 88.3%. For the tablet-related activities, the 

accuracy has been improved from 73.7% to 92.8%. In terms of the performance 

of a single stream, the temporal stream performs much better for phone-related 

activities. While for tablet-related activities, the performance is similar. The 

weighted F1 scores for all 3 terms are similar to the accuracy results. The top-3 

error of the proposed method is only 0.5%. Specifically, for the spatial stream, the 

top-3 error is 10.5% while the weighted F1 value is only 60.6%. It suggests that 

the spatial stream could achieve a good performance on classifying the activities 

Figure 3-7 Confusion matrix of NDRAs recognition for the temporal stream 
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into some object-related groups, however, it cannot further classify the specific 

class from groups with the spatial information only. 

Table 3-4 shows the overall performance when the ROI automatic selection is 

removed from the approach, which is similar to the work of [20]. It is suggested 

that the ROI automatic selection contributes almost 20% of accuracy. 

Furthermore, the performance of the spatial stream is especially sensitive to the 

Figure 3-8 Confusion matrix of NDRAs recognition for the fusion of 2 streams 

Table 3-3 Overall accuracy of NDRAs recognition 

Term Spatial stream 
Temporal 

stream 
Fusion 

P accuracy 49.0% 82.5% 88.3% 

T accuracy 73.7% 73.2% 92.8% 

Accuracy 61.0% 78.0% 90.5% 

Weighted F1 60.6% 78.7% 90.6% 

Top-3 error 10.5% 4.3% 0.5% 
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ROI, where the accuracy drops from 61% to 19% in comparison to the temporal 

stream where the accuracy drops from 78% to 66%). This is probably because 

the spatial stream is easier to be interfered with by the complex driving 

environment. 

3.3.3 Conflicted Cases Analysis 

In this section, the details of conflicted cases are presented to further explain the 

reason why the fusion of two streams can help increase the accuracy of NDRA 

recognition. Figure 3-9 presents 3 cases where the fusion result is correct but the 

result from a single stream is not always right. It includes the “false-true-true 

case”, “true-false-true case” and “false-false-true case” for the spatial stream 

only, the temporal stream only and 2-steam respectively. The ground truth class 

is highlighted by a red block.  

From the false-true-true case (the ground truth is PE), for the result of the spatial 

stream only, the scores of the first four classes are quite close. PB has the highest 

score that leads to a false result. However, both the temporal stream and 2-

stream make the right decision. This is because the interaction mode of writing 

email is relatively unique from the others. For the true-false-true case (the ground 

truth is TR), with the help of the content extracted from the screen, the spatial 

stream achieves a true prediction although the scores of TB, TE and TR are 

similar. The prediction result of the optical flow is false due to the interference of 

PR and PV. This is because hand movement information in these activities is 

limited. After fusing these 2 streams, the prediction result is true. The bottom 

subfigure of Figure 3-9 presents the false-false-true case. Similar to the last case, 

the temporal stream cannot provide a true prediction due to the similarities 

Table 3-4 Overall accuracy of NDRA recognition without ROI selection 

Term Spatial stream 
Temporal 

stream 
Fusion 

Accuracy 19.0% 66.2% 72.5% 

Weighted F1 15.1% 66.4% 71.5% 

Top-3 error 32.5% 10.2% 5.5% 
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between TR and TV. It means that it is hard to differentiate reading and watching 

videos purely from the optical flow for the same reason above. Meanwhile, the 

spatial stream also suffers from the interference of PB, PE and PG. However, 

after combining the two streams, the score of PR is significantly higher than the 

others, which demonstrates the superiority of the proposed solution. 

3.4 Discussion 

For the proposed NDRA classification system, the performance could be affected 

by a few factors including the camera position and the number of frames for the 

temporal stream (N). A few other camera positions have been tested in the  

 

Figure 3-9 Prediction results for inference cases. The true class is highlighted by 

a red block 
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experiment including the windscreen in front of the driver, the side window near 

the front passenger seat. On those positions, a clear view of the object and hands 

could not be obtained due to occultation caused by the human body or steering 

wheel. It is essential to recognise the driver and the object from the captured 

images. The selected camera position achieved the best performance of the 

tested positions. Although the side window is included, the ROI module can 

successfully remove this type of noise. 

A stack of optical flow frames is regarded as the input of the temporal stream. 

The performance of the single temporal stream and 2-stream against the number 

of frames in the stack is presented in Figure 3-10, where P indicates the phone-

related activities and T indicates the tablet-related activities.  It can be observed 

that, in general, with the increment of N, the recognition accuracy increases due 

to the consideration of increasing temporal information. However, a larger 

number of frames also indicates that the system takes more time to determine 

 

Figure 3-10 Impact of number of input motion frame on performance of temporal 

stream and fusion 
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the type of NDRA, which is not helpful for real-time system deployment in the 

future. In this experiment, the number was set as 10 for the balance. 

It should be noted that the analysis of this study is offline based and the real-time 

performance is not evaluated. From our point of view, it is not necessary and 

unlikely to output a decision for every frame because an activity usually is defined 

as a period of interaction. Using the mentioned PC, the average processing rate 

is 3.07, 16.38 and 126.17 fps for ROI selection, optical flow estimation and two-

stream CNN activity recognition, respectively. It is our notion that the system can 

update the outcome every 1 second. Furthermore, the experiments were 

conducted on a stationary vehicle. There will be some challenges to deploy it to 

a driving vehicle. For example, camera vibration could introduce noise to the 

optical flow estimation. As a computer-vision approach, the rapid variation of 

illumination will also introduce extra noise for object recognition. 

3.5 Conclusion 

This chapter proposed a single-camera-based NDRA classification method using 

a 2-stream CNN benefiting from both spatial and temporal information of an 

automatically selected ROI. The spatial stream extracts the spatial features of the 

driver and the engaged object, and the temporal stream characterises the pattern 

of the interaction behaviour. With this method, different tasks with the same object 

can be differentiated. The key findings of this study are listed below. 

1. The spatial stream achieves good performance in the action recognition 

dataset like UCF-101, HMDB-51, since the scenario of each action category is 

quite different. However, for the fine recognition of NDRA in this study, this stream 

is not sufficient.  

2. The content of the tablet screen can help increase the classification 

accuracy in the spatial stream. However, this is not applicable for small-size 

objects like phones due to reflection. 

3. The temporal stream shows good performance on NDRAs involving high-

frequency interaction like sending emails or playing games, but low performance 

on NDRAs with very limited interaction such as watching videos or reading.  
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4. For the conducted experiments, the accuracy of NDRA recognition was 

improved from 61% using the spatial stream and 78% using the temporal stream 

to 90.5% using the two streams.  

5. The inclusion of the ROI automatic selection improves the overall performance 

from 72.5% to 90.5%. 

It should be noted that the proposed system can only be applied to NDRAs 

required physical interaction with the device or object, such as drinking, playing 

an instrument. A further study is required to tackle other NDRAs such as listening 

to music where other sensors are required. 
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4 Dual-stream 3D residual network for spatio-temporal 
representations learning 

This chapter is based on the published paper: L. Yang, X. Shan, C. Lv, J. Brighton, 

and Y. Zhao, “Learning spatio-temporal representations with a dual-stream 3D residual 

network for non-driving activity recognition,” IEEE Trans. Ind. Electron., vol. 0046, no. c, 

pp. 1–1, 2021, doi: 10.1109/TIE.2021.3099254. 

4.1 Introduction 

More and more level 3 automated driving vehicles will be on road in the coming 

years [1], and such vehicles allow drivers to take their hands and eyes off the 

road. However, according to SAE (J3016) Automation Levels, in level 3, drivers 

are still expected to take control of the vehicle if there is a request to intervene 

[2]. The driver’s situation awareness in terms of driving environment and vehicle 

condition is reduced since they do not need to pay full attention to road and 

dashboard, which could bring a risk when the driver takes over the vehicle control 

without the right process in place. Therefore, it is of great importance to monitor 

the driver’s behaviour during the level 3 automated driving and design the specific 

takeover request modality or Human Machine Interface (HMI) for different states 

to ensure a smooth and safe control transition [3].  

There are two kinds of activities that the driver could engage in inside the vehicle 

cabin, which are driving related activities (DRAs) and non-driving related activities 

(NDRAs). Similar to distraction and fatigue, the engagement of NDRAs could 

reduce the driver’s situation awareness. Normally, the methods of detecting 

NDRAs engagement is based on the driver’s attention [4]. Since the drivers 

always check the road or surrounding environment when they are conducting 

DRAs, while during NDRAs engagement, they pay more attention to the object 

they are engaging with. Moreover, different NDRAs could lead to different impacts 

on the driver’s take-over performance [5]–[7]. A refined classification of NDRAs 

could help to design an intelligent take-over process to improve driving safety. 

During NDRAs engagement, the driver’s hand movement contains information 

about the interaction between the driver and the object, which can be used for 
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further classification. Therefore, both visual attention and behaviour are 

necessary for the recognition of the driver’s activity in the vehicle.  

The recognition of the driver’s NDRAs has been widely researched in the last few 

years. With the rapid development of deep learning in activity recognition based 

on videos, computer vision-based methods have become the focus for NDRAs 

recognition [3], [8], [9]. The methods for action recognition using videos can be 

roughly divided into two categories: spatio-temporal attention mechanisms and 

3D convolutional neural network (CNN). Both methods employ CNN for spatial 

feature extraction due to its great learning capability in the spatial domain. The 

spatio-temporal attention mechanisms learn the temporal features by employing 

the sequence-based signal processing methods like Recurrent Neural Network, 

Long Short-Term Memory and transformer [10], [11]. 3D CNN extends the 2D 

spatial features into 3D features by adding a convolutional kernel in the temporal 

domain [12]–[15]. For the NDRAs recognition, unlike the traditional activities in 

the action recognition dataset [16], [17], such as Tai Chi, Basketball, Diving, etc., 

which contains diverse spatial information in the background and large-scale 

body movement, NDRAs are constrained in the vehicle cabin. Normally, the 

movement that matters is the driver’s hand. The hand movement is more complex 

in the temporal domain and the background is similar in the spatial domain, which 

poses a challenge to the existing 3D CNN models [12], [18] for activity 

recognition. Considering that, a proper design of the 3D CNN model could 

enhance the spatio-temporal representations of the activity with less 3D 

convolutional computation to achieve good recognition performance. 

Furthermore, the driver’s head movement is also needed to be evaluated, since 

the driver visual attention is also a key factor to determine the NDRAs 

engagement. In this chapter, we propose a 2-feed 3D CNN based driver 

behaviour recognition system. This system focuses on both driver’s head and 

hand movement to recognise whether the driver is engaging with an NDRA or 

not, and further determine the type of NDRA or DRA. We design a dual-stream 

3D residual network, named DS3D ResNet, to enhance the short-time spatial 

representation and small-region temporal representation learned on separate 

streams. A novel NDRA dataset has been produced to evaluate the proposed 



 

99 

model and other state-of-the-art models. This study also visualises the hidden 

layers of the proposed model to further verify and explain the semantic features 

that the model learned. 

4.2 Related work 

NDRAs recognition: The methods of activity recognition can be roughly divided 

into 2 categories from the perspective of feature extraction, which are hand-

crafted features based methods and deep learning-based methods. The first kind 

of method classifies the activities based on some hand-crafted features like 

driver’s gaze direction, hand movement and body pose. Martin et al. [19] 

extracted features of the driver’s upper body pose and proposed a 3-stream 

recurrent neural network (RNN) system. This system evaluates the spatial 

relationship of body joints, the temporal skeleton movement and the context of 

the driver’s surroundings to recognise the selected NDRAs, including drinking, 

phone texting, calling, reading and eating. Furthermore, Xing et al. [20] combined 

the depth information inside the vehicle cabin with the features mentioned above 

and established a feedforward neural network (FFNN) to identify the activities. 

Yang et al. [4] proposed a dual-camera gaze estimation system and addressed 

the NDRA recognition problem from the perspective of the driver’s eye. With the 

development of CNN in the field of activity recognition [12], [13], [21]–[23], deep 

learning-based methods have attracted increasing attention in NDRA recognition 

in recent years. Xing et al. [8] removed the image background and used the 

drivers’ body as the input of the CNN model to recognise their behaviours. Yang 

et al. [3] employed a 2-stream CNN model to extract the spatial features from the 

original image and the driver’s hand movement features from the corresponding 

optical flow images. Moreover, Eraqi et al. [24] trained different CNNs on multiple 

inputs including raw images, skin-segmented images, face images, hands 

images, and “face+hands” images. The final prediction is obtained by using a 

genetic algorithm based on the outputs of all the CNN models. 

3D CNN: CNN has been widely researched in recent years and made great 

achievements on spatial representation, particularly in the scope of computer 

vision. CNN has been mainly applied to 2D images that lack temporal 
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representation, which is especially crucial for the application of video 

classification. To address this challenge, 3D CNN was employed to learn the 

spatio-temporal representations and extract the motion information hidden in the 

video frames [12], [25]. The residual structure [26] was implemented to tackle the 

training difficulty in the deeper 3D CNN model [18]. Since the computation cost 

of the deep 3D CNN is expensive and the model size is relatively large, Qiu et al. 

[27] proposed a Pseudo-3D network to factorise 3D convolutions into spatial 

convolutions and temporal convolutions to reduce the computational complexity. 

They compacted the model with 3 different forms of the spatio-temporal residual 

blocks. Similarly, Tran et al. [28] used only a spatial convolution followed by a 

temporal convolution residual block in the proposed R(2+1)D network and 

achieved better action recognition performance.  

Unlike other deep learning-based methods for NDRA recognition, which mainly 

focus on the 2D image domain, our work attempts to extract the spatio-temporal 

features from the driver behaviour in the video domain. Considering the 

characterisation of NDRAs, the capability of 3D CNN has not been fully exploited 

with the existing architecture mentioned above. In this work, we improve the 

spatial-temporal representation of residual blocks in the network with a designed 

dual-stream structure by enhancing the small-region temporal representation and 

the short-time spatial representation in different scales. The idea of this work is 

not only to revise the network structure but also to develop a framework to 

recognise and classify the type of NDRA engagement during level 3 automated 

driving. The proposed framework is given in detail in the next section. 

4.3 Methodology 

The proposed 2-feed dual-stream 3D residual network-based driver activity 

recognition framework is illustrated in Figure 4-1. There are 2 feeds in this 

framework, which are the frames from the front camera and the rear camera. The 

front camera captures the driver’s head movement and estimates the visual 
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attention, which is used to recognise whether the driver is engaging with NDRAs 

or not. The input of the 3D CNN model for this feed a stack of frames, which are 

cropped based on the location of the detected face from raw frames. The rear 

camera focuses on the driver’s behaviour in the cabin mainly the hand movement, 

which aims to further classify the specific NDRAs or DRAs. The final activity 

classification is obtained by combining these two results. 

4.3.1 3D Residual Block 

3D convolution is the most natural method to extract the spatio-temporal features 

from videos [12], [27]. It has the capability to model the temporal connection 

among the spatial information encoded frames. For the 3D convolution, the filter 

is denoted as 𝑑 × 𝑘 × 𝑘, where 𝑑 and 𝑘 are the temporal depth and the spatial 

size of the filter respectively. 

Following the success of the Residual Networks (ResNets) in encoding the 

spatio-temporal information for action recognition task [18], [26]. We propose 2 

 

Figure 4-1 Two-feed driver activity recognition framework. The head movement 

module estimates the driver’s visual attention and the hand gesture module 

captures the driver’s hand behaviour. Activity classifier module fuses these two 

feeds to classify the NDRA or DRA. 
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different residual blocks to enhance the short-time spatial representation and the 

small-region temporal representation of the model, as illustrated in Figure 4-2 (b) 

and (c), based on the basic residual block in Figure 4-2 (a). There are 2 

convolutional layers in a basic residual block. Each layer is followed by batch 

normalization [29]. The filter size of each convolutional layer is 3 × 3 × 3.  

The output of the 𝑙-th residual block can be expressed as: 

𝑥 =  𝐹(𝑥 , {𝑊 }) + 𝑥  (4-1) 

where 𝑥  and 𝑥  are the output and input of the block. The function 𝐹(𝑥 , {𝑊 }) 

is the learned residual mapping of the block and weight {𝑊 }  is for multiple 

convolutional layers. 

The short-time spatial block (see Figure 4-2 (b)) aims to encode the change of 

spatial information in a short time. Unlike the basic residual block, the size of the 

filter 𝑆 used in the first convolutional layer of the proposed block is 1 × 3 × 3. This 

filter compresses the temporal dimension, which is equivalent to the 2D 

convolutional filter on the spatial domain. The filter 𝑅 of the second convolutional 

layer is still a 3 × 3 × 3 filter to expand the receptive field in both temporal and 

spatial domains. The block can be expressed as: 

𝑥 = 𝑅(𝑆(𝑥 , 𝑊 ), 𝑊 ) + 𝑥  (4-2) 

 

Figure 4-2 The basic residual block and the proposed blocks 
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The small-region temporal block, shown in Figure 4-2 (c), concentrates on a small 

area and captures its change over a long period. The size of the first convolutional 

filter (𝑇) is 5 × 1 × 1, which can be considered as a 1D convolutional filter on the 

temporal domain. It is followed by a 3 × 3 × 3 filter (𝑅). The output of this block 

can be expressed as: 

𝑥 = 𝑅(𝑇(𝑥 , 𝑊 ), 𝑊 ) + 𝑥  (4-3) 

The ReLU activation function is employed after the first convolutional layer and 

the output of all these blocks. 

4.3.2 Architecture of the 3D CNN Model 

The architecture of the network is illustrated in Figure 4-3. For simplicity, the size 

of the given video clip is denoted as 𝑐 × 𝑙 × ℎ × 𝑤, where 𝑐 is the number of 

channels, 𝑙 is the number of frames in the clip, ℎ and 𝑤 are the height and width 

of images, respectively. The input of the network is a 3 × 16 × 112 × 112 tensor. 

The parallel structure is employed after the first convolution block. The upper 

spatial stream uses a sequence of 4 spatial blocks to emphasise the short-time 

spatial information in different scales. The bottom temporal stream has 4 temporal 

blocks connected in series, which focus on the change in the small-region 

temporal domain. After pooling, the size of the feature map for each stream is 

256 × 1 × 1 × 1. The final 512-dimensional vector is obtained by concatenating 

 

Figure 4-3 The proposed network architecture. The layer name is the bolded word 

at the bottom. The output size of each layer is on the top right of the layer name. 

The details of the each used blocks is introduced in Figure 4-2. Downsampling is 

employed on conv3_1, conv4_1, conv5_1 with a stride of 2 
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the feature maps produced in both 2 streams and fed into a fully connected layer, 

which outputs the final prediction probabilities through the Softmax function. 

4.3.3 Prediction Process for the Framework 

As illustrated in Figure 4-1, the prediction of the driver activity recognition 

framework combines the outputs from 3 separate models. The prediction 

probability of NDRA engagement recognition based on the driver’s head 

movement is denoted as 𝑃 , which has two states: DRA engagement and NDRA 

engagement, denoted as 𝑐  and 𝑐 , respectively. The prediction probability for 

these two classes is represented by 𝑃 (𝑐 ) and 𝑃 (𝑐 ). Two different 3D CNN 

models have been trained separately for NDRA and NDRA classification based 

on hand movement. The prediction probabilities for these 2 models are denoted 

as 𝑃  and 𝑃 . The final scores of the DRA classification and NDRA 

classification are denoted as 𝑌  and 𝑌 . 

The score of a single DRA can be expressed as:  

𝑌 (𝑖 ) = 𝑃 (𝑖 )𝑃 (𝑐 ) (4-4) 

where 𝑖  is the index of the DRAs. The score of a single NDRA can be expressed 

as: 

𝑌 (𝑖 ) = 𝑃 (𝑖 )𝑃 (𝑐 ) (4-5) 

where 𝑖  is the index of the NDRAs. The final prediction scores for all NDRAs 

and DRAs classes, denoted by 𝑌, can be expressed as:  

𝑌 = 𝑌 ∪ 𝑌  (4-6) 

4.3.4 Visual Explanations of CNN Model Predictions 

With the effort of visual explanation for CNN [30]–[32], we can explain the 

prediction of the instance made by the evaluated 3D CNN models, which allows 

a better understanding of the features learned. In this study, Grad-CAM++ [31] 

was employed for visualisation. This method provides the visual explanation of 

the model based on the pixel-wise weighting of the gradients of the convolution 
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feature map. It measures the importance of each pixel in the convolutional feature 

map towards the final prediction of the model.  

The classification score 𝑌  for class 𝑐 can be expressed as: 

𝑌 = 𝑤 𝐴  (4-7) 

where 𝐴  is the feature map of a particular spatial location (𝑖, 𝑗, ℎ), 𝑤  is the 

weight for the feature map 𝐴  and class 𝑐. 

The class-based saliency map 𝑀  used for the final visual explanation can be 

expressed as: 

𝑀  = 𝑟𝑒𝑙𝑢 𝑤 𝐴  (4-8) 

In the Grad-CAM++ [31], the weights 𝑤  is calculated by a weighted average of 

the pixel-wise gradients, which can be written as: 

𝑤 = 𝛼 𝑟𝑒𝑙𝑢
𝜕𝑌

𝜕𝐴
 (4-9) 

where 𝛼  is the weighting coefficients and the  is the pixel-wise gradient for 

feature map 𝐴  and class 𝑐.  

Considering Equation (4-9), Equation (4-7) can be rewritten as: 

𝑌 = 𝛼 𝑟𝑒𝑙𝑢
𝜕𝑌

𝜕𝐴
𝐴  (4-10) 

where (𝑎, 𝑏, 𝑑)  and (𝑖, 𝑗, ℎ)  are iterators for the same activation map 𝐴  for 

avoiding confusion. 𝑟𝑒𝑙𝑢 has been dropped in the derivation since the function of 

which is as a threshold for allowing the gradients to flow back. Taking partial 

derivative 𝐴  twice on both sides: 
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𝜕 𝑌

(𝜕𝐴 )
= 2𝛼

𝜕 𝑌

(𝜕𝐴 )
+ 𝐴 𝛼

𝜕 𝑌

(𝜕𝐴 )
 (4-11) 

 

Based on Equation (4-11), 𝛼  can be calculated as: 

𝛼 =  

𝜕 𝑌

𝜕𝐴

2
𝜕 𝑌

𝜕𝐴
+ ∑ ∑ ∑ 𝐴

𝜕 𝑌

𝜕𝐴

  (4-12) 

Considering Equation (4-11), Equation (4-9) can then be rewritten as:  

𝑤 =  

𝜕 𝑌

𝜕𝐴

2
𝜕 𝑌

𝜕𝐴
+ ∑ ∑ ∑ 𝐴

𝜕 𝑌

𝜕𝐴

𝑟𝑒𝑙𝑢
𝜕𝑌

𝜕𝐴
  (4-13) 

4.4 Dataset and Training 

To evaluate the proposed method, this study produced a new dataset, which 

contains the driver’s head and hand movement footages captured by 2 cameras 

during the experiment. There are 6 classes in this dataset, including 4 types of 

NDRAs and 2 types of DRAs. 14 participants (12 male and 2 female) were 

recruited for this experiment who are from 8 different counties. The participants’ 

age is in the range from 23 to 35. They were required to hold a valid UK driving 

license. The videos were recorded in different weather and lighting conditions 

including sunny, cloudy, rainy and snowy. 

4.4.1 Experiment Design 

The vehicle used in the experiment was an instrumented Land Rover Discovery 

5. The car was modified to accommodate both automated driving and human 

driving. During the experiment, the vehicle is in automated driving mode and 

following a designed route on the enclosed roads. To ensure safety, a steering 

wheel and a set of pedals were added in the back seat of the vehicle, which allows 
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the safety driver to intervene and override the autonomous system. The 

participants were required to engage in some activities while the vehicle is under 

the automated driving mode. After a period of time, the driver was asked to take 

over the vehicle and drive for 2 minutes. Four types of NDRA investigated in this 

study are reading news, watching videos, playing games and answering 

questionnaires using a tablet. These activities were selected by considering the 

outcomes from surveys [33], [34]. The DRAs considered in this study are road 

checking and driving. For each participant, the engagement of each activity (4 

types of NDRA and road checking) lasted 5 to 9 minutes followed by a 2 minutes 

driving process, which is considered as one single trial. There are 5 trials per 

participant. The data of 4 NDRA classes were extracted from the corresponding 

trials. The data for the road checking class contains the data extracted from the 

road checking trial and the data of the road checking behaviour during the NDRA 

engagement trials. The data for driving was obtained by extracting the data where 

the participant was driving the vehicle after the take-over.  

4.4.2 Camera Setup  

The employed 2 cameras for monitoring the driver’s behaviour in the experiment 

were Garmin Virb Action Camera, which provides the videos with 1920 × 1440 

pixels spatial resolution and frames were sampled at 30 frames per second (fps). 

The front camera, facing the driver’s face, is used to extract the driver’s head 

 

Figure 4-4 Location of the mounted cameras 
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movement and recognise whether the driver is engaging with NDRAs or DRAs. 

The rear camera was mounted on the roof of the vehicle between two front seats 

to record the driver’s hand movement. The location of the cameras is shown in 

Figure 4-4. A flashing red LED light was employed for synchronisation, which can 

be seen in the view of both cameras. 

4.4.3 Data Pre-processing 

In the dataset for the driver activity recognition framework, a single instance, 

denoted by 𝐼, contains a pair of synchronised frame stacks (𝐼 , 𝐼 ) from the front 

camera and rear camera, respectively. The recorded video from each camera 

was split into several clips. We removed some bad clips which contain the 

participant’s behaviour during the activity transition. The activity is difficult to be 

determined in such clips, such as the mixture of road-checking, playing games, 

etc. As shown in Figure 4-5, there are 48 frames in each clip, which were cropped 

with a 600 × 600  region of interest and further resized into 128 × 128 . The 

dimension of the frames for each clip is 3 × 48 × 128 × 128. Then the 16 adjacent 

frames were randomly sampled and used as an input instance of 𝐼  or 𝐼 . The 

size of an input instance is 3 × 16 × 112 × 112. There are 7960 pairs of instances 

for 6 classes in total. The distribution of all these classes is answering 

questionnaires (1336), road checking (1320), driving (1268), playing games 

 

Figure 4-5 Data pre-process flowchart. The data format is presented as a four-

dimensional tensor as 𝒄 × 𝒍 × 𝒉 × 𝒘, where 𝒄 is the number of channels, 𝒍 is the 

number of frames in the clip, 𝒉  and 𝒘  are the height and width of images, 

respectively 
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(1356), reading (1422) and watching videos (1258). The data were randomly split 

into 5 different segments for cross-validation based on participants. For each 

split, the data of 11 participants were used for training and the data of 3 

participants were used for testing. The data distribution for 5 splits is split 1 (6158 

for training and 1802 for testing), split 2 (6332 for training and 1628 for testing), 

split 3 (6176 for training and 1784 for testing), split 4 (6222 for training and 1738 

for testing) and split 5 (6186 for training and 1774 for testing). 

4.4.4 Training setup 

The proposed method is compared with 3 state-of-the-art methods, including  

(1) 3D ResNets (R3D) [18] that mainly utilises the basic 3 × 3 × 3 residual block 

in the whole network to model the spatial-temporal information. Frequent usage 

of 3D convolution causes a higher computational cost. 

(2) (2+1)D ResNets (R(2+1)D) [28] that factorises the 3D convolution of the 

residual block in R3D into two separate operations, which are a 2D spatial 

convolution and a 1D temporal convolution. Although such a structure doubles 

the number of nonlinearities to improve the model’s capability of representing 

complex functions, the number of parameters and the computational cost is not 

decreased in comparison to the 3D CNN. 

 (3) Pseudo-3D ResNets (P3D) [27] that has the same method of factorisation 

with R(2+1D) but develops 3 blocks with different types of connection. It also 

adapts the bottleneck block in the network. However, the performance is not 

significantly improved than the simple and homogenous R(2+1D) network.  

(4) The proposed DS3D ResNet.  

Table 4-1 Comparison of the model size and the computational complexity. All 

models are based on ResNes-18 architecture 

Model Parameters (×𝟏𝟎𝟔) FLOPs (×𝟏𝟎𝟗) 

R3D 33.1 83.1 

R2+1D 33.2 85.2 

The proposed DS3D 11.8 72.5 
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For a fair comparison, all networks adapt 18 layers except P3D. Considering the 

specific design of the P3D architecture, the input size is 3 × 16 × 160 × 160. We 

also keep the same crop ratio from the raw frames as other models. The 

evaluated P3D model was built based on ResNets-50 architecture. All four 

models were trained from scratch on the same dataset. The size and 

computational complexity for these models are provided in Table 4-1, which 

shows the proposed model has the lowest computational cost and smallest model 

size.  

In the training process, Adam was used for parameter optimisation with a mini-

batch size of 32. The initial learning rate was set as 0.001, which was divided by 

10 after every 10 epochs. The whole training was completed in 35 epochs. The 

task of NDRA engagement recognition adapts all the head movement dataset 𝐼 . 

The tasks of NDRA classification and DRA classification use the corresponding 

data in the hand movement dataset 𝐼 . 

Table 4-2 Accuracy of the evaluated models on the produced dataset 

Term 
NDRAs engagement recognition DRAs classification 

R3D R2+1D P3D DS3D R3D R2+1D P3D DS3D 

Split 1 83.74% 87.79% 88.95% 93.90% 90.67% 93.08% 90.67% 95.71% 

Split 2 87.78% 90.41% 89.07% 94.71% 91.70% 92.38% 92.21% 96.71% 

Split 3 88.96% 90.92% 89.35% 93.57% 87.29% 90.28% 90.65% 90.46% 

Split 4 88.15% 88.90% 92.28% 92.87% 91.36% 92.57% 89.46% 92.57% 

Split 5 88.84% 90.19% 92.27% 93.63% 90.65% 86.06% 87.30% 93.47% 

Mean 87.49% 89.64% 90.38% 93.74% 90.33% 90.87% 90.06% 93.78% 

Term 
NDRAs classification Fusion result 

R3D R2+1D P3D DS3D R3D R2+1D P3D DS3D 

Split 1 80.96% 83.81% 81.12% 87.20% 70.31% 74.64% 73.81% 83.46% 

Split 2 84.19% 86.95% 84.95% 89.62% 75.43% 82.74% 77.27% 87.59% 

Split 3 83.58% 84.38% 84.06% 85.10% 76.12% 78.98% 78.59% 82.90% 

Split 4 81.10% 82.48% 82.14% 84.30% 74.51% 77.62% 76.41% 80.32% 

Split 5 80.20% 82.60% 82.43% 83.10% 75.08% 76.16% 76.10% 82.47% 

Mean 82.01% 84.04% 82.94% 85.86% 74.29% 78.03% 76.44% 83.35% 
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4.5 Results 

The comparison results, based on the testing data for each spilt, are presented 

in Table 4-2, which shows the models’ accuracy for 3 tasks and the final fusion 

results. For the task of NDRA engagement recognition (NDRA or DRA), the 

average accuracy of R3D for 5 splits is 87.49%. The performance of R2+1D and 

P3D is similar and around 90%. The proposed DS3D model achieves 93.74% 

average accuracy on this task. For the task of DRAs classification (driving or road 

checking), all 3 state-of-the-art methods achieve similar performance while our 

model has at least 3% improvement than them. For the task of NDRA 

classification (reading news, watching videos, playing games or answering 

questionnaires), the average accuracy of R3D, R2+1D and P3D models is 

82.01%, 84.04% and 82.94%, respectively, while the accuracy of our model is 

85.86%. For the final fusion result for the classification of all 6 activities, it can be 

observed that the proposed model achieves the best performance among the 

evaluated methods with at least 5% improvement.  

The confusion matrices of the final fusion predictions are presented in Figure 4-6. 

Precision and recall are used to evaluate the model in this study. Precision is the 

fraction of correct instances among the detected instances, while recall is the 

fraction of correctly detected instances [35]. For the category checking, the 

precisions of the 3 state-of-the-art models are around 50%~60%. The main 

contribution of the false positive examples is from NDRAs. It means that some 

NDRAs have been predicted as DRAs by being misclassified as checking, which 

suggests the poor performance of NDRA engagement recognition for these 

models based on the participants head movement. For both DRAs (checking and 

driving), the proposed DS3D achieves the best performance, specifically, 90.2% 

precision and 90.6% recall for driving. For NDRA classification, answering 

questionnaires and playing games have a better performance than the other two 

activities for all 4 models. his is because these activities normally involve a high-

frequency interaction between the participant’s hand and the device. The superior 

performance of our model is benefited from the new structure design that 

enhances the spatial-temporal representations. The detailed contribution will be 

given in the next section with the saliency map. The recall of the other activities 
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reading and watching videos for R3D, R2+1D, and P3D is around 60%~65%. The 

poor performance of these activities is due to similar observations associated with 

limited human-object interaction or hand movement in the temporal domain. The 

frames do not contain sufficient spatial-temporal information to make the right 

prediction for these activities. Even though, our model also outperforms the other 

evaluated models. 

4.6 Visualisation and discussion  

This section provides the visualisation results of the class-based saliency map in 

the hidden layer of the model trained on the dataset containing hand movement 

 

Figure 4-6 Confusion matrix of the fusion results. The models used are trained on 

split 1. The precision and recall for each class are presented in the bottom and 

right of the figures, respectively. The classes presented in the figure refer to the 

activities named: road checking, driving, playing games, answering 

questionnaires, reading news and watching videos, successively 
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to explain the learned spatio-temporal feature. The images that contain facial 

information are not presented in this section due to the data protection policy. 

Figure 4-7 Saliency maps of the prediction based on the last convolutional layer 

of Conv3 by using Grad-CAM++ [31] for answering questionnaires and playing 

games. The first row of each activity is the raw frames imported into the network 
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In Figure 4-7, Figure 4-8 and Figure 4-9, the class-discriminative regions 

contributed from the hidden layer, Conv3, have been located, where the 16 

frames are subsampled to 8 frames to save space. The regions in red correspond 

to a higher association for the class while the regions in blue represent weak 

Figure 4-8 Saliency maps of the prediction based on the last convolutional layer 

of Conv3 for reading and watching movies 
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relevance. It can be seen that the saliency regions have been highlighted on the 

frames based on the importance of the pixels. Specifically, for NDRAs (in Figure 

4-7 and Figure 4-8), the R3D model could learn the participant’s hand movement 

when there is high-frequency interaction in the activity (answering questionnaires 

and playing games). For the activity like reading and watching movies, the 

Figure 4-9 Saliency maps of the prediction based on the last convolutional layer 

of Conv3 for all the DAs 
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learned features are mainly the edge of the object. The features used in the 

R2+1D model to predict are based on the context of the tablet. Both two models 

contain some noise such as steering wheel movement and background change 

of the side window. Comparing with these two models, the proposed DS3D model 

highlights the region of the hand movement concentratedly. The spatial stream 

of the proposed model (denoted as Ours_s) focuses on short-time spatial feature 

learning. The temporal stream of the model (denoted as Ours_t) is to learn the  

small-region temporal feature. It can not only learn the short-time spatial feature, 

which is the high-frequency hand movement for the activities like answering 

questionnaires and playing games, but also the temporal feature, which is low-

frequency interaction in the reading. Furthermore, it can give the right prediction 

based on the hand pose when there is a limited interaction during watching 

videos. 

The saliency map results for DRA engagement are presented in Figure 4-9. For 

checking, the R3D model focuses on the edge of the steering wheel and the 

object. The R2+1 model highlights the region of the left hand. The spatial stream 

of our model encodes the information of the hand pose and the door, while the 

temporal stream focuses on the edge of the head and the device. It explains the 

participant’s road-checking behaviour during the NDRA engagement where the 

participant headed up while holding the device on hands. In the driving category, 

the participant quickly steered the steering wheel with the right hand. The R3D 

model highlights the arm movement with its edge. The R2+1D model also learns 

the feature of the arm movement but with lots of noise. For the proposed model, 

the spatial stream captures the fast right-hand movement since it enhances the 

extraction of the short-time spatial change while the temporal stream mainly 

focuses on the participant’s slight arm movement. From the perspective of the 

model, the R3D model learns the semantically relevant features of the high-

frequency interaction activity. But for the activities like reading, watching movies 

or road checking, the semanteme of feature is not clear. The R2+1D shows a 

better classification performance than R3D, however, the explainability of the 

learned feature is relatively weak. Collectively, it can be observed that, for all 
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types of activity, the highlighted features learned by our model are more 

semantically relevant comparing with other models. 

4.7 Conclusion 

In this chapter, we propose a 2-feed 3D CNN based driver behaviour recognition 

system for the conditionally automated driving vehicle. Demonstrated by the 

testing results on the collected data, the introduced novel dual-stream 3D residual 

network (DS3D ResNet) presents a strong capability of encoding the spatial-

temporal information for driver’s behaviour. Specifically, the spatial stream 

extracts the short-time spatial features while the temporal stream focuses on 

learning the small-region temporal representation. This hypothesis has been 

successfully tested by visualising the saliency maps. Quantitative results 

demonstrate the superior performance of the proposed DS3D model against 

three state-of-the-art methods. From the perspective of NDRA recognition, the 

activities with more human-object interaction can be classified more accurately 

due to the contained abundant spatial-temporal features. It should be noted that 

the evaluation was conducted on a novel driver activity dataset. Based on the 

visualisation results, we believe that the capability of the proposed DS3D model 

has not been fully explored using the current NDRA dataset. The recognition of 

other NDRAs with interaction in a higher frequency, for instance, phone typing, 

could benefit from this model. The application of the proposed method on a 

comprehensive list of NDRAs requires further study. 
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5 Lightweight temporal attention-based module for 
efficient 3D CNN 

This chapter is based on a paper submitted to neurocomputing. 

5.1 Introduction 

The automated driving vehicle could become a commercial reality in the near 

future, which has the potential of reducing traffic accidents [1] since it has the 

capability of eliminating human error to avoid the accident considering 94% of 

fatal crashes are caused by human error reported by the National Highway Traffic 

Safety Administration (NHTSA) [2]. However, fully automated driving has not 

been achieved yet. The automated driving vehicles that are currently on the road 

testing are mainly in the level 3 or 4 driving automation, defined by the Society of 

Automotive Engineers (SAE) [3]. In such driving automation levels, the drivers 

only need to take control of the vehicle if an intervention is requested, which gives 

them some tolerance to do some non-driving related activities (NDRAs) rather 

than focusing on driving. Comparing with the distraction in conventional human 

driving vehicles, the engagement of such activities could further reduce their 

surrounding monitoring and situation awareness [4], [5], which could bring an 

even higher risk for the driver to take over the vehicle and cause accidents. In the 

reported accidents that involve the automated driving vehicle, the lack of situation 

awareness is the main factor where the driver does not have enough time to 

sense the environment and conducts proper manoeuvres to avoid the accident 

[6]. Therefore, monitoring the drivers' state and activities that they are engaging 

in is crucial for the design of a smart human-machine interface (HMI) to improve 

their situation awareness before the take-over process. 

NDRAs are defined as the tasks or activities that could happen in the automated 

driving vehicle but are not related to driving [7], such as reading, playing games, 

chatting with passengers, eating or even sleeping. Some of the NDRAs are 

similar to the secondary tasks in a conventional vehicle. However, the secondary 

task requests the driving as the primary task while the driver's engagement of 

NDRAs shows very limited interaction between the vehicle and the driver. 
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Therefore, the well-used manoeuvre-based or vehicle state-based secondary 

task detection approaches [8], [9] are not capable of recognising NDRAs. Other 

approaches such as gaze tracking-based method [10], [11], 

electroencephalogram (EEG)-based method [12]–[14], seat pressure 

measurement-based method [15], are either intrusive or costly, which limits its 

applicability to commercial usage for the NDRAs recognition. With the rapid and 

significant progress of the human action recognition made by the computer vision 

community in recent years, some deep learning-based computer vision 

approaches have been widely researched and developed to monitor the driver's 

behaviour and recognise NDRAs. Yang et al. [16] mapped the driver's gaze into 

a view of the vehicle cabin, which is then combined with object recognition to 

determine the visual-related NDRAs. Such a method has high prediction 

confidence of the NDRAs recognition since it directly locates the driver's visual 

attention, nevertheless, lacks the capability of classifying the activities with the 

same object. Xing et al. [17] extracted the driver's head rotation angles and the 

joint positions of the upper body then used a feedforward neural network to 

classify NDRAs. Similarly, Martin et al. [18] used the joint positions of the upper 

body and the image of the movement as the inputs then employed 3 recurrent 

neural networks (RNNs) to detect NDRAs. Apart from the skeleton features, Xing 

et al. [19] further extracted the driver's upper body through image segmentation 

and used a convolution neural network (CNN) to recognise NDRAs. All of these 

methods adopted the hand-crafted feature extraction and followed by the neural 

network-based classifier. Yang et al. [20] employed the CNN-based ResNet-50 

to extract the features from images and combined the optical flow of the images, 

which presents the driver's hand movement to achieve the NDRAs recognition. 

Eraqi et al. [21] captured the image inside the vehicle cabin and employed 

multiple CNNs with the inputs of the raw image, hand image, face image, skin 

segmented image and used a genetic algorithm to achieve the weighted 

ensemble classification. Such methods are usually based on the image input, 

which is mainly in the spatial domain and lacks the temporal representation of the 

driver's behaviour during the NDRAs engagement. Yang et al. [22] employed a 

dual-stream 3D CNN, which extracts the spatio-temporal representation of the 
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driver's behaviour with the designed short-time spatial block and small-region 

temporal block, to recognise the NDRAs in the video stream. However, the 3D 

convolution is normally computational costly and not appropriate for real-time 

applications. There is a lack of efficient network architecture that monitors the 

driver's behaviour and recognises NDRAs from videos. Furthermore, the existing 

researches are mainly based on offline analysis. The methods were developed 

and tested on high-performance workstations with GPU, which cannot be directly 

used in real road-testing scenarios. There is a lack of evaluation of the inference 

latency, which refers to the time cost for inferring one instance, on the on-vehicle 

edge computing devices. This study is important because the fast inference or 

even prediction of NDRAs could support HMI to rapidly determine an intelligent 

take-over strategy and achieve a safe control transition. 

This chapter proposed a novel lightweight 3D CNN-based temporal attention 

module for efficient CNN in video-based NDRAs recognition. Unlike the 

conventional 3D convolution module with the limited receptive field, the proposed 

module models the global information in the time domain. Specifically, the 

proposed module uses the 3D convolution operation in the spatial domain and 

further employs the attention mechanisms-based temporal weighting function to 

enhance the representation in the temporal domain. This module tends to achieve 

high accuracy with much less computational cost. The proposed module can be 

trained end-to-end and used as a plugin module for the existing efficient 3D CNN. 

In this study, the MobileNet V3 is used as the backbone architecture. The 

performance of the network is tested in an NDRAs dataset. Moreover, the 

saliency map is employed to visualise the features learned in the hidden layer of 

the network to validate its capability of learning the semantic representations of 

the activities. To further evaluate the applicability of the model on the real driving 

scenarios, the performance regarding inference latency and accuracy of the 

proposed model and several state-of-the-art has been compared on 3 types of 

edge computing devices from the family of the NVIDIA Jetson AI platform. 
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5.2 Methodology 

This section introduces the network used for NDRAs recognition in detail. The 

sections (5.2.1, 5.2.2 and 5.2.3) elaborate the design of the proposed module in 

the network, which aims to reduce the computational complexity and improve the 

capability of learning valuable representations. Section 5.2.4 shows the structure 

of the proposed module and the backbone network with the module plugged. 

Section 5.2.5 illustrates the technique used to visualise the learned features in 

the network. Section 5.2.6 introduces the NDRAs dataset used in this study and 

the data pre-processing steps. The last section 5.2.7 presents the edge 

computing devices, which are used for the evaluation of on-vehicle inference 

latency. From now on, the 3D convolution kernel is denoted as 𝑑 × 𝑘 × 𝑘, where 

𝑑 and 𝑘 are the temporal depth and the spatial size respectively.  

5.2.1 Depthwise Separable Convolution 

Depthwise separable convolution is a widely used convolution operation in 

different efficient neural network-based models [23]–[25], which factorize the 

conventional convolution into two operations, depthwise convolution and 

pointwise convolution. Unlike the conventional convolution, whose kernel 

computes the feature map across all channels of the input, the kernel of the 

depthwise convolution only applies the convolution operation for one single input 

channel. After applying the depthwise convolution to each input channel, the 

pointwise convolution, 1 × 1 × 1 convolution, will build a linear combination of the 

output of the depthwise convolution. 

The 𝑛  feature map 𝑂 of the conventional convolution can be calculated as: 

𝑂( , , , ) = 𝑊( , , , ) ∙

, , ,

, , ,

𝐹( , , , ) (5-1) 

The 𝑛  feature map 𝑂  of the depthwise convolution for a single input channel 

can be calculated as: 
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𝑂 ( , , , ) = 𝑊( , , , ) ∙

, ,

, ,

𝐹( , , , ) (5-2) 

The feature map 𝑂  of the following pointwise convolution can be calculated as: 

𝑂 ( , , , ) = 𝑊( ) ∙ 𝐹( , , , ) (5-3) 

where 𝑖, 𝑗, ℎ  and 𝑘, 𝑙, 𝑚  are the 3-dimensional location indicators. 𝐾, 𝐿  are the 

spatial size of the kernel, 𝑀  is the temporal size of the kernel. 𝑊  is the 

convolutional kernel, 𝐹  is the input feature map, 𝐶  is the number of the input 

channel. 

The computation ratio 𝑅  between depthwise separable convolution and 

conventional convolution for 3D CNN can be expressed as: 

𝑅  =  
𝑆 ∙ 𝑆 ∙ 𝑆 ∙ 𝐶 ∙ 𝑆 ∙ 𝑆 ∙ 𝑆 + 𝑁 ∙ 𝐶 ∙ 𝑆 ∙ 𝑆 ∙ 𝑆

𝑆 ∙ 𝑆 ∙ 𝑆 ∙ 𝑁 ∙ 𝐶 ∙ 𝑆 ∙ 𝑆 ∙ 𝑆
  

=  
1

𝑁
+

1

𝑆
                                           

(5-4) 

where 𝑆  is the kernel size and 𝑆 ∙ 𝑆 ∙ 𝑆  are the size of the output feature 

map in 3-dimension. 

Figure 5-1 (a) standard 3D bottleneck block; (b) inverted liner bottleneck block 

where 𝒄 is the number of the channels, 𝒏 is the ratio of the channel expansion. 

Light red cube is the 3D convolution kernel and light blue cube is the pixel in the 

feature map, which is conducted by convolution operation 
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5.2.2 Inverted Residuals and Linear Bottlenecks 

A bottleneck architecture, presented in Figure 5-1 (a), is designed to improve the 

model efficiency in the deep neural network [26]. 1 × 1 × 1 convolution kernel is 

employed to compress or expand the dimensions. By this mean, the 3 × 3 × 3 

convolution has fewer channels, which reduces the computational complexity of 

the model. In the inverted liner bottleneck (Figure 5-1 (b)), since the depthwise 

separable convolution is employed to replace the conventional convolution, which 

has already significantly reduced the computational complexity, the number of 

channels of the 3 × 3 × 3  depthwise convolution is increased to improve the 

capability of feature extraction. Furthermore, both batch normalization and 

ReLU6 activation are used after each layer. The usage of ReLU6 is due to its 

robustness when used with low-precision computation [27]. However, the non-

linear activation transformation, ReLU6, could result in an inevitable information 

loss of spatial information, specifically in low-dimensional space encoding [27]. 

Therefore, after the dimensional compress at the end of the bottleneck block, the 

linear activation is employed to replace the non-linear activation.  

5.2.3 Channel weighting and temporal weighting 

3D CNN has been widely used to extract the spatio-temporal features from the 

video for human action recognition [28]–[31]. However, compared to 2D 

convolution, 3D convolution is more computationally expensive. Factorisation of 

the 3D convolution  [32], [33] is a way to reduce the computational complexity. It 

factorises the 3D convolution operation into 2D spatial convolution and 1D 

temporal convolution. In this study, instead of using a 3 × 3 × 3  depthwise 

convolution kernel, a 1× 3 × 3 depthwise convolution kernel and a 1D temporal 

weight function have been employed to extract the spatio-temporal features. A 

channel weighting module, Squeeze-and-Excitation [34] has been employed to 

compute the channel-wise importance. 

The Squeeze-and-Excitation module introduced a way to improve the channel 

interdependencies with very limited computational cost. It provides the attention 

mechanism at the channel level. Such a module compresses the spatial and 

temporal information in a single channel and then adds a channel weight 
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function  𝐶 , to achieve the fusion of the spatio-temporal and the channel 

information. The weighting function 𝐶  can be expressed as: 

𝐶 (𝐹 , 𝑊 ) = 𝜎 𝑊 𝛿 𝑊 𝐴𝐴𝑃 (𝐹 )  (5-5) 

where 𝑊 ∈ ℝ ×  and 𝑊 ∈ ℝ × , 𝐹  is the input feature map for the module. 

Temporal weight function 𝑇 is designed base on the attention mechanism, which 

compresses the features in the spatial domain and weights the temporal 

information in a global way to extract the valuable temporal representation rather 

than focusing on the limited receptive field in the time domain. Such a design 

could further reduce the computational complexity and improve the capability of 

feature extraction in the time domain. The output of the temporal weight function 

𝑂 =  𝑂 , 𝑂 , … , 𝑂  can be expressed as: 

𝑂 , 𝑂 , … , 𝑂 = 𝑇 𝐹 , 𝐹 , … , 𝐹  (5-6) 

where 𝑐  is the number of the feature map channel. The input of the weight 

function is applied with a 2D adaptive average pooling (𝐴𝐴𝑃 ) first to compress 

the spatial information. Then a 1D adaptive average pooling (𝐴𝐴𝑃 ) is employed, 

which is applied at the channel level to integrate the channel information. The 

pooled output goes through two fully connected layers. ReLU and sigmoid 

activation function was employed to add nonlinearity for the first and second fully 

connected layer, respectively. The weight function 𝑇 can be calculated as: 

 

Figure 5-2 Proposed lightweight temporal attention-based module structure. 

where k is the kernel size and h is the number of the channels for depthwise 

convolution 
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𝑇(𝐹 , 𝑊 ) = 𝜎 𝑊 𝛿 𝑊 𝐴𝐴𝑃 𝐴𝐴𝑃 (𝐹 )  (5-7) 

where 𝛿 and 𝜎 are the ReLU and sigmoid functions. 𝑊 , 𝑊 ∈ ℝ × . 

The computation ratio 𝑅  between temporal weight enabled depthwise 

separable convolution and 3D depthwise convolution can be expressed as: 

𝑅  =  
𝑆 ∙ 𝑆 ∙ 𝐶 ∙ 𝑆 ∙ 𝑆 ∙ 𝑆 + 𝐶 ∙ 𝑆 ∙ 𝑆 ∙ 𝑆

𝑆 ∙ 𝑆 ∙ 𝑆 ∙ 𝐶 ∙ 𝑆 ∙ 𝑆 ∙ 𝑆
 (5-8) 

5.2.4 Model structure 

The lightweight temporal attention-based module is presented in Figure 5-2. 

1 × 1 × 1  convolution kernel is used to expand the channel dimension. A 

1 × 3 × 3 depthwise convolution kernel is then employed to extract the spatial 

features and followed by a channel weighting function is employed to improve the 

learned representation at the channel level. Then a temporal weighting function, 

which extracts the most valuable representation in the time domain among the 

weighted channels. In the end, a 1 × 1 × 1  convolution kernel is used to 

compress the dimension.  

The specification of the model is presented in Figure 5-3. The MobileNet V3 is 

used as the backbone of the model. The inputs, including a stack of head 

movement frames and a stack of hand movement frames, are fed into convolution 

 

Figure 5-3 Specification of the proposed model where s is the stride of the 

convolution operation, h is the number of the channel for the depthwise 

convolution layer. AAP refers an adaptive average pooling layer; FC stands for the 

fully connected layer 
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layer1 for the initial feature extraction, separately. Then we concatenate the 

output together and go through 6 convolution layers with the designed block. The 

number of the blocks and input channels, kernel size, stride and number of the 

expanded hidden channels in the block are presented in Figure 5-3. A pooling 

layer is employed after the feature extraction to adjust the dimension of the output 

feature. Two fully connected layers are used for the final classification. 

5.2.5 Saliency map visualisation 

The method and equation can be found in section 4.3.4. 

5.2.6 Dataset and pre-processing  

The NDRA recognition dataset used in this study can be found in section 4.4. The 

data pre-processing method is introduced in section 4.4.3. 

5.2.7 Hardware  

NVIDIA Jetson is a high-performance AI platform for edge computing. Three 

Jetson modules (Figure 5-4), including Jetson Nano, Jetson TX2 and Jetson AGX 

Xavier, were used to test the inference latency of the model for further in-vehicle 

implementation. Jetson Nano is an entry-level AI development module, which 

could process multiple neural networks in parallel with the data acquired from 

 

Figure 5-4 Edge computing module used in the latency test. Left: Jetson Nano. 

Middle: Jetson AGX Xavier. Right: Jetson TX2 



 

132 

high-resolution sensors. Jetson TX2 upgrades the power efficiency and 

performance to another level than Nano. Jetson AGX Xavier is an edge computer 

designed specifically for autonomous machines. It provides the hardware 

acceleration for the entire AI pipeline and multiple high-speed inputs and outputs. 

The comparison of the technical specification is shown in Table 5-1.  

5.3 Results 

5.3.1 Training 

Several classical efficient CNNs and state-of-the-art backbones were revised to 

3D convolutions and compared with the proposed model, including 

 MobileNet V1 [25]: it replaces the conventional convolution with depthwise 

separable convolution in the network to reduce the computational cost. 

 MobileNet V2 [27]: it utilises the inverted residual structure to enhance the 

capability of feature learning and removes the non-linear activation in the 

narrow layers to maintain representational power. 

 ShuffleNet V1 [35]: it employs the pointwise group convolution and 

channel shuffle operation to address the computational expensiveness of 

the pointwise convolutions. 

Table 5-1 Technical Specifications of the Hardware 

 Nano TX2 AGX Xavier 

CPU 

Quad-Core Arm® 

Cortex®-A57 MPCore 

processor 

Dual-Core NVIDIA 

Denver 2 64-Bit CPU 

and Quad-Core Arm® 

Cortex®-A57 MPCore 

processor 

8-core NVIDIA Carmel 

Arm®v8.2 

64-bit CPU 

GPU 
128-core NVIDIA 
Maxwell™ GPU 

256-core NVIDIA 
Pascal™ GPU 

512-core NVIDIA 
Volta™ GPU with 

64 Tensor Cores 

Memory (GB) 4 8 32 

Storage (GB) 16 32 32 

Power (W) 5 | 10 7.5 | 15 10 | 15 | 30 
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 ShuffleNet V2 [36]: it further introduces a channel split operator to 

decrease the latency on the work device. 

 MobileNet V3 [37]: it is produced by the network architecture search 

techniques, which strike the best trade-off between performance and 

latency. It also employs the squeeze and excitation structure to improve 

accuracy. 

The methods’ performance was evaluated with multiple sizes of the model that 

are controlled by the channel multiplier, which is used to adjust the channel 

number in the convolutional layer. The channel multiplier was set as 0.5, 1, 1.5, 

and 2. Since the input of the network is a pair of head and hand movements, the 

networks extract the features separately and combine both feeds at the high level 

with the adaptive average pooling before the classifier. The model size and the 

computational cost for all the networks are presented in Table 5-2. It can be seen 

that the proposed model has a similar level of model size with MobileNet V2.  

In the training process, Adam was adapted as a parameter optimisation with a 

mini-batch size of 64. The initial learning rate was set as 0.001. The whole training 

epoch was set as 60. 

Table 5-2 Comparison of the Model Size and the Computational Cost with Different 

Model Size 

Model Parameters (×𝟏𝟎𝟔) FLOPs (×𝟏𝟎𝟗) 

Channel 
multiplier 0.5 1 1.5 2 0.5 1 1.5 2 

MobileNet V1 1.73 6.6 14.61 25.76 0.19 0.48 0.85 1.32 

MobileNet V2 1.30 4.3 9.33 16.28 0.42 1.12 2.1 3.37 

ShuffleNet V1 0.52 1.89 4.13 7.22 0.15 0.4 0.69 1.07 

ShuffleNet V2 0.53 2.13 4.37 8.83 0.25 0.39 0.58 0.87 

MobileNet V3 2.51 7.68 16.71 28.91 0.31 0.73 1.45 2.22 

The proposed  1.45 4.31 9.64 16.94 0.25 0.63 1.29 2.02 
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5.3.2 Results 

The performance of the evaluated models has been presented in Figure 5-5. With 

the channel multiplier increase from 0.5 to 2, the classification accuracy of the 

models also increases from 22% (ShuffleNet V1) to 7% (MobileNet V3). The 

MobileNet V2, V3 and ShuffleNet V2 have a similar level of performance when 

the channel multiplier is larger than 0.5, which is around 68% (1), 72% (1.5) and 

74% (2). ShuffleNet V1 and MobileNet V1 also achieve similar performance when 

the model is relatively large. ShuffleNet V1 (0.5) shows the lowest accuracy 

(42.63%), which is due to the limited number of channels that restricts its 

capability of feature extraction. Comparing with other models, the proposed 

model shows the best performance among all the channel multipliers and 

achieves 81.01% average accuracy when the multiplier is 2. To present the 

Table 5-3 Performance of the Model When the Channel Multiplier set as 2 for All 

Splits in Dataset 

 Accuracy 

 Split1 Split2 Split3 Split4 Split5 Mean & Std 

MobileNet V1 62.14% 61.68% 62.77% 64.21% 63.69% 62.90% ± 1.05% 

MobileNet V2 73.99% 74.63% 75.87% 72.84% 75.64% 74.59% ± 1.24% 

ShuffleNet V1 63.32% 64.25% 64.09% 65.69% 63.34% 64.14% ± 0.97% 

ShuffleNet V2 73.90% 74.41% 73.24% 72.25% 73.54% 73.47% ± 0.81% 

MobileNet V3 74.52% 75.32% 73.56% 74.05% 76.38% 74.75% ± 1.10% 

The proposed 80.32% 79.80% 81.70% 82.56% 80.66% 81.01% ± 1.11% 

Figure 5-5 Average accuracy of all the splits for evaluated models with a set of 

channel multiplier (0.5, 1, 1.5, 2) 
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generalization capability of the model, Table 5-3 shows the results of the cross-

validation for each split when the multiplier is 2. It can be observed that the 

standard deviation of all the models is under 1.5%. The values for ShuffleNets 

are below 1%. The standard deviation for the rest modes is around 1.1% 

To evaluate the latency, the models were evaluated on 3 edge computing devices 

and the results are shown in Table 5-4. Due to the limited computational capability 

of the GPU on Jetson Nano, only the smallest model (channel multiplier is 0.5) 

can be implemented. MobileNet V1 cannot be implemented because of its poor 

memory efficiency on GPU.  The proposed method achieves a relatively low 

latency, which is 417ms among all the evaluated models. For the Jetson TX2, 

ShuffleNet V1 achieves the least latency across all sizes of the model. The 

proposed method has a slightly higher latency than ShuffleNet V1 and is below 

0.5s for the largest model. MobileNet V2 achieves the highest latency. Similar 

results can be found on the Jetson AGX Xavier implementation. However, with 

the increase of the computation capability of GPU on the device, ShuffleNet V1 

shows a slight faster inference than the proposed method. On this device, the 

proposed method could complete at least 5 inferences in a second. Combining 

Table 5-2 and Table 5-4, it can be observed that the computational complexity 

(FLOPs) of the network dominates the cost of the inference. However, in the real 

Table 5-4 Comparison of Latency for Different Device and Different Channel 

Multiplier 

 Latency (ms) 

Device Jetson 
Nano Jetson TX2 Jetson AGX Xavier 

Channel 
Multiplier 0.5 0.5 1 1.5 2 0.5 1 1.5 2 

MobileNet V1 N/A 304 397 482 531 98 131 148 163 

MobileNet V2 634 339 488 679 867 133 206 232 278 

ShuffleNet V1 532 251 275 300 361 114 119 132 145 

ShuffleNet V2 374 243 355 541 772 116 128 145 162 

MobileNet V3 509 323 423 507 686 148 168 210 258 

The proposed 417 262 297 376 458 121 135 155 174 
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GPU implementation, the proper design of the network could speed up the 

inference process and further reduce the latency. Figure 5-7 and Figure 5-6 plot  

 

Figure 5-7 Classification and inference performance of the model on Jetson TX2 

 

Figure 5-6 Classification and inference performance of the model on Jetson AGX 

Xavier 
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the model’s accuracy against latency on Jetson TX2 and Jetson AGX Xavier, 

respectively. It can be seen that, as the model becomes larger, the inference 

latency and accuracy also increase. On a different device, the overall 

performance could be different. For instance, on Jetson TX2, MobileNet V3 

achieves a higher accuracy with a similar level of latency than ShuffleNet V2. 

However, on Jetson AGX Xavier, the inference latency of ShuffleNet V2 is much 

less than MobileNet V3, which is crucial for the NDRAs detection. In both figures, 

the proposed model outperforms all the evaluated state-of-the-art models. Figure 

5-8 presents a performance comparison between the evaluated efficient models 

with the conventional 3D CNN models in terms of model size. It has been  

observed that DS3D [22] achieves the best classification accuracy. In terms of 

accuracy, the proposed method is only 2.5% less than DS3D, however, it only 

has a 75% model size of DS3D. The FLOPS of the proposed model is only 2.8% 

of DS3D. 

 

Figure 5-8 Classification performance against the model size 
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5.3.3 Saliency may visualisation 

This section visualises the features learned in the hidden layer through the 

saliency map. The input of the network contains both head and hand movements. 

Due to the data protection policy, the data contains facial information is not 

included in this section. The 16 hand movement frames are downsampled to 8 

for an easy display. The class-discriminative saliency map of the last convolution 

layer in Conv4 is presented in Figure 5-9. The results of ShuffleNet V2 (SV2) and 

MobileNet V3 (MV3) are used for comparison. It can be seen that, for the first 3 

 

 

Figure 5-9 Class-discriminative saliency maps of the last convolutional layer of 

Conv4 for first 2 NDRAs. The first row of each activity is the raw frames imported 

into the network. The red regions refer to a higher association with the final 

classification while the regions in blue show the weak relevance 
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NDRAs, the hand movement has been highlighted in SV2. However, it contains 

more noise comparing with the other two methods. For answering questionnaires 

and playing games, both MV3 and the proposed method learned the spatio-

 

Figure 5-10 Class-discriminative saliency maps for last 3 NDRAs 
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temporal features of hand movement. The results of the proposed method show 

a higher sensitiveness in the time domain. It highlights a couple of frames with 

the key finger movement in the action classification while the features learned by 

MV3 cover a longer period. For reading, the MV3 model mainly focuses on the 

tablet location while the proposed method covers both tablet and hand features. 

For the activity of watching videos, the learned features of SV2 are mainly from 

a part of the tablet and the MV3 highlights the region which is above the driver’s 

hand. The features that the proposed method learned are the spatial relationship 

between both hands and the tablet. For driving, SV2 captures the driver’s both 

hands movement. Even though MV3 highlights the driver left arm movement, the 

main focus is around the door. The proposed method focuses on the driver’s 

right-hand movement. To sum up, comparing these two models, the proposed 

method shows a higher semantic relevance of the extracted spatio-temporal 

features. The proposed temporal attention module presents a stronger capability 

of extracting semantic representation of the hand movement in the time domain. 

5.4 Conclusion 

 In this chapter, an efficient and low-latency CNN based temporal attention 

module has been proposed, which learns the spatio-temporal representation 

through spatial convolution and the attention enhanced temporal weighting. 

Unlike the conventional 3D convolution operation, the proposed module could 

enhance the learned representation in the temporal domain with lower 

computational complexity. In this study, the performance of the proposed module 

with MobileNet V3 as backbone has been evaluated on an NDRAs recognition 

dataset. The results demonstrate a significant improvement of accuracy against 

several state-of-the-art methods. The saliency map of the learned features shows 

its capability of extracting the key spatial-temporal representation from the activity 

specifically in the time domain. The evaluation of the inference latency on three 

edge computing devices also presents the advance of the proposed network 

regards computational efficiency, which is crucial for real-time applications. 
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6 Impact analysis of NDRAs in take-over process 

This chapter is based on the published conference paper: L. Yang, M. B. 

Semiromi, D. Auger, A. Dmitruk, J. Brighton, and Y. Zhao, “The implication of 

non-driving activities on situation awareness and take-over performance in level 

3 automation,” in IECON 2020 The 46th Annual Conference of the IEEE Industrial 

Electronics Society, Oct. 2020, vol. 2020-Octob, pp. 5075–5080, doi: 

10.1109/IECON43393.2020.9254533. 

6.1 Introduction 

A highly automated driving vehicle could free the driver’s eye and hand from 

controlling the vehicle in some driving scenarios. It could encourage the driver to 

engage in some non-driving related activities (NDRAs) [1], [2]. However, fully 

automated driving has not been achieved yet. Automated driving vehicles cannot 

provide an appropriate response for every driving scenario, which is a potential 

safety risk and the main concern of the current automated driving system [3]. 

According to the SAE (J3016) Automation Levels [4], in Level 3 automation, the 

driver only needs to control the vehicle when the intervene is requested, which 

means the driver could engage some NDRAs rather than pay full attention to 

driving under the automated driving mode. Since the engagement of NDRAs 

could reduce the driver’s situation awareness and attention [5]–[7], it is of great 

importance to evaluate its impact on the take-over performance to achieve a safe 

and smooth control transition.  

Researches suggested that the sufficient take-over interval for drivers should be 

5 to 8s [7], [8]. It is affected by different factors such as driver’s state including 

age, gender, driving experience [9], [10], the complexity of the driving scenario 

[11]–[13], the modality of the take-over request [8], [14], [15] and the NDRAs that 

drivers engage with [8], [16]. The impact of diverse NDRAs on take-over 

performance has been widely researched in recent years. Yooh et al. [8] 

investigated the driver’s take-over performance with 3 types of NDRA, which are 

phone conversation, smartphone interaction, and video watching tasks, while 

Zeeb et al. [1] examined the impact of writing an email, reading news, and 
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watching a video clip. Results from both studies suggested that the NDRA 

engagement can significantly influence the take-over quality based on the 

statistical analysis. One of the limitations of existing studies [17], [18] is that 

NDRAs were investigated specifically and independently, which limits the 

extendibility of the driver monitoring or take-over assistance system. When 

considering a new NDRA, such a system needs to conduct the evaluation 

process again to investigate its impact. There is a lack of a systematic method to 

group or categorise NDRAs which could have a similar level of impact on the 

take-over performance. On the other hand, the existing literature of NDRA’s 

impact is normally from the perspective of the driver’s workload  [3], [7], [19]. The 

situation awareness before take-over is also considered as a crucial factor of safe 

take-over transition but has not been discussed associated with NDRAs [20]. 

There is a knowledge gap in the implication of situation awareness on the take-

over process.  

The existing literature has claimed that the driver’s take-over performance is 

affected by the type of NDRAs. For instance, visual related activities tend to take 

a longer reaction time than auditory related activities [21]. However, the number 

of evaluated NDRAs is limited. Following the survey made by Sivak and Schoettle 

[22],  the common NDRAs are reading, texting, working, watching movies and 

playing games. In this study, we picked 4 types of visual-related NDRA which are 

playing games, answering questionnaires, watching videos and reading news 

and further evaluated them on the same device which is a tablet. Based on the 

way of interaction between human and object, the NDRAs are divided into 2 

groups, which are active interaction mode and passive interaction mode. Playing 

games and answering questionnaires can be considered as active interaction 

mode since the driver and the object respond to each other’s action over time 

during the engagement. However, under passive interaction mode like reading 

news or watching movies, the driver only receives information passively. This 

study hypothesises that the workload and demanded attention are different 

between these two modes. Furthermore, compared with the passive mode 

NDRAs, the active mode NDRAs could result in a more negative impact on the 

driver’s take-over performance.  
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This chapter investigates the implication of NDRAs in different interaction modes 

on the take-over performance in level 3 automation. Furthermore, the driver’s 

behaviour has been recorded including hand and head movement, which is used 

to evaluate the driver’s road-checking behaviour, which is considered as a factor 

that reflects the driver’s situation awareness. Its motivation associated with 

NDRAs has been inferred. To ensure a safe take-over transition, haptic feedback 

has been added to the steering wheel. The haptic feedback in the Human-

Machine Interface (HMI) design for the take-over process has been widely 

researched [23]–[25], specifically implemented on the steering wheel [26]–[28]. 

In this study, the effectiveness and impact of haptic feedback in take-over 

performance are also evaluated. The vehicle setting and the experiment design 

are introduced in Section 6.2. In Section 6.3, the driver’s road-checking behaviour 

and take-over performance of each NDRAs are evaluated and discussed at both 

group and individual levels. Discussion and conclusion are given in Section 6.4. 

6.2 Methodology 

6.2.1 Take-over concept 

The design of the take-over process in a trial is illustrated in Figure 6-1. During a 

trial, the vehicle was driving automatically initially while the participant was 

 

Figure 6-1 Concept of the take-over process 
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required to do a type of NDRA or checking the road. Then the take-over process 

started after a lateral offset was implemented to the vehicle. The lateral error is 

defined as the distance between the vehicle position and the closest point on the 

path. After a lateral offset was implemented, the vehicle is in an improper position 

of the road, an acoustic signal as a take-over request (TOR) was then given to 

the participant. The participant was requested to take control of the vehicle and 

bring it back to the right position. In Figure 6-1, 𝑇  indicates the time needed for 

the driver to put her/his hand on the steering wheel. To achieve a safe and smooth 

take-over transition, a haptic torque was implemented to help the driver and guide 

the vehicle to the reference route. The haptic torque was engaged as soon as the 

driver applies torque to the wheel and gradually fades away. After the lateral error 

achieves the maximum value, the vehicle will return to the reference route. A 

threshold of the safety distance is defined, which indicates the control transition 

is finished and the driver could achieve a safe manual driving afterwards. In this 

study, the threshold was set as 0.7m, which is the maximum lateral error to keep 

the vehicle inside the lane. In Figure 6-1, 𝑇  refers to the time needed from TOR 

to the time when the vehicle arrives at the threshold, which is considered as a 

criterion to evaluate the take-over performance in this study. 

6.2.2 Experiment setup 

6.2.2.1 Vehicle Modification 

The vehicle used for the experiments was an instrumented Landrover Discovery 

5. The car was modified to accommodate both autonomous and human driving. 

An electric motor, operating on the steering column, was used for steering and 

another electric motor was used to control the throttle pedal position. Braking was 

modified using a pneumatic actuator on the brake pedal. To ensure safety, a 

steering wheel and a set of pedals were added in the back seat, which allows a 

safety driver to intervene and override the autonomous system. For path 

following, the pure pursuit algorithm was used to generate the reference steering 

angle. The rear steering wheel was controlled using the reference steering angles 

and the front wheel follows the rear wheel. 
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6.2.2.2 Participants 

A total of 16 participants (14 male and 2 female) from Cranfield University were 

recruited for this experiment. The participants’ age is in a range from 24 to 30. 

They were required to hold a valid UK driving license while they have no driving 

experience with automated vehicles.   

6.2.2.3 NDRAs 

Four types of NDRA are investigated in this study, which include reading news, 

watching videos, playing games and answering questionnaires using a tablet. For 

reading, the participant was required to read some articles from BBC News. For 

watching videos, the participant was asked to watch Youtube videos. Temple Run 

was used as the target game for the game engagement. For the NDRA of 

answering questionnaires, the participant was required to complete a 

questionnaire, which comprises some objective and subjective questions about 

this experiment. In the experiment, there were 7 trials per participant. It includes 

4 trials for 4 types of NDRA respectively and 1 trial without NDRA (watching road). 

 

Figure 6-2 Sketch map of the track 
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For the remaining 2 trials, 2 activities were randomly selected from the 5 activities 

mentioned above. The order of each activity was randomly selected to reduce the 

bias.   

6.2.2.4 Track and Take-over Scenarios 

The testing track is a two-lane road with a mini-roundabout, as shown in Figure 

6-2. The start point is highlighted with green colour. In the odd loop, the vehicle 

enters from exit 1 into the mini-roundabout and leaves from exit 3. Then it enters 

from exit 4 and leaves from exit 2. In the even loop, the vehicle enters from exit 

1 and leaves the mini-roundabout from exit 4. Then it enters into the roundabout 

from exit 3 and leaves from exit 2. The TOR signal was issued at specific points 

on the track to avoid the area around the mini roundabout for safety concerns. 

The lateral offset was set as 1.5m with a small variation in the real trial. The 

maximum speed of the vehicle was set as 30 mph. The interval between TORs 

was randomly selected from the range of 5 to 9 minutes.   

6.2.3 Data Acquisition 

An OXTS RT1003 with RTK GPS was used for positioning and a dSPACE 

Microautobox I was used as an onboard computer. The RT1003 system provides 

the global vehicle position with an accuracy of 2cm and the heading angle with 

an accuracy of less than 1 degree. The data of vehicle status were recorded in 

the Micorautobox I at a sampling rate of 1kHz. The data include driver steering 

torque, autonomous steering torque, vehicle position and heading, vehicle 

velocity, steering angle and take-over signal. The path was recorded beforehand 

at 1kHz. 

Driver’s hand-on-wheel time (𝑡 ) was defined as the moment that the driver’s 

applied torque passes a certain threshold. The threshold was experimentally 

determined to avoid false take-over detection due to sensor noise. An instance 

of the driver’s torque during a take-over process is shown in the top plot of Figure 

6-3. The corresponding vehicle route is presented in the bottom plot of Figure 

6-3. 
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After the driver takes control of the steering wheel, the vehicle provides haptic 

cues to the driver, in the form of torque on the steering wheel, to increase the 

driver’s awareness of the environment. The haptic decays over a certain amount 

of time and eventually reaches 0 to give the driver full control. The value of the 

torque is calculated using  

𝜏 (𝑡) = 𝐾 (𝑡)𝐾 (𝛿 − 𝛿 ) (6-1) 

where 𝛿  is the vehicle steering angle; 𝛿  is the reference steering angle 

calculated by the path following algorithm; 𝐾  is a constant gain and 𝐾 (𝑡) is a 

decaying gain which is a function of time starting from 1 and reaching to 0 at the 

 

Figure 6-3 Top plot presents the driver’s torque and the haptic torque for 1 

instance. Bottom plot presents the corresponding vehicle movement in the track 
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end of the take-over period. The decaying profile is shown in the top plot of Figure 

6-3. The decaying duration chosen for this experiment was 8 seconds. The torque 

value is normalised between -1 and 1, where 1 indicates the maximum torque of 

the electric motor in one direction and -1 indicates the maximum torque in another 

direction. The maximum amplitude of the torque was a tuning parameter. Each 

participant tried two of three pre-set values: 0.35, 0.45, 0.55.  

There were 2 cameras (Garmin Virb Action Camera) employed to monitor the 

driver’s behaviour during the experiment. The resolution of both cameras was set 

as 1920 × 1440 pixels and images were sampled at 24 frames per second (fps). 

As shown in Figure 6-4, one camera (Camera 1) was located in the right bottom 

of the windscreen and faced to the driver’s head, which is used to detect whether 

the driver is engaging in NDRAs or checking the road. Another one (Camera 2) 

was mounted on the roof of the vehicle between two front seats to record the 

driver’s hand movement engaging with the tablet or steering wheel. The following 

analysis of situation awareness is based on the process of the recorded videos. 

The video clip captured from Camera 1 was used to evaluate if the driver 

conducts road-checking behaviours. The inferred motivation was manually 

labelled based on the videos recorded from Camera 2. 

 

Figure 6-4 A illustration of the two cameras inside the vehicle 
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6.3 Results 

6.3.1 Road-checking behaviour analysis 

The statistic results of driver road-checking behaviour for all participants are 

presented in Table 6-1. The checking period is calculated by the duration of the 

NDRA trial and the total number of checking behaviour in this trial. The motivation 

for road-checking behaviour is inferred by reviewing the videos from two 

cameras. Bumping refers to the vehicle vibration due to uneven road surface. For 

approaching junctions, the driver’s glance is counted when approaching the 

roundabout and turning. Breakpoint indicates the road-checking behaviour due 

to a short break during the NDRA engagement. For instance, the driver 

sometimes checks the environment after she/he finishes watching a video clip or 

a round of game. Others covers the road-checking behaviour without unclear 

motivation or regular road-checking.  

It has been observed that the checking period is lowest (37.1s) when the driver 

was watching videos. For this NDRA, the main motivations of road-checking are 

Approaching junction (52.05%) and Bumping (19.88%). Reading news has the 

second-lowest period (51.64s), where the proportion of motivations is similar to 

that of watching videos. Answering questionnaires has the least road-checking 

behaviour. Normally only once or twice in a trial. Approaching junction (50%) still 

Table 6-1 Road-checking behaviour evaluation 

NDRAs 
Checking 
period (s) 

Percentage of checking for corresponding motivation 

Bumping 
Approaching 

junctions 
Breakpoint Others 

Watching 
videos 

37.10 19.88% 52.05% 5.85% 22.22% 

Reading news 51.64 16.78% 51.75% 7.69% 23.78% 

Playing games 79.13 3.61% 26.50% 59.04% 10.84% 

Answering 
questionnaires 

123.00 18.18% 50.00% 13.64% 18.18% 
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dominates the motivation. As one of the typical NDRAs under the active 

interaction mode, playing games has a relatively high road-checking period 

(79.13s), where Breakpoint (59.04%) dominates the motivation. The proportion 

of Approaching junctions and Bumping are 26.5% and 3.61%, respectively. 

Compared to the NDRAs in active interaction mode, the NDRAs in passive 

interaction mode leads to more frequent road-checking, which suggests drivers 

have more awareness for the situations of vehicle vibration, turning or slowing 

down when approaching junctions. These road-checking behaviours are 

important to ensure a safe transition if the take-over is required under these 

scenarios. The observation also suggests that the driver has a relatively low 

workload under passive interaction mode, which potentially leads to a smoother 

and better-quality take-over process. For the NDRAs under active interaction 

mode, the results show that the driver paid a high level of engagement on the 

activity, particularly for answering questionnaires, evident by much less frequent 

road-checking. For playing games, the road-checking normally happens during 

Figure 6-5 The hand-on-wheel time performance. NoTask refers to the 

performance in watching road trial 
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Breakpoint and the driver is not sensitive to the driving-situation change during a 

game. Therefore, for this type of NDRA, the driver is more difficult to complete a 

high-quality take-over transition due to lack of situation awareness. 

6.3.2 Take-over performance 

The driver’s performance during the take-over process is presented in this 

section. The driver’s hand-on-wheel time (𝑇 ) is shown in Figure 6-5. As expected, 

no NDRA engagement achieved the shortest 𝑇  with an average value around 

1.3s. For the selected 4 NDRAs, the average 𝑇  is in the range of 1.9-2.6s, which 

is more than double than without NDRA. Playing games seems to result in the 

longest 𝑇 .  From Figure 6-6, it can be observed the maximum lateral error for 

each activity is similar, which is in the range of 2 to 3.5m. In most of the trials, 

after receiving the TOR signal, the driver can obtain the control of the vehicle and 

prevent the situation from getting worse within a 3.5m lateral error. However, 

NDRA engagement affects the driver’s controlling performance after the vehicle 

achieving the maximum lateral error. It can be seen from Figure 6-7 that the time 

Figure 6-6 Maximum lateral error achieving 



 

157 

needed to arrive the safe position without NDRA engagement (𝑇 ) is around 

4.16s, while for all types of NDRA engagement 𝑇  is at least 0.5s more, which  

suggests that the vehicle could stay in a dangerous position for a longer time. 

Mean and standard deviation of  𝑇  for each activity are presented in Table 6-2. 

The mean values of watching videos and reading news (passive interaction 

mode) are 4.74s and 4.96s, representatively, which are higher than those of 

answering questionnaires and playing games (5.45s and 5.43s respectively) in 

active interaction mode. The standard deviation of the NDRAs is higher than the 

NoTask, which suggests higher individual differences of the take-over 

performance in NDRAs engagement. Through combining Figure 6-5 and Figure 

Table 6-2 Time to threshold for all activities 

Time to Threshold 
Activities 

No task Watch Read Ques Game 

Mean (s) 4.16 4.74 4.96 5.45 5.43 

Standard deviation (s) 0.67 1.12 0.87 1.23 1.14 

Figure 6-7 Time cost for the vehicle back to the safe position 
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6-7, it has been suggested that NDRAs in active interaction mode request more 

time to control the vehicle during the take-over process. The reason could be that 

for this type of NDRA the driver needs more time to develop the awareness of 

driving-environment after receiving the TOR signal and is more difficult to recover 

from the previous NDRA mentally. 

The take-over performance of haptic feedback is presented in Error! Reference 

source not found.. For a low level of haptic torque, the mean value of 𝑇  is 5.32s, 

which is the lowest among all the evaluated levels. The standard deviation is 

1.12s, which suggests that all the participants have higher tolerance on this level 

of haptic torque assistance. It can be seen that the increase of the torque level 

could result in the decrease of the mean value of 𝑇 , which means a higher level 

of haptic torque could support the driver to reduce 𝑇  and improve their take-over 

performance. However, the standard deviation increases (1.55s for medium level 

and 1.32s for high level). It suggests that some of the participants could distrust 

and resist the higher level of haptic torque and take a longer 𝑇 . 

6.4 Conclusion 

In level 3 automated driving, one of the most important challenges for driving 

safety is the take-over process. It is affected by many factors but dominated by 

the driver’s state before take-over. This study investigated the implication of four 

selected NDRAs, grouped into active and passive interaction modes, on situation 

awareness during the NDRA engagement associated with its motivation and the 

following take-over performance. The approach of grouping aims to extend the 

application of this study on a wide range of NDRA. Furthermore, the effectiveness 

of steering wheel haptic assistance system for the take-over process has been 

evaluated.  

From the situation awareness point of view, drivers always check the environment 

to ensure driving safety during the NDRAs engagement. Compared to the NDRAs 

in active interaction mode, the NDRAs in passive interaction mode leads to more 

frequent road-checking, which suggests drivers have more awareness for the 

situations of vehicle vibration, turning or slowing down when approaching 
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junctions. The motivation study also suggests that for the NDRAs in active 

interaction mode the driver is not sensitive to the driving situation change. Drivers 

should be warned when they engage with this kind of NDRA and do not check 

the road for a long period. 

For the take-over process, the engagement of NDRAs could result in a negative 

effect. It has been observed that the type of the NDRAs could affect the driver’s 

takeover performance. Specifically, the driver who engages with NDRAs in active 

interaction mode requests more time to achieve a safe take-over transition. 

Therefore, identifying the NDRAs type rather than detecting the driver’s 

distraction could help to predict his/her takeover performance and determine the 

proper takeover strategy or modality for the current type of NDRAs if the 

intervention is requested. Moreover, haptic torque assistance could improve the 

take-over performance evidenced by decreasing 𝑇 . However, a higher level of 

haptic torque could result in the driver’s resistance. 

In summary, the type of NDRA determines the level of demanded attention of the 

driver, which influences the situation awareness and take-over quality. The 

observed results also suggest that the take-over process could benefit from the 

high-frequency road-checking and haptic feedback assistance. The investigation 

of these factors helps us develop a deep understanding of the implication of 

human behaviour on the take-over performance, which could help for further take-

over strategy and HMI design to achieve the safe control transition. 
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7 Overall discussion, conclusion, and future work 

This chapter presents the key findings and the contribution to the knowledge of 

this research, discusses its implication on the industry and further gives the 

conclusion and future work of this research. 

7.1 Research gaps filled 

Research Gap 1: Lack of research on the DRAs recognition in the AVs and visual 

attention estimation: 

To recognise the driver’s DRAs engagement, this research utilised the driver’s 

head movement, since when the driver is engaging in the DRAs, he/her always 

checks the road and the driving environment, while the NDRAs engagement 

requests the driver to focus on the object such as phone, tablet. Furthermore, the 

driver’s gaze focus has been extracted through a gaze mapping system in 

Chapter 2. Such a system could locate the driver’s visual attention, which can be 

used to recognise the visual attention-related NDRAs with the recognition of the 

object that the driver is interacting with. The head movement monitoring and the 

visual attention estimation can be used as an indicator to reflect the driver’s 

situation awareness, which is important to be evaluated before the takeover 

process. 

Research Gap 2: Lack of research on video-based driver’s NDRAs recognition, 

specifically, high-similarity activities: 

To differentiate the high-similarity activities, this research produced an NDRAs 

dataset, which includes 4 activities, reading news, watching videos, playing 

games and answering questionnaires. All of the activities are performed on a 

tablet. Unlike most of the existing research, which is usually image-based, this 

research proposed a 3D CNN based model that extracts the spatio-temporal 

features from the driver’s behaviour in videos in Chapter 4. It could learn the 

representation of the movement pattern in the time domain. 
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Research Gap 3: Lack of the lightweight driver behaviour monitoring model for 

in-vehicle application and its implementation and evaluation on the edge 

computing device:  

Unlike the accuracy-oriented studies in the field of action recognition, this 

research focuses on real-time driver behaviour monitoring and its in-vehicle 

implementation. In Chapter 5, a temporal attention-based lightweight 3D CNN 

module has been developed for this purpose. Its performance of the activity 

recognition in terms of accuracy and inference latency has been evaluated on the 

NVIDIA Jetson family in comparison with other state-of-the-art lightweight 

models. 

Research Gap 4: Lack of research on the exploration of the high-level implication 

of NDRAs on the takeover process: 

Finally, in Chapter 6, the research categories the NDRAs into 2 groups based on 

the interaction mode between the driver and the object employed for the 

engagement. Then investigates the impact of the NDRAs on the takeover process 

at the group and individual levels. The results prove that the engagement of the 

NDRAs could lead to a negative impact on the takeover process and also proves 

the feasibility of using this proposed category method to group the NDRAs with a 

similar level of impact.  

7.2 Contribution to the knowledge  

The contribution to the knowledge of this research can be divided into 3 parts: 

The exploration of the methods for the driver’s behaviour characterisation, the 

optimisation of deep learning-based methods for NDRAs/DRAs recognition, and 

the evaluation of NDRAs impact on the takeover process. 

The exploration of the method for the driver’s behaviour characterisation: 

 In this research, the pattern of the driver’s behaviour in the vehicle is 

characterised by the driver’s head and hand movement. A two-feed 

system based on these features has been proposed to monitor the driver’s 

activity engagement in the AVs. 
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 A novel two-camera based system has been developed to estimate the 

driver’s visual attention. One camera is used to extract the driver’s facial 

and gaze features while another camera visualises the estimated gaze. 

The estimated gaze is used to detect the driver’s NDRAs engagement and 

identify the NDRAs with the recognised object. Comparing with other deep 

learning-based NDRAs recognition methods, such a method converts the 

classification problem into a recognition problem, which is more 

transparent and interpretable.  

 Using a two-stream CNN model to recognise the NDRAs, for which the 

spatial stream differentiates the objects from the raw image, the temporal 

stream employs the optical flow to represent the motion between images. 

Furthermore, an ROI model is designed based on the human-object 

interaction, which could reduce the noise of the optical flow and increase 

the processing speed. 

The optimisation of deep learning-based methods for NDRAs/DRAs recognition: 

 This research proposed a dual-stream 3D residual network, named DS3D 

ResNet, which is able to enhance the learning of spatio-temporal 

representation and improve the activity recognition performance. 

Specifically, a parallel 2-stream structure is introduced to focus on the 

learning of short-time spatial representation and small-region temporal 

representation of the activity. Moreover, the saliency map of the hidden 

layer is employed to present the semantic correlation of the learned 

representation. 

 This research also developed a lightweight temporal attention-based 

module for CNN. Such a module factorises the conventional 3D 

convolution as a spatial convolution and a temporal attention function. 

With the implemented channel weighting function, the proposed module 

could learn the spatio-temporal representation in an efficient way. The 

performance, especially, the inference latency of the proposed model and 

other state-of-the-art models have been evaluated on the NVIDIA Jetson 

family. 
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The evaluation of NDRAs impact on the takeover process: 

 This research proposed a category method for the NDRAs based on the 

interaction mode. The results show that the NDRAs in the same interaction 

mode have a similar level of impact on the takeover performance. It also 

suggests that the active NDRAs engagement takes more time for the 

driver to complete the control transition, compare with the passive NDRAs 

engagement. Such a method could predict the level of the impact for 

unevaluated NDRAs. 

 In this research, driver’s road checking behaviour during the NDRAs 

engagement is considered as an important factor that reflects the driver’s 

situation awareness before the takeover process. This research highlights 

the importance of road checking behaviour. The behaviour and its 

motivation can be used to evaluate the level of the driver’s NDRAs 

engagement and the driver’s mental demands of the NDRAs  

7.3 Real world application or Impact on the industry 

This research investigates different approaches and uses the driver’s head and 

hand movement to characterise the driver’s behaviour and demonstrates the 

effectiveness of the two-feed system for the monitoring of the driver activity 

engagement in the vehicle cabin. Specifically, by using the head movement 

information, a gaze mapping system has been developed to visualise the driver’s 

visual attention. Such a system can not only be used to detect the NDRAs 

engagement and classify the visual related NDRAs but also be used for the driver 

distraction detection for the human-driven vehicle. Compare with other facial 

information based driver distraction detection methods, the advantage of this 

system is that it can locate the driver’s visual attention and provide the details of 

the activity that distracts the driver. For instance, the impact level on the driving 

for NDRAs engagement distraction and visual contact with passengers are 

different. Based on the distraction type and level, it can be further determined if 

the driver needs to be warned to secure driving safety. However, monitoring the 

driver’s facial information could be controversial. It could involve some concerns 

about privacy and ethics. Compare with the facial information-based methods, 
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the hand gesture-based NDRAs recognition methods will have less concern in 

this field. Even though the NDRAs can be classified based on hand gestures, 

such a method still cannot determine whether the driver is engaging in the NDRAs 

without visual attention, since the driver could hold some device while checking 

the road or sleeping without any hand gesture. Moreover, Tesla attempted to use 

the driver-applied steering wheel torque as an indicator to monitor the driver’s 

DRAs engagement, which has been proved as an ineffective surrogate measure 

in the report of Tesla's fatality [1]. Therefore, using the driver’s facial information 

or visual attention to measure the DRAs engagement is straightforward and 

effective. The way of collecting, processing and using this kind of information in 

the vehicle could be further discussed and investigated. To sum up, head or hand 

movement information has been used to identify some types of NDRAs 

individually in the existing research. However, the limitation of using these 

features independently is obvious. The head movement cannot be used to refine 

the NDRAs classification, and the hand movement is not able to indicate the 

driver’s attention. Therefore, combining both features to recognise the driver’s 

behaviour by using a two-feed system is crucial in real driver monitoring 

applications. Furthermore, the evaluated and proposed approaches for driver 

behaviour monitoring is not only limited to level 3 automated driving vehicle. It is 

also important to monitor the driver’s behaviour at all levels of automation. For 

the lower automation level such as level 1 and level 2, it can be used to detect 

the distraction (level 1) and recognise the secondary task (level 2). The driver’s 

visual attention plays a key role in these levels. In the higher automation level, it 

gives the driver more tolerance to engage some NDRAs. Monitoring the driver’s 

behaviour could help the vehicle to determine whether the vehicle will give the 

control back to the driver if the driver requests (level 4). For instance, the driver 

requests to take over the vehicle, however, he/she is in an unsuitable condition 

for driving like drunk. The recognised state of the driver could support the vehicle 

to make the right decision. In level 5 automation, the driver cannot control the 

vehicle. Even though, the monitoring of the driver or passenger is also necessary 

to predict the hazard inside the vehicle cabin or the effect of their behaviour could 

make to the automated driving. Therefore, the monitoring of the driver’s behaviour 
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is of great importance in all levels of driving automation, which should be further 

implemented in the whole automotive industry. 

From the algorithm perspective for the action recognition, this research 

developed two methods, which are the DS3D model for spatio-temporal 

representation learning and a lightweight model for the edge computing device 

based on the attention mechanisms. This proposed DS3D model has 

demonstrated its capability of extracting spatio-temporal features from the 

driver’s behaviour during the NDRAs engagement. This model not only can be 

used for this purpose but also be used to solve the general action recognition 

problem. The short-time spatial stream of the model focuses on the spatial 

change in a short duration, which is normally the feature of the high-frequency 

movement while the small-region temporal stream shows the capability of 

capturing long-term memory from the low-frequency movement. Comparing with 

other conventional one-stream models, the proposed model adopts the two-

stream, which extracts different types of features from the activity. It provides a 

new thought for the model design in the field of action recognition or classification. 

The proposed lightweight temporal attention-based module factorised the 

conventional 3D convolution. It employs the 2D convolution for spatial features 

and introduces the attention mechanisms into the time domain. The proposed 

module enhanced the model’s capability of learning the temporal attention from 

the motion with a limited computational cost. Moreover, the module is 

independent and end-to-end trainable, which can be used as a plugin module for 

the existing 3D CNN backbone. It could have wide applications in the field of 

spatio-temporal feature extraction.  

For the evaluation of the NDRAs impact on the takeover process, this research 

proposed a category method to group the activities based on the manner that the 

information is transferred during the visual attention-related activities. The active 

interaction mode NDRAs requires the bidirectional information transmission 

between the driver and the object during the NDRAs engagement, while in the 

passive interaction mode NDRAs engagement, the driver passively receives the 

information from the object. During the active NDRAs engagement, the intensive 
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information transmission normally costs high mental demands for the driver, 

which reduces his/her road-checking behaviour and situation awareness. It will 

increase the time needed for completing the takeover process. The active NDRAs 

are not limited to the 2 classes evaluated in this research. The other common 

active NDRAs could be: working on a laptop, chatting via a phone, etc. For the 

passive NDRAs engagement, the driver normally pays less attention and 

performs more road checking behaviour to sense the environment. This research 

also found the importance of road-checking behaviour during the NDRAs 

engagement. The results suggest that the frequently road-checking behaviour 

could reduce the time needed for completing the takeover process. It should be 

noted that the evaluated NDRAs are visual attention-related. Some other NDRAs 

such as eating, drinking, communicating with passengers, etc, are not evaluated. 

Unlike the visual attention-related NDRAs, during the engagement of these 

NDRAs, the driver normally checks the road all the time and has a good 

awareness of the driving environment. Such NDRAs are not suitable for the 

proposed category method.  Furthermore, the finding of the research in terms of 

the NDRAs impact on the takeover performance is crucial for the design of the 

takeover strategy and modality in conditional driving automation. In the current 

research on the takeover strategy and modality, the investigated TOR signals are 

mainly visual, auditory and tactile [2]. The active NDRAs engagement is proved 

costs more mental demands of the driver. Therefore, an efficient way to convey 

the takeover message to the driver is to combine the 3 types of signals [3]. Since 

the driver could lack situation awareness before the takeover, the detected 

hazard could be presented on the windscreen to help the decision making. 

However, for passive NDRAs engagement, the TOR signal could be gentle and 

the strategy should be simple. The complicated strategy and strong TOR signal 

such as vibration (tactile signals) could confuse the driver and make him/her 

nervous, which could lead to a negative effect on the takeover process.   

7.4 Conclusion  

This thesis explores the way of characterising the driver’s behaviour during the 

DRAs and NDRAs engagement, particularly the latter one, with the computer 
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vision and AI-based approach in the AVs. Specifically, the driver’s head 

movement or the facial information can be considered as the source that provides 

the driver’s attention information. With the recognised in-vehicle environment, the 

located attention can be used to infer the driver’s intention, either the NDRAs 

engagement with the object like a phone, tablet or the DRAs engagement with 

the object like wing mirrors, road outside. The driver’s hand movement is 

employed to further differentiate the activities since the motion patterns in the 

time domain are different during the activity engagement. Based on these 

features, this research proposes a 2-feed system architecture to monitor the 

driver’s behaviour. For the modelling of activity classification and feature 

extraction, this research proposes a Dual-stream 3D CNN, which learns the short-

time spatial representations (high-frequency interaction) and the small-region 

temporal representations (low-frequency interaction) from the motion during the 

activity engagement. Moreover, this research evaluates the performance of the 

state-of-the-art efficient CNN-based action classification models that can be used 

to recognise the NDRAs/DRAs on the edge computing device for the real-time in-

vehicle application. A temporal attention-based lightweight 3D CNN module has 

been proposed to enhance the model’s capability of spatio-temporal 

representation learning, especially in the time domain, with a relatively low 

computational cost. The proposed 2-feed system architecture and the CNN 

based model have been proved effective for the recognition of the driver’s 

behaviour in the vehicle cabin.  

From the investigation of NDRAs’ impact on the takeover process, the visual 

attention-related NDRAs can be categorised as active NDRAs and passive 

NDRAs based on the interaction mode between the driver and the object involved 

in the engagement. The results suggest that the NDRAs engagement could 

increase the time cost for the driver to complete the control transition and the 

active NDRAs engagement could result in an even longer takeover time. This 

research also finds that the willingness of performing road-checking behaviour 

during the NDRAs engagement is different between the active NDRAs and 

passive NDRAs. During the passive NDRAs engagement, drivers perform the 

road-checking behaviour more frequently and they always check the road if there 
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are some changes of the vehicle state (velocity change, vehicle bumping, etc.). 

However, drivers are more concentrated on the activity during the active NDRAs 

engagement, and they are not sensitive to such changes, which leads to lower 

situation awareness of the driving environment. The evaluation of the takeover 

performance and the road-checking behaviour suggests that the engagement of 

active NDRAs could lead to high mental demands on the driver. This research 

explores the method of monitoring the driver’s behaviour in the AVs and 

investigates the influence of the NDRAs engagement, which is of great 

importance for the design of the takeover strategy and modality in the current and 

following driving automation. 

7.5 Future work 

The current video-based dataset of the driver’s behaviour could be expanded in 

future work. From the perspective of the evaluated classes, for DRAs, the driver’s 

road checking behaviour can be further classified as forward road checking, wing 

mirror checking and rear-view mirror checking. The refined classes could provide 

more details of the driver’s attention, which is helpful for the evaluation of the 

driver’s situation awareness of the surrounding environment. Combining with the 

environment sensing system of the vehicle, the driver’s hazard awareness before 

the emergency takeover can be further evaluated. For NDRAs, more visual 

related NDRAs can be investigated, such as chatting via a phone, interacting with 

the centre console (navigating, watching movies, etc.). Some other NDRAs like 

eating, drinking, sleeping, calling, chatting with passengers, should also be 

included in this dataset. It should be noted that, unlike the visual related NDRAs, 

the impact of these NDRAs on the takeover performance needs to be evaluated. 

The road checking behaviour or the situation awareness of the driver during the 

engagement of these NDRAs also needs to be investigated. On the other hand, 

more participants need to be involved in the experiment to make the dataset 

equal and unbiased in terms of race, gender, age, and driving experience, etc.  

This current research of the driver’s behaviour monitoring is off-line based using 

the collected video dataset. The proposed driver behaviour monitoring system 

can be implemented on an AV simulator or a vehicle with an automated driving 
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system. Its real-time recognition performance can be further evaluated. The 

methods evaluated and developed in this research is computer-vision based. The 

method based on non-camera sensors can be further investigated and integrated 

into the investigated driver behaviour monitoring system. For instance, using the 

microphone to extract the sound in the vehicle cabin, using the haptic sensors 

like the smartwatch to monitor the driver’s state, using the centre console to 

record the application that the driver is interacting with, such as movies, games, 

navigation. All this information can be integrated together to develop a more 

robust and comprehensive system. 
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Table A-1 An example of the estimated 2nd order nonlinear model with ERR value 

for the first test of the indoor experiment 

Model X Y 

Priority Model term Coefficient ERR Importance Model term Coefficient ERR Importance 

1 constant 811.25 88.459% N/A constant 528.27 91.563% N/A 

2 
gaze_angle_

x 
-1582.93 11.465% 99.34% 

gaze_angle_
y 

474.31 7.605% 90.14% 

3 
pose_Tz* 
pose_Rx 

53.43 0.011% 0.10% pose_Tx -2.03 0.487% 5.77% 

4 
gaze_angle_

y 
-917.28 0.011% 0.10% 

pose_Tx* 
pose_Rx 

-35.57 0.125% 1.48% 

5 pose_Tx -0.58 0.008% 0.07% 
gaze_angle_

x 
465.13 0.081% 0.96% 

6 
pose_Tx* 
pose_Rx 

-46.94 0.003% 0.03% 

gaze_angle_
y* 

gaze_angle_
y 

821.15 0.027% 0.32% 

7 pose_Rx 853.26 0.002% 0.02% 
pose_Ty* 
pose_Ty 

0.21 0.024% 0.28% 

8 
pose_Rx* 
pose_Ry 

-4419.04 0.002% 0.02% 
gaze_angle_

y* pose_Rz 
16140.28 0.014% 0.17% 

9 pose_Ry 450.32 0.002% 0.02% 

gaze_angle_
x* 

gaze_angle_
y 

-2771.10 0.012% 0.14% 

10 
gaze_angle_

y* pose_Tz 
-62.47 0.001% 0.01% pose_Rx 1248.56 0.011% 0.13% 
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Table A-2 An example of the estimated 2nd order nonlinear model with ERR value 

for the second test of the indoor experiment 

Model X Y 

Priority Model term Coefficient ERR Importance Model term Coefficient ERR Importance 

1 constant 776.76 88.440% N/A constant 545.12 91.542% N/A 

2 gaze_angle_
x 

-2253.33 10.860% 93.94% 
gaze_angle_

y 
1612.76 7.517% 88.88% 

3 pose_Tz* 
pose_Ry 

1.92 0.284% 2.46% 
gaze_angle_

x 
-207.97 0.271% 3.21% 

4 pose_Tx* 
pose_Tx 

0.04 0.143% 1.24% 
pose_Tz* 
pose_Tz 

-0.01 0.212% 2.51% 

5 
pose_Ry -863.78 0.066% 0.57% 

pose_Tx* 
pose_Rx 

-27.94 0.094% 1.11% 

6 

pose_Tx -5.23 0.050% 0.43% 

gaze_angle_
y* 

gaze_angle_
y 

3018.13 0.052% 0.62% 

7 gaze_angle_
x* pose_Tz 

-2.32 0.016% 0.14% 
pose_Tx* 
pose_Ty 

0.23 0.045% 0.53% 

8 
pose_Rz -62.47 0.008% 0.07% 

pose_Ry* 
pose_Rz 

-2826.91 0.043% 0.51% 

9 gaze_angle_
x* pose_Rz 

987.56 0.005% 0.04% pose_Ry -432.25 0.033% 0.41% 

10 pose_Tz 0.46 0.002% 0.02%  pose_Ty 2.89 0.018% 0.21% 

 


