

CRANFIELD UNIVERSITY

SOHAIB ASLAM

DESIGN FOR PROGNOSTICS AND SECURITY IN FIELD
PROGRAMMABLE GATE ARRAYS (FPGAs)

SCHOOL OF AEROSPACE, TRANSPORT AND
MANUFACTURING

Doctor of Philosophy
Academic Year: 2017 - 2020

Supervisor: Prof. Ian K Jennions
Associate Supervisor: Dr. Mohammad Samie

March 2020

CRANFIELD UNIVERSITY

SCHOOL OF AEROSPACE, TRANSPORT AND
MANUFACTURING

Doctor of Philosophy

Academic Year 2017 - 2020

SOHAIB ASLAM

DESIGN FOR PROGNOSTICS AND SECURITY IN FIELD
PROGRAMMABLE GATE ARRAYS (FPGAs)

Supervisor: Prof. Ian K Jennions
Associate Supervisor: Dr. Mohammad Samie

March 2020

This thesis is submitted in partial fulfilment of the requirements for
the degree of Doctor of Philosophy

© Cranfield University 2020. All rights reserved. No part of this

publication may be reproduced without the written permission of the
copyright owner.

i

ABSTRACT

There is an evolutionary progression of Field Programmable Gate Arrays (FPGAs)

toward more complex and high power density architectures such as Systems-on-

Chip (SoC) and Adaptive Compute Acceleration Platforms (ACAP). Primarily, this is

attributable to the continual transistor miniaturisation and more innovative and

efficient IC manufacturing processes. Concurrently, degradation mechanism of Bias

Temperature Instability (BTI) has become more pronounced with respect to its

ageing impact. It could weaken the reliability of VLSI devices, FPGAs in particular

due to their run-time reconfigurability. At the same time, vulnerability of FPGAs to

device-level attacks in the increasing cyber and hardware threat environment is also

quadrupling as the susceptible reliability realm opens door for the rogue elements to

intervene. Insertion of highly stealthy and malicious circuitry, called hardware

Trojans, in FPGAs is one of such malicious interventions. On the one hand where

such attacks/interventions adversely affect the security ambit of these devices, they

also undermine their reliability substantially. Hitherto, the security and reliability are

treated as two separate entities impacting the FPGA health. This has resulted in

fragmented solutions that do not reflect the true state of the FPGA operational and

functional readiness, thereby making them even more prone to hardware attacks.

The recent episodes of Spectre and Meltdown vulnerabilities are some of the key

examples. This research addresses these concerns by adopting an integrated

approach and investigating the FPGA security and reliability as two inter-dependent

entities with an additional dimension of health estimation/ prognostics. The design

and implementation of a small footprint frequency and threshold voltage-shift

detection sensor, a novel hardware Trojan, and an online transistor dynamic scaling

circuitry present a viable FPGA security scheme that helps build a strong

microarchitectural level defence against unscrupulous hardware attacks. Augmented

with an efficient Kernel-based learning technique for FPGA health

estimation/prognostics, the optimal integrated solution proves to be more

dependable and trustworthy than the prevalent disjointed approach.

Keywords:

Reliability, Hardware Trojans, Kernel Learning, Negative and Positive Bias

Temperature Instability (N/PBTI), Cybersecurity, Threshold Voltage.

ii

ACKNOWLEDGEMENTS

I dedicate this valuable piece of intensive research and intellect to my father, who

has always been the prime source of motivation and inspiration for me towards

undertaking this arduous journey of immense worth. His unconditional love and

support throughout my life have kept me sailing smoothly during moments of

distress and disbelief.

Dr. Mohammad Samie, my associate supervisor, has been an influential part of

my academic development, and I owe him my special gratitude for persevering

my sluggishness all these years of research. He has been much more than an

academic advisor to me – a good friend, fantastic human being, and a lively

caring person to share thoughts with. I thank him for his guidance and selfless

help during this time.

Prof. Ian K Jennions, my supervisor, has always been a source of inspiration for

me. His wisdom and supportive nature are second to none. I thank him for his

consistent encouragement.

In particular, I would like to specially thank my viva panel comprising, Dr. Lucian

Prodan, Dr. Hongmei He, and Dr. Ioannis Giannopoulos for examining my

research work in a highly professional manner and rendering extremely useful

guidance on enhancing its impact.

Friendship with Alex, my Ph.D. mate, meant a lot to me, as I could always rely on

him for help and good company. Lastly, the love and encouragement from my

wife and children got me all the strength to carry on; thank you all.

 Sohaib, Cranfield, UK, March 2020

iii

TABLE OF CONTENTS

ABSTRACT ... i
ACKNOWLEDGEMENTS.. ii
LIST OF FIGURESv
LIST OF TABLES ... x
LIST OF EQUATIONS ... xii
LIST OF ABBREVIATIONS .. xiv
1 Introduction ... 15

1.1 Motivation ... 15
1.2 Research Aim and Objectives ... 17
1.3 Research Methodology ... 18
1.4 Organisation of Thesis .. 20
1.5 List of Published/Submitted Work ... 23

2 Unified Framework for Health and Security of FPGAs 26
2.1 Introduction ... 27
2.2 Realm of Reliability in FPGAs ... 31
2.3 Realm of Security in FPGAs ... 43
2.4 Integrated FPGA Health Management (IFHM) Framework 54
2.5 Summary .. 58

3 Understanding the Hardware Trojans in FPGAs 66
3.1 Introduction ... 66
3.2 Threat Model and Taxonomy .. 67
3.3 Trojans in FPGA Fabric .. 72
3.4 Trojans in FPGA Tool Chain ... 73
3.5 FPGA Attacks and a Case Study .. 75
3.6 Trojan Countermeasures .. 84
3.7 Summary .. 85

4 FREquency Degradation (FRED) Detection and Measurement Sensor .. 91
4.1 Introduction ... 91
4.2 Current Research on Frequency/Delay Variability Detection 93
4.3 FREquency Degradation (FRED) Detection Sensor – Architecture 97
4.4 Implementation Results and Analysis – Simulation and Experiments ... 105
4.5 Performance Evaluation of FRED ... 117
4.6 Summary .. 122

5 FPGA Security Scheme... 126
5.1 Introduction ... 127
5.2 Related Work .. 131
5.3 FPGA Security Scheme and Threshold Voltage – Triggered Hardware
Trojan .. 137
5.4 Design and Implementation of a Threshold Voltage-Aware Sensor 152

iv

5.5 Mitigating the Impact of Threshold Voltage – Triggered Hardware
Trojan .. 169
5.6 Implementation and Optimisation of Hardware Trojan Mitigation
Scheme ... 175
5.7 Summary .. 179

6 FPGA Health Estimation Using Kernel Learning Approach 188
6.1 Introduction ... 189
6.2 Kernel Learning and FPGA Health Estimation/Prognostics – A
Mathematical Interpretation .. 191
6.3 The Developed Kernel Learning Method ... 194
6.4 Implementation Results and Analysis – Simulation and Experiments ... 199
6.5 Summary .. 212

7 Discussion and Conclusions ... 216
7.1 Addressing the Research Aim and Objectives 216
7.2 Contribution to Knowledge .. 219
7.3 Future Work .. 221

APPENDICES .. 226

v

LIST OF FIGURES

Figure 1-1 Research Methodology Process Flow Diagram. 19

Figure 1-2 Thesis Organisation – Disposition of Chapters 21

Figure 2-1 The Disposition of Chapter 2. 26

Figure 2-2 A Gamut of FPGA Applications. 28

Figure 2-3 An architecture of a typical FPGA. The Configuration Logic Blocks
(CLBs) are islands with a mesh of programmable interconnects around
them. Each CLB houses a Lookup Table (LUT) that can be configured
to implement any logic gate.

29

Figure 2-4 Three Types of FPGAs – SRAM, FLASH, and ANTI-FUSE. 30

Figure 2-5 FPGA Interconnect Architecture. Programmable connections to and
out from the CLBs.

31

Figure 2-6 The Degradation Mechanisms impacting the FPGA reliability 33

Figure 2-7 Shift in Threshold Voltage ∆Vth with high-K/Metal gates is becoming
significant

36

Figure 2-8 BTI-induced variations in Vth during the stress and recovery period 37

Figure 2-9 FPGA Lifecycle – Manufacturing to Application Development to Final
Deployment. Handled by several sources using a diverse range of
design gadgets. Every phase of the FPGA lifecycle is prone to security
threats that need to be collectively addressed to ensure and uphold
the device and system reliability.

44

Figure 2-10 Dependability and Security Attributes of an FPGA 53

Figure 2-11 An integrated approach towards Reliability, Prognostics, and Security
in FPGAs to bolster FPGA health for high-end Computational
Systems.

55

Figure 3-1 The Disposition of Chapter-3. 66

Figure 3-2 FPGA threat model: The attacker can insert hardware Trojans at the
untrusted foundry (A1). A malicious distributor can reduce the reliability
of an FPGA in the supply chain (A3), and even recycled FPGAs can
be inserted into the FPGA supply chain (A2). Design Trojans can also
enter through FPGA CAD tool flow.

68

Figure 3-3 FPGA hardware Trojan taxonomy based on two primary attributes. 69

Figure 3-4 HDL to FPGA physical implementation. (a) Description of the design
in HDL. (b) The configuration of a routed CLB described in XDL format.
Only LUT B is used in this CLB. (c) The physical implementation of the
design

74

vi

Figure 3-5 Architecture of an FPGA in the cloud. The four different threat models
considered in this paper are (1) malicious cloud providers, (2)
malicious co-tenants, (3) malicious IP providers, and (4) malicious
FGPA toolchain. These are indicated in the figure by devil icons in the
shell (PCIe module and IP core), user 1’s logic, 3rd party IP core, and
the FPGA design flow, respectively.

75

Figure 3-6
Remote power analysis attack for a multi-tenant FPGA. The side-
channel analysis (SCA) is performed through the power distribution
network (PDN) in spite of the logical isolation between the victim logic
and the sensor.

78

Figure 3-7
Establishment of thermal covert channel on cloud FPGA [34]. The
transmitter uses 4 FPGAs simultaneously and sends the binary string
0101 in this example. The orange colour of the FPGAs after the
heating period represents high temperature. The yellow colour of the
FPGAs after the reconfiguration period on the receiver side represents
a temperature higher than the un-heated FPGAs, but lower than the
heated FPGAs.

81

Figure 4-1 The Disposition of Chapter 4. 91

Figure 4-2 VLSI Ageing Vs Technology miniaturisation [2] 92

Figure 4-3 Depiction of BTI Mechanisms. (a) Reaction-Diffusion (RD)
Mechanism. (b) Trapping-Detrapping (TD) Mechanism.

97

Figure 4-4 Dynamic BTI behaviour modelling based on TD mechanism. Net
increase in threshold voltage Vth is observed despite passive recovery

98

Figure 4-5 The Architecture of FREquency Degradation (FRED) Detection and
Measurement Sensor.

100

Figure 4-6 Degradation of NAND gate (as Sensor Segment) with (a) different
number of stages and (b) different threshold voltage levels.

104

Figure 4-7 Degradation pattern of different gate configurations. 105

Figure 4-8 Frequency Difference distribution of the FRED sensor with PVa
employing (a) 9-Stage Sensor Segments and (b) 21-Stage Sensor
Segments.

106

Figure 4-9 Frequency Difference (fdiff) distribution of a 21-Stage FSS and DSS
segment sensor with: (a) PVb and the temperature of 80⁰C and (b) PVc
, and a temperature of 110⁰C

107

Figure 4-10 A Simplistic Frequency and Delay Measurement Process Flow 109

vii

Figure 4-11 28nm FPGA Floorplan showing the spread of 18 FRED sensors
implemented to capture Frequency/Delay shifts under varying Thermal
and Voltage Stress Conditions.

110

Figure 4-12 FRED Sensor Experimentation Setup and Auto-Test Flow 111

Figure 4-13 Frequency Difference Distribution – (a) 9-Stage Sensor Segment –
450MHz. (b) 21-Stage Sensor Segment – 300MHz. (c) 31-Stage
Sensor Segment – 200MHz

113

Figure 4-14 Percent Frequency Degradation with High Temperature. (a) NBTI AC
Frequency Degradation (%) and (b) PBTI AC Frequency Degradation
(%).

114

Figure 4-15 (a) AC Frequency Degradation (%) with N/PBTI. (b) PBTI Frequency
Degradation (%) under AC Stress. (c) NBTI Frequency Degradation
(%) under AC Stress. (d) NBTI Frequency Degradation (%) under DC
Stress. (e) PBTI Frequency Degradation (%) under DC Stress.

116

Figure 4-16 Frequency Colour Map of 28nm FPGA using FRED Sensor Under
Stressed Temperature and Bias Conditions.

117

Figure 5-1 The Disposition of Chapter 5. 126

Figure 5-2 Thermal profile depicting hotspots in an FPGA 127

Figure 5-3 NBTI mechanism in a PMOS transistor. 128

Figure 5-4 FPGA Security Scheme comprising hardware Trojan Infection,
Detection, and Mitigation sub-schemes.

130

Figure 5-5 Threat Model: A novel self-triggered Threshold Voltage-Shift based
Hardware Trojan ‘HTVth’ is designed and implemented by a rogue
element in a 28 nm FPGA used in System Processor Module of ISPS
(Integrated Self Protection System) of a Naval Warship.

135

Figure 5-6 Schematic of a threshold voltage-triggered hardware Trojan (HTVth) in
a combinatorial circuit (2-input NAND gate).

140

Figure 5-7 A block diagram of a 4-BIT ripple carry adder. Full adder with C1 is
implanted with a threshold-voltage shift triggered hardware Trojan

141

Figure 5-8 (a) Gate level diagram of Full Adder with XOR1 implanted with
hardware Trojan, represented by a red dot. (b) Transistor level circuit
of XOR gate with malicious transistor (MT) that receives Vth trigger at
its gate.

142

Figure 5-9 Block diagram representation of a sequential circuit 143

Figure 5-10 Schematic of threshold voltage-triggered hardware Trojan in a
Sequential Circuit (TSPC based Flip Flop).

144

Figure 5-11 (a) Schematic of a 3-stage Ring Oscillator-based heating element with
Time-to-Digital Converter. (b) 28 nm technology node floor-planned

145

viii

with 08 x heating elements. (c) Thermal profile of FPGA (28 nm
technology node) with 08 x heating elements.

Figure 5-12 Schematic of Threshold Voltage Meter. The output of the Differential
Amplifier is the Threshold Voltage (Vth)

147

Figure 5-13 % Shift in threshold voltage with rise in temperature across 8 different
intra-die locations. Threshold voltage meter is used to read Vth.
Reference Vth is pre-defined at 0.45V.

148

Figure 5-14 (Left) An increase of 40% shift in threshold voltage at 90⁰C degrades
the drain current by 35%, triggers the hardware Trojan and impairs the
NAND2 logic. (Right) An increase of 50% shift in threshold voltage at
90⁰C degrades the drain current by 40%, triggers the hardware Trojan
and impairs the TSPC logic.

149

Figure 5-15 The architecture of Threshold Voltage-Aware Sensor. 153

Figure 5-16 Process flows for the identification, authentication, and assessment of
Trojan-free and Trojan-infected FPGAs using frequency and delay
mapping method.

155

Figure 5-17 Probability density function fFD at times 0 g0(fFD) and t gt(fFD) 156

Figure 5-18 Reduction of false prediction - represented by the overlapped area. (a)
Moving the FSS and DSS distributions away from their respective
positions.(b) Minimizing their spread. (c) Minimal spread with a shift of
the mean of FSS and DSS distributions.

158

Figure 5-19 Threshold Voltage-aware sensor with enhanced detectability of
hardware Trojan due to additional RO pairs architecture.

159

Figure 5-20 Process flow for enhanced detectability of hardware Trojan using
optimum-performing RO pairs’ selection strategy.

161

Figure 5-21 Scatter plot of correlation between dynamic frequency degradation (%
δf) and percentage frequency difference (% 𝜕𝜕ft DSS) of DSS ROs

162

Figure 5-22 Distribution of frequency differences between FSS and DSS, fFD, with
percentage shifts in threshold voltage in the presence of process
variations PVa, PVb, and PVc and changing number of RO stages (9
and 31) in sensor segments. (a) PVa: 9-stage RO, (b) PVa: 31-stage
RO, (c) PVb: 9-stage RO, (d) PVb: 31-stage RO, (e) PVc: 9-stage RO,
(f) PVc: 31-stage RO.

163

Figure 5-23 Gaussian distribution of frequency difference ‘fFD’ at PVc of Vth-aware
sensor with different number of RO-pairs

164

Figure 5-24 Histograms of frequency difference distribution fFD at PVc of Vth-aware
sensor with different number of RO-pairs. (a) Optimization with 1RO-
pair. (b) Optimization with 2 RO-pairs. (c) Optimization with 3 RO-
pairs.

167

Figure 5-25 Block diagram representation of FPGA security scheme highlighting
hardware Trojan mitigation sub-scheme.

169

ix

Figure 5-26 The Process Flow of Hardware Trojan Mitigation Scheme 170

Figure 5-27 Resistive Voltage Divider for Reference Voltage Generator (Rvg) 171

Figure 5-28 A Comparator circuit with current-mirror based differential amplifier. 172

Figure 5-29 Input / Output Response of a Comparator. 172

Figure 5-30 Online Transistor Dynamic Scaling using Pull-Up and Pull-Down
Networks.

174

Figure 5-31 Figure 5-31. Circuitry for Transistor Width Parametric Analysis. 175

Figure 5-32 Idd vs Vgs Curves Showing Online Transistor Width Increment to
Compensate for Threshold Voltage-Triggered Hardware Trojan (Htvth)
Attack.

176

Figure 5-33 Threshold voltage-triggered hardware Trojan mitigation circuitry of
‘HT-Mitigation Scheme’

177

Figure 6-1 The Disposition of Chapter 6. 188

Figure 6-2 A comparison of Optimisation Method based on Stochastic Filtering
with Particle Swarm Optimisation using a problem related to
benchmark optimisation.

193

Figure 6-3 Optimization of hyperparameters using Particle Filtering Approach. 198

Figure 6-4 Kernel-based FPGA Health Estimation Algorithm. 202

Figure 6-5 Results of FPGA Health Estimation for Parametric Deviation
(Frequency Degradation of RO-based Sensor Segments) in
Combinatorial Circuit (NAND2).

205

Figure 6-6 FPGA Health Estimate with Early-Warning Indication using Kernel
Method in a Sequential Circuit configuration.

209

x

LIST OF TABLES

Table 2-1 Portfolio of post-manufacturing reliability tests conducted by FPGA
Manufacturers

37

Table 4-1 Process variations profile for inter and intra process variations 105

Table 4-2 Thermal and Voltage Stress Test Conditions 109

Table 4-3 A Comparison of FRED Sensor with Other Sensor Designs – Resource
Utilisation

117

Table 4-4 A Comparison of FRED Sensor ‘Sensitivity’ with Other Sensor Designs. 118

Table 4-5 Comparison of the Normalised Area and Power Overheads of Four
different RO Segment configurations

119

Table 4-6 A Normalised Comparison of the Quality Factor of NOR and NAND
Sensor Segment Configurations for Different Segment Lengths.

120

Table 5-1 Impact of NBTI aging mechanism on PMOS transistor parameters. 137

Table 5-2 Hardware Trojan Triggering Analysis in NAND2 Logic. 149

Table 5-3 Hardware Trojan Triggering Analysis in True Single Phase Clock
(TSPC) Logic.

150

Table 5-4 Binary Modes of Operation. 153

Table 5-5 Intra-die process variations–Transistor length and oxide thickness 161

Table 5-6 False Prediction Rates (Probability of Error). 163

Table 5-7 Mean and Variance Frequency Distribution of Threshold Voltage Aware
Sensor.

164

Table 5-8 Analysis of False Prediction – Improving Sensor Accuracy with RO-pairs

scaling and selection process.

166

Table 5-9 Area Overhead Analysis of Threshold Voltage-Aware Sensor (Svth). 167

Table 5-10 Measured values – PMOS Idd reduction with increase in Vth. 175

Table 5-11 Measured values – width increment (Fanout-4) with shifts in Vth. 176

Table 5-12 Timing delays in TSPC due to Vth-triggered hardware Trojan payload. 177

Table 5-13 Area and Power consumption comparison of the proposed Threshold

Voltage (Vth) -shift based HT Mitigation Scheme.

178

xi

Table 6-1 Critical Components of LUT-based Combinatorial Circuit with Nominal,
Tolerance and Threshold Values.

201

Table 6-2 Performance Analytics of the Developed Health Estimation/Prognostics
Method for FPGA – LUT Primitive (NAND2 Application)

203

Table 6-3 Critical Components of LUT-based Sequential Circuit with Nominal,
Tolerance and Threshold Values.

206

Table 6-4 Performance Analytics of the Developed Health Estimation/Prognostics
Method for FPGA – LUT Primitive (TSPC-FF Application)

207

Table 6-5 A Simplistic Excerpt of FPGA Fault Dictionary – (LUT- TSPC FF) 210

xii

LIST OF EQUATIONS

(2-1) 40

(2-2) 40

(4-1) 98

(4-2) 98

(4-3) 98

(4-4) 117

(4-5) 119

(4-6) 120

(5-1) 156

(5-2) 156

(5-3) 166

(5-4) 167

(6-1) 190

(6-2) 191

(6-3) 191

(6-4) 194

(6-5) 194

(6-6) 195

(6-7) 195

(6-8) 195

(6-9) 196

xiii

(6-10) 196

(6-11) 196

(6-12) 196

(6-13) 202

xiv

LIST OF ABBREVIATIONS

AC Alternating Current
ACAP Adaptive Compute Acceleration Platform
ASIC Application Specific Integrated Circuit
BTI Bias Temperature Instability
CLB Configuration Logic Block
CPS Cyber Physical Systems
CPU Central Processing Unit
DoE Design of Experiment
EM Electromigration
FIT Failure In Time
FPGA Field Programmable Gate Array
FFT Fast Fourier Transform
HCI Hot Carrier Injection
HT Hardware Trojan
IFHM Integrated FPGA Health Management
IC Integrated Circuit
IOB Input Output Block
LUT Look Up Table
NBTI Negative Bias Temperature Instability
NFET Negative Field Effect Transistor
NMOS Negative Metal Oxide Semiconductor
NoC Network on Chip
PBTI Positive Bias Temperature Instability
PFET Positive Field Effect Transistor
PMOS Positive Metal Oxide Semiconductor
PV Process Variation
PHM Prognostics and Health Management
RUL Remaining Useful Life
SRAM Static Random Access Memory
TDDB Time Delay Dielectric Breakdown
VLSI Very Large Scale Integration

15

1 INTRODUCTION

1.1 Motivation

The evolutionary progression of ‘Field Programmable Gate Arrays’ (FPGAs), from the

traditional architectures to more complex and functionally capable heterogeneous

platforms like ‘System-on-Chip (SoC)’ and ‘Adaptive Compute Acceleration Platform

(ACAP)’ has been phenomenal. This reconfigurable class of integrated circuits is

enabling real-time AI inference and adaptive compute acceleration in numerous

sensitive applications across wide-ranging industrial sectors [1]. Recent statistical

surveys envisage the global FPGA market to reach USD 14.2 billion by 2024 [2].

Against this backdrop, the functional as well as the operational reliability of these

miniaturized nano-systems becomes highly relevant and worth probing. More

importantly, with the episodes of Meltdown and Spectre casting shadows on the

security fabric of FPGAs [3,4] and the vulnerability of its supply chain to hardware

threats like hardware Trojans; the safe operation, confidentiality of the sensitive data

and reliable performance of FPGAs may be jeopardised. For instance, when deployed

in aerospace and defence systems operating under harsh environmental conditions

for prolonged duration, the continual health assessment of FPGAs coupled with

security is highly desired.

1.1.1 Research Gaps

1.1.1.1 Lack of Integrated Approach and Framework for FPGA Health
Management

The systematic literature review has revealed that the researchers and academicians

have been treating the vital elements of security and reliability in FPGAs as two

separate entities [5], [6], [7], [8], [9], [10]. Such an approach is fragmented in nature

and does not provide complete health assessment of an FPGA device, which is

essential for the optimal functioning and operation of existing and future industrial,

health-care, aerospace, and energy systems.

Instead, this has led to a clutter of non-composite solutions which do not provide an

effective methodology and framework to build trust and ensure reliability as well as

health management in FPGAs. Hence, to meet this challenge, there is a requirement

of not only an in-depth study and pragmatic research on these two vital domains in a

16

composite manner but to formulate a high-level integrated FPGA health management

framework.

1.1.1.2 Lack of Design for Prognostics and Security in FPGAs

The existing ‘Designs for Testability and Manufacturability’ are not optimized to assess

the remaining useful life (RUL) of an FPGA at a nano-system level. These designs are

focused more on performing testability analysis of FPGAs (and other VLSI devices)

using different scan design methods such as scan-based logic built-in self-test (BIST)

[11] and JTAG boundary scan, which are themselves vulnerable to hardware attacks

[12], [13]. They are not designed and optimised to provide the prognostics and security

assessments through a controllable built-in mechanism.

Especially, in the event of a hardware Trojan attack that may accelerate the ageing

process (with subsequent delay degradation) in an FPGA (triggered by Negative Bias

Temperature Instability - NBTI) [14] , its health estimation that encompasses both the

prognostics and security elements becomes critically essential. It is, therefore,

deemed essential to bridge this gap and build ‘Design for Prognostics and Security’

that augments the controllability and observability regime in FPGAs for a highly reliable

and security-hardened performance.

1.1.1.3 Frequency/Delay Degradation Measurement Sensors are Resource-
intensive

Intra-die/process variation, which causes performance inconsistency across different

process technologies of FPGAs (90nm to 7nm), is a greater challenge. In particular,

the literature confirms that the degradation mechanisms of Bias Temperature

Instability (BTI) (consisting of Negative and Positive components - NBTI and PBTI),

Hot Carrier Injection (HCI), Electromigration (EM) and Time Delay Dielectric

Breakdown (TDDB) continue to pose reliability, ageing and performance issues with

shrinking process technologies (28nm and below). This can be exploited by a rogue

element to design and implement hardware Trojan to de-functionalise FPGA and affect

the systems’ performance [14]. One of the key performance parameters that is highly

sensitive to process variation and is the direct consequence of N/PBTI mechanisms is

the propagation delay, which is the function of frequency degradation, threshold

voltage shift, and reduction in the drain current – the device ageing parameters. In

other words, delays are the function of transistors’ ageing. Therefore, precise

17

measurement of these critical transistor parameters propagation delays of arbitrary

signal paths through logic blocks, interconnects and heterogeneous elements on an

FPGA, is critical for the accurate prediction of its performance.

The evidence from literature reveals that the existing propagation delay measurement

sensors and methods are largely based on synchronous (using system clocks)

designs and suffer from performance issues, namely clock jitter and flip flop

metastability [15]. They consume more FPGA resources and are prone to reliability

issues [16]. Therefore, building asynchronous sensor designs and characterising them

to utilise in-field timing slack and transition probability measurement methods for

determining propagation delay, can help improve the detection of hardware Trojans

embedded in FPGA and provide vital parametric data for its health estimation.

1.2 Research Aim and Objectives

1.2.1 Aim

In order to address the above-mentioned research gaps, we defined our overall

scientific aim as follows:

 ‘Design for Prognostics and Security in Field Programmable Gate Arrays

(FPGAs) that facilitates their reliability and security enhancement, enables NBTI-

based hardware Trojan detection and mitigation within their reconfigurable fabric

and helps estimate their health’.

1.2.2 Objectives

Based on the above, we defined the following key objectives to achieve the aim:

1.2.2.1 Integrated FPGA Health Management (IFHM) Framework

Devise a high-level integrated framework for FPGA health management that provides

guidance to the researcher, an FPGA manufacturer, and an expert end-user on the

process flows and methods required to develop a ‘Design for Prognostics and Security

in FPGAs’ in a composite manner.

1.2.2.2 Frequency/Delay Degradation Measurement Sensor

Design and implement a small footprint on-chip sensor (in the target 28 nm FPGA

technology node) with low area and power overheads and high sensitivity to detect

18

frequency degradation and delay variations. Characterise the sensor under nominal

and stressed Temperature and Voltage conditions for the variations in frequency,

delay, and threshold voltage, followed by collation of data to prognosticate FPGA

health.

1.2.2.3 FPGA Security Scheme

Design and implementation of an FPGA Security Scheme capable of detecting a

hardware Trojan and providing effective mitigation. It comprises investigation and

measurement of the degradation/ageing impact of Negative Bias Temperature

Instability (NBTI) on the target FPGA (resulting in threshold voltage shifts) by

conducting highly accelerated stress tests in a controlled environment. Based on the

acquired results and collated data, design and implement Threshold Voltage Shift-

triggered HT inside the target FPGA for the payload and detection analysis (observing

threshold voltage shifts, and corresponding frequency degradation and delays),

followed by detailed data analytics to build HT-infected FPGA profile. In addition, the

hardware Trojan mitigation scheme would form an integral part of this scheme.

1.2.2.4 FPGA Health Estimation

Develop FPGA health estimation/prognostics method using Kernel-based machine

learning technique. The validated data from the healthy and HT-infected FPGA

profiling experiments will be used to evaluate the method – resulting in the culmination

of the ‘Design for Prognostics and Security’.

1.3 Research Methodology

The overall research methodology is constructed around the research objectives. The

quantitative research methodology has been adopted and is augmented with the

‘Design of Experiment’ (DoE) approach for the experimentation phases, followed by

the statistical analysis of the validated data. Quality assurance of the project is

achieved by ensuring the correctness of the processes developed to conduct

design and implementation tests, the collation of experimental data and ‘a posteriori’

analysis.

The details of research methodology are appended below. In addition, the research

methodology process flow is given in Figure 1-1 for a quick overview.

19

1.3.1 Phase-1

This phase marked the beginning of the research process with the building up of the

context of research on ‘Reliability & Prognostics in FPGAs’ and ‘Hardware Security in

FPGAs’ through literature review. It was aimed at understanding the existing research

made to date in the aforementioned areas and excavating gaps that can be worked

upon for an intelligible contribution and improvement in the field of FPGA prognostics

and health management coupled with security. The main deliverables of this phase

were the ‘Research Gaps’ and the high-level ‘Integrated FPGA Health Management
(IFHM)’ framework.

1.3.2 Phase-2

The research gaps from phase-1 were analysed to develop the requirements for

designing and outlining requisite experiments. This phase consisted of two sub-

phases. In the first sub-phase, the functional and operational architectures for the

series of experiments, required to develop ‘Design for Prognostics and Security in

FPGAs’, were defined. It included the software and hardware components, their

interfacing and optimization to ensure the development of an efficient and effective

experimental set-up and test rig. The second sub-phase related to the design and

Figure 1-1 Research Methodology Process Flow Diagram.

20

implementation of a digital sensor inside the target FPGA, followed by its simulated

and real-time testing and characterisation. The main deliverable of this phase was

‘FREquency Degradation Detection and Measurement Sensor – FRED’.

1.3.3 Phase-3

This phase was aimed at designing and implementing FPGA Security Scheme. It

consisted of the design and implementation of the Threshold Voltage Triggered

hardware Trojan in the target FPGA, improving the FRED sensor design for accuracy

and to enable detection of shifts in threshold voltage due to NBTI mechanism, building

HT-mitigation sub-scheme, and eventually subjecting it to ‘Thermal and Power

Cycling’ under pre-defined stress test conditions. The main deliverable of this phase

was the ‘FPGA Security Scheme’.

1.3.4 Phase-4

Kernel-based Machine Learning method was studied and evaluated for

prognosticating FPGA health in this phase. Accordingly, the method was developed

and validated against FPGA fault dictionary. The main deliverable of this phase was

the ‘FPGA Health Estimation/Prognostics’.

1.4 Organisation of Thesis

This thesis is organised into seven chapters in the ‘Paper-Format’ and not as a

‘Monograph Format’ thesis. Accordingly, the papers have been reformatted into

chapters with minor changes to maintain coherence and ensure format consistency.

The thesis disposition is shown in Figure 1-2. A brief overview of the remaining

chapters is given as follows:

1.4.1 Chapter 2

This chapter is the outcome of ‘Objective 1’ and it delineates the integrated approach

to prognostics and security in FPGAs by putting forth an ‘Integrated FPGA Health
Management (IFHM)’ framework. The architecture of a modern FPGA is explained

inter alia its commercial and industrial significance. The chapter draws the canvas of

the extant and the future technological revolution with FPGAs at the heart of it. Most

significantly, it excavates the FPGA reliability issues, vulnerabilities, threats, and

several counteractive research efforts made in the realms of FPGA reliability,

21

prognostics, and security to enhance its dependability and build trust. A high-level

framework, called IFHM is finally presented that provides guidance on managing

prognostics and security in FPGAs as a composite entity for their security and

reliability hardening.

This chapter is the reformatted version of the paper under submission to ‘IEEE
Transactions on Device and Materials Reliability’.

1.4.2 Chapter 3

This chapter highlights the integrated circuit (IC) level threats with an emphasis on

hardware Trojans that pose a significant threat to computational systems employing

FPGAs, Systems-on-Chip (SoC) or Network-on-Chip (NoC). It describes the hardware

Trojan phenomenon, its taxonomy, and gives a critical analysis of various hardware

Trojan countermeasures.

This chapter is the reformatted version of the conference paper published in

‘Advances in Manufacturing Technology XXXII – 2018’.

Figure 1-2 Thesis Organisation – Disposition of Chapters.

22

1.4.3 Chapter 4

This chapter is the outcome of ‘Objective 2’. It provides a deep insight into the current

research on capturing delay variability in VLSI circuits, including FPGAs. The design

and implementation of the FREquency Degradation detection and measurement

sensor in a 28 nm process technology is elaborated. In addition, the simulation and

real-time experimentation alongwith results and the proposed sensor’s performance

evaluation are presented.

This chapter is the reformatted version of the paper under submission to Sensors

journal.

1.4.4 Chapter 5

This chapter is the outcome of ‘Objective 3’. It presents a comprehensive FPGA

security scheme, comprising novel elements of hardware Trojan infection, detection,

and mitigation, to protect FPGA applications against the hardware Trojan. Built around

the threat model of a naval warship’s integrated self-protection system (ISPS), this

chapter proposes a threshold voltage-triggered hardware Trojan that operates in a

threshold voltage region and remains stealthy with a very low area overhead. It

delineates the hardware Trojan detection sub-scheme comprising a unique lightweight

threshold voltage-aware sensor. An online transistor dynamic scaling (OTDS) to

mitigate the impact of hardware Trojan is also presented as a hardware Trojan

Mitigation sub-scheme.

This chapter is a reformatted version of the paper published in IEEE Access journal.

1.4.5 Chapter 6

This chapter is the outcome of ‘Objective 4’. It proposes an FPGA health estimation

method that is developed using a unique kernel-based machine-learning approach.

More specifically, this chapter focuses on estimating the health of an FPGA that is

degraded as a result of NBTI initiated by hardware Trojans. A stochastic filtering

optimization algorithm for accurate hyperparameter selection is also proposed to help

improve the overall FPGA health estimation/prognostics accuracy. The chapter later

presents the evaluation results of the developed method and the overall accuracy.

23

This chapter is a reformatted version of the paper under submission to

Microelectronics Reliability journal.

1.5 List of Published/Submitted Work

1.5.1 Journal Publication

S. Aslam, I. K. Jennions, M. Samie, S. Perinpanayagam and Y. Fang, "Ingress of

Threshold Voltage-Triggered Hardware Trojan in the Modern FPGA Fabric–Detection

Methodology and Mitigation," in IEEE Access, vol. 8, pp. 31371-31397, 2020.

1.5.2 Conference Publication

S. Aslam, M. Samie, I. Jennions; “Hardware Trojans and Smart Manufacturing – A

Hardware Security Perspective”, Advances in Manufacturing Technology XXXII:

proceedings of the 16th International Conference on Manufacturing Research,

University of Skövde, Sweden , 11–13 September 2018. (DOI: 10.3233/978-1-61499-

902-7-305).

1.5.3 Virtual Conference Presentation

J. Buu-Sao, M. Samie, S. Aslam, et. al., "IoT Security – Hardware Perspective”,

December 2018, the IoT Day Slam 2018, VIRTUAL Internet of Things Conference:

https://iotslam.com/session/iot-security-hardware-perspective/.

1.5.4 Under Peer Review for Journal Publication

S. Aslam, I. Jennions, M. Samie, S. Perinpanayagam, : " Reliability, Security, and

Prognostics in FPGAs – An Integrated Approach". to: IEEE Transactions on Device
and Materials Reliability (under peer review)

S. Aslam, I. Jennions, M. Samie, S. Perinpanayagam, : "FREquency Degradation

(FRED) Detection and Measurement Sensor for Reliable and Secure FPGAs”. to:
Sensors (under peer review)

 S. Aslam, I. Jennions, M. Samie, S. Perinpanayagam, : "FPGA Health Estimation

Using Kernel Learning Approach". to: Microelectronics Reliability (under peer
review)

https://iotslam.com/session/iot-security-hardware-perspective/

24

REFERENCES

[1] Chino, ‘Xilinx Unveils Their Revolutionary Adaptive Compute Acceleration

 Platform’, [Online]. Available at: https://www.techpowerup.com/242538/xilinx-

 [Accessed : 15 July 2018].

[2] Grand View Research, “Field-Programmable Gate Array Market – Cruising

 Ahead,” [Online]. Available at: https://www.grandviewresearch.com/blog/field-

 programmable-gate-array-fpga-market-size-share. [Accessed : July 2020].

[3] M. Lipp et al., “Meltdown : Reading Kernel Memory from User Space,”

 Commun. ACM 63, pp 46-56, 2020.

[4] P. Kocher et al., "Spectre Attacks: Exploiting Speculative Execution," 2019

 IEEE Symposium on Security and Privacy (SP), San Francisco, CA, USA, pp.

 1-19, 2019.

[5] Z. Zhang, Q. Yu, L. Njilla and C. Kamhoua, "FPGA-oriented moving target

 defense against security threats from malicious FPGA tools," 2018 IEEE

 International Symposium on Hardware Oriented Security and Trust (HOST),

 Washington, DC, pp. 163-166, 2018.

[6] S. Zamanzadeh and A. Jahanian, "Scalable security path methodology: A cost-

 security trade-off to protect FPGA IPs against active and passive

 tampers," 2017 Asian Hardware Oriented Security and Trust Symposium

 (Asian HOST), Beijing, pp. 85-90, 2017.

[7] Z. Zhang, L. Njilla, C. A. Kamhoua and Q. Yu, "Thwarting Security Threats From

 Malicious FPGA Tools With Novel FPGA-Oriented Moving Target Defense,"

 in IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 27,

 no. 3, pp. 665-678, March 2019.

[8] P. Maene, J. Götzfried, R. de Clercq, T. Müller, F. Freiling, and I. Verbauwhede,

 “Hardware-based trusted computing architectures for isolation and attestation,”

 Trans. Comp., vol. 67, no. 3, pp. 361–374, 2018.

[9] H. Zhang et al., “Architectural support for containment-based security,” in Proc.

 Arch. Supp. Programm. Lang. Op. Sys., pp. 361–377, 2019.

https://www.techpowerup.com/242538/xilinx-
https://www.grandviewresearch.com/blog/field-%09%09programmable-gate-array-fpga-market-size-share
https://www.grandviewresearch.com/blog/field-%09%09programmable-gate-array-fpga-market-size-share

25

[10] X. Wang, S. Si, C. Gao and J. Huang, "A method of FPGA interconnect

 resources testing by using XDL-based configuration," 2014 Prognostics and

 System Health Management Conference (PHM-2014 Hunan), Zhangiiaijie, pp.

 203-207, 2014.

[11] Laung-Terng Wang, Yao-Wen Chang, Kwang-Ting (Tim) Cheng, “Design for

 testability- Electronic Design Automation”, Morgan Kaufmann, pp 97-172, 2009.

[12] H. B. Shashidhara, S. Yellampalii and V. Goudanavar, "Board level

 JTAG/boundary scan test solution," International Conference on Circuits,

 Communication, Control and Computing, Bangalore, pp. 73-76, 2014.

[13] L. Pierce and S. Tragoudas, "Enhanced Secure Architecture for Joint Action

 Test Group Systems," in IEEE Transactions on Very Large Scale Integration

 (VLSI) Systems, vol. 21, no. 7, pp. 1342-1345, July 2013.

[14] Bhunia, Swarup, Tehranipoor, Mark M. (Eds.), The Hardware Trojan War-

 Attacks, Myths, and Defenses, Springer International Publishing, DOI

 10.1007/978-3-319-68511-3, 2018.

 [15] J. S. J. Wong and P. Y. K. Cheung, “Timing Measurement Platform for Arbitrary

 Black-Box Circuits Based on Transition Probability,” pp. 1–14, 2013.

 [16] Z. Ghaderi, M. Ebrahimi, Z. Navabi, E. Bozorgzadeh, and N. Bagherzadeh,

 “SENSIBle: A Highly Scalable SENsor DeSIgn for Path-Based Age Monitoring

 in FPGAs,” IEEE Trans. Comput., vol. 66, no. 5, pp. 919–926, 2017.

26

2 UNIFIED FRAMEWORK FOR HEALTH AND SECURITY OF
FPGAs

This chapter presents an integrated (unified) approach to prognostics and security in

FPGAs by putting forth an ‘Integrated FPGA Health Management (IFHM)’
framework. It begins with a succinct introduction to the architecture of a modern FPGA,

highlights its commercial and industrial significance, and draws the canvas of the

extant and the future technological revolution with FPGAs at the heart of it. Sections

2 and 3 excavate the FPGA reliability issues, vulnerabilities, threats, and several

counteractive research efforts made in the realms of FPGA reliability, prognostics, and

security to enhance its dependability and build trust. A high-level unified framework,

called IFHM is then presented in Section-4 that provides guidance on managing

prognostics and security in FPGAs as a composite entity for their security and

reliability hardening. The conclusion summarises this chapter and briefly outlines the

next stage of work. Figure 2-1 depicts the arrangement of this chapter. The main

contribution of this chapter besides propounding IFHM framework includes the incisive

and critical evaluation of FPGAs’ security and reliability realms to uncover the

subtleties of this reconfigurable integrated circuit. It is a unique effort, not endeavoured

previously.

Figure 2-1 The Disposition of Chapter 2.

27

2.1 Introduction

From simple Bluetooth devices to the NASA’s Orion spacecraft, FPGAs have become

the backbone of embedded system design. According to [1], the main driving factors

for the exponential growth of the FPGA market are the increasing demand for

advanced compute acceleration, autonomous and AI-based systems, the evolution of

connectivity network to IoT, institutionalisation of cyber-physical systems (CPS), and

the reduction in time-to-market. Through the merger of software and hardware

properties, FPGAs provide an effective trade-off between the programmability of CPUs

and the performance of application-specific hardware. Even though this flexibility helps

developers to speedily prototype and deploy embedded systems with performance

closer to Application Specific ICs, the programmability feature could be exploited to

eavesdrop on encrypted communication, disrupt critical functionality, or even incur

physical damage to the chip. Designing and developing systems that are both flexible

and reliable, yet fundamentally sound from a security point of view, is an extraordinarily

challenging venture for both researchers and practitioners. Quite often, the security

facets of a reconfigurable entity, such as an FPGA, are not catered for until far too late

in the design process, resulting in systems that are not reliable and hence, protected

only by their obscurity.

2.1.1 The Increased Reliance on FPGAs

FPGAs are a vital element of many mission-critical systems, silently controlling and

monitoring everything from wireless access points (WAP) to commercial face

recognition systems. According to [1], the FPGA market is expected to reach 117.97

billion US dollars by 2026 growing at the compound annual growth rate (CAGR) of

7.2% during the forecast 2017-2026. This huge surge explains the growing

significance of these massively parallel architectures.

As opposed to the sequential execution enabled by a general-purpose processor,

modern FPGAs can carry out thousands of multiplies and adds each cycle, providing

them the computational power to host numerous diverse logic modules

simultaneously. For instance, an FPGA-hosted Wireless Access Point (WAP)

application may use a packet scheduler with signal processing core and a protocol

processing engine, all sharing the same FPGA primitives and silicon [2].

28

By virtue of this unique combination of computation power and flexibility, FPGAs are

being regarded as the workhorses behind a wide variety of performance critical

embedded systems [3]. They are capable of achieving high speedups and

performance gain (100x) per unit of area as compared to a similar microprocessor [4].

High-end satellite systems, network-centric warfare equipment, intrusion detection

systems, SMART grid, Industrial IoT devices, aircraft and avionics, and even the Mars

Rover have great dependence on FPGAs to undertake their respective functional

tasks. These devices help implement optimised circuitry for almost everything from

encryption to FFTs, or even entire customized multi-processor systems by leveraging

their bit-level reconfigurability. A gamut of such different domains leveraging FPGAs

is shown in Figure 2-2. In order to understand this growing reliance on FPGAs, we

need to examine the internals of the FPGA and its overall architecture.

Figure 2-2 A Gamut of FPGA Applications.

29

2.1.2 The Internals of FPGA

An FPGA is a mesh of programmable logic gates embedded in a flexible interconnect,

as shown in Figure 2-3. These logic gates are implemented by configuring look-up-

tables (LUTs) for computational applications, flip-flops for managing timing across

different applications, switching interconnects for laying routing network, and I/O

blocks (IOB) for moving data/signal inside and outside of the FPGA. The logic gates

are, basically, the structures with respective truth tables that enable the mapping of

any circuit to an FPGA through LUT reconfiguration and by arranging bits in the

switchboxes, which then specify the wires’ connections through pass transistors. It is

pertinent to mention here that the LUT and switchbox are programmed as defined by

the configuration bitstream. The security of configuration bitstream, therefore, takes

precedence and accordingly three different FPGA structures are commonly used, as

shown in Figure 2-4. The ones that use EPROM/EEPROM or antifuse are write-once

Figure 2-3 An architecture of a typical FPGA. The Configuration Logic Blocks
(CLBs) are islands with a mesh of programmable interconnects around them.
Each CLB houses a Lookup Table (LUT) that can be configured to implement
any logic gate.

30

technologies. On the other hand, the re-programmable structures are the Static RAM

(SRAM) FPGAs. While a number of architectures make use of antifuse type, Static
RAM (SRAM) architecture is the most preferred since it allows for reconfiguration –

the essence of reconfigurable computing.

The SRAM programming bits are spread across the entire FPGA and stored locally

with the LUTs and switchable interconnects. This increases their vulnerability to
probable performance degradations and reliability-downgrade due to undesired
distributed hardware attacks.

2.1.2.1 SRAM FPGA Specifics

Generally, a combination of two inverters and pass transistors is used to develop the

Static RAM (SRAM) cells (see Figure 2-3). FPGAs based on SRAM cells are volatile

in nature, meaning that as long as the SRAM cell is powered, the data remains stored

and can be, therefore, read from the cell. However, as soon as there is no power,

SRAM cell is unable to retain its value [5]. This feature offers some security and makes

it difficult for the intruder to retrieve the configuration bitstream, thereby helps retain

the data integrity.

In SRAM FPGAs, LUTs make optimum use of SRAM cells as programming bits.

Healthy condition of LUTs is, therefore, vital to ensure unhindered operation and

Figure 2-4 Three Types of FPGAs – SRAM, FLASH, and ANTI-FUSE.

31

optimum functioning of the implemented circuit patterns. Also, as seen in Figure 2-3,

the LUTs in addition to flip flops, and multiplexers form an integral part of the larger

regions, known as configurable logic blocks (CLBs). To connect the configuration and

computational blocks together, there is a large routing channel, which is a set of pass

transistors, providing programmable connections to and out from the CLBs (see Figure

2-5). The point-to-point connections between neighbouring routing channels

containing longlines, on the other hand, are enabled through switchbox network. This

complex routing architecture contributes to both the delays and area constraints in the

FPGA, if not optimised. It is estimated that 80-90% of the typical FPGA area is

occupied by the interconnect, facilitating both the physical wires and the configuration

bits that link the wires together for any arbitrary interconnection network [6]. Despite
the criticality of the interconnect for configurability, it also poses complications
in building a secure and reliable FPGA infrastructure.

Keeping these FPGA architectural sensitivities in perspective, we delve the realms of

reliability and security to build an integrated FPGA health management framework, in

the ensuing sections.

2.2 Realm of Reliability in FPGAs

Reliability in FPGAs is their performance to specification over time in response to

varied, but specified, environmental stress conditions. Hitherto, advanced

manufacturing techniques have continued to maintain FPGA reliability at a level that

Figure 2-5 FPGA Interconnect Architecture. Programmable
connections to and out from the CLBs [6].

32

is suitable for a large majority of applications. The semiconductor industry, based on

ITRS, contemplates that the trade-off needs to remain at this level and continue to

develop ICs with a failure rate of 50-2000 FITs (One Failure in Time equals to one

failure in 109 hours) [7]. This means improving the reliability (in case of stochastic

faults) of a transistor by a factor of five for technology nodes between 32 nm and 11

nm [8]. This may be a substantial challenge for a technology that is also faced with the

manufacturing inadequacies in terms of process variation and yield complications.

The advanced techniques related to strained silicon and high- k gate dielectrics also

pose considerable challenges for the suitable characterisation of device reliability. It,

therefore, warrants implementation of innovative methods to realise continued scaling

advantages and further enhance performance-efficiency. The deployment of multiple

gates along with the new configurations of interconnect is one such example.

However, the introduction of new materials and altering the structure of circuit

components will result in substantial changes to the processes related to degradation.

Ultimately, this may result in increased uncertainty about the reliability-performance

relationship of devices.

FPGA reliability is envisaged to follow a downward trend, provided the existing thermal

and power management mechanisms are optimised accordingly [9, 10, 11]. For

instance, a considerable increase in the current density occurs with the decrease in

the dimensions of the electron paths. This results in electromigration in interconnects

– a particular concern. Voltages, though falling, are not matching the decrease in

feature dimensions, thus generating high electric field strength - a dominant factor

of acceleration in a number of degradation processes. Similarly, an increase in the

threshold voltage is an indicator of FPGA ageing and the effect of this will enhance

with shrunk supply voltage margins. Moreover, when it comes to the localised power

dissipation, it is no different. The devices will experience increased levels of power

dissipation due to higher circuit density. This may get compounded by a reduction in

thermal conductivity, thereby causing higher junction temperatures (a key accelerating

factor). In a nutshell, these wide-ranging challenges have the capacity to impact FPGA

reliability in a number of ways. These could result in transient faults, such as the

radiation-induced SEUs (Single Event Upsets), as well as performance degradation

with transistor ageing [12].

33

2.2.1 Degradation Mechanisms and Transistor Ageing

This subsection provides a concise overview of key degradation mechanisms that

affect the reliability of FPGA in terms of CMOS transistors’ ageing – a pressing

reliability issue facing the VLSI devices at the nano-scale. The CMOS transistors are

the underlying nano-architectures upon which the FPGA fabric is built. It is, therefore,

prudent to investigate their performance, which ultimately helps adjudge FPGA health

in terms of reliability.

Primarily, four degradation mechanisms are predominantly relevant to VLSI devices

including FPGAs. These include: 1) Time-Dependent Dielectric Breakdown (TDDB),

2) Hot Carrier Injection (HCI), 3) Bias Temperature Instability (BTI), 4) and

Electromigration (EM). In addition to these, the latch-up and soft-error generation are

significant with respect to the environmental impact on the devices. These

mechanisms are illustrated in Figure 2-6.

2.2.1.1 Time Dependent Dielectric Breakdown (TDDB)

TDDB mechanism is the formation of a conductive path via the gate dielectric due to

the accumulation of trapped charges, or defects. These trapped charges result due to

the strong gate-bias voltage. As these defects weaken the dielectric at any explicit

Figure 2-6 The Degradation Mechanisms impacting the FPGA reliability [13].

34

location, a considerable amount of leakage current (IG) starts flowing with rapid

increase in magnitude due to the reinforcement of the path [13].

2.2.1.1.1 The Consequences

The consequential impact of TDDB is variable in nature due to the random variation

of the breakdown path in conductivity and its physical location. When the breakdown

condition is of mild nature, the increased leakage current results in increased power

consumption and reduced switching speed. As the breakdown becomes severe in

nature, higher power consumption is observed, which eventually prevents the

transistor from switching, completely [14]. The main drivers of TDDB are the high

temperature, thin oxide structures, and high electric fields and must be monitored for

abnormalities.

2.2.1.2 Hot Carrier Injection

This mechanism also known as the hot-carrier or hot-electron effect, is also based on

defect accumulation process. However, it occurs in the interface region between the

channel and the gate dielectric. The hot carriers in the channel with energies high

enough to escape the potential barrier of the gate dielectric induce defects at the

interface. When accelerated by the gate field, a series of collisions take place with the

ions present in the interface region. This generates defects, which in turn, lead to an

increase in threshold voltage and a decrease in the drain current or carrier mobility,

resultantly slowing down the transistor switching [15]. This mechanism is particularly

dynamic in CMOS, meaning it occurs when the transistors switch. The main factors

that aggravate HCI are the high carrier velocities and shorter channel length.

2.2.1.3 Bias Temperature Instability (BTI)

The BTI phenomenon manifests itself as a shift in the threshold voltage of MOSFETs

with high temperature and negative/positive bias [16]. This causes switching delays in

the transistor and consequently, as the delay of functional paths transcends the timing

requirements, we can observe the signs of circuits’ fatigue and hence, the ultimate

failure. This can significantly reduce the operational lifetime of FPGA devices, thereby

downgrading their reliability.

2.2.1.3.1 The Factor of High-k Dielectrics in 45nm and below FPGA technologies

35

This research work, as mentioned in Section 1.2.2.2, is focused on 28 nm process

technology which is mainly made up of high-k dielectric metal gate transistors as

opposed to low-k dielectric metal or polysilicon for > 48 nm process technologies [17].

In order to better understand the phenomena of BTI in a 28 nm process technology ,

it is important to first know as to what is high-k dielectric and how it helps achieve

increased power efficiency and low leakage on one hand and why, on the other hand,

BTI is becoming a critical reliability challenge in high-k dielectric metal gate transistors.

Essentially, dielectric is an insulating material that does not conduct electricity well, if

at all. The measure of dielectric is given by dielectric constant ‘k’, which is a parameter

that defines the ability of a material to store energy or charges. Materials have different

dielectric constants at room temperatures (e.g. Air = 1, Silicon dioxide = 3.9,

Aluminium oxide = 10.1, and Hafnium oxide = 25 [15]). Any dielectric with a ‘k’ value

less than the conventionally used SiO2 (k = 3.9) is termed as a low-k dielectric.

Whereas, dielectric with ‘k’ greater than that of silicon nitride (k = 7) is regarded as a

high-k dielectric [18]. A low dielectric constant of a material means that the material

has a low ability to polarize and hold a charge. A high dielectric material is good at

holding a charge and is therefore the preferred dielectric for CMOS construction.

Although, high-k dielectric leakage through the gate (gate oxide) is reduced by more

than a factor of 10, the other significant leak, called source-to-drain or subthreshold

leakage is becoming a source of concern [19]. It’s a trickle of current seen even when

the transistor is intended to be in the “off” state. Making transistors smaller has also

meant steadily lowering the amount of voltage needed to turn them on, the threshold

voltage. Unfortunately, steadily lowering the threshold voltage lets more current slip

through. For many years, each new generation of transistor would increase drive

current (and improve performance) by about 30 percent but would pay the price of

about a threefold increase in subthreshold leakage [19]. Leakage currents have

reached levels high enough to be a noticeable portion of IC’s power consumption.

But a transistor can be designed to operate by adjusting the channel length or

adjusting the threshold voltage [19]. A shorter channel leaks more but allows for a

higher drive current. A higher threshold voltage pinches off the leak but also throttles

the drive current. Adjusting the threshold voltage is where the high-k dielectric comes

into play. A thicker dielectric reduces the gate’s ability to open a conductive channel

36

between the source and the drain, increasing the threshold voltage. A thinner dielectric

layer has the opposite effect. Compared with the previous 65-nm transistors, 45-nm

and below high-k plus metal gate transistors provide either a 25 percent increase in

drive current at the same subthreshold leakage or more than a fivefold reduction in

leakage at the same drive current, or anywhere between those values [19].

However, the problem lies in the low thermal conductivity of high-k dielectric materials

that leads to self-induced thermal runaway and breakdown [20]. As a result, this

influences BTI mechanism, which tends to be equally pronounced for 28 nm process

technology as it is for devices greater than 45 nm.

2.2.1.3.2 NBTI and PBTI

BTI mechanism comprises two different degradation phenomena namely, negative

bias temperature instability – NBTI and positive bias temperature instability – PBTI.

NBTI impacts the PMOS transistors whereas PBTI affects the NMOS transistors. In

technology nodes above 45nm, the impact of PBTI was insignificant as compared to

NBTI. However, with the development and introduction of high-k/metal gates

transistors in sub 45nm process nodes, the PBTI phenomenon has become equally

Figure 2-7 Shift in Threshold Voltage ∆Vth with high-K/Metal

gates is becoming significant [19].

37

significant for NMOS transistors as NBTI for PMOS transistors [21] (see Figure 2-7).

It is, therefore, prudent to consider the combined effect of both the BTI components

whilst evaluating the device reliability.

NBTI (PBTI) comprises two sequential phases – the Stress phase, during which the

gate-source voltage is reversely (positively) biased i.e. Vgs = −(+)Vdd, and the

Relaxation phase where Vgs = 0. At the initiation of the stress phase (i.e., when the

transistor is ON, Vgs = −VDD for PMOS under NBTI and Vgs = VDD for NMOS under

PBTI), few interface traps are generated at the interface of channel and gate oxide

[22]. It is at this instance of time, the generated interface traps result in increasing the

magnitude of threshold voltage (Vth). During the relaxation phase, when Vgs = 0, a

small number of the interface traps are annealed. This leads to a decrease in the

magnitude of transistor Vth. It is worth noting that this recovery cannot fully

compensate the effect of stress phase. As a result, the overall impact of BTI is a rise

in the magnitude of threshold voltage over the time [23] (see Figure 2-8).

2.2.2 FPGA Manufacturers’ Perspective

It is important to be aware of the FPGA reliability practices employed by manufacturers

to build an understanding of the various test methodologies adopted in their

qualification and eventually identify room for improvement. This section, therefore,

gives a concise account of different reliability program tests the FPGA manufacturers

are practising.

Figure 2-8 BTI-induced variations in Vth during the stress and recovery period.

38

2.2.2.1 Post-Manufacturing Reliability Test Regime

Generally, manufacturers have a product reliability goal for long term failure rate. This

implies a failure rate of <200 FIT at 55⁰C use condition and the product meeting lifetime

goal of 100,000 hours of useful life. The reliability qualification and monitoring

requirements, as given in Table-2-1, provide an overview of different types of post-

FPGA manufacturing tests conducted.

It is noted that all these reliability tests are conducted less of security considerations,

which if integrated with these requirements, would provide a more trustable product.

This, however, does not imply that manufacturers do not incorporate security features

in these state-of-the-art devices.

2.2.2.1.1 Life Test Methodology

The life-test methodology is implemented to accelerate failure mechanisms, including

the wear-out degradation, as mentioned in Section 2.2.1. According to the

manufacturers’ reliability qualification and testing programs [24], [25], the FPGA life-

test is carried out keeping the junction temperature at 125°C and the Vcc power supply

is amplified between 10-20% (kept constant for a specific test duration). However, in

Table 2-1 Portfolio of post-manufacturing reliability tests conducted by FPGA
Manufacturers [24-25].

39

certain cases where there is a risk of thermal runaway (a process, when accelerated

by increased temperature, releases energy that causes the temperature to rise further

to a point where it becomes self-sustaining) due to high junction temperature at 125°C,

it is recommended practice to use a minimum junction temperature of 110°C. These

tests are carried out using the life-test boards, installed with special high temperature

sockets that help maintain lead integrity [24].

It is pertinent to mention that each device is prior-tested using production test

equipment to data sheet specifications before the exposure to different stress

conditions. All readouts are also performed on the same production test equipment in

accordance with the parameters, defined in respective data sheets. A device is

classified as a failure if it is unable to pass the specifications laid out in the data sheet.

2.2.2.1.2 Failure Rate Prediction

In order to attain an accurate and precise measurement and projection of an FPGA

failure rate, some manufacturers assess each expected failure mechanism

individually. The failure rate prediction process for each mechanism begins with the

calculation of acceleration by employing an appropriate model and using the suitable

constants. This is followed by determining the exponential distribution of time to failure

(TTF) for each mechanism and then adding up individual failure rates to calculate the

device total failure rate. Accordingly, the cumulative distribution function, Fi(t), for each

mechanism is determined by taking their product as Π Fi(t) for i=1…n. As the

distribution of time to failure for each mechanism is assumed to be exponential, the

individual failure rates can be combined as Σλi, which is basically the representation

of the geometric mean.

We have also observed that some other manufacturers only consider an average

activation energy (usually Ea=0.7) and then apply an Arrhenius model to the High-

Temperature Operating Life (HTOL) test results. They do not take into consideration

the individual failure mechanisms. Such practices do not guarantee the optimum

performance of devices under challenging environments as they have not been tested

for different degradation mechanisms. Although such tests cost less from both the

manufacturing and time viewpoint, they may exhibit low MTBF, lower customer

confidence and eventually cost higher during operational lifecycle.

40

Generally, the manufacturers determine the failure rates on the product family basis

(for instance, Spartan-6, Virtex-7 etc.). So, it is not possible to define a standardised

failure rate for all the FPGA devices collectively, which is quite realistic. However, it is

possible to have an average range of failure rate values to assess their reliability. With

respect to the device hours, it is a common practice to convert the hours accumulated

during the stress conditions to normal use conditions by plugging in the acceleration

factors. Whereas, the equivalent hours are determined under a typical use condition

with nominal Vcc at 55°C still-air ambient or 70°C junction temperatures.

The failure rates are expressed as FIT or Failures In Time, where one FIT is equivalent

to one failure in one billion or 109 device-hours [26]. Mathematically,

𝐹𝐹𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑿𝑿2 / 2 𝑥𝑥 𝑨𝑨.𝑭𝑭. 𝑥𝑥 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓/ℎ𝑟𝑟) (2-1)

where, X is the number of failures, A.F is the acceleration factor – product of thermal

and voltage acceleration, whereas Device hours is given as:

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = 𝜮𝜮 (ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑖𝑖𝑖𝑖 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 − 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) 𝑥𝑥 (𝑁𝑁𝑁𝑁. 𝑜𝑜𝑜𝑜 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) (2-2)

The JESD85 standard is most commonly employed for FIT rate calculation by most of

the manufacturers. A Chi-squared distribution, for instance, is used to predict a 60%

confidence level derived usually from the small number of failures and limited sample

size of the tested devices.

2.2.3 FPGA Degradation/Reliability Modelling – Researchers’ Perspective

This sub-section takes into account the various FPGA degradation and reliability

models that have been developed and proposed to predict the failure rate in FPGAs

due to the impact of different stochastic and systematic variations on their primitives’

performance.

As a first example, researchers in [27] have characterised the delay degradation of

LUTs using the duty cycle and frequency of stress signal as the main driving factors

under the influence of Hot Carrier Injection (HCI). They have confirmed the

dependency of HCI ageing mechanism on the frequency of input signals through

transient simulations at the transistor level. However, their model lacks the

measurements related to transistors’ ageing parameters (delays and threshold

41

voltage) and hence does not provide substantial evidence of reliability prediction or

health assessment.

Edward et al [8], have studied the impact on FPGA reliability by analysing the changes

that FPGAs experience as they age, and the varying factors that influence their

performance. They concluded that the FPGA interconnects are less affected by

degradation than the LUTs. But a lower-level approach is required when the design of

basic resources – the N/PFETs – is to be considered to draw firm conclusions about

degradation behaviour at the FPGA fabric level (LUTs, CLBs, Registers, Interconnects

etc.) and an accurate assessment of reliability that can help estimate the overall

health.

Similarly, the researchers in [28] have presented a detailed analysis of the impact of

ageing on FPGA routing resources and data integrity of FPGA configuration cells.

According to their study, the ageing of SRAM cells does not have any noticeable

impact on the performance of FPGA. However, it does not consider the overall health

assessment approach.

2.2.3.1 Fault-Tolerance and Self-healing – Sources of Reliability Enhancement

Interestingly, the researchers in [29] and [30] have proposed bio-inspired models that

are not only aimed at building tolerance in reconfigurable devices against transient

faults and soft errors, but also provide viable ideas to construct schemes like self-

defence against hardware threats and self-repair strategies against hardware attacks.

For instance, the optimal partitioning of cells to settle the optimal number of active and

spare molecules gives a valuable reliability analysis. Also, it provides a design for

dependability which considers the reliability as its essential attribute. According to [29],

the reliability of a system is the consequence of the reliability figures of all its

subsystems. This gives an inkling of the concept of an integrated approach towards

FPGA health management.

Another effort relates to the self-healing electronic systems, inspired by eucaryotes

and procaryotes [30]. The author in this study has talked about the equivalence of

DNA fragments to memory cells. These fragments are representative of the

characteristics and various functions of the cells. As a result, the faulty genes are

extractable from the neighbouring cells and then based upon the correlation

mechanisms, the damaged cells self-heal and re-establish their original states. The

42

enormity of this self-healing system is traceable to its hierarchical nature. Right from

the logic blocks corresponding to the biological molecules to an electronic array

mirroring bacterial biofilms and a perfect likeness of a bus to cytoskeleton, the self-

healing scheme presents a viable fault-tolerance and defence mechanism.

These two propositions, based on biological systems, are a good example of the

efficient defence, repair, and heal mechanisms that can bolster FPGA reliability.

However, they do not consider connecting the prognostics/reliability assessment

approach with the security dimension.

2.2.4 Some Analysis

A critical analysis of the above discussion uncovers and reveals some key points.

Firstly, a keen assessment of the degree of deviation or degradation from an

anticipated normal operating condition provides data that can be carefully investigated

to estimate instantaneous health condition of electronic/semiconductor devices.

Secondly, it can be instrumental in providing advance warning of failures and hence

curtailing unscheduled maintenance, stretching maintenance cycles, and maintaining

effectiveness through timely repair and maintenance actions. Finally, adding a

dimension of prognostics/health estimation would help cut the life cycle cost of

equipment by reducing inspection costs, disruptions as well as the inventory.

2.2.5 Why Prognostics?

According to [31], prognostics is a process that helps determine the component/

system’s remaining useful life by predicting the state of fault under the given extent of

degradation, the load history, and the projected future operational and environmental

circumstances to estimate the time at which the component/system is adjudged as

unreliable. Whereas, health management is related to the decision-making process,

which helps implement actions based on the estimate of the state of health derived

from health monitoring and the probable future usage of the system.

Besides the reliability and degradation modelling and assessments (mentioned

above), it is very vital to prognosticate FPGAs’ health, especially with their progressive

evolution into system-on-chip (SoC) and adaptive compute acceleration platforms

(ACAPs). A simple reliability analysis and degradation modelling will not provide a

holistic account of the FPGA health, which implies a direct or an indirect impact on the

43

performance of the system and inappropriate health management. We have discussed

the methods and techniques related to the degradation and reliability modelling in

previous paragraphs. It clearly provides us with various useful methods that can be

utilized in a composite manner to construct holistic FPGA health and security schemes

into an integrated FPGA health management framework, as is described in Section

2.4.

2.3 Realm of Security in FPGAs

To assume that hardware implementations are secure in this area of FPGA security,

is indeed a false belief. Since the majority of attacks come through software, it is then

assumed that they will only come by this means. While this may be the case for the

majority, it does not dismiss the fact that hardware attacks are just as exposed

(exemplified by the recent Meltdown and Spectre cases [32], [33]). Abstraction levels

in a complex design entail knowing the security of each step – thereof, in order to

create higher abstraction levels, one must assume that the lower ones are secure in

their operation. If the digital design of the system is compromised then it cannot

completely be regarded as a secure system, disabling the overall formation of a secure

implementation. Therefore, in order to assess the reliability of a device and its level of

support towards a system, it is necessary to assess security levels in FPGAs (in

particular, SRAM-based volatile FPGAs). These entail the transfer of configuration

content in FPGAs, utilising FPGAs for security purposes, and using them as an

adversarial tool.

2.3.1 FPGA Life Cycle and A Network of Hardware Threats

Both hardware and software attacks are included in the ways in which a computing

device can be exploited. The exploitation ranges from being able to steal confidential

information, to enabling systems to perform devious activities, leading to a complete

destruction of the system [34]. The power and cost-effectiveness of reconfigurable

hardware has had a conflicting effect, in that, although it has become more attractive

to designers, it has in turn, made the system more vulnerable to attacks [35]. This

section looks at the gamut of hardware security that has been ignored (until very

recently). There could be potential attacks that aim at making changes to the

hardware, spotting sensitive information using side channels, inserting unintended

applications using the design tools, and stealing intellectual property. Here, we attempt

44

to highlight different aspects of security related to FPGA exposed to a plethora of

hardware threats and vulnerabilities.

2.3.1.1 Vulnerabilities in FPGA Lifetime

FPGA lifetime can be divided into manufacturing, application development and

deployment phases, as shown in Figure 2-9, to find vulnerabilities and gauge the

intrusion of security issues at different levels .

2.3.1.1.1 Manufacturing Phase

Every 12 to 18 months, Altera and Xilinx, the leading reconfigurable hardware

producers, have a new product. There is a lack of disclosure when it comes to the

specifics of the product but reverse engineering that would create invasive physical

attacks – although a complicated method – makes the possibility to gain specifics

much more probable [36]. Once obtained from a third-party manufacturer, the FPGA

companies sell the product to a system developer or partnering company to further the

Figure 2-9 FPGA Lifecycle – Manufacturing to Application Development to Final
Deployment. Handled by several sources using a diverse range of design gadgets.
Every phase of the FPGA lifecycle is prone to security threats that need to be
collectively addressed to ensure and uphold the device and system reliability [36].

45

process to its final stages. A development board, consisting of an FPGA and its

features of memory, audio, video, etc, is created to be sold further on. Thereof, the

board is sold to specific industries – medicine and computing to name a few, in order

that they may customise the product for themselves.

2.3.1.1.2 Application Development Phase

The application development phase allows for the FPGA to be integrated into the

target system and programmed/reconfigured for the intended application.

Development can take two routes - one of which includes the developer making their

own platform for their own purposes using the FPGA chip [37] . The other route is that

of using the development board provided by the third party.

CAD tools such as electronic system design (ESL) are utilised to translate high level

language (C/C++, MATLAB, System C) to a register transfer level (RTL) hardware

description language (HDL). Xilinx AccelDSP and Mathworks HDL Coder are both

examples of such tools. A logical netlist is then created by means of combining the

RTL by using tools from EDA companies. In order to program the FPGA, physical

synthesis tools are necessary as they reconstruct the logical netlist into a bitstream.

Microcontrollers, signal processing cores and encryption cores are customised high-

level functions that ESL design tools make use of. Each core requires a level of trust,

with no one core (e.g. from tool vendors) having the same level as the other (e.g. from

an online repository such as open-cores). It all depends on the source – where the

core comes from. Intellectual Property (IP) cores can be distributed across the tools –

distribution is a significant aspect because it makes reverse engineering more

complicated, particularly when it is specified as a bitstream [38].

2.3.1.1.3 Deployment Phase

The point where a reconfigurable hardware is placed into the environment is when it

reaches its last stage. This occurs when FPGAs are integrated into common devices

and vehicles, all of which need this system. This system dictates how exposed a

device is in terms of security – including both physical security (easy access and

handling) as well as its practical use [39].

46

2.3.1.2 Securing the FPGA Life Cycle

Security concerns must be tackled from the initial point up to the final one. This is so

that a greater understanding of the device is gained, in order to assess its flaws

appropriately. Hence, enabling an effective response against the attacker. The way

this is done is by considering the purpose of the device and external factors

surrounding it – such as testing equipment and development tools.

Moreover, to ensure that the system is reliable for security purposes, a management

plan outlining proper procedure is necessary. Assessments must test vulnerability and

strength of the device in order to understand how exposed its security is [40]. In doing

so, appropriate measures can be taken to ensure that the device is conducting optimal

performance for its users.

Pertinent to mention is that the software’s (EDA tools) role comes into play when the

hardware is being made – this is because the hardware at that stage depends on that

software, making it necessary for these assessments [41]. From this, the difference

between an FPGA and a software is considered. The question is: by understanding

the security problems and assessing how to resolve those problems, can the

difference be made evident? In the following sections, we attempt to find answers to

this.

2.3.2 Nature of Threats and Attacks on FPGAs

It is worth noting that security being compromised and then reconstructed is a cyclical

process that remains ongoing. This means that as soon as there are measures put in

place to strengthen security levels, they tend to be made redundant by the attacker.

Thereof, prompting stronger, more effective measures to be inputted in the hope that

another breach does not occur. To best exemplify this occurrence are smartcards. The

level of security within these evolved overtime – a reaction to the exploitation of its

initial, unsophisticated design.

A similar precautionary element can be noted in the development of FPGAs. They

make up a pivotal part of the security factor in devices, making them more prone to

attack. Those attacks may include that towards the device that uses the FPGA, the

FPGA itself, physical attacks, and system-level attacks.

47

2.3.2.1 Counterfeiting

The function of FPGAs is that of a general use, in the sense that if they are made for

one device, they can be used on others just the same. This essentially implies that

bitstreams are easy to make copies of and use. The process of making those copies

itself is quite general – it can be accomplished by a logic analyser and a skilled

technician. This, however, also means that those copies would be of a lesser quality.

It runs the risk of being marked as the original of its kind, negatively affecting the

developer because the fake would be exposed as such easily. In this way, fraud has

prevailed as an increasing issue where third parties may develop the hardware and

sell any extra product without the responsibility of paying development costs [42]. That

being said, this issue is handled by companies by labelling certain production facilities

as reliable, through ensuring their close scrutiny and supervision.

Although mislabelling of FPGAs makes reverse engineering more complex, it tends to

cause distrust amongst the buyer and the distributor because of the uncertainty

surrounding the product. Smaller FPGA types would be easier to verify but when it

comes to speed grades, it is more difficult [43]. It may be the case that slower ones be

marked as faster and sold in that way. Commercial companies may find that vendors

are more reliable than online buying because there would be no way for them to

distinguish between a real and faulty package, unless they ran tests on it and obtained

its results. Moreover, the reluctance of companies to publicise the number of frauds

they have come across makes it harder to put an accurate figure on these

occurrences.

2.3.2.2 Reverse Engineering

Bitstream reversal is the process of transforming an encoded bitstream into a

functionally same description of the actual design – a reverse of the process from

bitstream to HDL or netlist [44]. Furthermore, partial bitstream reversal is the mining

of data from the bitstream (keys, BRAM/LUT content, or memory cell states) without

replicating complete functionality. Although legal, reverse engineering is restricted for

interoperability reasons or detection of breach of patents. If fully reversed, a

bitstream’s complete design and data could be exposed. This would lead to the data

being used to make another bitstream, different from the initial one and violation of it

would be more complicated. Hidden keys would be exposed as well. In the event that

48

the attacker distinguishes the cryptographic algorithm, it would allow partial reversal

to be of use.

Cryptographically, the bitstream’s code is not completely concealed but is still

indeterminate [45]. FPGA vendors tend to keep this information as classified as they

do for its design and layout.

The level of difficulty of reverse engineering is determined by the size, how obscure,

and how complicated the bitstream is. As of yet, there are no reversals of modern

FPGAs that have proven successful, nor any estimation of cost that is supported by

data and analysis [43].

Bitstream encoding would no longer be depended on though, if reverse engineering

became a problematic element, despite the repercussions of full reversal still being

unknown. It is not the best strategy to hide keys in look-up tables and RAMs because

all it takes is a very basic knowledge of bitstream construction and partial reversal to

determine the information [46].

2.3.2.3 Readback

Readback is a snapshot of the FPGA’s current state while it is still operating. The

FPGA sends the snapshot, after being requested to do so. Configuration, look-up

tables, and memory contents to the host PC, by means of the configuration port are

all included in that snapshot. This image is not the same as the original bitstream as

the header, footer, initialization commands, and no-ops are not included. The dynamic

data in LUTs and BRAMs is also not the same. Readback is efficient in verifying and

testing FPGAs and allows the design to be corrected as it operates on the FPGA.

In the case that it is enabled though, an attacker can readback the design, add the

missing static header and footer and use it in another device. They could then go on

to re-program the FPGA with a modified version, or reverse engineer it. Active

“readback difference attack” also occurs [47]. This allows the attacker to observe

signal changes on an individual clock-cycle basis to evade defence mechanisms.

An example of a functional core waiting for an enable signal from an authentication

process can be taken. The input clock’s control being in the hands of the adversary

would allow him to take a snapshot before the signal is set, clock the design, and then

proceed with another snapshot. Comparing the snapshots would let the attacker

49

distinguish what needs to be changed to modify the signals which would in turn modify

the original bitstreams to permanently assert the enable signal, overturning the

defence [40]. Alternatively, readback as a defence would be able to identify any

tampering such as when there may be an ionising radiation attack.

Xilinx provides a less effective bitstream for disabling readback but when bitstream

encryption is used, multiple, majority-voted, disabling registers activate to prevent

readback [48]. By using bitstream encryption, lattice devices can also disable

readback. They can be located by means of invasive attacks, but there is no evidence

that this has occurred.

2.3.2.4 Side Channel Attacks

Side-channel attacks depend on the signals related to internal processes that are

prone to measurements external to the device and accordingly disclose secret data or

modes of operation by manipulating the implementation rather than the algorithmic

construction. Preventing SCA is challenging because of the isolation of internal

operations of integrated circuits from their environment. The energy they consume and

release, when interacting with other devices is that of electromagnetic and heat

radiation types [49].

There are three types of side-channel attacks and their relevance to FPGAs are

explained as follows:

2.3.2.4.1 Power Mapping and Analysis

By analysing the current consumption patterns of integrated circuits, information about

specific data can be determined – the most sought after information being the key in

a cryptographic operation.

The researchers in [50] introduced two types of power analysis - simple (SPA) and

differential (DPA). The former allowing the attacker direct search power traces for

patterns such as algorithmic sequences, conditional branches, multiplication, and

exponentiation, that allow the inference of key material. While the latter compares

acquired traces with a statistical power consumption model that targets device and

specific implementation. Previously acquired knowledge or analysis of the device led

to the development of this model which is then enhanced by many recorded samples

of controlled operations, by processing known plaintexts with known keys. The

50

attacker can work out key material even if the implementation details are not explicit –

it controls single bit changes in the encryption process.

In an attacker-controlled environment, power analysis is essential to understand the

vulnerabilities of FPGAs. With modern FPGAs working at over 500 MHz, the requisite

measurement equipment is not insignificant [51]. There is a requirement of more

advanced methods than the reliance on outdated small resistor architectures. It might

not be possible to reduce the operating frequency because of detection circuits. In

FPGAs, clock managers (such as a “Digital Clock Manager”) are set to a particular

frequency range. The attacker must separate the signal of the FPGA from the

surrounding devices that contribute noise through the shared ground and power

supply.

Detection circuits for clock and temperature tampering can be classed as

countermeasures that disable attackers to interrupt the clock’s frequency [50]. It would

be fair to assume that attackers would have to face some challenges before

proceeding to capture power traces and analysing them.

2.3.2.4.2 EM Emanation Analysis

It is when internal operations take effect that the movement of charge leads to the

production of electromagnetic fields on circuits, upon which side-channel attacks rely.

Tuned antennas are capable of picking up these fields outside of the device, without

the need to remove its packaging. Proper setup of EMA attacks would make them

more efficient and allow them to create better signal-to-noise ratios, making them

superior over power analysis [52]. Moreover, the advantage of electromagnetic attacks

over power analysis lies in the fact that they can be localised to a specific part of the

chip where the wanted function would be occurring. This can then be implemented in

the device’s initial setting.

2.3.2.4.3 Timing Analysis

There is a possibility that leakage of information may occur if data-processing

operations depend on secret materials such as a key. Conditional branching, memory

access, and algorithmic operations tend to depend on cryptographic function

implementations. A good amount of key bits can be attained when their timing

signatures are analysed. When passwords are checked one character at a time,

stopping on the first match, it can mean that a timing attack occurred [53]. The attacker

51

can figure out the password with only a few tries once he has determined different

processing times.

A way to prevent the leak of information through time processing could be to ensure

that sensitive operations have the same amount of clock cycles, having randomised

operations, or by utilising memory blocks to store data [53]. Certainly, what the

device’s pin exposes should always be monitored for time-related leaks.

2.3.2.5 Radiation-Induced Threats – Single Event Upset (SEU)

Single event upsets (SEU) are the errors that are induced in integrated circuits through

radiations. Basically, a stream of electron-hole pairs is created as the charged particles

lose their energy whilst ionizing the medium they travel through [54]. SEUs in CMOS

devices are created by atmospheric and ambient ionizing radiation that include

neutrons, protons and heavy ions. Alpha particles are also emitted from materials used

for integrated circuit packaging. A transient pulse known as “single transient effect”

may be caused by SEU and in turn cause delay faults. Furthermore, memory bit may

flip state, and with lowering probabilities it is possible that multi-bit upsets occur. SEU

flips are known as “soft errors” as they can be fixed by being written over or power-

cycling.

A change to the purpose of the device is caused by a flip in a used configuration cell

within FPGAs. There are ways to detect and correct SEUs which include scanning the

configuration cells and comparing their CRC or Hamming syndrome to the initial ones.

Another solution can be triple modular redundancy (TMR), in which all logic is

triplicated and radiation causes majority voters to establish logic faults [31]. The most

common way this is utilised is in space applications because the mean time between

function and failure is very low, accounting for the cost. The bitstream can be read

back and used to reprogram if it were to be verified.

2.3.2.6 Hardware Trojans

A hardware Trojan is defined as “a malicious, intentional modification of a circuit

design that results in undesired behaviour when the circuit is deployed” [55]. For

example, adding logic that blocks resources such as memory, or even granting access

to limited-access data. Testing is a way to fight against this. That being said, a special

code could trigger the Trojan when the device is in use. By knowing the details of the

52

device, a skilled attacker could target an input not normally targeted. This would mean

that the chances of being detected during normal testing would lower. Many physical

attacks could cause triggers. An example is getting direct access to the I/O pins.

Electromagnetic radiation or thermal energy are less invasive but more complicated

triggers. Our research on ‘Design for Prognostics and Security in FPGAs’
revolves around this highly potential threat that could cripple the existing as
well as the future computation systems when the era of autonomous, AI-based,
IoT, and Industry 4.0 would be all-prevalent. A concise account of hardware Trojan

salient is presented in Chapter-3.

2.3.2.7 Kill Switch

The operability of hardware as well as the software sustainability are highly affected

by the malicious exploitation of an entity called the ‘kill switch’. It stops the chip from

working at all. It does this through creating an open connection by thinning key wires

in order to destroy a section of a wire by electromigration [56].

2.3.2.8 The Backdoor

Backdoor is another peculiar type of hardware Trojan. This includes functionality in a

circuit where access to the system is granted to either stop or cause functionality. This

can be exemplified when an encryption core is disabled without alerting the user,

making detection more difficult [57]. A kill switch, on the other hand, disrupts the chip

completely.

Although these attacks seem far-fetched, there have been many occurrences of

hardware that has been modified in a malicious manner. Dating back to the Cold War,

to be specific, Russians used these methods for surveillance purposes . They were

sabotaged by the US who tinkered with oil pipeline control software and allowed the

Russians to steal it. In retaliation, the Russians sabotaged typewriters on the way to

the US, by adding keyloggers [57].

Nowadays, it is assumed that a kill switch was developed into a microprocessor and

used to disable Syrian radars from picking up attacks from Israel. Although a theory at

present, it can be a reality when considering the way hardware Trojans operate.

Indeed, King et al. [58] have demonstrated a number of attacks can be possible by

simply adding logic to Leon processor. Moreover, Agrawal et al. [59] have also

53

suggested that keys can be leaked by adding 400 logic gates to a public key encryption

circuit.

2.3.3 Analysis

The realm of security in FPGAs reveals the nature of threats and attacks that surround

and affect the dependability and security attributes of the FPGAs [60] and the critical

applications implemented therein. These attributes are shown in Figure 2-10. It can be

seen that the attribute of reliability is also integral to FPGA security besides the

dependability and is, in turn, impacted by the triad of confidentiality, integrity, and

availability (CIA). This implies that whenever the security of an FPGA is compromised,

it is basically the attribute of FPGA reliability that is getting affected - with

repercussions ranging from harm to humans and machinery breakdown to systems’

malfunction and the manufacturers’ reputation.

 The nature of hardware attacks mentioned above is likely to change, getting more

complicated and complex, with downscaling of FPGA technologies. In that case, the

fragmented approach towards solutions/countermeasures for hardware threats and

attacks would not be effective. We have already seen recent surge in hardware

vulnerabilities with ‘Spectre and Meltdown’ [61], [62] and Amazon’s FPGA cloud

sharing platforms [63], [64]. Under such circumstances, it is indispensable to build and

adopt an integrated approach so as to enable security and prognostics/health

estimation schemes for an effective and enduring defence against known and

unknown vulnerabilities.

Figure 2-10 Dependability and Security Attributes of an FPGA [60].

54

 It is not viable to prognosticate FPGA health with FPGA degradation models that are

deficient not only in optimal reliability assessments but also completely devoid of the

security concerns. As a result, we firmly believe that some previous and more recent

cyberattacks had their roots in the hardware abstraction levels (and they took place

because the FPGA designs - both pre and post manufacturing- lacked the integrated

prognostics/reliability and security approach). Based on the above discussions and

the outlining of different efforts, we believe, that one of the most important reasons for

not being able to control and defy cyberattacks on FPGA based applications, in

particular, is the fragmented approach towards FPGA health management. This

implies that cybersecurity solution lies in the hardware security. It also highlights that

the design for testability approaches reliability evaluation not only without prognostics

element but also misses the security facet.

2.4 Integrated FPGA Health Management (IFHM) Framework

In consonance with the analysis of the realms of reliability and security in Sections 2.2

and 2.3, we have deduced that:

 1. The FPGA reliability and security dimensions are inter-dependent - not two

 separate entities. When evaluated separately, the appreciation of hardware

 threats, vulnerabilities, and the impact of attacks on FPGA reliability may not

 be viable.

 2. The existing reliability/degradation modelling and security design solutions

 may provide an optimum operational and functional FPGA evaluation in

 isolation, however, they are not attuned with an integrated approach for the

 management of FPGA health.

 3. The individualistic approach toward FPGA assessment (reliability and

 security) needs to be enhanced to a composite and holistic FPGA health

 regimen to fight and guard against the upcoming technological challenges in a

 robust manner.

 4. There is a need for a high-level framework that provides a roadmap and

 guidelines to achieve integrated FPGA health management, that

 encompasses the facets of reliability, security, and the prognostics.

55

2.4.1 The Framework

Above in perspective, it is evident that the existing individualistic approach toward

FPGA health management does not consider the essential elements of reliability,

prognostics and security collectively. This has resulted in fragmented solutions that do

not reflect the true state of the operational condition of an FPGA. A high-level

framework, called ‘Integrated FPGA Health Management – (IFHM)’ framework has,

therefore, been devised, as shown in Figure 2-11. This framework provides a guidance

for the FPGA researchers, design and manufacturing engineers, and expert end-users

in establishing the relationship between ‘degradation/failure mechanism’ and

‘hardware threat/attack’, determining ‘failure precursor’, constructing and optimizing

the experimental set-up, defining test conditions and estimating the health of an FPGA

in a composite manner.

As can be seen in Figure 2-11, there are three main functional levels namely,

Resourcer, Conjoiner and Unifier. At the Resourcer functional level, the elements

Figure 2-11 An integrated approach towards Reliability, Prognostics, and Security
in FPGAs to bolster FPGA health for high-end Computational Systems.

56

under each of the two cardinals of Hardware Security and Trust (HST) and Prognostics

and Health Management (PHM) are explored to develop a comprehensive set of

desired information, which is then analysed and combined at the Conjoiner functional

level into a focused set/library of interdependencies between FPGA

reliability/prognostics and security. These interdependencies are then unified at the

Unifier functional level to determine an optimized solution for the ‘Design for
Prognostics and Security’ by designing sensors, devising algorithms, developing

models and undertaking implementation tests, followed by verification and validation.

2.4.1.1 The Resourcer

The Resourcer is a repository function comprising two areas of knowledge and

information i.e., Hardware Security and Trust (HST) and Prognostics and Health

Management (PHM). They are termed as ‘Cardinals’ because of being the principal

sources of the requisite knowledge. It builds a comprehensive list/database of

hardware threats/attacks, FPGA vulnerabilities, threat/attack models, and

countermeasures (including detection, mitigation, and prevention

methods/techniques) for the HST cardinal. The PHM cardinal, on the other hand, is

built on reliability and degradation modelling, the various schemes of design for

testability (DfT) and manufacturability, PHM methods, and prognostics/health

estimation techniques for electronic devices. This wide range of two knowledge

domains is then compiled into a Resourcer database, which at present, is constructed

on MS Excel. The information contained in the realms of reliability and security

provides a segment of the Resourcer repository.

2.4.1.2 The Conjoiner

The Conjoiner is an analysis function that builds upon the Resourcer database, which

is classified into three elements (scalable) for the two cardinals each, as shown in

Figure 2-11. This function forms the critical data analysis level where, based upon the

specific threat assessment/evaluation requirement and the corresponding degradation

mechanism, relevant data is scrutinised, and quantitatively compared with host of

related models. The analysed data results in an optimised set/library of

interdependencies between the reliability and security in the form of graphical data,

mapping diagrams, and data flows.

57

2.4.1.3 The Unifier

The Unifier is a decision function that fetches the required set/library of analysed data,

and accordingly helps design, implement, test, verify and validate the hard and soft

components of the final optimised ‘Design for Prognostics and Security’. It may

comprise an on-chip parametric sensor for the detection of parametric variations due

to the presence of malicious circuitry (hardware Trojan), a comprehensive FPGA

security scheme, and a prognostics/health estimation process. The main outputs of

this function may include new FPGA reliability/degradation models, optimal anomaly

detection and mitigation algorithms, an experimental test-rig (comprising hard and soft

components like test equipment, electronic design kits etc.), accurate measurements,

and optimised verification and validation of the developed schemes.

2.4.2 IFHM Framework Workflow

In this sub-section, we present an overview of how the IFHM framework is used to

build FPGA Health scheme consisting of the security and prognostics elements. It

expands on the Cardinals and their corresponding elements that our IFHM framework

covers. The high-level selection of an ‘On-Chip Digital Sensor’ is used to explain the

workflow of IFHM framework.

The researcher will first give the specific FPGA degradation mechanism information,

for example, ‘BTI’ degradation mechanism, as an input to the Resourcer function of

the framework. The Resourcer function will use this information to scan and track the

PHM cardinal through its elements for the relevant BTI data and then correlates it with

the HST cardinal elements to fetch the relevant list of hardware threats, attacks, and

models for the researcher. The function will also highlight the most optimal

relevance/outcome of all the HST elements. It will be, however, up to the researcher

to select the relevant HST and PHM elements before stepping onto the next functional

level i.e. The Conjoiner. One possible selection could be the CMOS parametric
variation-based hardware Trojan.

The Resourcer data, as mentioned above, is fed into the Conjoiner function, which will

then analyse it against the FPGA vulnerabilities (within different technology nodes

such as, high junction temperatures, design for testability and de-bug etc.), the faults

and defects associated with it (intermittent delays, transient faults etc.), the reliability

and performance impact of the selected degradation mechanism under the influence

58

of the selected category of hardware Trojan/malicious anomaly (frequency and delay

degradation, device ageing, functional failures, exponential increase in junction

temperature, power consumption etc.), and the statistical data on various relevant

FPGA degradation models. The researcher, with this analytical information available,

chooses the most effective set of solutions. For example, for the BTI degradation

mechanism and parametric variation-based hardware Trojan category, the researcher

may opt to construct the FPGA security and prognostics/health estimation scheme

around the variation of threshold voltage in P/NFETs with N/PBTI.

With the above set of information inputted to the Unifier function, all the relevant and

recommended solutions with respect to monitoring, detection, mitigation, and

prevention algorithms, different on-chip sensor options (with performance metrics),

security schemes, and prognostics/health estimation techniques (ML-based) are

made available to the researcher to select and optimise the most viable FPGA Health

scheme that provides a composite solution. For example, in our case ‘the Design for

Prognostics and Security in FPGAs’ is an integrated FPGA health management

approach which begins with the design and implementation of a novel sensor

(Chapter-4), solidifies it to an FPGA security scheme (Chapter-5), and then employs

a Kernel-based Machine Learning technique to estimate FPGA health (Chapter-6).

While this high-level IFHM framework may be a logical and necessary step in assisting

and guiding the researcher, manufacturer, and the expert end user in designing secure

and reliable FPGAs, it would not eliminate the need for the FPGA health (security and

reliability) assessment expert. This IFHM framework is intended to be an automated

framework, integrated with the traditional FPGA/ASIC design flow so that the FPGA

health evaluation can be made as an inherent segment of the design and

implementation process.

2.5 Summary

The evolutionary transformation of FPGAs into Systems-on-Chip (SoC) and more

advanced platforms like Advanced Compute Acceleration Platform (ACAP) has led to

their widespread applications across all industries. These include several sensitive

applications, like national infrastructures consisting of power grids, network routers

and data-centres, medical equipment, transportation comprising airplanes,

spacecrafts, and autonomous vehicles, defence systems, Industry 4.0, etc. An incisive

59

look into FPGA architecture, its associated structural and functional strengths as well

as its vulnerabilities to ever-growing reliability and security issues have been the focus

of this chapter. Most importantly, based on the detailed account of the realms of FPGA

reliability and security, a high-level Integrated FPGA Health Management (IFHM)

framework has been presented as a guideline for the VLSI design and manufacturing

community (including researchers and expert end-users) to develop highly optimised

FPGA security and prognostics schemes by adopting integrated approach. The

subsequent automation of this framework and integration with electronic design

automation (EDA) tools would be highly useful.

The next chapter (Chapter-3) provides a brief account of hardware Trojans as a potent

hardware threat for modern FPGAs, outlines their taxonomy, and presents several

countermeasures.

REFERENCES

[1] Grand View Research, “Field-Programmable Gate Array Market – Cruising

 Ahead,” [Online]. Available at: https://www.grandviewresearch.com/blog/field-

programmable-gate-array-fpga-market-size-share. [Accessed : July 2020].

[2] T. Huffmire, C. Irvine, T. D. Nguyen, T. Levin, R. Kastner, and T. Sherwood,

Handbook of FPGA Design Security. Springer, 2010.

[3] K. Compton and S. Hauck, Reconfigurable computing: a survey of systems and

software. ACM Comput. Surv. 34, 2, pp 171–210, 2002.

[4] Andre DeHon, "Comparing computing machines," Proc. SPIE 3526,

Configurable Computing: Technology and Applications,1998.

[5] J. Singh and B. Raj, “SRAM Cells for Embedded Systems,” in Embedded

Systems - Theory and Design Methodolgy, no. June 2014, 2012.

[6] D. Kissler, F. Hannig, A. Kupriyanov and J. Teich, "Hardware Cost Analysis for

Weakly Programmable Processor Arrays," 2006 International Symposium on

System-on-Chip, Tampere, pp. 1-4, 2006.

[7] An Chen, "Beyond-CMOS technology roadmap", Emerging Research Devices

(ERD), ITRS, 2015.

60

[8] Edward A. Stott, Justin S.J. Wong, Pete Sedcole, and Peter Y.K. Cheung,

Degradation in FPGAs: measurement and modelling. In Proceedings of the 18th

annual ACM/SIGDA international symposium on Field programmable gate

arrays (FPGA '10). Association for Computing Machinery, New York, NY, USA,

pp 229–238, 2010.

[9] Bhunia, Swarup, Tehranipoor, Mark M. (Eds.), The Hardware Trojan War-

 Attacks, Myths, and Defenses, Springer International Publishing, DOI

 10.1007/978-3-319-68511-3, 2018.

[10] Bhunia, Swarup, Tehranipoor, Mark M. (Eds.), Hardware Security – A Hands-

 on Learning Approach, Elsevier Inc. ISBN: 978-0-12-812477-2, 2019.

[11] Y. Shiyanovskii, F. Wolff, A. Rajendran, C. Papachristou, D. Weyer and W.

 Clay, "Process reliability based trojans through NBTI and HCI effects," 2010

 NASA/ESA Conference on Adaptive Hardware and Systems, Anaheim, CA, pp.

 215-222, 2010.

[12] A. Amouri and M. Tahoori, “A Low-Cost Sensor for Aging and Late Transitions

Detection In Modern FPGAs,” 2011 21st Int. Conf. F. Program. Log. Appl., pp.

329–335, 2011.

[13] D. Patra et al., “Adaptive accelerated aging for 28 nm HKMG technology,”

Microelectron. Reliab., vol. 80, no. December 2017, pp. 149–154, 2018.

[14] P. Mangalagiri, S. Bae, R. Krishnan, Y. Xie, and V. Narayanan, “Thermal-aware

reliability analysis for platform FPGAs,” IEEE/ACM Int. Conf. Comput. Des. Dig.

Tech. Pap. ICCAD, pp. 722–727, 2008.

[15] A. Kerber, S. Cimino, F. Guarin, and T. Nigam, “Assessing device reliability

margin in scaled CMOS technologies using ring oscillator circuits,” 2017 IEEE

Electron Devices Technol. Manuf. Conf. EDTM 2017 - Proc., vol. 1, pp. 28–30,

2017.

[16] Campos-Cruz, A.; Espinosa-Flores-Verdad, G.; Torres-Jacome, A.; Tlelo-

Cuautle, E. On the Prediction of the Threshold Voltage Degradation in CMOS

Technology Due to Bias-Temperature Instability. Electronics 7, 427, 2018.

 [17] Xilinx, 7 Series FPGAs Data Sheet: Overview, Accessed on: July 10, 2020.

61

[Online]. Available:

https://www.xilinx.com/support/documentation/data_sheets/ds180_7Series_Ov

erview.pdf.

 [18] Mohanty, Saraju P. Srivastava, Ashok. Nano-CMOS and Post-CMOS

Electronics - Devices and Modelling, Substrate and Gate Dielectrics. Institution

of Engineering and Technology, Volume 1, 2016.

 [19] Mark T. Bohr, Robert S. Chau, Tahir Ghani and Kaizad Mistry, "The High-K

Solution", Accessed on: July 10, 2020. [Online]. Available:

https://spectrum.ieee.org/semiconductors/design/the-highk-solution.

[20] Ethan A. Scott, A John T. Gaskins, A Sean W. King, A Patrick E. Hopkins,

"Thermal conductivity and thermal boundary resistance of atomic layer

deposited high-k dielectric aluminum oxide, hafnium oxide, and titanium oxide

thin films on silicon." APL Materials. 6, 058302. 2018.

[21] I. Agbo et al., “Integral impact of BTI and voltage temperature variation on SRAM

sense amplifier,” Proc. IEEE VLSI Test Symp., vol. 2015-Janua, 2015.

[22] B. P. Linder, J. J. Kim, R. Rao, K. Jenkins, and A. Bansal, “Separating NBTI and

PBTI effects on the degradation of ring oscillator frequency,” IEEE Int. Integr.

Reliab. Work. Final Rep., vol. 3, pp. 1–6, 2011.

[23] S. Zafar et al., “A Comparative Study of NBTI and PBTI (Charge Trapping) in

SiO 2 / HfO 2 Stacks with FUSI , TiN , Re Gates,” 2006 Symp. VLSI Technol.

2006. Dig. Tech. Pap., vol. 9298, no. 2005, pp. 23–25, 2006.

[24] Intel. Corporation, “Reliability report 1H 2017.” Accessed on: June, 2019.

[Online]. Available:

https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/rr/

rr.pdf.

[25] Xilinx Corporation, “Device Reliability Report,” UG116 (v10.1), vol. 116, pp. 1–

104, 2014.

[26] A. Bensoussan, “Microelectronic reliability models for more than moore

nanotechnology products,” Facta Univ. - Ser. Electron. Energ., vol. 30, no. 1, pp.

1–25, 2017.

62

[27] M. Naouss and F. Marc, “FPGA LUT delay degradation due to HCI: Experiment

and simulation results,” Microelectron. Reliab., vol. 64, pp. 31–35, 2016.

[28] B. Khaleghi, B. Omidi, H. Amrouch, J. Henkel and H. Asadi, "Estimating and

Mitigating Aging Effects in Routing Network of FPGAs," in IEEE Transactions on

Very Large Scale Integration (VLSI) Systems, vol. 27, no. 3, pp. 651-664, March

2019.

[29] L. Prodan, M. Udrescu, and O. Boncalo, “Design for Dependability in Emerging

Technologies,” J. Emerg. Technol. Comput. Syst, vol. 3, no. 2, pp. 1–24, 2007.

 [30] M. Samie, G. Dragffy, A. Popescu, T. Pipe, and J. Kiely, “Prokaryotic Bio-

Inspired System,” 2009 NASA/ESA Conf. Adapt. Hardw. Syst., pp. 171–178,

2009.

 [31] IEEE Standards Association, IEEE 1856-2017-IEEE Standard Framework for

Prognostics and Health Management of Electronic Systems, RS/SC -IEEE

Reliability, 2017.

[32] M. Lipp et al., "Meltdown: Reading Kernel Memory from User Space,"
 Communications of the ACM, Vol. 63 No. 6, pp. 46-56, June 2020.

[33] P. Kocher et al., "Spectre Attacks: Exploiting Speculative Execution," IEEE

Symposium on Security and Privacy (SP), San Francisco, CA, USA, pp. 1-19,

2019.

[34] S. P. Skorobogatov, “Semi-invasive attacks-a new approach to hardware

security analysis,” Tech. report, Univ. Cambridge, Comput. Lab., no. 630, p. 144,

2005.

[35] M. Tehranipoor, Wang, Cliff (Eds.), Introduction to Hardware Security and Trust.

Springer-Verlag New York, 2012.

[36] R. Kastner and T. Huffmire, “Threats and Challenges in Reconfigurable

 Hardware Security.” Proceedings of the 2008 International Conference on

 Engineering of Reconfigurable Systems & Algorithms, ERSA 2008, Las Vegas,

 Nevada, USA, July 14-17, 2008.

 [37] S. M. Trimberger and J. J. Moore, “FPGA security: Motivations, features, and

63

applications,” Proc. IEEE, vol. 102, no. 8, pp. 1248–1265, 2014.

[38] Xilinx Inc., “WP365(v1.2): Solving Today’s Design Security Concerns,” Xilinx,

Inc., vol. 365, pp. 1–14, 2012.

[39] S. M. Trimberger, “Three Ages of FPGAs : A Retrospective on the First Thirty

Years of FPGA Technology,” Proc. IEEE, vol. 103, no. 3, pp. 318–331, 2015.

[40] S. Drimer, “Volatile FPGA design security – a survey,” Univ. Cambridge, pp. 1–

51, 2008.

[41] PYK Cheung, “Digital Design with FPGA and Verilog,” Imperial College London

V4.3, 7 Nov 2017.

[42] U. Guin, K. Huang, D. Dimase, J. M. Carulli, M. Tehranipoor, and Y. Makris,

“Counterfeit integrated circuits: A rising threat in the global semiconductor

supply chain,” Proc. IEEE, vol. 102, no. 8, 2014.

[43] M. Rostami, F. Koushanfar, J. Rajendran, and R. Karri, “Hardware security:

Threat models and metrics,” IEEE/ACM Int. Conf. Comput. Des. Dig. Tech. Pap.

ICCAD, pp. 819–823, 2013.

[44] P. Swierczynski, M. Fyrbiak, P. Koppe, A. Moradi, and C. Paar, “Interdiction in

practice—Hardware Trojan against a high-security USB flash drive,” J. Cryptogr.

Eng., vol. 7, no. 3, pp. 199–211, 2017.

[45] P. Swierczynski, M. Fyrbiak, P. Koppe, and C. Paar, “FPGA Trojans Through

Detecting and Weakening of Cryptographic Primitives,” IEEE Trans. Comput.

Des. Integr. Circuits Syst., vol. 34, no. 8, pp. 1236–1249, 2015.

[46] S. Skorobogatov and C. Woods, “In the blink of an eye : There goes your AES

key,” IACR Cryptol. ePrint Arch., vol. 3, no. May, pp. 1–7, 2012.

[47] S. Drimer, “Security for volatile FPGAs,” Rapp. Tech. UCAM-CLTR-763, Univ.

…, no. 763, 2009.

[48] P. Mishra, S. Bhunia, and M. Tehranipoor, Hardware IP security and trust,

Springer International Publishing, 2017.

[49] S. Bhunia and M. M. Tehranipoor, The Hardware Trojan War. Cham: Springer

64

International Publishing, 2018.

[50] C. Rooney, A. Seeam, and X. Bellekens, “Creation and Detection of

HardwareTrojans Using Non-Invasive Off-The-Shelf Technologies,” Electronics,

vol. 7, no. 7, p. 124, 2018.

[51] Z. Lu, D. Li, H. Liu, M. Gong, and Z. Liu, “An anti-electromagnetic attack PUF

based on a configurable ring oscillator for wireless sensor networks,” Sensors

(Switzerland), vol. 17, no. 9, 2017.

[52] H. Xue and S. Ren, “Hardware Trojan detection by timing measurement: Theory

and implementation,” Microelectronics J., vol. 77, no. May, pp. 16–25, 2018.

[53] L. Sterpone and L. Boragno, “A probe-based SEU detection method for SRAM-

based FPGAs,” Microelectron. Reliab., vol. 76–77, pp. 154–158, 2017.

[54] M. Tehranipoor and F. Koushanfar, “A survey of hardware trojan taxonomy and

detection,” IEEE Des. Test Comput., vol. 27, no. 1, pp. 10–25, 2010.

[55] K. Xiao, D. Forte, Y. Jin, R. Karri, S. Bhunia, and M. Tehranipoor, “Hardware

Trojans: Lessons learned after one decade of research,” ACM Trans. Des.

Autom. Electron. Syst., vol. 22, no. 1, pp. 1–23, 2016.

[56] X. Guo, R. G. Dutta, Y. Jin, F. Farahmandi, and P. Mishra, “Pre-Silicon Security

Verification and Validation : A Formal Perspective,” in Proceedings of the 52nd

Annual Design Automation Conference, 2015.

[57] R. Kastner and T. Huffmire, “Threats and Challenges in Reconfigurable

 Hardware Security.” Proceedings of the 2008 International Conference on

 Engineering of Reconfigurable Systems & Algorithms, ERSA 2008, Las Vegas,

 Nevada, USA, July 14-17, 2008.

[58] Samuel T. King, Joseph Tucek, Anthony Cozzie, Chris Grier, Weihang Jiang,

and Yuanyuan Zhou, Designing and implementing malicious hardware. In

Proceedings of the 1st Usenix Workshop on Large-Scale Exploits and Emergent

Threats (LEET'08). USENIX Association, USA, Article 5, 1–8, 2008.

[59] D. Agrawal, S. Baktir, D. Karakoyunlu, P. Rohatgi, and B. Sunar, “Trojan

detection using IC fingerprinting,” Proc. - IEEE Symp. Secur. Priv., pp. 296–310,

65

2007.

[60] N. Tuptuk and S. Hailes, “Security of smart manufacturing systems,” J. Manuf.

Syst., vol. 47, no. April, pp. 93–106, 2018.

[61] J. Sanders, "Spectre and Meltdown Explained: A Comprehensive Guide for

Professionals". Accessed on: January 15, 2020. [Online]. Available:

https://www.techrepublic.com/article/spectre-and-meltdown-explained-a-

comprehensive-guide-for-professionals/.

[62] J. Fruhlinger, "Spectre and Meltdown explained: What they are, how they

work, what's at risk". Accessed on: January 15, 2020. [Online]. Available:

https://www.csoonline.com/article/3247868/spectre-and-meltdown-explained-

what-they-are-how-they-work-whats-at-risk.html.

[63] Jin, Chenglu, et al. "Security of Cloud FPGAs: A Survey." arXiv preprint

arXiv:2005.04867, 2020.

[64] Gnad, D. R. E., Krautter, J., & Tahoori, M. B. Leaky Noise: New Side-Channel

Attack Vectors in Mixed-Signal IoT Devices. IACR Transactions on

Cryptographic Hardware and Embedded Systems, 305-339, 2019.

https://www.csoonline.com/article/3247868/spectre-and-meltdown-explained-what-they-are-how-they-work-whats-at-risk.html
https://www.csoonline.com/article/3247868/spectre-and-meltdown-explained-what-they-are-how-they-work-whats-at-risk.html

66

3 Understanding the Hardware Trojans in FPGAs

3.1 Introduction

Hardware Trojans are malicious modifications to the intended functionality of a

hardware circuit [1-4]. These modifications (or tampering) are undesired and unknown

to the hardware designer and can have devastating effects on the electronic system.

Trojans have three key characteristics: malicious intention, evasion of detection, and

rarity of activation [5]. The intent of a Trojan is always the same: perform an unintended

action to compromise the confidentiality, integrity, or authentication of the underlying

hardware.

This compromise may be in the form of a shortened operational lifetime of the

hardware (e.g., 5 years instead of 20 years) or complete failure of the system upon

the Trojan’s activation. It may allow an attacker to gain unauthorized access into the

hardware (i.e., remote access through a backdoor) or lead to leakage of information

(e.g., cryptographic keys for secure data communication). Hardware Trojans may

manifest from software Trojans inside of pirated software tool suites during the

Figure 3-1 The Disposition of Chapter-3.

67

synthesis portion of the design flow or be inserted as a result of collusion between

multiple parties at different stages of the hardware’s life cycle [6]. Trojans can also be

designed with the sole intention to damage or destroy the brand reputation of a

company, which may result in bankruptcy of the company and a competitive

advantage for the adversary.

As mentioned earlier, the growing demand for power-efficient and high-performance

integrated circuits (ICs) has created a surge in usage of FPGAs in the recent years.

FPGAs are also available as cloud services [7], where one can create and run custom

hardware designs on a remote FPGA in a server farm. Hence, exploring security

issues associated with FPGA designs is critical.

This chapter explores the insertion of hardware Trojans into genuine designs targeted

for FPGAs so as to understand their impact and evaluate different countermeasures.

It goes without saying that such compromised designs may result in subpar

performance, leakage of confidential information, and unauthorized and pernicious

operations by an attacker. The use of compromised designs in critical infrastructures

such as smart grids, nuclear power plants, medical prosthetic devices, and military

equipment can be catastrophic. To explain the different classes of Trojans, this chapter

uses Xilinx FPGA design flow. However, the same methodology can be extended to

any FPGA and CAD tool vendors. The chapter is arranged as per Figure 3-1.

We first present the threat model and a taxonomy of FPGA Trojans in Section 3.2.

Next, we focus on two broad categories of FPGA Trojans: Trojans in FPGA fabric in

Section 3.3 and Trojans in FPGA tool chain in Section 3.4. An example of FPGA attack

and a case study is presented in Section 3.5. Section 3.6 discusses the

countermeasures that specifically target Trojans in FPGA bitstreams. Finally, Section

3.7 summarises the chapter.

3.2 Threat Model and Taxonomy

3.2.1 FPGA Design Flow

Figure 3-2 shows the high-level FPGA design flow. An FPGA designer designs the

FPGA fabric. Fabless FPGA design houses send the layout of the FPGA fabric to a

foundry for manufacturing. Many of these foundries are located typically offshore and

are untrusted. Post-fabrication, the FPGAs are tested for defects and faults. FPGAs

68

are sold on the market. The end-user implements the target design on the FPGA.

Converting a design described in a modelling language (VHDL or Verilog) into an

FPGA-specific programming file involves multiple steps, as explained below:

• Synthesis involves the conversion of HDL into a logical netlist (similar to logic

diagram or circuit).

• Implementation consists of translate and map processes, where the logical

netlist gets converted and mapped to target device’s physical primitives.

• Place and route (PAR) takes a mapped native circuit description (NCD) file,

places and routes the design, and produces an NCD file to be used by the

programmable file generator.

• In bit-file generation, the routed NCD is used to create a bit-file that can be

programmed onto an FPGA.

3.2.2 Threat Model

In the quest to reduce the development cost of hardware/system, the silicon industry

has inadvertently created a complex and extremely vulnerable supply chain shown in

Figure 3-2 FPGA threat model: The attacker can insert hardware Trojans at the untrusted
foundry (A1). A malicious distributor can reduce the reliability of an FPGA in the supply
chain (A3), and even recycled FPGAs can be inserted into the FPGA supply chain (A2).
Design Trojans can also enter through FPGA CAD tool flow.

69

Figure 3-2. An attacker can be present anywhere in the supply chain. The threat

model, shown in Figure 3-2, involves:

3.2.2.1 Overproduction

An untrusted foundry that has access to the FPGA layout mask fabricates more

number of FPGAs than requested or authorized by the design company. It can insert

these FPGAs into the supply chain without the knowledge of FPGA design company.

These FPGAs may not be properly tested and can introduce reliability issues. This

results in either loss of revenue or reputation for the design company.

3.2.2.2 Recycling and remarking

FPGAs can be extracted from electronic waste, used FPGAs can be removed, and

their package can be repainted and/or remarked. The die can also be removed from

the packaging, repackaged, and remarked. These FPGAs are then reinserted into the

Figure 3-3 FPGA hardware Trojan taxonomy based on two primary attributes.

70

supply chain as genuine and new FPGAs. These FPGAs can be highly unreliable, are

prone to defects, and typically lead to subpar performance.

3.2.2.3 Cloning and Piracy

It is an unauthorized reproduction of an FPGA by reverse engineering without the legal

intellectual property (IP) rights to manufacture the FPGA. These FPGAs can also have

malicious modifications.

Apart from these threats, FPGAs are also susceptible to insertion of Trojans, as shown

in Figure 3-3.

3.2.3 FPGA Hardware Trojans Taxonomy

Malicious changes can be made at any phase of the FPGA design such as design,

fabrication, packaging, and in the supply chain as shown in Figure 3-2. A taxonomy

based on hardware Trojans’ physical, activation, and functional characteristics have

already been proposed [2, 3]. We classify Trojans based on the method of creation,

activation, and point of entry into the FPGA fabric as shown in Figure 3-3. The

definitions of most of the FPGA Trojans are similar to the IC Trojan taxonomy in [2, 3].

3.2.3.1 Point of Entry

Based on the point of entry of Trojans in FPGA, they can be classified as:

3.2.3.1.1 Prefabrication

It is the phase where the specification of systems such as functionality, size, power,

delay, etc., is finalized. Trojan insertion in this step will result in alteration of design or

constraints. For example, it could alter the timing of circuit or increase switching

frequency of the circuit. A rogue employee can insert a malicious circuit, e.g., a

backdoor, to take control of the chip at a later point in time when the FPGAs are

deployed in the field. These manifest as FPGA fabric Trojans.

3.2.3.1.2 Fabrication

Here, a set of masks are designed to fabricate the digital circuit on a silicon wafer.

Trojans can be added by a malicious attacker inside an untrusted foundry. These

Trojans can be either functional or parametric. These are called as FPGA fabric

Trojans.

71

3.2.3.1.3 Post Fabrication

In this phase, RTL/HDL designs are used to program an FPGA to achieve desired

functionality. Trojans can be either inserted in RTL/HDL designs by a rogue employee

or can also enter RTL/HDL designs from IPs from third-party IP providers. These are

FPGA design Trojans. Additionally, even the reliability of an FPGA can be reduced by

such type of Trojans.

3.2.3.2 Creation Method

Based on the creation method, Trojans can be classified as follows:

3.2.3.2.1 Functional Trojan

They are created by modifying the FPGA fabric. This includes addition/deletion of

gates/transistors, modifying the RTL or layout without affecting the primary

functionality of the FPGA fabric. It can enter during prefabrication phase by a rogue

employee in the FPGA design company or during fabrication phase by a malicious

insider at an untrusted foundry.

3.2.3.2.2 Parametric Trojan

They are created by modifying physical device parameters, such as thinning of wires,

gate channel length variation, dopant level variation [8], transistor size variation, etc.

It is always on and primarily created to reduce the reliability and lifespan of an FPGA.

3.2.3.2.3 Life-span Reduction Trojan (LRT)

It is the only class of Trojans that are not inserted in the hardware during or before

fabrication. It is created by subjecting the FPGA with external factors, such as extreme

temperatures, focused ion beams [9], etc. LRT accelerates aging of complete or part

of FPGA fabric. It is typically created by a malicious distributor in the FPGA supply

chain to reduce the reliability and, hence, reduce the lifespan of FPGAs.

3.2.3.2.4 Bitstream Trojan

It is inserted by modifying the FPGA bit-file itself. Bitstreams can be reverse

engineered to identify the areas of FPGA occupied by the programmed logic, and

malicious circuits can be inserted into it. If the malicious circuit does not disturb the

original circuit, it is called Type-I bitstream Trojan. Type-II Trojans typically modify the

72

original circuitry with respect to CLBs or other FPGA resources to perform malicious

operations.

3.2.3.2.5 CAD Tool Trojan

They are FPGA design Trojans that exploit the CAD tool flow to insert the Trojans at

various intermediate netlist formats. These Trojans can be inserted in a synthesized

netlist and even in mapped or placed and routed netlists. Due to the lack of resources

to understand the intermediate and typically proprietary formats, these Trojans can

easily evade detection.

3.3 Trojans in FPGA Fabric

FPGA fabric Trojans are inserted into the FPGA silicon fabric. They can be inserted

either during fabrication by a untrusted foundry or during the design phase of FPGA

by a rogue employee in the FPGA design company. Functional fabric Trojans are

characterized by addition/deletion of gates by the attacker to carry out malicious

activities, whereas parametric fabric Trojans are created by changing device

parameters/specification such as thinning of wires and weakening of transistors or flip-

flops to reduce the reliability of the FPGA [10, 11]. In this section, we describe three

Trojans that can be inserted into the FPGA fabric: Trojans that increase delay, create

voltage fluctuations, and reduce lifetime.

3.3.1 Trojans That Increase Delay

The delay-based fabric Trojan is created by modifying interconnect connecting lookup

tables (LUTs) across two configurable logic blocks (CLBs). The delay-based fabric

Trojans correspond to change or perturbation in the physical layout of FPGA due to

the addition of malicious elements. The assumption is that the silicon fabric of the

FGPA is dense and highly utilized. An attacker needs to alter the FPGA silicon in order

to add a Trojan. For example, when a Trojan is inserted in a CLB or routing switch

matrix (RSM), it will perturb the physical layout of original fabric, thereby increasing

the delay.

3.3.2 Trojans That Induce Voltage Fluctuations

This set of Trojans is implemented by adding simultaneous switching signals that

utilize dense interconnect resources around a CLB. This corresponds to the addition

73

of malicious elements without disturbing the genuine layout of FPGA fabric. This

switching signal is connected to unused wires and programmable interconnect points

(PIPs) in the tile where the target CLB is configured.

This Trojan increases switching activity that will increase dynamic power and therefore

impacts the oscillation frequency. In our case, it is observed that voltage drop due to

the Trojan switching activity impacts the sensor frequency.

3.3.3 Life-Span Reduction Trojan (LRT)

Life-span reduction Trojan (LRT) can be induced into an FPGA by artificially creating

conditions that accelerate ageing of FPGA fabric. Key contributors for an FPGA ageing

(or any IC) among several physical factors are negative-bias temperature instability

(NBTI) and hot carrier injection (HCI). Both the factors lead to a shift of threshold

voltage of the affected transistors, which manifest as increase in switching and path

delays. This will subsequently lead to timing violations and wears out an FPGA faster.

The threshold-voltage triggered hardware Trojan described in Chapter-5 is a novel

example of this type of Trojan.

3.4 Trojans in FPGA Tool Chain

3.4.1 Trojan Insertion in FPGA Designs

The goal of the attack tool is to decide where to place the Trojan for a given design.

The placement of Trojan can be achieved with or without disturbing the original design

mapping and routing. The latter requires considerable effort and access to multiple

files from the FPGA design cycle.

To insert hardware Trojans in FPGA designs, an attacker may need to have

knowledge of internal wires or logic and preferably where the design is physically

placed on the FPGA. If the Trojan is conditionally activated based on the input or

internal states, the attacker needs to tap into the required wires of the design and

connect the Trojan activator circuit. The Trojan payload can be connected to the target

elements by disconnecting the wires connecting to these elements and reconnecting

with the output of the payload circuit. The original payload and Trojan payload can be

connected using multiplexers, with the select line controlled by the activator circuit.

74

After the logic synthesis process, FPGA CAD tools typically rename and merge (after

logic optimization) the internal wires connecting logic elements. An attacker needs to

track the name changes in the design, to connect them with the Trojans. This can be

achieved by converting the synthesized binary netlist (called NGC by Xilinx) to a

readable Electronic Design Interchange Format (EDIF) file and Xilinx Design

Language (XDL) file. Figure 3-4a shows the HDL code, and Figure 3-4b shows the

corresponding XDL file obtained from routed netlist (NCD) after PAR, which describes

how the HDL is mapped into LUTs. Additional information on the location of

configurable logic block (CLB) and LUT is also present in the XDL file. Figure 3-4c

shows how the CLB blocks are connected with each other to implement the

functionality described in HDL. We can extract the locations and interconnections used

by the original design from the NCD or XDL files.

3.4.2 Trojans in HDL

An attacker can insert the Trojan in the HDL design. In the HDL, the attacker can easily

track the logic elements or states to be used as an activator and deliver the Trojan

payload to the target. Inserting Trojan at this level is significantly easier for an attacker,

as the wires and logic elements can be found from the behavioural or structural code.

Figure 3-4 HDL to FPGA physical implementation. (a) Description of the design in HDL.
(b) The configuration of a routed CLB described in XDL format. Only LUT B is used in
this CLB. (c) The physical implementation of the design.

75

3.5 FPGA Attacks and a Case Study

In order to elucidate the significance of the growing hardware Trojan threat, we present

a threat scenario related to the increased usage of FPGAs in a cloud platform.

Consider a typical architecture of a cloud platform with FPGAs as shown in Fig. 3-5.

FPGA boards are connected with the servers using PCIe (Peripheral Component

Interconnect express) wires. PCIe wires are the de facto standard for establishing and

maintaining communication between a server and the FPGA in commercial FPGA

clouds [12]. The cloud service providers divide the programmable resources on an

FPGA into two areas such that one is dedicated for implementing the shell, and the

other for users to implement customized logic.

The shell includes PCIe modules, DRAM controllers, and control modules, to enable

the communication with the servers and DRAM. Typically, the cloud provider’s logic

(shell) interacts with user logic via Advanced eXtensible Interface (AXI) protocols [13].

On the CPU side, the software development kit provides the application programming

interfaces (APIs), so the users with little FPGA experiences can still interact with

FPGAs easily [14]. In the modern commercial clouds like Amazon EC2 F1, an FPGA

Figure 3-5 Architecture of an FPGA in the cloud. The four different threat models
considered in this paper are (1) malicious cloud providers, (2) malicious co-tenants, (3)
malicious IP providers, and (4) malicious FGPA toolchain. These are indicated in the
figure by devil icons in the shell (PCIe module and IP core), user 1’s logic, 3rd party IP
core, and the FPGA design flow, respectively.

76

is not allowed to be shared by multiple users due to security concerns [15]. However,

we envision that multi-tenant cloud FPGAs will be realized soon, as it is more cost-

effective for both the cloud providers and the users to share resources.

3.5.1 Threat Scenario/Model and Associated Attacks

To understand the possible threats posed to the cloud FPGA users, we categorize the

threat model into four types: (1) malicious cloud providers, (2) malicious cloud

users/co-tenants, (3) malicious IP providers, and (4) malicious toolchains. Figure 3-5

illustrates where the threats reside in the architecture of an FPGA cloud.

3.5.1.1 Malicious Cloud Providers

In traditional threat models of cloud security, the cloud service providers are generally

assumed to be untrustworthy, so a user needs to implement his/her security measures

to protect him/herself in the clouds. Additionally, the users on the same cloud platform

can be a threat to other users, too. However, a malicious cloud model is stricter than

the malicious user model because a cloud provider has all the privileges to the

platform, including physical access and full control of the computation resources.

3.5.1.1.1 Direct Sensitive Data Leakage

In a cloud without programmable hardware, all the computation and the data are

contained in one container (virtual machine). Each container is isolated from another

in the hypervisor layer. In the case of a cloud with programmable hardware attached,

an attacker with system privilege can tamper with the logic or tap the communication

between the FPGA fabric and the processor. This can enable him/her to steal the

secret data. In current commercial FPGA-enabled clouds, the FPGA boards connect

to the processors via the PCIe protocol. Thus, the cloud provider can intercept the

communication between the FPGA boards and the processors with ease.

3.5.1.1.2 Intellectual Property Theft

The most common use of cloud FPGAs is to implement hardware accelerators for

specific computation tasks. The IP of such an accelerator developed and owned by a

developer should be protected. Since the developer hands over the bitstream files of

the IP cores to the cloud providers, a malicious cloud provider can access the RTL

design of the IP core. Bitstream reverse engineering techniques can enable this [16,

77

17]. Thus, a malicious provider can steal the design IP and replicate the accelerator

on another FPGA.

3.5.1.1.3 Tampering with User Logic

A malicious cloud provider can access the user’s RTL design. So, during the

integration of the user’s design with the shell in the cloud FPGA, the providers can

introduce malicious modifications in the design. This security threat is also known as

hardware Trojans that have been studied for decades [18]. On cloud FPGAs, the

Trojans can leak sensitive information, which has been protected by other schemes in

traditional cloud computing platforms. Also, the Trojans can sometimes be inserted

automatically [19]. One of the future challenges is to provide a remote attestation

feature which allows a remote user to verify the integrity and authenticity of his/her

designs in a cloud FPGA. This feature might be similar to the remote attestation

provided by Intel SGX [20].

3.5.1.2 Malicious Co-tenants

Besides the security threats from a malicious cloud provider, threats from malicious

users/co-tenants need to be considered. The basic principle of cloud computing is that

all the users can dynamically have a share of the large computation resource pool.

Due to this, a victim user can be allocated close to a malicious user. Moreover, the

victim and the malicious user might even share some computation resources.

Although, in general, the computation resources used by different users are logically

isolated, the computation resources are likely to be physically connected due to the

shared hardware platform. Attackers can leverage such a shared hardware platform

to perform a variety of attacks such as side-channel attacks, fault-injection attacks,

and establishment of covert channels.

3.5.1.2.1 Side Channel Attacks

The attack methods that exfiltrate information, not leak able through standard digital

output channels are called side-channel attacks. Power side-channel [21], timing side-

channel [22], electromagnetic side-channel [23], and photonic-emission side channel

[24] are a few examples of side-channels. An attacker must collect the side-channel

information of victim devices in these attacks. Hence, researchers have believed for a

long time that the side-channel attacks can be launched only by the attackers with

physical access to the devices. However, the ability to program the hardware deployed

78

in the cloud is similar to having physical access to the device. This allows the attackers

to monitor the side-channel information remotely in the physical environment, as

shown in Figure 3-6. The power consumption of a victim logic disturbs the power

distribution network on the FPGA, and measuring this disturbance allows the attacker

to estimate the power consumption of the victim. Remote power-based side-channel

attacks have been demonstrated in the literature [25]. Moreover, crosstalk between

FPGA long wires (a specific type of routing resource on FPGAs) can also serve as a

method to leak information [26].

3.5.1.2.2 Fault-injection Attacks

In fault-injection attacks, an attacker injects faults in the execution process of a

computation task. Thus, the device produces wrong outputs at the output ports. This

problem can have severe implications in a cryptographic system. In such a system,

faulty outputs can lead to a successful recovery of the secret key in the system [27].

Traditionally, an attacker injects faults by manipulating power or clock signals, or by

electromagnetic pulses. These methods require physical access to the target device.

However, using FPGAs shared with a victim, an attacker can build an on-chip fault

injector and tamper with the computation of the victim.

Figure 3-6 Remote power analysis attack for a multi-tenant FPGA. The side-
channel analysis (SCA) is performed through the power distribution network
(PDN) in spite of the logical isolation between the victim logic and the sensor [25].

79

3.5.1.2.3 Denial-of-Service Attacks

One property of concern for both the cloud providers and the users is the availability

of the cloud platform. Denial-of-service (DoS) attackers target the availability of this

platform. On an FPGA+CPU heterogeneous cloud, an attacker can launch a remote

DoS attack on the FPGA [28]. By programming a malicious circuit that switches on

and off frequently, a significant voltage drop is created on the FPGA, and the FPGA

shuts down to protect itself. An FPGA shut down by voltage emergency requires

manual power-cycling of the device.

3.5.1.2.4 Row-Hammer Attacks

Interestingly, in an FPGA+CPU heterogeneous system, the FPGA has a unique

privilege to access the DRAM without being detected by any monitoring mechanism

in the CPU. Also, the FPGA can bypass the cache in the processor and launch a row-

hammer attack (i.e., flipping the bits in DRAM by repeated accesses) twice as fast as

the traditional row-hammer attack launched by a CPU [29]. Consequently, the row-

hammer from an FPGA to a DRAM can trigger four times as many bit-flips as the CPU

initiated attacks. By exploiting this vulnerability, one can tamper with the data and

possibly the control flow of the program in the system.

3.5.1.3 Malicious IP Providers

The modern hardware design process is very complicated and time consuming.

Practitioners need to integrate 3rd-party intellectual property (3PIP) cores to speed up

the development process. This gives attackers a leeway to introduce malicious IPs,

and the IPs can be exploited later to leak information, e.g., via covert channels [30,

31]. This threat requires the attacker or the attacker’s logic to be present in the

proximity of the target FPGA fabric. Thus, the attacker can collect leaked information.

So, either the cloud provider or a cloud co-tenant has to be malicious as well.

3.5.1.3.1 Power Covert Channels

The idea of voltage manipulations used in power side-channel attacks can be

extended to establish covert channels on multi-tenant FPGAs. An example of this is

the work done by Gnad et al. in [32]. They have demonstrated high-speed covert-

channel (8MBit/s) communication. The transmitter of the covert channel uses ROs to

generate measurable voltage spikes according to the secret data to be transmitted.

The receiver, which is another tenant on the same FPGA chip, uses another set of

80

ROs to measure the voltage spikes. The attacker designs both the transmitter and the

receiver. This enables the attacker to modulate the transmitted signal leading to robust

communication, which can work in the presence of environmental noise introduced by

other tenants on the same FPGA fabric.

Establishing such power covert channels can be challenging if the receiver and the

transmitter are on separate dies. However, Giechaskiel et al. demonstrated such an

attack on cloud FPGAs in [31]. They established a power covert channel on cloud

FPGAs that are on separate dies. They use Xilinx UltraScale+ FPGAs for this.

UltraScale+ FPGAs used by cloud providers like Amazon and Huawei have three

distinct dies that are connected and powered through a silicon interposer. Thus, even

though the receiver and the transmitter are on separate dies, they still share the same

power supply through the silicon interposer. A successful covert channel, operating at

more than 4.6Mbps with an accuracy of over 97.6%, is established in such a setup.

Moreover, they showed that the channel is present for all combinations of the three

dies as receiver and transmitter.

3.5.1.3.2 Cross talk in Long Wires

Crosstalk phenomenon in long wires can be exploited to launch covert channel

communication as well [33]. The attacker is assumed to have a malicious IP core as

a part of the victim logic. It is also assumed that the attacker’s logic is on the same

FPGA fabric and is placed close to the victim’s logic. Since the adversary is the

designer of the IP core, he/she can define the internal placement and routing of his/her

blocks. Thus, the attacker can force his/her cores to use specific routing resources, in

particular long wires. The attack exploits the phenomenon that the delay of FPGA long

wires depends on the logical state of nearby wires. In particular, when the transmitter

wire (the long wire in the victim design) carries a logic 1, the delay of the nearby

receiving wire (the long wire in the attacker’s design) is lower than it would be if the

transmitter wire carried a logic 0. An RO involving the receiver long wire can measure

the delay of the receiver wire. This reveals the logic state of the nearby transmitter

long wire. Thus, a covert-channel is created for attackers to leak sensitive information

from a victim hardware design. This covert channel can work effectively, even in the

presence of power and temperature fluctuations.

3.5.1.3.3 Thermal Covert Channel

81

Most of the covert channels in the literature require the designs of attackers and

victims to be present on the same FPGA chip, i.e., a multi-tenant FPGA setup.

However, cloud providers have not adopted the multi-tenant FPGA model yet. There

exists a covert channel on the cloud FPGAs which does not require a multi-tenant

setup. The covert channel described by Tian et al. in [34] is an example. It exploits the

temporal sharing of a single FPGA. This channel can transmit data stealthily on a

single-tenant cloud FPGA. The transmitter heats an FPGA by operating many ROs.

Then, the transmitter turns off the ROs, leaves the cloud, and the receiver uses the

same FPGA. The receiver can measure the temperature of that FPGA with ROs. This

is possible because the frequency of an RO depends on the temperature of the FPGA.

The bandwidth of such a thermal covert-channel depends on the number of FPGAs

used simultaneously. A binary string can be transmitted and received by the temporal

sharing of four cloud FPGAs simultaneously. This covert channel was demonstrated

on the cloud FPGAs in Texas Advanced Computing Centre in [34].

3.5.1.4 Malicious FPGA Tools

Adversaries can reverse-engineer commercial FPGA design tools and embed

malicious functionalities in the toolchain. This way, malicious tools can alter the

compiled hardware design. Under this threat model, the adversary can inject Trojans

in a design. This maliciously-altered design behaves functionally and formally

equivalent to the original design throughout the design flow until the tool writes the

design as a bitstream configuration file [35].

Figure 3-7 Establishment of thermal covert channel on cloud FPGA [34]. The transmitter
uses 4 FPGAs simultaneously and sends the binary string 0101 in this example. The
orange colour of the FPGAs after the heating period represents high temperature. The
yellow colour of the FPGAs after the reconfiguration period on the receiver side
represents a temperature higher than the un-heated FPGAs, but lower than the heated
FPGAs.

82

3.5.2 Case Study – Remote Power Side-Channel Attacks

Security researchers have studied power side-channel attacks extensively in the past

decade [21,36]. An attacker can exploit the fact that the data that the system processes

affects the dynamic power consumption of the system [21]. So, by observing the power

consumption of the circuit, the attacker can infer the secret key in the cryptographic

hardware. This attack requires side-channel information to be collected from the

hardware. Consequently, it was believed that such attacks could be carried out only if

the attacker had physical proximity to the target system. However, in the context of

cloud FPGAs, a malicious user does not have physical access to the target FPGA.

Hence, all previous techniques would not work.

3.5.2.1 Threat Model

In general, remote power analysis attacks assume that the adversary’s logic and the

victim’s logic are on the same remote FPGA fabric [25, 37]. So, the adversary has

access to some of the LUTs in the remote FPGA. In other words, the attacker can

implement his/her logic on some part of the shared multi-tenant remote FPGA.

Although currently, the cloud FPGA providers do not allow sharing of an FPGA by

multiple users, it is envisioned that multi-tenant FPGAs will be realized soon for better

efficiency in terms of cost and utilization.

3.5.2.2 Key Idea

To launch a remote power analysis attack, an attacker has to implement a power

monitor on the FPGA fabric shared with the victim. For example, the attacker can

monitor the power consumption of a victim process by using time-to-digital converter

(TDC) sensors. Using the power traces collected by the on-chip power monitors, the

attacker can perform a power side-channel attack.

3.5.2.3 Attack Method

A key component in the attack is the power distribution network (PDN) on FPGA chips.

The PDN handles the distribution of power to all the components on the FPGA [38].

The PDN spans across different abstraction levels, from printed circuit board level to

individual transistors on the FPGA. The PDN consists of resistive, capacitive, and

inductive elements in the form of a power mesh. The power consumption of an FPGA

chip at any instant depends on the logic that is being operated at that time. The

83

changes in logic values affect the voltage and current drawn by the transistors in

FPGA. These voltage fluctuations affect the delays of the other logic circuits

implemented on the same FPGA due to the shared PDN. Hence, measuring delays in

one part of the FPGA reveals information about power consumption in a different part

of the FPGA. In particular, the higher the fluctuations in the voltage, the higher is the

change in the delays. So, the attacker can monitor the power fluctuations on the FPGA

by implementing appropriate delay sensors. To this end, the attacker can implement

a TDC on the shared FPGA as a delay sensor [37]. As the delays of the buffers in the

TDC depend on the supply voltage, the change in delays can be monitored as a proxy

for voltage fluctuations. When a victim process becomes active in a different region of

a multi-tenant FPGA, it disturbs the PDN. This results in a change in the delay values

of the TDC sensor. Thus, the attacker can create a mapping between the power traces

and the delay values. This mapping can then be used to perform a standard

Correlation Power Analysis (CPA) attack. Such an attack was demonstrated in [37].

The proof of concept for this attack was demonstrated on a victim AES core operating

at 24MHz on a Xilinx Spartan-6 FPGA. Two scenarios were considered: (1) when the

sensor is placed close to the victim AES logic, with a gap of just 4 FPGA slices, and

(2) when the sensor is placed far from the AES core. In both cases, the attacker can

recover the AES key.

3.5.2.4 Attacking the Processor System

In an FPGA+CPU heterogeneous chip, like a Xilinx Zynq system, an ARM processor

system (PS) shares the PDN with the FPGA fabric (programmable logic or PL). Zhao

et al. demonstrated an attack that uses the PL to monitor the power consumption of

the PS [25]. By doing so, they recovered the control flow of the program in the PS.

This vulnerability made a simple power analysis on RSA possible. Similarly, an FPGA-

to-processor correlation power analysis has been demonstrated in [39]. The authors

used a TDC on the FPGA to measure the power traces of the processor. Using that,

they attacked an AES core running on the processor with 111k to 127k power traces.

3.5.2.5 Experiments on Amazon Clouds

In DATE’20, Glamocanin et al. published their results on launching remote power side-

channel attacks on AWS EC2 F1 instances [40]. They chose to use TDC sensors for

measuring power consumption on a cloud FPGA, and the results showed that they

84

could successfully break the secret keys of all 16 bytes of an open-source AES-128

core with 5 × 105 traces. This result validated the feasibility of remote power side-

channel attacks on a commercial cloud platform, so this research area raises serious

concerns.

3.6 Trojan Countermeasures

Hardware Trojan detection techniques in the literature can be classified into two

categories: invasive and non-invasive. Invasive techniques require some modification

to the original design to aid in fingerprinting the IC and to verify the authenticity after

fabrication. A few examples include ring oscillator-based design-for-trust, IC

camouflaging, and logic encryption [41, 42].

FPGAs consist of a massive amount of programmable components, and invasive

techniques would require additional gates or hardware for each of these

programmable components. Thus, invasive techniques are not feasible for FPGAs as

this would lead to exponential silicon area overhead. Moreover, physical reverse

engineering techniques can be used to test a small number of ICs, but do not

guarantee that the remaining ICs are free from malicious modifications.

Non-invasive techniques, on the other hand, do not modify the original design. Instead,

a fingerprint of power, timing delay, and/or other side channels of a golden design, in

combination with functional testing, are used. Most of the techniques in this category

use statistical analysis to distinguish a malicious chip from a genuine one.

There are only a handful of works that detect hardware Trojans in the FPGA fabric [43,

44, 45].

3.6.1 Hardware Trojan Tolerance Using Modular Redundancy

A triple modular redundancy (TMR)-based technique is used to create a Trojan

tolerant design methodology in [44]. TMR is a renowned fault mitigation methodology

used to mask circuit faults wherein three redundant copies of the original system

perform a process, and the result is processed by a majority voting system to produce

a single output. Any single fault in one of the redundant modules will not lead to an

error at the output as the majority voter selects the result from the two faultless

modules. TMR, however, leads to 3 area and power overhead. To reduce the

85

overhead, adapted TMR (ATMR) is proposed where only two modules are used at a

time, and the third module is employed only when there is a mismatch in the results of

two active modules. An arbiter is used to identify the erroneous module. The

experimental results show a 1.5 x reduction in power by using ATMR with negligible

performance and hardware overhead when compared to TMR.

3.6.2 FPGA TrustFuzion

The FPGA TrustFuzion (FTZ) security mechanism is a non- destructive methodology

to detect and isolate anomalies such as Trojans in the FPGA fabric. The authors use

the term anomalies to indicate the presence of Trojans and reliability problems in

FPGA fabric. Anomalies are detected based on the violation to the spatial correlation

of intra-die PV in the FPGA fabric. These anomalies are then isolated such that any

designs can run reliably even on a Trojan-infected FPGA chip. FTZ is based on the

observation that physical characteristics of FPGA fabric’s intra-die process variation

(PV) display a huge amount of spatial correlation [46, 47, 48].

Anomalies are detected based on the spatial correlation violations. The device

locations with anomalies are isolated and excluded from being used in the designs

targeting the FPGA device with anomalies. The FPGA is then divided into different

zones accounting for the exclusion of locations with anomalies. These FPGA areas

are called TrustFuzion zones.

3.7 Summary

In the last decade, the use of FPGAs has increased significantly and has been

employed in various applications including mission critical systems and cloud services.

Studying the threat landscape for FPGA is critical not only from security perspective

alone but also to evaluate it alongside FPGA’s overall health. This chapter has

identified different FPGA Trojans that can be inserted at various phases of FPGA life

cycle. Most research on FPGA security emulates Trojan on FPGA while trusting the

FPGA fabric. Trojans can be inserted in even FPGA fabric, similar to any other type of

ICs/ASICs. FPGA fabric Trojans that can be inserted by an untrusted foundry and a

malicious actor in the supply chain in literature are identified, and the taxonomy is

introduced. The bitstream files and the designs in HDL format can also be corrupted

with Trojans. A comprehensive FPGA attack scenario has been presented using cloud

86

FPGAs case study. It provides an in-depth knowledge of the current and future nature

of threats and challenges to FPGA security, which in turn, impacts the reliability and

hence, FPGA’s health.

This chapter also discussed the countermeasures proposed in the literature. Only a

couple of techniques exist to verify the physical fabric of FPGA for hardware Trojan.

Trojans present in physical FPGA fabric could be detected by accounting for spatially

correlated intra-die process variations. The intra-die process variation based approach

can identify anomalies contributing to delay or voltage change by locating inconsistent

physical characteristics from the ones in close-by regions. Comprehensive work on

malicious modification effects can be done by designing and simulating layout without

and with anomalies. This would give a better insight into anomaly characteristics and

would potentially aid in indicating the precise type of anomaly inserted into the FPGA

fabric. However, many of the design details remain proprietary information and are not

available to researchers, thus impeding the research.

87

REFERENCES

[1] R.S. Chakraborty, S. Narasimhan, S. Bhunia, Hardware Trojan: threats and
 emerging solutions, in IEEE International High Level Design Validation and Test
 Workshop pp. 166–171, 2009.

[2] R. Karri, J. Rajendran, K. Rosenfeld, M. Tehranipoor, Trustworthy hardware:
 identifying and classifying hardware Trojans. IEEE Comput. 43(10), pp 39–46,
 2010.

[3] M. Tehranipoor, F. Koushanfar, A survey of hardware Trojan taxonomy and
 detections. IEEE Des. Test Comput. 27(1), pp 10–25, 2010.

[4] M. Tehranipoor, C. Wang, “Introduction to Hardware Security and Trust,”
 Springer, New York, 2012.

[5] S. Bhunia, M.S. Hsiao, M. Banga, S. Narasimhan, Hardware Trojan attacks:
 threat analysis and countermeasures. Proc. IEEE 102(8), pp 1229–1247,
 2014.

[6] K. Xiao, D. Forte, Y. Jin, R. Karri, S. Bhunia, M. Tehranipoor, Hardware
 Trojans: lessons learned after one decade of research. ACM Trans. Des.
 Autom. Electron. Syst. 22(1), pp 6:1–6:23, 2016.

[7] Amazon, Amazon EC2 F1 instances – run custom FPGAs in the AWS cloud,
 [Online]. Available at: https://aws.amazon.com/ec2/instance-types/f1/.
 Accessed on: 15 Dec 2019.

[8] G.T. Becker, F. Regazzoni, C. Paar, W.P. Burleson, Stealthy dopant-level
 hardware trojans, in International Workshop on Cryptographic Hardware and
 Embedded Systems pp. 197–214, 2013.

[9] A.N. Campbell, K.A. Peterson, D.M. Fleetwood, J.M. Soden, Effects of focused
 ion beam irradiation on MOS transistors, in IEEE International Reliability
 Physics Symposium pp. 72–81, 1997.

[10] V. Jyothi, M. Thoonoli, R. Stern, R. Karri, FPGA trust zone: incorporating trust
 and reliability into FPGA designs, in IEEE International Conference on
 Computer Design pp. 600–605, 2016.

[11] Y. Pino, V. Jyothi, M. French, Intra-die process variation aware anomaly
 detection in FPGAs, in IEEE International Test Conference pp. 1–6, 2014.

[12] D. Pellerin, “Announcing Amazon EC2 F1 Instances with Custom FPGAs,”
 [Online]. Available at:
 https://www.slideshare.net/AmazonWebServices/announcing-amazon-ec2-f1-
 instances-with-custom-fpgas. Accessed on: 10 Jul 2020.

https://aws/
https://www.slideshare.net/AmazonWebServices/announcing-amazon-ec2-f1-%09instances-with-custom-fpgas
https://www.slideshare.net/AmazonWebServices/announcing-amazon-ec2-f1-%09instances-with-custom-fpgas

88

[13] AWS, “AWS Shell Interface Specification”. [Online]. Available at:
 https://github.com/aws/aws-fpga/blob/
 master/hdk/docs/AWS_Shell_Interface_Specification.md. Accessed on: 10 Jul
 2020.

[14] AWS. 2018. AWS EC2 FPGA Software Development Kit. [Online]. Available at:
 https://github.com/aws/awsfpga/
 blob/master/sdk/README.md. Accessed on: 10 Jul 2020.

[15] Azure. 2020. Azure Machine Learning pricing. [Online]. Available at:
 https://azure.microsoft.com/en-us/pricing/ details/machine-learning/. Accessed
 on: 10 Jul 2020.

[16] Florian Benz, André Seffrin, and Sorin A. Huss. , Bil: A tool-chain for bitstream
 reverse-engineering. In International Conference on Field Programmable
 Logic and Applications. IEEE, New York, NY, 735–738, 2012.

[17] J. Baptiste Note and É. Rannaud. 2008, From the bitstream to the netlist. In
 Proceedings of the ACM/SIGDA International Symposium on Field
 Programmable Gate Arrays. ACM, New York, NY, 264–264, 2008.

[18] Kan Xiao, Domenic Forte, Yier Jin, Ramesh Karri, Swarup Bhunia, and
 Mohammad Tehranipoor. 2016. Hardware Trojans: Lessons Learned after One
 Decade of Research. ACM Transactions on Design Automation of Electronic
 Systems 22, 1, 1–23, 2016.

[19] Vinayaka Jyothi, Prashanth Krishnamurthy, Farshad Khorrami, and Ramesh
 Karri, TAINT: Tool for Automated INsertion of Trojans. In IEEE
 International Conference on Computer Design. IEEE Computer Society, New
 York, NY, pp 545–548, 2017.

[20] V. Costan and S. Devadas, Intel SGX Explained. IACR Cryptology ePrint
 Archive 2016, 086 pp 1–118, 2016.

[21] Paul C. Kocher, Joshua Jaffe, and Benjamin, Differential Power Analysis. In
 Annual International Cryptology Conference (Lecture Notes in Computer
 Science), Vol. 1666. Springer, Berlin, Heidelberg, pp 388–397, 1999.

[22] Paul C. Kocher, Timing Attacks on Implementations of Diffie-Hellman,
 RSA, DSS, and Other Systems. In Annual International Cryptology Conference
 (Lecture Notes in Computer Science), Vol. 1109. Springer, Berlin, Heidelberg,
 pp 104–113, 1996.

[23] Vincent Carlier, Hervé Chabanne, Emmanuelle Dottax, and Hervé Pelletier,
 Electromagnetic Side Channels of an FPGA Implementation of AES. IACR
 Cryptology ePrint Archive 2004, pp 145, 2004.

[24] J. Krämer, D. Nedospasov, A. Schlösser, and J.P. Seifert, Differential
 Photonic Emission Analysis. In International Workshop on Constructive Side-

https://github.com/aws/aws-fpga/blob/
https://azure.microsoft.com/en-us/pricing/

89

 Channel Analysis and Secure Design (Lecture Notes in Computer Science),
 Vol. 7864. Springer, Berlin, Heidelberg, pp 1–16, 2013.

[25] M. Zhao and G. Edward Suh, FPGA-Based Remote Power Side-Channel
 Attacks. In IEEE Symposium on Security and Privacy. IEEE Computer Society,
 New York, NY, pp 229–244, 2018.

[26] C. Ramesh et al., FPGA Side Channel Attacks without Physical Access. In
 IEEE Annual International Symposium on Field-Programmable Custom
 Computing Machines. IEEE Computer Society, New York, NY, pp 45–52, 2018.

[27] X. Guo, D. Mukhopadhyay, C. Jin, and R. Karri, Security analysis of concurrent
 error detection against differential fault analysis. Journal of Cryptographic
 Engineering 5, 3, pp 153–169, 2015.

[28] Dennis R. E. Gnad, F. Oboril, and M. Baradaran Tahoori, Voltage Drop-based
 Fault Attacks on FPGAs using Valid Bitstreams. In International Conference on
 Field Programmable Logic and Applications. IEEE, New York, NY, pp 1–7,
 2017.

[29] Z. Weissman et al., JackHammer: Efficient Rowhammer on Heterogeneous
 FPGA-CPU Platforms. In IACR Transactions on Cryptographic Hardware and
 Embedded Systems (TCHES), Volume 2020, Issue 3, 2020.

[30] I. Giechaskiel, K. Eguro, and K. B Rasmussen, Leakier wires: Exploiting FPGA
 Long Wires for Covert-and Side-channel Attacks. ACM Transactions on
 Reconfigurable Technology and Systems 12, 3, pp 1–29. 2019.

[31] I. Giechaskiel, K. Rasmussen, and J. Szefer, Reading Between the Dies:
 Cross-SLR Covert Channels on Multi-Tenant Cloud FPGAs. In IEEE
 International Conference on Computer Design. IEEE, New York, NY, pp 1–10,
 2019.

[32] D. Gnad, C. D. K. Nguyen, S. H. Gillani, and M. B. Tahoori, Voltage-based
 Covert Channels in Multi-Tenant FPGAs, Cryptology ePrint Archive, Report
 2019/1394 (2019).

[33] I. Giechaskiel, K. Bonne Rasmussen, and K. Eguro, Leaky Wires: Information
 Leakage and Covert Communication Between FPGA Long Wires. In
 Proceedings of the Asia Conference on Computer and Communications
 Security. ACM, New York, NY, pp 15–27, 2018.

[34] S. Tian and J. Szefer, Temporal Thermal Covert Channels in Cloud FPGAs. In
 Proceedings of the ACM/SIGDA International Symposium on Field-
 Programmable Gate Arrays. ACM, New York, NY, pp 298–303, 2019.

[35] C. Krieg, C. Wolf, and A. Jantsch, Malicious LUT: A Stealthy FPGA Trojan
 Injected and Triggered by the Design Flow. In Proceedings of the International
 Conference on Computer-Aided Design. ACM, New York, NY, 43, 2016.

90

[36] S. Mangard, E. Oswald, and T. Popp, Power analysis attacks: Revealing the
 secrets of smart cards. Springer, Berlin, Heidelberg, 2007.

[37] F. Schellenberg, D. R. E. Gnad, A. Moradi, and M. B. Tahoori, An Inside Job:
 Remote Power Analysis Attacks on FPGAs. In Design, Automation & Test in
 Europe Conference & Exhibition. IEEE, New York, NY, pp 1111–1116, 2018.

[38] K. Arabi, R. Saleh, and X. Meng, Power Supply Noise in SoCs: Metrics,
 Management, and Measurement. IEEE Design & Test of Computers 24, 3, pp
 236–244, 2007.

[39] J. Gravellier, J. Dutertre, Y. Teglia, P. Loubet-Moundi, and F. Olivier, Remote
 Side- Channel Attacks on Heterogeneous SoC. In International Conference on
 Smart Card Research and Advanced Applications (Lecture Notes in Computer
 Science), Vol. 11833. Springer, Berlin, Heidelberg, pp 109–125, 2019.

[40] O. Glamocanin, L. Coulon, F. Regazzoni, and M. Stojilovic, Are Cloud FPGAs
 Really Vulnerable to Power Analysis Attacks?. In Design, Automation & Test in
 Europe Conference & Exhibition. IEEE, New York, NY, 2020.

[41] J. Rajendran, V. Jyothi, O. Sinanoglu, R. Karri, Design and analysis of ring
 oscillator based design-for-trust technique, in IEEE VLSI Test Symposium pp.
 105–110, 2011.

[42] J. Rajendran, Y. Pino, O. Sinanoglu, R. Karri, Logic encryption: a fault analysis
 perspective, in Design, Automation Test in Europe Conference Exhibition, pp.
 953–958, 2012.

[43] V. Jyothi, M. Thoonoli, R. Stern, R. Karri, FPGA trust zone: incorporating trust
 and reliability into FPGA designs, in IEEE International Conference on
 Computer Design pp. 600– 605, 2016.

[44] S. Mal-Sarkar, A. Krishna, A. Ghosh, S. Bhunia, Hardware trojan attacks in
 FPGA devices: threat analysis and effective counter measures, in ACM Great
 Lakes Symposium on VLSI Design pp. 287–292, 2014.

[45] Y. Pino, V. Jyothi, M. French, Intra-die process variation aware anomaly
 detection in FPGAs, in IEEE International Test Conference pp. 1–6, 2014.

[46] A. Agarwal, D. Blaauw, V. Zolotov, Statistical timing analysis for intra-die
 process variations with spatial correlations, in IEEE International Conference
 on Computer Design pp. 900–907, 2003.

[47] H. Chang, S.S. Sapatnekar, Statistical timing analysis under spatial
 correlations, in IEEE Transactions on Computer-Aided Design of Integrated
 Circuits and System pp. 1467–1482, 2005.

[48] B. Cline, K. Chopra, D. Blaauw, Y. Cao, Analysis and modeling of CD variation
 for statistical static timing, in IEEE International Conference on Computer
 Design pp. 60–66, 2006.

91

4 FREQUENCY DEGRADATION (FRED) DETECTION AND
MEASUREMENT SENSOR

This chapter is built on the requirements emanating from the realms of FPGA reliability

and security, as discussed in Chapter 2. Divided into six sections, as shown in Figure

4-1, the Section-1 gives an overview of the various factors that essentialise and justify

the requirement of highly efficient and accurate on-chip sensors to monitor its health

and performance. Section-2 provides a deep insight into the current research on

capturing frequency/delay variability in VLSI circuits. In Section-3, the design and

implementation of the FRED sensor in a 28 nm process technology is elaborated.

Section-4 provides simulation and real-time experimentation alongwith results

whereas Section-5 gives performance evaluation of the proposed sensor with the

recommendation for the most optimal sensor configuration. The chapter is

summarized and concluded in Section-6.

4.1 Introduction

The requirement for higher reliability, optimal timing performance, and lower power

consumption have remained the focal point of the manufacturers of VLSI devices such

as the FPGAs. Due to the continual miniaturisation of transistor technology [1], as

Figure 4-1 The Disposition of Chapter 4.

92

shown in Figure 4-2, there is an increased probability of aggravation in degradation

mechanisms (NBTI/PBTI, HCI, and EM) [2], and ease of accessibility for side-channel

analysis of electrical and acoustic parameters. Where it increasingly impacts FPGA

reliability, it also makes it vulnerable to hardware attacks, particularly in the wake of

growing cybersecurity threats and enhanced knowledge as well as skills of individuals

working toward infiltrating the hardware base of computational systems. This may lead

to a gradual build-up of various types of malicious and stealthy electronic circuitries

and codes (hardware Trojans) inserted into FPGAs’ fabric during their pre and post-

fabrication periods. Leveraging the degradation mechanisms of ageing, observable

with delay degradation due to abrupt changes in CMOS circuits’ electrical behaviour

under high-stress environment, the reliable and secure functioning of emerging

industrial IoT, cyber-physical, and autonomous systems are highly likely to be

jeopardized and severely challenged. It is, therefore, essential to identify, monitor, and

precisely measure electrical parameters of the CMOS base for an unbiased

characterisation of the ageing phenomenon in FPGAs, thereby ensuring an effective

regime of reliability and security.

Especially, the key FPGA performance parameters of frequency and delay must be

observed to ensure unhindered functioning of applications built using FPGA primitives.

It is well known that the frequency and the corresponding delay degradation in

transistors are the function of ageing induced by the degradation mechanisms of

Figure 4-2 VLSI Ageing Vs Technology miniaturisation [2].

93

negative bias temperature instability (NBTI) and positive bias temperature instability

(PBTI) among other significant phenomena such as hot carrier injection (HCI) and

electromigration (EM).

Several questions warrant attention to understand and interpret the detection and

measurement of ageing fully at the outset. For instance, how the degradation

mechanisms of N/PBTI impact the CMOS devices with high-K dielectric? Is it possible

to detect minor shifts in N/PFETs parameters such as threshold voltage, and how do

they relate to frequency degradation/delay variability in an FPGA? Are the ring

oscillator-based on-chip sensors a viable option to improve the detectability of minute

parametric shifts in frequency, delays, and hence the device ageing to impair hardware

Trojans? We have attempted to seek answers to these questions in the following

sections.

4.2 Current Research on Frequency/Delay Variability Detection

Despite the best efforts of the manufacturers, no two FPGAs exhibit the same

parametric behaviour. Delay variations, in particular, impact them at the time of

manufacturing and throughout their operating lifetime. Three primary sources of delay

variations identified as physical, environmental, and temporal variabilities act as

catalysts in different FPGA applications. The physical variability relates to the process

variation, which is primarily the parametric variation of components in an FPGA due

to the variability (inconsistencies) in fabrication processes. It accounts for as much as

± 15% of delay variation at the instance of manufacturing [3]. Environmental variability

implies fluctuations in supply voltage, thermal coupling, clock jitter [4], and crosstalk

that causes uncertain or unexpected delays. Whereas, temporal variability includes

the degradation mechanisms of BTI, HCI, and TDDB. BTI, in particular, causes shifts

in the threshold voltage of N/PFETs that result in a gradual deterioration in switching

performance with more than 20% reduction in the circuit operating speed of 65 nm

technology nodes [3].

Various delay quantification methods and circuits have been put forth. Ring Oscillators

(ROs), for instance, besides being employed for characterising the impact of the intra-

die process, temperature, and voltage variations, are commonly used to infer delays

[5] and [6]. Nevertheless, they are prone to self-heating due to their free-running states

94

and dynamic power dissipation. As a result, it becomes onerous to distinguish the

difference in propagation delay between the rising and falling edges of the signal.

Time to Digital Converters (TDCs) have been used for precise delay measurements

of the components they are made up of, such as registers and buffers (as delay

elements), followed by digitization. Different types of delay elements such as Tapped

Delay Lines [7] and Vernier Delay Lines [8] provide improved delay measurement

resolution for TDCs. They, however, struggle to maintain identical skew for the start

and end signals, which is essentially required to cancel out the asymmetric effect.

Degradation in logic applications has also been inferred by manipulating their

repeatability through Tunable Replica Circuits (TRCs). These circuits are excited with

either worst-case stress data for degradation, or with vectors from the application logic.

The overall performance is then monitored by employing TDC (Time to Digital

Converters) or timing error detection circuitry [9]. The dominant source of degradation,

such as N/PBTI, is usually tapped for constructing the worst-case data [10]. The

accuracy of such a degradation inference is not well ascertained and explored [11].

However, combined with measurement technologies, TRCs can infer degradation

more effectively, in addition to the quantification of intra-die process variation, junction

temperature, and voltage variability [12]. This is because the circuit is designed to

behave in a similar fashion to the critical paths in the application circuit so that its timing

can be used to infer timing performance. Inference is enhanced by combining TRCs

with error recovery [10] that allows response to fast-changing variations.

In addition, unlike canary circuits [13], for instance, TRC does not need to fail with a

prescribed margin before the critical path fails. Instead, when the TRC reports an error,

it is assumed that the critical path contains erroneous data as well, and error recovery

is initiated. However, the main drawbacks, as compared to error-detection circuits [14-

16] are the lack of ability to respond to within-die variations (thus requiring a small

within-die margin), and the necessity of tuning the TRC at test time.

 An extensive application of frequency sweep based techniques that introduce timing

failure in the circuit to measure delay variations is also proven suitable for signature

analysis, failure rate detection, and transition probability. Timing measurement

employing signature analysis implies that a functional application configured to remain

in the same state, when pulsed with the same input signals, will yield the same output

95

[17]. Subsequently, the output of the circuit under test is analysed either by generating

a signature or by storing the vectors in a designated memory. An example is the

Multiple-Input Signature Register (MISR) [18], which is used to generate signatures,

internally or externally to the device. It improves the time consumed in measurement

and simplifies the comparison for each output value. Similarly, a Linear-Feedback-

Shift-Register (LFSR) is also shown to be suitable owing to its deterministic response,

which helps produce the same input, if initialized with the same signal. On the other

hand, in the case of transition probability, the circuit under test is stimulated with

different input vectors while the clock frequency is gradually increased. For each

frequency, the output transition probability is logged in the accumulator from which the

circuit delay is determined by exploiting the clock jitter and the asymmetry between

the rising and falling delays. The circuit delay measurement based on this method

offers high accuracy with lower overheads [19].

In addition to the above, shadow registers have been employed to monitor circuits for

timing failure, however, not strictly the timing measurement. For instance, failure

prediction [20] has been used to provide a warning in case of the violation of a pre-

defined guard-band, thereby indicating an impending timing failure. Primarily, the

shadow registers are made timing-critical as compared to the register they shadow, to

initiate timing failure much earlier with the increase in circuit delay. The shadow

register shares both the clock signal and the D-input from the main register but with

an additional delay in the path of the D-input. It results in the shadow register being

more timing-sensitive than the main, resultantly triggering timing failure much earlier.

Researchers [21], [22] have also proposed to enhance the performance of such

monitoring circuits by advancing the clock signals to the shadow registers for pre-

emptive latching and gradually increasing guard-bands to retrieve the higher amount

of delay information. Presumably, such an arrangement may be less susceptible to

process variations and helps enhance the probability of detection.

In [5], a flip flop named ‘Razor’ is proposed for the detection and response to the

occurrence of timing errors. It is the main pipeline register that is configured to trigger

at the rising edge and is augmented with a shadow register that samples on the falling

edge of the clock. Such configuration provides additional time for the shadow register

to capture the correct state of the signal. The Razor flags an error as the two registers

latch different data, indicating that a timing violation has occurred in the main register.

96

This raises issues like metastability, which makes it hard to find a correct latched value.

However, in improved designs, a metastability detector is introduced to mitigate such

risks of metastability. The detector is implemented and used in the comparator circuitry

to detect metastability and effect correction further. Researchers have observed that

the timing faults due to all kinds of delay variability are detectable. It is, however,

opined that the introduction and detection of timing errors make this circuit design non-

deterministic and hence not viable for tightly coupled and hard real-time constraints-

based systems.

The evaluation of the abovementioned methods and circuits for the detection and

measurement of delay variability and degradation reveals several significant points.

The sensors based on ring oscillators, for example, provide simple circuits that are

manufactured on test chips, however, their vulnerability to self-heating and averaged

rise and fall times, make TDCs a more viable choice. Though slightly more

complicated, TDCs such as Tapped Delay Lines are not affected by these issues. At

the same time, optimal thermal and power management of RO structures can help

overcome the problems mentioned above.

Establishing the timing performance of a VLSI device, under different operating

conditions and at the design corners, is key to the differentiation between a healthy

and faulty (hardware Trojan-infected) chip. Signature analysis and Transition

Probability (TP) are suitable as non-invasive methods for this purpose, with TP being

more capable of achieving it with lower overhead and quick measurement time.

This points to the requirement of sensing circuits and methods which can directly

measure the impact of frequency/delay variability on an application circuit itself,

accounting for the process, environmental and temporal variabilities, with a precise

inference of how the behaviour of a circuit elsewhere on the die applies to the

application circuit. It should be accomplished without affecting the normal functioning

of the circuit and observing gradual changes in the delay of the circuit for the signs of

timing failure which has occurred or is impending. It is achievable by combining the

strengths of frequency sweep and shadow register-based timing measurement

schemes into a novel ring oscillator architecture to detect delay variability in an FPGA.

97

4.3 FREquency Degradation (FRED) Detection Sensor – Architecture

A lightweight sensor based on ring oscillators, called FRED sensor, is presented in

this section. It is designed to help detect minute frequency/delay variations under

nominal and accelerated negative and positive bias temperature instability (N/PBTI)

degradation/ageing mechanisms in high-K dielectric material technology nodes, such

as the target 28 nm FPGAs. Before delving deep into the sensor design and

implementation, a brief analysis and understanding of ageing/degradation

mechanisms are essential, as they form the basis of the design for this novel sensor.

4.3.1 Degradation Mechanisms and Device Ageing

During the functional mode of an FPGA, the transistors tend to age primarily due to

N/PBTI and HCI degradation mechanisms. This work, however, is focused on N/PBTI.

Essentially, N/PBTI acts as a catalyst to ageing accompanied by frequency shifts,

timing issues, and propagation delays. There are primarily two main models that

explain the BTI mechanisms, namely the Reaction-Diffusion (RD) and Trapping-De-

trapping (TD) models. According to the Reaction-Diffusion (RD) model, BTI sets in

with the generation of interface traps due to the prolonged duration of the

negative/positive bias and high-temperature stresses on PMOS/NMOS transistors. In

the case of negative bias temperature instability (NBTI), the ‘Reaction’ process occurs

with the ON state of the PMOS transistor during which the covalent bond of ‘Si-H’

Figure 4-3 Depiction of BTI Mechanisms. (a) Reaction-Diffusion (RD) Mechanism. (b)
Trapping-Detrapping (TD) Mechanism.

98

disintegrates at the interface of Si-oxide /Si-crystal lattice boundary. The disbanded

hydrogen atoms combine to create H2, thereby resulting in diffusion at the gate of the

transistor, as shown in Figure 4-3(a). These disintegrated ‘Si-H’ bonds generate

positively charged traps (called holes) that cause a negative shift in threshold voltage

Vth. This, in turn, results in reduced transistor current and increased gate voltage. As

soon as the PMOS transistor switches to an OFF state (Vgs = 0), with stress removed,

the recovery process is initiated, and H diffuses back to anneal the disintegrated ‘Si-

H’ bonds that leads to the reduced number of interface traps and a passive recovery

from NBTI degradation.

In Trapping – DeTrapping (TD) model [23] when the PMOS transistor is in the ON

state, modulation of trap energy, relative to Fermi energy level, is initiated

(Figure 4-3(b)). As a result, the trap generated may gain energy high enough to

capture a charge carrier. It reduces the number of carriers in the channel and

modulates the threshold voltage, ultimately causing scattering and reduced mobility.

This whole process is termed as ‘Trapping.’ Whereas during the OFF state of the

PMOS transistor, some of the traps undergo the annealing process, similar to the RD

model, and build up an equilibrium, thereby helping the transistor achieve partial

recovery.

Although the impact of PBTI has been insignificant in previous technologies above 40

nm, it has now become the source of a significant shift in threshold voltage alongside

NBTI in NMOS transistors, primarily due to the introduction of high k-dielectrics [24].

Figure 4-4 Dynamic BTI behaviour modelling based on TD mechanism. Net
increase in threshold voltage Vth is observed despite passive recovery.

99

It is, therefore, a common practise to model the impact of the PBTI effect similar to the

NBTI degradation mechanism.

Based on the TD model, it is inferred that the Vth of P/NFETs increases logarithmically.

The overall dynamic BTI behaviour can, therefore, be shown as in Figure 4-4.

Mathematically, if at time t = 0, the transistor is switched ON with no application of

voltage stress, the threshold voltage shift ∆Vth until the application of stress at time tst

can be expressed as:

 ∆Vth (tst) = 𝜑𝜑st (X+log (1+Ytst)) (4-1)

 ∆Vth (tst + trec) = 𝜑𝜑rec (X + log(1+Ytrec)) + ∆Vth (tst) (1- (𝑋𝑋+𝑙𝑙𝑙𝑙𝑙𝑙(1+𝑌𝑌𝑌𝑌𝑟𝑟𝑟𝑟𝑟𝑟)
(𝑋𝑋+𝑙𝑙𝑙𝑙𝑙𝑙(1+𝑌𝑌 (𝑡𝑡𝑠𝑠𝑠𝑠 + 𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟))

) (4-2)

 𝜑𝜑 ~ 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾(− 𝐸𝐸
𝑘𝑘𝑘𝑘

)𝑒𝑒𝑒𝑒𝑒𝑒(𝑍𝑍𝑍𝑍𝑑𝑑𝑑𝑑𝑑𝑑/𝑟𝑟

𝑘𝑘𝑘𝑘𝑡𝑡𝑜𝑜𝑜𝑜
) (4-3)

where, X, Y, and Z are constants (with negligible variation) across the same

technology node, 𝝋𝝋 is the main variation parameter (function of T and Vdds / Vddr), K

represents the fitting parameter, E is the activation energy, tox is the oxide thickness,

k is the Boltzmann’s constant, T is the temperature, and Vdds and Vddr represent the

supply voltages under the stress and recovery conditions, respectively. This VLSI

device level BTI model reflects the strong dependence of the Vth shift on the voltage

and temperature during the stress as well as recovery modes with an eventual impact

on the device ageing in terms of increased delays. This forms the basis of our sensor

design and subsequent highly accelerated stress and life tests to validate its

performance.

100

4.3.2 The Sensor Architecture

A detailed architecture of a novel ring oscillator-based FRED sensor is shown in Figure

4-5. As mentioned earlier, the main purpose of developing this sensor is to enable

high-sensitivity as well as specificity to swiftly and correctly detect changes in

frequency and corresponding delays that originate and increase with variations in the

electrical parameters of the CMOS transistors under the influence of N/PBTI

degradation mechanisms exacerbated by the presence and impact of the hardware

Trojan attack.

4.3.2.1 Design Considerations and Objectives

In order to achieve the stated purpose, few essential design considerations cum

objectives have been devised. These include 1) the ageing rate of the sensor must be

very high to pick up a hardware Trojan based on threshold voltage shifts, occurring

with the initiation of N/PBTI mechanism, 2) the sensor must not undergo any ageing

during the fabrication/manufacturing testing phases (this requires operation

management -when to switch on and off), 3) the impact of process variations on the

Figure 4-5 The Architecture of FREquency Degradation (FRED) Detection and
Measurement Sensor.

101

sensor must be negligible; and 4) finally, the sensor, itself, must also be resilient to

malicious attacks.

Here, it is important to note that the incremental shifts in threshold voltages of

N/PFETs, due to prolonged positive/negative bias and high junction temperatures in

FPGAs or sudden bursts of hotspots and high bias, inflict the frequency

degradation/lowering in ring oscillators, which in turn, causes path delays and hence

point at the onset of ageing. Accordingly, the FRED sensor skeleton, shown in

Figure 4-5, is architectured to have dual-sensor segments – the Fixed Sensor
Segment (FSS) and the Dynamic Sensor Segment (DSS).

The Dynamic Sensor Segment (DSS) is designed to experience bias and thermal

stresses at accelerated rates for rapid ageing. This is made possible by employing

gates having high threshold voltage, with the overall purpose of enabling faster and

more accurate identification of any malicious anomaly. The Fixed Sensor Segment

(FSS), on the other hand, is a minimum-stressed array of gates and is used to provide

frequency reference for comparison with DSS to determine delays. FSS is, therefore,

gated off from the power line during the time the FPGA is in functional mode to

experience minimum stress. The frequency difference between these two segments

is then used to detect the presence of a hardware Trojan that sheds its payload due

to shifts in the threshold voltages of CMOS transistors. The larger the frequency
difference is, the higher the probability of the presence of a malicious anomaly,
manifested as a path/propagation delay.

However, the presence of intra-die process variations could affect the accuracy of

anomaly detection and identification. We have made an effort to address this concern

by placing the proposed sensor segments close to each other. It is further

strengthened with an effective statistical analysis that differentiates the frequency

degradation due to threshold voltage shifts from other intra-die process variations. The

simulation and experimental results presented in the ensuing paragraphs support this

analytical process.

4.3.2.2 The Sensor Operation

Having discussed the main structural components of DSS and FSS, the complete

operational circuitry of the FRED sensor is presented herein. As shown in Figure 4-5,

in addition to the RO-based segments, the sensor consists of the auxiliary elements,

102

namely, the control module, a multiplexer, and a counter. The counter is designed to

measure the cycle counts of both RO-based sensor segments at predefined timings,

given and controlled by the timer. However, because of the possible measurement

period variability due to the circuit ageing, the system clock is employed in the timer

to counter and minimize the extent of variation. The multiplexer selects between the

two segments to enable their frequency measurement, which is, in turn, controlled by

the SEGSEL (Segment Select) signal. The FSS (Fixed Sensor Segment) and DSS

(Dynamic Sensor Segment) have the same configuration of ring oscillators (number

and type of gates), with the underlined CMOS transistors having high threshold voltage

(HVth). Both sensor segments are, therefore, developed with 21-stage (smaller

configuration) NAND gates, keeping in view the counter’s measurement speed

limitation for the given 28 nm FPGA technology. In this case, a 16-bit counter is

optimized to operate at the frequency of up to 1GHz. Hence, the NAND-based RO

segments are implemented in a 21-stage configuration. The rationale behind this type

and stage configuration is explained in Section 4.3.2.2.2.

In order to connect the FSS and DSS segments to the power supply, sleep transistors

(shown in Figure 4-5) are used such that PMOS sleep transistors act as the header

switches and control the supply connection between the VDD and the sensor segments.

NMOS sleep transistors, on the other hand, act as the footer switches and control the

supply connection between the sensor segments and the VSS.

4.3.2.2.1 Modes of Operation

Two modes of operation, namely ‘the functional mode’ and ‘the detection mode,’

have been devised for the FRED sensor. These modes are executed through the

control module by different mode signals as delineated below:

• When the FPGA is in functional mode, the fixed sensor segment (FSS) is kept

disconnected from VDD and VSS. The dynamic sensor segment (DSS) is gated

ON and exposed to stresses. Consequently, the frequency of DSS will degrade

gradually with shifts in threshold voltages of N/PFETs. The delays are eventually

detected as traces of ageing.

• When the FPGA is in detection mode, both the segments are gated ON by

connecting them to the power supply. DSS will experience a gradual as well as

103

sudden frequency degradation (for instance, with the activation of hardware

Trojan) at a much higher rate as compared with FSS.

The timer and counter are enabled to measure the cycle counts of sensor segments

(FSS and DSS). Accordingly, the SEGSEL (Segment Select) signal is generated to

select the segment whose frequency needs to be measured. It is pertinent to note that

during the detection mode, the applications running on FPGA are turned off by the

mode signals for a very short period. The modes of operation are designed to ensure

that the frequency difference between the FSS and DSS sensor segments is detected

precisely with each increment over time as the FSS (Fixed Sensor Segment) cannot

be gated ON in isolation. Also, in the normal functional mode, as the FSS is kept

isolated from the power supply, it is extremely challenging for an adversary or a rogue

element to observe its presence or for that matter, change its mode to delays cum

ageing detection. The only method that could enable the modification or disabling of

the FRED sensor would be the bitstream reverse engineering process [25], which

again is quite cumbersome and unreliable. It is, therefore, very difficult for the
rogue element to detect, modify, or damage the sensor.

As is evident from Figure 4-5, the NAND gates (when replaced with inverters) of the

FSS and DSS segments are placed physically next to each other as a small composite

module. This helps in reducing the process and environmental variations between

them to a considerable extent. It is, therefore, assumed that the frequency difference

between the FSS and DSS segments would be negligible for the malicious anomaly-

free FPGA. However, this may not be true in the case of the normal functional mode

of the FPGA when it is kept in operation for a longer duration. The dynamic sensor

segment (DSS) may have suffered delay degradation and hence age from its own

oscillations, whereas the fixed sensor segment (FSS) remains unaffected as it is gated

OFF during the normal functional mode.

The FRED sensor presents a small area overhead (explained in Section-4.5.2) with

no constraint on the circuit layout and is designed to be robust against any removal

and tampering attempts by rogue elements. Moreover, we have devised two working

modes of the sensor to ensure that the Fixed Sensor Segment is not gated on its own

and eventually prevent the integrity of the measured frequency difference between the

two sensor segments (FSS and DSS) from being modified to mask detection.

104

4.3.2.2.2 Rationale for 21-NAND Gate based RO Configuration

The selection of NAND gate with HVth (0.46 – 0.85 Volts) is based on the simulation

results, shown in Figure 4-6(a) and (b). The chains comprise a configuration of 5, 9,

21, and 31 NAND gates with SVth (Standard threshold voltage – 0.46V), HVth (High

threshold voltage – 0.85V), and LVth (Low threshold voltage < 0.46V) ranges. The

NAND chains are exposed to high clock stress for an uninterrupted period of 27

months. The response is captured in Figure 4-6(a). It is observed that there is a

considerable effect of the clock stress on the degradation of NAND chains. This

implies that the number of NAND gates does influence the level of degradation,

despite the fact that they experience the same amount of stress. It, ultimately, results

in a modest rate of delay degradation.

Taking into account the threshold voltage parameter, the NAND chains comprising

different NAND sizes are simulated using all the three ranges, i.e., SVth , HVth, and

LVth. It is observed that the chain of NAND gates with HVth undergoes a higher level

of degradation as compared to the chain with LVth or SVth. For instance, as shown in

Figure 4-6(b), the NAND-21 with HVth has a more pronounced degradation than the

NAND-21 chain with SVth.

In the search for the most effective configuration for FRED sensor segments, NAND

and NOR gate chains with HVth are also simulated at 25 degrees Celsius and VDD at

Figure 4-6 Degradation of NAND gate (as Sensor Segment) with (a) different number of
stages and (b) different threshold voltage levels.

105

1.2V, keeping the clock stress at 500 MHz. The results shown in Figure 4-7 confirm

that the gate type (same as the number of gates) does present a modest impact on

the ageing speed. It is obvious that the NAND chain ages relatively faster than the

others whereas the NOR and the Inverter chains exhibit approximately the same

percentage of delay degradation. Therefore, in order to develop FRED sensor

segments, the NAND gates’ chain with HVth is considered viable to conduct further

simulation tests and verify the sensor’s detectability.

4.4 Implementation Results and Analysis – Simulation and
Experiments

4.4.1 The Sensor Simulation

Before hardware implementation of the FRED sensor architecture in a 28 nm FPGA,

a comprehensive simulation test regime is designed to verify its architectural concept.

For this purpose, the AgeMOS-II model of Cadence Virtuoso RelXpert Reliability

Simulator is leveraged to investigate the individual as well as the combined effect of

N/PBTI on the ageing and delay degradation of P/NMOS transistors at the gate level.

Initially, different numerical sets of NAND gates (9 and 21-stage – an arbitrary

selection for minimum area and power consumption) with the same capacitive load

and clock stress at 500 MHz are simulated at 25, 80, and 110 degrees Celsius at a

nominal voltage of 1.2 V. The DSS is gated ON and subjected to N/PBTI stressing

Figure 4-7 Degradation pattern of different gate configurations.

106

whereas the FSS is kept gated OFF. In the detection phase however, as mentioned

earlier, both the segments are gated ON and their frequency differences are measured

as dictated by the SEGSEL signal. The timer is set for the measurement time of 100

μs during the simulation process. The frequencies of the FRED sensor segments are

retrieved from the counter (cycle count/measurement time) as soon as it is clocked by

the signal from the segment.

4.4.1.1 Some Analytics – Stage Analysis

The FRED sensors with 9-stage and 21-stage segments are simulated at 25⁰C, 80⁰C,

and 110⁰C with the nominal-case (PVa) intra-die process variations, given in

Table 4-1. Accordingly, 1000 chips are generated using Monte Carlo simulation by

RelXpert Simulator with the maximum delay variability set at 24% and a 6% step

progression. As can be seen in Figure 4-8(a), there is a gradual increase in the

frequency difference fdiff between the 9-stage fixed and dynamic sensor segments

(FSS and DSS). A healthy FPGA has a Dvar (Delay Variability) near to 0% with ±1%

Table 4-1 Process variations profile for inter and intra process variations.

Figure 4-8 Frequency Difference distribution of the FRED sensor with PVa employing
(a) 9-Stage Sensor Segments and (b) 21-Stage Sensor Segments.

107

difference depending upon the impact of process variations. It is, therefore, prudent to

refer to the range of healthy FPGA frequency differences fdiff(h) to compare and

determine the subsequent Delay variabilities. For instance, at Dvar = 6% the fdiff

increases to the ranges between 5 and 20 MHz as a result of high bias and thermal

stresses on the dynamic sensor segment (DSS). It can be seen that even the minimum

or lowest fdiff at Dvar = 6% is larger than the largest fdiff(h) observable in the healthy

FPGA range of frequency differences. This implies that as the Delay variability

approaches 6%, it is readily detected by the sensor. In other words, the detection rate

is 100% in this case. Similarly, at Dvar = 12%, 18%, and 24%, the fdiff increases with

gradual increase in stresses experienced by DSS.

The frequency difference fdiff profile of 21-stage sensor segments, shown in

Figure 4-8(b), although much smaller as compared to the 9-stage sensor segments, it

still enables the FRED sensor to detect Dvar with a 100% detection rate. This implies

that the absolute value of fdiff between the FSS and DSS sensor segments may be

affected with larger number of RO-segment stages. Nevertheless, the Dvar detection

rate is not affected significantly.

4.4.1.2 Process Variations and Temperature Analysis

The accurate detection of Delay variability by the sensor is partially dependent on the

intra-die process variations that may exist between its fixed and dynamic sensor

segments. For an effective and a reliable performance by the sensor, it is important to

keep as minimum and small the impact of intra-die variations as possible. Table 4-1

Figure 4-9 Frequency Difference (fdiff) distribution of a 21-Stage FSS and DSS
segment sensor with: (a) PVb and the temperature of 80⁰C and (b) PVc , and a

temperature of 110⁰C.

108

shows the different intra-die and inter-die process variations with different impact

levels starting from PVa to PVc – Best, Typical, and Worst-case. One of the ways to

minimize the impact of process variations is designing the FRED sensor as a small

module and then using the hard macro, place the FSS and DSS sensor segments

physically close to each other. Looking at the simulation results of 1000 chips with

process variations PVb and PVc in Figures 4-8 (a) and (b) respectively, the fdiff between

the sensor segments becomes larger with higher levels of process variations. The Dvar

detection rate, in this case, with PVb is found to be around 96% for Dvar = 6%. However,

it goes up to 100% as the Dvar = 12%, 18%, and 24%. Figure 4-9(a) represents the

frequency difference occurrence rate between the 21-stage FSS and DSS segments

with PVb and the temperature of 80⁰C. Similarly, Figure 4-9(b) presents the simulation

results with PVc , and a temperature of 110⁰C. It is observed that fdiff variations in

Figure 4-9(a) are comparatively more than those in Figure 4-8(a). In addition to this, it

is observed that the detection rate of Dvar = 6% is around 94.5%. However, it goes up

to 100% as the Delay variability rate increases, thereby, demonstrating that the FRED

sensor is effective and sensitive even in the presence of worst-case process variations

and high temperatures.

In a nutshell, the minor Delay variability that can be 100% detected using the FRED

sensor, could be slightly different for other technologies. The performance of the

sensor is liable to be affected by the process variations and high temperature regimes.

It is deduced that the FRED sensor comprising HVth cells can detect FPGAs suffering

from minor Delay variability with a 100% detection rate as compared to the sensor with

LVth cells.

109

4.4.2 The Sensor Implementation and Validation

A simple frequency measurement process flow is shown in Figure 4-10. for the

detection of delay variability due to the impact of N/PBTI degradation mechanisms on

the target 28 nm FPGA technology. 45

Figure 4-10 A Simplistic Frequency and Delay Measurement Process Flow .

110

In order to establish the validation and effectiveness of the proposed FRED sensor,

frequency and delay degradation under N/PBTI experiment is conducted under high

thermal and voltage stress conditions (given Table-4-2) on Xilinx Spartan-7 (28 nm

process) FPGA having 52,160 logic cells, 32,600 look-up-tables (LUTs), and 65,200

flip flops (FFs). Using Vivado Design Suite and Verilog, the FRED sensor as described

in Section 4.3.2 is implemented in such two FPGAs using 8-LUTs (Look Up Tables)

and 6-FFs (Flip Flops) fabric. This accounts for just 0.018% and 0.009% of the LUT

and FF resources respectively, available in the target FPGAs. Similarly, the power

consumption measured using the Vivado Power Estimator and Analyser comes out to

be 1.5%. For the full spectrum frequency (fmax)mapping of the target FPGAs, the

Figure 4-11 28nm FPGA Floorplan showing the spread of 18 FRED
sensors implemented to capture Frequency/Delay shifts under varying
Thermal and Voltage Stress Conditions.

Table 4-2 Thermal and Voltage Stress Test Conditions

111

FRED sensors are spread across the FPGA surface as per the floorplan shown in

Figure 4-11. Two sets of experiments are conducted with one experiment on each of

the test FPGAs. First experiment comprises the accelerated ageing of the test FPGA-

1 under a highly stressed temperature of 110⁰C and an elevated voltage of 1.6V for

the duration of 72 hours. This is conducted on the test FPGA-1 with the FRED sensor

implemented in 21-stage NAND configuration. The second experiment comprises the

same test configuration with specific stress test conditions to observe N/PBTI

behaviour and capture the frequency response in the test FPGA-2.

4.4.2.1 Experimental Setup

The auto-test flow has been developed to capture frequency and delay degradations.

It is shown in Figure 4-12. The test FPGAs are interfaced with the computation system

– PC through the application development and evaluation boards, namely Xilinx

Zedboard and Arty-S7 that contain the 7-series Spartan-7 FPGAs/SoC. The

Application Processor Unit (APU) controls the required peripherals using the ARM

Figure 4-12 FRED Sensor Experimentation Setup and Auto-Test Flow.

112

AMBA AXI interconnect and also runs the software application in C that fits into the

36Kb BRAM and facilitates reading the sensor’s data and decoding them, if required.

In order to activate the FRED sensor, the timer IP core is employed to manage the

duration of FPGA stressing, which is set to be 100 μs. Moreover, it controls the analog

switch to manage the supply of required voltages to the test FPGAs. The RTL

descriptions of the FRED sensor are loaded into the test FPGAs using JTAG

programmer and SPI (Serial Peripheral Interface). The counter outputs are read out

and saved to the PC through the board interface. Employing this test setup and

methodology helps achieve the data sampling in < 3s and maintain the integrity of the

FRED sensor’s validation.

4.4.2.2 Results and Analysis – Experiment 1

In this experiment, the FRED sensor is implemented in the test FPGA-1 as per the

floorplan shown in Figure 4-11. Both the RO-based sensor segments, FSS and DSS,

are configured as high threshold voltage (HVth) 9-stage (f = 450 MHz), 21-stage (f =

300 MHz), and 31-stage (f = 200 MHz) NAND configuration-based ring oscillators.

With the application of the stress mode of the FRED sensor, the DSS (dynamic sensor

segment – stressed) segments are enabled and stressed for the duration of 72 hours

at the junction temperature of 110⁰C (achieved through the thermal chamber) under

an elevated voltage of 1.6V (provided from an external power supply). The FSS (fixed

sensor segment – unstressed) segments are kept gated OFF.

113

Upon completion of the stressed period, the detection mode is enabled. Accordingly,

the FSS and DSS segments are also enabled and ramped down to the room

temperature (around 20⁰C) and nominal voltage of 1.2V. The results are shown in

Figure 4-13(a) - (c). The brown bars represent the frequency difference between the

FSS and DSS segments in each FRED sensor at the time t=0, whereas, the green

bars are the frequency difference between the sensor segments post 72 hours of

ageing stress.

4.4.2.2.1 Analysis

It can be observed that the mean frequency of the sensor segments in the test FPGA

is not much different (between 250 – 300 MHz) from the one achieved during the

simulations. This is, primarily, due to the same number of gates/stages used in the

Figure 4-13 Frequency Difference Distribution – (a) 9-Stage Sensor Segment – 450MHz.
(b) 21-Stage Sensor Segment – 300MHz. (c) 31-Stage Sensor Segment – 200MHz.

114

experiment as compared with the simulation. As a result, the detection rate of

frequency degradation and delay variability remains 100% with the different stage

configuration of the RO-based sensor segments. The results reveal that the average

frequency degradation of 9-stage, 21-stage, and 31-stage DSS segments is 3.2%,

4.0%, and 3.8% respectively. Also, a comparison of 21-stage (HVth) and 9- stage (HVth

) sensor segments shows that the frequency difference gap between the FPGA at t=0

and t=72 hrs. in 21-stage sensor segments is larger than that in the 9-stage sensor

segment. This implies that sensor segments, with HVth and larger stage gates’,

configuration are more effective than the ones with less stages. With respect to the

detection rates, a further comparison of Figure 4-13(b) – (using 21-stage SS,

composed of HVth NOR gates) with Figure 4-13(c) - (using 31-stage SS, composed of

HVth NAND gates) reveals a minor impact on the sensitivity of the FRED sensor, which

may not be much significant. In addition to this, it is observed that for 9-stage and 21-

stage sensor segments, at t=0, the FSS sensor segments (unstressed) are faster than

the DSS sensor segments (stressed) in most of the cases except for 31-stage sensor

segment. This points toward the impact of spatial variations that come into play as the

segments are not located/placed close to each other. As a result, some RO-based

sensor segments tend to be more agile than the others. It may be, therefore, prudent

to place the two sensor segments in a single localized module to minimize the variation

between them.

4.4.2.3 Results and Analysis – Experiment 2

In line with Section on N/PBTI degradation mechanism, we conducted further sensor

validation tests using the ‘Stress Test Conditions - STC’, given in Table 4-2. The RO-

Figure 4-14 Percent Frequency Degradation with High Temperature. (a) NBTI AC
Frequency Degradation (%) and (b) PBTI AC Frequency Degradation (%).

115

based sensor segments are stressed at high temperatures of 60⁰C and 110⁰C under

an AC stress for over 27 hours to observe NBTI and PBTI based AC frequency

degradation. The results are shown in Figure 4-14(a) and (b). As illustrated in Figure

4-14(b), PBTI causes a significantly higher frequency degradation as compared to

NBTI (Figure 4-14(a)), primarily due to the high-k/metal dielectric constituting the 28

nm technology node. As can be seen, the frequency degradation goes as far as 3%

at 110⁰C in 27 hours duration for PBTI whereas NBTI causes 1.2% frequency shift. It

must be noted that we also considered the impact of process variations ‘PVa’, as

mentioned in Table 4-1 in ascertaining the percent shifts in sensor segments’

frequency from fmax = 300 MHz (for 21-stage NAND gate ring oscillator). R2 in the

Figure 4-14 represents the r-squared value for a linear trendline, implying that the

nearer it is to 1, the more the linearity. Whereas, Y = 0.0321x + 0.5249 is the equation

of the linear line transiting through the curve.

Similarly, the results for ‘Stress Test Conditions’ 2 – 4, are illustrated in Figures 4-15

(a) to (e). Figure 4-15(a) is representing the frequency degradation due to the

cumulative effect of N/PBTI at 80⁰C and 110⁰C under the AC stress over a duration of

24 hours. It results due to the shifts in threshold voltage of P/NFETs. A frequency shift

of around 2.3% and 2% is observed at 80⁰C and 110⁰C respectively. This is discussed

in detail in Chapter-5. Likewise, for the AC and DC stresses at gate stress voltages of

1.2V, 1.4V, and 1.6 V at a nominal temperature of 25⁰C, we observe the same

116

frequency shift trend with PBTI more prominent in comparison to NBTI for 28 nm

technology node.

These experiments were mainly directed to validate the FRED sensor’s frequency

response to NBTI and PBTI degradation mechanisms. We observed the impact of

process variations PVa, PVb, and PVc whilst conducting all different tests. By placing

the two sensor segments (FSS and DSS) in close proximity to each other, we have

tried to minimize the effect of process variations on the accuracy of frequency

degradation measurements. However, this needs to be further studied in-depth to

analyse and categorise their impact from both the spatial and temporal perspective.

Figure 4-15 (a) AC Frequency Degradation (%) with N/PBTI. (b) PBTI Frequency
Degradation (%) under AC Stress. (c) NBTI Frequency Degradation (%) under AC
Stress. (d) NBTI Frequency Degradation (%) under DC Stress. (e) PBTI Frequency
Degradation (%) under DC Stress.

117

In addition to the above, the implementation of 18 FRED sensor across the entire

FPGA fabric helped capture the frequency degradation pattern with the conduct of the

above mentioned experiments, under four different stress conditions. The results are

illustrated in Figure 4-16. It is evident that N/PBTI mechanism of degradation impacts

the frequency profile of FRED sensor at high temperature and bias conditions. This

impacts the delay profile of applications running on the FPGA and with prolonged

stress durations, the lifetime of the device tends to decrease significantly, marked by

timing failures.

4.5 Performance Evaluation of FRED

In this section, a comparison of the proposed FRED sensor is drawn with some of the

previously proposed sensors, in terms of the resource utilization and sensitivity.

4.5.1 Resource Utilization and Sensitivity

The proposed sensor occupies 8 LUTs (6 for the ring oscillators and 2 for the counter)

with 21-stage length of the RO-based sensor segments. As is evident from Table 4-3,

the FRED sensor utlilises modest amount of resources in comparison to other

Figure 4-16 Frequency Colour Map of 28nm FPGA using FRED
Sensor Under Stressed Temperature and Bias Conditions.

118

proposed sensors. In addition to the parameter of resource utilization, the most critical

design and evaluation consideration is the sensitivity (S). It is a measure of the

variation in the oscillation frequency of the ring oscillator (the sensor segments – FSS

and DSS)/the counter value with the rise and fall of temperature over a stipulated time

period or the specified range. Precisely, it is defined as the amount of reduction in RO

frequency per ⁰C rise in the temperature. Mathematically,

 S = Fmax − Fmin
Tmax − Tmin

 (4-4)

where, 𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚 𝑎𝑎𝑎𝑎𝑎𝑎 𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚 represent the oscillation frequencies of the RO-based sensor

segments during the time interval at 𝑇𝑇𝑚𝑚𝑚𝑚𝑛𝑛 𝑎𝑎𝑎𝑎𝑎𝑎 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 temperatures, respectively. In the

case of the proposed FRED sensor, it has been found to be 165 KHz/⁰C in the three

different RO lengths (9, 21, and 31) approximately. Table 4-4 provides a comparison

of the FRED sensor with other sensor designs. It can be seen that with the continual

downscaling of transistors’ feature size, the dependency of ring oscillator frequency

on temperature variation is getting low, thereby reflecting a negative trend for the RO-

based sensor designs. For instance, the authors in [26] have reported 0.11%/ ⁰C

reduction in the sensitivity of their RO-based design with a 90 nm technology node.

Similarly, the sensitivity of the RO-based sensor is reduced to 0.032%/⁰C for 65 nm

technology node [27]. However, the FRED sensor’s dual sensor segment design has

Table 4-3 A Comparison of FRED Sensor with Other Sensor Designs – Resource
Utilisation

119

enabled an improved sensitivity up to 0.15%/⁰C for a 28 nm technology node. This

helps detect very small changes in the frequency/delay degradation under nominal as

well as stressed N/PBTI conditions.

4.5.2 Area Overhead

The authors in [28] have suggested a calculation method to determine the area

overhead as AOH = NS x (ASS + ACounter), where NS represents the total number of

sensors implemented in the FPGA, ASS is the number of LUTs and FFs occupied by

the RO-based sensor segments, and ACounter represents the number of LUTs and FFs

utilised by the counter. For the proposed FRED sensor with three different sensor

segments’ lengths (9, 21, and 31 stages/gates) implemented over the entire FPGA as

per the floorplan shown in Figure 4-11 gives the figures of 192 units, 384 units, and

544 units respectively.

4.5.3 Power Overhead

The resources occupied by RO-based sensor segments and the counters as well as

the ROs’ oscillations result in a considerable amount of power dissipation, that causes

power overheads. Power overhead (POH)is the differential average power

consumption by an array of sensors and is calculated as follows:

 POH = PwithNet – PwithoutNet

where, PwithNet and PwithoutNet are the average power consumed over the time interval

t with and without embedding a sensor network in the FPGA, respectively, and are

calculated using the following equation:

Table 4-4 A Comparison of FRED Sensor ‘Sensitivity’ with Other Sensor Designs.

120

𝑷𝑷𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘/𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘

=
1
𝑡𝑡

 � 𝑃𝑃(𝑡𝑡).𝑑𝑑𝑑𝑑
𝑡𝑡

0
 (4 − 5)

Table 4-5 gives a comparison of power overheads of four different sensor

configurations with the same number of stages (21). It is evident that the POH in the

case of both the INV and NAND configuration is not much different. However, there is

a significant difference between the NAND and NOR configuration of the FRED sensor

segments. Based upon these performance evaluation metrics, three main aspects of

the FRED sensor can be summed up as follows:

• The Sensor Segment (SS) stage/length: it implies that the longer the RO/SS

is, 1) the more resources are occupied, and hence the AOH (Area Overhead)

increases, 2) the oscillation frequency drops and this decreases the thermal

and power overheads, 3) the sensitivity reduces and increases frequency/delay

mapping error.

• The Sensor Segment Configuration: it implies the type of combinatorial gates

used to design the RO-based segment. Every gate has its peculiar oscillation

profile. In the FRED sensor case, it is found that NAND gates are more sensitive

as well as area and power efficient when compared to NOR/XOR/INV-gate

configuration (as elaborated in Section 4.3.2.2.2).

• The Number of sensors implemented: the best proposition is to have more

embedded sensors for enhanced accuracy, wider coverage, and an effective

and efficient detection of frequency degradation/delay variability across the full

spectrum of the FPGA fabric. It leads to increased area, power, and thermal

overheads. On the other hand, if the number of sensors is less, there will be

Table 4-5 Comparison of the Normalised Area and Power Overheads of Four different
RO Segment configurations

121

less AOH and POH, however, there may be a compromise on the accuracy of

detection and measurement coverage.

4.5.4 Quality Factor

In order to solve this conundrum, Quality Factor (QF) offers an efficient metric to

combine the multiple criteria and observe it as a single metric to assess trade-offs

between the above-mentioned evaluation metrics. Accordingly, the product of AOH and

POH is weighed to prove the significant relevance and authenticity of power-delay

product (PDP) and energy-delay product (EDP) as follows:

 𝑄𝑄𝑄𝑄 = 1
𝑨𝑨𝑶𝑶𝑶𝑶 × 𝑷𝑷𝑶𝑶𝑶𝑶

 (4-6)

Therefore, based on the QF metric, the efficiency of the three FRED sensor segments’

configurations is determined and shown in Table 4-6. As can be seen, the FRED

sensor with 21-stage NAND configuration and QF = 4.738 provides the most viable

sensor segment design to accurately and efficiently detect variations in RO frequency

and hence, delays particularly under N/PBTI stressed environment.

4.5.5 Some Limitations

With the proposed FRED sensor design, it may not be possible to achieve highest

accuracy, especially in detecting malicious circuit activities that incur minor shifts in

threshold voltages of N/PFETs. The intensity of these shifts resultantly causes ageing

followed by the frequency and delay degradation. We observed that only half of the

gates (inverters/NAND/NOR) in the dynamic sensor segment (DSS - stressed)

experience N/PBTI stress during one oscillation cycle. As a result, the probability of

false positives may arise that eventually affects the detection accuracy. However, this

can be overcome by devising a method whereby all the gates of sensor segments

Table 4-6 A Normalised Comparison of the Quality Factor of NOR and NAND Sensor
Segment Configurations for Different Segment Lengths.

122

experience stress during the normal operation. One of the design options could be to

break the connection of each gate to its prior one and connect them to the ground.

4.6 Summary

The FREquency Degradation sensor (FRED) detects and provides a measure of

decrement in the frequency of its uniquely designed dual delay-line based segments

with the ageing of FPGA primitives due to the BTI degradation mechanisms. The fixed

sensor segment (FSS) of FRED is used as a reference with near-zero stress and the

dynamic sensor segment (DSS) is built to experience high temperature and voltage

stresses. Configured with variant gate length and types, the sensor outputs an

accurate measure of the frequency difference between the FSS and DSS segments.

Due to near-zero stresses on FSS, it is equally good for the calibration of the sensor,

which helps maintain the measurement accuracy. The simulation and real-time

experiments under normal and accelerated temperature and voltage conditions

validate the effectiveness of the sensor in detecting and measuring small to large delay

variability by observing changes in the frequency difference between the FSS and

DSS segments.

With low area and power overheads, high Quality Factor (QF = 4.738) , and sensitivity

of up to 0.15%/⁰C the FRED is a viable light-weight on-chip sensor option for modern

FPGAs. Based on its capability to capture FPGA ageing in terms of the frequency and

delay degradation across the whole FPGA surface, FRED can be considered a good

candidate for the detection of malicious circuits, called hardware Trojans, that are

based on the parametric variations (such as threshold voltage) of transistors.

Taking lead from the FRED sensor, the next chapter builds a complete threat scenario

and devises an all-encompassing ‘FPGA Security Scheme.’ The limitations of FRED,

as mentioned in Section 4.5.5, are addressed and is enhanced to cater for minor shifts

in the threshold voltages of PMOS transistors under the influence of threshold-voltage

triggered hardware Trojans.

123

REFERENCES
[1] H. Nguyen and Intel. Corporation, “Resiliency Challenges in Future

Communications Infrastructure,” IEEE Communications Quality and Reliability
Workshop, May 14, 2014.

[2] S. Khan and S. Hamdioui, “Temperature Dependence of NBTI Induced Delay,”

IEEE 16th Int. On-Line Test. Symp., pp. 15–20, 2010.

[3] J. M. Levine, E. Stott, G. A. Constantinides and P. Y. K. Cheung, "SMI: Slack

Measurement Insertion for online timing monitoring in FPGAs," 23rd
International Conference on Field programmable Logic and Applications, Porto,
pp. 1-4, 2013.

[4] D. Harris and S. Naffziger, "Statistical clock skew modeling with data delay

variations," in IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 9, no. 6, pp. 888-898, Dec. 2001.

[5] D. Ernst et al., "Razor: a low-power pipeline based on circuit-level timing

speculation," Proceedings. 36th Annual IEEE/ACM International Symposium on
Microarchitecture, 2003. MICRO-36., San Diego, CA, USA, pp. 7-18, 2003.

[6] K. M. Zick and J. P. Hayes, “On-Line Sensing for Healthier FPGA Systems,”

Proc. 18th Annu. ACM/SIGDA Int. Symp. F. Program. Gate Arrays, Assoc.
Comput. Mach. New York, NY, USA, pp. 239–248, 2010.

[7] T. Rahkonen and J. Kostamovaara, "The use of stabilized CMOS delay lines in

the digitization of short time intervals," 1991., IEEE International Sympoisum on
Circuits and Systems, Singapore, vol.4, pp. 2252-2255, 1991.

[8] J. V Hatfield, P. Dudek, S. Member, and S. Szczepan, “A High-Resolution

CMOS Time-to-Digital Converter Utilizing a Vernier Delay Line,” in IEEE Journal
of Solid-State Circuits, vol. 35, no. 2, pp. 240–247, 2000.

[9] J. Tschanz et al., “On-Line Detection and Correction of Errors Due to Fast ,

Dynamic Voltage Droop Events,” In Proceedings of Silicon, pp. 1–4, 2010.

[10] J. Tschanz, K. Bowman, S. Walstra, M. Agostinelli, T. Karnik, and V. De.
 Tunable replica circuits and adaptive voltage-frequency techniques for dynamic
 voltage, temperature, and aging variation tolerance. In Proc. Symposium on
 VLSI Circuits, pages 112–113. IEEE, 2009.

[11] J. Tschanz, K. Bowman, C. Wilkerson, S.-L. Lu, and T. Karnik, “Resilient
 circuits,” in ACM Intl. Conf. on Computer-Aided Design, pp. 71–73, 2009.

[12] J. M. Levine, E. Stott, G. A. Constantinides and P. Y. K. Cheung, "Online

Measurement of Timing in Circuits: For Health Monitoring and Dynamic Voltage
& Frequency Scaling," 2012 IEEE 20th International Symposium on Field-
Programmable Custom Computing Machines, Toronto, ON, pp. 109-116, 2012.

124

[13] K. Jerchel, A. Grams, N. F. Nissen, T. Suga and K. Lang, "Canary devices for
through-silicon vias a condition monitoring approach," 2017 International
Conference on Electronics Packaging (ICEP), Yamagata, pp. 282-287, 2017.

[14] P. Franco and E. J. McCluskey, “Delay Testing of Digital Circuits by Output

Waveform Analysis,” in Proc. IEEE Intl. Test Conf., pp. 798-807, Oct. 1991.

[15] S. Das, et al., “Razor II: In Situ Error Detection and Correction for PVT and SER

Tolerance,” IEEE J. Solid-State Circuits, pp. 32-48, Jan. 2009.

[16] K. A. Bowman, et al., “Energy-Efficient and Metastability-Immune Resilient

Circuits for Dynamic Variation Tolerance,” IEEE J. Solid State Circuits, pp. 49-
63, Jan. 2009.

[17] J. Keane, T. H. Kim, and C. H. Kim, “An on-chip NBTI sensor for measuring

pMOS threshold voltage degradation,” IEEE Trans. Very Large Scale Integr.
Syst., vol. 18, no. 6, pp. 947–956, 2010.

[18] F. Elguibaly and M. W. El-Kharashi, "Multiple-input signature registers: an

improved design," IEEE Pacific Rim Conference on Communications,
Computers and Signal Processing, PACRIM. 10 Years Networking the Pacific
Rim, 1987-1997, Victoria, BC, Canada, vol.2, pp. 519-522, 1997.

[19] Wong, Justin & Cheung, Peter, "Improved delay measurement method in FPGA

based on transition probability", In Proceedings of 19th ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays, California, pp
163-172, 2011.

[20] M. Agarwal et al., "Optimized Circuit Failure Prediction for Aging: Practicality

and Promise," 2008 IEEE International Test Conference, Santa Clara, CA, pp.
1-10, 2008.

[21] A. Amouri and M. Tahoori, “A low-cost sensor for aging and late transitions

detection in modern FPGAs,” Proc. - 21st Int. Conf. F. Program. Log. Appl. FPL,
pp. 329–335, 2011.

[22] V. Bexiga, C. Leong, J. Semião, I. C. Teixeira, J. P. Teixeira, and I. S. T. Tul,

“Performance failure prediction using built-in delay sensors in FPGAs," 21st
International Conference on Field Programmable Logic and Applications, pp. 3–
6, 2011.

[23] S. Mishra et al., “Predictive TCAD for NBTI Stress-Recovery in Various Device

Architectures and Channel Materials,” IEEE Int. Reliab. Phys. Symp., pp. 6A-
3.1-6A–3.8, 2017.

[24] S. Pae et al., “BTI reliability of 45 nm high-K + metal-gate process technology,”

2008 IEEE Int. Reliab. Phys. Symp., pp. 352–357, 2008.

[25] P. Swierczynski, M. Fyrbiak, P. Koppe, and C. Paar, “FPGA Trojans Through

Detecting and Weakening of Cryptographic Primitives,” IEEE Trans. Comput.

125

Des. Integr. Circuits Syst., vol. 34, no. 8, pp. 1236–1249, 2015.

[26] P. H. Jones, J. Moscola, Y. H. Cho, and J. W. Lockwood, “Adaptive

Thermoregulation for Applications on Reconfigurable Devices,” International
Conference on Field Programmable Logic and Applications, Amsterdam, no.
September, 2007.

[27] K. M. Zick and J. P. Hayes, “Low-cost sensing with ring oscillator arrays for

healthier reconfigurable systems,” ACM Trans. Reconfigurable Technol. Syst.,
vol. 5, no. 1, pp. 1–26, 2012.

[28] N. Rahmanikia, A. Amiri, H. Noori, and F. Mehdipour, “Performance evaluation

metrics for ring-oscillator-based temperature sensors on FPGAs: A quality
factor,” Integr. VLSI J., vol. 57, no. December 2016, pp. 81–100, 2017.

[29] M. Zagrabski, B. Wojciechowski, M. Nikodem, K. Krzysztof, and K. S.

Berezowski, “Calibration of RO-based temperature sensors for a toolset for
measuring thermal behavior of FPGA devices,” Microelectronics Journal vol. 45,
pp. 1753–1763, 2014.

[30] C. Tradowsky, E. Cordero, T. Deuser, M. Hübner and J. Becker, "Determination

of on-chip temperature gradients on reconfigurable hardware," 2012
International Conference on Reconfigurable Computing and FPGAs, Cancun,
pp. 1-8, 2012.

[31] A. H. Ajami, K. Banerjee, S. Member, and M. Pedram, “Modeling and Analysis

of Nonuniform Substrate Temperature Effects on Global ULSI Interconnects,”
in IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 24, no. 6, pp. 849–861, 2005.

[32] López-Buedo, Sergio & Boemo, E., "Making visible the thermal behaviour of

embedded microprocessors on FPGAs. A progress report". In Proceedings of
the 2004 ACM/SIGDA 12th international symposium on Field programmable
gate arrays. 12. pp 79-86, 2004.

[33] P. Mangalagiri, S. Bae, R. Krishnan, Y. Xie, and V. Narayanan, “Thermal-aware

reliability analysis for platform FPGAs,” IEEE/ACM Int. Conf. Comput. Des. Dig.
Tech. Pap. ICCAD, pp. 722–727, 2008.

https://dl.acm.org/doi/proceedings/10.1145/968280
https://dl.acm.org/doi/proceedings/10.1145/968280
https://dl.acm.org/doi/proceedings/10.1145/968280

126

5 FPGA SECURITY SCHEME

This chapter is the mainstay of our research work constructed in-line with the

integrated FPGA health management (IFHM) framework. The disposition of the

chapter is depicted in Figure 5-1. Section 1 is an introduction to the threat environment

FPGAs are exposed to due to the miniaturisation of technology nodes and

ever-growing cyber and hardware attacks. Section 2 gives information on the related

work with a brief critique. Section 3 delineates the FPGA Security Scheme with

description about the design, simulation, and implementation of Threshold Voltage-

triggered hardware Trojan, ‘HTVth,’ in a 28 nm technology node FPGA. Section 4

presents the design and implementation of a Threshold Voltage-aware sensor

(SVth - the hardware Trojan Detector) and discusses various options tested to achieve

high sensor accuracy. In Section 5, the mitigation technique based on online transistor

dynamic scaling (auto-resizing) and its correlation with NBTI-induced performance

degradation are highlighted. Section 6 puts forth the implementation and optimization

of the HT mitigation scheme and provides its simplistic comparison with some of the

state-of- the-art reliability and security solutions. And finally, Section 7 summarises the

chapter.

Figure 5-1 The Disposition of Chapter 5.

127

5.1 Introduction

A modern FPGA is not merely an emulator but a hardware accelerator with

heterogenous hard IP cores, such as complex memory blocks, multiple processors,

and DSP blocks. Systems on chip (SoC), network on chip (NoC), and adaptive

compute acceleration platform (ACAP) are the significant performance and functional

enhancements of FPGAs, that have been made possible due to the continual shrinking

of transistor sizes down to the scales of 10 nm and below. The performance benefits,

however, are limited by power and timing closures. Similarly, the geometric structures

of FPGAs with much less silicon and relatively more oxide and moulding compound

complicate the heat conduction paths [1]. On the one hand, where it may deteriorate

the worst-case heat dissipation route, a given power density, on the other hand,

produces a significant temperature variability [2]. This results in a higher temperature

for the same amount of power dissipation. It is, therefore, essential to consider thermal

variation as an on-going challenge for advanced technology nodes alongside the

associated issues of power and timing closures.

Looking at the FPGA fabric, we find a mesh of layers comprising a substrate, high-k

dielectric interfaces, and metal interconnects. Each layer has a varying range of

thermal conductivity with silicon dioxide sitting at 1.3-0.3W/mK, and copper metal

interconnects going as high as 400 W/mK [3]. These differences in thermal

conductivity affect the heat transfer and introduce variations in temperature across the

FPGA area, thereby creating hotspots as can be seen in Figure 5-2. The resultant

Figure 5-2 Thermal profile depicting hotspots in an FPGA [4].

128

increase in temperature and appearance of hotspots across the FPGA surface causes

non-negligible variations in the timing and power domains of the design [4]. This non-

uniform thermal dissipation aggravates the ageing mechanism of negative bias

temperature instability (NBTI) and leads to accelerated ageing of the FPGA fabric.

The NBTI ageing mechanism is dominated by a negative shift in threshold voltage

(Vth) of pMOSFETs that make up the FPGA, along with nMOSFETs. The change in

threshold voltage is in response to biasing in the strong inversion region, which causes

the disintegration of Si-H bonds at the oxide interface due to the presence of holes

within the pMOS inversion layer, as is evident in Figure 5-3. This bond disintegration

process creates positively charged interface traps, which, along with new or existing

traps within the oxide, increases the threshold voltage [5], [6], [7].

Undeniably, NBTI is well known to researchers and manufacturers alike as a dominant

ageing mechanism in all different configurations of integrated circuits (ICs). For

instance, in the post-IC manufacturing period of 7 to 10 years, accelerated ageing due

to NBTI has been reported by [5] and [8] as degradation in threshold voltage up to 50

mV. Speed degradation (of 20%) follows these shifts in threshold voltage and,

therefore, shows a strong correlation between NBTI prompted delay and threshold

voltage shift.

Figure 5-3 NBTI mechanism in a PMOS transistor.

129

 It is important to note that the non-uniformity of NBTI (due to different thermal

conductivity patterns) across the chip surface affects various blocks within the FPGA

differently. As a result, the delay variations induced by NBTI, across the FPGA surface,

could potentially generate new critical paths, which, in turn, may prevent an efficient

and balanced timing closure [9]. In the case of data paths, for instance, an increase in

gate delays causes a late transition of an input signal at the flip-flop. Such varying

transitions violate the flip-flop setup and hold time that eventually results in the

sampling of flawed values at the output of the data path.

These variations, apart from being the primary source of FPGA reliability concerns,

also affect the integrity of logic applications and aggravate to levels that may lead to

system failures. More alarming is the hardware security threat that can leverage the

dwindling reliability of an FPGA device under NBTI influence. It can jeopardise FPGA’s

optimal performance with the insertion of malicious and stealthy circuitry, called

hardware Trojan – designed by exploiting stochastic and systematic variation patterns

that exist within the FPGA.

The exacerbation of NBTI, owing to the continual transistor miniaturization, is fast

becoming a major donor of the process of ageing in downscaled technology nodes. It

poses a challenge for the proponents of high FPGA reliability and performance to

understand the dynamics of NBTI in designing a hardware Trojan, initially, from an

intruder’s (a rogue element) perspective and lately by designing a threshold voltage-

aware sensor for its detection, followed by an effective mitigation methodology from

security assurance and defender’s perspective.

In other words, it implies the development of an FPGA Security Scheme (Figure 5-

4), which assumes that an intruder is capable of capturing and analysing the shifts in

threshold voltage of pMOSFETs (that result in lowering the frequency, signal path

delay variations, and flawed transitions) due to the NBTI effect. If successful, the

intruder may design and insert a stealthy malicious circuit (called hardware Trojan)

inside the FPGA. With sufficient parametric information and precise monitoring, the

intruder may capitalize NBTI ageing mechanism to activate a dormant hardware

Trojan. This is further elaborated in the threat model described in Section-2.

130

It is well established that the detection of such hardware Trojans is difficult using

testing techniques like built-in self-test (BIST) because no test vector can activate an

ageing effect [10]. The process of accelerated stress and ageing test on the affected

node may, however, reveal such Trojans. On the contrary, the process, when

performed on a complete integrated circuit, is time and cost-intensive [11].

In this chapter, we direct the FPGA security scheme, shown in Figure 5-4, towards the

design and implementation of a threshold voltage-triggered hardware Trojan in a lower

technology node (28 nm FPGA). A degradation in the drain current, oscillation

frequency, and the subsequent increase in the response time (due to shift in threshold

voltage) of the 28 nm FPGA is observed through a novel sensor. An effort is also made

to mitigate the impact of a hardware Trojan by introducing a method of compensation

that enhances the current flow and lowers the rise in delay due to NBTI. This includes

an online transistor dynamic scaling (OTDS) approach as a mitigation methodology to

counter hardware Trojans.

The proposed designs and implementations are verified and validated using post-

layout, and Monte Carlo simulations with Cadence Virtuoso ADE tools, followed by

real-time experiments on Global Foundries fabricated 28 nm technology node.

Threshold voltage-triggered hardware Trojan, ‘HTVth,’ operates in a threshold voltage

Figure 5-4 FPGA Security Scheme comprising hardware Trojan Infection, Detection,
and Mitigation sub-schemes.

131

region of 0.45V-0.998V, consuming ultra-low power (10.5nW), and remaining

stealthier within an area overhead of as low as 1.5%. The Threshold Voltage-aware

sensor, ‘SVth,’ utilizes 3% of die resources and achieves the detection sensitivity of

0.251mV/nA. OTDS enables the auto-resizing of transistors to mitigate the impact of

hardware Trojan payload due to NBTI-based threshold voltage shifts falling between

10% and 90%.

5.2 Related Work

Extensive research has been undertaken to present a detailed analysis of ageing and

performance degradation in integrated circuits. It mainly involves the fingerprinting of

ICs’ electrical parameters (voltages, currents, frequencies, and EM signals) by

retrofitting well-designed on-chip sensors and structures. Be it the detection of

counterfeits, recycled ICs, or detection and mitigation of hardware Trojans; the same

parameters are manipulated by researchers to understand different undesired

behaviour patterns and anomalies in ICs (ASICs, FPGAs, and Microprocessors) for

remediation and building effective countermeasures.

In [12], Karhunen Loéve theorem is used to study the power consumption behaviour

of hardware Trojan infected FPGA to determine the possibility of its detection. This

technique considers the impact of process variations that occur within the FPGA;

however, it avoids the noise factor and is limited to simulation analysis. Similarly, the

researchers in [13] have again simulated and analysed the occurrence of path delays

in the signals of various logic applications using the embedded monitors. Both of these

techniques do not provide real-time analysis. An integrated hardware system capable

of monitoring the behaviour of critical interconnects (wires) is proposed in [14];

however, it does not provide sufficient information on the efficiency of this method. In

[15], a test methodology to ease hardware Trojan triggering by increasing its electrical

activity is proposed for early detection. In [16], an attempt to carry out precise

measurement of an IC’s operating frequency, maximum frequency (fmax), and its

dynamic power consumption is made by lowering the impact of process variations.

However, the calculation of the accurate value of fmax is quite challenging and also

susceptible to ‘false positives.’

The use of ring oscillators’ sensitivity to variations in temperature and power enables

the detection of medium-to-heavyweight hardware Trojans, however, not effective

132

against the small-sized/lightweight hardware Trojans [17]. The researchers in [18]

have created a network of ring oscillators spread across the FPGA surface to capture

the changes in their oscillation frequency due to the presence of hardware Trojan. This

is validated using a digital storage oscilloscope (DSO) and later analysed using the

principal component analysis to differentiate between the genuine and the HT infected

FPGA. However, when applied to an ASIC [19], this technique suffers from the lower

levels of measurement accuracy due to the usage of an 8-bit counter instead of a

digital storage oscilloscope, questioning the accuracy of on-chip designs.

In [20], the clustering methodology is proposed, whereby dedicated sensors are

embedded in the power grids of different voltage islands in FPGA, to enhance HT

detectability. However, it does not provide adequate experimental evidence to

evaluate the efficacy of this methodology. The capturing of electromagnetic signatures

of target applications in ICs has also been studied for hardware Trojan and anomaly

detection. For instance, a method based on electromagnetic (EM) cartography is

proposed in [21], but then again, due to inappropriate method of interpretation of EM

traces, the detection of hardware Trojans remains low. On the other hand, in [22], the

researchers have devised an improved technique that interprets the EM traces

optimally. By controlling and maintaining the temperature during EM measurements,

this technique improves the probability of detecting lightweight hardware Trojans.

Further to this, the researchers in [23] are able to differentiate between the healthy

and HT infected population of FPGAs through a comprehensive analysis of EM

signatures.

A reasonable amount of work has also been undertaken to design and develop various

sensing techniques and frameworks for the detection and mitigation of the NBTI

mechanism and its noticeable impact. In [24], an analog supply-devoid NBTI sensor

is proposed to eliminate noise; however, the input of other external signals makes its

operation very complicated during the stress and recovery as well as measurement

modes. This reduces its overall measurement accuracy. In [25], the dynamic reliability

of the device is managed using NBTI and HCI (Hot Carrier Injection) sensors. In this

case, the threshold voltage of the stressed device is measured and transformed into

the delay function. However, these sensors are less sensitive to temperature

variations and occupy large device area with high power consumption. In another

study [26] an NBTI sensor is designed to measure the standby leakage current (Iddq).

133

Designed explicitly for SRAM cells, this sensor monitors the leakage current,

characterising temporal degradations. It, however, requires an additional bias

generator to maintain active load on the sensor, which results in non-linearity and

reduced sensitivity to the input signal. Researchers in [27] have used the current-

mirroring technique to capture NBTI based degradation. The power supply current is

mirrored and subsequently transformed into voltage. The drawback of this approach

lies in the usage of power gating that slows down the response time of the sensor.

However, its performance is relatively more stable than the Iddq based sensor.

To mitigate NBTI ageing and degradation impact on the reliability and performance of

an IC, we have come across the concept of one-time design constraints put forth by

various researchers. For instance, [28], [29] suggest an increase in supply voltage to

manage and control NBTI. This may, however, lead to power and thermal overheads

– an undesirable design feature. Whereas [30] and [31] propose transistor oversizing

and reduction in the clock frequency, respectively as an optimum NBTI mitigation. The

thermal management of ICs via different cooling arrangements is also proposed to

contain and reverse the NBTI impact [32]. Gate replacement technique is proposed in

[33] that attempts to optimize the NBTI ageing effect. Techniques on the balancing

and removal of stress to control short-duration threshold voltage instability are

suggested by Choi et al. [34]. These, however, fail to consider the critical factor of

prolonged ageing effect at high temperatures. In [35], Kiamehr et al. have highlighted

the use of ageing-aware library standard cells to mitigate BTI impact on the rise and

fall times of different signals. The threshold voltage shift is, initially, measured and later

used to optimize the width ratio (Wp/Wn) of each transistor to counter the ageing effect.

However, its applicability for IC run-time is not considered. Another study by Zhang et

al. [36] describes the techniques that involve the identification of critical gates and their

replacement with NBTI-tolerant gates. The use of dynamic voltage scaling and data

flipping has also been proposed by [37] to recover the static noise margin in the case

of SRAMs.

The measurement of a beat frequency between the reference and stressed ring

oscillators using a silicon odometer is also proposed in [38] to keep track of

degradation due to NBTI. Similarly, a hybrid scheme comprising ring oscillators and

delay line based online-ageing monitoring is presented in [39] for the measurement of

degradation. These sensor schemes are, however, focused on ensuring precise

134

measurements rather than triggering accelerated degradation to detect the presence

of any notable anomaly. In order to fill in this gap, a low-cost and lightweight structure

consisting of ring oscillator based sensors for in-field capturing of IC/FPGA ageing is

proposed in [40] to enhance the granularity of detection.

More recently, authors in [41] have proposed a multitype hardware Trojan protection

framework, called RG-Secure. This framework is designed and validated to provide

RTL and gate-level security to FPGA based SoCs (deployed in IoT environment)

against different types of hardware Trojans by merging 3PIP (third party intellectual

property) trusted design approaches with the scan-chain netlist feature analysis.

Employing tree-based learning algorithms, they have shown a good hardware Trojan

detection coverage at RTL and gate-levels, with 100% true positive rate and 94% true

negative rate accuracies. In our opinion and analysis, this method/framework holds

true for less complex netlist structures and scan-chain features. However, it may not

be effective against parametric hardware Trojans (e.g., threshold voltage-triggered)

that have netlists of distinct structure and trigger behaviour.

Our work, however, follows an integrated approach, as mentioned earlier, and

encompasses three elements namely, HT insertion (infection), its detection, and

mitigation. We build these elements considering the limitations and strengths of the

abovementioned techniques and different on-chip sensors’ architectures, with FPGA

security and reliability in perspective.

5.2.1 Threat Model

Hardware Trojan, a stealthily malicious entity, capable of inflicting performance

degradation, sensitive information disclosure, and functional disorder at the micro-

architectural level in FPGAs, continues to challenge the efforts toward strengthening

hardware security. In an attempt to control its increasing threat, we construct a threat

scenario/model to understand its implications for a high-end defence asset - a naval

warship, fitted with an ‘Integrated Self-Protection System’ (ISPS) and eventually

develop a full-spectrum FPGA security scheme.

ISPS is a real-time functional integration of electronic warfare systems used onboard

naval warships and fighter aircraft as well. It comprises Electronic Support Measures’

(ESM) systems like Radar Warning Receivers (RWR), System Processor for threat

135

environment assessment and asset assignment, and Electronic Counter Measures’

(ECMs) systems like Jammers and Chaff launchers.

We, however, focus on System Processor Module and regard it as a vulnerable entity

in ISPS system due to its high probability of infection with security-compromised

FPGAs. The threat scenario, as depicted in Figure 5-5, has three main elements,

namely: 1) the naval warship, 2) the Defence Systems Manufacturer - X, and 3) the

FPGA Supplier - Y. The red sphere with letter ‘R’ represents the ‘Rogue Element’ that

could be working with malicious intentions on its own, as a state-sponsored VLSI

design specialist, or an anti-state element/enemy. We assume its presence at FPGA

Supplier premises in ‘Design House,’ ‘Fabrication Facility,’ and ‘SoC Integration

Section’ - all representative of the FPGA supply chain. The green sphere with the letter

‘D’ represents the authors’ recommendation on forming a ‘Security Assurance and

Figure 5-5 Threat Model: A novel self-triggered Threshold Voltage-Shift based
Hardware Trojan ‘HTVth’ is designed and implemented by a rogue element in a 28 nm
FPGA used in System Processor Module of ISPS (Integrated Self Protection System)
of a Naval Warship.

136

Defence Team’ to counter the malicious insertion in FPGA by the rogue element. Its

presence is recommended in all the three elements.

The threat process begins with the naval warship placing the requirement of a new

System Processor Module (installed with n-number of FPGAs, providing vital

electronic warfare functions) for the ISPS system from the Defence Systems’

Manufacturer-X. Subsequently, the FPGA supplier -Y is sub-contracted by X to provide

FPGAs built on 28 nm process technology. A rogue element R, stationed in a Y design

house, receives the task of designing the FPGA. Here, we assume that R is an expert

FPGA designer with sufficient working knowledge of FPGA design flow, specific to the

insertion of stealthy hardware Trojan based on the threshold voltage shifts in PMOS

transistors. Such type of hardware Trojans corresponds to the functionality level

parametric characterization [42] and are targeted at paralysing device/system

functionality. To maintain undetectability, R employs ‘Split hardware Trojan
Insertion’ methodology, whereby a part of a hardware Trojan circuit is built at the

design stage in the design house. Post design and successful simulation, the design

file (GDSII) is forwarded to the FPGA fabrication facility for manufacturing. Here, the

remaining part of hardware Trojan is added (at the RTL and Gate level) post-

manufacturing reliability tests by another rogue element (collaborator) at the FPGA

fabrication facility to evade detection. As per our recommendation (mentioned in

Figure 5-5), if D is also stationed at the design house, it will design detection and

mitigation circuitry in addition to the hardware Trojan circuit design by R (with both D

and R remaining oblivious of each other’s work). The newly fabricated chips are now

ready for installation on the system processor module at X. The security assurance

and defence team D at X carries out pre-installation security tests to observe

anomalies specific to hardware Trojan based on threshold voltage shifts. If the tests

are clear, the FPGA is installed on the system processor module and delivered to the

end-user - the naval warship. At this point, we make two assumptions. Firstly, if the

detection and mitigation circuitry fails and the hardware Trojan gets triggered, the

damage to ISPS operation ability will occur. Secondly, if the detection and mitigation

circuitry successfully detects and mitigates the hardware Trojan, the ISPS system will

continue performing efficiently without any hindrances, provided some other faults that

are not related to hardware Trojan erupt. As can be seen in Figure 5-5, we have also

recommended the placement of D in the naval warship. So, before installing the

137

system processor module in the ISPS system for harbour and sea acceptance trials

(HATs and SATs), D must carry out security tests to challenge the first assumption

and in case of it holding true, return the module to X for replacement.

In a nutshell, as shown in Figure 5-5, if the ‘red-dotted line’ route (containing the FPGA

infected with hardware Trojan but without any detection and mitigation component of

FPGA security scheme) is adopted, the hardware Trojan would remain undetected

and get triggered with pre-defined threshold voltage shift, thereby causing ISPS

system performance degradation and leaving the ship vulnerable to a devastating

missile attack. On the other hand, if the ‘black-dotted line’ route (containing a robust

FPGA security scheme) is assumed, the hardware Trojan can be easily detected and

denied triggering, thereby keeping the ISPS system proficient in thwarting any external

threat to the ship.

Considering the above threat scenario/model, we, in the following sections, make an

effort to sequentially develop a realistic FPGA security scheme for the security

assurance and defence team to not only provide security and dependable redundancy

to critical systems like ISPS but also augment the post-manufacturing tests regime

(security tests, in specific) employed by FPGA manufacturers. The first step, in this

regard, is the design and implementation of a hardware Trojan itself, followed by

detection and mitigation circuitries based on the Trojan’s impact on target FPGA

applications.

5.3 FPGA Security Scheme and Threshold Voltage – Triggered
Hardware Trojan

In line with the FPGA security scheme (Figure 5-4), we define the contours of the

hardware Trojan (HT)-infection scheme. It encompasses an operational system’s

FPGA (28 nm technology) vulnerable to ingress of hardware Trojan, which in turn,

inflicts operational and functional damages to the system and its various components.

Beginning with HT-infection scheme, we construct a hardware Trojan with details as

follows.

5.3.1 Design Considerations

As mentioned earlier, the high temperature activates the NBTI mechanism in the

FPGA silicon fabric. Resultantly, it accelerates the process of ageing and leads to

138

undesirable characteristics. For instance, temperature changes beyond 75⁰C between

different layers of a substrate could cause variations in interconnect delays up to 31-

38% [43]. Subsequently, the device tends to operate slower with delays also

observable in the control and data signals. Such timing inconsistencies cause

synchronous circuits transit into redundant states or momentary glitches. However, to

avoid failures, the clock period can be managed to counter the system glitches. The

authors in [44] have, nevertheless, suggested that despite clock management, the

period of momentary glitches tends to increase with NBTI and may set off pre-

determined activity related to malicious circuitry.

Tabular analysis (Table 5-1) of the results obtained by [45] reveals that:(a) the shift in

threshold voltage (Vth) and drain current (Idd) is a function of high temperature and is

observed to increase for Vth and decrease for Idd at temperatures ≥ 60⁰C, (b) an

approximate rise of 4% in the threshold voltage shift is evident with the scaling down

of technology nodes [46]. The rate of decrease in Idd is, however, less than the rate of

Vth increase, and (c) eventually, the propagation delays increase with the

aforementioned trends of variation in Vth and Idd.

Table 5-1 Impact of NBTI aging mechanism on PMOS transistor
parameters.

139

In light of the above, the essential design targets for threshold voltage-triggered

hardware Trojan (HTVth) are set accordingly such that: (a) the transfer function of the

Trojan circuit must be linear. (b) sensitivity to temperature and threshold voltage

changes should be significantly high, (c) the change in the output should be

significantly high for a change in the input, and (d) negligible temporal degradation and

tolerance to process variations should be maintained.

Additionally, the element of stealthiness and undetectability of hardware Trojan is

highly significant (primarily from the perspective of a rogue element). Hardware Trojan,

by definition, has to be stealthy to escape detection. In order to achieve this, we have

ensured during design and implementation stages (described in the following sections)

that the size of the circuitry is as small as possible with equally low power consumption

and without compromising the effectiveness of its payload. Regarding the area and

resource utilization at the circuit and RTL/Gate level, we have used as minimum

instantiation as possible to ensure low area and power overheads. These have been

measured to be at just 1.5 % of the total available resources on a 28 nm process

technology. With such a small percentage, it is highly unlikely that the added circuitry

of hardware Trojan would be discovered either during post-manufacturing tests or

during run-time monitoring. Hence in a multi-million gates chip, it can hide easily. Also,

more importantly, the proposed threshold voltage triggered Trojan does not draw any

extra current while dormant; therefore, it becomes challenging even to detect it through

power signature analysis.

5.3.2 Architecture of Threshold Voltage Triggered Hardware Trojan
(HTVth)

We propose a circuit implementation of threshold voltage-triggered hardware Trojan,

HTVth, which is valid for CMOS devices. The implementation is demonstrated for both

the sequential and combinatorial logic as follows:

5.3.2.1 Conceptualising Hardware Trojan in Combinatorial Circuits

Considering the combinatorial circuit for hardware Trojan, a 2-input NAND gate is

designed to have two PMOS transistors M1 and M2 parallel to one another. These are

then connected in series to two NMOS transistors M3 and M4, as shown in

Figure 5-6. The drain terminals of both M1 and M2 are shared and connected to the

source terminal of M3. The output of the NAND gate is tapped out at M3. Another

140

PMOS transistor, MT (Trojan Transistor – occupying an area of 7.25 μm2), is

constructed in series with a MOS resistor (MR) to work as a hardware Trojan. The

MOS resistor acts as a current limiter as soon as the triggering signal is received at

the MT gate terminal. A compact silicon area of 50μm2 is occupied by this circuitry

with a low power consumption of 1.05μW.

Operationally, the Trojan is kept in the ‘ON’ stealthy state so that the transistors M1

and M2 remain connected to the power supply (VDD). The output of the NAND gate,

on the other hand, is ‘0’ when both of its inputs In 1 and In 2 are ‘1’. Otherwise, the

output always remains at ‘1’. As MT, the hardware Trojan receives an NBTI induced

shift in threshold voltage (triggering signal) at its gate terminal; it initiates the process

of accelerated device ageing with elevated temperatures and reduced frequency of

the NAND gate circuitry. The shift in the threshold voltage, which acts as a trigger for

the hardware Trojan, needs to be measured very carefully. For this purpose, we have

Figure 5-6 Schematic of a threshold voltage-triggered hardware Trojan (HTVth)
in a combinatorial circuit (2-input NAND gate).

141

also designed a threshold voltage measuring circuit, termed as ‘Threshold Voltage
Meter’ (described in section 5.3.3). With the value of threshold voltage (Vth) exceeding

the pre-defined level (pre-Trojan Trigger Threshold Voltage- Vth_ptt – 0.45V), a

triggering signal is generated at the gate terminal of MT. This active high triggering

signal switches the MT ‘OFF’ and leaves the PMOS transistors M1 and M2 without

power, thereby affecting the operation of the NAND gate.

5.3.2.2 Conceptualising Hardware Trojan in 4-BIT Ripple Carry Adder

In this subsection, we have attempted to demonstrate how a threshold-voltage

triggered HT impacts a typical logic function implemented in a 28 nm process

technology. For this purpose, we consider building a full adder (4-BIT ripple carry

adder), regarded as the main building block of arithmetic logic unit (ALU) which

realizes a set of basic arithmetic operations, such as addition, subtraction,

multiplication and division. The performance of a computation system depends on the

efficiency of arithmetic operation executed by the full adder. A hardware Trojan when

added to full adder can severely disrupt its operation and affect its performance as

well as the overall reliability of FPGA device.

Figure 5-7 A block diagram of a 4-BIT ripple carry adder. Full adder with C1 is implanted
with a threshold-voltage shift triggered hardware Trojan.

142

A block diagram of 4-BIT ripple carry adder implanted with a stealthy malicious

transistor in one of its four full adders (FA) is shown in Figure 5-7. A ripple carry adder

is basically a logic circuit in which the carry-out of each full adder is the carry-in of

the succeeding next most significant full adder. It is called a ripple carry adder because

each carry bit gets rippled into the next stage. The adder consists of four 1-BIT full

adders, which are series connected through Cin and Cout outputs.

We have implemented one full adder with two XOR gates for sum output calculation

and a multiplexer for obtaining carry output, as shown in the gate-level diagram in

Figure 5-8. For Trojan, we have employed pass transistor logic (with one as a

malicious transistor – the hardware Trojan) as it helps reduce the number of

transistors, in our case to eight, so as to achieve low power consumption and less

Figure 5-8 (a) Gate level diagram of Full Adder with XOR1 implanted with hardware
Trojan, represented by a red dot. (b) Transistor level circuit of XOR gate with malicious

transistor (MT) that receives Vth trigger at its gate.

143

area on the chip (as compared to conventional CMOS full adder design that requires

28 transistors [47], [48]), and hence low detectability.

In this case, the first XOR gate is an inverter modified with PMOS pass transistor MT
(occupying an area of 2.45 μm2), acting as a Malicious Transistor – the hardware

Trojan. Under normal operation, with high logic level at input A this inverter works as

a common CMOS inverter for the low logic level at input B. When there is Low logic

level at A, the inverter goes to a state with high impedance. In such a case, output Y

gets the same logic value as at input B due to open PMOS pass transistor MT.

However, as the input A (connected to MT) gets a triggering threshold voltage shift

signal (beyond the pre-defined value of 0.45V) from the ‘Threshold-Voltage Meter’

(described in section 5.3.3), MT becomes active high and causes sudden voltage

degradation at output Y. As a result, voltage degradation also occurs at the

multiplexer, thereby resulting in the overall failure of the ripple carry adder circuitry.

5.3.2.3 Conceptualising Hardware Trojan in Sequential Circuits

In order to build a sequential circuit for hardware Trojan demonstration, we consider

adding two flip flops (K and L) to the combinatorial circuit, as shown in Figure 5-9 and

Figure 5-10. The binary decoding with two bits X and Y as the most significant bit

(MSB) and the least significant bit (LSB), respectively, are used for the flip flops. An

inactive hardware Trojan, MT (occupying an area of 7.25 μm2), is embedded into the

flip flop K (overall area of this circuitry raises to 75μm2, consuming power of
1.25μW). Under no-triggering and normal operating conditions, the sequential circuit

functions optimally without any effect on the dynamic power consumption. As the MT

Figure 5-9 Block diagram representation of a sequential circuit.

144

is triggered, the supply voltage (VDD) feeding the flip flop ‘K’ is cut off, resulting in the

malfunction of the flow of finite state machine (FSM). Although the flip flop ‘L’ remains

unaffected and healthy, the failing of flip flop ‘K’ reduces the FSM states to only two

high impedance states - z0 and z1.

The above structure is further elaborated by constructing a true single-phase clock

(TSPC) based flip flop. The payload is the same PMOS transistor MT with a MOS

resistor (MR) connected in series to it, as shown in Figure 5-6. MT, acting as a switch,

controls the connection of the body and source of all PMOS transistors (M1, M2, M4,

M7, and M10) in the flip flop. The bodies of all NMOS transistors (M3, M5, M6, M8,

M9, and M11) are grounded permanently. When the switch MT is ‘ON,’ all the PMOS

transistors remain connected to VDD. On the contrary, when the switch MT is in ‘OFF’

state, the body and the source of all PMOS transistors are shorted to ground through

the resistor, leaving the flip flop without power supply and resulting in circuit

malfunction. Similar to the triggering of MT in the combinatorial circuit, the shift in

threshold voltage due to NBTI is designed to initiate MT triggering here in the

sequential structure as well. A Global Foundries 28 nm process technology is used to

accomplish circuit implementations and subsequent logic applications.

Figure 5-10 Schematic of threshold voltage-triggered hardware
Trojan in a Sequential Circuit (TSPC based Flip Flop).

145

5.3.2.4 Adding Ring Oscillator Based Heating Element for Accelerated NBTI
Impact

To accelerate the NBTI ageing mechanism and observe a corresponding shift in

threshold voltage ‘Vth,’ we designed and implemented a LUT-based ring oscillator to

act as a heating element for raising the temperature high enough to trigger NBTI. The

architecture of the heating element is shown in Figure 5-11(a). It is important to note

(a) (b)

Figure 5-11. (a) Schematic of a 3-stage Ring Oscillator-based heating
element with Time-to-Digital Converter. (b) 28 nm technology node floor-
planned with 08 x heating elements. (c) Thermal profile of FPGA (28 nm
technology node) with 08 x heating elements.

(c)

146

here that this heating element is designed and implemented as an integral part of the

hardware Trojan infection scheme.

As stated earlier, there exists a strong correlation between the shift in threshold

voltage and the die temperature. Taking this into account, a set of eight controllable

ring oscillators (ROs), comprising 3-inverter stages and a time-to-digital converter

(TDC) each, are implemented across the FPGA fabric (28 nm technology node) at

locations shown in Figure 5-11(b) using the Vivado design suite. It is noteworthy that

the number of stages in a ring oscillator determines the toggling frequency and hence,

the corresponding amount of heat generation, measurable as a variation in

temperature [49]. In order to disrupt the ISPS system, the toggling frequency of an RO

must be high enough to generate a large amount of heat per micron for high

temperatures. Accordingly, only a single LUT is used to implement RO with 3-inverter

stages and a TDC.

We define the area-constraint for our heating elements to only 8 LUTs (0.00025%) out

of the total 32,000 LUTs constituting the CLBs. The built-in system monitor is then

programmed to access XADC sensor readings of the thermal diode in FPGA. The

heating element is enabled/disabled by a time-driven program running on the FPGA,

which also keeps reading the temperature values and transmitting them to the

workstation via the JTAG interface.

The execution of the experiment is organized in such a way that the die temperature

of the FPGA is allowed to stabilise for a period of 35 minutes before enabling the

heating element for a period of 40 minutes. Upon completion of this operational phase,

the heating element is disabled and allowed to rest for 35 minutes. During this period,

the fall in temperature is observed to assess the behaviour of the heating element.

Finally, the heating element is again enabled for another 40 minutes to affirm the

repeatability and validity of the experiment.

We tested the LUT based ring oscillators (the heating elements) spread over eight

different locations on the FPGA as per the procedure mentioned in the previous

paragraph and measured it toggling at 550 MHz. The temperature measurements

were made using the FPGA’s internal thermal diode (for the whole FPGA), on-chip

thermal sensors (the LUT based RO connected to the counter for local temperature),

and the external laser-based IR temperature gun, positioned over the FPGA package.

147

Initially, the temperature is stabilised to an idle FPGA state, meaning when it is

powered up and configured, with the negligible workload, and without the heating

elements enabled. The idle temperature for the whole die (junction temperature) is

measured to be 10.5⁰C, the local RO 10⁰C, and the surface 5⁰C. The heating elements

are subsequently enabled with clock disabled to achieve asynchronous behaviour of

LUT based RO and toggle as fast as physically possible without any clock constraint.

Upon enabling the heating elements one by one for a period of 40 minutes each, the

local, junction, and surface temperatures depicting the thermal profile of an FPGA is

obtained, as shown in Figure 5-11(c). It can be seen that the temperatures rise

considerably higher to cause shifts in the threshold voltage and accelerate the NBTI

degradation mechanism. The threshold voltage meter, described later, continuously

measures the voltage till the time the hardware Trojan circuit is triggered at a value

above the nominal ‘Vth ’ value (0.45V).

5.3.3 Threshold Voltage Meter

As mentioned earlier, the shift in threshold voltage ‘Vth’ is the manifestation of the

ageing mechanism of NBTI in PMOS transistors that make up the FPGA fabric and its

Q 31 Q 14 Q 15

Q 21

Q 22

Vout = Vth

VDD

Q 11 Q 13

Q 12

Q 32

VLO

VHI

Two-Transistor Differential Amplifier
Circuit - performs subtraction :
Vout = VHI - VLO = Vth

Threshold Voltage Extraction
Circuit-Output is fed to VHI
terminal (the gate of Q21)

Self-Biasing Circuit - provides a
bias voltage to Q11 of Extraction
Circuit and VLO terminal (Q22) of
Differential Amplifier

Figure 5-12. Schematic of Threshold Voltage Meter. The output of the Differential
Amplifier is the Threshold Voltage (Vth).

148

primitives. Therefore, the precise measurement of ‘Vth’ is critical for triggering the

threshold voltage based hardware Trojan. Accordingly, we design and implement a

threshold voltage meter that directly generates an output voltage ‘Vout,’ equal to ‘Vth.’

Figure 5-12 shows the schematic diagram of the meter. As is evident, this circuit has

no reference voltage ‘Vref ’ input and is, therefore, a 3-terminal circuit. The transistors

Q31 and Q32 provide a bias voltage at the gate of Q11; this voltage is then applied to

the low voltage ‘VLO’ terminal of the differential amplifier, i.e., at the gate of Q22.

Whereas, the transistors Q11-Q15 implement a circuit whose output is applied to the

high voltage ‘VHI’ terminal of the differential amplifier at the gate of Q21. Eventually,

the Differential amplifier comprising Q21 and Q22 performs the subtraction process

outputs ‘Vth’ at the drain of Q22, as shown in Figure 5-12.

In order to validate the operation-ability, functionality, and accuracy of the designed

hardware Trojan, an experiment consisting of all elements of HT infection scheme (RO
based heating elements, threshold voltage meter, and the trojan circuit) is

performed. It ascertains whether a triggering signal, a shift (increment) in pre-
defined threshold voltage, can be latched or not. Furthermore, in case of being

Figure 5-13. % Shift in threshold voltage with rise in temperature across 8 different
intra-die locations. Threshold voltage meter is used to read Vth. Reference Vth is pre-
defined at 0.45V.

149

latched, ascertain whether the payload (accelerated ageing) of the hardware Trojan

gets activated. A controlled temperature environment is ensured using a thermal

chamber with an HT infection scheme-implemented FPGA (28 nm technology node)

placed inside it. The external temperature (i.e., thermal chamber temperature) is

maintained between 5-10⁰C (a typical warship computer control room

temperature). The JTAG interface is used for programming and bidirectional

communication between the FPGA and the workstation. Digital oscilloscope, Vivado

power analyser, FPGA system monitor, and integrated logic analyser (ILA) are

employed to capture the threshold voltage, drain current, and thermal points.

The first stage is the initialization of FPGA under test. This involves the stabilization of

the thermal chamber at 5⁰C, powering up of the target FPGA, and providing an

operating voltage of 1.0V. Once powered up, the LUT based ring oscillators

implemented to produce heat are enabled. This leads to the second stage where the

heat (rise in temperature and a corresponding shift in threshold voltage) generated by

the heating elements, spread across the device at locations shown in Figure 5-11(b)

is continuously measured and logged using the local as well as the system monitor.

The temporal change in temperature observed is shown in Figure 5-13. As the

temperature traverses the primary thermal point of ‘Tp1’ (60⁰C), the changes in

threshold voltage ‘Vth’ and ‘Idd’ are extracted and measured by Threshold Voltage

Figure 5-14. (Left) An increase of 40% shift in threshold voltage at 90⁰C degrades the
drain current by 35%, triggers the hardware Trojan and impairs the NAND2 logic. (Right)
An increase of 50% shift in threshold voltage at 90⁰C degrades the drain current by 40%,
triggers the hardware Trojan and impairs the TSPC logic.

150

meter. Similarly, the changes are continually observed, and measurements are taken

at secondary and tertiary thermal points (Tp2 -90⁰C and Tp3 -125⁰C respectively). We

took 10K samples for each thermal point at all the eight different locations within

FPGA. A complete mesh of plot showing the shifts in threshold voltage with change in

temperature is given in Figure 5-13. In the third stage, these readings are critically

analysed for false positives and accuracy for temperature variation and corresponding

shifts in threshold voltage as well as ‘Idd’ to observe the presence of any process

variations. Accordingly, three additional runs are undertaken to take further readings

and observe intra-run deviations to establish measurement accuracy. During all these

Table 5-2 Hardware Trojan Triggering Analysis in NAND2 Logic.

151

three stages, the hardware Trojan trigger circuit remains silent connected with the

NAND gate and

TSPC PMOS transistors till the time the hardware Trojan trigger circuit experiences a

shift in threshold voltage from 0.45V to 0.63V (40%) in NAND2 and 0.67V (50%) in

TSPC logic. Consequently, the trigger circuit of hardware Trojan causes

corresponding significant Idd degradation, as can be seen in Figure 5-14(left) and

Figure 5-14(Right) respectively. This, eventually cuts off the VDD connection of the

PMOS transistors, which constitute the NAND gate and TSPC. As a result, the whole

logic is deactivated, thereby crippling its critical function. The quantitative

representation of the percentage shift in threshold voltage (an increase in this case)

of MOSFETs that triggers the stealthy hardware Trojan is given in Tables 5-2 and

5-3.

Before approaching a trigger percentage shift in Vth, a gradual increase in signal

delays is also observable, for instance, with a 50% shift in the threshold voltage and

corresponding 40% shift in Idd, the increase in the rise and fall times from 20.5 ps and

26.7 ps respectively to 22.9 ps and 28.0 ps is recorded. TSPC and NAND circuits

remain stable with no triggering of hardware Trojan. However, the slowing down of

switching control is observable. As the threshold voltage shift hits 50% of the nominal

threshold value of 0.45V, the hardware Trojan gets activated. The same is observed

for 70% to 100% shifts in the nominal threshold voltage. This experimental result is in

Table 5-3 Hardware Trojan Triggering Analysis in True Single Phase
Clock (TSPC) Logic.

152

consonance with the Monte Carlo simulation carried out by sweeping parameter

values using Gaussian distribution. For the simulation purposes, the mean value is set

to the nominal threshold voltage value (0.45V), whereas the standard deviation (±σ) is

kept at ±0.1V of the mean value.

5.4 Design and Implementation of a Threshold Voltage-Aware
Sensor

The requirement of a lightweight and highly sensitive sensor for the detection of shifts

in threshold voltage much earlier than the triggering of hardware Trojan is a critical

design consideration. This is to ensure that the hardware Trojan never gets triggered,

provided its presence in FPGA has been accurately assessed. We draw the attention

of readers to the vital nature of a naval warship defence capability that should not get

compromised due to faltering EW-ISPS system dependent on system processor,

housing an FPGA. Therefore, the design and implementation of a highly sensitive

sensor that detects minor shifts in threshold voltage due to the NBTI effect captures

the corresponding frequency shifts and signal path delays and monitors the resultant

ageing of the device to provide high confidence in ISPS system performance is

paramount. This forms the whole concept of the HT-detection scheme, which is

designed and implemented at the recommended placements of security assurance

and defence teams, D (Figure 5-5).

153

5.4.1 Threshold Voltage Based Sensor Architecture

In continuation to the next stage of the threat model and keeping in perspective the

techniques mentioned in [50] and [51], we propose a lightweight sensor that consists

of two segments of ring oscillators (ROs), namely the ‘Fixed Sensor Segment (FSS)’
and the ‘Dynamic Sensor Segment (DSS)’ as shown in Figure 5-15. The fixed sensor

segment is designed to experience shifts in threshold voltage at a slower rate as

compared to the dynamic sensor segment, which is made to undergo thermal stresses

put through the hardware Trojan infection scheme. This must lower the oscillation

frequency of the dynamic sensor segment while the fixed sensor segment exhibits a

negligible change in its oscillation frequency. With the increasing disparity between

the oscillation frequencies of these two segments, the signs of FPGA ageing and

hence signal path delays provide a precursor to the inserted hardware Trojan

triggering and payload activity.

It is pertinent to mention that the accuracy of a sensor is susceptible to large process

variations (PVs) that exist in lower technology nodes. When process variations

outpace shifts in oscillation frequency and threshold voltages, it becomes challenging

to differentiate the impact of NBTI from that of the global and local process variations

Figure 5-15. The architecture of Threshold Voltage-Aware Sensor.

154

(and this impacts the accuracy of detection and parametric measurements). We

overcome this by placing the two segments of ROs very close to each other to zeroise

PV and any environmental variation other than the one generated by the hardware

Trojan insertion scheme (i.e., the rise in temperature).

The detailed architecture of the proposed sensor is shown in Figure 5-15. As can be

seen, the dynamic sensor segment is sensitized by introducing a pass transistor

between inverters and pulling down the inputs of all inverters to the ground through a

network of nMOS transistors. In order to keep all the electrical parameters like node

capacitance, resistance, etc. closely matched to the dynamic sensor segment, the

same structure is maintained within the fixed sensor segment. Such an arrangement

helps ensure that at the time ‘t0’, when there is no shift in threshold voltage, the

difference of oscillation frequency between the two segments is minimal. The only

impact observable could be the small variations present between the ROs of the two

segments.

In order to implement a specific mode of operation, a decoder circuit is inserted before

the two sensor segments to generate the corresponding internal signals, as shown in

Table 5-4. For instance, when enable EN is set to ‘0’, the RO segments start oscillating

while the pass transistors stay ‘ON.’ A timer-controlled counter is placed at the

segments’ output to enable an instant measurement of their respective cycle counts.

Table 5-4 Binary Modes of Operation.

155

For our design of the sensor, four distinct modes of operation, as explained in Table

5-4, are considered. At mode 1 (0:0), both the segments are inactive or in the dormant

phase as their connection to the power and ground line is cut off. This mode is valid

for the duration, the heating elements are silent, i.e., during the stabilization phase of

the thermal chamber. As the heating element is enabled, and it approaches the

primary thermal point (Tp1 - 60⁰C), operation mode 2 (0:1) is enforced. In this mode,

the fixed sensor segment (FSS) remains dormant (0), whereas the dynamic sensor

segment (DSS) assumes the threshold voltage-aware mode (1). Every inverter in DSS

is now subjected to dc stress (induced by gradual shifts in threshold voltage) by pulling

Figure 5-16 Process flows for the identification, authentication, and assessment of
Trojan-free and Trojan-infected FPGAs using frequency and delay mapping method.

156

its input to the ground. This causes changes in its oscillation frequency/cycle count

and induces signal delays. When the secondary thermal point Tp2 -90⁰C is reached,

the operation modes 3 (1:0) and 4 (1:1) are activated, and oscillation frequencies/cycle

counts of both RO segments are measured. This process of measurement continues

until the FPGA junction temperature reaches the tertiary thermal point Tp3 -125⁰C. It

must be noted here that these measurements are aimed at (1) testing and validating

the threshold voltage-aware sensor’s efficiency in terms of power and area

consumption, (2) determining the frequency threshold of a hardware Trojan-free FPGA

at varying locations, and (3) the impact of process variations (PVs) on sensor’s

accuracy.

5.4.2 Determining Threshold Frequency for Correlation and
Authentication

In order to develop a trustworthy threshold voltage triggered hardware Trojan detection

scheme, we have defined Trojan-free and Trojan-infected process flows to establish

the presence of hardware Trojan in an FPGA. Figure 5-16 shows the two processes.

The main purpose behind the Trojan-free frequency mapping is to determine the

threshold frequency ‘fth’ corresponding to pre-Trojan trigger threshold voltage ‘Vth_ptt’
and provide a reference to compare the frequency differences of FSS and DSS ‘fFD’
with it. If ‘fFD’ is greater than ‘fth,’ we consider this as an indication of ‘HTVth’(threshold
voltage-triggered hardware Trojan) presence and a precursor to its triggering and

Figure 5-17. Probability density function fFD at times 0 g0(fFD) and t gt(fFD).

157

payload effect. During the Trojan-free frequency mapping phase, a 28 nm FPGA is

used to generate the requisite distributions to determine the threshold frequency ‘fth.’
The Trojan-free phase implies that the Trojan circuit is already inserted and present in

the FPGA but lying in a dormant state.

Although the two RO segments are placed very close to each other to zeroise the

difference of oscillations ‘fFD’ between them, yet due to process variations, it will not

be zero. Also, a Gaussian distribution of ‘fFD’ is observed during the tests. A simplified

representation of the two distributions as probability density functions of ‘fFD’ at times

‘0’ g0(fFD) and ‘t’ gt(fFD) is shown in Figure 5-17. The frequency differences between

the two RO segments ‘fFD’ are represented by the x-axis, whereas the y-axis

represents the relative distribution function. The overlapping area gives the false

prediction of the presence of hardware Trojan or vice versa. The red area ‘θa’

represents the probability of detecting Trojan-infected FPGA as ‘HT-free,’ whereas

the green area θb denotes the probability of identifying the Trojan-free FPGA as ‘HT-

infected.’ Mathematically,

𝜃𝜃𝑎𝑎 = � 𝑔𝑔𝑡𝑡(𝑓𝑓𝐹𝐹𝐹𝐹) 𝑑𝑑 𝑓𝑓𝑡𝑡ℎ
𝑓𝑓𝑡𝑡ℎ

− ∞
 (5 − 1)

𝜃𝜃𝑏𝑏 = � 𝑔𝑔0(𝑓𝑓𝐹𝐹𝐹𝐹) 𝑑𝑑 𝑓𝑓𝑡𝑡ℎ
∞

𝑓𝑓𝑡𝑡ℎ
 (5 − 2)

Where, g0(fFD) and gt(fFD) correspond to the distribution of frequency differences for

Trojan-free (dormant) and Trojan-infected FPGAs, respectively. The threshold

frequency ‘fth’ is considered to be a point where both distributions intersect one

another, hence representing the frequency difference that reduces the total probability

of error (θa + θb).

5.4.3 Reducing the Rate of False Prediction

When the application risk is as critical as in our ISPS case, it is not prudent to let the

false prediction, as identified earlier, result in the system failure by failing the proposed

sensor to detect hardware Trojan. The repercussions of such a failure may include the

collapse of a defence system of the warship and fatal impact on human and material

assets. We have, therefore, devised a process of minimizing (zeroising) the level of

false prediction of the presence of hardware Trojan and vice versa, as shown in Figure

158

5-18(a)-(c). We observe that false prediction is generated due to the overlap of FSS

(a)

(b)

(c)

Figure 5-18. Reduction of false prediction - represented by the overlapped area.
(a) Moving the FSS and DSS distributions away from their respective
positions.(b) Minimizing their spread. (c) Minimal spread with a shift of the mean
of FSS and DSS distributions.

159

and DSS ROs’ frequency difference distribution at time ‘0’ g0(fFD) and at time ‘t’ gt(fFD),
which, in this case, is the ‘delay’ replica of g0(fFD). It implies that if this overlapping

region is reduced, the critical issue of false prediction can be resolved.

Accordingly, as a first step, we increase the separation of these distributions, which

represents the delay degradation ‘δf`, by shifting the distribution g0(fFD) to the left

g´0(fFD) or alternatively shifting the distribution gt(fFD) to the right g´t(fFD) or by

implementing both simultaneously as shown in the Figure 5-18(a). We observed an

improved detection of shifts in frequency corresponding to gradual shifts in the

threshold voltage as the distribution gt(fFD) is shifted to the right. Secondly, we

consider reducing the spread of FSS and DSS frequency difference distributions. The

spread is observed due to the variances of distributions (σ02 and σt2). As can be seen

in Figure 5-18(b), there is no overlap between g´0(fFD) and g´t(fFD), where σ'0 < σ0 and

σ't < σt . This arrangement also helps to minimise the false prediction rate. Thirdly, we

reduce the spread and increase the separation of these two distributions

simultaneously, as depicted in Figure 5-18(c), instead of managing them individually.

In such a case, we discard the right-hand side and reduce the spread of g0(fFD) on the

left-hand side. It helps reduce the overall spread. The separation, on the other hand,

Figure 5-19. Threshold Voltage-aware sensor with enhanced
detectability of hardware Trojan due to additional RO pairs
architecture.

160

is simultaneously increased by shifting gt(fFD) to the right-hand side. This technique

provides the best detection of frequency degradation and hence, the delay - a pointer

towards hardware Trojan activity and corresponding ageing of an FPGA under test.

For a detailed account of determining maximum frequency degradation through the

application of ‘Averaging and Selection’ methods, please refer to Appendices A and

B.

5.4.4 Re-architecting the Sensor with Additional Ring Oscillator
Segments

Based on the mathematical mean and variance derivations for FSS and DSS

segments with additional RO pairs (explained in detail at Appendix A), we re-

architectured the sensor, as shown in Figure 5-19. It consists of the same segments

but with two additional threshold voltage shift-aware RO pairs in both. The decision to

implement an additional number of RO pairs is primarily aimed at enhancing

detectability of abnormal frequency degradation in the shortest amount of time with a

negligible false prediction. The results of our experiment show that by the addition of

two more RO pairs in both the segments, the detectability of hardware Trojan based

on shifts in threshold voltage is unerring.

Looking further at the architecture of the proposed sensor in Figure 5-19, it can be

seen that the outputs of all the three RO pairs in both the segments are fed to a

multiplexer. A shift register of log2 (2n) bit facilitates the Mux. input selection and helps

minimise the I/O pin count for the sensor. This register is activated using a ‘serial-in

RO_SEL’ pin. The Decoder, as mentioned earlier, is designed to generate all the

internal inputs/signals for the FSS and DSS RO based segments. It is noteworthy that

all the RO pairs in each segment utilize the same internal signals generated by the

Decoder, and it is not essential to generate the control signals for each RO pair. The

operation of the Counter and Timer is the same as elaborated in Section 5.4.1 of this

chapter.

In order to achieve high detection and measurement accuracy, we, besides adopting

the averaging strategy, also consider the selection strategy as depicted in the process

flow in Figure 5-20. The selection strategy implies finding a DSS RO that experiences

maximum frequency degradation/delay and hence the ageing due to the NBTI

mechanism. For this purpose, the DSS RO pair is compared with the FSS RO pairs

161

even though they remain dormant during normal operations. It is, therefore, essential

to find an FSS RO pair that is slower than the DSS RO pairs during the time ‘0’ to

design a higher sensitivity sensor that enables the detection of hardware Trojan

activity well before its onset.

5.4.5 Sensor and Hardware Trojan Detection Scheme – Testing and
Analysis

The correct verification of the effectiveness and sensitivity of threshold voltage based

sensor for a hardware Trojan detection scheme is, therefore, critical. Consequent to

the optimisation of sensor accuracy described in the above section, we implemented

the improved sensor design (with additional RO segments) in a 28 nm FPGA

technology node. The experiment was set up to provide and emulate the ISPS system

Figure 5-20. Process flow for enhanced detectability of hardware Trojan
using optimum-performing RO pairs’ selection strategy.

162

environment onboard a naval vessel for realistic side-channel measurements. A

nominal supply voltage of 1.0V is provided from a benchtop power supply having basic

voltage setting accuracy and voltage readback accuracy of 0.03%. With the enabling

of heating elements (following the same phase -1 process with Negative bias ‘-1.2V’

and Tp ‘60⁰C’, as described in Section 5.4.1), the first set of readings (including

threshold voltage, oscillation frequency/count, and corresponding signal delays) is

taken at stabilised negative bias and primary thermal point, using DL850E

ScopeCorder with sample rates up to 100 MS/s.

Similarly, the experiments were conducted for the second and third phases of the

scheme. Although the impact of PVs is minimal as the two sensor segments are placed

very close to each other, we did, however, consider the impact of process variations

on the detection sensitivity of the sensor in terms of percentage, as given in

Table 5-5.

Table 5-5 Intra-die process variations–Transistor length and oxide thickness.

Figure 5-21. Scatter plot of correlation between dynamic frequency
degradation (% δf) and percentage frequency difference (% 𝜕𝜕ft DSS) of DSS
ROs (Refer to Appendix B).

163

These tests were repeated to establish the consistency of results and assure the

robustness of the developed scheme. The synopsis of test results is given in Figure

5-21 and Figure 5-22 (a) – (f). The frequency difference of FSS and DSS ‘fFD’ is

represented along the x-axis, and the y-axis represents the frequency of

occurrence/the number of test samples. Three different threshold voltage shift states

‘Vth1, Vth2, and Vth3’ corresponding to ‘fFD’ are representative of Vth distribution.

The green (Vth1=0%) distribution plot for ‘fFD’ is centred at 0 Hz. Whereas, the

distributions in pink and blue corresponding to Vth2=40% and Vth3=70% respectively

shift to the right. This is because the oscillation frequency/count of DSS slows down

Figure 5-22. Distribution of frequency differences between FSS and DSS, fFD, with
percentage shifts in threshold voltage in the presence of process variations PVa,
PVb, and PVc and changing number of RO stages (9 and 31) in sensor segments.
(a) PVa: 9-stage RO, (b) PVa: 31-stage RO, (c) PVb: 9-stage RO, (d) PVb: 31-stage RO,
(e) PVc: 9-stage RO, (f) PVc: 31-stage RO.

164

and results in a much larger change in frequency difference fFD. With no distinct

overlap of distributions (at Vth1=0% and Vth2=40% and Vth3=70%), there is a strong

indication of the presence of hardware Trojan. We can, therefore, positively detect the

presence of hardware Trojans with Vth2=40% in an FPGA under test (28 nm node).

In order to correctly estimate the percentage of false prediction, which is represented

by the distributions’ overlap, we use Gaussian fit to determine the mean and variance

of these distributions to calculate the overlapped area. At this stage, the process

variations mentioned in Table 5-5 are taken into account. These variations being part

and parcel of every silicon die, tend to affect electrical parameters invariably from die

to die and intra-die as well. With PVa, we consider the probability of false prediction as

negligible, and the same was observed during the test. The measured false prediction

rates of the sensor relating to HT-free (θa) and HT-infected (θb) FPGA are elaborated

in Table 5-6. These correspond to the process variations mentioned in Table 5-5. It

can be seen that the false prediction rate with PVc is higher due to a significant

difference in frequencies of the 28-nm FPGA under test with a higher percentage of

process variations. As a result, the overlapped area between the two distributions

grows significantly, thereby reflecting the increase in the probability of error (θ). We

TABLE VI. False Prediction Rates (Probability of
Table 5-6 False Prediction Rates (Probability of Error).

Figure 5-23 Gaussian distribution of frequency difference ‘fFD’ at
PVc of Vth-aware sensor with different number of RO-pairs.

165

provided remediation by placing the two sensor segments very close to each other, as

mentioned earlier. Besides, we increased the number of RO stages in both the

segments from 9 to 31 and then observed any reduction in false prediction rate. A

significantly lower false prediction rate is noted (at worst case PVc – 1.42% to 0.11%)

in the case of θb, and a similar trend is noted for θa (at worst case PVc – 1.37% to

0.13%).

The histogram plot giving the average frequency difference between the FSS and DSS

sensor segments for the different number of pairs is shown in Figure 5-23. We observe

a substantial reduction in the spread of the distributions with the increase in the

number of RO-pairs. The separation between the two distributions, however, remains

the same. At this point, the threshold frequency 𝒇𝒇𝒕𝒕𝒕𝒕 is measured for all the RO-pairs

of the two segments and is found to be equal to 2.5 MHz. It becomes crucial at this

stage to analyse the changes in the mean (μ) and variance (𝝈𝝈) values of the frequency

difference distribution of sensor segments to estimate the false prediction accuracy to

assess any requirement to increase the number of RO-pairs for achieving a negligible

false prediction rate. We took the measurements of the mean and variance of different

distributions with different numbers of RO-pairs using the ‘normfit MATLAB function’

to determine the accuracy of our process flows.

The measured values of the mean and variance are given in Table 5-7. The analysis

revealed an error in the expected value when compared with the actual value (<0.4%

for μ and <6% for σ). In light of this analysis, we created another histogram plot, as

shown in Figure 5-24(a)-(c), based on the frequency difference between the selected

RO-pairs of FSS and DSS sensor segments to determine the most efficient and error-

free hardware Trojan detection pair. We observe a significant overlap gap between

the two distributions at time t=0 and time t.

Table 5-7 Mean and Variance Frequency Distribution of Threshold Voltage Aware
Sensor.

166

Also, the increase in the separation between the distributions is found to be positively

correlated to an increase in the number of RO-pairs. The threshold frequency 𝒇𝒇𝒕𝒕𝒕𝒕, in

this case, is measured to be 2 MHz. We found the two RO-pairs combination to be the

167

most appropriate with zero-false prediction. The detection accuracy of the sensor is

presented in Table 5-8. The rate of false prediction is calculated as:

𝜃𝜃𝑎𝑎 =
𝑛𝑛𝑛𝑛. 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑓𝑓𝐹𝐹𝐹𝐹 < 𝑓𝑓𝑡𝑡ℎ

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
 × 100% (5 − 3)

Figure 5-24 Histograms of frequency difference distribution fFD at PVc of Vth-aware
sensor with different number of RO-pairs. (a) Optimization with 1RO-pair. (b)
Optimization with 2 RO-pairs. (c) Optimization with 3 RO-pairs.

Table 5-8 Analysis of False Prediction – Improving Sensor
Accuracy with RO-pairs scaling and selection process.

168

𝜃𝜃𝑏𝑏 =
𝑛𝑛𝑛𝑛. 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑓𝑓𝐹𝐹𝐹𝐹 > 𝑓𝑓𝑡𝑡ℎ

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
 × 100% (5 − 4)

At different threshold voltage shift states, the impact on sensor accuracy with varying

number of RO-pairs corresponding to each sensor segment is shown. As mentioned

in previous paragraphs, we have implemented a maximum of 3 pairs of ROs each in

two sensor segments, FSS and DSS. With a configuration of 2 RO-pairs, we can

characterise the sensor to determine threshold frequency ‘fth’ corresponding to pre-

Trojan trigger threshold voltage ‘Vth_ptt’ and provide a benchmark to compare the

frequency differences of FSS and DSS ‘fFD’ with it for the detection of hardware Trojan,

once triggered without any probability of error. It is essential to set the threshold

frequency cautiously to ensure that the value of the probability of error of FPGAs

falsely identified as HT-free (𝜽𝜽𝒂𝒂) is similar to the value of the probability of error of

FPGAs falsely identified as HT-infected (𝜽𝜽𝒃𝒃).

5.4.6 Area Overhead Analysis

The implementation of a threshold voltage triggered hardware Trojan detection

scheme is optimized to utilize minimum resources of 28 nm technology node FPGA.

Accordingly, the area overhead analysis of both the infection and detection schemes

is shown in Table 5-9. We implemented IWLS 2005 benchmarks of various sizes from

low to high to assess the area overhead - the ratio of the size versus area of the sensor

with the size versus area of the benchmark. As is evident, when used with a 31-stage

sensor in HT detection scheme, the area overhead is approximately 1.25% for n = 2

(2 RO-pairs) for smaller sized benchmarks like i2c, spi, and b14. We observe that it

Table 5-9 Area Overhead Analysis of Threshold Voltage-Aware Sensor (Svth).

169

does not impact the overall area of small as well as medium and larger designs,

implemented for heavy systems like the system processor module of ISPS, in our

case. On average, the overall area occupied by the HT-detection scheme is measured

to be 125μm2, whereas the power consumption reads 3.8μW, which is considered

compatible with the designs discussed in Section-5.2.

5.5 Mitigating the Impact of Threshold Voltage – Triggered
Hardware Trojan

The final proposition of FPGA security scheme (Figure 5.4) is the design and

implementation of hardware Trojan mitigation strategy. We propose a circuit design

technique, which endures threshold voltage-triggered hardware Trojans. The internal

module structure and control process flow devised for this purpose are depicted in

Figure 5- 25 and Figure 5-26 respectively. For this scheme, we target the monitoring

of drain current ‘Idd’ as a parameter that contributes to performance degradation as a

result of shifts in threshold voltage. A mechanism is proposed whereby a change in

the threshold voltage is sensed and a corresponding adjustment in Idd is made to

compensate for current variations in critical circuit nodes implemented in FPGA.

The main elements added to form the mitigation scheme are the ‘Current Adjustment

Module,’ ‘Reference Voltage Generator,’ and the ‘Transistor Width Scaling Module.’

IWLS 2005 benchmark ‘vga_lcd’ is used as a test circuit implemented in 28-nm FPGA

to validate the HT mitigation scheme. It also includes the process of pinpointing the

Figure 5-25. Block diagram representation of FPGA security scheme highlighting
hardware Trojan mitigation sub-scheme.

170

potential critical gates that experience frequency degradation due to the impact of

NBTI through shifts in threshold voltage. The Current Adjustment Module (CAM)

gauges the acceptable limits and ranges of shifts in threshold voltage, fanned out by

the sensor (in our case, the Vth_ptt). If Vth_ptt (pre-trojan trigger threshold voltage) is

out of the acceptable limit, the control signal is given to the Transistor Width Scaling

Module (TWSM), which increases the transistor width to counter the excess threshold

voltage shift and prevent the triggering of hardware Trojan.

5.5.1 Earmarking the Potential Critical Gates

We implemented the IWLS 2005 benchmark ‘vga_lcd’ in 28-nm FPGA using the

Vivado design suite and applied the algorithm defined in [52] to pinpoint its potential

critical gates using static timing analysis. We conclude that only 2.5% of the total gates

are identifiable as the potential critical gates, based on the worst-case frequency/delay

degradation. The worst-case degradation is set against the Vth_ptt. Accordingly, a

reserve transistor width is allocated to the earmarked critical gates to increase ‘Idd’

Figure 5-26. The Process Flow of Hardware Trojan Mitigation Scheme.

171

and counter the impact of the increased threshold voltage. The details of the

implementation are described later in Section 5.5.4.

5.5.2 Reference Voltage Generator

The measurement of the threshold voltage is done using ‘Threshold Voltage

Meter’(Figure 5-12). Although we have used the percentage frequency differences

corresponding to specific threshold voltage shifts in the HT detection scheme, we

consider it prudent to quantify the impact of shifts in threshold voltage due to NBTI,

while devising HT mitigation scheme. In this regard, we propose the implementation

of a ‘Reference Voltage Generator’ comprising a resistive-based voltage divider. The

schematic of the generator is shown in Figure 5-27. While calculating the reference

voltages, the effect of resistive tolerance is taken into account. Resultantly, for the

threshold voltage shifts of 40% and 70%, for instance, we represent them

correspondingly as Vref_40% and Vref_70 %. In order to determine the effect of resistive

tolerance variations, we carried out Monte Carlo simulation, taking into account the

process and environmental variations as well. A maximum change in reference voltage

ΔVref of less than 4mV is observed at a worst-case resistive variation of ± 5%.

Whereas at nominal (± 3%) and best case (± 0.5%) variations, ΔVref of less than
2mV and 0.75mV respectively are noted.

Figure 5-27. Resistive Voltage Divider for Reference Voltage Generator (Rvg).

172

5.5.3 Current Adjustment Module

Since the shift in threshold voltage of a PMOS device results in the reduction of drain

current and the subsequent slowing down of the circuit speed, it is possible to reverse

or mitigate this phenomenon by increasing the drain current. In order to achieve this,

a comparator circuit comprising current-mirror based differential amplifier is

implemented as a current adjustment module. The schematic of this module is shown

in Figure 5-28. Here, the output of the HT detection scheme and the reference voltage

V(+) V(-)

Output

Figure 5-28. A Comparator circuit with current-mirror based
differential amplifier.

0.00 V

0.05 V

0.15 V

0.25 V

0.35 V

0.45 V

0.55 V

0.65 V

0.75 V

0.85 V

0.95 V

460 mV 465 mV 470 mV 475 mV 480 mV 485 mV 490 mV455 mV

V (+)

V (-)

V (-)

V (+)

V (out)

V (+) =Non-inverting signal

V (-) = Inverting signal

Input

O
ut

pu
t

Figure 5-29 Input / Output Response of a Comparator.

173

generator drive the inputs of the current adjustment module. A control signal from the

current adjustment module is provided to the TWSM module, which subsequently

increases the width of the transistor to counter the frequency degradation/delay impact

of the NBTI mechanism.

In order to check the operation-ability of this module, we induce a fractional change at

the inverting and non-inverting inputs of the comparator, as shown in Figure 5-29.

When the voltage on the inverting terminal of the comparator is made higher as

compared to its non-inverting terminal, the comparator switches to logic ‘0’ and vice

versa. We considered the impact of process variations as well and found the

comparator sensitive up to 1.5mV of variation between inverting and non-inverting

terminals.

5.5.4 Transistor Width Scaling Module

Increasing the transistor width to let more current pass through the transistor can be

implemented as a countermeasure against the threshold voltage triggered hardware

Trojans to mitigate the latency induced by the shift in threshold voltage [53]. However,

designing transistor width increment as a one-time design rule makes it ineffective

against the long-run online performance degradation caused by NBTI ageing

mechanism [53]. Also, device upsizing could inflict constraints on the design

specification during the design stage. Many design metrics, like impedance matching

and Q point of V-I curve, may be affected, which may result in excess drain current

values. It is for these reasons, we propose a hardware Trojan mitigation scheme that

adjusts the width of transistors dynamically (i.e., during run-time) and named as

‘Online Transistor Dynamic Scaling (OTDS). We divide OTDS into two

implementation phases as follows:

5.5.4.1 Design Phase

In the design phase, we define the dimensions of the 2.5% of identified critical gates

of IWLS 2005 benchmark ‘vga_lcd’ in-line with its I/O functional specification.

Additionally, we provide the threshold voltage compensation dimensions/sizing as a

backup for the potential critical gates. As per the design, the dimensions of the

transistor forming the critical gate remain fixed until it is sensitized by a significant

NBTI impact on the design embedded in FPGA.

174

5.5.4.2 Dynamic Phase

As mentioned in the above paragraphs, when threshold voltage begins to change

(increase with NBTI), a runtime decision will be asserted to increase the width of the

critical transistors. With an increase in transistor width, the device is supported with a

corresponding increase in its drain current and hence, balances and mitigates the

impact of threshold voltage shifts.

The concept is illustrated in Figure 5-30. It shows an inverter having a PMOS double

the size of its NMOS counterpart. Under the normal situation, the pull-up network

possesses two unconnected parallel widths (2xW2 and 2xW3). Similarly, the pull-down

network consists of two unconnected parallel widths (W2 and W3). We gated the

additional PMOS widths, 2xW2 and 2xW3, using transistors Q1 and Q3, respectively.

Similarly, the additional NMOS widths W2 and W3 are also gated using the transistors

Q2 and Q4 respectively. The transistors Q1 and Q2 are set to share the same

triggering signal from node X whereas Q3 and Q4 share the identical signal from node

Y. Under the normal condition, defined as Vth < Vth_ptt, all these transistors remain

dormant (‘Off State’) and are considered to be a unit sized transistors. As the threshold

voltage is shifted (Vth ≥ Vth_ptt) with bias and temperature stressed NBTI, the OTDS

technique tries to compensate its impact by selecting transistors of larger widths. At

this stage, the reference voltage generator provides steps of percentage voltage

corresponding to percentage shifts in threshold voltage. When an increase of 30% in

Figure 5-30. Online Transistor Dynamic Scaling using Pull-Up and
Pull-Down Networks.

Q3

GND

VDD

O/P

Pull-Down
Network

Pull-Up
 Network

2xW1

2xW2

2xW3

W3

W2

W1 X Y

X YQ1 Q3

Q4

Idd Compensation Configurations
are implemented with PMOS
twice the width of NMOS
transistor in response to Vref
signals X and Y, generated by
Current Adjustment Module

I/P

175

the threshold voltage of the PMOS transistor is reached, the transistor width is

incremented to counter the shift in threshold voltage to prevent HT triggering.

It is vital to have an accurate reference voltage step generation for effective mitigation

of the increased threshold voltage and the frequency/delay degradation of the circuit

application. For that purpose, we assume the reference voltages to be fixed and the

run-time or dynamic state decision is made using the values of threshold voltage

measured by the HT detection scheme sensor. During the experiment, we observe

that as the threshold voltage rises by 5%, the current adjustment module with a

corresponding reference voltage (Vref) generates a signal X, which activates the

transistors Q1 and Q2 and turns them ‘ON.’ At this point, the width of the Pull-Up

network, shown in Figure 5-30, increases by 2xW2 and so does the width of the Pull-

Down network by W2. In the same way, at some instances of the time interval, the

signal Y gets triggered with a specific reference voltage, which in turn, activates the

transistors Q3 and Q4, having widths as shown in Figure 5-30. This leaves the Pull-

Up and Pull-Down networks with improved speed and stability.

5.6 Implementation and Optimisation of Hardware Trojan Mitigation
Scheme

It is well established that the drain current ‘Idd’ and the response time of a MOSFET

are directly proportional to its width. Therefore, increasing the transistor’s width will

subsequently increase the drain current as well as its response time. So, in order to

double the transistor width, we may use an equal width transistor to widen the

Figure 5-31. Circuitry for Transistor Width Parametric
Analysis.

176

MOSFET by sharing the drain and source terminals between MOSFETs. It also helps

in minimising the layout area.

Before deciding the extent of increasing the width of the transistor to reverse current

reduction due to NBTI, we quantify the reduction in drain current ‘Idd’. Accordingly, we

measure ‘Idd’ at 0%, 10%, 30%, 60%, and 90% of shift in Vth. The measurement results

are listed in Table 5-10. Based upon these measurements, a width-based parametric

analysis of the PMOS transistor is undertaken to make a correct assessment of the

extent of its width increment required to reverse ‘Idd’ reduction, corresponding to

percentage shifts in Vth. This analysis is enabled by the circuitry shown in Figure 5-

31. As can be seen, we kept the gate and source voltages of the PMOS transistor

constant at -1V and 0V, respectively and noted the variation in width (W) of the

transistor. The results are shown in Figure 5-32. It is evident that for a given gate and

source voltages, the drain current increases two-fold as the width of the PMOS device

is doubled. So, accordingly, we come up with the requisite percentage of width

-1.0010V

460 mV 465 mV 470 mV 475 mV 480 mV 485 mV455 mV

-1.0008V

-1.0006V

-1.0004V

-1.0002V

-1.0000V

-0.9998V

-0.9996V

-0.9994V

-0.9992V

-0.9998V

-0.9990V

0 μA

50 μA

100 μA

150 μA

200 μA

250 μA

300 μA

350 μA

400 μA

450 μA

500 μA

550 μA

 Vgs

 Idd Vdd
 Vdd = 0.9998 V

16 x W

4 x W

2 x W

8 x W

W

Figure 5-32. Idd vs Vgs Curves Showing Online Transistor Width Increment to
Compensate for Threshold Voltage-Triggered Hardware Trojan (Htvth) Attack.

Table 5-10 Measured values – PMOS Idd reduction
with increase in Vth.

177

increment, which is added in parallel for each value of shift in threshold voltage to

increase the transistor’s width and the current flow through it. The implementation of

this scheme is elaborated in Figure 5-33.

We employ the unit size transistor as a switch to manage and control the connectivity

of a transistor width for compensation. As seen in Figure 5-33, Q1 represents the

critical gate, and Q2, Q3, and Q4 are the widths reserved to compensate for the

reduction of ‘Idd’ due to percentage Vth shifts. As mentioned earlier, the sizes of Q2,

Q3, Q4, and Q5 are defined at the design phase. The same are given in Table 5-11.

In order to validate the mitigation scheme, the circuitry in Figure 5-33 is applied to a

flip flop with true single-phase clocking function. We measure the rise and fall times of

the flip flop as they change with changes in the threshold voltage. The results show

an increase in the rise and fall times with an increase in Vth shifts. The exact values

Figure 5-33. Threshold voltage-triggered hardware Trojan mitigation circuitry
of ‘HT-Mitigation Scheme’

Table 5-11 Measured values – width increment (Fanout-4) with
shifts in Vth.

178

are covered in Table 5-12. We observe that as a result of this increase, momentary

state transitions occur in FSM, which may lead to changing the output state. Also, we

note that as the duration of this output state is extended, it gets latched and may result

in the activation of malicious and stealthy hardware Trojan. This, however, is

prevented by increasing the device width and resultantly, the triggering signal for the

Trojan is silenced.

In a nutshell, adding extra reserve width for Pull-Up and Pull-Down network in the

design phase provides a viable mitigation technique, which increases the transistor

width dynamically during the run-time.

5.6.1 Comparative Analysis with Contemporary Mitigation Techniques

We have presented a holistic FPGA security scheme to detect and mitigate the ingress

of threshold voltage triggered hardware Trojans in its fabric. In doing so, we have

designed, implemented, and validated HT-infection, HT-detection, and HT-mitigation

schemes, with novel sensing and monitoring elements. We have highlighted its

significance in the ship-defence environment by providing a threat scenario/model

based on an ‘Integrated Self-Protection System (ISPS).’ This is a unique effort that

puts forth an integrated approach towards visualising and addressing a probable

hardware Trojan presence in a security-sensitive and mission-critical defence system

with accurate and resource-efficient detection and mitigation circuitry in a 28 nm

technology node based FPGA.

As discussed in Section 5.2, a significant amount of research work has been

undertaken to develop effective methods and circuits. In this section, we make a

comparative analysis of our work with other existing methods for the mitigation of the

NBTI effect in integrated circuits. For instance, in [54], the adaptive clock scheme

Table 5-12 Timing delays in TSPC due to Vth-triggered hardware Trojan
payload.

179

entails increasing the clock time to address the worst-case performance (in terms of

signal path time delays) degradation due to NBTI. This scheme is, however, hardware-

intensive with a high area overhead. Also, it degrades the device performance as a

result of time guard banding. Another technique [36] implies the replacement of aged

gates to reverse delay degradation but, again, it results in high area overhead. Our

work, on the contrary, addresses performance degradation by changing the transistor

width dynamically (during the runtime). This entails low area overhead and enhanced

device performance.

In another scheme [55], device ageing due to NBTI is countered through standard-cell

sensor-facilitated measurement of frequency degradation. It is followed by inducing

additional timing margin for the critical path to prevent device failure due to continued

ageing. However, the provision of redundancy in terms of extra timing margin is not

always valid. Moreover, such kind of schemes is resource-intensive with increased

area overheads–an undesired feature in modern technology nodes.

Table 5-13 summarises the analysis in terms of efficiency with respect to area

overhead and power consumption. We find the HT-mitigation component of our FPGA

security scheme more resource-efficient with compatible power consumption. It

augments the device performance by zeroing the impact of shifts in threshold voltage

through responsive and dynamic scaling of transistor width rather than the

replacement of the gate/transistor.

5.7 Summary

The miniaturised form factor of modern FPGAs provides enhanced performance as

compared to their predecessors. However, high-temperature stresses coupled with

Table 5-13 Area and Power consumption comparison of the proposed Threshold
Voltage (Vth) -shift based HT Mitigation Scheme.

180

longer heat dissipation paths may cause undesired stochastic variations like signal

delays. Primarily, this is attributable to the negative bias temperature instability (NBTI)

ageing mechanism that comes into play as a result of elevated temperature and

negative bias stress conditions. Consequently, the threshold voltage increases, which

in turn, leads to reduced drain current and delay degradation.

Keeping the aforementioned in perspective, we have investigated the impact of

threshold voltage shifts due to the degradation mechanism of NBTI in a 28 nm

technology node and constructed an FPGA security scheme around it to counter

potential hardware Trojan (HT) threats. The development of a threat scenario/model

encompassing a naval warship’s integrated self-protection system (ISPS), with its

processor module in focus, reinforces the need for a holistic approach to hardware

Trojan threats. We have shown how a rogue element in a design house can make use

of knowledge about the shifts in threshold voltage of a PMOS transistor to design and

implement a stealthy hardware Trojan scheme comprising heating elements, threshold

voltage meter, and the Trojan circuit. The area and power consumption for this scheme

are kept as low as 50μm2 and 1.05 μW for NAND2 and 75μm2 and 1.25μW for TSPC,

with the hardware Trojans triggering at 40% and 50% of the shift in threshold voltages,

respectively. It results in the total collapse of the circuit functionality, thereby

confirming the paralysing effect it can have on the ISPS system capability of a warship.

Acting as a defender, we have created hardware Trojan detection and mitigation

schemes as an integral part of the overall FPGA security scheme. The HT-detection

scheme is composed of a highly sensitive (100 KHz/0.5 mV) ring oscillator pair-based

sensor. It measures frequency degradation in a dynamic sensor segment (DSS) RO

pair equivalent to the shifts in threshold voltage and compares it with the fixed sensor

segment (FSS). The sensor is tested and calibrated to detect frequency degradation

at the pre-Trojan Trigger threshold voltage ‘Vth_ptt’ and Trojan Trigger threshold

voltage ‘Vth_tt.’ The detection and measurement accuracy is achieved by reducing the

false prediction rate to zero. Area overhead of 125μm2 and compatible power

consumption of 3.8μW are noted for the HT-detection scheme.

The final part of our FPGA security scheme is HT-mitigation by online transistor

dynamic scaling (OTDS). Here, we leverage the reduction in drain current with an

increase in threshold voltage to dynamically adjust the transistor width and reverse the

HT triggering process. Post parametric analysis of the changes in the transistor width,

181

we conclude that increasing the transistor width improves its drain current flow, which

in turn, helps maintain the performance of the FPGA and avoid HT triggering. We

correlated and back annotated the requisite increment/decrement in the transistor

width to compensate for the drain current loss due to shifts in threshold voltage.

Accordingly, a range of transistor widths that compensates for the reduction in drain

current has been determined in the FPGA under test. This HT-mitigation scheme

occupies an area of 150μm2 with power consumption at 15.5 μW.

The whole FPGA security scheme is built on changes in the threshold voltage of the

PMOS transistor. It provides a unique and integrated strategy for thwarting the

probable infection of threshold voltage-triggered hardware Trojans in advanced re-

programmable devices used in security-critical defence systems.

REFERENCES

[1] S. F. Mossa, S. R. Hasan, and O. Elkeelany, “Hardware trojans in 3-D ICs due

to NBTI effects and countermeasure,” Integr. VLSI J., vol. 59, pp. 64–74, 2017.

[2] Y. Wang et al., “High Temperature Thermal Management with Boron Nitride

Nanosheets,” Nanoscale, pp. 167–173, 2017.

[3] E. A. Scott, J. T. Gaskins, and S. W. King, “Thermal conductivity and thermal

boundary resistance of atomic layer deposited high- k dielectric aluminum oxide

, hafnium oxide , and titanium oxide thin films on silicon,” APL Materials 6, 2018.

[4] P. Mangalagiri, S. Bae, R. Krishnan, Yuan Xie and V. Narayanan, "Thermal-

aware reliability analysis for Platform FPGAs," IEEE/ACM International

Conference on Computer-Aided Design, San Jose, CA, pp. 722-727, 2008.

[5] Y. Wang, H. Luo, K. He, R. Luo, H. Yang, and Y. Xie, “Temperature-aware NBTI

modeling and the impact of standby leakage reduction techniques on circuit

performance degradation,” IEEE Trans. Dependable Secur. Comput., vol. 8, no.

5, pp. 756–769, 2011.

[6] T. Grasser, R. Entner, O. Triebl, H. Enichlmair and R. Minixhofer, "TCAD

Modeling of Negative Bias Temperature Instability," International Conference on

Simulation of Semiconductor Processes and Devices, Monterey, CA, pp. 330-

333, 2006.

182

[7] A. Waksman and S. Sethumadhavan, “Silencing hardware backdoors,” Proc. -

IEEE Symp. Secur. Priv., pp. 49–63, 2011.

[8] B. Vaidyanathan, A. S. Oates, Y. Xie, and Y. Wang, “NBTI-aware statistical

circuit delay assessment,” 10th Int. Symp. Qual. Electron. Des., no. 4, pp. 13–

18, 2009.

[9] S. Khan and S. Hamdioui, "Temperature dependence of NBTI induced delay,"

IEEE 16th International On-Line Testing Symposium, Corfu, pp. 15-20, 2010.

[10] G. T. Becker, F. Regazzoni, C. Paar, and W. P. Burleson, “Stealthy dopant-level

hardware Trojans: Extended version,” J. Cryptogr. Eng., vol. 4, no. 1, pp. 19–

31, 2014.

[11] D. Patra et al., “Adaptive accelerated aging for 28 nm HKMG technology,”

Microelectron. Reliab., vol. 80, pp. 149–154, 2018.

[12] D. Agrawal, S. Baktir, D. Karakoyunlu, P. Rohatgi, and B. Sunar, “Trojan

detection using IC fingerprinting,” Proc. - IEEE Symp. Secur. Priv., pp. 296–310,

2007.

[13] J. Li and J. Lach, “At-speed delay characterization for IC authentication and

Trojan horse detection,” IEEE Int. Work. Hardware-Oriented Secur. Trust.

HOST, pp. 8–14, 2008.

[14] M. Abramovici and P. Bradley, "Integrated circuit security: new threats and

solutions". In Proceedings of the 5th Annual Workshop on Cyber Security and

Information Intelligence Research: Cyber Security and Information Intelligence

Challenges and Strategies (CSIIRW '09). Association for Computing Machinery,

New York, NY, USA, Article 55, pp 1–3, 2009.

[15] R.S. Chakraboty, F.Wolff, S.Paul, C. Papachristou, and S. Bhunia, "MERO: A

statistical approach for hardware Trojan detection", In Proceedings of the 11th

International workshop on cryptographic hardware and embedded systems

(CHES'09), Springer-Verlog, Belin, pp 396-410, 2009.

 [16] S. Narasimhan and D. Du, “Multiple-parameter side-channel analysis: a non-

invasive hardware Trojan detection approach,” Hardware-Oriented Security and

Trust, pp. 13–18, 2010.

183

 [17] C. Lamech, R. M. Rad, M. Tehranipoor, and J. Plusquellic, “An experimental

analysis of power and delay signal-to-noise requirements for detecting trojans

and methods for achieving the required detection sensitivities,” IEEE Trans. Inf.

Forensics Secur., vol. 6, no. 3 PART 2, pp. 1170–1179, 2011.

[18] Xuehui Zhang and M. Tehranipoor, “RON: An on-chip ring oscillator network for

hardware Trojan detection,” Des. Autom. Test Eur., vol. 1, pp. 1–6, 2011.

[19] A. Ferraiuolo, X. Zhang, and M. Tehranipoor, “Experimental analysis of a ring

oscillator network for hardware trojan detection in a 90nm ASIC,” Proc. Int. Conf.

Comput. Des. - ICCAD ’12, p. 37, 2012.

[20] Y. Cao, C. Chang and S. Chen, "Cluster-based distributed active current timer

for hardware Trojan detection," IEEE International Symposium on Circuits and

Systems (ISCAS), Beijing, pp. 1010-1013, 2013.

[21] O. Söll, T. Korak, M. Muehlberghuber and M. Hutter, "EM-based detection of

hardware trojans on FPGAs," IEEE International Symposium on Hardware-

Oriented Security and Trust (HOST), Arlington, VA, pp. 84-87, 2014.

[22] J. Balasch, B. Gierlichs and I. Verbauwhede, "Electromagnetic circuit

fingerprints for Hardware Trojan detection," IEEE International Symposium on

Electromagnetic Compatibility (EMC), Dresden, pp. 246-251, 2015.

[23] Ngo, X.T., Najm, Z., Bhasin, S. et al. "Method taking into account process

dispersion to detect hardware Trojan Horse by side-channel analysis". J

Cryptogr Eng 6, pp 239–247, 2016.

[24] P. Singh, E. Karl, D. Blaauw, and D. Sylvester, “Compact Degradation Sensors

for Monitoring NBTI and Oxide Degradation,” IEEE Trans. Very Large Scale

Integr. Syst., vol. 20, no. 9, pp. 1645–1655, 2012.

[25] Y. Wang, M. Enachescu, S. D. Cotofana, and L. Fang, “Microelectronics

Reliability Variation tolerant on-chip degradation sensors for dynamic reliability

management systems,” Microelectron. Reliab., vol. 52, no. 9–10, pp. 1787–

1791, 2012.

[26] Y. Wang and S. D. Cotofana, “Statistical Reliability Analysis of NBTI Impact on

FinFET SRAMs and Mitigation Technique Using Independent-Gate Devices,”

184

IEEE/ACM Int. Symp. Nanoscale Archit., pp. 109–115, 2012.

[27] J. P. D. Comput, Y. Wang, S. D. Cotofana, and L. Fang, “Analysis of the impact

of spatial and temporal variations on the stability of SRAM arrays and the

mitigation technique using independent-gate devices,” J. Parallel Distrib.

Comput., vol. 74, no. 6, pp. 2521–2529, 2014.

[28] S. V. Kumar, C. H. Kim and S. S. Sapatnekar, "NBTI-Aware Synthesis of Digital

Circuits," 44th ACM/IEEE Design Automation Conference, San Diego, CA, pp.

370-375, 2007.

[29] A. Calimera, E. Macii, and M. Poncino, “Design Techniques for NBTI-Tolerant

Power-Gating Architectures,” IEEE Trans. Circuits Syst. II Express Briefs, vol.

59, no. 4, pp. 249–253, 2012.

[30] Z. Abbas, M. Olivieri, U. Khalid, A. Ripp and M. Pronath, "Optimal NBTI

degradation and PVT variation resistant device sizing in a full adder cell," 4th

International Conference on Reliability, Infocom Technologies and Optimization

(ICRITO) (Trends and Future Directions), Noida, pp. 1-6, 2015.

[31] I. Chao Lin, S.M. Syu, and T.Y. Ho, "NBTI tolerance and leakage reduction using

gate sizing", ACM J. Emerg. Technol. Comput. Syst. 11,1, Article 4, pp 12, 2014.

[32] P. Mangalagiri, S. Bae, R. Krishnan, Y. Xie, and V. Narayanan, “Thermal-aware

reliability analysis for platform FPGAs,” IEEE/ACM Int. Conf. Comput. Des. Dig.

Tech. Pap. ICCAD, pp. 722–727, 2008.

 [33] K. Wu, D. Marculescu, M. Lee and S. Chang, "Analysis and mitigation of NBTI-

induced performance degradation for power-gated circuits," IEEE/ACM

International Symposium on Low Power Electronics and Design, Fukuoka, pp.

139-144, 2011.

[34] W. H. Choi, H. Kim, and C. H. Kim, “Circuit Techniques for Mitigating Short-Term

Vth Instability Issues in Successive Approximation Register (SAR) ADCs,”

IEEE Cust. Integr. Circuits Conf., pp. 1–4, 2015.

[35] S. Kiamehr, M. Ebrahimi, F. Firouzi and M. B. Tahoori, "Extending standard cell

library for aging mitigation," in IET Computers & Digital Techniques, vol. 9, no.

4, pp. 206-212, 7 2015.

185

[36] G. Zhang, M. Yi, Y. Miao, D. Xu, and H. Liang, “NBTI-induced Circuit Aging

Optimization by Protectability-aware Gate Replacement Technique,” 16th Latin-

American Test Symp., pp. 1–4, 2015.

[37] S. V. Kumar, K. H. Kim and S. S. Sapatnekar, "Impact of NBTI on SRAM read

stability and design for reliability," 7th International Symposium on Quality

Electronic Design (ISQED'06), San Jose, CA, pp. 6 -218, 2006.

[38] T. H. Kim, R. Persaud, and C. H. Kim, “Silicon odometer: An on-chip reliability

monitor for measuring frequency degradation of digital circuits,” IEEE J. Solid-

State Circuits, vol. 43, no. 4, pp. 874–880, 2008.

[39] E. Saneyoshi, K. Nose, and M. Mizuno, “A Precise-Tracking NBTI-Degradation

Monitor Independent of NBTI Recovery Effect,” IEEE Int. Solid-State Circuits

Conf. -, pp. 192–193, 2010.

[40] X. Zhang, M. Tehranipoor, and S. Member, “Design of On-Chip Lightweight

Sensors for Effective Detection of Recycled ICs,” IEEE Trans. Very Large Scale

Integr. Syst., vol. 22, no. 5, pp. 1016–1029, 2014.

[41] C. Dong, “A Multi-Layer Hardware Trojan Protection Framework for IoT Chips,”

IEEE Access, vol. 7, pp. 23628–23639, 2019.

[42] S. Moein, T. A. Gulliver, and S. Member, “A New Characterization of Hardware

Trojans,” IEEE Access, vol. 4, pp. 2721–2731, 2016.

[43] S. R. Hasan, “An All-Digital Skew-Adaptive Clock Scheduling Algorithm for

Heterogeneous Multiprocessor Systems on Chips (MPSoCs),” IEEE Int. Symp.

Circuits Syst., pp. 2501–2504, 2009.

[44] S. R. Hasan, S. F. Mossa, O. Sayed, A. Elkeelany, and F. Awwad, “Tenacious

Hardware Trojans Due to High Temperature in Middle Tiers of 3-D ICs,” IEEE

58th Int. Midwest Symp. Circuits Syst., pp. 1–4, 2015.

[45] S. Khan and S. Hamdioui, “Temperature Dependence of NBTI Induced Delay,”

2010 IEEE 16th Int. On-Line Test. Symp., pp. 15–20, 2010.

[46] A. P. Shah, N. Yadav, A. Beohar, and S. K. Vishvakarma, “SUBHDIP: process

variations tolerant subthreshold Darlington pair-based NBTI sensor circuit,” IET

186

Comput. Digit. Tech., vol. 13, no. 3, pp. 243–249, 2019.

[47] Gupta A. A survey on different CMOS full adder design techniques / A.Gupta,
 R. Thakur // Int. Journal of Advanced Research in Computer Science and
 Software Engineering, – Vol. 5, No. 7, pp 1196-1201, 2015.

[48] Joshi D. Design and implementation of 16-bit ripple carry adder for low power
 in 45mm CMOS technology / D.D. Joshi, J.K. Singh // Int. Journal of Emerging
 Technology and Advanced Engineering, – Vol. 4, No. 1, pp 216-220, 2014.
[49] A. Amouri, F. Bruguier, S. Kiamehr, P. Benoit, L. Torres, and M. Tahoori, “Aging

effects in FPGAs: An experimental analysis,” Conf. Dig. - 24th Int. Conf. F.

Program. Log. Appl. FPL 2014, pp. 5–8, 2014.

[50] X. Zhang, N. Tuzzio and M. Tehranipoor, "Identification of recovered ICs using

fingerprints from a light-weight on-chip sensor," DAC Design Automation

Conference 2012, San Francisco, CA, pp. 703-708, 2012.

[51] U. Guin, D. Forte and M. Tehranipoor, "Design of Accurate Low-Cost On-Chip

Structures for Protecting Integrated Circuits Against Recycling," in IEEE

Transactions on Very Large Scale Integration (VLSI) Systems, vol. 24, no. 4, pp.

1233-1246, April 2016.

[52] W. Wang, Z. Wei, S. Yang and Y. Cao, "An efficient method to identify critical

gates under circuit aging," IEEE/ACM International Conference on Computer-

Aided Design, San Jose, CA, pp. 735-740, 2007.

[53] G. Wu, G. W. Deptuch, J. R. Hoff, and P. Gui, “Degradations of threshold

voltage, mobility, and drain current and the dependence on transistor geometry

for stressing at 77 K and 300 K,” IEEE Trans. Device Mater. Reliab., vol. 14, no.

1, pp. 477–483, 2014.

[54] M. Omaña, D. Rossi, N. Bosio and C. Metra, "Low Cost NBTI Degradation

Detection and Masking Approaches," in IEEE Transactions on Computers, vol.

62, no. 3, pp. 496-509, March 2013.

[55] X. Wang et al., “Aging Adaption in Integrated Circuits Using a Novel Built-In

Sensor,” IEEE Trans. Comput. Des. Integr. Circuits Syst., vol. 34, no. 1, pp. 109–

121, 2015.

[56] K. A. Bowman et al., "Energy-Efficient and Metastability-Immune Resilient

187

Circuits for Dynamic Variation Tolerance," in IEEE Journal of Solid-State

Circuits, vol. 44, no. 1, pp. 49-63, Jan. 2009.

[57] J. C. Vazquez et al., "Predictive error detection by on-line aging

monitoring," 2010 IEEE 16th International On-Line Testing Symposium, Corfu,

pp. 9-14, 2010.

[58] E. Mintarno, V. Chandra, D. Pietromonaco, R. Aitken, and R. W. Dutton,

“Workload Dependent NBTI and PBTI Analysis for a sub-45nm Commercial

Microprocessor,” 2013 IEEE Int. Reliab. Phys. Symp., pp. 3A.1.1-3A.1.6, 2013.

[59] Y. Cao et al., "Cross-Layer Modelling and Simulation of Circuit Reliability,"

in IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems, vol. 33, no. 1, pp. 8-23, Jan. 2014.

[60] Khatib et al., "Degradation analysis of datapath logic subblocks under NBTI

aging in FinFET technology," Fifteenth International Symposium on Quality

Electronic Design, Santa Clara, CA, pp. 473-479, 2014.

[61] G. Lian, W. Chen, S. Huang, and S. Member, “Cloud-Based Online Ageing

Monitoring for IoT Devices,” IEEE Access, vol. 7, pp. 135964–135971, 2019.

[62] J. U. N. Tong, J. Yang, J. Xi, and P. O. Ogunbona, “Tuning the Parameters for

 Precision Matrix Estimation Using Regression Analysis,” IEEE Access, vol. 7,

 pp. 90585–90596, 2019.

188

6 FPGA HEALTH ESTIMATION USING KERNEL LEARNING
APPROACH

High thermal and power stresses coupled with increased switching frequencies result

in the accelerated degradation in the timing performance of FPGA primitives, such as

look-up tables (LUTs), configuration logic blocks (CLBs), and programmable

interconnects. Essentially, this is attributable to the deviation in CMOS transistor

parameters from their initial values over the operational lifespan of the device. The

resulting signal path delays and timing violations, eventually leading to the accelerated

ageing, affect the reliability of an FPGA as well as the sensitive applications running

on its fabric. The quantification of an FPGA health, under such an accelerated

degradation environment, therefore, becomes vital to support its reliable operation and

maintainability. Existing approaches to predict degradation and the overall FPGA

health are very limited and inconclusive. Accordingly, an FPGA health estimation

method is developed using a unique kernel-based machine-learning approach. This

chapter is, therefore, organised to give details of the developed method and various

interpretations as per the disposition shown in Figure 6-1.

Figure 6-1 The Disposition of Chapter 6.

189

6.1 Introduction

Health estimation phenomena are not as straightforward in VLSI devices as they are

for discrete electronic components. It is because of the complex nature of fault/failure

mechanisms, the interdependence of electrical parameters, and varying component

tolerances (due to process variations) that place challenges on devising realistic and

dependable prognostics in VLSI devices - in this case, the FPGAs. These devices

composed of primitives such as look-up-tables (LUTs), flip flops and programmable

interconnects with underlying circuitry of CMOS transistors exhibit parametric shifts as

they degrade over their operational lifetime. The parametric shift is defined as the

deviation in the parameters of FPGA primitives due to changing I-V characteristics of

CMOS transistors from their initial values and beyond their acceptable tolerance limits

[1]. This results in gradual/accelerated (when infected with stealthy and malicious

electronic circuitry - hardware Trojan) performance degradation in an FPGA,

eventually leading to the application as well as the FPGA failure. Predicting such FPGA

performance degradation and failures and, hence its health holds the key to

maintaining as well as enhancing the reliability and availability of the existing and

future system and network environments (SoCs, NoCs, and ACAP), augmented by

state-of-the-art FPGAs. It is, therefore, essential to estimate degradation in FPGA

health due to parametric shifts (e.g., rise in electric field strength, increased threshold

voltage, reduced thermal conductivity, etc.) in its primitives with underlying CMOS

transistors. This study focuses on the parametric shifts in CMOS transistors of SRAM

Look-up Tables (LUTs) and bistable elements, connected to support logic that could

perform predetermined functions (in this case – the combinatorial and sequential

functions).

6.1.1 Related Work

A limited amount of studies have developed methods to quantify degradation in FPGA

health due to parametric shifts in its primitives. Most of the prognostics work has been

component-centric using data-driven methods for discrete electronic devices like IGBTs,

electrolytic capacitors, lithium batteries etc., For instance, Mahalanobis distance (MD)-

based feature transformation has been used by [2] for prognostics as a health indicator

(HI). The author in [3] employed Euclidean distance (ED) measure for filter circuit

190

prognostics, which, however, does not take into account the correlation between

extracted features. This could result in a false prediction.

On the other hand, [4] and [5] have calculated the health index (HI) as the cosine (cos-

1) and sine (sin-1) functions of the distance between the test features and features

extracted from the circuit with the no-fault condition. They, however, did not take into

account the impact of component tolerances, which in addition to the measurement

noise, may affect the accuracy and authenticity of prognosis.

Fractional contributions through Mahalanobis distance measurements, conducted

over a specific time window of extracted features, has been demonstrated by [6]. A k-

nearest neighbor-based prognosis for IGBTs has been proposed by [7], which uses

ED measurement between the test data to the centroid of the nearest neighbors. Here,

healthy and failure classes are constructed offline.

It is noteworthy that the abovementioned MD and ED measure-based prognostics [2]-

[7] are applicable under the condition that allows the healthy and failure classes to be

linearly separable in the extracted feature space. On the contrary, [8] and [9] have

demonstrated that circuit responses are rarely linearly classifiable (be it the no-fault or

faulty condition). Instead, they are more optimally classified with non-linear Kernel-

learning methods to identify faults.

In terms of accuracy, an MD-based classifier has been found to achieve 78%

classification accuracy, as demonstrated by [10] on the Sallen-Key bandpass filter

(BPF). However, for the same circuit and training data, the least-squares support

vector machine (SVM) has been found to achieve the classification accuracy of 99%

approximately, as demonstrated by [2]. These results show that a non-linear method

is more suitable for classifying a healthy circuit from the one with parametric faults.

Based on the above, there are various questions that we have sought to address in

this work: Is it computationally feasible to use machine learning methods for health

estimation of complex FPGA architecture? How can hyperparameter selection

problem be solved for accurate health estimate? Do N/PBTI degradation mechanisms

represent a realistic account of FPGA ageing in terms of frequency degradation,

threshold voltage and corresponding delay degradation?

191

Accordingly, we have developed a kernel learning technique to prognosticate FPGA

health, taking into account the parametric shifts in its primitives, such as LUT. This

involves treating FPGA health as a soft classification entity using a parameterized

kernel function. As noise may accompany the extracted features, especially when the

component tolerances are taken into account, it is viable to choose a regularization

parameter to manage the relationship between training error and the complexity of

decision function. This implies that the prognostics accuracy depends on the optimal

choice of kernel and regularization parameters, collectively termed as

‘hyperparameters.’ In order to address this hyperparameter selection problem, we

have also developed a stochastic filtering-based optimization method. This method

helps fine-tune the Kernel and regularization parameters for a given FPGA.

6.2 Kernel Learning and FPGA Health Estimation/Prognostics – A
Mathematical Interpretation

The mapping of data, extending from a Euclidean to a higher-dimensional space, and

then fitting linear models into the projected space, forms the basis of Kernel-learning

approach [11]. The projection of test data to a higher dimensional space and the

calculation of similarity measures between the test data ‘dt’ and the training data

′{𝒅𝒅𝒊𝒊 }𝒊𝒊=𝟏𝟏𝒏𝒏 ′ for both the healthy and failure FPGA states facilitate the decision on test

data.

Precisely, the function K(di, dt): ℝ𝒏𝒏𝒅𝒅 x ℝ𝒏𝒏𝒅𝒅 → ℝ is used to determine the similarity

measure between the test and training features, dt and di, respectively, of length nd

, along with a parameterized family of kernel functions. For instance, the automatic

relevance determinant (ARD) Gaussian kernel function, which is represented as:

𝑲𝑲(𝑑𝑑𝑖𝑖,𝑑𝑑𝑡𝑡) = 𝑒𝑒𝑒𝑒𝑒𝑒�−�
�𝑑𝑑𝑖𝑖,𝑗𝑗 − 𝑑𝑑𝑡𝑡,𝑗𝑗2�

𝜎𝜎𝑗𝑗

𝑛𝑛𝑑𝑑

𝑗𝑗=1

 (6− 1)

is fundamentally parameterized by a kernel vector σ = [σ1, σ2,… σnd]. This implies

that if we consider the intermediate metric z as supporting the decision on the test

data dt , it can then be represented mathematically as:

192

𝒛𝒛  = �𝜶𝜶𝒊𝒊 𝑲𝑲 (𝑑𝑑𝑖𝑖

𝒏𝒏

𝒊𝒊=𝟏𝟏

 ,𝑑𝑑𝑡𝑡) + 𝑏𝑏 (𝟔𝟔 − 𝟐𝟐)

where, [α1, α2, α3….. αn b] are the estimated model parameters obtained by

solving the system of linear equations [12]

�Ω +
1
𝛾𝛾
𝐼𝐼 1

1𝑇𝑇 0
� �𝛼𝛼𝑏𝑏� = �𝑪𝑪0� (6− 3)

where, ϒ represents the regularization parameter as α = [α1, α2, α3….. αn]T,

C = [c1, c2, c3 …. cn]T gives the class label related to the training data ′{𝒅𝒅𝒊𝒊 }𝒊𝒊=𝟏𝟏𝒏𝒏 ′

,1 = [1,1 ….1]Tnx1, I represents the identity matrix of size n x n, and

Ω = [Ωij] = [K (di, dj)]. This implies that the estimation of model parameters in

(6-2) depends on ϒ and σ, which are collectively termed as ‘hyperparameters,’

h.

The problem of hyperparameter selection can be addressed by optimizing an

error measure, for instance, a v-fold cross-validation error, on a hyperparameter

value grid [13]. However, a grid search approach is limited and does not provide

a wide coverage to the entire hyperparameter space. Moreover, in the case of a

large number of features nd, it may get computationally expensive. For instance,

the generalization error is estimated for 10 nd +1 combinations of hyperparameter

(nd kernel parameters and one ϒ) when a grid search of size 10 is used. This

translates the generalization error estimate to 107 hyperparameter combinations,

if a dataset with six features is considered.

The methods like ‘Gradient descent’ and ‘Evolutionary search’ for model selection

and estimating hyperparameters have also been reported in the literature [14],

[15], [16], [17]. Notwithstanding the effect of local minima problem on gradient

descent (in particular) and evolutionary search, it is still desirable to include

directional information as provided by these two methods in higher dimensional

search spaces. However, an approach with faster convergence through

193

reformulation of the global optimization issue as a stochastic filtering problem can

be considered. Using different benchmark optimization problems, the filtering-

based optimization approach has been shown to perform more optimally than

cross entropy (CE) and simulated annealing (SA) methods. On the other hand,

the authors in [18] have weighted CE method higher, in terms of selecting the

hyperparameters of an SVM classifier more accurately, over the particle swarm

optimization (PSO) and grid search methods. Also, the stochastic filtering

optimization method proves more efficient when compared with PSO, as shown

in Figure 6-2.

Keeping in perspective the above, we have developed a method for FPGA health

estimation that combines the positives of gradient descent with evolutionary

search methods and provides an optimum solution to the hyperparameter

selection problem as well.

Figure 6-2 A comparison of Optimisation Method based on
Stochastic Filtering with Particle Swarm Optimisation using a
problem related to benchmark optimisation.

194

6.3 The Developed Kernel Learning Method

The method developed for FPGA prognostics comprises both the learning and

training phases. The learning phase involves building up of a fault dictionary for

subsequent training of kernel-based learning algorithm. This is followed by the

testing mode, where FPGA health is estimated by the continual comparison of

extracted features with those stored in the fault dictionary by applying the kernel

algorithm. Accelerated stress test results are used to help identify critical

primitives (holding the logic application under test) and construct the fault

dictionary. In our case, we take a look up table (LUT) as a critical primitive with

an underlying CMOS circuitry that may experience parametric shifts and in turn,

prevent any associated logic application from executing its intended function.

The characteristic behaviour of electronic circuits is represented in time and

frequency responses. It is, therefore, a standard and recommended practice to

excite the circuit with a test signal for feature extraction. With the identification of

critical FPGA primitive as well as the fault/failure mechanism/mode, the fault

dictionary is subsequently constructed on this vital information. The application

(circuit under test -CUT) built using LUT primitive is then placed under a

simulation environment to observe its hypothesized fault conditions by stressing

it under a series of stress test conditions to extract features, as detailed in

Chapter-4. Here, the fault condition represents a state where CUT fails to perform

its intended function due to parametric shifts in its primitive and the underlying

transistor beyond their predefined failure range, which in itself, is much higher

than the actual tolerance limit. Signal processing techniques (such as wavelet

transform) are applied to CUT behavioural responses for feature extraction [19],

the collection of which lately forms the fault dictionary.

Mathematically, if we let T = {𝒅𝒅𝒊𝒊, 𝒄𝒄𝒊𝒊}𝒊𝒊=𝟏𝟏𝒏𝒏 represent the extracted features for training,

where n is the total number of training feature vectors, di is the ith feature vector,

and ci represents the label for which ci = +1 (for di when the FPGA is healthy) and

ci = -1 (for di when the FPGA is faulty), then the FPGA health (application-based)

can be estimated (with prognosis) as a metric HI ϵ [0,1] for a test input dt given T.

So, for a given choice of ϒ and σ, the optimal estimation of the model

195

parameters in (6-2) can be made using (6-3) [12]. Similarly, the FPGA health

index HIt, can be estimated at time t, considering the metric HI as the healthy

class conditional probability, which means that dt is extracted when the LUT is

in a healthy state. The conditional probability with a positive label has been

demonstrated by [20] to follow a logistic regression function. Based upon this, we

can use the posterior class probability function and define the following relation:

𝑯𝑯𝑯𝑯𝑯𝑯� = 𝑷𝑷 (𝒄𝒄𝒕𝒕 = +𝟏𝟏| 𝒅𝒅𝒕𝒕) = 𝒈𝒈 (𝒛𝒛𝒕𝒕) =
𝟏𝟏

𝟏𝟏 + 𝒆𝒆𝒆𝒆𝒆𝒆 (𝑬𝑬𝒛𝒛𝒕𝒕 + 𝑽𝑽)

= 𝓟𝓟𝒕𝒕 (𝟔𝟔 − 𝟒𝟒)

where, E and V are parameters estimated by employing Newton’s backtracking

method. As is evident from the above equation, HI depends on z , which

resultantly depends on h. This further implies that the selection of h for a given T

is essential to attain more accurate prognostics.

6.3.1 Employing Likelihood Function for Hyperparameter Selection

An objective function of the form F + λR, is developed to solve the hyperparameter

selection problem. F is dependent on the empirical loss, and R and λ represent

the regularization term and parameter, respectively The authors in [14] have

proposed the regularization term to be more of a negative logarithm of posterior

probability than selecting priors on hyperparameters. We, therefore, constructed

an objective function in this paper that extends posterior class probability function

to a negative log-likelihood function.

So, if we Let p represent the health estimate for an LUT (holding an application),

from which d is extracted, then pi if ci = +1 and (1-pi) if ci = -1 will be the likelihood

function ℒ(∗) for a feature vector di . Mathematically:

ℒ(𝑑𝑑𝑖𝑖,  𝑐𝑐𝑖𝑖)  = 𝒫𝒫𝒫𝒫�
𝑐𝑐𝑖𝑖 + 1
2 � (1 − 𝒫𝒫𝑖𝑖)

�1 − 𝑐𝑐𝑖𝑖
2 � (6 − 5)

It is worth noting in the above equation, that 𝓟𝓟𝒊𝒊 is the function of 𝒛𝒛𝒊𝒊 (an

intermediate metric) which depends on the model parameters α and b, as shown

in (6-2). These model parameters, in turn, depend on h comprising ϒ and σ, as

shown in (6-3). It can be concluded that the likelihood function is essentially a

196

function of h. Also, the objective function is, characteristically, defined over cross-

validated datasets that are pulled from the training dataset. This implies the cost

function to a negative log-likelihood function over a cross-validation set

𝑆̃𝑆 = {𝑑𝑑𝑙𝑙, 𝑐𝑐𝑙𝑙 }𝑙𝑙 =1𝐿𝐿 .

ℒ𝒮̃𝒮(γ,σ) = − ���
𝑐𝑐𝑙𝑙 + 1

2
� 𝑙𝑙𝑙𝑙𝑙𝑙 (𝒫𝒫𝑙𝑙) + �

1 − 𝑐𝑐𝑙𝑙
2

� 𝑙𝑙𝑙𝑙𝑙𝑙 (1 − 𝒫𝒫𝑙𝑙) � (6 − 6)

𝐿𝐿

𝑙𝑙=1

where, 𝒫𝒫𝑙𝑙 = 1
1 + 𝑒𝑒𝑒𝑒𝑒𝑒 (𝐸𝐸𝑧𝑧𝑙𝑙 + 𝑉𝑉)

 and 𝑧𝑧𝑙𝑙 = ∑ 𝛼𝛼𝑖𝑖𝑛𝑛
𝑖𝑖=1 𝑘𝑘 (𝑑𝑑𝑖𝑖,𝑑𝑑𝑙𝑙) + 𝑏𝑏. We, therefore,

focused on minimizing the v-fold cross validation log likelihood as follows:

ℒ𝑆𝑆 (𝛾𝛾,𝜎𝜎) = (𝑉𝑉−1) �ℒ𝑆̃𝑆𝑣𝑣 (𝛾𝛾
𝑉𝑉

𝑣𝑣=1

,𝜎𝜎) (6 − 7)

where, S = 𝑺𝑺�1 Ս 𝑺𝑺�1 Ս ….𝑺𝑺�V represents the partition of the training dataset into V

disjoint subsets and 𝓛𝓛𝓢𝓢�(𝛄𝛄,𝛔𝛔) is the objective function given the holdout set Sv.

6.3.2 Optimization Method for Hyperparameter Selection

It is imperative to identify the hyperparameter values to reduce (6-7). In such a

case, the optimization problem can be expressed as follows:

𝒉𝒉∗ = 𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚𝑚𝑚𝑚𝑚ℎ ∈ ℋℒ𝑆𝑆 (𝒉𝒉) (6-8)

where, 𝓛𝓛𝑺𝑺 (𝒉𝒉) denotes the likelihood function in (6-7) over the dataset S and 𝓗𝓗

represents the solution space for 𝒉𝒉. We assume that 𝓛𝓛𝑺𝑺 (𝒉𝒉)constitutes a unique

global optimal solution 𝒉𝒉∗. Also, as mentioned in section-II, we solve the

optimization of hyperparameter by reconstructing it as a stochastic filtering issue.

The primary goal of stochastic filtering is to make an accurate estimate of the

unobserved condition of a dynamic system by observing a sequential stream of

noises that accompanies it. The unobserved condition corresponds to 𝒉𝒉 and as

the system evolves toward 𝒉𝒉∗, the conditional distribution of the unobserved

condition approaches a delta function concentrated on the optimal solution.

Accordingly, the optimal solution is searched through the sequential estimation

of the conditional density. Here, it is important to afford some sort of

197

approximation to facilitate stochastic filtering implementation. As particle filter

(PF) is a commonly used sequential Monte-Carlo technique that does not impose

any constraint on the condition’s distribution, it is considered viable to employ PF

for global optimization to address the problem of model selection.

An appropriate state-space model is constructed to transform the optimization

problem into a filtering problem as:

𝒉𝒉𝑘𝑘 = 𝒉𝒉𝑘𝑘−1 − ε∇ℒ(𝒉𝒉𝑘𝑘−1), k = 1,2, (6-9)

ℯκ = ℒ(𝒉𝒉𝑘𝑘) − υ𝑘𝑘 (6 − 10)

where, 𝒉𝒉𝑘𝑘 represents the unobserved state to be estimated and 𝓮𝓮𝒌𝒌 denotes the

observation with noise 𝛖𝛖𝒌𝒌. ∇ℒ(𝒉𝒉𝑘𝑘) in (6-9) is the gradient of ℒ𝑆̃𝑆(𝒉𝒉) with respect to

𝒉𝒉𝑘𝑘 for a considered holdout set. By virtue of ℒ(𝒉𝒉𝑘𝑘) being a log-likelihood function,

it is differentiable with respect to ϒ and σ, as and when the kernel function is

differentiated. Therefore, ∇ℒ(𝒉𝒉𝑘𝑘) can be determined using the following linear

equations with ARD kernel function:

∂ℒS
𝜕𝜕𝜕𝜕

 = �
∂ℒS
𝜕𝜕𝒫𝒫𝑙𝑙

𝐿𝐿

𝑙𝑙=1

 �
− 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 [𝐴𝐴𝜓𝜓𝑇𝑇 (𝑑𝑑𝑙𝑙) 𝛽𝛽]

𝒫𝒫𝑙𝑙2
� 𝜓𝜓𝑇𝑇 (𝑑𝑑𝑙𝑙) 𝜷𝜷 (𝟔𝟔 − 𝟏𝟏𝟏𝟏)̇

∂ℒS
𝜕𝜕𝜎𝜎𝑖𝑖

 = �
∂ℒS
𝜕𝜕𝒫𝒫𝑙𝑙

𝐿𝐿

𝑙𝑙=1

 �
−𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴[𝐴𝐴𝜓𝜓𝑇𝑇(𝑑𝑑𝑙𝑙)𝛽𝛽]

𝒫𝒫𝑙𝑙2
�

𝑥𝑥 { 𝜓𝜓𝑇𝑇 (𝑑𝑑𝑙𝑙) 𝜷̇𝜷 + 𝜓̇𝜓𝑇𝑇 (𝑑𝑑𝑙𝑙) 𝜷𝜷 } (𝟔𝟔 − 𝟏𝟏𝟏𝟏)

where, 𝒫𝒫𝑙𝑙=(1+𝑒𝑒𝑒𝑒𝑒𝑒[𝐴𝐴𝜓𝜓𝑇𝑇(𝑑𝑑𝑙𝑙)𝛽𝛽 + 𝑉𝑉])−1,𝜓𝜓𝑇𝑇 (𝑑𝑑𝑙𝑙)[𝑘𝑘 (𝑑𝑑1,𝑑𝑑𝑙𝑙)𝑘𝑘 (𝑑𝑑2,𝑑𝑑𝑙𝑙). . .𝑘𝑘 (𝑑𝑑𝑛𝑛,𝑑𝑑𝑙𝑙) 1],

and 𝜷𝜷 = [𝛼𝛼1 𝛼𝛼2 𝛼𝛼𝑛𝑛 𝑏𝑏]𝑇𝑇. In order to determine 𝜷̇𝜷, we can use the relation

𝜷̇𝜷 = −𝑷𝑷−𝟏𝟏 𝑷𝑷 ̇ 𝜷𝜷, with P = �𝛀𝛀 + 1
𝛾𝛾
𝐈𝐈 𝟏𝟏

𝟏𝟏𝑇𝑇 0
�.

The application of PF for hyperparameter selection is shown in Figure 6-3. Here,

𝓗𝓗 is assumed to be one dimensional (1-D) for illustration purposes. To begin

with, the distribution b follows 𝓗𝓗 as illustrated in Figure 6-3(a). Subsequent to

198

this, random sampling of b is carried out in an independent and identically

distributed (i.i.d) manner, with N being the sampling size. We updated the

hyperparameter vectors based on their gradients ∇ℒ(𝒉𝒉𝑘𝑘
𝑗𝑗); j = 1:N. Accordingly,

the related generalization error ℒ𝑆𝑆(𝒉𝒉𝑘𝑘
𝑗𝑗)is calculated (as shown in Figure 6-3(b)).

Subsequent to this, the hyperparameters with least generalization error (a.k.a.

elite particles) are chosen as (1-ρ)-quantile of the complete generalization error

(as shown in Figure 6-3(c)). This is followed by the updation of the distribution b

in line with the elite particle locations (Figure 6-3(d)). As the distribution b is

characterized by particles and associated weights, different shapes for b can be

realized without building a parametric model. The aforementioned steps are

repeated to a point where the distribution b approaches delta function and the

global optimum 𝒉𝒉∗ is identifiable.

This method is iterative and employs only a set of N hyperparameter

combinations per iteration. Accordingly, the generalization error must be

estimated for N x I hyperparameter combinations, where I denotes the number of

Figure 6-3 Optimization of hyperparameters using
Particle Filtering Approach

199

iterations. It shows that the computational complexity of the stochastic filtering

method does not scale to the extent as the grid search does, going up to 10 nd +1.

On the contrary, the stochastic filtering method incorporates gradient descent

with each hyperparameter combination hj and resultantly becomes

computationally more expensive when compared to the gradient descent.

6.4 Implementation Results and Analysis – Simulation and
Experiments

Several experimental tests were conducted on a pair of 28 nm FPGA technology,

to demonstrate the viability of this Kernel learning method. Typically, a modern

FPGA (including other VLSI circuits) is presumed to operate unhindered for

several years without any significant deterioration. However, under the harsh

operational environment with highly accelerated temperatures and elevated

voltages (in our case, due to the impact of the presence and malicious activity of

the hardware Trojans), the ageing process sets in much earlier. This provides a

perfect stage for measuring physical degradation in an FPGA and assessing the

impact on its primary soft-logic resources. We used a frequency/delay

measurement method based on threshold-voltage shifts in PFETs transistors due

to NBTI triggered hardware Trojans (Chapter 5). It enables the measurement of

frequency/delay degradation in fundamental FPGA primitives such as registers,

look-up-tables, and metal interconnects. Moreover, the FPGA application

circuitries (CUT) were constructed from typical logic paths, representing real-time

circuit designs. These include NAND2 and True Single-Phase Clock (TSPC)

based flip-flop circuits integrated with hardware Trojan circuitry (as NBTI

accelerators) in LUTs. A dual output Ring Oscillator-based sensor segments were

wrapped around LUTs to sense and give a measure of frequency/delay

degradation, as explained in Chapter-5.

The FPGA was contemplated healthy when all of its primitives and the underlying

transistors varied within the designed parametric tolerance ranges of threshold

voltage (Vth), drain current (Idd), frequency (f), and corresponding delays.

Mathematically, (1- Tr) An < A < (1+Tr) An, where T represents the tolerance

range, A is the actual real value, and An is the nominal value of the primitive. We

200

can, therefore, imply that if any primitive parameter varies beyond its tolerance

limit, i.e., A < (1-Tr) An or A > (1+Tr) An, the primitive is considered having some

parametric fault. However, it must be noted that the presence of any parametric

fault does not mean that the FPGA had failed. The FPGA is evaluated as ‘failed’

only when the parametric variation beyond the primitive tolerance range leads to

the FPGA failing to execute its intended function.

6.4.1 Accelerated Life Tests on FPGA

6.4.1.1 Prologue to Degradation Mechanisms

This section of the chapter is primarily meant to give a concise overview of the

degradation mechanisms that affect VLSI devices and how we based the

acquisition of the FPGA’s health profile on one of the mechanisms - mainly when

the FPGA is under the influence of malicious activity, such as the hardware

Trojan.

Mainly, four degradation mechanisms impact the reliability and performance of

an FPGA and FPGA-based applications. These mechanisms include Hot Carrier

Injection (HCI), Electromigration, Time-Dependent Dielectric Breakdown (TDDB),

and N/PBTI (Negative/Positive Bias Temperature Instability), as explained in

previous chapters. The focus of our work is, however, on the frequency/delay

degradation an NBTI mechanism can exert on FPGA primitives and its underlying

PFETs when a threshold-voltage triggered hardware Trojan is activated under

highly accelerated stress conditions. Accordingly, the accelerated test

methodology was devised to acquire critical parametric features (threshold

voltage (Vth), drain current (Idd), frequency (f), and signal propagation time delays

(tpd) of the FPGA primitives and PFETs to build a comprehensive fault dictionary

for the health estimation of an FPGA. The details of the same are given in

Chapters -4 and 5.

6.4.1.2 Accelerated Test Methodology

The stress test conditions (STCs) were chosen to achieve results within a

practical time-frame and, at the same time, induce degradation consistent with

the regular use of the device. High levels of voltage and temperature were applied

201

to attain a combined acceleration in ageing of the FPGA. The voltage

dependence is given by the relation tf ∝ V-ϒgs, where tf represents the time for

threshold voltage shift Vth to reach a nominal failure limit and ϒ is the constant

that lies between 6-8. We confirmed through experimentation that the target

FPGA remains stable under a 1V increase in its core supply voltage. Resultantly,

we increased the core power supply from 1.2V to 1.6V.

On the other hand, high-temperature influences the NBTI- best explained by

Arrhenius law as 𝒕𝒕𝒇𝒇  ∝  𝐞𝐞𝐞𝐞𝐞𝐞  �𝑬𝑬𝒂𝒂
𝒌𝒌𝒌𝒌
�. In our accelerated test, we used the on-chip

heaters (part of the hardware Trojan circuitry implemented in FPGA to induce

accelerated device ageing - shown in Figures 5-9(a) and (b), Chapter -5) to heat

the FPGA to varying junction temperatures up to 110 - 125⁰C.

6.4.1.3 Stress Test Conditions

The stress tests were conducted on a pair of 28 nm technology FPGA under the

following stress test conditions:

• STC-1: Stress Temp. - 110⁰C, Stress Duration - 27 hours, Stress Mode -

AC (1.6V), and Ring Oscillator is always enabled to switch.

• STC-2: Stress Temp. - 110⁰C, Stress Duration - 27 hours, Stress Mode –

DC (1.6V), and Ring Oscillator is always enabled every 15 minutes to

record the data. Data sampling is maintained at < 3s.

• STC-3: Same as STC-2. However, the Stress Temp is kept at 80⁰C - safe

operating limit for 28 nm technology FPGA under test.

6.4.2 LUT Based Combinatorial Circuit with Hardware Trojan

The underlying schematic of a combinatorial circuit, NAND2 with hardware

Trojan, is shown in Figure 5-6. The magnitude of degradation observed was

significant in all stress test conditions when the Trojan PFET and NAND2

P/NFETs were stressed. No hard faults were detected during this stress period,

meaning the transistors, P/NFETs (the critical components), continued working

within the pre-defined tolerance ranges of parameters including threshold voltage

shift (10%), drain current (-5%), and the resulting RO-based sensor segments’

frequency (-5%). This tolerance range included the worst-case, nominal, and

202

best-case effects of process variations (varying oxide thickness and transistor

length). However, we observed the circuit failure as the hardware Trojan gets

activated just over 20% of the shift in Vth and the corresponding -15% shift in IDD.

It was, therefore, essential to define a safe operating limit for this LUT based

combinatorial circuit in the presence of a hardware Trojan. Based on several

experimentation cycles, we defined the circuit failure condition to be a 10%

decrease in the RO-based sensor segments’ frequency (set at 25 MHz) as the

parameters of critical PFETs move beyond the tolerance ranges mentioned

above.

The failure condition, at this point, is assigned to assess and evaluate the

performance and efficiency of the developed Kernel health estimation method.

We, therefore, started with the off-line learning phase. Several parametric faults

were induced within the P/NFETs by varying the afore-mentioned parameters’

ranges to determine the failure threshold in line with the defined failure condition

of 20% frequency/delay degradation. Table 6-1 shows the critical P/NFETs

parametric tolerances and failure threshold for the LUT based combinatorial

circuit, NAND2, under the influence of hardware Trojan.

The parametric responses of the combinatorial and the FRED sensor segments

are closely evaluated to extract various statistical and frequency features.

Accordingly, a digital wavelet packet transform with Haar mother wavelet (optimal

diagnostic accuracy) is used to refer the frequency features to the energy held in

the detail coefficients up to four levels of decomposition of the LUT’s response.

Table 6-1 Critical Components of LUT-based Combinatorial Circuit with Nominal,
Tolerance and Threshold Values.

203

So, if dc is the detail coefficient, then the energy held within it Ej can be

represented at the jth level (in our case, we set J = 4) of decomposition as:

𝐸𝐸𝑗𝑗     =  � |𝑑𝑑𝑗𝑗,𝑘𝑘 |2
𝑘𝑘

, 𝑗𝑗 = 1 ∶ 𝐽𝐽 (6 − 13)

The statistical features, on the other hand, comprised the entropy and kurtosis

elements of the LUT based circuit responses. We simulated 400 no-fault and 400

fault cases during the off-line testing of the FPGA primitives (LUT in our case).

The combinatorial circuit, along with the ring oscillator in LUT, was subjected to

stress tests, and features were extracted accordingly. The kernel-based health

estimator was then trained using the extracted features and their class labels in

Figure 6-4 Kernel-based FPGA Health Estimation Algorithm.

204

accordance with the Algorithm given in Figure 6-4. With the particle size of the

hyperparameter set at N = 40, the search was executed in a log(h) plane from

[-20, +20] (defined failure threshold) with the elements of hyperparameter taking

the values from 10-4 to 10+4 (J=4).

6.4.2.1 Health Estimation Metrics

The P/NFETs and RO-based Sensor Segments’ frequency degradation trends

obtained from highly accelerated thermal and power stress tests were assessed

for four degradation pathways to evaluate the FPGA health estimation method.

In the process, the following metrics were defined:

• Taf : Actual circuit failure time.

• Tf : Failure time estimated from HIt (i.e., the time when Ideal Health,

 HIt < 0.05).

• Tpf : Time at which parametric fault alarm was raised (i.e., the time

 when HIt < 0.95).

• Fs : Fault severity at Tf.

• Fpf : Fault severity at Tpf.

Table 6-2 and Figure 6-5 give details of the health estimates obtained from the

developed kernel method. They are indicated in blue. The figures also include a

comparison with MD and ED-based methods, as given in [20] and [21],

respectively. Moreover, HIat the ideal health of the LUT based circuit is also

Table 6-2 Performance Analytics of the Developed Health Estimation/Prognostics
Method for FPGA – LUT Primitive (NAND2 Application)

205

shown to verify the capability of the kernel method to indicate the increase in the

fault intensity. HIat, the ideal health, reflects the parameters of FPGA primitives

and circuit components within the safe operating limits or, in other words, within

the designed tolerances.

6.4.2.2 Analysis

It is evident from Figure 6-5 and Table 6-2 that the kernel method is efficient in

identifying degradation in the FPGA health (based on its primitives and underlying

transistors parametric behaviour) as the intensity of faults in its critical

components increases. On the other hand, the MD-based method tracks the

degradation in LUT’s NAND2 circuitry; however, it does not follow degradation in

the FRED sensor segments wrapped around the LUT. In other words, this method

does not generate health estimates that follow the ideal health trend. This is

probably due to the similarities in the frequency degradation of the LUT’s transfer

Figure 6-5 Results of FPGA Health Estimation for Parametric Deviation
(Frequency Degradation of RO-based Sensor Segments) in Combinatorial
Circuit (NAND2)

206

function with faults in the RO-based sensor segments when it is compared to the

healthy LUT.

The ED-based method, as shown in Figure 6-5, gives a good account of

degradation in FPGA health with the slowing down of the faulty PFETs. However,

it does not compare well with kernel and MD-based methods when it comes to

indicating the intensity of health degradation. This is because the ED-based

estimator is not capable of taking into account the P/NFETs and RO-based

sensor segments’ tolerances. As a result, the ED estimator assumes the healthy

and failure classes as linearly separable in the extracted feature space. In other

words, it implies that the ED method would give a perfect degradation curve if the

circuit components are kept fixed to their nominal values, whereas the faulty

component is changed gradually. Comparatively, the kernel-based estimator

does not assume the healthy and failure classes as linearly separable in extracted

features’ space.

6.4.3 LUT Based Sequential Circuit with Hardware Trojan

The sequential circuit comprises true single-phase clock (TSPC) based flip flop,

connected with a single PFET (MT) as a hardware Trojan. Figure 5-8 gives the

207

schematic of the circuit, designed and implemented over a chain of 5 LUTs. In

addition, it also consists of a ring oscillator wrapped around the LUT chain. The

criticial components of this LUT based sequential circuit are the PFETs in the

hardware Trojan circuit, NFETs in the flip flop circuit, and the ring oscillator with

a maximum operating frequency of 25 MHz. Any shift in the threshold voltage of

P/NFETs results in the frequency degradation of the ring oscillator (FRED Sensor

Segments) and we observe the corresponding delay degradation in the LUT

based sequential circuit. Here, we use the percent shift in the threshold voltage

‘%∆Vth’ of P/NFETs as the precursor parameter to predict the circuit failure. Table

6-3 shows the critical P/NFETs parametric tolerances and failure threshold for the

LUT based combinatorial circuit, NAND2, under the influence of hardware Trojan.

Threshold voltage meter (Chapter 5 – Section 5.4.3) was used to capture the

increase in threshold voltage under the application of accelerated life tests. The

results obtained are given in Table 6-4.

Similar to the combinatorial circuit, the threshold voltage, frequency, and

statistical features were extracted from the sequential circuit response by

employing the digital wavelet packet transform with Haar mother wavelet. Both

Table 6-3 Critical Components of LUT-based Sequential Circuit with Nominal,
Tolerance and Threshold Values.

208

the threshold voltage and frequency features comprised the energy held in detail

as well as approximate coefficients up to four levels of decomposition with

discrete wavelet transformation. Statistical features, on the other hand, included

the entropy and kurtosis of the LUT based circuit response to different stress test

conditions. In all, 400 no-fault and hardware Trojan induced fault cases were

simulated with four different degradation trends (increase in threshold voltage,
decrease in drain current, slowing down of Sensor Segments’ frequency,
and increase in delays).

6.4.3.1 Analysis

The resulting LUT circuit health estimation using the kernel method for one of the

cases (PFET-MT) is shown in Figure 6-6. As is evident from the figure, the ideal

health ′𝑯𝑯𝐼𝐼𝒕𝒕𝑨𝑨′ degradation curve (Brown) variation implies a gradual degradation in

the IDD of PFET -MT (Trojan Transistor) in LUT and does not approach the failure

threshold of -15% till it reaches 15 hours (approx.) of testing. Whereas, the kernel

method showed some variations in FPGA health estimation (based on LUT

Table 6-4 Performance Analytics of the Developed Health Estimation/Prognostics
Method for FPGA – LUT Primitive (TSPC-FF Application)

209

primitive) with detection of health degradation (with HT-triggered) earlier than

exhibited by the ideal health trend. In addition to this, estimates of the failure time

of the circuit were provided by the kernel-based method 02 hrs before (at the

health estimate of 92.4%) the critical component reached its failure threshold with

health estimate at 85%. We investigated it and concluded that such variation

could have very likely resulted from the un-stressed PFET transistors in the flip

flop that operated within their tolerance ranges.

In this case of the hardware Trojan circuit, as the threshold voltage increases with

high negative bias and elevated temperature in PFETs, the drain current Idd

decreases causing slowing down of the flip flop circuit. The threshold voltage

response generated by PFETs under different stress conditions was directly fed

to the health estimator. Table 6-4 gives a detailed account of the performance

results of validation on all the three circuits of the sequential circuit in LUT.

Figure 6-6 FPGA Health Estimate with Early-Warning Indication using Kernel
Method in a Sequential Circuit configuration

210

As is evident from Table 6-4, the kernel health estimator was able to detect and

identify the instant at which the sequential circuit developed a parametric fault

(PFET - MT ∆Vth < 20% and ∆Idd < -15%). This was also true for the hardware

Trojan part of the sequential circuit in LUT. The kernel estimator was equally

proficient in detecting the actual failure time for the RO-based Sensor circuit.

More importantly, in the case of the flip flop circuit of the sequential logic, when

Tf < Taf, the health estimator raised early failure warning before the circuit failure.

This is a desirable feature not only from the health prediction viewpoint but from

the security perspective as well. Primarily when FPGA primitives are

implemented with malicious circuits like hardware Trojans, the efficient detection

and classification is the most sought-after property of an effective algorithm.

6.4.4 Viability of Kernel-Based Health Estimation for FPGAs

This kernel-based method for estimating FPGA health can be applied in both the

offline and online settings to accrue its maximum benefits and optimize its

usability for other VLSI devices as well. The offline implementation of this method

is relatively straightforward. A PC system integrated with automated test

equipment (ATE) is used to hold and process the kernel-based algorithm along

with the training data. The on-chip or in-circuit measurements are made using

different EDA tools like Vivado, Cadence Virtuoso, and HSpice simulation tools.

The online health estimation involves an offline training of the kernel-based

algorithm, whereby its results, including the estimated hyperparameters (ϒ and

σ) and the model parameters (α and b), are stored in the processor to conduct

health estimation in real-time.

The computation time, an important performance parameter, was also

investigated for the combinatorial and sequential circuits to ascertain its

applicability for in-field operations. These two circuit configurations within LUT

primitive provided a reasonably large number of fault classes as well as the size

of the training data. In a nutshell, all the processing steps including signal

denoising, feature extraction, and the FPGA health estimation using kernel

algorithm, took precisely 1.5 and 2.2 ms, respectively, in MATLAB 2019b

environment running on a 2.86 GHz Intel Core i7 processor with 32-Gb DDR4

211

RAM. It took the whole onboard computation to complete within 3.8 ms

approximately. This implies that if we have more critical circuits/applications with

high loading in an FPGA, the developed kernel method would still be

computationally efficient for health estimation.

6.4.4.1 Classification/Health Estimation/Prognostics Accuracy

As mentioned above in Sections 4.4.2 and 4.4.3, a total of 400 cases each for

no-fault FPGA and hardware-Trojan infected FPGA, with a combinatorial and

sequential circuits, were simulated and experimented under the stress test

conditions to create a fault dictionary, an excerpt of the same is shown in Table

6-5. The Kernel-based classifier was able to classify the two categories with

accuracies as mentioned below:

• Combinatorial circuit – non-faulty FPGA: 375/400 – 93.75%

• Combinatorial circuit – faulty FPGA: 387/400 – 96.75%

• Sequential circuit – non-faulty: 395/400 – 98.75 %

• Sequential circuit – faulty FPGA: 390/400 – 97.5%

6.4.4.2 FPGA Time to Failure/RUL

Based upon the instantaneous health estimate, for instance in the case of LUT

with Combinatorial circuit application and hardware Trojan implemented, the

Table 6-5 A Simplistic Excerpt of FPGA Fault Dictionary – (LUT- TSPC FF)

212

Time to Failure (TtF)/Remaining Useful Life (RUL) can be calculated by

subtracting the time at ‘prediction made’ from the time when the value of threshold

voltage/frequency shift equals the defined failure threshold.

6.5 Summary

The reliability of FPGAs is an issue of growing importance as process scaling

approaches its extremity and FPGAs find their way into state-of-the-art SoCs,

NoCs, and ACAPs. A firm understanding is needed for various changes that

FPGAs experience as they age, the factors that influence them, and methods to

predict their health accurately. Subjecting them to highly accelerated life

conditions results in parametric deviations in MOSFETs, that make up the FPGA

primitives (LUTs, CLBS, and registers). This chapter has focused on the

degradation mechanisms of NBTI, their exploitation by hardware Trojans to

degrade FPGA reliability by inflicting power and timing closures in FPGA based

applications and developing an efficient health estimation method based on

kernel learning method.

This method exploits the features extracted from an FPGA primitive holding a

logic circuit and its underlying P/NFETs. Additionally, the development of the

Stochastic Filtering Optimization method helps to achieve better health

estimation accuracy by addressing the hyperparameter selection problem.

The results indicate an effective detection capability of this method, whereby it

enables the capturing of actual degradation trends in critical and faulty

components with enhanced accuracy (97%) as compared to the Euclidean and

Mahalanobis based methods. The most important and useful attribute of this

health estimation method is its ability to provide an early failure warning before

the actual application circuit failure. In most cases, the estimated failure time Tf
was found to be less than the actual failure time Taf . While in some cases, the

error was observed in health estimation. We were able to identify two main

reasons for it. Firstly, the magnitude of the failure class features in the projected

space is significantly larger than the magnitude of the healthy class features. This

resulted in biasing the conditional probability toward the faulty class. Secondly,

both the healthy and failure classes are spaced well-apart in the higher

213

dimensional space. This makes their classification very easy; however, we

resolved it by choosing the failure threshold value near to the theoretical failure

limit. Nevertheless, in the higher dimensional space, it is imperative to have a

method for tighter control on the distribution of faulty features.

We also observed some variability in the FPGA circuit health estimate of the

sequential logic, despite the inclusion of the regularisation parameter to counter

the impact of component tolerances. Therefore, in order to control the spread of

healthy class features in the projected space, the addition of an application-

specific constraint in the hyperparameter selection algorithm could prove useful.

REFERENCES
[1] M. Pecht and R. Jaai, “A prognostics and health management roadmap for

information and electronics-rich systems,” Microelectron. Reliab., vol. 50,

no. 3, pp. 317–323, Mar. 2010.

[2] Z. Liu, T. Liu, J. Han, S. Bu, X. Tang, and M. Pecht, “Signal Model-Based

Fault Coding for Diagnostics and Prognostics of Analog Electronic

Circuits,” IEEE Trans. Ind. Electron., vol. 64, no. 1, pp. 605–614, 2017.

[3] M. Li, W. Xian, B. Long, and H. Wang, “Prognostics of Analog Filters Based

on Particle Filters Using Frequency Features,” J Electron Test 29, pp. 567–

584, 2013.

[4] C. Zhang, Y. He, and L. Yuan, “A Novel Approach for Analog Circuit Fault

Prognostics Based on Improved RVM,” J Electron Test 30, pp. 343–356,

2014.

[5] Zhou, Jingyu et al. “A novel prediction method about single components of

analog circuits based on complex field modeling.” The Scientific World

Journal vol. 2014, 2014.

[6] S. Kumar, N. M. Vichare, E. Dolev, and M. Pecht, “Microelectronics

Reliability A health indicator method for degradation detection of electronic

products,” Microelectron. Reliab., vol. 52, no. 2, pp. 439–445, 2012.

[7] E. Sutrisno, “Fault detection and prognostics of IGBT using k-nearest

 neighbor classification algorithm,” M.S. thesis, Dept. Mech. Eng., Univ.

 Maryland, College Park, MD, USA, 2013.

214

[8] Z. Zhang, Z. Duan, Y. Long, and L. Yuan, “A new swarm-SVM-based fault

diagnosis approach for switched current circuit by using kurtosis and

entropy as a preprocessor,” Analog Integr. Circuits Syst., vol. 81, no. 1, pp.

289–297, 2014.

[9] B. Long, S. Tian, and H. Wang, “Diagnostics of Filtered Analog Circuits

 with Tolerance Based on LS-SVM Using Frequency Features,” J.

 Electron. Test.,vol. 28, pp. 291–300, 2012.

[10] S. Menon, X. Jin, T. W. S. Chow, and M. Pecht, “Evaluating covariance in

prognostic and system health management applications,” Mech. Syst.

Signal Process., vol. 58–59, pp. 206–217, 2015.

[11] B. T. Hofmann, B. Sch, and A. J. Smola, “KERNEL METHODS IN

MACHINE LEARNING 1 ¨ lkopf By Thomas Hofmann, Bernhard Sch o and

Alexander J. Smola,” vol. 36, no. 3, pp. 1171–1220, 2008.

[12] J. Suykens and J. Vandewalle, “Least squares support vector machines

 classifiers,” Neural Process. Lett., vol. 9, no. 3, pp. 293–300, 2000.

[13] O. Chapelle and V.Vapnik, “Model selection for support vector machines,”

 in Proc. Adv. Neural Inf. Process. Syst., pp. 230–236,1999.

[14] T. Glasmachers and C. Igel, “Maximum likelihood model selection for 1-

 norm soft margin SVMs with multiple parameters,” IEEE Trans.

 Pattern Anal., vol. 32, no. 8, pp. 1522–1528, Aug. 2010.

[15] S. S. Keerthi, “Efficient tuning of SVM hyperparameters using

radius/margin bound and iterative algorithms,” IEEE Trans. Neural Netw.,

vol. 13, no. 5, pp. 1225–1229, 2002.

[16] F. Friedrichs and C. I. Ã, “Evolutionary tuning of multiple SVM parameters,”

Neurocomputing, vol. 64, pp. 107–117, 2005.

[17] S. L. Ã and M. Tan, “Neurocomputing Tuning SVM parameters by using a

hybrid CLPSO – BFGS algorithm,” Neurocomputing, vol. 73, no. 10–12, pp.

2089–2096, 2010.

[18] A. Boubezoul, “Application of global optimization methods to model and

feature selection,” Pattern Recog., vol. 45, pp. 3676–3686, 2012.

[19] B. Long, M. Li, H. Wang, and S. Tian, “Diagnostics of Analog Circuits Based

on LS-SVM Using Time-Domain Features,” J. Electron. Test., pp. 2683–

215

2706, 2013.

[20] J. Platt, “Probabilistic outputs for support vector machines and

 comparisons to regularized likelihood methods,” in Advances in Large

 Margin Classifiers. Cambridge, MA, USA: MIT, pp. 61–74,1999.

216

7 DISCUSSION AND CONCLUSIONS

The core aim of this research was to develop an integrated ‘Design for

Prognostics and Security’ in FPGAs, taking into consideration the aggravated

impact of the continual miniaturisation of technology node and the rising hardware

threats, hardware Trojans in particular. The design provides a viable capability to

both the industry and the researchers for prognosticating and managing the

health of modern FPGAs using an integrated approach that combines the realms

of FPGA reliability and security and gives an optimised solution in the form of the

FPGA security scheme and a Kernel-based health estimation/prognostics

method. This research is, therefore, a substantial effort to strengthen the realms

of reliability and security that govern the health dynamics of Field Programmable

Gate Arrays (FPGAs) for innumerable mission-critical applications.

In this chapter, we present a brief discussion to highlight the salient findings and

contributions to these realms. Section 7.1 gives an account of how the research

aim and objectives have been achieved. This is followed by the presentation of

key contributions to the existing VLSI reliability and security domains in Section

7.2. Two key avenues for the future work are recommended in the final Section

7.3.

7.1 Addressing the Research Aim and Objectives

The overall scientific research aim was to develop an integrated ‘Design for

Prognostics and Security in Field Programmable Gate Arrays (FPGAs) that

facilitates their reliability and security enhancement, enables NBTI-based

hardware Trojan detection and mitigation within their reconfigurable fabric, and

helps estimate their health. This aim has been achieved with the fulfilment of the

following objectives:

Objective 1: Develop an Integrated FPGA Health Management (IFHM)

Framework.

Evidence 1: This objective was accomplished with the development of a high-

level IFHM framework, which provides a guideline for the VLSI design and

217

manufacturing community (including researchers and expert end-users) to

develop highly optimised FPGA security and prognostics schemes by adopting

integrated approach. This framework was conceived on the pretext that the

existing individualistic approach toward FPGA health management does not

consider the essential elements of reliability, prognostics and security collectively.

As a result, the fragmented solutions are developed which, however, do not

reflect the true state of the operational condition of an FPGA. This framework

negates the fragmented approach and provides a guidance for the FPGA

researchers, design and manufacturing engineers, and expert end-users in

establishing the relationship between ‘degradation/failure mechanism’ and

‘hardware threat/attack’, determining ‘failure precursor’, constructing and

optimizing the experimental set-up, defining test conditions and estimating the

health of an FPGA in a composite manner. The subsequent design and

development of the FRED sensor (Chapter 4), the FPGA Security Scheme

(Chapter 5), and the Kernel-based health estimation method (Chapter 6) are the

products of this framework and validate its concept.

The subsequent automation of this framework and integration with electronic

design automation (EDA) tools would be highly useful.

Objective 2: Design and implement a small footprint and highly sensitive on-chip

sensor for the detection of frequency and subsequent delay degradation in

modern FPGAs due to aggravated BTI mechanism.

Evidence 2: This objective was achieved by the design and implementation of a

FREquency Degradation (FRED) detection sensor (Chapter 4). The sensor

detects and provides a measure of decrement in the frequency of its uniquely

designed dual delay-line based segments with the ageing of FPGA primitives due

to the BTI degradation mechanisms. The fixed sensor segment (FSS) of FRED

is used as a reference with near-zero stress and the dynamic sensor segment

(DSS) is built to experience high temperature and voltage stresses. Configured

with variant gate length and types, the sensor outputs an accurate measure of

the frequency difference between the FSS and DSS segments. Due to near-zero

stresses on FSS, it is equally good for the calibration of the sensor, which helps

218

maintain the measurement accuracy. The simulation and real-time experiments

under normal and accelerated temperature and voltage conditions validated the

effectiveness of the sensor in detecting and measuring small to large delay

variability by observing changes in the frequency difference between the FSS

and DSS segments.

Based on its capability to capture FPGA ageing in terms of the frequency and

delay degradation across the whole FPGA surface, FRED can be considered a

good candidate for the detection of malicious circuits, called hardware Trojans,

that are based on the parametric variations (such as threshold voltage) in

transistors.

Objective 3: Design and implementation of an FPGA Security Scheme capable

of detecting a hardware Trojan and providing effective mitigation.

Evidence 3: This was the most important objective and can be termed as the

backbone of this research work. We achieved it by designing and implementing

a unique FPGA Security Scheme comprising the design and implementation of a

novel threshold voltage shift-based hardware Trojan sub-scheme, hardware

Trojan detection sub-scheme comprising an improved version of FRED sensor,

and a hardware Trojan mitigation sub-scheme based on the online transistor

dynamic scaling (OTDS) (Chapter 5).

This FPGA Security Scheme would prove to be a trustable and highly effective

capability for a wider industrial community in bolstering their products’ reliability

and performance. It would augment their capability to defend and deter against

hardware Trojans.

Objective 4: Prognosticate the health of an FPGA under the influence of

hardware Trojan

Evidence 4: We accomplished this key objective by developing a Kernel-based

machine learning method to prognosticate the health of an FPGA under the

influence of a hardware Trojan (Chapter 6). This method exploits the features

extracted from an FPGA primitive holding a logic circuit and its underlying PFETs.

Additionally, it is augmented with a stochastic filtering optimization method that

219

helps to achieve better health estimation accuracy by addressing the

hyperparameter selection problem. The most important and useful attribute of this

health estimation method is its ability to provide an early failure warning before

the actual application circuit failure. This method provides a classification

accuracy of 94% on average (calculated taking into consideration different circuit

implementations on FPGA).

7.2 Contribution to Knowledge

Any research work that attempts to understand the intricacies of security in the

wake of evolving cyber-attacks is, in itself, a decent contribution to the field of

hardware security, in particular and cybersecurity, in general. We have delved

much deeper into finding novel and practicable solution to FPGA reliability and

security issues. In the process, we have made some significant contributions to

the VLSI stream of micro and nanoelectronics. These include:

• The integrated FPGA health management (IFHM) framework: is a highly

useful tool for deriving valuable and relevant research data on FPGA security

and reliability, especially for the semiconductors’ research community. It

provides an all-encompassing and well-directed approach to understand the

health contours of FPGA and develop efficient schemes accordingly. When

automated, it would be a vital addition to the design rule check (DRC)

feature/library of FPGA/ASIC design tools.

• Lightweight On-chip FREquency Degradation (FRED) Detection Sensor:
The designing and implementation process of FRED provides a cogent

understanding of the varying parametric behaviour of CMOS transistors and

FPGA primitives due to their interactions and exposure to various stochastic

and systematic variations. The study and investigation of the changing

threshold voltage and drain current, and their impact on frequency and circuit

delays provide a useful knowledge for the sensor designer to optimise the

sensor design. In addition, FRED with a high sensitivity and low area and

power consumption along with improved quality factor can be incorporated in

FPGA designs by the manufacturers not only for frequency and delay

measurements but for accurate temperature readings as well, with some

220

minor modifications. Most importantly, it has been verified and validated to be

an efficient hardware Trojan detector (for threshold-voltage shift-based

hardware Trojans).

• Development of a Threat Model: We have developed a unique hardware

Trojan threat model based on a high-end defence asset - a naval warship,

fitted with an ‘Integrated Self-Protection System’ (ISPS) (Chapter 5, Section

5.2). It helps understand the implications of a hardware Trojan-infected FPGA

on the system/sub-system/module it has been fitted with. It could range from

SoCs and NoCs to LRUs, complex computation modules, radar transceiver

systems, and sensitive cipher-decipher assemblies. This model can be

utilised to build different FPGA security schemes (based on the multiple types

of hardware Trojans) to defy micro-architectural level hardware attacks and

ensure the confidentiality, reliability, and the operational availability of

computational systems.

• Design and Implementation of a Novel Hardware Trojan: Leveraging the

NBTI degradation mechanism’s growing intensity with the continual

downscaling of FPGA technology node, we designed and developed a novel

lightweight and stealthy hardware Trojan in a 28nm device (Chapter 5, Section

5.3). This Trojan gets triggered with minor shifts in threshold voltage and

disrupts the operation and function of any combinatorial and sequential circuit

implemented in the FPGA. This design can be exploited by researchers to

develop a threshold voltage triggered hardware Trojan based on PBTI

degradation mechanism as well and accordingly develop various mitigation

and prevention schemes.

• FPGA Security Scheme: In consonance with the IFHM framework, we

devised an FPGA/ASIC - implementable Security Scheme to counter the

detrimental impact of hardware Trojans. This scheme involves: 1) Ingress of

a stealthy threshold voltage-triggered hardware Trojan-(HT Infection
Scheme), 2) Detection of hardware Trojan using lightweight Threshold

Voltage - aware sensor (SVth)-(HT Detection Scheme), and 3) Mitigating the

impact of hardware Trojan using online transistor dynamic scaling (OTDS)-

(HT Mitigation Scheme). The complete description is given in Chapter 5. This

221

scheme can be capitalised on by the UK Research and Innovation’s ‘Industrial

Strategy Challenge aiming at radically updating the foundation of the UK’s

insecure digital computing infrastructure.

• Kernel-based FPGA Health Estimation/Prognosis: The culmination of our

research work is the development of a Kernel-based method to prognosticate

FPGA health under the influence of a threshold-voltage triggered hardware

Trojan (Chapter 6). This alongwith the above contributions is also unique in

the sense that it is a completely new approach towards FPGA health

estimation/prognosis. To the best of our knowledge, Machine Learning (ML)

has not been used for an FPGA before. Previously, such techniques/methods

have been limited to discrete electronic components.

This method is the finality of the concept of IFHM framework that provides a

composite picture of the health of an FPGA. This method can be further

matured with extensive testing with a view to enhancing its classification

accuracy to 100%. This method could be a most viable as well as cost and

time efficient choice for the FPGA manufacturers to enhance their post-

manufacturing reliability monitoring and testing programs.

7.3 Future Work

While conducting this research work and writing down the thesis, we have been

intrigued by a number of concerns. For instance, there is a relentless need to

secure the semiconductor manufacturing supply chain completely. This includes

trusted design kits, reliable tool flows, full-spectrum (encompassing reliability,

prognosis, and security) design libraries, manufacturing, packaging, and

assembly. The industry still seems reluctant or incapacitated to understand the

varying nature of malicious hardware Trojans. How can we analyse them? Is

there any anti-virus program for hardware abstraction level devices? Should it be

developed on signatures or behaviour/anomaly? Would a completely-trusted

delivery be possible in the future autonomous systems? How effective is Tamper

resistance? What can be adjudged as the best set of practices to detect, mitigate,

and prevent the threat of malicious hardware? What can we learn from the

(failed?) efforts to detect subversion in VLSI devices, particularly FPGA based

222

SoCs? What can be a good defence, dependability, and trust strategy for the

existing and future hardware development?

Nevertheless, keeping our research work in perspective, we recommend the

following as significantly important future works.

7.3.1 Automation of Integrated FPGA Health Management (IFHM)
Framework

The proposed IFHM framework is a manual guidance on gathering requisite

information and data related to FPGA reliability, security, and prognostics. Based

on the analysis of the collated data, the FPGA security, reliability, and prognostics

are designed and developed in a composite manner. This approach is efficient in

time, cost, and research effort expended in developing an optimised FPGA health

scheme. However, the automation of this framework would quadruple its

efficiency and help build more robust and all-encompassing designs. This can

then be integrated with the EDA tool kits (developed by Xilinx, Altera, Synopsys,

Cadence etc.,) as a Design Rule Check (DRC) for FPGA/ASIC/SoC design flows.

7.3.2 Digital Security Hardening by Design – A Bio-inspired
Approach

Traditionally, the performance evaluation of embedded devices (microprocessor,

ASIC, and FPGA) and systems (SoC, NoC, and ACAP) is the function of their

parametric analysis against designed specifications of a known-good or golden

device. The electrical and physical parameters of the embedded device/system

under test/evaluation are compared with the standard parameters of the golden

device. Any deviation so observed is simultaneously recorded as a peculiar

behavioural response (symptom) of the device and categorised into specific

hardware threat (hardware Trojan, side-channel attack, counterfeit). However, in

the absence of a known-good or a golden device, the performance evaluation

becomes a challenging task – time consuming, resource-intensive, and un-

reliable. Moreover, unavailability of tools to check the security of design, needs

for security upgrade when breaches are detected after fabrication and release of

the products, needs for hardware roots of trust, and lack of security model in

component/devices libraries, currently used in EDA tools such as cadence and

223

Mentor Graphics, provide impetus for defining an all-inclusive bio-inspired

intervention.

In view of the above, a bio-inspired vaccination approach may be adopted in

which the embedded devices/systems are treated as artificial beings infested with

malicious circuitry/software and other bugs that remain dormant unless triggered

internally or by any external source. Such an approach eliminates the

requirement of a golden device and helps build performance profile of the device

in a composite manner. Taking lead from the ‘Vaccination Mechanism’,

embedded devices/systems could be made immune at the microarchitectural

level against hardware threats - hardware Trojans in specific. The

devices/systems can then be exposed to a large set of known threat models to

acquire corresponding symptoms, learn from them, and then construct advanced

security solutions comprising early threat detection and mitigation schemes for

unknown threats (while mimicking engineering solutions from biological

counterparts). This would entail:

• Development of hardware Trojan models and integrating them with VLSI

design along with the controllability mechanism to defuse them at the end

of manufacturing tests.

• Enhancing the existing design for testability (DFT) techniques with novel

approaches that allow construction and integration of advanced

reconfigurable sensors with the device, called Primitive Security Elements

or simply security primitives.

• Mechanisms to test the device/system through DFT, enabling fast and

efficient data collection while the intended Trojans are activated or

deactivated.

• Data analysis and signal processing to determine symptoms associated

with known Trojans.

• Development of ML algorithms to extend the symptoms from known

threats to unknown threats.

• Performance evaluation based on the symptoms’ analysis and

categorisation.

224

• Building components and devices libraries for various silicon technologies

and foundries using threat models and associated symptoms as objects.

7.3.3 Alleviation of Si-H Bond-Breaking Impact on CMOS Transistors

The Si-H (Silicon-Hydrate) bonds’ breakage leads to the initiation of the

degradation mechanisms of BTI and HCI. As a result, these phenomena

generate performance issues for CMOS transistors and this trend seems to get

more pronounced despite the miniaturisation of VLSI technologies and usage of

heavily nitrided oxides. A number of materials other than amorphous silicon can

be the viable candidates for the alleviation of this undesired phenomenon. It is,

therefore, considered prudent to investigate new materials and their practicality

for state-of-the-art semiconductor devices so as to suppress performance

degradation mechanisms such as N/PBTI and help increase their reliability.

7.3.4 Probability of Detection of Hardware Trojans Through Surface
Effects’ Monitoring

Despite the advanced thermal management/system monitors implemented within

FPGAs/SoCs, detection of hotspots within FPGA fabric is not precise and

accurate. As a result, any malicious circuit designed to trigger with high

temperatures, will not be detected. We observed this during the accelerated

thermal and power cycling experiments. The existing system monitors provide an

overall junction temperature and all countermeasures/safeties are

developed/activated accordingly. The hotspots’ generation point has a much

higher temperature, sufficient enough to trigger NBTI with corresponding

increase in threshold voltage, thereby triggering the Trojan without

leaving/showing any noticeable trace /impact. There is, therefore, a critical need

to study the possibility of detection of hardware Trojans and develop advanced

and more robust techniques to enable their detection by swift

identification/capturing of hotspots as well as monitoring and evaluating the

device surface effects.

225

7.3.5 Impact of Run-time Transistor Width Scaling on the Usable
Area of an FPGA Device

The researchers/designers may have to make certain viable trade-offs between

security implications (at any specific instant of time) and the FPGA optimal

performance. As a result, compromises on area, power, and timing may take

place. Keeping these factors in perspective, we have proposed this whole FPGA

security scheme. We have kept the scheme viable in such a way that it should

give improved area, power, and timing (system performance) figures, and at the

same time never allowing hardware Trojan trigger by scaling transistor gates as

and when thresholds are likely to be violated. However, despite this, the

implementation and then the subsequent operation of OTDS (Online Transistor

Dynamic Scaling) scheme during the device runtime, may impose some

restrictions on the useable area/resources of FPGA and its dynamic

reconfiguration. This could be the increase in the capacitive load of the circuit,

causing a slight increase in the propagation delay of the monitored signal. In

certain cases, there may be a considerable increase in the operating frequency.

The question here is whether affecting transistor width will not have a massive

effect on the FPGA device as a whole. We would, therefore, encourage the future

researchers to critically evaluate the proposed OTDS scheme further and bring

forth some highly useful performance evaluations.

It is envisaged that the above-mentioned future work recommendations would

help enhance the realms of VLSI reliability and security a step further our

research work and provide a robust set of tools to tackle the most damaging

hardware and cyber threats.

226

APPENDICES

Appendix A Improving the Hardware Trojan
Detectability
Keeping the patterns of false prediction in perspective, we consider improving the

proposed sensor’s detection sensitivity by adding two additional pairs of ROs to

each of the sensor segment (Fixed and Dynamic). The frequencies of all these

pairs of RO segments are measured consecutively, during different thermal

cycles. Subsequently, the average of FSS (Fixed Sensor Segment) and DSS

(Dynamic Sensor Segment) frequencies is calculated to determine the presence

of malicious hardware Trojan.

A.1 Spread Reduction by Averaging Method

Assuming there is n number of ROs in the fixed and dynamic sensor segments,

their respective frequencies can then be considered as random variables and

denoted by a1, a2, …., an and b1, b2,....., bn, respectively. as the distribution of

g0(ffd) depends upon the frequency differences of both the fixed and dynamic

sensor segments; we can derive the following equation:

 Xi = Ai - Bi (5-5)

In this equation, Xis is Gaussian, as both the Ais and Bis are Gaussian. We

further assume the variables A and B to have the same mean and variance, as

all the RO segments undergo the same process variations. The aim is to

determine the mean and variance of a newly formed random variable Zn.

Mathematically, this can be represented as follows:

 𝑍𝑍𝑛𝑛 =
1
𝑛𝑛
�Ai −

1
𝑛𝑛

 �Bi
𝑛𝑛

𝑖𝑖=1

𝑛𝑛

𝑖𝑖=1

 (5 − 6)

 =
1
𝑛𝑛
�(Ai − Bi) =

1
𝑛𝑛

 �𝑋𝑋𝑖𝑖
𝑛𝑛

𝑖𝑖=1

𝑛𝑛

𝑖𝑖=1

(5 − 7)

227

The resultant random variable 𝒁𝒁𝒏𝒏 will be, therefore, Gaussian as all the Xis are

Gaussian. Based on this, the mean and variance are expressed in the following

mathematical form:

𝐸𝐸[𝑍𝑍𝑛𝑛] = 𝐸𝐸[
1
𝑛𝑛

 �𝑋𝑋𝑖𝑖]
𝑛𝑛

𝑖𝑖=1

=
1
𝑛𝑛

 �E �� 𝑋𝑋𝑖𝑖

𝑛𝑛

𝑖𝑖 = 1

 =
n 𝑥𝑥 𝜇𝜇
𝑛𝑛

 = 𝜇𝜇 (5 − 8)

𝑣𝑣𝑣𝑣𝑣𝑣(𝑍𝑍𝑛𝑛) = 𝑣𝑣𝑣𝑣𝑣𝑣 �
1
𝑛𝑛
� 𝑋𝑋𝑖𝑖

𝑛𝑛

𝑖𝑖 = 1

 = 𝑣𝑣𝑣𝑣𝑣𝑣 ��
𝑋𝑋𝑖𝑖
𝑛𝑛

𝑛𝑛

𝑖𝑖=1

�

 =
1
𝑛𝑛2

 �𝑣𝑣𝑣𝑣𝑣𝑣(𝑋𝑋𝑖𝑖)
𝑛𝑛

𝑖𝑖 = 1

 +
1
𝑛𝑛2

 �𝑐𝑐𝑐𝑐𝑐𝑐 (
𝑖𝑖 ≠ 𝑗𝑗

𝑋𝑋𝑖𝑖,𝑋𝑋𝑗𝑗) (5 − 9)

In the above equations, 𝑬𝑬[𝒁𝒁𝒏𝒏] is the expected value of the random variable 𝒁𝒁𝒏𝒏-

equal to the mean of a Gaussian random variable. Whereas 𝒗𝒗𝒗𝒗𝒗𝒗(𝒁𝒁𝒏𝒏) represents

the variance of the random variable 𝒁𝒁𝒏𝒏 and 𝒄𝒄𝒄𝒄𝒄𝒄 �𝑿𝑿𝒊𝒊,𝑿𝑿𝒋𝒋� is the covariance

between the random variables 𝑿𝑿𝒊𝒊 𝑎𝑎𝑎𝑎𝑎𝑎 𝑿𝑿𝒋𝒋.In this mathematical model, we assume

the frequencies of all the RO segments to be independent so that the random

variables 𝑿𝑿𝟏𝟏,𝑿𝑿𝟐𝟐 , … . .𝑿𝑿𝒏𝒏 also become independent. It, therefore, results in all the

covariances in (9) becoming zero.

𝑣𝑣𝑣𝑣𝑣𝑣(𝑍𝑍𝑛𝑛) =
1
𝑛𝑛2

 �𝑣𝑣𝑣𝑣𝑣𝑣(𝑋𝑋𝑖𝑖) =
𝑛𝑛 𝑥𝑥 𝜎𝜎2

𝑛𝑛2

𝑛𝑛

𝑖𝑖 = 1

 =
𝜎𝜎2

𝑛𝑛
 (5 − 10)

 Keeping the above equation (9) in view, the mean (μ) and the standard

deviation (σ) of 𝒁𝒁𝒏𝒏 can be derived as follows:

 𝜇𝜇𝑍𝑍𝑛𝑛 = 𝜇𝜇 (5-11)

 𝜎𝜎𝑍𝑍𝑛𝑛 = 𝜎𝜎
√𝑛𝑛

 (5-12)

228

As can be seen in (5-8) and (5-11), the mean of the average difference 𝒁𝒁𝒏𝒏

remains unchanged when compared with each 𝑿𝑿𝒊𝒊. On the other hand, the

variance of 𝒁𝒁𝒏𝒏 is dependent on √𝒏𝒏. A similar derivation is carried out to estimate

the resultant mean and variance for the distribution at time t, gt(fFD). We,

therefore, infer that the overlapping area between the two distributions can be

reduced to an almost negligible amount by adding additional RO pairs to both the

fixed and dynamic segments, as is evident from Figure 5- 18(b).

229

Appendix B Determining Maximum Frequency
Degradation
An accurate and precise capturing of frequency degradation in ring oscillators is

key to the correct and authentic assessment of hardware Trojan’s triggering, its

impact, and a reliable measure of the sensor’s sensitivity. We, therefore,

experimented to determine the maximum frequency degradation experienced by

DSS RO pairs when negative bias and elevated temperatures are applied as per

the hardware Trojan insertion scheme described in Section 5.3.

and coarse as well as fine stretching operations (stress-time) used in [61] to

minimise measurement errors. We observe how the frequency degradation (with

subsequent delays and ageing), δf, changes with the percentage frequency

differences at varying threshold voltages. A total of 10K samples were taken at

each thermal (60, 90, and 125⁰C) and negative bias (-1.2V, -1.4V, and -2.0V)

points. The scatter plot of frequency degradation δf against frequency difference

𝛛𝛛ft DSS at time t is shown in Fig. 20, where 𝛛𝛛ft DSS = (ft(-2.0V) - ft(-1.4V) - ft(-1.2V)) / ft(-1.2V).

As is evident, ft(-2.0V), ft(-1.4V), and ft(-1.2V) are the frequencies of DSS RO pairs that

are exposed to negative bias and increasing temperature stresses. A positive

correlation (𝝆𝝆)for frequency degradation and normalised frequency differences is

observed that indicates the ageing and delay degradation in this specific

threshold voltage triggered hardware Trojan environment. Based on this

experimental observation, we undertook mathematical analysis to determine the

relationship that could enhance sensor accuracy defined by the interdependence

of temperature, threshold voltage, oscillation count/frequency, and ageing/delays

variability.

As the DSS RO pairs are subjected to temperature and threshold voltage

variations at time t, the oscillation count/frequency ft DSS begins to fall. It becomes

lower than the frequency f0 DSS at time 0. This frequency degradation 𝜹𝜹𝜹𝜹 can,

then, be given as:

𝛿𝛿𝛿𝛿 = 𝑓𝑓0 𝐷𝐷𝐷𝐷𝐷𝐷 − 𝑓𝑓𝑡𝑡 𝐷𝐷𝐷𝐷𝐷𝐷 (5 − 13)

230

With the application of negative bias at three different values in time 0, the

percentage frequency difference is resultantly calculated as:

 𝜕𝜕𝑓𝑓0 𝐷𝐷𝐷𝐷𝐷𝐷 =
𝑓𝑓0 𝐷𝐷𝐷𝐷𝐷𝐷,𝑉𝑉𝐷𝐷𝐷𝐷1 – 𝑓𝑓0 𝐷𝐷𝐷𝐷𝐷𝐷,𝑉𝑉𝐷𝐷𝐷𝐷2 – 𝑓𝑓0 𝐷𝐷𝐷𝐷𝐷𝐷,𝑉𝑉𝐷𝐷𝐷𝐷3

𝑓𝑓0 𝐷𝐷𝐷𝐷𝐷𝐷,𝑉𝑉𝐷𝐷𝐷𝐷3
 (5-14)

where, 𝑽𝑽𝑫𝑫𝑫𝑫𝑫𝑫 > 𝑽𝑽𝑫𝑫𝑫𝑫𝑫𝑫 > 𝑽𝑽𝑫𝑫𝑫𝑫𝑫𝑫. As there exists a positive correlation between 𝜹𝜹𝜹𝜹 and

𝝏𝝏𝒇𝒇𝟎𝟎 𝑫𝑫𝑫𝑫𝑫𝑫 , we aim at identifying DSS RO pair that experiences a maximum

frequency degradation relative to percentage frequency differences at the afore-

mentioned negative bias and temperature stress values, mathematically:

 𝛿𝛿𝛿𝛿
𝜌𝜌
← 𝜕𝜕𝑓𝑓0 𝐷𝐷𝐷𝐷𝐷𝐷 (5-15)

Then, the frequency degradation for the sensor can be expressed as follows:

 𝛿𝛿𝛿𝛿 = ∆𝑓𝑓𝑡𝑡 − ∆𝑓𝑓0 (5-16)

 where,

 ∆𝑓𝑓𝑡𝑡 = 𝑓𝑓𝑡𝑡 𝐹𝐹𝐹𝐹𝐹𝐹 – 𝑓𝑓𝑡𝑡 𝐷𝐷𝐷𝐷𝐷𝐷 (5-17)

We also consider the impact process variations (PVs) could have on frequency

(delay/ageing) degradation 𝜹𝜹𝜹𝜹 and the percentage frequency difference 𝝏𝝏𝒇𝒇𝑫𝑫𝑫𝑫𝑫𝑫.

With the positive correlation between the two, it is possible to have an optimal

estimate 𝜹𝜹𝚲𝚲𝒇𝒇 for 𝜹𝜹𝜹𝜹. Minimum mean-square error (MMSE) estimator, for instance,

provides versatility to achieve reduced mean square error and make more

realistic estimates [62]. The DSS RO degradation is, therefore, expressed using

the minimum mean-square error (MMSE) estimator, as follows:

𝛿𝛿𝑓𝑓𝐷𝐷𝐷𝐷𝐷𝐷 = 𝜌𝜌
𝜎𝜎𝛿𝛿𝑓𝑓𝐷𝐷𝐷𝐷𝐷𝐷
𝜎𝜎𝜕𝜕𝑓𝑓𝐷𝐷𝐷𝐷𝐷𝐷

 (𝜕𝜕𝑓𝑓𝐷𝐷𝐷𝐷𝐷𝐷 − 𝜇𝜇𝜇𝜇𝑓𝑓𝐷𝐷𝐷𝐷𝐷𝐷) + μ𝛿𝛿𝑓𝑓𝐷𝐷𝐷𝐷𝐷𝐷 (5-18)

where, 𝝆𝝆 defines the correlation between frequency degradation in dynamic

sensor segment (𝜹𝜹𝒇𝒇𝑫𝑫𝑫𝑫𝑫𝑫) and percentage frequency difference (𝝏𝝏𝒇𝒇𝑫𝑫𝑫𝑫𝑫𝑫); 𝝈𝝈𝜹𝜹𝒇𝒇𝑫𝑫𝑫𝑫𝑫𝑫 and

𝝈𝝈𝝏𝝏𝒇𝒇𝑫𝑫𝑫𝑫𝑫𝑫 connotate the standard deviations for 𝜹𝜹𝒇𝒇𝑫𝑫𝑫𝑫𝑫𝑫 and 𝝏𝝏𝒇𝒇𝑫𝑫𝑫𝑫𝑫𝑫 respectively.

Whereas, μ𝜹𝜹𝒇𝒇𝑫𝑫𝑺𝑺𝑺𝑺 and 𝝁𝝁𝝁𝝁𝒇𝒇𝑫𝑫𝑺𝑺𝑺𝑺 represent the mean for 𝜹𝜹𝒇𝒇𝑫𝑫𝑫𝑫𝑫𝑫 and 𝝏𝝏𝒇𝒇𝑫𝑫𝑫𝑫𝑫𝑫

respectively.

231

The MMSE estimator for the overall sensor degradation (𝜹𝜹𝜹𝜹), as opposed to a

particular sensor segment, can now be expressed as follows:

𝛿𝛿𝑓𝑓𝑠𝑠 = ∆𝑓𝑓𝑡𝑡 − ∆𝑓𝑓0 = �𝑓𝑓𝑡𝑡 𝐹𝐹𝐹𝐹𝐹𝐹 − 𝑓𝑓𝑡𝑡 𝐷𝐷𝐷𝐷𝐷𝐷� − �𝑓𝑓0 𝐹𝐹𝐹𝐹𝐹𝐹 − 𝑓𝑓0 𝐷𝐷𝐷𝐷𝐷𝐷�

 = − �𝑓𝑓0 𝐹𝐹𝐹𝐹𝐹𝐹 − 𝑓𝑓𝑡𝑡 𝐹𝐹𝐹𝐹𝐹𝐹� + �𝑓𝑓0 𝐷𝐷𝐷𝐷𝐷𝐷 − 𝑓𝑓𝑡𝑡 𝐷𝐷𝐷𝐷𝐷𝐷� (5-19)

Since, the frequency degradation is assumed to be negligible in case of fixed

sensor segment RO pairs, 𝒇𝒇�𝟎𝟎 𝑭𝑭𝑭𝑭𝑭𝑭 = 𝒇𝒇�𝒕𝒕 𝑭𝑭𝑭𝑭𝑭𝑭 , the above equation can be written as:

 = �𝑓𝑓0 𝐷𝐷𝐷𝐷𝐷𝐷 − 𝑓𝑓𝑡𝑡 𝐷𝐷𝐷𝐷𝐷𝐷�

= 𝛿𝛿𝑓𝑓𝐷𝐷𝐷𝐷𝐷𝐷 = 𝜌𝜌
𝜎𝜎𝛿𝛿𝑓𝑓𝐷𝐷𝐷𝐷𝐷𝐷
𝜎𝜎𝜕𝜕𝑓𝑓𝐷𝐷𝐷𝐷𝐷𝐷

 (𝜕𝜕𝑓𝑓𝐷𝐷𝐷𝐷𝐷𝐷 − 𝜇𝜇𝜇𝜇𝑓𝑓𝐷𝐷𝑆𝑆𝑆𝑆) + μ𝛿𝛿𝑓𝑓𝐷𝐷𝐷𝐷𝐷𝐷 (5-20)

The above relation implies that with 𝝆𝝆 being positive, the higher percentage

frequency difference between the FSS and DSS RO pairs will, in turn, maximise

the sensor frequency (and subsequent delay/ageing) degradation. It is

represented by the separation between two distributions at t = 0 and t = t. This

further implies that in the sensor with more RO pairs to select from, the one with

the maximum percentage frequency difference within DSS RO pairs at t = 0 must

be selected. This results in maximising the distance between the two distributions

of frequency difference and minimising the probability of false prediction, as

shown in Figure 5-18(a).

Keeping in view the above mathematical derivations and ‘selection strategy’(as

delineated in process flow – Figure 5-20), the detectability of hardware Trojan by

the sensor is set for optimisation. Accordingly, we define the process variations

based on transistor length (L) and oxide thickness (Tox), as given in Table 5-5

and choose ‘PVc’ class of process variations as an extreme (worst) case to

determine the pre-trigger value of frequency degradation, relative to percentage

shift in the threshold voltage. Also, the two sensor segments (FSS and DSS) are

implemented close to each other to eliminate the impact of undefined

environmental variations upon measurements and the accuracy of detection.

The process flow (Figure 5-20) targets the selection of the best (with maximum

frequency degradation) FSS and DSS RO-pair by, initially, selecting all the six

232

RO-pairs and then capturing their frequencies. These frequencies are stored by

two vectors, defined as𝑓𝑓𝐹𝐹𝐹𝐹𝐹𝐹 = [𝑓𝑓𝐹𝐹𝐹𝐹𝐹𝐹1, 𝑓𝑓𝐹𝐹𝐹𝐹𝐹𝐹2,𝑓𝑓𝐹𝐹𝐹𝐹𝐹𝐹3] and 𝑓𝑓𝐷𝐷𝐷𝐷𝐷𝐷 = [𝑓𝑓𝐷𝐷𝐷𝐷𝐷𝐷1,

𝑓𝑓𝐷𝐷𝐷𝐷𝐷𝐷2, 𝑓𝑓𝐷𝐷𝐷𝐷𝐷𝐷3] and all the frequency differences are stored in a matrix defined as,

∆𝑓𝑓 = �∆𝑓𝑓𝑖𝑖𝑖𝑖�𝑛𝑛𝑛𝑛𝑛𝑛, where ∆𝑓𝑓𝑖𝑖𝑖𝑖 = 𝑓𝑓𝐹𝐹𝐹𝐹𝐹𝐹(𝑖𝑖) − 𝑓𝑓𝐷𝐷𝐷𝐷𝐷𝐷(𝑗𝑗),∀(𝑖𝑖, 𝑗𝑗). If ∆𝑓𝑓𝑖𝑖𝑖𝑖 is positive, the fixed

and dynamic RO-pair with minimum ∆𝑓𝑓𝑖𝑖𝑖𝑖 is selected. Otherwise, only negative

∆𝑓𝑓𝑖𝑖𝑖𝑖 values are taken to update ∆𝑓𝑓. In such a condition, the resulting distribution

𝑔𝑔0´ (.) presents a significantly reduced spread, as is evident in Figure 5-18(c).

However, at time t, the distribution 𝑔𝑔𝑡𝑡(.) must be shifted to the right to increase

𝛿𝛿𝛿𝛿 even further. In such a condition, DSS RO is selected with maximum 𝜕𝜕𝜕𝜕����⃗ 𝑑𝑑𝑑𝑑𝑑𝑑(𝑗𝑗)

 = 𝒇𝒇𝟎𝟎 𝑫𝑫𝑫𝑫𝑫𝑫,𝑽𝑽𝑫𝑫𝑫𝑫𝑫𝑫 (𝒋𝒋) – 𝒇𝒇𝟎𝟎 𝑫𝑫𝑫𝑫𝑫𝑫,𝑽𝑽𝑫𝑫𝑫𝑫𝑫𝑫 (𝒋𝒋) – 𝒇𝒇𝟎𝟎 𝑫𝑫𝑫𝑫𝑫𝑫,𝑽𝑽𝑫𝑫𝑫𝑫𝑫𝑫 (𝒋𝒋)

𝒇𝒇𝟎𝟎 𝑫𝑫𝑫𝑫𝑫𝑫,𝑽𝑽𝑫𝑫𝑫𝑫𝑫𝑫 (𝒋𝒋)
 (5-21)

whereas, the corresponding FSS RO with maximum ∆𝑓𝑓𝑖𝑖𝑖𝑖 is selected to minimise

the spread of both distributions, 𝑔𝑔0´ (.) and 𝑔𝑔𝑡𝑡(.). Once the optimal RO pair is

selected, the frequency difference ∆𝑓𝑓𝑖𝑖𝑖𝑖 is then stored to form the distribution 𝑔𝑔0´ (.).

The threshold frequency 𝑓𝑓𝑡𝑡ℎ is finally calculated, to be referred to for the detection

of hardware Trojan by comparing it with the frequency differences of FSS and

DSS RO segments implemented in FPGA under authentication.

	ABSTRACT
	ACKNOWLEDGEMENTS
	LIST OF TABLES
	LIST OF EQUATIONS
	LIST OF ABBREVIATIONS
	1 INTRODUCTION
	1.1 Motivation
	1.1.1 Research Gaps
	1.1.1.1 Lack of Integrated Approach and Framework for FPGA Health Management
	1.1.1.2 Lack of Design for Prognostics and Security in FPGAs
	1.1.1.3 Frequency/Delay Degradation Measurement Sensors are Resource-intensive

	1.2 Research Aim and Objectives
	1.2.1 Aim
	1.2.2 Objectives
	1.2.2.1 Integrated FPGA Health Management (IFHM) Framework
	1.2.2.2 Frequency/Delay Degradation Measurement Sensor
	1.2.2.3 FPGA Security Scheme
	1.2.2.4 FPGA Health Estimation

	1.3 Research Methodology
	1.3.1 Phase-1
	1.3.2 Phase-2
	1.3.3 Phase-3
	1.3.4 Phase-4

	1.4 Organisation of Thesis
	1.4.1 Chapter 2
	1.4.2 Chapter 3
	1.4.3 Chapter 4
	1.4.4 Chapter 5
	1.4.5 Chapter 6

	1.5 List of Published/Submitted Work
	1.5.1 Journal Publication
	1.5.2 Conference Publication
	1.5.3 Virtual Conference Presentation
	1.5.4 Under Peer Review for Journal Publication

	2 UNIFIED FRAMEWORK FOR HEALTH AND SECURITY OF FPGAs
	2.1 Introduction
	2.1.1 The Increased Reliance on FPGAs
	2.1.2 The Internals of FPGA
	2.1.2.1 SRAM FPGA Specifics

	2.2 Realm of Reliability in FPGAs
	2.2.1 Degradation Mechanisms and Transistor Ageing
	2.2.1.1 Time Dependent Dielectric Breakdown (TDDB)
	2.2.1.1.1 The Consequences

	2.2.1.2 Hot Carrier Injection
	2.2.1.3 Bias Temperature Instability (BTI)
	2.2.1.3.1 The Factor of High-k Dielectrics in 45nm and below FPGA technologies
	2.2.1.3.2 NBTI and PBTI

	2.2.2 FPGA Manufacturers’ Perspective
	2.2.2.1 Post-Manufacturing Reliability Test Regime
	2.2.2.1.1 Life Test Methodology
	2.2.2.1.2 Failure Rate Prediction

	2.2.3 FPGA Degradation/Reliability Modelling – Researchers’ Perspective
	2.2.3.1 Fault-Tolerance and Self-healing – Sources of Reliability Enhancement

	2.2.4 Some Analysis
	2.2.5 Why Prognostics?

	2.3 Realm of Security in FPGAs
	2.3.1 FPGA Life Cycle and A Network of Hardware Threats
	2.3.1.1 Vulnerabilities in FPGA Lifetime
	2.3.1.1.1 Manufacturing Phase
	2.3.1.1.2 Application Development Phase
	2.3.1.1.3 Deployment Phase

	2.3.1.2 Securing the FPGA Life Cycle

	2.3.2 Nature of Threats and Attacks on FPGAs
	2.3.2.1 Counterfeiting
	2.3.2.2 Reverse Engineering
	2.3.2.3 Readback
	2.3.2.4 Side Channel Attacks
	2.3.2.4.1 Power Mapping and Analysis
	2.3.2.4.2 EM Emanation Analysis
	2.3.2.4.3 Timing Analysis

	2.3.2.5 Radiation-Induced Threats – Single Event Upset (SEU)
	2.3.2.6 Hardware Trojans
	2.3.2.7 Kill Switch
	2.3.2.8 The Backdoor

	2.3.3 Analysis

	2.4 Integrated FPGA Health Management (IFHM) Framework
	2.4.1 The Framework
	2.4.1.1 The Resourcer
	2.4.1.2 The Conjoiner
	2.4.1.3 The Unifier

	2.4.2 IFHM Framework Workflow

	2.5 Summary

	REFERENCES
	3 Understanding the Hardware Trojans in FPGAs
	3.1 Introduction
	3.2 Threat Model and Taxonomy
	3.2.1 FPGA Design Flow
	3.2.2 Threat Model
	3.2.2.1 Overproduction
	3.2.2.2 Recycling and remarking
	3.2.2.3 Cloning and Piracy

	3.2.3 FPGA Hardware Trojans Taxonomy
	3.2.3.1 Point of Entry
	3.2.3.1.1 Prefabrication
	3.2.3.1.2 Fabrication
	3.2.3.1.3 Post Fabrication

	3.2.3.2 Creation Method
	3.2.3.2.1 Functional Trojan
	3.2.3.2.2 Parametric Trojan
	3.2.3.2.3 Life-span Reduction Trojan (LRT)
	3.2.3.2.4 Bitstream Trojan
	3.2.3.2.5 CAD Tool Trojan

	3.3 Trojans in FPGA Fabric
	3.3.1 Trojans That Increase Delay
	3.3.2 Trojans That Induce Voltage Fluctuations
	3.3.3 Life-Span Reduction Trojan (LRT)

	3.4 Trojans in FPGA Tool Chain
	3.4.1 Trojan Insertion in FPGA Designs
	3.4.2 Trojans in HDL

	3.5 FPGA Attacks and a Case Study
	3.5.1 Threat Scenario/Model and Associated Attacks
	3.5.1.1 Malicious Cloud Providers
	3.5.1.1.1 Direct Sensitive Data Leakage
	3.5.1.1.2 Intellectual Property Theft
	3.5.1.1.3 Tampering with User Logic

	3.5.1.2 Malicious Co-tenants
	3.5.1.2.1 Side Channel Attacks
	3.5.1.2.2 Fault-injection Attacks
	3.5.1.2.3 Denial-of-Service Attacks
	3.5.1.2.4 Row-Hammer Attacks

	3.5.1.3 Malicious IP Providers
	3.5.1.3.1 Power Covert Channels
	3.5.1.3.2 Cross talk in Long Wires
	3.5.1.3.3 Thermal Covert Channel

	3.5.1.4 Malicious FPGA Tools

	3.5.2 Case Study – Remote Power Side-Channel Attacks
	3.5.2.1 Threat Model
	3.5.2.2 Key Idea
	3.5.2.3 Attack Method
	3.5.2.4 Attacking the Processor System
	3.5.2.5 Experiments on Amazon Clouds

	3.6 Trojan Countermeasures
	3.6.1 Hardware Trojan Tolerance Using Modular Redundancy
	3.6.2 FPGA TrustFuzion

	3.7 Summary

	4 FREQUENCY DEGRADATION (FRED) DETECTION AND MEASUREMENT SENSOR
	4.1 Introduction
	4.2 Current Research on Frequency/Delay Variability Detection
	4.3 FREquency Degradation (FRED) Detection Sensor – Architecture
	4.3.1 Degradation Mechanisms and Device Ageing
	4.3.2 The Sensor Architecture
	4.3.2.1 Design Considerations and Objectives
	4.3.2.2 The Sensor Operation
	4.3.2.2.1 Modes of Operation
	4.3.2.2.2 Rationale for 21-NAND Gate based RO Configuration

	4.4 Implementation Results and Analysis – Simulation and Experiments
	4.4.1 The Sensor Simulation
	4.4.1.1 Some Analytics – Stage Analysis
	4.4.1.2 Process Variations and Temperature Analysis

	4.4.2 The Sensor Implementation and Validation
	4.4.2.1 Experimental Setup
	4.4.2.2 Results and Analysis – Experiment 1
	4.4.2.2.1 Analysis

	4.4.2.3 Results and Analysis – Experiment 2

	4.5 Performance Evaluation of FRED
	4.5.1 Resource Utilization and Sensitivity
	4.5.2 Area Overhead
	4.5.3 Power Overhead
	4.5.4 Quality Factor
	4.5.5 Some Limitations

	4.6 Summary

	5 FPGA SECURITY SCHEME
	5.1 Introduction
	5.2 Related Work
	5.2.1 Threat Model

	5.3 FPGA Security Scheme and Threshold Voltage – Triggered Hardware Trojan
	5.3.1 Design Considerations
	5.3.2 Architecture of Threshold Voltage Triggered Hardware Trojan (HTVth)
	5.3.2.1 Conceptualising Hardware Trojan in Combinatorial Circuits
	5.3.2.2 Conceptualising Hardware Trojan in 4-BIT Ripple Carry Adder
	5.3.2.3 Conceptualising Hardware Trojan in Sequential Circuits
	5.3.2.4 Adding Ring Oscillator Based Heating Element for Accelerated NBTI Impact

	5.3.3 Threshold Voltage Meter

	5.4 Design and Implementation of a Threshold Voltage-Aware Sensor
	5.4.1 Threshold Voltage Based Sensor Architecture
	5.4.2 Determining Threshold Frequency for Correlation and Authentication
	5.4.3 Reducing the Rate of False Prediction
	5.4.4 Re-architecting the Sensor with Additional Ring Oscillator Segments
	5.4.5 Sensor and Hardware Trojan Detection Scheme – Testing and Analysis
	5.4.6 Area Overhead Analysis

	5.5 Mitigating the Impact of Threshold Voltage – Triggered Hardware Trojan
	5.5.1 Earmarking the Potential Critical Gates
	5.5.2 Reference Voltage Generator
	5.5.3 Current Adjustment Module
	5.5.4 Transistor Width Scaling Module
	5.5.4.1 Design Phase
	5.5.4.2 Dynamic Phase

	5.6 Implementation and Optimisation of Hardware Trojan Mitigation Scheme
	5.6.1 Comparative Analysis with Contemporary Mitigation Techniques

	5.7 Summary

	6 FPGA HEALTH ESTIMATION USING KERNEL LEARNING APPROACH
	6.1 Introduction
	6.1.1 Related Work

	6.2 Kernel Learning and FPGA Health Estimation/Prognostics – A Mathematical Interpretation
	6.3 The Developed Kernel Learning Method
	6.3.1 Employing Likelihood Function for Hyperparameter Selection
	6.3.2 Optimization Method for Hyperparameter Selection

	6.4 Implementation Results and Analysis – Simulation and Experiments
	6.4.1 Accelerated Life Tests on FPGA
	6.4.1.1 Prologue to Degradation Mechanisms
	6.4.1.2 Accelerated Test Methodology
	6.4.1.3 Stress Test Conditions

	6.4.2 LUT Based Combinatorial Circuit with Hardware Trojan
	6.4.2.1 Health Estimation Metrics
	6.4.2.2 Analysis

	6.4.3 LUT Based Sequential Circuit with Hardware Trojan
	6.4.3.1 Analysis

	6.4.4 Viability of Kernel-Based Health Estimation for FPGAs
	6.4.4.1 Classification/Health Estimation/Prognostics Accuracy
	6.4.4.2 FPGA Time to Failure/RUL

	6.5 Summary

	7 DISCUSSION AND CONCLUSIONS
	7.1 Addressing the Research Aim and Objectives
	7.2 Contribution to Knowledge
	7.3 Future Work
	7.3.1 Automation of Integrated FPGA Health Management (IFHM) Framework
	7.3.2 Digital Security Hardening by Design – A Bio-inspired Approach
	7.3.3 Alleviation of Si-H Bond-Breaking Impact on CMOS Transistors
	7.3.4 Probability of Detection of Hardware Trojans Through Surface Effects’ Monitoring
	7.3.5 Impact of Run-time Transistor Width Scaling on the Usable Area of an FPGA Device

	APPENDICES
	Appendix A Improving the Hardware Trojan Detectability
	A.1 Spread Reduction by Averaging Method

	Appendix B Determining Maximum Frequency Degradation

