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Unmanned Autonomous Vehicle (UAV) or drones are increasingly used across diverse application
areas. Uncooperative drones do not announce their identity/flight plans and can pose a potential risk
to critical infrastructures. Understanding drone’s intention is important to assigning risk and executing
countermeasures. Intentions are often intangible and unobservable, and a variety of tangible intention
classes are often inferred as a proxy. However, inference of drone intention classes using
observational data alone is inherently unreliable due to observational and learning bias. Here, we
developed a control-physics informed machine learning (CPhy-ML) that can robustly infer across
intention classes. The CPhy-ML couples the representation power of deep learning with the
conservation laws of aerospace models to reduce bias and instability. The CPhy-ML achieves a
48.28% performance improvement over traditional trajectory prediction methods. The reward
inference results outperforms conventional inverse reinforcement learning approaches, decreasing
the root mean squared spectral norm error from 3.3747 to 0.3229.

Proliferation of cheaper drone technology hasmagnified the threat space for
autonomous platform attacks on critical national infrastructure, defence,
and national security facilities1. Representative examples include both
intended and unintended malicious activities derived by pilot errors,
incompetence, andmisuse of drones. Protection againstmalicious drones is
critical to ensuring smooth operation of services, whilst safeguarding it
against the most severe threats. The fundamental research problem is that
drone intention is a hidden attribute that cannot be observed directly from
any perception or detection system2,3 and, in consequence, it makes difficult
to determine whether a malicious intention is or will be carried out. This
creates either too many false positives (e.g., constantly suspecting anoma-
lies) or over trusting autonomous systems.

Many efforts have been made to classify intention from observational
data using experts-knowledge methods4. These methods define low-
dimensional behavioural features5 for relatively simple motion dynamics
based on either geofence planning methods6,7 and expert traffic rules8 or
drone’s flight constraints9. However, the challenge of predicting intention is
exasperated by an inherent cognitive bias problem caused by the low scal-
ability of these simplistic features to complex and diverse classification of
drone intention. In contrast with intention classification approaches10,11,
intention inference methods have been adopted to predict the future tra-
jectory of autonomous systems12 and pedestrians13. The majority of these
methods are data-driven learning models that use snap-shot data to cluster
together drone attributes7 to predict the trajectory in several time steps in the

future14,15. However, the continuous flight physics has been left aside despite
providing crucial information about the mission profile and intention.
Physics informedmodels have demonstrated improvements in the learning
capabilities of data-driven methods16. These physics informed models
appear either as a regularization term in the loss function17 or from con-
servation laws18 and a prior model structure19. Although a great effort has
beenmade to detect behavioural anomalies, there is still a gap in uncovering
the hidden nature of intention and the associated complex capability of
drones.

Here, a CPhy-ML framework is developed to uncover the hidden
intention of drones without providing explicit behavioural features to the
model architecture. This is done by combining the complementarymerits20

of data-driven methods with flight physics and control to regularise and
stabilize the learning manifold, whilst maintaining the dynamic properties
of the mission profile. This allows one to infer drone’s intention by evalu-
ating the connection between the drone’s purpose of use and its observed
missionprofile and to increase the confidence of the predictions.Onewayof
looking at this is to attribute intention to a family of similar mission profiles
with similar high-dimensional features. In addition, the incorporation of
control measurements give an additional degree-of-freedom to the CPhy-
ML framework to clarify why the drone exhibits a particular behaviour or
follows a particular control strategy. The goals of the CPhy-ML framework
are effectively achieved by collecting a rich and heterogeneous dataset that
persistently excites the model architecture for good generalisation.
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The proposed CPhy-ML framework achieves state-of-the-art perfor-
mance whilst including additional information of the flight physics. A
sequential algorithmic tools are provided to predict drone’s intention in
accordance with themachine learning task. It is demonstrated how intention
can be analysed from observational data and enhanced by adding physics
informed models and control information. Therefore, this framework pro-
vides a deeper insight into the complex nature of intention and a firm step
towards to its smooth integration in current counter drone technologies.

Results
Proposed method
Tobetter understand theprinciples of theproposedCPhy-ML framework, it
is first described and narrow the set-up of the drone intention prediction
problem. The proposed model deals with two different but complementary
definitions of intention: trajectory intention and reward function intention.
Trajectory intention is associated to the purpose of use of the drone and the
potential trajectory profile that the drone will follow in future time steps.
The reward function intention describes the hiddenmotivation used for the
control design; this scalar function is the one that the user wants to optimize
in an infinite horizon to accomplish any desired task. In this research, open-
accessDatasets are used to generate a large amount of synthetic data to train

the proposed models (see Methods: Synthetic Data Generation). Four tra-
jectory intention classes are used throughout the research based on the
available open-access datasets, which cover: mapping, point-to-point,
packagedelivery, andperimeterflights.These intention classes are described
as follows: (i) mapping flights represent flights where a particular region of
interest is mapped from images to form a large top-down representation of
the region, (ii) point-to-point flights cover long-term transit flights fol-
lowing a straight line between two distant waypoints, (iii) package delivery
represents flights from real-world package delivery flight experiments, and
(iv) perimeter flights include flights that the starting and ending location
point is the same, that is, they followed a closed-loop perimeter pattern. In
addition, synthetic data obtained from simulations (Airsim software and
Matlab) and real-world data from personal-use drone are used to model
othermission profiles that are not labelled in accordance with the proposed
trajectory intention classes (see Supplementary Note 2). In addition, two
reward function classes are used: normal and anomalous trajectories. These
reward intention classes are determined based on the inferred reward
function, which weights eachmixture of state and control input trajectories
to achieve a desired behaviour.

The overview of the CPhy-ML framework for drone intention infer-
ence is depicted in Fig. 1. First, in Fig. 1a, the high complex nature of
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Fig. 1 | Overview of the control-physics informed machine learning(CPhy-ML)
forDrone Intention Inference. a Illustration of the complex nature of intention and
proxy intention classes. bHigh-level view of drone’s closed-loop control. Intention is
hidden within the control strategy and it is inferred from trajectory observables and
reward function design. c Flow-diagram of the CPhy-ML intention inference
architecture. d Description of the main inference and prediction blocks. Multi-
Expert Prediction & Anomaly Detection: composed by (1) a Hybrid classifier for
intention class prediction and anomaly detection, and (2)m autoencodermodels for

trajectory reconstruction. The weighted sum between them gives the trajectory
bounds of the future airspace that the drone will occupy. Trajectory Intention
Inference: Composed of two components: (1) a reservoir computing network for
trajectory prediction and (2) a physics informed model for robustness and stability
enhancement. Reward Intention Inference: Given by a surjective mapping from the
reward function space to the drone’s state-action space. The reward function is
inferred using an off-policy model-based reward-shaping inverse reinforcement
learning architecture.
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intention is described as an intangible an unobservable attribute. To give a
better understandingof intention, proxy intention classes are defined,which
provides a low-dimensional description of the observed performance of the
drone. In Fig. 1b, the drone control process is given by the interaction of the
drone dynamics and a control architecture. Here, intention is hiddenwithin
the control strategy and cannot be measured. However, our proxy defini-
tions of intention classes pave the way to predict intention in a low-
dimensional representation. To this end, observables of the drone’s states
and control data are used to classify intention in accordance with the tra-
jectory profile and the inference of the reward function associated to the
control input. Fig. 1c–dgive anoverview anddescriptionof theflow-chart of
the proposed framework. First, and to be as realistic as possible, the
observable data is constructed from telemetry data21 of open-accessDatasets
and real-world data obtained frompersonal-use drone to generate synthetic
radar data trajectories. These trajectories are converted into Sub-trajectory
Features and Summary Features of different time windows to ensure real-
time detection. Second, a hybrid classifier is used composed by: (1) con-
volutional bidirectional-LSTM with attention (CBLSTMA) network to
classify the trajectory intention class of the input trajectories, and (2) a deep
LSTM autoencoder network for trajectory reconstruction and novelty
detection. In addition, a deepmixture of experts (DMoE) network is used to
predict the bounding boxes of the future trajectory associated to the tra-
jectory intention classes. Here, the output of each expert is weighted by the
output probabilities of the neural classifier for the bounding boxes esti-
mation. Each expert is based on a multi-input convolutional neural
network. This creates a linear combination between the outputs of the
hybrid classifier with the outputs of each expert to correctly predict the
future airspace that the drone will occupy. Third, trajectories that are
identified as anomalous require individual analysis to predict the future
trajectory. This is done by applying reservoir computing methods to
obtain high-dimensional features of individual trajectories with less
computational effort and enhanced by the incorporation of a physics
informed model. Finally, simulated and real-word data obtained from
personal use drone are used in a controlled environment tomodel radio-
frequency (RF) data that contains control information. In this scenario,
intention is modelled as a surjective mapping from the reward function
space (associated to the decision-making controller) to the state-action
space of the trajectory data. This reward function is hidden and specifies
the task and the desired performance that is injected into the drone.
Here, an off-policy model-based reward-shaping inverse reinforcement
learning architecture is introduced to uncover the exact reward function
based on the sampled trajectories and a linear drone model.

Novelty detection improves intention classification
It is first presented the results of predicting the drone’s trajectory intention
class using the Sub-trajectory Features. The results in Fig. 2 show that the
hybrid classifier is able to correctly classify similar trajectories within the
four possible trajectory intention classes (additional results are reported in
Supplementary Figs. 5 and 6). For these trajectories themean squared error
of the reconstruction tends to be small since the testing trajectories exhibit
similar patterns or behaviours to the training data (see results of Fig. 2a–b).
On the other hand, unseen trajectories tend to have uniform predictions
within the classes, which is coherent with the confidence of the trained
classifier, i.e., input data that are completely different to the training data
reduces the confidence of the classificationmodel (Fig. 2c). In this scenario,
the deep autoencoder network cannot reconstruct the trajectory and
therefore, the mean squared error of the reconstruction will be large.

Table 1 exhibits the comparison results using conventional classifica-
tion metrics (Accuracy, Precision, Recall and F1-score) and the mean
squared error of the reconstructions between the proposed hybrid classifier
and competitive classifiers proposed in the literature (additional results are
reported in Supplementary Tables 4 and 5). It is observed that Random
Forest classifier shows poor performance across all metrics. In contrast,
models with attention such as CBLSTMA and CNNA outperform the
classifiers without attention with an approximately 94.67% and 94.37% of

accuracy in the validation set, and 97.95% and 97.56% in the testing set,
respectively. One interesting conclusion is that the proposed hybrid classi-
fier shows a similar performance compared with the CBLSTMA classifier
with a 94.51% of accuracy in the validation set and 97.75% in the testing set.
A slightly degradation across all metrics is observed in the hybrid classifier
due to the incorporation of the novelty detector. This compromise is
acceptable since it gives to the intention classifier an additional degree of
freedom to detect potential malicious drones. The final hyperparameters
used in each of the experiments are given in Supplementary Table 3.

It is further evaluated the training and prediction times of each clas-
sifier to determine their reliability for real-time classification. Table 2
summarizes the training andprediction times of eachneural classifier across
all time windows. The results show that the best model CBLSTMA requires
242.91 seconds for trainingwhich is almostfive times the time of theCNNA
with 56.99 seconds. However, the prediction time is practically uniform
amongst the other classifiers based on recurrent neural networks with an
approximated time of 3.35e−5 seconds. Additional results are given in
Supplementary Note 3.

Multiple experts increases the prediction results
In this experiment, our objective is to predict the future airspace that the
drone will occupy in k time steps.

Table 3 shows the performance comparisons between different state-
of-the-art regression models averaged across all time windows (extended
results are reported in Supplementary Table 7). The results show that the
DMoE, where each expert is a multi-input CNN, outperforms the other
regression models across all metrics with a R2 coefficient of 0.5105 and
0.7482 for the validation and testing sets, respectively. This result tells us that
the DMoE is able to capture more information about the trajectories
variability. The results of the singleMulti-InputCNNexhibit aR2 coefficient
of 0.4290 and 0.3206 for the validation and testing sets, respectively. This
allows to conclude that one regression model is not able to capture the
richness of different mission profiles. On the other hand, independent
regression models for each trajectory intention class can notably improve
the regression results but it increases the training time as shown in Table 4.
Here, the results show that the training time of the DMoE is less than the
multi-input CBLSTMA despite of training four independent multi-input
CNN models. The prediction time increases respect to the other models,
which can be acceptable due to the regression results improvement. Worth
noting that as the number of trajectory intention classes increases, then
more experts are required and consequently the prediction time increases.
This canbe solvedbydistributing the computational resources or improving
the generalization of each expertmodel for two ormore trajectory intention
classes. Thefinal hyperparameters used in each of the experiments are given
in Supplementary Table 6.

Each output of the DMoE are weighted by the softmax output prob-
abilities of the hybrid classifier to predict the bounding boxes associated to a
specific trajectory intention class. Figure 3a–dshows thepredictedbounding
boxes for each trajectory intention class in a future time-window of 30 s
(additional results are reported in Supplementary Note 4). From the overall
results of Fig. 3, it is observed that the predicted bounding boxes covermost
of the future airspace occupied by the drone. However, as it is expected, the
weighted DMoE cannot cover all the variability of each trajectory intention
class since it was obtained aR2 coefficient of 0.7482. Here, the challenge is to
design an adequate expertmodel that can capture almost all the variability of
the trajectory intention class, or equivalently a highR2 coefficient, in order to
obtain high accurate bounding boxes.

Physics Informed models for prediction stabilization
In this experiment, it is aimed to predict the trajectory that the drone will
follow in future time steps. A personal drone is used to conduct real-world
testing. The drone comprises a beagle-bone-blue (BBB) chip as its central
processor, T-1045 frames and propellers, KV-8816motors with compatible
electronic speed controllers, and a 4-cell 14.8V-5000mhALiPobattery. The
VICON camera system, composed of 25 well-distributed cameras with
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Fig. 2 | Trajectory Intention Classification example results. Trajectories are
plottedwith a blue dotted line, the start point with a green star and the end point with
a red star. Each panel is given by one row with 3 plots. a, b Shows the results of
perimeter flight trajectories. c Shows the results of an unknown trajectory profile.
The first and second rows of each panel show the classification and novelty detection

assessment under the testing dataset using bar plots. The third row of each panel
shows the classification and novelty detection assessment under unseen trajectories.
The mean squared reconstruction error gives an indicator of potential malicious
behaviour.

Table 1 | Trajectory Intention classification results

Model Validation Test

Accuracy Precision Recall F1-score Recon MSE Accuracy Precision Recall F1-score Recon MSE

Random Forest 50 0.8756 0.8033 0.7492 0.7590 – 0.9205 0.9261 0.8842 0.8933 –

LSTM51 0.9105 0.8623 0.8611 0.8599 – 0.9591 0.9550 0.9630 0.9588 –

GRU52 0.9299 0.9041 0.8868 0.8938 – 0.9554 0.9567 0.9380 0.9417 –

CBLSTM53 0.9420 0.9110 0.9099 0.9101 – 0.9775 0.9737 0.9832 0.9782 –

CBLSTMA54 0.9467 0.9205 0.9230 0.9213 – 0.9795 0.9761 0.9844 0.9801 –

CNN55 0.9369 0.9009 0.9127 0.9063 – 0.9690 0.9633 0.9752 0.9689 –

CNNA56 0.9437 0.9137 0.9148 0.9140 – 0.9756 0.9714 0.9805 0.9757 –

Hybrid Classifier & Novelty Detector (ours) 0.9451 0.9201 0.9175 0.9179 1.4388 0.9775 0.9735 0.9822 0.9777 0.4511

Results are averaged across all time-windows. Best results are in bold.
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different resolutions, is used to track the position of the drone. The VICON
measurements and transmitting frequency is 120 Hz with a localization
error of 0.01–0.5 m.

Table 5 summarizes the mean-squared error of the predictions in
different future-time windows. The results show that RC methods with
nonlinear readout/decodermodel, such as SVMorMLP, perform poorly in
the testing data (for predictions 1–100 steps) with a MSE average of 3.1850
and 3.3690, respectively. This result demonstrates that the generalization
capabilities of the RC methods lies on the adequate initialization of the
reservoirmodule.On the other hand, an improvement of theRCwith linear
readout at the testing data is observed across different future time windows
by incorporating the physics informed feedback loop. In this scenario, the
MSEaverage is improved from4.5212 to 1.6471.Here, the physics informed
loop constraints the learning manifold and increases the prediction cap-
abilities of classicalRCmethods.The results for the 1000 stepsprediction are
tricky. In this case, linear RC tends to diverge for long predictions (which is
expected due to the linear nature of the decoder). Here, RC with SVM and
MLP encoders exhibit a better MSE results because the prediction is oscil-
latingwithin abounded interval such that theMSE is reduced in comparison
to the linear RC. However, the predictions of the RC with SVM and MLP
decoders are still poor. In the case of the PIRC, an improvement is clearly
observed in comparison with the linear RC, i.e., the MSE is improved from
17.3744 to 5.9048. Nevertheless, the predictions are not so accurate as the
previous time-windows. The hyperparameters used in the experiment are
given in Supplementary Table 8.

Figure 4 shows the results of the trajectory intention prediction algo-
rithm using a noisy real-world trajectory. It is observed, first, that the pre-
dicted trajectory is noise-free which is highly appreciated for control
purposes. For short future time window predictions (Fig. 4a, b), the RC
models show good stable performance. On the other hand, for large future
time window predictions (Fig. 4c, d), the linear RC tends to diverge because
its region of confidence is reduced. On the other hand, the PIRC enhances
the confidence and robustness of the model for larger future time windows
(additional results are reported in Supplementary Note 5.4).

Linear Drone’s model: richness is all you need
In this experiment, the control input data is included into the observational
data in order to give additional information about the drone’s mission

profile. Here, the hypothesis consists that drone’s intention is embedded
within the decision making controller, whose design ensures the drone to
have a specific performance or to develop a desired task22. This performance
is guaranteed by minimizing or maximizing a hidden objective function or
reward function which serves as a proxy indicator of a potential
misbehaviour.

To this end, first, a dynamic mode decomposition with control
(DMDc)23 model is applied to the RF data to obtain a linear model that
preserves the dynamic modes of the real non-linear drone dynamics. It is
used theEuler angles: rollϕ, pitchθ, and yawψ; and the total thrust forceμ as
control inputs. Using these measurements as control inputs allows to
construct a simple discrete linear model. It is observed that the richness of
the trajectory is crucial to ensure a good generalization of the model, e.g.,
point-to-point trajectories are not useful since the dynamic modes of the
drone are not excited24. In addition, due to the high non-linear dynamics of
the drone, then different linear matrices are obtained for different trajec-
tories despite of being from the same drone. To alleviate this problem, the
trajectories that exhibit more richness are used to generate the linear model
(see Supplementary Note 6.1).

Figure 5 shows the estimated trajectories of the drone’s data under the
DMDc linearmodel in closed-loopwith anuser-designLQRcontroller.One
of the main advantages of this approach is that the nonlinear physics of
the drone is transformed into a linear system. This transformation facilitates
the prediction analysis with noise suppression.Here, the closed-loop system
between the DMDc linear model and the LQR controller is able to track
different trajectories accurately and satisfies the small angle condition for the
Euler angles control input.Table 6 summarizes theMSE results across all the
telemetry data trajectories obtained from custom flights (see RF Sensor).
The results show the estimated linear system under the LQR control is
capable to estimate accurately both periodic and non-periodic trajectories.
Moreover, the inferred states are noise-free which is a requirement in most
machine learning techniques to avoid biased predictions. Here, the pro-
posed DMD-LQR approach can be regarded as an effective tool for noise-
suppression. Additional results are given in Supplementary Note 6.1.

This approach has two main challenges: (1) the lack of richness in the
data which can hinders the acquisition of an accurate linear model, and (2)
the control design is sensitive to the model and may require a fine expert
tuning. One interesting conclusion is that a more general linear model can
be used for prediction purposes by ensuring small angle approximation.
This statement is exploited to uncover the hidden reward function.

Reward function: the most succinct and robust definition of
the task
Figure 1 shows that the reward intention ismodelled as a surjectivemapping
between the reward function space to the state-action space. This mapping
means that there are different reward functions that can produce the same
behaviour in the drone.

In this experiment, it is aimed to uncover the exact hidden reward
function associated to the drone’s controller using a model-based reward-
shaping inverse reinforcement learning (IRL) architecture (see Supple-
mentaryNote 6.4). The reward function ismodelled as a quadratic function
in the states and control weighted by unknown positive semi-definite and

Table 2 | Training and prediction times of the deep neural
classifiers

Model Training time (s) Mean prediction time (s)

LSTM 191.34 3.63e−5

GRU 103.1 3.38e−5

CBLSTM 111.29 3.35e−5

CBLSTMA 242.91 3.36e−5

CNN 78.89 1.69e−5

CNNA 56.99 1.80e−5

Results are averaged across all time-windows. Best results are in bold.

Table 3 | Trajectory Intention Regression results

Model Validation Test

RMSE MAE R2 RMSE MAE R2

Multiple Linear Regressor57 143.4732 75.3775 −0.4937 137.3331 79.542 −0.7422

Multi-Input BLSTM58 99.2295 39.8334 0.2946 95.6056 43.2395 0.4576

Multi-Input CNN59 89.6387 37.3139 0.4290 85.3510 40.3586 0.3206

Multi-Input CBLSTMA60 96.5572 38.9600 0.3477 91.5615 42.1395 0.1829

DMoE (ours) 84.1150 27.2587 0.5105 70.2524 28.0174 0.7482

Results are averaged across all time-windows. Best results are in bold.
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definite weight matrices Q and R such that the controller is given by a
continuous-time LQR. The performance of the proposed reward shaping
IRL is compared against the gradient IRL25 and model-based IRL26 under
diagonal and non-diagonal weight matrices. Knowledge of the exact weight
matrixR is assumed for both the gradient andmodel-based IRL algorithms,
with an initialweightmatrixQ0 = 0n. Thegradient IRLuses a learning rate of
γ = 0.1. For the reward-shaping IRL, random initial weight matrices are
proposed.

Table 7 summarizes the root mean squared spectral norm error
(RMSSNE) results of the IRL algorithms under diagonal and non-diagonal
weightmatrices after 5,000 episodes.Despite theweightmatrixR is assumed
known for both the gradient and model-based IRL approaches, the results
show theycannot converge to the real values. Furthermore, the initialweight
matrix Q0 plays a major role in the convergence of the respective IRL
algorithm. On the other hand, the proposed reward-shaping IRL archi-
tecture overcomes these issues and simultaneously estimate both Q and R
and verify the convergence to their near real values.

Figure 6 shows the convergence results of the proposed IRL archi-
tecture using the spectral norm error of the control gain, kernel matrix, and
weight matrices. Stable and fast convergence results are reported for dif-
ferent reward function structures (Fig. 6a for diagonal weight matrices and
Fig. 6b for non-diagonal weight matrices). In addition, each element of the
reward functionweightmatrices converge approximately to their real values
in the limit. Here, the results are consistent with the observed behaviours
whose values can be reduced by increasing the number of episodes or setting
the initial weight matrices close to the real values. A notable decrease is

observed in the RMSSNE from 2.391 and 1.9802 to 0.1942 for diagonal
weight matrices and from 6.2848 and 3.3747 to 0.3229.

Table 8 shows that the reward function gives an indicator of mis-
behaviour given different mission profiles. Anomalous trajectories are
recognized in two main scenarios: (1) large tracking error due to dis-
turbances or fast trajectories (Fig. 7b), and (2) control inputs that violates the
small angle condition which are infeasible under a linear drone model. One
interesting conclusion is that dissipative forces such as drag forces, can
attenuate the effect of the weight matrices under high velocity profiles.
Conversely, the mean values of the reward function under low velocity
profiles are degraded in presence of dissipative terms. The controller plays a
fundamental role in the disturbance attenuation process and consequently
helps to reduce the suspicion of anomalies (Fig. 7a).

Discussion
A CPhy-ML framework is introduced to uncover two definitions of inten-
tion associated to their intended trajectory and the control objective asso-
ciated to a reward function. The framework possesses strong inference
capabilities with competitive, robust and stable results. The models within
theCPhy-ML framework achieve this by combining the capabilities of data-
driven methods with physics informed models for learning manifold reg-
ularisation. A discussion of the elements of the proposed CPhy-ML fra-
mework are given in Methods.

For trajectory intention classification tasks, the CPhy-ML framework
can bring great value. This is because it can capture high-dimensional
patterns to correctly classify the intention class with competitive results,
such as CBLSTMA, while simultaneously recognizing unknown mission
profiles. The framework uses a hybrid-classifier which uses the CBLSTMA
as classifier with a novelty detector based on a LSTMautoencoder. Here, the
hybrid classifier is flexible in the sense that different classifiers can be
incorporated into the network, whilst the novelty detector is modified
accordingly to the encoder layers of the classifier. A discussion of the hybrid
classifier is given in Methods. On the other hand, trajectory intention
regression is highly benefited by the CPhy-ML framework by incorporating
a set of expert regressionmodels for each trajectory intention class. The use
of the bounding boxes gives a visual notion of the future airspace that the
drone will occupy using the outputs of the hybrid classifier and the
regression experts. Moreover, for trajectory intention prediction, reservoir
computing methods used in this framework are a suitable choice to model

a b

c d

Fig. 3 | Trajectory IntentionRegression example results.The blue dotted line is the
current trajectory track, the orange dotted line is the future trajectory, the start point
is given by a green star, and the end point is given by a red star. The green solid line
bounding box corresponds to the true future airspace and the red dotted line

bounding box corresponds to the predicted future airspace that will occupy the
drone. a Results of a mapping flight. b Results of a perimeter flight. c Results of a
point-to-point flight. d Results of a package delivery flight.

Table 4 | Training and prediction times of the regression
models

Model Training time (s) Mean prediction time (s)

Multi-Input BLSTM 148.31 2.31e−5

Multi-Input CNN 171.37 1.48e−5

Multi-Input CBLSTMA 1092.22 3.10e−5

DMoE (ours) 655.25 6.19e−5

Results are averaged across all time-windows. Best results in bold.
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the high variability of the drone dynamics as a continuous-time differential
equation. This is because RC models enforce the high-dimensional repre-
sentation capabilities of recurrent neural networks with less computational
effort, and provides an elegant and natural mechanism to incorporate
physics informed models. The interplay between the representation power
of RCmethods with physics informed models increases the robustness and
predictionprecision.Adiscussionof the trajectory intentionpredictor based
on RCnetwork is given in “Methods”. Lastly, reward function inference has
been focus of attention from several research communities to incorporate
explanations of drone’s autonomous decision making. Two reward inten-
tion classes are defined based on the reward function values obtained from a
particularmission profile. It is shown that the design of the reward function
defines a desired behaviour that it is injected to the drone. Therefore, mis-
sion profiles that do not meet the behaviour requirements will exhibit
highest reward function values which can be attributed to a potential mis-
behaviour. Here, the CPhy-ML framework gives an insight in how sources

of explanations can be provided by uncovering the hidden reward function
using the proposed off-policy model-based reward-shaping IRL algorithm.
A discussion of the model-based reward-shaping IRL is given in Methods.
However, more research is required in this area to ensure robust, stable and
trustworthy explanations of drone behaviour.

What are the limitations of the proposed CPhy-ML framework?
TheCPhy-ML framework is limited by the amount of data and its variability
(richness). This limitation hinders the accurate generalisation of both the
trajectory intention classifier and regression models. Specifically, the low
variability of the data can cause a wrong location of the bounding boxes. To
prevent this, it is required to collect data associated to other trajectory
intention classes and construct an intention dictionary. Moreover, in this
research the synthetic data generation was limited to few variations which
can be further improved to increase the richness of the data. The prediction
time of the DMoE is increased as more trajectory intention classes are

Table 5 | Trajectory intention prediction results

Prediction window (steps) Mean squared error (MSE)

RC Linear61 RC SVM62 RC MLP63 PIRC (ours)

Train Test Train Test Train Test Train Test

1 0.0622 0.1978 0.0584 3.1333 0.1528 1.3930 0.0817 0:1973

10 0.0629 0:1475 0.0587 3.1334 0.2186 1.1086 0.0914 0.1481

100 0.0647 0.3653 0.0585 3.1308 0.1298 3.9171 0.1358 0:3384

1,000 0.0629 17.3744 0.0579 3:3427 0.1870 7.0575 2.1259 5.9048

Average 0.0632 4.5212 0.0583 3.1850 0.1720 3.3690 0.6087 1:6471

Mean Squared error results across different future time windows and different mission profiles. Best results for training are in bold and best results for testing are in bold and underlined.

a

c

b

d

Fig. 4 | Reservoir computing (RC) results of a singlemission profile.Ground truth
data is represented by a solid grey line, the linear RC results are depicted with a blue
dotted line with triangle markers, and the red dotted line represents the physics-
informed RC (PIRC) results. Each panel is given by one row with 3 plots, and each

column defines the predictions of the positions in X, Y, and Z axes, respectively.
a Prediction results for a future time window of 1 step. b Prediction results for a
future time window of 10 steps. c Prediction results for a future time window of
100 steps. d Prediction results for a future time window of 1000 steps.
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presented to the network. This can be attenuated by designing experts
associated to tasks that pose similar mission profiles.

The CPhy-ML framework offers good trajectory intention prediction
results when theRCmodel is trained under a rich enoughdata, otherwise its
generalisation capability is degraded. This problem can be alleviated by: (1)
ensure the data is rich enough to exploit the high-dimensional repre-
sentation power of RC methods, or (2) design a mixture of RC networks
under different reservoir weights to increase the high-dimensional repre-
sentation heterogeneity and improve the prediction generalisation.

The incorporation of the control input for prediction purposes or
reward function inference gives insights of themission profile. However,
its scope is limited for short-term predictions or constant references. In
addition, high level of noise can compromise the policy prediction and
thus, the inferred reward function. This problem requires additional
analysis to first attenuate the noise and second to increase the prediction
capabilities using the control information. This can be solved by
incorporating state estimation and parameter identification techniques
such as closed-loop output error techniques27 and new methodologies
for inverse reinforcement learning based on model predictive control
and experience inference28.

One additional limitation or area of opportunity consists in the
incorporation of the values of the reward function to constraint the learning
manifold. On the one hand, this measurement is not a common data pro-
vided by on-board sensors which can be view as a limitation. On the other
hand, this additional data can serve to reform new drone regulations pro-
cedures in function of the states and control input information.

Methods
Themodels and notations used in our experimental results are summarized
in Supplementary Note 1.

Synthetic data generation
Two different sources of data are considered within the scope of this
research: non-cooperative radar29,30 and radio frequency (RF) sensor
measurements31.

Non-cooperative Radar - Off-line data. A custom radar simulation
process is developed based on the Stone Soup software32 and the open-
access telemetry data discussed at Datasets. These datasets are pre-
processed as follows: (1) converting latitude, longitude, and altitude into
local Cartesian coordinates; (2) removing unwanted periods (e.g., take-
off, on ground); and (3) down/up-sampling to 1 Hz. It is assumed that
each measurement of the simulated radar has Gaussian noise.

Data augmentation is applied by changing the noise of the nonlinear
measurement process and radar location. Two different process noise
intensities of 1.0 and 3.0 and seven different relative radar locations are used
to generate a pool of heterogeneous trajectories based on the telemetry data
input.An extendedKalmanFilter (EKF) is used to obtain thefinal simulated
radar tracks based on the following nonlinear model per axis

xt ¼ Ftxt�1 þ ωt ; ωt ∼N ð0;QtÞ

xt ¼
xpos
xvel

� �
; Ft ¼

1 dt

0 1

� �
;Qt ¼

dt3
3

dt3
2

dt3
2 dt

" #
q:

ð1Þ

where xpos and xvel are the Cartesian position and velocity of the x-axis, q is
the velocity noise diffusion constant which is set to 0.1 to obtain smooth
track estimations that closely matches with the original flight trajectories.
Additional information is given in Supplementary Note 2.1.

RF sensor. In this scenario, telemetry data obtained from custom flights
are used to model real-time tracking obtained from RF sensors33, e.g., the
DJI’s Aerospace RF sensor which can detect and track all DJI RF Drones
(70%—estimated market share in the drone industry). Here, the

a

b

c

Fig. 5 |Dynamicmode decomposition (DMD) linearmodel with linear quadratic
regulator (LQR) estimation. The results with solid gray line corresponds to the raw
measurements, while the results in red dotted line stand for the DMD-LQR esti-
mation. Each panel is given by one row with 3 plots. a Estimated trajectories of the

trained linear model. b Euler angles control inputs obtained from the LQR design.
c Generalization capabilities of the estimated linear model under different
trajectories.

Table6 |MeanSquaredError (MSE)of theDMD-LQRalgorithm
across diverse periodic and non-periodic trajectories

MSE

Position axes Periodic trajectories Non-periodic trajectories

X 0.06198 0.05709

Y 0.06277 0.05829

Z 0.06421 0.05947

Average 0.06299 0.05828
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measurements are assumed to belong from a continuous-timemodel34 of
the form

_x ¼ 03× 3 I3
03× 3 03× 3

� �
x þ

03
1
m ðF þ FgÞ

" #
:¼ f ðx; uÞ;

F ¼
μðsin ϕ sinψ þ cos ϕ cosψÞ

μð� sin ϕ cosψ þ cos ϕ sin θ sinψÞ
μ cos ϕ cos θ

264
375; Fg ¼

0

0

�mg

264
375: ð2Þ

where x ¼ ½x; y; z; _x; _y; _z�> is the state vector composed of the linear
positions andvelocities in theCartesian space,m is themass of thedrone, g is
the gravity acceleration, μ is the total thrust, and ϕ, θ, and ψ denote the roll,
pitch and yaw Euler angles35. In this scenario, it is assumed that measure-
ments of the state x and the inputs u = [ϕ, θ, ψ, μ]⊤ are available with some
Gaussian distributed noise36. Additional information is given in Supple-
mentary Note 2.

Hybrid intention classifier
Sub-trajectory features. The trajectory tracks are processed into several
sub-trajectories each with an associated intention label. This is to cover

a

b

Fig. 6 | Convergence results of the Reward function Inference Algorithm. Spectral
norm error of the kernel matrix Pi in blue and orange lines with square and cross
markers. Control gain Ki in green and yellow lines with circle and triangle markers.
Spectral norm error of the rewardweightmatrixQiwith pink and red lines with right
triangle and plus markers. Spectral norm results of the weightRiwith black and gray

lines with left triangle and diamondmarkers. Each panel is given by two consecutive
rows with 5 plots. The fifth figure of each panel shows the convergence of the
elements of Qi+1 and Ri+1 in Θi to their approximately exact values Q and R,
respectively. a Results for diagonal weight matrices. b Results for non-diagonal
weight matrices.

Table 7 | Objective function inference results

RMSSNE

ei Gradient IRL Model-(ased IRL Reward (haping IRL (ours)

Diagonal weight
matrices

Non-diagonal weight
matrices

Diagonal weight
matrices

Non-diagonal weight
matrices

Diagonal weight
matrices

Non-diagonal weight
matrices

∥Ki+1−Ki∥ 0.0096 0.0044 0.0072 0.0012 0.0273 0.0328

∥Pi+1−Pi∥ 0.0061 0.0024 0.0136 0.0039 0.0641 0.0740

∥Qi+1−Qi∥ 0.0562 0.0322 0.0486 0.0179 0.0907 0.1093

∥Ri+1−Ri∥ – – – – 0.0197 0.0424

∥Ki−K∥ 0.0480 0.0108 0.0153 0.0099 0.0649 0.0724

∥Pi−P∥ 2.3886 6.5916 1.9761 3.3759 0.1331 0.1633

∥Qi−Q∥ 2.3910 6.2848 1.9802 3.3747 0.1942 0.3229

∥Ri−R∥ – – – – 0.1051 0.2693

Root mean squared spectral norm error (RMSSNE) results across different weight matrices and IRL algorithms. Best results are in bold.
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the needs of real-time prediction using partial information of the com-
plete trajectory and observe the robustness of the deep models. Four
different window sizes are used in this research: 8, 16, 32 and 64 s.

The output sub-trajectories are split into training, validation and
testing partitions using 75%, 15% and 10% of the total data, respectively.
After splitting into suitable partitions, each sub-trajectory is pre-processed
as follows: (i) change of coordinates to start at the origin (x, y, z) = (0, 0, 0);
(ii) standardisation of numerical features to have approximately zero mean
and standard deviation of one; and (iii) one-hot encodingof each categorical
variable within each sub-trajectory.

Intention classifier. A convolutional bidirectional-LSTM with
attention37 network is used as classifier. This network is divided into
encoder and classification layers. The encoder ones are comprised of one-
dimensional convolutional layers which are applied to the input
sequences followed by bidirectional LSTM recurrent layers38. The clas-
sification part applies attention layers39 into each output of the recurrent
layers followed by a fully connected network using the softmax activation
function.

Regularisation is added to the classifier to avoidoverfitting.This is done
by adding recurrent and dense dropout between certain layers in the clas-
sification network. An early stopper is used in the training phase tomonitor
the validation loss over time. Here, the training phase is stopped after no
improvement is observed in a specified number of epochs. This helps to
identify the best model weights before overfitting the training data.

Novelty detector. A novelty detector network is used to determine the
similarity of novel or unseen flight profiles with respect to the training
classes. The novelty detector is based on a deep autoencoder architecture

which uses the encoder layers of the Intention Classifier followed by a
LSTM decoder network40.

Training loss function for classification and novelty detection. The
hybrid classifier training is performed with a supervised composite loss
function composed by a weighted sum between a categorical cross-
entropy loss (for trajectory intention classification) and a mean-squared
error loss (for anomaly detection based on the reconstruction error). The
hybrid loss is given by

Lðy;byÞ ¼ � 1
N

XN
n¼1

XK
k¼1

ynk lnðbynkÞ;
LðX; bXÞ ¼ 1

NMT

XN
n¼1

XM
m¼1

XT
t¼1

ðxnmt � bxnmtÞ2;

Lhyb ¼αLðy;byÞ þ ð1� αÞLðX; bXÞ
ð3Þ

where α∈ (0, 1) defines the weight importance between each loss. In this
research α is set to α = 0.95 to prioritize the intention classification rather
than the input-sequences reconstruction.

Deep mixture of experts for trajectory intention regression
Summary features. This model has two inputs given by: (1) Sub-
trajectory Features used in the hybrid classifier; and (2) Summary Fea-
tures associated to each particular intention class. These summary fea-
tures are determined by the mean, standard deviation, minimum and
maximum points of each sub-trajectory feature.

Regression experts. An assembled architecture based onmmulti-input
convolutional neural network is used to model the trajectories of each
trajectory intention class. Two inputs has this architecture: (i) 1D con-
volutional layers for the sub-trajectory input sequences; and (ii) Deep
Neural Network (DNN) layers for the Summary Features. The embed-
dings from each of these networks are concatenated and fed into the final
fully connected layers for regression.

Training loss function for regression. TheHuber loss is used as training
loss to combine the benefits of both the mean-squared error and mean-
absolute error. This is defined using a single scalar output response yi and
a predicted response byi as

Lhuberðyi;byiÞ ¼ 1
2 ðyi � byiÞ2 if jyi � byij ≤ δ

δjyi � byij � 1
2 δ

2 if jyi � byij > δ;
(

ð4Þ

a

b

Fig. 7 | Example of the reward function values under anhelixmissionprofile.Each
panel is given by a rowwith 2 plots. a Slows helix trajectorywith red and blue dotted lines

and the respective reward function values in solid blue line. b Tracking and reward
function values for a fast helix trajectory under the same line styles and colours.

Table 8 | Mean values of the reward function

Reward function ξ ¼ ðxd � xÞ>Qðxd � xÞ þ u>Ru

Trayectory Mean value without
drag force

Mean value with
drag force

Fixed point 0.1073 0.1077

Helix 0.3992 0.4432

Circular 2.3756 2.2749

Infinity-shape 0.0879 0.1392

Fast Helix 313.2480 290.4161

Fast Circular 85.9878 79.6712

Fast Infinity-shape 142.0225 130.5464

Results using Q = diag{1, 1, 1, 5, 5, 5} and R = 5I3. Anomalous trajectories are highlighted in bold.
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where δ is a threshold that switches between theL1 andL2 errors. Thedefault
value of δ = 1 is used during training.

Trajectory intention prediction
Anomalous trajectories require further analysis that cannot be provided by
the deep mixture of experts network. Here, it is more natural to model the
measurement process as a continuous differential equation17. To this end,
each future predicted trajectory y is assumed to be approximated by the
following reservoir computing network41

by ¼ Woutr þ w

_r ¼ σðAr þW inxÞ;
ð5Þ

whereWin are the input weights,Wout are the decoder/readout weights,w is
the bias vector,A denotes the reservoirweights, x are the input trajectories, r
are the reservoir states, and σ(⋅) is a S-shaped function. In this research σ(⋅) is
set to tanhð�Þ.

Weights calculations. The input weights Win are randomly generated
between the intervalWin∈ [−1, 1]. The reservoir weights are computed
asA ¼ � 1

2 ðA>
0 A0Þ, for some random generated matrixA0 drawn from a

standard normal distribution. The decoder weightsWdec≔ [Wout∣w] are
obtained by the minimization of the following convex optimization
problem

W�
dec ¼ argmin

fWout ;wg

1
2
k Wdec

�R� Yk2F þ λ k Woutk2F ; ð6Þ

where �R ¼ ½ r1 � � � rT
1 � � � 1

�, Y = [y1,⋯ , yT] are matrices of the reservoir

states ri and trajectory predictions yi in i = 1, . . . , T time steps, respectively. λ
is a regularisation scalar which is set to λ = 0.5.

Reservoir weights enhancement via physics informed model. The
standard reservoir computing method can suffer of poor representa-
tion capabilities due to the random initialization of the reservoir
weights A and input weightsWin. To enhance the performance of the
network, a physics informed feedback42,43 is used to update the
reservoir weights. Here, the reservoir computing scheme is modified
into

by ¼ Woutr þ w;

_r ¼ σððAþ BÞr þW inxÞ;
ð7Þ

whereB are the newweights provided by the physics informedmodel. This
weights are computed by the following set of elements

f ðr; xÞ ¼ �WoutDσðz0ÞAer;
gðr; xÞ ¼ �WoutDσðz0Þ �er>;

u ¼� gyðx; rÞðf ðx; rÞ þKeÞ;
B1 ¼mat ðuÞ;
B ¼� 1

2
B>
1 B1 þ ϵIr

� �
ð8Þ

where Dσ ðz0Þ ¼ ∂σðzÞ
∂z ∣z¼ z0

is the gradient of σ(⋅) with respect to z and
evaluated at the vector z0 ¼ ðAþ BÞr þW inx

44. The prediction error is
defined as e ¼ by � y. The reservoir states error is defined byer ¼ r �Wy

outðy � wÞ, and K is a positive definite diagonal matrix whose
values are set small enough to prevent noise excitation. The scalar ϵ > 0 is set
small enough for short predictions and relatively large for long predictions.
In this research, the value of ϵ is setted o ϵ = 0.0001ft where ft is the future
time window prediction. Algorithm derivation and details are given in
Supplementary Note 5).

Drone’s linear modelling
From RF data, the following matrices are constructed

X ¼
j j
x1 � � � xι�1

j j

264
375;X0 ¼

j j
x2 � � � xι
j j

264
375;ϒ ¼

j j
u1 � � � uι�1

j j

264
375:

Dynamic mode decomposition18 with control (DMDc) is applied to esti-
mate a linear representation of the drone dynamics of the form

xkþ1 ¼ ADxk þ BDuk; ð9Þ

where AD and BD are the discrete linear matrices associated to a
specific drone.

Dynamic mode decomposition with control (DMDc). The following
set of linear equations are constructed

X0 ¼ ADX þ BDϒ ;

¼ GΩ;
ð10Þ

where G = [AD, BD] and Ω ¼ ½X>;ϒ>�>. Singular value decomposition
(SVD) is applied in the matrix Ω to compute the matrix G as

G ¼ X0VΣ�1U�; ð11Þ

where U and V are the left and right singular matrices, and Σ denotes the
matrix of singular values. A low-rank approximation is commonly used in
most of the applications usingDMDdue to the high number of states an the
presence of noise. Then, the low-rank approximation is given by

G≈X0eVeΣ�1 eU�
; ð12Þ

where eU ; eV ; eΣ are low-rank approximations of U,V and Σ, respectively. A
low-dimensional representation can also be applied to the estimated
matrices. However, this model leads to loss of information with an
unsatisfactory representation of the drone dynamics. In this research, it is
used either (11) or (12) to compute the linear matrices AD and BD.
Therefore, the linear model predictor is given by

bxkþ1 ¼ ADbxk þ BDbuk; ð13Þ

where bxk is the state prediction of the model and buk is an estimated
control input.

Control policy linear modelling. A discrete linear quadratic regulator
(LQR)45 is used to obtain buk in (13). This controller will ensure reference
tracking and will facilitate the prediction of the future trajectory. The
LQR controller fulfils the next discrete algebraic Ricatti equation
(DARE)25

A>
DPDAD þ QD � A>

DPDBDðRD þ B>
DPDBDÞ

�1
B>
DPDAD ¼ PD; ð14Þ

for some symmetric and positive definite matrix PD ¼ P>
D and user-design

positive definite and symmetric matrices QD ¼ Q>
D and RD ¼ R>

D . Hence,
the final controller is

uk ¼ ðRD þ B>
DPDBDÞ

�1
B>
DPDADðxfk � bxkÞ ¼ KDðxfk � bxkÞ; ð15Þ

where xfk denotes the noise-free measurement of xk and models the desired
reference that is following the drone. This signal is obtained from either
using the RC computingmethod or any signal processing technique. Notice
that the filtered measurement xfk can be used instead of the noisy
measurement xk to construct the matrices X and X0. However, the noise
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provides excitation to the DMDc model such that the linear matrices
outputs have a better representation of the drone’s dynamics.

Reward function inference
Without loss of generality and in viewof the results obtained from theDMD
method, a simulated continuous-time linear system46 is constructed to
model the drone’s dynamics

_x ¼Ax þ Bu

y ¼Cx þ ν; ν∼N ð0;RÞ ð16Þ

with

A ¼ 03× 3 I3
03× 3 03× 3

� �
;B ¼

03 03 03
0 �g 0

g 0 0

0 0 1
m

26664
37775;C ¼ In;

where x ¼ ½x; y; z; _x; _y; _z�> denotes the vector of Cartesian positions and
velocities, u = [ϕ, θ, μ]⊤ is the control input composed by the Euler angles:
pitch and roll; and the total thrust producedby the drone, g = 9.81ms−2 is the
gravitational acceleration and m = 0.467 kg is the mass of the drone. This
linear system is obtained around the hover flight condition47.

The small angle condition can be achieved by designing a linear
quadratic regulator (LQR) control48 of the form

u ¼ Kðxd � xÞ ¼ R�1B>Pðxd � xÞ; ð17Þ

that minimizes the infinite horizon cost

J ¼
Z 1

t
ðxd � xÞ>Qðxd � xÞ þ u>Ru

� �
dτ;

where Q =Q⊤ and R =R⊤ are positive definite unknown weight matrices,
and P = P⊤ is the solution of an algebraic Ricatti equation (ARE). The term
ξðxd; x; uÞ ¼ ðxd � xÞ>Qðxd � xÞ þ u>Ru is known as the objective
function, utility function or reward function, and is the most succinct,
transferable and robust definition of the task that the drone aims to
perform49. Uncovering this objective function provides causal information
of why the drone exhibits a particular behaviour and its final goal intent. To
this end, it is collected ιmeasurements of the states X, the control input ϒ,
the desired reference Xd and the respective reward function values Ξ.

Policy parameterization. From the collected data, the LQR control gain
is estimated following a similar procedure to the DMD method as

Kp ¼ ϒVXΣ
�1
X U>

X ; ð18Þ

where VX, UX, and ΣX denote the SVD of the matrix Xd−X. If the mea-
surements are free of noise then Kp≡K25.

Off-line model-based reward-shaping inverse reinforcement
learning. Amodel-based reward-shaping inverse reinforcement learning
(IRL) approach is proposed to extract the exact hidden reward function.
Convergence to the exact weight matrices is achieved by incorporating
the feedback of the reward function values that constraints the learning
manifold of the IRL architecture. The pseudo-algorithm is summarized
in Algorithm 1 (see Supplementary Note 6.4).

Algorithm 1. Off-line Model-based reward-shaping inverse reinforce-
ment learning

1: Collect measurements of X 2 Rn× ι, Xd 2 Rn× ι, and Ξ 2 R1× ι.
Select Q0 ¼ Q>

0 >0 and R0 ¼ R>
0 >0, and a stabilizing gain K0. Set

i = 0 and a small threshold εk.

2: Policy Evaluation. Compute Pi

0n × n ¼ ðA� BK iÞ>Pi þ PiðA� BK iÞ þ K>
i RiK i

� ðK i � KpÞ>RiðK i � KpÞ þ Qi:
ð19Þ

3: Policy Improvement. Compute Ki+1

K iþ1 ¼ R�1
i B>Pi: ð20Þ

4: Weights Improvement. Compute Θ ¼ ½vecðQiþ1Þ>; vecðRiþ1Þ>�
>

In2 �ðK iþ1 � K iþ1Þ>
In2 ðKp � KpÞ>

" #
Θ ¼

� vec ðA>Pi þ PiAÞ
½ðXd � XÞ> � ðXd � XÞ>�yΞ>

" #
:

ð21Þ

5: Stop the algorithm if ∥Ki+1−Ki∥ ≤ εk, otherwise set i = i+ 1 and return
to Step 2.

The root mean squared spectral norm error (RMSSNE) is used as
performance metric to evaluate the inference results.

LRMSSNE ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1
N
e>e

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
j¼1

e2j

vuut ; ei ¼k Mi � N i k ð22Þ

for any matricesMi and Ni of appropriate dimension.

Datasets
UAV attack dataset. The UAV attack dataset contains real and simu-
lated flights with a range of different UAV types, including examples of
normal flights and system spoofing attacks. The dataset is comprised of
14,295 data samples from 6 different UAVs for waypoints autonomous
mapping flights.

ALFA dataset. The ALFA dataset provides autonomous flight data
conducted with a fixed-wing UAV around a pre-programmed perimeter.
The dataset contains 47 autonomous flights classified as normal flights
and flights with faults.

Drone Identification and tracking dataset. This datasets is provided as
part of the International Conference on Military Communication and
Information System (ICMCIS). It contains UAV telemetry and radar-
based measurements data for a range of fixed-wing and quadcopters
flights in long-intervals of flying between point-to-point waypoints.

Package delivery UAV dataset. This dataset contains a range of flights
of a package delivery UAV. It is comprised of 196 flights with different
velocities, payload weights and external conditions.

Data availability
All data and materials used in the analysis are available at [UAV Attack
Dataset] https://doi.org/10.21227/00dg-0d12, [ALFA Dataset] https://doi.
org/10.1184/R1/12707963.v1, [IMCIS dataset] https://kaggle.com/
competitions/icmcis-drone-tracking, [Package delivery UAV dataset]
https://doi.org/10.1184/R1/12683453.v1, and [Ours] https://github.com/
CKPerrusquia/CPhy-ML.git under anApache2.0 license for thepurposesof
reproducing and extending the analysis.

Code availability
All code andmaterials used in the analysis ar available at https://github.com/
CKPerrusquia/CPhy-ML.git under anApache2.0 license for thepurposesof
reproducing and extending the analysis (https://doi.org/10.5281/zenodo.
10499878).
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