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1. Introduction

Modern-day manufacturing systems are required to be
economical, rapid, and responsive to market conditions. 
Although reconfigurable manufacturing systems (RMS) have 
been prevalent in the industry since the 1990s, it is still a 
promising solution suitable for changing the industrial 
environment defined by global competitiveness. They are 
easily upgradable into new technologies that can be readily 
incorporated. Responsiveness of the manufacturing system has 
become extremely essential due to unforeseen circumstances 

such as pandemics, natural disasters, etc., initiating massive 
fluctuations in the market demand for products and thus 
negatively affecting businesses [25]. This resulted in the 
evolution of engineering design in several strategic areas such 
as smart and connected products, end-to-end digital integration, 
customization and personalization, data-driven design, digital 
twins and intelligent design automation, extended supply 
chains, and agile collaboration networks, open innovation, co-
creation, and crowdsourcing for the sharing economy [1]. A 
well-designed RMS with an efficient inspection system can 
reduce costs and improve the quality of the product because of 
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its adaptability, convertibility, and scalability. However, at 
present, certain gaps and challenges concerning the research 
and implementation of RMS exist. These gaps can adversely 
influence the industrywide commercialization of RMS. One of 
these gaps includes the lack of an efficient reconfigurable 
inspection system (RIS) for the rapid detection of defects
[4,13,14]. Existing studies on the subject primarily focus on 
production while ignoring the inspection aspect of RMS. 
Nevertheless, with the rapid growth in Artificial Intelligence 
(AI) technologies, there is an indication that AI can be utilized 
to address most of these gaps, specifically inspection-related
challenges [26]. Machine Learning (ML) can assist in 
inductively understanding relevant data patterns and relating 
them to processing states and performance, whereas Deep 
Learning (DL) aids in enabling advanced computational setup, 
improving the proficiency of fault diagnosis and restoration [2]. 
Industry 4.0 (I4) digitalization technologies provide more 
connection, shared data, and better analytics across the whole 
supply chain, resulting in higher efficiency, optimization, and
innovation across the manufacturing industry in the long term 
[3]. Consequently, this paper aims to research and provide an 
overview of the current literature on RMS as well as ML/ DL
technologies that can be integrated into RIS for the 
enhancement of performance. A comprehensive model of an 
Industry 4.0 (I4) and AI–based Reconfigurable Inspection 
System (RIS) is proposed and the retrofitting procedure of a 
case study is presented. However, the model and the retrofitting 
procedure are not validated by experimental results or physical 
implementation.

2. Literature Review

This section looks at the gaps hindering the
commercialization of RMS following a review of existing 
literature on the subject. Consequently, the focus is shifted to 
understanding the utility of AI technologies in addressing the 
critical gap of defect detection. Finally, it concludes with an 
outlook into the proposed solution to address this gap by 
introducing an AI-based RIS.

2.1. Reconfigurable Manufacturing Systems (RMS)

RMS is a manufacturing system that focuses on 
reconfigurability, performance measures, optimal 
configuration selection, demand scenario, and optimization 
technique [4]. Malhotra et al. [5] state that an RMS must 
possess two major components:

• Reconfigurable Machine Tool (RMT). The primary
goal of an RMT is to accommodate changes in the
products or parts being manufactured. In contrast to
traditional CNC machines, RMT are tailored to a
specific customized range of operational requirements
and can be cost-effectively transformed when those
needs arise.

• Reconfigurable Controller (RC). The RC is
dynamically reconfigured for a specific mechanism
after the configuration system sets up appropriate
operational parameters such as machine joint limits.

The adaptability, convertibility, post-implementation cost 
savings, improved waste management, optimum scalability, 
rapid responsiveness, and enhanced product quality enabled by 
in-line inspection equipment integrated into the production 
system are the advantages of such a system. The difficulties 
accompanying RMS include high start-up costs, the need for 
highly skilled operators, incompatibility with existing systems 
and software, the need for seamless transition systems, the need 
for complexity reduction, and the need for reconfigurable 
logical support systems [5,6,7]. Research on supporting 
technologies is moving at an exceptional rate and therefore the 
development of more advanced RMT and Reconfigurable 
Inspection Machines (RIM) can be observed in the future [8].
However, the following challenges facing RMS were identified 
during the gap analysis (shown in Table 1). With the rapid 
advancement of information technology, advanced 
manufacturing systems must be capable of autonomously 
detecting the present status of a production process. Process 
detection can guarantee that process faults are recognized in a 
timely way, enabling the RMS to manufacture top-quality 
goods [8]. This is one of the main gaps that hinder the 
commercialization of RMS (see Table 1). The RIS, comprised 
of numerous reconfigurable inspection machines, is used in an 
RMS to recognize product quality. As a result, effective 
detection is mostly dependent on sufficient RIS status data [8]. 
At present, there are no systematic techniques for data 
collection, feature selection, and sensor placement within RIS 
(see Aspect (4) in Table 1). Digitization and AI technologies 
can considerably aid manufacturing industries over the next 
decade due to their reliance on data. Hence. an overview of 
digitization and how AI technologies can be used to address the 
challenges associated with error detection will be provided 
next.

2.2. Digitization of Modern Manufacturing Systems

Digitization has emerged as one of the most popular 
industrial themes. Digitization offers lower manufacturing 
costs as well as higher flexibility—two competitive 
characteristics that have historically been viewed as trade-offs
[19]. The Fourth Industrial Revolution is characterized by a 
new industrial paradigm known as Industry 4.0. This advanced 
manufacturing model is characterized by intelligent, virtual,
and digital performance in large-scale enterprises [19].
Industry 4.0 heavily incorporates AI technologies such as ML
and DL. ML may be defined as the study of computer 
algorithms that enable systems to automatically learn and 
improve based on their experiences [20]. DL, which is a sub-
technology of ML uses multi-layer neural networks to interpret
the input data and develop data representations with multiple 
levels of abstraction [20]. Subsequently, a review of a few of 
the existing literature will demonstrate how AI principles and 
technologies can be used to address the lack of efficient fault 
diagnosis and prognosis.

2.3. Self-Diagnosis and Self-Repair Strategies

Epureanu et al. [21] used a deep convolutional reinforcement
learning network to enable an AI decision-maker to
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Table 1. Gap analysis of RMS from existing publications.

dynamically select a strategy to deal with defective
components based on configuration information and to update 
the repair policy based on historical system performance. When
a deficient characteristic is recognized, the system 
interrogation operation begins by altering the operations and
products to acquire data and determine the deficient stage(s). 
Based on the current sensor signal, Wang et al. [22] examined 
Naive Bayes, KNN, and Support Vector Machines (SVM) for 
induction motor failure diagnosis. It was demonstrated that 
each technique had a distinct amount of sensitivity to certain 
features. The authors confirmed that SVM achieved the best
results in the given scenario [22]. Images have a higher 
information density than standard time-series data, and their 
utilization is beneficial in getting insight into the items being 
watched. Caggiano et al. [23] developed a vision system based 
on Deep Convolutional Neural Network (DCNN) for process 

fault detection in selective laser machining (SLM). Surface 
textures induced by different process failures may share similar 
local properties, and higher-level abstractions are required to 
differentiate different fault-related patterns effectively.
Traditional ML strategies become ineffective when the 
relationship between deterioration time steps becomes too 
complex to be described by a single regression model. Zhang 
et al. [24] constructed a bi-directional Long Short-Term 
(LSTM) neural network for estimating the remaining useful life 
(RUL) of aircraft engines. The Health Index (HI) is made up of 
a single-layer neural network that fuses onboard sensing 
information to reflect engine performance. The bi-directional 
LSTM allows information to travel forward for prediction and 
backward for disturbance smoothing. The new strategy has 
been shown to improve RUL prediction accuracy when

Journal/
Article

Aspects Challenges Potential Solutions

[10]

[10]

(1)  Connectivity with 
the market

Considering demand stochastically only gives an insight into the real market 
uncertainties.

Reconfiguration Index (RI) aids in determining a production system's readiness to 
transition from one configuration to the next. As of now, all six of the characteristics of 
an RMS are not taken into consideration while measuring RI. Therefore, more research 
is to be conducted to come up with performance measures that include all the 
characteristics as well as practical aspects of the market conditions.

Deterministic demand definition. Consideration 
of all characteristics for determination of RI. 
Neural Networks can analyse hidden patterns in 
raw data and categorize them to improve over 
time.  However, there are no existing works of 
literature addressing this challenge.

[10]

[11]

[12]

(2) Manufacturing part 
families

Multi-part flow configuration brings the problem closer to the practical scenario enabling 
simultaneous manufacturing of the whole part family, however, it becomes more 
complex and difficult to manage/handle.

Reconfigurable manufacturing systems with group technology (GT) and RMS cellular 
manufacturing systems (CM) are yet to be explored.

Approaches and methods for grouping products and assigning the optimal family to each 
reconfiguration step are required.

To bridge the gap between RMS and CMS, a 
unique hybrid manufacturing system called 
Reconfigurable Cellular Manufacturing System 
(RCMS) was devised by [9]. Reconfigurable 
Manufacturing Cell (RMC) is a logical entity, 
as opposed to a standard manufacturing cell, 
which is a physical entity. Devices in an RMC 
are conceptually grouped rather than physically 
moved.

[10]

[13]

(3) Complexity due to 
discrete variables.

Traditional mathematical programming approaches cannot be conveniently applied to
RMS design problems.

Traditional analytical and decision-support tools are incapable of dealing with the 
complexities involved, resulting in ineffective real-time decision-making.

Intelligent manufacturing approaches such as 
multi-agent systems, cloud manufacturing, 
digital manufacturing, and cyber-physical
systems can improve real-time decision-
making.

[4]

[13]

[14]

(4) Lack of defect 
detection and 
inspection systems. 

An efficient RMS-based manufacturing process necessitates dynamic reconfiguration 
management for the RMS to recognize process faults and explore relevant 
reconfiguration solutions in a timely fashion. A reconfigurable inspection system (RIS) 
configuration design allows for customizable detection that is sensitive to process 
problems and can gather enough data to facilitate the identification of the root cause of 
an issue. Currently, there is a lack of effective Reconfigurable Material Handling (RMH) 
equipment and reconfigurable inspection machines (RIM) in the market.

Future research is needed to construct flexible or reconfigurable condition monitoring 
systems capable of integrating a variety of decision-support tools such as data collection, 
feature selection, and sensor placement.

The most fundamental barrier to ramp-up is a lack of systematic techniques for
diagnosing component failure.

A key feature-based method for designing the 
RIS’s configuration to achieve a satisfactory 
RIS design, which detects different processes 
and satisfies the inspection requirement for each 
phase of the RMS’s lifecycle was proposed by 
[8]. However, there is a dearth of current 
literature and industrial applications for
potential solutions.

[15]

[16]

[17]

(5) Tooling 
difficulties.

The creation of a mathematical framework for the synthesis and validation of 
reconfigurable machine tools (RMTs) is a significant task.

In certain cases, reusing manufacturing equipment for new generations of products was 
thought to be more difficult than developing a new and improved version of the system.

Tooling is expensive and variety handling is difficult.

The construction of a formal and unified 
representation scheme for module mechanical 
functionalities followed by the compilation of a 
machine module library and an approach for the 
systematic synthesis of reconfigurable machine 
tools that employ screw theory for kinematics 
and graph theory for structural synthesis.

[18]

[17]

(6) Control system. Most control systems on the market today have a fixed structure and are only partially 
programmable. This renders them unsuitable for RMSs.

Difficulty controlling a reconfigurable machine tool (RMT) with multiple tools and 
difficulty locating axes.

Multi-sensor fusion modeling employing the 
CAN Bus standard, as well as the use of neuro-
fizzy sensors and software agents’ technology 
in intelligent control.
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compared to uni-directional LSTM and traditional ML 
algorithms such as SVM.
The content in this section indicates the requirement for a 
complete model that unifies the aforementioned AI features to 
improve diagnosis, prognosis, and responsiveness.

3. Model

Based on the AI technologies that were examined in section
2.3, a comprehensive AI-based RIS model is proposed in this 
section. 

3.1. Proposed Model 

As mentioned in the previous section, results showed that 
when a Gaussian RBF kernel function is combined with the 
SVM technique for feature extraction from a motor current 
envelope, accurate results can be achieved in the domain of 
induction motor failure diagnosis [22]. Therefore, this 
technique is suitable for the RIS system to identify patterns and 
defects during the functioning of RMS. Bi-stream DCNN is an 
effective method to process higher information density from 
image data accurately without human supervision [23]. Since 
DCNN significantly outperformed HoG and Visual Words in 
the presented circumstances, RIS can use this online fault 
identification technique for image-based inspection and 
maintenance. Additionally, for prognosis and predictive 
maintenance, LSTM can be used when the relationship 
between deterioration time steps becomes too difficult to be 
described by a single regression model [24]. Industry 4.0 (I4) 
technology aids in the management and optimization of all 
areas of production and supply chain operations. It provides 
real-time data and insights to improve productivity within the 
organization. Cloud storage and database charges are only 
given to one machine as an upfront cost, the cumulative cost 
decreases after one machine, as these resources are distributed 
between the other machines. 

Consequently, we are proposing a model that incorporates 
SVM, DCNN, and LSTM into RIS. The majority of the model 
comprises SVM, DCNN, and LSTM algorithms that are built 
around I4-based hardware and software. Performance
estimation of this AI-based RIS model is conducted based on 
the past performance of these AI technologies in similar 
manufacturing conditions from existing research work
[22,23,24]. By maximizing the separation distances between 
the classes, SVM converts the original feature space into a 
higher dimensional space to identify the optimal hyperplane. 
Given a training data set x X= as an input, the hyperplane 
function can be determined by the kernel function 𝐾𝐾(𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗) =
 (𝑥𝑥𝑖𝑖)𝑇𝑇  (𝑥𝑥𝑗𝑗) by computing the inner products without 

specifying the explicit form of the transformation function .
If y is a kernel parameter, α and b represent an n-dimensional 
vector and a scalar quantity respectively (used to define the 
position of the separating hyperplane), then the associated 
decision function can be written as [22]:
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Due to its popularity and documented success in machinery 
condition monitoring, the Gaussian RBF kernel is implemented 
in this model. The kernel parameter is denoted by the symbol 
y. The Gaussian RBF kernel expression is written as [22]:
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The bi-stream DCNN has two streams, each of which is made 
up of several convolutional layers. Using non-linear activation 
and kernel-based convolution, the features of the input image 
are retrieved. The mathematical equation for feature extraction 
is [23]:
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𝑧𝑧𝑗𝑗1 is the jth feature in the lth convolutional layer, 𝑏𝑏𝑗𝑗𝑙𝑙 is the 
corresponding bias term, M is the kernel size, 𝑤𝑤𝑖𝑖𝑗𝑗

𝑙𝑙−1 is the kernel 
weight linking the ith point in the (l-1)th layer and the jth 
feature in the lth layer,  (.) is the non-linear activation 
function. By traversing the image, the kernel can generate a 
feature map comparable to the whole image [23].

Fig. 1. Diagram of a two-layer bi-directional LSTM network [24].

Given sensing data collected from n time steps X = [x(1), x(2), 
…,x(n)] and the corresponding underlying system states Y = 
[y(1), y(2), …,y(n)], the functioning of a two-layer bi-directional 
LSTM network is depicted in Fig. 1. The time step for the 
recurrent neuron is indicated by the subscript in the parenthesis
[24]. Access to real-time data is crucial for the efficient 
functioning of the model. However, purchasing and integrating 
new I4-ready machines is expensive and could have significant 
financial and logistical repercussions (see Fig. 3). As a result, 
the newly proposed model focuses on effectively retrofitting 
AI–based RIS into legacy machines (machines that have been 
on a production line for many years) thus forming a cost-
effective RMS for financially restricted enterprises.

3.2. Six-Stage Implementation of the Model

To assess the viability and implement the model successfully 
based on indicators such as cost, time to reconfigure, quality,
etc., a generalized six-stage implementation process is to be 
followed.
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Fig. 2. Generalized six-stage implementation process of the proposed model.

Stage 1 is intended to provide the client with an opportunity to 
learn the basics of the I4 and AI-based RIS concepts. This stage 
will help the customer understand whether I4 AI-based RIS is 
the proper quality assurance technique to be employed. The 
analysis phase seeks to fully comprehend the client's current 
position in terms of reconfigurability, quality assurance, I4, and 
other competencies of the company. The information obtained 
in Stage 2 serves as the basis for Stage 3 when solutions to the 
client's problems are developed. Attention should be paid to the 
client criteria listed in Stage 1 to make sure the solution is 
suitably tailored. In Stage 4, the solutions developed in Stage 3 
are weighed against each other, and additional criteria to select 
the optimal solution for the client. When an ideal solution 
inclusive of all the machines within the factory is not feasible, 
a combination of solutions may be utilized. The
implementation stage is significantly influenced by the
variations in different production contexts. The validation stage 
of the consulting process ensures that the I4 and AI-based RIS 
meets the client's initial criteria. The completed fit will be
validated by comparing it to criteria encompassing technical 
specifications defined by the client.

4. Case Study 

The chosen optimized design configuration is based on a 
case study from an existing research paper by Shang et al. [8]. 
As per the RIS configuration constraint models, which are
based on detection capability and functionality, a total of 13 
possible design possibilities were formulated. The solution (as 
shown in Fig. 3) was chosen because it had the lowest overall 
deviation and also because its economic cost and diagnosability 
were relatively balanced [8].

Fig. 3. Derived configuration of the five lathe machines and three RIMs 
involved in the case study.

The cost for upgrading and retrofitting the 5 legacy machines 
with AI-based RIS was found to be roughly £22016.80 (based 
on technical requirements for the integration of SVM, DCNN, 
and LSTM neural networks as well as I4 technologies), which 
is approximately £47720.75 cheaper than purchasing I4-ready 
inspection machines (see Fig. 4).

5. Results and Discussion

The foundation of the proposed model revolves around 
performance estimations derived from the results of previously 
conducted physical experiments by researchers. Thus, it can be 
understood that the model is structured around the key 
assumption that the performance and effectiveness would 

remain the same as proven in the existing literature. The costs 
that can be saved by retrofitting this model have also been 
presented (see Fig. 4). 

Fig. 4. – Comparison of the cumulative costs of retrofitting legacy lathe 
machines with I4 and AI-based RIS versus purchasing brand new I4-ready 

lathe machines followed by installation of RIS.

The overall cost of the proposed model is calculated by 
investigating the current market prices of hardware and 
software components required for the effective functioning of 
the abovementioned I4 and AI technologies from existing 
publications. Despite the paper's limitations, the most 
prominent one being the availability of limited literature on RIS 
and retrofitting as well as the lack of information from actual 
case studies rather than hypothetical ones, an effective model 
was proposed; however, the paper's weaknesses originate from 
the fact that the work described is theoretical and has not been 
validated by the actual implementation. Therefore, the 
accuracy of the consequent results post-implementation of this 
model in an actual setting is unknown and conceptual. The risks 
and barriers associated during execution and post-
implementation include biases creeping into data modeling, 
management of costs, computing time, incompatibility,
insufficient storage, inadequate processing power, adversarial 
attacks as well as compliance with strict data protection laws.
These challenges can be addressed if the industries
consistently:

• Possess high-quality and synthetic data in apt volumes 
to avoid imbalances that can result in discriminatory 
results.

• Have legacy machinery with sufficient and adaptable 
storage as well as processors. 

• Be willing to make investments in applications and 
instruments with the necessary processing power.

• Break down algorithms and train personnel in the 
decision-making process.

• Remain within the constraints of the data protection 
laws of that particular region.

Consequently, the generalizability aspect of the retrofitting 
process is highly dependent on whether the manufacturing 
context possesses the aforementioned competencies.

6. Conclusions and Future Work

While performing gap analysis, the capability of 
autonomously detecting the present status of a production 
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process to guarantee the timely detection of faults was 
recognized as a major gap that needed to be addressed. This 
emphasized the requirement of an AI-based RIS since AI 
neural networks can learn relevant data patterns and relate them
to processing conditions. Consequently, an AI-based RIS 
model was developed regardless of the lack of existing 
literature on RIS and actual case studies. The model integrates 
SVM, DCNN, and LSTM neural networks as well as I4
features. Results were derived based on the fundamental 
assumption that the efficiency would remain the same as 
proven in the existing literature. Therefore, due to the lack of 
physical validation, the accuracy of results in a physical site of 
varied conditions is assumed and purely conceptual. 
Integrating I4 features makes communication between 
suppliers, manufacturers, and customers smoother. The results
also portrayed the costs that can be saved by retrofitting the AI-
based RIS with legacy machinery in comparison to purchasing 
brand-new I4-ready inspection machines. The key benefit 
associated with the implementation of this model is the 
enablement of real-time decision-making. I4 and AI-based RIS 
systems can facilitate organizations to make operational 
decisions based on the latest information. This makes the 
system more adaptable to product changes. Additionally, it can 
aid in triggering follow-up operations on the manufacturing 
line automatically without human intervention when an error is 
detected. Ultimately, it ensures the preservation of the 
reputation of companies by preventing poor products from 
being delivered to customers. By addressing the absence of 
structured techniques for sensor positioning, feature selection, 
and information extraction in RIS and by demonstrating how 
an AI-based RIS could improve fault detection, this model and 
the overall paper were effective in filling a gap within the 
existing literature. However, the paper's shortcomings stem 
from the fact that the theoretical work has been applied to an 
already existing case study (by Shang et al. [8]) and has not 
been verified by physical implementation i.e., model-based 
research work in an actual production environment.
Consequently, future work would require a practical basis, 
utilizing the theoretical data offered in this paper to provide a 
physical case study. The physical case study must reflect
quantifiable performance statistics that this paper lacks, such as 
percentage performance increment owing to AI-based RIS in 
an actual assembly line.
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