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ABSTRACT 

In Sulawesi, Indonesia, cocoa (Theobroma cacao L.) yields are suboptimal. Most 

cocoa farms are agroforestry systems, thought to be efficient at storing large 

carbon stocks (C), protecting the soil from degradation, and recycling nutrients. 

Despite this, inappropriate management practices can lead to the progressive 

deterioration of soil fertility and constrain cocoa productivity. One critical 

component of soil fertility is soil organic matter (SOM). Although organic additions 

are available to producers, the SOM dynamics of cocoa farms are poorly 

understood, precluding the development of evidence-based practices for SOM 

and fertilizer management. Hence, this research was conducted to determine the 

relationship between organic matter additions, soil fertility, and cocoa production, 

using meta-analysis, field experimentation, a chronosequence study, and 

modelling. 

The meta-analysis, which incorporated 37 references from 14 countries, showed 

that the mean C stock of 15 to 35-year old cocoa systems (including shade trees, 

and soil to 10 cm depth) was ~85 Mg ha-1. For this age range, the mean C stocks 

for aboveground cocoa, shade trees, litter, and roots were approximately 

9.8, 37.4, 1.0, and 11.4 Mg ha-1, respectively. The mean soil C stock 

(0-10 cm) was ~24 Mg ha-1. If taken from deeper soil layers, soil C stocks 

can be substantial and may exceed plant C. Large differences observed within 

the same age classes suggest that modified designs and practices can 

increase C storage for a particular pedoclimatic context.  

The continuation of an already established field experiment (a randomized block 

experiment with 16 cocoa trees for each four repetitions, including applications of 

mineral fertiliser, compost and dolomite alone and in combinations) indicated that 

compost application (locally made of 60% cow manure, 15% empty oil palm 

bunches, 10% rice straw, 10% diverse leaves (banana, grass, Gliricidia, and maize), 

5% cocoa pod husks, and a EM4 micro-organism mix; 10 kg tree-1 year-1) increased 

cocoa yields (over four years) to 1.8 Mg dry bean ha-1, three times that of a control 

treatment with no additions. The four-year cumulated yield of the fertiliser-only 

treatment was 0.98 Mg dry bean ha-1. The tree survival rate was low in the 

fertiliser-only blocks (on average 41% after 7 years). No additional yield effect 

was observed by adding fertiliser or dolomite to the compost treatment. Soil 

responses were variable. For example, measured 25% HCl extractable P 

declined across all treatments, and a loss of soil organic C (SOC) occurred across 

all treatments with composts. This suggests that the maintenance of SOM 
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through compost additions requires a systematic understanding of their losses 

and inputs. 

A chronosequence study across 13 Sulawesian cocoa farms (0.5-31 years old) 

indicated significant SOM losses within cocoa plantations in the first 1-5 years 

after planting, as SOM mineralisation was greater than the rate of new SOM 

addition. Soil samples (0 - 100 cm) were collected in 20 cm increments to 

determine SOM, SOC, and N contents, clay-adjusted SOM, SOC, and N 

contents, and SOM, SOC and N stocks. The observed decline between 0.5 and 

2 years in SOM (-46%) was also associated with declines in SOM per unit clay 

(-40%). These findings suggest that from the moment a plot is cleared in 

preparation for planting, the high temperatures and precipitation found in 

Sulawesi can result in rapid soil degradation through fast SOM mineralisation. 

Future research should focus on the first years after planting, and farm practices, 

such as strategic organic additions, should target this sensitive period. 

The modelling study provides a framework to predict SOM variations on cocoa 

farms. The model combined the AMG soil model (Andriulo et al., 1999; Clivot et 

al., 2019; Saffih-Hdadi & Mary, 2008) with a cocoa growth curve from the 

chronosequence dataset. An annual SOM mineralisation rate of 0.125 (unitless) 

was calculated using the characteristics of a representative farm of the 

chronosequence dataset (averaging the local variables of each farm) and 

represent a relatively high rate compared to other world locations. Backward 

modelling was used by optimisation to simulate SOM dynamics in each of the 

13 farms. The simulations indicated that SOM could deplete rapidly after planting, 

and the long-term trend can either be a decline or a build-up and even exceed 

planting levels. In general, farms with a high initial SOM content tended to lose 

SOM, whereas farms with a low initial SOM content tended to gain SOM in the 

long term (after 20-30 years of cultivation). The model was also applied to 

calculate the amounts of various organic inputs required to offset SOM losses 

fully. This model was programmed in R, and an RStudio Shiny app was 

developed to allow for user-friendly simulations. Future research should include 

further calibration of model parameters, improved modelling of pruning and shade 

trees in residue deposition, and making crop growth responsive to environmental 

parameters. 

The above results highlight that Sulawesian cocoa farms are particularly at risk 

of SOM losses in the initial years after planting. This is a critical period during 

which organic additions could support cocoa productivity and provide other 

environmental benefits. Recommendations for SOM management and future 
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research are proposed to limit soil degradation and improve the C balance of 

cocoa farms. 

Keywords:  

Cocoa, soil organic matter, modelling, compost, Indonesia, Sulawesi
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1. INTRODUCTION 

1.1 Background 

One of the greatest challenges facing humankind is to ensure a sufficient, safe, 

and sustainable supply of food while at the same time preserving ecosystem 

functions and associated goods and services. The management of soil, and 

particularly soil organic matter (SOM), has a fundamental role in supporting 

essential ecosystem services, such as food production and climate regulation 

(Baveye et al., 2016). Improving our understanding of how diverse land uses and 

soil management practices can accumulate or deplete SOM is therefore critical. 

From an agricultural standpoint, the decrease of SOM by mineralisation can be 

beneficial because it results in the release of soil nutrients available for the crop. 

However, from an environmental perspective, the mineralisation of SOM 

generates carbon dioxide, which is a major greenhouse gas (GHG). SOM 

depletion can also cause soil degradation by disrupting soil functioning (e.g., by 

reducing a soil’s ability to maintain its structure and store water, by being 

associated with a reduction of the nutrient), reducing plant productivity, and 

facilitating erosion (Bot & Benites, 2005). 

Long-term experiments have been developed worldwide to monitor  changes in 

SOM under different treatments (Richter et al., 2007). However, despite their 

critical importance, this type of experiment requires a substantial investment of 

time and resources (Johnston & Poulton, 2018). Also, even though the knowledge 

obtained from those experiments is extremely useful, the whole information 

generation process is “slow” because results are obtained progressively (of the 

order of a decade). One way to anticipate the effect of different interventions on 

long-term SOM stock variations is through the complementary use of computer 

simulation models. From the simplest to the most complex ones, a plethora of 

soil models have been developed over the decades (Campbell & Paustian, 2015). 

Some consider SOM as a single pool of matter (i.e., mono-compartmental models 

such as Hénin-Dupuis, Hénin & Dupuis, 1945), while others categorize SOM into 

several pools according to their relative cycling rates or the nature of the organic 

matter (i.e., multi-compartmental models such as RothC, Coleman & Jenkinson, 

1996). Some models focus on SOM, while others prefer an elemental approach 

to simulate the variations of soil carbon (C), sometimes in conjunction with other 

key elements including nitrogen (N). SOM model applications are diverse. SOM 

models have been used, for example, to compare specific agricultural or forestry 

systems and practices (Francaviglia et al., 2012), to assess the potential for soil 
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C-sequestration (Smith et al., 2020), or evaluate the response of SOM stocks to 

climate change (Wang et al., 2017). However, not all agricultural systems have 

received the same level of scrutiny regarding SOM dynamics (Manners & van 

Etten, 2018). To date, there is a paucity of research on cocoa (CocoaSoils, 2019). 

 

Figure 1.1: Botanical illustration of cocoa (Theobroma cacao L.), showing a branch 
with leaves, pods, and an open pod with its beans (Bernecker, 1867) 

Cocoa (Theobroma cacao L.; Figure 1.1) is an understorey tropical tree crop 

grown to produce beans that are used in the manufacture of chocolate, cocoa 

powder, and cocoa butter. The largest natural populations of the species exist in 

Central and South America, and the crop was introduced to South-East Asia in 

the 1600s and to West Africa in the 1800s (Carr & Lockwood, 2011). Cocoa is 

often cultivated by hand in agroforestry systems using shade trees (Figure 1.2) 

and other associated plant species like banana or timber trees, without using 

agricultural machinery (Voora et al., 2019). Cocoa cultivation systems are 

diverse, ranging over a gradient of density and diversity of associated plants 

(Notaro et al., 2020), from full-sun irrigated monocultures, to farms shaded with 

a single species like Gliricidia sepium (named “madre de cacao” in Spanish) and 

to multi-storied agroforestry systems such as the Brazilian cabrucas. However, 

endeavours to modernize cocoa plantations like other fruits crops are 

increasingly focusing on full-sun systems without shade trees. Nonetheless, it is 

thought that currently, large-scale plantations (>40 ha) only represent 5% of the 

world's cocoa production (Anga, 2016). This diversity of farm systems and 
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designs is accompanied by significant differences in terms of ecosystem services 

delivery (Wainaina et al., 2021). 

Like other tree crops, cocoa has a long lifecycle. It is commonly asserted that 

cocoa farms are productive for 20-30 years, but the production can be very 

variable and complicated by many factors other than tree age. It is believed that 

full-sun farms reach higher yields, faster than shaded systems, but their 

production phase could be shorter than shaded farms. Conversely, shaded farms 

may reach lower yields, but produce for a more extended period (van Vliet et al., 

2015). Some cocoa farms can be very old, with trees older than 80 years old. 

However, farmers are advised to rehabilitate (i.e., restore the productive capacity 

of a potentially productive orchard) or restore (i.e., replant with new trees) their 

farm after several decades of cultivation (Somarriba et al., 2021). 

 

Figure 1.2: Four cocoa farms of increasing age in Sulawesi (Indonesia) 

The current global production area of cocoa is approximately 12.2 million ha 

(FAO, 2020), and despite an increase in the quantity produced, the average world 

cocoa yield per hectare has tended to stagnate (Figure 1.3, Figure 1.4, Figure 

1.5). Even though cocoa represents only 0.7% of the global land-use footprint of 

crop production, it can cover a significant area in the main producing countries 

(Chatham House, 2017), including 16 Low Human Development Countries 

(Voora et al., 2019).  

Cocoa is an essential source of income for 40-50 million smallholders (2-5 ha) 

and their households, who provide more than 70-90% of global cocoa production 

while living on less than $2 per day (Voora et al., 2019; WCF, 2009, 2012). Cocoa 
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is perceived as the most important crop in Côte d’Ivoire (1st ranked global 

producer of cocoa beans; with 27% of the global land footprint of cocoa 

production) and Ghana (2nd ranked global producer; with 25% of the land 

footprint) (Bymolt et al., 2018; Chatham House, 2017). 

Beyond its socioeconomic significance, cocoa also has strong links with 

environmental concerns such as climate change and deforestation. Cocoa is a 

drought sensitive crop (Carr & Lockwood, 2011) and climate change is affecting 

the distribution of areas suitable for its cultivation (Bunn et al., 2019; Schroth et 

al., 2016). In the past, the expansion of cocoa cultivation often resulted in 

deforestation (Ruf, 2001; Ruf et al., 2015), and even if today, cocoa industries 

are committed to prevent further deforestation (IDH, 2017), climate change and 

soil degradation will most likely lead farmers to expand cocoa into forested areas 

(Askew, 2020), or to decide to replace it by other crops. 

 

Figure 1.3: Global area cultivated with cocoa from 1961 to 2019 (FAO, 2020)  
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Figure 1.4: Global cocoa bean production from 1961 to 2019 (FAO, 2020) 

 

Figure 1.5: Estimated global cocoa bean yield from 1961 to 2019 (FAO, 2020) 

Yields were estimated by dividing the world bean production by the cultivated area. 

Increasing yields has been identified as one of the best approaches to improve 

the living standards of cocoa farmers and, at the same time, reducing the extent 

of shifting cultivation which can result in deforestation (van Vliet et al., 2021). 

Unfortunately, the cause for low cocoa yields is multifactorial. Low productivity 

results from a combination of factors such as the infestation of pests and 
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diseases, a lack of water during droughts, insufficient fertilization, not having 

access to good planting material, and inadequate farm management, all of them 

due to a lack of resources and/or knowledge (Bastide, 2016, 2017; van Vliet et 

al., 2015). In many regions of the world, cocoa yields are suboptimal, unstable, 

and heterogeneous (Bastide, 2016, 2017; van Vliet et al., 2015): 

• Suboptimal: Currently, mean cocoa yields are around 450 kg ha-1 yr-1, but 

there is evidence from research stations and industrial plantations that 

yields can exceed 2,000 kg ha-1 yr-1.  

• Unstable: The yield varies greatly over the lifetime of a stand and often 

reaches a peak between 5 to 10 years before declining in the long term. 

The production phase can be short and decline rapidly. Yields can also 

vary greatly from one year to the next. 

• Heterogenous: At the plot scale, some trees may produce very few pods 

while others are associated with most of the production. 

Many of cocoa’s agronomical challenges can be summarized by the fact that 

cocoa has only be recently domesticated using modern techniques as compared 

to other crops. For example, the harvest index (i.e., the dry mass of the economic 

component divided by the total biomass) of cocoa plants is relatively low (Bastide, 

personal communication). In other words, cocoa trees spend a lot of energy to 

produce vegetative biomass but very few harvested fruits. Pruning plays an 

important role in controlling the tree’s shape to optimize productivity and clippings 

affect the flux of C and nutrients returning to the soil. Many aspects of cocoa 

cultivation, such as pollination, plant nutrition and pathology remain to be 

improved. 

According to the Global Soil Partnership (2022): “Soil fertility is the ability of a soil 

to sustain plant growth by providing essential plant nutrients and favourable 

chemical, physical, and biological characteristics as a habitat for plant growth”. In 

perennial plantations like cocoa, soil fertility decline can be manifested by a range 

of degradation processes such as soil acidification, SOM decline, soil structure 

deterioration, and plant nutrient exhaustion (Hartemink, 2003). One of the most 

significant ways to improve cocoa yields is to prevent soil degradation and 

enhance soil fertility (CocoaSoils, 2019; Kongor et al., 2019; Mulia et al., 2019; 

Quaye et al., 2021). Low soil fertility is a prevalent problem in cocoa-growing 

regions (Adeniyi et al., 2017; Kongor et al., 2019). Research has highlighted that 

inappropriate practices can lead to progressive land degradation (Hartemink, 

2003, 2005), despite a relatively good soil conservation capacity of the cocoa 

agroforestry system compared to other crops (i.e., good level of nutrient recycling, 
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ground cover provided by the canopy and the litter). The prolonged cultivation of 

cocoa can sometimes lead to high degradation levels if no restoration measures 

are implemented. In cocoa systems, one of the main causes of degradation is 

most certainly the depletion of non-replaced nutrients after harvest (Hartemink, 

2005). 

Soil organic matter (SOM) is often acknowledged as the key indicator of soil 

fertility (Jörg Gerke, 2022; Obalum et al., 2017; Tiessen et al., 1994). Improving 

and maintaining soil fertility can be achieved by managing SOM levels and 

dynamics correctly (Johnston et al., 2009b; Vanlauwe et al., 2010). The study of 

SOM reflects key aspects of soil functioning and is sensitive to soil and crop 

management. It has direct and indirect influences on plants (Oldfield et al., 2017). 

SOM is, for example, a reservoir of plant nutrients (Powlson et al., 2013), is often 

linked to water holding capacity (Lal, 2020), buffers pH (Jiang et al., 2018), 

contributes to cation exchange capacity (Solly et al., 2020), can stimulate plant 

growth (Canellas & Olivares, 2014), and acts as a reservoir of matter and energy 

for soil micro-organisms (Kallenbach et al., 2016). It is generally accepted that 

higher SOM contents are desirable, even though it remains difficult to identify 

upper and lower thresholds (Loveland & Webb, 2003; Oldfield et al., 2015, 2019). 

This obstacle is particularly due to the fact that SOM encompasses an extremely 

large diversity of molecules and constituents. 

To address this low and declining fertility problem, the use of organic inputs – like 

composts, manures, and mulches – may be an appropriate solution accessible 

to resource-limited farmers. By applying organic inputs to the soil, it is possible to 

benefit from positive effects on soil's functions, such as the improvement of soil 

structure and nutrient availability. The addition of organic materials has been 

used in other cases to improve soil fertility (Diacono & Montemurro, 2010; Palm 

et al., 2001). However, at this stage, cocoa soil managers do not have access to 

an evidence-based approach for the rational use of organic inputs that could help 

determining the types, rates, frequency and timings of organic input applications. 

In agricultural systems in general, although manuring is an ancient practice, there 

is no readily available model to link organic additions to desired agricultural 

outcomes. This situation prevents any detailed and reliable recommendations for 

the intended use of organic additions (Oldfield et al., 2015). 

Research on the relationships between cocoa and soil fertility has received little 

attention since the 80’s (CocoaSoils, 2019; Manners & van Etten, 2018; Silva & 

Giller, 2020). SOM dynamics in cocoa systems has never been modelled in detail. 

Studies on this topic were limited to discrete measurements (e.g., Beer et al., 
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1990; Smiley & Kroschel, 2008) or simple regressions (e.g., Silatsa et al., 2017). 

The monitoring of SOM changes and the C-cycling has been covered for a wide 

diversity of cocoa systems including age, management levels, climates, and 

types of shade tree. Nevertheless, mathematical models of the in-situ C-cycling 

processes in place are missing. Research on these topics is scarce and has not 

been updated by considering the progress made since the 1980’s in the wider 

agronomy and soil science landscape. 

Despite a substantial lack of knowledge about cocoa soils compared to other 

crops (Manners & van Etten, 2018; Silva & Giller, 2020), that does not mean that 

nothing has been done. Several themes can be distinguished from the cocoa soil 

literature (note that some of these themes overlap): 

1. The relationship between soil properties and cocoa productivity (e.g., 

Singh et al., 2019); 

2. The evaluation of the effects of inputs (e.g., fertiliser, composts, liming 

agents, pesticides) on soil properties and cocoa growth and productivity 

(e.g., Mulia et al., 2019); 

3. The evaluation and comparison of C-stocks or soil properties of a given 

system or across systems (e.g., shaded or not shaded) or regions (e.g., 

Blaser et al., 2018; Niether et al., 2020; Saputra et al., 2020); 

4. The assessment of long-term physical, chemical and biological soil 

changes occurring during cultivation (e.g., Hartemink, 2005); 

5. The relationships between cocoa farming practices and soil ecology (e.g., 

Tondoh et al., 2015). 

Further information regarding these topics will be provided in the following 

chapters on this thesis. 

At this stage, there is a lack of understanding of SOM dynamics in cocoa farms, 

which could be enhanced by developing and using improved models. Such a 

modelling tool could be used to anticipate SOM stock variations and estimate the 

inputs needed to maintain SOM at particular levels. Furthermore, the availability 

of a SOM model applicable to cocoa could also benefit other endeavours, such 

as ones related to climate change mitigation (Bunn et al., 2019), and to other 

similar perennial systems as well, such as coffee, palm oil, or rubber cultivation. 

Complementary to field experiments, modelling experiments must be undertaken 

to sustainably safeguard cocoa production and offer pertinent farm and soil 

management recommendations. 
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The experimental focus of this research project was Indonesia. Indonesia was 

the third-largest cocoa-producing country globally after Côte d’Ivoire (~1,400,000 

t of cocoa beans) and Ghana (~860,000 t of cocoa beans), producing ~730,000 

t of cocoa beans in 2014 and exporting approximately half of its production 

(Chatham House, 2017; FAO, 2020). In Indonesia, the harvested area rapidly 

increased from ~750,000 ha in 2000 to ~1,700,000 ha in 2014 (Chatham House, 

2017; FAO, 2020), representing ~4% of the Indonesia’s land footprint of crop 

production. The land used to harvest cocoa was multiplied by ten between 1990 

and 2010, reaching a plateau of approximately 17,000 km² (FAOSTAT, 2020). 

However, Indonesia’s production of cocoa beans has decreased since 2010-

2015, apparently because of declining yields per hectare that started in the early 

1990s (FAOSTAT, 2020). More recently, a report from the International Cocoa 

Organization (ICCO) highlighted than Indonesia’s cocoa output was declining 

(Harsono, 2020), downgrading it to the sixth globally, overtaken by Ecuador (3rd), 

Cameroon (4th) and Nigeria (5th). The challenge for Indonesian farmers seems to 

be insufficient access to seedlings and fertilizers (Harsono, 2020) as well as pest 

and disease attacks, ageing orchards which were not rehabilitated or restored, 

an overall suboptimal management of land resources leading to low productivity 

(Leksono et al., 2021), and the competition with palm oil being lucrative than 

cocoa. Despite the relative importance of Indonesia, research organizations have 

allocated few resources to address its needs. Historically, most of the academic 

literature has been concentrated in West Africa, and increasingly in America. In 

conjunction with the sponsors of this research project, Indonesia, and more 

particularly Sulawesi – where two thirds of Indonesia’s cocoa production is 

located (Leksono et al., 2021) – was selected to study SOM dynamics in cocoa 

farms. 
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1.2 Research aims and objectives 

The low cocoa yields and reduction in soil fertility on cocoa farms in Indonesia 

provided the initial rationale for this thesis. Improving soil fertility by adding 

organic matter was perceived as a way to reverse these trends. 

The strategic aim of this thesis was to improve our understanding of SOM 

dynamics on cocoa farms. More specifically, this research sought to describe and 

explain the temporal variations of SOM and C stocks in cocoa farms using a 

combination of approaches, including literature reviews, field sampling, 

laboratory measurements, and modelling. 

The applied aim of this project was to propose a SOM management strategy for 

cocoa cultivation in Indonesia. 

Five objectives were defined to meet those goals: 

1. Firstly, to assess the existing temporal dynamics, variability, and 

distribution of C storage in cocoa systems across the world by the critical 

analysis of available data. 

2. Secondly, to compare the effects of soil inputs (fertilizer, compost, and 

dolomite) on key soil properties and cocoa growth and productivity, 

through experimentation. 

3. Thirdly, to characterize SOM dynamics on a chronosequence of 

Indonesian cocoa farms. 

4. Fourthly, to describe and predict SOM dynamics in cocoa farms by using 

a modelling approach, building upon the knowledge obtained from the 

other objectives, and simulate the effect of organic inputs on SOM stocks. 

5. Finally, to propose a suite of SOM management recommendations for 

cocoa farms in Indonesia, based on a synthesis of the research.  
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1.3 Thesis structure 

The thesis is composed of seven chapters. Chapter 1 introduces the thesis. 

Chapters 2 to 5 each correspond to a study formatted as a research article, 

following the same order as the research objectives (except objective 5). Chapter 

6 summarizes and discusses the findings and addresses objective 5. Chapter 7 

concludes the thesis and makes recommendations for future research. The 

structure of the thesis is illustrated in Figure 1.6.  

 

Figure 1.6: Visual representation of the thesis structure 
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Chapters structured by published, submitted and proposed research 

articles 

The first objective was addressed by compiling and analysing data on biomass 

and C partitioning in different plant and soil reservoirs associated with cocoa 

farms from Africa, America, and Asia. A large dataset compiling 37 references 

was created, including soil and farm data contributions from Mondelez 

International Inc., Prof. Eduardo Somarriba (CATIE Turrialba), and Dr Ariani 

Wartenberg (Berkeley LUC LAB). The resulting study consisted of a meta-

analysis summarizing the data on C stocks partitioning and temporal variability 

from the main producing countries. The methodologies and farm typologies of 

those studies were examined to inform the following chapters. This study showed 

a large variability in C stocks because of the broad diversity of cocoa cultivation 

systems and the disparity between C measurements in the reviewed studies, 

stressing the importance of harmonizing and standardizing C assessments in 

complex agroforestry systems.  

The second objective was approached by conducting a field experiment involving 

combinations of different inputs, including compost, fertilizer, and dolomite. The 

experiment compared the effects of these treatments on key soil properties and 

cocoa productivity. This study continued an existing field experiment (Mulia et al., 

2019) located in Bone-Bone (Sulawesi, Indonesia), which monitored cocoa and 

soil’s response to the same treatments during the first four years after planting a 

cocoa farm on a moribund site. The initial experiment was prolonged by collecting 

and analysing data obtained from years four to seven with the same treatments 

applied. This study revealed the considerable effect of compost applications on 

cocoa productivity, significantly exceeding the effect of fertilizers while being 

insufficient to detect a significant change in C stocks despite large input rates 

(10 kg compost tree-1 year-1). 

The third objective consisted of forming a chronosequence of cocoa farms, which 

was accomplished by visiting 13 cocoa farms located in Sulawesi, distributed 

across three locations (Tarengge, Mambu, and Pussui), ranging from 0.5 to 31-

years-old. Cocoa trees were measured to estimate their biomass thanks to an 

allometric relationship (Smiley & Kroschel, 2008) and formulate a growth curve. 

Soil samples were collected up to 1 m 100 cm by 20 cm increments to provide a 

thorough picture of SOM, C, and N distributions. Several approaches were 

applied to improve the comparability of soil data from distinct sites, such as the 

calculation of SOM stocks with bulk density and corrections for clay contents. 

This study provided preliminary evidence to support the hypothesis (detailed in 
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Chapter 4) that young plantations display a rapid decline in SOM, C, and N 

stocks. The long-term trend, however, suggested a rapid recovery instead of a 

slow build-up. 

The fourth objective used information obtained from the other chapters to develop 

a model of SOM dynamics in cocoa farms. More specifically, an existing soil 

model called AMG (acronym of the initial developers names, Andriulo, Mary and 

Guérif: Andriulo et al., 1999; Clivot et al., 2019; Saffih-Hdadi & Mary, 2008) was 

modified to adapt it to the particular features of a cocoa farm and simulate a 

perennial instead of an annual arable crop. The model predicted variations of 

SOM stocks corresponding to the hypothesis of Chapter 4, and within the range 

of observed values obtained from the chronosequence. The model was used to 

simulate the effect of organic inputs on SOM stocks and calculate the input rates 

necessary to maintain SOM at planting levels, as an indication of the efforts 

required to prevent SOM decline. The model was straightforward and can be 

easily upgraded to address limitations posed by the initial modelling assumptions 

(development directions presented in Chapter 5). 
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1.4 Disclosure and dissemination from the 

Ph.D. thesis 

Thomas Fungenzi produced each study under the academic supervision of Dr. 

Ruben Sakrabani and Prof Paul J. Burgess. All experimental work was organized 

and undertaken by Thomas Fungenzi at Cranfield University (UK), with 

occasional support from the University laboratory staff and a visiting student, 

Habibah Begum. Two field activities and sampling trips were performed in 

Sulawesi (Indonesia), with logistical and technical support from Mars Inc. and 

Barry Callebaut. 

Several people contributed to several of the studies, and some were 

acknowledged as co-authors: 

• Dr Ariani Wartenberg (UC Berkeley), Dr Nicholas Cryer (Mondelez 

International) and Prof. Eduardo Somarriba (CATIE) contributed to 

Chapter 2 by providing cocoa farm and soil data instrumental in forming a 

global dataset used during the meta-analysis and by reviewing and 

commenting on the draft before submission. 

• Dr Smilja Lambert (Mars Wrigley) and Dr Peter McMahon (University of 

Sydney) contributed to Chapter 3 by providing the data necessary to run 

the analyses and reviewing and commenting on the draft before 

submission. Mars’ Cocoa Development Centre in Tarengge was also 

active in helping with the acquisition of data from cocoa farms and the 

Bone-Bone field experiment. 

• Samantha Forbes (Mars Wrigley) and Hamran Hamran (Mars CDC 

Tarengge) provided help to obtain complementary tree measurements 

used in Chapter 4. 

When the thesis was submitted, one research article had been published in 

Experimental Agriculture, a peer-reviewed scientific journal (Chapter 3). One 

research article had been submitted to Agriculture, Ecosystems & Environment 

(Chapter 2) but was rejected until several improvements were made, including 

the acquisition of more data. The other two studies (Chapter 4 and 5) have not 

been submitted yet to a journal. 
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Paper accepted for publication 

Fungenzi, T., Sakrabani, R., Burgess, P., Lambert, S., & McMahon, P. (2021). 

Medium-term effect of fertilizer, compost, and dolomite on cocoa soil and 

productivity in Sulawesi, Indonesia. Experimental Agriculture, 57(3), 185-202. 

doi:10.1017/S0014479721000132  

Paper submitted but rejected with option to resubmit 

Fungenzi, T., Sakrabani, R., Burgess, P., Somarriba, E. J., & Wartenberg, A. C. 

(NA). Global Meta-Analysis on Carbon Storage in Cocoa Plantations. Submitted 

to Agriculture, Ecosystems & Environment 

Oral and Poster presentations 

Apart from research articles, a poster summarizing the early work of the thesis 

was presented during the 2019 World Agroforestry Congress at Montpellier (20-

25th May 2019). An oral presentation and a poster presentation were delivered 

during the Early Career Conference of the British Soil Science Society in 2019 at 

Sheffield (16-17th April 2022). 
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2. META-ANALYSIS OF CARBON 

STORAGE IN COCOA PLANTATIONS 

Highlights 

• Carbon stock data from 37 references, comprising 457 farm plots, was 

synthesised; 

• Carbon stocks were evaluated in five reservoirs: aboveground cocoa, 

aboveground shade, belowground root, surface litter, and soil; 

• Shade trees and soil were the largest reservoirs of C; 

• Methodological inconsistencies between the studies make adequate 

comparisons difficult. 

Summary 

In this meta-analysis, one of the most widespread agroforestry systems, cocoa, 

was evaluated to estimate its carbon stocks dynamics over the course of its life 

cycle in agroforestry plantations. The compiled dataset gathered 37 references 

from 14 countries in Africa, Central & South America, and Southeast Asia. It 

covers a broad age range of cocoa plantations, from newly planted to 

80-years-old plantations, with most of the observations made on cocoa plots 

younger than 35-years-old. Tree densities and management intensities ranged 

from full sun monocultures to densely shaded agroforests. Carbon (C) was 

allocated and assessed in five reservoirs: aboveground cocoa, aboveground 

shade, belowground root, surface litter, and soil. Classes of 5-year intervals were 

defined to study the effect of plot-age onto these different reservoirs. In the 

studies, plant C stocks were generally estimated from allometric equations, and 

soil C stocks were determined from soil samples. The mean aboveground C 

content of cocoa trees reached a plateau between 15 and 35 years, averaging 

9.8 (±0.4; 95% CI) Mg of C ha-1, corresponding to cocoa ‘maturity’ phase. 

Between 15 and 35 years, the mean shade tree aboveground C was 37.4 (±2.6; 

95% CI) Mg ha-1. The mean soil C stocks (0-10 cm) ranged from 23.6 (±4.1; 95% 

CI) Mg of C ha-1 at planting, to 23.9 (±1.2; 95% CI) Mg in the 15 to 35- years-old 

plots, and 30~34 Mg of C in the oldest recorded plots. Root C reached 10~12 Mg 

ha-1 between 5 and 10 years and then generally remained stable. Litter C appears 

to remain stable, between 1 and 2 Mg of C per ha. Cumulatively, it was found that 

cocoa systems, including soil to 10 cm depth, can reach more than 100 Mg C ha-1 

for some of the oldest plots. At a typical age of cocoa rehabilitation or renovation 

at 20-30 years, the corresponding value was 40~50 Mg ha-1. The analysis 
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emphasizes the importance of shade trees in C sequestration within cocoa 

systems. 

Keywords: Cocoa, Soil organic matter dynamics, Carbon pools, Meta-analysis, 

Theobroma cacao. 

2.1 Introduction 

Agroforestry systems have been recognized by the UNFCCC (United Nations 

Framework Convention on Climate Change) as a potential measure to mitigate 

climate change by mitigating the rise of atmospheric CO2 levels through the 

sequestration of significant amounts of C in vegetation and soil sinks (Albrecht & 

Kandji, 2003; Dupraz & Liagre, 2008; B. M. Kumar & Nair, 2011; Montagnini & 

Nair, 2004; Nair et al., 2009; Pandey, 2002; Rosenstock et al., 2019). One of the 

most widespread forms of tropical agroforestry comprises cocoa plants 

(Theobroma cacao L.) under shade trees, a system that forms a major source of 

income for millions of farmers along a belt covering parts of Africa, Central and 

South America, and South-East Asia. Various reviews have shown that 

agroforestry systems, such as shaded cocoa, can store more carbon (C) in their 

biomass and soil pools than annual and perennial monocultures (De Stefano & 

Jacobson, 2018; Feliciano et al., 2018; Nair et al., 2009; Shi et al., 2018). Soil C 

storage can be particularly useful because of its potentially long immobilization time 

and the large stock it can represent (i.e., approximately 80% of the terrestrial C is 

in the soil; (Lal et al., 2018; Lorenz & Lal, 2014; Paustian et al., 2019; C. E. Stewart 

et al., 2007). Beyond climate mitigation concerns, high levels of soil organic matter 

(SOM) can improve the levels of crop production, and are associated with, for 

example, a greater stock of nutrients, water-holding capacity, and improved pH 

buffering (Brady & Weil, 2017; Havlin et al., 2016; Johnston et al., 2009a; Oldfield 

et al., 2017; Woomer & Swift, 1994). 

Carbon is stored in several reservoirs (also called interchangeably pools, or 

compartments) in a cocoa agroforestry system, including aboveground cocoa and 

shade tree biomass, roots, litter, and soil. According to the IPCC (2000), a carbon 

stock is “the absolute quantity of carbon held within a pool at a specified time”. 

The age of both the cocoa and shade trees, which can be several decades, is 

likely to be a major driver of changes in C stocks (Jagoret et al., 2011, 2017, 

2018). Variations in C stocks between cocoa systems are expected for several 

reasons. For example, cocoa trees can be planted at a range of densities. There 

is also a range of shade species: some species like bananas are established during 

the first three years of cocoa establishment, some are intercropped and offer an 
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additional revenue source, such as rubber, coconut, timber, and some are used to 

fix nitrogen (N) such as Gliricidia and Leucaena species. A leaf-litter layer at the 

soil surface is a typical feature of cocoa systems: cocoa trees are deciduous, and 

leaf fall is associated with drought stress. Beyond land preparation at planting, the 

level of soil management is minimal, although some farmers do apply fertilizers, 

composts, manures, or processed pod husks. The level of mechanization is 

typically low, with most field operations completed by hand (Wood & Lass, 2008).  

Despite the importance of cocoa cultivation (FAO, 2003; Fountain & Huetz-

Adams, 2018), the role of C storage (by agroforestry and soil systems) on climate 

change (Albrecht & Kandji, 2003; Montagnini & Nair, 2004; Paustian et al., 1997), 

and the widespread view that soil C is the keystone indicator of soil fertility (Brady 

& Weil, 2017; Doran et al., 1996; FAO, 2005; Ontl & Sculte, 2012; Rice, 2005), to 

the authors knowledge there has been no global review on C sequestration in 

cocoa systems. Research on these systems seems to have occurred only at the 

local level (e.g., Mohammed et al., 2016; Smiley & Kroschel, 2008) or at a world-

region scale (e.g., Somarriba et al., 2013 in five countries of Central America). 

Hence this paper aims to synthesize data on C storage in cocoa systems. The 

main objectives of this study were (1) to characterize the typology of the cocoa 

plantations in the dataset, (2) to assess the temporal dynamic and variability of C 

stocks in cocoa systems, and (3) to examine correlations between potential C 

stocks predictors. 

2.2 Methodology 

2.2.1 Search procedure, eligibility criteria, and data 

compilation 

The data search followed a non-systematic approach in order to include as many 

references as possible instead of restricting the findings to only one search 

engine or limited set of keywords. The available literature was initially identified 

using several search engines: Google Scholar, ScienceDirect, Scopus, Scielo, 

Web of Science, and ResearchGate. The main keywords were “soil”, “organic”, 

“matter”, “stocks”, “sequestration”, “cocoa”, “cacao”, “Theobroma”, and “carbon”. 

They were used using multiple combinations such as “soil organic matter cocoa” 

or “Theobroma soil carbon”. Cocoa industries, including Mars Inc., Mondelez 

International, and Barry Callebaut, as well as researchers and institutions involved 

in cocoa research were also contacted to obtain data. Among the results, only the 

ones reporting C stocks for at least one reservoir (or contents for soil C) and the 
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age of the plots were utilised (age referring to years after planting). The references 

(see Table 2.1) were then examined for four main categories of information: (1) 

contextual data such as the study’s authors and publication year, (2) climatic data 

such as rainfall and temperature at the study location, (3) crop and vegetation 

data such as the reported basal areas per hectare, and (4) soil data such as C 

contents and bulk densities. The complete list of variables is available in the 

appendix (see Table A - 2.1). The second stage involved a review of the 

references cited by those studies to see if some of them matched our criteria. As a 

result, 37 references were identified in total. The data reported was then integrated 

into the project datasheet. In some situations where the information was unclear, 

the authors were contacted to seek clarification or raw datasets. When only a chart 

without data labels was given (i.e., making it difficult to accurately determine a 

value), a graph digitizer was used (https://automeris.io/WebPlotDigitizer/) to 

extract the data. Both one-time studies and chronosequences were included in the 

collection. When several soil depths were studied, each was recorded. It was not 

possible to create sub-groups for specific environmental conditions (e.g., soil type 

or climate) due to the small number of studies for each potential sub-group. No 

additional criteria were applied to assess the validity of the findings in terms of 

sample size due to risk of bias because reported statistics such as standard 

deviations or confidence intervals (e.g., only 7% of soil C and SOM contents were 

not associated with a standard deviation, error of confidence interval). 

In total, the 37 references yielded 250 observations for cocoa aboveground C 

stocks, 242 for aboveground shade C stocks, 236 for litter C stocks, 242 for root C 

stocks, and 381 for soil C stocks. The years of publication can be categorized into 

two periods. The first was around 1980-1990 and the second after 2000, with a 

fairly equal distribution of references for both periods (refer to Figure A - 2.1 and 

Table A - 2.2 in the appendix for more details). About half of the studies were 

chronosequences, with the majority being Type II chronosequences (Hartemink, 

2005), i.e., different plots of different ages monitored simultaneously. The 

references covered four continents, spread over 14 countries (see Table 2.2). The 

greatest number of studies were based in Central America, with 234 cocoa plots, 

corresponding largely to the large spatial scale of Somarriba et al.'s (2013) study. 

However, the country with the largest concentration of cocoa plots (187) was 

Indonesia, mostly derived from the Mondelez International (2015) dataset. From 

Africa, only 25 individual cocoa plots were integrated into this study, despite the 

amount of cocoa research implemented there, because each study only included 

a few plots. A broad diversity of pedoclimatic contexts was covered by the dataset 

(see Table A - 2.3). 

https://automeris.io/WebPlotDigitizer/
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Table 2.1: List of references used for the meta-analysis 

Code Authors Year Journal 

1 Adejuwon & Ekanade 1987 Catena 

2 Adejuwon & Ekanade † 1988 Catena 

3 Alpizar et al. 1986 Agroforestry Systems 

4 Aranguren et al. 1982 Plant and Soil 

5 Beer et al. 1990 Agroforestry Systems 

6 Boyer 1973 Café Cacao Thé 

7 Boyer cites several authors (1954-70) 1973 Café Cacao Thé 

8 Dawoe et al. 2009 & 2010 Thesis & Plant and Soil (same data) 

9 de Oliveira Leite & Valle † 1990 Agriculture, Ecosystems and Environment 

10 Fassbender et al. ‡ 1988 Agroforestry Systems 

11 Gama-Rodrigues et al. 2010 Environmental Management 

12 Gockowski et al. • 2001 NA 

13 Heuveldop et al. 1988 Agroforestry Systems 

14 Isaac et al. 2005 Agroforestry Systems 

15 Jordan ‡ 1983 Proceedings of a seminar held in CATIE, Turrialba, Costa Rica 

16 Kummerow et al. ‡ 1982 NA 

17 Leuschner et al.  2013 Agroforestry systems 

18 Ling † 1986 NA 

19 Mohammed et al. 2016 Carbon Balance and Management 

20 Monroe et al. 2016 Agriculture, Ecosystems and Environment 

21 Morales et al. 2017 Acta Agronomica 

22 Norgrove & Hauser 2013 Tropical Ecology 

23 Oke & Olatiilu 2011 Journal of Environmental Protection 

24 Owusu-Sekyere et al.  2006 West Africa Journal of Applied Ecology 

25 Rajab et al. 2016 Plos One 

26 Saj et al. 2013 Agroforestry systems 

27 Santhyami et al. 2018 Biodiversitas 

28 Smiley & Kroschel 2008 Agroforestry Systems 

29 Tondoh et al.  2015 Global Ecology and Conservation 

30 UNESCO * 1978 SSSA Special Publication 

31 Utomo et al.  2016 Journal of Cleaner Production 

32 Vanhove et al.  2016 Agriculture, Ecosystems and Environment 

33 Vitousek & Sanford ° 1986 Annual Review of Ecology, Evolution, and Systematics 

34 Wessel † 1985 NA 

35 Somarriba et al.  2013 Agriculture, Ecosystems and Environment 

36 Mondelez International  2015 Private report 

37 Wartenberg et al.  2017 Agriculture, Ecosystems and Environment 

† reviewed by Hartemink (2005) 
‡ cited by Beer et al. (1990) 
• cited by Dawoe (2009) 
* cited by Greenland et al. (1992) 
° cited by Isaac et al. (2005) 
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Table 2.2: Geographical distribution of the studies 

Continent Country Number of plots 

Africa 

Cameroon 9 

Ghana 9 

Ivory Coast 3 

Nigeria 4 

Sub-total 25 

Proportion of the total 5% 

Asia 

Indonesia 187 

Malaysia 2 

Sub-total 189 

Proportion of the total 41% 

N. & S.  

America 

Mexico 1 

Brazil 8 

Costa Rica 39 

Venezuela 2 

Guatemala 71 

Honduras 33 

Nicaragua 49 

Panama 40 

Sub-total 243 

Proportion of the total 53% 

 Total 457 
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2.2.2 Data conversions 

a. Carbon stored in vegetation 

Vegetation biomass and/or C stocks were mostly determined with allometric 

equations (see Table 2.3). Trees were measured using trunk diameters, for 

example, at 30 or 130 cm from the ground (i.e., respectively ‘D30’ and ‘DBH’, 

diameter at breast height). Total height (TH) or the length of stems and branches 

was additionally used in some allometric equations. The structures of the 

equations varied: some were power relationships (for instance, equation 

Equation 2.2), some were linear (as with equation Equation 2.4). Because of the 

diversity of shade species, various allometric equations were used by the source 

references to estimate their biomass. Some were generic for several species, 

and some were species-dependent. For each study, only one estimation of C 

stocks was given, corresponding to their selection of a unique or single set of 

allometric equations. In other words, they did not apply different equations to 

compare how the estimations of stocks would vary. Readers are invited to refer 

to each specific publication to review their respective methodologies in detail. 

In addition to allometric estimates, Rajab et al. (2016) undertook an inventory of 

soil fine root biomass (< 2 mm) down to 3 m depth which was added to 

belowground biomass, as the Cairns equation they used does not include fine 

root biomass. Alpizar et al. (1986), Beer et al. (1990), Dawoe (2009), and 

Somarriba et al. (2013) did the same but at different depths (0-15-30-45 cm for 

Alpizar et al. and Beer et al.; 0-30 cm for Dawoe with roots ≤ 0.5 cm ; 0-20 cm for 

Somarriba et al.). Leuschner et al. (2013) assessed belowground biomass (both 

fine and coarse roots) directly in soil pits down to 3 m. Norgrove & Hauser (2013) 

applied a root:shoot ratio of 0.13 to derive the total biomass based on Zuidema 

et al. (2005) partitioning model. 

Because it is difficult to distinguish between cocoa and shade tree roots, studies 

rarely distinguish between the two, and only report root C stocks. In this study, 

when cocoa and shade tree roots were both reported, the total root C stock was 

calculated by combining the two. 
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Table 2.3: Examples of allometric equations used in the references to estimate 
cocoa and shade trees biomass 

Targeted 
stock 

Equation 
number 

Allometric equation Variables References 

Aboveground  

cocoa biomass  

Equation 
2.1 

𝑙𝑜𝑔 𝐴𝐵
= (−1.684 + 2.158 𝑙𝑜𝑔(𝐷30)
+ 0.892 𝑙𝑜𝑔 (𝑇𝐻) 

D30: diameter at 30 cm (in cm). 

TH: total height of the cocoa tree 

(in m). 

Somarriba et al. (2013) 

Equation 
2.2 

 

𝐴𝐵 =  0.202 × 𝐷2.112 
D: stem diameter at breast height 

at 50 cm height (in cm) 

Smiley & Kroschel (2008) 

Leuschner et al. (2013) 

Equation 
2.3 

 

𝐴𝐵 =  𝑊𝐷 × 𝐶𝑆𝐴 × (𝐿 
+ 2.32𝑃𝐵) 

WD: average wood density 

(0.34 Mg m-3). 

CSA: mean cross-sectional surface 
area of the trunk (in m²). 

L: trunk length (in m) 

PB: number of primary branches. 

Boyer (1973) 

Norgrove & Hauser (2013) 

Equation 
2.4 𝐴𝐵 =  −0.0376 +  (0.133 BA) 

BA: stem basal area at breast height 
(in cm²). 

Beer et al. (1990) 

Rajab et al. (2016) 

Aboveground 

cocoa and 
shade trees 
biomass 

Equation 
2.5 𝐴𝐵 =  𝑒−2.134 + 2.53 𝑙𝑛(𝐷𝐵𝐻) DHB: diameter at breast height (in cm). 

Brown, (1997) 

Dawoe (2009) 

Shade tree 
biomass 

Equation 
2.6 𝐴𝐵 =  𝑒(−2.557+0.940 ln(𝜌𝐷2𝐻)) 

ρ: wood specific gravity (in g cm-3). 

D: stem diameter at breast height 

(in cm). 

H: total tree height (in m). 

Leuschner et al. (2013) 

Chave et al. (2005) 

Aboveground  

Gliricidia 
biomass 

Equation 
2.7 𝐴𝐵 =  0.1185 × 𝐷² 

D: stem diameter measured at breast 
height (in cm). 

Foroughbakhch et al. (2006) 

Leuschner et al. (2013) 

Belowground 
biomass 

Equation 
2.8 𝐵𝐵 =  0.142 × 𝐷2.064 D: stem diameter. Smiley & Kroschel (2008) 

Equation 
2.9 

𝐵𝐵 =  𝑒(−1.0587 + 0.8836 ln(𝐴𝐵)) 
AB: aboveground biomass, dry 

(kg per tree). 

Cairns et al. (1997) 

Somarriba et al. (2013) 

Rajab et al. (2016) 

Equation 2.2 was chosen in this study because it was developed on cocoa farms developed on Sulawesi 
(just like this study). 
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To convert plant biomass stocks to plant C stocks, Smiley & Kroschel, (2008) 

indicated that conversion factors vary from 0.4 to 0.5 (Brown, 1997; Snowdon et 

al., 2000). The values used or directly measured by the references studying plant 

C stocks are summarized in Table 2.4.  

Table 2.4: Conversion factors used to convert biomass stocks to carbon stocks 

Reference Refer to C content 

Dawoe et al. (2010) Average for cocoa litter 0.430 

Isaac et al. (2005) 
Average for cocoa canopy 0.451 

Average for upper story canopy 0.447 

Leuschner et al. (2013) 

Leaves 0.420 

Stem wood and branches 0.460 

Coarse roots 0.450 

Fine roots 0.440 

Mohammed et al. (2016) 

Cocoa biomass 0.420 

Litter 0.370 

Shade trees and stumps 0.42-0.456 

Norgrove & Hauser (2013) All trees and litter 0.450 

Rajab et al. (2016) 

Stem wood and branches 0.470 

Coarse roots 0.440 

Fine roots 0.420 

Litter 0.450 

Saj et al. (2013) Cocoa and other trees biomass 0.475 

Santhyami et al. (2018) Aboveground biomass 0.500 

Smiley & Kroschel (2008) Aboveground and belowground biomass 0.450 

Somarriba et al. (2013) 
Aboveground biomass 0.500 

Coarse root biomass 0.470 

Tondoh et al. (2015) Average for cocoa litter 0.363 
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b. Carbon stored in the soil 

SOM or C was determined through the analysis of soil samples collected in the 

field. The majority of the references employed elemental analysers, while a few 

followed the Walkley-Black method (i.e., Dawoe, 2009; Morales et al., 2017; 

Norgrove & Hauser, 2013; Tondoh et al., 2015; Utomo et al., 2016). 

c. Missing values 

For most cases, the data shared in the references did not cover the entire set of 

variables of this meta-analysis. To address this and fill gaps in the dataset, it was 

necessary to estimate some of the results from the reviewed publications. 

If the date of planting and the date of the measurement were given, the age of 

the plot was logically deduced. 

To convert cocoa plant biomass to C, a coefficient of 0.48 was applied, 

corresponding to an estimate of an average C concentration in cocoa biomass 

(FAO, 2005; Ma et al., 2018; Thomas & Martin, 2012). Conversely, a ratio of 2.08 

(i.e., 1/0.48) was used to estimated plant biomass from plant C. 

To convert SOM to C (stocks or contents), a coefficient of 0.58 was chosen 

(Cambardella et al., 2001; Pribyl, 2010). Conversely, a ratio of 1.72 (i.e., 1/0.58) 

was applied to transform soil C values into SOM. When only C contents were 

given, topsoil C stocks were calculated by using the bulk density of the topsoil (0-

10, 0-15, 0-20 cm, or deeper, depending on what was available), and a surface 

layer thickness of 10 cm (see Equation 2.10): 

𝑆𝑡𝑜𝑐𝑘 = 𝑑 × 10000 × 𝐶𝑜𝑛𝑡𝑒𝑛𝑡 × 𝐵𝐷 Equation 2.10 

where C stocks per hectare (𝑆𝑡𝑜𝑐𝑘) are in Mg ha-1, sampled depth (𝑑) is set to 

0.1 m, 10000 is one hectare in m², the C content (𝐶𝑜𝑛𝑡𝑒𝑛𝑡) in g.100g-1, and bulk 

density (𝐵𝐷) in g cm-3. 

As with soil C, the same depth-distribution problem occurs with root C. The 

heterogeneity of the sampling depths used in the studies reviewed, restricts optimal 

comparisons and the possibility to make a simple, direct summary of the results. 

To address this issue, the reported root C of the top sampled layer was used, which 

could be 10, 15, or 20 cm depth or more. As most of the root C values were 

obtained from allometric equations, depth heterogeneity did not have a major 

impact (93% of the observations came from Somarriba et al. 2013). The values 
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reported in the results are totals of available values, including fine and coarse roots 

of cocoa and shade trees altogether.  

In numerous cases, bulk density was not reported. If C stocks per hectare, C 

contents, and sampling depths were available, bulk density was recalculated by 

rearranging Equation 2.10. However, certain references provided neither C 

stocks nor C contents (but did mention depth). In this case, bulk density was 

estimated by using Equation 2.11 described by Adams (1973), in terms of the 

SOM content (𝑆𝑂𝑀%; in %), bulk density of the mineral fraction of the soil (𝑀𝐵𝐷), 

and the bulk density of SOM (𝑂𝑀𝐵𝐷), in g cm-3 (method applied in other peer-

reviewed studies such as Guo & Gifford (2002) and Post & Kwon (2000): 

𝐵𝐷 = 1  [ (𝑆𝑂𝑀%  𝑂𝑀𝐵𝐷) + ( (1 − 𝑆𝑂𝑀%)  𝑀𝐵𝐷) ]⁄⁄⁄  Equation 2.11 

To find MBD and OMBD, the approach previously used by Mann (1986) and Shi 

et al. (2018) was adapted. Observed bulk densities and their corresponding SOM 

or SOC were derived from the dataset, and the predicted bulk density was 

calculated using Equation 2.11. Then, the Chi-square of the difference between 

observed and predicted bulk densities was determined. Excel’s Solver add-in was 

applied to find optimal values for OMBD and MBD, minimizing the sum of Chi-

square. Optimized values were 0.103 for OMBD and 1.683 for MBD (with a Chi-

square of 5.382, a mean bias of -0.057%, and a root mean squared error of 

prediction of 13.77%. The relationships between SOM contents and observed 

and predicted bulk densities are displayed in the appendix (see Figure A - 2.2).  

If rainfall, temperature, or altitude indications were missing, they were 

approximated by using the name of the location and extracting data from 

WorldClim Version 2 (for rainfall and temperatures; when the GPS location was 

given; Fick & Hijmans, 2017), from climate-data.org (for rainfall and temperatures; 

when GPS location was unknown, i.e., using the village name) and Google Earth 

(for altitudes). 

2.2.3 Statistical analysis and data visualization 

To meet the three objectives, the dataset was examined from several perspectives. 

The typology of the cocoa plantations (objective 1) was described in terms of 

pedoclimatic contexts, the age distribution of the plots, observed cocoa and 

shade tree densities, and shade species. The distribution and temporal variability 

of C across the main reservoir of the cocoa systems (objective 2; i.e., 

aboveground cocoa, aboveground shade tree, roots, litter, and soil) was 
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examined by using boxplots, displaying a six-number summary: minimum, first 

quartile, median, third quartile, maximum and mean. Observations were distributed 

in age class intervals of 5 years (left-closed, right-opened). Because the ages 

ranged from 0 to more than 80 years-old , there were 17 classes (i.e., 16 from 0 to 

80 and an additional one for farms aged 80 or older). Classes of 5 years were 

chosen as they provided a balance between being representative and practicality 

of use. Correlations between non-time variables (objective 3) evaluated the 

relationships between (1) basal areas1 and cocoa aboveground C stocks, (2) 

roots and aboveground C stocks (i.e., root:shoot ratios), and (3) soil texture and 

soil C contents. The data was aggregated in a Microsoft Excel worksheet (v.1901 

for Office 365). Data analysis and visualization were performed in Microsoft Excel 

v.1901 for Office 365 and R v.3.6.1 using the ggplot2 package. 

2.3 Results 

2.3.1 Age distribution of the studied cocoa farms 

Most cocoa plots were younger than 35 years old (Figure 2.1), an age beyond 

which cocoa productivity can decline. Although older plantations are often 

replaced, some very old cocoa farms (greater than 80 years) were present. In 

total, the dataset identified 475 individual cocoa plots, and only 4% did not have 

a reported age (see Table A - 2.4 in the appendix for exact values). 

 
1 Basal areas: defined as the cross-sectional area of the trunk or branches at breast height (m² 
ha-1), or in some cases, at the trunk cross-sectional areas at 30 or 50 cm from the surface. 
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Figure 2.1: Distribution of the 5-year age classes of the cocoa farm plots 

Note that age class intervals are left-closed and right-opened: including the left bound of the interval and 
excluding the right one (e.g., [5-10[ does not include the 5-year-old plots). 

2.3.2 Density of cocoa trees and shade species 

The densities of cocoa trees per hectare were derived from the equivalent 

spacings. In total, 21% of the cocoa farms had spacing between 3 m x 3 m and 3 

m x 4 m, corresponding to the often recommended density at planting of between 

~800 and ~1100 cocoa seedlings per hectare (see Figure A - 2.3 and Table A - 

2.5 for the detailed distributions). A quarter of the plots had a density of 400 to 625 

cocoa trees per hectare, which approximately corresponds to a 4 m x 5 m spacing. 

About 18% of the plots had less than 400 cocoa trees per hectare, which can be 

considered very sparse.  

In terms of shade-tree density, about one-fifth of the plantations had less than 100 

shade trees per hectare (refer to Table A - 2.6 for the exact breakdown). Another 

fifth had between 100 to 200 shade trees per hectare, and a further fifth had 

between 200 and 400 trees per hectare. Higher densities accounted for about 10% 

of the plots. Approximately 30% of the plots included in our analysis did not report 

cocoa and shade tree densities. The shade species recorded on the cocoa farm 

are fully listed in the appendix (Table A - 2.7). For about half of the plots (53%), 

shade species were not reported. Only ten plots were listed as unshaded 

monocultures. References described systems with or without shade tree mixtures, 

mostly composed of Gliricidia, Erythrina, Cordia, Cocos, and Hevea. 
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2.3.3 Temporal C dynamics 

a. Basal area 

There was substantial variation in the reported basal area of the cocoa trees, 

which is the primary measure to estimate plant C stocks (Figure 2.2a and Table 

A - 2.8). For cocoa stands less than 35 years old, the mean basal area value was 

about 10 to 11.5 m² ha-1, although the dispersion was large (standard deviation 

= 5.75 m² ha-1). 

b. Aboveground C 

Estimates of cocoa aboveground C stocks varied widely (Figure 2.2b), but mean 

and median values tended to reach a plateau of ~10 Mg C ha-1 between 15 and 

35 years, roughly corresponding to the period at which cocoa reaches ‘maturity’. 

Carbon stocks in shade tree aboveground C stocks were on average about four 

times that of cocoa trees (~40 Mg ha-1, between 15 and 35 years). Even though 

this reservoir includes plots with different shade species, variability in aboveground 

shade tree C stocks was comparatively small compared to cocoa aboveground C 

stocks, with the first three quartiles of the data generally below 50 Mg ha-1 (Figure 

2.2c). Almost all the aboveground shade tree C stocks estimates were below 100 

Mg ha-1, but some farms have reported higher C stocks. No clear relationship 

emerges between the age of the cocoa farm and the quantity of aboveground C 

stored in shade trees (R² = 0.0094, P = 0.14). Most of the observations were made 

on cocoa farms younger than 35-years old. 

c. Litter C 

Litter C stocks were the smallest of the considered compartments (Figure 2.2d), 

with a mean value of about 1.14 Mg ha-1 for the observations on farms younger 

than 35 years old. Up to the age of 35 years, the level of litter C stocks was 

relatively consistent. By contrast, larger litter C stocks were reported for farms 

older than 35 years old, but very few observations were available. In this dataset, 

24 observations were available for the total annual litterfall deposition rate 

(including litter from cocoa and shade trees), including 18 where cocoa and shade 

leaves were segregated (Figure 2.3). Overall, total yearly litter deposition rates 

varied between ~3 and ~11 Mg ha-1 yr-1, with some very high values reported for 

30 years old farms, at ~20 Mg ha-1 yr-1. 
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d. Root C 

The majority of data documenting root C storage (93%) was from Somarriba et 

al. (2013). Overall, root C storage values varied less widely over time than 

aboveground C. While aboveground C increased in range over time, mean values 

of root C tended to reach a plateau of 10-12 Mg ha-1 between 5 to 10 years, with 

maximum values around 21-22 Mg ha-1 (see Figure 2.2e). Between 10 and 40 

years, the stock of root C appeared stable. 

e. Soil C 

Estimated soil C stocks also exhibit a large variability (see Figure 2.2f). Most of 

the reported results ranged between ~10 to 40 Mg ha-1 and were sampled at 0-15 

cm depth. The mean stock (0-10 cm) between 0 and 35 years old is 23.5 Mg ha-1 

(23.9 between 15 and 35 years). Relatively speaking, younger stands tend to 

store less soil C than older ones. A slight increase of soil C stock seems to occur 

over time, but the effect is less pronounced than the change in aboveground 

biomass C. Performing a linear regression on soil C stocks and cocoa farm ages 

(younger than 35 years old, to exclude old farms for which few observations were 

available) resulted in a very weak but slightly positive correlation (R² = 0.013; 

p-value = 0.014):  

Soil C stocks = 0.1244 × Cocoa farm age + 18.776 (figure not shown). 

  



META-ANALYSIS OF CARBON STORAGE IN COCOA PLANTATIONS Page 41 

Thomas Fungenzi Cranfield University (2018-2021) 

 

 

Figure 2.2: Boxplots of the C stocks according to the cocoa age class 

a. cocoa basal areas; 
b. cocoa aboveground C stocks; 
c. shade aboveground C stocks; 
d. litter C stocks; 
e. root C stocks (include cocoa and shade trees indistinctively);  
f. soil C stocks (estimated at 0-10 cm). 

Open circles symbolize the mean, and dots are outliers. Age class intervals are left-closed and right-opened. 
The top rows of numbers are the counts of observations for each age class interval. 
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Figure 2.3: Yearly litterfall deposition rates (dry matter). 
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f. Cumulative C stocks 

Cumulatively, C stocks of cocoa plantations (between 0 and 35 years old) 

including soil to a depth of 10 cm averaged 76.4 Mg ha-1 (Table 2.5). The 

corresponding value for ‘mature’ cocoa plantations between 15 and 35 years old 

was 85.4 Mg ha-1. Overall, aboveground C stocks of shade trees accounted for 

the largest stock, followed by soil (0-10 cm), roots, aboveground cocoa, and lastly 

litter. Apart from litter, the mean value of all stocks seems to increase with the 

time from planting (see Figure 2.4 and Table 2.5). The number of observations, 

corresponding to each boxplot of Figure 2.2, and to each average of Table 2.5, 

is available in the appendix with additional summary statistics (Table A - 2.8). The 

exact dispersion of each observation is displayed in scatterplots in the appendix 

in Figure A - 2.4. 

 

Figure 2.4: Average stocks of C cumulated for the different reservoirs of a cocoa 
plantation 

Age class intervals are left-closed and right-opened. No observations for the aboveground shade trees at [0-
5[ years; no data for any of the reservoirs at [65-70[ and [75-80[ years intervals. Soil C stocks were estimated 
to a depth of 10 cm. 
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Table 2.5: Summary of C stocks and cumulative amounts 

Age 
class 

(years) 

Average 
cocoa basal 

area 

(m² ha-1) 

Average C stock (Mg ha-1) 

Aboveground  

Litter Roots 

Biomass 

Sub-
total* 

Soil 
Cumulated 

Total Cocoa 
Shade 
trees 

Sub-
total 

[0-5[ - 3.0 - 3.0 1.3 1.0 5.3 23.6 28.8 

[5-10[ 10.5 7.0 32.8 39.8 1.4 9.4 50.7 23.6 74.3 

[10-15[ 8.7 6.5 48.3 54.8 1.3 12.0 68.1 21.6 89.7 

[15-20[ 10.2 9.5 38.4 47.9 1 11.2 60.1 22.4 82.5 

[20-25[ 11.7 9.7 35.0 44.7 1 10.6 56.3 23.9 80.3 

[25-30[ 11.2 9.8 34.2 44.0 0.7 11.0 55.6 23.8 79.5 

[30-35[ 11.4 10.6 49.3 59.9 1.3 12.7 73.9 25.6 99.5 

[35-40[ 7.5 7.0 49.7 56.7 1 11.9 69.6 25.7 95.3 

[40-45[ 9.2 7.9 54.5 62.4 2.4 12.8 77.6 26.2 103.9 

[45-50[ 6.7 6.0 32.3 38.3 1.2 7.8 47.3 22.1 69.5 

[50-55[ 8.3 7.9 52.4 60.3 1.9 9.5 71.7 28.3 100.0 

[55-60[ 17 16.2 28.1 44.3 2 9.8 56.1 25.2 81.3 

[60-65[ 8.4 9.7 92.8 102.5 2.8 21.5 126.7 32.6 159.3 

[65-70[ - - - - - - - - - 

[70-75[ 9.5 12.3 37.8 50.1 5.1 11.2 66.3 34.0 100.3 

[75-80[ - - - - - - - - - 

[80+[ 8.6 12.2 56.3 68.5 3.6 13.8 85.9 30.0 115.9 

Age class intervals are left-closed and right-opened. 
* Plant sub-total include aboveground, roots and litter C stocks, but not soil. 

2.3.4 Correlation between carbon stocks 

A very strong positive linear correlation was found between cocoa basal areas 

and aboveground C stocks (R² = 0.93; p-value < 0.001). However, it can be 

noticed that the more the cocoa basal area increases, the larger the range of 

aboveground C stocks is (see Figure A - 2.5 in appendix). Three outliers were 

excluded, which reported stocks of C reaching between ~60 to 100 Mg ha-1 for 

cocoa only (reported in Santhyami et al., 2018). 

In terms of the ratio of total root C stocks to cocoa and shade tree aboveground 

C stocks, the mean ratio was 0.22:1, with values ranging from 0.16:1 to 0.33:1. 

Although it is generally expected to observe a positive correlation between clay 

and C contents,, in this study, the highest C contents were found in soils with the 

lowest clay contents (as depicted in Figure A - 2.6 in appendix). Conversely, the 

lowest C contents were found with soil with the highest clay content. 
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2.4 Discussion 

This meta-analysis assessed the C stocks of cocoa systems and highlighted how 

diverse they could be. The time since planting seems to drive changes, but local 

differences (e.g., previous land use, planting densities, pruning practices, 

climate) most likely result in high variability between locations for all C stocks. On 

average, aboveground cocoa C attained a plateau around 10 Mg ha-1 of C after 

15 years, when stands achieve maturity. Various shade levels and species were 

found, and on average aboveground shade C reached 39 Mg ha-1 of C between 

15 and 35 years after planting. Mean soil C stocks increased from ~23 to 30~34 

Mg ha-1 of C in the oldest recorded plots. Litter was the smallest of the C stocks, 

with limited variations between 1 and 2 Mg ha-1 of C. Root C attained on average 

~11 Mg ha-1 of C between 5 and 10 years and then remained stable. More than 

100 Mg ha-1 of C can be attained in the oldest plots when all stocks are 

cumulated, but recommended cropping durations of 20~30 years would lead to 

average cumulated C stocks of 40~50 Mg ha-1. 

2.4.1 Importance of aboveground C pools, especially 

from shade trees 

A specific challenge of determining the C pools of cocoa systems is the large 

diversity of systems especially relating to shade management. The wide range of 

shade intensities and the possible arrangements of species adds complexity to the 

analysis, especially when only ~60% of the references reported this crucial 

information. Some of this is a result of measurements being taken on farmers’ fields 

rather than within controlled experiments. An additional source of missing 

information is the possible additions of organic manure, compost, and the return of 

cocoa pod shells to the sites. 

Cocoa basal areas and cocoa aboveground C stocks were strongly correlated, 

despite the differences between allometric equations, because most of the 

estimations were obtained from one study (Somarriba et al., 2013). A large 

disparity of measured cocoa basal areas was observed between and within the 

age classes. Of course, cocoa growth results in rapidly increasing basal areas, 

but other local factors are certainly needed to explain intra-class variabilities, such 

as the structure and density of the shade trees, climate (e.g., temperature, 

aridity), and management (e.g., the influence of practices such as pruning). From 

a production standpoint, relating these total cocoa basal areas to the density of 

cocoa and shade trees (i.e., to assess a mean tree basal area) could be useful in 
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a future study, as Jagoret et al. (2017) already highlighted that basal area is a 

key performance indicator. 

The aboveground C of shade trees was the largest stock across all age classes, 

and hence these results suggest that plant pools are effective targets to store C 

in cocoa systems. In shaded cocoa systems, shade trees and cocoa trees will 

compete with each other for light, water, and nutrients, with implications for C 

accumulation in each reservoir (Dupraz & Liagre, 2008). Therefore, complex 

aboveground and belowground interactions determine C acquisition dynamics in 

agroforests. To date, these interactions are not well understood, and optimal 

cocoa-shade canopy designs are yet to be developed (Somarriba et al., 2018). 

However, Blaser et al. (2018) report that 30% canopy cover by shade trees is 

typically a maximum in a commercial plantation, with higher levels of canopy 

cover resulting in more detrimental than positive trade-offs. Even though soil 

represents a large stock, the accumulation of vegetation biomass occurred in a 

shorter period. Because of the large volume that some shade species can attain, 

it should be noted that a minority of trees can hold a major part of the stock, 

equivalent to many cocoa trees.  

2.4.2 Litter C  

Litter C values were largely obtained from one-off observations in the field. They 

did not correspond to deposition over time, for example, over a year. Leaves are 

likely to form the primary inputs of C in this reservoir. Fontes (2006) estimated 

that the deposition of leaves could be as much as 7 Mg ha-1 yr-1, and the values 

in Figure 2.3 suggest deposition rates of 3 to 11 Mg ha-1 yr-1, which implies that 

the mean litter values of about 1 Mg ha-1 only represents a proportion of the yearly 

flux of leaves. Cocoa agroforestry systems can develop a thick layer of leaf litter 

(Gama-Rodrigues et al., 2011), and field observations made during this study 

indicate that cocoa roots can expand and derive nutrients and water from this 

layer. A thick leaf layer is usually considered a feature of good cocoa 

management as it increases soil cover and provides a reserve of nutrients. 

However, unlike many temperate soils where there is an organic matter gradient 

decreasing from the surface, field observations in Sulawesi (Indonesia) suggest 

that the C-rich layer may only extend a few centimetres (Kummerow et al., 1982). 

Two distinct layers could be seen: organic and mineral, instead of a gradient 

penetrating the soil. Under high temperatures and moisture, it can be argued that 

organic matter decomposes quickly outside the soil, with little contribution to 

structure formation at depth (Gama-Rodrigues et al., 2011). In other words, with 
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no incorporation or bioturbation, only a small proportion of leaf C seems to be 

transferred to the soil.  

Unlike the steady increase in aboveground plant C, the amount of litter C 

appeared relatively consistent with time after planting. By contrast, yearly litter 

deposition rates increased during the first decade of the cocoa stand (both cocoa 

and shade tree leaf litter). It could be hypothesized that although litter deposition 

rates increase during the establishment phase of cocoa trees, the leaf litter rapidly 

decomposes, and hence the amount of leaf litter remains relatively consistent. 

Once the cocoa stand attains maturity, the rates of deposition may possibly 

remain stable, as the trees are pruned to maintain a specific height for ease of 

harvest. Overall, an equilibrium is reached, with fast decomposition rates limiting 

the build-up of litter C over time. 

2.4.3 Root C 

More C was found in root (cocoa and shade trees combined) than in the 

aboveground C stocks of cocoa plants alone. It was not possible to separate the 

root mass of the cocoa and shade trees. The mean ratio of the root to the 

aboveground C in the cocoa and shade trees was 0.22:1. This is similar to a ratio 

of 0.20:1 for perennial crops reported by Borden et al. (2019) and Cardinael et al. 

(2018). The ratio between root biomass and aboveground biomass can also 

depend on shade tree management, with more biomass allocated belowground 

by cocoa when it is associated with other species (Borden et al., 2019).  

2.4.4 Soil C 

Soil was the second-largest C stock after aboveground shade tree C in terms of 

magnitude. However, it could probably come first if a thicker layer was 

considered. Deep stocks, below the traditionally studied rooting depths of 0 to 

20~30 cm, are substantial, especially because they will remain stable for a long 

time (Borchard et al., 2019; Gross & Harrison, 2019). Across the dataset, there 

was no consistent trend in how soil C varied with time from planting. One reason 

for this is differences in previous land use (Blaser et al., 2018). For example, if 

cocoa is planted on previously forested land with C-rich soil, the net change 

between newly planted cocoa and old farms is likely to be negative. Conversely, 

a plot rehabilitated and previously cropped with annuals will likely see an increase 

of soil C stocks, because of the increased inputs of organic matter by cocoa and 

shade trees. Such differences could explain why soil C stocks declined in full-sun 

cocoa farms studied by Tondoh et al. (2015) whereas Jagoret et al. (2012) found 
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increases after cocoa afforestation of savannahs. An additional factor is how the 

density of cocoa and shade trees vary with time. A declining density may reduce 

new carbon assimilation, but conversely, decomposing dead trees may also 

increase soil C inputs. Another unknown is the contribution of root exudates. 

Although their production rates are unclear, they could be supplying significant 

amounts of C directly to the soil (Kuzyakov & Domanski, 2000a; Pausch & 

Kuzyakov, 2018). 

Another reason for the lack of a consistent time effect could be the diversity of 

soils under scrutiny. Looking for an eventual clustering of the results by soil 

texture, the correlation between soil C, clay, and sand contents was examined. 

Plotting the relationship showed a negative correlation with clay contents. 

Surprisingly, a positive relationship between soil C and sand contents was 

observed. These results suggest that at this scale of analysis, soil texture alone 

is not a good predictor of C stocks. Although texture affects the capacity of the 

soil to bind organic matter, it does not limit how much C can be present (Hassink, 

1996; Hassink et al., 1997; Krull et al., 2001). In practice, soil C contents are the 

result of a balance, and large inputs, whether there are coming from the 

vegetation or the application of composts or manures, can override the maximum 

protection capacity of the soil mineral particles (i.e., physically protected in clay-

promoted aggregates or adsorbed on active surfaces; Hassink, 1996; Hassink et 

al., 1997; Six et al., 2002). This C may not be stabilized but can still be present. 

Regardless of the explanation for this observation, contrary to conventional 

wisdom, this result is a clear indication that soil texture may not be an 

insurmountable obstacle when considering soil C sequestration since high stocks 

were observed in sand-rich soils, usually less favourable. It is necessary to 

investigate the sites where these unconventional observations were made to 

provide further explanation to this observation. 

Low soil organic matter or C is sometimes highlighted as a sign of degradation in 

cocoa plantations (Adeniyi et al., 2017). Out of the 361 topsoils examined, only 18 

(5%) had a C content lower than 1%. A large group of soils (40%) had a C content 

between 1 and 2%, while a further 40% had a C content between 2 and 4%. On 

the other hand, 15% of the farms had soil C contents higher than 4%, with the 

maximum value at 11%. Whether these values are constraining the sustainability 

of cocoa production still requires further research (Loveland & Webb, 2003). Soil 

C still remains a fuzzy indicator to quantify the complexity of soil fertility (Oldfield et 

al., 2019; Vonk et al., 2020). 
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2.4.5 Uncertainties due to methodological constraints 

Although a global analysis was attempted, cocoa production in Africa is 

underrepresented even though Ghana and Ivory Coast are top global cocoa 

producers. Most of the data mainly relied on one reference for aboveground C 

stocks (Somarriba et al., 2013) and two references for soil C stocks (Mondelez 

International, 2015; Somarriba et al., 2013). The inclusion of datasets such as 

Borden et al. (2019), found after the analysis, may improve the geographical 

distribution of the results. 

A strength of this meta-analysis was to include both plant and soil C reservoirs in 

the analysis. The examined data encompassed a wide diversity of the variables 

established by different methods. For instance, some references only looked at soil 

C, others only biomass. Some studies reported C stocks, and some reported 

stocks in terms of dry biomass. Some studies proposed belowground stocks in 

terms of fine roots only. Some made the distinction between coarse and fine roots. 

Some distinguished between cocoa and shade tree roots. Some studies did not 

and reported only total root C stocks. The methods for assessing vegetation C 

used different allometric equations. Some equations had a linear structure (y = a + 

bx), while others had an exponential form (y = axb). This study did not explore the 

sensitivity of vegetation C stocks to these differences. However, it should be noted 

again that most of these observations came from one study (Somarriba et al., 

2013), which applied the same approach throughout. There were also differences 

in the soil depth examined and not all reported bulk densities, increasing the 

uncertainties when extrapolating from soil C contents to stocks. As reported by 

(Nair, 2011), research on C stocks is strengthened by including such 

measurements and following guidelines (Brown, 1997; Macdicken, 1997).  

Almost all estimates of C stocks at this scale for any agricultural or agroforestry 

system include uncertainties. From the measurements of average basal areas, 

to the estimation of aboveground and belowground C stocks from allometric 

equations, then converted using a unique coefficient, and finally averaged by age 

classes, there is room for error build-up. That is why it is useful to present the 

variation in the data using different metrics such as means, medians, standard 

error and deviations, quartiles, as well as scatter plots. For example, a plant C to 

dry mass content of 50% was assumed, but it can vary from ~42 to ~50% (Ma et 

al., 2018). Similarly, the C content of SOM is traditionally set at 58% but could go 

down to 40% (Nelson & Sommers, 2018; Soil Survey Staff, 2004). The critical 

review of Pribyl (2010) suggests using a soil organic matter C content of 50%. In 
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this study, only C stocks are shared, while the principal dataset also included 

biomass. 

The soil C comparisons were based on a derived value for 0-10 cm. For example, 

it was assumed that if a SOC of 2.5% was reported for 0-20 cm, then the SOC at 

0-10 cm was also 2.5%. The decline in soil organic C with depth has been termed 

as an anisotropic distribution (Peng, 2011). Hence the approach adopted here is 

probably underestimating the actual C concentration at 0-10 cm for soils sampled 

deeper than 10 cm. (i.e., the thicker the layer of soil sampled, the higher the 

underestimation). A correction could have been applied to compensate for this 

by assuming a single depth distribution of SOC for all soils, but the likely 

heterogeneity of the depth distribution of soil C between locations would have 

introduced another, albeit smaller, source of error. 

2.4.6 To what extent do cocoa systems sequester C 

and mitigate greenhouse gas emissions? 

This final section examines the results in the content of the climate change theme 

of this special issue. Focusing on sequestration first, this study demonstrates that 

cocoa systems can store high quantities of C over time. Using the age distribution 

of the cocoa farms of this database, it is possible to calculate a weighted average 

for the cumulated C stocks, attaining 81.8 Mg ha-1, which is substantially greater 

than that achieved using annual crops such as maize and rice. According to 

FAOSTAT (FAO, 2019), cocoa was harvested on 11.8 million ha in 2017 (118 000 

km²). This is similar to the value of 10.3 million ha indicated by world production 

in 2018 of 4652 Mt (ICCO, 2019) and a supposed mean yield of 450 kg ha-1. 

Assuming that approximately 11 million ha are occupied by cocoa cultivation and 

that those cocoa systems are similar to those reported here, the global amount 

of C stored worldwide in cocoa systems (including soil to a depth of 10 cm) is 

equivalent to a total of about 0.9 Gt of C (900 MtC), equivalent to 3.3 GtCO2. 

It is anticipated that GHG emissions from an established cocoa plantation are 

low. Cocoa cultivation is not demanding in fossil fuels because it is not 

mechanized, and there is only limited use of synthetic fertilizers (Wood & Lass, 

2008) (Wood & Lass, 2008). In Colombia, a life cycle assessment of the C 

footprint of cocoa production, from cradle-to-farmgate, found that cocoa systems 

emitted around 8~9 kg of CO2 per kg of cocoa bean produced (Ortiz-Rodríguez 

et al., 2016). In fact, they reported that the main contributor to GHG emissions 

was the anaerobic decomposition of cocoa pods left on the ground (85% of the 

total emissions). In contrast, estimations from CATIE found that cocoa plantations 
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can be net sinks of C, with 34.8 kg of CO2 captured per kg of cocoa produced 

(Feed the Future, 2017). In their study, emissions were estimated to be 4.98 

kgCO2 per kg of beans, while capture reached 39.8 kgCO2 per kg of beans. The 

‘Climate-Smart Cocoa’ project in Ghana, for its part, assessed the net GHG 

footprint of cocoa to be 20 kgCO2 per kg of cocoa produced. A possible diminution 

to only 2 kgCO2 per kg of bean produced is mentioned. 

Deforestation is one of the major sources of global C emissions (i.e., 2.97 

GtCO2.yr-1 in the tropics; Smith et al., 2014). Historically, the expansion of cocoa 

has been made at the expense of forests (Ruf et al., 2015). Converting high-C 

reservoirs like forests to cocoa resulted in a net loss of C. From a chronological 

standpoint, this initial land-use conversion can be identified as the first source of 

emissions. Preventing deforestation may therefore be an effective strategy to 

forestall emissions from cocoa. Unfortunately, climate change is expected to shift 

the location of the land suitable for cocoa, reducing suitable areas in some 

countries while increasing the suitability of others (Bunn et al., 2019; Ruf et al., 

2015). During recent decades, the cocoa industry has been committed to 

preventing further deforestation by promoting the sustainable intensification 

model through several initiatives (e.g., REDD+, CocoaSoils, Climate Smart 

Cocoa, Cocoa Action, and the Cocoa & Forests initiative; Ingram et al., 2018). 

The world demand for cocoa is expected to continue increasing, suggesting that, 

higher yields will need to be derived from existing areas to prevent further 

deforestation (Wessel & Quist-Wessel, 2015). Further research is required to 

develop optimal cocoa systems capable of delivering on sustainability 

challenges: economically viable, C-negative, and locally-adapted to the near-

future climate. 
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2.5 Conclusions 

This study examined the temporal dynamics and variability of a range of C stocks 

in cocoa plantations. Large differences within the same age classes were 

observed for almost all C stocks, except litter. The differences in C stocks 

between plots of similar age reflect the potential importance of management in 

selecting the appropriate density of cocoa and shade trees to optimize C storage 

and the importance of different pedoclimatic contexts.  

Shade trees stored the greatest amount of C because of the size they can attain 

compared to cocoa. Hence planting or conserving shade trees on cocoa 

plantations is critical for C management. In this study, soil C assessments were 

restricted to 0-10 cm; using a deeper depth increment would arithmetically 

increase the importance of soil C as a pool. 

The challenge is to identify the canopy structure and arrangement that optimizes 

cocoa yields and the provision of other ecosystem services such as C 

sequestration. These results suggest that C storage potentials need to be 

determined according to the local context. More research is also required to 

develop the best adaptation strategies in a climate change context, primarily 

because of the long-term installation of cocoa orchards. Regarding the variation 

of C stocks, further work is needed to understand the underlying mechanisms 

driving trends and characterize how specific cases lead to different stocks of C. 

Also, because soil is one of the largest reservoirs of C with shade trees, further 

research is needed to evaluate the potential of different soils (i.e., types, depths). 

While no clear trend was revealed for soil C, modelling diverse farms, at 

contrasting locations, with various management types will certainly reveal what 

can be achieved by cocoa farms, both in the vegetation and the soil reservoirs of 

C. To the knowledge of the authors, no model has been applied to cocoa to study 

its C dynamics, even though modelling could address most of the aforementioned 

research topics. This study also creates a valuable database for future 

assessments of C stocks in cocoa agroecosystems. 
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3. MEDIUM-TERM EFFECT OF 

FERTILIZER, COMPOST, AND 

DOLOMITE ON COCOA SOIL AND 

PRODUCTIVITY IN SULAWESI, 

INDONESIA 

Highlights: 

• The productivity of each treatment was low (highest yield: 628 kg dry 

beans per ha) 

• Over four years, the cumulated average cocoa bean productivity of 

composted treatments was 270-300% that of the control (including tree 

mortality rates); 

• Fertilizers did not outperform compost and only provided a slight 

improvement compared to dolomite alone (respectively, 160 and 145% 

increased yield relative to the control; including tree mortality rates); 

• Fertilized treatments could overtake the composted ones if the trends are 

sustained during the following years; 

• Several soil nutrient contents and soil organic C significantly decreased 

over the four-year study despite additions. 

Summary: 

In Indonesia, management practices that reduce soil fertility could be limiting 

cocoa (Theobroma cacao L.) production. This research investigated the effects 

of fertilizers and organic amendments comprising different combinations of NPK 

+ urea, dolomite, and manure-based compost on soil properties and cocoa 

productivity. An existing field experiment in South Sulawesi, Indonesia, was 

continued to assess these treatments’ effects on cocoa trees from the age of 2.9 

years to 7.4 years. The treatments were first applied in 2012, five months after 

planting and subsequently twice a year. Soil analyses were performed before 

planting (2011), after 3 years (2014), and finally after 7 years (2018). Productivity 

was assessed yearly between the age of 3.5 and 7.4 years old. The highest yields 

were obtained from the plots receiving compost, although the yield benefits 

diminished over time. Inorganic fertilizer alone doubled the yield compared to the 

control, while compost and compost + fertilizer yields tripled it. With dolomite 

alone, the yield cumulated over 4 years (between 3.5 and 7.4 years) was 41% 

higher than the control. The positive effect of compost on cocoa yields can 
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potentially be attributed to (1) physical changes in soil structure increasing soil 

water availability, (2) the chemical improvement of nutrient availability, and (3) 

biologically, by promoting the activity of beneficial organisms. The application of 

dolomite increased soil pH, Ca, and Mg contents. Soil organic C greatly declined 

since 2014 in the composted treatments, even though 10 kg of compost was 

applied per tree per year, probably because of the compost's low C:N ratio. Future 

studies should assess different fertilizer formulations and combinations with 

organic inputs and explore the mechanisms by which compost promotes cocoa 

productivity. 

Keywords: Compost, fertilization, soil fertility, cocoa productivity, Indonesia. 

3.1 Introduction 

Cocoa (Theobroma cacao L.) is a major cash crop for millions of farmers, 

particularly in developing countries. Indonesia is one the largest cocoa-producing 

countries, with about 50 to 75% of national output from Sulawesi. From 1990 to 

2010, the land allocated for cocoa production in Indonesia increased 10-fold, 

reaching a plateau of approximately 17 000 km² in 2010 (FAOSTAT, 2020). 

However, the gross production of cocoa has decreased since 2010 because of 

declining yields per hectare that started in the early 1990s (FAOSTAT, 2020). 

Because of the limited availability of land, productivity per hectare will need to 

increase if Indonesia is to contribute to the increasing global demand for cocoa. 

The decline of productivity of cocoa plantations has been related to inadequate 

management leading to problems such as lower soil fertility and increased levels 

of pests and disease (Asare et al., 2018). Due to a lack of resources to improve 

existing farms, low profits have often pushed farmers to move cultivation to 

forested areas (Ruf, 2001). To prevent deforestation, many public and private 

stakeholders in the cocoa industry seek to improve crop productivity on existing 

farms (Carodenuto, 2019; Weber, 2017). The revitalization of cocoa farms is 

being implemented through improved planting material, the integrated control of 

pests and diseases, optimal shade control, and long-term soil fertility 

management (Asare et al., 2018; Wood & Lass, 2008).  

Soil fertility often deteriorates on cocoa farms (Adeniyi et al., 2017). Typically, 

cocoa trees planted on a freshly cleared forest initially benefit from high soil 

fertility due to high soil organic matter levels and well-developed soil structure. 

However, the subsequent removal of the harvested pods and beans can reduce 

soil nutrient levels (Boyer, 1973; Fassbender et al., 1988; Hartemink, 2005; 
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Thong & Ng, 1978; van Vliet et al., 2015), and soil fertility declines if they are not 

replenished with organic or mineral/inorganic fertilizers (Aikpokpodion, 2010; 

Hartemink, 2005). Soil degradation can also occur due to soil acidification after 

using prolonged use of acidifying fertilizers like urea, organic matter decay, the 

removal and leaching of basic cations (Goulding, 2016). This can lead to the 

increased availability of toxic elements such aluminium, iron and manganese (Lal 

et al., 1989). 

To maintain soil fertility, farmers typically apply amendments and fertilizers to 

replenish nutrient stocks and correct soil acidity. Few peer-reviewed studies have 

evaluated the effects of these amendments on both cocoa productivity and soil 

properties. Where this is research has been undertaken, it often focuses on short-

term effects on seedlings or young cocoa trees (Ahenkorah et al., 1987; van Vliet 

et al., 2015; Wessel, 1971). Verlière (1981) reported that only a few fertilizer 

experiments with cocoa had provided significant results, and there was a need to 

determine the interactions between shade management, cocoa nutritional needs, 

and productivity. Fewer fertilizer studies have been conducted in South-East Asia 

than in West Africa, and the work completed in Sulawesi is scarce (Mulia et al., 

2019). In addition, there have been few studies examining the combined effects 

of fertilizers, organic inputs (e.g., compost or manure), and other amendments 

(e.g., lime dolomite). 

To address this lack of information for Indonesia, Mulia et al. (2019) reported the 

responses for the first four years of a cocoa field trial established in 2011 which 

investigated various combinations of fertilizers and amendments (organic and 

inorganic). Because the treatments were continued after the first four years, this 

study aims to evaluate the effects of the treatments on soil properties, growth, 

and yield on more mature cocoa plants in order to develop fertilizer 

recommendations based on organic amendments. 

3.2 Methodology 

3.2.1 Experimental site 

The experimental area has been described in detail by Mulia et al. (2019), but the 

main points are repeated here for clarity. The plot is located in Bone-Bone, South 

Sulawesi, Indonesia (2.605833°S, 120.612333°E). The principal activities carried 

out between 2011 and 2018 on the experiment are presented in Table A - 3.1, 

Table A - 3.2, and Table A - 3.3. Cocoa plants of clone PBC123, also known as 
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Sulawesi 1, were planted at a 3 by 3 m spacing (square grid) in December 2011, 

i.e., 1111 trees per hectare. Shade trees of Gliricidia sepium were planted at the 

same time as the cocoa trees, as well as existing coconuts. In January 2016, 

after the completion of Mulia’s study, new cocoa trees were planted to replace 

the ones that died during the first phase of the experiment. However, after this 

replanting, productivity was not recorded on those trees. Monthly precipitation for 

the 2011-2018 period (Table A - 3.4 in supplementary material) was obtained 

from Mars’s Cocoa Research Station, located in Tarengge, approximately 20 km 

from the site (South Sulawesi, Indonesia). 

3.2.2 Treatments 

Initially, the experiment followed a randomized block design repeated four times 

(Table 3.1), with 16 cocoa trees for each repetition (in a 4 trees by 4 trees square 

grid fashion without border). As described in Mulia et al. (2019), there was a 

control treatment with no fertilizers or amendments (Treatment A), and treatments 

comprising either the application of NPK fertilizer + urea (Treatment B), compost 

(Treatment C), and dolomite (Treatment D). Subsequently, four possible 

combinations of the three primary inputs were implemented with cumulated 

application rates (Treatments E to H). There were eight treatments in total, coded 

from A to H (one control + three with individual inputs + four with combinations of 

inputs). The treatments described in Table 3.1 were split into two applications 

applied at six-month intervals. The inorganic fertilizer applied to each tree was a 

mix of 374 g of Phonska (15% N, 15% P2O5, and 15% K2O with traces of S) and 

250 g urea. The compost was locally made of 60% cow manure, 15% empty oil 

palm bunches, 10% rice straw, 10% diverse leaves (banana, grass, Gliricidia, 

and maize), and 5% cocoa pod husks. A micro-organism mix (EM4) was also 

applied to the compost. The compost treatments comprised the application of 5 

kg of compost to each tree twice a year (10 kg per year, distributed in six small 

pits located at 1 m from the trunk). The full chemical composition of the compost 

is described by Mulia et al. (2019). The dolomite amendment comprised 18-22% 

of MgO, but the content for other constituents such as carbonates or calcium 

oxide CaO was unknown, but typical contents are around 22% Ca, 13% Mg, 13% 

C, and 52% O in elemental terms (Mineralogical Society of America, 2003).  
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Table 3.1: Breakdown of the treatments applied between 2012 and 2018 (adapted 
from Mulia et al., 2019) 

Rates in g tree−1 year−1, equivalent to kg ha-1 year-1  
(considering a density of 1000 cocoa trees per hectare) 

Treatment  C N P K Ca Mg S 

A No amendment 0 0 0 0 0 0 0 

B Mineral fertilizer 0 120.5 24.5 46.6 0 0 Trace 

C Compost (10 kg) 930 130 37 45 551 15 18 

D Dolomite (5 kg) 650 0 0 0 1100 650 0 

E B + C 930 250.5 61.5 91.6 551 15 18 

F B + D 650 120.5 24.5 46.6 1100 650 Trace 

G C + D 1580 130 37 45 1651 665 18 

H B + C + D 1580 250.5 61.5 91.6 1651 665 18 

Soil amendments and fertilizers were applied twice per year per tree to provide total quantities as follows: 
374 g NPK (“Phonska’) and 250 g urea (mineral fertilizer), 5 kg dolomite, and 10 kg compost. Combinations 
(Treatments E–H) were additive. The columns on the right show the total quantities of elements (g) provided 
per tree each year in each treatment. Phonska is a subsidized compound fertilizer made from three raw 
materials: urea, DAP (diammonium phosphate), rock phosphate, MOP (potassium chloride), and “other 
macronutrients” according to the manufacturer (https://www.pupukkaltim.com/en/distribution-product-
product-knowledge). At the time of planting, mineral fertilizer, 100 g NPK (Phonska) and 150 g triple 
superphosphate (36%), was added to each tree in equal amounts to provide adequate and uniform nutrient 
conditions for the establishment of all plants in the first few months after planting out (Mulia et al., 2019). 

3.2.3 Sampling and analyses 

a. Soil 

In each plot, one soil sample was collected, at the centre of the plot, 1 m from a 

cocoa trunk, at a depth of 0-20 cm, below the scraped surface litter, using an 

auger. The same day, samples were air-dried before being ground and sieved to 

< 2 mm. The core ring method was used to collect bulk density samples on each 

experimental unit, next to the soil sample, at 0-5 cm depth. These were later air-

dried at 60°C for 48 hours before weighing. In total, 32 soil samples were 

collected for soil analyses and bulk density measurement, corresponding to eight 

treatments with four repetitions each. The samples were then split with one 

sample sent to Asian-Agri Laboratory in North Sumatra, Indonesia, and the 

second sample was sent to Cranfield University in the United Kingdom. The 

analytical methods corresponding to each soil property are listed in Table 3.2 

(Asian-Agri analyses) and Table 3.3 (Cranfield University analyses). A difference 

must be noted between the term “extractable”, referring to Asian-Agri analyses 

(using HCl at 25% v/v as an extractant), and the term “total” which refers to 

Cranfield analyses (using microwave-assisted aqua regia digestion). 

https://www.pupukkaltim.com/en/distribution-product-product-knowledge
https://www.pupukkaltim.com/en/distribution-product-product-knowledge
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b. Growth of cocoa 

Mulia et al. (2019) reported the height of each cocoa tree. In this study, the cocoa 

growth was determined from the circumference of the trunks (30 cm from the soil 

surface) because the trees had recently been pruned. These measurements 

were converted to mean basal areas per treatment (formula and results available 

in Table A - 3.5). Both the soil sampling and the trunk measuring occurred at the 

same time in December 2018. The number of dead cocoa trees was used to 

calculate average survival rates per treatment and is presented in the 

supplementary material (Table A - 3.6). 

c. Productivity and bean quality 

From January 2015 to December 2018, cocoa tree productivity was assessed by 

counting the total number of pods produced per tree over a year, and measuring 

the weight of pods and the annual yield of cocoa beans per plot, as described in 

Mulia et al. (2019). A pod index (PI, number of pods required to produce 1 kg of 

dry beans) for each treatment was derived from the pod counts and the mean 

pod weights (PI = 1000 ÷ average yield per pod in grams; Table A - 3.7). The 

number of healthy and infected pods was also recorded. The pods were 

categorized as being uninfested or infested following the method previously 

described in McMahon et al. (2015). A sample of the harvested beans was also 

collected in November 2017 to determine the waste fraction and the average 

weight of the fresh beans. Harvest quality results were obtained from the Mars 

Laboratory in Makassar (Sulawesi, Indonesia). The mean pod count per tree, 

yield per pod, pod index, and proportion of infected pods for each year and 

treatment is presented as supplementary material (Table A - 3.7). In Mulia’s 

study, productivity data covered the second semester of 2014 and the first of 

2015, whereas this study recorded the annual yields from January 2015 to 

December 2018. 

d. Yield estimates 

Basal areas, dry bean yields, and pod counts were averaged per surviving tree 

(≤ 16) and then extrapolated to 1000 trees to provide a per hectare value (as in 

Mulia et al., 2019). Additionally, the average yield per planted tree was also 

calculated, this time dividing the yield per plot by the number of initial trees, 16, 

and then multiplying by 1000 to derive the adjusted yield per hectare. Averaging 

per surviving tree minimizes treatment differences due to mortality rates. 

However, it can lead to the confounding effect in that those trees with lower 
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competition (i.e., where the mortality is high) could show greater growth rates and 

higher yields on a per tree basis. 

e. Statistical analysis 

Means and standard deviations of the four replicates were calculated for each 

variable (growth, productivity, and the soil analyses) and each treatment. 

Statistical differences between the treatments (for basal areas, dry bean yields 

and soil analyses) were evaluated by submitting the individual observations to an 

ANOVA followed by a Tukey HSD test in R 3.6.0 using the package “agricolae” 

(at P = 0.05). If ANOVA assumptions were not met, the Kruskal-Wallis test was 

applied using the “kruskal” function (at P = 0.05), and multiple comparisons 

between the treatments were obtained by using Fischer’s least significant 

difference posthoc test (with a level of significance at 0.05). Because of the lack 

of dispersion data in 2014, the Welch one-sample t-test was used to estimate the 

statistical difference between the two soil sampling periods, 2014 and 2018. In 

this case, it was assumed that the 2014 result was equal to the true mean 

because we lacked dispersion data for 2014 (Table A - 3.8). 

3.3 Results 

3.3.1 Tree basal areas and survival rates 

Tree basal areas and survival rates in December 2018, seven years after 

planting, are presented in Figure 3.1a. Compared to the control (Treatment A) 

and the mineral fertilizer only plots (Treatment B), it was found that significantly 

higher mean basal areas occurred where compost and dolomite together 

(Treatment G) and the full combination were applied (Treatment H). The 

observed basal areas (of surviving trees only) were relatively heterogeneous for 

all treatments, with coefficients of variation ranging from 25 to 41% (Table A - 

3.5). Treatment B had the lowest survival rate (41%), followed by the control 

(67%) and dolomite Treatment D (72%). All the other treatments had a survival 

rate higher than 80%. 

3.3.2 Yields and harvest quality 

a. Dry bean yield 

Dry bean yields for each treatment from 2015 to 2018 are shown in Figure 3.1b 

and detailed in Table A - 3.9. Productivity was very low in 2015, with a pattern 
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similar to Mulia et al.’s (2019) results for 2014-2015 (low for A, B, D, F; high for 

C, E, G, H). In 2015, the treatments receiving no compost (Treatments A, B, D, 

and F) provided the lowest annual yields of only 110 kg ha-1 on average, much 

lower than the gloval average. In 2016, the mean yields increased, but the 

treatments without compost (A, B, D, F) again significantly produced less than 

the composted treatments (C, E, G, H). The following year, differences between 

treatments were less marked. Finally, in 2018, only the yield in the mineral 

fertilizer treatment (B) was greater than the yield in the control treatment (A); the 

other treatments’ yields were similar (see Figure 3.1b). The coefficients of 

variation associated with a given year declined from 69% in 2015 to 27% in 2018 

(Table A - 3.9). Over the four years, the compost-only Treatment (C), the fertilizer 

and compost Treatment (E), and the compost and dolomite Treatment (G) 

produced the highest cumulative yields (2600-2750 kg ha-1; Table A - 3.9). 

b. Pod count and yield per pod 

The pattern for pod counts in 2015 and 2016 (Table A - 3.7) was similar to dry 

bean yields: treatments with compost (C, E, G, and H) had high pod counts (27-

47), the treatments without compost (A, B, D, and F) had low counts (5-16). From 

2017, the differences in pod counts between treatments reduced and seemed to 

converge in a similar way as did the dry bean yields. 

The mean yield of dry beans per harvested pod was highly variable across 

treatments over between 2015 and 2018 (Table A - 3.7), ranging from a minimum 

of 10.8 g attained by Treatment D in 2015, to a maximum of 30.3 g (for pod-

producing replicates for the mineral fertilizer Treatment B in 2017. The low yields 

obtained in 2015 were associated with the smallest mean yield per pod of 12.4 g 

across all the treatments. Mean yields of dry beans per pod increased to 23.2 g 

in 2016 and 26.8 g in 2017, before declining to 19.1 g in 2018. 

c. Yield index 

To partially account for the differences in competition caused by the replanting in 

2016, a yield index was calculated for each treatment (Table A - 3.10). It was 

determined as the ratio of the yield of dry beans per hectare (kg) divided by the 

basal area (cm²). On average, the mineral fertilizer Treatment B had the highest 

yield index of around 10 g cm-2, while the value for the other treatments ranged 

from 3.8 to 5.6 g cm-2. 
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d. Pod index 

The dolomite Treatment D attained the highest pod index in 2015 (Table A - 3.7), 

reaching 96 pods kg-1, equating to a very small mean pod size of 10.8 g. The 

lowest pod index of 33 pods kg-1 was attained by the mineral fertilizer Treatment 

(B) in 2017 when the mean pod weight reached 30.3 g. In 2016 and 2017, the 

pod indices were uniform across treatments with a mean value of 44 and 38 pods 

kg-1. Even though yields were more uniform in 2018, pod indices differed, ranging 

from 43 pods kg-1 (Treatment B) to 70 pods kg-1 (Treatment G). 

e. Proportion of infected pods, dry bean weight, and 

fraction of waste beans 

The proportion of infected pods was high, ranging from 62% to 97% for individual 

treatments per year (Table A - 3.7), and there was no consistent treatment effect. 

The analysis of a production sample, collected in November 2017, revealed 

differences between average dry bean weights (Table A - 3.11). The smallest 

beans were obtained for Treatment B (1.25 g), which were lower than the control 

(1.30 g). The largest beans were found for Treatment D (1.59 g). Compared to 

the mineral fertilizer Treatment B, Treatments C to H produced beans that were, 

on average, 18% heavier, while those in the control were only 65% of the weight 

of those in the mineral fertilizer Treatment B. The fraction of waste beans ranged 

from 18% (Treatment E) to 8% (Treatment F), with the others between 10 and 

14%. 
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Figure 3.1: Effect of soil amendments on (a) mean basal area per cocoa tree and 
survival rates in December 2018 and (b) annual yield of dry beans in each year 
from 2015 to 2018 

In December 2018, cocoa trees were 7.4 years old (89 months). For each variable, means correspond to an 
average of the four replicates. Error bars represent standard errors of the mean based on surviving trees 
(light bars). Upper case letters on the X-axis refers to each treatment, namely: A is control; B is mineral 
fertilizer; C is compost; D is dolomite; E is mineral fertilizer and compost; F is mineral fertilizer and dolomite; 
G is compost and dolomite; H is the full combination. Treatments with the same lower-case letter are not 
statistically significant (P > 0.05). For (b), the dark bars represent the harvest averaged for 16 initially planted 
trees, while the addition of light bars shows the average yield calculated per surviving tree (i.e., excluding 
dead trees, excluding mortality). From 2016, one replicate of Treatment B was excluded from the average 
calculation, as all trees were dead, leaving three replicates instead of four. Statistical significance was tested 
within each year, not pooled all together across all four years.  
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3.3.3 Soil properties 

The results of the soil analyses are presented in Table 3.2 and Table 3.3, and the 

soil changes that occurred over the four years from 2015-2018 are shown in 

Figure 3.2 (arranged in terms of soil property) and Figure A - 3.1 (arranged in 

terms of the treatments). The mean annual rates of change for each element in 

kg ha-1 year-1 are presented in Table A - 3.12. 

a. Bulk density and pH 

The mean surface bulk density of the soil was statistically similar for each 

treatment, with a mean value of 1.09 g cm-3. For all treatments, soil pH values 

increased between 2014 and 2018 (Table 3.2). Treatments A, B, and C, which 

did not receive dolomite, were the most acidic in 2018 with pH values ranging 

from 5.21-5.36 (Table 3.2). The pH was about neutral (6.75-6.87) for Treatments 

D, F, and G, where dolomite was applied. The pH of E and H were intermediate 

(respectively 5.79 and 6.25). 

b. Carbon (C)  

Despite the addition of compost, the soil organic C contents across the treatments 

in 2018 were statistically similar, with a mean value of 1.25% (Table 3.2). The soil 

organic C content in Treatments C, G, and H significantly declined since 2014 

(Figure 3.2). Subsequent analyses of the total C after dry combustion (following 

ISO 10694:1995, in Table 3.3) determined with an elemental analyzer at Cranfield 

University on sample duplicates also showed no statistical difference between 

treatments. However, the mean total soil carbon content of 1.65% was about 30% 

higher than the organic carbon values. Possible reasons for the higher reading 

could be the presence of inorganic forms of C (included in the Cranfield 

measurement) or a systematic difference between the Elementar and Walkley-

Black methods (De Vos et al., 2007; Jha et al., 2014; Meersmans et al., 2009; 

Roper et al., 2019). 

c. Nitrogen (N) 

Despite the different treatments, there was no statistical difference between 

treatments in the level of soil N, determined within either the Kjeldahl method 

(Table 3.2) or the Elementar Analyzer (Table 3.3). The N values reported in 2018 

of 0.123-0.153% were broadly similar to measurements made in 2014 and 

reported by Mulia et al. (2019). In 2018, the C:N ratios based on the 

measurements with the Asian-Agri’s dataset were approximately around 9:1. The 

C:N ratio determined using Cranfield University’s data also indicated similar 
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results between treatments, but the higher C measurement resulted in a higher 

mean C:N ratio of 12:1. 

d. Phosphorus (P) 

In 2018, the extractable P content in the control Treatment A (18.4 ppm) was 

significantly lower than that (68.4 ppm) in Treatment E receiving mineral fertilizer 

and compost (Table 3.2). The other treatments were not statistically different. The 

total P contents also followed the same pattern, with the value (283 ppm) for 

Treatment A being statistically less than that (366 ppm) for Treatment E; the rest 

were statistically similar (Table 3.3). The extractable P contents measured in 

2018 (18-68 ppm) were substantially lower than those measured in 2014 (227-

471 ppm; Figure 3.2). 

In 2018, the mean value for available P (Bray 1) for each treatment ranged from 

1.9 to 12.6 ppm (Table 3.2). These values were significantly lower than those (10-

40 ppm) in 2014 and those (13 ppm) in 2011 prior to planting. The fraction of 

available P relative to total P ranged from 5% (Treatment D) to 25% (Treatment 

C). The higher pH observed for Treatment D was not associated with a noticeable 

increase in P availability (lowest available P at 1.9 ppm), nor did the addition of 

compost affect P availability (higher for Treatments C and E, 10.3 ppm on 

average, but not G and H, 4.2 ppm on average). 

e. Potassium (K) 

There were no statistical differences for exchangeable (Ammonium acetate pH 7 

extraction), extractable (25% HCl extraction), and total K (HCl/HNO3 extraction) 

between the treatments in 2018 (Table 3.2). However, the measured 

exchangeable K significantly decreased in all treatments from 2014 to 2018 

(Figure 3.2). In 2018, the mean value across all treatments was below adequate 

levels for cocoa (between 117 and 235 ppm, according to Nelson et al., 2011). 

By contrast, between 2014 and 2018, extractable K significantly increased with 

all the treatments, except in Treatment B, where it decreased (although not 

statistically significant), and in the control for which the change was negative but 

not significant (Figure 3.2). 

f. Calcium (Ca) 

In 2018, there were treatment differences in the level of extractable and total Ca 

(Table 3.2 and Table 3.3). Treatments D and F, which received dolomite, had 

higher concentrations than all other treatments. The lowest levels were found in 

the control (Treatment A) and the plots receiving only mineral fertilizer (Treatment 
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B). Extractable Ca increased significantly in the dolomite treatments, with a peak 

at 2 g kg-1 for Treatment F. The treatment effects on exchangeable and total Ca 

were similar to those for extractable Ca. The highest values occurred where 

dolomite was applied. Again, there was potentially an outlier in Treatment F, 

where a reading reached 5.7 g kg-1, perhaps due to the presence of incompletely 

dissolved dolomite. After 2014, the Ca contents of all the treatments which did 

not receive dolomite decreased to low levels (below 250-500 ppm). 

g. Magnesium (Mg) 

In 2018, there was no treatment effect on the level of extractable Mg (Table 3.2), 

but the exchangeable (Table 3.2) and total Mg (Table 3.3) showed a similar 

treatment response to Ca. The highest contents corresponded to the treatments 

with dolomite application; the lowest values were observed for the control and 

mineral fertilizer only plots. There was again a peak for extractable and total Mg 

for Treatment F, possibly due to the presence of dolomite, while the other 

observations were closer to 900 ppm. The lowest values were found for 

Treatments A, B and E, slightly significantly exceeded by Treatment C . For 

exchangeable Mg, a pattern similar to Ca was found: highest where dolomite was 

applied, peaks for Treatments F and D and minimums for the control and the 

mineral fertilizer Treatments, A and B. As for Ca, one very high Mg measurement 

was found for one of the samples, suggesting the presence of high concentrations 

of dolomite. As with extractable Ca, the extractable Mg contents have only slightly 

significantly increased since 2014 in the plots without dolomite, while they largely 

increased where dolomite was applied Table 3.2. 

h. Sodium (Na) 

In 2018, no statistical differences were found between the treatments for 

exchangeable Na contents (Table 3.2). However, between 2014 and 2018, the 

Na contents decreased for all treatments (but statistically significant only for 

Treatments A, C, D, E, and H; Figure 3.2). Sodium adsorption ratios were all very 

low (<1), suggesting no salinity-related physico-chemical degradation risks on 

soil structure (USDA NRCS, 2017). 

i. Aluminium (Al) 

Distinctively, the lowest exchangeable Al contents were recorded in the treatment 

with the application of dolomite, which also decreased compared to 2014. Overall, 

total Al contents were statistically the same for all treatments, around 2% Table 

3.3). 
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j. CEC & Base saturation 

The treatments did not appear to influence the cation exchange capacity (CEC), 

which was low in all the treatments (between 5.89 in Treatment B and 8.11-8.36 

in Treatment D and E; Table 3.2). The treatments showed distinct base 

saturations. Treatment F attained 125% of saturation, possibly due to very high 

Ca and Mg found in the samples, themselves most likely coming from the 

dolomite. 

 

Table 3.2: Soil bulk density, pH, organic carbon and nitrogen content and 
extractable and exchangeable nutrient contents in December 2018, 6.5 years after 
treatments A–H were first applied 

Treatment 
○ Bulk density 

(g cm-3) 
* pH (water) † Org. C (%) ‡ N (%) C/N 

†† CEC  
(cmol kg-1) 

A 1.12 a (0.01) 5.36 c (0.58) 1.26 a (0.17) 0.138 ab (0.01) 9.13 6.65 ab (1.04) 

B 1.10 a (0.08) 5.30 c (0.38) 1.21 a (0.11) 0.123 b (0.03) 9.84 5.89 b (1.25) 

C 1.12 a (0.03) 5.21 c (0.46) 1.22 a (0.10) 0.140 ab (0.02) 8.68 7.37 ab (0.83) 

D 1.06 a (0.06) 6.83 a (0.17) 1.35 a (0.11) 0.138 ab (0.03) 9.80 8.36 a (0.58) 

E 1.08 a (0.10) 5.79 bc (0.25) 1.40 a (0.18) 0.153 ab (0.02) 9.15 8.11 a (0.90) 

F 1.09 a (0.06) 6.87 a (0.35) 1.17 a (0.33) 0.153 a (0.02) 7.69 6.94 ab (0.90) 

G 1.10 a (0.06) 6.75 a (0.19) 1.24 a (0.22) 0.135 ab (0.02) 9.19 7.16 ab (0.20) 

H 1.06 a (0.09) 6.25 ab (0.43) 1.17 a (0.19) 0.128 ab (0.04) 9.16 6.82 ab (0.61) 

Average 1.09 6.04 1.25 0.138 9.08 7.16 

Stat sign. 0.839 <0.001 0.641 0.511 (K-W) na  0.010 

 

Treatment 
§ Extractable (ppm) ‡‡ Exch. Al  

(ppm) P Ca Mg K 

A 18.4 b (1.4) 95.8 e (5.2) 334 e (18) 666a (57.6) 705 a (24.3) 

B 33.8 ab (15.8) 95.9 e (10.4) 329 e (11.2) 641a (61.1) 743 a (59.4) 

C 32.1 ab (19.7) 117 d (13.6) 383 d (24.7) 715a (76.1) 720 a (4.4) 

D 38.4 ab (22.8) 947 a (64.0) 980 a (63.7) 704a (88.1) 20.9 c (1.4) 

E 68.4 a (24.6) 167 c (32.3) 427 d (41) 745a (18.8) 678 a (99.5) 

F 48.3 ab (16.6) 2010 a (2438.3) 1540 a (1280) 699a (53.1) 27.0 c (18.3) 

G 33.4 ab (15.1) 630 b (118) 804 b (65.1) 678a (68.7) 30.4 bc (6.8) 

H 37.2 ab (29.6) 386 bc (201) 620 c (71.9) 716a (75.5) 141 b (111) 

Average 38.8 556 677 696 383 

Stat sign. 0.076 <0.001 (K-W) <0.001 (K-W) 0.457 <0.001 (K-W) 

Soil treatments were applied twice per year, beginning in May 2012. Soil properties were determined in the 
soil laboratory of the Asian-Agri Laboratory in North Sumatra, Indonesia (samples collected in December 
2018). Soil treatments are: A, control; B, mineral; C, compost; D, dolomite; E, mineral/compost; F; 
mineral/dolomite; G, compost/dolomite; H, all amendments. Means are calculated on four samples and given 
to three significant figures. Numbers in brackets are standard deviations. Treatments with the same letter 
are not statistically different (P > 0.05). K-W attached to a statistical significance refers to the p-value of 
Kruskal-Wallis test, used if ANOVA assumptions were not met. Methods: ♠After Fahmy (1977); ○Core ring 

method; ∗pH (water) determined by AIAT Soil Laboratories, Maros; †Walkley-Black method; ‡Kjeldahl 
method; §25% HCl extraction; ¶Bray-I method; ††Ammonium acetate (pH 7) extraction; ‡‡KCl (1 N) 
extraction. “na” stands for not applicable (calculated data). ¥ B.S. refers to Base Saturation. 
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(Table 3.2 continued) 

Treatment 
¶ Available P 

(ppm) 

†† Exch. Bas. Cation (ppm) Total 
(cmol kg-1) 

¥ B.S. (%) 
Ca Mg K Na 

A 3.66 bc (1.15) 85.2 d (29.7) 20.1 d (6.4) 39.1 a (9.03) 12.6 a (2.97) 0.45 6.77 

B 4.83 ab (0.61) 81.2 d (23.7) 21.9 d (5.3) 37.1 a (7.14) 13.8 a (3.75) 0.45 7.60 

C 8.12 a (2.69) 150 c (51.6) 40.1c (12.6) 37.1 a (3.48) 12.6 a (1.33) 0.69 9.36 

D 1.90 c (0.20) 1840 a (219.8) 813 a (126.3) 34.2a (4.05) 13.8 a (1.88) 8.07 96.5 

E 12.6 a (7.33) 247 c (91.6) 84.5 c (52.3) 40.1 a (2.58) 13.8 a (0.00) 1.13 13.9 

F 9.53 b (12.34) 1860 a (708.6) 931 a (343.0) 41.1 a (7.14) 15.5 a (4.35) 8.66 125 

G 3.95 b (1.13) 1190 b (187.0) 651 ab (121.8) 45.0 a (8.95) 15.5 a (2.20) 5.83 81.4 

H 4.48 b (1.71) 884 b (255.3) 490 b (186.3) 39.1 a (2.20) 14.4 a (2.89) 4.39 64.3 

Average 6.13 792 382 39.1 14.0 3.71 50.6 

Stat sign. 0.006 (K-W) <0.001 (K-W) <0.001 (K-W) 0.757 0.713 na na 

Soil treatments were applied twice per year, beginning in May 2012. Soil properties were determined in the 
soil laboratory of the Asian-Agri Laboratory in North Sumatra, Indonesia (samples collected in December 
2018). Soil treatments are: A, control; B, mineral; C, compost; D, dolomite; E, mineral/compost; F; 
mineral/dolomite; G, compost/dolomite; H, all amendments. Means are calculated on four samples and given 
to three significant figures. Numbers in brackets are standard deviations. Treatments with the same letter 
are not statistically different (P > 0.05). K-W attached to a statistical significance refers to the p-value of 
Kruskal-Wallis test, used if ANOVA assumptions were not met. Methods: ♠After Fahmy (1977); ○Core ring 
method; ∗pH (water) determined by AIAT Soil Laboratories, Maros; †Walkley-Black method; ‡Kjeldahl 
method; §25% HCl extraction; ¶Bray-I method; ††Ammonium acetate (pH 7) extraction; ‡‡KCl (1 N) 
extraction. “na” stands for not applicable (calculated data). ¥ B.S. refers to Base Saturation. 
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Table 3.3: Total contents of selected soil elements of the experiment in 
December 2018  

Treatment 
‡ Total (%) ♠ Total (ppm) 

C N P 

A 1.64 a (0.152) 0.139 a (0.0101) 283 b (37.7) 

B 1.52 a (0.143) 0.128 a (0.00465) 285 ab (23.2) 

C 1.58 a (0.0837) 0.133 a (0.00767) 320 ab (35.2) 

D 1.75 a (0.117) 0.140 a (0.011) 296 ab (27.5) 

E 1.82 a (0.219) 0.147 a (0.016) 366 a (57.7) 

F 1.70 a (0.161) 0.136 a (0.0118) 340 ab (37.3) 

G 1.64 a (0.284) 0.134 a (0.020) 289 ab (20.2) 

H 1.54 a (0.139) 0.130 a (0.00804) 296 ab (23.6) 

Average 1.65 0.136 309 

Stat. sign. 0.253 0.424 0.021 

 

Treatment 
♠ Total (ppm) 

Ca Mg K Na 

A 98.4 e (27.3) 352 d (43.7) 667 a (70.0) 94.1 ab (26.8) 

B 98.7 e (21.3) 398 cd (57.3) 800 a (212) 114 ab (23.6) 

C 134 de (41.5) 460 c (65.6) 913 a (258) 136 a (23.1) 

D 1120 a (94.9) 1020 a (80.9) 776 a (196) 127 ab (33.1) 

E 177 d (81.9) 406 cd (74.1) 684 a (193) 94.5 b (16.4) 

F 1850 ab (1890) 1500 ab (1280) 584 a (131) 85.4 b (2.19) 

G 758 bc (128) 754 ab (164) 569 a (355) 102 b (78.2) 

H 481 c (130) 635 b (88.1) 797 a (259) 120 ab (48.7) 

Average 589 691 724 109 

Stat. sign. <0.001 (K-W) <0.001 (K-W) 0.386 0.150 (K-W) 

Soil treatments were applied twice per year, beginning in May 2012. These soil properties were determined 
at Cranfield University laboratory (samples collected in Indonesia in December 2018). Soil treatments are: 
A, control; B, mineral; C, compost; D, dolomite; E, mineral/compost; F; mineral/dolomite; G, 
compost/dolomite; H, all amendments. Means are calculated on four samples and given to three significant 
figures. Numbers in brackets are standard deviations. Treatments with the same letter are not statistically 
different (P > 0.05). K-W attached to a statistical significance refers to the p-value of Kruskal-Wallis test, 
used if ANOVA assumptions were not met. ‡ The total soil contents of these elements were determined after 
dry combustion (SOP based on ISO 10694:1995) while the total contents marked by ♠ were analysed by 
ICP-MS after using an HCl/HNO3 extractant (SOP based on ISO 11047:1998). 
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(Table 3.3 continued) 

Treatment 
♠ Total (%) ♠ Total (ppm) 

Al Fe Cu Zn Mn B 

A 1.98 a (0.223) 1.83 a (0.245) 2.38 a (0.660) 5.76 a (1.24) 55.3 ab (11.0) 1.92 ab (0.272) 

B 2.08 a (0.286) 1.85 a (0.221) 2.42 a (0.409) 6.17 a (1.54) 67.0 ab (9.12) 1.99 ab (0.664) 

C 2.11 a (0.185) 1.83 a (0.152) 2.66 a (0.96) 7.82 a (2.35) 81.2 a (11.2) 2.46 a (0.696) 

D 2.17 a (0.347) 2.00 a (0.304) 2.39 a (0.792) 6.64 a (1.07) 63.1 ab (13.9) 2.19 ab (0.737) 

E 2.01 a (0.170) 1.86 a (0.135) 3.33 a (0.661) 7.66 a (1.88) 57.9 ab (14.0) 1.28 bc (0.402) 

F 1.75 a (0.133) 1.75 a (0.175) 2.70 a (0.750) 9.12 a (5.57) 49.3 ab (11.2) 0.889 c (0.530) 

G 1.77 a (0.479) 1.73 a (0.130) 2.43 a (0.568) 6.42 a (1.33) 46.7 b (22.1) 1.35 bc (1.80) 

H 1.99 a (0.451) 1.84 a (0.364) 3.29 a (0.221) 10.4 a (7.15) 63.2 ab (14.6) 1.68 abc (0.740) 

Average 1.98 1.84 2.7 7.5 60.5 1.72 

Stat. sign. 0.476 0.812 0.242 0.671 (K-W) 0.047 0.091 (K-W) 

Soil treatments were applied twice per year, beginning in May 2012. These soil properties were determined 
at Cranfield University laboratory (samples collected in Indonesia in December 2018). Soil treatments are: 
A, control; B, mineral; C, compost; D, dolomite; E, mineral/compost; F; mineral/dolomite; G, 
compost/dolomite; H, all amendments. Means are calculated on four samples and given to three significant 
figures. Numbers in brackets are standard deviations. Treatments with the same letter are not statistically 
different (P > 0.05). K-W attached to a statistical significance refers to the p-value of Kruskal-Wallis test, 
used if ANOVA assumptions were not met. ‡ The total soil contents of these elements were determined after 
dry combustion (SOP based on ISO 10694:1995) while the total contents marked by ♠ were analysed by 
ICP-MS after using an HCl/HNO3 extractant (SOP based on ISO 11047:1998).   
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Figure 3.2: Summary of the differences observed in the soil properties between 
2014 and 2018 

Each difference was calculated by taking 2014 as the initial value and 2018 as the final one. Soil treatments 
are: A, control; B, mineral; C, compost; D, dolomite; E, mineral/compost; F; mineral/dolomite; G, 
compost/dolomite; H, all amendments. The colour red indicates an a decrease while the colour green 
indicates an increase relative to 2014. Stars rating correspond to the following rule, calculated after a Welch 
one-sample t-test: P ≤ 0.001, ***; P ≤ 0.01, **; P ≤ 0.05, *. Bars with no stars indicate no statistical difference 
between the two years (p=0.05). Please refer to Table A - 3.8 in the supplementary material for the exact p-
values). For extractable Ca and Mg, Treatment F had the largest effect, but the difference is not significant, 
only because the variability was very high. The mean annual rate of change for each element in kg ha-1 year-

1 is shown in Table A - 3.12.  
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3.4 Discussion 

3.4.1 Modelling approach: balancing simplicity and 

complexity 

To the authors knowledge, before this study, no process-based model had been 

proposed to predict the temporal variations of SOM stocks in cocoa plantations. 

For this study, knowledge of SOM dynamics in cocoa farms was solely based on 

field experiments using predominantly false-time chronosequences. To address 

this knowledge gap, the approach of this study was to develop, evaluate and 

apply a model describing SOM dynamics in cocoa farms. 

Finding the right balance between simplicity and complexity during model 

development is a dilemma (Monteith, 1996; Paola & Leeder, 2011). This study 

made it possible to develop, evaluate, and apply a straightforward and flexible 

model by using the common-sense approach to problem-solving (Grant & 

Swannack, 2007) and the adaptation of AMG (Clivot et al., 2019). This model is 

more straightforward than other models like WaNuLCAS (Van Noordwijk & 

Lusiana, 1998) and requires a limited number of parameters to function. This 

model entails a dedicated plant component, allowing and simplifying the 

simulation of residue inputs increasing over the years, while other models like 

RothC (Coleman & Jenkinson, 1996) tend to repeat the same amount of inputs 

each year. This model makes the simulation of tree-like crops easy, as long as a 

growth curve can be determined for the site in question. Coded in the popular 

and accessible R programming language, this model can be easily modified to 

suite the particular needs of the modeler. In addition, a user-friendly interface was 

developed with the Shiny framework to allow non-programmers to quickly run 

simulations. 

3.4.2 Recontextualization 

The aim of extending the study by Mulia et al. (2019) was to determine if the yield 

responses of seven-year-old cocoa trees to different soil amendments were 

similar to those reported for three-year-old trees and if the differences in 

responses could be related to soil chemical properties. This information was then 

used to develop soil management recommendations. 

The initial study (Mulia et al., 2019) highlighted the beneficial effects of compost 

in increasing cocoa trees’ height, increasing flowering and yields, and pod quality. 
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There were no obvious treatment effects on leaf nutrient contents and pest and 

disease incidence. The initial study also highlighted that mineral fertilizer and 

dolomite application to the young cocoa trees were associated with high mortality 

rates. In terms of soil fertility, it was suggested that the high yields in the compost 

treatments were associated with increased nutrient availability and uptake. Mulia 

et al. (2019) also suggested that the mineral fertilizer application could have 

resulted in nutritional deficiencies in Ca and Mg due to nutrient imbalances with 

K. This discussion examines how an additional four years of measurements 

improves understanding of the medium-term effects of the different soil 

amendments. 

3.4.3 Soil response to treatments 

The effect of the treatments on soil properties is considered in terms of the effect 

of the compost, the mineral fertilizer, and the dolomite. 

a. Effect of the compost 

Despite the addition of almost 1 Mg of organic carbon (OC) per hectare per year 

from 2012 to 2018, compost inputs did not result in significantly higher soil surface 

bulk density (0-5 cm), CEC, and soil C contents than the control. Several factors 

could explain this. 

First, although the mean value of SOC in the treatments ranged from 1.17% to 

1.40%, these differences were not statistically different. A difference of 0.33% 

SOC over one hectare to a depth of 20 cm and assuming a bulk density of 

1.09 g cm-3, is equivalent to 7 Mg per hectare. Hence, the level of replication (four 

per treatment) described in this paper would be insufficient to identify a 

statistically significant difference from the addition of approximately 6 Mg of SOC 

per hectare over six years. Such analysis highlights the very high levels of 

replication needed to detect soil changes because of the innate spatial variability 

in soil properties (Upson et al., 2016). 

A second factor relates to the mode of compost application. Compost was applied 

in six small pits, surrounding the cocoa trees (Table A - 3.2). However, even 

though soil was sampled at the same distance from the trunk, the location of the 

sampling was randomly positioned. Moreover, since only one sample was 

collected per treatment, it was easy to miss one of those little pits and therefore 

miss the localised effect of compost addition. 
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A third factor is that the compost had a low C:N ratio (7:1), suggesting that it was 

prone to rapid mineralisation instead of being turned into more ‘passive’ and 

recalcitrant forms of soil organic matter through humification (Brady & Weil, 2017; 

Nicolardot et al., 2001; Tian et al., 1992). By contrast, the use of more recalcitrant 

organic matter (e.g., higher C:N or lignin:N ratios) could be a more promising 

method to raise SOM levels (Talbot & Treseder, 2012).  

Various authors have argued that a key benefit of compost addition is the 

increase in soil water holding capacity (Adugna, 2016; Blanco-Canqui & Lal, 

2007; Nguyen, 2013; C. Smith, 2018; Zemánek, 2011). This is useful as cocoa 

yield is strongly affected by soil water regimes (Abdulai et al., 2020; Dada, 2018; 

Kotei, 2019). Compost may have improved soil water storage which may have 

resulted in different levels of drought stress between the composted and non-

composted treatments.  

b. Effect of dolomite 

Between 2015 and 2018, the dolomite (without compost) plots received about 

4950 kg Ca ha-1 and 2900 kg Mg ha-1; the changes in measured soil contents 

were equivalent to 1820-4300 kg Ca ha-1 and 2006-3074 kg Mg ha-1. Seven years 

after the experiment’s start, the pH in the top 20 cm of the four treatments 

receiving dolomite ranged 6.25-6.83, compared to 5.21-5.79 in the treatments 

receiving no dolomite. Although the addition of dolomite alone increased 

cumulative yields (2015-2018; excluding mortality rates; Table A - 3.9) relative to 

the control (+41%; presumably because of the higher pH increasing nutrient 

availability), the increase was less than that from the addition of compost alone 

(+196%) and the addition of mineral fertilizer alone (+119%; Figure 3.1b). The 

effect of dolomite on soil pH may also have contributed to alleviate Al toxicity 

(Figure 3.2). 

c. Effect of mineral fertilizer 

In the initial study (Mulia et al., 2019), mineral fertilizer alone did not have a 

beneficial effect on yield, but seven years after planting, in 2018, the mineral 

fertilizer Treatment B was the only treatment producing a statistically higher yield 

than the control plot (Table A - 3.9). However, if yields including mortality rates 

are considered (dark bars in Figure 3.1), this improved performance is no longer 

apparent. Mineral fertilizer addition to young tree crops can be problematic, and 

high rates can lead to toxicities and root scorching (Gauthier et al., 2014). This is 

less of a problem once a tree has established a robust root system. Also, regularly 

harvesting cocoa pods removes N, P, and K, and can create deficiencies for 
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these nutrients. For example, a yield of approximately 1000 kg ha-1 associated 

with Treatment B would represent the removal of approximately 40 kg of N, 6 kg 

of P, and 62 kg of K per hectare (Singh, Sanderson, et al., 2019). Compared to 

the control plot, the mineral fertilizer treatment led to higher yields in 2016, 2017, 

and 2018. Despite this, there was no significant measurable difference in the 

selected soil properties between the control and the mineral fertilizer plot. This 

absence of build-up suggests that fertiliser input rates could be inferior than plant 

demand and/or that significant leaching could occur. 

d. Calcium and Magnesium availability 

Mulia et al. (2019) reported that the poor initial yields in the fertilizer treatment 

were due to the low availability of soil Ca and Mg. By contrast, in 2018, the soil 

analyses detected low Ca and Mg contents (both total and exchangeable) for the 

compost (alone) and the mineral fertilizer + compost treatments (C and E). 

Treatments C and E were amongst the most productive plots, while their soil Ca, 

and Mg contents were similar to the controls. These new result suggest that point 

measurements of soil Ca and Mg contents may not be good indicators of crop 

productivity because low soil Ca and Mg contents may also be a result of 

increased plant uptake. Presumably, by promoting the activity of beneficial micro-

organisms (Bünemann et al., 2006), compost could enhance the availability of 

nutrients like Ca. This could have resulted in similar soil Ca and Mg availabilities 

between the composted and non-composted plots. The difference would simply 

be that plants absorbed more nutrients under the influence of compost, therefore 

resulting in similar levels to other treatments. Determining the tissue contents of 

these elements would be necessary to confirm this hypothesis. 

e. Exchangeable Aluminium 

Mulia et al. (2019) also associated low initial yields with high concentrations of 

exchangeable Al and low pH. The exchangeable Al contents at year 7 ranged 

from 21-30 ppm for Treatments D, F, and G, which received dolomite, and up to 

705-743 ppm for Treatments A, B, and C, which did not. In both cases, the soil 

Al concentrations are substantially above the levels reported by Shamshuddin et 

al. (2004), who determined a critical limit at 10 µM for exchangeable Al3+ (0.27 

ppm) and 15 µM for 𝐴𝑙3+ + 𝐴𝐿(𝑂𝐻)2 + 𝐴𝑙(𝑂𝐻)2
+ (40 ppm). The current results 

show that high productivity was obtained for the compost (Treatment C) and the 

compost + mineral fertilizer (Treatment E) plots, which featured high 

exchangeable Al contents (720 and 678 ppm; also reported for Treatment C by 

Mulia et al., 2019), comparable to the control and mineral fertilizer only treatments 
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(A and B; 705 and 743 ppm). On the other hand, low exchangeable Al 

concentrations for two low yield treatments, dolomite only and dolomite + mineral 

fertilizer (D and F; Table 3.3) were observed. These observations imply that Al 

toxicity, even though it may affect yields (Baligar & Fageria, 2005), may not be 

not a determining factor. The presence of SOM may still offset Al toxicity, but the 

soil analyses revealed no significant difference in soil C contents across all 

treatments. Nevertheless, with the same C contents, differences in the 

microbiological profiles and the type of organic compounds present could play a 

role in mitigating Al toxicity (Shamshuddin et al., 2004; Zhang et al., 2020). 

3.4.4 Cocoa response to treatments 

Seven years after field planting, the highest cumulative yields were still achieved 

from those treatments that had received compost (e.g., treatments C, E, G, and 

H). The most effective single treatment to improve cocoa productivity was 

compost (C). The treatment including compost alone (C) led to higher survival 

rates, basal areas, and cumulative dry bean yields than the control (A), mineral 

fertilizer (B), and dolomite (D) alone treatments (except in 2018 for dry bean 

yields). Of the combined treatments, the treatment without compost (F) resulted 

in lower yields than those with compost (E, G, and H).  

From year four to seven, the yield benefits of compost tended to decline relative 

to the other treatments. In 2015, which was a particularly dry year (Table A - 3.4), 

the benefit from compost was however, particularly strong. However, by 2018 the 

cocoa yields had become similar within all the treatments receiving additions, 

although they remained greater than the control treatment yields. Hence as the 

cocoa trees became more established, the benefits of adding organic material 

declined, and the benefits of supplying specific nutrients such as N (removed 

during harvesting) became more important. 

The results indicate that the basal area of seven-year-old cocoa plants was not a 

good predictor of yield since the largest cocoa trees were not the most productive 

(Figure 3.1). Verlière (1981) suggested that the positive relationship between 

basal area and yield is only significant for younger trees (Jones & Maliphant, 

1958; Longworth & Freeman, 1963), and this was observed in the initial phase of 

this experiment (Mulia et al., 2019). 

Despite the various soil measurements, no immediately obvious relationship was 

found between soil nutrient levels and yields. For example, although yields varied 

between treatments in 2018, soil N levels across the treatments were similar. By 
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contrast, there was evidence of the yield benefits of SOM and an increase in soil 

pH. Nevertheless, it appeared that yield benefits from compost and/or dolomite 

addition had declined by years six and seven. The benefits of compost may have 

been particularly pronounced in 2015, because of the low rainfall in that year 

(Table A - 3.4). Another factor related to compost application could be the quantity 

of organic P provided by the compost (50% more than the fertilizer input). For 

example, a strong positive correlation (r = 0.85) between organic P and cocoa 

yields was reported for Southern Nigeria (Omotoso, 1971). 

One difficulty limiting the results’ interpretation is that soil characteristics were 

only measured at the beginning of year four and the end of year seven, whereas 

the yields were measured continuously. In addition, the lack of significant 

differences between treatments in many chemical soil properties also constrained 

the identification of relationships. One possible way of addressing this is to 

construct models describing the inputs and outputs of nutrients. 

Over the first seven years, one of the lowest cumulative yields was achieved in 

the plots where only mineral fertilizer was applied. These results do not mean 

that mineral fertilizers should be avoided. Instead, one of the largest cumulated 

yields was obtained from the compost + fertilizer (Treatment E; three times higher 

than the control), and fertilizer alone led to double the yield of the control 

treatment. Furthermore, the rate at which productivity was increasing during the 

last three years for the fertilizer-only treatment (B) suggests that productivity 

could continue to rise substantially as the cocoa matures. Conversely, the 

average yield of the four composted treatments all declined during the last three 

years, while the non-composted increased but was still higher than the control 

(although not statistically). Another argument in favour of fertilizer is the high yield 

index reached for this treatment, surpassing the others. 

As described before, it appears that the yield-response was different between the 

composted and non-composted treatments. In 2015 (dry year), the response to 

treatments was strong for the composted treatment and less for the non-

composted ones. In the following years, the yields slowly declined for the 

composted treatment, while the non-composted treatments gradually increased. 

In 2018, productivity was equivalent for all, except for the control (lowest average 

yield) and the fertilizer treatment (highest average yield). It is hypothesized here 

that in the long run, fertilizer can be particularly helpful in maintaining productivity, 

while compost is useful in encouraging high yields during establishment and 

particularly during drought. Continuing the analysis for more years as the cocoa 

further matures could support or contradict these trends. 
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It is also important to note that no additional effects on yields when combining the 

treatments were observed. For example, the yields of the treatment combinations 

with compost were approximately at the same level as compost alone. In 

Treatment E, there was no benefit from using the fertilizer as compared to 

compost alone. Cumulative yields for the fertilizer + dolomite treatment was 

slightly lower than fertilizer alone (when excluding mortality rates), suggesting 

that the addition of dolomite reduced the benefits of fertilizer application. The full 

treatment combination did not give the highest yields. However, if the productivity 

including mortality rates (averaging per 16 trees) is considered, dolomite + 

fertilizer showed an improvement. The cumulated productivity of Treatment F 

(dolomite + fertilizer) was also 1.27 times higher than Treatment B (fertilizer 

alone). In addition, average survival rates were also increased by adding 

dolomite. The survival rate of Treatment F (88%) was more than double that of 

Treatment B (41%), and showed an improvement as compared to the control. 

Treatment A had a survival rate of 67%, which means that adding dolomite 

approximately halved the mortality rate of the control treatment (33% for A, 12% 

for F). 

A secondary cause suggested by Mulia et al. (2019) for the response to the 

treatments was the young age of the cocoa trees. It is presumed that young cocoa 

trees are more sensitive to environmental factors than older trees. In this study, 

cocoa age seems to be an essential factor since yields increased over time but 

also became almost homogenous between treatment at year seven. The 

explanation behind the harmonization of yields by 2018 across the trial is 

uncertain. The positive effects of amendments may have been only useful in the 

first years of cocoa growth and development, but yield disparities between 

treatments had narrowed after seven years. One reason could be as simple as 

the design of the trial itself. A block size of 16 trees separated spaced by 3 m 

may not be enough. Belowground, root systems may now be accessing adjacent 

plots and therefore blending the responses. Expansion of the root zone, possibly 

resulting in access to soil nutrition sources in adjacent plots, may have been 

influential. 

3.4.5 Developing fertilization and amendment 

recommendations 

The mean annual rate of change of soil nutrients can provide insights into the 

quantity of each element that is either taken up or lost by leaching or volatilization 

(Table A - 3.12). This in turn can feed into appropriate cocoa fertilization rates. 
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There were major differences in the contents of certain soil nutrients between 

those reported for 2014 by Mulia et al. (2019) and those reported here for 2018 

(Figure 3.2 and Figure A - 3.1). For example, available P and exchangeable K 

declined drastically in four years. This could result from substantial leaching 

associated with the low nutrient retention capacity of the soil and the local climate 

(the USDA soil type was sandy loam Mulia et al. (2019) and annual rainfall was 

2723 mm; Table A - 3.4). However, total N concentrations were maintained over 

four years. Another explanatory factor for the decline in nutrients is the uptake by 

cocoa trees and the associated shade trees at a rate higher than the rate of 

inputs. Based on those averages, the stock of extractable K, Ca and Mg, 

declined, even in the control plot, suggesting that the supply of these nutrients 

may be insufficient for this plot. Considering SOC, the statistically significant 

changes that occurred over 4.5 years for Treatments C, G, and H correspond 

respectively to annual rates of change of 1671, 1986, and 1853 kg of C ha-1 yr-1, 

while 930, 1580, and 1580 kg ha-1 of C were applied yearly via the amendments. 

About 896 kg of C ha-1 yr-1 were lost on average in the control plot, almost 

equivalent to the compost treatment inputs. However, for the composted 

treatments, the loss of soil C was 1.5 to 2 times higher. This could suggest that 

the application of compost with a low C:N ratio was associated with increased 

decomposition of the pre-existing soil organic matter (Kuzyakov, 2010), whereas 

the incorporation of more recalcitrant forms of organic inputs could have resulted 

in greater soil organic matter stability. The reported rate of change of extractable 

P was extremely large, and initially a technical error was assumed. The Asian-

Agri laboratory manager double-checked the 2018 results, and the analysis of 

total P at Cranfield University was repeated three times. In theory, “extractable” 

(Asian-Agri) (Table 3.2) and “total” (“Cranfield) contents (Table 3.3) should be 

similar (i.e., “pseudo-total”), but on this occasion, the quantities varied widely. 

Unfortunately, the 2014 and 2018 soil samples were not stored by Asian-Agri, 

preventing additional analyses. Because Cranfield’s results were consistent, it is 

possible that there is a technical error in the values of extractable P reported from 

Asian-Agri in 2018. This issue raises the question of the consistency and 

comparability of chemical analyses between different laboratories, methods, and 

years. The soil analyses presented by Mulia et al. (2019) were produced by ICCRI 

(Indonesian Coffee and Cocoa Research Institute) and AIAT (Assessment 

Institute of Agricultural Technology), while ours came from Asian-Agri and 

Cranfield University laboratories. 

The above analysis demonstrates the difficulty in developing appropriate fertilizer 

and amendment recommendations based on soil nutrient measurements alone. 
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However, soil measurements can provide insights within an experiment 

examining yield responses. Two other tools for developing fertilizer 

recommendations are analysis of plant tissue and nutrient budgets. A nutrient 

budget requires considering the flows in terms of inputs and the quantity of 

nutrients being removed either as harvested pods or stored in the cocoa and 

shade trees’ accumulated biomass. Nitrogen can illustrate this issue since 

additional inputs may have increased yields but did not lead to a measurable 

change in 2018. 
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3.5 Conclusions 

The effects of the treatments on soil properties were variable, with distinct 

changes for some variables (such as organic C, pH, and extractable nutrients like 

P, K, Ca and Mg) and little to no response for others (such as total N). Composted 

treatments resulted in the highest cocoa cumulative yields (on average, 2.8 times 

the control, excluding mortality rates, over 2015-2018). In contrast, the addition 

of mineral fertilizer, dolomite and fertilizer + dolomite without compost provided 

yields that were 1.7 times the control (excluding mortality rates). The composted 

treatments yielded significantly more pods than all other treatments. The relative 

benefits from compost (with a low C:N ratio) compared to fertilizer applications 

were greatest in the initial years of establishment, gradually declining as the 

cocoa matured. Furthermore, soil C contents were similar between treatments 

despite the inputs and were not adequate to raise soil C levels. This issue raises 

questions about the feasibility of improving soil carbon storage in cocoa systems. 

The effect of altering the C:N ratio of the compost could be an area for further 

study, as well as experimenting with other combinations of organic inputs. The 

results also demonstrate that developing a site-specific soil fertility management 

strategy cannot be based on soil nutrient analysis alone, but soil nutrient analysis 

can be useful when integrated with experimental yield results and the analysis of 

nutrient flows. While it seemed that adding compost was sufficient to support 

cocoa productivity, the applications may be unattainable to many farmers. For 

this reason, future research should evaluate other combinations of compost + 

fertilizer + dolomite, with lower compost application rates than this experiment, 

combined with other organic inputs, to determine which ones are the most cost-

effective to meet cocoa farmers and the crops’ needs. 
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4. DYNAMICS OF SOIL ORGANIC 

MATTER, CARBON, AND NITROGEN 

IN A CHRONOSEQUENCE OF COCOA 

FARMS IN SULAWESI, INDONESIA 

Highlights 

• SOM, C, and N declined rapidly after planting; 

• SOM, C, and N recovered quickly in the medium-term and remained stable 

in the long term; 

• Long-term stocks of SOM, C, and N were lower than the planting levels; 

• Soil management practices should target the critical degradation period 

after planting with adequate organic inputs. 

Summary 

In cocoa plantations, the temporal variations of soil organic matter (SOM) 

contents are unclear, although changes can significantly affect soil functioning 

and cocoa productivity. A simple conceptual model to describe the temporal 

variations of SOM during the development of a cocoa plantation was proposed to 

address this issue. Using a space-for-time approach with three sets of cocoa 

farms located in Sulawesi (Indonesia) (one ranging from 0.5 to 15-years-old and 

including 7 farms, and two sets ranging from 2 to 31-years-old, each including 3 

farms), the temporal variation of SOM, carbon (C), and nitrogen (N) contents was 

examined at five depths (0 to 1 m by 20 cm increments). To improve the 

comparisons between the farms, SOM, C, and N stocks (0-20 cm) were 

calculated to account for soil bulk density differences. Texture-adjusted SOM, C, 

and N contents were also calculated to further account for difference in soil 

texture and improve the comparability of the results. and used texture-adjusted 

contents by dividing SOM, C, and N contents by the clay content of each sample. 

In agreement with the conceptual model, it was found that SOM may deplete 

rapidly during the early years after planting. After reaching a minimum, the data 

indicates that SOM may also rapidly build-up, but may not return to pre-planting 

levels. Both soil bulk density- and texture-adjusted data support this hypothetical 

dynamic. This study suggests that in tropical perennial plantations (e.g., oil palm, 

rubber, and coffee) and settings like Indonesia (i.e., where high temperatures and 

precipitations greatly stimulate SOM mineralisation), the early years after planting 

should be considered as a critical but overlooked period of soil degradation. 
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Finally, potential approaches to prevent this degradation and develop 

conservation and regenerative measures to ensure sustainable soil use in similar 

tropical perennial plantations are discussed. 

Keywords: cocoa, soil organic matter, carbon, nitrogen, dynamics. 

4.1 Introduction 

Cocoa (Theobroma cacao L.) is a major income source for 5-6 million farmers, 

especially smallholders (Voora et al., 2019), in West Africa, South-East Asia, and 

Central and South America. Cocoa orchards can be productive for a hundred 

years or more (Wood & Lass, 2008), but peak production typically occurs at 

around 25 years under both shaded and non-shaded conditions (van Vliet et al., 

2015). Like many perennial crops, cocoa trees require a sustained level of 

management to achieve long-term productivity as poor management in one year 

can have effects in subsequent seasons. Poor decisions taken at establishment 

can affect yields at maturity that can be irreversible or difficult to rectify. 

The long-term sustainability of perennial crops requires the maintenance of soil 

fertility (Syers, 1997), to prevent soil degradation (Hartemink, 2003, 2006), soil 

acidification (Arafat et al., 2019), and/or reduced yields and yield quality 

(Hartemink, 2005; Zhao et al., 2018). As fertilization practices are often 

inadequate to replenish lost nutrients (Lambert et al., 2020; Praseptiangga et al., 

2020; Snoeck et al., 2016), authors have argued for an improved understanding 

of cocoa’s nutritional needs and access by growers to soil testing (Dossa et al., 

2018; Snoeck et al., 2016; Wessel & Quist-Wessel, 2015b). The current global 

average cocoa yield stands around 450 kg ha-1, while research stations report 

annual yields above 2000 kg ha-1 (Andres et al., 2016; van Vliet et al., 2015). 

Hence, it can be argued that a better understanding of fundamental soil 

components, such as soil organic matter (SOM), carbon (C), and nitrogen (N), 

could help to reduce the gap between actual and potential cocoa yields. SOM 

can support cocoa productivity by stabilizing soil structure, increasing the ion 

exchange capacity, and enhancing water availability (Fageria, 2012; Johnston et 

al., 2009a; Lal, 2016; Seiter & Horwath, 2004). A large stock of SOM can also 

provide a reservoir of nutrients reducing the need for external inputs (Seiter & 

Horwath, 2004).  

Many studies of the C dynamics of cocoa agroecosystems have compared the C 

stock in the above-ground plant biomass of shaded and full-sun cocoa systems, 

which can be relatively easy to measure either directly or using allometric models 
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(see Chapter 2). By contrast, there are few studies describing changes in soil C 

storage in cocoa agroecosystems (see Chapter 2), and those that do typically 

only focus on topsoil measurements less than 20 cm deep, or only in one topsoil 

soil layer. There are few studies that have used a true chronosequence to 

quantify the effect of the time from cocoa establishment on soil C and at a specific 

location. One alternative method is to use a false-time series, also called a space-

for-time chronosequence, where data is obtained from different locations of 

different age (Huggett, 1998; Lehmann & Joseph, 2015; Pickett, 1989; Walker et 

al., 2010). However even then, many studies have omitted measurements of the 

first months after establishment and are limited to sites less than 15 years old 

(Beer et al., 1990; Dawoe et al., 2010; Fassbender et al., 1988; Monroe et al., 

2016; Smiley & Kroschel, 2008). 

Dawoe et al. (2010), using a false-time series and including early measurements, 

reported a rapid decline in soil organic carbon (SOC) in the first two years after 

field planting, followed by higher contents at 15- and 30-years-old. Isaac et al. 

(2005) showed a similar decline in SOM during the first two years after planting 

cocoa on previous forest land, but the SOM continued to decline to year 15, 

followed by some recovery by year 25. In contrast, Beer et al. (1990) noted a 

tendency for SOM to increase over ten years while comparing two shade 

systems, but the gains were not statistically significant. 

Based on the above analyses, this paper sought to address two research 

questions. The first was: what are the temporal dynamics of SOM, soil C, and N 

on cocoa farms in Indonesia? The second question was: what are the implications 

for soil management best practice? 

4.2 Material & methods 

4.2.1 Initial hypothesis 

This study of the effect of time from cocoa planting on SOM and soil C and N 

levels was initially based on a hypothesis that the variations of C and N levels 

could be described in four phases (Figure 4.1). 

- Phase 1: For the hypothesis, it was assumed that cocoa is planted on a 

freshly cleared plot where SOM may initially be high because of the build-

up of SOM from previous vegetation cover with a high biomass (forest or 

old cocoa farm).  
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- Phase 2: However, it was then proposed that SOM levels would decline 

during cultivation as low levels of plant cover and canopy density during 

the early years of cocoa establishment result in low organic matter 

production and inputs. In addition, high levels of solar radiation reaching 

the ground can raise soil temperatures and accelerate SOM 

mineralisation.  

- Phase 3: The third phase predicts that SOM eventually stops declining, 

reaches a minimum value, and starts to increase as organic matter inputs 

from the cocoa and shade trees exceed the losses from mineralisation.  

- Phase 4: Lastly, the level of SOM may start to plateau as a new equilibrium 

is reached. 

 

Figure 4.1: Hypothetical soil organic matter dynamic in cocoa farms 
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4.2.2 Site descriptions 

To test the hypothesis described above, a false-time chronosequence was 

developed using seven plots located in Indonesia around Tarengge, East Luwu 

Regency, in South Sulawesi (Figure 4.2), and three plots at each of two sites, 5 

km apart, in West Sulawesi. The sites in West Sulawesi, 200 km away from 

Tarengge, were near the villages of Mambu and Pussui.  

The average elevation is 29 m in Tarengge, 20 m in Mambu, and 64 m in Pussui. 

The mean annual temperature is approximately 27°C at each site and remains 

fairly constant through the year (Figure 4.3). Mean annual rainfall across the three 

sites ranges from 2142 mm at Pussui to 2973 mm at Tarengge. During the dry 

season (approximately July to October), the driest months receive on average 

about 80-100 mm of rain. This climatic profile places Sulawesi in the Af category 

of the Köppen-Geiger classification (“tropical rainforest climate”).  

The terms plot age and cocoa age were used interchangeably to refer to the time 

(in years) since the cocoa trees were planted. Each farm was coded with a letter. 

The seven plots located around Tarengge were 0.5-, 1-, 2-, 5-, 7-, 12-, and 

15-years-old, and given the farm codes A to G (detailed in Table A - 4.1). The 

second set at Mambu was given farm codes H, I, J, and the three sites at Pussui 

were given farm codes K to M, with plots aged 2, 20, and 31-years-old. The 

previous land uses were either cocoa, rice, oil palm, vegetable, sweet potato, 

peanuts, or forest (recent history detailed in Table A - 4.2 for Tarengge’s farms 

and Table A - 4.3 for Pussui’s and Mambu’s farms). 
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Figure 4.2: Location of the farms at Tarengge (7), Mambu (3) and Pussui (3) used 
for the chronosequences (13 in total) 
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Figure 4.3: Climographs of the three chronosequences’ locations 

Left y-axis: average monthly temperature (°C). Right y-axis: monthly precipitations (mm). Source: WorldClim.   
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4.2.3 Field measurements and laboratory analyses 

a. Farm information 

During a field survey, the farmers were interviewed about the planting date (year, 

and if possible, month) and densities (number of cocoa trees per hectare). They 

were asked to report the shade tree species present and their approximate 

densities. Information was also collected about their fertilizer and organic input 

practices (timing, composition, and dose). Each plot’s GPS location was 

recorded. According to the farmers, the approximate plot sizes ranged from 0.25 

to 2 ha. In Pussui, soil samples were collected from a forest plot adjacent to farm 

K (the forest is coded N in Table A - 4.1) to serve as a comparison point, using 

the sampling and analytical methodology as the cocoa plots. The purpose was to 

compare the recently planted plot K to an adjacent forest and assess short-term 

changes that may have occurred two years after conversion. Plot K was the only 

site resulting from recent deforestation. 

b. Assessment of cocoa growth 

In order to estimate how cocoa’s organic inputs would evolve over time, it was 

assumed that litterfall was proportional to the biomass of the trees (Dawoe et al., 

2010), i.e., larger trees produced more litter and belowground inputs than small 

trees. To model how cocoa biomass (and therefore cocoa organic deposits) 

increased over time, trunk measurements, an allometric equation, and a non-

linear regression model were combined. The trunk circumference of 16 trees per 

farm was measured at 30 cm from the ground surface and the results converted 

to biomass per hectare using an allometric relationship developed by Smiley & 

Kroschel (2008) in Sulawesi. Subsequently, it was found that a Weibull growth 

curve (Mahanta & Borah, 2014) was a good fit to model cocoa growth for the 

experimental farms. The methodology is presented as supplementary material 

(see appendices A.4). The performance of the fitter growth curve was evaluated 

by calculating the coefficient of determination (R²), the absolute measure of the 

standard distance between predictions and measurements (S), and the mean 

absolute percent error (MAPE). 

c. Soil sampling and analyses 

Five soil samples were collected in each farmer plot, at five different depths from 

0 to 100 cm in 20 cm increments, after removing any surface leaf litter. Plot sizes 

ranged from 0.25 to 2 ha. Each soil sample was extracted with a hand auger 

(Edelman type, suitable for clay and sand) 1 m away from a cocoa tree trunk. 
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Five soil rings were used on each plot to determine soil bulk density (BD) at a 0-

5 cm depth. Each sample was air-dried at 60°C for 48 h. The BD was found by 

dividing the dry weight by the ring volume. The soil sampling pattern followed a 

quincunx pattern (⚄) at the plot scale, that is, one sample taken approximately at 

the centre of a representative area of the plot, surrounded by four other cores 

taken in adjacent rows, diagonally. Soil samples were then air-dried for two days 

before being packaged and sent to Cranfield University in the United Kingdom. 

They were then stored in a drying cupboard and later manually ground and sieved 

to < 2 mm before analysis. Particle size distribution (PSD) was determined by 

following sieving and sedimentation (ISO 11277;1998), using only three samples 

out of the five samples per plot and down to a depth of 60 cm. Results from the 

PSD analysis were converted into soil texture types according to the USDA 

classification system. SOM contents were calculated from the loss-on-ignition 

(LOI) method (British Standard BS EN 13039:2000) on three samples per plot at 

each depth (except 0-20 cm where all five samples were used). Soil total carbon 

(C), as well as total nitrogen (N), were analysed using the dry combustion method 

(ISO 10694:1995) on three samples per plot at each depth (except 0-0.20 m 

where five samples were used). Because the soils of the region tend to be 

strongly to very strongly acidic (Hengl et al., 2017), it was assumed that inorganic 

C (i.e., mainly carbonates) was absent and that the total C should be equal to soil 

organic C (SOC). 

As the chronosequence involved comparing different sites with soils belonging to 

different textural classes, it was decided to use the concept of clay saturation by 

SOC to account for differences in soil textures (Dexter et al., 2008; Jensen et al., 

2019; Johannes et al., 2017; Knadel et al., 2015; Prout et al., 2020). SOM-to-clay 

(SOM/clay), C-to-clay (C/clay), and N-to-clay (N/clay) ratios (element content in 

% divided by the clay content in %) were calculated. A high C/clay index was 

assumed to correspond to a higher complexation of SOM to clay particles and 

vice versa. High levels of N may also be related to high clay levels as up to 95% 

of soil N can be organic (Bingham & Cotrufo, 2016), and clays generally play a 

major role in stabilizing SOM (Sarkar et al., 2018). 

Adjusted and non-adjusted for texture SOM, C, and N contents were plotted 

against the age of each farm for graphical analysis of potential trends. The 

correspondence between cocoa age and SOM, C, and N was assessed and 

compared against clay and clay + silt content using Kendall’s rank correlation 

coefficient (τ, tau) to evaluate the influence of texture on SOM, C, and N. 
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To account for differences in soil BD (Rollett et al., 2020), SOM, C, and N contents 

of the 0-20 cm layer were converted to stocks per hectare by using the BD 

obtained in each farm with Equation 4.1: 

𝑆𝑡𝑜𝑐𝑘 (𝑀𝑔 ℎ𝑎−1)

= 𝐶𝑜𝑛𝑡𝑒𝑛𝑡 (%) × 𝐴𝑟𝑒𝑎 (𝑚2) × 𝐷𝑒𝑝𝑡ℎ (𝑚)

× 𝐵𝑢𝑙𝑘 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 (𝑔 𝑐𝑚−3) × 100 

Equation 4.1 

Stock calculations were not extrapolated to soil layers deeper than 20 cm 

because the BD for deeper layers was not measured. 

Loss-on-ignition (LOI) measurements are based on the loss in mass after placing 

soil samples in a furnace at 450°C. While it is inexpensive and straightforward, 

this method is criticized for underestimating SOM content (Hoogsteen et al., 

2015; Jensen et al., 2018; Konen et al., 2002; Pribyl, 2010). The estimation of the 

content of SOM can be influenced and biased by factors other than SOM alone. 

For example, structural water loss from clay minerals and the decomposition of 

inorganic C (carbonates) at high temperatures could lead to overestimations of 

SOM contents (Hoogsteen et al., 2015). Dehydration and dihydroxylation of 

clays, oxides, and salts occur at different temperatures depending on their types 

(Pansu & Gautheyrou, 2006). Conversely, incomplete combustion (insufficient 

heat or duration) can lead to an underestimation of SOM contents. 

A modified approach proposed by Jensen et al. (2018), which used the soil PSD 

(clay and eventually fine silt, depending on the results) to derive the SOM content 

from LOI measurements, was followed to address this issue. The method is 

based on successive multiple linear regression (MLR), evaluating the 

performance of different models in their ability to predict SOC contents. In this 

study, the process was changed to predict LOI instead of SOC. Clay, fine silt, and 

SOC contents were the independent variables. The analysis was conducted in R, 

using the lm function of the package stats. The relationship between the 

measured LOI and adjusted SOM contents was plotted to show the effect of the 

correction. The measured and adjusted contents were separately categorized on 

a clay content and soil depth basis to assess their potential influence. 

To study the transformation of SOM over time, C:N ratios and the C content of 

SOM (C/SOM) were calculated. C:N ratios can provide an indication on the 

decomposition and mineralisation rates of SOM. A higher C content of SOM can 

indicate a higher fraction of compounds with high C content such as humic 

substances (J. Gerke, 2018; Piccolo et al., 2018; Pribyl, 2010), woody tissues 

(lignin and aliphatic compounds, Klingenfuß et al., 2014) and black carbons 
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(Tomczyk et al., 2020), often associated with slow decomposition rates. Also, 

while it is often assumed that SOM is 58% C (“van Bemmelen factor”, Pribyl, 

2010), there is no universal content that can reliably be used everywhere. As 

such, quantifying the C content of SOM can also help to characterize SOM in 

cocoa plots in Sulawesi and avoid future misleading conversions with inaccurate 

factors. 

4.2.4 Statistical analyses 

The raw results were subjected to an analysis of variance in R version 3.6.0 (R 

Core Team, 2019). Normality was tested with the Shapiro-Wilk test 

(‘shapiro.test’), while homogeneity was tested with Levene’s test (‘levene’ 

function). Levels of statistical significance were assessed through a Tukey HSD 

test, using the ‘agricolae’ package (at P < 0.05; De Mendiburu, 2020). The 

Kruskal-Wallis test was applied if ANOVA assumptions were not fulfilled (using 

the ‘kruskal.test’ and ‘kruskal’ functions with P < 0.05). Means and standard 

errors were calculated for each plot, depth, and variable. Association between 

SOM, C and N and cocoa age, clay content and clay + fine silt contents (non-

parametric data) were evaluated using Kendall’s tau with the ‘Kendall’ function 

using the package of the same name (McLeod, 2011). Correlations were 

assessed with the ‘cor.test’ function of the ‘ggpub’ package. 

4.3 Results 

4.3.1 Cocoa growth curve 

Based on the cocoa tree trunk measurements and the allometric equation of 

Smiley & Kroschel (2008), the aboveground cocoa tree biomass increased 

rapidly when the trees were young (< 4 years), typically reaching a dry mass of 

50 kg per tree within four years. Beyond four years, the growth rate was lower, 

typically taking another eight years to gain an additional 50 kg of biomass per 

tree, reaching 100 kg at 13 years old. The average girth continued to increase 

over the first 30 years after field planting. 

Belowground biomass increased at a slower rate taking approximately eight 

years to reach 50 kg of root biomass. The mean ratio of aboveground biomass to 

belowground biomass (i.e., shoot-to-root ratio) was about 1.65. Variability in trunk 

size increased with age, certainly because the tree stand becomes more 

heterogeneous over time under various pressures (e.g., certain trees thrive more 
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than other because they will not suffer from the same level of water stress, light 

competition, pests and disease attacks, etc.). 

The fit to the non-linear models was good, with a coefficient of determination (R²) 

of 0.998 for above and belowground biomass. The absolute measure of the 

standard distance between predictions and measurements (S) was 4.59 kg for 

aboveground biomass and 2.79 kg for belowground biomass. The mean absolute 

percent error (MAPE) was 25.8% for aboveground biomass and 27.1% for 

belowground biomass, indicating that, on average, the distance of the model from 

the measurement is around 26-27% of the actual value. 

 

Figure 4.4: Accumulation of plant biomass by the cocoa trees 

AGB stands for aboveground biomass. BGB stands for belowground biomass. The error bars represent ±1 
standard error. The grey areas represent the 95% confidence interval around the fitted non-linear models. 
R² corresponds to the coefficient of determination, equal to the percentage of variation of the dependent 
variable explained by the model. S is the standard error of the estimate and is the average distance between 
the points and the fitted line. MAPE is the mean absolute percentage error. 
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4.3.2 Particle size distribution and bulk density 

In Tarengge, all soils were loams, clay loams, or sandy clay loams, with clay 

contents ranging from 18.8 to 30.1% (Table 4.1). In Mambu (Table 4.2), texture 

classes were sandy loams, sandy clay loams, or silty clay loam with clay contents 

of 15.6 to 38.7%. In Pussui (Table 4.2), some soil had clay contents from 31.1 up 

to 48.8%, and texture classes were clay, silty clay, or clay loam. Visualization is 

available in the supplementary material (Figure A - 4.1). 

In the cocoa plots, surface BDs (0 to 5 cm) ranged from 1.16 to 1.55 g cm-3, and 

they were not correlated to farm age (Spearman’s r P = 0.48; Table 4.3). The 

lowest BD was recorded in the forest plot in Pussui, 1.12 g cm-3, adjacent to the 

2-year-old farm K at 1.13 g cm-3. The highest BD (1.55 g cm-3) was found on the 

plot recently cultivated with rice (farm B). The average BD across all farms was 

1.31 g cm-3. 
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Table 4.1: Mean particle size distributions in the farms of Tarengge (South Sulawesi, Indonesia) at selected soil depths 

Location 
Farm 
code 

Cocoa 
age 

(years) 

Depth 
(cm) 

Coarse 
Sand 
(%) 

600-2000 
µm 

Medium 
Sand 
(%) 

212-600 µm 

Fine 
Sand 
(%) 

50-212 
µm 

Coarse 
Silt 
(%) 

20-50 µm 

Fine  
Silt 
(%) 
2-20 
µm 

Clay 
(%) 

Texture class 
(USDA) 
<2 µm 

      0-20 3.1 9.4 31.1 12.6 19.2 24.6 Loam 

  A 0.5 20-40 1.8 9.0 31.0 10.0 19.7 28.6 Clay loam 

    40-60 2.6 10.2 27.7 11.4 18.1 30.1 Clay loam 

    0-20 2.6 12.0 30.0 13.0 23.7 18.8 Loam 

  B 1 20-40 2.1 11.7 30.0 10.5 25.9 19.8 Loam 

    40-60 2.3 10.6 27.0 10.7 25.2 24.2 Loam 

    0-20 6.5 15.3 36.6 10.8 12.1 18.8 Sandy clay loam 

  C 2 20-40 7.5 16.4 35.3 8.8 11.3 20.6 Sandy clay loam 

    40-60 10.2 14.8 33.9 8.8 10.7 21.7 Sandy clay loam 

Tarengge,   0-20 4.2 15.3 34.7 11.5 13.0 21.4 Sandy clay loam 

South D 5 20-40 3.8 15.0 34.0 8.6 13.5 25.2 Sandy clay loam 

Sulawesi   40-60 4.3 13.6 31.8 9.0 14.5 26.8 Sandy clay loam 

    0-20 6.8 17.3 24.7 10.4 17.7 23.0 Loam 

  E 7 20-40 6.1 18.9 24.7 9.5 19.0 21.8 Loam 

    40-60 9.6 17.1 22.6 7.6 19.7 23.4 Sandy clay loam 

    0-20 1.6 6.9 30.3 15.7 26.0 19.6 Loam 

  F 12 20-40 1.1 6.8 28.7 14.5 26.0 22.9 Loam 

    40-60 1.5 6.6 28.2 11.3 27.2 25.2 Loam 

    0-20 6.0 13.2 33.9 11.3 13.0 22.6 Sandy clay loam 

  G 15 20-40 5.1 14.8 32.9 9.8 14.4 23.0 Sandy clay loam 

      40-60 10.6 12.4 30.2 9.2 12.8 24.8 Sandy clay loam 

n = 5 for soil depths 0-20 cm and n = 3 for soil depths 20-40 and 40-60 cm. 



DYNAMICS OF SOIL ORGANIC MATTER, CARBON, AND NITROGEN IN A CHRONOSEQUENCE OF COCOA FARMS IN SULAWESI, INDONESIA
 Page 95 

Thomas Fungenzi Cranfield University (2018-2021) 

Table 4.2: Mean particle size distributions of the farms of Mambu and Pussui (West Sulawesi, Indonesia) at selected soil depths 

Location 
Farm 
code 

Cocoa 
age 

(years) 

Depth 
(cm) 

Coarse 
Sand 
(%) 

600-2000 
µm 

Medium 
Sand 
(%) 

212-600 
µm 

Fine 
Sand 
(%) 

50-212 
µm 

Coarse 
Silt 
(%) 

20-50 
µm 

Fine  
Silt 
(%) 
2-20 
µm 

Clay 
(%) 

<2 µm 

Texture class 
(USDA) 

   0-20 0.2 0.7 14.8 18.2 31.7 34.4 Silty clay loam 
 H 2 20-40 0.1 0.8 16.0 15.1 29.5 38.7 Silty clay loam 
   40-60 0.1 0.9 17.1 14.0 29.7 38.2 Silty clay loam 

Mambu,   0-20 0.1 2.8 58.5 11.2 11.5 15.9 Sandy loam 

West I 20 20-40 0.0 3.9 60.7 9.2 10.7 15.6 Sandy loam 

Sulawesi   40-60 0.4 3.8 52.4 9.9 12.6 20.9 Sandy clay loam 
   0-20 0.0 0.9 51.7 13.4 14.2 19.8 Sandy loam 
 J 31 20-40 0.0 1.1 62.1 9.6 10.5 16.6 Sandy loam 
   40-60 0.0 1.1 61.2 11.2 10.8 15.7 Sandy loam 
   0-20 0.4 1.4 17.3 10.4 26.6 43.9 Clay 
 K 2 20-40 0.3 1.1 18.3 10.2 28.0 42.2 Clay 
   40-60 0.5 1.4 16.9 10.0 31.2 40.1 Silty clay 

   0-20 1.8 6.0 21.5 16.0 23.7 31.1 Clay loam 

 L 20 20-40 1.0 4.6 19.4 15.2 24.5 35.2 Clay loam 

Pussui,   40-60 0.9 4.0 17.6 15.1 23.4 39.0 Clay loam 

West   0-20 4.1 12.6 10.8 8.0 31.1 33.4 Clay loam 

Sulawesi M 31 20-40 0.9 3.7 6.5 6.3 35.8 46.9 Silty clay 
   40-60 0.7 2.8 5.4 7.0 35.3 48.8 Silty clay 
   0-20 0.5 2.2 22.4 14.2 25.2 35.6 Clay loam 
 Forest NA 20-40 0.3 1.7 20.5 12.2 25.6 39.8 Clay loam 
   40-60 0.3 1.7 20.1 12.6 23.5 41.8 Clay 

n = 5 for soil depths 0-20 cm and n = 3 for soil depths 20-40 and 40-60 cm. 
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Table 4.3: Surface bulk density of the farms of the chronosequence 

Location 
Farm 
code 

Age 
(years) 

Mean (n=5) bulk density 
(0-5 cm; g cm-3) 

Tarengge 

A 0.5 1.16 (0.11) bc 

B 1 1.55 (0.06) a 

C 2 1.27 (0.02) abc 

D 5 1.41 (0.06) abc 

E 7 1.37 (0.03) abc 

F 12 1.43 (0.03) ab 

G 15 1.27 (0.11) abc 

Mambu 

H 2 1.23 (0.02) bc 

I 20 1.34 (0.03) abc 

J 31 1.36 (0.05) abc 

Pussui 

K 2 1.13 (0.07) bc 

L 20 1.33 (0.04) abc 

M 31 1.21 (0.09) bc 

Forest - 1.12 (0.05) c 

Average (all farms)   1.31 
Numbers in parenthesis represent ± 1 standard error. Mean bulk densities with the same letters are not 
statistically different (Tukey HSD, p-value < 0.001). 

4.3.3 Relationship between SOM and LOI 

Four models were examined to determine the best relationship between SOM and 

loss on ignition (LOI). The model with the lowest RMSE of 0.32 was Equation 4.2, 

where LOI is the loss on ignition (% or g/100g), 𝛽0 is the y-intercept of the MLR, 𝛽𝑐𝑙𝑎𝑦 

is the coefficient for the clay content factor, 𝐶𝑙𝑎𝑦 is the measured clay content (% or 

g/100g), 𝛽𝑆𝑂𝐶 is the coefficient for the measured soil organic carbon content, and 

𝑆𝑂𝐶 is the measured soil carbon content (% or g/100g). The adjusted R² was 0.91. 

𝐿𝑂𝐼 = 𝛽0 + 𝛽𝑐𝑙𝑎𝑦 × 𝐶𝑙𝑎𝑦 +  𝛽𝑆𝑂𝐶  × 𝑆𝑂𝐶 Equation 4.2 

The values of 𝛽0, 𝛽𝑐𝑙𝑎𝑦, and 𝛽𝑆𝑂𝐶 are provided in Table 4.4. 
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Table 4.4: Parameters of the multiple linear regression used to convert LOI to SOM 
contents 

Coefficient Estimate Std. Error t value Pr(>|t|) Significance 

𝛽
0
 0.50 0.16 3.05 4.06E-03 ** 

𝛽
𝑐𝑙𝑎𝑦

 0.05 0.01 7.66 2.72E-09 *** 

𝛽
𝑆𝑂𝐶

 1.70 0.15 11.44 4.98E-14 *** 

Lastly, an adjusted content of SOM was calculated using Equation 4.3. This 

calculation assumes that 𝛽𝑐𝑙𝑎𝑦 × 𝐶𝑙𝑎𝑦 corresponds to the bias leading to the 

overestimation of SOM due to structural water losses (Jensen et al., 2018).  

𝑆𝑂𝑀 = 𝐿𝑂𝐼 − 𝛽𝑐𝑙𝑎𝑦 × 𝐶𝑙𝑎𝑦 Equation 4.3 

The results suggest that each unit of clay is associated with 5% of structural water 

(𝛽𝑐𝑙𝑎𝑦), but more realistically may include the compounded effects of other losses 

occurring during LOI (i.e., not accounted for in the MLR, for loss of certain salts and 

free iron). The estimate of the SOC coefficient 𝛽𝑆𝑂𝐶 was 1.70 and corresponded to 

the conversion factor from SOC to SOM. It was close to the traditional SOM/SOC 

value of 1.72 (58% C in SOM; (Pribyl, 2010)). 

Observing Figure 4.5, the difference caused by the adjustment was substantial and 

can be noted since the adjusted SOM contents were approximately two-thirds of the 

measured SOM content. The mean difference (n = 42) between measured and 

adjusted SOM contents was 1.7 g/100g. The larger the measured SOM content, the 

larger the deviation of the adjusted SOM content. However, categorizing per 

sampling depth or clay content did not show a large effect, even though it seems 

that higher clay contents and depths led to slightly lower adjusted SOM contents. 

The intercept coefficient 𝛽0 suggests that LOI systematically overestimated SOM 

contents by 0.5 g/100g, regardless of the clay or SOC content.  
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Figure 4.5: Comparison of the measured SOM content (using loss-on-ignition) and 
the adjusted SOM content 

The adjusted SOM content is equal to the measured LOI, deducted from structural water loss, itself estimated to 
be proportional to clay content (𝑺𝑶𝑴 = 𝑳𝑶𝑰 −  𝟎. 𝟎𝟓 × 𝑪𝒍𝒂𝒚). The top figure (A) presents the results categorized 
per clay content (A), while the bottom figure (B) categorizes the data per sampling depth. Adj. R squared is the 
adjusted R², and RMSE stands for root mean square error. Both correspond to the performance of the multiple 
linear regression used to calculate the adjustment factor (n = 42). 
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4.3.4 Soil organic matter, carbon, and nitrogen contents 

a. Soil depth between 0 and 20 cm 

The highest values of SOM (4.04%), C (1.97%), and N (2103 ppm) were all found at 

0-20 cm at Pussui, in the 2-year-old cocoa plot, at levels similar to the adjacent forest 

(Figure 4.6 and Table A - 4.4).  

At Tarengge, six months after planting, the mean SOM (0-20 cm) was 3.59% (Figure 

4.6). The SOM value (0-20 cm) at the sites sampled one and two years after planting 

were lower at 2.27% and 1.76%, respectively. In the sites sampled more than two 

years after planting, the SOM levels increased to 2.06-2.58% (Figure 4.6 and Table 

A - 4.4). At Mambu and Pussui, the SOM values of the youngest sites (2-years-old) 

were respectively 2.57% and 4.04%. A similar pattern of an initial high value, a low 

value and then a high value for SOM was apparent at Mambu and Pussui: starting 

at 2-years-old with the highest SOM content, reaching the lowest content at 20-

years-old, followed by a slight increase at 31-years-old. 

One method to compensate for differences in clay contents between sites is to 

express the SOM contents per clay unit (Figure 4.7 and Table A - 4.5). The 

SOM/Clay values (0-20 cm) were more consistent than those for SOM alone. Across 

the Tarengge, Pussui, and Mambu sites, the SOM/Clay values started at a high 

value, declined to a minimum at about two years after planting before increasing and 

stabilizing at a higher value after 5 years (Figure 4.7). The highest SOM/Clay 

quotient was found in the youngest cocoa plot (Tarengge, 2-year-old: 0.15). 

Presenting the SOM values as a SOM value per clay unit resulted in similar values 

at Mambu and Pussui, suggesting that, for the 0-20 cm layer, the almost constant 

difference between Mambu and Pussui for SOM, C and N were related to the 

different soil clay contents (Table A - 4.5). 

Across the surface soil layers (0-20 cm) investigated at the Tarenge sites, the 

highest value of C (1.62%) and N (1554 ppm) were found at the site planted within 

the previous six months (Table A - 4.5). From this high point, in a similar way to 

SOM, the C and N contents (0-20 cm) declined between 0.5 and 2 years, followed 

by higher values in subsequent years. However, there was substantial variation in 

values between 2 and 15 years, with the highest value obtained for the 7-year-old 

site. The trend in C and N at Pussui was similar to that for SOM (Figure 4.6). At 

Mambu, the trends for C and N were also broadly similar to that for SOM although, 
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whereas the SOM content at the 31-year-old site tended to be greater than that at 

the 20-year site, the values of C and N were similar at the 20- and 31-year-old sites.  

Adjusting the topsoil C and N contents (0-20 cm) for clay content (Figure 4.7) also 

allowed the convergence of Tarengge’s, Pussui’s, and Mambu’s results. The decline 

in C and N from year 0 to year 2 remained apparent, and the value for texture 

adjusted C and N then varied before stabilizing at a lower value than that at the plots 

with the youngest cocoa bushes. 

b. Soil depth below 20 cm 

The lowest SOM, C, and N contents were not found in the deepest soil layers (80-

100 cm) samples, but in the 40-60 cm, at Mambu in the 31-year-old cocoa farm 

(SOM: 0.84%; C: 0.23%; N: 329 ppm). 

In Tarengge, the temporal variation of SOM in the deeper soil layers followed a 

similar trend as in the topsoil but attenuated, showing a narrower range as depth 

increases (Figure 4.6 and Table A - 4.4). Indeed, the decline and recovery observed 

at soil depths below 20 cm more less prominent than that of the 0-20 cm layer, 

especially for the initial post-planting decline. 

In Mambu, the same decline of SOM content was observed up to 40 cm. No soil 

sample could be obtained below 40 cm in Mambu but found that SOM, C, and N 

declined across all sampled depths. In Mambu, while topsoil (0-20 cm) SOM/clay, 

C/clay, and N/clay seemed first to increase between 2 and 20 years and then 

decrease between 20 and 31-years-old, this was not always repeated at greater 

depths (Figure 4.7 and Table A - 4.5). For example, C/clay and N/clay declined at 

40-60 cm, whereas SOM/clay decreased and then increased. 

In Pussui, instead of having the same trend as topsoil SOM, the results could be 

summarized by saying that in almost all cases, it was observed that SOM, C, and N 

increase over time below 20 cm (only exception being SOM at 40-60 cm). Regarding 

SOM/clay ratios, Pussui farms followed approximately the same trend as Mambu, 

both at 20-40 and 40-60 cm. There was no general trend for SOM/clay, C/clay, and 

N/clay: the quotients generally increased between 2 and 20 years, but between 20 

and 31 years, both increases and declines were found, similar to Mambu’s results in 

most cases. 
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Figure 4.6: Temporal changes of soil organic matter (SOM), carbon (C), and nitrogen (N) contents in the 13 farms of the 
chronosequence (and a forest) at five depths (0-100 cm by 20 cm increments) 

SOM contents were obtained from LOI and corrected for potential structural water loss linked to clays (Jensen et al., 2018). Carbon and nitrogen contents were determined 
through dry combustion. Error bars represent the ± 1 standard error. Five samples were obtained for the 0-20 cm layer, and three samples below 20 cm, except for the sites 
H at 40-60 cm, M at 60-80 cm, and L at 80-100 cm with only two samples; and N at 40-60 cm, N at 60-80 cm and M at 80-100 cm with only one sample, and no samples 
were obtained for H, K, and N at 80-100 cm (the soil was too compact to push down the auger by hand.  
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Figure 4.7: Temporal changes of soil organic matter, carbon, and nitrogen contents adjusted for clay content in the 13 farms of the 
chronosequence (and a forest) at five depths (0-100 cm by 20 cm increments) 

Each index is calculated as the ratio of soil component (% C, N, or SOM) divided by soil clay content (%). SOM contents were obtained from LOI and corrected for potential 
structural water loss linked to clays (Jensen et al., 2018). Carbon and nitrogen contents were determined through dry combustion. I used the clay content of the 40-60 cm 
layer for the 60-80 and 80-100 cm sampling depth. The grey line represents a loess regression with span = 0.6, excluding the forest plot. Note that all C/clay ratios are below 
the 1/13 threshold (1/3 ≈ 0.077) proposed by Johannes et al. (2017), suggesting that a “degraded” structural quality could be expected for all cocoa soils (assuming that this 
concept applies to this pedoclimatic context).  
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4.3.5 Soil organic matter (SOM), carbon (C), and 

nitrogen (N) stocks (0-20 cm) 

In Tarengge, the stock of SOM declined from 91 Mg ha-1 down to 50 Mg ha-1 

between 0.5 and 2 years, following the same pattern as SOM contents, 

representing a loss of approximately 46% of the SOM stock in 1.5 years. After 

two years, the SOM stock increased, reaching 74 Mg ha-1 at 15 years. In Mambu 

and Pussui, the decline between 2 and 20 years was of a similar magnitude; 

respectively, 28 and 36 Mg ha-1 of SOM seem to be lost in 18 years (-41 

and -34%). In Mambu, SOM stock increased from 41 to 53 Mg ha-1, while in 

Pussui, the gain was negligible (only +3.4 Mg ha-1, from 71 to 74 Mg ha-1). The 

stock variations of C and N were very similar to each other and SOM, except for 

the 7-year-old farm in Tarengge. For this farm, the C and N stocks were much 

higher than the other years, comparable to the 0.5-year-old farm (approximately 

40 Mg of C and 4 Mg of N per ha). Accounting for differences in soil BD by using 

stocks instead of contents produced convergent results between contents, clay-

adjusted quotients, and SOM stocks, supporting the initial hypothesis (i.e., a trend 

not merely caused by differences in BD nor by differences in clay contents).  
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Figure 4.8: Temporal changes of soil organic matter (SOM), carbon (C) and 
nitrogen (N) stocks (Mg ha-1) in the 13 farms of the chronosequence (and a forest) 
at the 0-20 cm depth 

A: Soil organic matter (SOM); B: Soil carbon (C); C: soil nitrogen. SOM contents were obtained after loss-
on-ignition and corrected for potential structural water loss linked to clays (Jensen et al., 2018). Carbon and 
nitrogen contents were determined through dry combustion. Error bars represent the standard error. Mean 
calculated with five samples per plot. Stocks were determined by using the 0-5 cm bulk density (core ring 
method).  
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4.3.6 C:N ratios and C/SOM fraction 

The C:N ratios were low, between 6:1 to 12:1, and did not show a clear temporal 

trend. Even though the C:N ratio slightly decreased on average with depth, the 

difference was slight (from 9.6:1 at 0-20 cm down to 7.9:1 at 80-100 cm). The C 

contents of SOM (C/SOM) ranged from 17% to 42%. As with C:N ratios, no clear 

temporal trend was observed. Again, C/SOM seemed to decline with depth (from 

33% at 0-20 cm down to 20% at 80-100 cm). Surprisingly, all these factors were 

well below the commonly used factor of 58%. The C and N peaks observed at 

year 7 in Tarengge (Figure 4.6, Figure 4.7, Figure 4.8) are not related to a higher 

clay content of a higher BD (Table 4.1, Table 4.3). Instead, the decorrelation for 

this farm between SOM on one side, and C and N on the other, is revealed by a 

higher C/SOM content at 0-20 cm (Figure 4.9): 61% while the rest of Tarengge’s 

samples range from 39 to 50%. 
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Figure 4.9: Changes of soil C:N ratios and carbon contents of soil organic matter 

Carbon-to-nitrogen ratios (C:N) were determined as the division of C by N contents obtained after dry 
combustion. The C content of soil organic matter (SOM) was determined by dividing the C contents obtained 
after dry combustion by the percentage of SOM estimated after loss-on-ignition, corrected for potential 
structural water loss linked to clays (Jensen et al., 2018). Means calculated with five samples per plot for the 
0-20 cm layer and three samples for the other sampling depths. Error bars denote ±1 standard error.  
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4.3.7 Correlations 

The analysis of Kendall’s tau correlation coefficients revealed that SOM, C, and 

N contents were not significantly correlated with farm age (Table 4.5). However, 

the temporal variations of SOM were predominantly negative, indicating a decline 

over time. On the contrary, SOM, C, and N contents were significantly and 

positively correlated with clay and fine silt + clay contents between 0 and 40 cm. 

Below 40 cm, the associations were not all significant but still all positive. 

Including fine silt seldomly lead to higher correlation coefficients (only for C at 40-

60 cm, and N at 20-40 and 40-60 cm). The upper sampling layers were not 

associated with higher coefficients (i.e., no noticeable depth effect). 

Table 4.5: Kendall’s tau correlation coefficients 

  Depth (cm) Age Clay Fine silt + Clay 

  
  

SOM 
  
  

0–20 –0.07 (ns) 0.69 (**) 0.59 (**) 

20–40 –0.20 (ns) 0.74 (***) 0.62 (**) 

40–60 –0.30 (ns) 0.49 (*) 0.31 (ns) 

60–80 –0.11 (ns) 0.27 (ns) 0.03 (ns) 

80–100 0.02 (ns) 0.42 (ns) 0.20 (ns) 

  
  
C 
  
  

0–20 –0.28 (ns) 0.69 (**) 0.69 (**) 

20–40 –0.23 (ns) 0.69 (**) 0.67 (**) 

40–60 –0.25 (ns) 0.54 (*) 0.56 (**) 

60–80 –0.05 (ns) 0.36 (ns) 0.42 (ns) 

80–100 –0.09 (ns) 0.75 (**) 0.60 (*) 

  
  
N 
  
  

0–20 –0.12 (ns) 0.64 (**) 0.64 (**) 

20–40 –0.20 (ns) 0.56 (**) 0.64 (**) 

40–60 –0.12 (ns) 0.51 (*) 0.64 (**) 

60–80 0.02 (ns) 0.30 (ns) 0.48 (*) 

80–100 –0.15 (ns) 0.44 (ns) 0.66 (**) 

Significance level in parenthesis: ns: P > 0.05; *: P ≤ 0.05; **: P ≤ 0.01; ***: P ≤ 0.001. Calculated with the 
Kendall package in R. SOM stands for soil organic matter; C for soil carbon; and N for soil nitrogen. SOM 
contents were obtained after loss-on-ignition and corrected for potential structural water loss linked to clays 
(Jensen et al., 2018). 
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4.4 Discussion 

4.4.1 Temporal dynamics of SOM, C, and N in a cocoa 

farm 

Cocoa growth seems consistent across locations 

The performance of the trunk growth pattern fitted to the observations of this 

study explained more than 99% of the variance of our observations (for 

aboveground and belowground estimations, R² = 0998) was high. This result 

suggests that despite differences between sites, cocoa growth could be relatively 

consistent and could be described accurately with a logarithmic-like model, like 

many other tree species (which in this case was replaced by a Weibull function 

to fix the mathematical problem posed by values between 0 and 1 resulting in 

negative values). Assuming that this pattern is not just the result of random 

chance or small sample size, the growth of the cocoa trees followed the trend 

described in this research’s conceptual hypothesis. 

The amount of aboveground and belowground biomass predicted by the growth 

curve was much higher than the results obtained in the meta-analysis (Figure 

2.2). If assuming an approximate plant C content of 50%, the average 

aboveground cocoa biomass stock at 30 years was ~20 Mg ha-1. In contrast, the 

30-year aboveground biomass stock found in this study was ~130 kg tree-1. 

Assuming a tree density of 1111 trees ha-1 (3 x 3 m spacing), ~130 kg tree-1 would 

lead to an estimate stock per hectare of ~144 Mg ha-1, about seven times that of 

the average value found in the meta-analysis. Assuming a lower density of 625 

trees ha-1 (4 x 4 m spacing) would lead this value to be ~81 kg ha-1, still much 

higher than the range of values found in Chapter 2. The procedure implemented 

to estimate biomass using Smiley & Kroschel's (2008) allometric equation, fully 

detailed in Smiley (2006), was checked several times and no errors were found. 

This issue highlights then allometric equations used in the cocoa literature may 

pose a risk of misestimating cocoa biomass or C stocks when they are used in 

other locations without being validated first. Further work is required to compare 

allometric equations used in cocoa research and evaluate the limits of their 

validity domain. 

It is highly likely that the SOM inputs generated by the cocoa trees are strongly 

correlated with the size – and age – of the cocoa trees. However, the 

experimental design adopted in this study did not capture data to describe 

cocoa’s deposition of organic matter. Aboveground inputs through litterfall have 
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nevertheless been studied (Dawoe et al., 2010) and seem to be closely linked, if 

not proportional to cocoa tree biomass. However, estimating cocoa’s inputs to 

SOM is accompanied by several challenges. For example, the growth model 

adopted in this study used trunk size to estimate cocoa biomass, but this simple 

allometric relationship could be insufficient to describe both cocoa biomass and 

the litterfall rate accurately. Also, belowground inflows of organic matter through 

root turnover, rhizodeposition (and other inputs from other sources) are poorly 

quantified, even if they may represent a significant fraction of the total SOM inputs 

(Kuzyakov & Domanski, 2000b). Until light is thrown on these pathways, the 

simple approach adopted here shows that cocoa biomass and potential SOM 

inputs may be reduced to a simple logarithmic growth, with parameters easily 

determined on-site. However, this approach would only allow modelling of the 

temporal dynamics of SOM inputs retrospectively since old plantations would be 

necessary to measure trunks and draw growth parameters from them. In any 

case, retrospective modelling can still be useful to inform the temporal dynamics 

of cocoa trees and the soils on which they grow in order to anticipate dynamics 

in other settings. 

The “rapid initial decline” phase supported by our results 

The results show an abrupt decline in SOM contents in Tarengge between 0.5 

and 2 years. However, it is difficult to determine if this observation is due to SOM 

content variability across and within sites (artifact due to natural randomness) or 

a real phenomenon. This observation was confirmed by SOM/Clay quotients and 

accounting for BD differences with SOM stocks. The rapid decline was further 

corroborated by C and N, which followed the same pattern. This suggests a 40% 

depletion of SOM/clay in 1.5 years (27% per year), representing a considerable 

loss in a short amount of time. In terms of SOM stocks, this drop would 

correspond to a loss of 42 Mg SOM ha-1 in 1.5 years (28 Mg SOM ha-1 in one 

year), going from 91 Mg SOM ha-1 down to 50 Mg SOM ha-1 (-46%). With such 

a rapid fall, which should be considered a brutal soil degradation event, it is 

legitimate to wonder: is it even possible? Is this phenomenon likely to occur or 

due to a misinterpretation of the data? Are there good reasons to believe in the 

likelihood of this process? Can other examples be found in the scientific literature 

reporting similar events?  

Sulawesi: A particular case study 

SOM decomposition rates are high in the tropics because of high temperatures 

and moisture levels throughout the year (Ross, 1993; Sanchez & Logan, 1992), 
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with local differences (Greenland & Nye, 1959). For example, reported C loss 

rates can range from 1.8 to 12.8% per annum in cultivated lowland tropical forest 

zones (Greenland & Nye, 1959). However, it should be emphasized that loss 

rates are possibly higher with a cocoa system because, after a sudden shift of 

land use (vegetation clearing), litter inputs that could attenuate SOM losses are 

virtually reduced to zero, and a different microclimate influences the systems. The 

flux of new plant litter inputs and rhizodeposits anterior to vegetation clearing is 

almost entirely interrupted. New inputs will come only from the (much smaller) 

young, planted trees and the sporadic vegetation that was not eliminated by 

manual and chemical weeding. In this case, which combines an abrupt transition 

between drastically distinct systems, with almost bare land at planting and 

environmental conditions promoting SOM decomposition, one could expect SOM 

losses to occur rapidly. 

Evidence from other studies 

Smiley & Kroschel (2008) observed very different variations in soil organic C 

(SOC) stocks in two different locations of Central-Sulawesi (Indonesia). In Palolo, 

they sampled eight farms from age 2 to 15. Topsoil (0-15 cm) SOC stocks 

remained relatively stable over time, only showing a slight increase of 

approximately (+11 Mg C ha-1) between the farm of age 2 (34 Mg C ha-1) and 15 

(45 Mg C ha-1), which is still +33% of the 2-year-old farm. However, when 

considering a deeper soil profile (0-100 cm), it appears that they observed a 

decline between 2 and 4 years (i.e., -15% in 2 years from 137 Mg C ha-1 to 117 

Mg C ha-1), followed by a continuous increase until 15 years (reaching 160 Mg C 

ha-1). In Napu, the age range was shorter, going from 1- to 8-years-old, and 

included six farms. The trend for the 0-100 cm sample was different from Palolo, 

showing instead a significant increase between 1 and 3 years (going from 119 up 

to 197 Mg C ha-1 in just two years), followed by an equivalent decrease (going 

from 197 Mg C ha-1 down 96 Mg C ha-1 at year 8). Similarly, topsoil stocks (0-15 

cm) increased between 1 and 3 years, followed by a decline between 3 and 8 

years. Isaac et al. (2005) studied C and N dynamics in a false-time 

chronosequence in Ghana in farms aged 2, 15, and 25-years-old, established in 

converted forests. They measured the highest SOC stocks (0-15 cm) at two years 

(22.6 Mg C ha-1) and lower comparable levels at 15 and 25 years (respectively 

17.6 and 18.2 Mg C ha-1). They also report that 16% of the original SOC stock 

had been lost within the first two years after conversion. They stated that similar 

studies have established that significant declines occur during the first five years 

after conversion (Houghton et al., 1991; Juo & Kang, 1989; Van Noordwijk et al., 

1997). Mohammed et al. (2016) assessed SOC stocks in eight shaded and eight 



DYNAMICS OF SOIL ORGANIC MATTER, CARBON, AND NITROGEN IN A 
CHRONOSEQUENCE OF COCOA FARMS IN SULAWESI, INDONESIA Page 111 

Thomas Fungenzi Cranfield University (2018-2021) 

unshaded cocoa farms in Ghana, ranging from 7- to 28-years-old. The results 

showed considerable variations between the different locations, ages, and shade 

management, making it difficult to extract a particular trend. Nijmeijer et al. (2019) 

also used a false-time chronosequence to evaluate the effect of the previous land 

use on the C dynamics of cocoa systems in Central Cameroon. Cocoa farms 

planted after savannah showed a steady increase in SOC stocks and may 

potentially attain similar levels of cocoa established after forests. There was no 

apparent trend for the cocoa plots planted after forests, which showed highly 

variable SOC contents. Dawoe et al. (2010) measured a 17.3% decline in SOM 

stocks between zero (forest) and three-year-old cocoa farms in Ghana, 

equivalent to an annual loss of 5.8%, three times lower than the decline observed 

in this study. Beer et al. (1990) did not measure a significant change over time, 

but as the results of this study suggest, a five-year gap between two 

measurements can mask a rapid decline followed by a rapid recovery. 

Van Straaten et al. (2015) estimated that deforestation of lowland tropical forests 

for tree cash crops (i.e., cacao, rubber, and oil palm) could decrease SOM stocks 

by up to 50%, and the higher the initial stock of soil C, the higher the loss. Using 

their exponential decay function leads us to find a SOM stock reduction of 8.4% 

two years after deforestation and a 17.9% decline in five years. However, some 

caution should be taken as their timescale was years after deforestation (i.e., not 

years since planting), and the shortest gap between forest and cocoa was large, 

around 20 years (cocoa farms were not necessarily first-generation farms, they 

may be planted on older cocoa farms or other types of crops). In this study, only 

two farms (K and L) were planted on a cleared forest, and for the others, farmer 

records about forests being present within the last 31 years were not available. 

Also, it is worth mentioning that Van Straaten et al. (2015) did not find a positive 

trend for soil C stock recovery in the long run because they assumed that SOM 

stock changes would follow only an exponential decay function. 

Short-term changes (i.e., less than five years) are rarely examined, perhaps 

because SOM changes are often assumed to be slow, assuming they will take at 

least five to ten years to detect. The literature search was extended to other 

systems than cocoa, such as forests converted to grass, rubber, or other crops 

to fill this information gap. While soil, climate, and land use vary, searching for 

extreme changes can inform us about possible SOM rates of change and provide 

valuable comparisons. 

Zingore et al. (2005) provided empirical evidence supporting the “rapid initial 

decline” hypothesis in woodland soils cleared for arable cropping in Zimbabwe. 
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Using C13 data and assuming an exponential decline of SOC stocks, they report 

losses as high as 24% during the first two years after clearing. 

Ledo et al. (2020) used a global dataset of paired observations to evaluate the 

effect of land-use change from annual to perennial crops (709 field studies). The 

authors also found a potential rapid decline in topsoil (0-30 cm) soil C stocks 

during the first five years, followed by a rapid recovery and build-up over time (5 

to 10 years), to finally end up with a slight decrease between 10 and 20 years. 

However, their non-linear regression model was fitted on high-variability data. 

Nevertheless, they do mention that this pattern was repeatedly observed for 

single sites with multiple observations. 

Models can also provide indirect information to further evaluate the research 

hypothesis of the present study. Using a modelling approach, Detwiler (1986) 

found that, five years after clearing, cultivation led tropical soils to lose 40% of 

their C content, whereas grasslands led to a decrease of 20%. Mishra et al. 

(2021) used RothC to simulate changes in SOM stocks in different perennial 

plantations in North-East India. According to their simulations, areca, cashew, 

and tea plantations may have respectively lost 29%, 28%, and 23% of their SOM 

stock in five years. A global modelling study used RothC to estimate average 

SOC decomposition rates for various world regions and land uses (Morais et al., 

2019). Among other places, Indonesia showed some of the highest estimated 

mineralisation rates for several land uses, around 7% per year. However, 

potential mineralisation rates are theoretically higher than those of net changes. 

Using AMGv2’s equation and the average parameters found in Tarengge would 

give an estimated SOM yearly mineralisation rate of 20%. Using RothC 

(assuming that 2.5 Mg of plant inputs per year and the pedoclimatic conditions of 

Tarengge) would suggest that potential monthly decomposition rates could be as 

high as 88% for the ‘decomposable plant material’ pool (DPM), 6% for the 

‘recalcitrant plant material’ pool (RPM), 13% for the ‘microbial biomass’ pool BIO 

and 0.4% for the ‘humified organic matter’ pool (HUM). 

Cocoa litter quality 

After analysing both cocoa and forest litter, Dawoe et al. (2010) found higher 

contents of lignin and polyphenol in cocoa litter than in forest litter (respectively 

14.1-14.6% and 2.71-3.39% in cocoa litter versus 11.2% and 1.8% in forest litter). 

Because of its “low quality” (Palm et al., 2001), cocoa litter might delay the 

replenishment of SOM after planting, thereby exposing the soil to a more 

extended period of losses as compared to residues with low lignin and polyphenol 

contents, more rapidly converted to SOM. While the labile fraction of cocoa 
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residues might quickly contribute to increasing SOM stocks, a non-negligible 

fraction could take more time to be converted to SOM because of the inhibitive 

influence of cocoa leaves phenolic compounds (reflected by the accumulation of 

leaf litter). In the long-term, the recalcitrant nature of cocoa leaves may contribute 

to accumulating high levels of SOM but could leave young plantations (i.e., freshly 

cleared from their vegetation) more prone to SOM depletion in the short term. 

Organic matter transfer from litter to soil 

Nevertheless, decomposition rates are not enough to estimate litter’s contribution 

to SOM. Zheng et al. (2021) pointed out that litter mass loss rates do not inform 

us about its conversion to different forms of SOM and the extent to which organic 

matter is transferred and stored in the soil. In other words, cocoa litter may be 

slow to decompose, but it is yet to be determined which fraction of the lost mass 

may transfer to soil. For example, this proportion can be encapsulated by the k1 

humification coefficient (Janssen, 1984) or the ISMO and ISB indices (Peltre, 

2010), but these remain unknown for cocoa litter. A synthesis of stable isotope 

studies by Zheng et al. (2021) indicates that slowly decomposing litter may 

significantly increase soil C and N transfer than rapidly decomposing litter. 

Assuming this conclusion applies to cocoa, it be could hypothesised that cocoa 

litter may be better incorporated into the soil than “high-quality” litter despite its 

slow decomposition. 
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Distinction between litter stock decomposition and SOM decomposition 

Litter decomposes, and during the process, a fraction is converted to SOM (“k1”) 

and qualified as the rate of humification of organic matter (Andriulo et al., 1999). 

Other sources of inputs include all the other organic matter forms generated in 

situ, such as rhizodeposits (root exudates and root turnover) and any dead 

organisms and its excreta entering the system. Traditionally, studies interested in 

C dynamics in agroforestry systems measure litterfall rates, but the underground 

organic matter pool is perhaps overlooked. Very little data about the potential 

contribution of roots to SOM (Villarino et al., 2021) is available. Very few studies 

have measured plant rhizodeposits, and even less have examined tree 

rhizodeposits in the tropics. The rate at which SOM can be effectively deposited 

in the soil in the tropics is poorly understood. What is the flow rate of rhizodeposits 

from cocoa trees? To better explain SOM and C dynamics in cocoa agroforestry 

systems, and to other tropical perennial systems in a broader sense, research 

must determine the magnitude of these contributions, their fluctuations over 

different time intervals (e.g., daily, seasonally, over a particular phase of the life 

cycle of a tree) and their biochemical composition. Until then, the ability to predict 

SOM dynamics in tropical perennial systems will remain biased and incomplete. 

Soil organic matter after the initial decline: build-up or decline? Fast or 

slow? 

In Tarengge, a recovery of SOM contents (0-20 cm) can be observed after an 

initial rapid decline. This rebound was also observed for soil C (0-20 cm), but the 

recovery was not maintained after seven years because lower C contents were 

detected for the farms older than 7-years-old. This observation does not support 

the idea that SOM slowly builds-up after the initial rapid decline. On the contrary, 

a rapid recovery was found for SOM/clay and C/clay, followed by a moderate 

decrease instead of a slow build-up. 

In Mambu and Pussui, the hypothesis of a minimum followed by a higher plateau 

at maturity holds SOM contents and stocks (0-20 cm). The trends observed with 

texture-adjusted SOM could suggest that, in the long term, SOM could slowly 

decline or reach an new equilibrium. In Pussui, the texture-adjusted SOM 

contents were lower than for the forest sample but increased slowly over time. 
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Soil organic matter may potentially recover in the long-term 

The final assumption, “maturity levels lower than at planting”, is not fully 

supported by the results of this study. This claim is valid for Tarengge, but the 

oldest plot of the series is only 15-years-old. In Mambu and Pussui, this 

assumption was supported by the SOM contents data, but not with texture-

adjusted SOM contents because final levels were similar to the initial ones. 

Nevertheless, the challenge posed by the interpretation of Mambu and Pussui is 

that the results may miss a significant decline occurring between planting and the 

second year. Consequently, it is unsure whether SOM levels at maturity are lower 

than the SOM levels at planting . Furthermore, the data utilised in this study only 

included two farms with cocoa planted on a former forest. 

Using texture-adjusted indicators helps to compare different sites in false-

time chronosequences 

By analysing SOM, C, and N contents divided by soil’s clay contents, this study 

has by adjusting SOM, C, and N contents in large part addressed a major 

limitation of false-time chronosequences: texture differences between sites. 

Using only SOM, C, and N contents without adjusting for soil texture would have 

led to totally different interpretations of the data and poses a risk of making false 

conclusions. For example, by noticing that the pair of 2-year-old farms of Mambu 

and Pussui had both relatively higher clay contents than their corresponding 20-

year-old farms. Using SOM non-adjusted for texture would have complicated the 

interpretation of the results. SOM contents could have been assumed to decline 

between 2 and 20 years. Alternatively, this change could have been attributed to 

the effect of texture only, and therefore missing a possible change masked by 

this difference in clay content. 

Despite the usefulness of these corrections (Johannes et al., 2017; Prout et al., 

2020), texture-adjusted indices have been sparsely used in peer-reviewed 

literature. Their use may be limited to particular cases where the researcher 

wishes to compare element concentrations between sites with different textures. 

Nevertheless, it could be argued that these cases are frequent in soil science. By 

essence, comparing two soils with the same PSD is unlikely. While categorizing 

sites per texture may be helpful, the intervals associated with each texture class 

are relatively large. For instance, in USDA’s soil textural classes, a “clay” soil 

could be 60% or 100% clay, but those two different PSDs, even though they 

belong to the same classes, could behave very differently regarding their ability 

to store SOM. Although texture classes are helpful to reduce soils’ variability to 

distinct categories, they can form an unnecessary impediment and avoidable bias 



DYNAMICS OF SOIL ORGANIC MATTER, CARBON, AND NITROGEN IN A 
CHRONOSEQUENCE OF COCOA FARMS IN SULAWESI, INDONESIA Page 116 

Thomas Fungenzi Cranfield University (2018-2021) 

to soil evaluation. As a matter of fact, if soil texture is essential to explain SOM 

storage, new techniques based on the continuous distribution of soil particles 

(i.e., instead of discrete ranges like 0-2 µm for clays or 50-2000 µm for sand) 

would allow more accurate analyses. To this argument, it could also be added 

that soil texture classes are not standardized at the world level (see comparisons 

of PSD ranges in Pansu & Gautheyrou, 2006). As a result, researchers use the 

terms clay, silt, and sand to describe particles of different sizes depending on the 

country they come from, which is not optimal and could be improved by agreeing 

on a single textural scale at the world level (Martín et al., 2018). 

Relationships between SOM, C, and N 

Examining C:N ratios indicated that C:N ratios were all relatively low at all depths 

and cocoa farm ages. This indicator suggests that SOM could be susceptible to 

fast cycling since N may not be a limiting factor to decomposition. This information 

supports the argument that SOM losses can occur rapidly. It is commonly stated 

that substances with a C:N ratio below 20 (or 25) result in a net release of N, 

while substances above this limit lead to a net immobilization of soil N (Havlin et 

al., 1999). As an indication, cocoa litter was reported to have a C:N ratio of 

approximately 47:1 (Isaac et al., 2005). 

When trying to characterize SOM using the C content of SOM (C/SOM), no 

conclusive results were obtained. The C contents of SOM were very low, and 

values around 58% or above would have been expected, denoting a possible 

increase in C-rich and compounds like humic substances, woody tissues, or black 

C. Instead, C/SOM fractions were well below the traditional van Bemmelen factor 

of 58% and below the average C content of plant tissues, approximately 45% (Ma 

et al., 2018). The lowest C/SOM values reported in this study were circa 20%, 

which joins some of the highest factors reported by Pribyl (2010). 

Overall, the hypothetical dynamic is partially supported by the results 

To summarize, the results partially validated the proposed hypothetical dynamic 

with some deviations. Namely, the proposed variations in SOM, C, and N were 

observed, but the changes may occur faster than foreseen. The initial decline of 

SOM may be more rapid than expected, occurring during the first three years 

after planting. Similarly, instead of a slow recovery corresponding to the growth 

of the cocoa trees, a rapid recovery was observed (i.e., taking two to three years 

instead of a decade, corresponding to cocoa trees of five to six years old). Later, 

a slow decline was observed instead of an equilibrium, perhaps due to inputs 

decreasing in the long term, related to tree mortality or a drop in vigour. Finally, 
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the long-term level does appear to be lower than the initial levels. Overall, the 

trend resembles the initial hypothesis, but the main transition points are right-

skewed, occurring earlier than expected. 

4.4.2 Implications for soil management 

A sensitive period for soil 

In Sulawesi and under similar climates, soils may be extremely sensitive to SOM 

losses during the early years after vegetation clearance. This degradation period 

probably lasts until cocoa trees are large enough to protect the soil (e.g., cooling 

down the soil due canopy-induced shading) when the deposition of plant residues 

and rhizodeposits is sufficient to build up SOM. Such a rapid decline in SOM, C, 

and N stocks is a significant degradation event that should be considered and 

addressed by a better soil management plan. 

Replanting cycles could lead to gradual soil degradation 

The trend observed for SOM/Clay (0-20 cm) suggests that each cultivation cycle 

could pose a risk of gradually depleting SOM stocks. If the plot is cleared for 

replanting, it is logical to assume that new losses will occur. Because a slow 

decline was observed in the long-term, each replanting cycle could further deplete 

SOM stocks. In sum, cocoa cultivation could lead to a slow degradation process 

interrupted by alternating short, abrupt declines and recoveries occurring rapidly 

after every planting. If the long-term recovery does not reach pre-planting levels, 

this cycle could repeat itself, perhaps until only the most protected and 

recalcitrant forms of SOM remain. 

Offsetting losses with organic matter inputs in the short term 

Several approaches could be used to prevent this process. First, the initial decline 

could be counterbalanced by application of sufficient organic matter inputs at the 

beginning of each cycle. Using manures, composts, mulches, or a combination 

of different sorts of organic material could help reduce the impact of each planting 

cycle. Using the data mentioned before (Section 4.4.1), the need for SOM could 

be as large as approximately 28 Mg ha-1 yr-1 (i.e., corresponding to the loss of 28 

Mg ha-1 yr-1), which would mean even higher organic inputs when taking into 

account their SOM yield (i.e., the “k1” humification coefficient; Janssen, 1984). To 

provide a rough example and establish a sense of scale, using a mature cattle 

manure with a k1 of 50% (Van-Camp et al., 2004) would require approximately 

60 Mg ha-1 yr-1 to offset the losses or 80 Mg ha-1 yr-1 of green waste compost with 
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a k1 of 35%. Assuming a typical planting density of 1111 trees ha-1, these 

amounts would represent 73 and 56 kg per cocoa tree per annum. Unfortunately, 

such high rates may give a discouraging idea of the scale of the challenge facing 

the cocoa industry and maybe unattainable to smallholders. Nevertheless, this 

type of intervention could only be performed once when replanting, and spreading 

this investment over 20-30 years could probably make it much more feasible. 

Offsetting losses through long-term SOM management 

Another complementary approach could be to maintain or improve SOM stocks 

over time, using smaller but regular organic inputs. Residues with slow to 

intermediate decomposition rates should be periodically applied to increase SOM 

stocks. In tropical sandy soils, Puttaso et al. (2011) have shown that N-rich 

residues with low availability of energy-rich substrate like cellulose, and moderate 

amounts of lignins and polyphenols were best suited to accumulate SOM. In their 

study, cellulose-rich residues with low lignin and polyphenols contents like rice 

straw were detrimental to SOM accumulation. Other inputs like biochar have the 

potential to increase soil C stocks significantly. However, although biochar 

manufacturing was historically a low-tech process (e.g., pit or mound kilns), 

current approaches seem to ignore those methods to only focus on high-tech 

solutions, inaccessible to smallholders (Duku et al., 2011; Munkhbat et al., 2013; 

Pratt & Moran, 2010). These solutions and a range of other improved practices 

adapted to tropical soil are discussed by de Moura et al. (2016). 

On the other hand, a recent study reported that increased litter inputs may not 

necessarily lead to higher soil C storage because they could instead stimulate 

the decomposition of minerally-associated organic C through a priming effect 

(Sayer et al., 2019), meaning that simply increasing inputs may not be the right 

strategy to restore SOM stocks in the long-term. As a matter of fact, research 

undertaken on a cocoa field experiment (Fungenzi et al., 2021; Mulia et al., 2019) 

in Sulawesi (Indonesia) showed that compost additions (10 Mg ha-1) could lead 

to significant yield improvements while, at the same time, SOM declined. 

Appropriate integration of shade trees and intercrops could enhance the 

accumulation of SOM with positive effects on soil fertility without compromising 

cocoa productivity (Wartenberg et al., 2020). However, increasing shade tree 

diversity alone may not be enough to mitigate soil degradation on cocoa plots 

planting after deforestation. Forest strips and regular fallows could be 

implemented to regenerate secondary forests to restore soil health in the long 

term (Wartenberg et al., 2017), assuming that smallholders could be 

compensated for the corresponding loss of income. 
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While assessing the SOM balance is a practical tool that could help pilot soil 

management in cocoa systems (Brock et al., 2013; Kwiatkowska-Malina, 2018), 

no publications using this approach were found. 

Does soil organic matter ‘actually matter’ to cocoa? (Are SOM losses worth 

preventing?) 

All things considered, a crucial question is to determine whether a decline in SOM 

is detrimental to cocoa production. To what extent is this loss of SOM a problem, 

if it is an issue at all? After all, cocoa trees could still perform well on soils with 

low SOM contents. To answer this question, further evaluating the effect of 

organic matter additions on cocoa productivity is recommended. In a field 

experiment conducted in Sulawesi (Fungenzi et al., 2021; Mulia et al., 2019), it 

was demonstrated that compost additions (10 Mg ha-1 yr-1) could significantly 

increase cocoa dry bean yields (i.e., five times more than fertilizers). This result 

provides a proof of concept that cocoa soils could largely benefit from the 

application of suitable organic inputs.  

Transposability of this dynamic: a particular combination of factors that 

could be found elsewhere 

It should be emphasized that this phenomenon may exist in cocoa farms but 

could also occur with other perennial crops cultivated in the tropics like coffee, 

tea, rubber, and banana, provided that the combination of risk-factors is gathered: 

high air temperatures, high and frequent precipitations, and an abrupt transition 

between a vegetation-rich to almost bare soil. The results of this study and 

literature review both highlighted that the early years after planting might be when 

significant damage to soil occurs, and as such, management plans should 

address this phenomenon accordingly to enhance the sustainability of perennial 

tropical production agroecosystems. 

4.4.3 Limitations of this study and opportunities for 

future research 

False-time chronosequences and site comparability 

The main limitation of this study resides in the comparability of different sites, 

which is a typical constraint of space-for-time chronosequences. Comparing 

different farms may introduce significant errors in the results, making 

comparisons invalid. Using SOM, C, and N stocks instead of soil contents is one 

way to address this issue, but including soil texture – as it was done with 

SOM/clay – can help to adjust for differences in soil texture between sites. 
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Sampling equivalent soil masses is another approach that should be considered 

(von Haden et al., 2020; Wendt & Hauser, 2013). Several other factors could 

significantly influence the results observed in this study. For example, farms differ 

in management, shade tree intensity, and the previous land uses. While the 

approach adopted in this study tried to cover a broad and detailed temporal range 

of farms, the research team did not have access to a database that could have 

helped to select comparable farms. Without minimal information about cocoa 

farms, it was challenging to find farms sharing the same characteristics, which 

could have helped limit errors and differences introduced by the false-time 

approach. This study relied only on the knowledge of experienced field assistants 

to find farms of appropriate age. Farmers' memory was the only source of 

information about their farm features and history. While the field assistants and 

the farmers were instrumental in performing this study, it be cannot stressed 

enough that the absence of a farm database restrains research's ability to 

produce precise results. The root cause is probably the vast diversity of existing 

cocoa agroforestry systems, making farm-to-farm comparisons difficult. 

Repeating farm surveys at the beginning of a study to find comparable candidates 

is costly and takes much time. Nonetheless, to facilitate research on cocoa, 

developing a network of well-monitored cocoa farms would be recommended, 

with some basic but essential information about their key features (e.g., previous 

land use, shade tree species, and densities). In addition to long-term experiments 

on research stations, which are essential to monitor plantations and treatments 

throughly, the value of such a network of cocoa farms can be advocated. Cocoa 

industries are improving their data collection on cocoa farms for traceability 

reasons (e.g., “Katchilé” app of Barry Callebaut), and this approach opens the 

way to develop a database of cocoa farms which could be used for research 

purposes by also including agronomical data of specific cocoa farms. This 

progress would greatly facilitate future on-farm research. If comparing farms 

having different soils and management can lead to questionable results, one of 

the most effective solutions should be to monitoring true chronosequences 

andchanges in soil properties on the same farms from pre-planting onwards. 

Monitoring short-term changes 

Although rapid declines have been observed in the aforementioned studies, this 

phenomenon should be assessed by monitoring rapid SOM changes right after 

planting a cocoa farm, perhaps by sampling every 4-6 months for 3-5 years. If 

cocoa planting involves leaving the land cleared for a prolonged time before 

planting (several months), soil sampling should scrutinize possible changes 
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occurring during this post-clearance and pre-planting period. Sampling before 

land preparation (e.g., forest clearing) could help monitor soil changes occurring 

during this transition period when the ecosystem is experiencing an abrupt shift. 

This particularity also emphasizes that real-time chronosequences are needed to 

monitor cocoa soil changes accurately. 
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4.5 Conclusions 

The results of this study suggest that cocoa farms’ initial stock of SOM could 

rapidly decline after planting due to a combination of different factors. The 

association of high temperatures and high annual precipitations throughout the 

year promotes the fast decomposition of SOM. Following planting, vegetation 

clearing reduces organic matter inputs and may lead to SOM outputs exceeding 

inputs, resulting in a net loss of SOM. However, as cocoa trees grow, their 

contribution to SOM seems to quickly attain a turning point where SOM gains 

overtake losses, driving SOM contents to increase and reach a new equilibrium. 

Nevertheless, this recovery may not reach pre-planting levels, and each 

replanting could lead to a further cycle of degradation. Furthermore, crops grown 

under similar climates (such as coffee, tea, banana, or rubber) may also be 

affected by this phenomenon, expanding the areas prone to rapid post-planting 

soil degradation. Using pedoclimatic data should be the next step to determine 

which zones may be at risk since temperature and rainfall are the main drivers of 

SOM mineralisation in the tropics. Future research should consider the first years 

after planting as a possible sensitive period, where significant soil degradation 

could occur. The results of this study should incite farmers and other stakeholders 

to reconsider their practices, and measures should be taken to prevent rapid post-

planting soil degradation, especially because SOM losses may be difficult to 

compensate. 
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5. MODELLING SOIL ORGANIC 

DYNAMICS IN INDONESIAN COCOA 

FARMS 

Highlights 

• The AMG soil model was adapted to simulate SOM dynamics in perennial 

tree crops like cocoa 

• SOM may decline rapidly after planting a cocoa farm 

• SOM stocks may build up slowly on the long-term 

• Long-term SOM stocks can be lower or higher than the levels at planting  

• The early years after planting would require significant organic inputs to 

fully compensate for SOM losses 

Summary 

The fate of soil organic matter (SOM) has important consequences for soil fertility 

and climate change. Due to the long-term nature of SOM dynamics, modelling is 

a valuable approach to predicting SOM stocks' variations and anticipating the 

potential effects of soil management decisions. Nonetheless, not all land uses 

and agricultural systems have received the same level of scrutiny. In particular, 

knowledge of SOM dynamics in perennial tropical systems like cocoa remains 

limited. The objective of this study was to model SOM dynamics in a cocoa farm. 

It was hypothesized that the SOM stock would rapidly decline after planting 

before slowly building up over the long term. The AMG soil model (Clivot et al., 

2019) was adapted to meet the requirements of cocoa and test this hypothesis 

because it represented a straightforward and versatile option. The model was 

evaluated by using data from 13 Sulawesian cocoa farms (Indonesia). The model 

was also used to estimate the quantities of organic inputs (such as rice straw, 

cattle manure, goat manure, rameal wood chips and biochar) required to offset 

SOM losses completely. The different simulations supported the hypothesis. Due 

to the fast decomposition of SOM (the local conditions suggested a SOM 

mineralisation coefficient of 0.125), the early years after planting were 

characterized by a significant decline of the SOM stock because plant inputs were 

insufficient to compensate for the losses. Significant degradation through SOM 

depletion may occur in tropical soils during the early years after clearing a 

biomass-rich system. This simple model was reasonably accurate as the results 

fitted with the range of observations obtained on the farm dataset (RMSE = 19.22 

Mg SOM ha-1; 0-20 cm) and can be easily adapted to simulate other tree-like 
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crops but must be validated and calibrated with true rather than false-time 

chronosequences. Several opportunities for improving the model 

representativeness are presented. 

Keywords: Modelling, soil organic matter, cocoa, Indonesia, Theobroma cacao. 

5.1 Introduction 

5.1.1 Background information 

Soil organic matter conservation is at the nexus of critical societal issues such as 

sustainable agricultural production and climate change mitigation (Janzen, 2004). 

Soil organic matter (SOM) is one of the most important constituents of soils and 

plays a major role in the global carbon (C) cycle (Baveye et al., 2020) since SOM 

is composed of approximately 50% of C (Pribyl, 2010). SOM regulates critical soil 

functions and properties (Murphy, 2015), and its fate in soil depends on 

environmental conditions and land management practices (Brady & Weil, 2017; 

Söderström et al., 2014). Soils can store or emit C into the atmosphere (Navarro-

Pedreño et al., 2021). Therefore, predicting the temporal variations of SOM 

stocks is crucial for making the best-informed decisions regarding farm 

management practices (Baveye et al., 2020; Blankinship et al., 2018). Land-use 

changes involving the conversion of “natural” to agricultural ecosystems can 

significantly deplete SOM stocks (as much as 60-75%, Lal, 2004), thereby 

emitting C into the atmosphere. The soil C debt of 12,000 years of human land 

use may have reached 133 Pg C (Sanderman et al., 2017, 2018). Conserving 

and even increasing SOM stocks is critical to sustain agricultural production and 

contribute to climate change mitigation (Minasny et al., 2017; Oldfield et al., 2015, 

2019). 

Many models have been developed to simulate the dynamics of SOM or C in soil 

for different crops or rotations under various pedoclimatic contexts (Campbell & 

Paustian, 2015). Nevertheless, several crops have been largely 

underrepresented. Cocoa (Theobroma cacao L.) has not received sufficient 

attention with regards to modelling SOM dynamics. Running searches on Web 

Of Knowledge with the search words “cocoa + model + soil + organic + matter” 

and “cocoa + model + soil + carbon” did not return any study using a predictive 
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modelling approach2. The only article referring to modelling was Silatsa et al. 

(2017), but their method consisted of fitting a non-linear model to a false-time 

chronosequence, not developing or applying a predictive model. At the same 

time, the expansion of the land used for growing cocoa has been accelerating for 

the past 50 years, going from 4.4 million ha in 1970 to 12.2 in 2020 (FAO, 2020), 

often at the expense of natural forest ecosystems (Ruf, 2001; Ruf et al., 2015). 

Nevertheless, cocoa farming can be “climate-friendly” when more sustainable 

practices are implemented (Schroth, Jeusset, et al., 2016). 

5.1.2 Problem statement 

Despite the tremendous economic, environmental, and sociological importance 

of cocoa farming (Voora et al., 2019), mechanistic understanding of cocoa SOM 

dynamics remains superficial. Field studies have been conducted to assess plant 

and SOM or C (see references of Chapter 2), but to date , the lessons learned 

from these experiments have not been gathered to generate a mathematical 

model of SOM dynamics in cocoa fields. Ignorance of what happens to SOM 

limits stakeholders ability to manage cocoa soils optimally if not corrected. 

Predicting variation in SOM stocks offers an opportunity to improve the 

productivity and sustainability of cocoa farming. With a predictive model 

describing SOM dynamics, it will be easier to effectively manage the organic 

component of soil fertility in a well-informed manner. Cocoa soils could be 

preserved from SOM depletion, and it will be possible to compensate the 

environmental footprint of cocoa farming by increasing soil C-sequestration. 

5.1.3 Research design 

The objective of this study was to describe the SOM dynamics of a cocoa farm 

using a modelling approach. More specifically, this study sought to build, assess, 

and apply a model capable of predicting the temporal variations of SOM stocks 

in a cocoa farm . The intent was also to simulate the effect of various exogenous 

organic matter (EOM) input scenarios onto SOM stocks to prevent SOM 

depletion. Ultimately, it is anticipated that this model will be easily adjustable to 

simulate other similar perennial systems. 

 
2 The agroforestry model WaNuLCas (Van Noordwijk & Lusiana, 1998) offers the possibility to 
model cocoa farms and SOM dynamics, but no publications addressing cocoa were found. 
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It was hypothesized that the SOM dynamics of a Sulawesian cocoa farm would 

correspond to the hypothetical pattern presented in Chapter 4, that is, an initial 

rapid decline of the SOM stock after planting followed by a slow build-up in the 

long term. The “common-sense approach to problem-solving” described by Grant 

& Swannack (2007) was followed to develop the model. This approach is based 

on modelling theory and relies on system thinking. To evaluate the model, the 

results of a simulation obtained with baseline values from Sulawesian cocoa 

farms were compared to the false-time chronosequence presented in Chapter 4. 

The sensitivity of the model to different input parameters was analysed. Finally, 

the model was applied to each farm of the dataset to assess SOM dynamics and 

predicted how much SOM would be necessary to offset losses in the average 

farm. 
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5.2 Material & methods 

5.2.1 Methodological approach 

This study followed a three-stage approach, including a series of successive 

operations (Table 5.1). The first stage consisted of developing the model. The 

work began by providing an overview of the main components and characteristics 

of the conceptual model, translating those concepts to mathematical equations, 

and finally, by quantifying each parameter. The second phase focused on 

evaluating the performance and behaviour of the model through regression and 

sensitivity analysis. The third stage of this modelling experiment involved the 

application of the model to simulate different scenarios. A preliminary step of 

reverse modelling was carried out first to determine the initial condition of the 

modelled system. Several metrics were then used to assess the SOM dynamics 

of different restoration scenarios aiming to conserve SOM stocks during cocoa 

cultivation. 

Table 5.1: Methodological stages and operations 

Stage Operations 

1) Model development 

1.1) Model presentation 

1.2) Mathematical description 

1.3) Parametrization 

2) Model evaluation 
2.1) Regression analysis 

2.2) Sensitivity analysis 

3) Model application 

3.1) Reverse modelling 

3.2) Metrics to assess SOM dynamics 

3.3) Restoration scenarios 
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5.2.2 Model development 

c. Model presentation 

Main characteristics of the model 

The stock of SOM results from a balance between inputs and outputs. Over time, 

it may reach a dynamic equilibrium if the system is stable (constant or regular 

inputs and outputs). Soil organic matter models differ in the number of 

compartments they allocate to SOM. Some consist of a single SOM compartment 

(Hénin & Dupuis, 1945; Yang & Janssen, 2000), while the more recent models 

are multi-compartmental (e.g., AMG, RothC, CENTURY; respectively Andriulo et 

al., 1999; Coleman & Jenkinson, 1996; Parton, 1996). In this study, it was decided 

to use the AMG model (version 2) for its simplicity (limited number of parameters) 

and adaptability (easily modified to simulate perennial tree crops). The model was 

adapted to fit the particularity of perennial systems because the original version 

of AMG was developed to simulate annual arable crops. 

With AMG, two pools of SOM are delimited: an active and a passive pool. The 

active pool receives inputs and incurs losses while the passive pool is treated as 

inalterable, inactive in SOM transformations during the simulation (in this case, 

35 years, 4 years longer than the false-time chronosequence of Chapter 4). The 

processes are simulated discretely, using annual time steps. It was supposed 

that SOM inputs come mainly from litterfall and rhizodeposition (root turnover and 

exudates; Shaw & Burns, 2007). Those input flows are assumed to be 

proportional to cocoa biomass and age. Outputs of SOM are estimated to come 

only from mineralisation. Loss by erosion or other forms of material transfer are 

assumed insignificant in comparison . 

With this version, the model of cocoa SOM dynamics combines two sub-models. 

The first sub-model represents cocoa growth and development by simulating the 

accumulation and loss of tree biomass based on temporal and allometric 

relationships developed for Sulawesian cocoa farms (see Chapter 4). The lost 

biomass (litterfall and rhizodeposition) is transferred to the soil as residues. The 

second sub-model is based on the AMG model (named after its initial developers, 

Andriulo, Mary and Guérif: Andriulo et al., 1999; Clivot et al., 2019; Saffih-Hdadi 

& Mary, 2008). A stable SOM fraction is initialized at the start of the model and 

remains unchanged over time. A fraction of fresh residues is converted to active 

SOM. The transfer rates between fresh residues and active SOM depend on 

environmental factors and the type of plant residues (mainly leaves, branches, 



MODELLING SOIL ORGANIC DYNAMICS IN INDONESIAN COCOA FARMS Page 129 

Thomas Fungenzi Cranfield University (2018-2021) 

twigs, and fine roots). The final model can be classified according to its underlying 

hypotheses (J. Smith & Smith, 2007): 

- Output: Quantitative (because the output, SOM stock, is a quantitative 

measure) and Deterministic (because the output is not subject to 

probabilities) 

- Input: Dynamic with regards to soil processes, but Static with regards to 

cocoa growth 

- Scope: Predictive/Explorative (because it is intended to be used in 

different settings) 

- Application: Functional (because it describes changes, not to explain 

how changes happen) 

Conceptual model 

In Figure 5.1, the SOM model is mapped with a Forrester diagram (Grant & 

Swannack, 2007; Haefner, 2005). It is a visual representation used in system 

dynamics to illustrate the flow of measurable quantities and the variables that 

control them. Rectangles symbolize the state variable of the model. The driving, 

constant, and auxiliary variables are represented with circles and rhombuses. 
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Figure 5.1: Forrester diagram representing the dynamics of soil organic matter (SOM) in cocoa farms 

EOM stands for exogenous organic matter. PET stands for potential evapotranspiration. 
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Modelling choices and assumptions 

The model makes several critical assumptions regarding the boundaries of the 

system of interest, as listed below. Most of them result in modelling limitations, 

which could be improved in future versions. Some of them are modelling choices, 

subjective decisions made during the model’s development: 

1. Cocoa growth is predicted by a static growth curve 

2. Shade trees and other associated species are not considered 

3. Constant cocoa tree density 

4. Low resolution between the different types of residues (e.g., leaves and 

branches are bundled into one type) 

5. Residue deposition rates are proportional to trunk diameter 

6. Residues cannot last more than one year. No intermediate state between 

residues and SOM or loss 

7. Material transfers of SOM (like erosion) out of the system are discounted 

8. Use of the AMGv2 function to estimate SOM mineralisation rate 

Validity domain 

Given the limited size of the false-time chronosequence dataset, it was assumed 

the model to be only valid for Sulawesi or for cocoa farms cultivated under similar 

pedoclimatic conditions (see Table 5.3 for details about the local variables at each 

farm of the false-time chronosequence). 

Time-wise, the model was assumed to provide acceptable predictions for 30-35 

years since the growth curve was established for a 31-year false-time 

chronosequence. The evolution of cocoa growth or litterfall deposition rates 

beyond this term was ignored. Gathering more data from very old farms could 

help clarify what SOM dynamics beyond 35 years, but the usefulness of such an 

endeavour would be limited considering that old cocoa farms should have been 

rehabilitated by then. 

Because the farm management approaches of the false-time chronosequence 

dataset differed (e.g., in terms of shade tree density and species used), a word 

of caution should be expressed regarding the applicability of the model to very 

different types of shade management. In addition, the current approach did not 

include shade trees as explicit contributors to SOM inputs. The model can be 

improved to consider a specific growth curve and plant deposition rates 

(aboveground and belowground), determined for each shade tree or associated 

species. 
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Expected behaviour  

In cocoa farms established on freshly deforested lands or mature cocoa farms, 

SOM stocks are expected to decline first since fewer inputs come from the 

vegetation, while potential SOM mineralisation rates will remain relatively high 

(i.e., outputs > inputs). Over time an increase in the stock of SOM is expected 

because inputs will increase with the growth of the cocoa trees and could exceed 

outputs. The SOM stock may not return to pre-clearing levels in the long term if 

a sufficient long-term SOM management recovery plan does not compensate for 

the initial SOM losses. This hypothetical SOM trend was discussed in Chapter 4. 

d. Mathematical description 

Initialization 

The initial stock (𝑆𝑂𝑀𝑠𝑡𝑜𝑐𝑘[𝑡=0]; Mg ha-1) is calculated by using the product of soil 

bulk density (𝐵𝐷; g cm-3), sampling depth (𝑑; cm) and initial SOM content 

(𝑆𝑂𝑀𝑐𝑜𝑛𝑡𝑒𝑛𝑡[𝑡=0]; %) with Equation 5.1 (multiplying by 100 to convert the result to 

Mg ha-1). Then, the stock of passive SOM that will remain constant during the 

simulation is found by multiplying the initial stock of SOM with a split ratio 

(𝑆𝑂𝑀𝑠𝑝𝑙𝑖𝑡_𝑟𝑎𝑡𝑖𝑜; unitless) representing the estimated fraction of active SOM out of 

the total stock of SOM, as proposed in Clivot et al. (2019) with Equation 5.2. The 

total stock of SOM is simply the sum of active and passive SOM. 

𝑆𝑂𝑀𝑠𝑡𝑜𝑐𝑘[𝑡=0] = 100. 𝐵𝐷. 𝑑. 𝑆𝑂𝑀𝑐𝑜𝑛𝑡𝑒𝑛𝑡[𝑡=0] Equation 5.1 

𝑆𝑂𝑀𝑝𝑎𝑠𝑠𝑖𝑣𝑒[𝑡=0] = (1 − 𝑆𝑂𝑀𝑠𝑝𝑙𝑖𝑡_𝑟𝑎𝑡𝑖𝑜). 𝑆𝑂𝑀𝑠𝑡𝑜𝑐𝑘[𝑡=0] Equation 5.2 

SOM balance equation 

The model represents the variation of the stock of SOM per hectare (𝑆𝑂𝑀𝑠𝑡𝑜𝑐𝑘[𝑡]; 

Mg ha-1), resulting from the balance between yearly inputs and outputs (Equation 

5.3). Soil organic matter inputs come from the aboveground and belowground 

pools of cocoa biomass and are added to the passive pool of SOM (respectively, 

𝑆𝑂𝑀_𝑖𝑛𝐴[𝑡], 𝑆𝑂𝑀_𝑖𝑛𝐵[𝑡], 𝑆𝑂𝑀𝑝𝑎𝑠𝑠𝑖𝑣𝑒). SOM outputs are applied to the active pool 

only and are equal to the SOM mineralisation coefficient 𝑘2 (unitless) multiplied 

to the current stock of active SOM (𝑆𝑂𝑀𝑎𝑐𝑡𝑖𝑣𝑒[𝑡]). This balance is calculated each 

year to predict the stock of SOM of the following year (Equation 5.4). 

𝑆𝑂𝑀𝑠𝑡𝑜𝑐𝑘[𝑡+1] =  𝑆𝑂𝑀𝑠𝑡𝑜𝑐𝑘[𝑡] + (𝑖𝑛𝑝𝑢𝑡𝑠[𝑡] −  𝑜𝑢𝑡𝑝𝑢𝑡𝑠[𝑡]). ∆𝑡 Equation 5.3 
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𝑆𝑂𝑀𝑠𝑡𝑜𝑐𝑘[𝑡+1] =  𝑆𝑂𝑀𝑝𝑎𝑠𝑠𝑖𝑣𝑒 + 𝑆𝑂𝑀𝑎𝑐𝑡𝑖𝑣𝑒[𝑡] + 𝑆𝑂𝑀_𝑖𝑛𝐴[𝑡]

+  𝑆𝑂𝑀_𝑖𝑛𝐵[𝑡] −  𝑆𝑂𝑀𝑜𝑢𝑡[𝑡] 

 

 

Equation 5.4 

Cocoa growth, aboveground and belowground biomass 

Cocoa tree growth is not well documented, as only a few studies have reported 

measurements (e.g., Asigbaase et al., 2021; Smiley, 2006; Smiley & Kroschel, 

2008; see Chapter 2 for more information), with often limited timesteps. Thus, 

very few datasets are available to estimate or derive cocoa tree growth 

parameters. A three-step approach was followed to obtain a relationship linking 

age to the biomass present in the trees (see Chapter 4). First, the trunk diameters 

of cocoa trees in a 0.5 to 31-years long false-time chronosequence in Sulawesi 

were measured. Then, an allometric relationship (Smiley & Kroschel, 2008) was 

used to convert the trunk sizes into tree biomass stocks, above and belowground. 

Finally, a non-linear regression was performed on this dataset to obtain a pair of 

mathematical equations linking the age of the cocoa stand to its estimated 

biomass stocks (one equation for the aboveground biomass, one for the 

belowground biomass). 

It should be noted that this relationship was developed in Sulawesi on thirteen 

slightly different farms (varying in terms of shade level, soil type, and other 

factors). One of the cocoa model's future major improvements is replacing it with 

a dynamic growth model responding to environmental conditions. It should be 

stressed that with this approach, the model does not take into account the effect 

of environmental factors: growth is purely time-correlated and should be 

parametrized with local measurements. Therefore, cocoa tree growth parameters 

should be estimated in other locations to apply the model in other areas. 

The cocoa tree sub-model begins by calculating the aboveground and 

belowground biomass. The biomass in the two compartments depends on the 

planting density of the cocoa trees (𝐷; tree ha-1), age (t; years), and an allometric 

relationship linking age to biomass. A non-linear equation was used (Equation 

5.5) to determine the relationships between cocoa tree age and aboveground 

biomass (𝐴𝐺𝐵[𝑡]). Belowground biomass (𝐵𝐺𝐵[𝑡]) is estimated by applying a 

cocoa root-to-shot ratio (RSR; unitless) to aboveground biomass (Equation 5.6). 

𝐴𝐺𝐵[𝑡] =  𝐷. (𝐿𝑚𝑎𝑥 − 𝐿𝑚𝑎𝑥. 𝑒(−𝐺𝑅.𝑡)𝛿
) /1000 Equation 5.5 

𝐵𝐺𝐵[𝑡] =  𝑅𝑆𝑅. 𝐴𝐺𝐵[𝑡] Equation 5.6 



MODELLING SOIL ORGANIC DYNAMICS IN INDONESIAN COCOA FARMS Page 134 

Thomas Fungenzi Cranfield University (2018-2021) 

With the growth parameters: 

- 𝐿𝑚𝑎𝑥 : the maximum amount of biomass attainable by a cocoa tree (kg);  

- 𝐺𝑅 : the growth rate of the cocoa trees (kg year-1); 

- 𝛿 : shape parameter controlling the x-ordinate for the point of inflection of 

the growth curve (unitless).  

Aboveground and belowground inputs from plant biomass 

The method to calculate the inputs from the aboveground biomass reservoir 

differs from the belowground reservoir. In the following equations, subscript A 

refers to aboveground inputs and subscript B to belowground inputs. 

Aboveground inputs 

The approach described by AMG was simplified. For this model, fresh organic 

matter inputs are not explicitly individualized as a distinct reservoir because, at 

the end of each time step, annual organic matter inputs are directly converted 

into active SOM, and the remainder is leaving the system (i.e., the “non-humified” 

fraction is returned to the atmosphere). In other words, residue deposition and 

conversion to SOM are assumed to occur during the same year. This approach 

can also be modified in the future if it is judged that a significant pool of residues 

persists for more than one year. 

Concerning residue deposition, the yearly amount of organic matter inputs is 

expected to increase with time and is relatively proportional to the total amount 

of cocoa biomass. Several studies have covered litterfall dynamic (e.g., Dawoe 

et al., 2010; Fassbender et al., 1988; Somarriba et al., 2013), but often with 

minimal time steps (e.g., 2, 5, 10 year-old cocoa, just like for cocoa growth 

measurements). To simplify, it was assumed here that yearly, a fixed percentage 

of the aboveground biomass is turned annually into residues (𝑅𝐷𝑅𝐴; unitless). 

Following the logic of AMG, a fixed humification coefficient (𝑘1𝐴; year-1) was also 

used to estimate the fraction of aboveground inputs remaining as SOM after one 

year. The amount of SOM inputs coming from the aboveground reservoir of 

biomass (𝑆𝑂𝑀_𝑖𝑛𝐴[𝑡]; Mg ha-1) is calculated by using Equation 5.7. 

𝑆𝑂𝑀_𝑖𝑛𝐴[𝑡] =  𝑘1𝐴. 𝑅𝐷𝑅𝐴. 𝐴𝐺𝐵[𝑡] Equation 5.7 

Inputs due to pruning and exports due to harvest are not yet integrated into the 

model. As opposed to AMG, this model does not include a harvest removal 

coefficient. With AMG, this coefficient was introduced to study the effect of crop 

residue removal, as with straw removal for wheat or corn stalk removal. The 
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harvest and removal of cocoa pods do not reduce cocoa biomass because the 

allometric equation predicts only the biomass of roots, branches, twigs, and 

leaves. There is, therefore, no reason to subtract harvest from tree biomass since 

pods are not accounted for. 

Conversely, the return of cocoa pod husks can be simulated with the model and 

considered an EOM input. At this stage, the influence of pruning on residue 

deposition is ignored. A further improvement could include prunings, considering, 

for example, its frequency and intensity (percentage of biomass removed from 

the tree every n year).  

Initial litter stock 

With this model, none of the deposits of the current year will persist during the 

following year. This choice eliminates the existence of a litter reservoir since litter 

inputs are directly, either converted to SOM or lost atmospherically during the 

yearly timestep. However, it is possible to consider that a certain amount of litter 

(𝐿𝑖𝑡𝑡𝑒𝑟[𝑡=0]; Mg ha-1) is already present at planting. The SOM inputs from the initial 

litter stock are calculated during the first timestep by adding the litter stock to 

residues deposited the same year (Equation 5.8). 

𝑆𝑂𝑀_𝑖𝑛𝐴[𝑡=1] = 𝑘1𝐴. (𝑅𝐷𝑅𝐴. 𝐴𝐺𝐵[𝑡=1] + 𝐿𝑖𝑡𝑡𝑒𝑟[𝑡=0]). Equation 5.8 

Belowground inputs 

Belowground contributions to SOM had to be adapted because, with the arable 

version of AMG, all the crop roots are left in the field as crop residue after harvest. 

With perennial crops like cocoa, roots remain in the ground, and therefore 

belowground inputs are not the result of a harvest but only of root turnover and 

the production of rhizodeposits. It was considered that belowground inputs come 

from two sources, the turnover of fine roots and the production of root exudates, 

as with the original AMG version. 

Roots are often divided into categories according to their diameter. A common 

approach is to distinguish fine roots (≤ 2 mm) from coarse roots (> 2 mm), which 

may also be characterized by different productivity and turnover rates. The finer 

the roots, the more often they are renewed. Therefore, the fraction of 

belowground biomass occupied by fine and coarse roots was estimated 

(procedure explained in the following 5.2.2.e Parametrization section). An 

estimated annual turnover rate for fine roots was then used, assuming that coarse 

roots do not contribute to SOM inputs, corresponding to the fraction of fine roots 

annually converted to SOM. Inputs from fine roots are calculated as the product 
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of belowground biomass (𝐵𝐺𝐵; Mg ha-1), the fine root fraction (𝐹𝑅𝐹; unitless), the 

annual turnover rate of fine roots (𝐹𝑅𝑇𝑂𝑅; unitless) as well as the humification 

coefficient specific to belowground biomass (𝑘1𝐵; year-1). 

No references where found that quantified belowground inputs linked to cocoa 

root exudation and other belowground deposition processes unrelated to root 

turnover. The yearly production of root exudates is also estimated to be 

proportional to cocoa biomass. Values reported for other plants were used to 

estimate cocoa exudation (Jones et al., 2009; Kuzyakov & Domanski, 2000b; 

Kuzyakov & Schneckenberger, 2004; Pausch et al., 2013; Pausch & Kuzyakov, 

2018). More specifically, a coefficient was used to estimate the relative 

contribution from root exudates associated with fine root biomass (𝐸; year-1). As 

with fine roots, SOM inputs coming from root exudation are calculated as the 

product of belowground biomass (𝐵𝐺𝐵; Mg ha-1), the fine root fraction (𝐹𝑅𝐹; 

unitless) and the annual exudation coefficient (𝐸; year-1), as well as the 

humification coefficient specific to belowground biomass (𝑘1𝐵; year-1). 

Another factor addresses the fraction of cocoa root biomass found for the studied 

soil layer (adjustment used by Clivot et al., 2019, proposed by Gale & Grigal, 

1987) and depends on the typical distribution of cocoa roots (𝐷𝑒𝑓𝑓; unitless) and 

the sampled depth (𝑑; cm). This depth effect is calculated with Equation 5.9. 

𝐷𝑒𝑓𝑓 = 1 − 𝛽𝑑 Equation 5.9 

Overall, belowground SOM inputs (𝑆𝑂𝑀_𝑖𝑛𝐵; Mg ha-1) are calculated by using 

Equation 5.10. 

𝑆𝑂𝑀_𝑖𝑛𝐵[𝑡] = 𝑘1𝐵. 𝐹𝑅𝐹 . (𝐸 + 𝐹𝑅𝑇𝑂𝑅). 𝐵𝐺𝐵[𝑡]. 𝐷𝑒𝑓𝑓 Equation 5.10 

Inputs of exogenous organic matter (EOM) 

The non-cocoa contribution to SOM from EOM (e.g., compost, manure, plant 

residues) follows the same logic as aboveground and belowground inputs. For 

each input, the contribution to SOM is equal to the product of the yearly 

application rate (on a dry mass basis; 𝐸𝑂𝑀𝑟𝑎𝑡𝑒 ; Mg ha-1 yr-1) and the humification 

coefficient (𝐸𝑂𝑀𝑘1; unitless) relative to the nature of the EOM input (SOM yield, 

one year after application), based on average reference values (e.g., 0.25 for 

fresh cattle manure, 0.40 for compost, 0.85-0.96 for peat; Clément & 

N’Dayegamiye, 2009). This coefficient can be determined through incubation 

experiments or estimated using the Van Soest biochemical fractionation method 

(Peltre, 2011). Each year, the inputs of SOM coming from EOM (𝐸𝑂𝑀_𝑖𝑛[𝑡]) are 

calculated with Equation 5.11 and are added to the cocoa tree aboveground and 
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belowground SOM inputs with Equation 5.12 (same as Equation 5.4 but includes 

EOM inputs).  

𝐸𝑂𝑀_𝑖𝑛[𝑡] =  𝐸𝑂𝑀𝑟𝑎𝑡𝑒 . 𝐸𝑂𝑀𝑘1 Equation 5.11 

𝑆𝑂𝑀𝑠𝑡𝑜𝑐𝑘[𝑡+1] =  𝑆𝑂𝑀𝑝𝑎𝑠𝑠𝑖𝑣𝑒 + 𝑆𝑂𝑀𝑎𝑐𝑡𝑖𝑣𝑒[𝑡] + 𝑆𝑂𝑀_𝑖𝑛𝐴[𝑡]

+  𝑆𝑂𝑀_𝑖𝑛𝐵[𝑡] + 𝐸𝑂𝑀_𝑖𝑛[𝑡] −  𝑆𝑂𝑀𝑜𝑢𝑡[𝑡] 
Equation 5.12 

In the R program, the model also takes in the argument 𝐸𝑂𝑀𝑓𝑟𝑒𝑞 corresponding 

to the frequency of application of the EOM inputs every n year (e.g., “1” if EOM 

inputs are applied every year, “2” if they are applied every two years, and so on). 

It is also possible to delay the first application with another argument 𝐸𝑂𝑀𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 

to indicate after how many years after planting the first application is made (e.g., 

“1” if the EOM is applied the first simulation years, “2” if inputs started only the 

second simulation year, and so on). 

SOM outputs by mineralisation 

The outputs of SOM are only controlled by the yearly rate of mineralisation of the 

active pool (referred to as 𝑘2, as in the Hénin-Dupuis and AMG models). This rate 

is hardly measurable at a yearly scale or would require a considerable sampling 

effort because of the local heterogeneity of SOM contents. It usually takes several 

years or even decades to detect a significant change. Mineralisation rates are 

usually in the 0 to 7% range (a loss of 0-7% each year; (Morais et al., 2019)) but 

could be as high as 20 to 50% in the first years after deforestation in tropical 

climates (Dawoe et al., 2010; Mishra et al., 2021; Van Straaten et al., 2015). 

Several functions have been proposed to estimate k2 from climate and soil data, 

although to the authors knowledge, none have as yet been applied to cocoa or 

calibrated in tropical regions (except Saffih-Hdadi & Mary, 2008, who used AMG 

with a long-term dataset from Thailand, but for cereal crops). It was decided to 

use version 2 of the AMG model, which includes six input variables to estimate 

𝑘2: soil moisture, temperature, pH, clay, carbonate content, and C:N ratio. 

Yearly outputs of SOM (𝑆𝑂𝑀𝑜𝑢𝑡) are determined by using the annual coefficient 

of mineralisation (𝑘2; unitless) applied to the current stock of active SOM (𝑆𝑂𝑀𝑎𝑐𝑡; 

Mg ha-1), with Equation 5.13. 

𝑆𝑂𝑀𝑜𝑢𝑡[𝑡] = 𝑘2. 𝑆𝑂𝑀𝑎𝑐𝑡[𝑡] Equation 5.13 

SOM mineralisation rate 

This annual mineralisation coefficient is estimated by applying rate modifying 

factors to a potential mineralisation rate (𝑘0). To each rate modifying factors 
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correspond a function corresponding to the effect of temperature (𝑓(𝑇)), a proxy 

of soil moisture (𝑓(𝐻), using annual precipitations P, potential evapotranspiration 

PET and irrigation water H as inputs), soil pH (𝑓(𝑝𝐻)), soil C/N ratio (𝑓(𝐶 𝑁)⁄ ), 

and soil clay (𝑓(𝐴)) and carbonate contents (𝑓(𝐶𝑎𝐶𝑂3)). The pattern for each 

modifying function is illustrated in Figure A - 5.1 in appendix. For more information 

about the development of this equation and details about each function, refer to 

Clivot et al. (2019). 

𝑘2 =  𝑘0. 𝑓(𝑇). 𝑓(𝐻). 𝑓(𝐴). 𝑓(𝐶𝑎𝐶𝑂3). 𝑓(𝑝𝐻). 𝑓(𝐶/𝑁) Equation 5.14 

With 𝑘0 = 0.290 as the potential mineralisation rate per year. 

e. Parametrization 

Functional parameters 

Functional parameters refer to model parameters that are independent of the 

local conditions of the cocoa farms. In theory, they remain the same for different 

cocoa farms, which will only differ in soil, climate, and management. Each 

functional parameter is listed in Table 5.2. The following sections will present the 

rationale behind each value. 
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Table 5.2: Summary of the default values used for each functional parameter 

Functional parameter Notation Value Unit Source 

Growth parameter (upper asymptote) 𝐿𝑚𝑎𝑥 137.06 kg tree-1 Chapter 4 

Growth parameter (growth rate) 𝐺𝑅 0.1 kg tree-1 year-1 Chapter 4 

Growth parameter (shape parameter) 𝛿 1.09 unitless Chapter 4 

Root-to-shoot ratio 𝑅𝑆𝑅 0.23 unitless Borden et al. (2019) 

Soil sampling depth 𝑑 20 cm Chapter 4 

Root fraction in sampling depth (depth effect) 𝐷𝑒𝑓𝑓 0.8 unitless 
Kummerow et al., (1982); Moser 
et al., (2010); Niether et al., 
(2019) 

Cocoa root distribution parameter 𝛽 0.923 unitless 
Moser et al., (2010); Niether et 
al., (2019) 

Fraction of aboveground biomass deposited annually 𝑅𝐷𝑅𝐴 0.09 year-1 
Dawoe (2009); Dawoe et al. 
(2010) 

Fine root fraction 𝐹𝑅𝐹 0.28 unitless Rajab et al. (2016) 

Annual fine root turnover rate 𝐹𝑅𝑇𝑂𝑅 0.985 year-1 Muñoz & Beer (2001) 

Root exudation coefficient 𝐸 0.5 year-1 
Kuzyakov & Domanski, (2000); 
Kuzyakov & Schneckenberger 
(2004); Pausch et al. (2013) 

SOM split ratio 𝑆𝑂𝑀𝑠𝑝𝑙𝑖𝑡 0.4 unitless Clivot et al. (2019) 

Humification coefficient of aboveground residues 𝑘1𝐴 0.21 year-1 
Dawoe (2009); Dawoe et al. 
(2010) 

Humification coefficient of belowground residues 𝑘1𝐵 0.39 year-1 Clivot et al. (2019) 

SOM mineralisation rate 𝑘2 (location dependent) year-1 Clivot et al. (2019) 

Rate of application of organic inputs 𝐸𝑂𝑀𝑟𝑎𝑡𝑒 (scenario dependent) Mg ha-1 year-1 User choice 

Humification rate of organic inputs 𝐸𝑂𝑀𝑘1 (input dependent) year-1 Depends on the input 

Frequency of application of organic inputs 𝐸𝑂𝑀𝑓𝑟𝑒𝑞 (scenario dependent) year User choice 

First year of application after planting 𝐸𝑂𝑀𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 (scenario dependent) year User choice 
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Relationship between cocoa age and biomass 

Cocoa tree growth was modelled using a Weibull equation with the following 

parameters (see Chapter 4): 

• The maximum amount of aboveground biomass that a cocoa tree can 

reach was set to 137.06 kg (upper asymptote parameter 𝐿𝑚𝑎𝑥 of the 

Weibull growth model). 

• The minimum amount of aboveground biomass of a cocoa tree was set to 

0 kg (lower asymptote 𝐿𝑚𝑖𝑛 parameter of the Weibull growth model). 

• The growth rate of the aboveground biomass of a cocoa tree was set to 

0.1 (parameter 𝑘 of the Weibull growth model). 

• The parameter controlling the curve inflection x-ordinate was set to 1.09 

(parameter 𝛿 of the Weibull growth model). 

Root-to-shoot ratio 

Belowground biomass was calculated by multiplying the aboveground biomass 

with the average root-to-shoot ratio (𝑅𝑆𝑅) found by Borden et al. (2019), equal to 

0.23. The initial root-to-shoot ratio found in Chapter 3 was much higher (0.39). It 

was inferred after using the quotient of results obtained with the allometric 

equations proposed by Smiley & Kroschel (2008). As explained by Borden et al. 

(2019), an average ratio of 0.23 seemed more appropriate. 

Sampling depth and distribution of cocoa roots 

It was assumed that approximately 80% of the cocoa root mass was located in 

the top 0-20 cm of the soil profile (Moser et al., 2010; Niether et al., 2019). Using 

this estimation, it was possible to calculate the depth-distribution parameter for 

cocoa (see calculation with Equation 5.15 below). 

𝐷𝑒𝑓𝑓 = 1 − 𝛽𝑑 Equation 5.15 

0.8 = 1 − 𝛽20  

𝛽 = 0.923  

Aboveground residue deposition rate of cocoa trees 

The annual deposition rate of aboveground residues 𝑅𝐷𝑅𝐴 from cocoa trees is 

based on Dawoe et al. (2010), who used litter traps to assess monthly litterfall in 

Ghana. In their experiment, they measured the annual litterfall production of 

shaded cocoa tree stands. They also estimated cocoa tree biomass stocks with 

an allometric equation and the number of trees per hectare. Applying a linear 
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regression between the tree biomass and annual litterfall (R² = 0.98) allows a 

strong relationship to be formulated between the two. However, cocoa and shade 

tree litterfalls were not discriminated against in their study, and the relative 

contribution of cocoa and shade trees to the annual production of litter could not 

be determined. It was decided to set this aboveground residue deposition rate to 

0.06, meaning that 6% of the aboveground biomass is converted into surface litter 

every year. The reasoning and calculations are presented in appendix A.5. With 

this approach, inputs obtained from the aboveground biomass are not deducted 

from the stock. They are merely estimated from the aboveground biomass stock 

without resulting in a mass loss. It can be considered that this biomass deposition 

is uncaptured by the cocoa growth model at a yearly timescale (the allometric 

relationship does not capture the effect of litterfall and pruning). A future 

improvement of the model could be to make litterfall and pruning reduce 

aboveground biomass effectively, with an actual transfer of matter from the 

aboveground stock to the litter or SOM stock. 

Fine root fraction, turnover, and exudation 

Cocoa root biomass (fine and coarse roots), productivity, and turnover rates have 

been estimated by several authors (Borden et al., 2019; Kummerow et al., 1982; 

Moser et al., 2010; Muñoz & Beer, 2001; Niether et al., 2019; Rajab et al., 2016; 

Schneidewind et al., 2016). A short literature review presents their results in the 

appendix (appendix A.5). It was decided to divide the root system into two 

categories: fine roots (≤ 2 mm) and coarse roots (> 2 mm), determine the relative 

fraction of belowground biomass they represent (fixed percentage constant 

during the tree's lifetime) and their respective turnover rate.  

Results obtained by Rajab et al. (2016) were used to estimate the fraction of fine 

roots 𝐹𝑅𝐹 at 0.28. They measured the fine roots biomass of cocoa and shade 

trees in three different types of cocoa farms (cocoa monoculture, cocoa-Gliricidia, 

cocoa-multispecies). Using a plot digitizer, the raw data was obtained from figure 

2 and the average ratio of fine root biomass to belowground biomass calculated. 

The fine-root annual turnover rates of shaded cocoa systems were evaluated by 

Muñoz & Beer (2001), who compared Erythrina poeppigiana or Cordia alliodora 

systems, and found values ranging from 0.90 to 1.07. They noted a strong 

seasonal effect, with higher turnover rates during the wet season (1.00 and 0.73 

respectively) and lower during the dry season (0.07 and 0.17 respectively). It was 

decided to select an average fine root turnover rate 𝐹𝑅𝑇𝑂𝑅 of 0.985 ((0.90 + 

1.07)/2). 
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The fraction of coarse roots would theoretically be 1 −  𝐹𝑅𝐹 = 1 − 0.28 = 0.72. 

However, no turnover rate was found for coarse roots and it was therefore 

assumed that only fine roots would contribute to SOM inputs. 

No references measuring the production of root exudates or rhizodeposition by 

cocoa trees were found. Research suggests that the net rhizodeposition-to-root 

ratios could be in the order of 0.25 to 0.5 (Kuzyakov & Domanski, 2000b; 

Kuzyakov & Schneckenberger, 2004; Pausch & Kuzyakov, 2018). With their 

definition, rhizodeposition does not entail root turnover, only the loss of production 

of organic compounds released in the soil. It was chosen to group all of these 

extra-root inputs into a single coefficient. In this model, the default root exudation 

coefficient was set to 0.5. 

Humification coefficient of aboveground residues 

The humification coefficient of aboveground residues 𝑘1𝑎 was set to 0.21, using 

data from litterfall decomposition experiments from Ghana (Dawoe, 2009; Dawoe 

et al., 2010). In their study, Dawoe et al. found an average annual coefficient of 

decomposition k of 0.23 for cocoa litter. However, its meaning was not similar to 

the humification coefficient despite a similar notation (‘k’). Rearranging Olson’s 

equation (Olson, 1963), also used by Dawoe et al., it is possible to convert 

Olson’s k to AMG’s 𝑘1𝑎, the amount of remaining organic matter after one year 

(see Equation 5.16). 

𝑘1𝑎 = 1 −
𝑋

𝑋0
= 1 − 𝑒(−𝑘.𝑡) Equation 5.16 

𝑘1𝑎 = 1 − 𝑒−0.23 × 1 = 1 − 0.79 = 0.21  

With 𝑘1𝑎 as the humification coefficient of cocoa litter (no unit), X as the amount 

of matter left after one year (Mg), X0 as the initial amount of matter (Mg), k as 

Olson’s annual coefficient of decomposition (no units), and t the duration of the 

decomposition (one year). This value is relatively low compared to Olson’s 

estimations for tropical rainforests, which had a k of 4 (corresponding to a k1 of 

0.98), meaning that cocoa litter decomposes much slower than tropical rainforest 

litter. 

Humification coefficient of belowground residues 

The humification coefficient of belowground residues 𝑘1𝑏 was set to 0.39. This 

value corresponds to the value used by Clivot et al. (2019). 
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Active and passive SOM split ratio 

The fraction of active SOM over total SOM, 𝑆𝑂𝑀𝑠𝑝𝑙𝑖𝑡 was fixed to 0.4, using the 

lower value of the range proposed by Clivot et al. (2019). 

Local variables 

Local variables refer to parameters specific to each cocoa farm. They include soil 

(e.g., soil pH and clay content), climate (e.g., annual rainfall and mean 

temperature), and management parameters (e.g., cocoa tree density per 

hectare). The local conditions of the baseline model were parametrized by using 

data collected from a false-time chronosequence of 13 cocoa farms located in 

Sulawesi (Chapter 4). Soil sampling depth was set at 20 cm. Each of the other 

local soil and climate variables was averaged from the dataset (excluding the 

forest plot of the series). Soil pH was not measured during this chronosequence 

study, but according to the SoilGrids database (Hengl et al., 2017), the sites’ pH 

would be 4.95 and this value was used as a baseline for the simulation. On a 

previous study conducted in Bone-Bone (approximately 28 km from Tarengge 

and 180 km from the Mambu and Pussui farms), a soil pH of 4.7 was recorded, 

very close to the SoilGrids estimation. No soil carbonates data was available. 

Sulawesi does not seem to have Calcisols that could contain significant 

carbonate contents. Because the soils of Sulawesi are predominantly acidic and 

highly weathered (Suwardi, 2019), it was assumed the carbonate content to be 

null. Soil C:N ratio was set at 9.67 (average of the 13 farms). In terms of climate, 

the average annual precipitations was fixed to 2677 mm, the annual average air 

temperature at 27°C (average of the 13 farms, data obtained from WorldClim; 

Fick & Hijmans, 2017) and PET was 1728 mm (calculated with the Thronwaite 

equation and the SPEI R package; Beguería & Vicente-Serrano, n.d.). The cocoa 

farms were not irrigated (irrigation water = 0 mm). The planting density was fixed 

at 931 trees per hectare (average of 13 plots) and assumed no mortality over 

time. 
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Table 5.3: Summary of the local variables for each farm and the default values 
used for the model 

 Location       Tarengge       

Symbol Farm A B C D E F G 

 Age (years) 0.5 1 2 5 7 12 15 

 Cocoa tree density (trees ha-1) 625 1100 800 625 625 1100 1100 

 Mean annual temperature (°C) 27.1 27.1 27.1 27.1 27.2 27.1 27.1 

 
Mean annual cumulated rainfall 
(mm year-1) 

2968 2978 2977 2968 2977 2978 2968 

 
Mean annual cumulated PET 
(mm year-1) 

1741 1762 1754 1746 1764 1762 1746 

 
Water inputs from irrigation 
(mm year-1) 

0 0 0 0 0 0 0 

 Soil bulk density (g cm-3) 1.16 1.55 1.27 1.41 1.37 1.43 1.27 

 Soil clay content (%) 24.6 18.8 18.8 21.4 23.0 19.6 22.6 

 Soil carbonate content (%) 0 0 0 0 0 0 0 

 Soil pH (unitless) 4.9 4.9 5.0 4.9 5.0 4.9 4.9 

 Soil C/N (unitless) 10.5 9.1 10.2 10.3 9.7 8.6 10.1 

 SOM content (%) 3.59 2.27 1.76 2.40 2.58 2.06 2.58 

 
Measured SOM stock 
(Mg ha-1; 0-20 cm) 

91.3 57.6 49.5 55.7 70.6 63.9 74.0 

 SOM/clay (%/%) 0.146 0.121 0.094 0.112 0.112 0.105 0.114 

 Initial litter stock (Mg ha-1) NA NA NA NA NA NA NA 

 Location   Mambu    Pussui   Average  

Symbol Farm H I J K L M (all farms)  

 Age (years) 2 20 31 2 20 31 NA 

 Cocoa tree density (trees ha-1) 1100 1100 625 1100 1100 1100 931 

 Mean annual temperature (°C) 27.1 27.1 27.1 26.4 26.7 26.7 27.0 

 
Mean annual cumulated rainfall 
(mm year-1) 

2079 2066 2066 2083 2057 2057 2556 

 
Mean annual cumulated PET 
(mm year-1) 

1756 1752 1752 1605 1662 1662 1728 

 
Water inputs from irrigation 
(mm year-1) 

0 0 0 0 0 0 0 

 Soil bulk density (g cm-3) 1.23 1.34 1.36 1.13 1.33 1.21 1.31 

 Soil clay content (%) 34.3 15.9 19.8 43.9 31.1 33.4 25.2 

 Soil carbonates (g kg-1) 0 0 0 0 0 0 0 

 Soil pH (unitless) 5.1 4.9 4.9 5.0 5.0 5.0 4.95 

 Soil C/N (unitless) 5.6 9.2 8.8 9.4 8.8 9.5 9.2 

 SOM content (%) 2.57 1.66 1.94 4.04 2.92 3.30 2.59* 

 
Measured SOM stock 
(Mg ha-1; 0-20 cm) 

68.8 40.6 52.9 107.2 70.8 74.3 67.5 

 SOM/clay (%/%) 0.075 0.104 0.098 0.092 0.094 0.099 0.110 

 Initial litterstock (Mg ha-1) NA NA NA NA NA NA 1 

Soil bulk density was obtained with core rings on the 0-5cm layer; Soil carbonates were assumed to be null 
because of the acid soil pH; SOM contents were obtained from loss-on-ignition and corrected for structural 
water loss using clay contents (see Chapter 3); NA stands for not applicable. * The initial SOM content and 
stock for the “average farm” was calculated using the average SOM/clay ratio of Farm A and B (the youngest 
two of the series). 
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5.2.3 Model evaluation 

Model evaluation was performed through three analyses: 

a. Regression analysis 

b. Numerical sensitivity analysis 

c. Graphical sensitivity analysis 

a. Regression analysis 

The first phase involved measuring performance by simulating with the default 

model values (using the average of all farms of the false-time chronosequence 

as inputs for the local variables, available in Table 5.3) and confronting the result 

to the observations. Overall, this first evaluation phase consisted of observing the 

model behaviour to see if the trend fits within the observed values and 

corresponds to the hypothesized dynamics presented in Chapter 3 (rapid decline 

followed by a slow recovery). To measure performance, the root mean square 

error (RMSE) was used. Because the local variable inputs correspond to an 

average “virtual” farm and since different conditions were observed in the 13 

farms of the dataset, the simulation was expected to correspond to the 

hypothetical dynamics with an average result (within the point cloud).  

b. Numerical sensitivity analysis 

The following evaluation phase involved a numerical sensitivity analysis. 

Iteratively, a +10% change was applied to each functional parameter and a 35-

year simulation run to assess the model’s output’s influence. An elasticity index 

was then calculated for each functional parameter by comparing the newly 

obtained final SOM stock to the final SOM obtained with the default parameters, 

using the approach followed by van der Werf et al. (2007). This elasticity index is 

calculated with Equation 5.17 and Equation 5.18. The symbol 𝐹𝑃 stands for the 

functional parameter, 𝐹𝑃+10% refers to the functional parameter multiplied by 1.1, 

𝑆𝑂𝑀𝑠𝑡𝑜𝑐𝑘[𝑡=35]𝐹𝑃 corresponds to the 35-year SOM stock with the standard 

parameter value, and 𝑆𝑂𝑀𝑠𝑡𝑜𝑐𝑘[𝑡=35]𝐹𝑃+10% refers to the 35-year SOM stock with 

the parameters with a +10% change. 

𝐸𝑙𝑎𝑠𝑡𝑖𝑐𝑖𝑡𝑦 𝐼𝑛𝑑𝑒𝑥 =  
∆𝑂𝑢𝑡𝑝𝑢𝑡 𝑂𝑢𝑡𝑝𝑢𝑡⁄

∆𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟⁄
 Equation 5.17 

𝐸𝑙𝑎𝑠𝑡𝑖𝑐𝑖𝑡𝑦 𝐼𝑛𝑑𝑒𝑥

=
(𝑆𝑂𝑀𝑠𝑡𝑜𝑐𝑘[𝑡=35]𝐹𝑃+10% − 𝑆𝑂𝑀𝑠𝑡𝑜𝑐𝑘[𝑡=35]𝐹𝑃) 𝑆𝑂𝑀𝑠𝑡𝑜𝑐𝑘[𝑡=35]𝐹𝑃⁄

(𝐹𝑃+10% − 𝐹𝑃) 𝐹𝑃⁄
 

Equation 5.18 



MODELLING SOIL ORGANIC DYNAMICS IN INDONESIAN COCOA FARMS Page 146 

Thomas Fungenzi Cranfield University (2018-2021) 

c. Graphical sensitivity analysis 

Independent simulations were run with a range of values for each functional 

parameter and local variables during a final evaluation phase, reflecting potential 

ranges each could attain. A graph was produced for each parameter and variable 

to show how this range of potential values would influence the results. Thus, this 

sensitivity analysis was graphical (Grant & Swannack, 2007). Because the 

uncertainty for specific parameters can be great, running a range of possible 

values helps to increase understanding as to how strongly they could influence 

the output. For example, the split ratio between active and passive SOM is 

challenging to estimate and was only based on the proposition made by the 

developers of the original AMG model (Clivot et al., 2019). To observe the 

influence of different values, a set of four simulations were run with equidistant 

split ratios: 0.2, 0.4, 0.6, and 0.8. While a graphical analysis entails a certain level 

of subjectivity (i.e., when choosing the potential range of values for each 

parameter), it is necessary to observe the behavioural changes induced in the 

model’s output. A graphical analysis completes the numerical analysis by 

revealing the trend before the final value (35-year SOM stock) is reached. Indeed, 

the elasticity index alone could mask significant variations occurring before the 

final value. 

5.2.4 Model application 

a. Reverse modelling  

After completing the parametrization and evaluation of the model, a reverse 

modelling approach was used to simulate the trend occurring in each farm of the 

false-time chronosequence. The goal was to use the local conditions of each farm 

(and the default functional parameters values) and visualize the dynamics of 

SOM leading to the measured observations and the future trend. The main 

obstacle for this approach was that the initial stock of SOM present at planting 

was unknown. The solution was to use reverse modelling (also called backward 

modelling) to infer the initial SOM stock, given the current observed stock and the 

local variables of the plot as inputs. 

In practice, the method was to iteratively run many simulations for a given farm 

using a range of possible initial SOM contents. A sequence of initial SOM 

contents starting from 0% to 10% in 0.01% increments was used as data input. 

From these simulations, the one that provided the closest match to the observed 

SOM stock was retained. It was thus possible to show what could have been the 
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initial SOM content leading to the observations and continue the simulation up to 

35 years to simulate the expected future trend. 

b. Assessment of SOM dynamics 

Information about the estimated initial and final SOM content, the minimum value 

reached between these start and end points (if any), and the corresponding farm 

age (equivalent to the moment where SOM inputs begin to exceed SOM output) 

were extracted. This age can be interpreted as the duration of a degradation 

phase during which SOM losses occur (Equation 5.19). SOM dynamics were 

evaluated using several metrics (see equations below in Table 5.4). For example, 

the initial trend in SOM change was assessed. Whether SOM stocks started to 

increase or decrease, the initial rate of change between the first two years of the 

simulation (Equation 5.25) was calculated. If SOM stocks started to decline, the 

average rate of change was calculated by calculating the slope between the initial 

stock and the attained minimum (Equation 5.27). The duration of this loss phase 

(Equation 5.19) and the amount of SOM lost in absolute and relative terms 

(quantity of SOM lost and percentage of the initial stock; Equation 5.21 and 

Equation 5.22) were reported. If SOM stocks showed an increase after a decline, 

the average recovery rate (calculated as the slope of the line between the 

minimum and the final years; Equation 5.26) was reported. The duration of this 

recovery phase, which is simply the difference between the total duration of the 

simulation and the duration of the degradation phase (Equation 5.20) was also 

recorded. Finally, the size of the gap between the initial SOM stock and the final 

one, which could be a positive or a negative change (Equation 5.23 and Equation 

5.24), was also noted. As with the characterization of the SOM stock minimum, 

this gap was presented in absolute and relative terms (quantity and percentage; 

(Equation 5.21 and Equation 5.22). 
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Table 5.4: Criteria and corresponding formulas to evaluate SOM dynamics 

Evaluation criteria Calculation Equation label 

Duration of the degradation phase 
(year) 

𝑌𝑒𝑎𝑟𝑆𝑂𝑀 𝑚𝑖𝑛 Equation 5.19 

Duration of the build-up phase 
(year) 

𝑌𝑒𝑎𝑟𝑓𝑖𝑛𝑎𝑙 − 𝑌𝑒𝑎𝑟𝑆𝑂𝑀 𝑚𝑖𝑛 Equation 5.20 

Absolute loss at minimum 
(Mg ha-1) 

𝑆𝑂𝑀[𝑡=0] − 𝑆𝑂𝑀𝑚𝑖𝑛 Equation 5.21 

Relative loss at minimum 
(%)  

𝑆𝑂𝑀[𝑡=0] − 𝑆𝑂𝑀𝑚𝑖𝑛

𝑆𝑂𝑀[𝑡=0]
 Equation 5.22 

Absolute final difference 
(Mg ha-1)  

𝑆𝑂𝑀𝑓𝑖𝑛𝑎𝑙 𝑦𝑒𝑎𝑟 − 𝑆𝑂𝑀[𝑡=0] Equation 5.23 

Relative final difference 
(%) 

𝑆𝑂𝑀[𝑡=0] − 𝑆𝑂𝑀𝑓𝑖𝑛𝑎𝑙 𝑦𝑒𝑎𝑟

𝑆𝑂𝑀[𝑡=0]
 Equation 5.24 

Initial rate of change between year 0 
and year 1 
(Mg ha-1 year-1) 

𝑆𝑂𝑀[𝑡=1] − 𝑆𝑂𝑀[𝑡=0] Equation 5.25 

Average gain rate during the build-up 
phase 
(Mg ha-1 year-1) 

𝑆𝑂𝑀𝑓𝑖𝑛𝑎𝑙 𝑦𝑒𝑎𝑟 − 𝑆𝑂𝑀𝑦𝑒𝑎𝑟 𝑚𝑖𝑛

𝑌𝑒𝑎𝑟𝑓𝑖𝑛𝑎𝑙 − 𝑌𝑒𝑎𝑟𝑚𝑖𝑛
 Equation 5.26 

Average loss rate during the 
degradation phase 
(Mg ha-1 year-1) 

𝑆𝑂𝑀𝑚𝑖𝑛 − 𝑆𝑂𝑀[𝑡=0]

𝑌𝑒𝑎𝑟𝑚𝑖𝑛
 Equation 5.27 
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c. SOM maintenance scenarios with EOM inputs 

The final modelling step consisted of simulating various SOM maintenance 

scenarios in order to determine which strategy would be necessary to limit the 

loss of SOM during cocoa cultivation (if losses occur). The approach was to offset 

yearly losses of the average farm (Table 5.3) by using a variable annual rate of 

input. 

Using a single rate of inputs has the advantage of being simple but might not 

prevent some losses from occurring. Degradation may still occur during the early 

years after planting. Using a variable rate of inputs is a more complicated 

approach because the result is a series of input rates (35 input rates), but more 

powerful to prevent degradation by being responsive to year-to-year differences. 

Each approach would result in a net-zero loss of SOM after 35 years of cocoa 

cultivation but would have different practical implications regarding management 

and effects on soil properties and crop response. 

Independent simulations were run for each type of EOM, and the parameters 

characterizing these SOM maintenance scenarios were: (1) the annual rate of 

input (Mg ha-1 yr-1
 of dry matter), (2) the estimated coefficient of humification of 

each EOM, and (3) the type of approach followed (i.e., constant or variable rate 

of input). To limit the number of combinations, these scenarios were applied to 

only one ‘model farm’, namely the average farm presented in Table 5.3. To cover 

a sizeable range of humification coefficients, it was chosen to simulate five 

different EOMs, arranged in Table 5.5 by increasing k1. 

Table 5.5: List of EOMs and their approximate humification coefficient k1. 

EOM Approximate k1 Reference 

Rice straw 0.10 Chabalier et al., 2006 

Cattle manure 0.30 Chabalier et al., 2006 

Goat manure 0.50 Montaigne et al., 2019 

Rameal chipped wood 0.70 Montaigne et al., 2019 

Biochar 1.00 Montaigne et al., 2019 

Note that these values are approximative and may vary significantly for some EOMs. For example, values 
reported for cattle manure could range from 0.2 to 0.6 depending on the reference, which also made the 
distinction between straw-rich and straw-poor cattle manure. 
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5.3 Results 

5.3.1 Model evaluation 

a. Evaluation of the default run 

The results of the simulation with default values for each parameter are presented 

in Figure 5.2. At 35 years, aboveground and belowground biomass are 

respectively around 125 and 29 Mg ha-1 (Figure 5.2A). Plant SOM inputs followed 

the same growth type as cocoa biomass: a logarithmic-like growth, quickly 

increasing at the beginning but slowing down as time goes on (Figure 5.2A & 

Figure 5.2B). The yearly outputs of SOM, beginning by being high (about 5 Mg 

ha-1 year-1), rapidly decline to reach a minimum at approximately eight years 

(about 5 Mg ha-1 year-1), to finally almost linearly increase up to levels comparable 

to the initial one (about 5.4 Mg ha-1 year-1). As a reference, the annual SOM 

mineralisation coefficient (k2) is estimated to be 0.125 for the model  farm, 

meaning that each year, SOM losses can reach 12.5% of the SOM stock if they 

are not compensated for by inputs. Inputs become higher than outputs at eight 

years (Figure 5.2B). Mechanically, the stock of SOM follows the variations of 

inputs and outputs (Figure 5.2C). During the first eight years, outputs are higher 

than inputs, and therefore the SOM stock rapidly decreases from approximately 

68 Mg ha-1 down to 51 Mg ha-1. After eight years, the stock slowly increases since 

SOM inputs are higher than outputs. The final stock of SOM at 35 years is close 

to 70 Mg ha-1, meaning that with this simulation, the long-term SOM dynamics led 

to slight SOM gains. Comparing observed and predicted SOM stocks shows that 

the simulation is relatively accurate (Figure 5.2D), but because the variation 

between the farm is significant (Figure 5.2C), so makes the error of the model 

(RMSE = 19.12 Mg ha-1). 
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Figure 5.2: Results of the baseline simulation with default values 

Note on the subplot D that the predicted SOM value for the 6-months-old Farm C was interpolated as the 
mean of the predicted stocks at year 0 and year 1 (predicted SOM stock = 65.52 Mg ha-1) because the model 
only works at a yearly time step.  
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b. Elasticity indices 

Raking the elasticity of each functional parameter showed that the cocoa root 

biomass distribution parameter had the most influence on the results after a 10% 

increase (Table 5.6). Mathematically, this parameter is raised to the exponent of 

soil sampling depth. A slight change will, therefore, be amplified to the power 20 

in this case. A cocoa root distribution parameter of 1.0153 has no ground in reality 

because it would lead the fraction of roots present in the 0-20 cm layer to be 

negative (-35%). While all functional parameters are used in some way to multiply 

a variable to obtain a new value, the root distribution parameter is the only one 

raised to a power higher than 1. Thus, the other functional parameters are more 

comparable in terms of elasticity. Apart from sampling depth, the parameter that 

influenced the final result the most was the value of the upper asymptote used 

for the cocoa growth model. Increasing the potentially attainable cocoa tree 

biomass by 10% led to the largest change in final SOM stock (approximately +5 

Mg ha-1 of SOM). The parameter with the least influence on the result was the 

root exudation coefficient (only approximately +0.5 Mg ha-1 of SOM). Apart from 

the cocoa root distribution parameter, each increase in the other functional 

parameters led to an enlargement of the final SOM stock. 
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Table 5.6: Data used to calculate elasticity indices for each functional parameter. 

Parameter Symbol 
Baseline 

value 
(BV) 

BV+10% 

Final 
SOM 

stock 
using 

BV 

Final 
SOM 

stock 
using 

BV+10% 

Elasticity 
index 

Rank 
(absolute 

value) 

Cocoa root distribution 
parameter (unitless)a 

β 0.923 1.0153 76.36 34.8 -5.44a 1 

Growth parameter (upper 
asymptote; kg tree-1) 

d 137.06 150.766 76.36 81.06 0.62 2 

Soil sampling depth 
(cm) 

d 20 22 76.36 80.2 0.5 3 

Fraction of roots in the 0-20 cm 
layer (unitless)b 

Lmax 0.8 0.88 76.36 79.33 0.39b 4 

Root-to-shoot ratio (unitless) Deff 0.23 0.253 76.36 79.24 0.38 5 

Fine root fraction (unitless) SOMsplit 0.28 0.308 76.36 79.24 0.38 6 

Humification coefficient of 
belowground residues (year-1) 

RSR 0.39 0.429 76.36 79.24 0.38 7 

SOM split ratio (unitless) FRF 0.4 0.44 76.36 79.05 0.35 8 

Humification coefficient of 
aboveground residues (year-1) 

k1B 0.21 0.231 76.36 78.36 0.26 9 

Annual fine root turnover rate 
(year-1) 

k1A 0.985 1.0835 76.36 78.27 0.25 10 

Fraction of aboveground 
biomass deposited annually 
(year-1) 

FRTOR 0.09 0.099 76.36 78.19 0.24 11 

Root exudation coefficient 
(year-1) 

RDRA 0.5 0.55 76.36 77.33 0.13 12 

Growth parameter (growth rate; 
kg tree-1 year-1) 

GR 0.1 0.11 76.36 77.13 0.1 13 

Growth parameter (shape 
parameter; unitless) 

δ 1.09 1.199 76.36 76.99 0.08 14 

a Note that applying a 10% increase to the root distribution parameter β was not mathematically sound as it 

led to negative belowground biomass, hence the resulting extreme elasticity index. Instead, the effect of 
increasing the fraction of roots present in the 0-20 cm by 10% was calculated (88% instead of 80%), 
highlighted with b. 
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Among the local variables, a 10% increase in cocoa tree planting density led to 

the largest increase in final SOM stock (+4.7 Mg ha-1). The local variable with the 

strongest influence on the final result after a 10% increase was the soil pH from 

pH 4.95 to pH 5.445 (-14 Mg ha-1). This could be attributed to its logarithmic 

nature and the way the modifying factor is set by AMG (Error! Reference source 

not found.). Apart from mean annual temperature and soil C/N, increasing all the 

other local variables by 10% led to augmenting the final SOM stock. Changes in 

local variables predominantly resulted in larger differences than functional 

parameters. A 10% increase in rainfall, PET and irrigation barely affected the 

result. 

Table 5.7: Data used to calculate elasticity indices for each local variable 

Parameter 
Baseline 

value 
(BV) 

BV+10% 

Final 
SOM 
stock 
using 

BV 

Final 
SOM 
stock 
using 

BV+10% 

Elasticity 
index 

Rank 
(absolute 

value) 

Soil pH 
(unitless) 

4.95 5.445 76.36 62.34 -1.84 1 

Mean annual temperature 
(°C) 

27 29.7 76.36 65.71 -1.39 2 

Soil C/N 
(unitless) 

9.2 10.12 76.36 71.53 -0.63 3 

Cocoa tree density 
(trees ha-1) 

931 1024.1 76.36 81.06 0.62 4 

Soil clay content 
(%) 

252 277.2 76.36 79.18 0.37 5 

Soil bulk density 
(g cm-3) 

1.31 1.441 76.36 79.12 0.36 6 

Initial SOM content 
(%) 

2.59 2.849 76.36 79.12 0.36 7 

Soil carbonate content 
(%) 

10 11 76.36 77.01 0.09 8 

Initial litterstock 
(Mg ha-1) 

1.00 1.1 76.36 76.53 0.02 9 

Mean annual cumulated rainfall  
(mm year-1) 

2556 2811.6 76.36 76.35 0 10 

Mean annual cumulated PET 
(mm year-1) 

1728 1900.8 76.36 76.39 0 11 

Water inputs from irrigation 
(mm year-1) 

100 110 76.36 76.37 0 12 

Note: Because the default model assumed that carbonate content and irrigation inputs were null, the 
baseline values were respectively changed to 10% CaCO3 and 100 mm of irrigation water inputs.  



MODELLING SOIL ORGANIC DYNAMICS IN INDONESIAN COCOA FARMS Page 155 

Thomas Fungenzi Cranfield University (2018-2021) 

c. Graphical sensitivity analysis 

Observing the 24 graphs corresponding to the 24 parameters of the model (12 

functional parameters in Figure 5.3 and Figure 5.4 and 12 local variables in Figure 

5.5 and Figure 5.6) indicates that some variables have a similar influence on the 

output. For example, the fraction of aboveground residues, the root-to-shoot ratio, 

the humification coefficients and the cocoa tree planting density all control how 

large plant SOM inputs can be. They show similar patterns, with an initial decline 

during the early years, whatever their value is, followed by an increase for which 

the slope can be flat or steep depending on their value. This behaviour suggests 

that a SOM stock decline may be inevitable during the early years because plant 

inputs will be too low to offset the losses. However, the long-term trend can be 

anything between a very slow and/or rapid accumulation. With the values used in 

this subjective analysis, no systematic decline is observed. For some parameters, 

the effect on SOM dynamics was more complex than varying the rate at which 

SOM build-up in the long term. For instance, changing the initial SOM content 

shows that the SOM stock can largely increase with a low starting SOM content 

(1%), whereas the SOM stock can largely decrease when starting with a high 

initial SOM content (5%). Comparing the humification rate of aboveground and 

belowground residues indicates that aboveground residues play a larger role in 

increasing SOM stock than roots because a larger mass is deposited every year. 

When examining the local variables, it can be noticed that some have a much 

larger effect on the SOM stock than others. For example, increasing PET leads 

to significant gains in SOM stocks, while large increases in rainfall have almost 

no effect. 
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Figure 5.3: Graphical sensitivity analysis of the model parameters (functional 
parameters 1/2) 
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Figure 5.4: Graphical sensitivity analysis of the model parameters (functional 
parameters 2/2)  
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Figure 5.5: Graphical sensitivity analysis of the model parameters (local 
variables 1/2) 
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Figure 5.6: Graphical sensitivity analysis of the model parameters (local 
variables 2/2)  
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5.3.2 Model application 

a. Simulation of each farm with reverse modelling and 

assessment of SOM dynamics 

Reverse modelling SOM dynamics for each cocoa farm of the dataset indicate 

that all of them exhibit the same “rapid decline followed by a long-term build-up ” 

pattern. A sample of four visualizations is available in Figure 5.7. No case where 

SOM dynamics would continually increase or decrease over time was observed. 

The lengths of the degradation phase (period of SOM loss) ranged from 2 to 14 

years over the 35-year simulation. The decline between the initial and the 

minimum SOM stocks ranged from -7.9% and -38.8%, respectively attained 

after 2 and 14 years. In the long term, only 4 out of the 12 farms displayed final 

SOM stocks lower than the initial ones (farms C, D, E, and J). In relative terms, 

the difference between the initial and the final SOM stocks ranged from -33.4% 

to +378.3% (respectively farms E and I). The largest gains occurred in the farm 

with the lowest predicted initial SOM content. However, the opposite was not true. 

The largest loss (farm E) did not occur in the farm with the highest initial SOM 

content (farm K). The highest initial loss rate was -9.2 Mg ha-1 year-1 (farm E). 

The average loss rates during the degradation phase ranged from -3.1 to -0.4 

Mg ha-1 year-1, whereas the average gain rates during the build-up phase ranged 

from +0.3 to +1.6 Mg ha-1 year-1. 
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Figure 5.7: Example of SOM dynamics obtained by reverse modelling 

The simulated farm was farm E, G, I and K. The black line represents the simulated SOM dynamics. The 
blue dot represents the SOM stock measurement obtained for the farm. The vertical blue line shows the age 
at which this observation obtained. The vertical orange dashed line represents the age when a minimum is 
reached. The horizontal green dotted line is aligned with the maximal SOM stock. For example, for farm I, 
the simulation suggests that the initial SOM stock was approximately 53 Mg ha-1 (0-20 cm). The minimum 
was reached at 2 years (approximately 10 Mg ha-1).  
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Table 5.8: Characteristics of the SOM dynamics of each farm of the dataset 

Location Tarengge Tarengge Tarengge Tarengge Tarengge Tarengge 

Farm  B C D E F G 

Age 1 2 5 7 12 15 

Bulk density 
(g cm-3) 

1.55 1.27 1.41 1.37 1.43 1.27 

Observed SOM content 
(% ±SE) 

2.27 ±0.29 1.76 ±0.24 2.4 ±0.56 2.58 ±0.26 2.06 ±0.14 2.58 ±0.04 

Simulation             

Predicted initial SOM content 
(%) 

2.03 2.38 2.77 3.93 2.67 3.84 

Predicted minimum SOM 
content 
(%) 

1.58 1.63 1.81 2.40 2.09 2.73 

Predicted final SOM content 
(%) 

2.49 2.19 2.11 2.62 3.09 3.53 

Predicted initial SOM stock 
(Mg ha-1) 

62.9 60.5 78.1 107.7 76.4 97.5 

Predicted minimum SOM stock 
(Mg ha-1) 

49.0 41.5 51.0 65.9 59.8 69.3 

Predicted final SOM stock 
(Mg ha-1) 

77.3 55.5 59.4 71.8 88.2 89.8 

Evaluation criteria             

Duration of the degradation 
phase 
(years) 

6 8 11 14 7 9 

Duration of the build-up phase 
(years) 

29 27 24 21 28 26 

Absolute loss at minimum 
(Mg ha-1) 

-13.9 -19.0 -27.1 -41.8 -16.6 -28.3 

Relative loss at minimum 
(%) 

-22.1% -31.4% -34.7% -38.8% -21.7% -29.0% 

Absolute final difference 
(Mg ha-1)  

+14.4 -4.9 -18.7 -35.9 +11.9 -7.8 

Relative final difference 
(%) 

+22.9% -8.1% -23.9% -33.4% +15.5% -8.0% 

Initial rate of change between 
year 0 and year 1 
(Mg ha-1 year-1) 

-4.9 -5.9 -6.7 -9.1 -5.3 -7.9 

Average loss rate during the 
degradation phase 
(Mg ha-1 year-1) 

-2.3 -2.4 -2.5 -3 -2.4 -3.1 

Average gain rate during the 
build-up phase 
(Mg ha-1 year-1) 

+1.0 +0.5 +0.3 +0.3 +1.0 +0.8 
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(Table 5.8 continued) 

Location Mambu Mambu Mambu Pussui Pussui Pussui 

Farm  H I J K L M 

Age 2 20 31 2 20 31 

Bulk density 
(g cm-3) 

1.23 1.34 1.36 1.13 1.33 1.21 

Observed SOM content 
(% ±SE) 

2.57 ±0.23 1.66 ±0.41 1.94 ±0.16 4.04 ±0.37 2.92 ±1.24 3.3 ±0.91 

Simulation             

Predicted initial SOM content 
(%) 

3.21 0.41 1.94 5.14 1.94 1.18 

Predicted minimum SOM 
content 
(%) 

2.48 0.38 1.47 4.34 1.70 1.08 

Predicted final SOM content 
(%) 

3.59 1.96 1.99 5.89 3.36 3.19 

Predicted initial SOM stock 
(Mg ha-1) 

79.0 11.0 52.8 116.2 51.6 28.6 

Predicted minimum SOM stock 
(Mg ha-1) 

61.1 10.2 43.9 98.2 45.1 26.1 

Predicted final SOM stock 
(Mg ha-1) 

88.3 52.6 54.1 133.1 89.4 77.3 

Evaluation criteria             

Duration of the degradation 
phase 
(years) 

7 2 8 8 4 3 

Duration of the build-up phase 
(years) 

28 33 27 27 31 32 

Absolute loss at minimum 
(Mg ha-1) 

-17.9 -0.8 -12.7 -18.0 -6.5 -2.5 

Relative loss at minimum 
(%) 

-22.7% -7.9% -24.0% -15.5% -12.5% -8.7% 

Absolute final difference 
(Mg ha-1)  

+9.8 +41.6 +1.4 +16.9 +37.8 +48.7 

Relative final difference 
(%) 

+11.8% +378.3% +2.6% +14.6% +73.2% +170.6% 

Initial rate of change between 
year 0 and year 1 
(Mg ha-1 year-1) 

-5.6 -0.8 -3.7 -5 -2.8 -1.5 

Average loss rate during the 
degradation phase 
(Mg ha-1 year-1) 

-2.6 -0.4 -1.6 -2.3 -1.6 -0.8 

Average gain rate during the 
build-up phase 
(Mg ha-1 year-1) 

+1.0 +1.3 +0.5 +1.3 +1.4 +1.6 

Note that farm A was not simulated because it was six months old. Since the model has a yearly time step, it 
cannot predict SOM dynamics for this age.  
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b. SOM maintenance scenarios with EOM inputs 

The summary of the yearly rates of inputs needed to compensate for the SOM 

losses of the model farm of the dataset (Table 5.3) are presented in Table 5.9 

and Figure 5.8, using five different types of EOMs. As expected, the input with 

the higher humification coefficient will require lower rates of inputs to prevent 

SOM decline. Using biochar (with a k1 hypothetically equal to 1), approximately 

29 Mg ha-1 would be required to offset the loss over the entire course of the 35 

years of cultivation. Conversely, ten times more rice straw (with a k1 hypothetically 

equal to 0.1), 286 Mg ha-1 would be necessary to achieve the same result. In all 

cases, no inputs would be required from 14 years onwards as this period 

corresponds to the time where plant SOM inputs exceed the annual SOM losses, 

independently of the EOM type (Figure 5.8). 
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Table 5.9: Predicted rate of inputs from 0 to 35 years to compensate SOM losses 
for five types of EOM 

Year 
Annual rate of inputs (Mg ha-1 year-1) 

EOMk1 = 0.1 EOMk1 = 0.3 EOMk1 = 0.5 EOMk1 = 0.7 EOMk1= 1 

0 46.86 15.62 9.37 6.69 4.69 

1 42.01 14.00 8.40 6.00 4.20 

2 36.99 12.33 7.40 5.28 3.70 

3 32.20 10.73 6.44 4.60 3.22 

4 27.72 9.24 5.54 3.96 2.77 

5 23.58 7.86 4.72 3.37 2.36 

6 19.77 6.59 3.95 2.82 1.98 

7 16.28 5.43 3.26 2.33 1.63 

8 13.10 4.37 2.62 1.87 1.31 

9 10.21 3.40 2.04 1.46 1.02 

10 7.59 2.53 1.52 1.08 0.76 

11 5.22 1.74 1.04 0.75 0.52 

12 3.08 1.03 0.62 0.44 0.31 

13 1.15 0.38 0.23 0.16 0.12 

14 0.00 0.00 0.00 0.00 0.00 

15 0.00 0.00 0.00 0.00 0.00 

16 0.00 0.00 0.00 0.00 0.00 

17 0.00 0.00 0.00 0.00 0.00 

18 0.00 0.00 0.00 0.00 0.00 

19 0.00 0.00 0.00 0.00 0.00 

20 0.00 0.00 0.00 0.00 0.00 

21 0.00 0.00 0.00 0.00 0.00 

22 0.00 0.00 0.00 0.00 0.00 

23 0.00 0.00 0.00 0.00 0.00 

24 0.00 0.00 0.00 0.00 0.00 

25 0.00 0.00 0.00 0.00 0.00 

26 0.00 0.00 0.00 0.00 0.00 

27 0.00 0.00 0.00 0.00 0.00 

28 0.00 0.00 0.00 0.00 0.00 

29 0.00 0.00 0.00 0.00 0.00 

30 0.00 0.00 0.00 0.00 0.00 

31 0.00 0.00 0.00 0.00 0.00 

32 0.00 0.00 0.00 0.00 0.00 

33 0.00 0.00 0.00 0.00 0.00 

34 0.00 0.00 0.00 0.00 0.00 

35 0.00 0.00 0.00 0.00 0.00 

Total 285.76 95.25 57.15 40.81 28.59 
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Figure 5.8: Modelled effects of cocoa age and exogenous organic matter (EOM) 
on A) soil organic matter (SOM) stocks, B) SOM inputs and outputs, and C) EOM 
yearly input rates 

Note on subplot B: Whatever the EOM input is, the blue line indicates the amount of SOM necessary to 
balance SOM outputs (red line) with plant SOM inputs (green line). Dividing this rate of SOM input from EOM 
by the k1 coefficient respective to the EOM of interest can provide the effective amount of EOM needed meet 

those inputs. For example, if 2 Mg ha-1 of SOM inputs are needed from an EOM (of k1 = 0.2) to offset SOM 
losses, 10 Mg ha-1 of this EOM will be needed the preceding year (2 / 0.2 = 10). 
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5.4 Discussion 

5.4.1 Summary of the main findings 

Overall, the SOM trend obtained by running the model with default values 

matched the theoretical dynamic presented in Chapter 4. The results indicate that 

SOM stocks rapidly declined during a first phase (1 – 14 years) before slowly 

building up during a second phase (14 – 35 years). This dynamic was the case 

for the baseline simulation and the trends obtained with reverse modelling for 

each farm of the dataset. The baseline simulation was relatively accurate 

because the simulation with default values was within the range of observations 

obtained from the false-time chronosequence. The SOM stock rapidly declined 

during the first years after planting because SOM inputs coming from the cocoa 

trees were lower than SOM outputs. Eventually, a tipping point is reached when 

SOM inputs from the cocoa trees become larger than SOM outputs. 

5.4.2 Approach: balancing simplicity and complexity 

To knowledge, before this study, no process-based model had been proposed to 

predict the temporal variations of SOM stocks in cocoa plantations. knowledge of 

SOM dynamics in cocoa farms was solely based on field experiments using 

predominantly false-time chronosequences. To address this knowledge gap, the 

approach of this study was to develop, evaluate and apply a model describing 

SOM dynamics in cocoa farms. 

Finding the right balance between simplicity and complexity during model 

development is a dilemma (Monteith, 1996; Paola & Leeder, 2011). This study 

made it possible to develop, evaluate, and apply a straightforward and flexible 

model by using the common-sense approach to problem-solving (Grant & 

Swannack, 2007) and the adaptation of AMG (Clivot et al., 2019). This model is 

more straightforward than other models like WaNuLCAS (Van Noordwijk & 

Lusiana, 1998) and requires a limited number of parameters to function. This 

model entails a dedicated plant component, allowing and simplifying the 

simulation of residue inputs increasing over the years, while other models like 

RothC (Coleman & Jenkinson, 1996) tend to repeat the same amount of inputs 

each year. This model makes the simulation of tree-like crops easy, as long as a 

growth curve can be determined for the site in question. Coded in the popular 

and accessible R programming language, this model can be easily modified to 

suite the particular needs of the modeler. In addition, a user-friendly interface was 
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developed with the Shiny framework to allow non-programmers to quickly run 

simulations. 

5.4.3 Interpretation of the results 

Using the function defined by AMGv2 leads to an estimated annual SOM 

mineralisation coefficient k2 of 0.125, meaning that for the average Sulawesian 

farm, if not replaced, 12.5% of the current active SOM stock can be lost yearly. 

For example, with a SOM stock for the model farm of 50 Mg ha-1, corresponding 

to an active stock of 27 Mg ha-1, approximately 3.4 Mg ha-1 would be consumed 

yearly. This rate is much higher than the values typically reported in the literature. 

For example, results obtained by Saffih-Hdadi & Mary (2008) ranged from 0.019 

to 0.348, the latter corresponding to a long-term experiment in Thailand (i.e., the 

only tropical long-term experiment of their dataset). The other eight long-term 

experiments were located in Europe and resulted in an average coefficient of 

0.051. Under a temperate climate, lower annual rainfalls and mean temperature 

and a winter season can significantly slow down SOM mineralisation compared 

to a humid tropical location like Sulawesi. As mentioned in Chapter 4, SOM loss 

rates can be relatively high in tropical settings. 

When the cocoa tree SOM inputs exceed 12.5% of the current active SOM stock 

for a specified soil depth, a tipping point is reached, and SOM starts to build up 

since a monotonic growth describes the cocoa growth model for the 35 years of 

the simulation (i.e., inputs continuously increase over time), and that the amount 

of biomass produced and converted to SOM becomes at a certain point larger 

than SOM outputs. 

As opposed to the hypothesis that long-term SOM stocks would be lower than 

the planting levels, the backward modelling approach suggested that diverse 

trends could occur, suggesting that cocoa cultivation may not lead to long-term 

soil degradation through SOM decline (i.e., if the baseline is the SOM stock 

before planting). The sensitivity analysis shows that by varying the local 

conditions, it is possible to obtain opposite outcomes. For instance, by increasing 

soil pH by 10%, a much lower SOM stock can be obtained at 35 years (-14 Mg 

ha-1; Table 5.7). Conversely, increasing parameters inhibiting SOM losses can 

lead to significantly higher SOM stocks at 35 years. For example, the SOM stock 

rapidly increases if the fraction of aboveground biomass deposited as residues 

exceeds 0.4 (Figure 5.3 1/2). Another example is the initial SOM content (Figure 

5.3 2/2): the long-term SOM stock will surpass the initial one if the initial content 
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is low (1-2%), while the long-term SOM stock can be lower than the initial one if 

the initial SOM content is high (4-5%). 

Except with some “extreme values” for variables like PET (4000 mm), water 

inputs (2000 mm), or clay content (1000 g/kg), the SOM stock in all cases 

invariably declines for an initial period after planting. The hypothetical SOM 

dynamic can explain this behaviour. When the cocoa trees are very young, their 

contribution to SOM inputs is insufficient to offset SOM losses, leading to a 

decline in SOM stock. 

The long-term trend can vary, and a turning point was always reached when the 

biomass inputs surpassed the outputs. The results differ from the hypothetical 

trend because the long-term trend is not necessarily a slow build-up. As seen 

with the graphical sensitivity analysis, the SOM stock can rapidly bounce back in 

the long term, or conversely, increase slowly. No continuous decline was 

observed for any of the tested parameter values, although exponential decay 

models are used to model the transitions between land-uses (Van Straaten et al., 

2015). However, given that each variable was tested independently, it is not 

excluded that a combination of factors promoting SOM losses can lead to a 

continuous decline of the SOM stock from the initial planting value. In Farm E, 

after reaching a minimum at year 14, the long-term SOM stock barely increased. 

It is possible to imagine a location with a combination of low clay content, high 

initial SOM content, and a higher annual average temperature could lead to SOM 

losses being higher than gains. With the same reasoning, it is also possible to 

imagine the SOM stock to almost continually build up when conditions inhibiting 

SOM loss are combined (i.e., low SOM mineralisation rate combined with high 

SOM inputs). A short SOM loss phase should be still expected at the very 

beginning because the inputs from the cocoa trees are minimal when the trees 

are young, but the analysis of the results indicate that a variety of situations are 

possible (long-term decline or build-up, higher or lower than initial levels). 
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5.4.4 Implication of the results 

a. Model application: reverse modelling approach and 

assessment of SOM dynamics 

Because of a lack of long-term experiments to fully validate the model’s accuracy, 

it was chosen to rely on reverse modelling to simulate the SOM dynamic at each 

farm of the dataset (except farm A because it was only six months old). This 

choice was not meant to replace a model validation phase but was used to 

generate potentially helpful information until more data is available to fully validate 

the model. The trend simulated at each farm matched the hypothetical SOM 

dynamic (rapid decline followed by a slow build-up). A way to verify the accuracy 

of the predictions would be to go back to the same farm and verify if, after a few 

years, the new observations correspond to the predictions made by the model. 

As discussed in Chapter 4, the difference between the initial and the long-term 

SOM stocks reported in the literature vary widely. Some studies observe a long-

term build-up (Isaac et al., 2005), while others describe a long-term decline (Van 

Straaten et al., 2015). The analysis can be hindered by the fact that the SOM 

stock is often not determined at planting (as discussed in Chapter 4), but a few 

years later (i.e., 3-5 years, the period during which according to this study and 

literature can entail significant SOM losses). For the farms of the dataset, the 

long-term relative differences between initial and final stocks seem to fit within 

the range of values available in the literature (see references discussed in 

Chapter 4, section “Evidence from other studies”). The lowest predicted relative 

difference was -33%. The highest predicted relative difference was +378%, which 

can be interpreted as high, but this particular plot had the lowest observed SOM 

content (1.66% at 20 years; farm I; Table 5.3). This situation led the reverse 

modelling procedure to predict a very low initial SOM content of 0.41%. It could 

be assumed that it is not unlikely that on a SOM-depleted plot, the plantation of 

a cocoa farm could lead to significant restoration of SOM to higher levels (hence 

the +378%, leading to a moderate final SOM content of 1.96%). 

b. Model application: SOM maintenance with EOM inputs 

Estimating EOM inputs needed to offset SOM losses throughout the cocoa 

cultivation period (35 years) showed that if inputs with a low humification 

coefficient are used, substantial input rates are required to cancel SOM losses 

entirely. With a k1 of 0.1, the first annual inputs would have to reach almost 50 

Mg ha-1 (of dry matter). Conversely, lower input rates are necessary when using 

EOM with a high humification coefficient such as biochar. Overall, this quick 
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estimation showed the challenge of preserving SOM stocks under a humid 

tropical climate. Consistently applying such input rates might be unfeasible, but 

the results indicate that the younger the plantation is, the more significant the 

SOM losses may be. Using large inputs of EOMs at planting and during the early 

years after planting, even if the rates are below the estimations, could still 

minimize the depletion of SOM to manageable levels until the cocoa trees reach 

an age after which SOM depletion is offset by organic matter inputs . Soil 

management programs should prioritize the early years after planting by applying 

as much as possible large amounts of EOMs. 

5.4.5 Limitations and recommendations 

a. Model assumptions and possible developments  

1. Cocoa growth is predicted by a static growth curve 

At this stage, the model simulates cocoa tree growth using a pre-determined 

growth curve. Selecting a perennial tree crop from a list and defining the site’s 

pedoclimatic context would significantly ameliorate the model capabilities. At this 

stage, only the SOM annual mineralisation rate is sensitive to environmental 

factors. Nonetheless, cocoa tree growth and residue deposition dynamics can be 

adjusted manually to account for local differences. A significant update would be 

to create a dynamic cocoa growth model, which could also account for the effect 

of soil properties on crop growth. For instance, the build-up of SOM in the soil 

can potentially increase soil water holding capacity or nutrient retention and 

availability, and this improvement can support plant growth, generating more 

residues behind, and so on. 

2. Shade trees and other associated species are not considered 

While the model can be used for mono-specific perennial crops, it ignores the 

potential influence of shade trees or multi-specific plant covers. To be more 

representative of many agroforestry systems, the model should include a growth 

curve or a growth model for each associated species, with their dynamics and 

responsiveness to environmental parameters. One challenge will be to model 

how shade trees or other associated species interact (Wartenberg et al., 2017). 

How will associations influence their respective growths and residue deposition 

patterns, above and belowground? A core issue remains that, while information 

was already limited about cocoa residue deposition rates (aboveground and 

belowground), data may be even more scarce for shade tree species. It seems 

that there is a significant research gap about litterfall deposition for shade tree 
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species and even more for rhizodeposition. Furthermore, determining how each 

species respond to different pedoclimatic contexts and management decisions 

adds another difficulty. Adding the possible interaction effects between species 

and a diverse agroforestry system can become challenging to model until more 

information is gathered. 

3. Constant cocoa tree density 

The base model did not include tree mortality. However, during the lifespan of a 

cocoa farm or any perennial crop, the loss of some trees is expected. As a result, 

the long-term crop SOM inputs are likely overestimated. At the plot scale, every 

dead tree would result in lowering residue deposition. It is possible to introduce a 

mortality factor to improve the representativeness of the model, in the form of a 

gradual loss of trees (i.e., reaching an estimated tree density at a certain age), or 

even punctual tree death events (e.g., as a result of drought or storm randomly 

timed). In a similar fashion, tree replanting and replacement could also be 

modelled. 

4. Low resolution between the different types of residues 

At this stage, this version bundles all plant parts into two simple compartments: 

aboveground and belowground biomass. As a result, there is also a lack of 

resolution when residues are formed. Partitioning plant residues into more 

accurate types could improve the quality of the model. Each plant part may have 

very different biochemical profiles, which play a significant role in the speed and 

pattern of their decomposition, the nature, and the yield of the produced SOM 

(i.e., different k1 coefficients). Aboveground, litterfall collection indicates that 

cocoa litter mainly consists of leaves (Dawoe et al., 2010). However, it is essential 

to know if those proportions are valid for all ages and agroecosystem types. 

Considering the role of the associated species like shade trees will be crucial to 

account for the relative contribution of the different types of residues produced by 

each species. 

5. Residue deposition rates are proportional to trunk diameter 

The choice to use a single aboveground residue deposition rate was made to 

simplify the model, but only one reference was used to set this parameter’s value 

(Dawoe et al., 2010). With this approach, litterfall is directly proportional to the 

aboveground biomass, but in reality, different conditions could increase or 

decrease the fraction of leaves lost by the tree. It is known that cocoa leaf life 

cycle are also influenced by climate (De Almeida & Valle, 2008). Event like 
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droughts can trigger higher leaf losses shedding. This question also applies to 

other perennial species. Litterfall rates may not be reducible to a simple 

coefficient. At this stage, it is difficult to know if this approach tends to under or 

overestimate litterfall deposition. Seasonal variations of litterfall are not 

considered by this model yet, as the time step is annual. However, it is worth 

mentioning that litterfall is closely related to climate conditions, as cocoa trees 

shed leaves during periods of water stress. Therefore, environmental factors can 

still influence the amount of litter that is being created. However, it is not clear 

from the literature if litterfall is mainly caused by soil water deficit, or if other 

factors such as temperature and air humidity could also play a role (De Almeida 

& Valle, 2008). Another cocoa model, CASE2 (Zuidema et al., 2005), proposed 

an approach to estimate litterfall by using both the age of the cocoa leaves and 

soil water stress. 

Overall, it appears that the trunk growth rate of cocoa decreases with age (see 

Chapter 4). However, the way trunk enlargement relates to the actual amount of 

biomass present in the tree and the total amount of litterfall produced is currently 

poorly understood. For example, it is unclear how well this relationship holds over 

the long term (e.g., when cocoa enters a senescence phase). As discussed 

previously (Chapter 4), it seems that allometric relationships used to predict 

cocoa tree biomass in Sulawesi may not be valid in other locations (Smiley, 

2006). 

Finally, the influence of pruning was not simulated in this version. Pruning is a 

source of litterfall but not captured by the typical litterfall experiments. Therefore, 

it can be assumed that this model underestimates the actual inputs of 

aboveground residues. This issue is complicated by the fact that allometric 

equations used to estimate cocoa biomass are developed on pruned trees. 

Pruning intensity and frequency can severely alter the aboveground biomass of 

a cocoa tree (Schneidewind, Niether, Armengot, et al., 2019). Measuring trunk 

diameter may not be sufficient to estimate aboveground cocoa biomass 

accurately. Before and after pruning, the same tree has the same trunk diameter, 

but different aboveground biomasses. 

Consequently, the model could be improved by using more information about the 

relationship between pruning frequency and intensity and the quantity of biomass 

removed from a tree, adding to the model complexity but improving its 

representativeness. This flux could play a critical role as pruning most likely 

removed more branches than leaves than “natural” litterfall, and branches most 

certainly decompose more slowly than leaves. Once again, considering species 
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other than cocoa adds to the difficulty of this update since residue deposition 

rates and pruning practices differ between species. 

Similarly to aboveground biomass, belowground residue deposition is assumed 

to be proportional to belowground biomass. It was decided that belowground 

SOM inputs could come from two sources: fine root turnover and rhizo-exudation. 

In cocoa but also for other plants, limited information is available about these two 

fluxes. They were assumed to be directly proportional to belowground biomass, 

but it is not known if this relationship remains stable over time (Kuzyakov & 

Domanski, 2000b). For example, it could be hypothesized that fine root turnover 

or exudation slows down when the tree gets older. As with aboveground residue 

deposition, it could also be expected that those two fluxes respond to 

environmental changes. 

Even though a root-to-shoot ratio of 0.23 was used, values can vary, as 

highlighted by Borden et al. (2019), who reported values ranging from 0.12 

(minimum of cocoa trees in monoculture) to 0.38 (maximum of cocoa trees in 

mixture with Terminalia ivorensis). Their observation indicates that shade trees 

can influence cocoa root distribution. With such a range of possible shoot-to-root 

ratios, the model would benefit from integrating shade trees' effect on root 

biomass. Just like aboveground biomass, the root-to-shoot ratio could also vary 

with time, and specific management practices like pruning and fertilization may 

affect belowground biomass are unknown. 

6. Residues cannot last more than one year—no intermediate state between 

residues and SOM or loss. 

The residues deposited annually are, for one part, entirely converted into SOM 

(mass of inputs, m, times k1) whereas the other part (m – m.k1) is entirely 

decomposed (leaving the system as CO2 and other losses), for the other part. 

While this assumption might hold for easily decomposable residues such as 

leaves, it might not be optimal to represent more resistant residues like branches. 

To account for a longer timeframe, an upgraded version of the model could 

include one or two “fresh residues” state variables (i.e., one for the aboveground 

pool and one the belowground pool). Then, using the insights provided by the 

ISMO index, it could be possible to calculate how much of each residue inputs is 

left after one year. This way, the stock left after one year can be added to the 

stock of the following year. This remainder can follow a similar degradation 

dynamic as the previous year and contribute to SOM additions with the new 

inputs from fresh residues. Otherwise, the model could for example be improved 
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by integrating a function of exponential decay to continue the decomposition of 

fresh residues over several years. 

7. Offsite material transfers of SOM are discounted 

As explained in the model overview, other forms or SOM losses are assumed to 

be insignificant within this model. Generally speaking, cocoa farms do not seem 

to suffer from soil erosion, due primarily to the good canopy and ground cover 

(also provided by shade trees) drastically reduces the risks of generating erosive 

runoff. Nevertheless, integrating erosion could also be a future improvement, 

particularly when inappropriate land-clearing methods and insufficient soil cover 

which could provoke erosive events (Hartemink, 2005). 

8. Use of AMGv2 to Sulawesi to estimate SOM mineralisation rate 

The AMGv2 model was developed with data from long-term arable farm 

experiments in a temperate climate, mainly in France. Only one publication using 

AMG for a tropical location was found (Khon Kaen, Thailand; Saffih-Hdadi & 

Mary, 2008), which evaluated the effect of straw residue export on SOC in cereal 

systems (such as wheat, barley and maize) and compared the several models 

(DAISY, CENTURY, ROTHC, CN-SIM). The AMG model adequately simulated 

SOC dynamics in all sites (including Khon Kaen), better fitting the other models 

for seven out of nine experiments. Additional studies should be undertaken to 

assess the performance of AMG in tropical settings, to adjust the soil 

mineralisation rate (k2) function if necessary (Equation 5.14). Conditions that 

were probably not faced during the calibration of k2 have most likely not included 

soils with a very low pH (below 5), high annual average temperature, high annual 

rainfall, and high PET. Conversely, comparable values may likely be found at 

temperate and tropical sites for other local variables like clay contents, soil 

carbonates, and soil CN. It is worth mentioning that the experimental sites of the 

first publication about AMG (Andriulo et al., 1999) were in the rolling pampas of 

Argentina (humid subtropical climate), suggesting that AMG could apply to 

climates other than those found in Europe, where the model has been extensively 

used. 

b. Limitations around reverse modelling  

While the reverse modelling approach can be helpful to reconstruct the history of 

a plot and anticipate its future evolution, many uncaptured factors could invalidate 

such predictions. For instance, minimal information was available about the 

management practices of the plot or the plot condition at planting (and previous 
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land use). The way a farmer may have managed shade trees by planting and 

removing species can influence the observed SOM content. Another example is 

the lack of information about organic amendment use. Recurrent inputs could 

lead to bias the current observation, overestimating what the SOM content would 

have been without them.  
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5.5 Conclusions 

The AMG soil model was adapted during this study to develop a flexible and 

straightforward tool to predict SOM dynamics in perennial cocoa plantations. It 

appears that the hypothetical SOM dynamic (rapid decline followed by a slow 

build-up) was valid for the conditions found in the false-time chronosequence 

used. The results supported the hypothesis that SOM declines rapidly during the 

yearly cocoa farm, but this conclusion needs to be validated with real-time 

chronosequences . With the dataset for Sulawesi, the long-term trend was a slow 

build-up, as postulated by the hypothetical SOM dynamic. However, the results 

of this modelling experiment suggest that alternative outcomes are possible. The 

long-term SOM stock at 35 years can under a specific range of site conditions be 

lower or higher than the initial SOM stock. The results indicate that cocoa farming 

can both contribute to storing C in soils as well as emit C. Determining the local 

conditions at the farm scale can provide SOM maintenance approaches via EOM 

inputs to limit the emission of atmospheric C and preserve soil fertility by 

minimizing/reversing SOM losses. The results indicate that early years after 

planting are associated with high SOM losses and a critical phase for soil 

degradation. While more research should be undertaken to validate the model 

and improve the parameter calibration, this in initial period of SOM losses should 

be targeted with sufficient organic matter inputs to increase soil C stocks and 

work towards SOM maintenance and climate change mitigation. This research 

offered an approach to estimate the type and quantity of organic matter inputs 

required to offset SOM losses. Future research can improve the model’s 

representativeness and applicability to other locations and systems by 

addressing the model’s assumptions' limitations. 
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6. INTEGRATED DISCUSSION AND 

CONCLUSIONS 

This chapter begins by restating the aims and objectives described in the 

Introduction of this thesis. Then, each objective is addressed by summarizing the 

main findings, interpreting them, discussing limitations, and proposing key 

recommendations and areas for future research. Finally, a conclusions summary 

specifies the contributions to knowledge and the key recommendations from this 

research thesis. 

6.1 Research aims and objectives 

The strategic aim of this thesis was to improve the understanding of SOM 

dynamics on cocoa farms. More specifically, the research sought to describe and 

explain the temporal variations of SOM and C stocks of cocoa farms using a 

combination of approaches, including literature reviews, field sampling, 

laboratory measurements, and modelling. The applied aim of this project was to 

propose a SOM management strategy for cocoa cultivation in Indonesia. 

Five objectives were defined to meet those goals: 

1. Firstly, to assess the existing temporal dynamics, variability, and 

distribution of C storage in cocoa systems by analysing available data. 

2. Secondly, to compare the effects of soil inputs (fertilizer, compost, and 

dolomite) on soil properties and cocoa growth and productivity through 

experimentation. 

3. Thirdly, to characterize SOM dynamics on a false-time chronosequence of 

Indonesian cocoa farms. 

4. Fourthly, to describe and predict SOM dynamics in cocoa farms using a 

modelling approach and simulate the effect of organic inputs on SOM 

stocks. 

5. Finally, to propose SOM management recommendations for cocoa farms 

in Indonesia, based on a synthesis of the research. 

Each objective is considered in the following subsections. 
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6.2 Synthesis of the findings 

6.2.1 Objective 1: Assessing the existing information 

on C storage in cocoa systems 

The objective in Chapter 2 was to critically evaluate and interpret available data 

on SOM and C storage in cocoa systems. Before fully implementing the study, 

the intention was to focus on SOM. However, the variety of approaches used by 

the researchers and the diversity of cocoa systems meant that it was also 

necessary to consider soil and plant C stocks in addition to SOM. 

The research synthesis and meta-analysis of 37 references described in Chapter 

2 provided an overview of C storage in diverse cocoa farms from contrasting 

regions. Chapter 2 represents, to date, the largest combined dataset on C storage 

in cocoa systems. Most of the data covered cocoa farms younger than 35 years 

old (219 data points for aboveground cocoa C stocks, 359 for soil C), as only a 

few plots older than that were found (31 data points for aboveground cocoa C, 22 

for soil C). Unfortunately, the dataset was geographically unbalanced because 

no large dataset was available for Africa, which represented only 5% of the farm 

plots, as opposed to America (53%) and Asia (41%), despite Africa being the 

largest global producing region. Although researchers and institutions in Africa 

were contacted, only limited additional data were provided, suggesting either a 

lack of large-scale studies in Africa or an inability or reluctance to make that data 

available. 

During the process of aggregating the data, it was possible to identify the 

methods used by the researchers to determine plant and soil C stocks in cocoa 

farms. The research highlighted the allometric equation proposed by Smiley & 

Kroschel (2008), which was subsequently used in Chapters 3 and 4. The process 

of collating the farm ages also highlighted the importance of obtaining data for 

both younger (<10 years) and older farms (>20 years) in a chronosequence 

(Chapter 3). 

Considerable variations exist between the aboveground C stocks of cocoa farms 

ranging from as low as 5 Mg ha-1 to as high as 20 Mg ha-1. These disparities can 

be partly explained by differences in age (Beer et al., 1990a; Smiley, 2006), the 

variety of planting densities and shading intensities (Rajab et al., 2016), pruning 

techniques (Schneidewind, Niether, Sauer, et al., 2019), and other farm 

management practices and factors (Mohammed et al., 2015). Shade trees 

typically formed a larger store of C than cocoa trees, approximately 4-5 times as 
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large on average across all farm ages. This large gap suggests that shade trees 

can strategically enhance C storage on cocoa farms. While aboveground cocoa 

C stocks rarely surpassed 20 Mg ha-1, aboveground shade tree C stocks could 

reach 100 Mg ha-1. Because of a lack of access to cocoa yield data, the effect of 

shade trees on cocoa productivity was not evaluated. Nonetheless, from a 

diversification perspective (Cerda et al., 2014; Vaast & Somarriba, 2014), those 

trees can represent another source of income for farmers (e.g., timber and fruits, 

carbon offsets and payments) and improve biodiversity. 

Litter provided a mean C reservoir of 1 Mg ha-1. There was no measurable 

increase of the average litter C stock over time from the examined dataset. 

Because of differences in soil sampling depth, the calculation of soil C was 

standardized to a depth of 10 cm. The mean soil C stocks (0-10 cm) was 23 Mg 

ha1, with values across the 250 sites ranging from 10 Mg ha-1 to approximately 

40 Mg ha-1. In Chapter 2, results demonstrated that soil C contents were 

negatively correlated to clay content and positively to sand content (all depths 

considered together). The reason for this was that soils with the highest sand 

contents also tended to display relatively high C contents. This observation 

contradicts general relationships that find higher C contents in clay soils rather 

than sandy soils (Brady & Weil, 2017). It could be worth examining these sites 

more closely and asking farmers about their practices to explain this observation. 

The process of completing the meta-analysis highlighted the importance of 

studies describing as clearly as possible the previous land use, the history of farm 

management, baseline SOM or C levels before pre-planting land preparation or 

at planting, and any significant organic matter inputs. Chapter 2 identified that the 

studies reviewed used different approaches to describe the structure of the 

agroforestry system and the intensity of shading (e.g., tree densities, sizes, and 

canopy cover), particularly for locally heterogeneous, diverse, and “disorderly” 

agroforestry systems. The appropriateness of allometric equations used to 

estimate plant C stocks was rarely evaluated. Destructive studies were 

uncommon because they are laborious, and one can question the suitability of 

using an allometric equation without verifying its validity in another context. The 

studies used different shoot:root ratios to convert aboveground to belowground 

estimations. The provenance of litter and roots (cocoa or shade trees) was rarely 

assessed. Soil bulk density was frequently absent from soil measurements, which 

hinders the calculation of both SOM and C stocks. The studies reviewed in 

Chapter 2 adopted various analytical methods to assess soil C levels (e.g., 

Walkley-Black, loss-on-ignition, elemental analysis), making comparing SOM and 
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C values more difficult. The studies used varying soil sampling depths (e.g., 10, 

15, 20, 30 cm), limiting the comparability of their results. An additional constraint 

when aggregating the data was that researchers used inconsistent size 

boundaries between fine and coarse roots (sometimes 2 mm, sometimes 5 mm). 

Contributions to knowledge 

This study: 

• gathered, to the authors knowledge, the largest dataset on plant on soil C 

storage in cocoa farms, cocoa and shade tree densities, and shade tree 

species; 

• presented the most comprehensive statistical description of C distribution 

across five reservoirs (aboveground cocoa, aboveground shade, 

belowground root, surface litter, and soil), dispersion, and temporal 

variation in cocoa farms; 

• highlighted critical methodological differences in existing work (e.g., 

different soil depths, measurement of soil C or SOM, different root 

measurements, different allometric equation for tree C, different plant C 

carbon contents); 

• provided an approximate global estimation of C storage in cocoa farms 

(0.9 Gt of C across 11 million ha, i.e.; a mean of 82 t C ha-1). 

• provides knowledge to inform future studies and projects interested in 

quantifying C storage and dynamics in cocoa farms, including in particular 

C inventories for C offsets studies, climate mitigation initiatives and other 

sustainable development projects. 
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6.2.2 Objective 2: Effects of soil inputs on soil 

properties and cocoa productivity  

Chapter 3 evaluated the effects of different types of organic and mineral inputs 

on soil properties and cocoa growth and productivity to inform the development 

of better soil management recommendations. 

This experimental study provided a continuation of a previous experiment (Mulia 

et al., 2019) located in Bone-Bone, Sulawesi, Indonesia, conducted by Mars Inc. 

and BPTP (Indonesia Assessment Institute for Agricultural Technology). The field 

experiment initially consisted of an unproductive site shaded by coconut. The soil 

displayed low N and SOC contents and a low base saturation. It was replanted 

with PBC123 cocoa seedlings and shade trees of Gliricidia sepium. The 

experiment design consisted of four randomized blocks of 16 cocoa trees for each 

replicate. A locally-made compost composed of 60% cow manure, 15% empty oil 

palm bunches, 10% rice straw, 10% diverse leaves (banana, grass, Gliricidia, 

and maize), 5% cocoa pod husks, and micro-organism mix (EM4) was used alone 

and in combination with mineral fertiliser or dolomite inputs (5 kg per tree per 

application). The inorganic fertilizer treatments included the application of 

Phonska (a rice NPK fertilizer used in Sulawesi by cocoa farmers) and urea 

(respectively 374 g and 250 g per tree per application). The third treatment 

consisted of dolomite applications (2.5 kg per tree per application). Each 

treatment was applied alone and in additive combinations. With the control, this 

raised the total number of treatments to eight. Each treatment was continuously 

applied at six-month intervals. Tree basal measurements and soils samples were 

collected in December 2018, when the cocoa trees were 7.4 years old. Yields, 

pod counts, mortality rates, and rates of infected pods were all assessed during 

the four previous years (2015, 2016, 2017, and 2018). The soil properties 

analysed in 2018 were compared to the previous measurements obtained in 

2014. 

Applying compost did not lead to significantly lower soil BD, or higher SOC, or 

cation exchange capacities (CEC) than observed in the control treatment. 

Possible reasons for this lack of significant response could be an insufficient 

number of samples, the localized application of compost in small pits which may 

not have been directly sampled, and a potentially high decomposition rate due to 

the compost’s low C:N ratio. However, while no differences in soil properties were 

measured, the cocoa responses to compost applications were pronounced, with 

cocoa yields higher than in the control also obtained in treatments receiving 

fertilizer or dolomite . Combinations with compost did not lead to additional 



INTEGRATED DISCUSSION AND CONCLUSIONS Page 183 

Thomas Fungenzi Cranfield University (2018-2021) 

beneficial effects on yield, suggesting that compost addition alone was enough 

to alleviate the principal yield-limiting factors. 

There were also treatment effects on the mortality of the cocoa plants, with higher 

mortality found in the mineral fertilizer treatment than the control. This result may 

have been caused by the mineral fertilizer “scorching” the roots of the young 

cocoa plants. Even so, the mean dry bean weight (1.25 g) in the mineral fertilizer 

treatment was lower than in the other treatments (except for the control). The 

largest mean dry bean weight was found in the dolomite treatment (1.59 g). The 

highest yield index (i.e., dry bean yield divided by the basal tree area) was found 

in the fertilizer-only treatment. As found in the preceding study (Mulia et al., 2019), 

combining inorganic fertilizer and compost did not lead to clear yield benefits as 

compared to compost alone. Still, fertilizers could have a role to play in correcting 

soil nutrient deficiencies and limiting long-term nutrient depletion. The current 

fertilizer formulation used by Sulawesian cocoa farmers is formulated for rice (for 

lack of a better alternative). Adequate fertilizer formulations should be available 

to cocoa farmers to not waste resources on unsuitable inputs (Mulia et al., 2019). 

Unlike the situation with the compost, adding dolomite affected the measured soil 

properties. Soil pH, BS, C:N ratios, and cation concentrations (exchangeable Ca 

and Mg, and extractable Ca, Mg, and K) were significantly increased where 

dolomite was applied. However, these changes in soil properties did not feed 

through to higher yields than the control treatment, as the yield in the dolomite 

and the control treatment were statistically similar (p-values > 0.05). 

Overall, compost application was an effective method for increasing cocoa yields, 

although the benefits tended to reduce over time. As the trees mature, the 

competition between trees for light, water, and nutrients will likely increase. 

Continuing the assessment for a few more years would help determine if this 

trend is maintained. In any case, this experiment provided evidence that organic 

inputs can play a strategic role in improving cocoa productivity in degraded cocoa 

plantations. 

The compost application rate used in this experiment was 10 kg tree-1 year-1. This 

application rate is probably unachievable by most cocoa farmers, but such 

applications could be possible if there were local initiatives to recover and recycle 

organic wastes (Fungenzi, 2015; Meidiana & Gamse, 2010). Poorly managed 

organic wastes currently are a pollution issue in Indonesia, and their use for 

enhancing cocoa growth is a currently untapped opportunity. Redirecting unused 

waste to produce organic compost could address an existing pollution problem 

and increase cocoa yields. For this reason, cocoa industries (and other 
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agricultural businesses) should advocate for and support the development of the 

organic waste treatment sector in Indonesia. 

Contributions to knowledge  

This study:  

• showed that the application of compost can significantly increase cocoa 

yields (2.8 times the control, excluding mortality rates; 2.9 times the 

control, including mortality rates; over 2015-2018), more than the current 

fertilization practices or applications with dolomite; 

• revealed that adding mineral fertilizer and/or dolomite to compost 

applications did not produce compounded yield benefits; 

• suggested that current soil management fertilization practices must be 

reviewed and improved: despite additions, cocoa yields were still low as 

compared to experimental potentials (van Vliet et al., 2015), and significant 

soil C and nutrient depletion occurred. 

• provided critical insights about cocoa soil fertility management to inform 

cocoa agronomists, cocoa farm owners and other decision-makers 

working on cocoa nutrition. 
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6.2.3 Objective 3: Characterizing SOM temporal 

variations on Indonesian cocoa farms  

Chapter 4 examined the temporal variation of SOM, C, and N in a false-time 

chronosequence of cocoa farms located in Sulawesi, Indonesia. This study 

determined the typical temporal variation in SOM found on Indonesian cocoa 

farms from planting to maturity. The assumption was that SOM would decline 

rapidly after planting because of the combination of low organic matter inputs 

occurring when the cocoa and shade trees are young and the high SOM 

mineralisation rates expected under a perpetually hot and wet climate. The 

objective was to determine if a particular trend was observed or not and if the 

trend matched with the hypothesized conceptual dynamics. 

The study gathered data from 13 cocoa farms, ranging from 0.5 to 31 years old 

(plus one adjacent forest plot) to create a false-time chronosequence. Cocoa 

trees trunks were measured to estimate the relative dynamics of biomass growth 

and potential deposition of organic matter as litter and belowground inputs. Soil 

samples were collected from 0 to 100 cm in 20 cm increments. Soil BD was only 

measured in the surface layer (0-5 cm) as deeper BD measurements would have 

required significantly higher resources (a core extraction machine or digging 65 

one-meter deep soil pits to extract intact cores manually). 

Across the various sites, the growth of cocoa trees was described using the 

Weibull growth curve. The collated data demonstrated that the initial growth of 

the cocoa trees was relatively consistent (i.e., the trunk diameters were relatively 

similar) irrespective of local differences imposed by shade tree type and planting 

densities. By contrast, the variation in the growth rate of individual cocoa trees 

tended to increase as they matured, perhaps because inter-tree competition 

increases as the canopy closes and competition increases for light, water, and 

nutrients (Bastide, personal communication). Some trees become dominant, 

whereas others struggle to compete for resources. 

Cocoa biomass estimations obtained in Chapter 4 were significantly higher than 

the results obtained in Chapter 2 (i.e., about twice as high if a density of 

625 trees ha-1 was used, seven times higher than with a density of 1111 trees ha-

1). A comparison of the behaviour of the allometric equations (Table 2.3) using 

dummy values (unpublished) showed that same values can lead to significantly 

different estimations by each allometric equation. This finding suggests that these 

allometric equations should be compared and evaluated to delimit their validity 

domain, and perhaps determine if a single equation could be used in cocoa 
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research to determine accurately biomass stocks accurately with a minimal 

number of a parameters such as trunk diameter and tree height. Work is also 

much needed to consider the relationships of cocoa biomass estimations with 

pruning. 

A limitation to this study was that shade trees morphology were not measured. 

Farmers were only asked to record the name of species and the approximate 

density. Shade trees C stocks should be systematically measured to improve the 

quality of future studies on C storage in cocoa farms. 

The collated data generally showed a rapid decline in SOM from land preparation 

and planting right after between 2-14 years after planting. The decline was 

substantial and equivalent to approximately -46% of the SOM stock (0-20 cm) in 

2 years (-42 Mg SOM ha-1). Even though this observation could be caused by the 

natural variability of SOM and C contents of the dataset used, the results adjusted 

for clay content and soil BD also showed the same pattern. However, real-time 

chronosequence should be studied to evaluate this trend. Even if adjusting for 

clay content and soil BD ameliorates site comparability, initial SOM stocks at 

planting were not known and represent a significant limitation the false-time 

chronosequence developed in this study. 

An analysis of the literature showed that most experimental studies on cocoa do 

not record SOM or soil C changes within the first five years after planting. If 

considering longer-term changes, a -46% depletion of the SOM stock is not 

unreasonable, but there is a lack of research interested in short-term changes. In 

the study area, the level of precipitation is high (> 2500 mm per year), and the 

mean annual temperature is approximately 27°C. In such conditions, SOM 

mineralisation rates could be amongst the highest in the world, as also argued 

modelling estimations (see Chapter 4; Morais et al., 2019). The process of 

developing a new cocoa plantation from either an old cocoa plot or a forest with 

abundant standing biomass could lead to faster changes in SOM contents than 

observed, for example, in temperate arable crops. 

The chronosequence showed a relatively rapid increase in SOM stocks after 

reaching a minimum point that occurred two years after planting. Although the 

humid tropical climate enables rapid declines in SOM, the same climate can also 

support high rates of cocoa and shade tree above and below ground biomass 

accumulation which can also rapidly restore SOM levels to their pre-planting 

levels. However, eventually, a point is reached when the SOM tends to stabilize 

at a new equilibrium rather than continue to increase. This observation suggests 

that SOM accumulation soon becomes balanced with increased rates of SOM 
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breakdown, with tree mortality being also one way in which inputs may be 

reduced. 

While Chapter 2 gathered data from external sources, Chapter 4 focused on 

using new primary data collection, which could fill some gaps identified during the 

meta-analysis. Namely, this study helped to collect data points for a wide age 

range, with more data points about young cocoa farms (e.g., 0.5, 1, 2, 5 years 

old), to examine more precisely the variations in SOM that could occur early on 

after planting. As compared to many other studies on this topic, this study 

provided a more detailed description of the dynamics of cocoa farms by 

measuring not only SOM or C, but both, and also N. Five depths were measured 

in each farm, down to 100 cm, which is rarely observed in other studies. Also, C 

and N elemental analysis was performed on soil samples, a more precise 

technique than the traditional wet chemistry approach (Chatterjee et al., 2009). 

Furthermore, this study attempted to use soil data transformation techniques to 

improve the quality of comparisons between different sites. Calculating stocks 

using soil BD measurements provided more accurate comparisons of C storage 

than gravimetric contents only (Rollett et al., 2020). SOM contents obtained using 

loss-on-ignition (LOI) were also corrected to take into account the clay contents 

and the “structural water” held by minerals released during the LOI analysis, 

which would have otherwise biased the results by overestimating SOM contents 

(Hoogsteen et al., 2015; Jensen et al., 2018; Konen et al., 2002; Pribyl, 2010). 

Using clay-adjusted ratios (SOM-to-clay, C-to-clay, N-to-clay) also allowed more 

valid comparisons than using SOM, C, and N contents only (Dexter et al., 2008; 

Jensen et al., 2019; Johannes et al., 2017; Knadel et al., 2015; Prout et al., 2020. 

The cocoa trunk size data obtained from this experiment formed the basis for 

formulating a non-linear relationship relating cocoa age to aboveground and 

belowground cocoa biomass. This relationship was used in the modelling chapter 

(Chapter 5). 
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Contributions to knowledge  

This study: 

• proposed a schematic representation of SOM dynamics in cocoa farms; 

• demonstrated that soil SOC dynamics in the first five years after planting 

are often underappreciated by soil studies but could be a critical soil 

degradation phase when rapid SOM losses occur; 

• demonstrated that organic inputs should be applied during this 1-5 years 

SOM-depletion phase to improve cocoa farming sustainability in Sulawesi.  
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6.2.4 Objective 4: Modelling SOM dynamics of cocoa 

farms 

The modelling study in Chapter 5 incorporates knowledge obtained during the 

three preceding studies (Chapters 2, 3, and 4) to deliver a tool (the model) that 

can be used to and inform SOM management in cocoa farms. A modelling 

approach was used to represent SOM dynamics in cocoa farms. By adapting the 

existing AMG soil model, a new model was generated to describe the variations 

of SOM stocks in Indonesian cocoa farms. This work filled a significant research 

gap in the cocoa literature, a knowledge application gap of soil models to predict 

SOM stock variations (Müller-Bloch & Kranz, 2015). Although soil carbon C 

models exist and have been applied to other crops, nothing (to my the authors 

knowledge) has at the time of writing, been published for cocoa. To some extent, 

this research gap could also be categorized as a theoretical gap (Miles, 2017), 

as developing this model offered a simple theoretical framework to understand 

SOM dynamics in cocoa (and other tree crops). 

The preliminary phase of completion of this objective involved a critical review of 

existing models. Several options were initially considered, including RothC 

(Coleman & Jenkinson, 1996), MOMOS-TAO (Kaboré et al., 2011; Pansu et al., 

2009), CASE2 (Zuidema et al., 2005), and WaNuLCAS (Van Noordwijk & 

Lusiana, 1998). In the end, the preferred approach was to adapt a simple soil 

model: AMG (Clivot et al., 2019). RothC appeared as a good option, and some 

unpublished work was completed during this project to modify it and fit it to the it 

to the particularity of a perennial system (i.e., provide variable C inputs rates 

instead of a constant one). The Windows (Coleman & Jenkinson, 1996), R (SoilR 

package, Sierra et al., 2012), and Stella versions (Nichols, 2019) of RothC were 

obtained, but there was not enough time to use them during this thesis (each 

study took a lot time). Combining the MOMOS-TAO models was explored as it 

represented a promising and modern take on SOM dynamics. However, the 

authors lack of experience with VENSIM posed a challenge, and the developers 

of MOMOS and TAO were unable to provide training at the required time. The 

CASE2 model was also studied as a potential option, but because the only 

available version was scripted in FORTRAN (an obsolete programming 

language) and also because of the focus of the model on plant physiology without 

soil components, the CASE2 option was also put aside. The WaNuLCAS model 

was also examined as an agroforestry model including a plant and soil 

component, with variables already parametrized for cocoa. Unfortunately, 

technical issues prevented its use. WaNuLCAS runs on the Stella software 
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platform, but the available version seemed to function with a discontinued version 

of the Stella. Stella developers offered to convert the “old” WaNuLCAS file to 

make it compatible with the latest versions of the Stella program, but running the 

model led to errors. Such experiences demonstrate that technical issues posed 

by the language or program used can be obstacles that hamper model adoption 

and development by other users (except for RothC, available in many versions). 

Developing the R version of AMG allowed it to be adapted to the research needs 

of this thesis. All the mathematical formulas were available and easy to code in 

R, which also offered the possibility to produce a user-friendly interface with the 

Shiny framework, to quickly run simulations and extract information. R is open-

source, free, and one of the most popular data science languages, and future 

users of the cocoa AMG model developed here could have full control over the 

model script to easily modify and improve it, transparently. 

The method used to develop an adapted version of AMG, suitable to cocoa farms, 

was based on the “common-sense approach to ecological modelling” proposed 

by Grant & Swannack (2007). The methodology consisted of three main steps: 

(1) model development, (2) model evaluation, and (3) model application. To 

develop the model, the AMG model needed to be modified. A major change 

consisted in modifying the plant inputs, which were previously crop residues left 

in the field after harvest (i.e., aboveground residues like straw and belowground 

residues like roots). Instead of an annual crop, the plant component was replaced 

with a perennial crop. This modification was achieved by proposing a simplified 

cocoa growth model based on trunk measurements at the sample farms and an 

allometric equation developed in Sulawesi (Smiley & Kroschel, 2008). A shoot-

to-root ratio was used to estimate the dynamics of belowground biomass. 

Considering that tree roots also persist for a more extended period than arable 

crops, it was necessary to model how roots would contribute to SOM inputs by 

estimating root turnover instead of assuming that the entire root system would be 

deposited after harvest like with the arable version of AMG.  

This plant component of the model is retrospective in the sense that the user 

must possess data about the growth dynamics of the simulated plot. The 

proposed cocoa growth model described how cocoa biomass could have 

developed on the 13 farms evaluated. However, to improve the applicability to 

other locations, it is necessary to have information about the biomass 

accumulation for the site of interest. A potential area for future research is making 

the model's plant component sensitive to climate and soil variables. This update 

would help reduce the need to rely on plant biomass measurements and 

estimations. 
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The application of the model indicated that, as it was hypothesized in Chapter 4, 

SOM mineralisation rates can be extremely high in Sulawesi (k2 of 0.125). 

Another estimation from (Morais et al., 2019), using RothC, estimated SOM 

mineralisation rates to be approximately 0.07. For all 13 farms evaluated, the 

early years after planting were all followed by a decline in SOM because SOM 

inputs are lower than the outputs early on. The duration of the SOM loss phase 

depended on the local variables. The long-term trends could either be a continual 

decrease in SOM stocks, or a significant increase, even exceeding SOM levels 

at planting. Large gains and losses were simulated with the model farm of the 

dataset. In relative terms, they ranged from -33% to +378%. In absolute terms, 

they corresponded to -36 to +42 Mg ha-1. The predicted final SOM stocks at 35 

years ranged from 53 to 133 Mg ha-1 (0-20 cm). 

The functional parameter that most influenced the final SOM stock at 35 years 

was the upper limit of cocoa aboveground biomass. This parameter directly 

controls the quantity of aboveground and belowground organic matter inputs. The 

effect of the other functional parameters was roughly equivalent because of their 

similar weighting in model equations. The local variables with the largest 

modelling effect on the final SOM stock were soil pH and the mean annual 

temperature. However, it should be noted that these evaluations were the results 

of applying the same relative change to each parameter, although their units 

differed. A subjective analysis of the graphical outputs suggested that plots with 

a high initial SOM content will lead to lower long-term SOM stocks. This is 

because the high starting SOM stocks can be beyond the replenishment of 

capacity of the young cocoa system resulting in rapid and potentially 

unrecoverable depletion. By contrast plots with a low initial SOM content often 

led to higher long-term SOM stocks (see Figure 5.6 2/2: initial SOM content). This 

trend is due to the fact that SOM losses are proportional to the SOM stock, and 

hence a low stock means that the initial C losses are lower and easier to 

replenish. Overall, the long-term trend is determined by the balance between the 

local rate of SOM mineralisation and the SOM input rate. Once again, the amount 

of biomass was a determining factor as it controls the amount of inputs deposited 

on and in the soil. Belowground deposits were also larger contributors than 

aboveground deposits (respectively 70.2 and 98.7 Mg ha-1 when cumulated over 

35 years with the default run). 

As indicated above, the initial SOM content at planting was an important 

determinant of future SOM stocks. This information is often unknown. In this 

study, the mean SOM content of all farms (2.59%) was used. An alternative 

approach would be to use a recent measurement of SOM content when 
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simulating a plot about to be planted (e.g., grassland or arable field crop) or 

replanted (i.e., old cocoa farm). The alternative approach used to estimate initial 

SOM content was to calculate it through backward modelling. This computation 

was achieved by optimizing the model function with a range of initial SOM 

contents until the simulation matched with the measured SOM content obtained 

for the studied year. Using data from an adjacent plot comparable to the planting 

conditions would help assess the plausibility of this backward modelling 

estimation. 

In the AMG model, some variables were assumed to remain constant. For 

example, soil BD is fixed, but in reality, it may vary with SOM contents, as shown 

in Chapter 1. Findings from the literature (Mann, 1986; Shi et al., 2018) and the 

results obtained in Chapter 1 showed that this relationship was not linear (Figure 

A - 2.2). The issue is similar for other soil properties like C:N ratios and pH, which 

should potentially vary over the development course of a cocoa orchard. Leaf 

litter could be expected to affect soil properties (Giweta, 2020). 

The model development phase revealed that additional studies would be needed 

to calibrate and validate this model, primarily because no long-term experiments 

were available to realize those modelling steps. In particular, the influence of 

pruning on tree biomass should receive more attention to represent the flux of 

residues from the trees to the soil. The model used an estimated annual fraction 

of aboveground biomass lost from the trees, but this value was obtained from 

litterfall experiments excluding pruning deposition (Dawoe, 2009; Dawoe et al., 

2010). As suggested in Chapter 5, pruning could be integrated into the model 

using a couple of coefficients like frequency and intensity. At this stage, the extent 

to which the model underestimates the organic matter inputs from the trees 

remains unknown. Pruning residues may represent more than twice the amount 

of litterfall inputs (assuming a plant C content of 48%, approximately 5-9 Mg 

organic matter ha-1 year-1 Schneidewind et al., 2019) and therefore constitute a 

key point to improve the model. 

Following litterfall and pruning, resulting in the deposition of organic residue on 

the soil surface, the next phase in the organic matter cycle is decomposition and 

transfer to SOM. Several studies have investigated this subject (see Zheng et al., 

2021, which compilated data from 25 litter decomposition studies); however, their 

approaches focused more on nutrient release than on organic matter assimilation 

in the soil. The model developed in this study used a humification coefficient to 

consider that what remained after one year was equivalent to SOM. It is important 

to note that the name of this coefficient is derived from AMG, which itself is the 
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descendant of the Hénin-Dupuis model (Andriulo et al., 1999; Hénin & Dupuis, 

1945) and the view that SOM is formed during a chemical process of humification. 

Currently, the cocoa SOM model developed in this study uses the term 

humification to label the process through which organic inputs are converted, 

assimilated into SOM, and not the mere formation of humic substances. The 

scientific views on SOM formation are evolving, and the boundary separating 

SOM from what it is not is sometimes debated amongst soil scientists (Lehmann 

& Kleber, 2015). There is an increasing awareness that whilst separating C 

components into categories such as plant residues, belowground roots, and SOM 

can be helpful, a full C balance requires each of these components to be summed 

together (Rivas Casado et al., 2021). Very often, the division between what is 

plant residue and what is SOM can be fuzzy because SOM formation theoretically 

starts as soon as organic residues begin to decompose. If it is accepted that the 

soil continuum model of Lehmann & Kleber (2015), deciding that what is left of 

organic inputs after one year becomes SOM can be debated. One can see that 

the soil scientist and the modeler may have conflicting needs when deciding 

about the boundary between SOM and fresh residues. Having a distinct limit 

between SOM and non-SOM simplifies the activity of the modeler but is certainly 

too simplistic for the soil scientist. Notwithstanding this concern, a model is by 

definition a simplified representation of reality, so some tolerance should provided 

for the modeler’s efforts. A way to perhaps improve future soil models would be 

to integrate this gradual, continuous and contentious nature of SOM, instead of 

fixing a clear-cut limit between SOM and non-SOM.  

One additional observation is that soil scientists perhaps make a recurrent 

misnomer. This issue results from a gap existing between what soil scientists 

mean by SOM and what they actually measure. Whereas the definition of SOM 

is rather broad and clear (i.e., all organic materials found in soil that are part of or 

have been part of living organisms; Chenu et al., 2015), soil scientists almost 

always measure SOM on 2 mm sieved soil samples. All other forms of decaying 

organic matter larger than this physical boundary are excluded from the analysis. 

One could argue that using this approach is helpful for practical reasons but 

concede that SOM analyses underestimate SOM stocks. For example, large leaf 

fragments, large root debris, and dead soil fauna which theoretically fit the SOM 

continuum concept, are filtered out from the typical laboratory analyses. Instead 

of talking about SOM, soil scientists only consider a limited subset of it. The effect 

of limiting SOM to anything < 2 mm remains to be evaluated. To which extent are 

soil analyses underestimating the actual amount of SOM? 
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Beyond those concerns for converting organic matter to SOM and the boundaries 

that separate them, future research should also investigate the relationships 

between litter traits, their decomposition patterns, and how they influence soil 

functioning (Bai et al., 2022; Sauvadet et al., 2020). 

Additional studies are necessary to model the effect of litter traits on nutrient 

availability and other essential aspects of soil functioning like soil structure 

formation. To improve the capacity of soil models to anticipate changes in soil 

health after organic additions, other functions that are influenced by C and 

nutrient dynamics – like structure formation – should be considered (Kibblewhite 

et al., 2008). In a climate change context, the improvement of soil structure and 

the enhancement of soil water storage capacity deserve more attention. 

Two of the most significant areas for model improvement consist of including 

shade trees instead of cocoa trees only and making the plant component 

sensitive to environmental factors. Likewise, modelling plant responses induced 

by soil changes would be a valuable research area to model feedbacks between 

the plant and soil components (Oldfield et al., 2017). Estimating changes in soil 

properties induced by changes in SOM contents using pedotransfer functions is 

an understudied topic in plant and soil modelling but has great potential. For 

example, estimating changes in water-holding capacity, CEC, and soil physical 

structure, as well as their subsequent effect on agronomic yield, represents a 

great opportunity (Lal, 2006) that is yet to be fully exploited. Having the capacity 

to predict the response of cocoa productivity to environmental factors and farming 

practices like organic matter additions would help compare different cultivation 

plans and their economic viability. Refining the model by considering seasonal 

variations and their effects on plant growth, litter transformation, and soil 

properties could be fruitful for future work. This change would require shifting the 

modelling time step to a daily or monthly one. 

In the second step of Chapter 5, the plant and SOM dynamics model was applied 

to simulate the effect of organic inputs on SOM stocks. In addition, it was used to 

calculate the quantity of different organic matter inputs required to compensate 

for SOM losses over time. This model application can be used to provide insights 

for the development of a SOM management strategy in cocoa farms, with a focus 

on Sulawesi in Indonesia. 

The model application phase indicated that the long-term dynamic of SOM stocks 

could vary from one farm to another. When crops are planted on SOM-depleted 

soils and with the right local conditions, SOM stocks could significantly increase. 

Conversely, when crops are planted on SOM-rich soils, with conditions 
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favourable to SOM mineralisation, the long-term SOM dynamics could result in 

continuous losses. Approximately 30 Mg ha-1 of SOM would be required to 

compensate for the net losses occurring during the first 14 years out of 35 years 

of cultivation of the average farm of the baseline simulation. After 14 years, inputs 

from the cocoa trees were sufficient to offset the losses. To attain those SOM 

inputs, the exogenic organic matter (EOM) inputs need to be differentiated by the 

approximate humification coefficient of the considered EOM since the k1 

coefficient represents the estimated fraction of EOM inputs converted to SOM. 

For example, if cattle manure is considered as an EOM input (k1 = 0.3) during 14 

years (the SOM shortage period of the baseline simulation of Chapter 5), the total 

quantity applied per tree would be 30 ÷ 0.3 = 90 kg (dry matter). Considering 

biochar (k1 = 1), the total quantity of inputs required to cancel the loss of SOM 

would be 30 ÷ 1 = 30 kg per tree. The higher the k1 coefficient of the input, the 

lower becomes the application rate to offset SOM losses. Also, the simulation has 

shown that those EOM inputs become progressively smaller as organic matter 

inputs from cocoa trees increase, and eventually become zero (after 14 years for 

this baseline simulation). The highest rates of inputs would be needed at planting 

to compensate for the imbalance between high SOM output and low SOM inputs 

during the first 14 years. Such inputs would also benefit the growth of the young 

cocoa trees, and as was demonstrated Chapter 3, could potentially substitute for 

mineral fertilizers and amendments. 

Contributions to knowledge 

This study: 

• modified the conceptual and mathematical structure of the AMG soil model 

to the particularities of a perennial tree crop system like cocoa; 

• developed an R program and a Shiny application to allow other users to 

model SOM changes in perennial tree crops (tropical or not), with and 

without EOM input scenarios; 

• produced a tool to estimate the amount of EOM needed to compensate 

SOM losses; 

• found that the early years after planting can experience large SOM losses, 

but intensity and duration are site-dependent; 

• identified key research areas required to improve and calibrate the model 

while advancing our understanding of organic matter fluxes in cocoa 

farms; 
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• provided a pivotal first step to simulate the forecast the dynamics of C in 

diversified cocoa farming scenarios (necessitating minor model additions) 

to address climate mitigation goals of the cocoa industry.  
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6.2.5 SOM management on cocoa farms: 

recommendations and future research 

This section synthesizes the knowledge gained during this thesis and outlines 

key principles and workstreams to improve SOM management in Indonesia 

cocoa farms. 

Importance of SOM 

Applying an adequate SOM management strategy can provide production and 

environmental benefits (Lal, 2015, 2016). Maintaining good SOM levels on cocoa 

farms is valuable as it supports the growth, development, and yield of cocoa 

trees, and it can reduce the need for farmers to purchase and use external inputs 

(Fungenzi et al., 2021; Mulia et al., 2019; Oldfield et al., 2019). High, rather than 

low, SOM levels are also beneficial in reducing atmospheric CO2 levels, and 

hence are positive in reducing climate change (Albrecht & Kandji, 2003; Bossio 

et al., 2020).  

Challenge with Indonesia: fast SOM mineralisation 

However, maintaining high SOM levels on young cocoa farms can be problematic 

in the unfavourable settings of Indonesia. High and frequent precipitation and 

high ambient temperatures favour SOM losses (Davidson & Janssens, 2006; 

Sierra et al., 2009). In this study, the modelled annual rate of SOM losses (k2) 

could be as high as 0.125, meaning that each year, the SOM content of a farm 

that receives no inputs (i.e., bare soil, no vegetation, no organic inputs) would 

potentially decline by 12.5%. Estimations using RothC suggested an approximate 

yearly mineralisation rate of 7% (Morais et al., 2019). As a point of reference, this 

coefficient is generally around 0.5-5% in temperate arable fields (COMIFER, 

2005). 

Site-specific strategies 

Characterizing the climate and soil of the site is essential to inform a suitable 

SOM management strategy. Cocoa farms can be highly diverse, and their context 

controls their potential to store or lose SOM. While it may not be necessary to 

gather data to address each model parameter to begin making 

recommendations, this research has shown that the variation of SOM stocks are 

highly dynamic in a location like Sulawesi. Under those circumstances, 

characterizing the pedoclimatic context of the farm is a prerequisite. 
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Soil monitoring 

Determining the initial SOM stock present on the farm before or at planting is 

critical. Farms with high SOM stocks risk experiencing losses, which, to be 

compensated, can require significant organic inputs if the location presents 

features promoting SOM losses (e.g., low clay contents, high pH, low tree density, 

low residue deposition rates). On the other hand, planting cocoa at a SOM-

depleted location can result in net SOM gains in the long term and could be a 

possible strategy to restore a degraded site. 

SOM should be monitored as frequently as possible (every year or two years), 

especially during the early years after planting, to determine the trend followed 

by the farm and regularly adjust farm interventions such as OM inputs. Recent 

technological developments could help cocoa industries proceed to rapid soil 

assessment using proximal soil sensors instead of relying on traditional and 

laborious soil sampling and analysis methods (England & Rossel, 2018). Using 

adjustment procedures, such as the ones used in Chapter 4 (i.e., using stocks 

instead of contents, correcting LOI results for soil clay content, calculating 

SOM/clay ratios) and other techniques such as equivalent soil mass sampling 

(Wendt & Hauser, 2013), should be implemented to improve comparisons 

between different locations and age of stand. 

Long-term cocoa experiments, and the soil data archives they can generate, 

seem to be notably lacking from the cocoa literature. Research on long-term soil 

changes typically preferred space-for-time approaches (as in Chapter 4) instead 

of real-time-series, probably because they demand fewer resources to be 

conducted (Huggett, 1998; Lehmann & Joseph, 2015; Pickett, 1989; Walker et 

al., 2010). However, the fundamental understanding of cocoa cultivation systems 

will remain limited without real-time chronosequences obtained from well-

maintained and controlled research stations or farmer-maintained farms. For 

instance, long-term experiments are decisive to calibrate plant and soil models 

(Bayer et al., 2006). The value of such experiments increases with time and 

makes them crucial to ensure the sustainability of food production systems 

(Johnston & Poulton, 2018). 

Farm data are a complementary source of information, but it seems that 

Sulawesian cocoa farmers keep very few records about their farms. During 

fieldwork, it was impossible to obtain historical cocoa bean production data. The 

absence or the reluctance to share such information limits our capacity to extract 

valuable insights from farm data. 
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Leverage high plant productivity to maximize SOM deposits 

A farmer’s goal should be to maximize the on-site production of plant biomass 

and its regular return to the soil in order to build up SOM and improve soil 

functioning. Although SOM mineralisation rates are high in Indonesia, its climate 

is favourable to developing abundant above and below ground cocoa and shade 

tree biomass capable of supplying large amounts of organic matter. Indonesia 

hosts some of the most C-rich ecosystems globally (Gibbs, 2006, 2008; 

Guillaume et al., 2018; Sullivan et al., 2017). Farm designs and practices will 

consequently be decisive to take advantage of this opportunity. However, note 

that even diversified agroforests may not lead to improving C stocks and soil 

properties to the same level as natural forest systems (Wartenberg et al., 2017). 

Keeping or planting shade trees is one method to increase residue deposition on 

the farm. The regular pruning of some of those trees can be a strategic driver to 

control the flux of organic matter and nutrients returned to the soil (Asigbaase et 

al., 2021b; Tangjang et al., 2015). Field experiments will be needed to determine 

the correct pruning frequencies and intensities, limit competition between shade 

and cocoa trees and optimize C capture by the vegetation. With this in mind, 

multi-story agroforestry is a sensible option to accumulate desired ecosystem 

services and reduce land degradation risks. 

Application of exogenous organic matter (EOM) 

Another crucial component of an effective SOM strategy for cocoa farms is to use 

EOMs to improve soil functioning and increase cocoa productivity. If feasible, 

local EOMs like crop residues, manures, and mulches should be considered, as 

they will necessitate lower transportation costs. 

Organic inputs should be applied at planting, with compost in the planting holes 

and mulch applied to the soil surface. Localized compost applications, 

incorporated with soil or placed in pits, may be more effective than broadcasting 

it on the surface, concentrating the effect in hotspots and yielding benefits (i.e., 

threshold effect; Oldfield et al., 2020) instead of “diluting” the inputs, resulting in 

minimal effects. Locally-made biochar should be considered as an option to 

improve soil pH, CEC, and potentially build up long-term stocks of stable C (Salifu 

et al., 2020; Sasmita et al., 2017; Vignesh et al., 2012). In addition, recent 

research suggests that biochar can mitigate cadmium accumulation by cocoa 

trees (Ramtahal et al., 2019), which is a concern of the cocoa industry. 

Vermicompost has also been shown to be a promising soil amendment to 

improve cocoa growth (Chavez et al., 2016; Wayuono et al., 2019). 
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The development of supply chains capable of providing EOMs appears to be a 

critical aspect of a successful SOM strategy. In addition to the on-farm production 

of organic matter (e.g., litterfall, root turnover, tree pruning, hedges, cover crops), 

external sources of organic matter can diversify the nature of inputs used to 

maintain soil health. At the same time, those supply chains can also address 

other concerns, such as waste management and their associated environmental 

impacts (Ayilara et al., 2020; Dhokhikah & Trihadiningrum, 2012; Fungenzi, 2015; 

Meidiana & Gamse, 2010; Shukor et al., 2018). There is also an argument that 

mineral and synthetic fertilizer prices could become unaffordable to Indonesian 

farmers if world energy prices increase. Finding local sources is a strategic way 

to moderate the costs of organic matter and nutrient inputs. A systematic 

approach is required to identify solutions for those complementary issues.  

If possible, the local annual SOM losses can be estimated by calculating the k2 

coefficient at the farm (calculated with the AMG version 2 formula) using mean 

annual temperature, potential evapotranspiration (PET), irrigation water inputs, 

annual precipitations, clay content, and soil CaCO3 content, pH, and C:N ratios). 

This value can be used to predict how much SOM could be theoretically lost each 

year. An upper limit for EOM inputs could be estimated as (approximately) k2 

times the current SOM stock to maintain the current levels. SOM gains obtained 

from fresh EOM inputs can be estimated using their estimated k1 and dry matter 

content (found in reference tables). 
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Avoid bare soil 

Bare soil encourages high SOM losses since no vegetation is available to provide 

aboveground and belowground organic matter inputs. Some farmers completely 

clear out the vegetation before planting and leave the soil bare below the cocoa 

tree (Figure 6.1). Such practice is probably detrimental to soil health as it lead to 

significant SOM losses. This site shown in the photograph below(farm B) had the 

highest soil BD of the farm dataset (1.55 g cm-3). Instead of keeping the farm free 

of vegetation other than cocoa and shade trees, shade-tolerant cover crops 

should be considered to improve the organic matter inputs. Using a legume could 

have the capacity to stimulate cocoa leaf litter decomposition. Besides a live 

cover, mulches should also be considered, especially prior to planting. Growing 

a large plant cover (e.g., through fallowing) can provide a significant cover and 

result in useful above- and below-ground SOM inputs. Soil structural 

improvement will also come from those interventions. However, it should be 

determined if benefits outweigh competition for water and nutrients. 

 

Figure 6.1: Example of a one-year-old cocoa farm with soil left almost entirely bare 
and prone to soil degradation 
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Litter dynamics 

Litter decomposition can improve soil quality and can contribute to restoring 

degraded soils (León & Osorio, 2014). However, the accumulation of cocoa leaf 

litter in certain farms shows that it is not always rapidly decomposed, incorporated 

in the soil, and does not provide nutrients for the trees. Several factors may be 

limiting litter decomposition, such as a lack of water or cofactors regulating the 

decomposition of cocoa leaves. Solutions stimulating litter decomposition should 

be investigated. Options like leaf shredding or gathering litter in pits could be 

tested. Spraying or mixing the cocoa leaf litter with N-rich materials or 

biostimulants could increase the litter decomposition rate. 

In addition, the interactions litter plays with cocoa and shade trees, other than 

nutrient cycling, need to be elucidated (Veen et al., 2019). 

Cocoa tree nutrition 

Managing SOM and organic matter inputs effectively cannot be achieved 

independently from adequate soil fertility management (Gram et al., 2020). 

Fertilizer adoption in general low by cocoa farmers (Wartenberg et al., 2018), and 

further research is required to improve cocoa fertilizer recommendations 

(CocoaSoils, 2019). At this stage, recommendations are generally based on 

production targets, aiming to replace nutrients removed by harvest. However, 

other approaches can be useful and complementary, including measuring soil 

nutrient availability (Snoeck et al., 2016). If farmers have access to soil tests, soil 

analysis results can be compared to recommended sufficiency ranges. At the 

same time, there is a paucity of modern experiments determining cocoa (and 

shade tree) responses after fertilizer additions, which can be particularly useful in 

establishing recommended fertilizer application rates (van Vliet et al., 2015). 

Such experiments can also help quantify nutrient cycling and the rates at which 

litter can supply nutrients to the crop. More information on plant, litter, and soil 

response to fertilizer application would help determine the best soil input strategy 

and how fertilizer and organic inputs can complement each other. 

Cocoa carbon balance and accounting 

From an environmental standpoint, further work needs to be done to assess the 

C balance of cocoa farms. Indeed, cocoa businesses have committed to reducing 

their net contributions to GHG (Barry Callebaut, n.d.; Mars Inc., 2021; Mondelez 

International, 2020; Nestlé, 2021; Valrhona, n.d.). A standard evaluation method 

could be developed to account for those efforts and make valid comparisons 

between different systems in order to find optimal solutions. Considering that 
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complex multi-story agroforests are likely the best approach to store large stocks 

of C, investigations are needed to assess their storage rates and capacities 

accurately. Monitoring changes with empirical data and modelling plant and soil 

C variations will be two essential and complementary approaches to achieve this 

goal. 

Organic matter decomposition can emit potent GHG like methane and nitrous 

oxide (Brenzinger et al., 2018; L. G. Smith et al., 2019). There is a need to 

evaluate and limit the risk of emitting GHG resulting from litter decomposition and 

SOM mineralisation, as well as additional emissions produced by organic inputs 

used to offset initial SOM losses. 

Bridging the gap between organic inputs, the soil, and plant responses 

To develop effective soil management strategies using organic inputs, a major 

challenge lying at the core of soil health and fertility concepts remains to be 

solved. It remains common practice to describe, evaluate, and predict the effect 

of applying organic inputs on measurable soil properties without explicitly 

quantifying the link with crop response. With this approach, it is as if there was a 

black box between the intervention (e.g., applying compost) and soil response, 

and the crop response. For this reason, researchers are unable to link 

quantitative, predictive targets for SOM to agricultural outcomes. This problem is 

illustrated by the recurrent discussion about the quest for an optimal SOM level 

(Loveland & Webb, 2003; Oldfield et al., 2015, 2017, 2020). Is there a lower 

critical threshold below which plant functioning is negatively impacted? Similarly, 

is there an upper limit above which no plant benefits occur? For example, field 

experiments and models help to anticipate quantitative and qualitative SOM 

changes, but the next step is missing. How will the crop respond to such soil 

changes? Can models predict soil functional changes that have a direct and 

measurable effect on crop growth and development?  

This problem is not new. It was, for example, expressed by Russell in 1977: “[…] 

a major problem facing the agricultural research community is to quantify the 

effects of [SOM] on the complex soil properties subsumed under the phrase soil 

fertility, so that it can help farmers develop systems which will minimize any 

harmful effects this lowering [of SOM] brings about”. 

Twenty years after, Janzen et al. (1997) posed the same comment: “Even when 

considering only one function (productivity), […] identifying optimum SOM values 

is exceedingly complex. If we add to this the need to consider other equally 

important soil functions (e.g., role as environmental buffer), then the objective of 
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identifying optimum values becomes wholly unrealistic. More appropriate may be 

an effort to understand the demands placed on soil in specific ecosystems, and 

then to determine what changes in SOM content and composition would enhance 

the capacity of that soil to fulfil those functions.” 

Fast forward another eighteen years, and this problem is still on the agenda as 

Oldfield et al. (2015) explain, “SOM is generally considered the indicator of soil 

health […]. However, the numerical level that would be considered good, or what 

change in [SOM] levels constitutes a significant functional change, has not been 

established”. 

The approach in modelling SOM feedbacks, as developed in this thesis, can be 

helpful in advancing this area of research. A prerequisite for this approach is to 

have two good models, one capable of anticipating soil functional changes after 

applying a particular input and another able to predict crop responses following 

the variation of this soil functional change. A first approach would be to 

quantitively predict how various rates of addition of a particular organic matter 

input affect a critical soil functional property by using a dedicated soil model or a 

pedotransfer function. Meanwhile, a plant model could predict the response of a 

crop to changes in this same functional property. By coupling changes in SOM to 

changes in another critical property, inputs would result in predictable crop 

responses. 

Until the gap between the soil and plant is filled by a functional understanding of 

key soil processes leading to plant responses, the effect of organic matter 

additions will remain relatively quantitatively unpredictable. Deepening our 

understanding of such mechanisms is fundamental to developing evidence-

based organic inputs to improve soil health and achieve sustainable soil 

management in the long term. 
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6.3 Conclusions 

This study was designed and undertaken to improve scientific understanding of 

SOM dynamics and its management on cocoa farms. Summarizing existing data 

on C storage on cocoa farms from various regions around the world has revealed 

that they can display significant temporal variations and spatial differences in 

SOM dynamics. The mean C stock of 15-35-years-old cocoa farms was ~85 Mg 

ha-1 (including shade trees, and soil to a 10 cm depth). The literature analysis and 

the field and modelling experiments conducted during this research indicated that 

SOM stocks can decline rapidly in settings like Sulawesi but could also recover 

rapidly. Using a false-time chronosequence, a decline of -40% in SOM per unit 

clay was observed between 0.5 and 2 years after planting. The long-term trends 

can translate either into net gains or net losses, depending on the combination of 

pedoclimatic context, farm design, and practices such as organic inputs. 

Comparing mineral and organic inputs revealed that compost can significantly 

increase cocoa yields, without additional benefits from adding fertilizer and/or 

dolomite. Including tree mortality rates, the dry bean yield of the composted 

treatments was ~270-300% that of the control, whereas the fertilizer with/without 

dolomite was ~170% that of the control. This research has also shown that shade 

trees can play a major role in storing C. The mean aboveground C stock of shade 

trees was four times the aboveground cocoa C stock (respectively ~40 and ~10 

Mg ha-1). The findings of this study have highlighted that, in locations like 

Sulawesi, the early years after planting can represent a critical but overlooked 

period at risk of soil degradation through SOM depletion because plant inputs are 

insufficient to compensate for the losses, leaving the soil with a net SOM-deficit. 

The model developed during this study can be used to explore the long-term 

changes occurring in cocoa soils and assist in planning effective and sustainable 

cocoa farm management strategies. Notwithstanding its limitations, the model 

provides a useful contribution to understanding SOM dynamics in perennial tree 

crops like cocoa. Although long-term experiments were lacking to calibrate and 

validate the model, this model can serve as a valuable tool to evaluate EOM 

inputs scenarios. More research is needed to refine the structure and the 

parameters of this model in order to improve its applicability to other locations 

and its representativeness. Further experimentation into the effect of pruning 

cocoa trees and the role of shade trees into SOM dynamics is strongly 

recommended. Taken together, these findings suggest that practical solutions 

can be developed to maintain, restore and improve soil health on cocoa farms. 

Nevertheless, one of the ultimate unresolved challenges is for soil scientists and 
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agronomists to link SOM changes to functional changes resulting in predictable 

plant responses and thus solve a puzzle that has been pending for a long time. 
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APPENDICES 

A.1. Appendices to Chapter 1 

(empty: only used to make table and figure numbering more convenient) 
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A.2. Appendices to Chapter 2 

 

 

Figure A - 2.1: Chronological distribution of the studies of the meta-analysis 
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Figure A - 2.2: Relationships between soil organic matter and observed and 
predicted bulk densities 

a. Relationship between observed soil organic matter content and observed bulk density. 
b. Modelled relationship between predicted bulk densities and observed soil organic matter contents 

(the relationship is expressed in Equation 2.11, with constants equal to 0.103 for OMBD, and 1.683 
for MBD). 

c. Observed vs. predicted bulk densities using Stewart et al. (1970) relationship, optimized to minimize 
the sum of chi² values. The line represents the 1:1 relationship. 
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Figure A - 2.3: Distribution of the cocoa and shade trees densities for each plot 

Vertical lines represent theoretical spacings for cocoa for comparison purposes. One outlier has been 
removed (coming from Isaac et al., 2005): a cocoa plot with a density of 3125 cocoa trees per hectares at 
age 2, probably a nursery). 
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Figure A - 2.4: Scatterplots of the age distribution of the different C stocks 

a. Cocoa basal areas (n = 241); 
b. Cocoa aboveground C stocks (n = 250); 
c. Shade aboveground C stocks (n = 242); 
d. Litter C stocks (n = 236); 
e. Total root C stocks (n = 242; includes indistinctively cocoa and other species); 
f. Soil C stocks (n= 381). 

  



  Page 232 

Thomas Fungenzi Cranfield University (2018-2021) 

 

Figure A - 2.5: Relationship between cocoa basal areas and estimated 
aboveground C stocks (n = 242) 

Three outliers were removed, with aboveground C stocks of 61.89, 99.23, and 103.42 Mg ha-1, respectively 
corresponding to basal areas of 22.70, 34.42, and 29.15 m² ha-1. 
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Figure A - 2.6: Relationships between clay (left-hand figure), sand (right-hand 
figure), and soil C contents (all depths; n = 267) 
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Table A - 2.1: Variables compiled in the dataset of meta-analysis and 
corresponding references 

Variable Unit 
Range of 
results 

List of references * Nb. of studies 

Authors - - 1:37 37 

Journal - - 1:37 37 

Publication year year 1973-2018 1:37 37 

Country, Region, District, Town - - 1:37 (country level) 37 

Altitude m 9-1153 3, 4, 5, 8, 11, 13, 17, 19:23, 25:28, 35:37 19 

Annual rainfall mm yr-1 324-3936 
1:6, 8, 9, 11, 13, 14, 17:23, 25:29, 31, 32, 
35:37 

31 

Average temperature Avg. C° yr-1 18.5-29 
2:5, 8, 9, 11, 13, 14, 17:21, 23, 25:39, 31, 32, 
35:37 

26 

Shade trees species or type of 
comparative ecosystem 

- - 

NA: 1, 2, 4, 6:8, 10:12, 14:17, 19:27, 29:36; 

Hevea: 20, 27, 31; 

Coconut: 17, 27, 31, 36; 

Cordia: 3, 5, 13; 

Erythrina: 3, 9, 11, 13, 20, 21; 

Gliricidia: 17, 18, 20, 21, 25, 28, 31, 36, 37 

NA: 30 

Hevea: 3 

Coconut: 4 

Cordia: 3 

Erythrina: 6 

Gliricidia: 9 

Age of the plantation  

(or comparative ecosystem) 
years 0-80 

NA: 1, 6, 7, 9, 10, 15, 19, 24, 27, 30, 31, 33, 34 

Age available for all others 

NA: 13 

 

Cocoa density Nb. of trees ha-1 55-3215 
3:6, 11, 13, 14, 17, 18, 20, 22, 23, 25:28, 31, 
32, 35, 37 

21 

Shade trees or other species 
densities 

Nb. of trees ha-1 0-1210 
3:5, 8, 9, 11, 13, 14, 17, 18, 20, 22, 23, 25, 26, 
27, 28, 35, 37 

19 

Mean diameter at breast 
height (DBH), or at 50 cm 

cm 3.36-12.4 
DBH (cocoa): 8, 17, 22, 23 

D50 (cocoa): 28 

DBH (cocoa): 4 

D50 (cocoa): 1 

Basal area per hectare m² ha-1 1.23-34.42 Cocoa: 17, 23, 25, 27, 35 5 

Yearly deposition of litterfall Mg dry wt ha-1 yr-1 3.2-21.2 
Cocoa and shade trees: 4:10, 13:15, 17, 18, 
24, 25, 30, 33, 34 

17 

Litter present at the time Mg dry wt ha-1 0.13-23.27 3, 5, 8, 22, 29, 35 6 

C in litter present at the time Mg C ha-1 0.05-11.02 8, 17, 27, 35 4 

Aboveground biomass Mg dry wt ha-1 

1.32-62.08 
(cocoa) 

0-452.22 
(shade) 

Cocoa and shade trees: 3, 5, 8, 14, 17, 22, 
23, 25, 35 

9 

Belowground biomass Mg dry wt ha-1 1.78-18.58 Total: 3, 5, 8, 17, 22, 25 6 

Total biomass Mg dry wt ha-1 9.6-301.1 3, 5, 8, 14, 17 22, 23 7 

Aboveground C 

Mg C ha-1 

0.66-103.42 
(cocoa) 

0-226.11 
(shade) 

Cocoa: 3, 5, 8, 14, 17, 22, 23, 24, 27, 35 

Shade: 17, 25, 35 

Cocoa: 10 

Shade: 3 

Belowground C  
0.85-42.02 
(total) 

Total: 3, 5, 8, 17, 22, 23, 25, 35 8 

Total Biomass C 4.3-278.2 12, 14, 17, 25, 28, 35 6 

Biomass C sequestration rate Mg C ha-1 yr-1 2.8-17.8 5, 14, 25, 35 4 

Yield (cocoa beans) kg dry wt ha-1 yr-1 0-1920 3:6, 17, 18, 25, 35, 37 11 
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Table A - 2.2: (continued A. 1) Variables compiled in the dataset of meta-analysis 
and corresponding references 

Variable Unit 
Range of 
results 

List of references * 
Nb. of 
studies 

Soil Type WRB, or other - 
1, 2, 3, 4, 8, 11, 14, 17:19, 21, 24, 25, 27, 32, 
37 

16 

Depth of sampling cm 0-250 
1:5, 8, 11, 14, 17, 19:22, 24, 25, 28, 31, 32, 
35:37 

21 

Bulk density g cm-3 0.42-1.9 

Given: 1, 3, 5, 8, 11, 14, 19:22, 28, 31, 35, 37 

Calculated: 5, 21, 28 

Estimated: 1, 2, 4, 24, 25, 32, 36 

NA: 3, 4, 6, 7, 9, 10, 12, 13, 15:18, 23, 26, 27, 
30, 35 

Given: 14 

Calculated: 3 

Estimated: 7 

NA: 18 

Sand, silt and clay contents % 

Sand: 9.3-77 

Silt: 2.4-70.3 

Clay: 8.5-78 

1, 2, 8, 11, 20, 22, 35, 37 8 

Texture class - 1:3, 5, 8, 11, 14, 19, 20, 22, 25, 27, 29, 35, 37 15 

Soil organic matter contents 
(from the top sampled layer) 

% 0.21-19.28 

Given: 1:3, 5, 21, 31 

Calculated: 3, 5 

Estimated: 4, 8, 11, 14, 19:22, 24, 25, 28, 29, 
32, 35:37 

NA: 3, 4, 6, 7, 9, 10, 12, 13, 15:19, 23, 26, 27, 
30, 33:35 

Given: 6 

Calculated: 2 

Estimated: 16 

NA: 19 

Soil organic matter stocks 
(from topsoil values, 
converted to 0-10 cm) 

Mg ha-1 2.73-98.56 

Given: 3, 5 

Calculated: 1, 3, 21, 31 

Estimated: 2, 4, 8, 11, 14, 17, 19:22, 24, 25, 
28, 29, 32, 35:37 

NA: 3, 4, 6, 7, 9, 10, 12, 13, 15:18, 23, 26, 27, 
30, 33:35 

Given: 2 

Calculated: 4 

Estimated: 18 

NA: 19 

Soil C contents (from the top 
sampled layer) 

% 0.12-11.21 

Given: 4, 8, 19, 21, 22, 24, 25, 28, 29, 31, 
35:37 

Calculated: 3, 8, 11, 14, 20, 32 

Estimated: 1:3, 5 

NA: 3, 4, 6, 7, 9, 10, 12, 13, 15:18, 23, 26, 27, 
30, 33:35 

Given: 13 

Calculated: 6 

Estimated: 4 

NA: 19 

Soil C stocks (from topsoil 
values, converted to 0-10 cm) 

Mg ha-1 1.56-57.09 

Given: 8, 11, 14, 17, 20:22, 28, 37 

Calculated: 3, 19, 21, 29, 31, 35 

Estimated: 1:5, 24, 25, 32, 36 

NA: 3, 4, 6, 7, 9, 10, 12, 13, 15:18, 23, 26, 27, 
30, 33:35 

Given: 9 

Calculated: 6 

Estimated: 9 

NA: 19 
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Table A - 2.3: Summary of the pedoclimatic contexts of each study of the meta-
analysis 

Code Country 
Altitude Rainfall Avg. T° Soil Type Age 

m mm yr-1 C° yr-1 WRB FAO, or other years 

1 
Nigeria - 

1500 - Red yellow latosols, alfisols, 
ferruginous tropical soils, alfisols, 
egbeda association, orthic luvisols 

- 

2 1300 28 13 

3 Costa Rica 625 2648 22 Inceptisol 1, 5, 10 

4 Venezuela 12 740 25 Entisol 30 

5 Costa Rica 625 2648 22 - 0, 10 

6 Cameroon - 1700 - - 30 

7 - - - - - - 

8 Ghana 375 1575 29 Ferric lixisols / Leptosols-Regosols 3, 15, 30 

9 Brazil - 1862 23 - - 

10 - - - - - - 

11 Brazil 115 1500 26 
Highly weathered reddish-yellow 
Ferralsols 

30 

12 Cameroon - - - - 15, 25, 40 

13 Costa Rica 625 2648 22 - 6, 7, 8 

14 Ghana - 1054.5 26.1 Orchosol–oxysol 2, 15, 25 

15 - - - - - - 

16 - - - - - 11 

17 Indonesia 585-1050 2844-3534 20.8-24.4 
Acrisols on silt- and clay-rich 
substrate, Cambisols on sand- and 
silt-rich substrate 

6 

18 Malaysia - 1850 21 Oxisol, ultisol 9 

19 Ghana 149.5 1175 28 Orchosol–oxysol - 

20 Brazil 100 1500 24 - 4, 20, 30, 35 

21 Mexico 10 2275 26 Gleysols 3, 8, 16, 28 

22 Cameroon 540 1533 - - 35 

23 Nigeria 600 1367 27 - 10 

24 Ghana - - - Ferric acrisols, ferric lixisol - 

25 Indonesia 556 2165 25 Cambic umbrisol 20, 22, 23, 26, 28, 30 

26 Cameroon 700 1600 25 - 4, 15, 31, 40 

27 
Indonesia 

25-276.5 324-368 25.5-28.5 Lithosol, alluvial, podzolic & peat - 

28 622-1152.5 1638-2225 24-24.5 - 1:5, 8, 9, 12, 15 

29 Ivory Coast - 1626.7 26 - 5, 10, 20 

30 - - - - - - 

31 Indonesia - 1919 26.5 - - 

32 Malaysia - 2300 26 Haplic ferralsols 22 

33 - - - - - - 

34 Ghana - - - - - 

35 

Costa Rica, 
Panama, 
Honduras, 
Guatemala, 
Nicaragua 

17-774 1025-3936 18.5-27.7 - 5:80 

36 Indonesia 9-726 1436-3761 22.8-27.4 - 2:34 

37 Indonesia 35-143 2080 26.5 Orthic acrisols & dystric fluvisols 7:21 
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Table A - 2.4: Distribution of the cocoa farm ages 

Age class 

(years) 
Frequency Proportion 

[0-5[ 25 5.3% 
20.2% 

[5-10[ 71 14.9% 

[10-15[ 82 17.3% 
30.5% 

[15-20[ 63 13.3% 

[20-25[ 84 17.7% 
29.7% 

[25-30[ 57 12.0% 

[30-35[ 39 8.2% 
10.5% 

[35-40[ 11 2.3% 

[40-45[ 8 1.7% 

5.1% 

[45-50[ 2 0.4% 

[50-55[ 7 1.5% 

[55-60[ 1 0.2% 

[60-65[ 3 0.6% 

[65-70[ 0 0.0% 

[70-75[ 1 0.2% 

[75-80[ 0 0.0% 

[80+[ 2 0.4% 

Sub-total 456 100% 

NA 19 4% 

Total 475 100% 

Age class intervals are left-closed and right-opened. ‘NA’ refers to the plots for which age was not mentioned. 
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Table A - 2.5: Distributions of the densities of cocoa trees across all plots included 
in our meta-analysis 

Spacing 

(m) 

Cocoa density 

(Nb. Trees ha-1) 
Frequency Proportion 

> 5x5 [0 - 400[ 82 18% 

5x5 to 4x4 [400 - 625[ 116 25% 

4x4 to 3x4 [625 - 833[ 54 12% 

3x4 to 3x3 [833 - 1111[ 41 9% 

3x3 to 2.5x3 [1111 - 1333[ 21 5% 

2.5x3 to 2.5x2.5 [1333 - 1600[ 6 1% 

2.5x2.5 to 2x2 [1600 - 2500[ 3 1% 

≤ 2x2 ≤2500 1 0% 

NA 135 29% 

 Total 459  

NA refers to the plots for which density was not mentioned in the study. Density intervals are left-closed and 
right-opened. 
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Table A - 2.6: Distributions of the densities of shade trees across all plots included 
in our meta-analysis 

Spacing 

(m) 

Shade density 

(Nb. Trees ha-1) 
Frequency Proportion 

> 10x10 [0 - 100[ 98 21% 

10x10 to 7x7 [100 - 204[ 91 20% 

7x7 to 5x5 [204 - 400[ 87 19% 

5x5 to 4x4 [400 - 625[ 32 7% 

4x4 to 3x4 [625 - 83[ 1 ~0% 

3x4 to 3x3 [833 - 1111[ 0 0% 

3x3 to 2x3 [1111 - 1333[ 6 1% 

≤ 2 x3 ≤1333  0 0% 

NA 144 31% 

 Total 459  

NA refers to the plots for which density was not mentioned in the study. Density intervals are left-closed and 
right-opened. 
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Table A - 2.7: Description given for the shade tree species or structure 

Shade species or the compared ecosystem 
Nb. of 
plots 

Proportion List of References 

30 species incl. Terminalia superba, Ceiba pentadra, 
Isolona hexaloba 

1 0.22% 
22 

Cabruca 2 0.43% 11, 20 

Castilloa elastica, Erythrina sp., and Artocarpus altilis 1 0.22% 4 

Cocos nucifera L. 1 0.22% 27 

Cocos nucifera L. + Gliricidia + Leucaena 1 0.22% 31 

Cordia 1 0.22% 3 

Cordia / Erythrina 1 0.22% 3 

Erythrina 2 0.43% 3, 11 

Erythrina / Gliricidia / Cedrela / Colubrina 1 0.22% 21 

Erythrina fusca 1 0.22% 9 

Erythrina glauca 1 0.22% 20 

Full sun 10 2.17% 24, 25, 27, 29, 31, 32 

Gliricidia maculata 1 0.22% 18 

Gliricidia sepium 17 3.69% 25, 28 

Gliricidia sepium & Cocos nucifera L. 1 0.22% 17 

Hevea braziliensis 3 0.65% 20, 27, 31 

Hevea braziliensis & Gliricidia sepium 2 0.43% 20 

Light shade 1 0.22% 6 

Mixture 6 1.30% 4, 8, 19 

Mixture, Gliricidia sepium 36 7.81% 37 

Mixture, mostly Cocos nucifera L. and Gliricidia sepium  120 26.03% 36 

Multi-strata 4 0.87% 25, 27 

NA (not mentioned) 245 53.15% 1, 2, 12, 14, 16, 26, 34, 35 

Various, classified according to the density of the 
mixture  

2 0.43% 
23 

Total 461    
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Table A - 2.8: Summary statistics of the different C pools for each age class 

(table split across two pages) 

Basal area of the cocoa trees in relation to their age. 
 

Age 
class 

(years) 

Average 
basal area 

(cocoa; m² ha-1) 

Nb. Of 
Obs. 

Std. 
Dev. 

Std. 
Err. 

[0-5[ - - - - 

[5-10[ 10.5 22 6.6 1.4 

[10-15[ 8.7 24 4.7 1 

[15-20[ 10.2 35 3.8 0.6 

[20-25[ 11.7 62 4.9 0.6 

[25-30[ 11.2 44 6.1 0.9 

[30-35[ 11.4 24 4.6 0.9 

[35-40[ 7.5 8 1.8 0.6 

[40-45[ 9.2 6 4.4 1.8 

[45-50[ 6.7 2 1.1 0.8 

[50-55[ 8.3 7 3.8 1.4 

[55-60[ 17 1 - - 

[60-65[ 8.4 3 2.9 1.7 

[65-70[ - - - - 

[70-75[ 9.5 1 - - 

[75-80[ - - - - 

[80+[ 8.6 2 8 5.7  
total 241 

  
 

Aboveground C stocks of the cocoa farms in relation 
to their age (cocoa trees only). 

Age 
class 

(years) 

Average 
aboveground 

C stocks 
(cocoa; Mg ha-1) 

Nb. Of 
Obs. 

Std. 
Dev. 

Std. 
Err. 

[0-5[ 3.0 3 0.9 0.5 

[5-10[ 7.0 23 4.6 1.0 

[10-15[ 6.5 24 3.6 0.7 

[15-20[ 9.5 37 4.8 0.8 

[20-25[ 9.7 62 5.4 0.7 

[25-30[ 9.8 45 6.0 0.9 

[30-35[ 10.6 25 5.9 1.2 

[35-40[ 7.0 9 3.2 1.1 

[40-45[ 7.9 6 2.9 1.2 

[45-50[ 6.0 2 0.7 0.5 

[50-55[ 7.9 7 4.3 1.6 

[55-60[ 16.2 1 - - 

[60-65[ 9.7 3 4.7 2.7 

[65-70[ - - - - 

[70-75[ 12.3 1 - - 

[75-80[ - - - - 

[80+[ 12.2 2 13.5 9.5 
 total 250   

 

Aboveground C stocks of the cocoa farms in relation 
to their age (shade trees only). 

Age 
class 

(years) 

Average 
aboveground 

C stocks 

(shade; Mg ha-1) 

Nb. Of 
Obs. 

Std. 
Dev. 

Std. 
Err. 

[0-5[ - - - - 

[5-10[ 32.8 22 25.8 5.5 

[10-15[ 48.3 22 37.9 8.1 

[15-20[ 38.4 35 27.5 4.6 

[20-25[ 34.5 62 26.4 3.4 

[25-30[ 34.2 44 35.7 5.4 

[30-35[ 45.2 24 49.7 10.2 

[35-40[ 49.7 8 42.3 15.0 

[40-45[ 54.5 6 37.3 15.2 

[45-50[ 32.3 2 21.6 15.3 

[50-55[ 37.4 7 60.3 22.8 

[55-60[ 28.1 1 - - 

[60-65[ 92.8 3 18.0 10.4 

[65-70[ - - - - 

[70-75[ 37.8 1 - - 

[75-80[ - - - - 

[80+[ 56.3 2 79.2 56.0 
 total 242   

 

Litter C stocks of the cocoa farms in relation to their 
age. 

Age 
class 

(years) 

Average 
litter C stock 

(cocoa; Mg ha-1) 

Nb. Of 
Obs. 

Std. 
Dev. 

Std. 
Err. 

[0-5[ 1.3 1 - - 

[5-10[ 1.4 23 2.3 0.5 

[10-15[ 1.3 23 1.2 0.2 

[15-20[ 1.0 36 0.9 0.1 

[20-25[ 1.0 59 1.3 0.2 

[25-30[ 0.7 42 0.5 0.1 

[30-35[ 1.3 22 1.4 0.3 

[35-40[ 1.0 8 1.1 0.4 

[40-45[ 2.4 6 1.9 0.8 

[45-50[ 1.2 2 0.2 0.2 

[50-55[ 1.9 7 1.0 0.4 

[55-60[ 2.0 1 - - 

[60-65[ 2.8 3 0.9 0.5 

[65-70[ - - - - 

[70-75[ 5.1 1 - - 

[75-80[ - - - - 

[80+[ 3.6 2 0.2 0.2 
 total 236   
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Root C stocks of the cocoa farms in relation to their 
age. 

Age 
class 

(years) 

Average 
root C stock 

(total; Mg ha-1) 

Nb. Of 
Obs. 

Std. 
Dev. 

Std. 
Err. 

[0-5[ 1.0 2 0.2 0.1 

[5-10[ 9.4 24 6.1 1.2 

[10-15[ 12.0 24 7.1 1.4 

[15-20[ 11.2 36 5.6 0.9 

[20-25[ 10.6 58 5.3 0.7 

[25-30[ 11.0 43 6.7 1.0 

[30-35[ 12.7 24 8.7 1.8 

[35-40[ 11.9 9 7.5 2.5 

[40-45[ 12.8 6 6.1 2.5 

[45-50[ 7.8 2 3.0 2.1 

[50-55[ 9.5 7 10.3 3.9 

[55-60[ 9.8 1 - - 

[60-65[ 21.5 3 5.7 3.3 

[65-70[ - - - - 

[70-75[ 11.2 1 - - 

[75-80[ - - - - 

[80+[ 13.8 2 16.2 11.5 
 total 242   

 

Soil C stocks of the cocoa farms in relation to their 
age. 

Age 
class 

(years) 

Average 
soil C stock 

(total; Mg ha-1) 

Nb. Of 
Obs. 

Std. 
Dev. 

Std. 
Err. 

[0-5[ 23.6 35 12.4 2.1 

[5-10[ 23.6 62 9.8 1.2 

[10-15[ 21.6 75 9.8 1.1 

[15-20[ 22.4 42 7.7 1.2 

[20-25[ 23.9 61 8.0 1.0 

[25-30[ 23.8 37 7.6 1.3 

[30-35[ 25.6 36 9.7 1.6 

[35-40[ 25.7 11 9.9 3.0 

[40-45[ 26.2 6 6.6 2.7 

[45-50[ 22.1 2 9.6 6.8 

[50-55[ 28.3 7 6.3 2.4 

[55-60[ 25.2 1 - - 

[60-65[ 32.6 3 5.7 3.3 

[65-70[ - - - - 

[70-75[ 34.0 1 - - 

[75-80[ - - - - 

[80+[ 30.0 2 7.7 5.5 
 total 381   
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A.3. Appendices to Chapter 3 

 

Figure A - 3.1. Summary of the effect of each treatment on soil properties 

The length of the horizontal bars refers to the difference between 2014 and 2018. To combine variables with 
different units, the means for 2014 and 2018 were normalized, to replace them with a number between 0 
and 1 (xnormalised = (xi – xmin)/(xmax – xmin). The values reported here correspond to the difference between 
those normalized values, ranging from -1 to 1. The closer to 1, the stronger the increase of the values 
between 2014 and 2018 (xmax(2018) – xmin(2014) = 1 – 0 = 1). Conversely, the closer to -1, the larger the decrease 
(xmin(2018) – xmin(2014) = 0 – 1 = -1). A value of 0 indicates no change because the difference between the two 
normalized values is null. Stars rating correspond to the following rule, calculated after a Welch one-sample 
t-test: P ≤ 0.001, ***; P ≤ 0.01, **; P ≤ 0.05, *. Bars with no stars indicates no statistical difference between 
the two years (p=0.05). Please refer to Table A - 3.8 in the supplementary material for the exact p-values). 
For extractable Ca and Mg, F had the largest effect, but the difference is not significant because the variability 
was very high. 
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Table A - 3.1. Operational timeline of the experiment 

Date Operation Details 

2011 Baseline soil analysis (Exact month not mentioned) 

Dec-2011 Cocoa planting  

With five-month-old-nursery-raised cocoa clones 
PBC123 
Applying 100 g NPK (Phonska) + 150 g TSP (36%) 
per tree 

May-2012 
First treatment application And later every year, twice a year 

Tree height measurement  - 

Jan-2013 Tree height measurement Each month until Jan-2014 

Feb-2013 First leaf analysis  - 

July-2013 CPBa and PPRb incidence Fortnightly between July 2013 and December 2018 

Aug-2013 First harvest 
Annual yield, harvest twice a month between 2014 
and 2015 

June-2014 Soil and leaf analysis  - 

Feb-2015 VSDc incidence 
Each month between February 2015 and December 
2018 

Sep-2015 CPB and PPR incidence  - 

Jan-2016 Replanting New trees planted to replace the dead ones 

2015 to 
2018 

Productivity, flowering and pest/disease incidence yearly recordings 

Dec-2018 
Soil sampling and tree 
measurements 

This study 

a Cocoa Pod Borer; b Phytophthora Pod Rot; c Vascular-Streak Dieback 
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Table A - 3.2. Description of plot maintenance activities 

Operation Description Details 

Pests CPBa treatment Spraying (knapsack sprayer) / Prevathon (Chlorantraniliprole) @ 1 ml/L  

  Helopeltis treatment Spraying (knapsack sprayer) / Prevathon (Chlorantraniliprole) @ 1 ml/L 

Diseases PPRb treatment Spraying (knapsack sprayer) / Score (Difenoconazole) @ 1.7 ml/L 

  VSDc treatment Spraying (knapsack sprayer) / Score (Difenoconazole) @ 1.7 ml/L  

Pruning Shape/production pruning Manual - Scissors and Long Pruner  

  Maintenance pruning Manual - Scissors and Long Pruner (Water shoot/Chupon) 

Soil inputs Compost  Dig 6 holes 10-20 cm deep around the tree / 100 cm from the trunk / 5 kg per tree 

Sanitation Infected pod removal Remove infected pods 

  Branch removal Tidy removal branches in the middle of cocoa trees row 

Harvesting Manual harvesting Harvest ripe pods by plot / Evaluation 

Weed control Mechanical weeding Mechanical - grass cutter machine 

a Cocoa Pod Borer; b Phytophthora Pod Rot; c Vascular-Streak Dieback 
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Table A - 3.3. Calendar of plot maintenance activities 

Operations Description 
January February March April May June 

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 

Pests 
CPBa treatment                         

Helopeltis treatment                         

Diseases 
PPRb treatment                         

VSDc treatment                         

Pruning 
Shape/production pruning                         

Maintenance pruning (Water Shoot/Chupon)                         

Soil inputs Compost, fertilizer, and dolomite application                         

Sanitation 
Infected pod removal Every Harvest & Pruning                

Branch removal Every Harvest & Pruning                

Harvesting Manual                         

Weed Control Mechanical                         

a Cocoa Pod Borer; b Phytophthora Pod Rot; c Vascular-Streak Dieback 
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(Table A - 3.3 continued) 

Operations Description 
January February March April May June 

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 

Pests 
CPBa treatment                         

Helopeltis treatment                         

Diseases 
PPRb treatment                         

VSDc treatment                         

Pruning 
Shape/production pruning                         

Maintenance pruning (Water Shoot/Chupon)                         

Soil inputs Compost, fertilizer, and dolomite application                         

Sanitation 
Infected pod removal Every Harvest & Pruning                

Branch removal Every Harvest & Pruning                

Harvesting Manual                         

Weed Control Mechanical                         

a Cocoa Pod Borer; b Phytophthora Pod Rot; c Vascular-Streak Dieback 
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Table A - 3.4. Monthly precipitations 

Year 
Monthly precipitations (mm) 

2014 2015 2016 2017 2018 Average 

January 198 98 216 96 176 157 

February 161 211 348 114 142 195 

March 236 261 294 355 261 281 

April 316 276 274 128 255 250 

May 305 267 383 308 223 297 

June 384 381 194 416 424 360 

July 489 53 210 167 329 250 

August 249 58 182 97 238 165 

September 99 72 273 306 228 196 

October 177 7 213 331 118 169 

November 106 76 191 385 142 180 

December 273 218 209 272 149 224 

Total 2992 1977 2987 2974 2684 2723 

This data was obtained from Mars’s Cocoa Development Centre located in Tarengge (South Sulawesi, 
Indonesia); approximately 20km from the experiment. 
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Table A - 3.5. Basal areas and the formula used to convert trunk circumferences 
to areas 

Treatment Basal area (cm²) Coefficient of variation 

A 78.9a (31.7) 0.4 

B 87.6a (25.2) 0.29 

C 124.5ab (31.6) 0.25 

D 111.6ab (38.7) 0.35 

E 122.9ab (39.8) 0.32 

F 114.2ab (33.8) 0.3 

G 149.2b (51.7) 0.35 

H 158.7b (65.4) 0.41 

Numbers in brackets are standard deviations. 

𝐴𝑟𝑒𝑎 =  
𝐶𝑖𝑟𝑐𝑢𝑚𝑓𝑒𝑟𝑒𝑛𝑐𝑒²

4𝜋
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Table A - 3.6. Survival rates per individual plot and treatment 

Block Treatment 
Number of 

surviving trees 
Survival rate (over 
16 original trees) 

Average survival 
rate per treatment 

1 

A 7 44% 67% 

B 12 75% 41% 

C 16 100% 94% 

D 6 38% 72% 

E 15 94% 92% 

F 12 75% 88% 

G 13 81% 92% 

H 13 81% 83% 

2 

A 15 94% - 

B 2 13% - 

C 16 100% - 

D 12 75% - 

E 15 94% - 

F 13 81% - 

G 15 94% - 

H 12 75% - 

3 

A 10 63% - 

B 7 44% - 

C 14 88% - 

D 14 88% - 

E 14 88% - 

F 16 100% - 

G 16 100% - 

H 13 81% - 

4 

A 11 69% - 

B 5 31% - 

C 14 88% - 

D 14 88% - 

E 15 94% - 

F 15 94% - 

G 15 94% - 

H 15 94% - 
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Table A - 3.7. Pod count, yield per pod, pod indices and proportion of infected 
pods per treatment and year 

Average pod count per tree (and standard error) 

 2015 2016 2017 2018 

A 8 (2) 5 (0.2) 9 (1.1) 22 (2.5) 

B 10 (2.1) 12 (2.3) 17 (2.8) 44 (3.4) 

C 47 (1.4) 32 (3.5) 27 (3.3) 34 (2.5) 

D 8 (0.8) 11 (1.2) 15 (0.9) 32 (0.9) 

E 27 (0.8) 39 (1.4) 30 (2.3) 33 (1.5) 

F 6 (0.7) 16 (0.4) 21 (1.4) 27 (2.6) 

G 33 (0.7) 42 (1.2) 33 (1.2) 39 (2.2) 

H 29 (1.7) 35 (0.8) 27 (1.3) 35 (3.3) 

Mean yield (g) per pod (and standard error) 

 2015 2016 2017 2018 

A 13.7 (0.8) 25.9 (0.9) 25.4 (0.7) 18.7 (0.9) 

B 14.7 (0.8) 25 (0.2) 30.3 (0.4) 23.6 (0.9) 

C 12.3 (1.0) 23.2 (0.3) 28 (0.6) 17.9 (1.1) 

D 10.8 (0.6) 23.7 (0.2) 26.9 (0.8) 17.3 (0.8) 

E 12.3 (0.4) 23.5 (0.6) 27.3 (0.8) 20.5 (1.1) 

F 12 (0.9) 23.5 (0.8) 28.8 (0.6) 23.5 (0.8) 

G 11.6 (0.2) 21.1 (0.4) 23.6 (0.3) 14.5 (0.4) 

H 12 (0.3) 20 (0.4) 24.1 (0.7) 16.9 (0.4) 

Mean pod index (and standard error) 

 2015 2016 2017 2018 

A 77 (5.1) 39 (1.5) 40 (1) 55 (2.8) 

B 71 (4.1) 40 (0.4) 33 (0.5) 43 (1.8) 

C 88 (6.9) 43 (0.6) 36 (0.8) 59 (3.8) 

D 96 (5.2) 42 (0.4) 38 (1.2) 59 (3.1) 

E 82 (2.6) 43 (1.3) 37 (1.0) 51 (2.9) 

F 90 (6.8) 43 (1.4) 35 (0.8) 43 (1.6) 

G 87 (1.8) 48 (0.8) 42 (0.6) 70 (1.9) 

H 84 (2.4) 50 (1.0) 42 (1.2) 60 (1.7) 

Mean proportion of infected pods (and standard error) 

 2015 2016 2017 2018 

A 0.91 (0.01) 0.67 (0.03) 0.65 (0.04) 0.89 (0.01) 

B 0.89 (0.03) 0.69 (0.01) 0.62 (0.02) 0.82 (0.01) 

C 0.95 (0.01) 0.71 (0.02) 0.7 (0.01) 0.92 (0.01) 

D 0.92 (0.01) 0.67 (0.02) 0.69 (0.03) 0.93 (0.01) 

E 0.96 (0) 0.78 (0.01) 0.78 (0.03) 0.92 (0.01) 

F 0.94 (0.01) 0.78 (0.02) 0.77 (0.03) 0.91 (0.01) 

G 0.97 (0) 0.75 (0.01) 0.83 (0.02) 0.95 (0) 

H 0.95 (0.01) 0.77 (0.01) 0.8 (0.01) 0.96 (0.01) 
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Table A - 3.8. Evaluation of the statistical significance of the differences between 
the two years of soil analyses, 2014 and 2018 

Treatment * pH (water) † C (%) ‡ N (%) C/N 
†† CEC  

(cmol.kg-1) 

A * 0.111 0.718 0.274 0.261 

B ** 0.101 0.638 0.935 * 

C * ** 0.423 0.050 * 

D *** 0.423 0.886 0.837 0.918 

E *** 0.959 0.809 * 0.275 

F *** 0.301 0.342 0.227 * 

G *** * 0.604 0.138 ** 

H ** * 0.579 0.769 * 

 

Treatment 
§ Extractable (ppm) ‡‡ Exch. Al  

(ppm) P Ca K Mg 

A *** *** * *** ** 

B *** *** 0.098 *** * 

C *** ** ** *** *** 

D *** *** * *** *** 

E *** ** *** *** 0.384 

F *** 0.201 ** 0.107 *** 

G *** ** ** *** 0.089 

H *** * ** *** ** 

 

Treatment 
¶ Available P 

(ppm) 

†† Exch. Bas. Cation (ppm) B.S. 
(%) Ca Mg K Na Total 

A *** *** *** *** ** *** *** 

B *** *** *** *** 0.092 *** *** 

C ** *** *** *** *** *** *** 

D *** ** ** *** * ** *** 

E ** * * *** *** ** ** 

F * * * *** 0.809 * * 

G *** * ** ** 0.080 ** ** 

H *** * * *** ** 0.082 0.062 

The reported p-values were calculated after a Welch one-sample t-test (p-value = 0.05). Because there was 
only one measurement in 2014, coming from a composite of four sample, it was used as the ‘true mean’ in 
the tests, to which 2018 observation were compared to. Star rating correspond to the following rule: P ≤ 
0.001, ***; P ≤ 0.01, **; P ≤ 0.05, *. The exact value was reported if P > 0.05. “na” stands for not applicable 
(calculated data). Methods: ♠After Fahmy (1977); ○Core ring method; ∗pH determined by AIAT Soil 
Laboratories, Maros; †Dry ashing method; ‡Kjeldahl method; §25% HCl extraction; ¶Bray-I method; 
††Ammonium acetate (pH 7) extraction; ‡‡KCl (1 N) extraction. 
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Table A - 3.9. Cocoa dry bean yields summary 

 Average productivity (kg ha-1) 
for surviving trees only (i.e., excluding mortality rates) 

     

Treatment 2015 2016 2017 2018 Mean σ C.V. Cumulated 
% relative 

to the 
control* 

A 112 141 240 432 231 144 0.62 925 100 % 

B 154 314 526 1029 506 381 0.75 2024 219 % 

C 579 737 783 638 684 93 0.14 2737 296 % 

D 87 261 402 558 327 201 0.61 1308 141 % 

E 334 918 813 686 688 254 0.37 2751 297% 

F 83 364 622 640 427 262 0.61 1709 185% 

G 379 881 780 566 652 224 0.34 2607 282 % 

H 355 701 648 606 577 153 0.27 2310 250 % 

Mean 261 540 602 644      

σ 179 303 203 173      

C.V. 0.69 0.56 0.34 0.27      

σ stands for standard deviation. 

C.V. is the abbreviation for the coefficient of variation. 

* % relative to the control calculated as:  

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑡𝑜 𝑡ℎ𝑒 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 =  
𝐶𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝑥

𝐶𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝐴
 ×  100 
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(Table A - 3.9 continued) 

 Average productivity (kg ha-1) 
for 16 initially planted trees (i.e., including mortality rates) 

     

Treatment 2015 2016 2017 2018 Mean σ C.V. Cumulated 
% relative 

to the 
control* 

A 91 98 165 274 157 85 0.54 627 100 % 

B 125 137 228 489 245 169 0.69 978 156 % 

C 478 496 490 406 467 42 0.09 1870 298 % 

D 73 194 281 363 228 124 0.55 910 145 % 

E 279 628 544 446 474 150 0.32 1897 302 % 

F 69 264 449 464 311 186 0.60 1246 199 % 

G 318 612 556 398 471 136 0.29 1883 300 % 

H 295 499 459 419 418 88 0.21 1672 266 % 

Mean 216 366 396 407      

σ 149 216 150 67      

C.V. 0.69 0.59 0.38 0.16      

σ stands for standard deviation. 

C.V. is the abbreviation for the coefficient of variation. 

* % relative to the control calculated as: 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑡𝑜 𝑡ℎ𝑒 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 =  
𝐶𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝑥

𝐶𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝐴
 ×  100 
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Table A - 3.10. Yield index per treatment 

Treatment Yield Index 

A 5.58ab (3.47) 

B 10.29a (0.92) 

C 4.93b (1.98) 

D 5.21ab (2.01) 

E 5.54ab (1.19) 

F 5.5ab (2.08) 

G 3.8b (0.73) 

H 3.9b (2.01) 

The yield index is calculated by dividing the dry bean yield by the basal area. Numbers in brackets are standard deviations. 
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Table A - 3.11. Harvest quality metrics (production sample collected in November 2017) 

Treatment Average dry bean weight (g) Waste fraction (%) 

A 1.30 11% 

B 1.25 12% 

C 1.44 14% 

D 1.59 14% 

E 1.46 18% 

F 1.39 8% 

G 1.51 10% 

H 1.46 10% 
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Table A - 3.12. Initial and final stocks in soil elements as well as changes between the two soil 
sampling (sampling depth: 20 cm; bulk density of 1.09g cm-3) 

Initial estimated stocks in kg ha-1 (June 2014) 

Treatment Org. C N Av. P 
Exch. 

Al 

Extractable Exch. Bas. Cation 

P Ca K Mg Ca Mg K Na 

A 31 392 3 052 65 1 341 495 31 1 176 184 1 826 360 409 50 

B 28 994 2 834 198 1 953 1 027 47 1 556 237 856 350 503 40 

C 34 008 2 834 98 1 294 637 109 851 145 2 962 397 392 65 

D 30 520 3 052 52 1 347 485 171 977 79 1 555 350 358 40 

E 30 520 3 270 170 1 588 856 31 851 184 1 022 381 477 45 

F 30 084 3 052 157 1 706 866 47 778 171 647 344 332 35 

G 35 970 2 834 137 1 341 685 93 724 145 1 555 472 188 40 

H 33 790 3 052 146 1 582 761 31 887 92 1 031 392 469 60 

Final estimated stocks in kg ha-1 (December 2018) 

Treatment Org. C N Av. P 
Exch. 

Al 

Extractable Exch. Bas. Cation 

P Ca K Mg Ca Mg K Na 

A 27 359 2 998 8 1 537 40 209 1 452 728 186 44 85 28 

B 26 269 2 671 11 1 619 74 209 1 398 717 177 48 81 30 

C 26 487 3 052 18 1 571 70 256 1 559 835 328 87 81 28 

D 29 376 2 998 4 46 84 2 063 1 535 2 137 4 002 1 772 75 30 

E 30 411 3 325 27 1 478 149 364 1 624 930 540 184 87 30 

F 25 561 3 325 21 59 105 4 386 1 523 3 357 4 063 2 031 89 34 

G 27 032 2 943 9 66 73 1 374 1 479 1 752 2 593 1 420 98 34 

H 25 452 2 780 10 307 81 842 1 561 1 351 1 927 1 069 85 31 

Mean annual rate of change in kg ha-1 yr-1 

Treatment Org. C N Av. P 
Exch. 

Al 

Extractable Exch. Bas. Cation 

P Ca K Mg Ca Mg K Na 

A -896 -12 -5 
*** 

+43 
** 

-101 
*** 

+39 
*** 

+61 
* 

+121 
*** 

-365 
*** 

-70 
*** 

-72 
*** 

-5 

B -606 -36 -17 
*** 

-74 
* 

-212 
*** 

+36 
*** 

-35  
+107 
*** 

-151 
*** 

-67 
*** 

-94 
*** 

-2 

C -1671 
** 

+48 -6 
** 

+61 
*** 

-126 
*** 

+33 
** 

+157 
** 

+153 
*** 

-585 
*** 

-69 
*** 

-69 
*** 

-8 

D -254 -12 -4 
*** 

-289 
*** 

-89 
*** 

+420 
*** 

+124 
* 

+457 
*** 

+544 
** 

+316 
** 

-63 
*** 

-2 

E -24 +12 -10 
** 

-25 -157 
*** 

+74 
** 

+172 
*** 

+166 
*** 

-107 
* 

-44 
* 

-87 
*** 

-3 

F -1005 +61 -11 
* 

-366 
*** 

-169 
*** 

+964  
+166 

** 
+708  

+759 
* 

+375 
* 

-54 
*** 

0 

G -1986 
* 

+24 -11 
*** 

-283 -136 
*** 

+285 
** 

+168 
** 

+357 
*** 

+231 
* 

+211 
** 

-20 
*** 

-1 

H -1853 
* 

-61 -12 
*** 

-283 
** 

-151 
*** 

+180 
* 

+150 
** 

+280 
*** 

+199 
* 

+150 
* 

-85 
*** 

-6 

The stock for each element was found by using its content for a given year, assuming a surface bulk density of 1.09 g cm-3 
(measured only in 2018), a depth of 20 cm, and a one-hectare area. The mean annual rate of change corresponds to the 
difference between the two stocks divided by 4.5 years, the time separating the two sampling years. Stars denotes a statistically 
significant difference over 4.5 years (see Error! Reference source not found.) with: P ≤ 0.001, ***; P ≤ 0.01, **; P ≤ 0.05, *. 
Strong changes that are not statistically significant (e.g., extractable Ca for treatment G) may be so because of the dispersion 
of the data. 
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A.4. Appendices to Chapter 4 

Tables and Figures 

(next page)
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Table A - 4.1: Information on the sampled sites 

Farm 

code 
Location GPS coordinates Elevation 

Date of 

planting 

Cocoa 

age 

(years) 

Approx. 

area (ha) 

Spacing 

(m) 

Density at 

planting 

(trees/ha) 

Shade trees 

Name Density/ha 

A 

Tarengge 

-2.5435921 120.7730789 39 Jun-2018 0.5 1 4x4 625 

Coconut 

Banana 

Durian 

100 

100 

10 

B -2.5610000 120.7886830 24 2017 1 ~0.5-1 3x3 1100 Banana 200 

C -2.5508982 120.7815024 21 Oct-2016 2 1 3.5 x 3.5 800 
Coconut 

Durian 
8 in total 

D -2.5476821 120.7789080 32 2013 5 1.25 4x4 625 
Coconut 

Gliricidia 
unknown 

E -2.5594396 120.7979403 26 2011 7 1 4x4 625 
Gliricidia 

Mangosteen 
200 in total 

F -2.5605486 120.7892268 27 2006 12 0.25 3x3 1100 
Gliricidia 

Mangosteen 
16 

G -2.5470437 120.7791196 32 2003 15 2 3x3 1100 

Coconut 

Durian 

Ambarella 

unknown 

H 

Mambu 

(Luyo, 

Polewali) 

-3.3837967 119.1471476 20 Oct-2016 2 0.25 3x3 1100 

Coconut 

Banana 

Teak 

25 

50 

10 

I -3.3765312 119.1501627 20 1998 20 0.6 3x3 1100 

Coconut 

Gliricidia 

Banana 

unknown 

J -3.3766798 119.1506868 19 1987 31 0.4 4x4 625 None  

K 

Pussui 

(Polewali) 

(confidential) (confidential) 109 Nov-2016 2 0.7 3x3 1100 
Langsat 

Teak 

15 

20 

L -3.3643024 119.1021837 40 1998 20 0.4 3x3 1100 Langsat 30 

M -3.3636655 119.1034222 43 1987 31 0.8 3x3 1100 

Lamtoro (Leuceana) 

Coconut 

Langsat 

200 (3 years old) 

15 

50 
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Table A - 4.2: Recent land-use history of the farm visited in Tarengge 

 Location Tarengge Tarengge Tarengge Tarengge Tarengge Tarengge Tarengge 

 Farm A B C D E F G 

Year Age 0.5 1 2 5 7 12 15 

2018  Cocoa Cocoa Cocoa Cocoa Cocoa Cocoa Cocoa 

2017  Cocoa Cocoa Cocoa Cocoa Cocoa Cocoa Cocoa 

2016  Cocoa Rice? Cocoa Cocoa Cocoa Cocoa Cocoa 

2015  Cocoa - Oil-palm Cocoa Cocoa Cocoa Cocoa 

2014  Cocoa - Oil-palm Cocoa Cocoa Cocoa Cocoa 

2013  Cocoa - Oil-palm Cocoa Cocoa Cocoa Cocoa 

2012  Cocoa - Oil-palm VS Cocoa Cocoa Cocoa 

2011  Cocoa - Cocoa VS Cocoa Cocoa Cocoa 

2010  Cocoa - Cocoa VS G? ⟶ Cocoa? Cocoa Cocoa 

2009  Cocoa - Cocoa VS - Cocoa Cocoa 

2008  Cocoa - Cocoa Rice? - Cocoa Cocoa 

2007  Cocoa - Cocoa - - Cocoa Cocoa 

2006  Cocoa - Cocoa - - Cocoa Cocoa 

2005  Cocoa - Cocoa - - Rice? Cocoa 

2004  Cocoa - Rice - - - Cocoa 

2003  VSP - Rice - - - Cocoa 

2002  VSP - Rice - - - Rice 

2001  VSP - Rice - - - Rice 

2000  VSP - - - - - Rice 

1999  VSP - - - - - Rice 

1998  Rice - - - - - Rice 

1997  - - - - - - Rice 

1996  - - - - - - Rice 

1995  - - - - - - Rice 

1994  - - - - - - Rice 

1993  - - - - - - Rice 

Grey cells code for years cultivated with the same cocoa as the one visited in 2018. Light grey cell represents incomplete years (hence for A being 0.5 years old in 2018, as 
it was planted in June 2018). Dark grey cells represent complete years. V means vegetables, S means sweet-potato, P means peanuts, and G means grassland. A question 
mark indicates that the farmer was unsure about the land use. Hyphens indicate the absence of information about land use. For farm E, the farmer knew that another cocoa 
crop was cultivated on this field before he replanted in 2011, but he did know for how long. However, he thinks that even before, the land was a grassland.  
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Table A - 4.3: Recent land-use history of the farm visited in Mambu and Pussui 

 Location Mambu Mambu Mambu Pussui Pussui Pussui 

 Farm H I J K L M 

Year Age 2 20 31 2 20 31 

2018  Cocoa Cocoa Cocoa Cocoa Cocoa Cocoa 

2017  Cocoa Cocoa Cocoa Cocoa Cocoa Cocoa 

2016  Cocoa Cocoa Cocoa Cocoa Cocoa Cocoa 

2015  Cocoa Cocoa Cocoa Forest Cocoa Cocoa 

2014  Cocoa Cocoa Cocoa Forest Cocoa Cocoa 

2013  Cocoa Cocoa Cocoa Forest Cocoa Cocoa 

2012  Cocoa Cocoa Cocoa Forest Cocoa Cocoa 

2011  Cocoa Cocoa Cocoa Forest Cocoa Cocoa 

2010  Cocoa Cocoa Cocoa Forest Cocoa Cocoa 

2009  Cocoa Cocoa Cocoa Forest Cocoa Cocoa 

2008  Cocoa Cocoa Cocoa Forest Cocoa Cocoa 

2007  Cocoa Cocoa Cocoa Forest Cocoa Cocoa 

2006  Cocoa Cocoa Cocoa Forest Cocoa Cocoa 

2005  Cocoa Cocoa Cocoa Forest Cocoa Cocoa 

2004  Cocoa Cocoa Cocoa Forest Cocoa Cocoa 

2003  Cocoa Cocoa Cocoa Forest Cocoa Cocoa 

2002  Cocoa Cocoa Cocoa Forest Cocoa Cocoa 

2001  Cocoa Cocoa Cocoa Forest Cocoa Cocoa 

2000  Cocoa Cocoa Cocoa Forest Cocoa Cocoa 

1999  Cocoa Cocoa Cocoa Forest Cocoa Cocoa 

1998  Cocoa Cocoa Cocoa Forest Cocoa Cocoa 

1997  Cocoa - Cocoa Forest Forest Cocoa 

1996  Cocoa - Cocoa Forest Forest Cocoa 

1995  Cocoa - Cocoa Forest Forest Cocoa 

1994  Cocoa - Cocoa Forest Forest Cocoa 

1993  Cocoa - Cocoa Forest Forest Cocoa 

1992  Cocoa - Cocoa Forest Forest Cocoa 

1991  Cocoa - Cocoa Forest Forest Cocoa 

1990  Cocoa - Cocoa Forest Forest Cocoa 

1989  Cocoa - Cocoa Forest Forest Cocoa 

1988  Cocoa - Cocoa Forest Forest Cocoa 

1987  Cocoa - Cocoa Forest Forest Cocoa 
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Figure A - 4.1: Visual representation of the particle size distribution of the farms of the chronosequence 
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Table A - 4.4: SOM, C, and N contents for each farm and depth 

Location   Tarengge Tarengge Tarengge Tarengge Tarengge Tarengge Tarengge 

Age (years)   0.5 1 2 5 7 12 15 

Farm Code   A B C D E F G 

  Depth               

  0-20 3.59 ±0.22 2.27 ±0.29 1.76 ±0.24 2.4 ±0.56 2.58 ±0.26 2.06 ±0.14 2.58 ±0.04 

SOM 20-40 2.81 ±0.52 1.7 ±0.06 1.54 ±0.24 2.2 ±0.25 2.19 ±0.64 1.84 ±0.17 2.04 ±0.32 

 content * 40-60 2.52 ±0.35 1.57 ±0.08 1.43 ±0.42 1.89 ±0.15 1.78 ±0.65 1.7 ±0.27 1.92 ±0.39 

 (%) 60-80 2.28 ±0.35 1.34 ±0.1 1.4 ±0.07 1.54 ±0.1 1.4 ±0.61 1.41 ±0.2 1.9 ±0.29 

  80-100 2.08 ±0.35 1.32 ±0.06 1.48 ±0.27 1.62 ±0.11 1.36 ±0.69 1.65 ±0.43 1.72 ±0.34 

  0-20 1.62 ±0.18 1.13 ±0.15 0.8 ±0.09 1.12 ±0.2 1.52 ±0.16 0.88 ±0.06 1.06 ±0.37 

C 20-40 1.17 ±0.12 0.86 ±0.03 0.66 ±0.12 0.94 ±0.13 1.08 ±0.12 0.76 ±0.2 0.85 ±0.07 

 content 40-60 0.9 ±0.14 0.85 ±0.27 0.57 ±0 0.73 ±0.08 0.82 ±0.13 0.72 ±0.27 0.71 ±0.12 

 (%) 60-80 0.83 ±0.19 0.63 ±0.07 0.45 ±0.06 0.6 ±0.05 0.8 ±0.26 0.53 ±0.11 0.62 ±0.01 

  80-100 791 ±153 550 ±35 428 ±60 539 ±123 506 ±141 469 ±68 550 ±46 

  0-20 1554 ±182 1239 ±74 786 ±39 1084 ±171 1572 ±106 1016 ±86 1058 ±386 

N  20-40 1166 ±104 1014 ±39 675 ±100 920 ±63 1154 ±147 897 ±86 843 ±114 

 content 40-60 885 ±125 941 ±80 558 ±63 741 ±37 902 ±176 842 ±100 692 ±92 

 (ppm) 60-80 813 ±108 852 ±65 556 ±100 633 ±37 828 ±161 777 ±73 732 ±57 

  80-100 788 ±155 846 ±59 523 ±59 603 ±51 762 ±145 744 ±25 646 ±25 

Location   Mambu Mambu Mambu Pussui Pussui Pussui Pussui 

Age (years)   2 20 31 2 20 31 NA 

Farm Code   H I J K L M Forest 

  Depth               

  0-20 2.57 ±0.23 1.66 ±0.41 1.94 ±0.16 4.04 ±0.37 2.92 ±1.24 3.3 ±0.91 3.86 ±0.66 

SOM 20-40 2.43 ±0.15 1.34 ±0.22 1.17 ±0.2 2.68 ±0.46 3.35 ±0.96 2.71 ±0.23 2.35 ±0.82 

 content 40-60 2.24 ±0.59 0.9 ±0.15 0.84 ±0.14 1.71 ±0.17 1.34 ±0.12 2.07 ±0.35 2.26 ±NA 

 (%) 60-80 NA 1.23 ±0.18 1.16 ±0.2 1.13 ±0.22 1.12 ±0.14 1.76 ±0 1.56 ±NA 

  80-100 NA 1.26 ±0.02 1.45 ±0.1 NA 1.38 ±0.05 1.8 ±NA NA 

  0-20 1.57 ±0.05 0.75 ±0.19 0.71 ±0.12 1.97 ±0.18 1.52 ±0.33 1.73 ±0.31 1.67 ±0.17 

C 20-40 1.32 ±0.07 0.44 ±0.06 0.34 ±0.02 1.11 ±0.17 1.12 ±0.16 1.28 ±0.13 1.11 ±0.25 

 content 40-60 1.26 ±0.35 0.42 ±0.05 0.23 ±0.03 0.62 ±0.08 0.85 ±0.03 1.15 ±0.08 1.04 ±NA 

 (%) 60-80 NA 0.5 ±0.05 0.37 ±0.09 0.38 ±0.1 0.66 ±0.02 1.49 ±0.62 0.95 ±NA 

  80-100 NA 437 ±66 427 ±24 NA 590 ±112 0.86 ±NA NA 

  0-20 1347 ±59 812 ±182 809 ±129 2103 ±174 1724 ±349 1832 ±412 1846 ±206 

N  20-40 1112 ±74 531 ±55 427 ±41 1015 ±172 1323 ±188 1223 ±100 978 ±276 

 content 40-60 1130 ±272 541 ±78 329 ±55 568 ±110 1032 ±18 1039 ±139 900 ±NA 

 (ppm) 60-80 NA 631 ±29 479 ±94 461 ±102 823 ±31 1438 ±145 1000 ±NA 

  80-100 NA 570 ±43 570 ±18 NA 695 ±78 1100 ±NA NA 

* SOM contents were obtained from LOI and corrected for potential structural water loss linked to clays 
(Jensen et al., 2018). Carbon and nitrogen contents were determined through dry combustion. Values after 
± correspond to the confidence interval (1.96 times the standard error). NA stands for depths where it was 
not possible to obtain a sample (soil too compact). ±NA correspond to plots where only one core was 
obtained, therefore not associated with a standard error.  
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Table A - 4.5: SOM-to-clay, C-to-clay, and N-to-clay ratios for each farm and depth 

Location   Tarengge Tarengge Tarengge Tarengge Tarengge Tarengge Tarengge 

Age (years)   0.5 1 2 5 7 12 15 

Farm Code   A B C D E F G 

  Depth               

  0-20 0.15 0.12 0.09 0.11 0.11 0.11 0.11 

  20-40 0.10 0.09 0.07 0.09 0.10 0.08 0.09 

SOM-to-Clay  40-60 0.08 0.06 0.07 0.07 0.08 0.07 0.08 

 ratio 60-80 0.08 0.06 0.06 0.06 0.06 0.06 0.08 

  80-100 0.07 0.05 0.07 0.06 0.06 0.07 0.07 

  0-20 66 60 43 52 66 45 47 

 C-to-Clay 20-40 41 43 32 37 50 33 37 

ratio 40-60 30 35 26 27 35 29 29 

(x 1 000) 60-80 27 26 21 22 34 21 25 

  80-100 26 23 20 20 22 19 22 

  0-20 631 660 418 508 683 519 468 

 N-to-Clay 20-40 408 512 328 365 529 392 366 

ratio 40-60 294 389 258 277 385 334 280 

(x 100 000) 60-80 270 352 257 237 354 308 296 

  80-100 261 350 242 225 325 295 261 

Location   Mambu Mambu Mambu Pussui Pussui Pussui Pussui 

Age (years)   2 20 31 2 20 31 NA 

Farm Code   H I J K L M Forest 

  Depth               

  0-20 0.07 0.10 0.10 0.09 0.09 0.10 0.11 

  20-40 0.06 0.09 0.07 0.06 0.10 0.06 0.06 

SOM-to-Clay 40-60 0.06 0.04 0.05 0.04 0.03 0.04 0.05 

 ratio 60-80 NA 0.06 0.07 0.03 0.03 0.04 0.04 

  80-100 NA 0.06 0.09 NA 0.04 0.04 NA 

  0-20 46 47 36 45 49 52 47 

 C-to-Clay 20-40 34 29 20 26 32 27 28 

ratio 40-60 33 20 15 15 22 24 25 

(x 1 000) 60-80 NA 24 23 9 17 31 23 

  80-100 NA 21 27 NA 15 18 NA 

  0-20 392 511 409 479 555 549 519 

 N-to-Clay 20-40 288 341 257 241 376 261 246 

ratio 40-60 296 259 210 142 265 213 208 

(x 100 000) 60-80 NA 302 305 115 211 295 249 

  80-100 NA 273 363 NA 178 225 NA 
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Estimation of a cocoa growth curve for Sulawesi: methodology 

Measurements and allometry 

The average girth of cocoa trunks was assessed on 16 trees located 

approximately at the center of each cocoa plot. Circumference was measured at 

30 cm from the soil surface, and then converted the circumferences to diameters 

(D30). The diameter at breast height was not measured because cocoa typically 

produces many branches below this height. If multiple stems were present at a 

30 cm height, each one was measured, and the square root of the sum of squares 

of each diameter was calculated to consolidate the measurements into one value 

(see Stewart & Salazar, 1992). Finally, the 16 diameters were averaged. The 

average diameter was used to estimate the amount of phytomass stored in cocoa 

trees using the allometric equation developed by Smiley & Kroschel (2008) for 

cocoa in Sulawesi, both for the aboveground and the belowground components 

(Table A - 4.6). 

Table A - 4.6: Allometric equations proposed by Smiley & Kroschel to estimate 
cocoa above and belowground biomass 

Component (kg per tree) Formula 

Aboveground cocoa biomass (AGB) 𝐴𝐺𝐵 = 0.202 ×  𝐷502.112 

Belowground cocoa biomass (BGB) 𝐵𝐺𝐵 = 0.142 ×  𝐷502.064 

D50 represents the diameter at 50 cm from the ground. Because our data used 

diameter at 30 cm, we analysed  the difference between D30 and D50 on 112 

cocoa trees in Tarengge (16 trees in 7 farms). A statistical difference was found 

between D30 and D50 (t-test paired two samples for means: two-tail p-value < 

0.001). However, if only one-stemmed cocoa trees are considered (53 out of the 

112 of our analysis), no statistical difference was found (t-test paired two samples 

for means: two-tail p-value = 0.99). 

Because Smiley (2006) did not consider forking trees when developing this 

allometric relationship, it was decided to apply a correction factor to our D30. After 

running a linear regression between D30 and D50 on the 112 trees, it was found 

that D50 was equal to 1.04 x D30 (R² = 0.98; p-value < 0.001). This conversion 

factor was used to convert D30s to D50s and estimate cocoa biomass.  
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Using age as a predictor of cocoa biomass 

A non-linear model was then fitted to the results of each allometric relationship, 

using age as the independent variable and the allometrically-predicted biomass 

as the dependent one. A four-parameter non-linear model was chosen to 

minimize best the standard error of the regression (only three parameters in 

practice, since the lower asymptote 𝛽 is here equal to zero): 

𝐵 = 𝐿𝑚𝑎𝑥 − (𝐿𝑚𝑎𝑥 − 𝐿𝑚𝑖𝑛) × 𝑒(−𝑘×𝑎𝑔𝑒)𝛿
 

Where: 

• 𝐵: allometrically-predicted biomass in kg per tree 

• 𝐿𝑚𝑎𝑥: upper asymptote 

• 𝐿𝑚𝑖𝑛: lower asymptote 

• 𝑘: growth rate 

• 𝛿: parameter controlling the x-ordinate for the point of inflection 

• 𝑎𝑔𝑒: age of the cocoa tree in years 

The model’s optimal parameters were found using Excel’s Solver add-in by 

minimizing the sum of the differences between observed and predicted 

biomasses. If several plots of the same age were present, only the average 

biomass was retained for the model. For example, there were two plots of 31 

years old, and only one mean biomass value was kept. 

For aboveground biomass, the growth model was: 

𝐴𝐺𝐵 = 137.06 − (137.06 − 0) × 𝑒(−0.10×𝑎𝑔𝑒)1.09
 

For the belowground biomass, a one-parameter non-linear relationship was 

selected: 

𝐵𝐺𝐵 = 82.73 − (82.73 − 0) × 𝑒(−0.11×𝑎𝑔𝑒)1.09
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Their performance was assessed by calculating the coefficient of determination 

‘R²’, the standard error of the estimate ‘S’, and the mean absolute percent error 

‘MAPE’ presented in Table A - 4.1 for each allometric relationship. 

Table A - 4.7: Parameters and evaluation of the cocoa growth model 

  Aboveground biomass Belowground biomass 

Growth model 
parameters 

Upper asymptote 137.06 82.73 

Lower asymptote 0 0 

Growth rate 0.1 0.11 

X-ordinate inflection parameter 1.09 1.09 

Performance 

R² 0.998 0.998 

S 4.59 2.79 

MAPE 27.1% 25.8% 
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A.5. Appendices to Chapter 5 

Aboveground residue deposition rate (RDRA) 

To estimate the annual fraction of aboveground biomass converted to 

aboveground deposits, cocoa litterfall studies were searched. More particularly, 

the interest was towards associations between annual litterfall rates to cocoa and 

shade trees aboveground biomass stock per hectare, to assess if the quotient 

litterfall / aboveground biomass showed a possible temporal trend over time. 

To set a value to this parameter, data from Ghana was used (Dawoe, 2009; 

Dawoe et al., 2010). As seen on the table and graph below, annual litterfall rates 

are strongly correlated to the amount of aboveground present. Because the study 

did not make a distinction between cocoa and shade tree litter, the relative 

contribution of shade trees and cocoa trees is not known. The change in annual 

litterfall rate does not seem to be more strongly correlated to cocoa or shade tree 

biomass. 

In the 3 years-old plantation, litterfall deposits were relatively large as compared 

to the total aboveground biomass (40%). For the older plantations, 15 and 30 

years-old, litterfall only represented 6% of the total aboveground biomass. 

Comparatively, cocoa biomass began by representing 40% of the total 

aboveground biomass while is only represented approximately 30% of this stock 

in the 15 and 30 years-old plantations. 

The chronosequence also comprised very different shade and cocoa densities. It 

was decided to select a residue deposition rate of 0.06, corresponding to what 

was observed for the 15 and 30 years-old plantations. However, this remain a 

gross estimate and simplification of the reality, since it may be greatly influence 

by the age, the shade tree species and the cocoa and shade tree densities and 

many other variables influencing tree growth and litterfall production.  
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Table A - 5.1: Cocoa aboveground biomass and litterfall deposition rates obtained 
by Dawoe, (2009) and Dawoe et al. (2010) 

Age (years) 3 15 30 

Cocoa density (trees ha-1) 1500 1100 900 

Shade tree density (trees ha-1) 16 35 26 

Cocoa mean DBH (cm) 3.36 10.50 12.40 

Shade tree mean DBH (cm) 24.2 38.5 51.3 

Annual litterfall production (Mg ha-1) 5 8.2 10.4 

Standing litter (Mg ha-1) 3.6 5.8 5.9 

Cocoa biomass (Mg ha-1) a 5 43.8 57.5 

Shade tree biomass (Mg ha-1) a 7.65 91.2 127.7 

Total aboveground biomass (Mg ha-1) 12.65 135 185.2 

Cocoa biomass / Total biomass 0.40 0.32 0.31 

Shade tree biomass / Total biomass 0.60 0.68 0.69 

Annual litterfall production / Cocoa biomass 1.00 0.19 0.18 

Annual litterfall production / Shade tree biomass 0.65 0.09 0.08 

Annual litterfall production / Total biomass 0.40 0.06 0.06 
a Cocoa and shade tree biomasses calculated by using Brown’s equation (see Table 2.3). 
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Belowground biomass, root turnover, and exudation rate 

Short literature review: 

Kummerow et al. (1982) reported that the non-woody fine roots (< 1 mm) were 

concentrated in the litter layer and to a 5 cm depth, with a large fraction found in 

the very top 0-1 cm (90% of the fine-root growth happened in the 0-10 cm layer). 

The strong conical taproots can grow downwards to 10-1.5m, depending on the 

soil conditions. Lateral roots are mainly horizontal and concentrated in the upper 

30 cm, and they can be several meters long in cocoa farms aged six years and 

older. They studied the weekly dynamics of fine roots and found a relatively 

constant fine root concentration over time, about 40 g m-2 (400 kg ha-1), during 

their six-month experiment in Bahia (Brazil). They also found that root growth 

activity did not appear to be correlated with seasonal variations. However, they 

found a negative between the decrease of fine root activity and the occurrence of 

flushing. Therefore, root growth activity is episodic but seems to be influenced by 

flushes more than seasonal changes. Shoot flushing occurred when fine root 

growth activity was the slowest. It is also mentioned that, since roots can extend 

past the cocoa tree canopy, it is unclear which tree the fine roots belong to. 

Muñoz & Beer (2001) measured fine root biomass and productivity in cocoa 

plantations shaded by Erythrina poeppigiana or Cordia alliodora in Costa Rica. 

Fine root biomass was approximately 1 Mg ha-1 and varied little during the year 

(max values of the beginning of the rainy season of 1.85 Mg ha-1 under C. 

alliodora and 1.2 Mg ha-1 under E. poeppigiana). Great fine root productivity was 

34-68 kg ha-1 4 week-1 for cocoa at the beginning of the rainy season, while it 

reached 205 and 120 kg ha-1 4 week-1 at the end of the rainy season (respectively 

under C. alliodora and E. poeppigiana. They estimated the annual fine root 

turnover to be 0.9 and 1.07, respectively (close to one in both systems).  

Moser et al. (2010) found that 83% of fine root (≤ 2 mm) and 86% (> 2 mm) of 

coarse root biomass was found in the 0-40 cm soil layer. They recorded 

aboveground biomass and root biomass dynamics and productivity before and 

after a 13-month desiccation experiment to a depth of 3 m (20 increments, at 

three distances from a cocoa stem: 0-50, 50-100, >100 cm). They also analyzed 

litterfall (leaves and pods) during a year, sorting the results by species. 

Nygren et al. (2013) used a combination of field sampling and modeling to study 

the root distribution of cocoa trees shaded by Inga edulis in 16 years-old cocoa 

farms in Costa Rica. The FracRoot model was used to simulate the coarse root 

architecture of the two tree species and estimate their respective root system 
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lengths and masses. Fine roots (≤ 2 mm) were not part of the simulation, and 

their length, biomass, and necromass density were determined after core 

sampling down to 50 cm. A significant fraction of cocoa roots was located in the 

0-2 cm layer. The authors proposed a function to describe the fine root biomass 

density distribution along with depth: 𝜌𝑀 = 2.0688 × 𝑑𝑠
−0.370 (R² = 0.89, 

P ≤ 0.0002). The coarse root system mass had a linear relationship the squared 

stem basal diameter: 𝑀𝑠 = 0.03562 × 𝐷𝑠
² (R² = 0.80). Simulated coarse root 

biomass ranged from 820 to 1556 kg ha-1, whereas the measured cocoa fine root 

biomass was 3,550 kg ha-1 and the cocoa fine root necromass 313 kg ha-1. The 

C/N ratio of cocoa roots ranged from 30.6 to 39.5. 

Rajab et al. (2016) compared bean yield and carbon storage in three widespread 

cocoa cultivation systems of Central Sulawesi: non-shaded monoculture, cacao 

with Gliricidia sepium as dominant shade tree and cacao with dense and diverse 

shade cover. Soil and root samples were collected down to 60 cm (0-10, 10-20, 

20-40, 40-60 cm). Pits were excavated to assess root biomass down to 300 cm. 

Roots were separated in fine (<2 mm diameter), large (2-5 mm) and coarse 

(>5 mm) categories. Litter traps were installed to assess litter production. 

The total plant C stocks of multi-shade systems was five times higher than 

monoculture (from 11 to 57 Mg ha-1). Cacao bean yield remain comparable 

across the systems (2.0-2.1 Mg ha-1 yr-1). Leaf litter represented approximately 

90% of all litter inputs in the monoculture and the Gliricidia systems, and about 

80% in the multi-shade system. Total fine production did not differ between the 

systems, but fine root productivity tended to decrease with increasing shade 

levels. Cocoa fine roots production was larger than that of shade trees in both 

shaded and full-sun systems. Cocoa shoot:root ratio ranged from 3.7 to 5.3. All 

trees confounded, fine root biomass production ranged from 1.5 to 

1.9 Mg ha-1 year-1 whereas coarse root biomass 0.2 to 1.1 Mg ha-1 year-1.  

Niether et al. (2019) evaluated the above and belowground production of biomass 

in a range of cocoa systems in Bolivia (conventional and organic crossed with 

monoculture and agroforestry, as well as successional agroforestry). They found 

approximately 80% of the total fine roots in the uppermost 25 cm of the soil, 

ranging from 74 to 87%. The mean annual fine root production of all the systems 

was comparable, except in conventional monoculture, which was much lower. 

They confirmed the observation of Kummerow et al. (1982), showing that coarse 

lateral roots can reach horizontally the trunk of a neighboring cocoa tree at a 4 m 

distance.  
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Borden et al. (2019) aimed to overcome the respective limitations of using 

allometric equations, destructive sampling, and ground penetrating radar geo-

imagery to bridge the gap between those approaches and offer a better 

estimation of cocoa root mass and its variation. Their method was implemented 

on cocoa monocultures and shaded systems (with Entandrophragma angolense 

or Terminalia Ivorensis). Using destructive sampling, they estimated that a 

15-year-old cocoa tree has an average root-to-shoot ratio of approximately 

0.23 ± 0.02 but could range from 0.19 ± 0.02 to 0.28 ± 0.05 depending on the 

system. They found that cocoa allocated more biomass in their root system in 

shaded systems than in monocultures. They did find that coarse root biomass 

was significantly correlated to DBH. They found a ratio of 3.3 ± 0.2 (n = 3) 

between excavated lateral roots to taproot biomass. They emphasized that 

allometric equations can translate to misestimations of belowground biomass and 

that site- and species-specific allometric equations are preferable, when 

available, instead of using generalized equations, especially for belowground 

biomass. 

Schneidewind et al. (2016) analysed litterfall, pruning residuals, and litter 

decomposition in a matrix of monoculture/agroforestry versus 

conventional/organic cocoa farms in Bolivia. The total annual litterfall per system 

ranged from approximately 1.23 to 2.23 Mg C ha-1 (approximately 2.26 to 4.46 Mg 

organic matter ha-1 if using a carbon content of 50%). The quantity of pruning 

residues ranged from 2.58 to 4.28 Mg C ha-1 (approximately 5.16 to 8.92 Mg 

organic matter ha-1 if using a carbon content of 50%). They report C/N ratio of 

cocoa leaves ranging from 20.2 to 24. After 290 days, the remaining litter mass 

was approximately 60% for all systems and management types. 
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SOM mineralisation rate: behaviour of each rate modifying 

factor 

In Figure A - 5.1, the behaviour of each SOM mineralisation rate modifying factor 

was visually presented. Each was calculated with the equations provided by 

Clivot et al. (2019) and a range of possible values. 
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Figure A - 5.1: Behaviour of the rate modifying factors for soil organic matter mineralisation, as described in the AMG model (v2) 
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Calculation of each rate modifying factor 

SOM mineralisation rate modifying factors: temperature 

The effect of the temperature on SOM mineralisation is described by the function 

𝑓(𝑇): 

𝑓(𝑇) =  
𝑎𝑇

1 + 𝑏𝑇 . exp (−𝑐𝑇. 𝑇)
 

with 𝑓(𝑇) = 0 if 𝑇 ≤ 0 

and 𝑏𝑇 = (𝑎𝑇 − 1). exp (𝑐𝑇. 𝑇𝑟𝑒𝑓) 

with 𝑎𝑇 = 25, 𝑐𝑇 = 0.120 K-1, 𝑇𝑅𝑒𝑓 = 15°𝐶. 

SOM mineralisation rate modifying factor: soil moisture proxy 

The effect of the soil moisture on SOM mineralisation is described by the function 

𝑓(𝐻): 

𝑓(𝐻) =  
1

1 + 𝑎𝐻. exp (−𝑏𝐻.
𝑃 − 𝑃𝐸𝑇 − 𝐼𝑊

1000 )
 

with 𝑎𝐻 = 3.0 10−2 and 𝑏𝐻 = 5.247 m-1 

SOM mineralisation rate modifying factor: clay content 

The effect of soil particle size distribution on SOM mineralisation is estimated by 

the function 𝑓(𝐴): 

𝑓(𝐴) = exp (−𝑎𝑚. 𝐶𝑙𝑎𝑦) 

with 𝑎𝑚 = 2.519 10−3 and 𝐶𝑙𝑎𝑦 standing for the soil clay content. 

SOM mineralisation rate modifying factor: carbonate content 

The effect of soil carbonate content on SOM mineralisation is described by the 

function 𝑓(𝐶𝑎𝐶𝑂3): 

𝑓(𝐶𝑎𝐶𝑂3) =  
1

1 + 𝑐𝑚. 𝐶𝑎𝐶𝑂3
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with 𝑐𝑚 =  1.50 10−3 (g kg-1) and 𝐶𝑎𝐶𝑂3 standing for the soil calcium carbonate 

content. 

SOM mineralisation rate modifying factor: soil pH 

The effect of soil pH is described by 𝑓(𝑝𝐻), and only the initial soil pH is 

accounted for in the model: 

𝑓(𝑝𝐻) = exp (−𝑎𝑝𝐻. (𝑝𝐻 − 𝑏𝑝𝐻)
2

) 

with−𝑎𝑝𝐻 = 0.112 , 𝑏𝑝𝐻 = 8.5 and pH standing for the initial soil pH. 

SOM mineralisation rate modifying factor: soil C/N ratio 

In AMG, the C/N ratio influences SOM mineralisation. However, only the C/N of 

the start of the experiment is considered by the model’s equations with the 

function 𝑓(𝐶 𝑁⁄ ): 

𝑓(𝐶 𝑁⁄ ) = 0.8. exp (−𝑎𝐶 𝑁⁄ . (𝐶 𝑁⁄ − 𝑏𝐶 𝑁⁄ )
2

) + 0.2 

With 𝑎𝐶 𝑁⁄ = 0.06 and 𝑏𝐶 𝑁⁄ = 11 
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Results of the simulations of each individual farm of the dataset 

 

Figure A - 5.2: Simulation of SOM dynamics of the 13 farms of the dataset
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