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Abstract: The field of learning-based navigation for mobile robots is experiencing a surge of interest
from research and industry sectors. The application of this technology for visual aircraft inspection
tasks within a maintenance, repair, and overhaul (MRO) hangar necessitates efficient perception
and obstacle avoidance capabilities to ensure a reliable navigation experience. The present reliance
on manual labour, static processes, and outdated technologies limits operation efficiency in the
inherently dynamic and increasingly complex nature of the real-world hangar environment. The
challenging environment limits the practical application of conventional methods and real-time
adaptability to changes. In response to these challenges, recent years research efforts have witnessed
advancement with machine learning integration aimed at enhancing navigational capability in both
static and dynamic scenarios. However, most of these studies have not been specific to the MRO
hangar environment, but related challenges have been addressed, and applicable solutions have been
developed. This paper provides a comprehensive review of learning-based strategies with an empha-
sis on advancements in deep learning, object detection, and the integration of multiple approaches
to create hybrid systems. The review delineates the application of learning-based methodologies to
real-time navigational tasks, encompassing environment perception, obstacle detection, avoidance,
and path planning through the use of vision-based sensors. The concluding section addresses the
prevailing challenges and prospective development directions in this domain.
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1. Introduction

In recent years, the aviation sector has made significant strides in the periodic inspec-
tion and maintenance of aircraft, aiming to keep pace with the increasing global air traffic
demand. This focus is driven by a commitment to safety and the goal to reduce operational
costs, which currently represent 10–15% of airlines’ operational costs and are projected to
rise from $67.6 billion in 2016 to $100.6 billion in 2026 [1]. This has heightened interest in
automated visual aircraft inspection with the aim of reducing conventional assessment
strategies conducted by human operators, which are often time-intensive and susceptible
to transcriptional error, especially when accessing complex and hazardous areas within
the aircraft [2]. To overcome these limitations and improve the effectiveness of the aircraft
visual inspection process, the aerospace industry is actively exploring the integration of un-
manned robotic systems, including mobile robots and drones. The fundamental focus lies
on the capacity of robots to perceive and navigate through their surroundings, ensuring the
avoidance of collisions with obstacles. This necessitates the understanding of dynamic and
unstructured environments, like aircraft hangars, where accurate and real-time detection
and avoidance of obstacles have paramount significance [3]. The hangar environment is
unpredictably complex, with diverse object irregularities, including light variations that
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contribute to environmental uncertainties and navigational difficulties. Consequently, there
is a need to equip autonomous vehicles with reliable obstacle detection and avoidance
mechanisms to improve their ability to safely navigate the surrounding environment.

Traditionally, mobile robots have utilised technologies such as Radar and GPS, along
with various other sensors for navigation purposes. However, in comparison to these
sensors, RGBD (red, green, blue—depth) cameras and LiDAR (light detection and ranging)
systems, although more expensive, offer significantly broader range and higher resolu-
tion. These advanced sensors enable the capture of a more detailed representation of the
environment. RGBD cameras provide a rich visual and depth perception, while LiDAR
systems offer more precise environmental mapping, making them superior for complex
navigation tasks [4]. The data collected by these sensors undergo algorithmic processing
to create comprehensive models of the environments that enable the implementation of
obstacle avoidance strategies. The use of mobile robots to perceive, detect, navigate through
environments, and enhance inspection processes has gained considerable attention in this
field [5]. However, the principal challenge extensively investigated is accomplishing a
navigational task that ensures an optimal, collision-free, and shortest path to the designated
target. This challenge is amplified by the inherently complex and unstructured nature
of the changing environments, which complicates the real-time decision-making process
and impacts the robot’s autonomy. Consequently, the robots struggle to navigate, avoid
obstacles, and identify the most suitable path in changing environments.

Previous studies have demonstrated various methods of autonomous navigation, with
significant attention given to conventional approaches that combine local and global path
planners. These methods, including the dynamic windows approach (DWA) [6], rapidly
exploring random tree (RRT) [7], and Dijkstra [8], have shown notable results, especially in
static environments, and can successfully navigate robots from one point to another with
a reasonable level of confidence that they will avoid collisions with obstacles. However,
these approaches frequently rest on a set of presumptions that are unlikely to be true in
practice [9], involve a significant computing burden [10], and manual tuning of system
parameters [5]. Also, it requires extensive engineering effort to develop and adapt the
system to different environments, especially where there are dynamic obstacles of varying
shapes and sizes.

Recent studies have demonstrated an increasing interest in learning-based techniques,
underpinned by advancements in deep learning and computer vision, for their efficacy
in self-learning, optimisation, and adapting to variable conditions. This transforms raw
sensory input into an adaptive understanding of the environmental features, facilitating
obstacle detection, avoidance, and path planning in unstructured and complex scenes. This
equips mobile robots with the capability to tackle the intricacies of dynamic real-world
environments effectively. The work in [11] was applied to learn navigation tasks and plan
a safe path efficiently. Nagabandi et al. [12] addressed adaptability and generalizability in
dynamic environments, while Koh et al. [13] improved real-time capabilities for effective
navigation experience in aircraft inspections. While numerous mature algorithms for
obstacle avoidance exist, the development of highly robust obstacle avoidance algorithms,
particularly those enabling robots to operate effectively in unstructured environments,
remains an area meriting further investigation.

This research work focused on offering a comprehensive analysis of learning-based
approaches applied to autonomous ground robot navigation within complex environ-
ments. It aimed to facilitate obstacle detection, obstacle avoidance, and path planning
within the challenging and confined spaces of MRO hangar environments, striving for
safe and intelligent navigational outcomes. The application of deep-learning-based de-
tection techniques, including deep reinforcement learning DRL [11], Fast R-CNN (Fast
region convolutional neural network) [14], and YOLO (you only look once) [15], have
been extensively studied. These models exhibit a wide range of capabilities in detecting
obstacles with varied and unpredictable forms, dimensions, and even under challenging
lighting conditions. Each technique employs unique methods; DRL utilises policy, value,
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and reward systems, while YOLO and FAST R-CNN use bounding boxes and class labels
to provide comprehensive information. In combination with sensor fusion, visibility in
low-light situations and improved detection capability have been shown to be attained,
consequently enhancing obstacle-free path planning and adaptation to a wide range of
scenarios. Multiple sensor information creates a more robust and accurate representation
of the environment, which is used to train and enhance the applicability and reliability
of the model [16]. This study presents numerous learning-based mobile robot navigation
algorithms that have been proposed to address navigation difficulties, enhance motion
decisions, and generalise in changing and complex hangar scenes. These methodologies
are organised into three distinct categories, deep learning, object detection and hybrid
approach, all with a focus on improvements in environmental perception, adaptability,
and safe navigation capabilities in handling complexities and uncertainties inherent in a
changing and dynamic environment. The core components of learning-based methods
discussed in this review work are shown in Figure 1. The major contributions are summed
up as follows:

• This study examined learning-based navigation strategies, emphasising efficiency,
safety, and adaptability for use in complex settings such as MRO hangars.

• The review categorised algorithms based on deep learning, obstacle detection, and
hybrid techniques, contributing to the generation of optimal and safe paths in a
given environment.

• It elucidates the challenges faced by these algorithms and potential directions for their
applications in real-world scenarios.
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The rest of the sections are structured as follows: Section 1 highlights some related
literature. Section 2 presents the concept of machine learning and robotics as industry 4.0
(I4.0) technologies with their significance in autonomous mobile robot (AMR) systems for
the digitalisation of aircraft inspection and maintenance operations. Section 3 presents the
learning-based frameworks and potential use cases in aircraft repair maintenance and repair
operations. In Section 4, we discuss associated difficulties, future trends, and opportunities,
critically looking at simulation to real-world transfer, and finally, the conclusion is in
Section 5.
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2. Related Work

In recent years, there has been remarkable advancement in the field of obstacle detec-
tion, avoidance, and path planning in different domains. This advancement has played a
significant role towards realising the vision of the “Hangar of the future”, a concept that
envisions a highly automated, efficient, and safe environment for aircraft maintenance and
inspection. Recent studies have engaged AMR for navigation and safe interaction with
its environment to automate aircraft inspection in a hangar environment [17]. Thanavin
et al. [18] investigated robot navigation mechanisms for aircraft inspection in complex
hangar environments. In [19], the authors proposed an automated approach to aircraft
inspection using a depth camera-based mobile robot by following a predefined path to the
target location. Another work applied obstacle avoidance control with the mobile robot
while navigating around an aircraft for visual inspection [20]. However, much research
has not been conducted specifically on hangar environments related to obstacle detection,
avoidance, and path planning strategies, but similar challenges have been addressed in
recent research studies. This harnesses the power of deep learning techniques and the
capabilities of various visual sensors, such as cameras, LiDAR, and depth cameras, to im-
prove the navigational abilities of mobile robots. This primarily focuses on overcoming the
limitations of traditional methods by enhancing environmental perception and adaptability
mechanisms, thereby effectively addressing unforeseen complexities and uncertainties in
environmental factors [11]. Many extensive reviews have been conducted to delve into the
application of learning techniques in mobile robot navigation, encompassing aspects like
obstacle detection, obstacle avoidance, and path planning.

2.1. Navigation with Object Detection Model

Deep learning has emerged as a promising technique for solving object detection
problems and challenges. Kuutti et al. [21] conducted a comprehensive survey highlighting
the multifaceted capabilities of deep learning. These include managing multimodal sensor
data, extracting features, learning complex and high-dimensional states, and addressing
advanced object recognition challenges. In [22], the authors reviewed recent and successful
object detection methods that have significantly advanced the field of autonomous vehicles.
Furthermore, the study in [23] provided an overview of object detection and segmentation
systems specific to autonomous vehicles, focusing on the detection methods, sensors, and
fusion capabilities to achieve results and extend to related challenges in other application
domains. The research paper in [24] delved into the range of object detection and tracking
techniques, emphasising their generalizability in complex settings. The works by Gupta
et al. [22] discuss the capabilities of object detection models through the evaluation of object
detection metrics from sensor input. The implementation of the YOLOv5 object detection
model was introduced in [25], which demonstrates reduced computational demand and
improved system accuracy when tested on KITTI datasets. However, a limitation noted
in the review study [26] was its ineffectiveness in detecting certain environmental objects.
The application of the Faster R-CNN two-stage object detector model, as discussed in [27],
addresses detection issues by providing efficient learning-based object detection and track-
ing solutions for autonomous vehicles. This model, however, faces challenges due to its
structural complexity and high computational demands.

2.2. Navigation with Deep Learning Model

The application of deep reinforcement learning represents another facet of deep learn-
ing methods, specifically in addressing challenges related to robot obstacle avoidance
and path planning [28]. Diverse modalities have been analysed, including learning from
scratch in both model-based and model-free states, as well as learning from experience.
The authors in [25] reviewed the transition from classic methods of obstacle avoidance and
motion planning to the capability of learning-based approaches, yielding notable results.
However, this review focused on the application of RL only in mobile robot autonomous
navigation. Major limitations of DRL in real-world service robots were elaborated in [29],
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and to address these challenges, Zhao et al. [30] explored DRL methods that represent
a synergistic combination of RL and DL. They highlighted the significant contributions
of DRL in achieving optimal path planning and efficient navigation, particularly in the
context of constraint factors. Shabbir et al. [31] reviewed the capabilities of deep learning
through environmental perception and modelling for an efficient navigation experience.
Most models integrate Q-learning techniques to solve navigation task challenges through
path planning and obstacle avoidance using discreet actions [32,33]. The authors in [34]
used a reward function and continuous action space to achieve safe navigation tasks. Imi-
tation learning, which is the act of behaviour cloning, has also been adopted recently by
many scholars with outstanding success. Abdelwahed et al. [35] demonstrated the use of
experience solutions to learn and solve new problems using machine learning concepts.
In contrast, the one by [36] reviewed imitation and reinforcement learning methods that
build essential obstacle perception and control mechanisms from environmental data for
the fully autonomous and intelligent robot navigation system.

In another study, the application of behaviour-cloning techniques using the fuzzy
controller [37] and from human demonstration [38,39] demonstrated optimisation of the
robot’s navigation experience. The concepts of intelligent robot navigation have been
significantly enhanced with learning-based systems, including supervised learning that
focuses on feature extraction and adaptability in changing environments leveraging vast
amounts of data [40]. Some of these have been integrated into conventional algorithms to
enhance their suitability in real-time applications and real-world environments.

2.3. Navigation with Hybrid Model

The combination of classical path planning and learning techniques, which is pre-
sumed to offer greater practical stability, has garnered considerable attention. A comprehen-
sive review of navigation conditions in static and dynamic environments was conducted
by Patle et al. [41], exploring potential hybrid mobile robot navigation techniques and
the suitability of their performance across various environments. In their work, Desh-
pande et al. [42] explored the advantages of hybrid methods with reference to different
areas of application. Janji et al. [43] conducted a review focusing on the integration of
neural-network-based solutions, giving attention to input, output, and environment state,
as well as their ability to address major obstacle avoidance and path planning constraints.
The work in [44] comparatively analysed heuristic neural network algorithms for path
planning and obstacle avoidance. Du et al. [45] further explored the application of real-time
neural network algorithms for generating collision-free routes to the destination, aiming
to improve the motion control and obstacle detection accuracy of robot systems. Overall,
this paper leveraged many learning-based navigation method studies, providing a broader
understanding and recommendation on the application and suitability of recent models
based on their functionalities in complex environments.

3. Concept and Background
3.1. MRO Hangar in Aviation

The aerospace industry has continually evolved to guarantee the safety and reliability
of aircraft to make air travel one of the safest and most reliable means of transportation.
The traditional approach to aircraft maintenance and inspection involves semiautomated
systems with human control to execute tasks. Sensing and navigation systems are usually
preprogrammed to follow predefined inspection paths and do not adapt to unexpected
conditions or obstacles. These factors are time-consuming and increase the overall operation
cost. There is a growing need for more advanced and automated systems, potentially
reducing cost and enhancing safety. The aviation industry has grasped the integration
of robotics to improve the MRO processes of aircraft towards the “Hangar of the Future”
initiative. The MRO hangar represented in a simulation model shown in Figure 2 is a major
part of the aviation sector in which Industry 4.0 (I4.0) technology environments [17] have
gained wide adoption and are instrumental in improving safety and operational efficiency
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in the environment. Robotics and artificial intelligence are part of the key enablers of I4.0, as
illustrated in Figure 3. These technologies have been effectively harnessed using unmanned
vehicles, including intelligent ground robots, for autonomous navigation in a busy and
changing hangar environment, particularly for inspection, maintenance, and repair tasks.
A comparative description of the intelligent application of robotics over the conventional
method is shown in Table 1. Robots have emerged as a promising cutting-edge technology,
enabling efficient and precise operations in various tasks, including assembly, drilling,
painting, and inspections. Intelligent robots involve the use of machines that are built and
programmed to perform a specific task, combined with artificial intelligence techniques
that instil and optimise intelligence through automated, data-driven learning capabilities.
The integration of these technologies has spurred a digitalisation drive within the sector,
promoting the concept of “Hangar of the future”. This is where intelligent robots play
major roles by improving aircraft inspection efficiency and reducing aircraft-on-ground
(AOG) time and overall operation cost.
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Table 1. Comparing traditional and intelligent robotics applications in MRO hangar.

Task Traditional Approach Intelligent Robotics Application

Inspection accuracy Dependent on programme quality and
human interaction

Enhanced accuracy facilitated by learning
and data analysis

Automation level Manual–semiautomated with
human oversight Fully automated with limited human input

Algorithms Predefined algorithms combined with basic
sensor input

Sensor fusion, advanced navigation
algorithms, and machine learning models

Obstacle detection and navigation Basic, simple path planning algorithms Using real-time and advanced deep learning
models to enhance path planning

Task performance Best suited for repetitive and defined tasks Able to manage varied and complex tasks

Cost Higher cost for longer maintenance time and
error management Lower maintenance engagements and cost

A typical hangar environment is characterised by highly complex configuration space
due to the presence of unstructured and dynamic objects that vary in shape, size, and colour.
Additionally, low-light conditions prevalent in such environments can impact visibility in
certain areas. These factors pose a challenge for robots, as their ability to navigate from the
starting point to the target location is constrained by objects and changing environmental
structures [46]. Mobile robots must proactively engage with their surroundings, interacting
with and exploring the aircraft environment to ensure efficient navigation experiences [17].
In this process, they generate valuable information using various sensors that facilitate the
detection of environmental features, including positions of obstacles, which are essential for
environment modelling and safe navigation to their destinations [47]. Different machine-
learning-based functionalities have been developed, leveraging environmental information
for robotic applications [28]. These have been demonstrated through various robotic
platforms, such as the human-like robots from Boston Dynamics, the Crawling inspection
robot by Cranfield University [2], and others. These robot systems follow standard robot
architecture comprising sensory data acquisition, environmental perception, decision-
making process, and execution of actions. This architecture is embedded within the robot’s
hardware framework to effectively learn the robot’s orientation relative to a set of state
space variables for optimal navigation in complex and dynamic environments.

3.2. Intelligent Robotic in MRO Hangar

Mobile robots encompass comprehensive system structures that work together through
perception, detection, motion planning, and control, as illustrated in Figure 4, to perform
a series of navigation tasks. Robotic scientists in this field have proposed many intelli-
gent technologies integrated to form an Internet of robotic things (IORT) that can interact
with the environment and learn from sensor information or real-time observation without
the need for human intervention [2]. This technology empowers robots to operate more
independently and make decisions based on the information they gather from their envi-
ronments. Machine learning (ML) is an artificial intelligence approach that is at the core
of these enabling intelligent technologies with widespread adoption [2] and has become
an essential component in accomplishing many intelligent tasks in robotics. The ML tech-
niques incorporate sensor information fusion, object detection [48], collision avoidance
mechanism [49], pathfinding [50], path tracking [51], and control systems [21] to solve
robot autonomous navigation problems [52]. Diverse arrays of sensors, including laser
scanners, cameras, LiDAR, and others, are leveraged for information gathering, mapping,
obstacle detection, as well as robot positions and velocities. The fusion of information from
these multiple sensors has brought a paradigm shift in the development of more robust
and accurate models of robotic systems. The multisensory fusion augments the capabilities
of each individual sensor, thereby enhancing the overall system’s visual perception and its
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efficacy in obstacle detection and avoidance under a variety of operational conditions [53].
ML methods have revolutionised robot navigation, especially in unstructured and complex
environments, by offering highly accurate and robust capabilities [54] to training models by
learning from data to adapt to various types of obstacles they encounter during navigation.
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3.3. Robotic Navigation

The subject of autonomous robot navigation entails mapping, localisation, obstacle
detection, avoidance, and achieving an optimal path from a starting point to a predefined
target location efficiently [55]. The nature of obstacles encountered can be static or dynamic,
depending on the environment structure. Navigation through such an environment can be
challenging due to the reliance on the sensory and real-time capability of analysing the vast
amount of environmental data. Some of the robot navigation problems include the need to
accurately perceive, identify, and respond to the geometry of the environment, the shape of
the robot, obstacle types, and obstacle position using a suitable model. However, improper
navigation processes often result in inaccuracies in perception, the development of flawed
models of the environment, and emergencies of learning complexities, which significantly
limit the robot from achieving its navigational goal. The application of advanced compu-
tational techniques like parallel processing and deep neural network (DNN) algorithms
has significantly improved the navigation experience. In the context of a neural-network-
enabled approach for obstacle avoidance and path planning, the architecture encompasses
several interconnected modules, each contributing uniquely to overall system efficiency.
As illustrated in Figure 5, the modules collaboratively contribute to achieving optimal path
planning, adapting to changing scenarios, and are able to minimise obstacle collisions in
complex environments.
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For many applications, various researchers have added specialist knowledge and un-
dertaken studies to improve these modules to solve navigation problems. In most cases, the
agents learn from data or through trial and error to master navigational skills and facilitate
the generalisation of learned skills in similar settings in simulation environments, which
is valuable for reducing training time and real-world difficulties. The virtual platform
helps to manage environmental factors and task structure that can influence the efficiency,
adaptability, and reusability of these models before transferring to the real-world environ-
ment. In the context of the MRO hangar environment, the robotic systems are subject to
complexities and uncertainties due to the unstructured nature of the settings, variability
in object types, and sensor capacity. This demands robust solutions capable of perceiving,
responding and adapting to real-time changes.

3.4. Vision Sensors

To effectively perform robotics tasks, mobile robots require a thorough understanding
of their environment. To achieve this, robots are equipped with sensors that enable them
to perceive and gather relevant information from the surroundings. Vision-based sensors,
including LiDAR, cameras, and depth cameras, have become the most used equipment
for unmanned vehicle (UV) detection and navigation tasks [56]. LiDAR is extensively
used in the detection and tracking of AMR, even though it may be more costly than some
alternatives. The sensor can obtain reliable information, including basic shape, precise
distance measurements, and position of the obstacle, and is more efficient in different
weather and lighting conditions [57]. However, the ability to capture the texture and colour
of objects for accurate obstacle detection is limited compared with cameras [58,59]. This
limitation can result in challenges when attempting to accurately track fast-moving objects
in real time. RGBD cameras have also shown great capabilities, including high resolution
and generation of rich and detailed environment information, though within a limited
range, but are greatly efficient in object position estimation using depth information [60,61].
However, the performance is highly susceptible to lightning conditions, which can be
associated with certain areas in the hangar environments. The hangar environment has
significant influences on the choice of appropriate perception sensors for operational use
within the space. Obstacle detection sensors are designed to interact with the environment
and generate environmental data through sensor devices. They then use algorithms based
on computer vision and object recognition for obstacle detection, tracking, and avoidance in
a navigation system. To complement the capabilities of the RGB camera, depth sensing was
combined in [62] to provide an accurate distance between obstacles and the robot position
based on operational range and resolutions. The authors in [63] employed depth camera
information to estimate robots’ poses for an efficient navigation experience. Depth cameras
like Microsoft Kinect, Intel RealSense, and OAK-D offer valuable 3D spatial data that
can enhance robots’ understanding of their environment with precision. The integration
generally facilitates obstacle sensing and state estimation for robust obstacle avoidance
and path planning. Like the RGB cameras, variable lighting conditions and environmental
factors can affect the accuracy of the perceived obstacles and position. This perception
constraint is part of obstacle avoidance and path planning challenges in complex settings.

Recent research has made significant contributions to intelligent obstacle detection
and avoidance solutions based on sensor usages and algorithm improvement. The work
in [64] presents different configurations and capabilities of vision sensors relevant across
diverse domains. Manzoor et al. [65] analysed Vison sensor modalities as intricate factors in
understanding environmental features used in deep learning models for real-world mobile
robot’s obstacle detection and navigation operation. Xie et al. [66] improved obstacle
detection and avoidance techniques through the utilisation of 3D LiDAR. Their study
highlights the proficiency of LiDAR in detecting basic shapes and identifying obstacles at
extended ranges. The integration of sensor data for more comprehensive environmental
perception in learning-based models has been a notable development in the field of robotic
navigation. This translates raw sensor data into usable information to enhance the system’s
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capability from environmental perception to improved efficiency in obstacle detection and
effective decision making for obstacle avoidance and path planning.

3.5. Obstacle Detection

Obstacle perception and identification for robot navigation involves locating potential
obstacles that could influence a robot’s ability to navigate in its surroundings. The mobile
robot utilises its sensory systems, which may include LiDARs or cameras, to perceive
and understand its environment, enabling it to plan a safe and collision-free path to its
intended destination. Deep learning has gained wide adoption in research and industry,
leading to the development of numerous navigation models that leverage different object
detection models and sensor inputs for robot obstacle detection and avoidance systems.
Most recent object detection methods are based on convolutional neural networks (CNNs)
like YOLO [67], Faster R-CNN [14], and single-shot multibox detectors [68]. Faster R-
CNN is renowned for its high detection accuracy and employs a two-stage deep learning
framework. This network structure impacts computational efficiency and speed, which
are crucial factors for real-time applications [69]. The YOLO model, on the other hand,
is a one-stage object section approach that is known for significant speed and real-time
performance. This makes it well suited for autonomous mobile robot navigation, in which
prompt decision making is important for obstacle avoidance and motion control.

3.6. Obstacle Avoidance

Ensuring the safety of the working environment is a primary priority when deploying
mobile robots for navigation tasks in complex environments. The safety solution should
be able to perceive the environment and take proactive actions to avoid obstacle collisions
using reliable sensors [49]. The mobile robot should have the capability to identify a safe
and efficient path to navigate within its operational environment, which may contain
static and dynamic obstacles to the target destination. Different learning-based obstacle
avoidance algorithms have been developed to enable robots to effectively and precisely
complete intended tasks. Some are integrated with local and global planners to efficiently
adjust the direction and speed of robot motion in response to detected obstacles within static
and dynamic environments to generate an improved path to reach the target location [70].
Recent review studies, learning-based models in robotic navigation, have demonstrated
notable success by learning and generating obstacle data from environment sensors. These
models extract obstacle features from images and video streams, allowing them to classify
and locate different obstacles within the given environment. The integration of these models
into robot operating system (ROS)-based planners has shown improved performance in
robotic navigation. Planning algorithms like the dynamic window approach (DWA) [6]
have good capabilities in a dynamic and complex environment and have been widely
combined with learning algorithms for more capability, efficiency, and intelligent path
planning [71].

3.7. Path Planning

Autonomous learning in path planning has made significant progress in recent times,
where technologies such as CNN and deep reinforcement learning have been increasingly
adopted. Path planning entails a sequence of configurations based on robot types and
environment models that enable robots to navigate from a starting point to a target lo-
cation [72]. The environment can be mapped to represent geometric information about
the environment and connectivity between different nodes or maples. The map-based
method enables the robotic solutions to compute the robot’s dynamics and environment
representation for an optimal global path planning to the goal [73]. For local path planning,
it relies on real-time sensory information to navigate safely in the presence of static and dy-
namic obstacles. Another aspect of path planning configuration is the maples model, which
requires no predefined map of the environment but rather capitalises on frameworks like
deep learning models to learn and enhance optimal navigation strategies. Path planning
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in an MRO hangar can be challenging, as the environment is often changing and complex
with a high density of obstacles. To ensure a robust obstacle-free path, ongoing research is
focusing on path tracking [74], advanced deep learning [75], and hybrid approaches for
more autonomous and intelligent robot path planning to target locations [71].

3.8. Path Tracking

Safe and efficient robot navigation requires a path tracking system that guides mobile
robots along the planned trajectory to a target location, managing and minimising deviation
from the planned route. This involves continuous monitoring and updating of the planned
route based on sensor feedback and the changing environment. The work in [74] reviewed
path tracking algorithms relative to high and low speeds. For high-speed applications,
the reaction time available for the robots to perceive, process, and respond to obstacles
was significantly reduced at high velocities, making it harder to execute quick and sharp
manoeuvres without compromising stability or safety. Looking at low-speed use cases,
the application of robotic systems in MRO hangars involved low-speed movement and
the requirement for precise path tracking in complex settings. The low-speed movement
of these robots led to path tracking errors, especially when dealing with sharp turns and
frequent changes in direction. Accurate modelling of low-speed dynamics is essential
to adjust the robot’s behaviour for optimal path tracking. The combination of adaptive
control systems, sensor technologies [76], and advanced deep learning techniques have
been shown to enhance robust real-time path tracking capability for robot navigation in
such scenarios. From the study in [77], the most applied path tracking algorithms include
pure pursuit (PP) [78], model predictive control (MPC) [79,80], as well as learning-based
models to generate control laws leveraging training data and experience from a variety of
scenarios [81].

4. Learning-Based Navigation Techniques (Methods)

The dynamic and unforeseeable state of edge cases in the real world makes the
application of the navigation task challenging. Ensuring that the systems can detect and
respond effectively to changing and unstructured scenarios is essential for safe and reliable
navigation [32]. The conventional approach, which works best in a static environment, is
known to be computationally intensive and must be adjusted to varying environment states
and motion dynamics. The learning-based approach has been instrumental in addressing
the limitations of traditional methods. These methods utilise complex neural network
architecture to process sensory data and extract relevant features, allowing them to adapt
to a wide range of environmental structures and make more informed decisions [36]. The
primary focus of this paper is on the integration of deep learning methods that specifically
address challenges associated with obstacle detection, avoidance, and path planning in
environments that are both dynamic and complex.

4.1. Deep Reinforcement Learning (DRL)

This represents a transformative autonomous navigation approach that combines the
perception ability of deep learning and the decision-making potential of reinforcement
learning to effectively map sensory input to navigation actions, leading to an improved
end-to-end navigation process. The DRL-based navigation model, a description of which
is shown in Figure 6, has demonstrated great capacity to achieve safety, adaptability,
and efficiency, learning about the workspace with less reliance on the accuracy of sensor
information. The deep neural network functionalities of the DRL, like CNN and autoen-
coder (AE), can automatically extract varying features from highly complex environments.
Researchers have adopted this paradigm and have developed different approaches that
address autonomous navigation challenges by leveraging DRL algorithms like proximal
policy optimisation algorithms (PPOs) [82], deep deterministic policy gradient algorithms
(DDPGs) [83], trust region policy optimisation (TRPO) [84], and others. Most of these
algorithms are constrained by sparse rewards [85], which impacts model training and
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convergence rate. Some proposed methods have been shown to discretise the action space;
however, these have achieved limited success in addressing the complexity of certain
settings. On the other hand, the policy gradient approach, utilising gradient descent, has
been applied to solve continuous space problems by calculating the policy parameters
to maximise the expected reward [86]. In the context of achieving optimal navigation in
complex environments, value-based RL algorithms have shown enhancement for appli-
cations involving discrete action spaces by using an argmax to choose the action with the
highest Q-value [87]. Further improvement is achieved by proper tuning of system hyper-
parameters and incorporation of deep learning functions. This includes multiple hidden
layers, extensive datasets, ReLU activation functions, and Adam optimiser, among others.
Such configurations have been demonstrated to achieve efficiency in obstacle detection,
avoidance, and path planning in autonomous navigation systems. Some other methods are
highlighted in Table 2, illustrating their specific contributions.
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Table 2. Comparison of papers on DRL-based robot navigation systems.

Ref. Principle Method Model Strength Limitation

[88] Avoid obstacles
and navigation

Deep Q network
(DQN) and duelling
double deep Q
network (D3QN)

Model-free Can learn from very
depth noise

Applicable in less
complex settings

[89] Path planning in
continuous space DDPG Model-free

Optimal path
generation with less
environmental
information

Predefined tracks can
obstruct efficient
navigation in highly
dynamic scenes

[83]
Generalisation
ability of
path planning

LSTM + DDPG Model-free

100% success rate,
18.8% better training
time and 21% shorter
distance covered

Only considered
static obstacles

[90] Collision-free
navigation

DDPG with a
separate experience Model-free

An improved replay
mechanism was
adopted for training
and improved
network performance

Network parameters
are randomly set
and limited in
real-time situations
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Table 2. Cont.

Ref. Principle Method Model Strength Limitation

[91] Object recognition
and robot navigation

Deep neural network
(DNN) Map-based Average recognition

accuracy of 80%

Require a more complex
environment to validate
real-world applicability

[92]
Object detection
and tracking
for navigation

CNN Model-based Can detect and track
multiple obstacles

The default ROS
algorithms used are
limited in complex and
real-time demanding
environments

4.2. Object Detection Model

Effective obstacle perception and detection are fundamental requirements for ensuring
robots can plan collision-free movements. The mobile robot utilises its sensing systems,
including LiDARs or cameras, to perceive environmental features that could potentially
interfere with navigation tasks. Various methodologies are adopted to improve these
capabilities. Some are designed for static settings, detailed environment maps, sensor
fusion, and dynamic scenarios, with the potential to improve navigation ability. A ma-
jor advancement in this field has been the incorporation of machine learning into object
detection systems, allowing for the creation of more flexible and effective systems. This
learning-based method drives learning from data to perform MR navigation tasks through
domain knowledge [44]. In the MRO hangar context, the changing environmental structure
with varying object types, occlusion, and low-light conditions limits the capability of the
learning model and requires more training costs to scale to new environment variables.
These are among the major difficulties of obstacle detection in real-world mobile robot
navigation that have resulted in many environment-related accidents. Object detection
algorithms use the explicit definition of environment variables like obstacle size, shape,
depth, and object distance range in the environment [55,57] to predict obstacles, improve
obstacle avoidance, and plan a smooth route to the destination. Additionally, Table 3 high-
lights ROS deep learning solutions that have been developed and can be applicable based
on their capabilities. Most of these algorithms employ pretrained object detection networks
to develop models relevant to obstacle avoidance and pathfinding optimisation. Among
the widely employed object detection algorithms utilised in robotics and other domains
include CNN, Faster R-CNN, and YOLO.

4.2.1. CNN

CNN represents a deep learning architecture composed of multiple convolutional
layers. This method demonstrates the capacity to automatically discover and extract impor-
tant elements from images, facilitating object recognition and classification [55]. Numerous
researchers have used this method to develop models for object detection and collision
avoidance. For instance, Qi et al. [93] developed a modern CNN technique to identify
and classify obstacles in complex environments; they highlighted the improvements in
obstacle identification. Additionally, Mechal et al. [94] presented a CNN model trained
with different types of images, such as RGBD, RGB and HSD, enabling the classification
of obstacle avoidance actions. The authors of [93,95] used CNN to estimate the depth of
objects in an image to consequently steer commands for a quadrotor. This study provided
evidence demonstrating the superior performances of CNNs compared with traditional
methods. Similarly, Liu et al. [96] proposed a CNN vision-based model for obstacle avoid-
ance, aiming to generate steering commands for a mobile robot while reducing the need for
complex and time-consuming hand-engineering of features. The ability of CNN to learn
feature representations directly from raw image data without the need for manual feature
extraction marks a significant advancement in the field of object detection and has led to
widespread adoption in various applications, including autonomous vehicles and robotics.
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4.2.2. Faster R-CNN

Faster R-CNN is an extension of CNN based on the region proposal network (RPN),
which is classified as a two-stage convolutional neural network. This sophisticated ap-
proach is intended to create bounding boxes for each proposed region and then extract
important features from these regions, making it easier to classify the objects contained in
each region later [69]. Faster R-CNN is mentioned in Lee et al.’s [97] paper, where it was
used to assist unmanned vehicles to avoid collision. Mahendrakar et al. [69] employed this
technique to ease robot navigation while showing the excellent accuracy of the Fast R-CNN.
In the study conducted by Hakim et al. [98], Faster R-CNN was explained to operate in
two phases. Initially, it generates bounding boxes around several objects within an image,
and subsequently, in the second phase, the proposed regions underwent classification to
accurately detect objects. Compared with other object detection models like YOLO, Faster
R-CNN is more precise in the object detection process with a more comprehensive and
multiple-layer structure [93], and this makes it an attractive option for real-time applica-
tions. However, the gain in accuracy comes at the expense of real-time identification speed,
as the algorithms exhibit slower performance in this regard. In addition, significant time is
required to collect training data in the case of multiple-layer CNN models [99]. Real-world
applications require obstacle detection systems with high accuracy and real-time capabili-
ties to efficiently respond to the increasingly complex demands of different domains. Faster
R-CNN is potentially more computationally intensive and of low inference.

4.2.3. YOLO

YOLO, in contrast, uses a single layer of object recognition and simultaneously creates
bounding boxes around objects using a grid-based methodology. This is achieved using a
technology that divides images into grid cells and then creates bounding boxes that include
the recognised items [69]. To address map-building challenges, Emmi et al. [100] conducted
a comparative analysis of YOLOv3 with Retina Net-Resnet, ultimately selecting YOLO as
the preferred solution. Cao et al. [101] relied on YOLOv3 to build their detection system
with high accuracy and processing speed to enable efficient underwater robot navigation.
Additionally, Mahendrakar et al. [69] used YOLOv5 in autonomous navigation to show
the efficiency of YOLO in real-time situations. In the context of real-time object detection,
the speed of the process holds significant importance for effective obstacle avoidance.
Comparative analysis between YOLO, CNN, and Faster R-CNN [102] highlights YOLO’s
superior adaptability in real-time object detection scenarios. While YOLO’s speed and
adaptability make it an attractive option for real-time applications, its dependency on
extensive training data underscores a potential limitation, especially in an environment
with data scarcity. Therefore, the choice between object detection models should be guided
by specific application requirements to balance factors such as speed and accuracy.

Table 3. Recent solution with integrated ROS and object detection models for robot navigation.

Ref. Sensor Environment Learning
Algorithm Strength Limitation

[103] Vision sensor Dynamic in
sim/real world

YOLOv4 and
ROS DWA

Increased detection
speed of 15 FPS higher

3% reduced detection
accuracy

[104] Vision sensors Static and dynamic
in simulation

Yolov3 and
ROS DWA

Improved obstacle
avoidance with about
82% detection accuracy

Default ROS planners
used require
improvement

[105] Monocular camera Complex in
simulation

Fully connected
network (FCN) and A*

Reduced path length
and optimised trajectory

The model cannot
adapt to changes
due to limited
data coverage
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Table 3. Cont.

Ref. Sensor Environment Learning
Algorithm Strength Limitation

[106] RGBD cameras Static in simulation CNN and ROS
Improved autonomous
navigation with camera
and IMU sensors

Limited in low-light
situations

[107] LiDAR and camera Complex in
simulation ROS and YOLOV3

Improve obstacle
detection and navigation
performance

Limited to a static
environment

[108] RGBD image Static in real world Yolo3 and odometry
programme

Successful collision-free
trajectory

Require trade-off
between speed
and obstacle
detection accuracy

[109] LiDAR Static in real world
YOLO + simultaneous
localisation and
mapping (SLAM)

70% less time to
compute inference,
which improved
obstacle detection
and navigation

Used a sensor with
limited functionality
and in a less complex
environment

[110] Monocular camera Dynamic
real-world

MASK R CNN (region
convolutional neural
network)

Improved obstacle
detection in low-light
situations

Obstacle detection
accuracy is limited
when the robot to
obstacle distance is
less than 1.5 m

[111] LIDAR Static in real world Yolov3 + ROS
global planner

Improved obstacle
avoidance in a static
environment

Robots lose the path to
the target location
when two obstacles
are close to each other

4.3. Hybridisation with Neural Network

Hybridisation of algorithms has become commonplace, as it integrates the strength of
learning and nonlearning methods together to achieve more effective, accurate, and reliable
obstacle detection and avoidance solutions. This section investigates notable publications
on classic ROS-based and machine learning methods. The concept of robot operating sys-
tem (ROS) navigation planners provides a detailed framework that can integrate different
types of algorithms and sensors to develop complex robotics applications [112]. Emerging
solutions have utilised neural networks (NNs) to optimise traditional path planning and
obstacle avoidance techniques in recent times [43,113]. A neural network is a layered
framework of interconnected nodes that takes input based on a designed task and produces
network prediction or classification as output. The authors [113] applied a long short-term
memory (LSTM) neural network using robot pose and agent to obstacle distance as the
input to solve end-to-end path planning while avoiding a dynamic obstacle. Other authors
applied multilayer perceptron (MLP) network classic path planning algorithms to demon-
strate improved performance [114]. The authors of [115] used a padding mean neural
dynamic model to address the challenges of traditional neural dynamics by enhancing the
completeness and optimality properties of path planning in static and dynamic environ-
ments. More algorithms and their performance capabilities are discussed and compared in
Table 4. The integration of multiple techniques can increase computational demand and the
complexity of the system and affect real-time performance. Other factors, like environment
dependency, may affect generalizability to other platforms.
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Table 4. Strengths and limitations of hybrid systems solutions in obstacle avoidance and path
planning.

Ref. Model Composition Strength Limitation

[114] Multilayer perceptron (MLP) Avoid obstacles and find the
shortest path significantly

Inability to integrate with other
path planers

[113] Long short-term memory (LSTM)
synchronised with ROS

Completeness and optimality of
path planning

The experiment is limited to the
simulation environment

[96] CNN-based ROS with ROS-cafe Improved obstacle avoidance and
motion control

Limited in dynamic and complex
environments

[105] FCN and A* Obstacle avoidance and path
planning

Use of only a camera, which limits
the field of view (FOV)

[106] CNN and ROS Obstacle detection and avoidance Limited in a dynamic setting

[116]
Sampling-based planner (RRT*) and
conditional variational autoencoder
(CVAE)

Improved path planning Scaling to complex problems can
be difficult

5. Drawbacks and Future Work

Most obstacle detection, avoidance, and path planning solutions are unstable and
must be robust to be applicable in real-world scenarios. These systems rely on various
parameters, and finding suitable configurations is difficult and results in unpredictable
performance [113]. This can be exacerbated when dealing with limited training data.
Generating data and experience from the robot’s environment through perception and
interaction can be challenging owing to environmental factors, system functionalities,
and even the robot’s dynamics. These can impact the functionality and capability of the
algorithm, especially in cases in which sufficient and relevant data are required for effective
robot training. Conversely, recent research has demonstrated the significance of extensive
and versatile data and experience in improving the end-to-end robot navigation experience.
Robots tend to generalise better in this case and can apply learned skills to novel situations,
making them reliable in real-world applications.

The effectiveness of learning-based methods also depends on the quality of sensor
information. Poor sensor data can affect the stability, reliability, and performance of robotic
solutions. They can be subject to high levels of inaccuracies and noise in sensor data that
breed uncertainties and deviations in performance, which affects safe navigation [117].
Calibrating and simulating sensors to match real sensor specifications are essential to bridge
the gap. Also, augmenting simulated sensor data to replicate the noise, uncertainty, and
limitations of real-world sensor properties should be able to fine tune the robot’s ability
accordingly. Combining data from multiple sensors with sensor fusion techniques has been
proven to bridge the reality gap.

Another major research concern is the difficulty in transferring the trained model
from simulation to real-world robot platforms. The simulation environment accommodates
high-level collisions and reduces training difficulties compared with training in a physical
environment, which can be dangerous and cause damage to the robot [114]. For the
learning-based algorithm to be helpful for robot navigation, it must be swift in adapting
to the new environment and generalising to related tasks without the cost of additional
training. Tai et al. [118] demonstrated a maples motion planner built on observations from
a low-dimensional range laser sensor and asynchronous deep-RL technique to generalise
to a real differential robot platform without further retraining. Achieving efficient transfer
without performance degradation for obstacle avoidance and route planning solutions
requires developing a high-fidelity simulation environment that closely mimics the real-
world environment [96]. However, not all tasks can leverage knowledge from another;
some necessitate specialised models tailored to specific challenges. For example, in an
MRO hangar, the mobile robot domain experience might be specific to obstacles unique to
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aviation maintenance settings, and this complexity requires a customised model. However,
the integration of advanced neural networks and deep learning techniques has marked
a significant improvement in the field of intelligent robotics, paving the way for more
efficient and reliable solutions.

6. Conclusions

This research review provides a comprehensive overview of the current landscape of
learning-based object detection and avoidance in emerging intelligent and autonomous ve-
hicles. The complex and dynamic MRO hangar environment requires robust and intelligent
robot navigation systems to manage tasks with high demand efficiently. To achieve this, an
optimal path planning model is required to generate an obstacle-free and shortest route to
the target point through efficient obstacle detection and avoidance solutions. Recent work
in this area showed improvement in safety and reliability and also a significant contribution
to broader AI-driven robotics in dynamic real-world applications. We critically examined
the inherent functionalities and challenges associated with applying these models in AV
environments, particularly focusing on the trade-offs between detection accuracy and
avoidance efficiency. Our exploration of various learning-based techniques has under-
scored their potential to significantly utilise extensive datasets and experience learning to
enhance adaptability and task generalisation, factors vital for real-time robot navigation in
a changing MRO hangar environment. The choice of models for safe and efficient robot
navigation is a requirement and operational environment-specific. Relative to the MRO
hangar scenario, the combination of deep learning architecture and advanced path planning
and obstacle avoidance strategies from our recent work using LiDAR and camera data
fusion have been shown to enhance reliability and adaptability in changing structures.

The findings showed that integrating an object detection model into a navigation
system enhances the obstacle detection rate by 20–30% over conventional methods. YOLO
models showed excellent results in most review papers and were recommended as the best
fit for obstacle detection. Also, the learning-based methods contributed to a reduction in
path planning computation time and path length by 10–15%. These results significantly
reduce the incidence of navigation errors and improve the overall safety and reliability
of the navigation process. However, considering complexities and uncertainties in the
MRO hangar, the research recommends the development of domain-specific trained models.
These are models that are trained with data collected specifically from different MRO hangar
environments to improve the robustness and generalizability necessary for real-time and
real-world operations. The performance of these systems should be continuously monitored
and evaluated to maintain high safety standards in changing real-world conditions. There
is still a need for continued research in this domain, particularly in developing algorithms
that balance performance with computational demands. These advancements promise to
make robotics systems more adaptive, intelligent, and efficient in the complex environment.
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