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Fig. 1. Exemplar threat item in 2D X-ray imagery

ABSTRACT

Computed Tomography (CT) based baggage security screen-

ing systems are of increasing use in transportation security.

The ability to automatically identify potential threat item

is a key aspect of current research in this area. Here we

present a comparison of varying classification approaches

for the automated detection of threat objects in cluttered

3D CT imagery from such security screening systems. By

combining 3D medical image segmentation techniques with

3D shape classification and retrieval methods we compare

five varying final classification stage approaches and present

significant performance achievements in the automated de-

tection of specified exemplar items.

Index Terms— aviation security, 3D medical image seg-

mentation, 3D Zernike descriptors, histogram of shape index,

automated classification, 3D object recognition.

I. INTRODUCTION

Advanced security screening systems are increasingly

employed to aid human screening operators in the detection

of potential threat items in a transport, notably aviation,

security screening [1].

Although several X-ray technology based automatic sys-

tems exist for threats detection [2], only a few of these

systems make use of the well established pattern recognition

and classification techniques [3], [4], [5], [6], [7]. This prior

work is predominantly in focused on 2D X-ray images

and does not take advantage of information now offered

by more recent systems using 3D CT imagery [8], [9]. In

practice, 2D X-ray images obtained from the current luggage

screening systems are not able to unambiguously reveal exact
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luggage content and hence make the process of screening

operator interpretation of 2D X-ray images a difficult task

- particularly for cluttered luggage (see Figure 1). As such,

the need to use 3D CT imagery is of great importance to

readily provide improved viewing and interpretation where

we have an explicit 3D voxel-based representation of each

and every object present (see Figure 2).

In prior work we have introduced a method for threat

detection which deals with 3D volumes originating from

CT based security screening systems [9]. This work follows

a global-based 3D object recognition approach combining

medical CT image segmentation approaches for object ex-

traction with 3D shape descriptors [10], [11], developed

within the established domain of 3D content retrieval sys-

tems. This global approach to object recognition with the

threat detection context contrasts with contemporary work

following a 2D or 3D Scale Invariant Feature Transform

(SIFT) driven “bag of visual words” paradigm [7], [8]. In

this paper we explicitly explore the use of an extended set of

classification approaches for this task on the consideration

of Support Vector Machines [12], Artificial Neural Network

[13], Decision Trees, Boosted Decision Trees [14] and

Random Forests [15].

Fig. 2. Exemplar threat item in 3D CT imagery

II. FEATURE EXTRACTION AND

PREPROCESSING

Our object detection approach takes 3D objects pre-

segmented from the CT imagery using the approach of

[16] from the domain of medical imagery. Prior studies
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[9] identify [16] as outperforming several other CT seg-

mentation methods [17] in our cluttered baggage data -

especially for thin objects such as weaponry. Objects are

preprocessed, normalized and for each 3D object instance a

feature vector representation is constructed. For initial (off-

line) classifier training this methodology is used to construct

a set of positive and negative feature vectors examples for

class differentiation. In the on-line classification/recognition

phase a new unseen cluttered CT baggage volume is first

segmented into multiple connected objects from which a

feature vector representation is similarly constructed for each

to enable classification via a given classifier methodology.

II-A. Feature Vector Construction

Our 3D segmented objects are described by a 3D shape

descriptor made up of rotational-invariant 3D Zernike de-

scriptors [11] and Histogram of Shape Index (HSI) [10]

following the comprehensive review of [18], [19] within the

domain of available 3D global shape descriptors.

3D Zernike descriptors are obtained from a voxelized

model of 3D objects and are rotation invariant by design. In

comparison to many other 3D shape descriptors, 3D Zernike

descriptors are robust to noise [11]. Histogram of shape

index is a local surface shape measure based on the curvature

of the object. It is constructed by segmenting the range of

the shape index curvature measure into equal sized histogram

bins. The shape index itself, SI(p), represents the shape of a

local surface, at point p, by a single-value angular measure.

It is defined as follows:

SI(p) =
1

2
−

1

π
.tan−1

k1(p) + k2(p)

k1(p) − k2(p)
(1)

Where k1(p) and k2(p) are the maximum and minimum

curvature at point p of the surface. Each value of the shape

index, which is in the range [0 → 1], corresponds to a distinct

surface shape except for an exact plane where it is undefined.

In contrast to 3D Zernike descriptors, the shape index is

derived from a surface mesh model [10] and derived from

curvature (known to be susceptible to noise).

As with most of shape representation methods, 3D Zernike

descriptors and histogram of shape index require prior pose

normalization in which the 3D object is normalized to

achieve invariance with respect to geometrical transforma-

tions (i.e. rotation, scale, and translation). 3D Zernike de-

scriptors [11] are rotation invariant but do not have scale and

translation invariance properties. By contrast, the histogram

of shape index descriptor is rotation and translation invariant

[10]. Thus our 3D objects are pose-normalized with respect

to scale and translation by translating and rescaling (i.e.

voxel re-sampling) each object based on its identifiable 3D

bounding box, from prior segmentation, within the original

CT baggage image.

To generate Zernike descriptors, we use a maximal order

of 20 to yield a Zernike descriptors feature vector in R
121.

The step bin of the shape index used to compute the

histogram is 0.005 which results in a histogram vector in

R
200 over a shape index value range of [0 → 1]. The

resulting combined feature vector of concatenated Zernike

descriptors and histogram of the shape index is thus in R
321.

III. CLASSIFICATION

Five classification approaches are compared for the clas-

sification of such items within this study:- Support Vector

Machines [12], Artificial Neural Network [13], Decision

Trees [14], Boosted Decision Trees [20] and Random Forests

[15]. Our support vector machine approach utilizes grid

search [12] to identify a maximally performing kernel and

parameter set (RBF kernel) whilst empirical experimentation

identifies a maximal optimal 200-hidden node configuration

for our Neural Network approach trained via backpropoga-

tion [13]. For comparison we additionally present a tryptic

of decision tree classification approaches from basic (post-

pruned) tree construction using CART [14], a boosting based

ensemble approach [20] (discrete Adaboost, 100 weak clas-

sifiers) and the seminal contemporary image classification

approach of Random Forests (100 tree classifiers). Each

approach is trained, using a cross-validation approach as

appropriate, to give a binary detection (present/not present)

output for a given object class.

IV. EXPERIMENTAL RESULTS

Our evaluation is based on a CT baggage imagery data-

set containing two threat object classes: firearms and bottles

[8], [9] (236 CT images containing a set of 35 bottles

and 7 firearms variants). Within current air travel security

regulations, bottles represent interesting target objects to

examine in any luggage screening process. Due to the limited

availability of firearm examples we use bottles as the class

object with which to present our results. Our training set

consists of 24 bottle example volumes (positive samples)

and 55 non-bottle volumes (negative samples) segmented and

normalized to a scale of 603 voxels. In Figure 3 we show

a representative set of the positive training examples used.

Negative samples are randomly generated from negative CT

volumes (without bottles) and subsequently normalized (see

pre-normalisation examples in Figure 4). We compare the

performance of varying classification approaches in identi-

fying this object class using both isolated Zernike (R121)

or histogram of shape index (HSI, R
200) descriptors and

additionally the (full) combined R
321 Zernike/histogram of

shape index feature vector as outlined in Section II-A.

Our test data set consists of 61 positive and 65 negative

variant bottle object examples within which 19 of the phys-

ical bottle types present have not been used in training set

of volumes. From Table I to Table V we summarize the

results considering Accuracy, Precision, True Negative Rate

(TNR) and Recall as defined in Equations 2 to Equation 5

and subsequently scaled to a percentile range:-
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Fig. 3. A representative set of 3D positive object examples

Fig. 4. A representative set of 3D negative object/clutter

examples

Accuracy =
tp + tn

tp + fp + tn + fn
(2)

Precision =
tp

tp + fp
(3)

TrueNegativeRate(TNR) =
tn

tn + fp
(4)

Recall =
tp

tp + fn
(5)

where tp, tn, fp and fn are defined as the recorded

number of true positive, true negative, false positive and false

negative occurrences respectively.

From Tables I - V it can been seen that the varying

classifiers offer good performance on both the Histogram of

Shape Index (HSI) based and combined Zernike/HSI feature

vector input (outperforming isolated Zernike descriptors in

all cases). Notably the performance of the simple decision

tree classifier and the boosted tree ensemble classifier is

identical on these two feature vector input cases (Table

III/IV) with marginal out-performance by the Random Forest

Feature Vector Accuracy Precision TNR Recall
Isolated Zernike 93.65 88.52 90.14 98.18

Isolated HSI 98.41 96.72 97.01 100

Combined 98.41 96.72 97.01 100

Table I. Performance of Support Vector Machine classifier (%)

Feature Vector Accuracy Precision TNR Recall
Isolated Zernike 80.95 91.11 93.85 67.21

Isolated HSI 89.68 96.15 96.9 81.97

Combined 97.61 100 100 95.08

Table II. Performance of Neural Network classifier (%)

Feature Vector Accuracy Precision TNR Recall
Isolated Zernike 70.63 81.58 89.23 50.82

Isolated HSI 98.41 100 100 96.72

Combined 98.41 100 100 96.72

Table III. Performance of Decision Tree classifier (%)

Feature Vector Accuracy Precision TNR Recall
Isolated Zernike 89.68 92.86 93.85 85.25

Isolated HSI 98.41 100 100 96.72

Combined 98.41 100 100 96.72

Table IV. Performance of Boosted Decision Tree classifier (%)

approach (Table V). The support vector machine classifier

outperforms all other approaches on the combined descriptor

(Table I) offering comparable performance on the isolated

histogram of shape index feature vectors to the Random

Forest approach. We can conclude the histogram of shape

index is a maximally discriminative feature, over and above

3D Zernike descriptors, for this classification task over a

range of independent classification approaches.

Some representative detection results obtained by our

approach using both feature vectors are depicted in Figure

5. Bottles are detected independently of their segmentation

quality which can depend on the bottle background in the

bag which can contain a significant amount of clutter and

exhibit a huge variability over the data-set. In addition, the

segmentation results can depend on the bottle liquid fill level

with the liquid inside the bottle taking several forms in

the CT image depending on the position of the bottle in

the baggage item and also the position of the item within

the CT security scanner [9]. This is a synonym to the 3D

occlusion case in non-CT based 3D object retrieval but using

our method we illustrate bottles with varying liquid fill levels

are still detected (Figure 5).

Fig. 5. Correct detection with all classifiers using combined

histogram of shape index and Zernike descriptors

In Figure 6 we show some negative samples which have

Feature Vector Accuracy Precision TNR Recall
Isolated Zernike 89.95 93.02 95.38 65.57

Isolated HSI 100 100 100 100

Combined 98.41 100 100 96.72

Table V. Performance of Random Forest classifier (%)
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been classified by the classifiers in use as bottles with iso-

lated 3D Zernike descriptors. All these false detections have

been subsequently correctly classified by all approaches,

other than the neural network, when the 3D Zernike de-

scriptors are combined with the histogram of shape index.

Figure 7 shows some typical missed detections made

by the classifier approaches in use when isolated Zernike

descriptors are used as a feature vector. Although all the

bottles which are not detected are the same as types used

in training set, they have not been recognized in the testing

phase. However, for the support vector machine approach all

of the 19 bottle types not used in training have are correctly

detected using both combined and isolated feature vector

combinations.

Fig. 6. False detections with isolated Zernike descriptors: (A)

and (B) neural network, decision tree and random forest, (C)

boosted decision tree and support vector machine

Fig. 7. Missed detections with isolated Zernike descriptors:

(A) neural network, decision tree and boosted decision tree,

(B) decision tree and boosted decision tree, (C) random

forest and support vector machine

V. CONCLUSION

In this paper we compare a range of classification ap-

proaches for the detection of potential threats in 3D CT

baggage imagery based on the use of two popular 3D

shape descriptors (3D Zernike descriptors and histogram of

shape index). The results suggest that isolated histogram of

shape index descriptors consistently outperforms 3D Zernike

descriptors alone. This is despite the reliance of the former

on surface curvature which is known to be susceptible to

noise. Maximal classification success was achieved using

feature descriptor in combination with a Support Vector

Machine or Random Forest classifier approach. Future work

will investigate the extension of this technique to larger data-

sets and more sophisticated threat objects such as weapons.
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