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Abstract 
 
The advent of next generation sequencing has led to an explosion of the amount of DNA sequences in 
public databases. A challenge is now to find tools that are able to make it easier for researchers to 
browse and make sense of this data. One organism that has recently been subject to extensive 
sequencing is Plasmodium falciparum, a devastating pathogen that infects hundreds of millions of 
people annually. The first goal of this project was to create a new desktop genome variation browser 
that can quickly handle large amounts of data from sequencing projects involving numerous isolates. 
The second aim was to use the new tool to analyse recently-sequenced strains of P. falciaprum in order 
to identify polymorphisms that may be involved in antibiotic resistance. 
 
The variation browser described here was written in C++ and the Qt graphical framework in order to 
make an easy to use and fast tool that can visualise data from variant call format (VCF) files, which is 
now a de facto standard for storing polymorphism data. The user is able to browse a VCF file to gain a 
graphical representation of the variation among multiple samples. For rapid identification of relevant 
polymorphisms, the user is able to filter variant positions using several criteria including mapping 
quality, sample group membership, and whether the mutations alter the amino acid sequence of a gene. 
Some basic statistical analysis was incorporated to help identify selective pressures acting on 
polymorphic sites.  
 
The usefulness of the program was ascertained by analysing 75 isolates of P. falciparum from Africa 
and Asia. Mutations were identified in the chloroquine resistance marker protein, PI4-K, and a putative 
ubiquitin carboxyl hydrolase, which are potentially involved in antibiotic resistance. 
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1. Introduction 
There are approximately 500 million cases of malaria per annum, resulting in the death of between one 

and three million people annually (Snow et al. 2005). The great majority of this mortality is caused by 

Plasmodium falciparum (Pf). The heterogeneity between Pf genomes can be accounted for by structural 

variation (SV), including insertions and deletions (indels), inversions, translocations, and copy number 

variants (CNVs), and are likely to make important contributions to phenotypic diversity. SVs, in 

particular CNVs, are abundant in Pf genomes (Kidgell et al. 2006; Ribacke et al. 2007). Within infected 

hosts, malaria parasites are subjected to strong selection from exposure to antimalarial drugs and the 

immune system. CNVs are associated with Pf phenotypes such as erythrocyte invasion and drug 

susceptibility. For example, CNV in the gene encoding the multi-drug resistance protein (PfMDR1) is 

associated with resistance to various anti-malarial drugs: high frequencies of this CNV have been 

observed in South East Asia and are associated with an increase in drug resistance (Price et al. 2004) 

which can be reduced by transgenically lowering copy number (Sidhu et al. 2006).  

 

1.1. Plasmodium falciparum 

Malaria is one of the world's most devastating human diseases, annually infecting around 500 million 

people, and resulting in the deaths of between one and three million people (Snow et al. 2005). Not 

only is the direct cost in human suffering high, but countries with high prevalence of malaria have 

markedly lower GDPs compared to countries where malaria is not endemic. Countries with endemic 

malaria were shown to have a GDP growth rate that was 1.3% less than malaria-free countries even 

when other confounding factors were taken into account, such as geographical location, initial poverty 

levels, and life expectancy (Gallup & Sachs 2001). Climate change is also predicted to spread the 

disease to regions that are currently malaria-free in the future as these countries become warmer. In 

countries that are already endemic for malaria, an increased rate or recrudescence of malaria infections 

may be a result of increasing temperatures, as has already been observed in highland areas of east 

Africa where there has been a significant increase from the 1970s to 1980s (Alonso et al. 2011). 

Malaria is also thought to increase the risk of the transmission of HIV, with HIV patients displaying a 

transient increase in HIV viral load upon infection (Abu-Raddad et al. 2006). 
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1.1.1. Life cycle 

The life cycle of P. falciparum is complex, with many developmental stages, and the requirement of a 

human and mosquito host to complete its life cycle. In the midgut of the Anopheles host, sexual 

selection results in the formation of human-infective sporozoites, which then migrate to the salivary 

glands. Upon biting of a human host, sporozoites are transferred into the small blood vessels, then 

migrate to the liver and invade hepatic cells. Within liver cells, multinucleate schizonts develop that 

contain between 2,000 to 40,000 uninuclear merozoites. This liver stage of replication, or 

exoerythrocytic schizgony, takes between 5 and 21 days to complete, after which the mature schizonts 

rupture the liver cells and escape into the blood stream, releasing thousands of uninucleate merozoites. 

The merozoites go on to invade erythrocytes where they form an enclosing parisitophorous vacuole and 

undergo a trophic phase. The early trophozite, because of its morphology, is sometimes called a 'ring 

form' stage. The trophic phase is characterised by the import of nutrients from the host cytoplasm, 

including hemoglobin. This occurs in the digestive vacuole with the production of  haem as a by 

product. The  haem is converted to a non-soluble non-toxic form called hemozin. Within the infected 

erythrocyte, as the trophic phase ends, multiple rounds of nuclear division, without cytokinesis, are 

initiated, which results in the formation of multinucleate schizonts.  

 

The schizont is cleaved to release uninuclear merozoites that are released into the blood stream as the 

erythrocyte is ruptured. These merozoites are then able to infect other erythrocytes producing multiple 

rounds of invasion and increase of parasite numbers. An alternative developmental pathway to the 

erythrocyte -enclosed asexual cycle can also occur: The parasite differentiates into mononuclear sexual 

forms called microgametocytes and macrogametocytes, which can fill up most of the volume of the 

infected erythrocyte. When a feeding mosquito takes up an erythrocyte containing a gametocyte, 

gametogenesis is induced and the flagellated microgametes and the aflagellate macrogamete are 

released. The former fertilisers that latter forming a zygote. A motile ookinete develops from the zygote 

and then invades the mosquito gut epithelia where it develops into an oocyst. Multiple rounds of 

asexual reproduction ensues, resulting in the production of sporozoites. The sporozoites are released 

from the epithelial cells upon rupture into the body cavity of the host (hemocoel), after which they 

migrate to and invade the salivary glands from where they can go on to invade new human hosts 

(reviewed by Greenwood et. al. 2008; Figure 1.1) 
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Figure 1.1: Plasmodium falciparum life cycle from http://www.cdc.gov/malaria 
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PfEMP1 is a collective term for the var gene products, which have been shown to be important in 

inducing immunity within the human host. There are around 60 var gene members are located 

predominantly in subteloremic regions of Pf chromosomes. PfEMP1 is localised to the surface of 

infected erythrocytes and is responsible for cytoadherance to other host erythrocytes, the capillary 

walls, and post-capillary venular endothelium by binding to various host receptors such as ICAM1 

(Berendt et al. 1989), CD36 (Barnwell et al. 1989), ELAM-1, and VCAM-1 (Ockenhouse et al. 1992). 

This cytoaherance allows the infected erythrocytes to become sequestered within organs such as the 

kidney, brain, liver, and lung, preventing clearance by the spleen, and providing a microaerophillic 

environment that is best-suited to maturation of the parasite (L. H. Miller et al. 2002). PfEMP1 is 

recognised by the host immune system and P. falciparum employs a method of avoiding this by a 

process called antigenic switching, whereby limit the number of var gene variants that are expressed at 

any time is regulated. The mechanism of switching involves the relocation of var genes to perincuclear 

positions and heterochromatin modification (Duraisingh et al. 2005). About 18% of a population has 

been shown, in vitro, to switch per generation (Gatton et al. 2003). As the host develops antibodies for 

a specific var gene product, parasites that are expressing an alternative version are strongly selected for. 

STEVOR is another protein family whose encoding genes are also located in subtelomeric regions. 

They possess a transmembrane span, which is inserted into the infected erythrocyte plasma membrane. 

Similar to the var gene products, they have been shown to be clonally variant, and while their primary 

function is unknown, they are known to be involved in inducing a host immune response (Niang et al. 

2009). 

 

1.1.2. Chemotherapy and drug resistance 

Quinine-related drugs (QRDs) including chloroquine, piperaquine, amodiaquine, primaquine, quinine 

and mefloquine, are one of the most widely used, cost-effective, and safe groups of chemotherapeutic 

agent used to treat malaria infections. They are weak bases that diffuse readily across membranes. 

When in an acidic environment, they become protonated thereby rendering them non-permeable to 

membranes. Because of this, QRDs accumulate in the acidic digestive vacuole, where they prevent the 

polymerisation of  haem to hemozin, leading to an increase in the concentration of toxic free  haem. 

Free haem can permabalise membranes and lead to the production of reactive oxygen species (ROS), 

which can damage many cellular components. As well as interfering with haem polymerization, other 

targets have been proposed for QRDs, including phospholipases, DNA, tyrosine kinase, and 
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haemoglobin- degrading proteases (Kaur et al. 2010). 

Folate biosynthesis is also commonly targeted by antimalarials. The disruption of the folate 

biosynthesis pathway prevents the production of pyrimidines and amino acids, thus effectively 

blocking DNA and protein synthesis. Two main targets are present in the P. falciparum folate pathway: 

dihydroopteroate synthase, targeted by sulfonamides; and dihdrofolate reductase, targeted by 

pyrimethamine, cycloguanil, and methotrexate (reviewed in Gregson & Plowe 2005). The most 

common anti-folate preparation used presently is Fansidar, which is a mixture of sulfadoxine and 

pyrimethamine. 

 

The current gold standard for the treatment of malaria is artemisinin and its derivatives. The mode of 

action is not fully understood, but all artemisinin-related drugs contain an endoperoxide bridge that has 

been shown to be required for activity. It is thought that that high free haem concentrations in the 

parasite digestive vacuole catalyses the cleavage of the endoperoxide bridge leading to the formation of 

electrophillic derivatives and free radicals that can damage membranes and have been shown to 

alkylate several P. falciparum proteins (Asawamahasakda et al. 1994). Artemisinin is effective against 

both ring and schizont stage parasites (Skinner et al. 1996). More recently, a L263E amino acid 

substitution in PfATPase6, a SERCA-type Ca2+-ATPase, abolishes sensitivity to artemisinin, and has 

been suggested to be a target of artemisinin (Uhlemann et al. 2005). 

 

1.1.3. Evolution 

Humans are thought to have been hosts to malaria parasites since they diverged from the last common 

ancestor with the chimpanzee. This divergence is mirrored by the divergence of the malaria parasite 

P. reichenowi in chimpanzees (Ollomo et al. 2009). P. falciparum is a member of the phylum 

Apicomplexa that also contains other important human parasites such as Cryptosporidium spp. and 

Toxoplasma spp. In a recent reorganisation of eukaryotic taxa, the apicomplexans have been grouped 

into the diverse chromoalveolata kingdom, which contains diverse microbes such diatoms, the 

oomycetes that contains the causative agent of potato late-blight Phythophthora infestans, as well as 

large multicellular organisms such as brown algae. More recent work casts doubt on the 

monophylogeny of the chromalveolata, but it is widely accepted that the grouping of the stramenopiles 

and Alveolata are monophyletic (Adl et al. 2005). 
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1.1.4. P. falciparum genome organisation 

The P. falciparum genome was sequenced by an international consortium and the draft sequence was 

published in 2002. The P. falciparum genome is 22.8 Mb and comprises 14 chromosomes with 

chromosome size increasing with number assigned ranging from 0.64 to 3.29 Mb. The G+C content is 

one of the lowest of any fully-sequenced organism at 19.4% overall and decreasing to ~10% within 

intergenic regions. Around 5300 protein-coding genes have been identified having an average length, 

excluding introns, of 2.3 kb. This gives an average gene density of one gene per 4,338 bp. Introns were 

identified in 54% of genes. Subtelomeric regions are thought to have been subject to promiscuous 

recombination between chromosomes, giving rise to high inter-chromosomal conservation at these 

regions (Gardner et al. 2002). Subtelomeric regions are observed to be highly diverse between 

Plasmodium species and contain 575 P. falciparum species-specific genes from a total of 743 identified 

by whole genome comparison with rodent malaria pathogens. P. falciparum species-specific genes are 

also enriched for at sites of syntenic block break-points that made up the core plasmodium genome 

(Kooij et al. 2005). Five subtelomeric blocks (SBs) have been identified. SB1 consists of telomeric 

repeats with the consensus sequence GGGTT(T/C)A. SB2 contains five different repeats that are 

separated by non-repetitive elements. SB2 repeats have a raised G+C content of ~30% compared to the 

average of 10% for other non-coding regions. SB4 contains more repetitive elements with at least one 

var gene that is usually in a telomere to centromere orientation. SB5 can extend up 120 kb and contains 

members of the stevor, rif, and var gene families (Crabb & Cowman 2002; Figure 1.2). In the original 

P. falciparum genome sequence paper (Gardner et al. 2002) no evidence of mobile genetic elements 

(MGE) was found. A more recent analysis has uncovered the signature of three possible MGEs (P. M. 

Durand et al. 2006). This paucity suggests that the evolution of the P. falciparum has not been greatly 

influenced by MGEs.  

 

1.2. Genome variation 

Variations in the genome sequence between related species can be classified into three broad 

categories: (1) Single nucleotide polymorphisms (SNPs), where one nucleotide has been substituted for 

another; (2) Structural variants (SV), which are here defined as regions of the genome displaying 

inversions, insertions, or deletions; (3) Copy number variants, which are genomic regions that are 

present in varying amounts in different individuals. CNV is a subset of SV as deletions and insertions 

will also decrease and increase the copy number respectively. 
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1.2.1. Single nucleotide polymorphisms 

SNPs are the most simple of polymorphisms. In recent years, they have received a great deal of 

attention in personalised medicine, forensics, population genetics and other fields. SNPs within coding 

regions, if they create a codon that encodes a different amino acid (non-synonymous substitution), will 

alter the encoded protein and possibly the phenotype. Identification of SNPs serves many purposes 

including genotyping, determining population structure, and identifying types of selection acting on 

 

Figure 1.2: Organization of three typical P. falciparum subtelomeric region. SB, subtelomeric blocks; 

Rep20, 21bp repeats regions; TARE, telomere-associated repeat elements. From (Crabb & Cowman 

2002). 
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regions of a genome. Vast numbers of SNPs can exist within populations. For example, The Human 

Genome Project, the SNP Consortium and the International HapMap Project have together identified 

10 million common (present in over 1% of the population) variants, most of which are SNPs. 

 

1.2.2. Copy number variation 

A copy number variant (CNV) or copy number polymorphism (CNP) has been defined as a region of a 

genome, arbitrarily, larger than 1 kb, that displays variation in the number of copies present relative to a 

reference genome. In humans, a seminal study of CNV in humans uncovered 1,447 CNV loci that 

together cover around 12% of the genome (Redon et al. 2006). In an association study of gene 

expression and genomic variation in lympho-blastoid cell lines from 210 unrelated HapMap 

individuals, CNVs were shown to be the cause of 17.7% of variability in gene expression differences 

between individuals (Stranger et al. 2007). Many more CNVs have been identified since then with the 

Database of Genomic Variation (http://projects.tcag.ca/variation/ ) recording CNVs (>1 kb) at almost 

16,000 loci in the human genome as of April 2011. The mechanisms that confer phenotypic variation in 

response to CNV are varied. Gene dosage is probably the most straight-forward outcome of CNVs, 

where the amount of gene expression commonly correlates positively with copy number. For example, 

an increase in copy number, and concomitant gene-dosage of PMP22 leads to Charcot-Marie-Tooth 

disease type 1A in humans (J R Lupski et al. 1992). An increase in copy number of a gene may not 

always lead to increased transcript abundance. For example, a modelling study of transcriptional 

networks has shown that changing gene copy number can create radically different steady-states, that 

transcriptional networks outputs can change non-linearly to changes in copy number variation, and that 

transcriptional networks can be driven between oscillatory and non-oscillatory states (Mileyko et al. 

2008). Therefore the effect of CNV on gene expression is unpredictable. Another outcome of an 

increase in copy number is the loss of functional constraint on the evolution of one or the other gene 

and the ability for new functions to be acquired, thus providing a substrate for evolution to work on. 

 

1.2.3. Mechanism of SV creation 

Copy number variation, whatever the mechanism of formation, involves recombination and the joining 

together of two regions of genomic DNA that were previously separated. The regions of these joining 

events are called break-points and analysis of them can provide clues to the mechanism involved. 
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CNVs commonly accumulate due to a non-homologous end-joining (NHEJ) mechanism. NHEJ is 

employed by the cell to repair chromosomal breakages, sometimes leading to translocations when non-

homologous regions are joined together, or deletions can occur when two-ended DSBs occur. For 

instance, when endonuclease-created breaks or when converging replication forks move into a region 

with nicks in the DNA (P. Hastings, James R Lupski, et al. 2009). Recently, another mechanism has 

been implicated in the generation of CNVs, termed microhomology-mediated break-induced 

replication or MMBIR (Hastings et al. 2009). Non-allelic homologous recombination (NAHR) can 

occur during meiotic recombination or during a double-stranded break repair event if the regions are 

non-allelic, but share homology. For example there may be a series of highly similar tandemly repeated 

genes, and the first gene in one chromosome recombines with the second gene of the repeat sequence in 

the sister chromatid leading to a duplication in one and a deletion in another (unequal crossing over). If 

they are directed repeats then duplication of deletion can occur, whereas inverted repeats can lead to an 

inversion (Speicher 2009). 

 

Different mechanisms of CNV creation can be detected by the remnant signature that is left behind at 

break points. If there is over 100 bp of sequence homology at breakpoints then NAHJ is a likely cause. 

Blunt ends at the break points indicate NHEJ. Insertion of local sequence >20 bp indicates MMBIR. 

Microhomology of < 20 bp indicates NHEJ, MMEJ, or MMBIR, while dispersed duplication can 

indicate retrotranspostion-mediated duplication (Reviewed by Conrad et al. 2010). 

 

1.3. Genomic variation in P. falciparum  

1.3.1. P. falciparum CNV 

The mechanism of CNV generation in P. falciparum is thought to be commonly due to non-

homologous recombination events at repetitive regions. For example, the breakpoints surrounding 

pfmdr1 occurred predominately at monomeric A or T tracts. A comparison of 16 in vitro-cultured 

P .falciparum genomes with the 3D7 genome using high-density Affymetrix oligonucleotide arrays 

uncovered a total of 186 genes that showed CNV, with each isolate having between 11 and 37 CNV 

genes per genome. The distribution of CNVs was non-random, with 60.8% occurring in subtelomeric 

regions. 18% of all genes located in the subtelomere region were CNVs compared to just 1.6% of genes 

internal of subtelomeres. CNVs were also enriched near sites of chromosomal segmental duplication 

sites. It was found that gene length was inversely proportional to the likelihood of being a CNV gene. 
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An over-representation of CNVs was found for genes that encode known antigenic proteins, and was 

proposed as a mechanism of generating antigenic diversity in order to evade immune recognition 

(Cheeseman et al. 2009). 

1.3.2. Variation affecting antibiotic-resistance phenotypes 

There are many types of genome variation seen across P. falciparum isolates that can confer unique 

phenotypes associated with pathogenicity, including single nucleotide substitutions (SNPs), small scale 

indels, CNV, as well as translocations and gene inversions. Deletion of a subtelomeric region of 

chromosome 9 containing clag9 resulted in loss of cytoadherence to melanoma cells (Trenholme et al. 

2000). One study has found a very high propensity for CNV genes in P. falciparum to be species-

specific, with around 70% of CNV genes having no ortholog in other Plasmodium species. This was 

suggested to be due to negative selection acting on the core Plasmodium genes that are functionally 

constrained, or to diversifying selection acting on the species-specific genes (Cheeseman et al. 2009). 

The P. falciparum multidrug transporter (pfmdr1) encodes a transporter with 12 transmembrane 

domains that is localised to the digestive vacuole within the parasite. Amplifications of pfmdr1 and 

increase in pfmdr1 transcript levels are associated with an increase in resistance to chloroquine (Foote 

et al. 1989). Ablation of one of two pfmdr1 genes in a MFQ-resistant strain led to dramatic increases in 

susceptibility to MFQ and several other drugs. In an in vitro experiment in which P. falciparum was 

exposed to mefloquine, it was estimated that increases of copy number of pfmdr1 from one to two copy 

numbers occurs at a frequency of 10-8 per generation, while change from two to three copies occurs at 

10-3 per generation (Preechapornkul et al. 2009). Another multidrug resistance protein that has been 

shown to mediate sulfadoxine resistance is PfMRP1 (Dahlstrom et al. 2009). 

 

Dihydropteroate synthase (dhps) and dihydrofolate synthase (dhfr) are targeted by the anti-folate drugs 

sulfadoxine and pyrimethamine respectively, and mutations in these genes can confer resistance to 

drugs that are targeted by them (C V Plowe et al. 1998). However, a fitness cost is induced, which is 

thought to be compensated for by an increase in copy number of GTP-cyclohydrolase gch1, the first 

enzyme in the folate biosynthetic pathway. In Thailand an extensive use of anti-folate drugs have been 

occurring for decades, whereas in neighbouring Laos these drugs were rarely used. Consistent with a 

role in positive selection favouring multiple copies of gch1 in response to selective pressure from anti-

folate drugs, 72% of parasites from Thailand had gch1 in copy number greater than 1 (1-11 copies), 

while this figure was only 1.6% (max. 2 copies) for parasites isolated in Laos. Additionally, linkage 
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disequilibrium was observed to be increased and genetic diversity reduced in the gch1 locus in the Thai 

population relative to the Laos population, indicating strong positive selection acting on gch1 (Nair et 

al. 2008). Another example of the effect of CNV on antibiotic resistance comes from a study in which 

P. falciparum Dd2 was cultured in vitro in the presence of piperaquine, a chloroquine-like drug. During 

exposure to the drug, a 65 kb region on chromosome 5 was amplified and antibiotic resistance 

increased. After culturing on antibiotic-free media, this region was lost along with antibiotic resistance, 

suggesting that a CNV in this region mediates antibiotic resistance (Eastman et al. 2011). 

 

1.4. Identification of genome variation 

Historically SVs were largely detected between genomes using cytogenetic techniques. While 

relatively simple and effective for very large SVs, the lack of resolution has been limiting. Detecting 

SVs with much higher resolution was introduced with the advent of the revolutionary technique, 

whole-genome tiling arrays (array-CGH or aCGH). This has been the standard tool for detecting SV 

since its development in 1997 (Solinas-Toldo et al. 1997). This method involves the creation of a 

microarray chip that is tiled with probes that cover the whole genome. A sample genome is fragmented 

and labelled. After hybridisation, the intensity of signal at each probe gives an indication of the amount 

of the corresponding genomic sequence present in the sample and so whether there are SVs. The 

resolution of aCGH has been steadily increasing with SVs now able to be detected at between 50–200 

bp CNV (Urban et al. 2006). Problems with this approach include cross-hybridisation that can confuse 

the analysis. Also limited dynamic range can be a problem. Array design and production can be costly 

and optimisation of conditions can be troublesome. Another drawback is that array-CGH is not very 

well suited to detecting SVs such as inversions and balanced translocations. Paired end sequencing of 

fosmids is another approach that was used in the past, but with resolutions of > 8 kb is not suitable for 

the majority of SVs (Korbel et al. 2007). 

1.4.1. Identification of SV from high-throughput sequencing data 

With the advent of the so-called 'next generation' DNA sequencing technologies or high throughput 

sequencing (HTS) techniques, new avenues have been opened for the identification of genomic 

variation. The massive amounts of sequence data produced by these technologies lend them to the 

accurate detection of SNPs as well as other types of SV. Advantages of HTS-based variant detection 

over aCGH include the fact that the sequence of the organism need not be known before the 
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experiment. It overcomes problems with cross-hybridization, is roughly the same cost as aCGH, and is 

becoming progressively cheaper. Also there is a digital output that is easy to interpret and the dynamic 

range is much higher (Daines et al. 2009).  

 

Probably the most straight-forward approach to identifying genome variation would be to assemble the 

full genome. However, with the current size of read length from massively parallel DNA sequencing 

being well under 100 bp, assembly of whole genomes is problematic. 454 sequencing does provide 

much longer reads but the cost per base pair is much higher (Table 1.1). This has driven the 

development of various techniques and tools to identify SV without assembling a whole genome. 

 

 

Identification of SNPs and small indels from aligned data is straightforward as long as the sequence 

read can be confidently aligned to a reference genome, and can be carried out with tools such as 

SAMtools (Li et al. 2009) or GATK (McKenna et al. 2010) 

SVs can be called from NGS data by mapping paired-end sequences to a reference genome and 

comparing the distance between mapped-paired ends to the average size of the insert used to generate 

the library (paired-end mapping or PEM). Distances between pairs larger than the insert size range give 

an indication of an insert, whereas smaller length between pairs suggest a deletion event. PEM was first 

applied to detect genome-wide SV (Korbel et al. 2007). Using 454 sequencing and a 3 kb average 

insert size library, they were able to gain an average resolution of the breakpoints of 644 bp, small 

enough to easily characterise to single base pair resolution using PCR. SV presence was called only if 

Table 1.1: DNA sequencing costs. From Gupta et al. 2010 
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there were two or more supporting mapped pair reads. The authors use this to safeguard against rare 

chimeric constructs that can occur during library construction. This method provides sensitive detection 

of relatively small deletions and can provide high resolution mapping of the breakpoint as well as 

handling highly-repetitive regions well. A disadvantage of this method lies in the fact that insertions 

larger than the average insert size of the paired-end library are largely undetectable (Korbel et al. 2007; 

Figure 1.3). 

 

Another strategy similar to PEM is split-read analysis (SR), which complements PEM-based 

approaches by allowing for the detection of much smaller insertions and deletions. This method looks 

for gaps in the alignment of single reads to a reference genome. Gaps in the reference genome indicate 

an insertion and a gap in the aligned read indicating a deletion. SR is more effective when used with 

sequencing technologies that produce longer read length, such as Roche 454 as there tend to be many 

regions in the genome that small split-reads can map to (Pang et al. 2010). 

 

A modification of the split reads strategy that is used to overcome some limitations of short-read length 

sequencing, called anchored split-mapping (ASM). Using this approach, all reads that can only align to 

the genome at one end are found. The mapped end is required to map to a unique region in the genome, 

providing an anchor. Then an attempt is made to map the other end of the read as in the SR strategy. 

Only medium sized insertions can be detected using this method, as increasing the search space also 

increases the chances of finding multiple sites that the non-anchored end can map to. ASM can also 

detect deletions, but as the size of the deletion increases so does the amount of total read sequence 

available for aligning, thus limiting it to small deletions (K. Ye et al. 2009). 

 

Another alternative and complimentary approach to PEM and SR-based strategies is the analysis of 

read-depth (RD) from NGS data. RD-based methods use read coverage at locations of the chromosome 

to infer copy number. In theory RD should be directly proportional to the copy number of a genome 

sequence. An advantage of RD CNV calling is that the sequence reads do not have to be mapped to 

unique regions of the chromosome and so it is easier to call CNVs in regions of complex duplications, 

regions which PEM-based methods struggle with, although highly repetitive regions such as LINEs and 

SINEs in humans can be problematic. In one study where a PEM-based and a RD-bases were 

compared, approximately the same number of SVs were identified, but very little overlap was seem 

between the called SVs between the two methods. 



Chapter 1. Introduction 

14 
 

 

Figure 1.3: Different types of variants that can be identified using paired-end reads. From Korbel et al. 

(2007) 
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The PEM-specific calls contained only 2% segmental duplications compared to 40% for the RD 

method. The mean size of the SVs for the PEM method was 985 bp compared to 4.6 kb for the RD 

method (Yoon et al. 2009). Therefore multiple methods should be employed when a thorough 

investigation of SVs is required. 

 

FREEC is a tool for automatically detecting CNV by analyzing read depth at various regions of the 

genome. It does not require a control genome to serve as a reference genome, although one can be used 

if available. This can be useful if a reference sample is not available, and also reduces costs as less 

sequencing needs to be performed. FREEC also can take polyploidy into account when calling CNVs. 

The algorithm first calculates a raw read depth based on read counts in non-overlapping windows that 

can be set manually or automatically based on the depth of read coverage. Two methods of 

normalisation can be employed: (1) The CNP is normalised using a control experiment using data from 

an organism that you wish to compare to (2) The CNP is normalised based on a G+C content profile. It 

is able to utilize information from paired-end reads, and is able to use low depth of coverage data, and 

because it is written in C/C++, is much faster than other programs that have been developed for similar 

purposes (Boeva et al. 2011).  

 

Inversions can be difficult to detect using short-read NGS data because small reads within the inversion 

will still align to the reference genome (Pelak et al. 2010). Using paired-end reads can overcome this 

limitation: if one of two pairs maps in the reverse orientation, it is likely to be the result of an inversion. 

If one of a pair also maps to another chromosome, it can indicate a inter-chromosomal translocation 

event (Tuzun et al. 2005). 

1.4.2. VCF file format 

Recently the GFF file format, which has been used extensively to store many types of biological 

information such as genome annotations, has been modified to store variant information and is called 

the GVF format (Reese et al. 2010). However this format does not lend itself to storing data from 

multiple samples (Danecek et al. 2011). The need for a flexible format to store variant information that 

can handle multiple sample data has led to the development of the Variant Call Format (VCF) by the 

1000 genomes project (Danecek et al. 2011). This is a text-based format that is usually compressed. See 

Table 1.2 for details, and appendix (7.1.1) for an example file segment. 
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Table 1.2: VCF file format details 

Meta information lines   Start with ## 
##INFO  Defines key‐value fields in 8th column. 
##FILTER  Indicates whether position has passed filtering. 
##FORMAT  Provides information for each sample, one column per sample. 
   
Column labels  Starts with # 
CHROM  The chromosome 
POS  Reference genome position at which point the first base of the variant maps 
ID  List of identifiers (e.g. dbSNP) separated by semi‐colons. 
REF  The sequence of the reference genome at the variant position. 

In the case of indels the base preceding the indel must be included 
ALT  List of alternate alleles found at this position, separated by commas. 
QUAL  Phred‐scaled quality score for the call of the alternate allele. 
FILTER  Indicates whether the allele has passed a predefined cut‐off filter. 
INFO  Contains extra key=value fields. Can be arbitrary, but there are several optional 

reserved fields such as AA=ancestral allele, and AF=allele frequency. 
FORMAT  contains genotype identifiers separated by colons, which correspond to the 

data values in each sample column. For example, for a format field containing 
'GT:GQ:DP:HQ' and a sample field on the same line containing '0|0:48:1:51,51' 
The first line in the sample field represents a phased genotype of 0|0, the 
meaning of which would be defined in one of the ##FORMAT lines. 0/0 would 
represent an unphased genotype (i.e., if the locus is heterozygous, it is 
unknown which chromosome the variant originated from ), the second entry 
(48) represents the genotype quality, DP is read depth and the second comma‐
separated values represent haplotype quality 
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Due to the potentially large size of multi-sample VCF files, they can be compressed using the bgzip 

program. Indexing of VCF files in order to facilitate faster lookup times using VCFtools can be 

performed using the tabix program. Both bgzip and tabix are part of the samtools package (Li et al. 

2009). 

1.4.3. BCF file format 

The binary version of the VCF format is the BCF format. It stores all the same information, but is much 

quicker at extracting information, especially from multiple samples. The BCF file format is commonly 

used with the bcftools program that is part of the SAMtools (H. Li et al. 2009) package to quickly 

extract variant information. 

1.5. Visualising and storing variant data 

After the variants have been called it is useful to have a tool for visualising multiple variants at once. 

Several tools have been developed for looking at variation information obtained from arrayCGH, such 

as snoopCGH, a Java-based application that plots probe log intensity against the chromosomes 

(Almagro-Garcia et al. 2009). A recent application for visualising next generation alignment files in 

bam and sam format is MagicViewer. This tool enables the visualization of a single alignment file and 

its reference sequence. It is possible to filter variants using many parameters including quality and 

variant type. It calls variants using the incorporated Genome Analysis Toolkit (GATK, McKenna et al. 

2010) and can also save the calls into VCF format. A limitation of this tool is the lack of ability to read 

VCF files and to be able to view multiple genomes simultaneously. The Artemis software is an 

established genome browser that has recently incorporated the ability to read and view VCF data. Some 

limitations are present in its current form though. First of all, only a single VCF file can be loaded at a 

time, meaning it is cumbersome to work with multiple samples. Secondly, only a colour, representing 

the variation type, is present and no function is available to filter variants. It has been reported that the 

UCSC Genome Browser will soon support the ability to view VCF file information (Fujita et al. 2010). 

However being an online tool, this may not be suitable for users that need fast browsing of very large 

VCF file. 
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1.6. Aims and Objectives 

The initial aim of this project is to develop a software tool that can quickly visualise genomic variants. 

It will be required to read in the popular VCF. It should be capable of visualising multiple genomes, as 

this will become increasingly important as the sequencing costs per sample decrease and more samples 

can be compared. The tool should be able to filter variants, based on various quality control criteria. 

Furthermore, basic statistical analysis should be available to the user such as fixation index (FST) and 

expected heterozygosity (He) statistics to gain an insight into population differences and allele 

diversity. A core requirement will be speed of the software. 

The second aim of the project will be to utilise the VCF viewer tool to analyse genomic variation in 

three populations of P. falciparum isolates and to catalogue any variation found. 

The following is a list of objectives: 

• The completion of a previously started desktop genome variation browser 

o Add some basic statistical tests to determine selection pressure at polymorphic loci   

o Create new tracks for displaying data such as variation density/GC content 

o Enable filtering of polymorphisms by several criteria 

o Enhance navigation capabilities 

o Optimise the code to increase browsing speed 

 

• Use the browser to analyse HTS reads from P. falciparum isolates 

o Perform basic analysis of sequence reads 

o Identify polymorphisms potentially involved in antibiotic resistance 
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2. Creation of a variation browser tool 
 

2.1 The preliminary variation browser 

A basic variation browser has already been created by Magnus Manske from the Sanger Institute 

(Cambridge, UK). It takes as input VCF, FASTA reference sequence, and a GFF (v3) annotation file 

containing the positions of genes, coding regions and other features. The sequence file must be a 

multiple FASTA file listing each chromosome individually. Current functionality includes the ability to 

view variation data and basic annotation such as genes, CDS, coding strand, and sequence. Each 

chromosome is viewed individually, with a drop-down box providing the means to switch 

chromosome. A control panel on the left hand side of the main window contains basic control and 

information tools. The browser window contains three tracks: a sequence track that displays the 

sequence positions, and when zoomed in, the nucleotide identities; an annotation track that shows the 

genes and constituent CDS sequences as well as other features; and a variation track. In the latter, 

multiple rows are present, which correspond to individual samples. At each position where there is a 

variation, a rectangle is painted with the colour providing some information about the nature of the 

polymorphism. A zoom slider is available as well as the ability to display a region by specifying the 

range. When the cursor hovers over a polymorphism, the information box displays some information 

extracted from the VCF file. When a variation position is left-clicked, the information becomes fixed 

until the 'remove props' button is pressed or another variant is clicked. A scroll bar present at the bottom 

of the browser window allows navigation across the chromosome (Figure 2.1; Figure 2.2). As no 

comments or manual were available with varb, a UML diagram was created to provide an overview of 

the program and to help understand the main classes of the program (Figure 2.3). The program is 

written in C++ and uses the Qt4 (http://qt.nokia.com/) graphical framework. 

Main Varb classes 

The MainWindow controls the rest of the objects. Upon initialisation, the constructor sets up various 

settings in the GUI. The data is loaded by the Annotation, Variation, and SequenceData classes. These 

classes are subclasses of Track, and are part of TrackContainer. TrackContainer is a subclass of 

QWidget, the base class of all Qt UI objects. 
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Figure 2.1: Partial display of original Varb. (A) Chromosome selection. (B) Zoom scroller (C) Search 

results box (D) Information box (E) browser window (F) sequence track (G) annotation track (H) 

Sample labels (I) variation/polymorpishm positions (J) scroll bar 
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Figure 2.2: Partial display of Varb zoomed in to show individual variant positions 
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Figure 2.3: Main data structures of Varb 
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2.2. Modifications to the variation browser 

Varb has been modified and from here it will be call VarExplorer. The next sections will describe some 

of the modifications that have been carried out. 

2.2.1. Loading new data 

Varb was able to load data only from the file locations hard-coded into the MainWindow constructor. 

SourcesDialog provided a means to get new file names, but was unfinished and did not load any new 

data. In VarExplorer, the SourcesDialog can be invoked from the toolbar as well as at the initialisation 

of the program. This then calls Mainwindow::loadData(). A dialog appears asking the user if the 

current project should be saved before loading new data. Any previous data present in the tracklist is 

then deleted by calling Track::clear() that deletes all the data objects, freeing up space. An extra field is 

present in the SourcesDialog window that allows the loading of saved project data, the format of which 

is described later. 

2.2.2. The sidebar 

The sidebar has been changed to a almost black colour with white text for aesthetic reasons. The output 

of the find function now opens up a new large dialog, presenting id, description and position in separate 

columns for ease of viewing rather than in a small text area within the sidebar. Clicking on a result row 

zooms the browser so that the width visible is 110% larger than the feature. With the find results box 

removed from the side-bar it was possible to place other buttons and sliders there, the functions of 

which are described later. As the sidebar takes up a significant amount of the horizontal space of the 

screen, it can me hidden by unchecking the toolbar view/sidebar menu item freeing up more space to 

view the variation tracks. 

2.2.3. Groups 

The toolbar tools/manage samples menu item opens a dialog that enables the creation of groups that 

contain samples (Figure 2.4). For example, it can be possible to group together samples that come from 

specific geographical regions or have certain phenotypic characteristics. Once groups have been 

selected, selecting from the toolbar filter/groups item brings up another dialog that enables groups to be 
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hidden from view. When samples are hidden, the variation track is automatically repainted to remove 

gaps. This feature is useful if a large number of samples that have been loaded, and the user would like 

to concentrate on a select few samples or groups 

2.2.4. Filtering 

A quality cut-off function has been implemented that uses the quality score from column 6 of the VCF 

file. A slider on the sidebar allows the setting of the quality, under which value the variation position is 

not painted. SNPs and indels can be selectively viewed or hidden using checkboxes in the sidebar. 

An important property of SNPs is whether they cause a change in the amino acid sequence of the 

encoded protein (non-synonymous of Ka) or not (synonymous or Ks). Synonymous substitutions can 

alter the function of a protein and so may be of particular interest to the user. As the abundance of Ks is 

usually higher than that of Ka, there is the ability to hide or show each category of SNP to enable rapid 

identification. MainWindow::on_actionCalculate_non_synonymous_SNPs_triggered() is activated 

during MainWindow initialisation, which creates a CdsInfo object for each gene in the GFF annotation 

file. The objects are then stored as a public member of MainWindow in a QList. Once all CDS have 

been processed, TrackVariation::setSynonymous() is called, which scans the CDSinfo CDS sequences 

for positions that are non-synonymous. The VariationPosition objects within TrackVariation then have 

the bool isNonSyn set accordingly. The initial function in this process, 

MainWindow::on_actionCalculate_non_synonymous_SNPs_triggered(), is run on a separate thread, 

because this process takes longer than the loading of all the other data. This enables the user to start 

browsing the data as soon as the other data is loaded.  

When the non/synonymous SNPs have been calculated the corresponding check boxes become active. 

For multithreading, the Qt function QtConcurrent::run(function) is employed, which runs 'function' in 

a separate thread when one becomes available (http://doc.qt.nokia.com/latest/threads-

qtconcurrent.html). 
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Figure 2.4: Screenshots of the manage groups dialog (above), which allows the creation and editing of 

sample groups. 'View/hide sample groups dialog' (below) allows fitering of samples based on group 

membership 
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2.2.5. Navigation and display 

Several minor modifications were carried out to increase the ease of navigation of the data. The sliders 

that allows for scrolling left and right along the chromosome and zooming have been relocated to 

beneath the data tracks. They are now larger, which allows for more precise movements. A right click 

on a variation position now invokes a zooming function. If the users' mouse has a scroll wheel, this can 

be used to zoom in and out of the data. The original position under the cursor will then appear at the 

centre of the window. 

Significant variants can be saved in order to easily find them at a later time: If a variant position is 

clicked with the left mouse button, underneath the information box that appears in the side-bar there is 

a button Save var, which opens a dialog where notes can be stored about the variation. The toolbar 

menu item 'data/show save variants' displays a dialog that contains a table listing the variants. The 

variants can then be revisited by selecting and pressing 'go to variant'. 

When a variation position is clicked it will acquire some yellow marks to highlight it. It is then possible 

to browse to adjacent positions using the left and right keyboard keys. 

The genomic locations have at the top of the sequence track have been changed to kb and Mb if the 

length of the chromosome that is being viewed is larger than a thousand or million base pairs 

respectively. In addition, upon zooming, when nucleotides become visible, the nucleotide letters are 

coloured. 

The variation track is now vertically scrollable if the amount of samples takes up more space than 

present in the variation track window. 

The size of the lanes on the variation track can be altered by using the adjacent vertical slider. This is 

useful if the dataset contains many samples. 

Finally, the complement of the reference sequence can be painted by activating the toolbar menu 'show 

ref complement' item. This is useful when looking at reverse orientation CDS regions. 

2.2.6. Colouring of genotypes 

During the loading of the variation data, the different genotype values present in the VCF file are stored 

in a QList within the MainWindow. Upon activating the tools/change variant colouring option, a dialog 

appears with a table containing all the gt types present. Clicking on the second column on the table 

opens a colour-chooser dialog where a colour can be set for each genotype. If this is not chosen, default 
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colours are used that are hard-coded in TrackVariation::pain(). 

2.2.7. Custom filtering of variation positions. 

The VCF V4 specification (Danecek et al. 2011) allows for the addition of metadata in the header of 

the file. The #INFO lines in the header specify the type of information found within the #INFO fields 

with a key/value encoding. The following field for example, 

##INFO=<ID=H2,Number=0,Type=Flag,Description="HapMap2 membership">, defines entries in 

the file that have an ID of H2, the data is not numerical, and are of type flag meaning the presence of 

the entry for a variant assigns it the property of the description (membership of Hapmap2 in this case). 

VarExpoler can scan the VCF header for ##INFO fields, and provides a way of filtering based on the 

presence or absence of selected tags via an optional side window that can be shown/hidden via the 

toolbar view menu. Other keys that could be present in the VCF header ##INFO fields are integer, float, 

and string. Fields that contain these keys are not yet able to be used for filtering. Future versions of 

VarExplorer will be able to use these fields by first finding the range of values for string and float, and 

the different strings present before filtering can occur via a value slider for numerical fields, and drop-

down QComboBoxes for strings. 

 

2.2.8. Extra data tracks 

To provide more information for the user, a new window below the main data tracks was created. The 

new window is a QscrollArea, a child of which is TrackContainer2, which is a slightly modified 

TrackContainer class present in the original Varb. TrackContainer2 has a public member 

Qlist<Track2*>. Again, Track2 is a modified class of Track that contains some different virtual 

functions. TrackContainer2 receives the current chromosome, sequence start, and stop positions from 

MainWindow::setRange (). The extra tracks become visible by clicking the check-box in bottom of the 

data tracks. Each track can be made separately visible/hidden by using the toolbar menu tracks. 

2.2.8.1. GC content data track 

GC content information can be useful, for example altered GC content could highlight specific 

chromosomal regions such as centromere and telomere regions. This information is present as a track 

on many browsers including the UCSC Genome Browser (Zhu et al. 2009), and the Ensembl gemome 

browser (Kersey et al. 2009). 
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To create the GC content track, a new TrackGC object is initialised in the constructor of MainWindow 

after which the GcData.loadGC( ) is called. The GC content is calculated on-the-fly outputting the 

mean GC content for the pixel window. If zoomed-in beyond a point where a pixel window is < 20, a 

window size of 20 is used (Figure 2.5). 

2.2.8.2. Uniqueness data 

When analysing genomic sequence data assembled from small-read data, it can be important to know 

how unique the region of interest is within the genome. This can give some idea of how reliable the 

mapping of the sequences are. With a high uniqueness, the user may wish to assign a high probability 

of the sequence being in the correct position, whereas in a region of low uniqueness the user may wish 

to be more cautious about the variation positions. The uniqueness data is handled in an almost identical 

manner to that of the GC data. The main difference being that the data is not loaded at initialisation of 

MainWindow. Instead the data is loaded by selecting the toolbar menu item 'data/load uniqueness data'. 

This action brings-up a dialog where a file containing uniqueness data can be loaded. This is required 

to be a three-column, space-delimited, file specifying chromosome id, sequence position, and 

uniqueness score at each position. The uniqueness data is generated using a script that scans the 

chromosomes in 50 bp windows, moving along the chromosome one bp at a time. Each window is used 

to interrogate the rest of the genome for a unique match. A uniqueness score for every position is then 

calculated by calculating how many of the windows that overlap the position have 100 % matches to 

other regions. A score of 0 would indicate total uniqueness, whereas a score of 50 indicates low 

uniqueness and so problems with assembly could have occurred at this region. The Perl script was 

written by Taane Clark, and will be distributed with the VarExplorer software. 

2.2.8.3. Fixation index (FST) 

FST is a metric that measures population differentiation. When employed in a whole genome context, 

the FST gives a measure of how much interbreeding there is between different populations. An FST near 

0 would indicate substantial gene flow, between the sub-populations, while a FST approaching 1 might 

indicate barriers to interbreeding between populations, such as geographical boundaries. When applied 

to alleles or haplotypes, FST can provide information on selection at these loci. Assuming neutrality, FST 

between populations is influenced by gene flow and genetic drift, and these processes should effect all 

loci in a similar manner. Regions of the genome that display FST values that vary significantly to the 

background levels van be indicative of selective pressures. 
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Figure 2.5: Data flow for creating GC content track 
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Positive selective pressures tends to increase FST at loci, while balancing or negative selection tends to 

result in a decrease in FST. Therefore locating regions of high FST could be useful in the context of 

malaria research as these regions could be under positive selection. For example, FST values at 10 dhps 

loci in P. falciparum were significantly higher (FST = 0.2) than at eight neutral loci (FST = 0.01) 

indicating that positive selection had been acting upon them (Vinayak et al. 2010)  

The FST value is calculated as described in Weir (1996) and the equation is shown in Figure 2.6. Before 

FST can be calculated in VarExplorer, at least two groups must be created, as described in section 2.2.2. 

The toolbar menu item 'data/calculate fst' opens a dialog that allows the selection of groups to be 

included in the analysis. After closing the dialog the FST is calculated and displayed as a line chart in a 

new track in the bottom track window. If there is more than one variation position at a pixel location, 

the variation with the highest FST is displayed. It was considered to display an average FST for the pixel 

window, but as FST values are often very low, especially for closely-related groups, this would hide 

significantly high values that may be of interest. 

2.2.8.4. Variation density 

A variation density track shows the relative abundance of polymorphisms at each pixel window, as 

often there will be many polymorphisms at each location. The track splits into two separate tracks upon 

a left mouse click, displaying the relative densities of SNPs and indels. 

2.2.9. Encapsulation of data 

Encapsulation of data, which is encouraged in C++ and other object-oriented programming languages, 

is an important way of making software more robust. If an object contains member variables or data 

 

Figure 2.6: FST equation from (Weir 1996). ni sample size; n-bar, average population size; r, number 

of populations; p-tilde, population major allele frequency; p-bar, mean major allele frequency over all 

populations 
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structures that are vital to the proper functioning of the program, any unintended modification could 

damage the stability of the software or, more importantly, alter data without the users knowledge, 

providing spurious results. In Varb, the main data structures are declared as public members. For 

example the AnnotationItem objects are stored in a QMap as a public member of Annotation. The 

AnnotationItem objects should only be modified during initialisation at the point of loading of the data 

by Annotation::loadAnnotation(). Due to its public status, any other object that has access to 

Annotation can modify the contents of items, for example Mainwindow and TrackVariation(), the latter 

class accessing items from several functions. In order to encapsulate items, it was changed into a 

private member of Annotation. An accessor function Annotation::getAnnItemsPtr() was created, which 

returns a const pointer to items. Declaring a pointer const ensures that the callee function cannot 

modify the object or variable that it points to. While this solution does provide encapsulation of the 

annotation data, it does not provide a good level of abstraction, with the functions that access the data 

in items required to know how the data is stored. Future versions of VarExplorer will be modified to 

provide better data abstraction between classes. 

 

2.2.10. Optimization 

As DNA sequencing becomes progressively cheaper, the amount of genome sequences available to 

researchers will increase resulting in larger datasets, and thus potentially larger VCF files. According to 

Moore's law, computer processor speed doubles approximately every 18 months (Moore 1998), 

allowing for programs such as VarExlorer to handle increasingly more samples. However, as new 

sequencing technologies develop, and existing technologies mature, the price of DNA sequencing is 

currently reducing at a rate faster than Moore's law (Figure 2.7). Therefore the generation of efficient 

algorithms and the optimisation of software that handles large amounts of sequencing data is important 

to ensure the longevity of the software tool. 

 



Chapter 2. Creation of a variation browser 

32 

 

Figure 2.7: Graph showing cost of DNA sequencing per megabase over time. Note the deviation from 

Moore's law around 2007. From NHGRI website (http://www.genome.gov/) 

 

2.2.11. Profiling 

Profiling is the process of analysing the running of a program to measure, for instance memory usage, 

and the amount of CPU time a specific function consumes. Callgrind, from the Valgrind package 

(http://valgrind.org), was used to identify functions in VarExplorer that are consuming the most CPU 

time, and thus are candidates for optimization. Callgrind monitors the progress of the program and 

creates a call graph of all the functions called, which displays the number of instructions executed, the 

number of times the function was called and displays the caller/callee relationships. The goal of 

optimization was to increase the refresh rate of the display upon paint events to make the software 

more user friendly, rather than increase the initial data loading rate, which only takes a few seconds 

which is an acceptable length of time. Therefore, The Macro 

'CALLGRIND_START_INSTRUMENTATION', which indicates to Callgrind the place to start logging 

data, was included at the end of TrackVariation::setSynonymous(), as at this point all the primary data 

has been loaded. This enables Callgrind to execute much quicker, as it can otherwise slow down the 

program dramatically, and also reduces the complexity of the output. TrackContainer::paintEvent() 
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was found to have an inclusive cost of around 75%. An inclusive cost is the CPU cost of this function 

and all other functions that it may call. Figure 2.8 Shows a partial call graph with the percentage values 

showing the cost relative to TrackContainer::paintEvent() performed on VarExplorer before any 

optimization. As can be seen, the function taking up most of the resources is TrackVariation::paint(), 

which contributes over 92% of the TrackContainer::paintEvent() inclusive cost. Therefore, several 

modifications were applied to this function in an attempt to optimize the speed. The function 

TrackContainer::event() along with QMainWindow::event() were found to be both calling 

TrackContainer::paintEvent().  

TrackContainer::event() was deleted as it appears to be calling unnecessary paint events. The 

VariationPosition data objects were originally stored as a QMap<QString, Qlist<VariationPosition> 

within a Variation object. In order to acquire the VariationPosition objects for displaying, 

TrackVariation::paint() first iterates over the samples and for each sample iterates over the 

Qlist<VariationPosition> and extracts the position variable from the VariationPosition object. The 

position is then tested to see whether it falls within the to and from variables that define the visible 

sequence. If it passes, then its pixel position on the PaintArea is calculated before painting. If another 

VariationPosition is then found which maps to the same pixel, it is discounted and only the first 

variation for that pixel is displayed (Figure 2.9a). In VarExplorer, the data is stored in a nested map 

structure: QHash<QString, QMap<long, VariationPosition> with the long variable holding the variant 

sequence position enabling faster lookup of variants. Acquiring the VariationPosition object is 

performed by iterating over the samples before iterating over each pixel in the width of the 

TrackContainer display. At each pixel, the corresponding genome sequence range is calculated and the 

first VariationPosition within this bin is extracted by key lookup. If there is no VariationPosition within 

the bin, the next pixel is moved onto. If a variant is found the data is extracted and moves straight on to 

the next pixel (Figure 2.9b). This is a more efficient algorithm as the VariationPosition objects can be 

accessed directly for each pixel vastly minimising the number of instructions that need to be performed 
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. 

 

 

Figure 2.8: A section of a Callgrind-generated call graph showing the functions called upon a paint 

event using the non-optimized TrackVariation::paint() function. Percentages show inclusive cost of the 

function 

 



Chapter 2. Creation of a variation browser 

35 

 

 

 

  

Figure 2.9: (A) Simplified overview of TrackVariation::paint() function of Varb. (B) Simplified overview 

of modified TrackVariation::paint() in VarExplorer. 
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2.2.12. Data types 

Where possible, the QMap container class has been replaced for the QHash container. QHash provides 

fast lookup of values, but the data is not ordered (QMaps sort data on keys) so was not suitable for the 

Variation data that requires ordered keys. 

A new List containing each genotype numerical code is now stored in a QstringList in each 

VariationPosition allowing quicker lookup of the genotype. This is generated at the point of data 

loading. Previously in Varb, gt value had to be looked up from the genotype string at each paint event. 

To further test the capability of VarExplorer, the human reference genome chromosome 22 and VCF 

file were downloaded from dbSNP (http://www.ncbi.nlm.nih.gov/snp). The VCF files contained data 

from 120 individuals and 40705 polymorphic positions. This amount of data appears to slow down the 

workings of VarExplorer somewhat, but it is still usable, with single event zoom-ins taking < 0.5 

seconds. This represents a large increase in performance over the original Varb, as using Varb on this 

dataset results in >15 second lag during zooming and scrolling at the most zoomed out level. 

Another improvement was made by replacing all widget::repaint() by widget::update(). update() waits 

for the program to return to the main loop before repainting, and can merge multiple paint events into 

one. This optimizes repainting of the widget and can stop flickering, which can occur when multiple 

paint events are occurring nearly simultaneously (http://doc.qt.nokia.com/latest/qwidget.html#update-

2). 

2.2.13. Memory usage 

It was found that a large amount of memory was used when running large datasets in VarExplorer. For 

example, when loading P. falciparum data from 75 isolates containing 126886 polymorphic positions 

(VCF file 23 MB), the amount of ram used was around 2.9GB. This will be too high for many users' 

computers and memory usage must be addressed. 
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3. Analysis of polymorphism data from three populations of 

Plasmodium falciparum 

3.1. Introduction 

Three populations of P. falciparum were selected for initial analysis using VarExplorer. These were 

sequenced at the Sanger Institute (Cambridge, UK). The sequencing project website can be located 

here: http://www.sanger.ac.uk/research/projects/malariaprogramme-kwiatkowski/sequencing.html. This 

has provided an opportunity to test VarExplorer on a real dataset, enabling the identification of bugs 

and to provide ideas for new functionality. The dataset consists of a VCF file generated from Illumina 

sequencing (36 – 76 bp length reads). The sequenced reads were a mixture of single and paired-end 

reads from three populations containing 25 samples each. The samples originate from blood samples of 

infected patients. The genome sequences were assembled using a re-sequencing approach, with the 

reads aligned to the 3D7 genome (probable west African origin). The three sample populations are 

Gambia (PA), Kenya (PC), and Cambodia (PH). Some basic statistics about the variants were gathered, 

and several genes that may be involved in antibiotic resistance were identified. 

3.1.1. Distribution of SNPs and indels 

The P. falciparum chromosomes were scanned for the density of indels and SNPs in 1 kb bins to gain 

an idea of variation density over each chromosome. There was no visible correlation between 

chromosome position and indel density section (Appendix 7.1.3). In contrast, SNPs were highly 

concentrated at the terminal regions of all chromosomes, with a noticeable reduction in the density of 

SNPs at the distal terminal of chromosome 5.The location of high density SNPs at sub-telomeric 

regions has been previously reported and is associated with regions containing highly variable 

antigenic families such as PfEMP1 and rifin (Mu et al. 2007). High densities of SNPs were also 

observed internally of the subtelomeric regions in chromosomes 4, 6, 7, 8, and 12 (Appendix7.1.2) and 

these regions corresponded to internal regions of antigenic-related genes as has been noted previously 

(Gardner et al. 2002). The majority of indels were small, the vast majority being one and two bp indels. 

The largest insertion was 10 bp and the largest deletion was 9 bp (Figure 3.1)  

The distribution of variants between the gene-coding regions and intergenic regions was determined as 

a frequency per kb of gene-coding and intergenic sequence respectively. The frequency of indels across 

the genome was quite consistent for intergenic indels between the chromosomes (mean 3.33 indels /kb, 
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sd. 0.22), and also for within-gene indels (mean 0.24 indels / kb, sd. 0.03). The SNP densities however, 

were more variable across the chromosomes for both intergenic SNPs (7.93 \kb, sd. 3.47) and within-

gene SNPS (2.36 \ kb , sd. 1.65)(Figure 3.2). Correlation between the within-gene SNP density and the 

intergenic SNP density was very high (R2 = 0.94) whereas there was no correlation between the within-

gene indel density and the intergenic indel density (R2 = 0.01) (Figure 3.3). This suggests that selective 

forces driving the formation of SNPs and indels is different. 

3.1.2. Non-synonymous SNPs 

SNPs that change the amino acid sequence of genes that they occur in are potentially important sites as 

they can contribute directly to different phenotypes. Table 3.1 shows the number of positions that 

contain at least one non-synonymous or all synonymous substitutions on each of the 14 chromosomes. 

Non-synonymous substitutions are more abundant on each chromosome. 
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3.1.3. Variants that introduce premature stop codons 

Indels within gene-coding regions that introduce a stop codon or alter the reading frame, as well as 

SNPs that introduce premature stop codons (PSC) can have a dramatic effect on the coding protein. 

Therefore a whole-genome scan was performed to identify all PSCs formed by SNPs (PSCs formed by 

frameshift mutations were not searched for) in the hope of finding genes that were probably non-

functional and so are candidates for genes that are involved in immune recognition. There were 79 

genes that had new stop codons within open-reading frames relative to the 3D7 reference genome, and 

20 of these shared the same annotation and were part of multi-gene families. The vast majority are 

annotated as being involved in host immune evasion, and virulence, such as PfEMP1, rifin, and stevor ( 

 

 

 

Table 3.2). Seven of the PSC genes are annotated as pseudogenes, and as such are likely non-

functional, and have probably accrued further stop codons due to loss of functional constraint acting on 

them. Ten PSC genes were annotated as having unknown function; seven of these showed elevated 

expression in an RNA-seq expression analysis (data from PlasmDB) from intraerythrocytic parasites 

(Appendix 7.1.4). 
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Figure 3.1:Indel size frequencies relative to the 3D7 genome from all samples 
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Figure 3.2: Frequency of polymorphisms within each chromosome for intergenic and within-gene 

regions 
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Figure 3.3: Correlation between variation density within gene-coding and intergenic regions 
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Table 3.1: Data for each chromosome describing the number of polymorphic sites that contain either 

all silent or one or more non-synonymous substitution 

chr All synonymous substitutions >0 non-synonymous substitutions

MAL1 393 1186 

MAL2 335 1037 

MAL3 302 800 

MAL4 3711 5017 

MAL5 256 732 

MAL6 967 1836 

MAL7 2813 3597 

MAL8 1766 4028 

MAL9 716 1348 

MAL10 918 1804 

MAL11 879 1893 

MAL12 1409 3868 

MAL13 1074 2140 

MAL14 498 961 

Total 16037 30247 
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Table 3.2: Genes and genes families identified as containing nonsense SNPs 

Gene annotation Number of genes 

conserved Plasmodium falciparum protein, unknown function, pseudogene 1 

conserved Plasmodium protein, unknown function 10 

cytoadherence linked asexual protein 3.2 1 

erythrocyte membrane protein 1 (PfEMP1)-like protein 1 

erythrocyte membrane protein 1 (PfEMP1), exon2, pseudogene 4 

erythrocyte membrane protein 1 (PfEMP1), pseudogene 1 

erythrocyte membrane protein 1, PfEMP1 40 

hypothetical protein, pseudogene 1 

Pfmc-2TM Maurer's cleft two transmembrane protein 1 

Plasmodium exported protein, unknown function, pseudogene 1 

RESA-like protein 1 

rifin 10 

rifin, pseudogene 3 

stevor 1 

stevor, pseudogene 1 

surface-associated interspersed protein 1.3 (SURFIN 1.3) 1 

var-like erythrocyte membrane protein 1 1 
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3.1.4. Polymorphisms with a potential role in antibiotic resistance 

Using VarExplorer, the P. falciparum dataset was searched for polymorphisms in known antibiotic 

resistance genes. The following genes that are known to be involved in antibiotic resistance contained 

no polymorphic sites within the coding regions. PfATPase6, pfmrp1, pfmdr1, pfhdr, pfdhps, pfgch1, 

pfmrp2, pfcmu, and pfnhe-1. However, the chloroquine transporter gene (Pfcrt) was found to have one 

synonymous mutation in exon 4 that is predicted to create a I194T substitution (Figure 3.4A). This 

substitution was found previously in a study of Cambodian P. falciparum isolates, but was not found to 

be associated with an altered chloroquine resistance phenotype (Durrand et al. 2004). In the current 

dataset, this mutation was found only in the Cambodian isolate PH0024-C. A non-synonymous SNP 

was also present in the gene encoding the chloroquine resistance marker protein (Pfcrmp) creating the 

substitution M1957I (Figure 3.4B). This polymorphism appeared to have gone almost to fixation in the 

Cambodian population, with only one isolate not harbouring the SNP. It was less prevalent in the 

African populations, with around two thirds of the isolates containing the SNP. This mutation was not 

found in the literature or within the PlasmoDB genome browser. 

Two in-frame deletions and an insertion were located in PFD0965w, which encodes a putative 

phophatidylinositol 4-kinase (PI4-K). All the variants are in a region that appears to be unique to the 

P. falciparum PI4-K that is not present in the Plasmodium knowlesi and Plasmodium vivax homologs 

(Figure 3.5). The two deletions both deleted an asparagine codon, while the insertion created a new 

asparagine codon. It has been reported that artemisinin and related compounds can target PI3-Ks in 

human cell lines (Xu et al. 2007). It may also be possible that they target the related PI4-K proteins. 

Most of these indels occurred in the African isolates, with only one isolate from Cambodia containing 

one of the indels. 

A single base pair insertion was found directly after the start codon of PFE1355c, which encodes a 

putative ubiquitin carboxyl-terminal hydrolase. It was present in six of the Kenyan and two of the 

Gambian isolates. The insertion creates a frame-shift that introduces a stop codon two codons 

downstream. Therefore this mutation likely renders this gene non-functional (Figure 3.6). Mutations 

occurring in the homolog rodent-infecting rodent malaria homolog of PFE1355c have been suggested 

to be involved in resistance to artemisinin (Hunt et al. 2007).  
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Figure 3.4: Screenshot of VarExplorer showing mutations potentially affecting chloroquine resistance. 

Blue samples- African, Green samples-Cambodia. Grey variant-reference, green variant-alternative (A) 

SNP in PfCrt creating a I194T substitution. (B) SNP in Pfcrmp1 creating a M1957I substitutions 
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Figure 3.5: Screenshot of VarExplorer showing mutations in PI4-K. (A) position of indels. (B) 

alignment showing regions of similarity between Plasmodium homologs 

 



Chapter 3. Analysis of P. falciparum polymorphisms 

48 

 

Figure 3.6: Screenshot of VarExplorer showing mutations in PFE1355c, putative ubiquitin carboxyl 

hydrolase coding region and 5′ region 
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4. Discussion 
VarExplorer is designed to be a tool primarily for browsing and not a tool for detailed analysis. While 

not as feature-rich as some programs it does provide unique functionality that will hopefully be useful 

amongst the microbial community and other fields. There are many other tools available that can 

perform advanced statistical analysis such as Bioconductor packages (http://www.bioconductor.org/), 

view alignments (MagicViewer, Hou et al. 2010; IGV, Robinson et al. 2007), and call variants 

(SAMtools, Li et al. 2009), for example, and for this reason, VarExplorer was not designed to perform 

these functions. VarExplorer will be useful to users who do not have a lot of experience in 

bioinformatics and require an easy to use program. 

 

VarExplorer was trialled on a VCF file generated from 75 P. falciparum isolates and several 

polymorphisms were identified that may have implications for antibiotic resistance. 

 

4.1. Proposed added functionality for VarExplorer 

The ability to generate summary information for the user would be useful. For example, a report could 

be invoked that detailed the whole-genome polymorphism count, the number of synonymous and non-

synonymous substitutions and other relevant information in a tab-delimited format, which could be 

easily used for further analysis. Additionally, it should be possible to bring up on the screen lists of 

genes that are ranked according to some of the scores of the statistical tests or other metrics such as 

SNP density or allele frequency from across the whole genome. This would allow the user to quickly 

identify regions of interest without having to manually inspect each chromosome individually. Another 

feature will be the ability to save alignments in, clustal or similar formats, for use in downstream 

applications such as phylogenetics. 

  

One of the strengths of VarExplorer is the ability to view many variants from multiple samples over an 

entire chromosome simultaneously. This however poses the problem of how to convey meaningful 

information when taking a broad view at a large region that contains multiple polymorphisms per 

horizontal pixel. Each horizontal pixel in the variation tracks presently displays the colour associated 

with the genotype of the first polymorphism present within the pixel window, thereby potentially 
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masking much salient information. One approach that was considered to overcome this limitation was 

to compare the similarity of data within each pixel window with the corresponding window of every 

other sample, and colour by similarity. This would provide readily visible information of large scale 

differences between samples as opposed to just in comparison to the reference genome. Similarity 

could be inferred by calculating pairwise distances between each sample at each pixel window, 

providing a means to cluster the samples, and could be accomplished using the Bio++ (Dutheil et al. 

2006) C++ libraries. However this is likely to be CPU-expensive and may not be feasible for a real-

time genome browser. Another option would be to display two points within each horizontal pixel 

window whose heights corresponds to SNP and indel density within the window, thereby forming a line 

chart-like representation along each sample lane showing SNP and indel similarity to the reference 

genome. While this approach would not provide as much information regarding similarity to other 

samples, it would give more information than at present on how similar this region is to the reference 

genome. This approach would also not be largely more CPU-intensive than the currently implemented 

method. 

FST was chosen as the first statistical test to include in VarExplorer due to its ubiquitous use within the 

microbial genetics and epidemiological communities. It has been implemented to allow the user to 

determine the level of differentiation between populations of each polymorphism. Other statistical tests 

will be included in future version of the program, including linkage disequilibrium (LD) and Tajimas 

D. Tajima's D statistic is used to identify regions of genomic DNA that are evolving in a non-neutral 

manner, and provides extra information on top of the FST value as this test is performed on the whole 

sample set without the prior requirement of creating sample groups (Tajima 1989). The ability to 

perform LD would provide further useful information, in particular LD is sensitive to selective sweeps 

that occur in a population that reduces variation in a region that has been subject to recent strong 

selective pressure (Robbins 1918; McVean 2006), which could include genes such as those involved 

antibiotic resistance or virulence. 

4.1.1. Optimisation of VarExplorer 

Although VarExplorer has been optimised somewhat during the project, there is still scope for 

significant improvement. For example, it has been shown that VarExplorer can load a VCF file derived 

from human chromosome 22 samples. While this chromosome data is loaded, around 1.1 GB of 

memory was used. In the current form of the software, in order to be able to load a full complement of 

human chromosomes or other large-genome organism, it would be necessary to load data from each 
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chromosome separately, and when the user switched chromosomes, the new data would be parsed and 

loaded into memory. Future versions of the program could utilise indexed VCF files that would allow 

for fast random access to data without having to load the whole file into memory, thereby allowing the 

analysis of any data regardless of genome size or number of samples in the experiment. To improve 

performance further, the facility to use indexed BCF files, the binary version of VCF, could be 

introduced. The use of BCF files could be implemented by incorporating the SAMtools binary or 

source code (Li et al. 2009) into the VarExplorer package and using its BCF-reading capabilities, but 

this could limit the usage of this functionality to Unix-type computers. However, it should be trivial to 

create a BCF binary parser.  

4.1.2. Alterations to the software architecture 

Many changes could be applied to the current code to make it more easily maintained and robust. One 

way is to encapsulate of as much data as possible to prevent unintended modification. Creating 

interfaces for classes, that hide the inner workings of the classes in order to create abstraction between 

the classes. This has already been started as described in 2.2.9, where the annotation data stored in the 

Annotation object was encapsulated. This also needs to be performed for the sequence data and the 

variation data, and several other public members in the MainWindow. Also the software could be 

redesigned somewhat to fit into an established software architectural pattern, such as model-view-

controller (MVC) pattern (Curry & Grace 2008). The current software was designed in a somewhat ad 

hoc way without paying a lot of attention to following established design patterns. Following an 

established pattern allows future programmers to become quickly familiar with the software if they are 

already familiar with the specific design pattern. Also a design pattern will have been optimised over 

many years to efficiently solve many of the problems that may occur. Designing software using an 

MVC strategy attempts to separate the software components into three separate entities: The model is 

the part of the code that manages the state of the application data. It provides information about the 

state of the data to the view component and changes the state of the data when requested by the 

controller component; The view component obtains information from the model and displays it to the 

user; The controller component accepts input from the user interface and signals the model to alter its 

state accordingly. Using this system, the three components should be unaware of the internal working 

of the other two components. This abstraction allows for self-contained software components that can 

be more easily maintained, as well as being suitable for software reuse. For example, in well-designed 

MVC software, the user interface can easily be replaced with a new one, all that is required is to know 
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how that new UI must interface with the model, without having to know anything about its internal 

workings. 

VarExplorer could have been written in Java, as many bioinformatics applications are, instead of C++. 

One advantage of using Java would have been the ability to use its mature biological libraries such as 

BioJava. This would be useful for adding further functionality. Although writing programs in more 

high-level languages such as Perl or Python is generally quicker, the application will generally run 

much more slowly, which is not suitable for a tool such as VarExplorer where real-time viewing of 

large amounts of data are required. In order to access the rapid development time and excellent 

biological libraries of Perl and Python would be to call scripts written in these languages as long as the 

computations were not too intensive. An alternative development model to the one used here, could 

have been to create the main project in Python using PyQt4, which is a set of Python bindings for the 

Qt graphical framework. The computationally intensive parts of the program, such as painting the 

variants could then have been performed by C++ code. This approach could greatly increase 

development time, especially for non-expert C++ programmers, without much performance cost.  

 

As the typical user of VarExplorer may be dealing with multiple VCF files from multiple experiments, 

a feature of VarExplorer in the future may be to incorporate some form of database management of the 

VCF file. One approach would be to use the SQLite (http://www.sqlite.org/) database binary, which due 

to its small size (less than 300 KB) could be easily packaged with VarExplorer. SQLite is serverless and 

requires no configuration and so does not require installation on the users' computer. The SQLite 

database could be used for storing VCF files, as well as project xml files 

 

VarExplorer was trialled on a subset of the P. falciparum data that is currently available. The whole 

dataset was not used because the memory requirements were too high. As mentioned previously, future 

versions of VarExplorer will be able to load chromosome data individually thereby increasing the 

amount of samples that are able to be loaded. Another approach to decrease the memory cost of 

VarExplorer could be to read in data on-the-fly from a binary BCF file. This would require an extensive 

reworking of the data structures that currently store the variation data, as VariationPosition objects that 

currently hold data from the VCF file also contain other data such as whether a SNP is a synonymous 

substitution or not. Having to calculate this information on every repaint event could be costly. Using 

VarExplorer on a real dataset highlighted some areas that could be improved. One such area was 

variant gene context: When looking for specific variations in a gene, it would make the task much 
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easier if the translated CDS was visible underneath the DNA sequence track, along with numbers 

indicating the amino acid position in the protein. 

 

4.2. Analysis of P. falciparum polymorphisms 

To trial VarExplorer on some real data, a VCF file created form sequencing of 75 Pf isolates and was 

loaded into VarExplorer along with the 3D7 reference genomic FASTA file and a GFF gene annotation 

file.  

The initial analysis of the P. falciparum genomic data found that there is a lot of variation between 

isolates. The vast majority of the variation was at subtelomeric regions of the chromosomes as has been 

described previously (Gardner et al. 2002). The polymorphisms in these regions were not looked at in 

any detail as genes in these are known to be hyper-variable between isolates. It was decided instead to 

look for novel variations in genes that may have a role in antibiotic resistance. The identification of 

novel mutations that confer antibiotic resistance could inform public policy regarding antibiotic 

regimes in various regions. 

 

The majority of indels were 1-2 bp in size with the largest insertions and deletions being 10 bp and 9 bp 

respectively (Figure 3.1). A previous study has shown that larger indels within different populations of 

P. falciparum are common (Hawkins et al. 2008). Therefore it is possible that many more larger indels 

were not included in the assembly of the genomes, possibly due to limitations of the short read length 

resequencing strategy used. However some larger indels, if present, would have been expected to have 

been discovered using the paired-end data that was used to generate some of the assemblies. 

There was little variation of indel frequencies across chromosomes within gene-coding regions. 

Similarly there was little variation between chromosomes in intergenic regions. In contrast, there was 

much variation in SNP frequency between chromosomes and a high correlation of SNP frequency 

between gene-coding regions and intergenic regions. Therefore it is possible that the SNP-induced 

mutations are under different selective pressures than the indel mutations, and further analysis will be 

needed to characterise this.  

 

As well as mutation creating I194T substitution in the chloroquine transporter protein (PfCrt) that had 

already been reported and was found to have no effect in antibiotic resistance, another polymorphic site 

was found in the coding sequence of the chloroquine resistance marker protein (Pfcrmp). The presence 
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of indels in the coding gene has been linked to a reduction in chloroquine sensitivity. The function of 

the protein is currently unknown, but it shares homology with DNA binding proteins and contains 

nuclear localisation signals (Li 2008).  

 

In six African isolates, insertions were found in a putative ubiquitin carboxyl-terminal hydrolase (CTH) 

gene (PFE1355c), which introduced a premature stop codon into the coding region. CTH has been 

implicated in artemisinin resistance in the rodent pathogen, Plasmodium chabaudi. Two artensuate-

resistant strains were independently created by exposing parasites to multiple rounds of passaging in 

the presence of sub-lethal concentrations of artemisinin. In both strains, resistance was mapped to a 

region on chromosome 2 that contained non-synonymous substitutions in a ubiquitin carboxyl-terminal 

hydrolase (Hunt et al. 2007). The authors suggest, but have not verified, that these mutations were 

contributing to antibiotic resistance, and that CTH-mediated alterations of the ubiquitination status of 

the Pfmdr1 multi-drug resistance protein may be mediating the phenotype. Targeted mutations of this 

gene could uncover any role in antibiotic resistance. 

 

 The idea that the mutations in PI4-K are involved in antibiotic resistance is speculative. Artemisinin 

and related drugs target PI3-Ks in human cell lines (Xu et al. 2007). It may also be possible that they 

target the related PI4-K proteins. Most of these indels occurred in the African isolates, with only one 

isolate from Cambodia containing one of the indels. However artemisinin resistance has currently not 

been observed in Africa, but has recently been found in the Cambodia-Thai border region (Noedl et al. 

2008). 
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5. Conclusion 
The initial goal of the current project was to look at genetic variation between populations of 

P.  falciparum now that large amounts of sequence data has become publicly available. This led to the 

idea of developing a software tool that was capable of handling a large number of samples quickly and 

would facilitate the identification of variants. The product of this, VarExplorer, has already fulfilled 

many of the requirements; it is a fast polymorphism browser that enables the simultaneous viewing of 

multiple samples, has the ability to create sample groups and perform basic statistical analysis, and 

finally save the details of variants of interest. Filtering, based on several criteria, has also been 

implemented to facilitate rapid identification of variants of interest. User customisation is a feature that 

has started to be implemented with the ability to colour variants and groups to suit a user’s needs. 

Future versions of VarExplorer will include the following improvements, amongst others, in order to 

further enhance the usefulness of the software: 

 

• Produce reports of summary data  

• Save alignments to file 

• Alter the display of variations when zoomed-out 

• Include more statistical test (e.g. Tajima's D and LD) 

• Ability to load indexed BCF files 

• Save sessions to SQLite database  

 

The usefulness of VarExplorer was ascertained by using it for a preliminary analysis on HTS genome 

sequencing data from 75 isolates of P. falciparum. Several polymorphisms were identified that may 

possibly have a role in antibiotic resistance, as identified from literature searches. A more thorough 

analysis of the data will possibly identify more significant polymorphisms. The current project only 

focused on 75 isolates due to limited time available to produce the VCF files. Future work could 

include the whole dataset, which currently numbers around 370 

(http://www.sanger.ac.uk/research/projects/malariaprogramme-kwiatkowski/sequencing.html). The 

acquisition and use of antibiotic resistance in the isolates data may also be useful in identifying 

polymorphisms involved in antibiotic resistance.  
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7. Appendix 

7.1. Instructions to run VarExplorer 

Installation of Qt Creator allows the installation of all the required Qt libraries. Loading the varb.pro 

file into Qt Creator then running the program by pressing the green arrow will compile and run 

VarExplorer. An executable binary is also present in the sources folder that has been tested on Ubuntu 

11.04. VarExplorer has also been successfully compiled on Mac OS, but has not yet been tested on a 

Microsoft Windows system. However as Qt is a cross-platform framework, the program should 

successfully compile on Windows. 
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7.1.1. Example VCF file 

 

 

  

 

7.1: Partial VCF file example from Danecek et al. (2011). 
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7.1.2. SNP density of each chromosome 
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7.1.3. Indel density of each chromosome 
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7.1.4. Expression profiles of unknown genes containing premature stop codons 

A- MAL13P1.17, B-MAL13P1.155, C-PFL1375w, D-PFI1205c, E- PFL1375w, F- PFL1445w, 

G-PFC0325c, H-PFC0545c 
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