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Abstract
Driver steering intention prediction provides an augmented solution to the design of an onboard collaboration mechanism 
between human driver and intelligent vehicle. In this study, a multi-task sequential learning framework is developed to pre-
dict future steering torques and steering postures based on upper limb neuromuscular electromyography signals. The joint 
representation learning for driving postures and steering intention provides an in-depth understanding and accurate modelling 
of driving steering behaviours. Regarding different testing scenarios, two driving modes, namely, both-hand and single-right-
hand modes, are studied. For each driving mode, three different driving postures are further evaluated. Next, a multi-task 
time-series transformer network (MTS-Trans) is developed to predict the future steering torques and driving postures based 
on the multi-variate sequential input and the self-attention mechanism. To evaluate the multi-task learning performance 
and information-sharing characteristics within the network, four distinct two-branch network architectures are evaluated. 
Empirical validation is conducted through a driving simulator-based experiment, encompassing 21 participants. The pro-
posed model achieves accurate prediction results on future steering torque prediction as well as driving posture recognition 
for both two-hand and single-hand driving modes. These findings hold significant promise for the advancement of driver 
steering assistance systems, fostering mutual comprehension and synergy between human drivers and intelligent vehicles.

Keywords Driver steering behaviours · Neuromuscular dynamics · Multi-task learning · Sequential transformer · Intelligent 
vehicles

Abbreviations
ADAS  Advanced driver assistance system
ADV  Automated driving vehicles
BRMSE  Balanced root mean square error.
EEG  Electroencephalogram
EMG  Electromyography
FC  Fully connected
FFNN  Feedforward neural network

GRU   Gated recurrent unit
LOO  Leave one out
LSTM  Long-short term memory
MTS  Multi-task time-series
MTS-Trans  Multi-task time-series transformer
RMSE  Root mean square error
RP  Random prediction

1 Introduction

Intelligent vehicles are showing tremendous potential in the 
improvement of traffic safety, efficiency, and energy-saving 
[1]. Although many achievements have been obtained in 
the past decade, a challenging question still needs to be 
answered for future intelligent vehicles: how we can effi-
ciently devise collaboration and interaction mechanisms 
between human drivers and increasingly autonomous intel-
ligent vehicles [2]? Before fully automated driving vehicles 
(ADVs) can be realized, human drivers still need to share 
control authority with these vehicles. Although ADVs can 
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efficiently manage many driving tasks, the partial ADVs, for 
example, the L3/L4 ADVs according to SAE J3016 [3], still 
expect the human driver to assume control in emergencies. 
In this situation, mutual understanding in terms of anticipat-
ing the human physiological and psychological states such 
as intention, attention, and behaviours will enable the two 
agents (driver and intelligent vehicles) to interact efficiently 
and safely with each other [4].

The lateral steering collaboration between the driver and 
intelligent vehicles or partial ADVs contributes to safer 
steering control under normal and critical situations [5]. 
Jointly understanding human steering patterns and predict-
ing driver steering intention can benefit the advanced driver 
assistance system (ADAS) and shared steering control sys-
tem [6]. Meanwhile, the risk assessment and hazard predic-
tion system can be developed based on the driver's steering 
intention and steering quality analysis, thus preventing the 
human driver from making dangerous steering manoeuvres 
[7]. Besides, as the driver shares steering control authority 
with ADVs, it is essential to estimate the steering intention 
and quality and provide proper assistance and compensation 
before the driver makes improper steering manoeuvres due 
to the lack of sufficient situation awareness. Such a func-
tion could be especially important when the driver has to 
take over control from secondary tasks or due to emergent 
collision avoidance purposes [8]. Meanwhile, correlations 
between the steering postures and steering efficiency and 
quality have been analysed [9]. Accordingly, the recognition 
of specific driving postures can also help to analyse driving/
steering behaviours, fatigue, and effectiveness and can also 
help to understand the steering patterns and steering quali-
ties so that accurate assistance can be provided.

Considering these superiorities, in this study, a multi-task 
deep time-series modelling approach for sequential steering 
torque and driving posture prediction is proposed to jointly 
learn the representation and leverage the domain-specific 
information for the two steering modes (single-hand and 
both-hand). The predicted steering torque and steering pos-
tures can then optimize the design of advanced shared steering 
control algorithms. Notably, it is found that a more accurate 
steering torque prediction can be achieved if the model jointly 
considers the steering postures during both the learning and 
inference stages. To further quantify the impact of steering 
postures, this study considers two driving modes (single-hand 
and both-hand) and six driving postures (three for each driv-
ing mode). Specifically, for the both-hand driving mode, the 
3-clock, 10–10-clock, and 12-clock driving postures are stud-
ied. While for the single-hand driving mode, the 3-clock, 130-
clock, and 12-clock driving postures are investigated. Detailed 
information will be discussed in Sect. 2.

The main contributions of this study can be summarized 
as follows. First, a multi-task time-series model is devised 
for predicting driver steering intention and recognizing 

driving postures. This framework builds a connection 
between the driver's neuromuscular dynamics and future 
steering torque over a certain horizon. Notably, this study 
represents the first attempt to jointly model steering postures 
and steering torch predictions, with a further exploration of 
multi-task learning framework design. Second, the impact 
of different driving modes and driving postures are studied 
based on the proposed model to exploit the impact of differ-
ent driving postures on steering intention prediction. Last, 
quantitative analysis and comparison for the MTS-Trans 
frameworks are proposed considering different driving 
modes, postures, and features.

This study is organized as follows. The related works are 
discussed in Sect. 2. Then the detailed introduction to the 
experimental design, simulation platforms, and simulation 
scenarios are presented in Sect. 3. In Sect. 4, the proposed 
MTS-Trans frameworks for continuous steering intention 
prediction and driving posture recognition are discussed. 
In Sect. 5, the experimental results are evaluated. Finally, 
conclusions are presented in Sect. 6.

2  Related Works

Many existing studies on driver steering intention focus on the 
modelling of tactical behaviours and discrete intentions such as 
lane change and turn manoeuvres using driver models, traffic 
context perception, and vehicle dynamics information [10, 11]. 
Vision-based approaches have been widely studied in the past 
for attention and intention predictions [12, 13]. For instance, 
in Ref. [14], the vision and road context information were 
adopted for the estimation of five common driving manoeuvres 
by using a long-short term memory (LSTM)-based approach. 
An ensemble time-series network was proposed for real-time 
driver intention prediction in a highway environment [15]. In 
Ref. [16], a Bernoulli heatmap approach was developed for 
a convolution neural network for driver's head pose estima-
tion. In Ref. [17], the relationship between eye gaze estimation 
and steering performance was also studied. In general, driver 
intention can be efficiently recognized with features from the 
in-cabin vision system, vehicle states, and human physical and 
cognitive states (e.g., heart rate and EEG) [18]. Vision-based 
systems are normally used to capture driver behaviours such 
as head pose, driving behaviours, and emotion, primarily due 
to their easy implementation and low-cost advantages [19]. 
However, the prediction of continuous steering intention, like 
steering torque prediction, remains relatively unexplored and 
cannot be efficiently solved with vision-based methods due to 
several reasons. For example, low-cost driver monitoring solu-
tions, like the vision-based approaches, have natural difficul-
ties in accurate and continuous steering behaviour prediction 
due to many visual restrictions, such as occlusion, calibration, 
diverse driving postures, and habits.
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While some studies have explored vision-based 
approaches for anticipating driving events, researchers 
have also developed steering intention classification sys-
tems based on alternative sensor systems. For example, a 
brain-machine interface for predicting human driver steer-
ing intentions using EEG was developed in Ref. [20]. How-
ever, EEG-based approaches can struggle to establish direct 
connections between brain dynamics and neuromuscular 
steering dynamics. Similarly, vehicle dynamic data from 
the CAN bus, including steering force, vehicle heading, and 
lateral acceleration, can be used for accurate steering inten-
tion recognition. For instance, an efficient curve speed model 
was developed for a driving assistance system considering 
various driving styles [21]. Driver lane change manoeuvre 
can be recognized using an explicit mathematical model 
of the steering behaviour based on vehicle dynamic states 
[22]. However, using vehicle dynamics-based information 
makes it challenging to make advance predictions for steer-
ing intention, as the steering intention can only be detected 
after the driver has initiated the steering manoeuvre. There-
fore, a more efficient continuous steering torque prediction 
method based on the electromyography (EMG) signals and 
the upper limb neuromuscular dynamics is proposed in this 
study to explore the potential for joint estimation of steering 
intention and steering postures.

Driver upper limb neuromuscular dynamics and their 
impact on steering behaviours have been widely studied in 
the past for advanced driver steering assistants. In Ref. [23], 
it was found that the human-perceived steering force during 
driving can be different from the physical force, and the 
EMG signals can be used for the perceived force estimation. 
Co-contraction behaviours of upper limb muscles were iden-
tified through EMG signal analysis in Ref. [24]. Then, mus-
cle learning behaviours based on the co-contraction scheme 
for the unusual steering tasks were further observed in Ref. 
[25]. To evaluate the impact of driving postures on the steer-
ing tasks, muscle activity and efficient steering evaluation 
based on the EMG signals were developed [26]. It was found 
that the driver usually performs push steering manoeuvres 
when steering clockwise. Besides, muscle alternation and 
co-contraction were found to be a clue for the estimation of 
muscle workload. Then, an approach for estimating driver 
steering efficiency was developed using the EMG signals 
[27]. A multi-regression method was developed to build an 
effective model for estimating steering force and steering 
quality. In Ref. [28], Pick and Cole found that the steering 
force is heavily determined by two major muscles in the 
upper limb region. Then, a steering torque estimation model 
based on the multiple regression analysis was developed. 
A similar continuous steering intent prediction model for 
both-hand driving modes was developed in Ref. [29]. How-
ever, neither of these studies explores joint modelling for 
continuous steering intention prediction and steering posture 

recognition. Moreover, how different driving postures and 
modes can influence steering intention prediction and 
sequential neuromuscular dynamic modelling remains an 
open question. Thus, to enhance long-term temporal steer-
ing feature representation, a multi-task Transformer-based 
network is designed in this study due to the powerful time-
series modelling performance of the Transformer network 
[30, 31]. By considering different driving modes and driv-
ing postures, the proposed model offers insight into distinct 
steering patterns with different driving postures.

3  Experimental Design

In this section, the experimental setup for the simulator-
based steering intention prediction system is presented, 
along with details on signal collection and EMG data 
processing.

3.1  Experiment Platform and Scenarios

An experiment testbed was developed using a six-degrees-
of-freedom driving simulator. A detailed introduction of the 
platform can be found in Ref. [6], which can be used for a 
wide range of human-in-the-loop steering experiments. The 
CarSim system was used to develop the simulation envi-
ronment. A DynPick WEF-6A1000 force sensor and TR-
60TC torque angle sensor, which were implemented under 
the steering wheel of the driving simulator, were used to 
collect the real-time steering dynamics. The Nihon Kohden 
ZB-150H wireless sensors were used for the collection of 
EMG signals with a sampling frequency of 1000 Hz.

During the experiments, participants were required to drive 
the simulator with two different driving modes. For each driv-
ing mode, ten EMG electrodes were used to extract the upper 
limb neuromuscular dynamics, respectively. The detailed neu-
romuscular signals are summarized in Table 1. Twenty-one 
voluntary male participants were involved in the experiment. 
All the participants were deeply informed about the purpose 
and risks of this experiment and agreed to participate. The 
21 participants were divided into three groups, namely, the 
skilled group, the average group, and the unskilled group, 
according to their reported driving experiences. The intro-
duction of different driving experience improves the pattern 
diversity of the experiment data and help to avoid bias pat-
terns in the analysis of driver neuromuscular dynamics.

All participants were instructed to control the steering 
wheel by following a constant sinusoidal input. The driving 
task assigned to them was a slalom manoeuvre conducted at 
a velocity of approximately 60 km/h, as depicted in Fig. 1. 
This task adheres to international standards for evaluat-
ing vehicle dynamics and driver control performance. The 
slalom task was chosen as it simulates scenarios in which 
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drivers need to make lane changes or overtake other vehi-
cles, common responses when taking over control from a 
partially automated driving vehicle. The critical aspect of 
intention prediction arises when a driver initially assumes 
control, making the slalom task an apt means of measuring 
driver steering behaviours in this study.

The participants were required to use both-hand driving 
mode in the first with hands on the 3-clock positions, as 
shown in Fig. 2(d). Then, they should perform a four to six-
second steering experiment by following a constant period 
angle signal. The target sine-wave-like signal has about a 
60-degree amplitude with a 0.25 Hz frequency to mimic 
real-world steering behaviour. The driving cycle will be 
repeated three to five times for each participant, respectively. 
In general, each participant will be measured with a 12 to 15 
period of steering with around five seconds of steady hold-
ing phase after every three to five continuous steering. The 
main objective of this task is to simulate the real-world steer-
ing manoeuvre and to obtain the naturalistic neuromuscular 
dynamics from the participants. The data that support all the 
findings of this study are available from the corresponding 
authors upon reasonable research-purpose request.

3.2  EMG Signal Processing and Time‑Delay Analysis

Before the commencement of the experiment, careful place-
ment of the EMG electrodes on each participant is ensured. 
Subsequently, participants can take at least three minutes 
to prepare themselves on the testbed and sit in a preferred 
position to make sure they are relaxed. When the experi-
ment starts, the EMG signals are collected and checked. The 
baseline noise is recorded and filtered for each channel. The 
steering torque for each participant is ranged within − 5 to 
5 N·m, and the EMG signals are all ranged within − 5 to 
5 mV. The sampling frequency is 1000 Hz and a low-pass 

filter with 100 Hz pass-band frequency is then applied to the 
recorded EMG signals to filter the high-frequency outliers 
and interference. The time-series EMG data is divided into 
sequences with a fixed length of 200, which means a 200 ms 
prediction horizon without overlap is used as the sliding win-
dow for sequential data generation. The historical EMG and 
the steering torque signals will be used as the model input, 
and the future sequential steering torque is the target output 
of the model. All the signals are normalized within − 1 to 1 
before feeding into the model to avoid the adverse impact of 
a different unit.

The input ( X ) and target outputs Y�[Yt, Yc] of the model 
can be denoted as:

where X is the model input at each time step, Ei is the ith 
EMG feature sequence that consists of the last 200 ms, Yt is 

(1)X =
[

E1,E2,… ,E9,E10, Yh
]

(2)Ei = [et,… et−200]

(3)Yt = [stt+1,⋯ , stt+200]

Table 1  Summary of detected 
neuromuscular signals for two 
driving modes

Driving modes Detected neuromuscular signals

Both-hand (left & right hands) Anterior deltoid of the clavicular portion 
(PMA-C), deltoid anterior (DELT-A), deltoid 
posterior (DELT-P), teres major (TM), and 
long head of triceps brachii (TB-L)

Single-hand (right hand only) PMA-C, DELT-A, DELT-P, TM, TB-L, 
deltoid middle (lateral) (DELT-M), triceps 
lateral head exterior (TB-LAT), biceps (BC), 
infraspinatus (INFT), pectoralis major (PM)

30m

Fig.1  The Slalom driving task used in the simulation

RL

R

L

L R

Hand Position

(a) (b) (c)

(d) (e) (f)

Fig. 2  Six driving postures for the two different driving modes. The 
red dot shows the hand grasp position. a–c single-hand driving mode 
with 3-clock, 12-clock, and 130-clock driving positions. d–f both-hand 
driving mode with 3-clock, 12-clock, and 10–10-clock driving posture, 
respectively
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predicted torque, which contains the future 200 ms torque 
information, Yh is the historical steering torques in the past 
200 ms, and  stt+1 is the steering torque at time t + 1 . Hence, 
the dimension of the model input sequence ( X ) is 11 × 200 , 
and the dimension of the output sequence ( Yt ) is 1 × 200 . 
Here Yc represents the predicted driving postures, which can 
be one of the three categories for the both-hand and single-
hand driving modes, as shown in Fig. 2.

The initial analysis undertaken in this study involved 
measuring the time delay between the EMG signals and 
steering torque. The aim is to estimate the relative phase shift 
(time delay) between the two data streams by identifying the 
point of maximum correlation. The largest phase shift reflects 
where the two signals are best aligned. A statistical illustra-
tion of the time delay between the 21 participants and the 
two driving modes is shown in Table 2. The mean and stand-
ard deviation of the time delay for each driving posture are 
reported. As shown in Table 2, for both-hand driving modes, 
the 3-clock hand position can generate the largest phase shift 
compared to the other two postures. On the contrary, for the 
single-hand driving mode, the 3-clock driving posture leads 
to the lowest time delay among the three groups, while the 
12-clock steering posture generates significantly larger time 
delays (− 292 ± 160 ms). Based on Table 2, the average time 
delay for the both-hand driving mode, considering the three 
postures, is about − 197 ms, and the average time delay for 
the single-hand driving mode is − 206 ms. It shows that the 
mean time delay between the steering torque and the EMG 
signals is about 200 ms for all three driving postures with 
both the both-hand and single-hand driving modes. Hence, 
the 200 ms prediction horizon is used for future steering 
torque prediction and evaluation in this study.

4  MTS‑Trans Model Design

4.1  Multi‑Task Learning for Driver Steering 
Behaviours Modelling

Multi-task learning (MTL) can improve model generaliza-
tion ability and decrease the uncertainty and noise in the 
data by jointly optimizing multiple tasks. In accordance with 

findings from a previous study [9], it is found that the steer-
ing postures are highly correlated with steering performance. 
Therefore, to accurately predict future steering torques and 
steering behaviours, the model will jointly learn how to rec-
ognize the steering postures to contribute to the accurate 
prediction of continuous steering behaviours. However, it 
is still unclear how these two tasks can be learned together 
to avoid any negative transfer effects [32]. It is also unclear 
whether the two tasks need to be learned at different rates 
or whether one task will dominate the learning and result in 
poorer performance on the other task [33].

Hence, the design of an MTL-based steering behaviour 
model necessitates an investigation into how much infor-
mation these two tasks should share and the extent to which 
flexibility should be allotted to each task. As demonstrated in 
previous studies [34], a hard-MLT network shares the com-
mon backbone networks for the different tasks with relatively 
simple prediction heads for each task. As shown in Ref. [35], 
soft-MLT networks can further improve network performance 
by allowing information sharing and individual backbones for 
each task. Therefore, in the soft-MLT networks, sub-networks 
for different tasks may have more flexibility to tune their back-
bones [36]. It is also interesting to exploit that for the steering 
behaviour modelling, what kind of MTL framework can be 
used to benefit the joint optimization of the two different tasks, 
and what kind of information sharing level is required for the 
two tasks. Consequently, four different MTS-Trans models 
are designed in this study by varying the flexibility level of 
each sub-network. In summary, the basic MTS-Trans shares a 
common backbone network and only uses several fully con-
nected layers as the prediction head. Then, a second MTS-
Trans slightly increases the flexibility of each task by adding 
individual transformer networks on top of a shared transformer 
encoder. The last two more flexible MTS-Trans models assign 
individual transformer encoders, either with or without shared 
input embedding layers.

4.2  MTS‑Trans Architecture

In this study, four different MTS-Trans architectures are devel-
oped, as shown in Fig. 3. Based on Eq. (1), a multi-variate 
input sequence X ∈ ℝ

l×d of length l and dimension d is fed 
into the sequential transformer networks. In general, all four 
architectures have similar blocks for the input embedding, 
transformer encoders, and fully connected prediction heads.

Embedding layer: the original embedding layer for dis-
crete tokens in Ref. [30] is replaced with a fully connected 
layer. This fully connected layer is only applied to the feature 
dimension d and transforms the original 11 dimensions into 
64 dimensions to adapt to the transformer network. Following 
the embedding layer, a standard sinusoid positional encod-
ing is applied to inject positional information into the input 

Table 2  Time delay (ms) analysis for different driving modes and 
postures

Driving modes Position Time Delay

Both-Hand 3-clock − 124 ± 109
10–10-clock − 173 ± 192
12-clock − 204 ± 174

Single-Hand 3-clock − 135 ± 116
130-clock − 193 ± 161
12-clock − 292 ± 160
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sequences [30]. The sine and cosine of different frequencies 
are calculated as follows:

where pos represents the position of the sequential inputs, i 
is the ith dimension, and dmodel is the overall feature dimen-
sion (64 in this study) after the linear embedding layer.

Transformer encoder: the transformer network is used 
here in order to capture both the long-term and short-term 
dependencies in the time-series input based on the multi-
head self-attention mechanism. The transformer network 
can avoid sequential modelling and prediction mechanisms 
as used in LSTM but treat the past sentence as a whole 
and assign self-attention along with the sequences. The 
transformer is briefly introduced here, and the detailed 
information refers to Ref. [30]. The multi-head self-atten-
tion mechanism in the encoder output H ∈ ℝ

l×d of the 
same size as X by attending over given l key-value pairs 
K∈ ℝ

l×d , V ∈ ℝ
l×d:

where Q,K,V are query, key, and value matrices for the self-
attention module, respectively. The scaled-dot product atten-
tion in Eq. (6) allows compressing the matrix V into smaller 
representative bedding for simplified inference in down-
stream neural network operations. The scaled-dot product 
attention scales the weights by 

√

m to reduce the variance 
of the weights, facilitating stable training. Then the standard 
multi-head attention mechanism is applied to concatenate 

(4)PE(pos, 2i) = sin(pos∕100002i∕dmodel )

(5)PE(pos, 2i + 1) = cos(pos∕100002i∕dmodel )

(6)H = Attention(Q,K,V) = softmax

�

QK�

√

m

�

V

several self-attention heads. In this study, four transformer 
encoder layers are used in the four different architectures and 
each layer has eight self-attention heads.

Fully connected prediction heads: on top of the trans-
former encoder layers are the FC prediction heads. The FC 
prediction heads follow the following architectures:

where  Odp ∈ ℝ
N×1 and Ost ∈ ℝ

l×1 are predicted output for 
driving postures and steering torque, N  is the number of 
driving postures. The output state Htrans from the trans-
former, the layer is flattened into a one-dimension vector 
and passed into the two FC layers. The output size of fc1_dp 
and fc1_st is 1024 uniformly.

4.3  Loss Function

The optimization of the MTS-Trans model follows a multi-
task learning framework. The two tasks are jointly opti-
mized, and the model is trained in an end-to-end fashion. 
The overall training loss LT is a combination of the two 
individual losses, where the Cross-Entropy loss Eq. (9) is 
used for the posture recognition and the mean squared error 
Eq. (10) is used for the steering torque prediction. To deal 
with the homoscedastic uncertainty during model learning, 
the weighted loss function is used [34]. The overall loss 
function for MTS-Trans is denoted as Eq. (11).

(7)Odp = fc2_dp(Dropout(Relu(fc1_dp(Htrans))))

(8)Ost = fc2_st(Dropout(Relu(fc1_st(Htrans))))

(9)Lcla = −

N
�

n=1

C
�

c=1

log
exp(xn,yn)

∑C

c=1
exp(xn,c)

Fig. 3  Four developed multi-task time-series transformer networks, 
respectively. a A shared embedding layer and three shared trans-
former encoder layers for the two tasks. b A shared embedding layer, 
one shared transformer encoder layer, and two personalized trans-

former encoder layers for the two tasks. c Different embedding and 
encoder layers for two tasks. d Has similar architecture with b but 
without the shared transformer encoder layer. 
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where x is input, y is the target sequence, N is the minibatch 
dimensions, C is the number of classes, S is the number of 
samples, ŷi is predicted torque, and  Wi = exp(−log�2

i
) is 

the trainable weight for each sub-loss term considering the 
homoscedastic uncertainty or the observation noise �i for 
the specific task ( �i initialized to zero), Lcla , and Lreg are the 
loss of posture recognition and steering torque prediction, 
respectively.

4.4  Model Implementation

In this study, 2 a total of 4011 sequences are collected for 
the both-hand case from 20 participants. These sequences 
are divided into three categories, with 8749 samples for the 
3-clock posture, 7614 samples for the 10–10-clock pos-
ture, and 7648 samples for the 12-clock posture. For the 
single-hand driving case, 25,886 data sequences were col-
lected from 20 participants. Among these, 9207 sequences 
are generated from the 3-clock driving posture scenarios, 
8766 sequences are from the 130-clock categories, and 
7913 sequences are collected from the 12-clock scenarios. 
In the model training process, 80% of the sequence is used 
for training, while the remaining 20% is reserved for model 
validation. The leave-one-out (LOO) approach is used to 
randomly select one participant and is only used for real-
time performance demonstration. The Adam optimizer is 
used for model optimization [37]. An initial learning rate 
(LR) of 0.001 is used, and a step LR schedule is imple-
mented to decay the LR by a factor of 0.1 every 100 epochs. 
The batch size is 64 and the maximum epoch is 300. The 
model is developed using PyTorch and is trained on a single 
NVIDIA RTX A5000 GPU. In general, the training process 
takes around three hours to finish.

5  Evaluation and Discussion

5.1  Metrics and Baselines

To assess the accuracy of continuous torque predictions, 
two evaluation metrics, namely, the root-mean-square error 
(RMSE) and balanced RMSE (BRMSE), are employed. Addi-
tionally, for evaluating the performance of driving posture 
recognition, accuracy and F1 scores are utilized. Specifically, 
RMSE is calculated as follows.

(10)Lreg =
1

S

S
∑

i=0

(yi − ŷi)
2

(11)LT = W1Lcla +W2Lreg +

nT
∑

i=1

log�i

where  N is the number of sequences used for model testing,  
L is the length of each sequence, which is 200 according 
to the time delay analysis. x̂ji is the ith prediction in the 
sequence j , and xji is the ground truth value.

To avoid the adverse impact of the data unbalanced prop-
erty on the model evaluation results, the BRMSE metric split 
the data into bins and calculated the mean RMSE for each bin, 
and the final average BRMSE is then calculated [38]. As the 
steering torque mostly ranged between − 5 and 5 N·m, ten 
bins were selected with each bin size with a 1 N·m scale. The 
BRMS is represented as follows:

where BRMSEd,k,j is the BRMSE for the jth bin in which d = 
1 N·m is the bin size, k = 10 N·m is the maximum range of 
steering torque, RMSEi is the RMSE for ith sequence in the 
bin j , N is the number of sequences in jth bin, Nd = 10 is the 
overall number of bins, and BRMSE is the final calculated 
balanced RMSE. The accuracy and F1 score for the driving 
postures are defined as:

where Nc is the number of correct classifications, and Nt is 
the total number of samples. Tp , Fp , and FN are the num-
ber of true positives, false positives, and false negatives, 
respectively.

To evaluate the model performance on the different 
tasks, several baseline methods are introduced below.

(1) Random Prediction (RP). This baseline always pre-
dicts a zero torque value, which serves as a simple 
baseline. For posture recognition, it randomly selects 
one posture.

(2) Feedforward Neural Network (FFNN). An FFNN 
model with a similar architecture to the prediction head 
of the MTS-Trans models.

(3) LSTM Models (LSTM/Bi-LSTM). A two-layer LSTM 
model (with or without bi-directional connections) with 
64 feature dimensions in a hidden state.

(4) Gated Recurrent Unit (GRU) Models (GRU/Bi-
GRU). Similarly, a two-layer GRU model (with or 
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∑

BRMSEd.k,j

(15)Acc = Nc∕Nt

(16)F1 = Tp∕(Tp + (FP + FN)∕2)
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without bi-directional connections) with 64 feature 
dimensions in the hidden state.

(5) Single Task Transformer (STTrans). These models 
have a structure similar to the MTS-Trans models as 
shown in Fig. 3, but they have only one prediction head 
at a time for single-task learning.

(6) MTS-Trans. These are the multi-task sequential trans-
former models with different fusion methods, as shown 
in Fig. 3.

5.2  Single‑Hand Driving Results

The analysis of the single-hand driving mode is presented 
in Table 3. The results clearly demonstrate the effectiveness 
of the proposed MTS-Trans model in predicting steering 
torques and recognizing driving postures. Specifically, the 
MTS-Trans models achieved around 90% accuracy in pos-
ture recognition tasks. Meanwhile, accurate prediction of 
future steering torque is achieved within the range of 0.0678 
N·m for RMSE with the MTS-Trans3 model. It is also shown 
that the third MTS-Trans model, which uses separate embed-
ding layers and transformer encoder layers, generates the 
most accurate results compared to other methods.

Comparing multi-task learning with the single-task learn-
ing method, it becomes evident that multi-task learning can 
improve the overall model performance for both steering 
torque prediction and posture recognition. Specifically, 
when simultaneously learning the postures, the RMSE of 
the steering torque prediction decreased to 0.0678 N·m 
from 0.0794 N·m. Similarly, posture recognition accuracy 
increased from 87.74 to 90.16% when considering the steer-
ing torque task. This suggests that simultaneous learning of 
these two tasks and optimizing model parameters contributes 
to higher accuracy in both steering torque prediction and 
driving posture recognition.

The confusion matrix generated with the MTS-Trans4 
model is shown in Fig. 4. An interesting pattern emerges 
where the 130-clock driving posture is more likely to be 
misclassified into the other two postures, and conversely, 
the other two postures are more likely to be misclassified as 
the 130-clock posture. Specifically, 117 samples from the 
130-clock are misclassified into the 3-clock case, and 106 
samples are misclassified into the 12-clock. For the 3-clock 
case, 156 samples are misclassified to the 130-clock sam-
ples, while only very few cases are misclassified into the 
12-clock. Similar results can be found in the 12-clock case 
as well.

The results of classification accuracy and prediction 
error regarding different driving postures are depicted in 
Fig. 5. Specifically, Fig. 5(a), (b) evaluate the classifica-
tion accuracy and prediction error for different models 
with the three different driving postures, respectively. A 
similar conclusion can be made that, among all the driv-
ing postures, the 130-clock is more likely to lead to worse 
performance than the other two postures on the two tasks 
(especially for the driving posture recognition). However, 
there is no significant difference between the postures of 
3-clock and 12-clock for the single-hand driving mode.

The BRMSE results for the proposed MTS-Trans mod-
els are also evaluated. As shown in Fig. 6, the BRMSE 
for the four MTS-Trans models shows consistent results. 
Specifically, the minimum prediction errors are usually 
achieved between the  5th bin (prediction range from  − 1 
to 0N·m) and  7th bin (1–2N·m), which shows the models 
are more easily to make much more accurate predictions 
and better capture the neuromuscular dynamics when 
expected steering torque or steering effort is low. Con-
versely, higher steering torque demands can lead to an 
increased prediction error for continuous steering inten-
tion. This finding provides evidence to support the notion 

Table 3  Experiment results for the single-hand driving modes

The bold values indicate the best results achieved by MTSTrans4 model

Methods Torque prediction Posture recognition

RMSE (N·m) 5% RMSE (N·m) BRMSE (N·m) Acc (%) Precision (%) Recall (%) F1 (%)

RP 2.4267 3.5882 2.4266 33.33 33.33 33.33 33.33
FFNN 0.1734 0.5404 0.1842 73.86 73.99 73.93 73.96
GRU 0.1022 0.3640 0.1157 72.88 72.58 73.11 72.64
LSTM 0.0832 0.1954 0.0896 84.79 84.86 84.83 84.84
BiGRU 0.0768 0.2619 0.0944 84.92 84.97 84.89 84.92
BiLSTM 0.0778 0.1047 0.0865 84.04 84.02 84.13 84.07
STTrans 0.0794 0.2723 0.0877 87.74 87.93 87.86 87.82
MTSTrans1 0.0892 0.1549 0.1102 89.73 89.69 89.78 89.73
MTSTrans2 0.0617 0.2310 0.0672 90.10 90.10 90.10 90.11
MTSTrans3 0.0737 0.02395 0.0793 89.40 89.41 89.37 89.37
MTSTrans4 0.0564 0.2063 0.0622 90.10 90.20 90.14 90.16
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that upper limb neuromuscular dynamics exhibit relatively 
simple characteristics for a relatively light steering input. 
However, modelling these dynamics becomes more chal-
lenging when there is a need for heavy steering input. 
Hence, steering assistance from an intelligent vehicle can 
be expected when heavy steering demand is needed.

For the single-hand driving mode, several key obser-
vations can be made: The proposed MTS-Trans model 
achieves an approximate 90% recognition rate for the three 

postures while maintaining a prediction RMSE for steering 
torque at 0.0564 N·m; among the three postures, the 130-
clock driving posture can lead to larger prediction errors 
and lower classification accuracy; the testing results for an 
unseen participant (employing the LOO approach) indicate 
that the proposed MTS-Trans model demonstrates strong 
generalization abilities for the single-hand driving modes, 
with most prediction errors occurring when higher steer-
ing torque is required.

5.3  Both‑Hand Driving Results

In this section, the model developed for the both-hand driv-
ing mode is studied. Firstly, the steering torque prediction 
and posture recognition results based on different methods 
are presented in Table 4. It is shown that the MTS-Trans 
models show great advantages over the other methods in this 
case. Specifically, MTS-Trans3 and MTS-Trans 4 are the two 
most successful networks, showcasing exceptional joint opti-
mization capabilities for both tasks. The RMSE values for 
the MTS-Trans3 and MTS-Trans4 models are 0.0399 N·m 
and 0.0401 N·m, respectively. The posture classification 
accuracy of the MTS-Trans3 model (97.47%) slightly out-
performs that of the MTS-Trans4 model (97.22%). Com-
pared to the single-task learning case (SSTrans), the pro-
posed multi-task learning networks can increase overall 
performance on the two individual tasks. Besides, with the 
multi-task learning framework, the steering torque predic-
tion performances are increased significantly (from 0.0901 
to 0.0399 N·m) than the posture recognition.

The confusion matrix generated with the MTS-Trans4 
model is shown in Fig. 7. It is shown that for both-hand driv-
ing modes, 3-clock and 1010-clock postures are more likely 
to be misclassified and confused. However, the 12-clock pos-
ture is less likely to be misclassified into the 1010-clock but 
is more likely to be confused with the 3-clock posture (17 
cases of 12-clock posture are misclassified into the 3-clock 
group while only 9 cases are misclassified into the 1010-
clock group).
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The comparison of posture recognition accuracy and 
steering torque prediction RMSE regarding different driv-
ing postures and models are shown in Fig. 8. Contrary to 
the single-hand modes, it is interesting to observe that 
the 12-clock driving posture typically results in higher 
steering torque prediction errors than the other two pos-
tures, while also contributing to significantly higher pos-
ture recognition accuracy. This is notably different from 
the outcomes observed in the single-hand driving modes. 
Conversely, the 3-clock driving posture typically results in 
fewer steering torque prediction errors. Unlike the results 
seen in the single-hand driving mode, in the both-hand 
driving mode, the 3-clock driving postures appear to be 
better suited for posture steering torque prediction and 
understanding steering behaviour.

The BRMSE results for the proposed MTS-Trans mod-
els in both-hand driving modes are shown in Fig. 9. The 
BRMSE for the four MTS-Trans models exhibit similar 
results to those observed in the single-hand driving mode. 
Specifically, the minimum prediction errors are usually 
achieved between the  5th bin (within a prediction range of 
-1 to 0 N·m) and the  6th bin (0–1 N·m), while larger steer-
ing torque demand can lead to higher prediction error to 
the continuous steering intention.

Table 4  Experiment results for the both-hand driving mode

Methods Torque prediction Posture recognition

RMSE (N·m) 5% RMSE (N·m) BRMSE (N·m) Acc (%) Precision (%) Recall (%) F1 (%)

RP 1.3576 3.5913 1.6851 33.33 33.33 33.33 33.33
FFNN 0.0643 0.1678 0.0744 79.60 79.50 79.97 79.69
GRU 0.0644 0.2251 0.0983 84.21 84.32 84.40 84.35
LSTM 0.0925 0.3216 0.1479 91.06 91.20 91.18 91.19
BiGRU 0.0616 0.2061 0.0884 84.81 84.84 85.03 84.92
BiLSTM 0.0810 0.2726 0.1238 94.28 94.30 94.43 94.36
STTrans 0.0901 0.2962 0.1416 95.52 95.65 95.53 95.58
MTSTrans1 0.0608 0.1981 0.0792 94.20 94.29 94.28 94.29
MTSTrans2 0.0764 0.2352 0.0919 95.68 95.93 95.62 95.72
MTSTrans3 0.0399 0.1336 0.0485 97.47 97.52 97.50 97.51
MTSTrans4 0.0401 0.1332 0.0471 97.22 97.29 97.21 97.25
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The primary results for both-hand driving modes can be 
summarized as follows: The proposed MTS-Trans model 
can achieve a mean recognition accuracy of 97.47% for 
the three postures, with a prediction RMSE of 0.0399 N·m 
for steering torque. This results in more accurate steering 
torque prediction than the single-hand driving mode. The 
3-clock driving posture results in fewer prediction errors 
than the other two methods, along with higher classifica-
tion accuracy among the three postures. Based on the test-
ing results for the unseen participant, it can be found that 
the proposed MTS-Trans model exhibits good generaliza-
tion abilities in the single-hand driving mode, with most 
prediction errors occurring in specific areas.

5.4  Discussion

In this study, the sequential steering torque prediction and 
driving posture recognition model are developed based on a 
time-series transformer network. This model holds substan-
tial significance as it enables an enhanced understanding 
between the driver and autonomous vehicle systems, pri-
marily by predicting future steering torque, which serves as 
a proxy for the driver's steering intent. Moreover, based on 
the proposed multi-task steering behaviour model, the driv-
ing postures can be further recognized and their impact on 
steering intention prediction can be evaluated independently. 
This sequential steering torque prediction is instrumental 
not only in forecasting steering performance but also in 
facilitating the early detection of potential hazards or driver 
misbehaviour.

The advantages of the proposed system are summarized 
as follows: An EMG-based system connects the neuromus-
cular dynamics of the upper limb with steering torque and 
driving posture, which contributes to precise multi-task 
modelling for steering behaviours; the EMG-sensor-based 
approach is robust to the variation of situations and envi-
ronments, such as the illumination and occlusion issues in 
vision-based systems; the proposed approach provides a 
theoretical analysis of upper limb neuromuscular dynamics 

and how these dynamics can be applied and developed for 
driver steering intention prediction considering the different 
driving postures and hand positions on the steering wheel.

However, it's essential to acknowledge the potential con-
cerns associated with the proposed EMG-based system, 
including intrusiveness, increased implementation time, 
and real-world applicability challenges. Addressing these 
concerns necessitates a forward-looking approach. This 
study has shown that by using the selected EMG signals, the 
number of EMG sensors can be reduced while similar steer-
ing torque prediction accuracy can be maintained. Future 
works can concentrate on more efficient feature engineering 
methods to select more efficient features for the EMG-based 
machine learning approach. Here are several prospective 
solutions:

(1) More challenging and critical steering manoeuvres can 
be designed to evaluate the robustness as well as the 
accuracy of the deep time-series model with upper limb 
EMG signals.

(2) The driving style has a critical impact on the steering 
behaviour as well [39]. It is also interesting to under-
stand how to develop a personalized steering intention 
prediction model according to more complex driving 
style and experience aspects [40].

(3) With the development of wearable EMG sensors, such a 
system will become more suitable for real-world imple-
mentation [41].

(4) The EMG-based approach is more suitable for model-
ling individual neuromuscular dynamics and capturing 
the personalized characteristics of operating the vehi-
cle or assistant mobility [42]. These characteristics will 
significantly benefit those special groups with a specific 
requirement or application domain, such as elder and 
disabled persons, and professional racing drivers [43].

6  Conclusions

This study presents a novel multi-task learning framework for 
modelling driving steering behaviour, employing a sequen-
tial transformer network. The proposed MTL-Trans model 
accurately estimates future steering torques and recognizes 
driving postures with upper limb neuromuscular dynamics. 
The investigation reveals that a prediction horizon of 200 ms 
effectively captures future steering torque based on histori-
cal observations. Remarkably, the MTS-Trans model achieves 
exceptional precision in steering torque prediction, yielding a 
low RMSE of 0.0564 N·m for single-hand driving and an even 
more impressive 0.0399 N·m for both-hand driving.

Furthermore, the proposed model exhibits a high degree 
of accuracy in identifying driving postures, attaining recogni-
tion rates of 97.47% and 90.10% for both-hand and single-
hand driving modes, respectively. The research introduces a 

Fig. 9  Illustration of BRMSE prediction errors of four proposed MTS-
Trans models with both-hand driving modes
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quantitative assessment of the influence of driving postures on 
steering intent prediction, shedding light on how different pos-
tures impact steering behaviour modelling. Notably, this study 
underscores the capacity of driving postures to affect steering 
torque prediction accuracy, providing valuable insights into the 
intricate relationship between posture and steering behaviour 
modelling.

In conclusion, the MTL-Trans model's remarkable accuracy 
in predicting future steering torques and recognizing driving 
postures holds significant promise for the development of 
shared steering systems in intelligent vehicles. This framework 
enhances the potential for a more harmonious human-vehicle 
collaboration system, paving the way for safer and more effi-
cient driving experiences.
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