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ABSTRACT 

Personalised nutrition is at its early stages but shows the potential of improving 

the health of the general population, at a time when diabetes and obesity are 

becoming worldwide epidemics. However, it will need to be based on rigorous 

scientific research, as well as being accompanied by public policies and ethical 

considerations. 

Research is making great progress towards the understanding of the impact of 

genetics on complex diseases, which involve hundreds, or thousands, of variants, 

each having varying effect on the disease. Personalised medicine aims at 

harnessing this genetic information to tailor prevention and treatment according 

to each individual. 

Unfortunately, the links between the genotype and the phenotype are not yet fully 

understood. And while the content of publicly available genetic databases is 

exponentially growing, they are often using different formats and means of 

access, making it difficult to get complete information. Moreover, evaluating the 

genetic predisposition of an individual to a disease is not straightforward, and 

while Polygenic Risk Score models can help in this regard, they are often only 

based on common variants, which might lead to misevaluation of the risk for rare-

variants carriers. 

In this thesis will be presented (i) VarGen, an R package to merge information 

from different genetic databases, which has the potential to infer new variant-

disease relationships. (ii) a new method to improve Polygenic Risk Score models, 

which includes variants obtained from VarGen on top of the common variants 

from standard polygenic analyses. (iii) the results of a microRNA differential 

expression analysis, aiming at identifying the impact of microRNAs, on the 

development of severe Hypoxic-Ischemic Encephalopathy in new-borns. 

Keywords:  

VarGen; R package; Polygenic Risk Scores; Genome Wide Association Studies; 

Polygenic Risk Score, diabetes; obesity; body mass index; microRNA; Hypoxic-

Ischemic Encephalopathy. 





iii 

ACKNOWLEDGEMENTS 

First and foremost, I would like to express my gratitude to my family, especially 

to my parents, who always advised and supported me. 

Fady, thank you for your help and guidance, from when I started the MSc at 

Cranfield, you have been an excellent supervisor. Tom, thank you for your help 

throughout the years, as well as the interesting discussions (and beers). I would 

also like to thank the other members of the bioinformatics team, Maria, Ewelina, 

Mariam, Emma, Faisal and recently Alexey, I had a great time working with you. 

Thanks to my external supervisor, Prof Andrew Thompson, for your help, and all 

the rest of the Molecular Plant Sciences and Bioinformatics Forum members 

(Zoltan, Carol, Sofia, Emmanuel, Kyle, and many others) for all the interesting 

scientific discussions. 

I would also like to thank my friends, for the much-needed relaxing breaks during 

the past three years, Nicolas, Audrey, Lucile, Dimitri, Benoit, Pierre, and Mathieu. 

Thank to Café Comet in B83 for their smiles and delicious home-made cakes. 

I would like to thank Matthew Brember for his help during the development of 

VarGen, as stated in Chapter 3, and Dr Alex Gutteridge for sharing his thoughts 

on the PRS analysis. 

This work has received funding by the European Union's Horizon 2020 Research 

and Innovation Programme through NUTRISHIELD project under Grant 

Agreement No. 818110. This thesis reflects only the authors views; the European 

Union is not liable for any use that may be made of the information contained 

therein. 

 

 

“When we try to pick out anything by itself, we find it hitched to everything else in the 

Universe” 

John Muir





v 

TABLE OF CONTENTS 

ABSTRACT ......................................................................................................... i 

ACKNOWLEDGEMENTS................................................................................... iii 

TABLE OF CONTENTS ..................................................................................... v 

LIST OF FIGURES ............................................................................................. ix 

LIST OF TABLES ............................................................................................. xiii 

LIST OF EQUATIONS ....................................................................................... xv 

LIST OF ABBREVIATIONS ............................................................................. xvii 

1 Executive summary ....................................................................................... 19 

2 Literature review ............................................................................................ 21 

2.1 Sequencing & variant calling ................................................................... 21 

2.1.1 The human reference genome ......................................................... 21 

2.1.2 Advances in sequencing technologies ............................................. 22 

2.1.3 Variants and genotyping ................................................................... 23 

2.2 Diabetes mellitus..................................................................................... 33 

2.2.1 A brief history of diabetes ................................................................. 33 

2.2.2 Diabetes: beyond two types. ............................................................ 34 

2.2.3 The genetics of diabetes mellitus ..................................................... 36 

2.2.4 A 21st century epidemic .................................................................... 38 

2.3 Obesity .................................................................................................... 39 

2.3.1 A short definition .............................................................................. 39 

2.3.2 Adipose tissue or adipose organ? .................................................... 39 

2.3.3 Causes and health impacts of obesity .............................................. 41 

2.3.4 The genetics of obesity .................................................................... 42 

2.3.5 A 21st century epidemic .................................................................... 45 

2.4 Personalised Nutrition ............................................................................. 47 

2.4.1 Precision medicine ........................................................................... 47 

2.4.2 The current state of personalised nutrition ....................................... 48 

2.4.3 Factors needed to personalise the diet ............................................ 51 

2.5 Aims and objectives ................................................................................ 53 

2.5.1 Generating lists of variants ............................................................... 53 

2.5.2 A new method to refine Polygenic Risk Score models ..................... 53 

3 VarGen: an R package to discover and annotate variants associated to a 

disease ............................................................................................................. 55 

3.1 Background and motivation .................................................................... 55 

3.2 Vargen Workflows ................................................................................... 56 

3.2.1 VarGen ............................................................................................. 56 

3.2.2 Alternative pipelines ......................................................................... 60 

3.3 List of ressources accessed by VarGen .................................................. 63 

3.3.1 The Online Mendelian Inheritance in Man database ........................ 63 

3.3.2 The Genotype Tissue Expression database ..................................... 63 



vi 

3.3.3 The Functional Annotation Of Mammalian Genomes 5 .................... 65 

3.3.4 The Genome Wide Association Study Catalog ................................ 65 

3.3.5 BioMart: at the crossroad of biological data ..................................... 66 

3.3.6 MyVariant.info: an API for variant annotation ................................... 68 

3.3.7 VarGen access to resources ............................................................ 70 

3.4 VarGen benchmarking ............................................................................ 71 

3.4.1 First use case: obesity ...................................................................... 71 

3.4.2 Second use case: Alzheimer’s disease ............................................ 74 

3.5 The lists of variants ................................................................................. 75 

3.5.1 Methods ........................................................................................... 75 

3.5.2 Results & Discussion ........................................................................ 77 

3.6 Conclusion .............................................................................................. 89 

4 A two-step Polygenic Risk Score for Body Mass Index ................................. 91 

4.1 Introduction ............................................................................................. 91 

4.2 Methods .................................................................................................. 93 

4.2.1 Base data: GWAS on obesity ........................................................... 93 

4.2.2 Target data: UK biobank .................................................................. 93 

4.2.3 Polygenic risk score calculation ....................................................... 95 

4.2.4 Refining the model with VarPhen ..................................................... 97 

4.3 Results and discussion ........................................................................... 99 

4.3.1 The backbone PRS for BMI .............................................................. 99 

4.3.2 Readjustment with VarPhen ........................................................... 100 

4.4 Discussion and limitations ..................................................................... 104 

4.4.1 Addressing the independence of the two sets ................................ 104 

4.4.2 PRS models and pleiotropy ............................................................ 105 

4.4.3 Validation with another trait ............................................................ 108 

4.4.4 Discussion ...................................................................................... 112 

4.4.5 Limitations ...................................................................................... 113 

4.5 Conclusion ............................................................................................ 114 

5 Conclusion and thoughts on the use of genetics for personalised nutrition . 115 

5.1 Conclusion ............................................................................................ 115 

5.2 Limitations ............................................................................................. 116 

5.3 Thoughts on the future personalised medicine/nutrition........................ 118 

6 MicroRNA differential expression analysis for Hypoxic-Ischemic 

Encephalopathy .............................................................................................. 121 

6.1 Background on microRNAs ................................................................... 121 

6.1.1 Definition and discovery ................................................................. 121 

6.1.2 The miRNA biogenesis in animals ................................................. 121 

6.1.3 The regulation of mRNAs by miRNAs in humans ........................... 122 

6.1.4 The impact of miRNAs on development and health ....................... 123 

6.1.5 IsomiRs .......................................................................................... 123 

6.1.6 The bioinformatics of miRNA: tools and challenges ....................... 124 



vii 

6.2 Differential expression analysis of miRNA in neonates with Hypoxic-

Ischemic Encephalopathy ........................................................................... 126 

6.2.1 Introduction .................................................................................... 126 

6.2.2 Materials and methods ................................................................... 128 

6.2.3 Results ........................................................................................... 133 

6.2.4 Discussion ...................................................................................... 135 

6.2.5 Conclusion ..................................................................................... 141 

REFERENCES ............................................................................................... 143 

Appendix A ................................................................................................. 165 

Appendix B ................................................................................................. 170 

Appendix C ................................................................................................. 185 

Appendix D ................................................................................................. 187 

 

 





ix 

LIST OF FIGURES 

Figure 1: Example of a VCF file. The header (lines beginning with ## or #), 
contains metadata related to the variant calling and describes the content of 
each column. NA0001 is the genotyped sample name. Finally, the last 5 lines 
are representing a variant each. ................................................................ 25 

Figure 2: Timeline of diabetes mellitus history. The milestones are arbitrarily 
classified into three categories (Description, Discovery, and Therapy). .... 34 

Figure 3: Prevalence of obesity (BMI >= 30) in the world between 1975 and 2016. 
The bars represent the 95% credible interval. Data obtained from the World 
Health Organisation website, based on the study by Abarca-Gómez et al. 
[102]........................................................................................................... 46 

Figure 4: VarGen workflow, user input is represented in green and databases in 
blue. The pipeline is centred on the list of genes obtained from OMIM. 
VarGen gets the variants located directly on those genes, as well as on their 
enhancers and promoters. ......................................................................... 56 

Figure 5: Manhattan plot produced with the ‘plot_manhattan_gwas’ function of 
VarGen. Each dot is a variant, coloured by its corresponding GWAS trait. The 
x-axis represents the genomic coordinates, split by chromosome, here only 
6 chromosomes are represented for the sake of clarity. The y-axis represents 
the –log10(p-value), a higher value means a more significant relation 
between the variant and the trait. The two thresholds ‘Significant’ and 
‘Suggestive’ are described in Section 2.1.3.4. There is an interesting locus 
on chromosome 19, containing many SNPs associated with Alzheimer’s 
disease. ..................................................................................................... 59 

Figure 6: Example of custom visualisation created with the vargen_visualisation 
function from VarGen. This plot gives information about the variants found by 
VarGen on the SIM1 gene (ENSG00000112246). At the top, the 
chromosome is represented (here chromosome 6) with a red bar pinpointing 
the gene location. Just below the chromosome there is an axis indicating the 
genomic position (here from 100.38 to 100.46 Mb). The three tracks below 
are relative to this axis. The first track from the top contains the five different 
transcripts of this gene (three are on the last line), with the coding parts drawn 
in purple. The second track has the variants found in this gene, as green 
bars, grouped by consequence. The last track contains the same variants, 
as blue and red dots, with the CADD score as the y-axis. The red dots 
correspond to a list of rsIDs given by the user. .......................................... 60 

Figure 7: Flowchart of the VarPhen pipeline. The user can enter one or more 
keywords (e.g.: diabetes) to find phenotype terms and their associated 
variants. ..................................................................................................... 62 

Figure 8: Structure of a BioMart query. The first step is to select a Mart, here 
Ensembl Variation. Each Mart has different datasets, usually each ensembl 
dataset correspond to a species, here the clfamiliaris_snp dataset was 



x 

selected. Finally, the user chooses the data to display (Attributes) and the 
restrictions on the results (Filters), here the refsnp_id and chr_name will be 
displayed, for chromosome 1, due to the filter ‘chr_name = 1’. ................. 67 

Figure 9: Venn diagrams representing the variants retrieved by the different 
pipelines: VarGen, DisGeNET, VarFromPDB and VarPhen. Obesity (OMIM: 
601665) was chosen as the use case. A. Venn diagram using the raw output 
for all the pipelines. B. Venn diagram using the filtered VarGen dataset, with 
the following strategy: all the variants from the GWAS Catalog and with 
clinical significance were kept, and the remaining variants were filtered if their 
CADD Phred score was below 10. ............................................................ 72 

Figure 10: Details about the annotations of the three list of variants obtained with 
VarGen (raw and filtered) and VarPhen for obesity. Empty annotations (“”) 
were ignored, for the sake of clarity A) Stacked barchart of the consequence 
terms from snpEff. B) Stacked barchart of the clinical significance terms from 
clinvar. The distribution is the same between VarGen and VarGen_filtered, 
since all the variants with clinical significance were kept during the filtering 
step C) Violin plot representing the distribution of the CADD scores for each 
pipeline. ..................................................................................................... 78 

Figure 11: Details about the annotations of the three list of variants obtained with 
VarGen (raw and filtered) and VarPhen for diabetes mellitus type 1. Empty 
annotations (“”) were ignored, for the sake of clarity A) Stacked barchart of 
the consequence terms from snpEff. B) Stacked barchart of the clinical 
significance terms from clinvar. The distribution is the same between VarGen 
and VarGen_filtered, since all the variants with clinical significance were kept 
during the filtering step C) Violin plot representing the distribution of the 
CADD scores for each pipeline. ................................................................. 82 

Figure 12: Details about the annotations of the three list of variants obtained with 
VarGen (raw and filtered) and VarPhen for diabetes mellitus type 2. Empty 
annotations (“”) were ignored, for the sake of clarity A) Stacked barchart of 
the consequence terms from snpEff. B) Stacked barchart of the clinical 
significance terms from clinvar. The distribution is the same between VarGen 
and VarGen_filtered, since all the variants with clinical significance were kept 
during the filtering step C) Violin plot representing the distribution of the 
CADD scores for each pipeline. ................................................................. 86 

Figure 13: Venn diagram representing the overlap of variants found with VarGen 
(filtered as described in 3.5.1) for obesity, diabetes mellitus type 1 (DM1) and 
type 2 (DM2). ............................................................................................. 89 

Figure 14: R2 value obtained for each p-value threshold. For each threshold, a 
linear model of the BMI as a function of the PRS score, sex and the first 6 
Principal Components was created. The R2 obtained from the model was 
subtracted by the R2 from a null model containing the covariates without the 
PRS score. ................................................................................................ 96 



xi 

Figure 15: Data preparation workflow for the PRS analysis. For both the base and 
target datasets. The final PRS was based on 373,397 individuals and 31,517 
predictors. .................................................................................................. 97 

Figure 16: BMI mean for each backbone PRS quantile. Each quantile contains 
~37,000 individuals. The bars correspond to the standard error. ............ 100 

Figure 17: BMI mean for each VarPhen PRS quantile. Each quantile contains 
~37,000 individuals. The bars correspond to the standard error. ............ 101 

Figure 18: Mean BMI for each backbone PRS quantile (in orange), with the 
means of the readjusted individuals corresponding to the lowest (in green) 
and highest (in blue) PRS quantiles of the VarPhen PRS. Each quantile 
contains ~37,000 individuals, and ~7,500 are readjusted per quantile. ... 102 

Figure 19: Venn Diagram of the shared predictive SNPs used in the two PRS 
models ..................................................................................................... 104 

Figure 20:The backbone PRS quantiles with the readjusted individuals 
corresponding to the lowest (in green) and highest (in blue) PRS quantiles of 
the independent VarPhen PRS analysis. Each quantile contains ~37,000 
individuals, and ~7,500 are readjusted per quantile. Here, the VarPhen PRS 
base set only contained SNPs that were not in LD with the backbone base 
set. ........................................................................................................... 105 

Figure 21: Treemap of the phenotypes having more than 40 SNPs in common 
with the Polygenic Risk Score model for Body Mass Index. The phenotypes 
were retrieved with BiomaRt, using the rsIDs as filters. For each trait, the 
number of SNPs shared with the PRS is shown in parenthesis. .............. 107 

Figure 22: Prevalence of diabetes for each quantile of the backbone PRS. Each 
quantile contains ~37,000 individuals. ..................................................... 109 

Figure 23: Prevalence of diabetes for each quantile of the VarPhen PRS. Each 
quantile contains ~37,000 individuals. ..................................................... 110 

Figure 24: Prevalence of diabetes for each backbone PRS quantile (in orange), 
with the prevalence of the readjusted individuals corresponding to the lowest 
(green) and highest (blue) PRS quantiles of the Varphen PRS. Each quantile 
contains ~37,000 individuals, and ~7,500 are readjusted per quantile. ... 111 

Figure 25: Example of a miRNA hairpin (hsa-miR-3134). After the cleavage by 
Dicer, the mature sequence, highlighted in red, will form the silencing 
complex with the Argonaute protein. Figure generated with miRDeep2. . 122 

Figure 26: Sequences of miRNA precursors hsa-mir-101-1 and hsa-mir-101-2. 
The mature sequences of both, here highlighted in red, are the same. ... 124 

Figure 27: Sankey plot representing the aetiology of neonatal Hypoxic-Ischemic 
Encephalopathy. The first column represents the events that can lead to 
hypoxia (without relevant proportion). The second column represents the 



xii 

three main type of hypoxia that can result in HIE (with relevant proportion). 
Data derived from Gunn et al. [210]. ........................................................ 127 

Figure 28: Veen diagram of the differentially expressed miRNAs across the 
different time points (0h, 24h, 48h and 72h). The miRNAs are filtered by their 
adjusted p-values (< 0.05). ‘PN’ represents the contrasts between the two 
conditions ‘Pathological vs Normal’. ........................................................ 134 

Figure 29: Heatmap of the Log-Fold-Change of the ‘pathological vs normal’ 
contrast. For clarity, up to 30 of the most differentially expressed miRNAs 
were selected at each time point (ordered by adjusted p-value). ............. 136 

 



xiii 

LIST OF TABLES 

Table 1: Description of the traditional main types of diabetes. (MODY = Maturity 
Onset Diabetes of the Young) ................................................................... 35 

Table 2: List of genes associated with type 1 and type 2 diabetes mellitus, 
according to the Online Mendelian Inheritance in Man database. The only 
gene in common between the two sets is ‘HNF1A’. ................................... 37 

Table 3: List of genes associated with obesity, according to the Online Mendelian 
Inheritance in Man database. .................................................................... 44 

Table 4: Description of the databases accessed by VarGen. For each database, 
the user input is described, as well as the data retrieved. ......................... 70 

Table 5: List of input given to vargen_pipeline to generate the lists of variants for 
obesity, diabetes type 1 and diabetes type 2. ............................................ 76 

Table 6: Top 15 pathways obtained with Pascal from VarGen’s filtered list of 
variants for obesity. ................................................................................... 79 

Table 7: Top 15 pathways obtained with Pascal from VarGen’s filtered list of 
variants for diabetes mellitus type 1. ......................................................... 83 

Table 8: Top 15 pathways obtained with Pascal from VarGen’s filtered list of 
variants for diabetes mellitus type 2. ......................................................... 87 

Table 9: Demographics for the individuals included in the PRS analysis. ........ 95 

Table 10: List of phenotypes given as input to VarPhen, in order to get the SNPs 
related to obesity and BMI. ........................................................................ 98 

Table 11: Overlap of the individuals between the backbone quantiles and the 
VarPhen (VP) quantiles ........................................................................... 103 

Table 12: List of phenotypes given as input to VarPhen, in order to get the SNPs 
related to diabetes mellitus type 2. .......................................................... 110 

Table 13: Description of the Hypoxic-Ischemic Encephalopathy phases ....... 127 

Table 14: List of samples removed from the analysis due to a high number of 
PCR primer contamination. ...................................................................... 131 

Table 15: Results of the four different contrasts obtained with DESeq2. Only 
significant miRNAs are represented (adjusted p-value < 0.05) ................ 133 

Table 16: List of the differentially expressed novel miRNAs for the ‘pathological 
vs normal’ contrast at the different time points, with their Log-Fold Change 
(LFC) and targets prediction from miRDB. The score from miRDB is between 
50 and 100. .............................................................................................. 135 

 





xv 

LIST OF EQUATIONS 

Equation 1: Calculation of the CADD Phred score for one SNP, dividing the rank 
of the SNP against all the other possible SNPs in the human genome. The 
ranks are based on the raw CADD score. ................................................. 68 

Equation 2: Transformation of the CADD score into a score for Pascal. The 
arbitrary value of 0.1 was chosen as it resulted in a range similar to p-values 
obtained from GWAS. ................................................................................ 77 

Equation 3: Plink formula to compute the Polygenic Risk Score for sample j. With 
N being the total number of variants, ��� the effect size for SNP i, ���� the 
number of effect alleles observed in sample j, P the ploidy (here 2) and �� 
the number of non-missing SNPs in sample j. ........................................... 96 

 





xvii 

LIST OF ABBREVIATIONS 

API Application Programming Interface 

BMI Body Mass Index 

BMIQ Body Mass Index Quantitative trait locus 

CADD Combined Annotation-Dependant Depletion 

DM  
(T1DM/ T2DM) 

Diabetes Mellitus  
(type 1 / type 2) 

DNA DeoxyriboNucleic Acid 

EBI European Bioinformatics Institute 

ECM ExtraCellular Matrix 

eQTL Expression Quantitative Trait Loci 

FANTOM5 Functional ANnoTation Of the Mammalian genome 5 

FP / TP False Positive / True Positive 

GATK Genome Analysis Tool Kit 

GTEx Genotype-Tissue Expression 

GO Gene Ontology 

GRC Genome Reference Consortium 

GWAS Genome Wide Association Study 

HIE Hypoxic-Ischemic Encephalopathy 

HLA Human Leukocyte Antigen 

InDel Insertion Deletion 

Kbp / Mbp / Gbp Kilo base pair / Mega base pair / Giga base pair 

LD Linkage Disequilibrium 

MR Mendelian Randomisation 

miRNA microRNA 

NCBI National Center for Biotechnology Information 

NHGRI National Human Genome Research Institute 

OMIM Online Mendelian Inheritance in Man 

PRS Polygenic Risk Score 

RNA RiboNucleic Acid 

rsID Reference SNP cluster ID 

SNP Single Nucleotide Polymorphism 

TSS Transcription Start Site 

VCF Variant Call Format 

WHO World Health Organisation 



xviii 

 



 

19 

1 Executive summary 

This thesis project was performed as part of the European Union’s Horizon 2020-

funded project Nutrishield (GA 818110), which focused on diabetes and obesity 

in young people as use-case models to develop a personalised nutrition platform. 

There is a general expectation from society that food consumed with the EU is 

safe, and current nutritional advice is given as a ‘one size fits all’ strategy. 

However, not every individual responds similarly to the same food or nutrient. 

This is determined by genetic factors, such as allergies or the tendency to 

develop certain diseases, as well as by acquired factors, such as the 

development of the microbiome, the amount of stress and exercise in daily life. 

In addition to the above, poor nutritional practice can lead to nutrition-related 

health conditions, including obesity, diabetes, heart diseases or cancer. One way 

to prevent these conditions is to identify high-risk individuals and personalise their 

lifestyle and diet. As a key component of risk identification is the genotype, this 

thesis will focus on the study of genetic variants linked to obesity and diabetes, 

followed by the development of polygenic models estimating the genetic risk of 

developing these diseases. 

The literature review is presented in Chapter 2. As studying the genome is an 

integral part of personalised nutrition, the first part of the review will focus on 

genome sequencing and variant calling. The second part will describe the traits 

studied in the clinical studies from the Nutrishield project, namely diabetes 

mellitus and obesity. Finally, the current state of the art of personalised medicine 

will be mentioned. 

The first objective of the thesis was to generate databases of variants related to 

diabetes and obesity. These variants will then be compared against the 

genotypes of the individuals enrolled in the Nutrishield clinical studies. Instead of 

building these databases manually, I developed VarGen, an R package to 

automatically retrieve a list of variants related to a trait, based on publicly 

available data. This package, and the results obtained with it are described in 

Chapter 3. 
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Chapter 4 describes a novel method to optimise Polygenic models, which 

estimate, based on information from many variants, the relative genetic risk to 

develop a disease. This method was tested on body mass index and validated 

on diabetes type 2. This new method uses variants from public studies as well as 

the results obtained from Chapter 3, with VarGen. Identifying individuals most at 

risk of becoming obese is an integral component of prevention and personalised 

nutrition. 

Chapter 5 will conclude the core part of the thesis. Here, will be presented the 

conclusions about Chapter 3 and 4, with their limitations and general reflections 

on the use of genetics for personalised nutrition and medicine. 

Finally, Chapter 6 presents the results of an additional project done in 

collaboration with a Nutrishield partner, Hospital Universitari i Politècnic La Fe. 

The goal was to perform microRNA differential expression analysis to identify 

potential biomarkers for the development of severe Hypoxic-Ischemic 

Encephalopathy in neonates. 

The scripts used to perform the analyses and produce the figures are available 

via GitHub: https://github.com/MCorentin/PhD_scripts.

https://github.com/MCorentin/PhD_scripts
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2 Literature review 

2.1 Sequencing & variant calling 

2.1.1 The human reference genome 

The first draft of the human genome was released in 2001 by the International 

Human Genome Sequencing Consortium [1] [2]. The resulting sequence, 

generated from a mosaic of different donors, was ~3.2 Gbp long. It was a 

milestone in science and genetics, nevertheless obtaining this sequence on its 

own was not enough to understand how our genome works. It is now necessary 

to understand how DNA and its modifications are affecting our cells. 

The Genome Reference Consortium (GRC) is responsible for maintaining the 

reference. As of 2021, the current version of the human genome is GRCh38 [3] 

(or hg38) but some databases and tools are still referring to GRCh37 (or hg19) 

coordinates. Fortunately, it is possible to convert the coordinates from GRCh37 

to GRCh38 with the LiftOver tool. 

Despite being the 20th version of the human reference genome, GRCh38 is not 

complete and still contains gaps, regions of unknown bases represented by Ns. 

The reference is still being worked on, notably around the repetitive regions and 

the heterochromatin, which are hard to sequence and assemble. Instead of 

waiting until a new reference version is released, the GRC decided to release 

assembly corrections as ‘fix patches’ (e.g., GRch38.p13 is the 13th patch for 

GRch38) so that researchers constantly have access to the most accurate 

information. It should be noted that the reference does not represent an actual 

genome, but a melting pot of the sequences found at each locus in different 

individuals. However, alternate sequences differing from the primary assembly, 

such as haplotypes and novel loci, can be of interest when studying certain 

populations or traits, these are represented as ‘novel patches’ in the assembly. 

Both fix patches and novel patches can be accessed from Ensembl [4]. On the 

same note, some ethnicities are not well represented by the main reference, 

which can affect the interpretation of genotyping results [5]. In this project, 

GRch38 served as the reference for all analyses. 

https://www.nature.com/articles/35057062#group-1
https://www.nature.com/articles/35057062#group-1


 

22 

Recently, the Telomere-to-Telomere Consortium, in a preprint, announced the 

release of the first complete sequence of a human genome [6]. This is promising 

towards getting a complete reference, but this sequence has limitations 

compared to GRch38, i.e., it is based on only one individual and is missing the Y 

chromosome. 

2.1.2 Advances in sequencing technologies 

Sequencing consists of determining the order of the nucleotides in a DNA 

sequence. Different sequencing technologies are available, each useful in certain 

applications. Due to current technical limitations, it is not possible to read entire 

chromosomes directly, and the DNA must be cut into pieces, called fragments, 

before the sequencing can take place. Each fragment is then sequenced as a 

read, their length depending on the sequencing platform. Second Generation 

Sequencing produces short reads, a few hundred bases long, which are very 

accurate (~99.9% of bases are correct). Third Generation Sequencing produces 

long reads, from a few kbp to hundreds of kbp long, but with a high error rate 

(~10% of the bases are wrong). Long reads are mostly useful in genome 

assembly, where they can span repeats and other problematic regions. For 

variant calling, on one hand their high error rate makes it difficult to separate true 

variants from sequencing errors, on the other hand, their length is essential to 

detect structural variations. Hence, the choice of the sequencing technology is 

dependent on the kind of variations one wants to detect. Recently, a new 

sequencing technology producing highly accurate long-reads, was developed 

and showing potential for improving the detection of structural variants [7]. 

Due to the falling costs and improvements in sequencing technology, it is now 

possible to get up to a terabase of DNA sequence in two days and for a few 

thousand dollars [8]. This led to an explosion of the production of sequencing 

data, and now the bottleneck is around the computational power needed to 

analyse and understand the function of the different parts of the DNA. 
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2.1.3 Variants and genotyping 

2.1.3.1 What is a variant? 

Approximately 0.6% of the nucleotides are different between two persons, 

corresponding to ~20 million variants [9]. These variations can occur on a single 

nucleotide, in which case they are called Single Nucleotide Polymorphisms 

(SNPs), or can span several nucleotides, in which case they are called InDels 

(Insertions, Deletions). The latter is composed of two categories, ‘deletions’ (the 

individual is missing nucleotides compared to the reference) or ‘insertions’ (the 

individual has extra nucleotides compared to the reference). Usually, the base 

corresponding to the reference is called the ‘reference allele’ and the variation is 

called the ‘alternative allele’. 

Previously identified and annotated human variants are assigned a unique 

Reference ID (rsID) by dbSNP [10], a genetic database managed by the National 

Center for Biotechnology Information (NCBI). Each rsID refers to a locus 

containing a certain type of variation (SNP or InDel) and is stable across different 

human assemblies, thus providing a point of reference for variant analysis. 

Variants submitted to dbSNP are mapped to the most recent reference genome 

and merged to create a non-redundant list of rsIDs. As of November 2018 (Build 

152), dbSNP contains more than 650 million entries. 

Modifications of the genome also include Copy Number Variations (CNVs), which 

correspond to large insertions or deletions in the genome. CNVs are sometimes 

linked to diseases [11] , a well-known example being Down Syndrome, where the 

whole length of chromosome 21 is duplicated [12]. The difference between InDels 

and CNVs resides in their lengths, while no official consensus exists, traditionally 

variations longer than 1 kbp are considered CNVs. 

Overall, SNPs, InDels and CNVs can be beneficial, neutral, or causative of 

disorders. 

2.1.3.2 Variant calling 

Variant calling is the process of comparing an individual genome against a 

reference to find differences, the so-called variants. Several variant calling tools 
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exist, the most popular are ‘samtools mpileup’ [13], ‘DeepVariant’ [14] and ‘GATK’ 

(Genome Annotation Tool Kit) [15]. The rationale is the same between the 

different tools, first the reads are pre-processed, then aligned against the 

reference genome and finally variants are called based on the differences 

detected during the alignment. Sometimes a calibration step is performed to 

improve the accuracy and avoid false positives, this is the case for GATK’s best 

practices [16]. 

The accuracy, or confidence, of the variant calling is dependent on different 

factors. First, the quality of the reads is important, as low quality will lead to 

uncertainty when trying to differentiate between actual variants and sequencing 

artifacts. This is why it is necessary to perform a quality control step, for example 

with FastQC [17], and remove low quality bases and sequencing adapters, as 

needed. Second, the number of reads available at a certain base, also called 

coverage or depth, will determine the confidence of any variant detected at this 

position. Indeed, the confidence will increase if more reads possess the 

alternative allele, this is especially true for heterozygous variants since they are 

only present in half of the reads. 

The standard output from variant callers is a Variant Call Format (VCF) file. The 

current version of the specifications is v4.3, available at 

https://github.com/samtools/hts-specs. Below is an example of a VCF file: 

https://github.com/samtools/hts-specs
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Figure 1: Example of a VCF file. The header (lines beginning with ## or #), contains 

metadata related to the variant calling and describes the content of each column. NA0001 

is the genotyped sample name. Finally, the last 5 lines are representing a variant each. 

The file begins with metadata lines, starting with ‘##’, containing optional 

information about the variant calling which led to the creation of the VCF file. This 

is organised as ‘key=value’ pairs. Next comes the header line, starting with ‘#’, 

containing the name of the columns, 8 of which are mandatory: 

CHROM POS ID REF ALT QUAL FILTER INFO 

Chromosome Position Identifier 
rsid 

Reference 
allele 

Alternative 
allele 

Quality 
score 

Filter 
status 

Additional 
information 

The first five columns contain information about the variant itself, its position, 

identifier, and alleles. The QUAL column contains a Phred-scaled score 

representing the confidence that a variant is actually present at this position. The 

FILTER column indicates if the variant passed all filters, confirming the call, if not, 

different codes pinpoint to the failed filters (e.g.: ‘q10’ means a quality below 10). 

The INFO column contains additional information, separated by semi-colons and 

following a ‘key=value’ format. Examples of INFO fields include DP, for the 

combined depth across samples; AF, for the allele frequency. If there is 

genotyping information in the VCF, then more columns are added: FORMAT and 

samples IDs (one per sample). The FORMAT column describes the format that 

will be followed by each sample column, which contains genotyping information 

for one sample. 

The rest of the file consists of data lines, one variant per line. 
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Variant calling does not give any indication regarding the deleterious nature of 

each variant. Therefore, an annotation step is necessary to prioritise and identify 

variants linked to disorders. 

2.1.3.3 Variant annotation 

Annotation is an important step as it identifies the potential impact of each variant. 

Many tools are available to perform this task. Those considered in this project are 

MyVariant.info [18], Variant Effect Predictor [19] and SnpEff [20]. In addition to 

the tools, one can choose different transcriptomes for the annotation. The choice 

of both tool and transcriptome is not trivial and can have an impact on the results 

[21]. 

The most common approach to annotate a variant is to predict how it will affect 

the genes and thus the resulting proteins. The type of consequences depends on 

the location of the variant on or around the gene. For example, Variant Effect 

Predictor contains more than 30 categories, such as intergenic variant, start lost 

or splice donor variant. And an intergenic variant, because it is located in a non-

coding part of the gene, will often have a much smaller impact than a stop gained 

variant which will shorten the resulting protein, rendering it less effective or even 

useless. Nothing prevents a variant to be annotated with more than one 

consequence, or to be associated with more than one gene. SnpEff, in addition, 

has a predefined high-level categorisation of the SNPs, depending on their 

severity: MODIFIER, LOW, MODERATE and HIGH. 

That being said, non-coding variants should not be overlooked, as they can 

regulate or disrupt biological processes by impacting gene expression [22]. 

However, studying the impact of variants on gene expression is not 

straightforward and linking a non-coding variant to a gene is not trivial. Still, some 

projects have been developed to estimate the effect of variants on gene 

expression. A successful example of this is the ambitious Genome Tissue 

Expression (GTEx) project [23], which identified expression Quantitative Trait 

Locus (eQTLs) in 49 tissue types. 
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The annotation of variants provides an excellent mean of filtering variants of 

interest. This must be done with caution however, as sometimes a low impact 

variant might still be the one responsible for the phenotype. Finally, it is important 

to remember that variant annotation relies on in-silico prediction and must be 

confirmed via experimental methods. 

2.1.3.4 Investigating causation 

Associations between a risk factor and a trait are usually hard to assess. And it 

is even more complex to investigate causation, notably because of the interaction 

between the genotype and the environment, confounding factors and reverse 

causation. 

Genes and the environment can interact in different ways. Ottman described five 

different models for these interactions [24] (i) the genotype produces or 

aggravates an environmental risk factor (ii) the genotype increases the effect of 

the environment, but the genotype is irrelevant without exposition (iii) the 

environment aggravates the effect of the genotype, but without effect to low-risk 

genotypes (iv) the genotype and the environment are both required to exacerbate 

the risk (v) the genotype and the environment both have an effect and this effect 

is lower or greater when they happen together. In nutrition, some of these 

interactions can hinder attempts to lose weight, for example SNPs found in 

PERIOD2 were associated with snacking, stress from dieting and skipping 

breakfast in carriers [25]. 

Other important factors that hinder causation investigation are confounding 

factors and reverse causation. While it is possible to account for confounding 

factors, current methods are not powerful enough to obtain statistically robust 

results. Moreover, Westfall and Yarkoni recently demonstrated that even 

moderate unreliability in measuring these confounders can lead to high Type 1 

error rates [26]. Different methods exist to infer causation between a risk factor 

and a trait. The current gold standard to study the impact of exposures on traits 

is to perform a Randomised Controlled Trial (RCT), but it would not be ethical to 

subject individuals to certain risk factors (e.g.: smoking, alcohol consumption). 

Moreover, some diseases are triggered a long time after the initial exposure (e.g.: 
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cancer) and for these, RCTs would need to span over decades to obtain 

significant results. Finally, individuals participating in RCTs are often selected to 

avoid co-morbidities and belong to specific age groups, hence, are not 

representative of the whole population [27]. 

Mendelian Randomisation (MR) is able to circumvent these limitations. MR uses 

genetic variation as an Instrumental Variable (IR) to study the impact of a risk 

factor on a disease or trait. Instrumental variables were originally developed in 

the field of econometrics. Instead of directly studying the impact of an exposure 

X on an outcome Y, IR uses a variable Z, associated with the exposure X, to 

study the impact of X on Y. This is useful to study the impact of X on Y while 

ignoring confounding factors (that might affect X, but not Z). In MR, Z is a genetic 

variant, X is the risk factor and Y is the disease or trait of interest. 

In MR, the random allocation of alleles from parents to offspring ensure that 

variants are not correlated with confounders (especially, lifestyle and socio-

economic factors). Second, diseases do not alter germline variants, so genotype-

disease associations are not affected by reverse causation [27]. 

MR relies on three assumptions. (i) The genetic variant (used as an IV) needs to 

be robustly associated with the risk factor, preferably in multiple studies (ii) During 

the trial, the variant needs to be randomised with respect to confounders (iii) 

There should be no horizontal pleiotropy, i.e.: the variant should not affect the 

outcome via a pathway that does not involve the exposure of interest [27]. 

There are still limitations pertaining to MR. First, there is the issue of population 

stratification, alleles might be distributed differently in different population which 

violate the assumption of randomisation. Thus, MR analysis should be performed 

on homogeneous populations, use multiple genetic variants and/or focus on 

parent-offspring groups. Second, pleiotropy is hard to assess, and the variants 

used as instrumental variable might be affecting the outcome via another pathway 

than the exposure under study. 
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The importance and reliability of MR studies will increase as more variant-

phenotype associations are made, notably through Genome Wide Association 

Studies (GWAS). 

2.1.3.5 Genome Wide Association Study 

A Genome Wide Association Study (GWAS) aims at identifying genetic markers, 

usually SNPs, associated with a trait. They are based on the comparison between 

the genomes of individuals with and without the trait (or with varying phenotypes 

for continuous traits) in a population. Thus, each SNP is assigned a p-value and 

an effect size, depending on the allele frequency difference between the cases 

and controls. 

GWAS are becoming popular due to their many advantages. They focus on the 

whole genome, thus are not limited to coding regions. They do not need any prior 

knowledge about the trait under study and they can be used for both continuous 

(e.g.: height) and discrete (e.g.: presence / absence of diabetes) traits. For 

example, GWAS have successfully identified genetic variants linked to diabetes 

mellitus type 2 [28], coronary artery disease [29] and even Body Mass Index 

(BMI) [30]. Since the creation of this method, GWAS led to many discoveries in 

complex traits, furthering our understanding of genetics and the development of 

new therapeutics [31]. 

GWAS rely on statistical significance thresholds to differentiate between True 

Positives (TP) and False Positives (FP). Two thresholds are usually considered, 

‘suggestive’ and ‘significant’. The suggestive threshold, p-value < 1*e-05, was 

suggested by Lander and Kruglyak and represents the threshold where one false 

positive is expected per genome scan [32]. The significant threshold, p-value < 

5*e-08, comes from the Bonferroni Correction, where the original p-value is divided 

by the number of independent common variants across the genome [33]. The 

latter threshold is the most popular and works very well with common variants, 

however it might be less reliable when dealing with rare variants [34]. 

Some limitations must be kept in mind when designing or analysing the results of 

a GWAS. They need a large population to be able to confidently identify common 
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variants, thus can become expensive to set up. In certain cases, the variants 

found do not explain all the variance observed in the trait, the so-called ‘missing 

heritability’ [35]. One of the main caveats from GWAS comes from the variant 

calling strategy, using genotyping chips, resulting in identifying not the causal 

variant, but one in Linkage Disequilibrium with it, which can hinder interpretation 

and generalisation of the findings to other populations [36]. On a broader view, 

interpreting the effect of the significant variants is often challenging, especially in 

the non-coding parts of the genome [22]. Indeed, one of the surprising insights 

gathered from the GWAS is that non-coding variants are playing an important 

role in complex human traits and diseases. A study, based on 151 GWAS, found 

that ~90% of trait/disease-associated SNPs were in non-coding regions 

(intergenic or intronic) [37]. 

GWAS results are often given as summary statistics, which contain all the 

genotyped variants with their associated p-values. Additional information can be 

provided, such as the effect allele and the odds ratio. GWAS summaries statistics 

for a wide range of phenotypes are accessible from several resources. Notably, 

the GWAS Catalog, maintained by the NHGRI-EBI [38], GWASdb [39] and 

GWAS central [40]. 

Box 1: GWAS glossary 

Effect Size: estimation of the SNP impact on the genetic variance for the trait. 

Given as Odds Ratio for discrete traits or Beta for continuous traits. 

Standard Error: standard error of the effect size estimate. Depends on the 

cohort’s size. 

Effect allele: allele responsible for the effect size observed. note: it is not 

always the minor allele at this locus. 

Non-effect allele: the other allele, not responsible for the effect size observed. 
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2.1.3.6 Polygenic Risk Scores 

GWAS marked a shift in our understanding of genetics. It is now clear that 

complex diseases are often due to the accumulation of a large number of small 

impact variants, in contrast to the rare monogenic variants, which increase the 

risk of developing a disease by several folds. However, clinical risk identification 

mostly relies on the latter. While being invaluable for the concerned individuals, 

these mutations are only affecting a small portion of the population, thus the 

current identification method is potentially missing out high-risk individuals. 

Fortunately, recent approaches managed to integrate genome-wide polygenic 

scores that can harness the wealth of genomic data now available [41]. Better 

risk identification will lead to better prevention and better understanding of the 

diseases, which in turn open new therapeutic avenues. These new approaches 

are relying on ‘Polygenic Risk Scores’ (PRS). A PRS is a model assigning a 

relative risk for a given individual based on their genetic profile. They are created 

from a set of genetic markers (variants) that are linked to a certain disease. These 

markers are often found from GWAS (see 2.1.3.5) and can be given a weight 

representing how strongly they are correlated with the disease. 

For a PRS analysis, one needs two sets of data, the base and the target. The 

base set will be used to define the list of variants to be included in the model (one 

can use results from a GWAS). Once defined, the PRS model will be applied to 

the target set, containing genotype information, which will result in a risk score 

being assigned to each individual in the set. One should keep in mind that the 

scores obtained are relative within the target group. 

The unit of the PRS depends on the trait under study. For a continuous trait, the 

PRS unit will follow the effect size estimate from the GWAS analysis it is based 

upon. For example, if a GWAS is reporting the change in heart rate in beats per 

minute, then any PRS based on this data will use the same measure. For a 

discrete trait, usually when doing a ‘case vs control’ comparison, the PRS will be 

reported as log of odds ratio (log(ORs)) [42]. 

Developing a PRS model is not straightforward, as one must differentiate 

between noise and effect for each variant. Moreover, some variants are inherited 
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together, making it harder to assess the impact of each particular SNP. 

Relatedness between individuals can inflate the relation between the genotype 

and the phenotype. In addition, population structures can also create structures 

in genetic variations, this can have an impact on a PRS analysis, as the base and 

target sets might come from different populations. On the same note, this is why 

PRS models are not generalizable between different ethnicities. 

The most common approach to develop a PRS model is the C+T method, which 

consists of Clumping variants to get a subset of independent SNPs, followed by 

a Threshold on the GWAS association p-value. The C+T method is implemented 

in Plink [43] and PRSice-2 [44]. Other approaches include the Bayesian model of 

LDpred2 [45] or the penalised regression of lassosum [46]. 

The reader should keep in mind that, rather paradoxically, a good PRS is not 

necessarily a good screening test. Mainly, because PRS are generally comparing 

the extreme high and low risk individuals, missing out those falling in the middle 

[47]. There is also the issue of ‘penetrance’: how many people within the high-

risk quantiles will develop the disease? Wald et al. demonstrated that a good PRS 

for coronary artery disease had a detection rate of only 15%, meaning that it 

would miss 85% of the cases [47]. For schizophrenia, even if a PRS in the top 

decile would provide a fivefold increased risk, there would still be a >95% chance 

of not developing the disease [48]. However, this does not mean that PRS are 

useless, as they still provide an excellent complementary assessment to the 

standard clinical risk factors. Torkamani et al. identified three main use of a PRS 

model: PRS-informed therapeutic intervention, PRS-informed disease screening 

and PRS-informed life planning [49]. Moreover, PRS remains a powerful tool to 

understand the genetic causes of diseases and identify high-risk individuals. 
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2.2 Diabetes mellitus 

2.2.1 A brief history of diabetes 

Diabetes mellitus (DM) is one of the oldest known diseases, first described in 

Egypt and India around 1500 B.C., as a condition described by ‘too great 

emptying of urine’ or a disease causing ‘urine attracting ants’ [50] [51]. This refers 

to two symptoms of diabetes, Polyuria (abundance of urine) and the presence of 

sugars in urine (mellitus is Latin for ‘sweet like honey’). Sushruta and Chakara in 

ancient India, around 500 BC, identified the two main type of diabetes, currently 

named type I and type II [50] [51]. Aretaeus Cappadocian, in 100 A.D., wrote the 

first comprehensive description and named the disease as diabetes (Greek for 

‘siphon’), ‘no essential part of the drink is absorbed by the body while great 

masses of the flesh are liquefied into urine’ [52]. 

Our knowledge of diabetes at the molecular level improved considerably during 

the 19th and 20th centuries. Indeed, in the middle of the 19th century, Claude 

Bernard discovered the role of the liver in the pathway of gluconeogenesis [53]. 

The next step was made by Paul Langerhans, in 1869, when he identified the 

islets of Langerhans a key component in the understanding of diabetes [54]. In 

1889, von Mering and Minkowski designed an experiment on dogs, and found 

that removing the pancreas led to diabetes [55]. Almost at the same time, in 1909 

and 1910, Mayer and Schaefer discovered the product of the islets of 

Langerhans: the hormone insulin (from Latin, meaning island) [56] [57]. Insulin is 

the key hormone in diabetes pathogenesis and management. Indeed, ten years 

later, in 1921, Banting, Best and Collip, also experimenting on dogs, managed to 

reverse induced diabetes with a treatment based on canine insulin [58]. This was 

the first proof that insulin deficiency was the central component of diabetes. Just 

one year later, an event will start a revolution in diabetic therapy, Leonard 

Thompson, a 14-year-old boy, was saved with an infusion of bovine insulin at the 

Toronto General Hospital [58]. The next revolution in therapy came with the 

manufacture of recombinant human insulin in 1978 by Goeddel and his 

colleagues of Genentech [59] [60]. A timeline of the milestones described above 

is available as Figure 2. 
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Figure 2: Timeline of diabetes mellitus history. The milestones are arbitrarily classified 

into three categories (Description, Discovery, and Therapy). 

2.2.2 Diabetes: beyond two types. 

The current definition from the World Health Organisation (WHO) for diabetes 

mellitus is ‘a chronic disease that occurs either when the pancreas does not 

produce enough insulin or when the body cannot effectively use the insulin it 

produces. Insulin is a hormone that regulates blood sugar. Hyperglycaemia, or 

raised blood sugar, is a common effect of uncontrolled diabetes and over time 

leads to serious damage to many of the body's systems, especially the nerves 

and blood vessels.’ [61]. 

The two recommended guidelines for the screening of DM are the one issued in 

1997 by the American Diabetic Association, based on the fasting plasma glucose, 

and the one from 2006 by the WHO, based on the Oral Glucose Tolerance Test. 
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Three main types of diabetes mellitus have been identified so far, gestational 

diabetes mellitus, diabetes mellitus type 1 and type 2. There are other, rarer, type 

of diabetes: monogenic diabetes and secondary diabetes (see Table 1). In 

addition, there are two intermediate conditions called ‘Impaired glucose 

tolerance’ and ‘Impaired fasting glycaemia’, which indicate a high risk of 

progressing to type 2 diabetes mellitus (T2DM). These correspond to a higher-

than-normal blood glucose and fasting plasma glucose levels respectively, but 

not high enough to diagnose the patient as diabetic. 

Table 1: Description of the traditional main types of diabetes. 

(MODY = Maturity Onset Diabetes of the Young) 

 Aetiology Definition Symptoms 

Diabetes 
mellitus 
type 1 

Autoimmune disease 
destroying the 

pancreatic beta-cells 

Deficient insulin 
production 

Increased 
thirst / appetite 

 
Abundance of 

urine 
 

Weight loss 
 

Tiredness 

Diabetes 
mellitus 
type 2 

Genetics, excess body 
weight and physical 

inactivity 

Deficient insulin 
production 

and / or  
Ineffective use of insulin 

Gestational 
diabetes 

Not enough hormone 
production by the 

placenta to meet the 
extra needs during 

pregnancy. 

Deficient insulin 
production.  

Ends after the delivery. 

Monogenic 
diabetes 

(e.g., MODY) 

Mutation in an 
autosomal dominant 

inherited form of 
diabetes 

Deficient insulin 
production 

Secondary 
diabetes 

Appears as a co-
morbidity of other 
diseases or drugs 

Very diverse category 

Recent studies are suggesting more granularity in diabetes than the historical two 

types. One study identified the existence of two endotypes of type 1 diabetes 

depending on the age at diagnosis [62]. Another study assessed the role of 

genetics and the growing impact of the environment, including microbiota and 

nutrition, in the heterogeneity of diabetes type 1 [63]. For diabetes type 2, some 

studies divided patients into subgroups with differences in genetics, disease 

progression and complications [64] [65]. For example, Ahlqvist et al. identified 

five subtypes of dibetes by performing hierarchical and k-means clustering based 
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on different biomarkers: age at diagnosis, BMI, HbA1c, glutamate decarboxylase 

antibodies and homeostatic model assessment of β-cell function and insulin 

resistance [66]. The five subtypes correspond to different facets and aetiologies 

of diabetes: (i) severe autoimmune diabetes (equivalent to type 1 diabetes) (ii) 

severe insulin-deficient diabetes (iii) severe insulin-resistant diabetes (iv) mild 

obesity-related diabetes (v) mild age-related diabetes. These findings highlight 

the heterogeneity of diabetes and could open new therapeutic avenues, tailored 

towards the specificities of each patient.  

Diabetes often leads to complications in other organs. People with diabetes have 

a higher risk of developing: periodontal disease, diabetic retinopathy, 

cardiovascular disease, renal disease, and lower limb amputation [67]. 

2.2.3 The genetics of diabetes mellitus 

Genetics plays a role in both type 1 and 2 diabetes mellitus. 

Type 1 diabetes mellitus (T1DM) is partly inherited, with a 0.4% risk in the general 

population which rise to 6 or 7% if the individual has an affected sibling [68], plus 

certain Human Leukocyte Antigen (HLA) haplotypes are associated with the 

disease. HLA is a genetic system, located on chromosome 6, which role is to 

generate antigens [69]. It spans ~3.6 Mbp and is composed of 3 regions (i) class 

I which houses the HLA-A, HLA-B and HLA-C genes, encoding for the heavy 

chains of the class I molecules (ii) class II, which is of interest for diabetes, and 

is divided in three subregions, DR, DP and DQ which are responsible for 

producing HLA-DR antigen specificities, DP and DQ molecules respectively (iii) 

class III which contains genes leading to the production of additional components 

for the HLA molecules [69]. As mentioned, certain polymorphisms in the DR and 

DQ regions are strongly associated with T1DM, for example the haplotype DR4-

DQ8/DR3-DQ2 has an average Odds Ratio of 16 for diabetes [68]. But some non-

HLA genes are also playing a role in T1DM and studying them can help to shed 

light on the aetiology of the disease, as will be discussed below. 

T2DM has a strong genetic component, as shown by the higher concordance rate 

in monozygotic compared to dizygotic twins [70] and the 40% to 70% lifetime risk 
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of developing diabetes when one parent or both has T2DM respectively [71]. In 

recent years, GWAS identified many loci related to T2DM, some of them involved 

in previously unexpected mechanisms, such as the circadian rhythm, zinc 

transport or cell cycle regulation [72]. 

As of 2021, the Online Mendelian Inheritance in Man (OMIM) database [73] is 

linking 4 genes to T1DM (OMIM: 222100) and 27 genes to T2DM (OMIM: 

125853) (see Table 2). This difference in the number of associated genes could 

be due to a difference in the complexity or in the number of available studies 

between the two types. 

Table 2: List of genes associated with type 1 and type 2 diabetes mellitus, according to 

the Online Mendelian Inheritance in Man database. The only gene in common between 

the two sets is ‘HNF1A’. 

Trait Hugo symbol 

Type 1 diabetes 
mellitus 

ITPR3, PTPN22, IL6, HNF1A 

Type 2 diabetes 
mellitus 

HNF1A, HNF1B, HNF4A, PDX1, IRS1, IRS2, PTPN1, HMGA1, TCF7L2, 
LIPC, PAX4, SLC2A2, PPP1R3A, AKT2, MAPK8IP1, IGF2BP2, RETN, 
SLC30A8, MTNR1B, GPD2, GCK, ENPP1, WFS1, KCNJ11, ABCC8, 

PPARG, NEUROD1 

The only gene in common between the two types is HNF1A, which is a 

transcription factor for multiple genes activated in pancreatic islet cells and in the 

liver. Mutations on HNF1A were identified in monogenic forms of diabetes, but its 

role in the pathogenesis of diabetes is not yet fully understood. A recent protein-

protein interaction analysis found associations between HNF1A and proteins 

involved in the uptake of glucose and hormone production in the beta cells [74]. 

Most of the T1DM genes are associated with the immune system, PTPN22 

encodes a suppressor of T-cell activation [75], while IL6 is an interleukin with 

roles in immunity, tissue regeneration, and metabolism [76]. This and the 

previously discussed role of the HLA support the concept of T1DM being an 

autoimmune disease. The last gene, ITPR3, is a mediator of intracellular calcium 

release, which is important for Ca2+ dependent insulin secretion, and SNPs within 

this gene were associated with T1DM in Swedish individuals [77]. 
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An enrichment analysis was performed on the T2DM genes against all the Homo 

sapiens genes in the PANTHER database [78], with the annotation derived from 

the Gene Ontology (GO) database (Released 2021-07-02) [79]. Overrepresented 

GO terms in the T2DM gene list were, as expected, mostly related to insulin, 

pancreatic cells, and glucose, with terms such as insulin secretion, insulin 

receptor signaling pathway, detection of glucose, glucose metabolic process, 

hepatocyte differentiation. Other terms include, reverse cholesterol transport, 

NADH metabolic process, response to drug, some terms are also enriched in 

obesity, as will be discussed in Section 2.3.4.2. The complete list of enriched 

terms is available in Table A.1-1. 

2.2.4 A 21st century epidemic 

Diabetes is on the rise around the world, as shown by the ‘Diabetes Atlas 8th 

edition’ (2017) from the International Diabetes Federation [80]. This report 

highlights that 10 million more adults were diagnosed with diabetes in 2017 

compared to 2015. In addition, 34 million more adults were at risk of developing 

diabetes in 2017 compared to 2015. Moreover, the report estimated that between 

30 and 80% of adults with diabetes were undiagnosed [80]. Once thought to be 

a disease affecting only adults, T2DM is now increasingly detected among 

children and adolescents. There is an growing trend in both prediabetes and 

T2DM for this population, estimated to continue in 2030 [81]. 

It is now clear that patient involvement is a key component of diabetes 

management. As no cure exists yet, treatment and prevention are aimed towards 

improvements in the patients’ quality of life.  

The Horizon 2020-funded project Nutrishield is aiming at helping this side of the 

disease management by personalising the diet. Indeed, the best prevention 

approach for T2DM is known since the antiquity and is still advocated today, i.e. 

exercise and a healthy diet [50], especially if tailored toward each individual [82]. 
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2.3 Obesity 

2.3.1 A short definition 

Obesity is a chronic disease, characterised by excess of fat content and a 

modification of the adipose tissue. The adipose tissue contains the fat cells 

(adipocytes) and is found in the hypodermis (the tissue found between the muscle 

and the dermis). The WHO defines obesity via the Body Mass Index (BMI), which 

is obtained by dividing a person’s weight in kilograms per square of his height in 

meters (��/��). An adult is considered overweight with a BMI greater or equal 

to 25 and obese with a BMI greater or equal to 30 [83]. BMI is easy to measure 

and informative, however, it depends on ethnicity and does not reflect the 

repartition of adipose tissue in the body, which is important to assess the potential 

health impacts of obesity [84]. 

2.3.2 Adipose tissue or adipose organ? 

The adipose tissue has, for a long time, thought to be hormonally inactive, as its 

role was reduced to energy storage and thermal insulation. However, recent 

studies have recognised it as an important endocrine organ, interacting with 

various organs, including the central nervous system [85]. A key component of 

appetite regulation and obesity is leptin (as discussed in 2.3.4.1), and the adipose 

tissue is the main producer of this hormone. Thus, the endocrine role of the 

adipose tissue is more complex and important than initially thought. The impact 

of this organ on health can be different depending on the type of adipose tissue 

(white or brown) and the location of this tissue (subcutaneous or visceral). 

2.3.2.1 White versus brown adipose tissues 

Two main types of adipose tissues have been identified, white and brown. They 

differ in their role and composition. 

The white adipocytes’ main function is to store energy. This is reflected by their 

spherical shape, due to a large, single lipid droplet filling 90% of the cell volume. 

The mitochondria in these cells are sparse, thin and elongated [86]. This is the 

most prevalent type of adipose cells in adults, and it plays an important role in 
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many biological processes. For example, the leptin hormone, a regulator of 

appetite, is produced by the white adipose tissue. 

The brown adipocytes’ main function is thermogenesis. Thus, they are filled with 

several, small liquid droplets, and many mitochondria, giving them their colour. 

The role of mitochondria is to produce adenosine triphosphate, which, in brown 

adipose tissue, is circumvented by the uncoupling protein 1 (UCP1), allowing the 

energy to be released as heat. This explains the prevalence of brown tissues in 

new-borns and small mammals. As a result of the low ratio of body volume to 

body surface, they need powerful, non-shivering, thermogenesis to combat cold 

temperatures, compared to adults of larger mammals [86]. The amount of brown 

adipose tissue in the adult population is undetermined but was estimated to be 

~10%. 

It has been theorised that white adipose tissue cells, in response to cold, 

sometimes transform into beige cells, a process called ‘transdifferentiation’. 

Beige cells are halfway between a brown and a white adipocyte, having positive 

UCP1 expression, medium mitochondrial density, and multiple lipid droplets. 

Enhancing this transdifferantiation process is considered as a potential 

therapeutic approach to rebalance the adipose metabolism and treat obesity [87]. 

In terms of clinical impact, an excess of white adipose tissue is linked to obesity, 

while brown adipose tissue is associated with a lower BMI. An imbalance in the 

amount of white adipocytes can lead to metabolic dysfunctions, such as 

hyperglycemia, diabetes, or cancer [88]. Moreover, white adipose tissue is 

affiliated with inflammation, notably with an increased secretion of molecules 

such as TNF-alpha and interleukin-6, which can also impact the insulin signalling 

pathway [89]. This might explain the inflammatory aspect of obesity 

pathophysiology and its link with diabetes. 

2.3.2.2 Subcutaneous versus Visceral adipose tissues 

Subcutaneous and visceral are two different types of adipose tissues, defined by 

their anatomical locations, which also differ in their morphologies, mechanisms, 
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and impacts on health. As their names suggest, subcutaneous fat is located 

beneath the skin, while visceral fat is lining the internal organs of the body. 

An excess of visceral fat is associated with cardiovascular diseases, and visceral 

adipose tissue amounts to ~10% and ~20% of the total fat mass in lean and obese 

subjects respectively. The remaining 80-90% corresponding to subcutaneous 

adipose tissue. The expansion of waist circumference can be used as a proxy to 

monitor the increase in visceral adipose tissue [90]. 

In terms of composition, visceral fat depots are mainly composed of white 

adipocytes, which serve as energy storage. Subcutaneous depots, on the other 

hand, comprise both white and brown adipocytes, as well as interstitial tissue. 

Adipocytes have a shorter lifespan in subcutaneous compared to visceral tissue, 

and ‘younger’ adipocytes are not associated with metabolic disorders [88]. 

In terms of endocrine function, leptin, angiotensinogen, and glycogen synthase 

are favourably expressed by the subcutaneous tissue, while the insulin receptor, 

11β hydroxysteroid dehydrogenase, and interleukin 6 are more expressed in 

visceral fat depots. 

The combination of insulin-resistance, white adipocytes composition, older cells, 

and inflammatory endocrine function, explain the higher health implications of 

visceral over subcutaneous fat. 

2.3.3 Causes and health impacts of obesity 

The aetiologies of obesity are multiple and complex. The main risk factors are 

genetics, socio-economic components (with lower revenue being associated with 

higher obesity rates), and finally the lifestyle, especially the quality of the diet and 

the amount of physical activity. Other noteworthy factors include the microbiome, 

and the environment, notably stress, pollution, and some drugs. 

Obesity itself is a very heterogeneous disease, whose mechanisms and impact 

on health depends on several components, such as fat distribution, metabolic 

disturbance and presence or absence of comorbidities. Indeed, obesity can lead 

to diabetes, arthrosis, and cardiovascular diseases. Moreover, the potential 
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psychological repercussions of this disease, such as depression, anxiety, and 

addiction should not be ignored, especially in children. All of these factors may 

contribute to the reduction of the lifespan of individuals, but, fortunately, even 

small weight loss leads to noteworthy health benefits [91]. 

Obesity seems to also affect the lungs, and obese individuals are more at risk of 

being hospitalised for respiratory infections compared to healthy weight 

individuals. This is caused both by fat deposits around the thorax, which are 

affecting the mechanical functions of the lungs and the increased production of 

inflammatory molecules in the adipose tissue, which increases airway 

inflammation [92]. This makes obesity a recognized risk factor for asthma, and 

explains in part the higher prevalence of adverse outcomes after an infection with 

SARS-CoV-2 noticed for individuals with a higher BMI [93]. 

2.3.4 The genetics of obesity 

The genetics behind obesity in humans are hard to study for several reasons. 

First, obesity is a highly polygenic disease, with genes affecting different 

processes, such as energy balance and appetite. Second, obesity itself is a 

heterogeneous disease, composed of different subtypes. Third, obesity is 

cofounded by the environment (lifestyle, diet), so genetically susceptible 

individuals do not necessarily show the phenotype. Thus, obesity can be seen as 

a web of complex interactions between many genes and the environment [94]. 

Yet, the impact of genetics in obesity is obvious. Maes et al. reviewed the familial 

resemblance of BMI from twin studies [95]. They highlighted a higher BMI 

correlation within monozygotic (0.74) than dizygotic twin pairs (0.32), suggesting 

a heritability of BMI between 50 and 90%. Moreover, the BMI correlation was 

higher between biological parent-offspring pairs (0.19) than adoptive pairs (0.06) 

confirming the lesser impact of cultural transmission. However, the recent surge 

in cases of obesity worldwide points towards an important role of the 

environment, with the increase of sedentarity and availability of ultra-processed 

foods which are highly caloric and nutrient poor [96]. The overall picture of obesity 

is then clear: genetics determine the susceptibility to obesity while the 

environment reveals the phenotype. 
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2.3.4.1 The initial discoveries: leptin and the monogenic variants 

The central hormone in obesity is leptin. The level of this hormone follows the 

proportion of body fat and stimulates or reduces food intake as needed. This strict 

mechanism allows for a precise regulation of body weight. Leptin is produced by 

the white adipose tissue to act on nerve cells, more precisely on the 

hypothalamus. Obese individuals are often deficient or resistant to leptin [97]. In 

humans, leptin is produced by the LEP gene, located on chromosome 7, while 

the leptin receptor, LEPR, is located on chromosome 1. 

Several monogenic variants found in the leptin pathway were associated with 

extreme obesity in mice and humans. (i) Mutations in the pro-opiomelanocortin 

(POMC) gene are associated with obesity. POMC is the precursor of α-

melanocyte-stimulating hormone (α-MSH), which is a leptin target and acts to 

decrease food intake. (ii) Mutations in an MSH receptor, the melanocortin 4 

receptor (MC4R), leads to leptin resistance and is responsible for ~5% of the 

cases of extreme obesity. MC4R is expressed in the brain and is critical in 

maintaining body weight balance. The melanocortin system can be activated to 

reduce food intake and promote energy expenditure, through the activation of the 

Pomc neurons by leptin, insulin, or serotonin [98]. (iii) Finally, mutations located 

on the leptin receptor, LEPR, have been associated with obesity. 

The mutations directly affecting leptin are rare, however 10-15% of morbid 

obesity are due to a gene defect in the neural circuit on which leptin acts. Leptin 

and the monogenic forms of obesity revealed the importance of the central 

nervous system in this disease, which was later confirmed by the results obtained 

from GWAS [99]. 

2.3.4.2 Obesity: a polygenic trait 

As mentioned above, obesity was initially thought to be caused by leptin 

dysfunction. The identification of monogenic rare variants leading to extreme 

obesity reinforced this idea. This changed when GWAS were performed on 

obesity. It has nowadays become apparent that many variants, impacting 
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hundreds of supposedly unrelated genes, are associated with BMI and the picture 

became much more complex. 

As of 2021, the Online Mendelian Inheritance in Man (OMIM) database [62] is 

linking 11 genes to obesity (OMIM: 601665) and 9 genes to ‘body mass index 

quantitative trait locus’ (BMIQs) (OMIMs: 602025, 607447, 607514, 612362, 

612460, 614411, 615457, 617885, and 618406) (see Table 3). As for diabetes 

(see 2.2.3), an enrichment analysis was performed on the obesity genes against 

all the Homo sapiens genes in the PANTHER database [78], with the annotation 

derived from the Gene Ontology (GO) database (Released 2021-07-02) [79]. Non 

exhaustively, the overrepresented GO terms in obesity are related to feeding: 

adult feeding behavior, regulation of appetite, the nervous system: neuropeptide 

signaling pathway, regulation of transmission of nerve impulse, the immune 

system: regulation of glucocorticoid secretion, negative regulation of interleukin-

1 beta production, temperature regulation: temperature homeostasis, response 

to cold, and fat cell differentiation (see 2.3.2.1): white fat cell differentiation, 

regulation of brown fat cell differentiation. Moreover, certain terms are like those 

obtained with diabetes type 2, possibly hinting at parallel mechanisms between 

the two diseases: response to insulin, positive regulation of MAPK cascade and 

circadian rhythm. The complete list of enriched terms is available in Table A.1-2. 

Table 3: List of genes associated with obesity, according to the Online Mendelian 

Inheritance in Man database. 

Trait Hugo symbol 

Obesity 
ADRB2, ADRB3, AGRP, CARTPT, ENPP1, GHRL, NR0B2, POMC, 

PPARG, SDC3, UCP3 

BMIQs ADCY3, AQP7, FFAR4, FTO, MC3R, MC4R, MRAP2, PCSK1, UCP2 

The interpretation of GWAS variants is sometimes complex. For example, 

Classnitzer et al. demonstrated that a variant identified on the FTO gene, 

rs1421085 T-to-C, was triggering an over-expression of two distal genes: IRX3 

and IRX5 [100]. This over-expression favours the transformation of pre-
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adipocytes to white, lipid-storing adipocytes instead of beige, energy-dissipating 

adipocytes. 

This polygenic aspect of obesity is even more intricate when considering gene-

environment interactions. For example, a meta-analysis performed by Kilpeläinen 

et al. found that physical activity reduced the impact of FTO variants on obesity 

risk [101]. Garaulet et al. found evidence that two SNPs from the PER2 gene 

(rs2304672C>G and rs4663302C>T), related to the circadian clock, were 

associated with snacking, diet-induced stress and bored-eating, hindering 

attempts to lose weight for the carriers [25]. While certain interactions, e.g., the 

diet and physical activity, are straightforward, there are more intricate factors at 

play, such as smoking or sleep disorders [96]. 

2.3.5 A 21st century epidemic  

As with diabetes mellitus, the number of people with obesity has dramatically 

increased over the last century, as highlighted in Figure 3. In 2017, the WHO, in 

a study done in collaboration with the Imperial College London, estimated that 

obesity has tripled since 1975 [102]. In 2003, the WHO declared that obesity 

reached epidemic proportion, with more than 1 billion overweight adults, in 2016 

more than 1.9 billion adults were overweight, including 650 million who were 

obese. 
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Figure 3: Prevalence of obesity (BMI >= 30) in the world between 1975 and 2016. The bars 

represent the 95% credible interval. Data obtained from the World Health Organisation 

website, based on the study by Abarca-Gómez et al. [102]. 
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2.4 Personalised Nutrition 

2.4.1 Precision medicine 

The increasing interest in personalised, or precision, medicine became apparent 

in the last decade. The ‘one size fits all’ approach for treatment is reaching its 

limits, with the highest-grossing drugs in the United States being efficient for only 

1 in 4 people at best, but this number can be as low as 1 in 25 or even 1 in 50 

[103]. Personalised medicine consists of taking individual variability into account 

when designing prevention strategies or considering treatments. A common 

approach is to divide a disease into relevant subgroups, called endotypes, 

representing distinct mechanisms, which might benefit from different therapeutic 

solutions. This technique was successfully applied to a range of disorders, an 

example of this was already mentioned previously here, with the identification of 

five endotypes of diabetes by Ahlqvist et al. [66] (see 2.2.2). Historically, cancer 

treatment has benefited from personalisation, and recent advances in the 

molecular understanding of tumour heterogeneity allowed to shift from an organ-

centric view, to a vision based on genetic variants and molecular alterations [104]. 

The main hurdle that personalised medicine faces is the ‘curse of dimensionality’, 

when the amount of data collected is much higher than the number of analysed 

samples. This makes the separation of noise from true signal a difficult task, 

especially when looking at specific or weak signals. This can be resolved by 

removing redundant variables, adding more samples to the analysis, or by using 

dimensionality reduction methods (e.g., Principal Component Analysis or variable 

importance selection). Recent biobank projects, such as the UK Biobank [105], 

involve hundreds of thousands of participants, which will allow discoveries to be 

made on a scale that was never seen before. 

An optimal precision medicine strategy will adapt to the uniqueness of each 

individual, and some scientists are arguing for the implementation of ‘one person 

trials’ [103]. However, we will need to be conscious of statistical pitfalls, more 

specifically, clinical trials will need to consider intra-individual variability, for 

example by assessing if the same patient responds favourably more than once 
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to the same treatment [106]. This will be especially important when considering 

complex phenotypes with no clear-cut pathophysiology. 

2.4.2 The current state of personalised nutrition 

The ideal of personalised nutrition is to consider the environmental and personal 

characteristics of an individual, to provide dynamic nutritional advice throughout 

life. If implemented correctly, it has the potential to reduce the risk of developing 

metabolic disorders or improving their management. This contrasts with the ‘one 

size fits all’ strategy, which is found in most current public health 

recommendations. 

There are two main challenges facing personalised nutrition today. First, most 

nutritional studies lack the proper duration or number of participants to infer 

statistically relevant effects of the diet on the metabolism. Second, energy intake 

is very difficult to measure precisely [107]. Most studies rely on food frequency 

questionnaires, which are often time consuming and become a burden for the 

patient. Moreover, self-reported questionnaires are flawed and under-estimate 

the actual energy intake [108]. 

To solve these limitations, much shorter food frequency questionnaires, based 

on adherence to the Mediterranean diet, were developed. The Mediterranean diet 

was chosen for its positive association with cardiovascular health [109]. Such a 

questionnaire, the Mediterranean Diet Adherence Screener (MEDAS), which 

consists of 14 questions (see Table A.2-1), was used successfully in several 

studies. A higher score on this test was associated with lower coronary artery 

disease risk, BMI and waist circumference [110]. Another questionnaire, 

MEDLIFE, includes 28 items, distributed among three blocks, fifteen items are 

about food consumption, seven about traditional Mediterranean dietary habits 

and six about physical activity and social interaction habits [111]. This index is 

the first to include physical activity, which is important when considering the 

association between the diet and lifestyle. 

Some interesting findings, showing the potential of personalised nutrition to 

improve the health of the general population, have been gathered from recent 
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studies. In this literature review, we will focus on the PREDIMED [112], Food4Me 

[113] and Zeevi et al. [114] studies, as they each use different approaches to the 

problem: 

The PREDIMED (Prevención with Dieta Mediterránea) study measured the 

impact of the adherence to the Mediterranean diet on body mass index, waist 

circumference and waist-to-height ratio, in 7,447 participants with high 

cardiovascular risk [112]. The study assessed the Mediterranean diet score via 

the MEDAS questionnaire described above. The most important factors 

associated with lower abdominal obesity, were a high intake of nuts and low 

intake of sweet beverages. This study validated the approach of using MEDAS 

instead of long, burdensome, food frequency questionnaires, to measure 

adherence to the Mediterranean diet. 

The Food4Me study was the first to implement an internet-based approach to 

enrol participants and assess the effect of personalised advice on their diet [113]. 

The 1,269 participants, who fully completed the randomized controlled trial, were 

split into four levels of personalisation (i) level 0, giving standard, non-

personalised dietary advice (ii) level 1, giving personalised advice based on the 

participant’s baseline diet (iii) level 2, giving personalised advice based on the 

baseline diet and phenotypic data (blood biomarkers and anthropometrics) (iv) 

level 3, giving advice based on the baseline diet, phenotypic data and genotypic 

data (consisting of five diet-responsive genes). The personalised diet was 

generated through a series of decision trees developed specifically for this study. 

After 6-months, the quality of the diet of the control arm was compared to the 

personalised arms (levels 1-3) via food frequency questionnaires. The individuals 

who got personalised nutrition advice consumed less red meat, salt, and 

saturated fat, while consuming more folate, resulting in a healthier diet. The 

Food4Me study proved that providing internet-based personalised advice is an 

effective approach to improve the diet in the general population. This study did 

not find that adding the phenotype and genotype to the personalisation provided 

added value, but one may argue that considering only 5 diet-related loci is not 

enough to measure a significant impact. Moreover, the study was using remotely 
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collected biological samples, which might lead to measurement errors, and self-

reported questionnaires, which, as mentioned previously, tend to be unreliable 

[108]. 

Zeevi et al. [114] built a model to predict glycemic responses in a cohort of 800 

participants and to adapt their diet accordingly. This biomarker was chosen 

because elevated blood glucose levels are a risk factor for type 2 diabetes. The 

study lasted for one week and blood glucose levels were measured continuously 

via a glucose monitor using subcutaneous sensors. The model was based on the 

gradient boosting regression algorithm [115], merging predictions from thousands 

of decision trees. The input included lifestyle reports, e.g., food intake, exercise, 

and sleep, obtained via a smartphone-adjusted website, anthropometrics, 

medical background, and microbiota profiling via 16S rRNA sequencing. The 

model found 21 beneficial, 28 non-beneficial and 23 non-decisive microbiome 

features (e.g., growth of Eubacterium rectale was found to be beneficial, as it is 

associated with lower post-meal glucose levels). This study showed the interest 

of using a specific biomarker as a target, as well as the importance of the 

microbiome and new technologies, such as machine learning, in personalised 

nutrition. Indeed, the model provided advice in the intervention arm of the study, 

which successfully lowered post-meal glucose levels. It is to be noted that some 

aspects of the study have been criticized in the literature, notably the statement 

by Zeevi et al. about the great inter-individual variability in glycemic response to 

the same meal, Wolever argues that the results obtained are better explained by 

intra-individual variability [116]. 

These studies highlight how versatile personalised nutrition is in its 

implementation, be it via short questionnaires, internet-based studies or aiming 

at regulating specific biomarkers. They also demonstrate the potential of 

personalised nutrition to provide healthier alternative adapted to each individual 

and curb the epidemics of non-communicable diseases, notably type 2 diabetes, 

and obesity. 
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2.4.3 Factors needed to personalise the diet 

Personalised nutrition can be as simple as stratifying the advice given to relevant 

subsets of individuals, or as complex as integrating biological, social and lifestyle 

data to give tailored advice to each individual. 

Anthropometrics and socio-demographics data are important, as they will help 

both in assessing the risk an individual has of developing obesity or diabetes, as 

well as framing to what extent the individual will be able to follow the dietary 

advice given to them. The same reasoning applies to lifestyle data, current diet 

and physical activity need to be taken into account when devising a new diet. 

Recent developments in biology are promising for the future of personalised 

medicine and nutrition. Genetics has always been a staple of personalisation, as 

our genotype is the blueprint of our phenotype. And recent discoveries, notably 

gained through GWAS, on the impact of variants on diet, obesity and diabetes is 

and will be invaluable for the future of personalised nutrition. But other players 

are revealing their potential. First, the multi-omics revolution is proving how 

merging data from different -omics technologies (genomics, proteomics, and 

metabolomics) can help us to make sense of complex systems and mechanisms 

as well as being better at monitoring dietary intake than questionnaires. Second, 

it is now clear that including the microbiome in the personalised nutrition equation 

is indispensable. For example, the microbiome of obese individuals tends to be 

less diverse, less complex and containing different groups than healthy 

individuals. A study in mice found that the composition and diversity of the 

microbiota, in interaction with the diet, was affecting metabolism and was a risk 

factor for the development of obesity [117]. 

As mentioned in the previous Sections, obesity and diabetes are complex 

diseases, which imply complex phenotypes. The precise exploration of their 

pathophysiology, including measurement of biomarkers, characterisation of 

subtypes and of individual variation between affected individuals, will be a 

necessary step for improving personalised nutrition. Understanding the 

differences between subtypes and their mechanisms, will be key to design diets 
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aiming at mitigating their impact. In other words, disease stratification will be 

needed for diet stratification. 

Recent studies also highlighted the role of timing in nutrition. The circadian clock 

is an internal, biological clock, which responds to external time cues, such as 

light, to maintain endocrine and metabolic pathways. The interplay between 

circadian biology, the impact of nutrition and the microbiota has gained interest 

in the past decade [118]. Among other processes, the circadian clock is regulating 

lipid homeostasis, and mouse mutants with disrupted circadian rhythm were more 

at risk of becoming obese [119]. Moreover, the enrichment analyses performed 

in 2.2.3 and 2.3.4.2 for both diabetes and obesity found an over-representation 

of the circadian rhythm GO term. Thus, proper timing of food intake could be 

another interesting facet of personalised nutrition. 

The ethical implications of personalised nutrition need to be considered before 

being translated to clinical practice and advice is given to the general population. 

Indeed, personalised nutrition deals with genomic, social, and personal 

information, plus, it is important to assure that the correct diet is given to the 

correct person. The position of the International Society of Nutrigenetics / 

Nutrigenomics on Personalized Nutrition on this matter was released in 2016 

[120]. Emphasis was given on the importance of obtaining informed consent, 

protecting the privacy of genetic information, and using validated genetic 

knowledge. The society also mentioned the need to frame the legal regulations 

surrounding personalised nutrition. 
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2.5 Aims and objectives 

The aim of this thesis was to explore the impact of the genotype on diabetes and 

obesity, with the overall purpose of allowing diet personalisation. Indeed, the 

genotype is one of the most important determinants of our phenotype, therefore 

every attempt at making personalised nutrition must account for it. 

2.5.1 Generating lists of variants 

First, comprehensive databases of Single nucleotide Polymorphisms (SNPs) 

related to diabetes and obesity were gathered. Instead of producing them 

manually when needed, this step was automated by developing VarGen, an R 

package that can integrate data from different sources to find variant-trait 

relationships. The main workflow from VarGen both retrieves variants related to 

a trait and has the potential to find new variant-trait associations. An alternative 

pipeline, more specific, called VarPhen, retrieves variants linked to a list of 

phenotypes given by the user. Moreover, to help the user to estimate the 

importance of each variant, an annotation function was added to the package. 

VarGen was benchmarked against two similar tools, DisGeNET [121] and 

VarFromPDB [122]. Obesity and Alzheimer’s disease were chosen as use-cases 

for the benchmark, and the relevance of the variants retrieved with VarGen was 

assessed by comparing the overlap of the results between each tool. 

To understand the impact of the variants gathered previously on the biology of 

obesity and diabetes, a pathway analysis was performed using the outputs from 

VarGen and VarPhen. The tool Pascal generated gene and pathway scores for 

each list of variants (i.e., for obesity, diabetes type 1 and diabetes type 2). Then, 

we focused on the top 15 pathways for each list to explore in detail the biological 

processes that were affected by the variants. 

2.5.2 A new method to refine Polygenic Risk Score models 

Obesity and diabetes are due to the cumulative effect of a multitude of variants, 

with varying impact, therefore estimating an individual’s overall genetic risk is not 

straightforward. One possible approach is to use Polygenic Risk Score (PRS) 
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models, which summarize, as a single value, the genetic risk cumulated by a set 

of variants. 

PRS models are often based on variants obtained from GWAS analyses and 

applied to a target population. While being effective, PRS models suffer from the 

fact that variants obtained through GWAS are often common resulting in a 

potentially biased risk estimation. Indeed, carriers of rarer variants, with a higher 

impact on the phenotype, actually have a higher or lower risk than assessed by 

the PRS model. Here, we present a new method to refine the estimations 

obtained from a PRS model, which uses variants obtained from VarGen. Based 

on the variants from VarGen, we can produce a second PRS and detect subsets 

of individuals with a high or low risk for this other set of variants, thus revaluating 

their overall genetic risk. 

This method was tested and validated on Body Mass Index (BMI) and diabetes. 

The UK Biobank, a biomedical database containing anthropomorphic and genetic 

information for ~500,000 individuals from the United Kingdom, was used as the 

target set of the PRS models. Knowing the information about BMI and diabetes 

for the participants of UK-Biobank allowed us to assess the accuracy of the 

genetic risk prediction of the refined PRS models. In future works, genetic risk 

scores will be used, in combination with other clinical factors, within Nutrishield’s 

platform for personalised nutrition. 
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3 VarGen: an R package to discover and annotate 

variants associated to a disease 

The work presented in this Chapter has been published in Oxford Bioinformatics 

[123] and is available on GitHub as an open-source project under the MIT license 

https://github.com/MCorentin/VarGen. 

3.1 Background and motivation 

As described in Chapter 2, identifying the genetic component of complex 

diseases is crucial to understand, prevent, and treat them. This is becoming 

increasingly important for diabetes and obesity as they are becoming epidemics. 

Moreover, personalised medicine is showing promises towards improved 

prevention and care. The identification of disease risk is not trivial, as complex 

diseases often involve multiple factors, including the environment, the 

microbiome, lifestyle, and genetics. Concerning genetics, as mentioned in 

Section 0, recent findings are suggesting that, taking into account the 

accumulation of many small impact variants rather than focusing on monogenic, 

high impact variants may provide a more precise and generalisable risk 

assessment in the general population. 

With the recent advances in DNA sequencing (see Section 2.1.2), it is now 

possible to produce genetic data relatively quickly and affordably. This led to a 

surge of publicly available, high-quality, genotyping information in the past ten 

years. For example, The National Center for Biotechnology Information (NCBI) 

genetic variants archive, dbSNP [10], went from 18 to 660 million human variants 

between build 130 (in 2009) and build 151 (in 2017). Unfortunately, the 

information is often spread between different resources, hence there is a need 

for tools to aggregate the content of these databases and facilitate the exploration 

of variant-disease relationships. 

This is the incentive behind the development of VarGen, an easy-to-use R 

package designed to fetch and score variants linked to a disease using several 

public databases.  

https://github.com/MCorentin/VarGen
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3.2 Vargen Workflows 

VarGen has two main workflows, one based on sensitivity (VarGen) and the other 

on specificity (VarPhen). Alternatively, it is possible to run the analysis based on 

a specific list of genes. 

3.2.1 VarGen 

3.2.1.1 A pipeline for variant discovery 

The VarGen pipeline can be launched from the function: vargen_pipeline and 

returns a list of variants linked to a given disease. 

 

Figure 4: VarGen workflow, user input is represented in green and databases in blue. The 

pipeline is centred on the list of genes obtained from OMIM. VarGen gets the variants 

located directly on those genes, as well as on their enhancers and promoters. 

The pipeline, described in Figure 4, typically starts from one or more disease 

identifiers from the Online Mendelian Inheritance in Man (OMIM), entered by the 

user. First, VarGen gets the list of genes associated with these identifiers, 

subsequently called the ‘OMIM genes’, and returns all the variants located directly 

on them. The next step is to get the variants located on the promoter regions of 
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the OMIM genes. VarGen retrieves this information from the Functional 

Annotation Of Mammalian Genomes 5 (FANTOM5) database. It is expected that 

variants on the promoters can affect gene expression if the mutation affects the 

binding site of activators or repressors. There is increasing evidence of the 

importance of non-coding variants on complex traits and diseases [22]. If the user 

provided one or more tissues of interest, VarGen will use the Genotype Tissue 

Expression (GTEx) database to get the variants affecting the expression of the 

OMIM genes in these tissues. Finally, the user can provide one or more GWAS 

traits and VarGen will query the GWAS Catalog to get the list of variants 

associated with each trait. 

This pipeline was designed as a discovery analysis, with the potential to identify 

new variants related to the disease. Consequently, all variants returned by 

VarGen do not necessarily have an impact on the disease of interest. To estimate 

the importance of each variant, an annotation function was added to VarGen: 

annotate_variants. This function takes the rsID of the variants as input and 

sends requests to the ‘MyVariant.info’ API to retrieve the annotation (see Section 

3.2.1.2). This function was developed with the help of Matthew Brember as part 

of his MSc thesis project at Cranfield University (2019).  

All the positions are referring to the GRCh38 version of the human assembly. As 

FANTOM5 and GTEx v7 are based on GRCh37, VarGen automatically lift-over 

the positions obtained from these databases to GRCh38. 

3.2.1.2 VarGen output 

The main output from VarGen is a list of variants related to the disease. For each 

variant the following information is reported: 

 chr: the chromosome on which the variant is located. 

 pos: the variant position. For InDels, the starting position is reported. 

 rsid: the variant identifier. 

 ensembl_gene_id: the ensembl gene identifier related to the variant. 

 hgnc_symbol: the Hugo symbol for the gene related to the variant. 
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 source: the variant source in VarGen, can be omim, fantom5, gtex or 

gwas. In the case of gtex the tissue is also specified in parenthesis. 

 trait: the trait(s) related to the variant. For the variants found with omim, 

fantom5 or gtex this corresponds to the omim identifier. For the gwas 

variants, this corresponds to the GWAS trait. 

The annotation with MyVariant.info will add the following columns to the output: 

 ref: the allele in the human reference (GRCh38) 

 alt: the alternative allele. In the case of multi-allelic variants, VarGen 

creates one line per alternative allele and annotates them separately. 

 CADD phred score: ranging from 1 to 99, based on the rank of each 

variant relative to all possible 8.6 billion substitutions in the human 

reference genome. A higher value means a more deleterious variant [124]. 

 fathmm-xf score: between 0 and 1, a higher value means a more 

deleterious variant, with more confidence the closer to 0 or 1 [125]. 

 fathmm-xf prediction: can be ‘D’ for Damaging if the fathmm-xf score is 

higher than 0.5, or else ‘N’ for Neutral. 

 Annotation type: provides information about the variant context (e.g., 

coding, non-coding, regulatory region). 

 Consequence: provides information about the variant impact (e.g., 

regulatory, downstream, stop_gained). 

 ClinVar clinical significance: reports the clinical significance of the 

variant from ClinVar (e.g., benign, pathogenic) [126]. 

 SnpEff impact: high-level assessment of the variant putative impact 

(high, moderate, modifier or low) [20]. 

Example of outputs are available in Table B.1-3 and Table B.1-4. 

VarGen provides different ways to visualise the results. The GWAS variants can 

be represented in a Manhattan plot, with the function plot_manhattan_gwas. 

The input is a list of GWAS traits and chromosomes to plot. An example of 

Manhattan plot, for traits related to Alzheimer’s disease, is presented in Figure 5, 

note: the y-axis does not represent a stronger SNP effect on the trait but rather a 
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stronger association between the SNP and the trait. Manhattan plots for obesity, 

diabetes mellitus type 1 and 2 are presented in Figure B.1-1, Figure B.1-2 and 

Figure B.1-3 respectively. 

 

Figure 5: Manhattan plot produced with the ‘plot_manhattan_gwas’ function of VarGen. 

Each dot is a variant, coloured by its corresponding GWAS trait. The x-axis represents 

the genomic coordinates, split by chromosome, here only 6 chromosomes are 

represented for the sake of clarity. The y-axis represents the –log10(p-value), a higher 

value means a more significant relation between the variant and the trait. The two 

thresholds ‘Significant’ and ‘Suggestive’ are described in Section 2.1.3.5. There is an 

interesting locus on chromosome 19, containing many SNPs associated with Alzheimer’s 

disease. 

A customised visualisation was developed, with the help of Matthew Brember as 

part of his MSc thesis project at Cranfield University (2019), to represent 
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VarGen’s output, such a figure can be created by running the 

vargen_visualisation function. It takes a list of annotated variants from 

VarGen as input and creates one plot per gene present in the list. An example, 

for the SIM1 gene (ENSG00000112246), which is related to obesity, is shown in 

Figure 6. 

 

Figure 6: Example of custom visualisation created with the vargen_visualisation function 

from VarGen. This plot gives information about the variants found by VarGen on the SIM1 

gene (ENSG00000112246). At the top, the chromosome is represented (here chromosome 

6) with a red bar pinpointing the gene location. Just below the chromosome there is an 

axis indicating the genomic position (here from 100.38 to 100.46 Mb). The three tracks 

below are relative to this axis. The first track from the top contains the five different 

transcripts of this gene (three are on the last line), with the coding parts drawn in purple. 

The second track has the variants found in this gene, as green bars, grouped by 

consequence. The last track contains the same variants, as blue and red dots, with the 

CADD score as the y-axis. The red dots correspond to a list of rsIDs given by the user. 

3.2.2 Alternative pipelines 

3.2.2.1 VarPhen: a more specific pipeline 

As mentioned before, VarGen was designed to be a discovery pipeline. This can 

lead to very large outputs, which the user needs to filter manually. In order to give 

more flexibility to the package, a more specific pipeline was created, called 
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VarPhen. This alternative pipeline only outputs variants that are confirmed to be 

related to the phenotypes of interest. The input is a list of phenotypes, which can 

be obtained by giving a list of keywords to the get_phenotype_terms function. 

This function queries BioMart (see 3.3.5) and attempts to match any of the 

keywords given by the user to the list of phenotypes available under the 

“phenotype_description” filter in the “Ensembl Variation” mart, using grep. It 

means that any phenotype containing one of the keywords as part of their name 

will be returned by the function. The user can then input these phenotypes, or a 

subset of them, into the get_variants_from_phenotypes function, which 

will query BiomaRt using the same filter “phenotype_description”, but this time, 

returning a list of variants related to these phenotypes. The phenotype-variant 

relationships are retrieved by BioMart using the following sources: 

• COSMIC (Catalogue Of Somatic Mutations In Cancer) 

• ClinVar (Variants of clinical significance from ClinVar) 

• dbGaP (The database of Genotypes and Phenotypes) 

• EGA (European Genome-phenome Archive) 

• GIANT (Genetic Investigation of ANthropometric Traits) 

• HGMD-Public (The Human Gene Mutation Database) 

• MAGIC (Meta-Analyses of Glucose and Insulin-related traits Consortium) 

• NHGRI-EBI GWAS Catalog 

A flowchart presenting an overview of VarPhen is available as Figure 7. As with 

VarGen, the list of variants obtained can be annotated with the 

annotate_variants function. 
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Figure 7: Flowchart of the VarPhen pipeline. The user can enter one or more keywords 

(e.g.: diabetes) to find phenotype terms and their associated variants. 

3.2.2.2 A custom list of genes 

As an alternative to the main pipeline, the user can run vargen_custom. This 

function follows the same steps as vargen_pipeline (see Section 3.2.1.1) but 

directly accepts a list of Ensembl gene identifiers (e.g., ENSG00000197594) 

instead of OMIM disease identifiers. This function is very similar to 

vargen_pipeline, it gets the variants directly located on the genes, then the 

variants on the promoters from FANTOM5. There is also the possibility to enter 

tissues for GTEx and GWAS terms. This pipeline is very useful if the user wants 

to focus on specific genes. 

3.2.2.3 GWAS variants only 

If the user is only interested in GWAS variants, it is possible to run the GWAS 

step independently. First, the user can search for a list of terms of interest with 

the list_gwas_traits function. Then the get_gwas_variants will retrieve 

the variants linked to the terms in the GWAS Catalog. 
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3.3 List of ressources accessed by VarGen 

VarGen retrieves variants linked to phenotypes by integrating information from 

public databases (see Section 3.2.1.1). This Section will describe the content and 

purpose of each database. 

3.3.1 The Online Mendelian Inheritance in Man database 

The Online Mendelian Inheritance in Man (OMIM) is a database of human genetic 

disorders [73], with a focus on the link between genes and phenotypes. It has 

been continuously updated since 1966 and is one of the most consulted 

resources for genetic disorders, both by clinicians and researchers. As of October 

2021, it contains 16,588 genes and 6,205 phenotypes with known molecular 

basis (data from https://omim.org/statistics/entry). The gene-to-disease 

relationship is obtained by manual curation of the peer-reviewed literature. This 

resource started as a series of twelve catalogues of mendelian traits and 

disorders, published between 1966 and 1998. The online version has been 

available since 1987. It is authored and edited at the McKusick-Nathans Institute 

of Genetic Medicine, Johns Hopkins University School of Medicine. 

VarGen accesses OMIM to get the list of genes associated with a certain 

phenotype. This is an important step as VarGen’s workflow is centred around the 

genes found with OMIM. 

3.3.2 The Genotype Tissue Expression database 

The Genotype Tissue Expression (GTEx) project started in 2013 [127]. This was 

an effort to build a data resource and tissue bank to assess the impact of variants 

on gene expression in different tissues. RNA from 948 donors were isolated post-

mortem from 54 non-diseased tissues, the list of tissues is available as Table 

B.1-2. 

 

 

 

https://omim.org/statistics/entry
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The criteria for inclusion are listed below: 

 21 <= Age (years) <= 70 

 18.5 < BMI < 35 

 Less than 24 hours between death and tissue collection 

 No whole blood transfusion within 48 hours prior to death 

 No history of metastatic cancer 

 No chemotherapy or radiation therapy within 2 years prior to death 

 Generally unselected for presence or absence of diseases or disorders 

GTEx collected a wide range of data: whole genome genotyping, exome 

genotyping, RNA sequencing, whole exome sequencing, and whole genome 

sequencing [128]. The data are available through different portals: the National 

Center for Biotechnology Information (NCBI), the GTEx data portal and the 

database of Genotype and Phenotype [129]. 

One of GTEx aims was to study expression Quantitative Trait Loci (eQTLs) in 

different tissues. One can define eQTLs as the analysis of the impact of variants 

on gene expression [130]. Because of this, GTEx is complementary of GWAS, 

since most of the variants discovered thus far are not found in protein coding 

regions, meaning they probably have an impact on gene regulation [128]. 

Combining the results from GWAS and GTEx will help the research community 

to make sense of the mechanisms altered by the disease-related variants. It has 

been estimated that eQTLs play an important role in complex traits and diseases 

[131]. 

The GTEx project was completed in 2020. This was accompanied by a study 

providing insights about the impact of variants on gene expression (eQTLs) and 

splicing (sQTLs) in 838 individuals over 49 tissues [23]. This study found that 

94.7% and 66.5% of the protein-coding genes were regulated by eQTLs and 

sQTLs respectively. 

VarGen harnesses the data from GTEx to get the eQTLs that are affecting the 

expression of the genes found with OMIM. The user can choose which tissues 

should be taken into account. 
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3.3.3 The Functional Annotation Of Mammalian Genomes 5 

The Functional Annotation Of Mammalian Genomes 5 (FANTOM5) was a project 

investigating the transcription regulation activities in mammalian cells [132]. The 

consortium studied cellular functions by quantification of RNA molecules in a 

range of different cells, mostly primary cells but also cell lines and tissues 

(consisting of multiple cell types). More than a thousand human and mouse 

samples were analysed. FANTOM5 used a variation of the Cap Analysis of Gene 

Expression protocol, using single molecule sequencer, to study regulation. This 

allowed the quantification of Transcription Start Sites (TSS) at a single base 

resolution. The consortium developed a central repository of tools and databases 

to access the results generated from the project, including SSTAR for data 

exploration, ZENBU for visualisation of the results on a genome browser and the 

FANTOM Five ontology. 

VarGen uses the results from FANTOM5 to get the locations of the enhancers of 

the genes obtained from OMIM. Indeed, variants located in promoters might 

affect gene regulation and play a role in diseases [22]. 

3.3.4 The Genome Wide Association Study Catalog 

The NHGRI-EBI GWAS Catalog of human genome-wide association studies is a 

central repository storing the results of GWAS [38]. It was founded in 2008 by the 

NHGRI due to the increasing number of published associations. The idea was to 

provide researchers with a catalogued and standardised access to this wealth of 

data. The GWAS Catalog is filled by manual curation of the literature, out of which 

is extracted information about each study. Namely, details about the publication, 

cohort (size, ancestry, and country of recruitment) and SNP-disease associations 

(rsID, p-value, gene, and risk allele). Finally, one or more traits are allocated to 

each study, depending on the studied phenotype. Detailed information about 

each SNP is obtained from the rsIDs, using the Ensembl Application 

Programming Interface (API). 

A study can be added to the GWAS Catalog if it includes an array-based 

genotyping and analysis of more than 100,000 SNPs selected to tag variation 
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across the genome. Sequencing data imputed to genotyping arrays are eligible 

as well if they follow the same criteria. A study is excluded if it was not published 

in English, is limited to certain candidate genes, measures somatic variations, or 

does not include new GWAS data. Once a study has been declared eligible, the 

statistically significant SNP-trait associations (p-value < 1x10-5) are added to the 

GWAS Catalog. 

As of June 2020, the GWAS Catalog contains 4,580 publications and 187,403 

associations for 4,287 traits (source: https://www.ebi.ac.uk/gwas/home).  

VarGen accesses this resource to get the variants associated to a list of traits 

entered by the user. This can be run independently of the rest of the pipeline if 

the user is only interested in GWAS variants. 

3.3.5 BioMart: at the crossroad of biological data 

BioMart [133] is an open-source interface to a wide range of biological databases. 

This allows researchers to perform searches based on different criteria and 

regroup the results using a single interface. This service can be accessed via 

different means: the web interface, the Perl API or from its integration within a 

larger project (Ensembl, UniProt, HapMap etc…). VarGen queries BioMart via the 

R package biomaRt, available through Bioconductor. 

BioMart is hierarchically organised in Marts, datasets, and attributes/filters. A 

Mart is a relational database with a schema compliant with BioMart definitions. 

Each Mart consists of different datasets, often one per species. Each dataset 

contains different type of data. For example, the btaurus_snp dataset from the 

Ensembl Variation Mart contains information about variants for the Bos taurus 

species. A query can retrieve the whole dataset or just a subset based on 

attributes to select fields of interest (e.g., chromosome, position, etc) and filters 

to select values of interest based on one or more attribute (e.g., to only get data 

related to chromosome 1). Both attributes and filters are dependant on the 

selected Mart and dataset. If several Marts have shared attributes or filters, it is 

possible to merge them in a query. The structure of a BioMart query is described 

in Figure 8. 

https://www.ebi.ac.uk/gwas/home
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Figure 8: Structure of a BioMart query. The first step is to select a Mart, here Ensembl 

Variation. Each Mart has different datasets, usually each ensembl dataset correspond to 

a species, here the clfamiliaris_snp dataset was selected. Finally, the user chooses the 

data to display (Attributes) and the restrictions on the results (Filters), here the refsnp_id 

and chr_name will be displayed, for chromosome 1, due to the filter ‘chr_name = 1’. 

In VarGen, the two Marts of interest are Ensembl Genes which contains 

information about genes and Ensembl Variation which contains information about 

variants. For both Marts, VarGen accesses the hsapiens_gene_ensembl dataset, 

which corresponds to human data. However, the user does not need to be 

knowledgeable about Biomart as VarGen provides high-level functions to connect 

to and query these Marts, viz connect_to_gene_ensembl and 

connect_to_snp_ensembl. 
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3.3.6 MyVariant.info: an API for variant annotation 

MyVariant.info is a REST API providing variant annotation as a service [18]. It 

aggregates ~1,500 annotation fields from 19 sources (see Table B.1-1). VarGen 

retrieves annotations from some of these sources, including Combined 

Annotation-Dependant Depletion (CADD) [124], FATHMM-XF [125], SnpEff [20] 

and ClinVar [126]. The annotation is time efficient as the information from 

MyVariant.info is retrieved from pre-annotated variants. More details about the 

fields retrieved by VarGen for the annotation is available in Section 3.2.1.2. To 

retrieve all these annotations, VarGen requires the R package myvariant, a 

wrapper developed to easily query the MyVariant.info services. 

CADD implements a machine learning algorithm to classify the variants as neutral 

or deleterious, based on more than 60 features [124] (e.g., VEP consequence, 

SIFT score, variant type). Instead of relying on a small number of known 

pathogenic variants, CADD takes the opposite approach and trains its model on 

fixed ‘neutral’ variants in the human population since the split with the 

chimpanzee. Since these variants have an allele frequency of 95-100%, they are 

assumed to be neutral. Deleterious variants are based on simulated random 

variants not subjected to evolutionary pressure. This allows annotation for non-

coding variants, which have important roles in understanding the genetic basis of 

certain disorders [22]. The raw CADD scores are then transformed into Phred 

scores, ranking all the possible variants in the human genome (see Equation 1). 

VarGen retrieves the Phred score from CADD, to assess the deleteriousness of 

each variant. 

���� ����� =  −�� �����(
��� ����

# �������� ����
) 

Equation 1: Calculation of the CADD Phred score for one SNP, dividing the rank of the 

SNP against all the other possible SNPs in the human genome. The ranks are based on 

the raw CADD score. 

FATHMM-XF is the extended version of FATHMM-MKL, an algorithm designed 

to predict the functional consequence of coding and non-coding variants. Each 

prediction is given as a confidence score, with a low value indicating benign 

impact and a high value indicating deleteriousness. The scores are obtained from 
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a supervised machine learning prediction based on both pathogenic variants, 

from the Human Gene Mutation Database, and neutral variants, from the 1000 

genome project. The machine learning algorithm, a Hidden Markov Model, is 

based on the following features: sequence conservation across species, 

proximity to genomic features, chromatin accessibility and nucleotide sequence. 

SnpEff is an open-source tool capable of predicting the putative impact of 

variants. The prediction is based on their genomic locations, (e.g.: intronic, splice 

site, untranslated region) and information from ENSEMBL, UCSC and organism-

specific databases. The output can be given in VCF or text format and contains 

information about the variant itself, the genetic information (e.g.: gene name, 

transcript ID) and the coding effect of the variant (e.g.: synonymous, non-

synonymous, frameshifts). SnpEff also provide a high-level assessment of the 

variant impact, namely LOW, MODIFIER, MODERATE and HIGH. 

ClinVar is an archive provided by the NCBI, which stores clinically important 

variants. Since the data are based on submissions by the community, there can 

be conflicting information for some of the variants, in which case, ClinVar reports 

every submitted values. To add some weight to each submission, ClinVar also 

records the underlying evidence that led to the assessment of the variant’s 

impact. VarGen will extract the ‘clinical significance’ annotation, which follows the 

recommendation from the American College of Medical Genetics and Genomics 

[134]. The list of terms that can be associated to a variant are listed below: 

 Affects  Pathogenic 

 Likely pathogenic  Drug response 

 Confers sensitivity  Risk factor 

 Other  Association 

 Uncertain significance  Likely benign 

 Association not found  Benign 

 Protective  Not provided 

 Conflicting data from submitters  
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3.3.7 VarGen access to resources 

VarGen accesses the resources described previously via BioMart, Application 

Programming Interfaces (APIs) or local files. This subsection will describe how 

each resource is queried by VarGen. 

The information from OMIM is retrieved with BioMart (see Section 3.3.5). The 

get_omim_genes function creates a query to get the genes associated with a 

certain OMIM identifier (the BioMart filter name is mim_morbid_accession). The 

function returns the ensembl gene id, locus, HGNC symbol and the OMIM 

description. The GTEx eQTLs are downloaded as local files, one per tissue, 

containing the significant variant-gene pairs. VarGen reads the files 

corresponding to the tissues given as input and retains the variants associated 

with the OMIM genes obtained from the previous step. The FANTOM5 

information is obtained from a local file, the enhancer_tss_associations.bed, 

which contains the associations between the transcription start sites and the 

genes. The GWAS Catalog can either be downloaded or accessed online at the 

user discretion. Finally, the annotation is performed with the MyVariant.info API. 

A summary of the resources accessed by VarGen is available in Table 4. All the 

mandatory local files can be downloaded automatically via the vargen_install 

function. 

Table 4: Description of the databases accessed by VarGen. For each database, the user 

input is described, as well as the data retrieved. 

Database Access User input Data retrieved 

OMIM 
Online via 
BiomaRt 

OMIM  
identifiers 

List of OMIM genes related  
to a disease 

FANTOM5 Local file 
Correlation  
threshold 

Enhancers / promoters of the 
‘OMIM genes’ 

GTEx 
Local files 

One per tissue 
List of tissues 

Variants leading to a change in 
the ‘OMIM genes’ expression 

GWAS  
Catalog 

Local or  
Online 

List of  
GWAS traits 

Variants associated with the 
GWAS traits given as input 

MyVariant 
Online via 
myvariant 

List of rsIDs Variant annotation 
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3.4 VarGen benchmarking 

VarGen was benchmarked against two other similar tools, DisGeNET [121] and 

VarFromPDB [122]. Since the true set of all the variants linked to most diseases 

is not known, we must rely on the overlap between different tools to assess the 

relevance of the variants obtained with VarGen. Two traits were chosen as use 

cases, obesity (OMIM: 601665) and Alzheimer’s disease (OMIM: 104300). The 

benchmarks were run with R version 3.6.3, disgenet2r v0.0.9 and VarfromPDB 

v2.2.10.2. 

3.4.1 First use case: obesity 

3.4.1.1 Methods 

For VarGen, the following input was given to vargen_pipeline: 

 The OMIM identifier 601665 (corresponding to ‘OBESITY’). 

 The following GTEx tissues: Adipose subcutaneous and Adipose visceral. 

 The following GWAS traits: Obesity (extreme), Obesity-related traits, 

Obesity, Obesity (early onset extreme), Obesity and osteoporosis, Obesity 

in adult survivors of childhood cancer exposed to cranial radiation, Obesity 

in adult survivors of childhood cancer not exposed to cranial radiation, 

Type 2 diabetes (young onset) and obesity, Obesity without metabolic 

disease. The data were extracted from the GWAS Catalog version e96. 

 The fantom_corr parameter was set to 0.20.  

For VarPhen, the keyword obesity was used to retrieve 39 phenotype terms 

having a link with obesity, they are listed in Table B.1-5. These phenotypes were 

then given as input in the get_variants_from_phenotypes function. 

For DiGeNET, the disease identifier C0028754, corresponding to obesity, was 

given as input for the function disease2variant. It was run twice, one time 

with all the databases and the other time with the curated ones. 

For VarFromPDB, the authors’ guidelines were followed to obtain the results. 

Obesity was entered as the keyword to the pipeline. When trying to run the 
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orphanet step, the following error appeared “length of 'dimnames' [2] not equal to 

array extent”. I tried to solve the error without success, so this step was skipped. 

3.4.1.2 Results 

The overlap between the variant identifiers obtained with the different packages 

was represented as a Venn diagram (see Figure 9). 

 A.        

B. 

Figure 9: Venn diagrams representing the variants retrieved by the different pipelines: 

VarGen, DisGeNET, VarFromPDB and VarPhen. Obesity (OMIM: 601665) was chosen as 

the use case. A. Venn diagram using the raw output for all the pipelines. B. Venn diagram 

using the filtered VarGen dataset, with the following strategy: all the variants from the 

GWAS Catalog and with clinical significance were kept, and the remaining variants were 

filtered if their CADD Phred score was below 10. 
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Concerning the unfiltered results, the highest number of shared variants, 882, is 

between VarGen and VarPhen, despite the two pipelines implementing a different 

approach and data sources. DisGeNET is sharing 208 and 169 variants with 

VarGen and VarPhen respectively, while VarFromPDB is sharing 302 and 258 

variants with VarGen and VarPhen respectively. In contrast, DisGeNET and 

VarFromPDB only share 68 variants, of which, only 2 are not found by VarGen 

nor VarPhen. 

Some variants are discovered by only one package. Most of the 584 variants only 

discovered by DisGeNET are from literature mining and GwasDB, two resources 

not implemented yet in the other packages. From the 479 variants found uniquely 

with VarFromPDB, 408 are not directly linked with obesity, but other phenotypes 

(Intellectual Disability, Bardet-Biedl syndrome, etc) explaining the low overlap 

with the other tools. Many variants are found only by VarGen, since it reports 

variants affecting the genes related to a disease and not variants directly linked 

to the disease. Hence, some of the 119,243 variants uniquely found by VarGen 

are potentially false positives. This can be diminished by filtering variants based 

on their Phred score, source, and clinical significance, while keeping most of the 

variants found in common with the other databases. See below for more details. 

VarPhen has the best sensitivity / specificity ratio. It is ideal if the user does not 

want to filter the results manually. 

To alleviate the potential amount of false positive obtained with the VarGen 

pipeline, the annotation step was implemented. From the annotated results, it is 

possible to filter the hits or to rank them based on their deleteriousness. More 

precisely, keeping the variants with a CADD score > 10, while keeping all the 

variants from GWAS or with information about clinical significance managed to 

reduce drastically the number of variants found only with VarGen while keeping 

a similar overlap with the other tools (see Figure 9B). 

In summary, both VarGen and VarPhen are more sensitive than current existing 

alternatives. Specificity is also achieved by VarPhen and by filtering the results 

from VarGen. The variants uniquely detected by the other pipelines can be 

explained by different input databases for DisGeNET and the multiple 
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phenotypes used by VarFromPDB. Finally, the fact that only two variants are 

found by both DisGeNET and VarFromPDB suggest that no important variant is 

missed by VarGen nor VarPhen. 

3.4.2 Second use case: Alzheimer’s disease 

The methods and results for this use case are available in Appendix 6.2.5B.2. 
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3.5 The lists of variants 

Lists of variants for obesity, diabetes type 1 and type 2 were generated with 

VarGen, the goal was to compare the genotypes obtained during the Nutrishield 

clinical trials to these lists of variants. 

3.5.1 Methods 

For each disease, three outputs were produced, to provide different levels of 

sensitivity / specificity for each disease, (i) the raw output from VarGen (ii) the 

filtered output from VarGen and (iii) the output from VarPhen. 

(i) For the VarGen pipeline, the vargen_pipeline function was run, with 

the input values detailed in Table 5 for each disease. The Fantom 

correlation threshold was set to 0.20. The list of variants was then 

annotated with annotate_variants. 

(ii) The filtered list of variants was based on the output obtained from (i). Were 

kept, only the variants from the GWAS Catalog, with information about 

clinical significance and/or a CADD score higher than 10. This filtering 

should remove most of the less interesting variants while keeping the most 

impactful variants. 

(iii) For the VarPhen pipeline, the phenotypes were searched with the 

get_phenotype_terms function from VarGen; with the following 

keywords obesity, INSULIN-DEPENDENT and NONINSULIN-

DEPENDENT respectively for obesity, type 1 diabetes, and type 2 

diabetes. These phenotypes were then given to 

get_variants_from_phenotypes to get the list of variants. The 

variants were then annotated with annotate_variants but no further 

filtering was performed, as VarPhen is specific enough. 

The following versions were used: R v3.6.3, VarGen v0.2.1, the GWAS Catalog 

‘e100_r2021-01-14’ and GTEx v8. 
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Table 5: List of input given to vargen_pipeline to generate the lists of variants for obesity, 
diabetes type 1 and diabetes type 2. 

 OMIM GTEx tissues GWAS terms 

Obesity 601665 
Adipose Visceral 

Adipose subcutaneous 

 Childhood obesity 

 Obesity-related traits 

 Obesity (extreme) 

 Obesity 

 Obesity without metabolic disease 

 Obesity (early onset extreme) 

 Obesity and osteoporosis 

 Type 2 diabetes (young onset) and 

obesity 

 Body mass index 

Type 1 

Diabetes 
222100 Pancreas 

 Diabetes mellitus 

 Type 1 diabetes 

 Type 1 diabetes and autoimmune 

thyroid diseases 

 Fulminant type 1 diabetes 

 Type 1 diabetes in high-risk HLA 

genotype individuals (time to event) 

Type 2 

Diabetes 
125853 Pancreas 

 Diabetes mellitus 

 Type 2 diabetes 

 Type 2 diabetes (young onset) and 

obesity 

 Prevalent type 2 diabetes 

 Type 2 diabetes (age of onset) 

 Type 2 diabetes and end-stage 

kidney disease 

 Type 2 diabetes (adjusted for BMI) 

 Schizophrenia and type 2 diabetes 

Each output was given as input to Pascal [135] to obtain a list of pathways 

associated with the variants. When running Pascal, the following options were 

set: --maxsnp=-1 to consider all genes, regardless of the number of SNPs located 

on them; --genescoring=sum to compute gene scores based on the sum-of-chi-

squares, averaging the SNPs association signal across the gene region; --
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runpathway=on to calculate the pathway scores. It is to be noted that the standard 

input for Pascal is a list of variants from a GWAS analysis with their associated 

p-values. As the variants from VarGen are not associated with a p-value, the 

CADD score was used as proxy, using Equation 2. 

������ ����� =
0.1

���� �����
 

Equation 2: Transformation of the CADD score into a score for Pascal. The arbitrary 
value of 0.1 was chosen as it resulted in a range similar to p-values obtained from GWAS. 

3.5.2 Results & Discussion 

3.5.2.1 Obesity 

VarGen retrieved 11 genes linked to obesity (OMIM 601665). The pipeline 

retrieved 80,294 variants, and after filtering, the list was reduced to 12,762 high-

impact variants. Concurrently, VarPhen found 1,677 variants related to obesity 

phenotypes. The 4,848 variants retrieved from the GWAS Catalog as part of the 

VarGen pipeline are represented as a Manhattan plot on Figure B.1-1. 

The results from the annotation for each pipeline is represented in Figure 10. As 

expected, the largest amount of variants was obtained with VarGen, which also 

have the largest amount of ‘NA’ annotations from snpEff (Figure 10A). 

Concerning clinical significance, it is interesting to note that, despite the 

difference in the number of variants, there is a similar distribution between 

VarGen and VarPhen. This indicates the lack of knowledge about the 

pathogenicity of most variants and of the interest of integrating several data 

sources to explore variant-disease relationships (see Figure 10B). Finally, the 

CADD score distribution is quite low for VarGen and VarPhen, as most of the 

variants falls below a score of ten. This can be explained by the Phred nature of 

the CADD scores (log10). Thus, a variant with a Phred score >10 is in the top 10% 

of all variants (in terms of raw CADD score), while a Phred score >20 indicates a 

variant in the top 1% (see Figure 10C). CADD correlate with pathogenicity [124], 

making variants with high CADD scores valuable subjects to study diseases. 
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Figure 10: Details about the annotations of the three list of variants obtained with VarGen 

(raw and filtered) and VarPhen for obesity. Empty annotations (“”) were ignored, for the 

sake of clarity A) Stacked barchart of the consequence terms from snpEff. B) Stacked 

barchart of the clinical significance terms from clinvar. The distribution is the same 

between VarGen and VarGen_filtered, since all the variants with clinical significance 

were kept during the filtering step C) Violin plot representing the distribution of the 

CADD scores for each pipeline. 
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The pathway analysis performed with Pascal assigned a chi2Pvalue to each one 

of the 1,077 pathways in their database. This discussion will focus on the top 15 

pathways, represented in Table 6. 

Table 6: Top 15 pathways obtained with Pascal from VarGen’s filtered list of variants for 

obesity. 

Pathway Name Chi2Pvalue 

Reactome Mitotic Prometaphase 0.0002198 

Reactome DNA Replication 0.0004419 

Reactome Nuclear Receptor transcription pathway 0.0009311 

Reactome Transport to the Golgi and subsequent modification 0.0010427 

Reactome Antigen Presentation: Folding assembly and peptide loading 
of class I MHC 

0.0010427 

Reactome mitotic MM G1 phases 0.0011293 

Reactome Asparagine N-linked glycosylation 0.0025005 

Biocarta Nuclearrs pathway 0.0049984 

Reactome Synthesis secretion and deacylation of Ghrelin 0.0052137 

Reactome Generic Transcription Pathway 0.0055095 

Reactome MHC class II antigen presentation 0.0062515 

Kegg ECM receptor interaction 0.0068640 

Reactome activation of chaperone genes by XBP1S 0.0083420 

Reactome Unfolded Protein Response 0.0083420 

Reactome class I MHC mediated antigen processing & 
presentation 

0.0088980 

The ghrelin hormone regulates appetite stimulation and growth when binding to 

the GHS-R1a receptor. This explains the presence of the synthesis, 

secretion and diacylation of ghrelin pathway in this list. Several 

mutations located in the ghrelin gene and its receptor are associated with human 

obesity and short stature [136] [137]. 

Concerning the ECM receptor interaction pathway, Lin et al. proposed a 

mechanism for induced insulin resistance in obesity caused by the ExtraCellular 

Matrix (ECM) receptors [138]. More precisely, the activation of ECM receptors 

pathways in adipose tissues induces adipocyte death, inhibition of angiogenesis 

and promotion of macrophage infiltration which lead to inflammation and insulin 
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resistance. Interestingly, in the list, three pathways are linked to the adaptative 

immune system, namely class I MHC mediated antigen processing 

presentation, antigen presentation folding assembly and 

peptide loading of class I MHC and MHC class II antigen 

presentation. A review from Bastard et al. highlighted the impact of the 

overexpression of inflammatory molecules, such as TNF-alpha and IL-6, in 

obesity and their impact on key steps of the insulin signalling pathway in different 

model species [89]. Thus, in obesity, ECM receptors enhance macrophage 

infiltration in adipose tissues, which in turn overexpresses inflammatory 

molecules, such as TNF-alpha and IL-6, leading ultimately to insulin resistance. 

Two pathways are linked to protein folding, namely activation of 

chaperone genes by XBp1s and unfolded protein response. There 

is yet no clear link between obesity and protein folding, however a study identified 

that XBp1s overexpression reduced obesity in mouse models by the activation of 

lipolysis [139]. 

Two pathways are linked to the Golgi complex, asparagine N linked 

glycosylation which contains the transport to the Golgi and 

subsequent modification pathway. The Golgi complex is the central sorting 

and processing station of the secretory pathway, including lipid regulation. It was 

identified as a possible therapeutic target for obesity [140]. 

Another interesting pathway is nuclears pathways, some nuclear receptors 

are responsible for lipid metabolism, storage, or elimination. So, variants affecting 

this pathway might disrupt lipid metabolism. This also explains the presence of 

the nuclear receptor transcription pathway which is part of the high-

level pathway generic transcription. Moreover, nuclear receptors are 

related to lipid sensing, liporegulation and insulin resistance [141]. 

The remaining three pathways are linked to replication, namely mitotic 

prometaphase, mitotic M-M/G1 phases and DNA replication. These 

pathways are very high-level, but mutations in a gene responsible for DNA 

replication and integrity, WRN, were found to exaggerate obesity [142]. Indeed, 
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when compared with wild types, WRN-deficient mice developed signs of obesity, 

i.e., weight gain, hyperinsulinemia, and insulin resistance. The same observation 

was made for mice with a SNP in the helicase domain of the WRN protein [143]. 

3.5.2.2 Diabetes type 1 

VarGen queried OMIM and retrieved 4 genes linked to diabetes mellitus type 1 

(OMIM 222100). The pipeline retrieved 40,304 variants, after filtering, the list was 

reduced to 4,105 high-impact variants. Concurrently, VarPhen found 524 variants 

related to diabetes type 1 phenotypes. The 295 variants retrieved from the GWAS 

Catalog are represented as a Manhattan plot in Figure B.1-2. 

The results from the annotation are presented in Figure 11. In terms of snpEff 

consequences, the same conclusion as the one reached for obesity can be made 

here (see Figure 11A). Interestingly, VarGen has twice as many variants with 

information about clinical significance than VarPhen (see Figure 11B). This could 

be because the genetics behind diabetes mellitus type 1 are not fully understood 

yet, thus VarPhen, which retrieves variants that have been directly linked to the 

disease, is picking up less variants. This highlights the potential of VarGen to 

discover new variants of interest for less studied diseases and it would be of 

interest to explore the clinically significant variants found by VarGen to further our 

understanding of diabetes mellitus type 1. The distribution of the CADD Phred 

scores is slightly different than the one obtained with obesity (see Figure 11C). 

Many VarPhen variants have a low CADD score, on one hand it could indicate 

that our filtering for VarGen (CADD > 10) might be too stringent here; on the other 

hand, it might just be due to the low number of variants retrieved by VarPhen. 

One can always merge the output obtained from VarPhen and VarGen, and it 

would be especially relevant here. 
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Figure 11: Details about the annotations of the three list of variants obtained with VarGen 

(raw and filtered) and VarPhen for diabetes mellitus type 1. Empty annotations (“”) were 

ignored, for the sake of clarity A) Stacked barchart of the consequence terms from 

snpEff. B) Stacked barchart of the clinical significance terms from clinvar. The 

distribution is the same between VarGen and VarGen_filtered, since all the variants with 

clinical significance were kept during the filtering step C) Violin plot representing the 

distribution of the CADD scores for each pipeline. 
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The pathway analysis performed with Pascal assigned a chi2Pvalue to each one 

of the 1,077 pathways in their database. This discussion will focus on the top 15 

pathways, represented in Table 7. 

Table 7: Top 15 pathways obtained with Pascal from VarGen’s filtered list of variants for 

diabetes mellitus type 1. 

Pathway Name Chi2Pvalue 

Biocarta Mitochondria Pathway 0.0093023 

Kegg Vascular smooth muscle contraction 0.0139534 

Kegg Gap junction 0.0139534 

Kegg Long term potentiation 0.0139534 

Kegg Long term depression 0.0139534 

Kegg Taste transduction 0.0139534 

Kegg GNRH signaling pathway 0.0139534 

Kegg Alzheimers disease 0.0139534 

Reactome DAG and IP3 signaling 0.0139534 

Reactome antigen activates B cell receptor leading to generation of 
second messengers 

0.0139534 

Reactome Opioid Signalling 0.0139534 

Reactome PLC beta mediated events 0.0139534 

Reactome Elevation of cytosolic Ca2+ levels 0.0139534 

Reactome Regulation of insulin secretion by glucagon-like Peptide-1 0.0139534 

Reactome Platelet homeostasis 0.0139534 

The most obvious pathway related to diabetes in this list is the regulation of 

insulin secretion by glucagon like peptide 1. Glucagon-like 

Peptide-1 is secreted in response to glucose and fatty acids, then binds to the 

beta cells of the pancreas and unfolds a series of cascading events. This leads 

to enhanced insulin secretion involving the Protein Kinase A and Rap1A. Thus, 

deleterious variants impacting this pathway could explain the lack of insulin 

secretion in diabetes type 1. Interestingly, the taste transduction pathway, 

present in this list, might regulate the secretion of glucagon-like peptide-1 [144]. 

Several pathways are linked to Ca2+ flux, namely elevation of cystosolic 

Ca2 levels, PLC beta mediated events and DAG and IP3 signaling. 

Bot DAG and IP3 have been linked to insulin [145], indeed DAG is involved in 
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insulin secretion via PKC, while IP3 signal the release of Ca2+ from the 

endoplasmic reticulum, which causes the secretion of insulin through the 

membrane. The elevation of cystosolic Ca2 levels happens 

upstream and start the PLC beta mediated events which hydrolyses PIP2 

into both IP3 and DAG. Interestingly, another pathway found by Pascal is the 

platelet homeostasis and the elevation of Ca2+ levels is essential for 

platelet activation. The GnRH signaling pathway is also upstream of IP3 / 

DAG and was shown to be affected by type 1 diabetes [146]. 

Another pathway from the list, opioid signalling, increases intracellular 

calcium and indirectly impacts PLC beta mediated events [147]. A review 

from Singh et al. highlighted that opioids receptors from the pancreas have a 

complex influence on insulin homeostasis: on one hand acute opioids exposure 

increases insulin secretion, on the other hand chronic opioids exposure leads to 

decreased secretion [148]. This was shown by the impact of opioid receptor 

agonists on insulin secretion in mice. Antigen activates B cell receptor 

leading to generation of second messengers is a high-level pathway 

which contains the PLC beta mediated events pathway. Similarly, gap 

junction is a more generic pathway which describes the channels of 

communication between adjacent cells. Gap junction is affected by changes in 

intracellular Ca2+ levels and might be linked to the aforementioned pathways. 

Many biological processes are affected by Ca2+ and insulin, which explains the 

presence of the vascular smooth muscle contraction and long-term 

depression (LTD) pathways in this list. LTD is involved in synaptic plasticity, 

learning, and forgetting. Low Wang et al. found that insulin affects Vascular 

Smooth Muscle Cell quiescence and migration, respectively via the PI3K and 

MAPK pathways [149]. Dysregulation of intracellular Ca2+ levels seems to affect 

Alzheimer’s disease, Popugaeva et al. highlighted that many Alzheimer’s models 

include endoplasmic reticulum Ca2+ excess [150]. Moreover, there is growing 

evidence that Alzheimer’s disease shares features with diabetes and some 

researchers even go as far as calling it ‘type 3 diabetes’ [151] [152]. This justifies 

the presence of Alzheimers disease, long-term depression, and 
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long-term potentiation (both linked to learning and memory). The role of 

insulin in the central nervous system, via PI3K, is another parallel between 

diabetes, and Alzheimer’s [153]. 

Concerning the mitochondrial pathway, Belosludtsev et al. reviewed the 

role of mitochondrial dysfunctions in diabetes, especially in the mitochondrial 

calcium transport systems [154]. More precisely, the consequences of 

mitochondrial dysfunction, i.e., impaired calcium homeostasis, excessive ROS 

production and mitochondrial permeability transition pore opening, are also 

present in diabetes, suggesting a role of mitochondrial dysfunction in the 

aetiology of the disease. Finally, mitochondrial dysfunction might accelerate the 

complications of diabetes mellitus by the death of β-cells in the pancreas.  

In conclusion, the combination of VarGen and Pascal highlighted pathways of 

interest for diabetes mellitus type 1. Some of these pathways are straightforward 

and relate to insulin, while others highlight an interesting overlap with Alzheimer’s 

disease. Moreover, the results underlined the important role of Ca2+ flux, and 

more precisely IP3 and DAG, in diabetes pathogenesis. 

3.5.2.3 Diabetes type 2 

VarGen retrieved 29 genes linked to diabetes mellitus type 2 (OMIM 125853). 

The pipeline retrieved 493,860 variants, and after filtering, the list was reduced to 

20,064 high-impact variants. Concurrently, VarPhen found 524 variants related 

to diabetes type 2 phenotypes (of which 231 are in common with diabetes mellitus 

type 1). The 3,326 variants retrieved from the GWAS Catalog are represented as 

a Manhattan plot on Figure B.1-3. 

The results from the annotation are available on Figure 12. Since diabetes 

mellitus type 2 is linked with substantially more genes in OMIM, more variants 

are retrieved with VarGen. Thus, the effect of filtering is even more important here 

(see Figure 12A). The number of variants with information about clinical 

significance obtained here is an order of magnitude higher compared to obesity 

and diabetes mellitus type 1 (see Figure 12B). This could allow for a strong PRS 

or gene network analysis.  
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Figure 12: Details about the annotations of the three list of variants obtained with VarGen 

(raw and filtered) and VarPhen for diabetes mellitus type 2. Empty annotations (“”) were 

ignored, for the sake of clarity A) Stacked barchart of the consequence terms from 

snpEff. B) Stacked barchart of the clinical significance terms from clinvar. The 

distribution is the same between VarGen and VarGen_filtered, since all the variants with 

clinical significance were kept during the filtering step C) Violin plot representing the 

distribution of the CADD scores for each pipeline. 
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The pathway analysis performed with Pascal assigned a chi2Pvalue to each one 

of the 1,077 pathways in their database. This discussion will focus on the top 15 

pathways, represented in Table 8. 

Table 8: Top 15 pathways obtained with Pascal from VarGen’s filtered list of variants for 

diabetes mellitus type 2. 

Pathway Name Chi2Pvalue 

Reactome Regulation of beta-cell development 0.0001576 

Kegg Insulin signaling pathway 0.0001640 

Kegg Arrhythmogenic right ventricular cardiomyopathy 0.0001675 

Reactome Regulation of gene expression in beta cells 0.0002084 

Kegg type II diabetes mellitus 0.0008199 

Kegg Melanogenesis 0.0009231 

Kegg Thyroid cancer 0.0010050 

Kegg Focal adhesion 0.0010122 

Kegg Colorectal cancer 0.0014548 

Kegg Adherens junction 0.0016475 

Reactome Developmental Biology 0.0017427 

Reactome Neuronal System 0.0024329 

Reactome Nuclear Receptor transcription pathway 0.0029706 

Kegg Starch and sucrose metabolism 0.0030355 

Kegg Renal cell carcinoma 0.0032300 

One of the elements from this list is the general type II diabetes mellitus 

pathway from KEGG, which describes the molecular mechanisms involved in this 

disease. This general pathway contains the insulin signalling pathway 

which in turn contains the starch and sucrose metabolism pathway, both 

present in the list. This can help to pinpoint to impact of the variants found by 

VarGen on the general metabolism of type 2 diabetes. 

Three pathways are linked to β-cells, the producers of insulin, which are a key 

component of type 2 diabetes, namely regulation of gene expression 

in beta cells, which in contained in regulation of beta cell 

development, itself contained within the developmental biology pathway. 
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Four pathways are related to cancer, namely, melanogenesis, thyroid 

cancer, colorectal cancer, and renal cell carcinoma. Interestingly, 

the insulin growth factors 1 and 2 are anti-apoptotic hormones and are probably 

necessary for the survival of cancer cells [155]. Epidemiological studies have 

found links between diabetes type 2 and cancer, notably hyperinsulinemia is a 

risk factor for cancer as well as a potential target for therapy [156]. Vella et al. 

observed over-expression of an insulin receptor in thyroid cancer cells [157]. 

Trevisan et al. found that hyperinsulinemia, insulin resistance, and metabolic 

abnormalities are risk factors in the aetiology of colorectal cancer [158]. 

Additionally, type 1 insulin-like growth factor inhibitors have therapeutic value for 

renal cell carcinoma [159]. 

Arrhythmogenic right ventricular cardiomyopathy is a disease that 

may result in heart failure. In cardiomyocytes, Ca2+ are released via insulin action 

on IP3 receptors, which might influence cardiac metabolism and physiology [160]. 

Part of this pathway involves the adherens junction. 

Interestingly, nuclear receptor transcription pathway was also found 

in the pathways related to obesity, this can hint to parallels between the two 

diseases. On a same note, the PPARG gene was found both in obesity and type 

2 diabetes with VarGen. Nuclear receptors have a role in the modulation of insulin 

secretion and lipid induced insulin-resistance [141]. 

Focal adhesion represents the mechanical links between intra and extra 

cellular substrates and is an important step for insulin secretion. 

Another interesting pathway is neuronal system, insulin signalling of the 

central nervous system underlies pathologies such as Alzheimer’s disease [153], 

as mentioned in the analysis of the pathways found for diabetes type 1 (see 

3.5.2.2). 

3.5.2.4 Overlap between the diseases 

The three sets of filtered variants obtained for obesity, diabetes mellitus type 1 

and 2 were intersected by rsIDs. The resulting Venn diagram is available as 

Figure 13. 
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Figure 13: Venn diagram representing the overlap of variants found with VarGen (filtered 

as described in 3.5.1) for obesity, diabetes mellitus type 1 (DM1) and type 2 (DM2). 

Obesity and diabetes type 1 shares only three variant and must have very distinct 

genetic causes. Interestingly, diabetes type 2 shares variants with both obesity 

and diabetes type 1. Studying the overlaps between these different diseases 

might help to understand the common causes of obesity and diabetes, thus 

shedding some light on the genetics of the metabolic syndrome. 

3.6 Conclusion 

VarGen is an easy-to-use, versatile, R package that can quickly retrieve variants 

linked to a disease of interest. It can retrieve known information about well-

studied diseases, while finding new knowledge, as seen with obesity and 

diabetes type 2. It can also help in the discovery of new variants and retrieve 

interesting pathways for less-studied diseases, as seen with diabetes type 1. 

While the variants found still need to be validated by experimental approaches, 

VarGen can speed up the discovery and shortlisting of variants. VarGen is open-

source, and we hope that it will be useful for the research community to infer new 

relationships between variants and diseases.
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4 A two-step Polygenic Risk Score for Body Mass Index 

4.1 Introduction 

Prevention is better than cure. Going one step further, one can even aim at 

tailoring prevention based on each individual’s genetic makeup. This can be 

achieved by studying the genome and how it affects traits. More specifically, if we 

know the impact of DNA variants on a disease, it becomes possible to calculate 

the predisposition of a person to develop this disease. For monogenic traits, such 

as Huntington disease and cystic fibrosis, it is as straightforward as a ‘yes or no’ 

answer since they are caused by mutations on a single gene. However, polygenic 

traits, such as obesity, are affected by the cumulative effect of a multitude of 

variants, across the genome, which makes the estimation of genetic 

predisposition a complex task to tackle. Fortunately, Polygenic Risk Scores 

(PRS) provide a way to summarise, as a single value, the genetic risk an 

individual has of developing a certain disease. This single value is obtained by 

summing all the disease-causing alleles carried by the individual. If available, this 

sum can be weighted by the effect size of each variant, to reflect the varying 

impact of each variant, for a more accurate estimation. 

The first step to perform a PRS analysis is to identify the disease-related set of 

variants that will serve to develop the model. This is not a straightforward task, 

as the variants related to complex traits are often non-coding and affect gene 

expression rather than protein integrity [22]. Fortunately, one can harness the 

knowledge gained from the many Genome Wide Association Studies (GWAS) 

performed this past decade [31] (see 2.1.3.5). 

PRS are also applicable to continuous traits, here it was applied to the Body Mass 

Index (BMI). The goal was to identify individuals more at risk of becoming 

overweight or obese. Prevention can then be targeted to high-risk individuals; diet 

and lifestyle modifications remain the best way to prevent obesity and its many 

adverse health impacts. Obesity is associated with a shorter life span and is a 

risk factor for many other co-morbidities: diabetes, cardiovascular disease, and 

cancer, to name a few. 
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But, is BMI an accurate measure of obesity? Despite the widespread use of this 

index across the world, some criticism has been raised against it. Müller et al. 

[84] made the argument that BMI is an oversimplification of obesity and should 

not be used as a target for GWAS analyses. They argue that BMI is an 

anthropomorphic and not a biological measurement, and additionally, is not 

representative of body shape or fat distribution. Moreover, BMI represents the 

weight at a set time in a person’s life, it would be more accurate, albeit more 

difficult, to study the genetics behind weight control or susceptibility to obesity.  

In response to this argument, Speakman et al. [161] (i) listed the many genes 

linked to obesity which were successfully identified from GWAS targeting BMI (ii) 

mentioned the ease of measuring BMI, which leads to large cohorts, which is key 

to obtain refined GWAS results. Finally, while the argument of BMI being 

oversimplistic is true, it remains representative of body fat percentage in the 

global population, thus stands as an informative avatar of obesity when dealing 

with many individuals. For these reasons, I decided to maintain BMI as the target 

for this PRS analysis. 

Regarding clinical utility, the reader should keep in mind that PRS, on its own, is 

not the panacea of individual risk assessment. First, the risk remains relative 

within the population studied. Second, genetic risk only represents one side of 

the story, complex diseases also involve other factors, such as the environment 

and the microbiome. Third, PRS models usually do not take into account, rare, 

monogenic variants associated with the disease, which are very impactful, albeit 

for a small portion of the population [49]. Despite these limitations, PRS remains 

a powerful tool for understanding and preventing diseases, especially when used 

in combination with other clinical data [49]. 

Here, a new method to refine PRS models will be presented. It is based on the 

use of a second PRS model, based on variants obtained with VarPhen, to 

account for rarer variants. Individuals with an extreme low or high score in this 

second PRS will be readjusted in the original PRS to reflect this second risk 

assessment. This approach was validated on BMI and diabetes.  
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4.2 Methods 

This PRS model was developed following the guidelines from Choi et al. [42]. As 

mentioned in 0, the development of a PRS model requires two sets of data: the 

base dataset, which contains the variants linked to the disease and the target 

dataset, on which the PRS will be applied. Both the target and the base sets are 

using the latest human reference genome, GRCh38. The data were processed 

with plink v1.90 [43] and R v3.6.3. 

4.2.1 Base data: GWAS on obesity 

The base data were obtained from the meta-analysis of 82 GWAS and 43 

Metabochip studies of BMI, performed by Locke et al. [99], amounting to 339,224 

individuals, including 322,154 of European origin. Metabochip is a genotyping 

array customised for the study of metabolic diseases. The summary statistics of 

the meta-analysis were downloaded from the GWAS Catalog (study identifier: 

GCST002783). 

The raw data contained 2,555,086 variants, including the non-significant ones. 

Quality control was performed, by removing duplicated SNPs as well as 

ambiguous SNPs with complementary alleles (A/T and C/G), to avoid any 

possible source of mismatch. After this initial filtering step, 2,160,856 SNPs were 

retained. 

4.2.2 Target data: UK biobank 

The target set is the UK Biobank, a biomedical database containing 

anthropomorphic and genetic information for ~500,000 individuals from the 

United Kingdom (UK), aged between 40-69 years. The participants were recruited 

at one of 22 centres across the UK, between 2006 and 2010 [105]. UK Biobank 

has approval from the North-West Multi-centre Research Ethics Committee (REC 

reference 11/NW/0382). This analysis was conducted under UK Biobank 

application 55079. All the analyses described in this chapter are using the 

baseline data, corresponding to the first visit at the centre. The individuals in UK 

Biobank were genotyped with one of two very similar custom arrays: UK BiLEVE 

Axiom Array or UK Biobank Axiom Array, both consisting of ~800,000 genetic 
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markers [162]. The genotyping data are available under the plink format, namely 

ped, bim and fam files (see 6.2.5C.1). The coordinates of the genotyping were 

based on GRch37, since the base and target data need to be both referring to 

the same version of the human reference genome, the UK Biobank plink files 

were lift-overed to GRch38 with liftOverPlink [163]. 

First, since the base data were obtained from individuals of European descent, 

the UK Biobank data were filtered to only keep individuals reporting their ethnic 

group as ‘British’ or ‘Irish’. This corresponded to more than 90% of UK Biobank. 

This was performed to reduce bias in the PRS, as most variants reported from 

GWAS are not causal but in Linkage Disequilibrium (LD) with the causal variants, 

and this LD pattern depends on population genetic structure [116] (see 2.1.3.5). 

Then, standard GWAS quality control was applied to the target data with plink 

v1.90. SNPs were removed if: their minor allele frequency was lower than 0.01 

(--maf 0.01); their p-value from the Hardy-Weinberg Equilibrium Fisher’s exact 

test was lower than 1e-6 (--hwe 1e-6), since it indicates a higher probability of 

genotyping error; there were missing from more than 1% of the samples (--geno 

0.01). Finally, individuals with more than 5% of missing genotype were removed 

from the analysis (--mind 0.05). 

Including related samples might include bias in the model. Thus, samples with a 

1st or 2nd degree relative also present in the biobank were removed. First, highly 

correlated SNPs were pruned with the parameter –-indep-pairwise 200 50 

0.25, meaning that across a sliding window of 200 variants, sliding by 50 variants 

at a time, SNPs were removed if their Linkage Disequilibrium r² was higher than 

0.25. Then samples with a F coefficient, estimating the level of inbreeding, 

outside 3 standard deviations of the UK Biobank mean were removed. Then, 

relatedness was pre-calculated with the --make-grm-gz parameter, and if two 

samples had a genomic relatedness higher than 0.125, one of the pair was 

removed (--rel-cutoff 0.125). Demographics for the remaining samples 

are detailed in Table 9. 
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Table 9: Demographics for the individuals included in the PRS analysis. 

Number of individuals 373,397 

Age at recruitment (years) 
Median 

IQR (Q1-Q3) 
58 

12 (51 – 63) 

Gender Male 
46% 

(n = 172,264) 

BMI 
Median 

IQR (Q1-Q3) 
26.7 

5.7 (24.1 - 29.8) 

4.2.3 Polygenic risk score calculation 

An important step before calculating the PRS is to remove correlated SNPs while 

keeping the independent causal variants from the GWAS results, a step called 

‘clumping’. The variants from the base set were clumped using the 

aforedescribed processed UK Biobank population for the LD calculations. The 

following plink parameters were chosen: --clump-p1 1 so that all SNPs are 

included for clumping, regardless of their p-value; --clump-r2 0.1 to remove 

SNPs with a r² correlation higher than 0.1; --clump-kb 250 to consider a 250 

kbp window around the current SNP. After clumping, 80,789 independent SNPs 

remained. 

Population stratification is usually a confounder in GWAS analyses and a way to 

alleviate this is to add Principal Components as covariates to the model. The first 

6 Principal Components of the processed UK Biobank dataset were computed 

with plink via the –-pca 6 option. 

For the PRS calculation itself, a range of different p-value thresholds were 

considered, with the --q-score-range option, namely 0.001; 0.05; 0.1; 0.2; 

0.3; 0.4 and 0.5. For example, for threshold 0.2, only the SNPs with a p-value 

between 0 and 0.2 were included in the model. Plink is using the formula 

described in Equation 3 to compute the PRS for each sample. 
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Equation 3: Plink formula to compute the Polygenic Risk Score for sample j. With N being 

the total number of variants, ��� the effect size for SNP i, ���� the number of effect alleles 

observed in sample j, P the ploidy (here 2) and �� the number of non-missing SNPs in 

sample j. 

The best-fit PRS was assessed with the amount of explained BMI variance at 

each threshold. The best-fit of 4.9% explained variance was achieved with the 

0.3 threshold, containing 31,517 variants (see Figure 14). Then, covariates were 

added to the model, i.e.: sex and the 6 Principal Components calculated 

previously. 

 

Figure 14: R2 value obtained for each p-value threshold. For each threshold, a linear 

model of the BMI as a function of the PRS score, sex and the first 6 Principal 

Components was created. The R2 obtained from the model was subtracted by the R2 from 

a null model containing the covariates without the PRS score. 
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The number of participants and SNPs filtered at each step is detailed in Figure 

15. The final PRS model consisted of 373,397 individuals and 31,517 SNPs. 

  

Figure 15: Data preparation workflow for the PRS analysis. For both the base and target 

datasets. The final PRS was based on 373,397 individuals and 31,517 predictors. 

4.2.4 Refining the model with VarPhen 

The PRS defined previously suffers from the same flaw as most of the other PRS, 

its base set, results from a GWAS, is mostly composed of common SNPs. But, 

as mentioned by Torkamani et al. [49] rarer variants can drastically influence 

genetic risk estimations, this could lead to over or under estimation of the actual 

risk for individuals carrying these more impactful variants. 

To alleviate this, a second, unweighted, PRS was implemented using the same 

target set, UK Biobank, but another base set, composed of variants retrieved by 

VarPhen (see 3.2.2.1). The input to VarPhen, listed in Table 10, consisted of 

phenotypes related to obesity and body mass index, and the pipeline retrieved 

12,348 variants. After filtering out InDels, variants with missing risk alleles or 

missing from the target set, the base set was composed of 287 valid predictors. 
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Since VarPhen does not return the effect size, a value of 1 was assigned for each 

SNP, resulting in an unweighted PRS model. 

Table 10: List of phenotypes given as input to VarPhen, in order to get the SNPs related 

to obesity and BMI. 

List of phenotypes 

Obesity Obesity mild early-onset 

Obesity extreme Morbid obesity 

Obesity (early onset extreme) Obesity-related traits 

Obesity early-onset susceptibility to Monogenic Non-Syndromic Obesity 

Obesity due to SIM1 deficiency Obesity autosomal dominant 

Obesity (BMIQ14) susceptibility to Abdominal obesity-metabolic syndrome 3 

Body Mass Index Body Mass Index Quantitative Trait Locus 4 

Body Mass Index Quantitative Trait Locus 9 Body Mass Index Quantitative Trait Locus 10 

Body Mass Index Quantitative Trait Locus 12 Body Mass Index Quantitative Trait Locus 18 

Body Mass Index Quantitative Trait Locus 19 Body Mass Index Quantitative Trait Locus 20 
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4.3 Results and discussion 

For the remainder of this chapter, the PRS based on the GWAS meta-analysis 

by Locke et al. [99] will be referred as the backbone PRS, while the PRS made 

from the set of SNPs obtained with VarPhen will be referred as the VarPhen PRS. 

4.3.1 The backbone PRS for BMI 

The individuals from the target set (UK Biobank) were split into 10 quantiles, each 

containing more than 37,000 individuals, based on their backbone PRS score. 

The BMI mean of each quantile was computed and plotted (see Figure 16). There 

is a clear positive correlation between the BMI and the PRS score, especially at 

the two extreme quantiles. The highest PRS quantile has a BMI mean of almost 

30 which corresponds to an obese state. This indicates that the model can 

accurately estimate the genetic predisposition of an individual to gain weight and 

even identify those most at risk to develop obesity. This was confirmed with the 

development of a linear regression model of BMI as a function of PRSscore, 

resulting in a R2 = 0.049 and a p-value < 2.2e-16. These results are consistent 

with a previous PRS for BMI [164]. 
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Figure 16: BMI mean for each backbone PRS quantile. Each quantile contains ~37,000 

individuals. The bars correspond to the standard error of the mean. 

4.3.2 Readjustment with VarPhen 

The same approach as the backbone PRS was used to visualise the VarPhen 

PRS. The target dataset was split in 10 quantiles and the BMI mean of each 

quantile was computed (see Figure 17). Interestingly, despite being an 

unweighted PRS based on only 287 variants, a good correlation between the BMI 

and the score was observed. A linear regression model of BMI as a function of 

PRSscore resulted in a R2 of 0.0082 and a p-value < 2.2e-16. 
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Figure 17: BMI mean for each VarPhen PRS quantile. Each quantile contains ~37,000 

individuals. The bars correspond to the standard error of the mean. 

The individuals from the lowest (score ≤ 0.429) and highest (score ≥ 0.488) 

quantiles from the VarPhen PRS were assigned to a ‘low-risk’ and ‘high-risk’ 

group respectively. This corresponded to ~74,000 individuals in total (37,076 for 

the low-risk group, 37,256 for the high-risk group). The individuals in the high-risk 

group have more SNPs in common with the VarPhen set, thus are more at risk 

of developing obesity. Next, the individuals from the low- and high-risk groups 

were compared to the rest of the individuals in the backbone PRS, for each 

quantile. Individuals from the high-risk group had higher BMI means at each 

quantile of the backbone PRS (see Figure 18). The opposite was observed for 

the low-risk group. This can be interpreted as the BMI being mostly controlled by 

the common SNPs of the backbone PRS, while some individuals carry a subset 

of SNPs, more impactful, which significantly change their genetic risk. Ignoring 

the results from the 2nd PRS would mean a significant under or over-estimation 

of the genetic risk for these individuals. 
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Figure 18: Mean BMI for each backbone PRS quantile (in orange), with the means of the 

readjusted individuals corresponding to the lowest (in green) and highest (in blue) PRS 

quantiles of the VarPhen PRS. Each quantile contains ~37,000 individuals, and ~7,500 are 

readjusted per quantile. 

Interestingly, the low- and high-risk individuals are split across the whole 10 

quantiles of the backbone PRS (see Table 11), showing the complementarity of 

the two models. However, most of the individuals mapping to a low quantile in the 

backbone PRS are also mapping to a low quantile in the VarPhen PRS (the same 

reasoning applies to the high quantiles). This suggests that the two PRS are 

correlated despite measuring complementary genetic risks, this is expected, 

since the two PRS are sharing some predictive SNPs (see 4.4.1). 
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Table 11: Overlap of the individuals between the backbone quantiles and the VarPhen 
(VP) quantiles 

 VP 
Q1 

VP 
Q2 

VP 
Q3 

VP 
Q4 

VP 
Q5 

VP 
Q6 

VP 
Q7 

VP 
Q8 

VP 
Q9 

VP 
Q10 

Backbone 
Q1 

5475 4716 4318 4184 3643 3536 3520 2906 2767 2274 

Backbone 
Q2 

4714 4347 4167 4183 3685 3545 3750 3162 3107 2679 

Backbone
Q3 

4271 4162 4028 4172 3688 3651 3887 3228 3212 3041 

Backbone
Q4 

4032 3898 3941 4039 3610 3630 3928 3407 3470 3385 

Backbone
Q5 

3861 3745 3684 4018 3637 3629 4074 3489 3614 3589 

Backbone
Q6 

3502 3708 3723 3939 3605 3594 4077 3618 3791 3782 

Backbone
Q7 

3286 3583 3614 3972 3670 3701 4096 3536 3873 4009 

Backbone
Q8 

3015 3311 3401 3952 3541 3763 4146 3744 4141 4327 

Backbone
Q9 

2771 3153 3391 3717 3536 3732 4138 3932 4259 4708 

Backbone
Q10  

2412 2730 3058 3523 3309 3616 4375 4011 4767 5539 
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4.4 Discussion and limitations 

4.4.1 Addressing the independence of the two sets 

Following a discussion with Dr Alex Gutteridge (Enedra Therapeutics), a point of 

concern arose concerning the independence of the two models. Indeed, some 

SNPs are shared between the two base sets (see Figure 19) which might suggest 

that the readjustment was not genuine but stemmed from running a similar PRS 

on the same individuals. 

 

Figure 19: Venn Diagram of the shared predictive SNPs used in the two PRS models 

To assess if the readjustment signal was due to an actual effect from the VarPhen 

SNPs, the same analysis was done but without any SNP in common between the 

two sets, including SNPs with a LD r2 > 0.1. First, the SNPs from both sets were 

merged and their LD correlation was calculated with plink using the --ld-snp-

list and –-r2 options. This resulted in 77 independent SNPs, which were then 

used as the base set for the VarPhen PRS. The same steps as 4.3.2. were 

applied, to readjust the extreme individuals from the VarPhen PRS across the 

quantiles from the backbone PRS. 

As seen from Figure 20, the readjustment effect did not disappear when the two 

PRS are built using two independent sets of SNPs, which confirms the 

genuineness of the readjustment from the VarPhen PRS. The observed 
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readjustment was less impactful, which is expected since the VarPhen PRS was 

built using less SNPs. 

 

Figure 20:The backbone PRS quantiles with the readjusted individuals corresponding to 

the lowest (in green) and highest (in blue) PRS quantiles of the independent VarPhen 

PRS analysis. Each quantile contains ~37,000 individuals, and ~7,500 are readjusted per 

quantile. Here, the VarPhen PRS base set only contained SNPs that were not in LD with 

the backbone base set. 

The reader should keep in mind that the 2nd PRS does not have to be independent 

from the 1st PRS. The base set for the 2nd PRS should contain SNPs that are 

linked to the trait in different databases or the literature, to complement the sets 

of SNPs obtained from GWAS analyses, regardless of their overlap. 

4.4.2 PRS models and pleiotropy 

Pleiotropy happens when a locus is affecting two or more unrelated traits. 

Personalised medicine, including personalised nutrition, will benefit from 

increased knowledge about pleiotropy, which is currently scarce. Indeed, this will 
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both help to (i) better understand the genetics of disease and (ii) design better 

therapeutic strategies, e.g. the repurposing of drugs [165]. Large scale resources 

and projects, such as The International Mouse Phenotyping Consortium will help 

in this regard [166]. 

To investigate pleiotropy from the backbone PRS model for BMI, the variants that 

were used to build it were queried against BiomaRt (see 3.3.5), to retrieve other 

phenotypes they might be involved with. Concretely, the phenotype_name and 

phenotype_description attributes from the Ensembl Variation Mart were retrieved 

and subsequently filtered, based on snp_filter, using rsIDs from the PRS model 

as filtering values. 

Of the 31,517 queried SNPs, ~10% (3,047) were associated with a phenotype in 

BiomaRt.  The query returned 1,973 unique phenotypes, of which, 65% (1,224) 

had a single SNP in common with the PRS model. Some of the phenotypes were 

directly related to body mass index or obesity and were removed, to focus on 

pleiotropy. 

After filtering, 1,880 unique traits were left, and the phenotypes with the most 

shared SNPs with the PRS model for Body Mass Index were Height, Cancer 

(notably leukemia), and some were directly or indirectly related to the metabolic 

syndrome: Type 2 diabetes, Blood pressure, Coronary Artery Disease, 

Apolipoprotein levels, and Cholesterol levels (see Figure 21). These results could 

imply the existence of shared genetic risks between the different traits 

characterising the metabolic syndrome. Future work could focus on assessing if 

individuals at high genetic risk for obesity are also at high-risk for other metabolic 

syndromes, if this is the case it could indicate that obesity is not only a risk factor 

for these diseases but also shares genetic roots with them. 
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Figure 21: Treemap of the phenotypes having more than 40 SNPs in common with the 

Polygenic Risk Score model for Body Mass Index. The phenotypes were retrieved with 

BiomaRt, using the rsIDs as filters. For each trait, the number of SNPs shared with the 

PRS is shown in parenthesis. 

Some SNPs are involved with many traits, e.g., rs1260326 is involved with 145 

phenotypes while rs13107325 is involved with 95. These SNPs might be useful 

to understand key pathways and mechanisms shared between traits. Accounting 

for pleiotropy could also help in identifying “subtypes” of risk in PRS. For example, 

different therapeutic strategies could be designed for someone which is at high-

risk for both obesity and coronary artery disease compared to someone at high-

risk for both obesity and Diabetes type 2. 
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4.4.3 Validation with another trait 

The two-step PRS approach was validated with another trait: diabetes mellitus 

type 2. 

The base data were generated from the summary statistics of the following 

GWAS Catalog study: GCST006867. Shortly, Xue et al. [28] performed a GWAS 

analysis for diabetes mellitus type 2 based on individuals from three datasets: 

Genetic Epidemiology Research on Aging (GERA), DIAbetes Genetics 

Replication and Meta-analysis (DIAGRAM) and UK Biobank. Their analysis was 

based on 659,316 individuals, including 655,666 of European origin, and the raw 

summary statistics contained 5,052,918 SNPs. The same filtering steps as for 

BMI were used, namely duplicated SNPs and ambiguous SNPs with 

complementary alleles (A/T and C/G) were removed, to avoid any possible 

source of mismatch. After this initial quality control step, 4,280,711 SNPs 

remained. 

The target data are the processed UK Biobank, as described in 4.2.2. For the 

phenotype, an individual was considered as having diabetes if it was diagnosed 

by a doctor (data field: 2443). The processed target data contained 17,763 cases 

and 354,790 controls. 

The clumping of the variants (see 4.2.3) resulted in 68,543 variants. As before, a 

range of different p-value thresholds were applied to find the best model, as 

assessed by the amount of explained variance. The threshold of 0.4 resulted in 

the most explained variance and was used to build the PRS model, which was 

composed of 42,061 variants. Figure 22 presents the results of the PRS, with 

higher quantiles having higher percentages of individuals with diabetes, showing 

that the model accurately estimates the genetic risk for diabetes. 
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Figure 22: Prevalence of diabetes for each quantile of the backbone PRS. Each quantile 

contains ~37,000 individuals. 

As before, a second, unweighted PRS based on VarPhen was performed. The 

list of phenotypes entered as input to the pipeline is available in Table 12. This 

resulted in a PRS model with 290 variants. The prevalence of diabetes for each 

quantile of this model is presented in Figure 23. As expected, the model based 

on VarPhen was not as performant as the backbone PRS, since it is unweighted 

and relies on fewer variants. However, this model was still effective for the risk 

readjustment of the individuals from the extreme quantiles, as will be detailed 

below.  
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Table 12: List of phenotypes given as input to VarPhen, in order to get the SNPs related 

to diabetes mellitus type 2. 

List of phenotypes 

Diabetes Mellitus Diabetes mellitus type 2 

Type 2 diabetes Insulin-resistant diabetes mellitus 

Diabetes mellitus type 2 susceptibility to Type 2 diabetes mellitus 

Diabetes Mellitus Noninsulin-Dependent with 
Acanthosis Nigricans and Hypertension 

Diabetes mellitus noninsulin-dependent 
association with 

Diabetes mellitus noninsulin-dependent 
modifier of 

Diabetes type II susceptibility to 

Type 2 diabetes mellitus 5 susceptibility to 
Diabetes mellitus noninsulin-dependent 

maternally transmitted 

  

Figure 23: Prevalence of diabetes for each quantile of the VarPhen PRS. Each quantile 

contains ~37,000 individuals. 

As before, the individuals from the lowest (score ≤ 0.454) and highest (score ≥ 

0.509) quantiles of VarPhen PRS were assigned to a ‘low-risk’ and ‘high-risk’ 

group respectively. The prevalence of diabetes was calculated for the low- and 

high-risk groups for each quantile of the backbone PRS. The results are 
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presented in Figure 24, as expected the low-risk group has a lower prevalence of 

diabetes than the whole corresponding quantile, which itself has a lower 

prevalence than the high-risk group. This is even more significant for the highest 

quantile. 

  

Figure 24: Prevalence of diabetes for each backbone PRS quantile (in orange), with the 

prevalence of the readjusted individuals corresponding to the lowest (green) and highest 

(blue) PRS quantiles of the Varphen PRS. Each quantile contains ~37,000 individuals, 

and ~7,500 are readjusted per quantile. 

The results from the backbone PRS might be inflated since the base and target 

sets share some individuals in their analyses (from UK Biobank) [42]. This is a 

limitation of the backbone PRS but does not affect the main argument from this 

validation analysis. Indeed, these results still demonstrate the validity of the two-

step PRS approach to readjust the risk for certain individuals based on a set of 

confirmed SNPs. 
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4.4.4 Discussion 

The backbone PRS based on the GWAS results from Locke et al. [99] provided 

an accurate estimation of the genetic risk linked to obesity within the UK Biobank. 

Thus, it can be used as a powerful tool to personalise prevention, for example 

diet and exercise advice can be given in anticipation to high-risk individuals. 

However, this PRS alone was not enough to accurately estimate the risk for every 

individual. To alleviate this, the second PRS, based on the VarPhen SNPs, was 

developed to readjust individuals across the whole range of risks from the 

backbone PRS. This highlighted the need to integrate variants obtained from 

different sources to a PRS analysis to make a refined prediction. Nevertheless, 

despite all our efforts, any PRS on obesity will remain imperfect until we have a 

complete understanding of the genetics behind obesity and body weight control. 

However, the reader may wonder, why not simply merge the two PRS instead of 

creating a two-way scoring system? As we have seen, the VarPhen PRS is a 

weak predictor of the genetic risk (both for BMI and diabetes), so merging the two 

PRS would only render the backbone PRS less accurate. But the VarPhen PRS 

is still useful to identify extreme individuals which might benefit from a 

readjustment. For diabetes, this translated to almost a doubling of the risk 

between the low- and high-risk groups for the highest quantile (and this quantile 

is the most interesting for prevention purposes). This shows the great benefit of 

refining the prediction instead of just assigning one score. For BMI the 

readjustment was more linear, but individuals from the low- and high-risk groups 

have BMI means similar to those of the neighbouring quantiles, sometimes even 

more. 

This PRS model can only be applied to data generated through the Nutrishield 

project’s clinical trials, if the genetic risk associated with BMI is stable across the 

lifespan of an individual. Indeed, Nutrishield is focusing on children, while the UK 

Biobank is composed of individuals aged between 40 and 70. Fortunately, results 

from several studies suggest a stable genetic component of BMI [164] [167], 

meaning that genetic risk estimation is transposable between different age 

groups. 
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A similar approach of combining the predictions from rare pathogenic variants 

and PRS was successfully applied previously, for BMI [168] and prostate cancer 

[169]. Here, the methodology differs in the fact that we are not manually gathering 

rare pathogenic variants from the literature, but trait-associated variants from 

public databases, both approaches having pros-and-cons. Our approach is more 

straightforward to implement and gather more variants but may lack the finesse 

of manually selecting variants. 

For future studies, this method would benefit from being tested and validated 

against other cohorts and traits. 

4.4.5 Limitations 

Limitations pertaining to PRS models in general have been described in 0, here 

we will focus on the limitations specific to this analysis. 

The utilisation of the VarPhen PRS carries two limitations. First, the variants 

retrieved are limited to those present in the public databases, thus this approach 

works best for well-studied diseases. Second, VarPhen does not return the effect 

size of the SNP, which constraints us to an unweighted PRS. Moreover, all SNPs 

are considered pathogenic, even those who are protective. Note: the last point 

can be partially avoided by removing SNPs annotated with a ‘protective’ clinical 

significance. 

There is another limitation spawning from the base set, which was performed 

mostly on individuals of European ancestry. Since the causal variant is unlikely 

to be directly genotyped, GWAS only identify variants that are in Linkage 

Disequilibrium with it (see 2.1.3.5). And as this pattern of associations between 

variants is population specific, this prevents the generalisability of this PRS model 

to other ethnicities. This can lead to exacerbated inequalities in care [170]. 

Indeed, when the PRS model was applied to the other ethnicities present in the 

UK Biobank, there were a lot of discrepancies between the risk score and the 

actual BMI (see Figure C.2-1). Only GWAS performed on a variety of ethnic 

backgrounds or using Whole Genome Sequencing can alleviate this issue. 
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The sex chromosomes were ignored in this analysis, as (i) they are particularly 

challenging to analyse and might lead to misinterpretations [171]; and (ii) the 

GWAS meta-analysis used as the base data only contained six variants on the X 

chromosome. However, the PRS models presented here would benefit from 

including variants from the sex chromosome, according that proper care is given 

to the statistical analysis and interpretation of their effect on BMI. 

4.5 Conclusion 

Here, a PRS model was developed which successfully identified the genetic risk 

associated with BMI in the UK Biobank population. The model was expanded with 

the use of a second, unweighted PRS, which helped in refining the risk of 

developing a higher or lower BMI in a subset of individuals. 

This approach can be easily translated to any phenotype queried using VarPhen, 

as demonstrated with diabetes mellitus type 2. And as our knowledge about 

different traits will grow, so will the content of public databases, which will further 

strengthen this two-step approach. 

The release of Whole Genome Sequencing (WGS) data for the UK Biobank 

participants, planned for 2022, will allow to overcome most of the limitations 

described previously. For now, the PRS model is limited by the incomplete 

overlap between the variants obtained from the GWAS and the UK Biobank 

arrays. With good quality WGS, it will be possible to account for every variant and 

the PRS will only be bounded by our understanding of the disease. If future 

GWAS are also based on WGS, then the benefits would add up to allow for a 

virtually perfect estimation of the genetic risk associated with BMI, for any 

population.
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5 Conclusion and thoughts on the use of genetics for 

personalised nutrition 

5.1 Conclusion 

Personalised nutrition currently remains at its early stages of development but 

shows the potential of improving the health of the general population, at a time 

when diabetes and obesity are becoming worldwide epidemics. However, it will 

need to be based on rigorous scientific research, as well as being accompanied 

by public policies and ethical considerations. 

Understanding the impact of the diet on health involve diverse biological 

pathways, which can be studied at different levels. Certain risk factors originate 

from the genome, others appear in the metabolome, microbiome or at the protein 

level. Sometimes, these different layers also interact and influence each other, 

rendering the picture even more complex. Even when considering a single 

knowledge level, such as genomics, the data and findings are often stored in 

different formats, making their interpretation challenging. Creating standards and 

tools to merge these datasets will be necessary if we want to harness the full 

potential of what is, and will be, available in public databases. We hope that 

VarGen will be useful as an easy-to-use package to merge data from OMIM, 

GTEx, GWAS and FANTOM5, facilitating the study of the impact of variants on 

disorders. 

Polygenic risk scores (PRS) have a high potential for both improving prevention 

and furthering our understanding of diseases. The models will become stronger 

and more accurate as our molecular knowledge about diseases will increase. As 

shown in this thesis, PRS models can be improved by including variants from 

different sources, not only GWAS results, and tools such as VarGen can help in 

this regard. The concept of PRS can be further improved for the study of 

endotypes. Indeed, some studies are developing ‘partitioned PRS’, where SNPs 

are categorised by mechanisms, which helps in categorising the risk according 

to different facets of each disease. A similar concept was elaborated by McCarthy 

in his ‘palette’ of diabetes [172]. Instead of compartmentalising diabetes into 
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discrete endotypes, the idea is to list pathways affecting diabetes pathogenesis 

and assess each patient according to each pathway. Some patients will have a 

high risk in one category, akin to a monogenic form of diabetes, while others will 

have moderate risks across a range of different pathways. Indeed, some 

endotypes of diabetes are sharing common risk factors, and in such cases the 

boundaries between discrete endotypes become blurred. Prevention and 

treatment can be tailored per affected pathway instead of per diabetes type, 

moreover, it is easier to design a drug targeting a precise malfunctioning 

biological process than a whole endotype. The main challenge with this approach 

is to identify and define the exhaustive list of pathways that will compose such a 

‘palette’. 

Fortunately, ambitious projects, such as GTEx, UK Biobank or large GWAS are 

really pushing our genetic knowledge of diseases forward. These projects allow 

for research on a scale that was never seen before and give researchers a strong 

foundation to test hypotheses and obtain statistically solid results. 

5.2 Limitations 

VarGen is limited by the content of public databases. The output of the main 

pipeline can also be overwhelming, as hundreds of thousands of variants are 

retrieved for complex diseases. There is also a need for experimental validation 

of the variants of interest detected by VarGen, as the link between a variant and 

a disease is hypothetical. 

Future versions of VarGen could benefit from novel functionalities and 

improvements to existing ones. Adding an SQLite database would allow VarGen 

to manage complex data types, instead of just outputting a table of variants and 

annotation. For example, variants retrieved from the GWAS Catalog could have 

information about the study they originate from, their associated p-values and 

effect size. The annotation of variants could also benefit from the SQLite 

database, with detailed information about each field, for example the ClinVar 

significance could be accompanied by information about supporting evidence 

(e.g.: publications, submitters). 
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Other datasets could be added to VarGen’s pipeline, for example the Genome 

Aggregation Database (gnomAD) [173] is a project aiming at aggregating and 

harmonising genome sequencing data from an assortment of studies and 

consortiums. GnomAD contains a short variant data set, with the latest version, 

v3.1, containing 76,156 genomes aligned against GRch38. VarGen could use this 

database to obtain Allele Frequencies for SNPs in different populations. This 

could help to study the impact of loss-of-function mutations on genes, as these 

mutations are often deleterious and thus sustained at a low-frequency in human 

populations [173]. 

VarGen would benefit from integrating information from developed PRS models. 

More specifically, for a certain trait, it would be interesting to compare the variants 

retrieved by VarGen and those used in one or more PRS models for the same 

trait. The variants retrieved by VarGen would have the added information about 

their predictive relevance (as part of one or more PRS models) and the variants 

effect size, while the variants from the PRS models would have added information 

from the annotation retrieved by VarGen. This could facilitate in-depth analyses 

of PRS models to identify the most relevant variants and/or help in identifying the 

variants that classified an individual in a high-risk group. Indeed, we can suppose 

that some high-risk individuals are in this category because of the accumulation 

of a lot of small impact variants, while others might have less but more impactful 

variants (and all the other combinations in-between). Integrating data from 

genotyping, annotation from VarGen and PRS models could allow this kind of in-

depth analysis of genetic risk. The PGS Catalog, a database of more than 2,000 

PRS models for 535 traits, is accessible via a REST API and could be integrated 

within VarGen’s pipeline [174]. 

There are several limitations associated with PRS models. First, they are not self-

sufficient as clinical predictors, their strength is in complementing other risk 

factors. Secondly, since most of the base datasets available are based on 

genotyping chips, the variants detected are not causal. This hinders both the 

interpretation of the PRS models to understand the genetic roots of diseases and 

the generalisation of the models to other populations. The estimated risk is also 
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relative within the target set; all these limitations does not allow the use of PRS 

in a clinical setting yet. 

For both VarGen and the two-step PRS approach, one of the limitations is the 

lack of consideration of structural variants, such as copy number variations or 

large deletion, insertion, or inversions. There is increasing evidence of the impact 

of these type of variants in gene regulation and the pathogenesis of certain 

diseases. But, as with non-coding SNPs, the difficulty lies in the interpretation of 

the variants’ consequences. 

5.3 Thoughts on the future personalised medicine/nutrition 

The field of precision medicine is moving forward rapidly. Diseases are more 

finely described, notably via the identification of endotypes. This will translate into 

better understanding of these diseases, which in turn, will translate into better 

management. Going further, research should focus on considering complex 

diseases as continuous, as there are often overlaps between endotypes and such 

categorisation is sometimes not enough to accurately represents the reality of the 

underlying biological processes. In addition, there is a growing interest in finding 

shared pathways between diseases, with the aim of finding shared targets, 

allowing the repurposing of existing drugs. 

PRS models will play an important role in the future of personalised medicine. 

Especially as sequencing will become more accessible and less expensive. 

Despite their limitations, presented above, they remain a powerful tool to both 

understand diseases and performing informed prevention. The approach of 

partitioned models will increase the potential of PRS to be used as tools to 

comprehend disease endotypes. Moreover, the use of whole genome 

sequencing to perform GWAS will solve most of the issues mentioned above, as 

it will allow the detection of causal variants, instead of just variants in LD with the 

causal variants. Knowing the causal variants will make the PRS models more 

accurate and generalisable across populations, which will increase their clinical 

usefulness. 
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However, PRS models on their own will probably still be not enough to make a 

reliable estimation of risk. There will be a need to merge data from multiple 

sources, such as clinical data, microbiome sequencing, or multi-omics 

measurements. Multi-omics approaches are increasingly being used in the field 

of personalised medicine, and tools are designed to handle this heterogeneous 

input, such as the Multi-Omics Factor Analysis tool [175]. This increasing 

complexity and heterogeneity in data and analysis highlight the need of a cross-

disciplinary approach to science, and the importance of bioinformatics to bridge 

the gap between the different fields. As data will become more diverse, tools such 

as VarGen will be needed to merge information from different sources and draw 

a clear picture of the links between the different layers of -omics and the 

phenotype. 

Projects, such as Nutrishield, which include a wide variety of data, will be 

necessary to advance the field. The original aim behind the development of 

VarGen and the PRS models, was to apply and validate them through the 

Nutrishield project’s clinical trials. Unfortunately, due to Covid-19 and the 

resulting delays in the project, it was not possible to do it throughout the course 

of this thesis. Applying and validating VarGen and the PRS models through the 

clinical trials remains a core objective of future work based on this thesis.  

More precisely, one important point to move forward is the interpretability of non-

coding and structural variants. Personalised medicine will greatly improve if tools 

and methods are developed to reliably assess the impact of such variants on 

biological pathways. This, for example, will avoid the misinterpretation of variants 

impacting distal genes, such as rs1421085 T-to-C on FTO which over-expresses 

IRX3 and IRX5 in obesity (see 2.3.4.2). 

As the diabetes and obesity epidemics will continue to progress, the necessity for 

personalised nutrition will increase. It can be a key element of the solution to curb 

the rise in cases and keep the general population healthy. However, it will be not 

enough on its own, and will need to be accompanied by public policies to render 

our societies less obesogenic, even if more research is needed to fully 

understand the intricacies of the impact of our environments on obesity [176].  
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There will also be ethical questions to debate. Should we sequence everyone, or 

just individuals suspected with genetic diseases? WGS is showing promises 

towards better care, especially for rare and acute diseases. A study from the 

NICUSeq Study Group demonstrated the impact of WGS in getting a change of 

management faster for acutely ill infants [177]. Moreover, rare diseases can 

sometimes leave families in a ‘diagnostic limbo’ for years, and sequencing has 

the potential to shorten this period of uncertainty, via genetic diagnostics. While, 

using WGS for rare diseases is generally accepted and show great potential, the 

same cannot be said for ‘general prevention’, especially for complex diseases. 

First, the genetic background of most complex diseases is not well defined yet. 

Indeed, they are often due to many variants, providing varying degrees of risk, 

including protective variants. The results of broad genetic tests can therefore be 

difficult to interpret. Second, the genotype is not the only factor affecting disease 

risk, the environment, lifestyle, microbiome, often play an equal or even greater 

role than the genotype, which add another layer of potential misinterpretation of 

the results. Third, there is the ethical question of shared family risk, i.e., “when 

we obtain a positive result, should family members at risk of developing the same 

disease, be warned?”. This is a complex question involving the patient’s rights to 

privacy, the family members’ rights to know, and the burden/benefice ratio of 

informing people about their genetic risks, especially for debilitating diseases 

[178]. Finally, genetic data are very sensitive by nature, and it is necessary to 

protect the confidentiality of genetic results, to avoid discrimination by insurance 

companies, employers, and society in general [178]. 

Thus, precision medicine and nutrition will become very important in the next 

decades, but they should be rigorously implemented, need collaboration from 

multiple scientific fields and should be accompanied by societal and ethical 

considerations, to be exploited to their full potential. 
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6 MicroRNA differential expression analysis for 

Hypoxic-Ischemic Encephalopathy 

Throughout the course of my PhD, I performed a differential expression analysis 

in collaboration with one of the Nutrishield partners, Hospital Universitari i 

Politècnic La Fe, located in Valencia, Spain. The aim of this study was to identify 

microRNAs that could serve as biomarkers for early detection of severe cases of 

Hypoxic-Ischemic Encephalopathy (HIE). This chapter will provide a short 

literature review about miRNAs and a description of the differential expression 

analysis. 

6.1 Background on microRNAs 

6.1.1 Definition and discovery 

MicroRNAs (miRNAs) are small non-coding RNAs, about 20~24 nucleotides long. 

They are too short to code for proteins but have an important role in gene 

expression. It is estimated that they regulate at least 60% of the human genes 

[179] [180]. The first miRNA was discovered in the nematode Caenorhabditis 

elegans in 1993. Named lin-4, it regulates the lin-14 messenger RNA, which is 

involved in the transition from the larval stage 1 to the larval stage 2 [181]. The 

second one was found seven years later, also in C. elegans, labelled let-7, it 

regulates the lin-41 messenger RNA (mRNA) which is involved in the transition 

from the larval stage 4 to the adult stage [182]. The same year, let-7 was also 

found in other animals (flies, humans, zebrafish…) which suggested a conserved 

role of this miRNA across animal phylogeny [183]. In 2001, many more of these 

small RNAs were found, in different species [184] [185] [186], and the term 

‘microRNA’ was coined to label them as a different class of non-coding RNAs. 

6.1.2 The miRNA biogenesis in animals 

In animals, the miRNA biogenesis starts in the nucleus. The DNA locus 

containing the miRNA is transcribed into a primary transcript. Then the Drosha 

protein cleaves the primary transcript to generate the pre-miRNA hairpin 

structure, an example of hairpin is available in Figure 25. The hairpin is 

transported outside the nucleus, where the Dicer protein removes the loop from 
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the hairpin. At this stage, the miRNA consists of a miRNA duplex containing two 

strands: 5’ and 3’ (alternatively called mature and star). One of these strands will 

associate with the Argonaute protein to form the RNA-induced silencing complex, 

which will be guided to its target mRNA and influence its expression [187]. Hence, 

the miRNAs can be studied in two different forms: the pre-miRNA hairpin (or 

precursor) and the mature sequence. 

 

Figure 25: Example of a miRNA hairpin (hsa-miR-3134). After the cleavage by Dicer, the 

mature sequence, highlighted in red, will form the silencing complex with the Argonaute 

protein. Figure generated with miRDeep2. 

6.1.3 The regulation of mRNAs by miRNAs in humans 

First, the silencing complex, formed by the miRNA mature sequence and the 

Argonaute protein, pairs with the mRNA. The pairing is based on the ‘seed’ of the 

mature sequence (nucleotides 2 to 7) and the target site on the mRNA, often 

located in the 3’ untranslated region. As mentioned in Section 6.1.1, more than 

60% of the human genes are regulated by miRNAs, and the mRNAs are under 

selective pressure to conserve these pairing sites [179], which denotes their 

importance. In animals, the miRNAs are affecting post-transcriptional regulation 

of gene expression via two main processes: (i) reducing the stability of mRNAs 

and (ii) hindering the translational machinery. 

(i) Once the silencing complex is attached, it recruits the TNRC6 (also 

called GW182) protein which interact with the poly-A binding protein 

(PABP) from the mRNA poly(A)-tail, resulting in the destabilisation of the 

mRNA and decapping of the 5’, thus enabling the degradation of the 

mRNA. In addition, the silencing complex will recruit the deadenylase 

complex to speed up the degradation [188]. 
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(ii) Translation inhibition by the silencing complex involves different 

mechanisms: TNRC6 competes with elF4G, thus disturbing the 

circularisation of the mRNA, which is an important component for an 

efficient translation; in parallel the silencing complex associates with eIF6 

to prevents the formation of 80S ribosomes by blocking the combination 

between the 60S and 40S ribosomes [189] [190]. 

MiRNAs can also alter the regulation of genes via another process, called site-

specific cleavage, however this requires a perfect match with the target mRNA 

and is much less common in mammals. 

The number and efficiency of the different target sites of a specific mRNA, 

coupled with the fact that some miRNAs are specific to certain cells, allow for 

complex and nuanced patterns of gene regulation by miRNAs [191]. 

6.1.4 The impact of miRNAs on development and health 

MiRNAs are regulating a wide range of genes, which makes them involved in 

many different processes [192]. miRNAs are essential to the development of 

organisms. As mentioned before (see Section 6.1.1), lin-4 and let-7 are regulating 

the transition between larval stages in C. elegans [181] [182]. Removing the Dicer 

protein from zebrafish, thus altering the processing of miRNAs precursors, 

stopped brain morphogenesis in embryos [193]. MiRNAs play a role in certain 

diseases, non-exhaustive examples include, mutations in the seed region of hsa-

miR-96 causing progressive hearing loss in both human and mouse [194] [195] 

and cancer related miRNAs, either promoting tumour growth [196] or acting as 

tumour suppressors [197]. 

6.1.5 IsomiRs 

Many miRNAs have alternative forms, called isomiRs, which differs by one or 

more nucleotides at the 5’ or 3’ end of their sequence. These isomiRs are 

generated by a variability in the cleavage performed by Dicer or Drosha [198]. 

The human trans-activation response RNA binding protein has been shown to 

generate isomiRs that are one base longer than the canonical sequence, which 

can affect guide strand selection and thus mRNA targeting [199]. 
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6.1.6 The bioinformatics of miRNA: tools and challenges 

Many bioinformatics tools have been developed in recent years to answer for the 

growing interest in the study of miRNAs [200]. This part will focus on the tools 

used for differential expression analysis. 

Several databases have been created to store the knowledge gained on miRNAs. 

One of the most comprehensive is miRBase [201], which contains ~50,000 

miRNAs for 271 organisms. Each entry corresponds to a predicted precursor, 

with information about the locations and sequences of the mature forms. The 

database is available in fasta format, which facilitate its inclusion in analysis 

pipelines. 

Several tools have been developed to quantify miRNAs from high-throughput 

sequencing data, such as miRDeep2 [202]. One should also keep in mind that 

different precursors can result in the same mature sequence (see Figure 26), in 

which case the strategy to use for quantification differs. If the interest lies in the 

precursor sequences, then they should be considered as separate entities, 

however if one is interested in the mature sequences then their read counts from 

all the corresponding precursors can be averaged. 

 

Figure 26: Sequences of miRNA precursors hsa-mir-101-1 and hsa-mir-101-2. The mature 

sequences of both, here highlighted in red, are the same. 

It is becoming standard to identify novel miRNAs before running the quantification 

step. The tool miRDeep2 can also be used for that purpose. To understand the 

 hsa-mir-101-1 

 

   u   cuggc                  a    gucua  
5'  gcc     ucaguuaucacagugcug ugcu     u 
    |||     |||||||||||||||||| ||||       
3'  cgg     agucaauagugucaugac augg     u 
   a   uagga                  -    aaauc  
 

hsa-mir-101-2 

     ug  c                    c a    guaua  
5' ac  uc uuuuucgguuaucaugguac g ugcu     u 
   ||  || |||||||||||||||||||| | ||||       
3' ug  gg aagaagucaauagugucaug c augg     c 
     gu  u                    a -    aaagu  
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biological implications of novel miRNAs, it is possible to perform target prediction 

based on the novel miRNA sequence, for example with miRDB [203]. For the 

differential expression analysis itself, the same tools as used for standard RNA-

seq are suitable, notably the popular R packages EdgeR [204], limma [205] and 

DESeq2 [206]. 

One of the major bioinformatics challenges in miRNA analysis is the alignment of 

reads against a reference. Indeed, aligners are not designed to align such short 

sequences, and in addition, many miRNAs are part of families with very similar 

sequences. This can be alleviated with the use of specific aligners and alignment 

parameters [207]. 
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6.2 Differential expression analysis of miRNA in neonates with 

Hypoxic-Ischemic Encephalopathy 

6.2.1 Introduction 

Hypoxic-Ischemic Encephalopathy (HIE) is a brain injury caused by a lack of 

oxygen and glucose delivery to the brain. The prevalence of HIE is around 2-3 

per 1000 live births, rising up to 26 per 1000 in developing countries [208]. The 

consequences of HIE are serious, with a quarter of the affected neonates dying 

in intensive care units, this is the leading cause of death and morbidity in 

newborns worldwide. Severe HIE can also have long term effects on the motor-

sensory functions, inducing visual, behavioural and auditory problems as well as 

seizures and cerebral palsy [209]. Infants with moderate HIE will develop 

normally, until they reach 2 years of age, where half of them will develop a 

disability. Beside, all children with HIE, notwithstanding the severity, are at risk of 

academic problems [210]. In preterms, HIE progression is more complex and 

tends to lead to worse outcomes [211]. 

The aetiologies of HIE are multiple but can be arranged in three main categories: 

repeated hypoxia, representing 65% of the cases, acute catastrophic asphyxia, 

representing 25% of the cases and chronic hypoxia, representing 10% of the 

cases (see Figure 27). The first two happen at birth, while chronic hypoxia is 

antenatal; in some cases HIE is due to a combination of these insults [210]. 

The brain injury does not occur at the onset of the insult but happens after a 

cascade of events happening in distinct phases, spanning days or even weeks. 

Table 13 describes the different phases of HIE with their own time frame and 

consequences [208] [210]. Interestingly, when the hypoxia is not severe, the brain 

can reduce its energy consumption to avoid energy depletion and the resulting 

brain cell damage. 
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Table 13: Description of the Hypoxic-Ischemic Encephalopathy phases 

Phase name Time frame Consequences 

Acute phase 
At the time of 

the insult 

Decreased cerebral blood flow, inducing a decrease in 

adenine triphosphate, (i.e.: energy failure), leading to 

cellular damage and ultimately cell death. 

Latent phase 
1 - 6 hours 

after the insult 

Brain cells undergo partial recovery. This is the phase 

where therapeutic hypothermia is most effective. 

In parallel, inflammation appears and there is a 

continuation of the apoptotic cascades initiated during 

the acute phase. 

Secondary phase 
6 – 48 hours 

after the insult 

Happens in neonates with moderate to severe injury. 

Induced by failure of mitochondrial activity, which lead 

to further cell death, cytotoxic edema, excitotoxicity and 

clinical deterioration (e.g.: seizures). 

Tertiary phase 
Months after 

the insult 

Characterised by latent cell death, remodelling of the 

brain and astrocytosis. 

 

 

Figure 27: Sankey plot representing the aetiology of neonatal Hypoxic-Ischemic 

Encephalopathy. The first column represents the events that can lead to hypoxia (without 

relevant proportion). The second column represents the three main type of hypoxia that 

can result in HIE (with relevant proportion). Data derived from Gunn et al. [210]. 
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When HIE is suspected, the standard of care is therapeutic hypothermia. It offers 

neuroprotection during the secondary phase of HIE, thus limiting the mortality 

and disability rates by 18 months of age and might even offers long term 

protection [210]. However, this is merely a supportive treatment, and it only offers 

partial protection. Despite the recent progress in care, the main hurdle is still the 

identification of infants that would benefit from a treatment [208] [212]. 

Furthermore, another challenge is the limited ‘window of opportunity’ for the 

treatment, as it should be administrated before the secondary phase of HIE. That 

is why a reliable biomarker of brain injury is needed. The current biomarkers for 

HIE are the signs of exposure to hypoxia-ischemia, i.e. foetal heart rate changes, 

oxygen debt on cord blood gases and the Apgar score [212]. An MRI scan can 

confirm the brain damage. Unfortunately, these biomarkers have limitations; first, 

they mostly detect severe cases, which are already obvious to identify, second 

they are efficient after the latent phase, which is too late to provide an efficient 

treatment [212]. 

An review from 2019 analysed 323 articles to review the role of miRNAs in 

newborn brain development and HIE [213]. They identified miRNAs involved in 

four major processes, brain development, HIE, neuronal cell death and 

neuroinflammation. 

6.2.2 Materials and methods 

6.2.2.1 Library preparation and sequencing 

A total of 120 samples were sequenced for the differential expression analysis. 

These were split into three groups: 

 Normal: 12 HIE patients with normal Magnetic Resonance Imaging (MRI) 

outcomes, sequenced over 4 time points (0, 24, 48 and 72 hours). 

 Pathological: 12 HIE patients with pathological MRI outcomes, 

sequenced over 4 time points (0, 24, 48 and 72 hours). 

 Control: 12 control samples, sequenced over 2 time points (0 and 48 

hours). 
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The RNA for time 0 was extracted from umbilical cord blood, the rest of the time 

points were extracted from plasma. 

The Ethics Committee for Biomedical Research of the Health Research Institute 

La Fe (Valencia, Spain) approved the protocol involving the recruitment of the 

control group of healthy term infants (2019/0312) as well as the clinical trial, which 

is registered under the acronym HYPOTOP (EudraCT 2011-005696-17). The 

HYPOTOP trial is a randomized, controlled, multicentre, double-blinded clinical 

trial for assessing the efficacy of topiramate vs placebo as an adjuvant therapy in 

newborns with neonatal encephalopathy undergoing therapeutic hypothermia. A 

stringent study protocol and written standard operating procedures were followed 

at all 13 participating sites. All methods were performed in accordance with 

relevant guidelines and regulations and informed consent was obtained from 

legal representatives of infants. A detailed description of the study design and 

inclusion and exclusion criteria of the HYPOTOP trial can be found elsewhere 

[214]. 

DNA extraction was performed at the Hospital Universitari i Politècnic La Fe in 

Spain, using the commercial kit miRNeasy. First, 250 μL of QIAzol Lysis Reagent 

was added to the blood/plasma sample, and the collection tube was left at room 

temperature (15-25°C) for 5 minutes. Then, 3.5 μL of miRNeasy Serum/Plasma 

Spike-In Control (1.6 x 108 copies/μl working solution) was mixed with the lysate. 

50 μL of chloroform was added to the tube, which was then vortexed for 15 

seconds. The tube was left at room temperature for 2-3 minutes before being 

centrifuged at 12,000 x g at 4°C for 15 min. The aqueous phase was transferred 

to another collection tube. Then, 150 μL of 100% ethanol was added and mixed 

to the sample. Finally, the sample preparation was pipetted to a RNeasy MinElute 

spin column and centrifuged at 8000 x g for 15 seconds at room temperature. 

The library preparation and sequencing were performed by Novogene, on an 

Illumina NovaSeqTM platform. First, the RNA underwent quality control; Nanodrop 

was used to measure preliminary RNA, followed by an agarose gel 

electrophoresis to test for degradation and potential contamination and finally, 

integrity and quantitation were measured with Agilent 2100. Then, the library was 
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constructed with the Small RNA Sample Pre-Kit; the final cDNA library was ready 

after a round of sequencing adaptor ligation, reverse transcription, PCR 

enrichment, purification, and size selection. The cDNA library also underwent 

quality control, in three steps. First, the preliminary library concentration was 

measured with Qubit 2.0, second, the insert size was tested with Agilent 2100 

and finally the library concentration was precisely measured with Q-PCR. Due to 

limited RNA weight, 18 samples did not pass the QC thresholds and had to be 

re-sequenced in a different batch. 

The filtering of the raw reads was also performed by Novogene. The reads were 

removed if one of the following rules applied: more than 50% of bases have a 

quality score lower than 5; Ns are accounting for more than 10% of the bases; 

the read has 5’ primer contaminants; the read does not have 3’ primer or insert 

tag; the read has a polyA/T/G/C tail. For all the remaining reads, the 3’ primer 

sequence was trimmed. The number of reads available for each sample, before 

and after filtering is described in Table D1-2. 

6.2.2.2 Bioinformatics analysis 

The filtered FASTQ files were quality controlled with FASTQC [17]. Some 

samples had their FASTQ files filled with a PCR primer instead of reads. The 

PCR primer sequence was as follow: 

CGCGACCTCAGATCAGACGTAGATCGGAAGAGCACACGTCTGAACTCCAG 

The samples with >90% of their reads corresponding to this primer were 

removed, as they would not provide any useful information and might even bias 

the results. The list of samples removed are list in Table 14. 
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Table 14: List of samples removed from the analysis due to a high number of PCR primer 

contamination. 

Group Time point 
Number of samples 

(after filtering) 
Filtered samples 

Control 
0h 10 AC1, AC5 

48h 12 / 

HIE - normal 

0h 9 A41, A56, A74 

24h 10 A41, A56 

48h 9 A41, A56, A158  

72h 10 A95, A158 

HIE - pathological 

0h 12 / 

24h 12 / 

48h 12 / 

72h 12 / 

Prior to the alignment, the latest human reference genome, GRch38, was indexed 

using bowtie v1.1.1. The reads were aligned with the mapper.pl module from 

miRDeep2 v2.0.1.2. The input to mapper.pl were given as a config file (option -

d) listing all the reads as fasta files (option –c), each read was allowed to map to 

up to 5 positions in the genome (option –r), the input reads were collapsed 

(option -m) and the output was written to an .arf file (option –t). The reads are 

collapsed to save disk space and computational time during the analysis, each 

read is written only once per sample in the fasta file, with the occurrence of the 

read available in the read ID, e.g., for a read present 1000 times in sample N01, 

the read ID would be: >N01_123_x1000. 

The collapsed reads and alignment generated with mapper.pl were given as input 

to the miRDeep2.pl script to perform the identification of novel miRNAs. As 

before, GRch38 was used as the reference genome. This script also required a 

list of mature and precursor sequences for the species under study as well as 

mature sequences from closely related species. Here, the mature sequences and 
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precursors for Homo sapiens were extracted from miRBase v22.1. For the related 

species, the mature sequences of chimpanzee and mouse were chosen, as they 

are close to human and well annotated. MiRDeep2.pl provide a scoring system 

to identify reliable novel miRNAs, here a cut-off of 5 was chosen as it provided 

the best signal-to-noise ratio. Target prediction for the novel miRNAs identified 

as differentially expressed was also carried out with miRDB, which implements a 

support vector machines model trained on high-throughput datasets [203]. 

For the quantification step, the mature sequences from miRBase and the novel 

miRNAs detected previously were merged into a single fasta file; the same was 

done for the precursors. The quantifier.pl script from miRDeep2 only recognises 

miRNAs identifiers with a certain format, three words separated by dashes. The 

format from miRBase was compatible but not the one generated for the novel 

miRNAs, hence sed was used to translate the novel miRNAs identifiers into a 

compatible format, i.e., ‘hsa-mature-[number]’ for both the mature and precursor 

sequences. Then, quantifier.pl was run, using as input the fasta files containing 

the mature (option –m) and precursor (option –p) sequences, the collapsed reads 

generated with mapper.pl (option –r). In addition, the species (option -t) was 

set to hsa, both the number of nucleotides to consider upstream (option –e) and 

downstream (option –f) of the mature sequence were set to 3 and the read 

counts were weighted by their number of mappings (option –W). 

The differential expression was performed with R v4.0.2, using the DESeq2 

package v1.28.1. First, as the samples were sequenced in two different batches, 

batch effect correction was performed with ComBat_seq on the raw counts [215]. 

Then, a DESeqDataSet object was created from the batch corrected counts. The 

design was set to the condition (normal and pathological) and time. The miRNAs 

with less than 10 counts across all samples were discarded. As the aim was to 

find biomarkers to explain the difference between normal and pathological 

samples, the results function was used to compare the two conditions across the 

different time points. DESeq2 automatically adjusted the p-values with the 

Benjamin-Hochberg method. The lfcShrink function was then applied to the 

results to adjust the log-fold change to a value more conservative, which usually 
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follow what would be observed with a larger sample size. BiomaRt annotated the 

differentially expressed miRNAs with Gene Ontology (GO) terms, based on their 

miRBase identifier. Then, OmicsBox v1.3.11 performed an enrichment analysis 

with Fisher’s Exact Test, for each time point, comparing the GO terms of the DE 

miRNAs against those of the complete list of human miRNAs. This list was 

obtained from miRBase via biomaRt, using the Ensembl Gene 101 Mart. 

6.2.3 Results 

The sequencing generated 2,657 million raw reads. After filtering, 1,065 million 

reads remained, with an average of 10 million reads per sample.  

The identifier.pl script from miRDeep2 predicted 1,349 novel miRNAs with a score 

between 0 and 10, a higher score meaning a better probability of the miRNA 

being a true positive. To keep the best signal to noise ratio, only the 128 novel 

miRNAs with a score equal or higher than 5 were kept. The quantifier.pl script 

from miRDeep2 aligned the collapsed reads against the novel miRNAs merged 

with the sequences from miRBase. From the 3,141 miRNAs, 793 were not 

expressed at all, with 0 read count. The results obtained with the four contrasts 

from DESeq model are described in Table 15. 

Table 15: Results of the four different contrasts obtained with DESeq2. Only significant 

miRNAs are represented (adjusted p-value < 0.05) 

Contrast Up-regulated miRNAs 
Down-regulated 

miRNAs 

Pathological vs Normal 0h 37 50 

Pathological vs Normal 24h 20 4 

Pathological vs Normal 48h 1 7 

Pathological vs Normal 72h 45 44 

It was noted that very few miRNAs were differentially expressed across different 

time points, as shown on Figure 28. This could be explained by the low number 

of differentially expressed miRNAs at time points 24h and 48h. Furthermore, the 
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two conditions represent the same disease, but with varying impacts, so one 

might expect some similarities in the expression of miRNAs. 

 

Figure 28: Veen diagram of the differentially expressed miRNAs across the different time 

points (0h, 24h, 48h and 72h). The miRNAs are filtered by their adjusted p-values (< 0.05). 

‘PN’ represents the contrasts between the two conditions ‘Pathological vs Normal’. 

Five of the novel miRNAs identified previously were also differentially expressed 

at time points 0, 48 and 72h. As they might reveal interesting insight about the 

pathophysiology of HIE, target prediction was performed on them, the results are 

available as Table 16. Detailed lists of target prediction for each one of the 

differentially expressed novel miRNAs are available as Table D.1-2 to Table 

D.1-6. 
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Table 16: List of the differentially expressed novel miRNAs for the ‘pathological vs 

normal’ contrast at the different time points, with their Log-Fold Change (LFC) and 

targets prediction from miRDB. The score from miRDB is between 50 and 100. 

Sequence Time LFC Top three targets (score) 

GAGTGTGCTAGAGTCCTCGAAG 0 -2.5 
MBD5 (99), FUT9 (97), 

IMPFH1 (97) 

CGTGGTCTTCGGGGAGAGAG 0 -2.1 
TSC1 (97), FAM120C (94), 

GCN1 (92) 

CACTGCGCTCCAGCCTGGGCAC 0 -3.5 
PYROXD1 (92), SPEN (80), 

STAG2 (75) 

GTGTGTGCACCTGTGTCTGTC 48 -2.5 
IGF2 (100), SCARA3 (100), 

ATP11A (100) 

TGGTCCAACGACAGGAGTAGG 72 - 2.9 
DCUN1D1 (98), PPP4R3A 

(98), UBA2 (97) 

The enrichment analysis identified the GO terms enriched at the different time 

points. Interestingly, over-enriched terms in the differentially expressed miRNAs 

include cellular response to amyloid-beta and regulations of inflammatory 

response, neuron projection development, angiogenesis, endothelial cell 

migration, gliogenesis and apoptotic process. The bar charts representing the 

complete list of enriched terms are available as Figure D.1-1, Figure D.1-2 and 

Figure D.1-3. 

6.2.4 Discussion 

miRNAs play an important role in brain development [216] and angiogenesis, 

hence they are of interest to study brain injury in HIE. 

In this discussion, we will go through the seven clusters from Figure 29, from top 

to bottom and highlighting interesting processes and miRNAs from each group. 

To keep the discussion concise and for clarity’s sake, only up to 30 of the top DE 

miRNAs were selected for each time point. 



 

136 

 

 

Figure 29: Heatmap of the Log-Fold-Change of the ‘pathological vs normal’ contrast. For 

clarity, up to 30 of the most differentially expressed miRNAs were selected at each time 

point (ordered by adjusted p-value).  
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6.2.4.1 Cluster 1 

This cluster is composed of eleven miRNAs, which are down-regulated at 72h. 

The miRNAs in this cluster inhibit angiogenesis and epithelial cell differentiation; 

this is the case of hsa-miR-363 and hsa-miR-18b. Interestingly, hsa-miR-376c is 

down-regulated in infants with HIE, and up-regulation of this miRNA diminishes 

cell injury from oxygen-glucose deprivation [217]. Hence, this might explain the 

severe injury suffered by the pathological group. 

6.2.4.2 Cluster 2 

This cluster is composed of six miRNAs, which are up-regulated at 0h and down-

regulated at 48h and 72h. The miRNAs in this group inhibit angiogenesis; this is 

the case of hsa-miR-144, hsa-miR-17 and hsa-miR-454. The only miRNA 

significantly differentially expressed at three different time points (0, 48 and 72h) 

is hsa-miR-144. This miRNA has been showed to reduce hypoxia induced 

autophagy in prostate cancer cells [218], to promote abnormal angiogenesis and 

hematoma absorption in rats which aggravated neurological deficiencies [219]. 

Moreover, it is annotated with negative regulation of cholesterol efflux and 

cholesterol homeostasis is crucial for brain development. Another interesting 

miRNA from this cluster is hsa-miR-17, when up-regulated it attenuates injury 

from ischemia [220]. 

6.2.4.3 Cluster 3 

This cluster is composed of hsa-miR-127, hsa-miR1193 and hsa-miR-1299. hsa-

miR-127 was found to protect certain cells against ischemia [221] and is down-

regulated in the pathological group at different time points. 

6.2.4.4 Cluster 4 

This cluster is composed of fifteen miRNAs, which are down-regulated at time 0h, 

while some are up-regulated at 72h. On one hand, some of these miRNAs are 

annotated in the GO database with a negative regulation of angiogenesis, 

namely, hsa-miR-34c, hsa-miR-497 and hsa-miR-615 [222], on the other hand 

there is a positive regulation of angiogenesis by hsa-miR-378a-3p, hsa-miR-31. 

This might suggest a dysregulation of the balance between the positive and 
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negative regulation of angiogenesis in the pathological group. The following 

miRNAs are also involved in apoptotic processes, hsa-miR-34c [223], hsa-miR-

378a-3p [224] and hsa-miR-195. Some of these miRNAs negatively regulate 

inflammatory or neuro-inflammatory response; this is the case of hsa-miR-378a-

3p, hsa-miR-195 and hsa-miR-31. Interestingly, some of these miRNAs are also 

involved in dementia; hsa-miR-34c, hsa-miR-31 are involved in Alzheimer’s 

disease [225] [226]; hsa-miR-195 have a role in dementia induced by chronic 

brain hypoperfusion [227] and schizophrenia [228]. Finally, hsa-miR-129-2 is 

associated with risk of ischaemic stroke [229], hsa-miR-6747 was up-regulated 

in brain arteriovenous malformations [230] and hsa-miR-497 was identified as a 

biomarker for acute cerebral infarction [231]. 

6.2.4.5 Cluster 5 

This cluster is composed of twenty-six miRNAs, mostly up-regulated at 0h or 24h. 

Some miRNAs in this cluster are annotated with negative regulation of 

angiogenesis and endothelial cell proliferation: hsa-miR-20a, hsa-miR-29c, hsa-

miR-30e, hsa-miR-101 and hsa-miR-221. Other miRNAs are annotated with 

negative regulation of inflammatory response and interleukin production: hsa-

miR-20a, hsa-miR-27a, hsa-miR-93, hsa-miR-98, hsa-miR-101, hsa-miR-142 

and hsa-miR-221. There are also miRNAs annotated with apoptotic processes, 

including neuron apoptotic process: hsa-miR-29c, hsa-miR-30e, hsa-miR-98, 

hsa-miR-101 and hsa-miR-221. Interestingly, a few miRNAs in this cluster are 

involved in the regulation of amyloid-beta formation, which has a role in 

Alzheimer’s disease, namely hsa-miR-20a, hsa-miR-29c and hsa-miR-98. 

Moreover, dysregulation of hsa-miR-142 was associated with Alzheimer’s 

pathogenesis, as its target genes are related to neuronal function and synapse 

plasticity [232]. 

Looney et al. previously identified hsa-miR-374a as a biomarker in neonatal HIE 

[233], however as being down-regulated in infants with HIE. In another study, 

hsa-miR-374a was up-regulated in piglet models soon after hypoxic-ischemia 

with changes in expression specific to moderate and severe cases of HIE, which 
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is consistent with our measures. This miRNA might be of interest to serve as an 

early biomarker of severe HIE. 

One of the most up-regulated miRNAs at early time points is hsa-miR-221; it is 

annotated with positive regulation of axon regeneration, wound healing and 

response to glucose, which might suggest a role in the latent phase, when the 

brain is recovering from the injury. 

hsa-miR-142 has interesting annotations, such as positive regulation of astrocyte 

activation, neuroinflammatory response and regulation of synaptic transmission, 

which might suggest a potential role in HIE. 

Overexpression of hsa-miR-7 suppresses cell proliferation and promotes 

apoptosis [234], which is the main source of brain damage in HIE; it was also 

differentially expressed in the blood of patients with brain arteriovenous 

malformations [230]. 

hsa-miR-101 has been previously identified as a hypoxia-responsive miRNA, 

promoting angiogenesis [235]. 

Finally, hsa-miR-27a and hsa-miR-302a are both annotated with negative 

regulation of cholesterol efflux, as mentioned before, cholesterol homeostasis is 

crucial for proper brain development. A study demonstrated the protective effect 

of hsa-miR-27a overexpression in hippocampal neurons after hypoxic injury 

[236]. 

6.2.4.6 Cluster 6 

This cluster is composed of hsa-miR-659, hsa-miR-378a-5p and hsa-miR-41718, 

which are down-regulated in the pathological group at 24h. hsa-miR-659 has 

been correlated with Progranulin increase in hypoxic conditions, which confers 

neuroprotection against injury [237]. 

6.2.4.7 Cluster 7 

This cluster is composed of thirteen miRNAs, which are all down-regulated at 

time 0h. hsa-miR-671 negatively affects the levels of CDR1 [238], dysregulation 

of this gene affects Alzheimer’s [239] and Huntington disease [240]. hsa-miR-668 
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preserve mitochondrial activity in ischemic kidney injury [241] and inhibition of 

this miRNA protects against neuronal apoptosis in cerebral ischemic stroke [242]. 

hsa-miR-1224 is annotated with positive regulation of sprouting angiogenesis, 

while hsa-miR-92a-1 is annotated with negative regulation of sprouting 

angiogenesis, blood vessel diameter and inflammatory response, as well as 

positive regulation of acute inflammatory response and apoptotic process. 

Interestingly hsa-miR-219a-1 is annotated with negative regulation of neuron 

projection development and have a role in regulation of neuronal apoptosis [243] 

which is a component of brain cell injury in HIE. Low expression of hsa-miR-219-

1 was also linked to epilepsy [244], which is a symptom of severe cases in HIE. 

6.2.4.8 Novel miRNAs and the roles of their target genes 

All the novel miRNAs that were significantly DE are down regulated (see Table 

16). The top target identified for hsa-novel-27395-mature is MBD5, which has 

been linked to mental retardation and epileptic encephalopathy [245] [246]. 

Similarly, the top target for hsa-novel-3327-mature is TSC1, which was linked to 

epilepsy [247] and neuroprotection against ischemia [248]. The third target for 

hsa-novel-45743-star is STAG2 and has been linked to Mullegama-Klein-

Martinez Syndrome [249] and holoprosencephaly [250]. However, caution is 

required, as the score for this target prediction was 75 out of 100, while miRDB 

suggests that scores higher than 80 are reliable. The top target of hsa-novel-

41718-mature is IFG2 and is expressed in epithelial cells lining the surface of the 

brain in adults [251]. These findings need to be confirmed experimentally but 

might provide new understanding of the underlying mechanisms of HIE. 

6.2.4.9 Alzheimer’s disease 

Swarbrick et al. identified miRNAs biomarkers for Alzheimer’s disease [225], 

interestingly some of the miRNAs overlap with our list of DE genes, namely hsa-

miR-26b, hsa-mir-30e, hsa-miR-34c, hsa-miR-200c and hsa-miR-485. Moreover, 

as mentioned in this discussion, several of the miRNAs are annotated with 

amyloid beta response, which is a component of Alzheimer’s disease, namely 

hsa-let-7f, hsa-miR-98, hsa-miR-106b, hsa-miR-200a and hsa-miR-200c. This 
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might suggest parallel common mechanisms behind the pathogenesis of 

Alzheimer’s disease and severe cases of HIE. 

6.2.5 Conclusion  

miRNAs are a promising avenue as biomarkers for severity in HIE. While no 

stable biomarkers over all time points were identified, this analysis provided 

insights into the pathogenesis of HIE, notably with the discovery of novel miRNAs 

whose targets are related to brain functions and diseases. There were also some 

interesting parallels between the miRNAs identified in the differential expression 

analysis and those involved in the pathogenesis of Alzheimer’s. Further research 

would be needed to refine and confirm these discoveries.
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Appendix A  

A.1 Enrichment analyses for diabetes type 2 and obesity 

Table A.1-1: List of GO terms significantly enriched (FDR < 0.05) in the 27 genes related to type 2 diabetes mellitus (OMIM: 125853) compared 

to all the Homo sapiens genes in the PANTHER database. The annotation is based on the GO Ontology database (Released 2021-07-02). The 

list was trimmed to only keep the most specific terms. The enrichment was done with Fisher’s Exact Test and the False Discovery Rate (FDR) 

was calculated to correct for multiple comparisons. 

GO biological process 
Homo 

sapiens 
(20595) 

T2DM 
(27) 

expected 
Fold 

Enrichment 
+/- raw P-value FDR 

hepatocyte differentiation 14 2 0.02 > 100 + 2.26E-04 1.49E-02 

negative regulation of endoplasmic reticulum stress-induced 
intrinsic apoptotic signaling pathway 

20 3 0.03 > 100 + 4.34E-06 5.26E-04 

positive regulation of glycogen biosynthetic process 16 4 0.02 > 100 + 1.50E-08 4.55E-06 

positive regulation of fatty acid beta-oxidation 11 3 0.02 > 100 + 9.00E-07 1.36E-04 

negative regulation of long-chain fatty acid import across plasma 
membrane 

4 2 0.01 > 100 + 2.85E-05 2.54E-03 

negative regulation of type B pancreatic cell apoptotic process 6 4 0.01 > 100 + 6.58E-10 3.05E-07 

detection of glucose 3 2 0 > 100 + 1.90E-05 1.83E-03 

insulin secretion 37 5 0.05 96 + 3.14E-09 1.12E-06 

negative regulation of endoplasmic reticulum unfolded protein 
response 

16 2 0.02 89 + 2.88E-04 1.85E-02 

reverse cholesterol transport 18 2 0.03 79 + 3.57E-04 2.23E-02 

negative regulation of insulin secretion 39 4 0.05 73 + 3.74E-07 6.48E-05 

nitric oxide mediated signal transduction 20 2 0.03 71 + 4.33E-04 2.61E-02 

type B pancreatic cell differentiation 21 2 0.03 68 + 4.74E-04 2.82E-02 

glucose 6-phosphate metabolic process 22 2 0.03 65 + 5.17E-04 3.04E-02 

signal transduction involved in regulation of gene expression 22 2 0.03 65 + 5.17E-04 3.02E-02 

negative regulation of insulin receptor signaling pathway 34 3 0.05 63 + 1.88E-05 1.82E-03 
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NADH metabolic process 24 2 0.03 59 + 6.08E-04 3.44E-02 

negative regulation of receptor signaling pathway via STAT 25 2 0.04 57 + 6.56E-04 3.69E-02 

NAD metabolic process 25 2 0.04 57 + 6.56E-04 3.67E-02 

positive regulation of glucose import 38 3 0.05 56 + 2.57E-05 2.34E-03 

positive regulation of insulin secretion 79 6 0.11 54 + 1.80E-09 7.28E-07 

carbohydrate phosphorylation 27 2 0.04 53 + 7.57E-04 4.17E-02 

positive regulation of transcription initiation from RNA polymerase 
II promoter 

29 2 0.04 49 + 8.66E-04 4.70E-02 

insulin receptor signaling pathway 60 4 0.08 47 + 1.89E-06 2.63E-04 

positive regulation of DNA binding 58 3 0.08 37 + 8.52E-05 6.47E-03 

regulation of JUN kinase activity 57 3 0.08 37 + 8.10E-05 6.28E-03 

negative regulation of MAP kinase activity 57 3 0.08 37 + 8.10E-05 6.25E-03 

pyruvate metabolic process 61 3 0.09 35 + 9.83E-05 7.20E-03 

glucose metabolic process 101 5 0.14 35 + 3.51E-07 6.21E-05 

cellular response to glucose stimulus 74 3 0.1 29 + 1.70E-04 1.16E-02 

fat cell differentiation 103 4 0.15 28 + 1.47E-05 1.48E-03 

carbohydrate transport 78 3 0.11 27 + 1.98E-04 1.31E-02 

regulation of potassium ion transport 101 3 0.14 21 + 4.14E-04 2.53E-02 

carbohydrate catabolic process 104 3 0.15 20 + 4.50E-04 2.70E-02 

lipid homeostasis 154 4 0.22 18 + 6.78E-05 5.31E-03 

regulation of circadian rhythm 122 3 0.17 17 + 7.08E-04 3.91E-02 

response to drug 394 7 0.55 13 + 1.08E-06 1.55E-04 

generation of precursor metabolites and energy 391 7 0.55 13 + 1.02E-06 1.50E-04 

rhythmic process 269 4 0.38 11 + 5.50E-04 3.18E-02 

regulation of transporter activity 287 4 0.4 10 + 6.98E-04 3.88E-02 

purine ribonucleotide metabolic process 306 4 0.43 9 + 8.84E-04 4.78E-02 

regulation of DNA-binding transcription factor activity 424 5 0.6 8 + 2.99E-04 1.88E-02 

regulation of cell population proliferation 1654 10 2.33 4 + 5.46E-05 4.37E-03 

negative regulation of transcription, DNA-templated 1322 8 1.86 4 + 3.71E-04 2.30E-02 
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Table A.1-2: List of GO terms significantly enriched (FDR < 0.05) in the 20 genes related to obesity (11 genes related to ‘obesity’ (OMIM: 

601665) and 9 genes related to ‘body mass index quantitative trait locus’ (OMIMs: 602025, 607447, 607514, 612362, 612460, 614411, 615457, 

617885, and 618406)) compared to all the Homo sapiens genes in the PANTHER database. The annotation is based on the GO Ontology 

database (Released 2021-07-02). The list was trimmed to only keep the most specific terms. The enrichment was done with Fisher’s Exact 

Test and the False Discovery Rate (FDR) was calculated to correct for multiple comparisons. 

GO biological process 
Homo 

sapiens 
(20595) 

Obesity 
(20) 

expected 
Fold 

Enrichment 
+/- raw P-value FDR 

norepinephrine-epinephrine-mediated vasodilation involved in 
regulation of systemic arterial blood pressure 

3 2 0 > 100 + 8.93E-06 3.12E-03 

response to melanocyte-stimulating hormone 3 2 0 > 100 + 8.93E-06 3.05E-03 

adult feeding behavior 10 3 0.01 > 100 + 2.22E-07 1.94E-04 

positive regulation of feeding behavior 10 2 0.01 > 100 + 5.87E-05 1.15E-02 

regulation of glucagon secretion 10 2 0.01 > 100 + 5.87E-05 1.14E-02 

regulation of eating behavior 10 2 0.01 > 100 + 5.87E-05 1.13E-02 

regulation of glucocorticoid secretion 11 2 0.01 > 100 + 6.93E-05 1.25E-02 

diet induced thermogenesis 12 2 0.01 > 100 + 8.08E-05 1.40E-02 

white fat cell differentiation 14 2 0.01 > 100 + 1.06E-04 1.80E-02 

regulation of appetite 22 3 0.02 > 100 + 1.77E-06 8.71E-04 

regulation of transmission of nerve impulse 16 2 0.02 >100 + 1.36E-04 2.24E-02 

negative regulation of behavior 17 2 0.02 > 100 + 1.51E-04 2.41E-02 

regulation of response to food 18 2 0.02 > 100 + 1.68E-04 2.49E-02 

response to superoxide 18 2 0.02 > 100 + 1.68E-04 2.47E-02 

positive regulation of cAMP-mediated signaling 19 2 0.02 > 100 + 1.86E-04 2.66E-02 

temperature homeostasis 29 3 0.03 > 100 + 3.80E-06 1.62E-03 

adenylate cyclase-activating adrenergic receptor signaling 
pathway 

21 2 0.02 98.07 + 2.23E-04 3.08E-02 

regulation of vascular endothelial cell proliferation 21 2 0.02 98.07 + 2.23E-04 3.06E-02 

negative regulation of peptide hormone secretion 44 4 0.04 93.61 + 1.22E-07 1.48E-04 

regulation of brown fat cell differentiation 23 2 0.02 89.54 + 2.65E-04 3.47E-02 
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response to cold 50 4 0.05 82.38 + 1.97E-07 1.94E-04 

negative regulation of interleukin-1 beta production 29 2 0.03 71.02 + 4.09E-04 4.69E-02 

peptide hormone secretion 57 3 0.06 54.2 + 2.58E-05 6.44E-03 

positive regulation of cold-induced thermogenesis 97 5 0.09 53.08 + 3.93E-08 6.17E-05 

energy reserve metabolic process 63 3 0.06 49.04 + 3.44E-05 7.83E-03 

regulation of multicellular organism growth 64 3 0.06 48.27 + 3.60E-05 7.96E-03 

circadian regulation of gene expression 68 3 0.07 45.43 + 4.28E-05 9.09E-03 

circadian rhythm 136 4 0.13 30.29 + 9.07E-06 3.04E-03 

positive regulation of peptide hormone secretion 106 3 0.1 29.14 + 1.54E-04 2.41E-02 

neuropeptide signaling pathway 109 3 0.11 28.34 + 1.66E-04 2.52E-02 

hormone-mediated signaling pathway 123 3 0.12 25.12 + 2.36E-04 3.14E-02 

regulation of insulin secretion 168 4 0.16 24.52 + 2.04E-05 5.35E-03 

negative regulation of inflammatory response 141 3 0.14 21.91 + 3.49E-04 4.15E-02 

glucose homeostasis 194 4 0.19 21.23 + 3.55E-05 7.97E-03 

cellular response to insulin stimulus 149 3 0.14 20.73 + 4.09E-04 4.72E-02 

lipid localization 335 4 0.33 12.3 + 2.83E-04 3.64E-02 

positive regulation of MAPK cascade 471 5 0.46 10.93 + 7.48E-05 1.32E-02 
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A.2 Personalised nutrition 

Table A.2-1: List of items included in the Mediterranean Diet Adherence Screener 

Do you use olive oil as the principal source of fat for cooking? 

Do you drink wine? How much do you consume per week? 

How many servings (150g) of pulses do you consume per week?  

How many servings of vegetables do you consume per day? A full serving is 200g. 

How many servings (12g) of butter, margarine, or cream do you consume per day?  

How many servings of fish/seafood do you consume per week?  

(100–150g of fish, 4–5 pieces or 200g of seafood)  

Do you prefer to eat chicken, turkey, or rabbit instead of beef, pork, hamburgers, or 

sausages?  

How much olive oil do you consume per day? 

How many pieces of fruit do you consume per day?  

How many times do you consume nuts per week? (1 serving = 30g)  

How many carbonated and/or sugar-sweetened beverages do you consume per day?  

How many servings of red meat, hamburger, or sausages do you consume per day?  

A full serving is 100–150g. 

How many times do you consume commercial (not homemade) pastry such as cookies or 

cake per week?  

How many times per week do you consume boiled vegetables, pasta, rice, or other dishes 

with a sauce of tomato, garlic, onion, or leeks sautéed in olive oil?  
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Appendix B  

B.1 VarGen 

Table B.1-1: List of data sources accessed by MyVariant.info to perform the 

annotation of variants. 

dbNSFP DOCM 
Cancer Genome 

Interpreter 

dbSNP SNPedia 
genome Aggregation 

Database 

ClinVar EMVClass CIViC 

EVS Wellderly Geno2MP 

CADD ExAC GWAS Catalog 

MutDB GRASP UniProt 

COSMIC   
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Table B.1-2: List of tissues with significant variant-gene pairs from the GTEx 

project 

Adipose Subcutaneous Brain Spinal cord cervical c-1 

Adipose Visceral Omentum Brain Substantia nigra 

Adrenal Gland Breast Mammary Tissue 

Artery Aorta Cells Cultured fibroblasts 

Artery Coronary Cells EBV-transformed lymphocytes 

Artery Tibial Colon Sigmoid 

Brain Amygdala Colon Transverse 

Brain Anterior cingulate cortex BA24 Esophagus Gastroesophageal Junction 

Brain Caudate basal ganglia Esophagus Mucosa 

Brain Cerebellar Hemisphere Esophagus Muscularis 

Brain Cerebellum Heart_Atrial Appendage 

Brain Cortex Heart Left Ventricle 

Brain Frontal Cortex BA9 Kidney Cortex 

Brain Hippocampus Liver 

Brain Nucleus accumbens basal ganglia Lung 

Brain Putamen basal ganglia Minor Salivary Gland 

Muscle Skeletal Small Intestine Terminal Ileum 

Nerve Tibial Spleen 

Ovary Stomach 

Pancreas Testis 

Pituitary Thyroid 

Prostate Uterus 

Skin Not Sun Exposed Suprapubic Vagina 

Skin Sun Exposed Lower leg Whole Blood 

 

 





 

173 

Table B.1-3: Example of raw output from VarGen 

 

rsid chr pos ensembl_gene_id hgnc_symbol source trait 

rs1044548 chr6 131890623 ENSG00000197594 ENPP1 omim 601665 

rs1044737470 chr5 96412463 ENSG00000175426 PCSK1 omim 601665 

rs1045328134 chr8 37966251 ENSG00000188778 ADRB3 omim 601665 

rs1045550142 chr16 54040160 ENSG00000140718 FTO omim 601665 

rs111340993 chr3 12170213 ENSG00000132170 PPARG fantom5 601665 

rs10195271 chr2 24885781 ENSG00000138031 ADCY3 gtex (Adipose_Subcutaneous) 601665 

rs1063429 chr3 10279284 ENSG00000157017 GHRL gtex (Adipose_Visceral_Omentum) 601665 

rs11155053 chr6 139338875 
ENSG00000218565, 

ENSG00000226571 

AL592429.1, 

AL592429.2 
gwas Obesity-related traits 

rs12295638 Chr11 26583784 ENSG00000134343 ANO3 gwas Obesity (extreme) 
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Table B.1-4: Example of annotation obtained with VarGen. 

ref alt cadd_phred 
fathmm_xf_

score 

fathmm_xd

_pred 
annot_type consequence clinical_sign snpeff_ann 

G C 10.33 NA NA Transcript 3PRIME_UTR Benign  

A G 32.00 0.952236 D CodingTranscript NON_SYNONYMOUS  MODERATE; MODIFIER 

C G 28.00 0.754983 D CodingTranscript NON_SYNONYMOUS  MODERATE; LOW 

T A 11.77 NA NA CodingTranscript SYNONYMOUS  LOW; LOW 

C A 13.23 NA NA NonCodingTranscript NONCODING_CHANGE  MODIFIER; MODIFIER 

C T 38.00 0.277287 N CodingTranscript STOP_GAINED Pathogenic HIGH; HIGH 
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Figure B.1-1: Example of Manhattan plot obtained with VarGen for GWAS traits related to obesity. 



 

176 

 

Figure B.1-2: Example of Manhattan plot obtained with VarGen for GWAS traits related to type 1 diabetes. 
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Figure B.1-3: Example of Manhattan plot obtained with VarGen, for GWAS traits related to type 2 diabetes. 





 

179 

Table B.1-5: List of terms obtained with get_phenotype_terms to test the 

VarPhen pipeline for the obesity use case. The key word used was: obesity. 

Phenotype term 
ABDOMINAL OBESITY-METABOLIC SYNDROME 3 

Bilirubin levels in extreme obesity 

Bitter taste perception 6-n-propylthiouracil in obesity with metabolic syndrome 

Bitter taste perception phenylthiocarbamide in obesity with metabolic syndrome 

DEVELOPMENTAL DELAY INTELLECTUAL DISABILITY OBESITY AND DYSMORPHISM 

Hepatic lipid content in extreme obesity 

Hyperinsulinemia in obesity 

Monogenic Non-Syndromic Obesity 

Morbid obesity 

Morbid obesity and spermatogenic failure 

Obesity 

OBESITY (BMIQ14) SUSCEPTIBILITY TO 

Obesity (early onset extreme) 

OBESITY AGE AT ONSET OF 

Obesity and osteoporosis 

OBESITY ASSOCIATION WITH 

Obesity autosomal dominant 

OBESITY EARLY-ONSET SUSCEPTIBILITY TO 

Obesity extreme 

Obesity extreme SNP x SNP interaction 

OBESITY HYPERPHAGIA AND DEVELOPMENTAL DELAY 

Obesity in adult survivors of childhood cancer exposed to cranial radiation 

Obesity in adult survivors of childhood cancer not exposed to cranial radiation 

OBESITY LATE-ONSET 

OBESITY MILD EARLY-ONSET 

Obesity modifier of 

OBESITY SEVERE AND TYPE II DIABETES 

OBESITY VARIATION IN 

Obesity without metabolic disease 

Obesity-related traits 

Retinal dystrophy and obesity 

Salty taste perception in obesity with metabolic syndrome 

Sour taste perception in obesity with metabolic syndrome 

SPASTIC PARAPLEGIA INTELLECTUAL DISABILITY NYSTAGMUS AND OBESITY 

Sweet taste perception in obesity with metabolic syndrome 

Taste perception total score including 6-n-propylthiouracil in obesity with metabolic syndrome 

Taste perception total score including phenylthiocarbamide in obesity with metabolic 
syndrome 

Type 2 diabetes (young onset) and obesity 

Umami taste perception in obesity with metabolic syndrome 
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B.2 VarGen Benchmarking – Alzheimer’s disease 

B.2.1 Methods 

For VarGen, the following input was given to vargen_pipeline: 

 The OMIM ID 104300. 

 The GTEx tissues corresponding to the brain, obtained using 

select_gtex_tissues with ‘brain’ as query. 

 The GWAS terms related to Alzheimer’s disease, obtained using the 

list_gwas_traits with the keyword ‘alzheimer’. The GWAS data 

correspond to the GWAS Catalog version e96. 

 The fantom_corr parameter was set to 0.20. 

For VarPhen, the keyword ‘alzheimer’ was used to retrieve 70 phenotype terms 

having a link with Alzheimer’s disease; they are listed in Table B.2-1. These 

phenotypes were given as input in the get_variants_from_phenotypes 

function. 

For DiGeNET, the disease identifier C0002395, corresponding to Alzheimer’s 

disease, was given as input for the function disease2variant. As before, it 

was run one time with all the databases and one time with the curated ones. 

As with obesity, for VarFromPDB, the author’s guidelines were used with 

‘alzheimer’ as the keyword to the pipeline. The same error as before appeared 

during the orphanet step and it was skipped as well. 

B.2.2 Results 

The results obtained with Alzheimer’s disease were very similar to the one 

obtained with obesity. The overlap between the variant identifiers obtained with 

the different packages was represented as a Venn diagram (see Figure B.2-1A). 
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A. 

   

B.  

Figure B.2-1: Venn diagrams representing the variants found by the different pipelines: 

VarGen, DisGeNET, VarFromPDB and VarPhen. Alzheimer’s (OMIM: 104300) was chosen as the 

use case. A. Venn diagram using the raw output for all the pipelines. B. Venn diagram using 

the filtered VarGen dataset, with the following strategy: all the variants from the GWAS Catalog 

and with clinical significance were kept, and the rest were filtered if their cadd Phred score 

was below 10. 
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The results are very similar to the one obtained with obesity. The highest number 

of shared variants, 708, are between VarGen and VarPhen. 

DisGeNET shares 428 and 437 variants with VarGen and VarPhen respectively. 

VarFromPDB shares 202 and 251 variants with VarGen and VarPhen 

respectively. In contrast, VarFromPDB and DisGeNET only share 76 variants. As 

for obesity, the unique variants from DisGeNET are from literature mining and 

GwasDB, two resources not implemented in the other packages. Similarly, most 

of the 312 unique variants found with VarFromPDB do not have ‘alzheimer’ as 

keywords (Cutaneous photosensitivity, Hemochromatosis type 1, Variegate 

porphyria etc…). Many variants are found only by VarGen, since it reports 

variants affecting the genes related to a disease and not variants directly linked 

to the disease. Hence, some of the 93,178 variants uniquely found by VarGen 

are potentially false positives. This can be diminished by filtering variants based 

on their CADD Phred score, source, and clinical significance, while keeping most 

of the variants found in common with the other databases, as seen in Figure 

B.2-1B. 

In summary, as for obesity, VarGen and VarPhen proved to be more sensitive 

than current alternatives. Better specificity can be achieved by selecting the 

VarPhen variants and/or filtering the VarGen results. Only 19 variants were found 

in common by DisGeNET and VarFromPDB, highlighting that neither VarGen nor 

VarPhen are missing relevant variants.  
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Table B.2-1: List of terms obtained with get_phenotype_terms() to test the VarPhen 

pipeline for the Alzheimer’s disease use case. The keyword used was ‘alzheimer’. 

Accelerated cognitive decline after conversion of mild cognitive impairment to Alzheimer's 
disease (Alzhiemer's diagnosis trajectory interaction) 

Alzheimer disease 

ALZHEIMER DISEASE 18  

Alzheimer disease 19  

Alzheimer disease 2 

Alzheimer disease 3 protection against due to APOE3-Christchurch  

Alzheimer disease and age of onset  

Alzheimer disease early-onset susceptibility to 

Alzheimer disease familial 3 with spastic paraparesis 

ALZHEIMER DISEASE FAMILIAL 3 WITH SPASTIC PARAPARESIS AND APRAXIA 

ALZHEIMER DISEASE FAMILIAL 3 WITH UNUSUAL PLAQUES 

ALZHEIMER DISEASE FAMILIAL WITH SPASTIC PARAPARESIS AND UNUSUAL 
PLAQUES 

ALZHEIMER DISEASE LATE-ONSET SUSCEPTIBILITY TO  

ALZHEIMER DISEASE PROTECTION AGAINST  

Alzheimer disease susceptibility to 

Alzheimer disease type 1  

Alzheimer disease type 3  

Alzheimer disease type 4  

Alzheimer disease type 9  

Alzheimer's disease 

Alzheimer's disease (age of onset)  

Alzheimer's disease (APOE e4 interaction) 

Alzheimer's disease (cognitive decline)  

Alzheimer's disease (late onset) 

Alzheimer's disease (survival time)  

Alzheimer's disease biomarkers  

Alzheimer's disease in APOE e4+ carriers  

Alzheimer's disease in hypertension 

Alzheimer's disease in hypertension-negative individuals  

Alzheimer's disease onset at age over 80  

Alzheimer's disease onset between ages 58 and 79  

Alzheimer's disease or family history of Alzheimer's disease  

Alzheimer's disease or fasting glucose levels (pleiotropy) 

Alzheimer's disease or fasting insulin levels (pleiotropy) 

Alzheimer's disease or HDL levels (pleiotropy) 

Alzheimer's disease or small vessel stroke  

Alzheimer's disease progression score 

Alzheimer's disease SNP x SNP interaction 

Alzheimer's disease with language domain impairment 

Alzheimer's disease with memory domain impairment 

Alzheimer's disease with multiple cognitive domain impairments  

Alzheimer's disease with no specific cognitive domain impairment  

Alzheimer's disease with visuospatial domain impairment 
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Alzheimer’s disease and/or vascular dementia clinical subgroup VaD+ 

Alzheimer’s disease clinical subgroup AD+ 

Cerebrospinal AB1-42 levels in Alzheimer's disease dementia 

Cerebrospinal fluid levels of Alzheimer's disease-related proteins  

Cerebrospinal fluid p-tau levels in Alzheimer's disease dementia  

Cerebrospinal fluid t-tau levels in Alzheimer's disease dementia  

Dementia and core Alzheimer's disease neuropathologic changes 

Early onset Alzheimer disease with behavioral disturbance 

Early-onset Alzheimers disease  

Early-onset autosomal dominant Alzheimer disease  

Entorhinal cortical thickness (Alzheimer's disease interaction)  

Entorhinal cortical volume (Alzheimer's disease interaction) 

Family history of Alzheimer's disease 

Hippocampal volume in Alzheimer's disease dementia  

Late-onset Alzheimer's disease  

Logical memory (delayed recall) in Alzheimer's disease dementia 

Logical memory (immediate recall) in Alzheimer's disease dementia 

Maternal history of Alzheimer's disease 

Paternal history of Alzheimer's disease 

Posterior cortical atrophy and Alzheimer's disease  

Primary degenerative dementia of the Alzheimer type presenile onset 

Psychosis and Alzheimer's disease 

Psychosis in Alzheimer's disease  

Response to cholinesterase inhibitors in Alzheimer's disease  

Total ventricular volume (Alzheimer's disease interaction) 

Voxel-wise structural brain imaging measurements in Alzheimer’s disease 

Whole-brain volume (Alzheimer's disease interaction) 
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Appendix C  

C.1 Plink format 

 .bim: contains information about the variants, one line per variant, with the 
following 6 columns: 

Field Comments 

Chromosome code int or X/Y/XY/MT, 0 indicates unknown 

Variant ID eg: rsID 

Position in morgans or centimorgans 0 used as a dummy value 

Base-pair coordinates 1-based, maximum is 2^31 - 2 

Allele 1 Corresponding to the clear bits in the .bed file 

Allele 2 Corresponding to the set bits in the .bed file 

 .fam: contains information about the participants, one line per sample, with 
the following 6 columns: 

Field Comments 

Family ID / 

Within-family ID Cannot be 0 

Within-family ID or father 0 if not present in the dataset 

Within-family ID or mother 0 if not present in the dataset 

Sex code 1 = male, 2 = female, 0 = unknown 

Phenotype value 1 = control, 2 = case,-9 / 0 / non-numeric = missing data 

 .ped: contains the genotyping calls. (.bed for the binary version). It must 
be accompanied by a .bim and .fam files. It consists of two-bit genotype 
codes with the following meaning: 

Genotype code Meaning 

00 Homozygous for the first allele described in the .bim file 

01 Missing genotype 

10 Heterozygous 

11 Homozygous for the second allele in the .bim file 
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C.2 Limitations of the PRS model 

A. 

 

B. 

 

Figure C.2-1: BMI mean for each backbone PRS quantile, the bars correspond to the 

standard error, for individuals in the UK Biobank self-identifying as A. African and B. 

Chinese. There is no correlation between the PRS score and the BMI. This is because the 

base set of the model was obtained from individuals of European ancestry, which 

hinders the generalisability of the model across ethnicities with different Linkage 

Disequilibrium patterns. 
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Appendix D  

D.1 miRNA analysis 

Table D.1-1: Adapters used to generate the libraries for the miRNA sequencing 

RNA 5’ Adapter (RA5), part: 5'-GTTCAGAGTTCTACAGTCCGACGATC-3' 

RNA 3' Adapter (RA3), part: 5'-AGATCGGAAGAGCACACGTCT-3' 
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Table D.1-2: Number of reads (in millions) per sample before and after the 

filtering performed by Novogene. 

 0h 24h 48h 72h 

Sample  Raw Filtered Raw Filtered Raw Filtered Raw Filtered 

A141 11.1 10.5 11.8 11.0 10.2 10.1 11.2 10.8 
A145 12.0 11.4 12.7 11.9 11.9 11.1 11.0 10.1 
A148 10.4 10.2 10.9 10.7 11.9 11.7 11.1 9.2 
A151 11.0 9.5 13.8 13.0 12.6 12.1 12.2 10.6 
A154 10.9 10.5 missing missing 11.4 11.1 19.7 18.3 
A157 12.0 11.4 missing missing 11.0 10.8 10.0 8.4 
A158 14.9 14.1 11.5 9.8 10.8 0.4 15.3 0.3 
A163 missing missing 11.8 9.6 11.9 11.5 missing missing 
A166 10.9 10.6 11.7 11.0 12.8 12.3 11.9 10.3 
A194 15.4 14.8 10.7 10.0 17.4 16.4 14.8 13.8 
A199 11.5 11.4 12.7 12.6 13.1 12.8 11.7 4.5 
A36 10.3 9.8 11.4 11.2 missing missing missing missing 
A40 11.5 10.9 12.9 10.9 12.4 12.1 12.6 10.9 
A41 11.8 0.3 11.8 1.6 14.8 0.9 11.4 8.6 
A42 11.2 11.1 11.3 10.7 10.8 10.2 11.7 11.1 
A43 11.5 5.7 13.6 13.4 13.2 12.2 14.1 11.1 
A52 13.7 12.2 11.0 10.5 12.1 11.1 missing missing 
A54 13.1 11.5 missing missing 12.9 11.7 12 10.6 
A55 12.1 11.6 12.9 12 12.6 4.1 10.9 8.1 
A56 11.7 0.2 12.5 1.1 15.2 1.2 11.3 7.3 
A73 12.7 12.6 13.4 13.3 missing missing 13.9 13.0 
A74 11.3 1.1 missing missing missing missing 11.2 10.0 
A94 13.1 12.7 12.1 11.6 13.2 11.8 10.5 10.1 
A95 16.0 9.3 11.6 9.3 14.1 13.1 10.9 0.4 
AC1 10.5 0.6 NA NA 11.3 10.1 NA NA 
AC2 10.5 7.7 NA NA 11.5 10.8 NA NA 
AC3 10.4 5.9 NA NA 12.1 6.7 NA NA 
AC4 12.8 12.2 NA NA 12.5 11.9 NA NA 
AC5 10.3 0.6 NA NA 10.4 7 NA NA 
AC6 10.9 7.6 NA NA 13.2 12.9 NA NA 
AC7 10.7 9.3 NA NA 13.4 13.3 NA NA 
AC8 10.6 9.9 NA NA 11.5 11.4 NA NA 
AC9 12.4 11.8 NA NA 11.9 11.6 NA NA 

AC10 13.3 11.9 NA NA 12.4 12.1 NA NA 
AC11 12.3 11.4 NA NA 13.8 13.7 NA NA 
AC12 10.8 9.7 NA NA 11.3 10.0 NA NA 
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Table D.1-2: List of targets predicted by miRDB for the novel miRNA ‘hsa-novel-27395-mature’, sequence: 

GAGTGTGCTAGAGTCCTCGAAG 

Rank Target Score miRNA Gene Symbol Gene Description 

1 99 hsa-novel-27395-mature MBD5 methyl-CpG binding domain protein 5 

2 97 hsa-novel-27395-mature FUT9 fucosyltransferase 9 

3 97 hsa-novel-27395-mature IMPDH1 inosine monophosphate dehydrogenase 1 

4 96 hsa-novel-27395-mature CASZ1 castor zinc finger 1 

5 95 hsa-novel-27395-mature SLC35F1 solute carrier family 35 member F1 

6 95 hsa-novel-27395-mature HBP1 HMG-box transcription factor 1 

7 95 hsa-novel-27395-mature RHEBL1 RHEB like 1 

8 95 hsa-novel-27395-mature KIF13A kinesin family member 13A 

9 94 hsa-novel-27395-mature CDYL chromodomain Y like 

10 94 hsa-novel-27395-mature BAGE2 BAGE family member 2 

  



 

190 

Table D.1-3: List of targets predicted by miRDB for the novel miRNA ‘hsa-novel-3327-mature’, sequence: 

CGTGGTCTTCGGGGAGAGAG 

Rank Target Score miRNA Gene Symbol Gene Description 

1 97 hsa-novel-3327-mature TSC1 TSC complex subunit 1 

2 94 hsa-novel-3327-mature FAM120C family with sequence similarity 120C 

3 92 hsa-novel-3327-mature GCN1 GCN1, eIF2 alpha kinase activator homolog 

4 90 hsa-novel-3327-mature LUZP2 leucine zipper protein 2 

5 89 hsa-novel-3327-mature TXNRD3NB thioredoxin reductase 3 neighbor 

6 88 hsa-novel-3327-mature CNOT2 CCR4-NOT transcription complex subunit 2 

7 87 hsa-novel-3327-mature TIMD4 T cell immunoglobulin and mucin domain containing 4 

8 87 hsa-novel-3327-mature PRKAR2A 
protein kinase cAMP-dependent type II regulatory subunit 

alpha 

9 87 hsa-novel-3327-mature MTRNR2L3 MT-RNR2 like 3 

10 87 hsa-novel-3327-mature EEF1E1 eukaryotic translation elongation factor 1 epsilon 1 
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Table D.1-4: List of targets predicted by miRDB for the novel miRNA ‘hsa-novel-45743-star’, sequence: 

CACTGCGCTCCAGCCTGGGCAC 

Rank Target Score miRNA Name Gene Symbol Gene Description 

1 92 submission PYROXD1 pyridine nucleotide-disulphide oxidoreductase domain 1 

2 80 submission SPEN spen family transcriptional repressor 

3 75 submission STAG2 stromal antigen 2 

4 74 submission WDR26 WD repeat domain 26 

5 73 submission DNAH14 dynein axonemal heavy chain 14 

6 73 submission AMACR alpha-methylacyl-CoA racemase 

7 72 submission RTKN rhotekin 

8 72 submission GPAM glycerol-3-phosphate acyltransferase, mitochondrial 

9 71 submission TMEM81 transmembrane protein 81 

10 68 submission ETS1 ETS proto-oncogene 1, transcription factor 
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Table D.1-5: List of targets predicted by miRDB for the novel miRNA ‘hsa-novel-41718-mature’, sequence: 

GTGTGTGCACCTGTGTCTGTC 

Rank Target Score miRNA Name Gene Symbol Gene Description 

1 100 hsa-novel-41718-mature  IGF2 insulin like growth factor 2 

2 100 hsa-novel-41718-mature  SCARA3 scavenger receptor class A member 3 

3 100 hsa-novel-41718-mature  ATP11A ATPase phospholipid transporting 11A 

4 100 hsa-novel-41718-mature  ADGRA1 adhesion G protein-coupled receptor A1 

5 98 hsa-novel-41718-mature  FHL5 four and a half LIM domains 5 

6 98 hsa-novel-41718-mature  TNRC6B trinucleotide repeat containing 6B 

7 98 hsa-novel-41718-mature  F7 coagulation factor VII 

8 98 hsa-novel-41718-mature  FGFRL1 fibroblast growth factor receptor like 1 

9 98 hsa-novel-41718-mature  KIF20A kinesin family member 20A 

10 97 hsa-novel-41718-mature  ASTN1 astrotactin 1 
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Table D.1-6: List of targets predicted by miRDB for the novel miRNA ‘hsa-novel-44942-mature’, sequence: 

TGGTCCAACGACAGGAGTAGG 

Rank Target Score miRNA Name Gene Symbol Gene Description 

1 98 hsa-novel-44942-mature DCUN1D1 defective in cullin neddylation 1 domain containing 1 

2 98 hsa-novel-44942-mature PPP4R3A protein phosphatase 4 regulatory subunit 3A 

3 97 hsa-novel-44942-mature UBA2 ubiquitin like modifier activating enzyme 2 

4 97 hsa-novel-44942-mature LHFPL6 LHFPL tetraspan subfamily member 6 

5 97 hsa-novel-44942-mature PRKX protein kinase X-linked 

6 97 hsa-novel-44942-mature ARHGAP12 Rho GTPase activating protein 12 

7 97 hsa-novel-44942-mature RRAGC Ras related GTP binding C 

8 96 hsa-novel-44942-mature MTX3 metaxin 3 

9 96 hsa-novel-44942-mature MAML1 mastermind like transcriptional coactivator 1 

10 96 hsa-novel-44942-mature RTL4 retrotransposon Gag like 4 
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Figure D.1-1: Bar chart of the enriched GO terms at 0h. The test set corresponds to the differentially expressed miRNAs from the 

contrast ‘pathological vs normal’; the reference set corresponds to the human miRNAs from miRBase, obtained with biomaRt. 
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Figure D.1-2: Bar chart of the enriched GO terms at 24h. The test set corresponds to the differentially expressed miRNAs from 

the contrast ‘pathological vs normal’; the reference set corresponds to the human miRNAs from miRBase, obtained with 

biomaRt. 
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Figure D.1-3: Bar chart of the enriched GO terms at 72h. The test set corresponds to the differentially expressed miRNAs from 

the contrast ‘pathological vs normal’; the reference set corresponds to the human miRNAs from miRBase, obtained with 

biomaRt.
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