
1

Learning from the Dark Side: A Parallel Time

Series Modelling Framework for Forecasting and

Fault Detection on Intelligent Vehicles
Yang Xing, Member, IEEE, Zhongxu Hu, Member, IEEE, Peng Hang, Member, IEEE, Chen Lv, Senior Member,

IEEE

Abstract—Time series vehicle state modelling is crucial in
various real-world applications, such as fault detection, fault
tolerance, optimization, and cyber security for intelligent vehicles
(IVs). In this study, we propose a novel parallel time series
modeling framework (PTSM) to forecast and detect vehicle
braking cylinder pressure states, thereby enhancing the safety
of the braking system. Specifically, the PTSM consists of two
branches: LightNet and DarkNet. The LightNet learns time-
series (TS) representations of real-world signals to forecasts and
identifies vehicle states. On the other hand, the DarkNet employs
a novel multi-task learning and dual Relativistic Generative
Adversarial Network (dual-RaGAN) framework to reconstructs
healthy sequential states, detects faults, and forecasts future
vehicle states using synthesized faulty sequences. To develop the
PTSM framework, we introduce a novel data processing and
random fault synthesizing method. We evaluate the performance
of the dual-RaGAN model using real-world data and compare
it with non-adversarial approaches, demonstrating the efficiency
of the multi-task generative sequential representation. Extensive
experimental results show that by integrating knowledge from the
dark side, real-world time-series modelling (TSM) for forecasting
and fault detection can be significantly improved, with a 34.7%
enhancement in forecasting and an 11% improvement in fault
recognition. The results indicate that signal reconstruction leads
to more accurate sequence forecasting and fault recognition in
both the dark and light sides. This proposed study not only
introduces a novel time-series modelling framework but also
establishes a new approach for vehicle testing, fault detection, and
cyber security research for intelligent vehicles. Data and Codes
are available at: https://github.com/YXING-CC/Dark-Light.

Index Terms—Time-series modelling, generative time-series
model, relativistic GAN, deep learning, fault detection, intelligent
vehicles

I. INTRODUCTION

T IME series modelling (TSM) is a valuable tool for ensur-

ing the safe operation of intelligent vehicles, particularly
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in safety-critical situations. For example, TSM plays a crucial

role in monitoring and forecasting vehicle states, enabling

vehicle fault detection, tolerance [1,2], energy consumption

optimization [3,4], motion planning [5] and cyber security

[6,7]. Detecting faults in signals is essential to promptly

address potential risks to passengers, other road users, and

infrastructure. However, anomaly data representing faults are

often scarce in real-world scenarios, making it challenging to

develop data intensive TSM approaches that accurately detect

faults and support system recovery [8,9]. Furthermore, while

previous studies have focused primarily on fault recognition,

less attention has been given to forecasting and reasoning for

new future health sequences. This aspect is vital for immediate

fault tolerance and ensuring system stability maintenance [10].

Therefore, in this study, we aim to: 1) Address the data

limitation and robustness challenges in developing an efficient

Time Series Modeling (TSM) approach for intelligent vehicles.

2) Test and quantitatively evaluate how knowledge from the

virtual world can be integrated into the real-world system

without change of the architecture of the real-world model. We

propose a Parallel Time Series Modeling (PTSM) framework

that incorporates a hierarchical multi-task learning approach

for joint vehicle states prediction and health monitoring. The

PTSM framework aims to consistently predict the real vehicle

states within a specified prediction horizon while identifying

different types of faulty signals from the sequential input data.

To enhance the model’s robustness and generalization ability,

we employ a multi-task generative learning framework.

Additionally, we adopt the parallel concept [11] to design

the two-branch PTSM model, leading to the development of

two distinct ”worlds” within the framework. The first world is

referred to as the ”light world” (real world), where only limited

faulty signals exist. The second world is the ”dark world”

(virtual world), representing an extremely critical operation

environment for intelligent vehicles, and the sequential inputs

in this world are abundant with faulty signals. Meanwhile, the

model architecture on the dark side is much more complex

than that on the light side in case to learn comprehensive

representation for both historical and future sequences from a

large amount of synthesized faulty sequences. To validate our

PTSM framework, we collected real-world time-series cylinder

pressure signals from an electric vehicle testbed. Further, we

introduced eight common artificial faults [12] by injecting

them into the original data to construct the virtual world. This

approach allows us to effectively simulate and analyze fault
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scenarios in a controlled environment. Through this research,

we aim to overcome the data limitation challenge in TSM

for intelligent vehicles and provide a robust framework that

can predict vehicle states accurately, monitor health conditions,

and detect faults effectively.

In summary, in this study, we proposed a parallel time-

series modelling framework for state forecasting and fault

detection of intelligent vehicles. The main contribution can

be summarized as follows.

• First, a novel parallel two-branch framework is developed

to enable parallel learning and knowledge transfer. The

proposed methods provide an efficient development, test-

ing, and validation framework for intelligent vehicles.

• Second, a generative representation approach for multi-

variate sequence reconstruction in designed and the im-

pacts of sequence reconstruction to the forecasting in both

real and virtual world are quantitively studied.

• Third, a multi-task time-series modelling framework is

developed based on a dual-RGAN protocol. The adversar-

ial multi-task learning method shows significant improve-

ment on multiple tasks compared to the conventional

frameworks.

• Fourth, a synthesized data generation and preparation

method is developed to inject faults into real-world data

and support the training of the PTSM framework.

• Last, extensive experiments are designed to comprehen-

sively evaluate the performance of different networks and

the whole PTSM model.

The remainder of this paper is as follows. In Section II,

a comprehensive literature review is proposed for state-of-

the-art time-series modelling, state estimation, and parallel

approaches. In Section III, the methodologies for the PTSM

and dual-RGAN framework will be introduced. The exten-

sive experiment evaluation and comparison results will be

discussed in Section IV, and finally, the study is concluded

in Section V.

II. RELATED WORKS

A. Time-Series Modelling

TSM has been a subject of extensive research since the 1980s.

Various statistical models, such as Auto Regressive Integrated

Moving Average (ARIMA) [13], Nonlinear autoregressive ex-

ogenous (NARX) [14], and exponential smoothing [15], have

demonstrated their effectiveness in early univariate sequence

modelling and forecasting. However, these methods have

significant limitations when it comes to long-term sequence

modelling and forecasting tasks [16]. Leveraging the fast

development of neural networks and deep learning, recently

data-driven-based machine learning models have become the

mainstream for TSM. Two notable examples are Temporal

Convolutional Networks (TCN) and WaveNet, which relies on

1D convolutional filters and dilated connections to enhance

the receptive field of sequential data [17, 18]. Another crucial

branch in this area is recurrent neural networks (RNN), which

include models like Long-Short Term Memory (LSTM) and

Gated Recurrent Unit (GRU) [19, 20]. These RNN-based

models have proven to be highly effective in capturing long-

term dependencies in time series data and have significantly

improved forecasting accuracy compared to traditional statis-

tical methods.

Since the publication of Self-attention and Transformer

in 2017 [21], there have been significant advancements in

Time Series Modeling (TSM) using Transformer networks.

Transformer-based models have shown superior performance

compared to conventional Recurrent Neural Networks (RNNs),

especially in large language models like Generative Pre-

trained Transformers (GPTs) [22]. In the realm of multivariate

sequence modelling, numerous powerful models based on the

Transformer architecture have been developed. For example,

in [23], a Temporal Fusion Transformer (TFT) model was

developed for multi-horizon time series forecasting with in-

terpretable insights into the temporal dynamics. In [24], an

efficient and accurate anomalous observations model based

on Transformer (TransAD) model was developed for anomaly

detection. A score-based self-conditioning was introduced for

robust multi-modal feature extraction. In [25], a LogSparse

Transformer (Logformer) network was proposed by intro-

ducing a causal convolution-based self-attention mechanism

to better represent the local context. The current Informer

network adopts a ProbSparse self-attention mechanism with

self-attention distilling and generative decoder [26]. Then, the

Autoformer further improve the long-term forecasting problem

with a novel decomposition architecture and Auto-Correlation

mechanism [27]. The exploration of decomposition approaches

led to the development of FEDformer [28], a frequency do-

main TSM model for low-complexity long-term sequence fore-

casting. Among these advancements, TimesNet [29] currently

achieves state-of-the-art results in five different TSM tasks,

including long-term forecasting, short-term forecasting, impu-

tation, anomaly detection, and classification. TimesNet relies

on 2D intraperiod-interperiod variation modelling, showcasing

the significant impact of Transformer-based architectures in

the field of TSM.

B. State Estimation and Fault Detection of IVs

Vehicle states estimation, including state prediction [30], fault

detection for CAN bus signals [31,32], motion and trajectory

predictions [33], and engine, motor, and battery states (e.g.,

state-of-charge and state-of-health) [34,35], plays a crucial

role in the operation of intelligent vehicles. Among these

areas, fault and anomaly detection have been widely stud-

ied. The sensor data in connected vehicles are susceptible

to vulnerabilities, and common anomalies such as faults,

errors, and cyberattacks need to be identified. To address

these challenges, a multi-stage attention mechanism combined

with an LSTM-based Convolutional Neural Network (CNN)

approach was developed for detecting four common anomalies

[36]. Similarly, a combined CNN and Kalman Filter model

was developed to detect the instant, constant, gradual shift,

and bias anomalies [37]. In [38], an event-based one-class

anomaly detection model based on a support vector machine

(SVM) was developed for the hybrid control unit of the

hybrid electric vehicle. In [39], an unsupervised interpretable
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Fig. 1. Overall architecture of the proposed Parallel Time-Series Modelling (PTSM) Framework. The PTSM framework contains two parts, namely, LightNet
and DarkNet. The LightNet learns to recognize the type of fault and forecast the future states based on the real-world measurement from the cylinder sensors.
The DarkNet learns fault recognition, forecasting, and an extra health signal reconstruction based on the synthesised faulty signals. The learned knowledge
for historical signals reconstruction and future signal forecasting from the dark side will be fed into the LightNet for real-world TSM augmentation. The
four-dimensional braking cylinder pressures are used to generate the inputs and targets for both LightNet and DarkNet.

autoencoder model was used to detect the anomalies of electric

vehicles while charging. In [40], a hybrid neural network that

combines the 1-D convolutional neural network and active-

state-tracking LSTM models are developed to capture the

hierarchical features between the variables that can affect

battery degradation. It was shown that the longitudinal and

lateral state estimation of the proceeding vehicles can help

reduce the communication burden for connected automated

vehicles and an event-trigger-based cubature Kalman filter can

achieve efficient and accurate estimation results. These recent

studies all show the significance and necessity of sensor health

status monitoring for intelligent vehicles.

Though a series of studies have been developed for vehicle

state estimation, the combination of accurate sequence fore-

casting and fault detection for vehicle state modelling remains

an open question. Meanwhile, it is unclear how the hybrid

multi-task learning model can capture the complex temporal

dynamics of the vehicle state based on real-world scarce data.

Therefore, in this study, we will focus on building a novel

parallel learning framework for TSM in intelligent vehicles.

By addressing the integration of forecasting and fault detection

and adapting to the scarcity of data, this study strives to

contribute valuable insights into the development of robust

sensor health state monitoring.

C. Virtual Testing and Parallel Learning

The collection of faulty signals in the real world can be

challenging, particularly when trying to ensure diversity in

faulty scenarios to support a robust data-driven model. Conse-

quently, to develop an efficient data-driven approach for fault

detection and address the lack of real-world faulty signals,

virtual simulation and testing methods are often employed to

synthesize artificial faults to the real-world health signals. For

instance, in [41], a multi-sensor fault detection and isolation

system is based on the 1D-CNN time-series model. Virtual

faults including drift, hard-over, erratic, and spike faults were

generated based on the Audi A2D2 datasets [42]. In [43], a

fault injection module was developed for a hardware-in-the-

loop testing system of automotive software systems. Eight

faults (spike, offset, noise, hard-over, delay, gain, stuck, and

drift) were generated and injected into the accelerator pedal

and engine speed sensors in the HIL testing system. The

combined 1D-CNN and LSTM approach shows a 98.88% F1

score of the fault classification. In [12], a digital twin-inspired

Wasserstein GAN-based binary classifier was developed for

early fault detection in wireless sensor networks. The WGAN

tasks the Gramian angular filed (GAF) encoding of the time

series as input and output the binary faulty/healthy condition.

In addition to direct fault classification, learning the orig-

inal representation of temporal dynamics in time series and

enabling reconstruction for extensive testing and simulation is

also critical and beneficial. Signal reconstruction has emerged
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as a key topic in recent digital twin and parallel learning

theories [44-46]. For instance, parallel driving is an ad-

vanced framework that facilitates large-scale computational

experiments and parallel execution for intelligent vehicles.

This framework necessitates the development of a virtual

environment representing the holistic ecosystem of intelligent

vehicles. The study conducted in [47] introduces three key

concepts: artificial systems, computational experiments, and

parallel execution, to support the development of parallel

intelligent systems. In [48], a cyber-physical-social systems

(CPSS) framework beyond the conventional digital twin and

cyber-physical- systems (CPS) were studied for parallel driv-

ing systems and the software-defined intelligent vehicles in

the metaverses were clarified. Therefore, in this study, we will

investigate the signal reconstruction performance in the virtual

world considering the adversarial situations where synthesized

faults are injected. As discussed in Section IV, the joint

learning of signal reconstruction along with the forecasting

and fault detection tasks in the virtual world could significantly

benefit the tasks in the real world.

III. METHODOLOGY

A. Overall Architecture

The overall architecture of the proposed PTSM framework is

shown in Fig. 1. Specifically, we split the framework into two

branches, namely the light side, and the dark side. On the light

side, we define the model as LightNet which learns to monitor

the real-time faults and predict the future cylinder pressure for

braking behaviour estimation. The forecasting of the continu-

ous braking pressure can not only help tolerate the signal faults

but also benefit energy management. The input to the LightNet

is real-world time-series data from cylinder signals where only

very limited faulty signals exist. On the dark side, however,

we use much more faulty sequences to train the DarkNet

to learn the same forecasting and classification tasks as the

LightNet. Also, we introduce an extra reconstruction task for

the faulty signals to further learn the temporal representation

of the cylinder pressure signals. As the cylinder pressure

time series is causal and depend on the driver’s braking

actions that respect to the highly dynamic and stochastic traffic

context, a long-term forecasting is unreasonable. Thus, in

this study, we only focus on short-term forecasting (500ms).

Formally, we can define the observed variable sequence as

Y = {Yt0−τ
, . . . , Yt0 |Yi ∈ R

d} and the future target sequence

as YT = {Yt0+1, . . . , Yt0+h|Yi ∈ R
d}, where Y and Yi is

multivariate sequences with d dimensions (d = 4 in this study),

τ ∈ N is the historical observation horizon for the input

sequence and h ∈ Nis the prediction horizon of the model.

The target for the LightNet is to predict the future sequence

ŶT and sensor states Ŝ. The faulty signals to the DarkNet

can be represented as Ỹft = {Yftt0−τ
, . . . , Yftt0 |Yftti ∈ R

d}.

The reconstruction task seeks to estimate Ỹrecons, which

approximates the true observed sequence Y . In this study, the

length of the input sequence τ is set to 100, and the forecasting

horizon h is set to 50. These selections are made to ensure

effective modelling and forecasting of the vehicle’s braking

behaviour.

The overall PTSM algorithm is described in Algorithm 1

below. There are four main stages for the proposed PTSM

framework, which are generate and inject synthetic fault

signals, train DarkNet with dual-RaGAN, train the LightNet

by fusing features from DarkNet, and real-time inference.

Detailed implementation for each stage will be discussion in

the following sessions.

Algorithm 1 Algorithm for PTSM

INPUT: raw sequence data pair X ∈ R
100×4,Y ∈ R

50×4

OUTPUT: Forcasting Ŷ and vehicle states S̃

1. GENERATA AND INJECT SYNTHETIC FAULT SIGNALS

Split (X,Y) into (Xtrain,Ytrain) and (Xtest,Ytest)
While J < max duplicate(θd) do

While I < max samples in Xtrain do

Randomly generate θn, θc
Inject fault segments to Xtraini

Repeat fault generation for Xtest

Update Xtraindark
,Xtrainlight

,Xtestdark
,Xtestlight

2. TRAIN DARKNET WITH DUAL-RAGAN

Initialize Gfc, Grecons, Dfc, andDrecons

While K < max epoch do

for each mini–batch b ∈ Xtraindark
do

Train the dual generators Gfc and Grecons

with learning rate λG fc, λG recons,

and loss LG FC
′ ,LG RECONS

′

Train the dual discriminator Dfc and Drecons

with learning rate λD fc, λD recons,

and loss LD FC
′ ,LD RECONS

′

Anneal λG fc, λG recons, λD fc, λD recons with a

decay factor of ψ every ξ epoch

Update Gfc, Grecons, Dfc, and Drecons

3. TRAIN LIGHTNET WITH STANDARD BACKPROPAGA-

TION

Initialize LightNetwithtransformerbackbone

While K < max epoch do

each mini–batch b ∈ Xtrainlight
do

Freeze Gfc and Grecons, extract fmaprecons,

and fmapfc dark

Train the LightNet with learning rate λL,and loss

Lfc mse,Lcls

Update LightNet

4. REAL-TIME INFERENCE

for single batch b ∈ Xtestlight
do

query Gfc, Grecons with b for fmaprecons and

fmapfc dark

Calculate (Ŷ , S̃) with:

LightNet(b, fmaprecons, fmapfcdark
)

Return (Ŷ , S̃)

The time-series driving dataset was collected on a chassis

dynamometer that was equipped with an electric vehicle oper-

ating under typical driving cycles. In this study, the standard

New European Drive Cycle (NEDC), which combines the

European Union Urban Driving Cycle (ECE) and the Extra Ur-

ban Driving Cycle (EUDC) is adopted to simulate real-world

urban driving behaviours. The electric vehicle was a typical
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electric passenger car which was equipped with a regenerative

and hydraulic blended braking system. A permanent magnet

synchronous motor was used to drive the front wheels of the

vehicle and control the mode switch of the motor and gener-

ator. We use the real-world braking pressure of the cylinders

from the four wheels for PTSM framework validation. The

temporal dynamics of the brake pressures from the cylinders

are more difficult to model due to the significant uncertainty

and dynamic characteristics compared to the widely studied

speed or SOC states. Vehicle data and powertrain states on the

CAN bus are collected with a sampling frequency of 100 Hz.

During testing, the heater and airconditioner are all switched

off. The battery is fully charged g at 100% before the test.

The driver is required to repeat NEDC driving cycles with a

maximum deviation of 2 km/h in the speed profile. Finally,

experimental data of 8122s containing eight NEDC driving

cycles in total are recorded.

B. LightNet Development

The LightNet was built based on a vanilla Transformer En-

coder with two output tasks, which are the prediction and fault

classification heads. The input to the LightNet is the observed

historical data X ∈ R
l×d, where l and d represent the length of

the input signals (100) and the number of channels/dimensions

(four-cylinder channels in this study). The encoder (enc(·)) on

the light side learns to forecast the future cylinder pressures

as well as monitor and estimate any types of faults in the time

series signal.

A fully-connected input embedding layer FCemb is applied

to the input X and the embedded input Xemb = FCemb(X),

Xemb ∈ R
ld

′

will be passed to the popular positional encoding

layer, where the following sine − cosine temporal pattern

can be injected to Xemb [19]. The Transformer model can

be viewed as a parameterized function fθ that map input

X ∈ R
l×d to the output Y ∈ R

l
′

×d
′

, where the key

component is the multi-head self-attention function which can

be represented as:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (1)

where Q(xi) = WT
q xi, K(xi) = WT

k xi, V (xi) = WT
v xiare

the query, key, and value matrix.

Given the Transformer encoder enc(·), the learned temporal

representation of the real-world cylinder pressure sequence on

the light side is fused with the reconstruction feature map

fmaprecons from the dark side to strengthen the representation

of the temporal dynamics for the observed sequential input.

The fused feature map is denoted as fmapfuse ∈ R
100×256.

Then fmapfuse is flattened and passed to the decoder with

a fully connected layer FCconv and 1D ConvNet before it is

fused with the fmapfcdark
∈ R

50×256 from the dark side

for the final forecasting Ŷt+1:t+h ∈ R
504 and fault style

classification Ŝlight ∈ R
9×1.

fmapfusetemp
= FCconv(Conv1D(fmapfuse)) (2)

fmaplight = fmapfusetemp
+ fmapfcdark

(3)

Ŷt+1:t+τ = FCfc(fmaplight) (4)

Ŝlight = FCcls(fmaplight) (5)

where FCfc and FCcls represent the fully connected layers

for signal forecasting and fault classification.

C. DarkNet Development

The DarkNet in this study is designed to learn the temporal

representation of the time series cylinder pressure dynamic

from fully synthesized faulty signals. The vehicle cylinder

pressure prediction task is even more challenging because

of the high uncertainty and dynamic nature of the cylinder

sensors. The forecasting task on the dark side is also much

more complex than that on the light side as it must be made

based on faulty signals. Thus, we introduce an extra self-

supervised data reconstruction task together with the forecast-

ing and classification tasks to jointly learn the representation

of both observed and predicted temporal dynamics. The multi-

task learning framework can improve the robustness and gen-

eralization ability of the DarkNet and thus contribute to more

accurate results on the light side (as analyzed later in Section

part). Further, we designed a novel multi-task relativistic

GAN framework to strengthen the forecasting, reconstruction,

and classification performance for the DarkNet. As shown in

[48], error accumulation in time series forecasting can hurt

performance badly, and an adversarial training process can

regularize the forecasting at the sequence level and contribute

to the better representation of time series with more fidelity

at the sequence level. In this study, we further investigate

the effectiveness of the relativistic average GAN (RaGAN)

approach as we believe for time series modelling, due to the

commonly existing noises and uncertainties in the signals, it

would be more effective to measure the relativistic nature

of the real/fake data pairs x̃ = (xr, xf ) and estimate the

probability that the given real data is more realistic than fake

data on average.

As shown in Fig.2, the DarkNet contains two parts. The

RaGANFormer framework relies on a dual-RaGAN approach

for multi-task learning. Separate generators and discriminators

are designed for the forecasting and reconstruction tasks.

In RaGAN, we can define the discriminator as D(x) and

generator as G(x). Let ΘG and ΘD be the parameters for

the generator G and discriminator D. Then, for the dual-

RaGAN model, let the Dfc(x) and Gfc(x) be the discrimina-

tor and generator for the forecasting network, and Dfc(x) and

Grecons(x) be the discriminator and generator for the recon-

struction network. In this study, the Gfc(x) and Grecons(x)
are developed based Transformer encoder, and Dfc(x) and

Drecons(x) are built based on the WaveNet and dilated causal

convolution frameworks [16]. The Gfc(x) and Grecons(x)
share the same input Ỹft(t−h : t), which is the 4-dimensional

observed cylinder pressure data with random faults injected.

t is the current time step, h is the historical horizon. Also,

let the FCfc(x) and FCrecons(x) be fully connected layers

of the prediction head networks. Then, the forecasting and

reconstruction networks have different tasks such as:



6

Fig. 2. Demonstration of the dual-RGAN time-series model and learning
objectives on the dark side.

Ŷt+1:t+τ = FCfc(Gfc(Ỹft(t− h : t); ΘG
fc)) (6)

Ŷt−h:t = FCrecons(Grecons(Ỹft(t− h : t); ΘG
recons)) (7)

where Ỹt+1:t+τ is the predicted values, and τ is the prediction

horizon. Ŷt−h:t are the reconstructed cylinder signals from

random faults. ΘG
fc and ΘG

recons are the learnable parameter

for Gfc and Grecons. Then, we can define the dual-RaGAN

loss function in Fig.2 as follows.

LG fc = EY f∼Q[Dfc(Ỹt+1:t+τ − EY r∼PDfc(Yt+1:t+τ )]
(8)

LD fc =
1

2
(Lreal fc + Lfake fc)

=
1

2
(EY r∼Q[Dfc(Yt+1:t+τ )− EY f∼PDfc(Ỹt+1:t+τ )]

+ EY f∼Q[Dfc((̃Y )t+1:t+τ )− EY r∼PDfc(Yt+1:t+τ )])
(9)

LG recons = EY f∼Q[Drecons(Ỹt+1:t+τ

− EY r∼PDrecons(Yt+1:t+τ )]
(10)

LD recons = =
1

2
(Lreal recons + Lfake recons)

=
1

2
(EY r∼Q[Drecons(Yt+1:t+τ )

− EY f∼PDrecons(Ỹt+1:t+τ )]

+ EY f∼Q[Drecons((̃Y )t+1:t+τ )

− EY r∼PDrecons(Yt+1:t+τ )])

(11)

Based on the predicted and reconstructed, the point-wise

mean square error losses Lfcmse and Lreconsmse are also

calculated and accumulated in case to accelerate the model

training. Further the fully connected fault recognition heads

FCcls are designed based on the concatenation of the learned

feature maps fmapfcdark and fmaprecons for forecasting and

reconstruction, respectively. The estimated probabilities for the

sensors’ states can be represented as:

Ŝi = softmax(FCi
cls(concate(fmapfcdark

, fmaprecons)))
(12)

where Ŝi is the ith(i ∈ [1, 4]) cylinder sensor states, FCi
cls is

the ith fault recognition head. Then, the classification losses

for each sensor Lclsi are calculated based on the standard

cross-entropy function. Then the final classification loss Lcls

is calculated as the summation of the four:

Lcls =
∑4

i=1
Lclsi (13)

D. Loss Function

In this study, to achieve the multi-task learning object, we

use the popular homoscedastic uncertainty-based approach

[50] to weigh multiple loss functions by considering the

homoscedastic uncertainty of each task. Specifically, following

the definition of the homoscedastic uncertainty weighted loss,

we applied a hierarchical multi-task learning framework for the

dual-RaGAN generators. First, on the dark side, two sub-loss

terms LG FC
′ and LG RECONS

′ are calculated separately as

follows:

LG FC
′ =

1

2σ2
1

LG fc+
1

2σ2
2

Lfc mse+
1

2σ2
3

Lcls+ logσ1σ2σ3

(14)

LG RECONS
′ =

1

2σ2
4

LG recons+
1

2σ2
5

Lrecons mse+ logσ4σ5

(15)

Then, the overall loss LG dark for the generator in the dark

side can be represented as:

LG dark =
1

2σ2
6

LG FC
′ +

1

2σ2
7

LG RECONS
′ +logσ6σ7 (16)

Similarly, we can represent the overall discriminator loss on

the dark side as follows:

LD dark =
1

2σ2
6

LD FC +
1

2σ2
7

LD RECONS + logσd1σd2

(17)

As there is no GAN used on the light size, the overall loss

Llight on the light side is simply based on the mean square

error loss Lfc mse and the overall classification loss Lcls:

Llight =
1

2σ2
l1

Lfc mse +
1

2σ2
l2

Lcls + logσl1σl2 (18)

where σi is the learnable parameter that represents the ho-

moscedastic uncertainty or the observation noise.

E. Synthesized Fault Injection

In this study, we introduce a novel random fault generation

and injection module for the PTSM network to produce eight

artificial faults to the sequential cylinder pressure signals.

Following the defined tasks for forecasting and reconstruction,

we split the observed data into small segments and each

segment has the size 50×4 and of 100×4 for the forecasting

and reconstruction, respectively. The eight kinds of faults are

shown in Fig. 3.

We first define an integer random seed θn ∈ [1, 4] to gen-

erate a random number from the discrete uniform distribution

which determines n channels in each segment (100× 4) will

have faults. Subsequently, we generate a random permutation

of the integer set S = [1, 2, 3, 4] and select the first n numbers

to represent the corresponding channels (front-left, front-

right, rear-left, rear-right). Then, for each faulty channel, we

randomly select one element from θc ∈ {1, 2, 3, 4, 5, 6, 7, 8}
to represent the specific faults. If the sequence has no fault,
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Fig. 3. The eight types of faulty signals. For each sub-graph, the x-axis is
the time steps, and the y-axis is the braking pressure with the unit in MPa.

then we assign the state as 0. This setting provides us with the

flexibility to control the complexity of the fault, which, in turn,

affects the challenges associated with both forecasting and

fault classification. The description of the eight synthesized

faults is summarized below.

1) Hardover Fault: This fault is defined as the signal return-

ing a value outside its measurable range and saturated

at a point.

fs(th0 : tend) = ηh0 ×Ms (19)

where fs(th0 : tend) represents the hard-over fault

signal between th0 and tend, where th0 is determined

by a uniformly distributed parameter θh0 between 25

to 80 to randomly generate the start point. Ms is the

maximum observed value of the signal and ηh0 ∈ (1,∞)
is a parameter to control the threshold of the fault, we

use 1.1 in this study.

2) Erratic Fault: This fault adds a large noise to the signals

and increases the magnitude of the signal variance over

time.

fs(te) = rs(te) + ee ∼ N(0, δ2a) (20)

where fs(te) is the fault segment that starts from te
which is also controlled by a uniformly distributed

parameter δe between 25 to 80. ee ∼ N(0, δ2a) is the

added normal distribution noise with zero mean and

variance δ2a = ηe × Ms, which is determined by the

Ms and a control parameter ηe ∈ [0.2, 0.5], we use 0.2

in this study.

3) Spike Fault: the spike fault in this study is defined as:

fs(td)
N = rs(td)

N + α (21)

where α is the constant value to simulate the spike fault,

and a uniformly distributed parameter θs between 10 and

30 (maximum 30 spike faults over the sequence) is used

to generate random spike faults for the signal. N is the

N th fault points.

4) Drift Fault: we consider a linearly increase drift fault

here, which can be represented as:

fs(td) = rs(td) + η × td (22)

where fs(t) is the drift fault signal, rs(td) is the raw

signal at step t, η is the slope of the drift that controls

the amount of drift, td ∈ [t0, tend] is the time steps. A

starting fault point t0 ∈ [25, 50] is randomly sampled

for each signal.

5) White Noise Fault: Similar to the erratic fault, we

replace the large noise ee with a small additive white

Gaussian noise with a 1dB signal-to-noise ratio to

evaluate the robustness of the PTSM on small noisy

signals.

6) Stuck/Zero Fault: This fault simply simulates the zero-

reading case:

fs(ts) = 0 (23)

where fs(ts) is the fault segment that starts from te
which is also controlled by a uniformly distributed

parameter θs between 25 to 80.

7) Sin Fault: A Sine wave with magnitude 0.1 and period

2π was added to the original signal.

8) Sawtooth Fault: A sawtooth wave with magnitude 0.1

and period 2π was added to the whole observed signal.

F. Implementation Details

We use a vanilla Transformer encoder for the LightNet and

DarkNet, with six encoder layers and each layer contains

eight heads of multi-head attention module. The decoder layer

contains one 1D-Convolutional neural network and one fully

connected layer to form the feature map and fully connected

layers are used for the multi-task heads in the end. A similar

architecture is also applied to the DarkNet, while we double

the MHA layers in the DarkNet, and it contains two separate

Transformer encoder branches for forecasting and reconstruc-

tion tasks, respectively.

We employed a two-stage training framework for model

development, as depicted in Fig. 4. Initially, we trained the

DarkNet using fully synthesized faulty signals. Consequently,

all input sequences to the DarkNet contained faults, while

the target sequences for forecasting and reconstruction were

normal sequences without faults. Afterwards, we froze the

DarkNet parameters and proceeded to train the LightNet using

the knowledge acquired from the DarkNet. For this study,

we conducted eight NEDC experiments, utilizing the first six

cycles for model training and the remaining two cycles for

testing. The whole multivariate sequence is split every 150

steps (1.5s) without overlap, which contributes to 3932 and

1481 initial training and testing sequences, respectively. The

data are smoothed and normalized to the range of [0-1]. The

faults are generated for and injected into the training and

testing data separately.

For the LightNet, we concatenated the original training data

with a very limited number of faulty sequences (1/10 of the
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Fig. 4. Data split and generation process for LightNet and DarkNet.

original sequences). For testing, an equal number of faulty

sequences was combined with the original testing sequences

to simulate critical situations. For the DarkNet, We define

θd ∈ {3, 6, 9, 12, 15} to control the amount of synthesized

faulty signals for training and testing, which means the number

of the faulty sequences on the dark side are θd times of the

original training (θd×3932) and testing sequences (θd×1481).
The impact of the amount of training data will be evaluated

in Section IV. E. We use the Transformer encoder as the

generator, with 12 layers in total and eight self-attention heads

in each layer. We use Adam optimizer for model training, with

a batch size equals to 128 and maximum epoch equals to 300.

The learning rate is 8e-5, and β1 and β2 equal to 0.5 and

0.999, respectively. We implement our network with PyTorch.

The model is trained on local machine with one Nvidia A5000

GPU and Intel i9 CPU.

IV. EXPERIMENT RESULTS

A. Evaluation and Metrics

In the following parts, we evaluate the proposed PTSM frame-

work from various aspects. First, the DarkNet will be evaluated

based on the synthesized data. Then, the LightNet and the

combined Light-Dark network will be evaluated based on real-

world data with limited synthesized faulty signals. Finally, the

impact of healthy signal reconstruction and the data volume

on the development of the parallel DarkNet and the overall

performance will be analyzed to inform the future design of

digital twin and parallel learning systems for IVs.

To evaluate the point-wise forecasting and reconstruction

loss, a standard mean squared error (MSE) function as shown

in (24) is used. The overall classification accuracy (25) and

the confusion matrix are reported for the fault classification.

MSE =
1

n

∑n

i=1
(Yi − Ŷi)

2 (24)

Acc =
Numc

Num
(25)

where Yi and Ŷi ∈ R
(d × l) are the ground truth generated

sequences, d is the dimension of the sequence, which equals

four (four-cylinder channels) in this study. l equals 50 and

100 for the forecasting and reconstruction cases, respectively.

TABLE I
COMPARISON OF DARKNET WITH BASELINES

Models Pred[MSE] Acc Recons[MSE]

TCN 0.1837 0.8301 0.0764

RNN 0.2511 0.8921 0.0232

LSTM 0.2143 0.8885 0.0255

BiLSTM 0.2027 0.8756 0.0177

GRU 0.2225 0.9100 0.0246

BiGRU 0.2064 0.8854 0.0196

Transformer 0.1720 0.9176 0.0151

Informer 0.1610 0.9190 0.0232

RaGAN TCN 0.1813 0.8201 0.0343

RaGAN TCN 0.2171 0.8867 0.0185

RaGAN LSTM 0.2142 0.8978 0.0160

RaGAN GRU 0.1956 0.8646 0.0136

RaGAN Informer 0.1645 0.9195 0.0113

RaGANFormer 0.1695 0.9176 0.0076

RaGANFormer f 0.1432 0.9229 0.0078

Numc denotes the number of correctly classified sequences

and Num is the overall number of sequences.

B. Evaluation on the Dark Side

In this section, we conduct a comprehensive comparison

between the Transformer-based RaGAN model and several

common baseline models, including LSTM, GRU, the vanilla

Transformer, and Informer. The objective is to evaluate

the generalization, adaptability, and advantages of the dual-

RaGAN framework over these traditional sequential models.

In theory, the dual-RaGAN framework can be adapted to

any sequential backbone network, including advanced models

like Autoformer and Fedformer. However, such an adaptation

may come at the cost of increased computational resources,

as these backbones tend to have much larger sizes. For the

sake of simplicity, we have chosen to test the framework

with light backbone models, such as the vanilla Transformer

encoder (RaGANFormer, and RaGANFormerf ) and In-

former (RaGANInformer), among others. The main differ-

ence between RaGANFormer and RaGANFormerf lies

in the early fusion between the reconstruction branch and

the forecasting branch. RaGANFormerf ensures that the

reconstruction feature map is fused to the forecasting branch at

an early stage through a direct connection (as shown in Fig. 1).

On the other hand, for RaGANFormer, the reconstruction

task is still preserved, but there is no knowledge transfer

before the feature concatenation. As shown in Table 1, this

early fusion in RaGANFormerf leads to more accurate

forecasting and higher classification accuracy (0.1432 and

92.29%) compared to RaGANFormer (0.1695 and 91.76%),

although the reconstruction MSE slightly increases. By using

these light backbone models, we can still demonstrate the

efficiency and effectiveness of the dual-RaGAN framework

without incurring excessive computational overhead.

In Table I, the upper part shows results that are developed

based on the conventional non-adversarial training method,

while the lower part shows the results derived from the dual-
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Fig. 5. Exemplar signal reconstruction results for the front-left braking
cylinder. The first eight graphs represent the reconstruction for a specific
fault. The bottom graph shows the overall reconstruction for the whole braking
pressure sequence from the two testing driving cycles.

RaGAN framework. Based on the upper part of Table I it

can be found that the convolution-based approach-TCN shows

competitive performance in forecasting and fault classification

tasks, while there is a significant increase in the MES for

healthy sequence reconstruction. The Informer model (with

most of the default setup as in [24]) provides the most

accurate forecasting and classification performance compared

to other baselines, while the reconstruction loss is higher

than the vanilla Transformer encoder. When adopting the

Informer model into the dual-RaGAN framework, though

the forecasting loss slightly increased, the reconstruction error

significantly dropped from 0.0232 to 0.0113. Further, with

the Transformer network, the RaGANFormer achieved

1.48% and 47.95% increase in the forecasting and reconstruc-

tion tasks, respectively, and a 0.58% increase in the fault clas-

sification task compared to the Transformer model which

is trained without the dual-adversarial approach. Compared

with the normal LSTM model, the RaGANLSTM framework

increases the forecasting, classification, and reconstruction

accuracy by 0.059%, 0.93%, and 37.28%. Similarly, the

RaGANGRU increases the performance on the forecasting

and reconstruction by 12.06% and 44.42%, with a decrease

in the classification task by 4.99%, which is caused by the

biased multi-task learning process. Based on the comparison

results on the forecasting and classification tasks, the healthy

signal reconstruction accuracy can be significantly improved

with the dual-RaGAN framework.

Examples of forecasting and reconstruction results with

RaGANFormerf is shown in Fig.5. As shown in Fig. 5,

in general, the reconstruction network can generate near-real

signals which show the RaGANFormerf can successfully

learn the representation of the original health signal even

from the faulty training input. The average MSE of the signal

reconstruction regarding the eight kinds of faults for the four

Fig. 6. Average MSE of signal reconstruction for the four braking cylinders.

braking cylinders are shown in Fig. 6. It is shown that,

in general, the Zero, Erratic, and Hardcover faults lead to

the most significant reconstruction errors among the eight

different faults, while the Sine and Sawtooth faults lead to the

significant lower MSE compared to the other faults. Here we

only try to evaluate the general reconstruction performance on

the four-cylinder pressures and analysis the common difficult

faults without considering the specific MSE. This is because

the MSE of the signal reconstruction can largely depend on

the setting of faults in the fault injector part (i.e., using a larger

magnitude of the fault will increase the MSE).

In sum, based on the performance comparison in Table I

it can be found that 1) the proposed multi-task dual-RGAN

network achieved significant improvement in the sequence

forecasting, reconstruction, and fault classification tasks com-

pared to the common sequence modelling approach. 2) the

dual-RGAN is a general model-agnostic framework that can

be adapted to various backbone networks. 3) the dual-RaGAN

framework can significantly contribute to the learning of

temporal representation and reconstruction of healthy signals

from faulty sequences.

C. Evaluation on the Dark Side

In this part, we evaluate the impact of the DarkNet and

the corresponding knowledge transfer (with fmaprecons and

fmapfcdark
fusion) on the light side. The testing data in the

light side represents a real-world situation where most of the

sequences are normal but faulty signals occasionally exist.

The comparison between the LightNet and Light-DarkNet is

shown in Table II. It is evident that injecting knowledge from

the dark side significantly improves the model’s performance

on both forecasting and fault recognition tasks, despite using

the same Transformer backbone. Specifically, the forecasting

Mean Squared Error (MSE) is reduced from 0.2390 to 0.1560,

resulting in a substantial 34.7% improvement. Moreover, the

classification accuracy experiences an 11% increase, climbing

from 75.11% to 86.66%. It is shown that even though we

freeze the parameters of the DarkNet during the training

process, the extracted feature map can still contribute to the

network learning for LightNet. The forecasting of the front-

left cylinder pressure is shown in Fig. 7. Based on the 50-

prediction horizon (0.5s), the Light-DarkNet can make a more

accurate prediction of the highly dynamic braking pressure

compared to the LightNet only.
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Fig. 7. The real-time signal forecasting for the front-left braking cylinder. The
upper graph shows the overall forecasting results on the two-testing driving
cycle, and the bottom graph shows the detailed view of a specific region in
the upper graph.

TABLE II
COMPARISON OF THE LIGHT-DARK AND LIGHTNET ON THE TESTING

DATASET

Models Pred[MSE] Acc

Light only 0.2390 0.7511

Light Dark 0.1249 0.9531

In Fig. 8, the confusion matrix illustrates the fault classifica-

tion results using RaGANFormer. Fig. 8(a) shows the classifi-

cation results using the LightNet, while Fig. 8(b) presents the

results obtained with the combined Light-DarkNet.In Fig. 8(a),

it can be observed that the normal state and the Hardover state

achieve the same recognition accuracy of 95.4% on average

across all four cylinders. However, the LightNet performs

poorly on the sine wave fault, achieving only 2.1% recognition

accuracy, with most samples misclassified into the normal

state. A similar situation is observed for the Gaussian noise and

sawtooth faults, with 334 and 363 samples misclassified into

the normal group, respectively. The LightNet only achieves

7.7% and 7.1% accuracy on these two faults. The results indi-

cate that the Light-DarkNet model significantly improves the

fault classification accuracy for most fault categories compared

to the LightNet. However, challenges remain in accurately

classifying the sine wave, Gaussian noise, and sawtooth faults.

Further refinements and enhancements are needed to address

these issues and make the fault classification model more

robust and reliable.

Compared to the LightNet-only case, the Light-DarkNet

model demonstrates significant improvements in the classi-

fication results. The Sine and Sawtooth fault classification

rates show significant enhancement, achieving 98.1% and

Fig. 8. Confusion matrix for the fault classification results. (a) shows the
performance on the testing data with the LightNet only, and (b) shows the
performance with the combined Light-DarkNet. The overall samples used
to generate these two graphs are the summation of the four cylinders and
hence represent the average performance of the four braking cylinders. The
precision and the recall rate are shown in the far-right column and bottom
row, respectively. The overall accuracy is shown in the bottom right corner.

96.9% accuracy, respectively. On the other hand, the most

challenging fault for the Light-DarkNet is Gaussian and Zero

noise, achieving only 64.7% and 66.6% accuracy, with a large

number of samples misclassified into the normal group.

A common challenge faced by both the LightNet and Light-

DarkNet is the misclassification of faulty sequences into the

normal group, which can be attributed to data imbalance.

Addressing this data imbalance issue is an interesting area for

future research, and efficient solutions such as incorporating

multi-task learning frameworks could be explored. Addition-

ally, just as the reconstruction case is influenced by the Mean

Squared Error (MSE) and specific fault configurations, the

classification results can also be impacted by these factors.
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TABLE III
PROFILE OF MODEL MEMORY USAGE WITH BATCH-SIZE 128

Model
Model Optimizer GPU Usage [MB]

Memory [MB] Memory [MB] Training Inference

DarkNet 1380.8 2741.1 23552.0 3584.0

LightNet 38.9 64.1 5427.2 2150.4

Light-Dark 38.9 64.1 9625.6 7327.8

TABLE IV
COMPARISON OF THE MODEL TRAINING AND INFERENCE SPEED

Modes
Time Cost/Sequence [ms]

DarkNet LightNet Light-Dark

Training
CPU 88.4 38.3 75.1

GPU 2.8 2.4 4.6

Inference
CPU 26.4 4.6 59.6

GPU 2.1 1.9 3.1

To make the classification model more robust, it might be

beneficial to design more challenging faulty signals based on

adversarial examples [51] and explore complex combined and

correlated fault scenarios [52].

The model memory usage is detailed in Table III. To

ensure real-time processing, we employed a lighter 1D-Conv

decoder for both the LightNet and the Light-DarkNet, ef-

fectively reducing the model size and enhancing forecasting

performance with real-world small-scale data. While the model

and optimizer memory requirements for LightNet and Light-

DarkNet are comparable, the Light-DarkNet, due to feature

fusion, demands more GPU memory for both training ( 9.4G)

and inference ( 7.2G). This increased memory utilization is

a consequence of information fusion, surpassing even the

DarkNet’s GPU memory usage for real-time inference ( 3.5G),

despite the latter’s larger model size. Similar trends are evident

in model training and inference speeds, as presented in Table

IV below. Notably, the use of fully connected layers in the

DarkNet decoder results in an exceptionally large model size.

However we found that a larger model, with a more complex

decoder, can be more efficient in handling large-scale synthetic

data and lead to higher accuracy in forecasting, reconstruction,

and fault classification.

We conducted real-time inference speed tests for DarkNet,

LightNet, and Light-DarkNet in the context of whole sequence

forecasting. Our evaluation included assessing the training

and inference speed on both CPU and GPU platforms. As

illustrated in Table III, the LightNet achieved a sequence-

level prediction time of 4.6 ms on CPU and 1.9 ms on

GPU. Notably, the GPU demonstrated a remarkable perfor-

mance boost, increasing the inference speed by over 200%.

The model training and inference speed decrease when the

LightNet queries the DarkNet and incorporates DarkNet’s

knowledge. As detailed in the table, sequence-level forecasting

of the Light-DarkNet using GPU and CPU modes takes 3.1

ms and 59.6 ms, respectively. This indicates that in the CPU

TABLE V
EVALUATION OF THE RECONSTRUCTION NETWORK

Models Pred[MSE] Acc

Dark Rec 0.1432 0.9229

Dark No Rec 0.1783 0.9135

Light Dark No Rec 0.2428 0.8282

Light Dark Rec 0.1249 0.9531

mode, a substantial portion of CPU resources is allocated to

DarkNet, in contrast to the LightNet-only case with a CPU

time of 4.6 ms. It is interesting to see that, even through the

Light-DarkNet is much lighter than the DarkNet in terms of

the model size, the inference speed of the Light-DarkNet with

either CPU or GPU are even lowerer than the DarkNet, which

shows the feature fusion between the DarkNet and LightNet

require significant processing. In general, considering the CAN

bus sampling frequency is 100Hz, the 3.1 ms sequence (50

steps) forecasting speed will be fast enough to make real-time

inference.

In sum, it can be found that injecting the knowledge

learnt from the dark side (virtual world) can: (1)dramatically

improve sequence forecasting (34.7% improvement) and fault

classification accuracy (11.5% improvement) in the light side

(real world). (2)Slightly decrease the real-time inference speed

from an average of 1.89 ms to 3.12 ms with RTX A5000 GPU.

D. Impact of Data Reconstruction

The impact of data reconstruction and multi-task learning of

the dual-RaGAN on both the dark side and the light side is

presented in Table III. The results demonstrate that incorporat-

ing the reconstruction of healthy signals and employing hier-

archical multi-task learning within the dual-RGAN framework

significantly improves forecasting and classification accuracy

on the dark side. Specifically, when compared to the scenario

without reconstruction learning (Dark No Rec), the multi-

task learning for the dual-RaGAN reduces forecasting loss

from 0.1783 to 0.1432 and increases classification accuracy

to 92.29%. Notably the Dark No Rec case is different from

the previous RaGANFormer case as the reconstruction loss

is no longer retained in the computational graph.

On the other hand, on the light side scenarios, the re-

construction network has a more substantial impact on task

performance. In this case, the LightNet is injected only with

the learned forecasting map (fmapfcdark
) from the DarkNet,

and the efficiency of the reconstruction map (fmapfcrecons
)

is tested. The results reveal that without the reconstructed

knowledge of the normal signals, the forecasting loss increases

to 0.2428 from 0.1249, indicating a 50% decrease in perfor-

mance, while the fault recognition accuracy drops by 13% to

0.8282.

In sum, it can be found that the reconstruction network

plays an important role on the dark side and light side through

joint learning and direct knowledge injection to improve signal

forecasting and state recognition.
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Fig. 9. Evaluation of data volume on dark side and light side (denoted
as Light-Dark) in the figure. As the reconstruction is only implemented
for the DarkNet, only the dark side evaluation is demonstrated. θd ∈
{3, 6, 9, 12, 15}.

E. Impact of Data Volume

We aim to explore the influence of data volume on the dark

side and its impact on the light side considering knowledge

transfer. As mentioned in Section III.D, we utilize θd to

regulate the data volume on the dark side. Here, we assess

whether increasing the data volume (θd) on the dark side leads

to improved forecasting and classification results on the light

side (real world)

The evaluation results are depicted in Fig. 9. It is shown

that with an increase in data volume on the dark side, the

forecasting error (MSE loss) consistently decreases. Notably,

when θd is set to 15, the MSE for the DarkNet and Light-

DarkNet reduces to 0.1129 and 0.1212, respectively. However,

the variation in classification and reconstruction results is less

significant. For fault classification, the highest accuracy is

achieved when θd equals nine, where the fault classification

accuracy for the DarkNet and Light-DarkNet reaches 93.88%

and 94.00%, respectively. Subsequently, the classification ac-

curacy remains stable in the range of 92% to 93%. Similarly,

the reconstruction loss experiences a significant decrease when

θd is increased to six. However, after that, the reconstruction

MSE loss saturates at around 3e−3 and eventually reaches

2.6e−3 with θd set to 15. The time cost for model training

(every epoch) in the bottom graph of Fig. 9 exhibits a clear

linear increase trend can be found in the DarkNet with growing

data size (θd). The per epoch training takes 42.1s, 109.7s, and

175.3s when θd equals to 3, 9, and 15, respectively.

We evaluate the model complexity of the DarkNet and

Light-DarkNet by varying the number of encoder layers (1x,

5x, and 10x of the original six layers). The per-epoch GPU

usage and inference speed were evaluated with a batch size

of 128. As shown in Fig. 10, the model size exhibits linear

growth, even with a substantial increase in the number of

encoder layers, highlighting the FC decoder as the most

heavy component in the DarkNet. GPU usage during model

training demonstrates an increase, while it remains relatively

stable during inference ( 7.5G for Light-DarkNet and 4G

for DarkNet). The 10x model incurs exceptionally high GPU

usage ( 83G), resulting in an extended training time due to

the need of extra resources from the integrated graphic. This

value, however, could potentially be significantly reduced with

multiple GPUs or a decreased batch size (e.g., the training

time for the 10x model decreases to 248s per epoch with a

batch size of 16). In summary, the utilization of the Dual-

RaGAN structure in the DarkNet leads to a more pronounced

increase in GPU resource and time costs during both training

and inference compared to the Light-DarkNet.

In sum, the evaluation of data volume reveals several

key insights. Increasing the data volume on the virtual side

significantly improves the model’s performance, and transfer-

ring the learned knowledge to the real-world contributes to

enhanced forecasting and classification results. However, it

is observed that as data volume continues to increase, the

network performance in both the dark side and light side

eventually reaches a saturation point. It is important to note

that in this evaluation, we only varied the data volume while

keeping the model size fixed, to understand how data volume

influences the virtual and real-world performance. For future

research on DT and parallel systems, both data volume and

model size can be increased in the virtual world, potentially

yielding further performance gains but leading to even higher

computational demands.

V. DISCUSSION AND FUTURE WORKS

A. Model Improvement

To demonstrate the effectiveness of the proposed PTSM

framework, we use vanilla Transformer backbone in this

study. Additionally, we conducted tests using various backbone

networks to highlight the robustness of both the PTSM and

dual-RaGAN framework. Considering the computational com-

plexity and limitations in long-term sequential representation

inherent in the original Transformer, there is potential for

further enhancement of the PTSM framework by integrating

advanced sequential networks such as the sparse Transformer

[49], Autoformer [27], or contemporary networks like Times-

Net [29]. Our future objectives include refining the PTSM

framework by exploring these advanced sequential networks,

considering their computational efficiency and suitability for

long-term sequential representations. Furthermore, we plan to

further investigate the dual-RaGAN training using common

baselines and datasets such as the ETT datasets. This will

provide deeper insights into the performance improvements

achievable with the proposed time-series models and compar-

ison to existing models.

B. Complex Faults Generation

In this study, we developed a configurable fault generator

capable of controlling the complexity of each fault. Our

findings underscored the diverse impacts of different faults and
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Fig. 10. Evaluation of model complexity for DarkNet and Light-DarkNet with per-epoch performance with various encoder layers and θd = 3.

highlighted the challenge posed by insufficient data in real-

time vehicle fault detection. The current fault generator oper-

ates on a hand-crafted policy to generate faults, primarily in a

single mode. However, future work could involve designing a

more intricate fault generator by combining various faults and

signal frequencies. Additionally, the introduction of adversarial

faults using techniques such as the Fast Gradient Signed

Method (FGSM) [53] or other adversarial training methods

holds promise for enhancing fault detection algorithms for IVs.

Acknowledging the constraints posed by data limitations and

the sparsity of real-world faults, future research might explore

the integration of few-shot learning approaches to address

these challenges effectively.Currently we only considered the

fault from CAN bus signal, however, fault can also occur

in the measurement, communication, and visualization layer

with either system failure, malfunction, or cyber-attack, it

is interesting to study how a more comprehensive virtual

sequential modeling system can be developed with the PTSM

framework.

C. Real-time Operation of PTSM

In this study, we demonstrated how the parallel learning

framework can enhance real-world time-series modeling when

knowledge acquired from the virtual world is seamlessly

integrated into real-world scenarios. As an illustrative example,

we applied this approach to the challenging task of forecasting

braking pressure signals, showcasing its efficacy in handling

dynamic and highly uncertain sequences in real-time. While

the feature fusion method employed in this project utilizes a

simple additive approach, the resulting performance improve-

ments in forecasting and classification are significant. Future

research will explore more efficient feature fusion methods,

incorporating attention mechanisms to extract valuable infor-

mation from nuanced and complex data, further enhancing the

capabilities of the parallel learning framework.

The study reveals that the Light-Dark network places a

significant computational burden, resulting in extremely low

inference speeds in CPU mode. Several strategies can be

employed to enhance the real-time operation of the PTSM

framework. First, drawing inspiration from current large-scale

foundation models, a more complex and heavier DarkNet can

be developed and implemented on the cloud, thereby further

improving vehicle safety and fault detection. The local ego-

vehicle would then exclusively carry the LightNet, querying

the cloud only when necessary through the Vehicle-to-Cloud

communication. To augment data diversity and enrich fault

signal information, connected vehicular technologies utiliz-

ing a federated learning scheme could be introduced. This

approach would involve gathering health and fault signals

from vehicles worldwide. Additionally, to expedite feature

extraction, encoding the heavy DarkNet could be achieved

using methods such as a simple look-up table or a much lighter

autoencoder network.

VI. CONCLUSION

In this study, we present a groundbreaking parallel time series

modelling framework designed to facilitate knowledge transfer

from the virtual world to the real world. We further introduce

a novel multi-task adversarial learning framework, specifically

tailored for the proposed dual-RGAN architecture in the PTSM

approach. This framework efficiently learns shared represen-

tations for signal forecasting, fault classification, and health

signal reconstruction. The results of extensive experimental

studies reveal several key findings:

1) The proposed dual-RaGAN network serves as an effi-

cient and versatile model-agnostic framework for en-

hancing time-series forecasting and classification tasks.

2) Incorporating knowledge from the virtual world, derived

from various fault scenarios, substantially improves real-

world time-series modelling performance.

3) The reconstruction of healthy signals from faulty signals

enhances our understanding of the temporary dynamics

of time-series signals. This, in turn, contributes to more

accurate forecasting and fault classification in both the

virtual world and the real world.

4) Augmenting data in the virtual world positively impacts

real-world performance, highlighting the importance of

expanding the virtual dataset.

In summary, our work introduces a novel Parallel Time Se-

ries Modelling framework, specifically designed to address the

challenges of complex sequence modelling tasks in scenarios

where data scarcity is an issue. To enhance sequence modelling

across various tasks, we also present a novel multi-task dual-

RaGAN learning framework for complex time series. Our

contributions to the field include showcasing the potential of

efficient data generation and parallel semi-supervised learning

methods in improving complex time-series modelling. The

proposed PTSM framework and multi-task RaGAN approach

hold promises in advancing parallel systems for intelligent

mobilities.
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