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ABSTRACT 

There is an evolutionary progression of Field Programmable Gate Arrays (FPGAs) 

toward more complex and high power density architectures such as Systems-on-

Chip (SoC) and Adaptive Compute Acceleration Platforms (ACAP). Primarily, this is 

attributable to the continual transistor miniaturisation and more innovative and 

efficient IC manufacturing processes. Concurrently, degradation mechanism of Bias 

Temperature Instability (BTI) has become more pronounced with respect to its 

ageing impact. It could weaken the reliability of VLSI devices, FPGAs in particular 

due to their run-time reconfigurability. At the same time, vulnerability of FPGAs to 

device-level attacks in the increasing cyber and hardware threat environment is also 

quadrupling as the susceptible reliability realm opens door for the rogue elements to 

intervene. Insertion of highly stealthy and malicious circuitry, called hardware 

Trojans, in FPGAs is one of such malicious interventions. On the one hand where 

such attacks/interventions adversely affect the security ambit of these devices, they 

also undermine their reliability substantially. Hitherto, the security and reliability are 

treated as two separate entities impacting the FPGA health. This has resulted in 

fragmented solutions that do not reflect the true state of the FPGA operational and 

functional readiness, thereby making them even more prone to hardware attacks. 

The recent episodes of Spectre and Meltdown vulnerabilities are some of the key 

examples. This research addresses these concerns by adopting an integrated 

approach and investigating the FPGA security and reliability as two inter-dependent 

entities with an additional dimension of health estimation/ prognostics. The design 

and implementation of a small footprint frequency and threshold voltage-shift 

detection sensor, a novel hardware Trojan, and an online transistor dynamic scaling 

circuitry present a viable FPGA security scheme that helps build a strong 

microarchitectural level defence against unscrupulous hardware attacks. Augmented 

with an efficient Kernel-based learning technique for FPGA health 

estimation/prognostics, the optimal integrated solution proves to be more 

dependable and trustworthy than the prevalent disjointed approach.    

Keywords:  

Reliability, Hardware Trojans, Kernel Learning, Negative and Positive Bias 

Temperature Instability (N/PBTI), Cybersecurity, Threshold Voltage.  
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1 INTRODUCTION 

1.1 Motivation 

The evolutionary progression of ‘Field Programmable Gate Arrays’ (FPGAs), from the 

traditional architectures to more complex and functionally capable heterogeneous 

platforms like ‘System-on-Chip (SoC)’ and ‘Adaptive Compute Acceleration Platform 

(ACAP)’ has been phenomenal. This reconfigurable class of integrated circuits is 

enabling real-time AI inference and adaptive compute acceleration in numerous 

sensitive applications across wide-ranging industrial sectors [1]. Recent statistical 

surveys envisage the global FPGA market to reach USD 14.2 billion by 2024 [2]. 

Against this backdrop, the functional as well as the operational reliability of these 

miniaturized nano-systems becomes highly relevant and worth probing. More 

importantly, with the episodes of Meltdown and Spectre casting shadows on the 

security fabric of FPGAs [3,4] and the vulnerability of its supply chain to hardware 

threats like hardware Trojans; the safe operation, confidentiality of the sensitive data 

and reliable performance of FPGAs may be jeopardised. For instance, when deployed 

in aerospace and defence systems operating under harsh environmental conditions 

for prolonged duration, the continual health assessment of FPGAs coupled with 

security is highly desired.     

1.1.1 Research Gaps 

1.1.1.1 Lack of Integrated Approach and Framework for FPGA Health 
Management 

The systematic literature review has revealed that the researchers and academicians 

have been treating the vital elements of security and reliability in FPGAs as two 

separate entities [5], [6], [7], [8], [9], [10]. Such an approach is fragmented in nature 

and does not provide complete health assessment of an FPGA device, which is 

essential for the optimal functioning and operation of existing and future industrial, 

health-care, aerospace, and energy systems.       

Instead, this has led to a clutter of non-composite solutions which do not provide an 

effective methodology and framework to build trust and ensure reliability as well as 

health management in FPGAs. Hence, to meet this challenge, there is a requirement 

of not only an in-depth study and pragmatic research on these two vital domains in a 
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composite manner but to formulate a high-level integrated FPGA health management 

framework.  

1.1.1.2 Lack of Design for Prognostics and Security in FPGAs 

The existing ‘Designs for Testability and Manufacturability’ are not optimized to assess 

the remaining useful life (RUL) of an FPGA at a nano-system level. These designs are 

focused more on performing testability analysis of FPGAs (and other VLSI devices) 

using different scan design methods such as scan-based logic built-in self-test (BIST) 

[11] and JTAG boundary scan, which are themselves vulnerable to hardware attacks 

[12], [13]. They are not designed and optimised to provide the prognostics and security 

assessments through a controllable built-in mechanism.  

Especially, in the event of a hardware Trojan attack that may accelerate the ageing 

process (with subsequent delay degradation) in an FPGA (triggered by Negative Bias 

Temperature Instability - NBTI) [14] , its health estimation that encompasses both the 

prognostics and security elements becomes critically essential. It is, therefore, 

deemed essential to bridge this gap and build ‘Design for Prognostics and Security’ 

that augments the controllability and observability regime in FPGAs for a highly reliable 

and security-hardened performance. 

1.1.1.3 Frequency/Delay Degradation Measurement Sensors are Resource-
intensive 

Intra-die/process variation, which causes performance inconsistency across different 

process technologies of FPGAs (90nm to 7nm), is a greater challenge. In particular, 

the literature confirms that the degradation mechanisms of Bias Temperature 

Instability (BTI) (consisting of Negative and Positive components - NBTI and PBTI), 

Hot Carrier Injection (HCI), Electromigration (EM) and Time Delay Dielectric 

Breakdown (TDDB) continue to pose reliability, ageing and performance issues with 

shrinking process technologies (28nm and below). This can be exploited by a rogue 

element to design and implement hardware Trojan to de-functionalise FPGA and affect 

the systems’ performance [14]. One of the key performance parameters that is highly 

sensitive to process variation and is the direct consequence of N/PBTI mechanisms is 

the propagation delay, which is the function of frequency degradation, threshold 

voltage shift, and reduction in the drain current – the device ageing parameters. In 

other words, delays are the function of transistors’ ageing. Therefore, precise 
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measurement of these critical transistor parameters propagation delays of arbitrary 

signal paths through logic blocks, interconnects and heterogeneous elements on an 

FPGA, is critical for the accurate prediction of its performance. 

The evidence from literature reveals that the existing propagation delay measurement 

sensors and methods are largely based on synchronous (using system clocks) 

designs and suffer from performance issues, namely clock jitter and flip flop 

metastability [15]. They consume more FPGA resources and are prone to reliability 

issues [16]. Therefore, building asynchronous sensor designs and characterising them 

to utilise in-field timing slack and transition probability measurement methods for 

determining propagation delay, can help improve the detection of hardware Trojans 

embedded in FPGA and provide vital parametric data for its health estimation.  

1.2 Research Aim and Objectives 

1.2.1 Aim 

In order to address the above-mentioned research gaps, we defined our overall 

scientific aim as follows: 

 ‘Design for Prognostics and Security in Field Programmable Gate Arrays 

(FPGAs) that facilitates their reliability and security enhancement, enables NBTI-

based hardware Trojan detection and mitigation within their  reconfigurable fabric 

and helps estimate their health’. 

1.2.2 Objectives 

Based on the above, we defined the following key objectives to achieve the aim: 

1.2.2.1 Integrated FPGA Health Management (IFHM) Framework 

Devise a high-level integrated framework for FPGA health management that provides 

guidance to the researcher, an FPGA manufacturer, and an expert end-user on the 

process flows and methods required to develop a ‘Design for Prognostics and Security 

in FPGAs’ in a composite manner. 

1.2.2.2 Frequency/Delay Degradation Measurement Sensor 

Design and implement a small footprint on-chip sensor (in the target 28 nm FPGA 

technology node) with low area and power overheads and high sensitivity to detect 
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frequency degradation and delay variations. Characterise the sensor under nominal 

and stressed Temperature and Voltage conditions for the variations in frequency, 

delay, and threshold voltage, followed by collation of data to prognosticate FPGA 

health. 

1.2.2.3 FPGA Security Scheme 

Design and implementation of an FPGA Security Scheme capable of detecting a 

hardware Trojan and providing effective mitigation. It comprises investigation and 

measurement of the degradation/ageing impact of Negative Bias Temperature 

Instability (NBTI) on the target FPGA (resulting in threshold voltage shifts) by 

conducting highly accelerated stress tests in a controlled environment. Based on the 

acquired results and collated data, design and implement Threshold Voltage Shift-

triggered HT inside the target FPGA for the payload and detection analysis (observing 

threshold voltage shifts, and corresponding frequency degradation and delays), 

followed by detailed data analytics to build HT-infected FPGA profile. In addition, the 

hardware Trojan mitigation scheme would form an integral part of this scheme. 

1.2.2.4 FPGA Health Estimation  

Develop FPGA health estimation/prognostics method using Kernel-based machine 

learning technique. The validated data from the healthy and HT-infected FPGA 

profiling experiments will be used to evaluate the method – resulting in the culmination 

of the ‘Design for Prognostics and Security’. 

1.3 Research Methodology 

The overall research methodology is constructed around the research objectives.  The 

quantitative research methodology has been adopted and is augmented with the 

‘Design of Experiment’ (DoE) approach for the experimentation phases, followed by 

the statistical analysis of the validated data. Quality assurance of the project is 

achieved by ensuring the correctness of the  processes developed to conduct 

design and implementation tests, the collation of experimental data and ‘a posteriori’ 

analysis.  

The details of research methodology are appended below. In addition, the research 

methodology process flow is given in Figure 1-1 for a quick overview. 
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1.3.1 Phase-1 

This phase marked the beginning of the research process with the building up of the 

context of research on ‘Reliability & Prognostics in FPGAs’ and ‘Hardware Security in 

FPGAs’ through literature review. It was aimed at understanding the existing research 

made to date in the aforementioned areas and excavating gaps that can be worked 

upon for an intelligible contribution and improvement in the field of FPGA prognostics 

and health management coupled with security. The main deliverables of this phase 

were the ‘Research Gaps’ and the high-level ‘Integrated FPGA Health Management 
(IFHM)’ framework.  

1.3.2 Phase-2 

The research gaps from phase-1 were analysed to develop the requirements for 

designing and outlining requisite experiments. This phase consisted of two sub-

phases. In the first sub-phase, the functional and operational architectures for the 

series of experiments, required to develop ‘Design for Prognostics and Security in 

FPGAs’, were defined. It included the software and hardware components, their 

interfacing and optimization to ensure the development of an efficient and effective 

experimental set-up and test rig. The second sub-phase related to the design and 

Figure 1-1 Research Methodology Process Flow Diagram. 
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implementation of a digital sensor inside the target FPGA, followed by its simulated 

and real-time testing and characterisation. The main deliverable of this phase was 

‘FREquency Degradation Detection and Measurement  Sensor – FRED’.     

1.3.3 Phase-3 

This phase was aimed at designing and implementing FPGA Security Scheme. It 

consisted of the design and implementation of the Threshold Voltage Triggered 

hardware Trojan in the target FPGA, improving the FRED sensor design for accuracy 

and to enable detection of shifts in threshold voltage due to NBTI mechanism, building 

HT-mitigation sub-scheme, and eventually subjecting it to ‘Thermal and Power 

Cycling’ under pre-defined stress test conditions. The main deliverable of this phase 

was the ‘FPGA Security Scheme’. 

1.3.4 Phase-4   

Kernel-based Machine Learning method was studied and evaluated for 

prognosticating FPGA health in this phase. Accordingly, the method was developed 

and validated against FPGA fault dictionary. The main deliverable of this phase was 

the ‘FPGA Health Estimation/Prognostics’.   

1.4 Organisation of Thesis 

This thesis is organised into seven chapters in the ‘Paper-Format’ and not as a 

‘Monograph Format’ thesis. Accordingly, the papers have been reformatted into 

chapters with minor changes to maintain coherence and ensure format consistency. 

The thesis disposition is shown in Figure 1-2. A brief overview of the remaining 

chapters is given as follows: 

1.4.1 Chapter 2 

This chapter is the outcome of ‘Objective 1’ and it delineates the integrated approach 

to prognostics and security in FPGAs by putting forth an ‘Integrated FPGA Health 
Management (IFHM)’ framework. The architecture of a modern FPGA is explained 

inter alia its commercial and industrial significance. The chapter draws the canvas of 

the extant and the future technological revolution with FPGAs at the heart of it. Most 

significantly, it excavates the FPGA reliability issues, vulnerabilities, threats, and 

several counteractive research efforts made in the realms of FPGA reliability, 
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prognostics, and security to enhance its dependability and build trust. A high-level 

framework, called IFHM is finally presented that provides guidance on managing 

prognostics and security in FPGAs as a composite entity for their security and 

reliability hardening.  

This chapter is the reformatted version of the paper under submission to ‘IEEE 
Transactions on Device and Materials Reliability’. 

1.4.2 Chapter 3 

This chapter highlights the integrated circuit (IC) level threats with an emphasis on 

hardware Trojans that pose a significant threat to computational systems employing 

FPGAs, Systems-on-Chip (SoC) or Network-on-Chip (NoC). It describes the hardware 

Trojan phenomenon, its taxonomy, and gives a critical analysis of various hardware 

Trojan countermeasures. 

This chapter is the reformatted version of the conference paper published in 

‘Advances in Manufacturing Technology XXXII – 2018’.  

Figure 1-2 Thesis Organisation – Disposition of Chapters. 
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1.4.3 Chapter 4 

This chapter is the outcome of ‘Objective 2’. It provides a deep insight into the current 

research on capturing delay variability in VLSI circuits, including FPGAs. The design 

and implementation of the FREquency Degradation detection and measurement 

sensor in a 28 nm process technology is elaborated. In addition, the simulation and 

real-time experimentation alongwith results and the proposed sensor’s performance 

evaluation are presented.  

This chapter is the reformatted version of the paper under submission to Sensors 

journal. 

1.4.4 Chapter 5 

This chapter is the outcome of ‘Objective 3’. It presents a comprehensive FPGA 

security scheme, comprising novel elements of hardware Trojan infection, detection, 

and mitigation, to protect FPGA applications against the hardware Trojan. Built around 

the threat model of a naval warship’s integrated self-protection system (ISPS), this 

chapter proposes a threshold voltage-triggered hardware Trojan that operates in a 

threshold voltage region and remains stealthy with a very low area overhead. It 

delineates the hardware Trojan detection sub-scheme comprising a unique lightweight 

threshold voltage-aware sensor. An online transistor dynamic scaling (OTDS) to 

mitigate the impact of hardware Trojan is also presented as a hardware Trojan 

Mitigation sub-scheme.  

This chapter is a reformatted version of the paper published in IEEE Access journal.  

1.4.5 Chapter 6 

This chapter is the outcome of ‘Objective 4’. It proposes an FPGA health estimation 

method that is developed using a unique kernel-based machine-learning approach. 

More specifically, this chapter focuses on estimating the health of an FPGA that is 

degraded as a result of NBTI initiated by hardware Trojans. A stochastic filtering 

optimization algorithm for accurate hyperparameter selection is also proposed to help 

improve the overall FPGA health estimation/prognostics accuracy. The chapter later 

presents the evaluation results of the developed method and the overall accuracy.  
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This chapter is a reformatted version of the paper under submission to 

Microelectronics Reliability journal.  

1.5 List of Published/Submitted Work 

1.5.1 Journal Publication 

S. Aslam, I. K. Jennions, M. Samie, S. Perinpanayagam and Y. Fang, "Ingress of 

Threshold Voltage-Triggered Hardware Trojan in the Modern FPGA Fabric–Detection 

Methodology and Mitigation," in IEEE Access, vol. 8, pp. 31371-31397, 2020. 

1.5.2 Conference Publication 

S. Aslam, M. Samie, I. Jennions; “Hardware Trojans and Smart Manufacturing – A 

Hardware Security Perspective”, Advances in Manufacturing Technology XXXII: 

proceedings of the 16th International Conference on Manufacturing Research, 

University of Skövde, Sweden , 11–13 September 2018. (DOI: 10.3233/978-1-61499-

902-7-305). 

1.5.3 Virtual Conference Presentation 

J. Buu-Sao, M. Samie, S. Aslam, et. al., "IoT Security – Hardware Perspective”, 

December 2018, the IoT Day Slam 2018, VIRTUAL   Internet of Things Conference: 

https://iotslam.com/session/iot-security-hardware-perspective/. 

1.5.4 Under Peer Review for Journal Publication 

S. Aslam, I. Jennions, M. Samie, S. Perinpanayagam, : " Reliability, Security, and 

Prognostics in FPGAs – An Integrated Approach". to: IEEE Transactions on Device 
and Materials Reliability (under peer review) 

S. Aslam, I. Jennions, M. Samie, S. Perinpanayagam, : "FREquency Degradation 

(FRED) Detection and Measurement Sensor for Reliable and Secure FPGAs”. to: 
Sensors (under peer review) 

 S. Aslam, I. Jennions, M. Samie, S. Perinpanayagam, : "FPGA Health Estimation 

Using Kernel Learning Approach". to: Microelectronics Reliability (under peer 
review) 
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2 UNIFIED FRAMEWORK FOR HEALTH AND SECURITY OF  
FPGAs 

This chapter presents an integrated (unified) approach to prognostics and security in 

FPGAs by putting forth an ‘Integrated FPGA Health Management (IFHM)’ 
framework. It begins with a succinct introduction to the architecture of a modern FPGA, 

highlights its commercial and industrial significance, and draws the canvas of the 

extant and the future technological revolution with FPGAs at the heart of it. Sections 

2 and 3 excavate the FPGA reliability issues, vulnerabilities, threats, and several 

counteractive research efforts made in the realms of FPGA reliability, prognostics, and 

security to enhance its dependability and build trust. A high-level unified framework, 

called IFHM is then presented in Section-4 that provides guidance on managing 

prognostics and security in FPGAs as a composite entity for their security and 

reliability hardening. The conclusion summarises this chapter and briefly outlines the 

next stage of work. Figure 2-1 depicts the arrangement of this chapter. The main 

contribution of this chapter besides propounding IFHM framework includes the incisive 

and critical evaluation of FPGAs’ security and reliability realms to uncover the 

subtleties of this reconfigurable integrated circuit. It is a unique effort, not endeavoured 

previously. 

Figure 2-1 The Disposition of Chapter 2. 
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2.1 Introduction 

From simple Bluetooth devices to the NASA’s Orion spacecraft, FPGAs have become 

the backbone of embedded system design. According to [1], the main driving factors 

for the exponential growth of the FPGA market are the increasing demand for 

advanced compute acceleration, autonomous and AI-based systems, the evolution of 

connectivity network to IoT, institutionalisation of cyber-physical systems (CPS), and 

the reduction in time-to-market. Through the merger of software and hardware 

properties, FPGAs provide an effective trade-off between the programmability of CPUs 

and the performance of application-specific hardware. Even though this flexibility helps 

developers to speedily prototype and deploy embedded systems with performance 

closer to Application Specific ICs, the programmability feature could be exploited to 

eavesdrop on encrypted communication, disrupt critical functionality, or even incur 

physical damage to the chip. Designing and developing systems that are both flexible 

and reliable, yet fundamentally sound from a security point of view, is an extraordinarily 

challenging venture for both researchers and practitioners. Quite often, the security 

facets of a reconfigurable entity, such as an FPGA, are not catered for until far too late 

in the design process, resulting in systems that are not reliable and hence, protected 

only by their obscurity.  

2.1.1 The Increased Reliance on FPGAs 

FPGAs are a vital element of many mission-critical systems, silently controlling and 

monitoring everything from wireless access points (WAP) to commercial face 

recognition systems. According to [1], the FPGA market is expected to reach 117.97 

billion US dollars by 2026 growing at the compound annual growth rate (CAGR) of 

7.2% during the forecast 2017-2026. This huge surge explains the growing 

significance of these massively parallel architectures.   

As opposed to the sequential execution enabled by a general-purpose processor, 

modern FPGAs can carry out thousands of multiplies and adds each cycle, providing 

them the computational power to host numerous diverse logic modules 

simultaneously. For instance, an FPGA-hosted Wireless Access Point (WAP) 

application may use a packet scheduler with signal processing core and a protocol 

processing engine, all sharing the same FPGA primitives and silicon [2]. 
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By virtue of this unique combination of computation power and flexibility, FPGAs are 

being regarded as the workhorses behind a wide variety of performance critical 

embedded systems [3]. They are capable of achieving high speedups and 

performance gain (100x) per unit of area as compared to a similar microprocessor [4]. 

High-end satellite systems, network-centric warfare equipment, intrusion detection 

systems, SMART grid, Industrial IoT devices, aircraft and avionics, and even the Mars 

Rover have great dependence on FPGAs to undertake their respective functional 

tasks. These devices help implement optimised circuitry for almost everything from 

encryption to FFTs, or even entire customized multi-processor systems by leveraging 

their bit-level reconfigurability. A gamut of such different domains leveraging FPGAs 

is shown in Figure 2-2. In order to understand this growing reliance on FPGAs, we 

need to examine the internals of the FPGA and its overall architecture. 

Figure 2-2  A Gamut of FPGA Applications. 
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2.1.2 The Internals of FPGA  

An FPGA is a mesh of programmable logic gates embedded in a flexible interconnect, 

as shown in Figure 2-3. These logic gates are implemented by configuring look-up-

tables (LUTs) for computational applications, flip-flops for managing timing across 

different applications, switching interconnects for laying routing network, and I/O 

blocks (IOB) for moving data/signal inside and outside of the FPGA. The logic gates 

are, basically, the structures with respective truth tables that enable the mapping of 

any circuit to an FPGA through LUT reconfiguration and by arranging bits in the 

switchboxes, which then specify the wires’ connections through pass transistors. It is 

pertinent to mention here that the LUT and switchbox are programmed as defined by 

the configuration bitstream. The security of configuration bitstream, therefore, takes 

precedence and accordingly three different FPGA structures are commonly used, as 

shown in Figure 2-4. The ones that use EPROM/EEPROM or antifuse are write-once 

Figure 2-3  An architecture of a typical FPGA. The Configuration Logic Blocks 
(CLBs) are islands with a mesh of programmable interconnects around them. 
Each CLB houses a Lookup Table (LUT) that can be configured to implement 
any logic gate.  
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technologies. On the other hand, the re-programmable structures are the Static RAM 

(SRAM) FPGAs. While a number of architectures make use of antifuse type, Static 
RAM (SRAM) architecture is the most preferred since it allows for reconfiguration – 

the essence of reconfigurable computing.  

The SRAM programming bits are spread across the entire FPGA and stored locally 

with the LUTs and switchable interconnects. This increases their vulnerability to 
probable performance degradations and reliability-downgrade due to undesired 
distributed hardware attacks. 

2.1.2.1 SRAM FPGA Specifics 

Generally, a combination of two inverters and pass transistors is used to develop the 

Static RAM (SRAM) cells (see Figure 2-3). FPGAs based on SRAM cells are volatile 

in nature, meaning that as long as the SRAM cell is powered, the data remains stored 

and can be, therefore, read from the cell. However, as soon as there is no power, 

SRAM cell is unable to retain its value [5]. This feature offers some security and makes 

it difficult for the intruder to retrieve the configuration bitstream, thereby helps retain 

the data integrity. 

In SRAM FPGAs, LUTs make optimum use of SRAM cells as programming bits. 

Healthy condition of LUTs is, therefore, vital to ensure unhindered operation and 

Figure 2-4  Three Types of FPGAs – SRAM, FLASH, and ANTI-FUSE. 
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optimum functioning of the implemented circuit patterns. Also, as seen in Figure 2-3, 

the LUTs in addition to flip flops, and multiplexers form an integral part of the larger 

regions, known as configurable logic blocks (CLBs). To connect the configuration and 

computational blocks together, there is a large routing channel, which is a set of pass 

transistors, providing programmable connections to and out from the CLBs (see Figure 

2-5). The point-to-point connections between neighbouring routing channels 

containing longlines, on the other hand, are enabled through switchbox network. This 

complex routing architecture contributes to both the delays and area constraints in the 

FPGA, if not optimised. It is estimated that 80-90% of the typical FPGA area is 

occupied by the interconnect, facilitating both the physical wires and the configuration 

bits that link the wires together for any arbitrary interconnection network [6]. Despite 
the criticality of the interconnect for configurability, it also poses complications 
in building a secure and reliable FPGA infrastructure.  

Keeping these FPGA architectural sensitivities in perspective, we delve the realms of 

reliability and security to build an integrated FPGA health management framework, in 

the ensuing sections. 

2.2  Realm of Reliability in FPGAs 

Reliability in FPGAs is their performance to specification over time in response to 

varied, but specified, environmental stress conditions. Hitherto, advanced 

manufacturing techniques have continued to maintain FPGA reliability at a level that 

Figure 2-5  FPGA Interconnect Architecture. Programmable 
connections to and out from the CLBs [6].  
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is suitable for a large majority of applications. The semiconductor industry, based on 

ITRS, contemplates that the trade-off needs to remain at this level and continue to 

develop ICs with a failure rate of 50-2000 FITs (One Failure in Time equals to one 

failure in 109 hours) [7]. This means improving the reliability (in case of stochastic 

faults) of a transistor by a factor of five for technology nodes between 32 nm and 11 

nm [8]. This may be a substantial challenge for a technology that is also faced with the 

manufacturing inadequacies in terms of process variation and yield complications.  

The advanced techniques related to strained silicon and high- k gate dielectrics also 

pose considerable challenges for the suitable characterisation of device reliability. It, 

therefore, warrants implementation of innovative methods to realise continued scaling 

advantages and further enhance performance-efficiency. The deployment of multiple 

gates along with the new configurations of interconnect is one such example. 

However, the introduction of new materials and altering the structure of circuit 

components will result in substantial changes to the processes related to degradation. 

Ultimately, this may result in increased uncertainty about the reliability-performance 

relationship of devices.  

FPGA reliability is envisaged to follow a downward trend, provided the existing thermal 

and power management mechanisms are optimised accordingly [9, 10, 11]. For 

instance, a considerable increase in the current density occurs with the decrease in 

the dimensions of the electron paths. This results in electromigration in interconnects 

– a particular concern. Voltages, though falling, are not matching the decrease in 

feature dimensions, thus generating high electric field strength - a dominant factor 

of acceleration in a number of degradation processes. Similarly, an increase in the 

threshold voltage is an indicator of FPGA ageing and the effect of this will enhance 

with shrunk supply voltage margins. Moreover, when it comes to the localised power 

dissipation, it is no different. The devices will experience increased levels of power 

dissipation due to higher circuit density. This may get compounded by a reduction in 

thermal conductivity, thereby causing higher junction temperatures (a key accelerating 

factor). In a nutshell, these wide-ranging challenges have the capacity to impact FPGA 

reliability in a number of ways. These could result in transient faults, such as the 

radiation-induced SEUs (Single Event Upsets), as well as performance degradation 

with transistor ageing [12].  
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2.2.1 Degradation Mechanisms and Transistor Ageing 

This subsection provides a concise overview of key degradation mechanisms that 

affect the reliability of FPGA in terms of CMOS transistors’ ageing – a pressing  

reliability issue facing the VLSI devices at the nano-scale. The CMOS transistors are 

the underlying nano-architectures upon which the FPGA fabric is built. It is, therefore, 

prudent to investigate their performance, which ultimately helps adjudge FPGA health 

in terms of reliability. 

Primarily, four degradation mechanisms are predominantly relevant to VLSI devices 

including FPGAs. These include: 1) Time-Dependent Dielectric Breakdown (TDDB), 

2) Hot Carrier Injection (HCI), 3) Bias Temperature Instability (BTI), 4) and 

Electromigration (EM). In addition to these, the latch-up and soft-error generation are 

significant with respect to the environmental impact on the devices. These 

mechanisms are illustrated in Figure 2-6.  

2.2.1.1 Time Dependent Dielectric Breakdown (TDDB) 

TDDB mechanism is the formation of a conductive path via the gate dielectric due to 

the accumulation of trapped charges, or defects. These trapped charges result due to 

the strong gate-bias voltage. As these defects weaken the dielectric at any explicit 

Figure 2-6  The Degradation Mechanisms impacting the FPGA reliability [13]. 
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location, a considerable amount of leakage current (IG ) starts flowing with rapid 

increase in magnitude due to the reinforcement of the path [13]. 

2.2.1.1.1 The Consequences 

The consequential impact of TDDB is variable in nature due to the random variation 

of the breakdown path in conductivity and its physical location. When the breakdown 

condition is of mild nature, the increased leakage current results in increased power 

consumption and reduced switching speed. As the breakdown becomes severe in 

nature, higher power consumption is observed, which eventually prevents the 

transistor from switching, completely [14]. The main drivers of TDDB are the high 

temperature, thin oxide structures, and high electric fields and must be monitored for 

abnormalities. 

2.2.1.2 Hot Carrier Injection  

This mechanism also known as the hot-carrier or hot-electron effect, is also based on 

defect accumulation process. However, it occurs in the interface region between the 

channel and the gate dielectric. The hot carriers in the channel with energies high 

enough to escape the potential barrier of the gate dielectric induce defects at the 

interface. When accelerated by the gate field, a series of collisions take place with the 

ions present in the interface region. This generates defects, which in turn, lead to an 

increase in threshold voltage and a decrease in the drain current or carrier mobility, 

resultantly slowing down the transistor switching [15]. This mechanism is particularly 

dynamic in CMOS, meaning it occurs when the transistors switch. The main factors 

that aggravate HCI are the high carrier velocities and shorter channel length. 

2.2.1.3 Bias Temperature Instability (BTI) 

The BTI phenomenon manifests itself as a shift in the threshold voltage of MOSFETs 

with high temperature and negative/positive bias [16]. This causes switching delays in 

the transistor and consequently, as the delay of functional paths transcends the timing 

requirements, we can observe the signs of circuits’ fatigue and hence, the ultimate 

failure. This can significantly reduce the operational lifetime of FPGA devices, thereby 

downgrading their reliability. 

2.2.1.3.1 The Factor of High-k Dielectrics in 45nm and below FPGA technologies 



35 

This research work, as mentioned in Section 1.2.2.2, is focused on 28 nm process 

technology which is mainly made up of high-k dielectric metal gate transistors as 

opposed to low-k dielectric metal or polysilicon for > 48 nm process technologies [17]. 

In order to better understand the phenomena of BTI in a 28 nm process technology , 

it is important to first know as to what is high-k dielectric and how it helps achieve 

increased power efficiency and low leakage on one hand and why, on the other hand, 

BTI is becoming a critical reliability challenge in high-k dielectric metal gate transistors.  

Essentially, dielectric is an insulating material that does not conduct electricity well, if 

at all. The measure of dielectric is given by dielectric constant ‘k’, which is a parameter 

that defines the ability of a material to store energy or charges. Materials have different 

dielectric constants at room temperatures (e.g. Air = 1, Silicon dioxide = 3.9, 

Aluminium oxide = 10.1, and Hafnium oxide = 25 [15]). Any dielectric with a ‘k’ value 

less than the conventionally used SiO2 (k = 3.9) is termed as a low-k dielectric. 

Whereas, dielectric with ‘k’ greater than that of silicon nitride (k = 7) is regarded as a 

high-k dielectric [18]. A low dielectric constant of a material means that the material 

has a low ability to polarize and hold a charge. A high dielectric material is good at 

holding a charge and is therefore the preferred dielectric for CMOS construction.  

Although, high-k dielectric  leakage through the gate (gate oxide) is reduced by more 

than a factor of 10, the other significant leak, called source-to-drain or subthreshold 

leakage is becoming a source of concern [19]. It’s a trickle of current seen even when 

the transistor is intended to be in the “off” state. Making transistors smaller has also 

meant steadily lowering the amount of voltage needed to turn them on, the threshold 

voltage. Unfortunately, steadily lowering the threshold voltage lets more current slip 

through. For many years, each new generation of transistor would increase drive 

current (and improve performance) by about 30 percent but would pay the price of 

about a threefold increase in subthreshold leakage [19]. Leakage currents have 

reached levels high enough to be a noticeable portion of IC’s power consumption. 

But a transistor can be designed to operate by adjusting the channel length or 

adjusting the threshold voltage [19]. A shorter channel leaks more but allows for a 

higher drive current. A higher threshold voltage pinches off the leak but also throttles 

the drive current. Adjusting the threshold voltage is where the high-k dielectric comes 

into play. A thicker dielectric reduces the gate’s ability to open a conductive channel 
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between the source and the drain, increasing the threshold voltage. A thinner dielectric 

layer has the opposite effect. Compared with the previous 65-nm transistors, 45-nm 

and below high-k plus metal gate transistors provide either a 25 percent increase in 

drive current at the same subthreshold leakage or more than a fivefold reduction in 

leakage at the same drive current, or anywhere between those values [19].  

However, the problem lies in the low thermal conductivity of high-k dielectric materials 

that leads to self-induced thermal runaway and breakdown [20]. As a result, this 

influences BTI mechanism, which tends to be equally pronounced for 28 nm process 

technology as it is for devices greater than 45 nm. 

2.2.1.3.2 NBTI and PBTI 

BTI mechanism comprises two different degradation phenomena namely, negative 

bias temperature instability – NBTI and positive bias temperature instability – PBTI. 

NBTI impacts the PMOS transistors whereas PBTI affects the NMOS transistors. In 

technology nodes above 45nm, the impact of PBTI was insignificant as compared to 

NBTI. However, with the development and introduction of high-k/metal gates 

transistors in sub 45nm process nodes, the PBTI phenomenon has become equally 

Figure 2-7  Shift in Threshold Voltage ∆Vth with high-K/Metal 

gates is becoming significant [19]. 
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significant for NMOS transistors as NBTI for PMOS transistors [21] (see Figure 2-7). 

It is, therefore, prudent to consider the combined effect of both the BTI components 

whilst evaluating the device reliability.  

NBTI (PBTI) comprises two sequential phases – the Stress phase, during which the 

gate-source voltage is reversely (positively) biased i.e. Vgs = −(+)Vdd, and the 

Relaxation phase where Vgs = 0. At the initiation of the stress phase (i.e., when the 

transistor is ON, Vgs = −VDD for PMOS under NBTI and Vgs = VDD for NMOS under 

PBTI), few interface traps are generated at the interface of channel and gate oxide 

[22]. It is at this instance of time, the generated interface traps result in increasing the 

magnitude of threshold voltage (Vth). During the relaxation phase, when Vgs = 0, a 

small number of the interface traps are annealed. This leads to a decrease in the 

magnitude of transistor Vth. It is worth noting that this recovery cannot fully 

compensate the effect of stress phase. As a result, the overall impact of BTI is a rise 

in the magnitude of threshold voltage over the time [23] (see Figure 2-8). 

2.2.2 FPGA Manufacturers’ Perspective  

It is important to be aware of the FPGA reliability practices employed by manufacturers 

to build an understanding of the various test methodologies adopted in their 

qualification and eventually identify room for improvement. This section, therefore, 

gives a concise account of different reliability program tests the FPGA manufacturers 

are practising. 

Figure 2-8  BTI-induced variations in Vth  during the stress and recovery period. 
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2.2.2.1 Post-Manufacturing Reliability Test Regime 

Generally, manufacturers have a product reliability goal for long term failure rate. This 

implies a failure rate of <200 FIT at 55⁰C use condition and the product meeting lifetime 

goal of 100,000 hours of useful life. The reliability qualification and monitoring 

requirements, as given in Table-2-1, provide an overview of different types of post-

FPGA manufacturing tests conducted.  

It is noted that all these reliability tests are conducted less of security considerations, 

which if integrated with these requirements, would provide a more trustable product. 

This, however, does not imply that manufacturers do not incorporate security features 

in these state-of-the-art devices.   

2.2.2.1.1 Life Test Methodology 

The life-test methodology is implemented to accelerate failure mechanisms, including 

the wear-out degradation, as mentioned in Section 2.2.1. According to the 

manufacturers’ reliability qualification and testing programs [24], [25], the FPGA life-

test is carried out keeping the junction temperature at 125°C and the Vcc power supply 

is amplified between 10-20% (kept constant for a specific test  duration). However, in 

Table 2-1 Portfolio of post-manufacturing reliability tests conducted by FPGA 
Manufacturers [24-25]. 
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certain cases where there is a risk of thermal runaway (a  process, when accelerated 

by increased temperature, releases energy that causes the temperature to rise further 

to a point where it becomes self-sustaining) due to high junction temperature at 125°C, 

it is recommended practice to use a minimum junction temperature of 110°C. These 

tests are carried out using the life-test boards, installed with special high temperature 

sockets that help maintain lead integrity [24]. 

It is pertinent to mention that each device is prior-tested using production test 

equipment to data sheet specifications before the exposure to different stress 

conditions. All readouts are also performed on the same production test equipment in 

accordance with the parameters, defined in respective data sheets. A device is 

classified as a failure if it is unable to pass the specifications laid out in the data sheet.  

2.2.2.1.2 Failure Rate Prediction 

In order to attain an accurate and precise measurement and projection of an FPGA 

failure rate, some manufacturers assess each expected failure mechanism 

individually. The failure rate prediction process for each mechanism begins with the 

calculation of acceleration by employing an appropriate model and using the suitable 

constants. This is followed by determining the exponential distribution of time to failure 

(TTF) for each mechanism and then adding up individual failure rates to calculate the 

device total failure rate. Accordingly, the cumulative distribution function, Fi(t), for each 

mechanism is determined by taking their product as Π Fi(t) for i=1…n. As the 

distribution of time to failure for each mechanism is assumed to be exponential, the 

individual failure rates can be combined as Σλi, which is basically the representation 

of the geometric mean.  

We have also observed that some other manufacturers only consider an average 

activation energy (usually Ea=0.7) and then apply an Arrhenius model to the High-

Temperature Operating Life (HTOL) test results. They do not take into consideration 

the individual failure mechanisms. Such practices do not guarantee the optimum 

performance of devices under challenging environments as they have not been tested 

for different degradation mechanisms. Although such tests cost less from both the 

manufacturing and time viewpoint, they may exhibit low MTBF, lower customer 

confidence and eventually cost higher during operational lifecycle.  
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Generally, the manufacturers determine the failure rates on the product family basis 

(for instance, Spartan-6, Virtex-7 etc.). So, it is not possible to define a standardised 

failure rate for all the FPGA devices collectively, which is quite realistic. However, it is 

possible to have an average range of failure rate values to assess their reliability. With 

respect to the device hours, it is a common practice to convert the hours accumulated 

during the stress conditions to normal use conditions by plugging in the acceleration 

factors. Whereas, the equivalent hours are determined under a typical use condition 

with nominal Vcc at 55°C still-air ambient or 70°C junction temperatures.  

The failure rates are expressed as FIT or Failures In Time, where one FIT is equivalent 

to one failure in one billion or 109 device-hours [26]. Mathematically,  

𝐹𝐹𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  𝑿𝑿2 / 2 𝑥𝑥 𝑨𝑨.𝑭𝑭. 𝑥𝑥 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓/ℎ𝑟𝑟)                    (2-1) 

where, X is the number of failures, A.F is the acceleration factor – product of thermal 

and voltage acceleration, whereas Device hours is given as:  

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 =  𝜮𝜮 (ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑖𝑖𝑖𝑖 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 − 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) 𝑥𝑥 (𝑁𝑁𝑁𝑁. 𝑜𝑜𝑜𝑜 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)         (2-2) 

The JESD85 standard is most commonly employed for FIT rate calculation by most of 

the manufacturers. A Chi-squared distribution, for instance, is used to predict a 60% 

confidence level derived usually from the small number of failures and limited sample 

size of the tested devices. 

2.2.3 FPGA Degradation/Reliability Modelling – Researchers’ Perspective 

This sub-section takes into account the various FPGA degradation and reliability 

models that have been developed and proposed to predict the failure rate in FPGAs 

due to the impact of different stochastic and systematic variations on their primitives’ 

performance.  

As a first example, researchers in [27] have characterised the delay degradation of 

LUTs using the duty cycle and frequency of stress signal as the main driving factors 

under the influence of Hot Carrier Injection (HCI). They have confirmed the 

dependency of HCI ageing mechanism on the frequency of input signals through 

transient simulations at the transistor level. However, their model lacks the 

measurements related to transistors’ ageing parameters (delays and threshold 



41 

voltage) and hence does not provide substantial evidence of reliability prediction or 

health assessment.  

Edward et al [8], have studied the impact on FPGA reliability by analysing the changes 

that FPGAs experience as they age, and the varying factors that influence their 

performance. They concluded that the FPGA interconnects are less affected by 

degradation than the LUTs. But a lower-level approach is required when the design of 

basic resources – the N/PFETs – is to be considered to draw firm conclusions about 

degradation behaviour at the FPGA fabric level (LUTs, CLBs, Registers, Interconnects 

etc.) and an accurate assessment of reliability that can help estimate the overall 

health.  

Similarly, the researchers in [28] have presented a detailed analysis of the impact of 

ageing on FPGA routing resources and data integrity of FPGA configuration cells. 

According to their study, the ageing of SRAM cells does not have any noticeable 

impact on the performance of FPGA. However, it does not consider the overall health 

assessment approach. 

2.2.3.1 Fault-Tolerance and Self-healing – Sources of Reliability Enhancement 

Interestingly, the researchers in [29] and [30] have proposed bio-inspired models that 

are not only aimed at building tolerance in reconfigurable devices against transient 

faults and soft errors, but also provide viable ideas to construct schemes like self-

defence against hardware threats and self-repair strategies against hardware attacks. 

For instance, the optimal partitioning of cells to settle the optimal number of active and 

spare molecules gives a valuable reliability analysis. Also, it provides a design for 

dependability which considers the reliability as its essential attribute. According to [29], 

the reliability of a system is the consequence of the reliability figures of all its 

subsystems. This gives an inkling of the concept of an integrated approach towards 

FPGA health management.  

Another effort relates to the self-healing electronic systems, inspired by eucaryotes 

and procaryotes [30]. The author in this study has talked about the equivalence of 

DNA fragments to memory cells. These fragments are representative of the 

characteristics and various functions of the cells. As a result, the faulty genes are 

extractable from the neighbouring cells and then based upon the correlation 

mechanisms, the damaged cells self-heal and re-establish their original states. The 
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enormity of this self-healing system is traceable to its hierarchical nature. Right from 

the logic blocks corresponding to the biological molecules to an electronic array 

mirroring bacterial biofilms and a perfect likeness of a bus to cytoskeleton, the self-

healing scheme presents a viable fault-tolerance and defence mechanism.  

These two propositions, based on biological systems, are a good example of the 

efficient defence, repair, and heal mechanisms that can bolster FPGA reliability. 

However, they do not consider connecting the prognostics/reliability assessment 

approach with the security dimension.  

2.2.4 Some Analysis 

A critical analysis of the above discussion uncovers and reveals some key points. 

Firstly, a keen assessment of the degree of deviation or degradation from an 

anticipated normal operating condition provides data that can be carefully investigated 

to estimate instantaneous health condition of electronic/semiconductor devices. 

Secondly, it can be instrumental in providing advance warning of failures and hence 

curtailing unscheduled maintenance, stretching maintenance cycles, and maintaining 

effectiveness through timely repair and maintenance actions. Finally, adding a 

dimension of prognostics/health estimation would help cut the life cycle cost of 

equipment by reducing inspection costs, disruptions as well as the inventory. 

2.2.5 Why Prognostics? 

According to [31], prognostics is a process that helps determine the component/ 

system’s remaining useful life by predicting the state of fault under the given extent of 

degradation, the load history, and the projected future operational and environmental 

circumstances to estimate the time at which the component/system is adjudged as 

unreliable. Whereas, health management is related to the decision-making process, 

which helps implement actions based on the estimate of the state of health derived 

from health monitoring and the probable future usage of the system.  

Besides the reliability and degradation modelling and assessments (mentioned 

above), it is very vital to prognosticate FPGAs’ health, especially with their progressive 

evolution into system-on-chip (SoC) and adaptive compute acceleration platforms 

(ACAPs). A simple reliability analysis and degradation modelling will not provide a 

holistic account of the FPGA health, which implies a direct or an indirect impact on the 
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performance of the system and inappropriate health management. We have discussed 

the methods and techniques related to the degradation and reliability modelling in 

previous paragraphs. It clearly provides us with various useful methods that can be 

utilized in a composite manner to construct holistic FPGA health and security schemes 

into an integrated FPGA health management framework, as is described in Section 

2.4. 

2.3 Realm of Security in FPGAs 

To assume that hardware implementations are secure in this area of FPGA security, 

is indeed a false belief. Since the majority of attacks come through software, it is then 

assumed that they will only come by this means. While this may be the case for the 

majority, it does not dismiss the fact that hardware attacks are just as exposed 

(exemplified by the recent Meltdown and Spectre cases [32], [33]). Abstraction levels 

in a complex design entail knowing the security of each step – thereof, in order to 

create higher abstraction levels, one must assume that the lower ones are secure in 

their operation. If the digital design of the system is compromised then it cannot 

completely be regarded as a secure system, disabling the overall formation of a secure 

implementation. Therefore, in order to assess the reliability of a device and its level of 

support towards a system, it is necessary to assess security levels in FPGAs (in 

particular, SRAM-based volatile FPGAs). These entail the transfer of configuration 

content in FPGAs, utilising FPGAs for security purposes, and using them as an 

adversarial tool.  

2.3.1 FPGA Life Cycle and A Network of Hardware Threats 

Both hardware and software attacks are included in the ways in which a computing 

device can be exploited. The exploitation ranges from being able to steal confidential 

information, to enabling systems to perform devious activities, leading to a complete 

destruction of the system [34]. The power and cost-effectiveness of reconfigurable 

hardware has had a conflicting effect, in that, although it has become more attractive 

to designers, it has in turn, made the system more vulnerable to attacks [35]. This 

section looks at the gamut of hardware security that has been ignored (until very 

recently). There could be potential attacks that aim at making changes to the 

hardware, spotting sensitive information using side channels, inserting unintended 

applications using the design tools, and stealing intellectual property. Here, we attempt 
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to highlight different aspects of security related to FPGA exposed to a plethora of 

hardware threats and vulnerabilities.  

2.3.1.1 Vulnerabilities in FPGA Lifetime 

FPGA lifetime can be divided into manufacturing, application development and 

deployment phases, as shown in Figure 2-9, to find vulnerabilities and gauge the 

intrusion of security issues at different levels . 

2.3.1.1.1 Manufacturing Phase 

Every 12 to 18 months, Altera and Xilinx, the leading reconfigurable hardware 

producers, have a new product. There is a lack of disclosure when it comes to the 

specifics of the product but reverse engineering that would create invasive physical 

attacks – although a complicated method – makes the possibility to gain specifics 

much more probable [36]. Once obtained from a third-party manufacturer, the FPGA 

companies sell the product to a system developer or partnering company to further the 

Figure 2-9  FPGA Lifecycle – Manufacturing to Application Development to Final 
Deployment. Handled by several sources using a diverse range of design gadgets. 
Every phase of the FPGA lifecycle is prone to security threats that need to be 
collectively addressed to ensure and uphold the device and system reliability [36].  



45 

process to its final stages. A development board, consisting of an FPGA and its 

features of memory, audio, video, etc, is created to be sold further on. Thereof, the 

board is sold to specific industries – medicine and computing to name a few, in order 

that they may customise the product for themselves.  

2.3.1.1.2 Application Development Phase  

The application development phase allows for the FPGA to be integrated into the 

target system and programmed/reconfigured for the intended application. 

Development can take two routes - one of which includes the developer making their 

own platform for their own purposes using the FPGA chip [37] . The other route is that 

of using the development board provided by the third party.  

CAD tools such as electronic system design (ESL) are utilised to translate high level 

language (C/C++, MATLAB, System C) to a register transfer level (RTL) hardware 

description language (HDL). Xilinx AccelDSP and Mathworks HDL Coder are both 

examples of such tools. A logical netlist is then created by means of combining the 

RTL by using tools from EDA companies. In order to program the FPGA, physical 

synthesis tools are necessary as they reconstruct the logical netlist into a bitstream.  

Microcontrollers, signal processing cores and encryption cores are customised high-

level functions that ESL design tools make use of. Each core requires a level of trust, 

with no one core (e.g. from tool vendors) having the same level as the other (e.g. from 

an online repository such as open-cores). It all depends on the source – where the 

core comes from. Intellectual Property (IP) cores can be distributed across the tools – 

distribution is a significant aspect because it makes reverse engineering more 

complicated, particularly when it is specified as a bitstream [38].  

2.3.1.1.3 Deployment Phase 

The point where a reconfigurable hardware is placed into the environment is when it 

reaches its last stage. This occurs when FPGAs are integrated into common devices 

and vehicles, all of which need this system. This system dictates how exposed a 

device is in terms of security – including both physical security (easy access and 

handling) as well as its practical use [39].  
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2.3.1.2 Securing the FPGA Life Cycle 

Security concerns must be tackled from the initial point up to the final one. This is so 

that a greater understanding of the device is gained, in order to assess its flaws 

appropriately. Hence, enabling an effective response against the attacker. The way 

this is done is by considering the purpose of the device and external factors 

surrounding it – such as testing equipment and development tools. 

Moreover, to ensure that the system is reliable for security purposes, a management 

plan outlining proper procedure is necessary. Assessments must test vulnerability and 

strength of the device in order to understand how exposed its security is [40]. In doing 

so, appropriate measures can be taken to ensure that the device is conducting optimal 

performance for its users.  

Pertinent to mention is that the software’s (EDA tools) role comes into play when the 

hardware is being made – this is because the hardware at that stage depends on that 

software, making it necessary for these assessments [41]. From this, the difference 

between an FPGA and a software is considered. The question is: by understanding 

the security problems and assessing how to resolve those problems, can the 

difference be made evident? In the following sections, we attempt to find answers to 

this.  

2.3.2 Nature of Threats and Attacks on FPGAs  

It is worth noting that security being compromised and then reconstructed is a cyclical 

process that remains ongoing. This means that as soon as there are measures put in 

place to strengthen security levels, they tend to be made redundant by the attacker. 

Thereof, prompting stronger, more effective measures to be inputted in the hope that 

another breach does not occur. To best exemplify this occurrence are smartcards. The 

level of security within these evolved overtime – a reaction to the exploitation of its 

initial, unsophisticated design.  

A similar precautionary element can be noted in the development of FPGAs. They 

make up a pivotal part of the security factor in devices, making them more prone to 

attack. Those attacks may include that towards the device that uses the FPGA, the 

FPGA itself, physical attacks, and system-level attacks. 



47 

2.3.2.1 Counterfeiting 

The function of FPGAs is that of a general use, in the sense that if they are made for 

one device, they can be used on others just the same. This essentially implies that 

bitstreams are easy to make copies of and use. The process of making those copies 

itself is quite general – it can be accomplished by a logic analyser and a skilled 

technician. This, however, also means that those copies would be of a lesser quality. 

It runs the risk of being marked as the original of its kind, negatively affecting the 

developer because the fake would be exposed as such easily. In this way, fraud has 

prevailed as an increasing issue where third parties may develop the hardware and 

sell any extra product without the responsibility of paying development costs [42]. That 

being said, this issue is handled by companies by labelling certain production facilities 

as reliable, through ensuring their close scrutiny and supervision. 

Although mislabelling of FPGAs makes reverse engineering more complex, it tends to 

cause distrust amongst the buyer and the distributor because of the uncertainty 

surrounding the product. Smaller FPGA types would be easier to verify but when it 

comes to speed grades, it is more difficult [43]. It may be the case that slower ones be 

marked as faster and sold in that way. Commercial companies may find that vendors 

are more reliable than online buying because there would be no way for them to 

distinguish between a real and faulty package, unless they ran tests on it and obtained 

its results. Moreover, the reluctance of companies to publicise the number of frauds 

they have come across makes it harder to put an accurate figure on these 

occurrences. 

2.3.2.2 Reverse Engineering 

Bitstream reversal is the process of transforming an encoded bitstream into a 

functionally same description of the actual design – a reverse of the process from 

bitstream to HDL or netlist [44]. Furthermore, partial bitstream reversal is the mining 

of data from the bitstream (keys, BRAM/LUT content, or memory cell states) without 

replicating complete functionality. Although legal, reverse engineering is restricted for 

interoperability reasons or detection of breach of patents. If fully reversed, a 

bitstream’s complete design and data could be exposed. This would lead to the data 

being used to make another bitstream, different from the initial one and violation of it 

would be more complicated. Hidden keys would be exposed as well. In the event that 
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the attacker distinguishes the cryptographic algorithm, it would allow partial reversal 

to be of use.  

Cryptographically, the bitstream’s code is not completely concealed but is still 

indeterminate [45]. FPGA vendors tend to keep this information as classified as they 

do for its design and layout. 

The level of difficulty of reverse engineering is determined by the size, how obscure, 

and how complicated the bitstream is. As of yet, there are no reversals of modern 

FPGAs that have proven successful, nor any estimation of cost that is supported by 

data and analysis [43]. 

Bitstream encoding would no longer be depended on though, if reverse engineering 

became a problematic element, despite the repercussions of full reversal still being 

unknown. It is not the best strategy to hide keys in look-up tables and RAMs because 

all it takes is a very basic knowledge of bitstream construction and partial reversal to 

determine the information [46]. 

2.3.2.3 Readback 

Readback is a snapshot of the FPGA’s current state while it is still operating. The 

FPGA sends the snapshot, after being requested to do so. Configuration, look-up 

tables, and memory contents to the host PC, by means of the configuration port are 

all included in that snapshot. This image is not the same as the original bitstream as 

the header, footer, initialization commands, and no-ops are not included. The dynamic 

data in LUTs and BRAMs is also not the same. Readback is efficient in verifying and 

testing FPGAs and allows the design to be corrected as it operates on the FPGA. 

In the case that it is enabled though, an attacker can readback the design, add the 

missing static header and footer and use it in another device. They could then go on 

to re-program the FPGA with a modified version, or reverse engineer it. Active 

“readback difference attack” also occurs [47]. This allows the attacker to observe 

signal changes on an individual clock-cycle basis to evade defence mechanisms.  

An example of a functional core waiting for an enable signal from an authentication 

process can be taken. The input clock’s control being in the hands of the adversary 

would allow him to take a snapshot before the signal is set, clock the design, and then 

proceed with another snapshot. Comparing the snapshots would let the attacker 
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distinguish what needs to be changed to modify the signals which would in turn modify 

the original bitstreams to permanently assert the enable signal, overturning the 

defence [40]. Alternatively, readback as a defence would be able to identify any 

tampering such as when there may be an ionising radiation attack. 

Xilinx provides a less effective bitstream for disabling readback but when bitstream 

encryption is used, multiple, majority-voted, disabling registers activate to prevent 

readback [48]. By using bitstream encryption, lattice devices can also disable 

readback. They can be located by means of invasive attacks, but there is no evidence 

that this has occurred. 

2.3.2.4 Side Channel Attacks 

Side-channel attacks depend on the signals related to internal processes that are 

prone to measurements external to the device and accordingly disclose secret data or 

modes of operation by manipulating the implementation rather than the algorithmic 

construction. Preventing SCA is challenging because of the isolation of internal 

operations of integrated circuits from their environment. The energy they consume and 

release, when interacting with other devices is that of electromagnetic and heat 

radiation types [49].  

There are three types of side-channel attacks and their relevance to FPGAs are 

explained as follows: 

2.3.2.4.1 Power Mapping and Analysis 

By analysing the current consumption patterns of integrated circuits, information about 

specific data can be determined – the most sought after information being the key in 

a cryptographic operation. 

The researchers in [50] introduced two types of power analysis - simple (SPA) and 

differential (DPA). The former allowing the attacker direct search power traces for 

patterns such as algorithmic sequences, conditional branches, multiplication, and 

exponentiation, that allow the inference of key material. While the latter compares 

acquired traces with a statistical power consumption model that targets device and 

specific implementation. Previously acquired knowledge or analysis of the device led 

to the development of this model which is then enhanced by many recorded samples 

of controlled operations, by processing known plaintexts with known keys. The 
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attacker can work out key material even if the implementation details are not explicit – 

it controls single bit changes in the encryption process. 

In an attacker-controlled environment, power analysis is essential to understand the 

vulnerabilities of FPGAs. With modern FPGAs working at over 500 MHz, the requisite 

measurement equipment is not insignificant [51]. There is a requirement of more 

advanced methods than the reliance on outdated small resistor architectures. It might 

not be possible to reduce the operating frequency because of detection circuits. In 

FPGAs, clock managers (such as a “Digital Clock Manager”) are set to a particular 

frequency range. The attacker must separate the signal of the FPGA from the 

surrounding devices that contribute noise through the shared ground and power 

supply. 

Detection circuits for clock and temperature tampering can be classed as 

countermeasures that disable attackers to interrupt the clock’s frequency [50]. It would 

be fair to assume that attackers would have to face some challenges before 

proceeding to capture power traces and analysing them. 

2.3.2.4.2 EM Emanation Analysis 

It is when internal operations take effect that the movement of charge leads to the 

production of electromagnetic fields on circuits, upon which side-channel attacks rely. 

Tuned antennas are capable of picking up these fields outside of the device, without 

the need to remove its packaging. Proper setup of EMA attacks would make them 

more efficient and allow them to create better signal-to-noise ratios, making them 

superior over power analysis [52]. Moreover, the advantage of electromagnetic attacks 

over power analysis lies in the fact that they can be localised to a specific part of the 

chip where the wanted function would be occurring. This can then be implemented in 

the device’s initial setting. 

2.3.2.4.3 Timing Analysis 

There is a possibility that leakage of information may occur if data-processing 

operations depend on secret materials such as a key. Conditional branching, memory 

access, and algorithmic operations tend to depend on cryptographic function 

implementations. A good amount of key bits can be attained when their timing 

signatures are analysed. When passwords are checked one character at a time, 

stopping on the first match, it can mean that a timing attack occurred [53]. The attacker 
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can figure out the password with only a few tries once he has determined different 

processing times.  

A way to prevent the leak of information through time processing could be to ensure 

that sensitive operations have the same amount of clock cycles, having randomised 

operations, or by utilising memory blocks to store data [53]. Certainly, what the 

device’s pin exposes should always be monitored for time-related leaks. 

2.3.2.5 Radiation-Induced Threats – Single Event Upset (SEU) 

Single event upsets (SEU) are the errors that are induced in integrated circuits through 

radiations. Basically, a stream of electron-hole pairs is created as the charged particles 

lose their energy whilst ionizing the medium they travel through [54]. SEUs in CMOS 

devices are created by atmospheric and ambient ionizing radiation that include 

neutrons, protons and heavy ions. Alpha particles are also emitted from materials used 

for integrated circuit packaging. A transient pulse known as “single transient effect” 

may be caused by SEU and in turn cause delay faults. Furthermore, memory bit may 

flip state, and with lowering probabilities it is possible that multi-bit upsets occur. SEU 

flips are known as “soft errors” as they can be fixed by being written over or power-

cycling. 

A change to the purpose of the device is caused by a flip in a used configuration cell 

within FPGAs. There are ways to detect and correct SEUs which include scanning the 

configuration cells and comparing their CRC or Hamming syndrome to the initial ones. 

Another solution can be triple modular redundancy (TMR), in which all logic is 

triplicated and radiation causes majority voters to establish logic faults [31]. The most 

common way this is utilised is in space applications because the mean time between 

function and failure is very low, accounting for the cost. The bitstream can be read 

back and used to reprogram if it were to be verified. 

2.3.2.6 Hardware Trojans 

A hardware Trojan is defined as “a malicious, intentional modification of a circuit 

design that results in undesired behaviour when the circuit is deployed” [55]. For 

example, adding logic that blocks resources such as memory, or even granting access 

to limited-access data. Testing is a way to fight against this. That being said, a special 

code could trigger the Trojan when the device is in use. By knowing the details of the 
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device, a skilled attacker could target an input not normally targeted. This would mean 

that the chances of being detected during normal testing would lower. Many physical 

attacks could cause triggers. An example is getting direct access to the I/O pins. 

Electromagnetic radiation or thermal energy are less invasive but more complicated 

triggers. Our research on ‘Design for Prognostics and Security in FPGAs’ 
revolves around this highly potential threat that could cripple the existing as 
well as the future computation systems when the era of autonomous, AI-based, 
IoT, and Industry 4.0 would be all-prevalent. A concise account of hardware Trojan 

salient is presented in Chapter-3.  

2.3.2.7 Kill Switch 

The operability of hardware as well as the software sustainability are highly affected 

by the malicious exploitation of an entity called the ‘kill switch’. It stops the chip from 

working at all. It does this through creating an open connection by thinning key wires 

in order to destroy a section of a wire by electromigration [56]. 

2.3.2.8 The Backdoor 

Backdoor is another peculiar type of hardware Trojan. This includes functionality in a 

circuit where access to the system is granted to either stop or cause functionality. This 

can be exemplified when an encryption core is disabled without alerting the user, 

making detection more difficult [57]. A kill switch, on the other hand, disrupts the chip 

completely. 

Although these attacks seem far-fetched, there have been many occurrences of 

hardware that has been modified in a malicious manner. Dating back to the Cold War, 

to be specific, Russians used these methods for surveillance purposes . They were 

sabotaged by the US who tinkered with oil pipeline control software and allowed the 

Russians to steal it. In retaliation, the Russians sabotaged typewriters on the way to 

the US, by adding keyloggers [57].  

Nowadays, it is assumed that a kill switch was developed into a microprocessor and 

used to disable Syrian radars from picking up attacks from Israel. Although a theory at 

present, it can be a reality when considering the way hardware Trojans operate. 

Indeed, King et al. [58] have demonstrated a number of attacks can be possible by 

simply adding logic to Leon processor. Moreover, Agrawal et al. [59] have also 
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suggested that keys can be leaked by adding 400 logic gates to a public key encryption 

circuit.  

2.3.3 Analysis 

The realm of security in FPGAs reveals the nature of threats and attacks that surround 

and affect the dependability and security attributes of the FPGAs [60] and the critical 

applications implemented therein. These attributes are shown in Figure 2-10. It can be 

seen that the attribute of reliability is also integral to FPGA security besides the 

dependability and is, in turn, impacted by the triad of confidentiality, integrity, and 

availability (CIA). This implies that whenever the security of an FPGA is compromised, 

it is basically the attribute of FPGA reliability that is getting affected - with 

repercussions ranging from harm to humans and machinery breakdown to systems’ 

malfunction and the manufacturers’ reputation. 

 The nature of hardware attacks mentioned above is likely to change, getting more 

complicated and complex, with downscaling of FPGA technologies. In that case, the 

fragmented approach towards solutions/countermeasures for hardware threats and 

attacks would not be effective. We have already seen recent surge in hardware 

vulnerabilities with ‘Spectre and Meltdown’ [61], [62] and Amazon’s FPGA cloud 

sharing platforms [63], [64]. Under such circumstances, it is indispensable to build and 

adopt an integrated approach so as to enable security and prognostics/health 

estimation schemes for an effective and enduring defence against known and 

unknown vulnerabilities.  

Figure 2-10  Dependability and Security Attributes of an FPGA [60]. 
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 It is not viable to prognosticate FPGA health with FPGA degradation models that are 

deficient not only in optimal reliability assessments but also completely devoid of the 

security concerns. As a result, we firmly believe that some previous and more recent 

cyberattacks had their roots in the hardware abstraction levels (and they took place 

because the FPGA designs - both pre and post manufacturing- lacked the integrated 

prognostics/reliability and security approach). Based on the above discussions and 

the outlining of different efforts, we believe, that one of the most important reasons for 

not being able to control and defy cyberattacks on FPGA based applications, in 

particular, is the fragmented approach towards FPGA health management. This 

implies that cybersecurity solution lies in the hardware security. It also highlights that 

the design for testability approaches reliability evaluation not only without prognostics 

element but also misses the security facet. 

2.4 Integrated FPGA Health Management (IFHM) Framework 

In consonance with the analysis of the realms of reliability and security in Sections 2.2 

and 2.3, we have deduced that: 

 1. The FPGA reliability and security dimensions are inter-dependent - not  two 

 separate entities. When evaluated separately, the appreciation of hardware 

 threats, vulnerabilities, and the impact of attacks on FPGA reliability may not 

 be viable.  

 2. The existing reliability/degradation modelling and security design  solutions 

 may provide an optimum operational and functional FPGA evaluation in 

 isolation, however, they are not attuned with an integrated approach for the 

 management of FPGA health.  

 3. The individualistic approach toward FPGA assessment (reliability and 

 security) needs to be enhanced to a composite and holistic FPGA health 

 regimen to fight and guard against the upcoming technological challenges  in a 

 robust manner. 

 4. There is a need for a high-level framework that provides a roadmap and 

 guidelines to achieve integrated FPGA health management, that 

 encompasses the facets of reliability, security, and the prognostics. 



55 

2.4.1 The Framework 

Above in perspective, it is evident that the existing individualistic approach toward 

FPGA health management does not consider the essential elements of reliability, 

prognostics and security collectively. This has resulted in fragmented solutions that do 

not reflect the true state of the operational condition of an FPGA. A high-level 

framework, called ‘Integrated FPGA Health Management – (IFHM)’ framework has, 

therefore, been devised, as shown in Figure 2-11. This framework provides a guidance 

for the FPGA researchers, design and manufacturing engineers, and expert end-users 

in establishing the relationship between ‘degradation/failure mechanism’ and 

‘hardware threat/attack’, determining ‘failure precursor’, constructing and optimizing 

the experimental set-up, defining test conditions and estimating the health of an FPGA 

in a composite manner. 

As can be seen in Figure 2-11, there are three main functional levels namely, 

Resourcer, Conjoiner and Unifier. At the Resourcer functional level, the elements 

Figure 2-11  An integrated approach towards Reliability, Prognostics, and Security 
in FPGAs to bolster FPGA health for high-end Computational Systems. 
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under each of the two cardinals of Hardware Security and Trust (HST) and Prognostics 

and Health Management (PHM) are explored to develop a comprehensive set of 

desired information, which is then analysed and combined at the Conjoiner functional 

level into a focused set/library of interdependencies between FPGA 

reliability/prognostics and security. These interdependencies are then unified at the 

Unifier functional level to determine an optimized solution for the ‘Design for 
Prognostics and Security’ by designing sensors, devising algorithms, developing 

models and undertaking implementation tests, followed by verification and validation. 

2.4.1.1 The Resourcer 

The Resourcer is a repository function comprising two areas of knowledge and 

information i.e., Hardware Security and Trust (HST) and Prognostics and Health 

Management (PHM). They are termed as ‘Cardinals’ because of being the principal 

sources of the requisite knowledge. It builds a comprehensive list/database of 

hardware threats/attacks, FPGA vulnerabilities, threat/attack models, and 

countermeasures (including detection, mitigation, and prevention 

methods/techniques) for the HST cardinal. The PHM cardinal, on the other hand, is 

built on reliability and degradation modelling, the various schemes of design for 

testability (DfT) and manufacturability, PHM methods, and prognostics/health 

estimation techniques for electronic devices. This wide range of two knowledge 

domains is then compiled into a Resourcer database, which at present, is constructed 

on MS Excel. The information contained in the realms of reliability and security 

provides a segment of the Resourcer repository.  

2.4.1.2 The Conjoiner 

The Conjoiner is an analysis function that builds upon the Resourcer database, which 

is classified into three elements (scalable) for the two cardinals each, as shown in 

Figure 2-11. This function forms the critical data analysis level where, based upon the 

specific threat assessment/evaluation requirement and the corresponding degradation 

mechanism, relevant data is scrutinised, and quantitatively compared with host of 

related models. The analysed data results in an optimised set/library of 

interdependencies between the reliability and security in the form of graphical data, 

mapping diagrams, and data flows.  
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2.4.1.3 The Unifier 

The Unifier is a decision function that fetches the required set/library of analysed data, 

and accordingly helps design, implement, test, verify and validate the hard and soft 

components of the final optimised ‘Design for Prognostics and Security’. It may 

comprise an on-chip parametric sensor for the detection of parametric variations due 

to the presence of malicious circuitry (hardware Trojan), a comprehensive FPGA 

security scheme, and a prognostics/health estimation process. The main outputs of 

this function may include new FPGA reliability/degradation models, optimal anomaly 

detection and mitigation algorithms, an experimental test-rig (comprising hard and soft 

components like test equipment, electronic design kits etc.), accurate measurements, 

and optimised verification and validation of the developed schemes.  

2.4.2 IFHM Framework Workflow 

In this sub-section, we present an overview of how the IFHM framework is used to 

build FPGA Health scheme consisting of the security and prognostics elements. It 

expands on the Cardinals and their corresponding elements that our IFHM framework 

covers. The high-level selection of an ‘On-Chip Digital Sensor’ is used to explain the 

workflow of IFHM framework.  

The researcher will first give the specific FPGA degradation mechanism information, 

for example, ‘BTI’ degradation mechanism, as an input to the Resourcer function of 

the framework. The Resourcer function will use this information to scan and track the 

PHM cardinal through its elements for the relevant BTI data and then correlates it with 

the HST cardinal elements to fetch the relevant list of hardware threats, attacks, and 

models for the researcher. The function will also highlight the most optimal 

relevance/outcome of all the HST elements. It will be, however, up to the researcher 

to select the relevant HST and PHM elements before stepping onto the next functional 

level i.e. The Conjoiner. One possible selection could be the CMOS parametric 
variation-based hardware Trojan.  

The Resourcer data, as mentioned above, is fed into the Conjoiner function, which will 

then analyse it against the FPGA vulnerabilities (within different technology nodes 

such as, high junction temperatures, design for testability and de-bug etc.), the faults 

and defects associated with it (intermittent delays, transient faults etc.), the reliability 

and performance impact of the selected degradation mechanism under the influence 



58 

of the selected category of hardware Trojan/malicious anomaly (frequency and delay 

degradation, device ageing, functional failures, exponential increase in junction 

temperature, power consumption etc.), and the statistical data on various relevant 

FPGA degradation models. The researcher, with this analytical information available, 

chooses the most effective set of solutions. For example, for the BTI degradation 

mechanism and parametric variation-based hardware Trojan category, the researcher 

may opt to construct the FPGA security and prognostics/health estimation scheme 

around the variation of threshold voltage in P/NFETs with N/PBTI.  

With the above set of information inputted to the Unifier function, all the relevant and 

recommended solutions with respect to monitoring, detection, mitigation, and 

prevention algorithms, different on-chip sensor options (with performance metrics), 

security schemes, and prognostics/health estimation techniques (ML-based) are 

made available to the researcher to select and optimise the most viable FPGA Health 

scheme that provides a composite solution. For example, in our case ‘the Design for 

Prognostics and Security in FPGAs’ is an integrated FPGA health management 

approach which begins with the design and implementation of a novel sensor 

(Chapter-4), solidifies it to an FPGA security scheme (Chapter-5), and then employs 

a Kernel-based Machine Learning technique to estimate FPGA health (Chapter-6). 

While this high-level IFHM framework may be a logical and necessary step in assisting 

and guiding the researcher, manufacturer, and the expert end user in designing secure 

and reliable FPGAs, it would not eliminate the need for the FPGA health (security and 

reliability) assessment expert. This IFHM framework is intended to be an automated 

framework, integrated with the traditional FPGA/ASIC design flow so that the FPGA 

health evaluation can be made as an inherent segment of the design and 

implementation process. 

2.5 Summary 

The evolutionary transformation of FPGAs into Systems-on-Chip (SoC) and more 

advanced platforms like Advanced Compute Acceleration Platform (ACAP) has led to 

their widespread applications across all industries. These include several sensitive 

applications, like national infrastructures consisting of power grids, network routers 

and data-centres, medical equipment, transportation comprising airplanes, 

spacecrafts, and autonomous vehicles, defence systems, Industry 4.0, etc. An incisive 
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look into FPGA architecture, its associated structural and functional strengths as well 

as its vulnerabilities to ever-growing reliability and security issues have been the focus 

of this chapter. Most importantly, based on the detailed account of the realms of FPGA 

reliability and security, a high-level Integrated FPGA Health Management (IFHM) 

framework has been presented as a guideline for the VLSI design and manufacturing 

community (including researchers and expert end-users) to develop highly optimised 

FPGA security and prognostics schemes by adopting integrated approach. The 

subsequent automation of this framework and integration with electronic design 

automation (EDA) tools would be highly useful.  

The next chapter (Chapter-3) provides a brief account of hardware Trojans as a potent 

hardware threat for modern FPGAs, outlines their taxonomy, and presents several 

countermeasures.  
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3 Understanding the Hardware Trojans in FPGAs 

3.1 Introduction 

Hardware Trojans are malicious modifications to the intended functionality of a 

hardware circuit [1-4]. These modifications ( or tampering) are undesired and unknown 

to the hardware designer and can have devastating effects on the electronic system. 

Trojans have three key characteristics: malicious intention, evasion of detection, and 

rarity of activation [5]. The intent of a Trojan is always the same: perform an unintended 

action to compromise the confidentiality, integrity, or authentication of the underlying 

hardware. 

This compromise may be in the form of a shortened operational lifetime of the 

hardware (e.g., 5 years instead of 20 years) or complete failure of the system upon 

the Trojan’s activation. It may allow an attacker to gain unauthorized access into the 

hardware (i.e., remote access through a backdoor) or lead to leakage of information 

(e.g., cryptographic keys for secure data communication). Hardware Trojans may 

manifest from software Trojans inside of pirated software tool suites during the 

Figure 3-1  The Disposition of Chapter-3.  
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synthesis portion of the design flow or be inserted as a result of collusion between 

multiple parties at different stages of the hardware’s life cycle [6]. Trojans can also be 

designed with the sole intention to damage or destroy the brand reputation of a 

company, which may result in bankruptcy of the company and a competitive 

advantage for the adversary. 

As mentioned earlier, the growing demand for power-efficient and high-performance 

integrated circuits (ICs) has created a surge in usage of FPGAs in the recent years. 

FPGAs are also available as cloud services [7], where one can create and run custom 

hardware designs on a remote FPGA in a server farm. Hence, exploring security 

issues associated with FPGA designs is critical.  

This chapter explores the insertion of hardware Trojans into genuine designs targeted 

for FPGAs so as to understand their impact and evaluate different countermeasures. 

It goes without saying that such compromised designs may result in subpar 

performance, leakage of confidential information, and unauthorized and pernicious 

operations by an attacker. The use of compromised designs in critical infrastructures 

such as smart grids, nuclear power plants, medical prosthetic devices, and military 

equipment can be catastrophic. To explain the different classes of Trojans, this chapter 

uses Xilinx FPGA design flow. However, the same methodology can be extended to 

any FPGA and CAD tool vendors. The chapter is arranged as per Figure 3-1.  

We first present the threat model and a taxonomy of FPGA Trojans in Section 3.2. 

Next, we focus on two broad categories of FPGA Trojans: Trojans in FPGA fabric in 

Section 3.3 and Trojans in FPGA tool chain in Section 3.4. An example of FPGA attack 

and a case study is presented in Section 3.5. Section 3.6 discusses the 

countermeasures that specifically target Trojans in FPGA bitstreams. Finally, Section 

3.7 summarises the chapter. 

3.2 Threat Model and Taxonomy  

3.2.1 FPGA Design Flow 

Figure 3-2 shows the high-level FPGA design flow. An FPGA designer designs the 

FPGA fabric. Fabless FPGA design houses send the layout of the FPGA fabric to a 

foundry for manufacturing. Many of these foundries are located typically offshore and 

are untrusted. Post-fabrication, the FPGAs are tested for defects and faults. FPGAs 
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are sold on the market. The end-user implements the target design on the FPGA. 

Converting a design described in a modelling language (VHDL or Verilog) into an 

FPGA-specific programming file involves multiple steps, as explained below: 

• Synthesis involves the conversion of HDL into a logical netlist (similar to logic 

diagram or circuit). 

• Implementation consists of translate and map processes,  where the logical 

netlist gets converted and mapped to target device’s physical primitives. 

• Place and route (PAR) takes a mapped native circuit description (NCD) file, 

places and routes the design, and produces an NCD file to be used by the 

programmable file generator. 

• In bit-file generation, the routed NCD is used to create a bit-file that can be 

programmed onto an FPGA. 

3.2.2 Threat Model 

In the quest to reduce the development cost of hardware/system, the silicon industry 

has inadvertently created a complex and extremely vulnerable supply chain shown in 

Figure 3-2  FPGA threat model: The attacker can insert hardware Trojans at the untrusted 
foundry (A1). A malicious distributor can reduce the reliability of an FPGA in the supply 
chain (A3), and even recycled FPGAs can be inserted into the FPGA supply chain (A2). 
Design Trojans can also enter through FPGA CAD tool flow. 
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Figure 3-2. An attacker can be present anywhere in the supply chain. The threat 

model, shown in Figure 3-2, involves: 

3.2.2.1 Overproduction 

An untrusted foundry that has access to the FPGA layout mask fabricates more 

number of FPGAs than requested or authorized by the design company. It can insert 

these FPGAs into the supply chain without the knowledge of FPGA design company. 

These FPGAs may not be properly tested and can introduce reliability issues. This 

results in either loss of revenue or reputation for the design company. 

3.2.2.2 Recycling and remarking 

FPGAs can be extracted from electronic waste, used FPGAs can be removed, and 

their package can be repainted and/or remarked. The die can also be removed from 

the packaging, repackaged, and remarked. These FPGAs are then reinserted into the 

Figure 3-3 FPGA hardware Trojan taxonomy based on two primary attributes. 
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supply chain as genuine and new FPGAs. These FPGAs can be highly unreliable, are 

prone to defects, and typically lead to subpar performance. 

3.2.2.3 Cloning and Piracy 

It is an unauthorized reproduction of an FPGA by reverse engineering without the legal 

intellectual property (IP) rights to manufacture the FPGA. These FPGAs can also have 

malicious modifications. 

Apart from these threats, FPGAs are also susceptible to insertion of Trojans, as shown 

in Figure 3-3. 

3.2.3 FPGA Hardware Trojans Taxonomy 

Malicious changes can be made at any phase of the FPGA design such as design, 

fabrication, packaging, and in the supply chain as shown in Figure 3-2. A taxonomy 

based on hardware Trojans’ physical, activation, and functional characteristics have 

already been proposed [2, 3]. We classify Trojans based on the method of creation, 

activation, and point of entry into the FPGA fabric as shown in Figure 3-3. The 

definitions of most of the FPGA Trojans are similar to the IC Trojan taxonomy in [2, 3].  

3.2.3.1 Point of Entry 

Based on the point of entry of Trojans in FPGA, they can be classified as: 

3.2.3.1.1 Prefabrication 

It is the phase where the specification of systems such as functionality, size, power, 

delay, etc., is finalized. Trojan insertion in this step will result in alteration of design or 

constraints. For example, it could alter the timing of circuit or increase switching 

frequency of the circuit. A rogue employee can insert a malicious circuit, e.g., a 

backdoor, to take control of the chip at a later point in time when the FPGAs are 

deployed in the field. These manifest as FPGA fabric Trojans. 

3.2.3.1.2 Fabrication 

Here, a set of masks are designed to fabricate the digital circuit on a silicon wafer. 

Trojans can be added by a malicious attacker inside an untrusted foundry. These 

Trojans can be either functional or parametric. These are called as FPGA fabric 

Trojans. 
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3.2.3.1.3 Post Fabrication 

In this phase, RTL/HDL designs are used to program an FPGA to achieve desired 

functionality. Trojans can be either inserted in RTL/HDL designs by a rogue employee 

or can also enter RTL/HDL designs from IPs from third-party IP providers. These are 

FPGA design Trojans. Additionally, even the reliability of an FPGA can be reduced by 

such type of Trojans.  

3.2.3.2 Creation Method 

Based on the creation method, Trojans can be classified as follows: 

3.2.3.2.1 Functional Trojan 

They are created by modifying the FPGA fabric. This includes addition/deletion of 

gates/transistors, modifying the RTL or layout without affecting the primary 

functionality of the FPGA fabric. It can enter during prefabrication phase by a rogue 

employee in the FPGA design company or during fabrication phase by a malicious 

insider at an untrusted foundry. 

3.2.3.2.2 Parametric Trojan 

They are created by modifying physical device parameters, such as thinning of wires, 

gate channel length variation, dopant level variation [8], transistor size variation, etc. 

It is always on and primarily created to reduce the reliability and lifespan of an FPGA. 

3.2.3.2.3 Life-span Reduction Trojan (LRT) 

It is the only class of Trojans that are not inserted in the hardware during or before 

fabrication. It is created by subjecting the FPGA with external factors, such as extreme 

temperatures, focused ion beams [9], etc. LRT accelerates aging of complete or part 

of FPGA fabric. It is typically created by a malicious distributor in the FPGA supply 

chain to reduce the reliability and, hence, reduce the lifespan of FPGAs. 

3.2.3.2.4 Bitstream Trojan 

It is inserted by modifying the FPGA bit-file itself. Bitstreams can be reverse 

engineered to identify the areas of FPGA occupied by the programmed logic, and 

malicious circuits can be inserted into it. If the malicious circuit does not disturb the 

original circuit, it is called Type-I bitstream Trojan. Type-II Trojans typically modify the 
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original circuitry with respect to CLBs or other FPGA resources to perform malicious 

operations. 

3.2.3.2.5 CAD Tool Trojan 

They are FPGA design Trojans that exploit the CAD tool flow to insert the Trojans at 

various intermediate netlist formats. These Trojans can be inserted in a synthesized 

netlist and even in mapped or placed and routed netlists. Due to the lack of resources 

to understand the intermediate and typically proprietary formats, these Trojans can 

easily evade detection. 

3.3 Trojans in FPGA Fabric 

FPGA fabric Trojans are inserted into the FPGA silicon fabric. They can be inserted 

either during fabrication by a untrusted foundry or during the design phase of FPGA 

by a rogue employee in the FPGA design company. Functional fabric Trojans are 

characterized by addition/deletion of gates by the attacker to carry out malicious 

activities, whereas parametric fabric Trojans are created by changing device 

parameters/specification such as thinning of wires and weakening of transistors or flip-

flops to reduce the reliability of the FPGA [10, 11]. In this section, we describe three 

Trojans that can be inserted into the FPGA fabric: Trojans that increase delay, create 

voltage fluctuations, and reduce lifetime. 

3.3.1 Trojans That Increase Delay 

The delay-based fabric Trojan is created by modifying interconnect connecting lookup 

tables (LUTs) across two configurable logic blocks (CLBs). The delay-based fabric 

Trojans correspond to change or perturbation in the physical layout of FPGA due to 

the addition of malicious elements. The assumption is that the silicon fabric of the 

FGPA is dense and highly utilized. An attacker needs to alter the FPGA silicon in order 

to add a Trojan. For example, when a Trojan is inserted in a CLB or routing switch 

matrix (RSM), it will perturb the physical layout of original fabric, thereby increasing 

the delay. 

3.3.2 Trojans That Induce Voltage Fluctuations 

This set of Trojans is implemented by adding simultaneous switching signals that 

utilize dense interconnect resources around a CLB. This corresponds to the addition 
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of malicious elements without disturbing the genuine layout of FPGA fabric. This 

switching signal is connected to unused wires and programmable interconnect points 

(PIPs) in the tile where the target CLB is configured.  

This Trojan increases switching activity that will increase dynamic power and therefore 

impacts the oscillation frequency. In our case, it is observed that voltage drop due to 

the Trojan switching activity impacts the sensor frequency. 

3.3.3 Life-Span Reduction Trojan (LRT) 

Life-span reduction Trojan (LRT) can be induced into an FPGA by artificially creating 

conditions that accelerate ageing of FPGA fabric. Key contributors for an FPGA ageing 

(or any IC) among several physical factors are negative-bias temperature instability 

(NBTI) and hot carrier injection (HCI). Both the factors lead to a shift of threshold 

voltage of the affected transistors, which manifest as increase in switching and path 

delays. This will subsequently lead to timing violations and wears out an FPGA faster. 

The threshold-voltage triggered hardware Trojan described in Chapter-5 is a novel 

example of this type of Trojan. 

3.4 Trojans in FPGA Tool Chain  

3.4.1 Trojan Insertion in FPGA Designs 

The goal of the attack tool is to decide where to place the Trojan for a given design. 

The placement of Trojan can be achieved with or without disturbing the original design 

mapping and routing. The latter requires considerable effort and access to multiple 

files from the FPGA design cycle. 

To insert hardware Trojans in FPGA designs, an attacker may need to have 

knowledge of internal wires or logic and preferably where the design is physically 

placed on the FPGA. If the Trojan is conditionally activated based on the input or 

internal states, the attacker needs to tap into the required wires of the design and 

connect the Trojan activator circuit. The Trojan payload can be connected to the target 

elements by disconnecting the wires connecting to these elements and reconnecting 

with the output of the payload circuit. The original payload and Trojan payload can be 

connected using multiplexers, with the select line controlled by the activator circuit. 
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After the logic synthesis process, FPGA CAD tools typically rename and merge (after 

logic optimization) the internal wires connecting logic elements. An attacker needs to 

track the name changes in the design, to connect them with the Trojans. This can be 

achieved by converting the synthesized binary netlist (called NGC by Xilinx) to a 

readable Electronic Design Interchange Format (EDIF) file and Xilinx Design 

Language (XDL) file. Figure 3-4a shows the HDL code, and Figure 3-4b shows the 

corresponding XDL file obtained from routed netlist (NCD) after PAR, which describes 

how the HDL is mapped into LUTs. Additional information on the location of 

configurable logic block (CLB) and LUT is also present in the XDL file. Figure 3-4c 

shows how the CLB blocks are connected with each other to implement the 

functionality described in HDL. We can extract the locations and interconnections used 

by the original design from the NCD or XDL files. 

3.4.2 Trojans in HDL 

An attacker can insert the Trojan in the HDL design. In the HDL, the attacker can easily 

track the logic elements or states to be used as an activator and deliver the Trojan 

payload to the target. Inserting Trojan at this level is significantly easier for an attacker, 

as the wires and logic elements can be found from the behavioural or structural code. 

 

Figure 3-4  HDL to FPGA physical implementation. (a) Description of the design in HDL. 
(b) The configuration of a routed CLB described in XDL format. Only LUT B is used in 
this CLB. (c) The physical implementation of the design. 
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3.5 FPGA Attacks and a Case Study 

In order to elucidate the significance of the growing hardware Trojan threat, we present 

a threat scenario related to the increased usage of FPGAs in a cloud platform. 

Consider a typical architecture of a cloud platform with FPGAs as shown in Fig. 3-5. 

FPGA boards are connected with the servers using PCIe (Peripheral Component 

Interconnect express) wires. PCIe wires are the de facto standard for establishing and 

maintaining communication between a server and the FPGA in commercial FPGA 

clouds [12]. The cloud service providers divide the programmable resources on an 

FPGA into two areas such that one is dedicated for implementing the shell, and the 

other for users to implement customized logic. 

The shell includes PCIe modules, DRAM controllers, and control modules, to enable 

the communication with the servers and DRAM. Typically, the cloud provider’s logic 

(shell) interacts with user logic via Advanced eXtensible Interface (AXI) protocols [13]. 

On the CPU side, the software development kit provides the application programming 

interfaces (APIs), so the users with little FPGA experiences can still interact with 

FPGAs easily [14]. In the modern commercial clouds like Amazon EC2 F1, an FPGA 

Figure 3-5  Architecture of an FPGA in the cloud. The four different threat models 
considered in this paper are (1) malicious cloud providers, (2) malicious co-tenants, (3) 
malicious IP providers, and (4) malicious FGPA toolchain. These are indicated in the 
figure by devil icons in the shell (PCIe module and IP core), user 1’s logic, 3rd party IP 
core, and the FPGA design flow, respectively. 



76 

is not allowed to be shared by multiple users due to security concerns [15]. However, 

we envision that multi-tenant cloud FPGAs will be realized soon, as it is more cost-

effective for both the cloud providers and the users to share resources. 

3.5.1 Threat Scenario/Model and Associated Attacks 

To understand the possible threats posed to the cloud FPGA users, we categorize the 

threat model into four types: (1) malicious cloud providers, (2) malicious cloud 

users/co-tenants, (3) malicious IP providers, and (4) malicious toolchains. Figure 3-5 

illustrates where the threats reside in the architecture of an FPGA cloud. 

3.5.1.1 Malicious Cloud Providers 

In traditional threat models of cloud security, the cloud service providers are generally 

assumed to be untrustworthy, so a user needs to implement his/her security measures 

to protect him/herself in the clouds. Additionally, the users on the same cloud platform 

can be a threat to other users, too. However, a malicious cloud model is stricter than 

the malicious user model because a cloud provider has all the privileges to the 

platform, including physical access and full control of the computation resources. 

3.5.1.1.1 Direct Sensitive Data Leakage  

In a cloud without programmable hardware, all the computation and the data are 

contained in one container (virtual machine). Each container is isolated from another 

in the hypervisor layer. In the case of a cloud with programmable hardware attached, 

an attacker with system privilege can tamper with the logic or tap the communication 

between the FPGA fabric and the processor. This can enable him/her to steal the 

secret data. In current commercial FPGA-enabled clouds, the FPGA boards connect 

to the processors via the PCIe protocol. Thus, the cloud provider can intercept the 

communication between the FPGA boards and the processors with ease. 

3.5.1.1.2 Intellectual Property Theft  

The most common use of cloud FPGAs is to implement hardware accelerators for 

specific computation tasks. The IP of such an accelerator developed and owned by a 

developer should be protected. Since the developer hands over the bitstream files of 

the IP cores to the cloud providers, a malicious cloud provider can access the RTL 

design of the IP core. Bitstream reverse engineering techniques can enable this [16, 
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17]. Thus, a malicious provider can steal the design IP and replicate the accelerator 

on another FPGA. 

3.5.1.1.3 Tampering with User Logic 

A malicious cloud provider can access the user’s RTL design. So, during the 

integration of the user’s design with the shell in the cloud FPGA, the providers can 

introduce malicious modifications in the design. This security threat is also known as 

hardware Trojans that have been studied for decades [18]. On cloud FPGAs, the 

Trojans can leak sensitive information, which has been protected by other schemes in 

traditional cloud computing platforms. Also, the Trojans can sometimes be inserted 

automatically [19]. One of the future challenges is to provide a remote attestation 

feature which allows a remote user to verify the integrity and authenticity of his/her 

designs in a cloud FPGA. This feature might be similar to the remote attestation 

provided by Intel SGX [20]. 

3.5.1.2 Malicious Co-tenants 

Besides the security threats from a malicious cloud provider, threats from malicious 

users/co-tenants need to be considered. The basic principle of cloud computing is that 

all the users can dynamically have a share of the large computation resource pool. 

Due to this, a victim user can be allocated close to a malicious user. Moreover, the 

victim and the malicious user might even share some computation resources. 

Although, in general, the computation resources used by different users are logically 

isolated, the computation resources are likely to be physically connected due to the 

shared hardware platform. Attackers can leverage such a shared hardware platform 

to perform a variety of attacks such as side-channel attacks, fault-injection attacks, 

and establishment of covert channels. 

3.5.1.2.1 Side Channel Attacks 

The attack methods that exfiltrate information, not leak able through standard digital 

output channels are called side-channel attacks. Power side-channel [21], timing side-

channel [22], electromagnetic side-channel [23], and photonic-emission side channel 

[24] are a few examples of side-channels. An attacker must collect the side-channel 

information of victim devices in these attacks. Hence, researchers have believed for a 

long time that the side-channel attacks can be launched only by the attackers with 

physical access to the devices. However, the ability to program the hardware deployed 



78 

in the cloud is similar to having physical access to the device. This allows the attackers 

to monitor the side-channel information remotely in the physical environment, as 

shown in Figure 3-6. The power consumption of a victim logic disturbs the power 

distribution network on the FPGA, and measuring this disturbance allows the attacker 

to estimate the power consumption of the victim. Remote power-based side-channel 

attacks have been demonstrated in the literature [25]. Moreover, crosstalk between 

FPGA long wires (a specific type of routing resource on FPGAs) can also serve as a 

method to leak information [26]. 

3.5.1.2.2 Fault-injection Attacks 

In fault-injection attacks, an attacker injects faults in the execution process of a 

computation task. Thus, the device produces wrong outputs at the output ports. This 

problem can have severe implications in a cryptographic system. In such a system, 

faulty outputs can lead to a successful recovery of the secret key in the system [27]. 

Traditionally, an attacker injects faults by manipulating power or clock signals, or by 

electromagnetic pulses. These methods require physical access to the target device. 

However, using FPGAs shared with a victim, an attacker can build an on-chip fault 

injector and tamper with the computation of the victim. 

Figure 3-6 Remote power analysis attack for a multi-tenant FPGA. The side-
channel analysis (SCA) is performed through the power distribution network 
(PDN) in spite of the logical isolation between the victim logic and the sensor [25]. 
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3.5.1.2.3 Denial-of-Service Attacks 

One property of concern for both the cloud providers and the users is the availability 

of the cloud platform. Denial-of-service (DoS) attackers target the availability of this 

platform. On an FPGA+CPU heterogeneous cloud, an attacker can launch a remote 

DoS attack on the FPGA [28]. By programming a malicious circuit that switches on 

and off frequently, a significant voltage drop is created on the FPGA, and the FPGA 

shuts down to protect itself. An FPGA shut down by voltage emergency requires 

manual power-cycling of the device. 

3.5.1.2.4 Row-Hammer Attacks 

Interestingly, in an FPGA+CPU heterogeneous system, the FPGA has a unique 

privilege to access the DRAM without being detected by any monitoring mechanism 

in the CPU. Also, the FPGA can bypass the cache in the processor and launch a row-

hammer attack (i.e., flipping the bits in DRAM by repeated accesses) twice as fast as 

the traditional row-hammer attack launched by a CPU [29]. Consequently, the row-

hammer from an FPGA to a DRAM can trigger four times as many bit-flips as the CPU 

initiated attacks. By exploiting this vulnerability, one can tamper with the data and 

possibly the control flow of the program in the system. 

3.5.1.3 Malicious IP Providers 

The modern hardware design process is very complicated and time consuming. 

Practitioners need to integrate 3rd-party intellectual property (3PIP) cores to speed up 

the development process. This gives attackers a leeway to introduce malicious IPs, 

and the IPs can be exploited later to leak information, e.g., via covert channels [30, 

31]. This threat requires the attacker or the attacker’s logic to be present in the 

proximity of the target FPGA fabric. Thus, the attacker can collect leaked information. 

So, either the cloud provider or a cloud co-tenant has to be malicious as well. 

3.5.1.3.1 Power Covert Channels 

The idea of voltage manipulations used in power side-channel attacks can be 

extended to establish covert channels on multi-tenant FPGAs. An example of this is 

the work done by Gnad et al. in [32]. They have demonstrated high-speed covert-

channel (8MBit/s) communication. The transmitter of the covert channel uses ROs to 

generate measurable voltage spikes according to the secret data to be transmitted. 

The receiver, which is another tenant on the same FPGA chip, uses another set of 
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ROs to measure the voltage spikes. The attacker designs both the transmitter and the 

receiver. This enables the attacker to modulate the transmitted signal leading to robust 

communication, which can work in the presence of environmental noise introduced by 

other tenants on the same FPGA fabric. 

Establishing such power covert channels can be challenging if the receiver and the 

transmitter are on separate dies. However, Giechaskiel et al. demonstrated such an 

attack on cloud FPGAs in [31]. They established a power covert channel on cloud 

FPGAs that are on separate dies. They use Xilinx UltraScale+ FPGAs for this. 

UltraScale+ FPGAs used by cloud providers like Amazon and Huawei have three 

distinct dies that are connected and powered through a silicon interposer. Thus, even 

though the receiver and the transmitter are on separate dies, they still share the same 

power supply through the silicon interposer. A successful covert channel, operating at 

more than 4.6Mbps with an accuracy of over 97.6%, is established in such a setup. 

Moreover, they showed that the channel is present for all combinations of the three 

dies as receiver and transmitter. 

3.5.1.3.2 Cross talk in Long Wires 

Crosstalk phenomenon in long wires can be exploited to launch covert channel 

communication as well [33]. The attacker is assumed to have a malicious IP core as 

a part of the victim logic. It is also assumed that the attacker’s logic is on the same 

FPGA fabric and is placed close to the victim’s logic. Since the adversary is the 

designer of the IP core, he/she can define the internal placement and routing of his/her 

blocks. Thus, the attacker can force his/her cores to use specific routing resources, in 

particular long wires. The attack exploits the phenomenon that the delay of FPGA long 

wires depends on the logical state of nearby wires. In particular, when the transmitter 

wire (the long wire in the victim design) carries a logic 1, the delay of the nearby 

receiving wire (the long wire in the attacker’s design) is lower than it would be if the 

transmitter wire carried a logic 0. An RO involving the receiver long wire can measure 

the delay of the receiver wire. This reveals the logic state of the nearby transmitter 

long wire. Thus, a covert-channel is created for attackers to leak sensitive information 

from a victim hardware design. This covert channel can work effectively, even in the 

presence of power and temperature fluctuations. 

3.5.1.3.3 Thermal Covert Channel 
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Most of the covert channels in the literature require the designs of attackers and 

victims to be present on the same FPGA chip, i.e., a multi-tenant FPGA setup. 

However, cloud providers have not adopted the multi-tenant FPGA model yet. There 

exists a covert channel on the cloud FPGAs which does not require a multi-tenant 

setup. The covert channel described by Tian et al. in [34] is an example. It exploits the 

temporal sharing of a single FPGA. This channel can transmit data stealthily on a 

single-tenant cloud FPGA. The transmitter heats an FPGA by operating many ROs. 

Then, the transmitter turns off the ROs, leaves the cloud, and the receiver uses the 

same FPGA. The receiver can measure the temperature of that FPGA with ROs. This 

is possible because the frequency of an RO depends on the temperature of the FPGA. 

The bandwidth of such a thermal covert-channel depends on the number of FPGAs 

used simultaneously. A binary string can be transmitted and received by the temporal 

sharing of four cloud FPGAs simultaneously. This covert channel was demonstrated 

on the cloud FPGAs in Texas Advanced Computing Centre in [34]. 

3.5.1.4 Malicious FPGA Tools 

Adversaries can reverse-engineer commercial FPGA design tools and embed 

malicious functionalities in the toolchain. This way, malicious tools can alter the 

compiled hardware design. Under this threat model, the adversary can inject Trojans 

in a design. This maliciously-altered design behaves functionally and formally 

equivalent to the original design throughout the design flow until the tool writes the 

design as a bitstream configuration file [35]. 

Figure 3-7 Establishment of thermal covert channel on cloud FPGA [34]. The transmitter 
uses 4 FPGAs simultaneously and sends the binary string 0101 in this example. The 
orange colour of the FPGAs after the heating period represents high temperature. The 
yellow colour of the FPGAs after the reconfiguration period on the receiver side 
represents a temperature higher than the un-heated FPGAs, but lower than the heated 
FPGAs. 
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3.5.2 Case Study – Remote Power Side-Channel Attacks 

Security researchers have studied power side-channel attacks extensively in the past 

decade [21,36]. An attacker can exploit the fact that the data that the system processes 

affects the dynamic power consumption of the system [21]. So, by observing the power 

consumption of the circuit, the attacker can infer the secret key in the cryptographic 

hardware. This attack requires side-channel information to be collected from the 

hardware. Consequently, it was believed that such attacks could be carried out only if 

the attacker had physical proximity to the target system. However, in the context of 

cloud FPGAs, a malicious user does not have physical access to the target FPGA. 

Hence, all previous techniques would not work.  

3.5.2.1 Threat Model 

In general, remote power analysis attacks assume that the adversary’s logic and the 

victim’s logic are on the same remote FPGA fabric [25, 37]. So, the adversary has 

access to some of the LUTs in the remote FPGA. In other words, the attacker can 

implement his/her logic on some part of the shared multi-tenant remote FPGA. 

Although currently, the cloud FPGA providers do not allow sharing of an FPGA by 

multiple users, it is envisioned that multi-tenant FPGAs will be realized soon for better 

efficiency in terms of cost and utilization. 

3.5.2.2 Key Idea 

To launch a remote power analysis attack, an attacker has to implement a power 

monitor on the FPGA fabric shared with the victim. For example, the attacker can 

monitor the power consumption of a victim process by using time-to-digital converter 

(TDC) sensors. Using the power traces collected by the on-chip power monitors, the 

attacker can perform a power side-channel attack. 

3.5.2.3 Attack Method 

A key component in the attack is the power distribution network (PDN) on FPGA chips. 

The PDN handles the distribution of power to all the components on the FPGA [38]. 

The PDN spans across different abstraction levels, from printed circuit board level to 

individual transistors on the FPGA. The PDN consists of resistive, capacitive, and 

inductive elements in the form of a power mesh. The power consumption of an FPGA 

chip at any instant depends on the logic that is being operated at that time. The 
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changes in logic values affect the voltage and current drawn by the transistors in 

FPGA. These voltage fluctuations affect the delays of the other logic circuits 

implemented on the same FPGA due to the shared PDN. Hence, measuring delays in 

one part of the FPGA reveals information about power consumption in a different part 

of the FPGA. In particular, the higher the fluctuations in the voltage, the higher is the 

change in the delays. So, the attacker can monitor the power fluctuations on the FPGA 

by implementing appropriate delay sensors. To this end, the attacker can implement 

a TDC on the shared FPGA as a delay sensor [37]. As the delays of the buffers in the 

TDC depend on the supply voltage, the change in delays can be monitored as a proxy 

for voltage fluctuations. When a victim process becomes active in a different region of 

a multi-tenant FPGA, it disturbs the PDN. This results in a change in the delay values 

of the TDC sensor. Thus, the attacker can create a mapping between the power traces 

and the delay values. This mapping can then be used to perform a standard 

Correlation Power Analysis (CPA) attack. Such an attack was demonstrated in [37]. 

The proof of concept for this attack was demonstrated on a victim AES core operating 

at 24MHz on a Xilinx Spartan-6 FPGA. Two scenarios were considered: (1) when the 

sensor is placed close to the victim AES logic, with a gap of just 4 FPGA slices, and 

(2) when the sensor is placed far from the AES core. In both cases, the attacker can 

recover the AES key. 

3.5.2.4 Attacking the Processor System 

In an FPGA+CPU heterogeneous chip, like a Xilinx Zynq system, an ARM processor 

system (PS) shares the PDN with the FPGA fabric (programmable logic or PL). Zhao 

et al. demonstrated an attack that uses the PL to monitor the power consumption of 

the PS [25]. By doing so, they recovered the control flow of the program in the PS. 

This vulnerability made a simple power analysis on RSA possible. Similarly, an FPGA-

to-processor correlation power analysis has been demonstrated in [39]. The authors 

used a TDC on the FPGA to measure the power traces of the processor. Using that, 

they attacked an AES core running on the processor with 111k to 127k power traces.  

3.5.2.5 Experiments on Amazon Clouds 

In DATE’20, Glamocanin et al. published their results on launching remote power side-

channel attacks on AWS EC2 F1 instances [40]. They chose to use TDC sensors for 

measuring power consumption on a cloud FPGA, and the results showed that they 
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could successfully break the secret keys of all 16 bytes of an open-source AES-128 

core with 5 × 105 traces. This result validated the feasibility of remote power side-

channel attacks on a commercial cloud platform, so this research area raises serious 

concerns.  

3.6 Trojan Countermeasures 

Hardware Trojan detection techniques in the literature can be classified into two 

categories: invasive and non-invasive. Invasive techniques require some modification 

to the original design to aid in fingerprinting the IC and to verify the authenticity after 

fabrication. A few examples include ring oscillator-based design-for-trust, IC 

camouflaging, and logic encryption [41, 42].  

FPGAs consist of a massive amount of programmable components, and invasive 

techniques would require additional gates or hardware for each of these 

programmable components. Thus, invasive techniques are not feasible for FPGAs as 

this would lead to exponential silicon area overhead. Moreover, physical reverse 

engineering techniques can be used to test a small number of ICs, but do not 

guarantee that the remaining ICs are free from malicious modifications. 

Non-invasive techniques, on the other hand, do not modify the original design. Instead, 

a fingerprint of power, timing delay, and/or other side channels of a golden design, in 

combination with functional testing, are used. Most of the techniques in this category 

use statistical analysis to distinguish a malicious chip from a genuine one. 

There are only a handful of works that detect hardware Trojans in the FPGA fabric [43, 

44, 45].  

3.6.1 Hardware Trojan Tolerance Using Modular Redundancy 

A triple modular redundancy (TMR)-based technique is used to create a Trojan 

tolerant design methodology in [44]. TMR is a renowned fault mitigation methodology 

used to mask circuit faults wherein three redundant copies of the original system 

perform a process, and the result is processed by a majority voting system to produce 

a single output. Any single fault in one of the redundant modules will not lead to an 

error at the output as the majority voter selects the result from the two faultless 

modules. TMR, however, leads to 3 area and power overhead. To reduce the 
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overhead, adapted TMR (ATMR) is proposed where only two modules are used at a 

time, and the third module is employed only when there is a mismatch in the results of 

two active modules. An arbiter is used to identify the erroneous module. The 

experimental results show a 1.5 x reduction in power by using ATMR with negligible 

performance and hardware overhead when compared to TMR. 

3.6.2 FPGA TrustFuzion 

The FPGA TrustFuzion (FTZ) security mechanism is a non- destructive methodology 

to detect and isolate anomalies such as Trojans in the FPGA fabric. The authors use 

the term anomalies to indicate the presence of Trojans and reliability problems in 

FPGA fabric. Anomalies are detected based on the violation to the spatial correlation 

of intra-die PV in the FPGA fabric. These anomalies are then isolated such that any 

designs can run reliably even on a Trojan-infected FPGA chip. FTZ is based on the 

observation that physical characteristics of FPGA fabric’s intra-die process variation 

(PV) display a huge amount of spatial correlation [46, 47, 48]. 

Anomalies are detected based on the spatial correlation violations. The device 

locations with anomalies are isolated and excluded from being used in the designs 

targeting the FPGA device with anomalies. The FPGA is then divided into different 

zones accounting for the exclusion of locations with anomalies. These FPGA areas 

are called TrustFuzion zones. 

3.7 Summary 

In the last decade, the use of FPGAs has increased significantly and has been 

employed in various applications including mission critical systems and cloud services. 

Studying the threat landscape for FPGA is critical not only from security perspective 

alone but also to evaluate it alongside FPGA’s overall health. This chapter has 

identified different FPGA Trojans that can be inserted at various phases of FPGA life 

cycle. Most research on FPGA security emulates Trojan on FPGA while trusting the 

FPGA fabric. Trojans can be inserted in even FPGA fabric, similar to any other type of 

ICs/ASICs. FPGA fabric Trojans that can be inserted by an untrusted foundry and a 

malicious actor in the supply chain in literature are identified, and the taxonomy is 

introduced. The bitstream files and the designs in HDL format can also be corrupted 

with Trojans. A comprehensive FPGA attack scenario has been presented using cloud 
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FPGAs case study. It provides an in-depth knowledge of the current and future nature 

of threats and challenges to FPGA security, which in turn, impacts the reliability and 

hence, FPGA’s health.  

This chapter also discussed the countermeasures proposed in the literature. Only a 

couple of techniques exist to verify the physical fabric of FPGA for hardware Trojan. 

Trojans present in physical FPGA fabric could be detected by accounting for spatially 

correlated intra-die process variations. The intra-die process variation based approach 

can identify anomalies contributing to delay or voltage change by locating inconsistent 

physical characteristics from the ones in close-by regions. Comprehensive work on 

malicious modification effects can be done by designing and simulating layout without 

and with anomalies. This would give a better insight into anomaly characteristics and 

would potentially aid in indicating the precise type of anomaly inserted into the FPGA 

fabric. However, many of the design details remain proprietary information and are not 

available to researchers, thus impeding the research. 
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4 FREQUENCY DEGRADATION (FRED) DETECTION AND 
MEASUREMENT SENSOR 

This chapter is built on the requirements emanating from the realms of FPGA reliability 

and security, as discussed in Chapter 2. Divided into six sections, as shown in Figure 

4-1, the Section-1 gives an overview of the various factors that essentialise and justify 

the requirement of highly efficient and accurate on-chip sensors to monitor its health 

and performance. Section-2 provides a deep insight into the current research on 

capturing frequency/delay variability in VLSI circuits. In Section-3, the design and 

implementation of the FRED sensor in a 28 nm process technology is elaborated. 

Section-4 provides simulation and real-time experimentation alongwith results 

whereas Section-5 gives  performance evaluation of the proposed sensor with the 

recommendation for the most optimal sensor configuration. The chapter is 

summarized and concluded in Section-6. 

4.1 Introduction 

The requirement for higher reliability, optimal timing performance, and lower power 

consumption have remained the focal point of the manufacturers of VLSI devices such 

as the FPGAs. Due to the continual miniaturisation of transistor technology [1], as 

Figure 4-1 The Disposition of Chapter 4. 
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shown in Figure 4-2, there is an increased probability of aggravation in degradation 

mechanisms (NBTI/PBTI, HCI, and EM) [2], and ease of accessibility for side-channel 

analysis of electrical and acoustic parameters. Where it increasingly impacts FPGA 

reliability, it also makes it vulnerable to hardware attacks, particularly in the wake of 

growing cybersecurity threats and enhanced knowledge as well as skills of individuals 

working toward infiltrating the hardware base of computational systems. This may lead 

to a gradual build-up of various types of malicious and stealthy electronic circuitries 

and codes (hardware Trojans) inserted into FPGAs’ fabric during their pre and post-

fabrication periods. Leveraging the degradation mechanisms of ageing, observable 

with delay degradation due to abrupt changes in CMOS circuits’ electrical behaviour 

under high-stress environment, the reliable and secure functioning of emerging 

industrial IoT, cyber-physical, and autonomous systems are highly likely to be 

jeopardized and severely challenged. It is, therefore, essential to identify, monitor, and 

precisely measure electrical parameters of the CMOS base for an unbiased 

characterisation of the ageing phenomenon in FPGAs, thereby ensuring an effective 

regime of reliability and security.  

Especially, the key FPGA performance parameters of frequency and delay must be 

observed to ensure unhindered functioning of applications built using FPGA primitives. 

It is well known that the frequency and the corresponding delay degradation in 

transistors are the function of ageing induced by the degradation mechanisms of 

Figure 4-2 VLSI Ageing Vs Technology miniaturisation [2].  
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negative bias temperature instability (NBTI) and positive bias temperature instability 

(PBTI) among other significant phenomena such as hot carrier injection (HCI) and 

electromigration (EM). 

Several questions warrant attention to understand and interpret the detection and 

measurement of ageing fully at the outset. For instance, how the degradation 

mechanisms of N/PBTI impact the CMOS devices with high-K dielectric? Is it possible 

to detect minor shifts in N/PFETs parameters such as threshold voltage, and how do 

they relate to frequency degradation/delay variability in an FPGA? Are the ring 

oscillator-based on-chip sensors a viable option to improve the detectability of minute 

parametric shifts in frequency, delays, and hence the device ageing to impair hardware 

Trojans? We have attempted to seek answers to these questions in the following 

sections.  

4.2 Current Research on Frequency/Delay Variability Detection 

Despite the best efforts of the manufacturers, no two FPGAs exhibit the same 

parametric behaviour. Delay variations, in particular, impact them at the time of 

manufacturing and throughout their operating lifetime. Three primary sources of delay 

variations identified as physical, environmental, and temporal variabilities act as 

catalysts in different FPGA applications. The physical variability relates to the process 

variation, which is primarily the parametric variation of components in an FPGA due 

to the variability (inconsistencies) in fabrication processes. It accounts for as much as 

± 15% of delay variation at the instance of manufacturing [3]. Environmental variability 

implies fluctuations in supply voltage, thermal coupling, clock jitter [4], and crosstalk 

that causes uncertain or unexpected delays. Whereas, temporal variability includes 

the degradation mechanisms of BTI, HCI, and TDDB. BTI, in particular, causes shifts 

in the threshold voltage of N/PFETs that result in a gradual deterioration in switching 

performance with more than 20% reduction in the circuit operating speed of 65 nm 

technology nodes [3]. 

Various delay quantification methods and circuits have been put forth. Ring Oscillators 

(ROs),  for instance, besides being employed for characterising the impact of the intra-

die process, temperature, and voltage variations, are commonly used to infer delays 

[5] and [6]. Nevertheless, they are prone to self-heating due to their free-running states 
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and dynamic power dissipation. As a result, it becomes onerous to distinguish the 

difference in propagation delay between the rising and falling edges of the signal.   

Time to Digital Converters (TDCs) have been used for precise delay measurements 

of the components they are made up of, such as registers and buffers (as delay 

elements), followed by digitization. Different types of delay elements such as Tapped 

Delay Lines [7] and Vernier Delay Lines [8] provide improved delay measurement 

resolution for TDCs. They, however, struggle to maintain identical skew for the start 

and end signals, which is essentially required to cancel out the asymmetric effect. 

Degradation in logic applications has also been inferred by manipulating their 

repeatability through Tunable Replica Circuits (TRCs). These circuits are excited with 

either worst-case stress data for degradation, or with vectors from the application logic. 

The overall performance is then monitored by employing TDC (Time to Digital 

Converters) or timing error detection circuitry [9]. The dominant source of degradation, 

such as N/PBTI, is usually tapped for constructing the worst-case data [10]. The 

accuracy of such a degradation inference is not well ascertained and explored [11]. 

However, combined with measurement technologies, TRCs can infer degradation 

more effectively, in addition to the quantification of intra-die process variation, junction 

temperature, and voltage variability [12]. This is because the circuit is designed to 

behave in a similar fashion to the critical paths in the application circuit so that its timing 

can be used to infer timing performance. Inference is enhanced by combining TRCs 

with error recovery [10]  that allows response to fast-changing variations.    

In addition, unlike canary circuits [13], for instance, TRC does not need to fail with a 

prescribed margin before the critical path fails. Instead, when the TRC reports an error, 

it is assumed that the critical path contains erroneous data as well, and error recovery 

is initiated. However, the main drawbacks, as compared to error-detection circuits [14-

16]  are the lack of ability to respond to within-die variations (thus requiring a small 

within-die margin), and the necessity of tuning the TRC at test time. 

 An extensive application of frequency sweep based techniques that introduce timing 

failure in the circuit to measure delay variations is also proven suitable for signature 

analysis, failure rate detection, and transition probability. Timing measurement 

employing signature analysis implies that a functional application configured to remain 

in the same state, when pulsed with the same input signals, will yield the same output 
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[17]. Subsequently, the output of the circuit under test is analysed either by generating 

a signature or by storing the vectors in a designated memory. An example is the 

Multiple-Input Signature Register (MISR) [18], which is used to generate signatures, 

internally or externally to the device. It improves the time consumed in measurement 

and simplifies the comparison for each output value. Similarly, a Linear-Feedback-

Shift-Register (LFSR) is also shown to be suitable owing to its deterministic response, 

which helps produce the same input, if initialized with the same signal. On the other 

hand, in the case of transition probability, the circuit under test is stimulated with 

different input vectors while the clock frequency is gradually increased. For each 

frequency, the output transition probability is logged in the accumulator from which the 

circuit delay is determined by exploiting the clock jitter and the asymmetry between 

the rising and falling delays. The circuit delay measurement based on this method 

offers high accuracy with lower overheads [19]. 

In addition to the above, shadow registers have been employed to monitor circuits for 

timing failure, however, not strictly the timing measurement. For instance, failure 

prediction [20] has been used to provide a warning in case of the violation of a pre-

defined guard-band, thereby indicating an impending timing failure. Primarily, the 

shadow registers are made timing-critical as compared to the register they shadow, to 

initiate timing failure much earlier with the increase in circuit delay. The shadow 

register shares both the clock signal and the D-input from the main register but with 

an additional delay in the path of the D-input. It results in the shadow register being 

more timing-sensitive than the main, resultantly triggering timing failure much earlier. 

Researchers [21], [22] have also proposed to enhance the performance of such 

monitoring circuits by advancing the clock signals to the shadow registers for pre-

emptive latching and gradually increasing guard-bands to retrieve the higher amount 

of delay information. Presumably, such an arrangement may be less susceptible to 

process variations and helps enhance the probability of detection. 

In [5], a flip flop named ‘Razor’ is proposed for the detection and response to the 

occurrence of timing errors. It is the main pipeline register that is configured to trigger 

at the rising edge and is augmented with a shadow register that samples on the falling 

edge of the clock. Such configuration provides additional time for the shadow register 

to capture the correct state of the signal. The Razor flags an error as the two registers 

latch different data, indicating that a timing violation has occurred in the main register. 
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This raises issues like metastability, which makes it hard to find a correct latched value. 

However, in improved designs, a metastability detector is introduced to mitigate such 

risks of metastability. The detector is implemented and used in the comparator circuitry 

to detect metastability and effect correction further. Researchers have observed that 

the timing faults due to all kinds of delay variability are detectable. It is, however, 

opined that the introduction and detection of timing errors make this circuit design non-

deterministic and hence not viable for tightly coupled and hard real-time constraints-

based systems. 

The evaluation of the abovementioned methods and circuits for the detection and 

measurement of delay variability and degradation reveals several significant points. 

The sensors based on ring oscillators, for example, provide simple circuits that are 

manufactured on test chips, however, their vulnerability to self-heating and averaged 

rise and fall times, make TDCs a more viable choice. Though slightly more 

complicated, TDCs such as Tapped Delay Lines are not affected by these issues. At 

the same time, optimal thermal and power management of RO structures can help 

overcome the problems mentioned above.  

Establishing the timing performance of a VLSI device, under different operating 

conditions and at the design corners, is key to the differentiation between a healthy 

and faulty (hardware Trojan-infected) chip. Signature analysis and Transition 

Probability (TP) are suitable as non-invasive methods for this purpose, with TP being 

more capable of achieving it with lower overhead and quick measurement time.  

This points to the requirement of sensing circuits and methods which can directly 

measure the impact of frequency/delay variability on an application circuit itself, 

accounting for the process, environmental and temporal variabilities, with a precise 

inference of how the behaviour of a circuit elsewhere on the die applies to the 

application circuit. It should be accomplished without affecting the normal functioning 

of the circuit and observing gradual changes in the delay of the circuit for the signs of 

timing failure which has occurred or is impending. It is achievable by combining the 

strengths of frequency sweep and shadow register-based timing measurement 

schemes into a novel ring oscillator architecture to detect delay variability in an FPGA. 
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4.3 FREquency Degradation (FRED) Detection Sensor – Architecture  

A lightweight sensor based on ring oscillators, called FRED sensor, is presented in 

this section. It is designed to help detect minute frequency/delay variations under 

nominal and accelerated negative and positive bias temperature instability (N/PBTI) 

degradation/ageing mechanisms in high-K dielectric material technology nodes, such 

as the target 28 nm FPGAs. Before delving deep into the sensor design and 

implementation, a brief analysis and understanding of ageing/degradation 

mechanisms are essential, as they form the basis of the design for this novel sensor. 

4.3.1 Degradation Mechanisms and Device Ageing 

During the functional mode of an FPGA, the transistors tend to age primarily due to 

N/PBTI and HCI degradation mechanisms. This work, however, is focused on N/PBTI. 

Essentially, N/PBTI acts as a catalyst to ageing accompanied by frequency shifts, 

timing issues, and propagation delays. There are primarily two main models that 

explain the BTI mechanisms, namely the Reaction-Diffusion (RD) and Trapping-De-

trapping (TD) models. According to the Reaction-Diffusion (RD) model, BTI sets in 

with the generation of interface traps due to the prolonged duration of the 

negative/positive bias and high-temperature stresses on PMOS/NMOS transistors. In 

the case of negative bias temperature instability (NBTI), the ‘Reaction’ process occurs 

with the ON state of the PMOS transistor during which the covalent bond of ‘Si-H’ 

Figure 4-3 Depiction of BTI Mechanisms. (a) Reaction-Diffusion (RD) Mechanism. (b) 
Trapping-Detrapping (TD) Mechanism. 
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disintegrates at the interface of Si-oxide /Si-crystal lattice boundary. The disbanded 

hydrogen atoms combine to create H2, thereby resulting in diffusion at the gate of the 

transistor, as shown in Figure 4-3(a). These disintegrated ‘Si-H’ bonds generate 

positively charged traps (called holes) that cause a negative shift in threshold voltage 

Vth. This, in turn, results in reduced transistor current and increased gate voltage. As 

soon as the PMOS transistor switches to an OFF state (Vgs = 0), with stress removed, 

the recovery process is initiated, and H diffuses back to anneal the disintegrated ‘Si-

H’ bonds that leads to the reduced number of interface traps and a passive recovery 

from NBTI degradation.  

In Trapping – DeTrapping (TD) model [23] when the PMOS transistor is in the ON 

state, modulation of trap energy, relative to Fermi energy level, is initiated  

(Figure 4-3(b)). As a result, the trap generated may gain energy high enough to 

capture a charge carrier. It reduces the number of carriers in the channel and 

modulates the threshold voltage, ultimately causing scattering  and reduced mobility. 

This whole process is termed as ‘Trapping.’ Whereas during the OFF state of the 

PMOS transistor, some of the traps undergo the annealing process, similar to the RD 

model, and build up an equilibrium, thereby helping the transistor achieve partial 

recovery. 

Although the impact of PBTI has been insignificant in previous technologies above 40 

nm, it has now become the source of a significant shift in threshold voltage alongside 

NBTI in NMOS transistors, primarily due to the introduction of high k-dielectrics [24]. 

Figure 4-4 Dynamic BTI behaviour modelling based on TD mechanism. Net 
increase in threshold voltage Vth is observed despite passive recovery.   
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It is, therefore, a common practise to model the impact of the PBTI effect similar to the 

NBTI degradation mechanism.  

Based on the TD model, it is inferred that the Vth of P/NFETs increases logarithmically. 

The overall dynamic BTI behaviour can, therefore, be shown as in Figure 4-4. 

Mathematically, if at time t = 0,  the transistor is switched ON with no application of 

voltage stress, the threshold voltage shift ∆Vth until the application of stress at time tst 

can be expressed as: 

     ∆Vth (tst ) = 𝜑𝜑st (X+log (1+Ytst ))            (4-1) 

 ∆Vth (tst + trec) = 𝜑𝜑rec (X + log(1+Ytrec )) + ∆Vth (tst ) ( 1- (𝑋𝑋+𝑙𝑙𝑙𝑙𝑙𝑙(1+𝑌𝑌𝑌𝑌𝑟𝑟𝑟𝑟𝑟𝑟 )
(𝑋𝑋+𝑙𝑙𝑙𝑙𝑙𝑙(1+𝑌𝑌 (𝑡𝑡𝑠𝑠𝑠𝑠 + 𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟))

 )       (4-2) 

      𝜑𝜑 ~ 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾(− 𝐸𝐸
𝑘𝑘𝑘𝑘

 )𝑒𝑒𝑒𝑒𝑒𝑒(𝑍𝑍𝑍𝑍𝑑𝑑𝑑𝑑𝑑𝑑/𝑟𝑟

𝑘𝑘𝑘𝑘𝑡𝑡𝑜𝑜𝑜𝑜
)            (4-3) 

where, X, Y, and Z are constants (with negligible variation) across the same 

technology node, 𝝋𝝋 is the main variation parameter (function of T and Vdds / Vddr ), K 

represents the fitting parameter, E is the activation energy, tox is the oxide thickness, 

k is the Boltzmann’s constant, T is the temperature, and Vdds and Vddr represent the 

supply voltages under the stress and recovery conditions, respectively. This VLSI 

device level BTI model reflects the strong dependence of the Vth shift on the voltage 

and temperature during the stress as well as recovery modes with an eventual impact 

on the device ageing in terms of increased delays. This forms the basis of our sensor 

design and subsequent highly accelerated stress and life tests to validate its 

performance. 
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4.3.2 The Sensor Architecture 

A detailed architecture of a novel ring oscillator-based FRED sensor is shown in Figure 

4-5. As mentioned earlier, the main purpose of developing this sensor is to enable 

high-sensitivity as well as specificity to swiftly and correctly detect changes in 

frequency and corresponding delays that originate and increase with variations in the 

electrical parameters of the CMOS transistors under the influence of N/PBTI 

degradation mechanisms exacerbated by the presence and impact of the hardware 

Trojan attack. 

4.3.2.1 Design Considerations and Objectives 

In order to achieve the stated purpose, few essential design considerations cum 

objectives have been devised. These include 1) the ageing rate of the sensor must be 

very high to pick up a hardware Trojan based on threshold voltage shifts, occurring 

with the initiation of N/PBTI mechanism, 2) the sensor must not undergo any ageing 

during the fabrication/manufacturing testing phases (this requires operation 

management -when to switch on and off), 3) the impact of process variations on the 

Figure 4-5 The Architecture of FREquency Degradation (FRED) Detection and 
Measurement Sensor. 
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sensor must be negligible; and 4) finally, the sensor, itself, must also be resilient to 

malicious attacks. 

Here, it is important to note that the incremental shifts in threshold voltages of 

N/PFETs, due to prolonged positive/negative bias and high junction temperatures in 

FPGAs or sudden bursts of hotspots and high bias, inflict the frequency 

degradation/lowering in ring oscillators, which in turn, causes path delays and hence 

point at the onset of ageing. Accordingly, the FRED sensor skeleton, shown in  

Figure 4-5, is architectured to have dual-sensor segments – the Fixed Sensor 
Segment (FSS) and the Dynamic Sensor Segment (DSS).  

The Dynamic Sensor Segment (DSS) is designed to experience bias and thermal 

stresses at accelerated rates for rapid ageing. This is made possible by employing 

gates having high threshold voltage, with the overall purpose of enabling faster and 

more accurate identification of any malicious anomaly. The Fixed Sensor Segment 

(FSS), on the other hand, is a minimum-stressed array of gates and is used to provide 

frequency reference for comparison with DSS to determine delays. FSS is, therefore, 

gated off from the power line during the time the FPGA is in functional mode to 

experience minimum stress. The frequency difference between these two segments 

is then used to detect the presence of a hardware Trojan that sheds its payload due 

to shifts in the threshold voltages of CMOS transistors. The larger the frequency 
difference is, the higher the probability of the presence of a malicious anomaly, 
manifested as a path/propagation delay. 

However, the presence of intra-die process variations could affect the accuracy of 

anomaly detection and identification. We have made an effort to address this concern 

by placing the proposed sensor segments close to each other. It is further 

strengthened with an effective statistical analysis that differentiates the frequency 

degradation due to threshold voltage shifts from other intra-die process variations. The 

simulation and experimental results presented in the ensuing paragraphs support this 

analytical process. 

4.3.2.2 The Sensor Operation 

Having discussed the main structural components of DSS and FSS, the complete 

operational circuitry of the FRED sensor is presented herein. As shown in Figure 4-5, 

in addition to the RO-based segments, the sensor consists of the auxiliary elements, 



102 

namely, the control module, a multiplexer, and a counter. The counter is designed to 

measure the cycle counts of both RO-based sensor segments at predefined timings, 

given and controlled by the timer. However, because of the possible measurement 

period variability due to the circuit ageing, the system clock is employed in the timer 

to counter and minimize the extent of variation. The multiplexer selects between the 

two segments to enable their frequency measurement, which is, in turn, controlled by 

the SEGSEL (Segment Select) signal. The FSS (Fixed Sensor Segment) and DSS 

(Dynamic Sensor Segment) have the same configuration of ring oscillators (number 

and type of gates), with the underlined CMOS transistors having high threshold voltage 

(HVth ). Both sensor segments are, therefore, developed with 21-stage (smaller 

configuration) NAND gates, keeping in view the counter’s measurement speed 

limitation for the given 28 nm FPGA technology. In this case, a 16-bit counter is 

optimized to operate at the frequency of up to 1GHz. Hence, the NAND-based RO 

segments are implemented in a 21-stage configuration. The rationale behind this type 

and stage configuration is explained in Section 4.3.2.2.2. 

In order to connect the FSS and DSS segments to the power supply, sleep transistors 

(shown in Figure 4-5) are used such that PMOS sleep transistors act as the header 

switches and control the supply connection between the VDD and the sensor segments. 

NMOS sleep transistors, on the other hand, act as the footer switches and control the 

supply connection between the sensor segments and the VSS.  

4.3.2.2.1 Modes of Operation 

Two modes of operation, namely ‘the functional mode’ and ‘the detection mode,’ 

have been devised for the FRED sensor. These modes are executed through the 

control module by different mode signals as delineated below: 

• When the FPGA is in functional mode, the fixed sensor segment (FSS) is kept 

disconnected from VDD and VSS. The dynamic sensor segment (DSS) is gated 

ON and exposed to stresses. Consequently, the frequency of DSS will degrade 

gradually with shifts in threshold voltages of N/PFETs. The delays are eventually 

detected as traces of ageing.  

• When the FPGA is in detection mode, both the segments are gated ON by 

connecting them to the power supply. DSS will experience a gradual as well as 
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sudden frequency degradation (for instance, with the activation of hardware 

Trojan) at a much higher rate as compared with FSS. 

The timer and counter are enabled to measure the cycle counts of sensor segments 

(FSS and DSS). Accordingly, the SEGSEL (Segment Select) signal is generated to 

select the segment whose frequency needs to be measured. It is pertinent to note that 

during the detection mode, the applications running on FPGA are turned off by the 

mode signals for a very short period. The modes of operation are designed to ensure 

that the frequency difference between the FSS and DSS sensor segments is detected 

precisely with each increment over time as the FSS (Fixed Sensor Segment) cannot 

be gated ON in isolation. Also, in the normal functional mode, as the FSS is kept 

isolated from the power supply, it is extremely challenging for an adversary or a rogue 

element to observe its presence or for that matter, change its mode to delays cum 

ageing detection. The only method that could enable the modification or disabling of 

the FRED sensor would be the bitstream reverse engineering process [25], which 

again is quite cumbersome and unreliable. It is, therefore, very difficult for the 
rogue element to detect, modify, or damage the sensor. 

As is evident from Figure 4-5, the NAND gates (when replaced with inverters) of the 

FSS and DSS segments are placed physically next to each other as a small composite 

module. This helps in reducing the process and environmental variations between 

them to a considerable extent. It is, therefore, assumed that the frequency difference 

between the FSS and DSS segments would be negligible for the malicious anomaly-

free FPGA. However, this may not be true in the case of the normal functional mode 

of the FPGA when it is kept in operation for a longer duration. The dynamic sensor 

segment (DSS) may have suffered delay degradation and hence age from its own 

oscillations, whereas the fixed sensor segment (FSS) remains unaffected as it is gated 

OFF during the normal functional mode. 

The FRED sensor presents a small area overhead (explained in Section-4.5.2) with 

no constraint on the circuit layout and is designed to be robust against any removal 

and tampering attempts by rogue elements. Moreover, we have devised two working 

modes of the sensor to ensure that the Fixed Sensor Segment is not gated on its own 

and eventually prevent the integrity of the measured frequency difference between the 

two sensor segments (FSS and DSS) from being modified to mask detection.    
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4.3.2.2.2 Rationale for 21-NAND Gate based RO Configuration 

The selection of NAND gate with HVth  (0.46 – 0.85 Volts) is based on the simulation 

results, shown in Figure 4-6(a) and (b). The chains comprise a configuration of 5, 9, 

21, and 31 NAND gates with SVth  (Standard threshold voltage – 0.46V), HVth  (High 

threshold voltage – 0.85V), and LVth (Low threshold voltage < 0.46V ) ranges. The 

NAND chains are exposed to high clock stress for an uninterrupted period of 27 

months. The response is captured in Figure 4-6(a). It is observed that there is a 

considerable effect of the clock stress on the degradation of NAND chains. This  

implies that the number of NAND gates does influence the level of degradation, 

despite the fact that they experience the same amount of stress. It, ultimately, results 

in a modest rate of delay degradation. 

Taking into account the threshold voltage parameter, the NAND chains comprising 

different NAND sizes are simulated using all the three ranges, i.e., SVth , HVth, and 

LVth. It is observed that the chain of NAND gates with HVth undergoes a higher level 

of degradation as compared to the chain with LVth or SVth. For instance, as shown in 

Figure 4-6(b), the NAND-21 with HVth  has a more pronounced degradation than the 

NAND-21 chain with SVth.  

In the search for the most effective configuration for FRED sensor segments, NAND 

and NOR gate chains with HVth are also simulated at 25 degrees Celsius and VDD at 

Figure 4-6 Degradation of NAND gate (as Sensor Segment) with (a) different number of 
stages and (b) different threshold voltage levels.  
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1.2V, keeping the clock stress at 500 MHz. The results shown in Figure 4-7 confirm  

that the gate type (same as the number of gates) does present a modest impact on 

the ageing speed. It is obvious that the NAND chain ages relatively faster than the 

others whereas the NOR and the Inverter chains exhibit approximately the same 

percentage of delay degradation. Therefore, in order to develop FRED sensor 

segments, the NAND gates’ chain with HVth is considered viable to conduct further 

simulation tests and verify the sensor’s detectability.  

4.4 Implementation Results and Analysis – Simulation and 
Experiments 

4.4.1 The Sensor Simulation 

Before hardware implementation of the FRED sensor architecture in a 28 nm FPGA, 

a comprehensive simulation test regime is designed to verify its architectural concept. 

For this purpose, the AgeMOS-II model of Cadence Virtuoso RelXpert Reliability 

Simulator is leveraged to investigate the individual as well as the combined effect of 

N/PBTI on the ageing and delay degradation of P/NMOS transistors at the gate level. 

Initially, different numerical sets of NAND gates (9 and 21-stage – an arbitrary 

selection for minimum area and power consumption) with the same capacitive load 

and clock stress at 500 MHz are simulated at 25, 80, and 110 degrees Celsius at a 

nominal voltage of 1.2 V. The DSS is gated ON and subjected to N/PBTI stressing 

Figure 4-7 Degradation pattern of different gate configurations.   
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whereas the FSS is kept gated OFF. In the detection phase however, as mentioned 

earlier, both the segments are gated ON and their frequency differences are measured 

as dictated by the SEGSEL signal. The timer is set for the measurement time of 100 

μs during the simulation process. The frequencies of the FRED sensor segments are 

retrieved from the counter (cycle count/measurement time) as soon as it is clocked by 

the signal from the segment. 

4.4.1.1 Some Analytics – Stage Analysis 

The FRED sensors with 9-stage and 21-stage segments are simulated at 25⁰C, 80⁰C, 

and 110⁰C with the nominal-case (PVa) intra-die process variations, given in  

Table 4-1. Accordingly, 1000 chips are generated using Monte Carlo simulation by 

RelXpert Simulator with the maximum delay variability set at 24% and a 6% step  

progression. As can be seen in Figure 4-8(a), there is a gradual increase in the 

frequency difference fdiff  between the 9-stage fixed and dynamic sensor segments 

(FSS and DSS). A healthy FPGA has a Dvar (Delay Variability) near to 0% with ±1% 

Table 4-1 Process variations profile for inter and intra process variations. 

Figure 4-8  Frequency Difference distribution of the FRED sensor with PVa employing 
(a) 9-Stage Sensor Segments and (b) 21-Stage Sensor Segments.  
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difference depending upon the impact of process variations. It is, therefore, prudent to 

refer to the range of healthy FPGA frequency differences fdiff(h) to compare and 

determine the subsequent Delay variabilities. For instance, at Dvar = 6% the fdiff  

increases to the ranges between 5 and 20 MHz as a result of high bias and thermal 

stresses on the dynamic sensor segment (DSS). It can be seen that even the minimum 

or lowest fdiff  at Dvar = 6% is larger than the largest fdiff(h) observable in the healthy 

FPGA range of frequency differences. This implies that as the Delay variability 

approaches 6%, it is readily detected by the sensor. In other words, the detection rate 

is 100% in this case. Similarly, at Dvar = 12%, 18%, and 24%, the fdiff  increases with 

gradual increase in stresses experienced by DSS. 

The frequency difference fdiff  profile of 21-stage sensor segments, shown in  

Figure 4-8(b), although much smaller as compared to the 9-stage sensor segments, it 

still enables the FRED sensor to detect Dvar with a 100% detection rate. This implies 

that the absolute value of fdiff  between the FSS and DSS sensor segments may be 

affected with larger number of RO-segment stages. Nevertheless, the Dvar detection 

rate is not affected significantly. 

4.4.1.2  Process Variations and Temperature Analysis 

The accurate detection of Delay variability by the sensor is partially dependent on the 

intra-die process variations that may exist between its fixed and dynamic sensor 

segments. For an effective and a reliable performance by the sensor, it is important to 

keep as minimum and small the impact of intra-die variations as possible. Table 4-1 

Figure 4-9  Frequency Difference (fdiff  ) distribution of a 21-Stage FSS and DSS 
segment sensor with: (a) PVb and the temperature of 80⁰C and (b) PVc , and a 

temperature of 110⁰C. 
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shows the different intra-die and inter-die process variations with different impact 

levels starting from PVa to PVc – Best, Typical, and Worst-case. One of the ways to 

minimize the impact of process variations is designing the FRED sensor as a small 

module and then using the hard macro, place the FSS and DSS sensor segments 

physically close to each other. Looking at the simulation results of 1000 chips with 

process variations PVb and PVc in Figures 4-8 (a) and (b) respectively, the fdiff  between 

the sensor segments becomes larger with higher levels of process variations. The Dvar 

detection rate, in this case, with PVb is found to be around 96% for Dvar = 6%. However,  

it goes up to 100% as the Dvar = 12%, 18%, and 24%. Figure 4-9(a) represents the 

frequency difference occurrence rate between the 21-stage FSS and DSS segments 

with PVb and the temperature of 80⁰C. Similarly, Figure 4-9(b) presents the simulation 

results with PVc , and a temperature of 110⁰C. It is observed that fdiff  variations in 

Figure 4-9(a) are comparatively more than those in Figure 4-8(a). In addition to this, it 

is observed that the detection rate of Dvar = 6%  is around 94.5%. However, it goes up 

to 100% as the Delay variability rate increases, thereby, demonstrating that the FRED 

sensor is effective and sensitive even in the presence of worst-case process variations 

and high temperatures. 

In a nutshell, the minor Delay variability that can be 100% detected using the FRED 

sensor, could be slightly different for other technologies. The performance of the  

sensor is liable to be affected by the process variations and high temperature regimes. 

It is deduced that the FRED sensor comprising HVth cells can detect FPGAs suffering 

from minor Delay variability with a 100% detection rate as compared to the sensor with 

LVth cells. 
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4.4.2 The Sensor Implementation and Validation 

A simple frequency measurement process flow is shown in Figure 4-10. for the 

detection of delay variability due to the impact of N/PBTI degradation mechanisms on 

the target 28 nm FPGA technology. 45 

Figure 4-10 A Simplistic Frequency and Delay Measurement Process Flow . 
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In order to establish the validation and effectiveness of the proposed FRED sensor, 

frequency and delay degradation under N/PBTI experiment is conducted under high 

thermal and voltage stress conditions (given Table-4-2) on Xilinx Spartan-7 (28 nm 

process) FPGA having 52,160 logic cells, 32,600 look-up-tables (LUTs), and 65,200  

flip flops (FFs). Using Vivado Design Suite and Verilog, the FRED sensor as described 

in Section 4.3.2 is implemented in such two FPGAs using 8-LUTs (Look Up Tables) 

and 6-FFs (Flip Flops) fabric. This accounts for just 0.018% and 0.009% of the LUT 

and FF resources respectively, available in the target FPGAs. Similarly, the power 

consumption measured using the Vivado Power Estimator and Analyser comes out to 

be 1.5%. For the full spectrum frequency (fmax )mapping of the target FPGAs, the 

Figure 4-11 28nm FPGA Floorplan showing the spread of 18 FRED 
sensors implemented to capture Frequency/Delay shifts under varying 
Thermal and Voltage Stress Conditions. 

Table 4-2  Thermal and Voltage Stress Test Conditions 
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FRED sensors are spread across the FPGA surface as per the floorplan shown in 

Figure 4-11. Two sets of experiments are conducted with one experiment on each of 

the test FPGAs. First experiment comprises the accelerated ageing of the test FPGA- 

1 under a highly stressed temperature of 110⁰C and an elevated voltage of 1.6V for 

the duration of 72 hours. This is conducted on the test FPGA-1 with the FRED sensor 

implemented in 21-stage NAND configuration. The second experiment comprises the 

same test configuration with specific stress test conditions to observe N/PBTI 

behaviour and capture the frequency response in the test FPGA-2.  

4.4.2.1 Experimental Setup 

The auto-test flow has been developed to capture frequency and delay degradations. 

It is shown in Figure 4-12. The test FPGAs are interfaced with the computation system 

– PC through the application development and evaluation boards, namely Xilinx 

Zedboard and Arty-S7 that contain the 7-series Spartan-7 FPGAs/SoC. The 

Application Processor Unit (APU) controls the required peripherals using the ARM 

Figure 4-12 FRED Sensor Experimentation Setup and Auto-Test Flow. 
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AMBA AXI interconnect and also runs the software application in C that fits into the 

36Kb  BRAM and facilitates reading the sensor’s data and decoding them, if required. 

In order to activate the  FRED sensor, the timer IP core is employed to manage the 

duration of FPGA stressing, which is set to be 100 μs. Moreover, it controls the analog 

switch to manage the supply of required voltages to the test FPGAs. The RTL 

descriptions of the FRED sensor are loaded into the test FPGAs using JTAG 

programmer and SPI (Serial Peripheral Interface). The counter outputs are read out 

and saved to the PC through the board interface. Employing this test setup and 

methodology helps achieve the data sampling in < 3s and maintain the integrity of the 

FRED sensor’s validation. 

4.4.2.2 Results and Analysis – Experiment 1 

In this experiment, the FRED sensor is implemented in the test FPGA-1 as per the 

floorplan shown in Figure 4-11. Both the RO-based sensor segments, FSS and DSS, 

are configured as high threshold voltage (HVth ) 9-stage (f = 450 MHz), 21-stage (f = 

300 MHz), and 31-stage (f = 200 MHz) NAND configuration-based ring oscillators. 

With the application of the stress mode of the FRED sensor, the DSS (dynamic sensor 

segment – stressed) segments are enabled and stressed for the duration of 72 hours 

at the junction temperature of 110⁰C (achieved through the thermal chamber) under 

an elevated voltage of 1.6V (provided from an external power supply). The FSS (fixed 

sensor segment – unstressed) segments are kept gated OFF. 
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Upon completion of the stressed period, the detection mode is enabled. Accordingly, 

the FSS and DSS segments are also enabled and ramped down to the room 

temperature (around 20⁰C) and nominal voltage of 1.2V. The results are shown in 

Figure 4-13(a) - (c). The brown bars represent the frequency difference between the 

FSS and DSS segments in each FRED sensor at the time t=0, whereas, the green 

bars are the frequency difference between the sensor segments post 72 hours of 

ageing stress.  

4.4.2.2.1 Analysis 

It can be observed that the mean frequency of the sensor segments in the test FPGA 

is not much different (between 250 – 300 MHz) from the one achieved during the 

simulations. This is, primarily, due to the same number of gates/stages used in the 

Figure 4-13 Frequency Difference Distribution – (a) 9-Stage Sensor Segment – 450MHz. 
(b) 21-Stage Sensor Segment – 300MHz. (c) 31-Stage Sensor Segment – 200MHz. 
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experiment as compared with the simulation. As a result, the detection rate of 

frequency degradation and delay variability remains 100% with the different stage 

configuration of the RO-based sensor segments. The results reveal that the average 

frequency degradation of  9-stage, 21-stage, and 31-stage  DSS segments is 3.2%, 

4.0%, and 3.8% respectively. Also, a comparison of 21-stage (HVth ) and 9- stage (HVth 

) sensor segments shows that the frequency difference gap between the FPGA at t=0 

and t=72 hrs. in 21-stage sensor segments is larger than that in the 9-stage sensor 

segment. This implies that sensor segments, with HVth and larger stage gates’, 

configuration are more effective than the ones with less stages. With respect to the 

detection rates, a further comparison of Figure 4-13(b) – (using 21-stage SS, 

composed of HVth NOR gates) with Figure 4-13(c) - (using 31-stage SS, composed of 

HVth NAND gates) reveals a minor impact on the sensitivity of the FRED sensor, which 

may not be much significant. In addition to this, it is observed that for 9-stage and 21-

stage sensor segments, at t=0, the FSS sensor segments (unstressed) are faster than 

the DSS sensor segments (stressed) in most of the cases except for 31-stage sensor 

segment. This points toward the impact of spatial variations that come into play as the 

segments are not located/placed close to each other. As a result, some RO-based 

sensor segments tend to be more agile than the others. It may be, therefore, prudent 

to place the two sensor segments in a single localized module to minimize the variation 

between them. 

4.4.2.3 Results and Analysis – Experiment 2 

In line with Section on N/PBTI degradation mechanism, we conducted further sensor 

validation tests using the ‘Stress Test Conditions - STC’, given in Table 4-2. The RO-

Figure 4-14 Percent Frequency Degradation with High Temperature. (a) NBTI AC 
Frequency Degradation (%) and (b) PBTI AC Frequency Degradation (%). 
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based sensor segments are stressed at high temperatures of 60⁰C and 110⁰C under 

an AC stress for over 27 hours to observe NBTI and PBTI based AC frequency 

degradation. The results are shown in Figure 4-14(a) and (b). As illustrated in Figure 

4-14(b), PBTI causes a significantly higher frequency degradation as compared to 

NBTI (Figure 4-14(a)), primarily due to the high-k/metal dielectric constituting the 28 

nm technology node. As can be seen, the frequency degradation goes as far as 3% 

at 110⁰C in 27 hours duration for PBTI whereas NBTI causes 1.2% frequency shift. It 

must be noted that we also considered the impact of process variations ‘PVa’, as 

mentioned in Table 4-1 in ascertaining the percent shifts in sensor segments’ 

frequency from fmax = 300 MHz (for 21-stage NAND gate ring oscillator). R2 in the 

Figure 4-14 represents the r-squared value for a linear trendline, implying that the 

nearer it is to 1, the more the linearity. Whereas, Y = 0.0321x + 0.5249 is the equation 

of the linear line transiting through the curve.  

Similarly, the results for ‘Stress Test Conditions’ 2 – 4,  are illustrated in Figures 4-15 

(a) to (e). Figure 4-15(a) is representing the frequency degradation due to the 

cumulative effect of N/PBTI at 80⁰C and 110⁰C under the AC stress over a duration of 

24 hours. It results due to the shifts in threshold voltage of P/NFETs. A frequency shift 

of around 2.3% and 2% is observed at 80⁰C and 110⁰C respectively. This is discussed 

in detail in Chapter-5. Likewise, for the AC and DC stresses at gate stress voltages of 

1.2V, 1.4V, and 1.6 V at a nominal temperature of 25⁰C, we observe the same 
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frequency shift trend with PBTI more prominent in comparison to NBTI for 28 nm 

technology node. 

These experiments were mainly directed to validate the FRED sensor’s frequency 

response to NBTI and PBTI degradation mechanisms. We observed the impact of 

process variations PVa, PVb, and PVc whilst conducting all different tests. By placing 

the two sensor segments (FSS and DSS) in close proximity to each other, we have 

tried to minimize the effect of process variations on the accuracy of frequency 

degradation measurements. However, this needs to be further studied in-depth to 

analyse and categorise their impact from both the spatial and temporal perspective.  

Figure 4-15 (a) AC Frequency Degradation (%) with N/PBTI. (b) PBTI Frequency 
Degradation (%) under AC Stress. (c) NBTI Frequency Degradation (%) under AC  
Stress. (d) NBTI Frequency Degradation (%) under DC Stress. (e) PBTI Frequency 
Degradation (%) under DC Stress. 
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In addition to the above, the implementation of 18 FRED sensor across the entire  

FPGA fabric helped capture the frequency degradation pattern with the conduct of the 

above mentioned experiments, under four different stress conditions. The results are 

illustrated in Figure 4-16. It is evident that N/PBTI mechanism of degradation impacts 

the frequency profile of FRED sensor at high temperature and bias conditions. This 

impacts the delay profile of applications running on the FPGA and with prolonged 

stress durations, the lifetime of the device tends to decrease significantly, marked by 

timing failures.  

4.5 Performance Evaluation of FRED 

In this section, a comparison of the proposed FRED sensor is drawn with some of the 

previously proposed sensors, in terms of the resource utilization and sensitivity.  

4.5.1 Resource Utilization and Sensitivity 

The proposed sensor occupies 8 LUTs (6 for the ring oscillators and 2 for the counter) 

with 21-stage length of the RO-based sensor segments. As is evident from Table 4-3, 

the FRED sensor utlilises modest amount of resources in comparison to other 

Figure 4-16 Frequency Colour Map of 28nm FPGA using FRED 
Sensor Under Stressed Temperature and Bias Conditions.  
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proposed sensors. In addition to the parameter of resource utilization, the most critical 

design and evaluation consideration is the sensitivity (S). It is a measure of the 

variation in the oscillation frequency of the ring oscillator (the sensor segments – FSS 

and DSS)/the counter value with the rise and fall of temperature over a stipulated time 

period or the specified range. Precisely, it is defined as the amount of reduction in RO 

frequency per ⁰C rise in the temperature. Mathematically, 

     S =  Fmax − Fmin
Tmax − Tmin

              (4-4) 

where, 𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚  𝑎𝑎𝑎𝑎𝑎𝑎  𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚 represent the oscillation frequencies of the RO-based sensor 

segments during the time interval at 𝑇𝑇𝑚𝑚𝑚𝑚𝑛𝑛 𝑎𝑎𝑎𝑎𝑎𝑎  𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 temperatures, respectively. In the 

case of the proposed FRED sensor, it has been found to be 165 KHz/⁰C  in the three 

different RO lengths (9, 21, and 31) approximately. Table 4-4 provides a comparison 

of the FRED sensor with other sensor designs. It can be seen that with the continual 

downscaling of transistors’ feature size, the dependency of ring oscillator frequency 

on temperature variation is getting low, thereby reflecting a negative trend for the RO-

based sensor designs. For instance, the authors in [26] have reported 0.11%/ ⁰C 

reduction in the sensitivity of their RO-based design with a 90 nm technology node. 

Similarly, the sensitivity of the RO-based sensor is reduced to 0.032%/⁰C for 65 nm 

technology node [27]. However, the FRED sensor’s dual sensor segment design has  

 

Table 4-3 A Comparison of FRED Sensor with Other Sensor Designs – Resource 
Utilisation  
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enabled an improved sensitivity up to 0.15%/⁰C for a 28 nm technology node. This 

helps detect very small changes in the frequency/delay degradation under nominal as 

well as stressed N/PBTI conditions. 

4.5.2 Area Overhead 

The authors in [28] have suggested a calculation method to determine the area 

overhead as AOH = NS x (ASS + ACounter ), where NS  represents the total number of 

sensors implemented in the FPGA, ASS is the number of LUTs and FFs occupied by 

the RO-based sensor segments, and ACounter represents the number of LUTs and FFs 

utilised by the counter. For the proposed FRED sensor with three different sensor 

segments’ lengths (9, 21, and 31 stages/gates) implemented over the entire FPGA as 

per the floorplan shown in Figure 4-11 gives the figures of 192 units, 384 units, and 

544 units respectively. 

4.5.3 Power Overhead 

The resources occupied by RO-based sensor segments and the counters as well as 

the ROs’ oscillations result in a considerable amount of  power dissipation, that causes 

power overheads. Power overhead (POH )is the differential average power 

consumption by an array of sensors and is calculated as follows: 

    POH = PwithNet – PwithoutNet       

where, PwithNet and PwithoutNet are the average power consumed over the time interval 

t with and without embedding a sensor network in the FPGA, respectively, and are 

calculated using the following equation: 

Table 4-4 A Comparison of FRED Sensor ‘Sensitivity’ with Other Sensor Designs.  
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𝑷𝑷𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘/𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘 

=   
1
𝑡𝑡

 � 𝑃𝑃(𝑡𝑡).𝑑𝑑𝑑𝑑
𝑡𝑡

0
                                                                                               (4 − 5) 

Table 4-5 gives a comparison of power overheads of four different sensor 

configurations with the same number of stages (21). It is evident that the POH in the 

case of both the INV and NAND configuration is not much different. However, there is 

a significant difference between the NAND and NOR configuration of the FRED sensor 

segments. Based upon these performance evaluation metrics, three main aspects of 

the FRED sensor can be summed up as follows: 

•   The Sensor Segment (SS) stage/length: it implies that the longer the RO/SS 

is, 1) the more resources are occupied, and hence the AOH  (Area Overhead) 

increases, 2) the oscillation frequency drops and this decreases the thermal 

and power overheads, 3) the sensitivity reduces and increases frequency/delay 

mapping error.  

•   The Sensor Segment Configuration: it implies the type of combinatorial gates 

used to design the RO-based segment. Every gate has its peculiar oscillation 

profile. In the FRED sensor case, it is found that NAND gates are more sensitive 

as well as area and power efficient when compared to NOR/XOR/INV-gate 

configuration (as elaborated in Section 4.3.2.2.2).   

•   The Number of sensors implemented: the best proposition is to have more 

embedded sensors for enhanced accuracy, wider coverage, and an effective 

and efficient detection of frequency degradation/delay variability across the full 

spectrum of the FPGA fabric. It leads to increased area, power, and thermal 

overheads. On the other hand, if the number of sensors is less, there will be 

Table 4-5 Comparison of the Normalised Area and Power Overheads of Four different 
RO Segment configurations 
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less AOH and POH, however, there may be a compromise on the accuracy of 

detection and measurement coverage. 

4.5.4 Quality Factor 

In order to solve this conundrum, Quality Factor (QF) offers an efficient metric to 

combine the multiple criteria and observe it as a single metric to assess trade-offs 

between the above-mentioned evaluation metrics. Accordingly, the product of AOH  and 

POH is weighed to prove the significant relevance and authenticity of power-delay 

product (PDP) and energy-delay product (EDP) as follows: 

       𝑄𝑄𝑄𝑄 =  1
𝑨𝑨𝑶𝑶𝑶𝑶 × 𝑷𝑷𝑶𝑶𝑶𝑶

             (4-6) 

Therefore, based on the QF metric, the efficiency of the three FRED sensor segments’ 

configurations is determined and shown in Table 4-6. As can be seen, the FRED 

sensor with 21-stage NAND configuration and QF = 4.738 provides the most viable 

sensor segment design to accurately and efficiently detect variations in RO frequency 

and hence, delays particularly under N/PBTI stressed environment.  

4.5.5 Some Limitations 

With the proposed FRED sensor design, it may not be possible to achieve highest 

accuracy, especially in detecting malicious circuit activities that incur minor shifts in 

threshold voltages of N/PFETs. The intensity of these shifts resultantly causes ageing 

followed by the frequency and delay degradation. We observed that only half of the 

gates (inverters/NAND/NOR) in the dynamic sensor segment (DSS - stressed) 

experience N/PBTI stress during one oscillation cycle. As a result, the probability of 

false positives may arise that eventually affects the detection accuracy. However, this 

can be overcome by devising a method whereby all the gates of sensor segments 

Table 4-6 A Normalised Comparison of the Quality Factor of NOR and NAND Sensor 
Segment Configurations for Different Segment Lengths. 
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experience stress during the normal operation. One of the design options could be to 

break the connection of each gate to its prior one and connect them to the ground. 

4.6 Summary 

The FREquency Degradation sensor (FRED) detects and provides a measure of 

decrement in the frequency of its uniquely designed dual delay-line based segments 

with the ageing of FPGA primitives due to the BTI degradation mechanisms. The fixed 

sensor segment (FSS) of FRED is used as a reference with near-zero stress and the 

dynamic sensor segment (DSS) is built to experience high temperature and voltage 

stresses. Configured with variant gate length and types, the sensor outputs an 

accurate measure of the frequency difference between the FSS and DSS segments. 

Due to near-zero stresses on FSS, it is equally good for the calibration of the sensor, 

which helps maintain the measurement accuracy. The simulation and real-time 

experiments under normal and accelerated temperature and voltage conditions 

validate the effectiveness of the sensor in detecting and measuring small to large delay 

variability by observing changes in the frequency difference between the FSS and 

DSS segments.  

With low area and power overheads, high Quality Factor (QF = 4.738) , and sensitivity 

of up to 0.15%/⁰C the FRED is a viable light-weight on-chip sensor option for modern 

FPGAs. Based on its capability to capture FPGA ageing in terms of the frequency and 

delay degradation across the whole FPGA surface, FRED can be considered a good 

candidate for the detection of malicious circuits, called hardware Trojans, that are 

based on the parametric variations (such as threshold voltage) of transistors. 

Taking lead from the FRED sensor, the next chapter builds a complete threat scenario 

and devises an all-encompassing ‘FPGA Security Scheme.’ The limitations of FRED, 

as mentioned in Section 4.5.5, are addressed and is enhanced to cater for minor shifts 

in the threshold voltages of PMOS transistors under the influence of threshold-voltage 

triggered hardware Trojans. 
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5 FPGA SECURITY SCHEME 

This chapter is the mainstay of our research work constructed in-line with the 

integrated FPGA health management (IFHM) framework. The disposition of the 

chapter is depicted in Figure 5-1. Section 1 is an introduction to the threat environment 

FPGAs are exposed to due to the miniaturisation of technology nodes and  

ever-growing cyber and hardware attacks.  Section 2 gives information on the related 

work with a brief critique. Section 3 delineates the FPGA Security Scheme with 

description about the design, simulation, and implementation of Threshold Voltage-

triggered hardware Trojan, ‘HTVth,’ in a 28 nm technology node FPGA. Section 4 

presents the design and implementation of a Threshold Voltage-aware sensor  

(SVth - the hardware Trojan Detector) and discusses various options tested to achieve 

high sensor accuracy. In Section 5, the mitigation technique based on online transistor 

dynamic scaling (auto-resizing) and its correlation with NBTI-induced performance 

degradation are highlighted. Section 6 puts forth the implementation and optimization 

of the HT mitigation scheme and provides its simplistic comparison with some of the 

state-of- the-art reliability and security solutions. And finally, Section 7 summarises the 

chapter. 

Figure 5-1  The Disposition of Chapter 5. 
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5.1 Introduction 

A modern FPGA is not merely an emulator but a hardware accelerator with 

heterogenous hard IP cores, such as complex memory blocks, multiple processors, 

and DSP blocks. Systems on chip (SoC), network on chip (NoC), and adaptive 

compute acceleration platform (ACAP) are the significant performance and functional 

enhancements of FPGAs, that have been made possible due to the continual shrinking 

of transistor sizes down to the scales of 10 nm and below. The performance benefits, 

however, are limited by power and timing closures. Similarly, the geometric structures 

of FPGAs with much less silicon and relatively more oxide and moulding compound 

complicate the heat conduction paths [1]. On the one hand, where it may deteriorate 

the worst-case heat dissipation route, a given power density, on the other hand, 

produces a significant temperature variability [2]. This results in a higher temperature 

for the same amount of power dissipation. It is, therefore, essential to consider thermal 

variation as an on-going challenge for advanced technology nodes alongside the 

associated issues of power and timing closures. 

Looking at the FPGA fabric, we find a mesh of layers comprising a substrate, high-k 

dielectric interfaces, and metal interconnects. Each layer has a varying range of 

thermal conductivity with silicon dioxide sitting at 1.3-0.3W/mK, and copper metal 

interconnects going as high as 400 W/mK [3]. These differences in thermal 

conductivity affect the heat transfer and introduce variations in temperature across the 

FPGA area, thereby creating hotspots as can be seen in Figure 5-2. The resultant 

Figure 5-2  Thermal profile depicting hotspots in an FPGA [4]. 
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increase in temperature and appearance of hotspots across the FPGA surface causes 

non-negligible variations in the timing and power domains of the design [4]. This non-

uniform thermal dissipation aggravates the ageing mechanism of negative bias 

temperature instability (NBTI) and leads to accelerated ageing of the FPGA fabric. 

The NBTI ageing mechanism is dominated by a negative shift in threshold voltage 

(Vth) of pMOSFETs that make up the FPGA, along with nMOSFETs. The change in 

threshold voltage is in response to biasing in the strong inversion region, which causes 

the disintegration of Si-H bonds at the oxide interface due to the presence of holes 

within the pMOS inversion layer, as is evident in Figure 5-3. This bond disintegration 

process creates positively charged interface traps, which, along with new or existing 

traps within the oxide, increases the threshold voltage [5], [6], [7]. 

Undeniably, NBTI is well known to researchers and manufacturers alike as a dominant 

ageing mechanism in all different configurations of integrated circuits (ICs). For 

instance, in the post-IC manufacturing period of 7 to 10 years, accelerated ageing due 

to NBTI has been reported by [5] and [8] as degradation in threshold voltage up to 50 

mV. Speed degradation (of 20%) follows these shifts in threshold voltage and, 

therefore, shows a strong correlation between NBTI prompted delay and threshold 

voltage shift.  

Figure 5-3  NBTI mechanism in a PMOS transistor. 
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 It is important to note that the non-uniformity of NBTI (due to different thermal 

conductivity patterns) across the chip surface affects various blocks within the FPGA 

differently. As a result, the delay variations induced by NBTI, across the FPGA surface, 

could potentially generate new critical paths, which, in turn, may prevent an efficient 

and balanced timing closure [9]. In the case of data paths, for instance, an increase in 

gate delays causes a late transition of an input signal at the flip-flop. Such varying 

transitions violate the flip-flop setup and hold time that eventually results in the 

sampling of flawed values at the output of the data path. 

These variations, apart from being the primary source of FPGA reliability concerns, 

also affect the integrity of logic applications and aggravate to levels that may lead to 

system failures. More alarming is the hardware security threat that can leverage the 

dwindling reliability of an FPGA device under NBTI influence. It can jeopardise FPGA’s 

optimal performance with the insertion of malicious and stealthy circuitry, called 

hardware Trojan – designed by exploiting stochastic and systematic variation patterns 

that exist within the FPGA. 

The exacerbation of NBTI, owing to the continual transistor miniaturization, is fast 

becoming a major donor of the process of ageing in downscaled technology nodes. It 

poses a challenge for the proponents of high FPGA reliability and performance to 

understand the dynamics of NBTI in designing a hardware Trojan, initially, from an 

intruder’s (a rogue element) perspective and lately by designing a threshold voltage-

aware sensor for its detection, followed by an effective mitigation methodology from 

security assurance and defender’s perspective. 

In other words, it implies the development of an FPGA Security Scheme (Figure 5-

4), which assumes that an intruder is capable of capturing and analysing the shifts in 

threshold voltage of pMOSFETs (that result in lowering the frequency, signal path 

delay variations, and flawed transitions) due to the NBTI effect. If successful, the 

intruder may design and insert a stealthy malicious circuit (called hardware Trojan) 

inside the FPGA. With sufficient parametric information and precise monitoring, the 

intruder may capitalize NBTI ageing mechanism to activate a dormant hardware 

Trojan. This is further elaborated in the threat model described in Section-2. 
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It is well established that the detection of such hardware Trojans is difficult using 

testing techniques like built-in self-test (BIST) because no test vector can activate an 

ageing effect [10]. The process of accelerated stress and ageing test on the affected 

node may, however, reveal such Trojans. On the contrary, the process, when 

performed on a complete integrated circuit, is time and cost-intensive [11]. 

In this chapter, we direct the FPGA security scheme, shown in Figure 5-4, towards the 

design and implementation of a threshold voltage-triggered hardware Trojan in a lower 

technology node (28 nm FPGA). A degradation in the drain current, oscillation 

frequency, and the subsequent increase in the response time (due to shift in threshold 

voltage) of the 28 nm FPGA is observed through a novel sensor. An effort is also made 

to mitigate the impact of a hardware Trojan by introducing a method of compensation 

that enhances the current flow and lowers the rise in delay due to NBTI. This includes 

an online transistor dynamic scaling (OTDS) approach as a mitigation methodology to 

counter hardware Trojans.  

The proposed designs and implementations are verified and validated using post-

layout, and Monte Carlo simulations with Cadence Virtuoso ADE tools, followed by 

real-time experiments on Global Foundries fabricated 28 nm technology node. 

Threshold voltage-triggered hardware Trojan, ‘HTVth,’ operates in a threshold voltage 

Figure 5-4  FPGA Security Scheme comprising hardware Trojan Infection, Detection, 
and Mitigation sub-schemes. 
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region of 0.45V-0.998V, consuming ultra-low power (10.5nW), and remaining 

stealthier within an area overhead of as low as 1.5%. The Threshold Voltage-aware 

sensor, ‘SVth,’ utilizes 3% of die resources and achieves the detection sensitivity of 

0.251mV/nA. OTDS enables the auto-resizing of transistors to mitigate the impact of 

hardware Trojan payload due to NBTI-based threshold voltage shifts falling between 

10% and 90%. 

5.2 Related Work 

Extensive research has been undertaken to present a detailed analysis of ageing and 

performance degradation in integrated circuits. It mainly involves the fingerprinting of 

ICs’ electrical parameters (voltages, currents, frequencies, and EM signals) by 

retrofitting well-designed on-chip sensors and structures. Be it the detection of 

counterfeits, recycled ICs, or detection and mitigation of hardware Trojans; the same 

parameters are manipulated by researchers to understand different undesired 

behaviour patterns and anomalies in ICs (ASICs, FPGAs, and Microprocessors) for 

remediation and building effective countermeasures. 

In [12], Karhunen Loéve theorem is used to study the power consumption behaviour 

of hardware Trojan infected FPGA to determine the possibility of its detection. This 

technique considers the impact of process variations that occur within the FPGA; 

however, it avoids the noise factor and is limited to simulation analysis. Similarly, the 

researchers in [13] have again simulated and analysed the occurrence of path delays 

in the signals of various logic applications using the embedded monitors. Both of these 

techniques do not provide real-time analysis. An integrated hardware system capable 

of monitoring the behaviour of critical interconnects (wires) is proposed in [14]; 

however, it does not provide sufficient information on the efficiency of this method. In 

[15], a test methodology to ease hardware Trojan triggering by increasing its electrical 

activity is proposed for early detection. In [16], an attempt to carry out precise 

measurement of an IC’s operating frequency, maximum frequency (fmax), and its 

dynamic power consumption is made by lowering the impact of process variations. 

However, the calculation of the accurate value of fmax is quite challenging and also 

susceptible to ‘false positives.’  

The use of ring oscillators’ sensitivity to variations in temperature and power enables 

the detection of medium-to-heavyweight hardware Trojans, however, not effective 
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against the small-sized/lightweight hardware Trojans [17]. The researchers in [18] 

have created a network of ring oscillators spread across the FPGA surface to capture 

the changes in their oscillation frequency due to the presence of hardware Trojan. This 

is validated using a digital storage oscilloscope (DSO) and later analysed using the 

principal component analysis to differentiate between the genuine and the HT infected 

FPGA. However, when applied to an ASIC [19], this technique suffers from the lower 

levels of measurement accuracy due to the usage of an 8-bit counter instead of a 

digital storage oscilloscope, questioning the accuracy of on-chip designs. 

In [20], the clustering methodology is proposed, whereby dedicated sensors are 

embedded in the power grids of different voltage islands in FPGA, to enhance HT 

detectability. However, it does not provide adequate experimental evidence to 

evaluate the efficacy of this methodology. The capturing of electromagnetic signatures 

of target applications in ICs has also been studied for hardware Trojan and anomaly 

detection. For instance, a method based on electromagnetic (EM) cartography is 

proposed in [21], but then again, due to inappropriate method of interpretation of EM 

traces, the detection of hardware Trojans remains low. On the other hand, in [22], the 

researchers have devised an improved technique that interprets the EM traces 

optimally. By controlling and maintaining the temperature during EM measurements, 

this technique improves the probability of detecting lightweight hardware Trojans. 

Further to this, the researchers in [23] are able to differentiate between the healthy 

and HT infected population of FPGAs through a comprehensive analysis of EM 

signatures. 

A reasonable amount of work has also been undertaken to design and develop various 

sensing techniques and frameworks for the detection and mitigation of the NBTI 

mechanism and its noticeable impact. In [24], an analog supply-devoid NBTI sensor 

is proposed to eliminate noise; however, the input of other external signals makes its 

operation very complicated during the stress and recovery as well as measurement 

modes. This reduces its overall measurement accuracy. In [25], the dynamic reliability 

of the device is managed using NBTI and HCI (Hot Carrier Injection) sensors. In this 

case, the threshold voltage of the stressed device is measured and transformed into 

the delay function. However, these sensors are less sensitive to temperature 

variations and occupy large device area with high power consumption. In another 

study [26] an NBTI sensor is designed to measure the standby leakage current (Iddq). 
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Designed explicitly for SRAM cells, this sensor monitors the leakage current, 

characterising temporal degradations. It, however, requires an additional bias 

generator to maintain active load on the sensor, which results in non-linearity and 

reduced sensitivity to the input signal. Researchers in [27] have used the current-

mirroring technique to capture NBTI based degradation. The power supply current is 

mirrored and subsequently transformed into voltage. The drawback of this approach 

lies in the usage of power gating that slows down the response time of the sensor. 

However, its performance is relatively more stable than the Iddq based sensor. 

To mitigate NBTI ageing and degradation impact on the reliability and performance of 

an IC, we have come across the concept of one-time design constraints put forth by 

various researchers. For instance, [28], [29] suggest an increase in supply voltage to 

manage and control NBTI. This may, however, lead to power and thermal overheads 

– an undesirable design feature. Whereas [30] and [31] propose transistor oversizing 

and reduction in the clock frequency, respectively as an optimum NBTI mitigation. The 

thermal management of ICs via different cooling arrangements is also proposed to 

contain and reverse the NBTI impact [32]. Gate replacement technique is proposed in 

[33] that attempts to optimize the NBTI ageing effect. Techniques on the balancing 

and removal of stress to control short-duration threshold voltage instability are 

suggested by Choi et al. [34]. These, however, fail to consider the critical factor of 

prolonged ageing effect at high temperatures. In [35], Kiamehr et al. have highlighted 

the use of ageing-aware library standard cells to mitigate BTI impact on the rise and 

fall times of different signals. The threshold voltage shift is, initially, measured and later 

used to optimize the width ratio (Wp/Wn) of each transistor to counter the ageing effect. 

However, its applicability for IC run-time is not considered. Another study by Zhang et 

al. [36] describes the techniques that involve the identification of critical gates and their 

replacement with NBTI-tolerant gates. The use of dynamic voltage scaling and data 

flipping has also been proposed by [37] to recover the static noise margin in the case 

of SRAMs.  

The measurement of a beat frequency between the reference and stressed ring 

oscillators using a silicon odometer is also proposed in [38] to keep track of 

degradation due to NBTI. Similarly, a hybrid scheme comprising ring oscillators and 

delay line based online-ageing monitoring is presented in [39] for the measurement of 

degradation. These sensor schemes are, however, focused on ensuring precise 
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measurements rather than triggering accelerated degradation to detect the presence 

of any notable anomaly. In order to fill in this gap, a low-cost and lightweight structure 

consisting of ring oscillator based sensors for in-field capturing of IC/FPGA ageing is 

proposed in [40] to enhance the granularity of detection.  

More recently, authors in [41] have proposed a multitype hardware Trojan protection 

framework, called RG-Secure. This framework is designed and validated to provide 

RTL and gate-level security to FPGA based SoCs (deployed in IoT environment) 

against different types of hardware Trojans by merging 3PIP (third party intellectual 

property) trusted design approaches with the scan-chain netlist feature analysis. 

Employing tree-based learning algorithms, they have shown a good hardware Trojan 

detection coverage at RTL and gate-levels, with 100% true positive rate and 94% true 

negative rate accuracies. In our opinion and analysis, this method/framework holds 

true for less complex netlist structures and scan-chain features. However, it may not 

be effective against parametric hardware Trojans (e.g., threshold voltage-triggered) 

that have netlists of distinct structure and trigger behaviour.  

Our work, however, follows an integrated approach, as mentioned earlier, and 

encompasses three elements namely, HT insertion (infection), its detection, and 

mitigation. We build these elements considering the limitations and strengths of the 

abovementioned techniques and different on-chip sensors’ architectures, with FPGA 

security and reliability in perspective. 

5.2.1 Threat Model 

Hardware Trojan, a stealthily malicious entity, capable of inflicting performance 

degradation, sensitive information disclosure, and functional disorder at the micro-

architectural level in FPGAs, continues to challenge the efforts toward strengthening 

hardware security. In an attempt to control its increasing threat, we construct a threat 

scenario/model to understand its implications for a high-end defence asset - a naval 

warship, fitted with an ‘Integrated Self-Protection System’ (ISPS) and eventually 

develop a full-spectrum FPGA security scheme.  

ISPS is a real-time functional integration of electronic warfare systems used onboard 

naval warships and fighter aircraft as well. It comprises Electronic Support Measures’ 

(ESM) systems like Radar Warning Receivers (RWR), System Processor for threat 
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environment assessment and asset assignment, and Electronic Counter Measures’ 

(ECMs) systems like Jammers and Chaff launchers.  

We, however, focus on System Processor Module and regard it as a vulnerable entity 

in ISPS system due to its high probability of infection with security-compromised 

FPGAs. The threat scenario, as depicted in Figure 5-5, has three main elements, 

namely: 1) the naval warship, 2) the Defence Systems Manufacturer - X, and 3) the 

FPGA Supplier - Y. The red sphere with letter ‘R’ represents the ‘Rogue Element’ that 

could be working with malicious intentions on its own, as a state-sponsored VLSI 

design specialist, or an anti-state element/enemy. We assume its presence at FPGA 

Supplier premises in ‘Design House,’ ‘Fabrication Facility,’ and ‘SoC Integration 

Section’ - all representative of the FPGA supply chain. The green sphere with the letter 

‘D’ represents the authors’ recommendation on forming a ‘Security Assurance and 

Figure 5-5  Threat Model: A novel self-triggered Threshold Voltage-Shift based 
Hardware Trojan ‘HTVth’ is designed and implemented by a rogue element in a 28 nm 
FPGA used in System Processor Module of ISPS (Integrated Self Protection System) 
of a Naval Warship. 
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Defence Team’ to counter the malicious insertion in FPGA by the rogue element. Its 

presence is recommended in all the three elements.  

The threat process begins with the naval warship placing the requirement of a new 

System Processor Module (installed with n-number of FPGAs, providing vital 

electronic warfare functions) for the ISPS system from the Defence Systems’ 

Manufacturer-X. Subsequently, the FPGA supplier -Y is sub-contracted by X to provide 

FPGAs built on 28 nm process technology. A rogue element R, stationed in a Y design 

house, receives the task of designing the FPGA. Here, we assume that R is an expert 

FPGA designer with sufficient working knowledge of FPGA design flow, specific to the 

insertion of stealthy hardware Trojan based on the threshold voltage shifts in PMOS 

transistors. Such type of hardware Trojans corresponds to the functionality level 

parametric characterization [42] and are targeted at paralysing device/system 

functionality. To maintain undetectability, R employs ‘Split hardware Trojan 
Insertion’ methodology, whereby a part of a hardware Trojan circuit is built at the 

design stage in the design house. Post design and successful simulation, the design 

file (GDSII) is forwarded to the FPGA fabrication facility for manufacturing. Here, the 

remaining part of hardware Trojan is added (at the RTL and Gate level) post-

manufacturing reliability tests by another rogue element (collaborator) at the FPGA 

fabrication facility to evade detection. As per our recommendation (mentioned in 

Figure 5-5), if D is also stationed at the design house, it will design detection and 

mitigation circuitry in addition to the hardware Trojan circuit design by R (with both D 

and R remaining oblivious of each other’s work). The newly fabricated chips are now 

ready for installation on the system processor module at X. The security assurance 

and defence team D at X carries out pre-installation security tests to observe 

anomalies specific to hardware Trojan based on threshold voltage shifts. If the tests 

are clear, the FPGA is installed on the system processor module and delivered to the 

end-user - the naval warship. At this point, we make two assumptions. Firstly, if the 

detection and mitigation circuitry fails and the hardware Trojan gets triggered, the 

damage to ISPS operation ability will occur. Secondly, if the detection and mitigation 

circuitry successfully detects and mitigates the hardware Trojan, the ISPS system will 

continue performing efficiently without any hindrances, provided some other faults that 

are not related to hardware Trojan erupt. As can be seen in Figure 5-5, we have also 

recommended the placement of D in the naval warship. So, before installing the 
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system processor module in the ISPS system for harbour and sea acceptance trials 

(HATs and SATs), D must carry out security tests to challenge the first assumption 

and in case of it holding true, return the module to X for replacement. 

In a nutshell, as shown in Figure 5-5, if the ‘red-dotted line’ route (containing the FPGA 

infected with hardware Trojan but without any detection and mitigation component of 

FPGA security scheme) is adopted, the hardware Trojan would remain undetected 

and get triggered with pre-defined threshold voltage shift, thereby causing ISPS 

system performance degradation and leaving the ship vulnerable to a devastating 

missile attack. On the other hand, if the ‘black-dotted line’ route (containing a robust 

FPGA security scheme) is assumed, the hardware Trojan can be easily detected and 

denied triggering, thereby keeping the ISPS system proficient in thwarting any external 

threat to the ship. 

Considering the above threat scenario/model, we, in the following sections, make an 

effort to sequentially develop a realistic FPGA security scheme for the security 

assurance and defence team to not only provide security and dependable redundancy 

to critical systems like ISPS but also augment the post-manufacturing tests regime 

(security tests, in specific) employed by FPGA manufacturers. The first step, in this 

regard, is the design and implementation of a hardware Trojan itself, followed by 

detection and mitigation circuitries based on the Trojan’s impact on target FPGA 

applications.  

5.3 FPGA Security Scheme and Threshold Voltage – Triggered 
Hardware Trojan 

In line with the FPGA security scheme (Figure 5-4), we define the contours of the 

hardware Trojan (HT)-infection scheme. It encompasses an operational system’s 

FPGA (28 nm technology) vulnerable to ingress of hardware Trojan, which in turn, 

inflicts operational and functional damages to the system and its various components. 

Beginning with HT-infection scheme, we construct a hardware Trojan with details as 

follows. 

5.3.1 Design Considerations 

As mentioned earlier, the high temperature activates the NBTI mechanism in the 

FPGA silicon fabric. Resultantly, it accelerates the process of ageing and leads to 
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undesirable characteristics. For instance, temperature changes beyond 75⁰C between 

different layers of a substrate could cause variations in interconnect delays up to 31-

38% [43]. Subsequently, the device tends to operate slower with delays also 

observable in the control and data signals. Such timing inconsistencies cause 

synchronous circuits transit into redundant states or momentary glitches. However, to 

avoid failures, the clock period can be managed to counter the system glitches. The 

authors in [44] have, nevertheless, suggested that despite clock management, the 

period of momentary glitches tends to increase with NBTI and may set off pre-

determined activity related to malicious circuitry. 

Tabular analysis (Table 5-1) of the results obtained by [45] reveals that:(a) the shift in 

threshold voltage (Vth) and drain current (Idd) is a function of high temperature and is 

observed to increase for Vth and decrease for Idd at temperatures ≥ 60⁰C, (b) an 

approximate rise of 4% in the threshold voltage shift is evident with the scaling down 

of technology nodes [46]. The rate of decrease in Idd is, however, less than the rate of 

Vth increase, and (c) eventually, the propagation delays increase with the 

aforementioned trends of variation in Vth and Idd.  

Table 5-1  Impact of NBTI aging mechanism on PMOS transistor 
parameters.  
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In light of the above, the essential design targets for threshold voltage-triggered 

hardware Trojan (HTVth) are set accordingly such that: (a) the transfer function of the 

Trojan circuit must be linear. (b) sensitivity to temperature and threshold voltage 

changes should be significantly high, (c) the change in the output should be 

significantly high for a change in the input, and (d) negligible temporal degradation and 

tolerance to process variations should be maintained. 

Additionally, the element of stealthiness and undetectability of hardware Trojan is 

highly significant (primarily from the perspective of a rogue element). Hardware Trojan, 

by definition, has to be stealthy to escape detection. In order to achieve this, we have 

ensured during design and implementation stages (described in the following sections) 

that the size of the circuitry is as small as possible with equally low power consumption 

and without compromising the effectiveness of its payload. Regarding the area and 

resource utilization at the circuit and RTL/Gate level, we have used as minimum 

instantiation as possible to ensure low area and power overheads. These have been 

measured to be at just 1.5 % of the total available resources on a 28 nm process 

technology. With such a small percentage, it is highly unlikely that the added circuitry 

of hardware Trojan would be discovered either during post-manufacturing tests or 

during run-time monitoring. Hence in a multi-million gates chip, it can hide easily. Also, 

more importantly, the proposed threshold voltage triggered Trojan does not draw any 

extra current while dormant; therefore, it becomes challenging even to detect it through 

power signature analysis. 

5.3.2 Architecture of Threshold Voltage Triggered Hardware Trojan 
(HTVth) 

We propose a circuit implementation of threshold voltage-triggered hardware Trojan, 

HTVth, which is valid for CMOS devices. The implementation is demonstrated for both 

the sequential and combinatorial logic as follows: 

5.3.2.1 Conceptualising Hardware Trojan in Combinatorial Circuits 

Considering the combinatorial circuit for hardware Trojan, a 2-input NAND gate is 

designed to have two PMOS transistors M1 and M2 parallel to one another. These are 

then connected in series to two NMOS transistors M3 and M4, as shown in  

Figure 5-6. The drain terminals of both M1 and M2 are shared and connected to the 

source terminal of M3. The output of the NAND gate is tapped out at M3. Another 
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PMOS transistor, MT (Trojan Transistor – occupying an area of 7.25 μm2), is 

constructed in series with a MOS resistor (MR) to work as a hardware Trojan. The 

MOS resistor acts as a current limiter as soon as the triggering signal is received at 

the MT gate terminal. A compact silicon area of 50μm2 is occupied by this circuitry 

with a low power consumption of 1.05μW. 

Operationally, the Trojan is kept in the ‘ON’ stealthy state so that the transistors M1 

and M2 remain connected to the power supply (VDD). The output of the NAND gate, 

on the other hand, is ‘0’ when both of its inputs In 1 and In 2 are ‘1’. Otherwise, the 

output always remains at ‘1’. As MT, the hardware Trojan receives an NBTI induced 

shift in threshold voltage (triggering signal) at its gate terminal; it initiates the process 

of accelerated device ageing with elevated temperatures and reduced frequency of 

the NAND gate circuitry. The shift in the threshold voltage, which acts as a trigger for 

the hardware Trojan, needs to be measured very carefully. For this purpose, we have 

Figure 5-6  Schematic of a threshold voltage-triggered hardware Trojan (HTVth) 
in a combinatorial circuit (2-input NAND gate). 
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also designed a threshold voltage measuring circuit, termed as ‘Threshold Voltage 
Meter’ (described in section 5.3.3). With the value of threshold voltage (Vth) exceeding 

the pre-defined level (pre-Trojan Trigger Threshold Voltage- Vth_ptt – 0.45V), a 

triggering signal is generated at the gate terminal of MT. This active high triggering 

signal switches the MT ‘OFF’ and leaves the PMOS transistors M1 and M2 without 

power, thereby affecting the operation of the NAND gate. 

5.3.2.2 Conceptualising Hardware Trojan in 4-BIT Ripple Carry Adder 

In this subsection, we have attempted to demonstrate how a threshold-voltage 

triggered HT impacts a typical logic function implemented in a 28 nm process 

technology. For this purpose, we consider building a full adder (4-BIT ripple carry 

adder), regarded as the main building block of arithmetic logic unit (ALU) which 

realizes a set of basic arithmetic operations, such as addition, subtraction, 

multiplication and division. The performance of a computation system depends on the 

efficiency of arithmetic operation executed by the full adder. A hardware Trojan when 

added to full adder can severely disrupt its operation and affect its performance as 

well as the overall reliability of FPGA device. 

Figure 5-7  A block diagram of a 4-BIT ripple carry adder. Full adder with C1 is implanted 
with a threshold-voltage shift triggered hardware Trojan.  
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A block diagram of 4-BIT ripple carry adder implanted with a stealthy malicious 

transistor in one of its four full adders (FA) is shown in Figure 5-7. A ripple carry adder 

is basically a logic circuit in which the carry-out of each full adder is the carry-in of 

the succeeding next most significant full adder. It is called a ripple carry adder because 

each carry bit gets rippled into the next stage. The adder consists of four 1-BIT full 

adders, which are series connected through Cin and Cout outputs.  

We have implemented one full adder with two XOR gates for sum output calculation 

and a multiplexer for obtaining carry output, as shown in the gate-level diagram in 

Figure 5-8. For Trojan, we have employed pass transistor logic (with one as a 

malicious transistor – the hardware Trojan) as it helps reduce the number of 

transistors, in our case to eight, so as to achieve low power consumption and less 

Figure 5-8  (a) Gate level diagram of Full Adder with XOR1 implanted with hardware 
Trojan, represented by a red dot. (b) Transistor level circuit of XOR gate with malicious 

transistor (MT) that receives Vth trigger at its gate.  
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area on the chip (as compared to conventional CMOS full adder design that requires 

28 transistors [47 ], [48 ]), and hence low detectability. 

In this case, the first XOR gate is an inverter modified with PMOS pass transistor MT 
(occupying an area of 2.45 μm2 ), acting as a Malicious Transistor – the hardware 

Trojan. Under normal operation, with high logic level at input A this inverter works as 

a common CMOS inverter for the low logic level at input B. When there is Low logic 

level at A, the inverter goes to a state with high impedance. In such a case, output Y 

gets the same logic value as at input B due to open PMOS pass transistor MT. 

However, as the input A (connected to MT) gets a triggering threshold voltage shift 

signal (beyond the pre-defined value of 0.45V) from the ‘Threshold-Voltage Meter’ 

(described in section 5.3.3), MT becomes active high and causes sudden voltage  

degradation at output Y. As a result, voltage degradation also occurs at the 

multiplexer, thereby resulting in the overall failure of the ripple carry adder circuitry.   

5.3.2.3 Conceptualising Hardware Trojan in Sequential Circuits 

In order to build a sequential circuit for hardware Trojan demonstration, we consider 

adding two flip flops (K and L) to the combinatorial circuit, as shown in Figure 5-9 and 

Figure 5-10. The binary decoding with two bits X and Y as the most significant bit 

(MSB) and the least significant bit (LSB), respectively, are used for the flip flops. An 

inactive hardware Trojan, MT (occupying an area of 7.25 μm2 ), is embedded into the 

flip flop K (overall area of this circuitry raises to 75μm2, consuming power of 
1.25μW). Under no-triggering and normal operating conditions, the sequential circuit 

functions optimally without any effect on the dynamic power consumption. As the MT 

Figure 5-9  Block diagram representation of a sequential circuit. 
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is triggered, the supply voltage (VDD) feeding the flip flop ‘K’ is cut off, resulting in the 

malfunction of the flow of finite state machine (FSM). Although the flip flop ‘L’ remains 

unaffected and healthy, the failing of flip flop ‘K’ reduces the FSM states to only two 

high impedance states - z0 and z1. 

The above structure is further elaborated by constructing a true single-phase clock 

(TSPC) based flip flop. The payload is the same PMOS transistor MT with a MOS 

resistor (MR) connected in series to it, as shown in Figure 5-6. MT, acting as a switch, 

controls the connection of the body and source of all PMOS transistors (M1, M2, M4, 

M7, and M10) in the flip flop. The bodies of all NMOS transistors (M3, M5, M6, M8, 

M9, and M11) are grounded permanently. When the switch MT is ‘ON,’ all the PMOS 

transistors remain connected to VDD. On the contrary, when the switch MT is in ‘OFF’ 

state, the body and the source of all PMOS transistors are shorted to ground through 

the resistor, leaving the flip flop without power supply and resulting in circuit 

malfunction. Similar to the triggering of MT in the combinatorial circuit, the shift in 

threshold voltage due to NBTI is designed to initiate MT triggering here in the 

sequential structure as well. A Global Foundries 28 nm process technology is used to 

accomplish circuit implementations and subsequent logic applications. 

Figure 5-10  Schematic of threshold voltage-triggered hardware 
Trojan in a Sequential Circuit (TSPC based Flip Flop). 
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5.3.2.4 Adding Ring Oscillator Based Heating Element for Accelerated NBTI 
Impact 

To accelerate the NBTI ageing mechanism and observe a corresponding shift in 

threshold voltage ‘Vth,’ we designed and implemented a LUT-based ring oscillator to 

act as a heating element for raising the temperature high enough to trigger NBTI. The 

architecture of the heating element is shown in Figure 5-11(a). It is important to note 

(a) (b) 

Figure 5-11.  (a) Schematic of a 3-stage Ring Oscillator-based heating 
element with Time-to-Digital Converter. (b) 28 nm technology node floor-
planned with 08 x heating elements. (c) Thermal profile of FPGA (28 nm 
technology node) with 08 x heating elements. 

(c) 
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here that this heating element is designed and implemented as an integral part of the 

hardware Trojan infection scheme. 

As stated earlier, there exists a strong correlation between the shift in threshold 

voltage and the die temperature. Taking this into account, a set of eight controllable 

ring oscillators (ROs), comprising 3-inverter stages and a time-to-digital converter  

(TDC) each, are implemented across the FPGA fabric (28 nm technology node) at 

locations shown in Figure 5-11(b) using the Vivado design suite. It is noteworthy that 

the number of stages in a ring oscillator determines the toggling frequency and hence, 

the corresponding amount of heat generation, measurable as a variation in 

temperature [49]. In order to disrupt the ISPS system, the toggling frequency of an RO 

must be high enough to generate a large amount of heat per micron for high 

temperatures. Accordingly, only a single LUT is used to implement RO with 3-inverter 

stages and a TDC.  

We define the area-constraint for our heating elements to only 8 LUTs (0.00025%) out 

of the total 32,000 LUTs constituting the CLBs. The built-in system monitor is then 

programmed to access XADC sensor readings of the thermal diode in FPGA. The 

heating element is enabled/disabled by a time-driven program running on the FPGA, 

which also keeps reading the temperature values and transmitting them to the 

workstation via the JTAG interface.  

The execution of the experiment is organized in such a way that the die temperature 

of the FPGA is allowed to stabilise for a period of 35 minutes before enabling the 

heating element for a period of 40 minutes. Upon completion of this operational phase, 

the heating element is disabled and allowed to rest for 35 minutes. During this period, 

the fall in temperature is observed to assess the behaviour of the heating element. 

Finally, the heating element is again enabled for another 40 minutes to affirm the 

repeatability and validity of the experiment. 

We tested the LUT based ring oscillators (the heating elements) spread over eight 

different locations on the FPGA as per the procedure mentioned in the previous 

paragraph and measured it toggling at 550 MHz. The temperature measurements 

were made using the FPGA’s internal thermal diode ( for the whole FPGA), on-chip 

thermal sensors (the LUT based RO connected to the counter for local temperature), 

and the external laser-based IR temperature gun, positioned over the FPGA package.  
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Initially, the temperature is stabilised to an idle FPGA state, meaning when it is 

powered up and configured, with the negligible workload, and without the heating 

elements enabled. The idle temperature for the whole die (junction temperature) is 

measured to be 10.5⁰C, the local RO 10⁰C, and the surface 5⁰C. The heating elements 

are subsequently enabled with clock disabled to achieve asynchronous behaviour of 

LUT based RO and toggle as fast as physically possible without any clock constraint. 

Upon enabling the heating elements one by one for a period of 40 minutes each, the 

local, junction, and surface temperatures depicting the thermal profile of an FPGA is 

obtained, as shown in Figure 5-11(c). It can be seen that the temperatures rise 

considerably higher to cause shifts in the threshold voltage and accelerate the NBTI 

degradation mechanism. The threshold voltage meter, described later, continuously 

measures the voltage till the time the hardware Trojan circuit is triggered at a value 

above the nominal ‘Vth ’ value (0.45V). 

5.3.3 Threshold Voltage Meter 

As mentioned earlier, the shift in threshold voltage ‘Vth’ is the manifestation of the 

ageing mechanism of NBTI in PMOS transistors that make up the FPGA fabric and its 

Q 31 Q 14 Q 15

Q 21

Q 22

Vout = Vth

VDD

Q 11 Q 13

Q 12

Q 32

VLO

VHI

Two-Transistor Differential Amplifier 
Circuit - performs subtraction :   
Vout  = VHI   -  VLO   =  Vth     

Threshold Voltage Extraction 
Circuit-Output is fed to VHI 
terminal (the gate of Q21) 

Self-Biasing Circuit - provides a 
bias voltage to Q11 of Extraction 
Circuit and VLO terminal (Q22) of 
Differential Amplifier 

Figure 5-12.  Schematic of Threshold Voltage Meter. The output of the Differential 
Amplifier is the Threshold Voltage (Vth).   
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primitives. Therefore, the precise measurement of ‘Vth’ is critical for triggering the 

threshold voltage based hardware Trojan. Accordingly, we design and implement a 

threshold voltage meter that directly generates an output voltage ‘Vout,’ equal to ‘Vth.’ 

Figure 5-12 shows the schematic diagram of the meter. As is evident, this circuit has 

no reference voltage ‘Vref ’ input and is, therefore, a 3-terminal circuit. The transistors 

Q31 and Q32 provide a bias voltage at the gate of Q11; this voltage is then applied to 

the low voltage ‘VLO’ terminal of the differential amplifier, i.e., at the gate of Q22. 

Whereas, the transistors Q11-Q15 implement a circuit whose output is applied to the 

high voltage ‘VHI’ terminal of the differential amplifier at the gate of Q21. Eventually, 

the Differential amplifier comprising Q21 and Q22 performs the subtraction process 

outputs ‘Vth’ at the drain of Q22, as shown in Figure 5-12. 

In order to validate the operation-ability, functionality, and accuracy of the designed 

hardware Trojan, an experiment consisting of all elements of HT infection scheme (RO 
based heating elements, threshold voltage meter, and the trojan circuit) is 

performed. It ascertains whether a triggering signal, a shift (increment) in pre-
defined threshold voltage, can be latched or not. Furthermore, in case of being 

Figure 5-13.  % Shift in threshold voltage with rise in temperature across 8 different 
intra-die locations. Threshold voltage meter is used to read Vth. Reference Vth is pre-
defined at 0.45V. 
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latched, ascertain whether the payload (accelerated ageing) of the hardware Trojan 

gets activated. A controlled temperature environment is ensured using a thermal 

chamber with an HT infection scheme-implemented FPGA (28 nm technology node) 

placed inside it. The external temperature (i.e., thermal chamber temperature) is 

maintained between 5-10⁰C (a typical warship computer control room 

temperature). The JTAG interface is used for programming and bidirectional 

communication between the FPGA and the workstation. Digital oscilloscope, Vivado 

power analyser, FPGA system monitor, and integrated logic analyser (ILA) are 

employed to capture the threshold voltage, drain current, and thermal points. 

The first stage is the initialization of FPGA under test. This involves the stabilization of 

the thermal chamber at 5⁰C, powering up of the target FPGA, and providing an 

operating voltage of 1.0V. Once powered up, the LUT based ring oscillators 

implemented to produce heat are enabled. This leads to the second stage where the 

heat (rise in temperature and a corresponding shift in threshold voltage) generated by 

the heating elements, spread across the device at locations shown in Figure 5-11(b) 

is continuously measured and logged using the local as well as the system monitor. 

The temporal change in temperature observed is shown in Figure 5-13. As the 

temperature traverses the primary thermal point of ‘Tp1’ (60⁰C), the changes in 

threshold voltage ‘Vth’ and ‘Idd’ are extracted and measured by Threshold Voltage 

Figure 5-14.  (Left) An increase of 40% shift in threshold voltage at 90⁰C degrades the 
drain current by 35%, triggers the hardware Trojan and impairs the NAND2 logic. (Right) 
An increase of 50% shift in threshold voltage at 90⁰C degrades the drain current by 40%, 
triggers the hardware Trojan and impairs the TSPC logic. 
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meter. Similarly, the changes are continually observed, and measurements are taken 

at secondary and tertiary thermal points (Tp2 -90⁰C and Tp3 -125⁰C respectively). We 

took 10K samples for each thermal point at all the eight different locations within 

FPGA. A complete mesh of plot showing the shifts in threshold voltage with change in 

temperature is given in Figure 5-13. In the third stage, these readings are critically 

analysed for false positives and accuracy for temperature variation and corresponding 

shifts in threshold voltage as well as ‘Idd’ to observe the presence of any process 

variations. Accordingly, three additional runs are undertaken to take further readings 

and observe intra-run deviations to establish measurement accuracy. During all these 

Table 5-2 Hardware Trojan Triggering Analysis in NAND2 Logic. 
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three stages, the hardware Trojan trigger circuit remains silent connected with the 

NAND gate and  

TSPC PMOS transistors till the time the hardware Trojan trigger circuit experiences a 

shift in threshold voltage from 0.45V to 0.63V (40%) in NAND2 and 0.67V (50%) in 

TSPC logic. Consequently, the trigger circuit of hardware Trojan causes 

corresponding significant Idd degradation, as can be seen in Figure 5-14(left) and 

Figure 5-14(Right) respectively. This, eventually cuts off the VDD connection of the 

PMOS transistors, which constitute the NAND gate and TSPC. As a result, the whole 

logic is deactivated, thereby crippling its critical function. The quantitative 

representation of the percentage shift in threshold voltage (an increase in this case) 

of MOSFETs that triggers the stealthy hardware Trojan is given in Tables 5-2 and  

5-3.  

Before approaching a trigger percentage shift in Vth, a gradual increase in signal 

delays is also observable, for instance, with a 50% shift in the threshold voltage and 

corresponding 40% shift in Idd, the increase in the rise and fall times from 20.5 ps and 

26.7 ps respectively to 22.9 ps and 28.0 ps is recorded. TSPC and NAND circuits 

remain stable with no triggering of hardware Trojan. However, the slowing down of 

switching control is observable. As the threshold voltage shift hits 50% of the nominal 

threshold value of 0.45V, the hardware Trojan gets activated. The same is observed 

for 70% to 100% shifts in the nominal threshold voltage. This experimental result is in 

Table 5-3 Hardware Trojan Triggering Analysis in True Single Phase 
Clock (TSPC) Logic.   
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consonance with the Monte Carlo simulation carried out by sweeping parameter 

values using Gaussian distribution. For the simulation purposes, the mean value is set 

to the nominal threshold voltage value (0.45V), whereas the standard deviation (±σ) is 

kept at ±0.1V of the mean value. 

5.4 Design and Implementation of a Threshold Voltage-Aware 
Sensor 

The requirement of a lightweight and highly sensitive sensor for the detection of shifts 

in threshold voltage much earlier than the triggering of hardware Trojan is a critical 

design consideration. This is to ensure that the hardware Trojan never gets triggered, 

provided its presence in FPGA has been accurately assessed. We draw the attention 

of readers to the vital nature of a naval warship defence capability that should not get 

compromised due to faltering EW-ISPS system dependent on system processor, 

housing an FPGA. Therefore, the design and implementation of a highly sensitive 

sensor that detects minor shifts in threshold voltage due to the NBTI effect captures 

the corresponding frequency shifts and signal path delays and monitors the resultant 

ageing of the device to provide high confidence in ISPS system performance is 

paramount. This forms the whole concept of the HT-detection scheme, which is 

designed and implemented at the recommended placements of security assurance 

and defence teams, D (Figure 5-5).  
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5.4.1 Threshold Voltage Based Sensor Architecture 

In continuation to the next stage of the threat model and keeping in perspective the 

techniques mentioned in [50] and [51], we propose a lightweight sensor that consists 

of two segments of ring oscillators (ROs), namely the ‘Fixed Sensor Segment (FSS)’ 
and the ‘Dynamic Sensor Segment (DSS)’ as shown in Figure 5-15. The fixed sensor 

segment is designed to experience shifts in threshold voltage at a slower rate as 

compared to the dynamic sensor segment, which is made to undergo thermal stresses 

put through the hardware Trojan infection scheme. This must lower the oscillation 

frequency of the dynamic sensor segment while the fixed sensor segment exhibits a 

negligible change in its oscillation frequency. With the increasing disparity between 

the oscillation frequencies of these two segments, the signs of FPGA ageing and 

hence signal path delays provide a precursor to the inserted hardware Trojan 

triggering and payload activity. 

It is pertinent to mention that the accuracy of a sensor is susceptible to large process 

variations (PVs) that exist in lower technology nodes. When process variations 

outpace shifts in oscillation frequency and threshold voltages, it becomes challenging 

to differentiate the impact of NBTI from that of the global and local process variations 

Figure 5-15.  The architecture of Threshold Voltage-Aware Sensor. 
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(and this impacts the accuracy of detection and parametric measurements). We 

overcome this by placing the two segments of ROs very close to each other to zeroise 

PV and any environmental variation other than the one generated by the hardware 

Trojan insertion scheme (i.e., the rise in temperature).  

The detailed architecture of the proposed sensor is shown in Figure 5-15. As can be 

seen, the dynamic sensor segment is sensitized by introducing a pass transistor 

between inverters and pulling down the inputs of all inverters to the ground through a 

network of nMOS transistors. In order to keep all the electrical parameters like node 

capacitance, resistance, etc. closely matched to the dynamic sensor segment, the 

same structure is maintained within the fixed sensor segment. Such an arrangement 

helps ensure that at the time ‘t0’, when there is no shift in threshold voltage, the 

difference of oscillation frequency between the two segments is minimal. The only 

impact observable could be the small variations present between the ROs of the two 

segments.  

In order to implement a specific mode of operation, a decoder circuit is inserted before 

the two sensor segments to generate the corresponding internal signals, as shown in 

Table 5-4. For instance, when enable EN is set to ‘0’, the RO segments start oscillating 

while the pass transistors stay ‘ON.’ A timer-controlled counter is placed at the  

segments’ output to enable an instant measurement of their respective cycle counts.  

Table 5-4    Binary Modes of Operation. 
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For our design of the sensor, four distinct modes of operation, as explained in Table 

5-4, are considered. At mode 1 (0:0), both the segments are inactive or in the dormant 

phase as their connection to the power and ground line is cut off. This mode is valid 

for the duration, the heating elements are silent, i.e., during the stabilization phase of 

the thermal chamber. As the heating element is enabled, and it approaches the 

primary thermal point (Tp1 - 60⁰C), operation mode 2 (0:1) is enforced. In this mode, 

the fixed sensor segment (FSS) remains dormant (0), whereas the dynamic sensor 

segment (DSS) assumes the threshold voltage-aware mode (1). Every inverter in DSS 

is now subjected to dc stress (induced by gradual shifts in threshold voltage) by pulling 

Figure 5-16 Process flows for the identification, authentication, and assessment of 
Trojan-free and Trojan-infected FPGAs using frequency and delay mapping method. 
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its input to the ground. This causes changes in its oscillation frequency/cycle count 

and induces signal delays. When the secondary thermal point Tp2 -90⁰C is reached, 

the operation modes 3 (1:0) and 4 (1:1) are activated, and oscillation frequencies/cycle 

counts of both RO segments are measured. This process of measurement continues  

until the FPGA junction temperature reaches the tertiary thermal point Tp3 -125⁰C. It 

must be noted here that these measurements are aimed at (1) testing and validating 

the threshold voltage-aware sensor’s efficiency in terms of power and area 

consumption, (2) determining the frequency threshold of a hardware Trojan-free FPGA 

at varying locations, and (3) the impact of process variations (PVs) on sensor’s 

accuracy.  

5.4.2 Determining Threshold Frequency for Correlation and 
Authentication 

In order to develop a trustworthy threshold voltage triggered hardware Trojan detection 

scheme, we have defined Trojan-free and Trojan-infected process flows to establish 

the presence of hardware Trojan in an FPGA. Figure 5-16 shows the two processes. 

The main purpose behind the Trojan-free frequency mapping is to determine the 

threshold frequency ‘fth’ corresponding to pre-Trojan trigger threshold voltage ‘Vth_ptt’ 
and provide a reference to compare the frequency differences of FSS and DSS ‘fFD’ 
with it. If ‘fFD’ is greater than ‘fth,’ we consider this as an indication of ‘HTVth’(threshold 
voltage-triggered hardware Trojan) presence and a precursor to its triggering and 

Figure 5-17.  Probability density function fFD at times 0 g0(fFD ) and t gt(fFD ). 
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payload effect. During the Trojan-free frequency mapping phase, a 28 nm FPGA is 

used to generate the requisite distributions to determine the threshold frequency ‘fth.’ 
The Trojan-free phase implies that the Trojan circuit is already inserted and present in 

the FPGA but lying in a dormant state.  

Although the two RO segments are placed very close to each other to zeroise the 

difference of oscillations ‘fFD’ between them, yet due to process variations, it will not 

be zero. Also, a Gaussian distribution of ‘fFD’ is observed during the tests. A simplified 

representation of the two distributions as probability density functions of ‘fFD’ at times 

‘0’ g0(fFD ) and ‘t’ gt(fFD ) is shown in Figure 5-17. The frequency differences between 

the two RO segments ‘fFD’ are represented by the x-axis, whereas the y-axis 

represents the relative distribution function. The overlapping area gives the false 

prediction of the presence of hardware Trojan or vice versa. The red area ‘θa’ 

represents the probability of detecting Trojan-infected FPGA as ‘HT-free,’ whereas 

the green area θb denotes the probability of identifying the Trojan-free FPGA as ‘HT-

infected.’ Mathematically, 

𝜃𝜃𝑎𝑎 =  �  𝑔𝑔𝑡𝑡(𝑓𝑓𝐹𝐹𝐹𝐹) 𝑑𝑑 𝑓𝑓𝑡𝑡ℎ 
𝑓𝑓𝑡𝑡ℎ

− ∞
                                                                                                       (5 − 1) 

𝜃𝜃𝑏𝑏 =  �  𝑔𝑔0(𝑓𝑓𝐹𝐹𝐹𝐹) 𝑑𝑑 𝑓𝑓𝑡𝑡ℎ 
∞

𝑓𝑓𝑡𝑡ℎ
                                                                                                       (5 − 2) 

Where, g0(fFD ) and gt(fFD ) correspond to the distribution of frequency differences for 

Trojan-free (dormant) and Trojan-infected FPGAs, respectively. The threshold 

frequency ‘fth’ is considered to be a point where both distributions intersect one 

another, hence representing the frequency difference that reduces the total probability 

of error ( θa + θb ). 

5.4.3 Reducing the Rate of False Prediction 

When the application risk is as critical as in our ISPS case, it is not prudent to let the 

false prediction, as identified earlier, result in the system failure by failing the proposed 

sensor to detect hardware Trojan. The repercussions of such a failure may include the 

collapse of a defence system of the warship and fatal impact on human and material 

assets. We have, therefore, devised a process of minimizing (zeroising) the level of 

false prediction of the presence of hardware Trojan and vice versa, as shown in Figure 
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5-18(a)-(c). We observe that false prediction is generated due to the overlap of FSS 

(a) 

(b) 

(c) 

Figure 5-18.  Reduction of false prediction - represented by the overlapped area. 
(a) Moving the FSS and DSS distributions away from their respective 
positions.(b) Minimizing their spread. (c) Minimal spread with a shift of the mean 
of FSS and DSS distributions. 
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and DSS ROs’ frequency difference distribution at time ‘0’ g0(fFD) and at time ‘t’ gt(fFD), 
which, in this case, is the ‘delay’ replica of g0(fFD). It implies that if this overlapping 

region is reduced, the critical issue of false prediction can be resolved. 

Accordingly, as a first step, we increase the separation of these distributions, which 

represents the delay degradation ‘δf`, by shifting the distribution g0(fFD) to the left 

g´0(fFD) or alternatively shifting the distribution gt(fFD) to the right g´t(fFD) or by 

implementing both simultaneously as shown in the Figure 5-18(a). We observed an 

improved detection of shifts in frequency corresponding to gradual shifts in the 

threshold voltage as the distribution gt(fFD) is shifted to the right. Secondly, we 

consider reducing the spread of FSS and DSS frequency difference distributions. The 

spread is observed due to the variances of distributions (σ02 and σt2). As can be seen 

in Figure 5-18(b), there is no overlap between g´0(fFD) and g´t(fFD), where σ'0 < σ0 and 

σ't < σt . This arrangement also helps to minimise the false prediction rate. Thirdly, we 

reduce the spread and increase the separation of these two distributions 

simultaneously, as depicted in Figure 5-18(c), instead of managing them individually. 

In such a case, we discard the right-hand side and reduce the spread of g0(fFD) on the 

left-hand side. It helps reduce the overall spread. The separation, on the other hand, 

Figure 5-19. Threshold Voltage-aware sensor with enhanced 
detectability of hardware Trojan due to additional RO pairs 
architecture.  
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is simultaneously increased by shifting gt(fFD) to the right-hand side. This technique 

provides the best detection of frequency degradation and hence, the delay - a pointer 

towards hardware Trojan activity and corresponding ageing of an FPGA under test. 

For a detailed account of determining maximum frequency degradation through the 

application of ‘Averaging and Selection’ methods, please refer to Appendices A and 

B. 

5.4.4 Re-architecting the Sensor with Additional Ring Oscillator 
Segments 

Based on the mathematical mean and variance derivations for FSS and DSS 

segments with additional RO pairs (explained in detail at Appendix A), we re-

architectured the sensor, as shown in Figure 5-19. It consists of the same segments 

but with two additional threshold voltage shift-aware RO pairs in both. The decision to 

implement an additional number of RO pairs is primarily aimed at enhancing 

detectability of abnormal frequency degradation in the shortest amount of time with a 

negligible false prediction. The results of our experiment show that by the addition of 

two more RO pairs in both the segments, the detectability of hardware Trojan based 

on shifts in threshold voltage is unerring.  

Looking further at the architecture of the proposed sensor in Figure 5-19, it can be 

seen that the outputs of all the three RO pairs in both the segments are fed to a 

multiplexer. A shift register of log2 (2n) bit facilitates the Mux. input selection and helps 

minimise the I/O pin count for the sensor. This register is activated using a ‘serial-in 

RO_SEL’ pin. The Decoder, as mentioned earlier, is designed to generate all the 

internal inputs/signals for the FSS and DSS RO based segments. It is noteworthy that 

all the RO pairs in each segment utilize the same internal signals generated by the 

Decoder, and it is not essential to generate the control signals for each RO pair. The 

operation of the Counter and Timer is the same as elaborated in Section 5.4.1 of this 

chapter. 

In order to achieve high detection and measurement accuracy, we, besides adopting 

the averaging strategy, also consider the selection strategy as depicted in the process 

flow in Figure 5-20. The selection strategy implies finding a DSS RO that experiences 

maximum frequency degradation/delay and hence the ageing due to the NBTI 

mechanism. For this purpose, the DSS RO pair is compared with the FSS RO pairs 
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even though they remain dormant during normal operations. It is, therefore, essential 

to find an FSS RO pair that is slower than the DSS RO pairs during the time ‘0’ to 

design a higher sensitivity sensor that enables the detection of hardware Trojan 

activity well before its onset. 

5.4.5 Sensor and Hardware Trojan Detection Scheme – Testing and 
Analysis 

The correct verification of the effectiveness and sensitivity of threshold voltage based 

sensor for a hardware Trojan detection scheme is, therefore, critical. Consequent to 

the optimisation of sensor accuracy described in the above section, we implemented 

the improved sensor design (with additional RO segments) in a 28 nm FPGA 

technology node. The experiment was set up to provide and emulate the ISPS system 

Figure 5-20.  Process flow for enhanced detectability of hardware Trojan 
using optimum-performing RO pairs’ selection strategy. 
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environment onboard a naval vessel for realistic side-channel measurements. A 

nominal supply voltage of 1.0V is provided from a benchtop power supply having basic 

voltage setting accuracy and voltage readback accuracy of 0.03%. With the enabling 

of heating elements (following the same phase -1 process with Negative bias ‘-1.2V’ 

and Tp ‘60⁰C’, as described in Section 5.4.1), the first set of readings (including 

threshold voltage, oscillation frequency/count, and corresponding signal delays) is 

taken at stabilised negative bias and primary thermal point, using DL850E 

ScopeCorder with sample rates up to 100 MS/s.  

Similarly, the experiments were conducted for the second and third phases of the 

scheme. Although the impact of PVs is minimal as the two sensor segments are placed 

very close to each other, we did, however, consider the impact of process variations 

on the detection sensitivity of the sensor in terms of percentage, as given in  

Table 5-5.  

Table 5-5  Intra-die process variations–Transistor length and oxide thickness. 

Figure 5-21.  Scatter plot of correlation between dynamic frequency 
degradation (% δf ) and percentage frequency difference (% 𝜕𝜕ft DSS ) of DSS 
ROs (Refer to Appendix B). 



163 

These tests were repeated to establish the consistency of results and assure the 

robustness of the developed scheme. The synopsis of test results is given in Figure 

5-21 and Figure 5-22 (a) – (f). The frequency difference of FSS and DSS ‘fFD’ is  

represented along the x-axis, and the y-axis represents the frequency of 

occurrence/the number of test samples. Three different threshold voltage shift states 

‘Vth1, Vth2, and Vth3’ corresponding to ‘fFD’ are representative of Vth distribution.  

The green (Vth1=0%) distribution plot for ‘fFD’ is centred at 0 Hz. Whereas, the 

distributions in pink and blue corresponding to Vth2=40% and Vth3=70% respectively 

shift to the right. This is because the oscillation frequency/count of DSS slows down 

Figure 5-22.  Distribution of frequency differences between FSS and DSS, fFD, with 
percentage shifts in threshold voltage in the presence of process variations PVa, 
PVb, and PVc and changing number of RO stages (9 and 31) in sensor segments. 
(a) PVa: 9-stage RO, (b) PVa: 31-stage RO, (c) PVb: 9-stage RO, (d) PVb: 31-stage RO, 
(e) PVc: 9-stage RO, (f) PVc: 31-stage RO. 
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and results in a much larger change in frequency difference fFD. With no distinct 

overlap of distributions (at Vth1=0% and Vth2=40% and Vth3=70%), there is a strong 

indication of the presence of hardware Trojan. We can, therefore, positively detect the 

presence of hardware Trojans with Vth2=40% in an FPGA under test (28 nm node). 

In order to correctly estimate the percentage of false prediction, which is represented 

by the distributions’ overlap, we use Gaussian fit to determine the mean and variance 

of these distributions to calculate the overlapped area. At this stage, the process 

variations mentioned in Table 5-5 are taken into account. These variations being part 

and parcel of every silicon die, tend to affect electrical parameters invariably from die 

to die and intra-die as well. With PVa, we consider the probability of false prediction as 

negligible, and the same was observed during the test. The measured false prediction 

rates of the sensor relating to HT-free (θa ) and HT-infected (θb ) FPGA are elaborated 

in Table 5-6. These correspond to the process variations mentioned in Table 5-5. It 

can be seen that the false prediction rate with PVc is higher due to a significant 

difference in frequencies of the 28-nm FPGA under test with a higher percentage of 

process variations. As a result, the overlapped area between the two distributions 

grows significantly, thereby reflecting the increase in the probability of error (θ). We 

TABLE VI.  False Prediction Rates (Probability of 
Table 5-6  False Prediction Rates (Probability of Error). 

Figure 5-23  Gaussian distribution of frequency difference ‘fFD’ at 
PVc of Vth-aware sensor with different number of RO-pairs.  
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provided remediation by placing the two sensor segments very close to each other, as 

mentioned earlier. Besides, we increased the number of RO stages in both the 

segments from 9 to 31 and then observed any reduction in false prediction rate. A  

significantly lower false prediction rate is noted (at worst case PVc – 1.42% to 0.11%) 

in the case of θb, and a similar trend is noted for θa (at worst case PVc – 1.37% to 

0.13%). 

The histogram plot giving the average frequency difference between the FSS and DSS 

sensor segments for the different number of pairs is shown in Figure 5-23.  We observe 

a substantial reduction in the spread of the distributions with the increase in the 

number of RO-pairs. The separation between the two distributions, however, remains 

the same. At this point, the threshold frequency 𝒇𝒇𝒕𝒕𝒕𝒕 is measured for all the RO-pairs 

of the two segments and is found to be equal to 2.5 MHz. It becomes crucial at this 

stage to analyse the changes in the mean (μ) and variance (𝝈𝝈) values of the frequency 

difference distribution of sensor segments to estimate the false prediction accuracy to 

assess any requirement to increase the number of RO-pairs for achieving a negligible 

false prediction rate. We took the measurements of the mean and variance of different 

distributions with different numbers of RO-pairs using the ‘normfit MATLAB function’ 

to determine the accuracy of our process flows.  

The measured values of the mean and variance are given in Table 5-7. The analysis 

revealed an error in the expected value when compared with the actual value (<0.4% 

for μ and <6% for σ). In light of this analysis, we created another histogram plot, as 

shown in Figure 5-24(a)-(c), based on the frequency difference between the selected 

RO-pairs of FSS and DSS sensor segments to determine the most efficient and error-

free hardware Trojan detection pair. We observe a significant overlap gap between 

the two distributions at time t=0 and time t. 

Table 5-7  Mean and Variance Frequency Distribution of Threshold Voltage Aware 
Sensor. 
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Also, the increase in the separation between the distributions is found to be positively 

correlated to an increase in the number of RO-pairs. The threshold frequency 𝒇𝒇𝒕𝒕𝒕𝒕, in 

this case, is measured to be 2 MHz. We found the two RO-pairs combination to be the 
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most appropriate with zero-false prediction. The detection accuracy of the sensor is 

presented in Table 5-8. The rate of false prediction is calculated as: 

𝜃𝜃𝑎𝑎 =  
𝑛𝑛𝑛𝑛. 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑓𝑓𝐹𝐹𝐹𝐹 <  𝑓𝑓𝑡𝑡ℎ

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 
 × 100%                                                     (5 − 3) 

Figure 5-24  Histograms of frequency difference distribution fFD at PVc of Vth-aware 
sensor with different number of RO-pairs. (a) Optimization with 1RO-pair. (b) 
Optimization with 2 RO-pairs. (c) Optimization with 3 RO-pairs. 

Table 5-8  Analysis of False Prediction – Improving Sensor 
Accuracy with RO-pairs scaling and selection process. 
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𝜃𝜃𝑏𝑏 =  
𝑛𝑛𝑛𝑛. 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑓𝑓𝐹𝐹𝐹𝐹 >  𝑓𝑓𝑡𝑡ℎ

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 
 × 100%                                                    (5 − 4) 

At different threshold voltage shift states, the impact on sensor accuracy with varying 

number of RO-pairs corresponding to each sensor segment is shown. As mentioned 

in previous paragraphs, we have implemented a maximum of 3 pairs of ROs each in 

two sensor segments, FSS and DSS. With a configuration of 2 RO-pairs, we can 

characterise the sensor to determine threshold frequency ‘fth’ corresponding to pre-

Trojan trigger threshold voltage ‘Vth_ptt’ and provide a benchmark to compare the 

frequency differences of FSS and DSS ‘fFD’ with it for the detection of hardware Trojan, 

once triggered without any probability of error. It is essential to set the threshold 

frequency cautiously to ensure that the value of the probability of error of FPGAs 

falsely identified as HT-free (𝜽𝜽𝒂𝒂) is similar to the value of the probability of error of 

FPGAs falsely identified as HT-infected (𝜽𝜽𝒃𝒃).  

5.4.6 Area Overhead Analysis 

The implementation of a threshold voltage triggered hardware Trojan detection 

scheme is optimized to utilize minimum resources of 28 nm technology node FPGA. 

Accordingly, the area overhead analysis of both the infection and detection schemes 

is shown in Table 5-9. We implemented IWLS 2005 benchmarks of various sizes from 

low to high to assess the area overhead - the ratio of the size versus area of the sensor 

with the size versus area of the benchmark. As is evident, when used with a 31-stage 

sensor in HT detection scheme, the area overhead is approximately 1.25% for n = 2 

(2 RO-pairs) for smaller sized benchmarks like i2c, spi, and b14. We observe that it 

Table 5-9  Area Overhead Analysis of Threshold Voltage-Aware Sensor (Svth). 



169 

does not impact the overall area of small as well as medium and larger designs, 

implemented for heavy systems like the system processor module of ISPS, in our 

case. On average, the overall area occupied by the HT-detection scheme is measured 

to be 125μm2, whereas the power consumption reads 3.8μW, which is considered 

compatible with the designs discussed in Section-5.2. 

5.5 Mitigating the Impact of Threshold Voltage – Triggered 
Hardware Trojan 

The final proposition of FPGA security scheme (Figure 5.4) is the design and 

implementation of hardware Trojan mitigation strategy. We propose a circuit design 

technique, which endures threshold voltage-triggered hardware Trojans. The internal 

module structure and control process flow devised for this purpose are depicted in 

Figure 5- 25 and Figure 5-26 respectively. For this scheme, we target the monitoring 

of drain current ‘Idd’ as a parameter that contributes to performance degradation as a 

result of shifts in threshold voltage. A mechanism is proposed whereby a change in 

the threshold voltage is sensed and a corresponding adjustment in Idd is made to 

compensate for current variations in critical circuit nodes implemented in FPGA. 

The main elements added to form the mitigation scheme are the ‘Current Adjustment 

Module,’ ‘Reference Voltage Generator,’ and the ‘Transistor Width Scaling Module.’ 

IWLS 2005 benchmark ‘vga_lcd’ is used as a test circuit implemented in 28-nm FPGA 

to validate the HT mitigation scheme. It also includes the process of pinpointing the 

Figure 5-25.  Block diagram representation of FPGA security scheme highlighting 
hardware Trojan mitigation sub-scheme. 
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potential critical gates that experience frequency degradation due to the impact of 

NBTI through shifts in threshold voltage. The Current Adjustment Module (CAM) 

gauges the acceptable limits and ranges of shifts in threshold voltage, fanned out by 

the sensor (in our case, the Vth_ptt). If Vth_ptt (pre-trojan trigger threshold voltage) is 

out of the acceptable limit, the control signal is given to the Transistor Width Scaling 

Module (TWSM), which increases the transistor width to counter the excess threshold 

voltage shift and prevent the triggering of hardware Trojan. 

5.5.1 Earmarking the Potential Critical Gates 

We implemented the IWLS 2005 benchmark ‘vga_lcd’ in 28-nm FPGA using the 

Vivado design suite and applied the algorithm defined in [52] to pinpoint its potential 

critical gates using static timing analysis. We conclude that only 2.5% of the total gates 

are identifiable as the potential critical gates, based on the worst-case frequency/delay 

degradation. The worst-case degradation is set against the Vth_ptt. Accordingly, a 

reserve transistor width is allocated to the earmarked critical gates to increase ‘Idd’ 

Figure 5-26.  The Process Flow of Hardware Trojan Mitigation Scheme. 
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and counter the impact of the increased threshold voltage. The details of the 

implementation are described later in Section 5.5.4. 

5.5.2 Reference Voltage Generator 

The measurement of the threshold voltage is done using ‘Threshold Voltage 

Meter’(Figure 5-12). Although we have used the percentage frequency differences 

corresponding to specific threshold voltage shifts in the HT detection scheme, we 

consider it prudent to quantify the impact of shifts in threshold voltage due to NBTI, 

while devising HT mitigation scheme. In this regard, we propose the implementation 

of a ‘Reference Voltage Generator’ comprising a resistive-based voltage divider. The 

schematic of the generator is shown in Figure 5-27. While calculating the reference 

voltages, the effect of resistive tolerance is taken into account. Resultantly, for the 

threshold voltage shifts of 40% and 70%, for instance, we represent them 

correspondingly as Vref_40% and Vref_70 %. In order to determine the effect of resistive 

tolerance variations, we carried out Monte Carlo simulation, taking into account the 

process and environmental variations as well. A maximum change in reference voltage 

ΔVref of less than 4mV is observed at a worst-case resistive variation of ± 5%. 

Whereas at nominal (± 3% ) and best case (± 0.5%) variations, ΔVref of less than 
2mV and 0.75mV respectively are noted. 

Figure 5-27.  Resistive Voltage Divider for Reference Voltage Generator (Rvg). 
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5.5.3 Current Adjustment Module 

Since the shift in threshold voltage of a PMOS device results in the reduction of drain 

current and the subsequent slowing down of the circuit speed, it is possible to reverse 

or mitigate this phenomenon by increasing the drain current. In order to achieve this, 

a comparator circuit comprising current-mirror based differential amplifier is 

implemented as a current adjustment module. The schematic of this module is shown 

in Figure 5-28. Here, the output of the HT detection scheme and the reference voltage 

V(+) V(-)
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Figure 5-28. A Comparator circuit with current-mirror based 
differential amplifier. 
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generator drive the inputs of the current adjustment module. A control signal from the 

current adjustment module is provided to the TWSM module, which subsequently 

increases the width of the transistor to counter the frequency degradation/delay impact 

of the NBTI mechanism. 

In order to check the operation-ability of this module, we induce a fractional change at 

the inverting and non-inverting inputs of the comparator, as shown in Figure 5-29. 

When the voltage on the inverting terminal of the comparator is made higher as 

compared to its non-inverting terminal, the comparator switches to logic ‘0’ and vice 

versa. We considered the impact of process variations as well and found the 

comparator sensitive up to 1.5mV of variation between inverting and non-inverting 

terminals. 

5.5.4 Transistor Width Scaling Module 

Increasing the transistor width to let more current pass through the transistor can be 

implemented as a countermeasure against the threshold voltage triggered hardware 

Trojans to mitigate the latency induced by the shift in threshold voltage [53]. However, 

designing transistor width increment as a one-time design rule makes it ineffective 

against the long-run online performance degradation caused by NBTI ageing 

mechanism [53]. Also, device upsizing could inflict constraints on the design 

specification during the design stage. Many design metrics, like impedance matching 

and Q point of V-I curve, may be affected, which may result in excess drain current 

values. It is for these reasons, we propose a hardware Trojan mitigation scheme that 

adjusts the width of transistors dynamically (i.e., during run-time) and named as 

‘Online Transistor Dynamic Scaling (OTDS). We divide OTDS into two 

implementation phases as follows: 

5.5.4.1 Design Phase 

In the design phase, we define the dimensions of the 2.5% of identified critical gates 

of IWLS 2005 benchmark ‘vga_lcd’ in-line with its I/O functional specification. 

Additionally, we provide the threshold voltage compensation dimensions/sizing as a 

backup for the potential critical gates. As per the design, the dimensions of the 

transistor forming the critical gate remain fixed until it is sensitized by a significant 

NBTI impact on the design embedded in FPGA. 
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5.5.4.2 Dynamic Phase 

As mentioned in the above paragraphs, when threshold voltage begins to change 

(increase with NBTI), a runtime decision will be asserted to increase the width of the 

critical transistors. With an increase in transistor width, the device is supported with a 

corresponding increase in its drain current and hence, balances and mitigates the 

impact of threshold voltage shifts.  

The concept is illustrated in Figure 5-30. It shows an inverter having a PMOS double 

the size of its NMOS counterpart. Under the normal situation, the pull-up network 

possesses two unconnected parallel widths (2xW2 and 2xW3). Similarly, the pull-down 

network consists of two unconnected parallel widths (W2 and W3). We gated the 

additional PMOS widths, 2xW2 and 2xW3, using transistors Q1 and Q3, respectively. 

Similarly, the additional NMOS widths W2 and W3 are also gated using the transistors 

Q2 and Q4 respectively. The transistors Q1 and Q2 are set to share the same 

triggering signal from node X whereas Q3 and Q4 share the identical signal from node 

Y. Under the normal condition, defined as Vth < Vth_ptt, all these transistors remain 

dormant (‘Off State’) and are considered to be a unit sized transistors. As the threshold 

voltage is shifted (Vth ≥ Vth_ptt) with bias and temperature stressed NBTI, the OTDS 

technique tries to compensate its impact by selecting transistors of larger widths. At 

this stage, the reference voltage generator provides steps of percentage voltage 

corresponding to percentage shifts in threshold voltage. When an increase of 30% in 

Figure 5-30.  Online Transistor Dynamic Scaling using Pull-Up and 
Pull-Down Networks.  
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the threshold voltage of the PMOS transistor is reached, the transistor width is 

incremented to counter the shift in threshold voltage to prevent HT triggering.  

It is vital to have an accurate reference voltage step generation for effective mitigation 

of the increased threshold voltage and the frequency/delay degradation of the circuit 

application. For that purpose, we assume the reference voltages to be fixed and the 

run-time or dynamic state decision is made using the values of threshold voltage 

measured by the HT detection scheme sensor. During the experiment, we observe 

that as the threshold voltage rises by 5%, the current adjustment module with a 

corresponding reference voltage (Vref) generates a signal X, which activates the 

transistors Q1 and Q2 and turns them ‘ON.’ At this point, the width of the Pull-Up 

network, shown in Figure 5-30, increases by 2xW2 and so does the width of the Pull-

Down network by W2. In the same way, at some instances of the time interval, the 

signal Y gets triggered with a specific reference voltage, which in turn, activates the 

transistors Q3 and Q4, having widths as shown in Figure 5-30. This leaves the Pull-

Up and Pull-Down networks with improved speed and stability.  

5.6 Implementation and Optimisation of Hardware Trojan Mitigation 
Scheme 

It is well established that the drain current ‘Idd’ and the response time of a MOSFET 

are directly proportional to its width. Therefore, increasing the transistor’s width will 

subsequently increase the drain current as well as its response time. So, in order to 

double the transistor width, we may use an equal width transistor to widen the 

Figure 5-31. Circuitry for Transistor Width Parametric 
Analysis.  
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MOSFET by sharing the drain and source terminals between MOSFETs. It also helps 

in minimising the layout area. 

Before deciding the extent of increasing the width of the transistor to reverse current 

reduction due to NBTI, we quantify the reduction in drain current ‘Idd’. Accordingly, we 

measure ‘Idd’ at 0%, 10%, 30%, 60%, and 90% of shift in Vth. The measurement results 

are listed in Table 5-10. Based upon these measurements, a width-based parametric 

analysis of the PMOS transistor is undertaken to make a correct assessment of the 

extent of its width increment required to reverse ‘Idd’ reduction, corresponding to 

percentage shifts in Vth. This analysis is enabled by the circuitry shown in Figure 5- 

31. As can be seen, we kept the gate and source voltages of the PMOS transistor 

constant at -1V and 0V, respectively and noted the variation in width (W) of the 

transistor. The results are shown in Figure 5-32. It is evident that for a given gate and 

source voltages, the drain current increases two-fold as the width of the PMOS device 

is doubled. So, accordingly, we come up with the requisite percentage of width 
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Table 5-10  Measured values – PMOS Idd   reduction 
with increase in Vth. 
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increment, which is added in parallel for each value of shift in threshold voltage to 

increase the transistor’s width and the current flow through it. The implementation of 

this scheme is elaborated in Figure 5-33. 

We employ the unit size transistor as a switch to manage and control the connectivity 

of a transistor width for compensation. As seen in Figure 5-33, Q1 represents the 

critical gate, and Q2, Q3, and Q4 are the widths reserved to compensate for the 

reduction of ‘Idd’ due to percentage Vth shifts. As mentioned earlier, the sizes of Q2, 

Q3, Q4, and Q5 are defined at the design phase. The same are given in Table 5-11. 

In order to validate the mitigation scheme, the circuitry in Figure 5-33 is applied to a 

flip flop with true single-phase clocking function. We measure the rise and fall times of 

the flip flop as they change with changes in the threshold voltage. The results show 

an increase in the rise and fall times with an increase in Vth shifts. The exact values  

Figure 5-33.  Threshold voltage-triggered hardware Trojan mitigation circuitry 
of ‘HT-Mitigation Scheme’ 

Table 5-11  Measured values – width increment (Fanout-4) with 
shifts in Vth. 
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are covered in Table 5-12. We observe that as a result of this increase, momentary 

state transitions occur in FSM, which may lead to changing the output state. Also, we 

note that as the duration of this output state is extended, it gets latched and may result 

in the activation of malicious and stealthy hardware Trojan. This, however, is 

prevented by increasing the device width and resultantly, the triggering signal for the 

Trojan is silenced. 

In a nutshell, adding extra reserve width for Pull-Up and Pull-Down network in the 

design phase provides a viable mitigation technique, which increases the transistor 

width dynamically during the run-time.  

5.6.1 Comparative Analysis with Contemporary Mitigation Techniques 

We have presented a holistic FPGA security scheme to detect and mitigate the ingress 

of threshold voltage triggered hardware Trojans in its fabric. In doing so, we have 

designed, implemented, and validated HT-infection, HT-detection, and HT-mitigation 

schemes, with novel sensing and monitoring elements. We have highlighted its 

significance in the ship-defence environment by providing a threat scenario/model 

based on an ‘Integrated Self-Protection System (ISPS).’ This is a unique effort that 

puts forth an integrated approach towards visualising and addressing a probable 

hardware Trojan presence in a security-sensitive and mission-critical defence system 

with accurate and resource-efficient detection and mitigation circuitry in a 28 nm 

technology node based FPGA. 

As discussed in Section 5.2, a significant amount of research work has been 

undertaken to develop effective methods and circuits. In this section, we make a 

comparative analysis of our work with other existing methods for the mitigation of the 

NBTI effect in integrated circuits. For instance, in [54], the adaptive clock scheme 

Table 5-12 Timing delays in TSPC due to Vth-triggered hardware Trojan 
payload. 
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entails increasing the clock time to address the worst-case performance (in terms of  

signal path time delays) degradation due to NBTI. This scheme is, however, hardware-

intensive with a high area overhead. Also, it degrades the device performance as a 

result of time guard banding. Another technique [36] implies the replacement of aged 

gates to reverse delay degradation but, again, it results in high area overhead. Our 

work, on the contrary, addresses performance degradation by changing the transistor 

width dynamically (during the runtime). This entails low area overhead and enhanced 

device performance. 

In another scheme [55], device ageing due to NBTI is countered through standard-cell 

sensor-facilitated measurement of frequency degradation. It is followed by inducing 

additional timing margin for the critical path to prevent device failure due to continued 

ageing. However, the provision of redundancy in terms of extra timing margin is not 

always valid. Moreover, such kind of schemes is resource-intensive with increased 

area overheads–an undesired feature in modern technology nodes. 

Table 5-13 summarises the analysis in terms of efficiency with respect to area 

overhead and power consumption. We find the HT-mitigation component of our FPGA 

security scheme more resource-efficient with compatible power consumption. It 

augments the device performance by zeroing the impact of shifts in threshold voltage 

through responsive and dynamic scaling of transistor width rather than the 

replacement of the gate/transistor. 

5.7 Summary 

The miniaturised form factor of modern FPGAs provides enhanced performance as 

compared to their predecessors. However, high-temperature stresses coupled with 

Table 5-13  Area and Power consumption comparison of the proposed Threshold 
Voltage (Vth) -shift based HT Mitigation Scheme. 
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longer heat dissipation paths may cause undesired stochastic variations like signal 

delays. Primarily, this is attributable to the negative bias temperature instability (NBTI) 

ageing mechanism that comes into play as a result of elevated temperature and 

negative bias stress conditions. Consequently, the threshold voltage increases,  which 

in turn, leads to reduced drain current and delay degradation. 

Keeping the aforementioned in perspective, we have investigated the impact of 

threshold voltage shifts due to the degradation mechanism of NBTI in a 28 nm 

technology node and constructed an FPGA security scheme around it to counter 

potential hardware Trojan (HT) threats. The development of a threat scenario/model 

encompassing a naval warship’s integrated self-protection system (ISPS), with its 

processor module in focus, reinforces the need for a holistic approach to hardware 

Trojan threats. We have shown how a rogue element in a design house can make use 

of knowledge about the shifts in threshold voltage of a PMOS transistor to design and 

implement a stealthy hardware Trojan scheme comprising heating elements, threshold 

voltage meter, and the Trojan circuit. The area and power consumption for this scheme 

are kept as low as 50μm2 and 1.05 μW for NAND2 and 75μm2 and 1.25μW for TSPC, 

with the hardware Trojans triggering at 40% and 50% of the shift in threshold voltages, 

respectively. It results in the total collapse of the circuit functionality, thereby 

confirming the paralysing effect it can have on the ISPS system capability of a warship. 

Acting as a defender, we have created hardware Trojan detection and mitigation 

schemes as an integral part of the overall FPGA security scheme. The HT-detection 

scheme is composed of a highly sensitive (100 KHz/0.5 mV) ring oscillator pair-based 

sensor. It measures frequency degradation in a dynamic sensor segment (DSS) RO 

pair equivalent to the shifts in threshold voltage and compares it with the fixed sensor 

segment (FSS). The sensor is tested and calibrated to detect frequency degradation 

at the pre-Trojan Trigger threshold voltage ‘Vth_ptt’ and Trojan Trigger threshold 

voltage ‘Vth_tt.’ The detection and measurement accuracy is achieved by reducing the 

false prediction rate to zero. Area overhead of 125μm2 and compatible power 

consumption of 3.8μW are noted for the HT-detection scheme.  

The final part of our FPGA security scheme is HT-mitigation by online transistor 

dynamic scaling (OTDS). Here, we leverage the reduction in drain current with an 

increase in threshold voltage to dynamically adjust the transistor width and reverse the 

HT triggering process. Post parametric analysis of the changes in the transistor width, 
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we conclude that increasing the transistor width improves its drain current flow, which 

in turn, helps maintain the performance of the FPGA and avoid HT triggering. We 

correlated and back annotated the requisite increment/decrement in the transistor 

width to compensate for the drain current loss due to shifts in threshold voltage. 

Accordingly, a range of transistor widths that compensates for the reduction in drain 

current has been determined in the FPGA under test. This HT-mitigation scheme 

occupies an area of 150μm2 with power consumption at 15.5 μW.  

The whole FPGA security scheme is built on changes in the threshold voltage of the 

PMOS transistor. It provides a unique and integrated strategy for thwarting the 

probable infection of threshold voltage-triggered hardware Trojans in advanced re-

programmable devices used in security-critical defence systems. 
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6 FPGA HEALTH ESTIMATION USING KERNEL LEARNING 
APPROACH 

High thermal and power stresses coupled with increased switching frequencies result 

in the accelerated degradation in the timing performance of FPGA primitives, such as 

look-up tables (LUTs), configuration logic blocks (CLBs), and programmable 

interconnects. Essentially, this is attributable to the deviation in CMOS transistor 

parameters from their initial values over the operational lifespan of the device. The 

resulting signal path delays and timing violations, eventually leading to the accelerated 

ageing, affect the reliability of an FPGA as well as the sensitive applications running 

on its fabric. The quantification of an FPGA health, under such an accelerated 

degradation environment, therefore, becomes vital to support its reliable operation and 

maintainability. Existing approaches to predict degradation and the overall FPGA 

health are very limited and inconclusive. Accordingly, an FPGA health estimation 

method is developed using a unique kernel-based machine-learning approach. This 

chapter is, therefore, organised to give details of the developed method and various 

interpretations as per the disposition shown in Figure 6-1.  

 

Figure 6-1 The Disposition of Chapter 6. 
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6.1 Introduction 

Health estimation phenomena are not as straightforward in VLSI devices as they are 

for discrete electronic components. It is because of the complex nature of fault/failure 

mechanisms, the interdependence of electrical parameters, and varying component 

tolerances (due to process variations) that place challenges on devising realistic and 

dependable prognostics in VLSI devices - in this case, the FPGAs. These devices 

composed of primitives such as look-up-tables (LUTs), flip flops and programmable 

interconnects with underlying circuitry of CMOS transistors exhibit parametric shifts as 

they degrade over their operational lifetime. The parametric shift is defined as the 

deviation in the parameters of FPGA primitives due to changing I-V characteristics of 

CMOS transistors from their initial values and beyond their acceptable tolerance limits 

[1]. This results in gradual/accelerated (when infected with stealthy and malicious 

electronic circuitry - hardware Trojan) performance degradation in an FPGA, 

eventually leading to the application as well as the FPGA failure. Predicting such FPGA 

performance degradation and failures and, hence its health holds the key to 

maintaining as well as enhancing the reliability and availability of the existing and 

future system and network environments (SoCs, NoCs, and ACAP), augmented by 

state-of-the-art FPGAs. It is, therefore, essential to estimate degradation in FPGA 

health due to parametric shifts (e.g., rise in electric field strength, increased threshold 

voltage, reduced thermal conductivity, etc.) in its primitives with underlying CMOS 

transistors. This study focuses on the parametric shifts in CMOS transistors of SRAM 

Look-up Tables (LUTs) and bistable elements, connected to support logic that could 

perform predetermined functions (in this case – the combinatorial and sequential 

functions). 

6.1.1 Related Work 

A limited amount of studies have developed methods to quantify degradation in FPGA 

health due to parametric shifts in its primitives. Most of the prognostics work has been 

component-centric using data-driven methods for discrete electronic devices like IGBTs, 

electrolytic capacitors, lithium batteries etc., For instance, Mahalanobis distance (MD)-

based feature transformation has been used by [2] for prognostics as a health indicator 

(HI). The author in [3] employed Euclidean distance (ED) measure for filter circuit 
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prognostics, which, however, does not take into account the correlation between 

extracted features. This could result in a false prediction.  

On the other hand, [4] and [5] have calculated the health index (HI) as the cosine (cos-

1) and sine (sin-1 ) functions of the distance between the test features and features 

extracted from the circuit with the no-fault condition. They, however, did not take into 

account the impact of component tolerances, which in addition to the measurement 

noise, may affect the accuracy and authenticity of prognosis. 

Fractional contributions through Mahalanobis distance measurements, conducted 

over a specific time window of extracted features, has been demonstrated by [6]. A k-

nearest neighbor-based prognosis for IGBTs has been proposed by [7], which uses 

ED measurement between the test data to the centroid of the nearest neighbors. Here, 

healthy and failure classes are constructed offline.  

It is noteworthy that the abovementioned MD and ED measure-based prognostics [2]- 

[7] are applicable under the condition that allows the healthy and failure classes to be 

linearly separable in the extracted feature space. On the contrary, [8] and [9] have 

demonstrated that circuit responses are rarely linearly classifiable (be it the no-fault or 

faulty condition). Instead, they are more optimally classified with non-linear Kernel-

learning methods to identify faults. 

In terms of accuracy, an MD-based classifier has been found to achieve 78% 

classification accuracy, as demonstrated by [10] on the Sallen-Key bandpass filter 

(BPF). However, for the same circuit and training data, the least-squares support 

vector machine (SVM) has been found to achieve the classification accuracy of 99% 

approximately, as demonstrated by [2]. These results show that a non-linear method 

is more suitable for classifying a healthy circuit from the one with parametric faults. 

Based on the above, there are various questions that we have sought to address in 

this work: Is it computationally feasible to use machine learning methods for health 

estimation of complex FPGA architecture? How can hyperparameter selection 

problem be solved for accurate health estimate? Do N/PBTI degradation mechanisms 

represent a realistic account of FPGA ageing in terms of frequency degradation, 

threshold voltage and corresponding delay degradation?   
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Accordingly, we have developed a kernel learning technique to prognosticate FPGA 

health, taking into account the parametric shifts in its primitives, such as LUT. This 

involves treating FPGA health as a soft classification entity using a parameterized 

kernel function. As noise may accompany the extracted features, especially when the 

component tolerances are taken into account, it is viable to choose a regularization 

parameter to manage the relationship between training error and the complexity of 

decision function. This implies that the prognostics accuracy depends on the optimal 

choice of kernel and regularization parameters, collectively termed as 

‘hyperparameters.’ In order to address this hyperparameter selection problem, we 

have also developed a stochastic filtering-based optimization method. This method 

helps fine-tune the Kernel and regularization parameters for a given FPGA. 

6.2 Kernel Learning and FPGA Health Estimation/Prognostics – A 
Mathematical Interpretation 

The mapping of data, extending from a Euclidean to a higher-dimensional space, and 

then fitting linear models into the projected space, forms the basis of Kernel-learning 

approach [11]. The projection of test data to a higher dimensional space and the 

calculation of similarity measures between the test data ‘dt’ and the training data 

′{𝒅𝒅𝒊𝒊 }𝒊𝒊=𝟏𝟏𝒏𝒏 ′ for both the healthy and failure FPGA states facilitate the decision on test 

data.    

Precisely, the function K(di, dt ): ℝ𝒏𝒏𝒅𝒅  x ℝ𝒏𝒏𝒅𝒅  → ℝ is used to determine the similarity 

measure between the test and training features, dt and di, respectively, of length nd 

, along with a parameterized family of kernel functions. For instance, the automatic 

relevance determinant (ARD) Gaussian kernel function, which is represented as:  

𝑲𝑲(𝑑𝑑𝑖𝑖,𝑑𝑑𝑡𝑡 )  =  𝑒𝑒𝑒𝑒𝑒𝑒�−�
�𝑑𝑑𝑖𝑖,𝑗𝑗  −  𝑑𝑑𝑡𝑡,𝑗𝑗2�  

𝜎𝜎𝑗𝑗

𝑛𝑛𝑑𝑑

𝑗𝑗=1

                                                                 (6− 1)  

           

is fundamentally parameterized by a kernel vector σ = [σ1, σ2,… σnd]. This implies 

that if we consider the intermediate metric z as supporting the decision on the test 

data dt  , it can then be represented mathematically as:    
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𝒛𝒛  = �𝜶𝜶𝒊𝒊 𝑲𝑲 (𝑑𝑑𝑖𝑖

𝒏𝒏

𝒊𝒊=𝟏𝟏

 ,𝑑𝑑𝑡𝑡 )  +  𝑏𝑏                                                                                      (𝟔𝟔 − 𝟐𝟐) 

where, [α1, α2, α3….. αn b ] are the estimated model parameters obtained by 

solving the system of linear equations [12] 

�Ω + 
1
𝛾𝛾
𝐼𝐼 1

1𝑇𝑇 0
� �𝛼𝛼𝑏𝑏� = �𝑪𝑪0�                                                                                                (6− 3) 

      

where, ϒ represents the regularization parameter as α = [α1, α2, α3….. αn ]T,  

C = [c1, c2, c3 …. cn]T gives the class label related to the training data ′{𝒅𝒅𝒊𝒊 }𝒊𝒊=𝟏𝟏𝒏𝒏 ′
 

,1 = [1,1 ….1]Tnx1, I represents the identity matrix of size n x n, and  

Ω = [Ωij] = [K (di, dj)]. This implies that the estimation of model parameters in  

(6-2) depends on ϒ and σ, which are collectively termed as ‘hyperparameters,’ 

h.  

The problem of hyperparameter selection can be addressed by optimizing an 

error measure, for instance, a v-fold cross-validation error, on a hyperparameter 

value grid [13]. However, a grid search approach is limited and does not provide 

a wide coverage to the entire hyperparameter space. Moreover, in the case of a 

large number of features nd, it may get computationally expensive. For instance, 

the generalization error is estimated for 10 nd +1 combinations of hyperparameter 

(nd  kernel parameters and one ϒ) when a grid search of size 10 is used. This 

translates the generalization error estimate to 107 hyperparameter combinations, 

if a dataset with six features is considered. 

The methods like ‘Gradient descent’ and ‘Evolutionary search’ for model selection 

and estimating hyperparameters have also been reported in the literature [14], 

[15], [16], [17]. Notwithstanding the effect of local minima problem on gradient 

descent (in particular) and evolutionary search, it is still desirable to include 

directional information as provided by these two methods in higher dimensional 

search spaces. However, an approach with faster convergence through 
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reformulation of the global optimization issue as a stochastic filtering problem can 

be considered. Using different benchmark optimization problems, the filtering-

based optimization approach has been shown to perform more optimally than 

cross entropy (CE) and simulated annealing (SA) methods. On the other hand, 

the authors in [18] have weighted CE method higher, in terms of selecting the 

hyperparameters of an SVM classifier more accurately, over the particle swarm 

optimization (PSO) and grid search methods. Also, the stochastic filtering 

optimization method proves more efficient when compared with PSO, as shown 

in Figure 6-2.  

Keeping in perspective the above, we have developed a method for FPGA health 

estimation that combines the positives of gradient descent with evolutionary 

search methods and provides an optimum solution to the hyperparameter 

selection problem as well.  

Figure 6-2  A comparison of Optimisation Method based on 
Stochastic Filtering with Particle Swarm Optimisation using a 
problem related to benchmark optimisation. 
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6.3 The Developed Kernel Learning Method 

The method developed for FPGA prognostics comprises both the learning and 

training phases. The learning phase involves building up of a fault dictionary for 

subsequent training of kernel-based learning algorithm. This is followed by the 

testing mode, where FPGA health is estimated by the continual comparison of 

extracted features with those stored in the fault dictionary by applying the kernel 

algorithm. Accelerated stress test results are used to help identify critical 

primitives (holding the logic application under test) and construct the fault 

dictionary. In our case, we take a look up table (LUT) as a critical primitive with 

an underlying CMOS circuitry that may experience parametric shifts and in turn, 

prevent any associated logic application from executing its intended function. 

The characteristic behaviour of electronic circuits is represented in time and 

frequency responses. It is, therefore, a standard and recommended practice to 

excite the circuit with a test signal for feature extraction. With the identification of 

critical FPGA primitive as well as the fault/failure mechanism/mode, the fault 

dictionary is subsequently constructed on this vital information. The application 

(circuit under test -CUT) built using LUT primitive is then placed under a 

simulation environment to observe its hypothesized fault conditions by stressing 

it under a series of stress test conditions to extract features, as detailed in 

Chapter-4. Here, the fault condition represents a state where CUT fails to perform 

its intended function due to parametric shifts in its primitive and the underlying 

transistor beyond their predefined failure range, which in itself, is much higher 

than the actual tolerance limit. Signal processing techniques (such as wavelet 

transform) are applied to CUT behavioural responses for feature extraction [19], 

the collection of which lately forms the fault dictionary. 

Mathematically, if we let T = {𝒅𝒅𝒊𝒊, 𝒄𝒄𝒊𝒊}𝒊𝒊=𝟏𝟏𝒏𝒏 represent the extracted features for training, 

where n is the total number of training feature vectors, di  is the ith feature vector, 

and ci represents the label for which ci  = +1 (for di when the FPGA is healthy) and 

ci  = -1 (for di when the FPGA is faulty), then the FPGA health (application-based) 

can be estimated (with prognosis) as a metric HI ϵ [0,1] for a test input dt given T. 

So, for a given choice of ϒ and σ, the optimal estimation of the model 
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parameters in (6-2) can be made using (6-3) [12]. Similarly, the FPGA health 

index HIt, can be estimated at time t, considering the metric HI as the healthy 

class conditional probability, which means that dt is extracted when the LUT is 

in a healthy state. The conditional probability with a positive label has been 

demonstrated by [20] to follow a logistic regression function. Based upon this, we 

can use the posterior class probability function and define the following relation: 

𝑯𝑯𝑯𝑯𝑯𝑯�  =  𝑷𝑷 (𝒄𝒄𝒕𝒕  =  +𝟏𝟏| 𝒅𝒅𝒕𝒕)  =  𝒈𝒈 (𝒛𝒛𝒕𝒕 )  =  
𝟏𝟏

𝟏𝟏 +  𝒆𝒆𝒆𝒆𝒆𝒆 (𝑬𝑬𝒛𝒛𝒕𝒕 +  𝑽𝑽)
 

=  𝓟𝓟𝒕𝒕                                                                                               (𝟔𝟔 − 𝟒𝟒) 

where, E and V are parameters estimated by employing Newton’s backtracking 

method. As is evident from the above equation, HI depends on z , which 

resultantly depends on h. This further implies that the selection of h for a given T 

is essential to attain more accurate prognostics. 

6.3.1 Employing Likelihood Function for Hyperparameter Selection 

An objective function of the form F + λR, is developed to solve the hyperparameter 

selection problem. F is dependent on the empirical loss, and R and λ represent 

the regularization term and parameter, respectively  The authors in [14] have 

proposed the regularization term to be more of a negative logarithm of posterior 

probability than selecting priors on hyperparameters. We, therefore, constructed 

an objective function in this paper that extends posterior class probability function 

to a negative log-likelihood function. 

So, if we Let p represent the health estimate for an LUT (holding an application), 

from which d is extracted, then pi if ci = +1 and (1-pi) if ci = -1 will be the likelihood 

function ℒ(∗) for a feature vector di . Mathematically: 

ℒ(𝑑𝑑𝑖𝑖,  𝑐𝑐𝑖𝑖)  =  𝒫𝒫𝒫𝒫�
𝑐𝑐𝑖𝑖 + 1
2 � (1 −  𝒫𝒫𝑖𝑖)

�1 − 𝑐𝑐𝑖𝑖
2 �                                                                       (6 − 5) 

It is worth noting in the above equation, that 𝓟𝓟𝒊𝒊 is the function of  𝒛𝒛𝒊𝒊 (an 

intermediate metric) which depends on the model parameters α and b, as shown 

in (6-2). These model parameters, in turn, depend on h comprising ϒ and σ, as 

shown in (6-3). It can be concluded that the likelihood function is essentially a 
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function of h. Also, the objective function is, characteristically, defined over cross-

validated datasets that are pulled from the training dataset. This implies the cost 

function to a negative log-likelihood function over a cross-validation set 

𝑆̃𝑆 = {𝑑𝑑𝑙𝑙, 𝑐𝑐𝑙𝑙  }𝑙𝑙 =1𝐿𝐿 . 

ℒ𝒮̃𝒮(γ,σ) = −  ���
𝑐𝑐𝑙𝑙  +  1

2
�  𝑙𝑙𝑙𝑙𝑙𝑙 (𝒫𝒫𝑙𝑙)  + �

1 −  𝑐𝑐𝑙𝑙
2

�  𝑙𝑙𝑙𝑙𝑙𝑙 (1 −  𝒫𝒫𝑙𝑙) �    (6 − 6)

𝐿𝐿

𝑙𝑙=1

  

where, 𝒫𝒫𝑙𝑙  =  1
1 + 𝑒𝑒𝑒𝑒𝑒𝑒 (𝐸𝐸𝑧𝑧𝑙𝑙 + 𝑉𝑉)

  and 𝑧𝑧𝑙𝑙  =  ∑ 𝛼𝛼𝑖𝑖𝑛𝑛
𝑖𝑖=1 𝑘𝑘 (𝑑𝑑𝑖𝑖,𝑑𝑑𝑙𝑙)  +  𝑏𝑏. We, therefore, 

focused on minimizing the v-fold cross validation log likelihood as follows:  

ℒ𝑆𝑆 (𝛾𝛾,𝜎𝜎)  =  (𝑉𝑉−1) �ℒ𝑆̃𝑆𝑣𝑣  (𝛾𝛾
𝑉𝑉

𝑣𝑣=1

,𝜎𝜎)                                                                     (6 − 7) 

where, S = 𝑺𝑺�1 Ս  𝑺𝑺�1 Ս ….𝑺𝑺�V  represents the partition of the training dataset into V 

disjoint subsets and 𝓛𝓛𝓢𝓢�(𝛄𝛄,𝛔𝛔) is the objective function given the holdout set Sv.  

6.3.2 Optimization Method for Hyperparameter Selection 

It is imperative to identify the hyperparameter values to reduce (6-7). In such a 

case, the optimization problem can be expressed as follows: 

𝒉𝒉∗ = 𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚𝑚𝑚𝑚𝑚ℎ ∈ ℋℒ𝑆𝑆 (𝒉𝒉)                 (6-8) 

where, 𝓛𝓛𝑺𝑺 (𝒉𝒉) denotes the likelihood function in (6-7) over the dataset S and 𝓗𝓗 

represents the solution space for 𝒉𝒉. We assume that 𝓛𝓛𝑺𝑺 (𝒉𝒉)constitutes a unique 

global optimal solution 𝒉𝒉∗. Also, as mentioned in section-II, we solve the 

optimization of hyperparameter by reconstructing it as a stochastic filtering issue. 

The primary goal of stochastic filtering is to make an accurate estimate of the 

unobserved condition of a dynamic system by observing a sequential stream of 

noises that accompanies it. The unobserved condition corresponds to 𝒉𝒉 and as 

the system evolves toward 𝒉𝒉∗, the conditional distribution of the unobserved 

condition approaches a delta function concentrated on the optimal solution. 

Accordingly, the optimal solution is searched through the sequential estimation 

of the conditional density. Here, it is important to afford some sort of 



 

197 

approximation to facilitate stochastic filtering implementation. As particle filter 

(PF) is a commonly used sequential Monte-Carlo technique that does not impose 

any constraint on the condition’s distribution, it is considered viable to employ PF 

for global optimization to address the problem of model selection.  

An appropriate state-space model is constructed to transform the optimization 

problem into a filtering problem as: 

𝒉𝒉𝑘𝑘 = 𝒉𝒉𝑘𝑘−1 − ε∇ℒ(𝒉𝒉𝑘𝑘−1),          k = 1,2, . . . . ..     (6-9) 

ℯκ = ℒ(𝒉𝒉𝑘𝑘) − υ𝑘𝑘                                                                                                        (6 − 10)

    

where, 𝒉𝒉𝑘𝑘 represents the unobserved state to be estimated and 𝓮𝓮𝒌𝒌 denotes the 

observation with noise 𝛖𝛖𝒌𝒌. ∇ℒ(𝒉𝒉𝑘𝑘) in (6-9) is the gradient of ℒ𝑆̃𝑆(𝒉𝒉) with respect to 

𝒉𝒉𝑘𝑘 for a considered holdout set. By virtue of ℒ(𝒉𝒉𝑘𝑘) being a log-likelihood function, 

it is differentiable with respect to ϒ and σ, as and when the kernel function is 

differentiated. Therefore, ∇ℒ(𝒉𝒉𝑘𝑘) can be determined using the following linear 

equations with ARD kernel function: 
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The application of  PF for hyperparameter selection is shown in Figure 6-3. Here, 

𝓗𝓗 is assumed to be one dimensional (1-D) for illustration purposes. To begin 

with, the distribution b follows 𝓗𝓗 as illustrated in Figure 6-3(a). Subsequent to 
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this, random sampling of b is carried out in an independent and identically 

distributed (i.i.d) manner, with N being the sampling size. We updated the 

hyperparameter vectors based on their gradients ∇ℒ(𝒉𝒉𝑘𝑘 
𝑗𝑗 ); j = 1:N. Accordingly, 

the related generalization error ℒ𝑆𝑆(𝒉𝒉𝑘𝑘 
𝑗𝑗 )is calculated (as shown in Figure 6-3(b)). 

Subsequent to this, the hyperparameters with least generalization error (a.k.a. 

elite particles) are chosen as (1-ρ)-quantile of the complete generalization error 

(as shown in Figure 6-3(c)). This is followed by the updation of the distribution b 

in line with the elite particle locations (Figure 6-3(d)). As the distribution b is 

characterized by particles and associated weights, different shapes for b can be 

realized without building a parametric model. The aforementioned steps are 

repeated to a point where the distribution b approaches delta function and the 

global optimum 𝒉𝒉∗ is identifiable. 

This method is iterative and employs only a set of N hyperparameter 

combinations per iteration. Accordingly, the generalization error must be 

estimated for N x I hyperparameter combinations, where I denotes the number of 

Figure 6-3 Optimization of hyperparameters using 
Particle Filtering Approach 
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iterations. It shows that the computational complexity of the stochastic filtering 

method does not scale to the extent as the grid search does, going up to 10 nd +1. 

On the contrary, the stochastic filtering method incorporates gradient descent 

with each hyperparameter combination hj and resultantly becomes 

computationally more expensive when compared to the gradient descent. 

6.4 Implementation Results and Analysis – Simulation and 
Experiments 

Several experimental tests were conducted on a pair of 28 nm FPGA technology, 

to demonstrate the viability of this Kernel learning method. Typically, a modern 

FPGA (including other VLSI circuits) is presumed to operate unhindered for 

several years without any significant deterioration. However, under the harsh 

operational environment with highly accelerated temperatures and elevated 

voltages (in our case, due to the impact of the presence and malicious activity of 

the hardware Trojans), the ageing process sets in much earlier. This provides a 

perfect stage for measuring physical degradation in an FPGA and assessing the 

impact on its primary soft-logic resources. We used a frequency/delay 

measurement method based on threshold-voltage shifts in PFETs transistors due 

to NBTI triggered hardware Trojans (Chapter 5). It enables the measurement of 

frequency/delay degradation in fundamental FPGA primitives such as registers, 

look-up-tables, and metal interconnects. Moreover, the FPGA application 

circuitries (CUT) were constructed from typical logic paths, representing real-time 

circuit designs. These include NAND2 and True Single-Phase Clock (TSPC) 

based flip-flop circuits integrated with hardware Trojan circuitry (as NBTI 

accelerators) in LUTs. A dual output Ring Oscillator-based sensor segments were 

wrapped around LUTs to sense and give a measure of frequency/delay 

degradation, as explained in Chapter-5.  

The FPGA was contemplated healthy when all of its primitives and the underlying 

transistors varied within the designed parametric tolerance ranges of threshold 

voltage (Vth), drain current (Idd), frequency (f), and corresponding delays. 

Mathematically, (1- Tr) An < A < (1+Tr) An, where T represents the tolerance 

range, A is the actual real value, and An is the nominal value of the primitive. We 
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can, therefore, imply that if any primitive parameter varies beyond its tolerance 

limit, i.e., A < (1-Tr) An or A > (1+Tr) An, the primitive is considered having some 

parametric fault. However, it must be noted that the presence of any parametric 

fault does not mean that the FPGA had failed. The FPGA is evaluated as ‘failed’ 

only when the parametric variation beyond the primitive tolerance range leads to 

the FPGA failing to execute its intended function. 

6.4.1 Accelerated Life Tests on FPGA  

6.4.1.1 Prologue to Degradation Mechanisms 

This section of the chapter is primarily meant to give a concise overview of the 

degradation mechanisms that affect VLSI devices and how we based the 

acquisition of the FPGA’s health profile on one of the mechanisms - mainly when 

the FPGA is under the influence of malicious activity, such as the hardware 

Trojan.   

Mainly, four degradation mechanisms impact the reliability and performance of 

an FPGA and FPGA-based applications. These mechanisms include Hot Carrier 

Injection (HCI), Electromigration, Time-Dependent Dielectric Breakdown (TDDB), 

and N/PBTI (Negative/Positive Bias Temperature Instability), as explained in 

previous chapters. The focus of our work is, however, on the frequency/delay 

degradation an NBTI mechanism can exert on FPGA primitives and its underlying 

PFETs when a threshold-voltage triggered hardware Trojan is activated under 

highly accelerated stress conditions. Accordingly, the accelerated test 

methodology was devised to acquire critical parametric features (threshold 

voltage (Vth), drain current (Idd), frequency (f), and signal propagation time delays 

(tpd)  of the FPGA primitives and PFETs to build a comprehensive fault dictionary 

for the health estimation of an FPGA. The details of the same are given in 

Chapters -4 and 5.         

6.4.1.2 Accelerated Test Methodology 

The stress test conditions (STCs) were chosen to achieve results within a 

practical time-frame and, at the same time, induce degradation consistent with 

the regular use of the device. High levels of voltage and temperature were applied 
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to attain a combined acceleration in ageing of the FPGA. The voltage 

dependence is given by the relation tf  ∝ V-ϒgs, where tf represents the time for 

threshold voltage shift Vth to reach a nominal failure limit and ϒ is the constant 

that lies between 6-8. We confirmed through experimentation that the target 

FPGA remains stable under a 1V increase in its core supply voltage. Resultantly, 

we increased the core power supply from 1.2V to 1.6V.   

On the other hand, high-temperature influences the NBTI- best explained by 

Arrhenius law as 𝒕𝒕𝒇𝒇  ∝  𝐞𝐞𝐞𝐞𝐞𝐞  �𝑬𝑬𝒂𝒂
𝒌𝒌𝒌𝒌
�. In our accelerated test, we used the on-chip 

heaters (part of the hardware Trojan circuitry implemented in FPGA to induce 

accelerated device ageing - shown in Figures 5-9(a) and (b), Chapter -5) to heat 

the FPGA to varying junction temperatures up to 110 - 125⁰C. 

6.4.1.3 Stress Test Conditions 

The stress tests were conducted on a pair of 28 nm technology FPGA under the 

following stress test conditions: 

• STC-1: Stress Temp. - 110⁰C, Stress Duration - 27 hours, Stress Mode - 

AC (1.6V), and Ring Oscillator is always enabled to switch. 

• STC-2: Stress Temp. - 110⁰C, Stress Duration - 27 hours, Stress Mode – 

DC (1.6V), and Ring Oscillator is always enabled every 15 minutes to 

record the data. Data sampling is maintained at < 3s. 

• STC-3:  Same as STC-2. However, the Stress Temp is kept at 80⁰C - safe 

operating limit for 28 nm technology FPGA under test. 

6.4.2 LUT Based Combinatorial Circuit with Hardware Trojan 

The underlying schematic of a combinatorial circuit, NAND2 with hardware 

Trojan, is shown in Figure 5-6. The magnitude of degradation observed was 

significant in all stress test conditions when the Trojan PFET and NAND2 

P/NFETs were stressed. No hard faults were detected during this stress period, 

meaning the transistors, P/NFETs (the critical components), continued working 

within the pre-defined tolerance ranges of parameters including threshold voltage 

shift (10%), drain current (-5%), and the resulting RO-based sensor segments’ 

frequency (-5%). This tolerance range included the worst-case, nominal, and 



 

202 

best-case effects of process variations (varying oxide thickness and transistor 

length). However, we observed the circuit failure as the hardware Trojan gets 

activated just over 20% of the shift in Vth and the corresponding -15% shift in IDD. 

It was, therefore, essential to define a safe operating limit for this LUT based 

combinatorial circuit in the presence of a hardware Trojan. Based on several 

experimentation cycles, we defined the circuit failure condition to be a 10% 

decrease in the RO-based sensor segments’ frequency (set at 25 MHz) as the 

parameters of critical PFETs move beyond the tolerance ranges mentioned 

above. 

The failure condition, at this point, is assigned to assess and evaluate the 

performance and efficiency of the developed Kernel health estimation method. 

We, therefore, started with the off-line learning phase. Several parametric faults 

were induced within the P/NFETs by varying the afore-mentioned parameters’ 

ranges to determine the failure threshold in line with the defined failure condition 

of 20% frequency/delay degradation. Table 6-1 shows the critical P/NFETs 

parametric tolerances and failure threshold for the LUT based combinatorial 

circuit, NAND2, under the influence of hardware Trojan.   

The parametric responses of the combinatorial and the FRED sensor segments 

are closely evaluated to extract various statistical and frequency features. 

Accordingly, a digital wavelet packet transform with Haar mother wavelet (optimal 

diagnostic accuracy) is used to refer the frequency features to the energy held in 

the detail coefficients up to four levels of decomposition of the LUT’s response. 

Table 6-1 Critical Components of LUT-based Combinatorial Circuit with Nominal, 
Tolerance and Threshold Values. 
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So, if dc is the detail coefficient, then the energy held within it Ej can be 

represented at the jth level (in our case, we set J = 4) of decomposition as: 

𝐸𝐸𝑗𝑗     =  � |𝑑𝑑𝑗𝑗,𝑘𝑘  |2
𝑘𝑘

,    𝑗𝑗 =  1 ∶  𝐽𝐽                                                                                   (6 − 13) 

The statistical features, on the other hand, comprised the entropy and kurtosis 

elements of the LUT based circuit responses. We simulated 400 no-fault and 400 

fault cases during the off-line testing of the FPGA primitives (LUT in our case). 

The combinatorial circuit, along with the ring oscillator in LUT, was subjected to 

stress tests, and features were extracted accordingly. The kernel-based health 

estimator was then trained using the extracted features and their class labels in 

Figure 6-4 Kernel-based FPGA Health Estimation Algorithm. 
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accordance with the Algorithm given in Figure 6-4. With the particle size of the 

hyperparameter set at N = 40, the search was executed in a log(h) plane from  

[-20, +20] (defined failure threshold) with the elements of hyperparameter taking 

the values from 10-4 to 10+4 (J=4).  

6.4.2.1 Health Estimation Metrics  

The P/NFETs and RO-based Sensor Segments’ frequency degradation trends 

obtained from highly accelerated thermal and power stress tests were assessed 

for four degradation pathways to evaluate the FPGA health estimation method. 

In the process, the following metrics were defined: 

• Taf : Actual circuit failure time. 

• Tf   : Failure time estimated from HIt (i.e., the time when Ideal Health, 

   HIt < 0.05). 

• Tpf  : Time at which parametric fault alarm was raised (i.e., the time 

    when HIt <  0.95). 

• Fs  : Fault severity at Tf.  

• Fpf   : Fault severity at Tpf. 

Table 6-2 and Figure 6-5 give details of the health estimates obtained from the 

developed kernel method. They are indicated in blue. The figures also include a 

comparison with MD and ED-based methods, as given in [20] and [21], 

respectively. Moreover, HIat  the ideal health of the LUT based circuit is also 

Table 6-2 Performance Analytics of the Developed Health Estimation/Prognostics 
Method for FPGA – LUT Primitive (NAND2 Application) 
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shown to verify the capability of the kernel method to indicate the increase in the 

fault intensity. HIat, the ideal health, reflects the parameters of FPGA primitives 

and circuit components within the safe operating limits or, in other words, within 

the designed tolerances. 

6.4.2.2 Analysis 

It is evident from Figure 6-5 and Table 6-2 that the kernel method is efficient in 

identifying degradation in the FPGA health (based on its primitives and underlying 

transistors parametric behaviour) as the intensity of faults in its critical 

components increases. On the other hand, the MD-based method tracks the 

degradation in LUT’s NAND2 circuitry; however, it does not follow degradation in 

the FRED sensor segments wrapped around the LUT. In other words, this method 

does not generate health estimates that follow the ideal health trend. This is 

probably due to the similarities in the frequency degradation of the LUT’s transfer 

Figure 6-5 Results of FPGA Health Estimation for Parametric Deviation 
(Frequency Degradation of RO-based Sensor Segments) in Combinatorial 
Circuit (NAND2)  
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function with faults in the RO-based sensor segments when it is compared to the 

healthy LUT. 

The ED-based method, as shown in Figure 6-5, gives a good account of 

degradation in FPGA health with the slowing down of the faulty PFETs. However, 

it does not compare well with kernel and MD-based methods when it comes to 

indicating the intensity of health degradation. This is because the ED-based 

estimator is not capable of taking into account the P/NFETs and RO-based 

sensor segments’ tolerances. As a result, the ED estimator assumes the healthy 

and failure classes as linearly separable in the extracted feature space. In other 

words, it implies that the ED method would give a perfect degradation curve if the 

circuit components are kept fixed to their nominal values, whereas the faulty 

component is changed gradually. Comparatively, the kernel-based estimator 

does not assume the healthy and failure classes as linearly separable in extracted 

features’ space. 

6.4.3 LUT Based Sequential Circuit with Hardware Trojan 

The sequential circuit comprises true single-phase clock (TSPC) based flip flop, 

connected with a single PFET (MT) as a hardware Trojan. Figure 5-8 gives the  
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schematic of the circuit, designed and implemented over a chain of 5 LUTs. In 

addition, it also consists of a ring oscillator wrapped around the LUT chain. The 

criticial components of this LUT based sequential circuit are the PFETs in the 

hardware Trojan circuit, NFETs in the flip flop circuit, and the ring oscillator with 

a maximum operating frequency of 25 MHz. Any shift in the threshold voltage of 

P/NFETs results in the frequency degradation of the ring oscillator (FRED Sensor 

Segments) and we observe the corresponding delay degradation in the LUT 

based sequential circuit. Here, we use the percent shift in the threshold voltage 

‘%∆Vth’ of P/NFETs as the precursor parameter to predict the circuit failure. Table 

6-3 shows the critical P/NFETs parametric tolerances and failure threshold for the 

LUT based combinatorial circuit, NAND2, under the influence of hardware Trojan.  

Threshold voltage meter (Chapter 5 – Section 5.4.3) was used to capture the 

increase in threshold voltage under the application of accelerated life tests. The 

results obtained are given in Table 6-4. 

Similar to the combinatorial circuit, the threshold voltage, frequency, and 

statistical features were extracted from the sequential circuit response by 

employing the digital wavelet packet transform with Haar mother wavelet. Both 

Table 6-3 Critical Components of LUT-based Sequential Circuit with Nominal, 
Tolerance and Threshold Values. 
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the threshold voltage and frequency features comprised the energy held in detail 

as well as approximate coefficients up to four levels of decomposition with 

discrete wavelet transformation. Statistical features, on the other hand, included 

the entropy and kurtosis of the LUT based circuit response to different stress test 

conditions. In all, 400 no-fault and hardware Trojan induced fault cases were 

simulated with four different degradation trends (increase in threshold voltage, 
decrease in drain current, slowing down of Sensor Segments’ frequency, 
and increase in delays).   

6.4.3.1 Analysis 

The resulting LUT circuit health estimation using the kernel method for one of the 

cases (PFET-MT) is shown in Figure 6-6. As is evident from the figure, the ideal 

health ′𝑯𝑯𝐼𝐼𝒕𝒕𝑨𝑨′ degradation curve (Brown) variation implies a gradual degradation in 

the IDD of PFET -MT (Trojan Transistor) in LUT and does not approach the failure 

threshold of -15% till it reaches 15 hours (approx.) of testing. Whereas, the kernel 

method showed some variations in FPGA health estimation (based on LUT 

Table 6-4 Performance Analytics of the Developed Health Estimation/Prognostics 
Method for FPGA – LUT Primitive (TSPC-FF Application) 
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primitive) with detection of health degradation (with HT-triggered) earlier than 

exhibited by the ideal health trend. In addition to this, estimates of the failure time 

of the circuit were provided by the kernel-based method 02 hrs before (at the 

health estimate of 92.4%) the critical component reached its failure threshold with 

health estimate at 85%. We investigated it and concluded that such variation 

could have very likely resulted from the un-stressed PFET transistors in the flip 

flop that operated within their tolerance ranges. 

In this case of the hardware Trojan circuit, as the threshold voltage increases with 

high negative bias and elevated temperature in PFETs, the drain current Idd 

decreases causing slowing down of the flip flop circuit. The threshold voltage 

response generated by PFETs under different stress conditions was directly fed 

to the health estimator. Table 6-4 gives a detailed account of the performance 

results of validation on all the three circuits of the sequential circuit in LUT.  

Figure 6-6 FPGA Health Estimate with Early-Warning Indication using Kernel 
Method in a Sequential Circuit configuration 
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As is evident from Table 6-4, the kernel health estimator was able to detect and 

identify the instant at which the sequential circuit developed a parametric fault 

(PFET - MT ∆Vth < 20% and ∆Idd < -15%). This was also true for the hardware 

Trojan part of the sequential circuit in LUT. The kernel estimator was equally 

proficient in detecting the actual failure time for the RO-based Sensor circuit. 

More importantly, in the case of the flip flop circuit of the sequential logic, when 

Tf  < Taf, the health estimator raised early failure warning before the circuit failure. 

This is a desirable feature not only from the health prediction viewpoint but from 

the security perspective as well. Primarily when FPGA primitives are 

implemented with malicious circuits like hardware Trojans, the efficient detection 

and classification is the most sought-after property of an effective algorithm.   

6.4.4 Viability of Kernel-Based Health Estimation for FPGAs 

This kernel-based method for estimating FPGA health can be applied in both the 

offline and online settings to accrue its maximum benefits and optimize its 

usability for other VLSI devices as well. The offline implementation of this method 

is relatively straightforward. A PC system integrated with automated test 

equipment (ATE) is used to hold and process the kernel-based algorithm along 

with the training data. The on-chip or in-circuit measurements are made using 

different EDA tools like Vivado, Cadence Virtuoso, and HSpice simulation tools. 

The online health estimation involves an offline training of the kernel-based 

algorithm, whereby its results, including the estimated hyperparameters (ϒ and 

σ) and the model parameters (α and b), are stored in the processor to conduct 

health estimation in real-time.  

The computation time, an important performance parameter, was also 

investigated for the combinatorial and sequential circuits to ascertain its 

applicability for in-field operations. These two circuit configurations within LUT 

primitive provided a reasonably large number of fault classes as well as the size 

of the training data. In a nutshell, all the processing steps including signal 

denoising, feature extraction, and the FPGA health estimation using kernel 

algorithm, took precisely 1.5 and 2.2 ms, respectively, in MATLAB 2019b 

environment running on a 2.86 GHz Intel Core i7 processor with 32-Gb DDR4 
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RAM. It took the whole onboard computation to complete within 3.8 ms 

approximately. This implies that if we have more critical circuits/applications with 

high loading in an FPGA, the developed kernel method would still be 

computationally efficient for health estimation. 

6.4.4.1 Classification/Health Estimation/Prognostics Accuracy 

As mentioned above in Sections 4.4.2 and 4.4.3, a total of 400 cases each for 

no-fault FPGA and hardware-Trojan infected FPGA, with a combinatorial and 

sequential circuits, were simulated and experimented under the stress test 

conditions to create a fault dictionary, an excerpt of the same is shown in Table 

6-5. The Kernel-based classifier was able to classify the two categories with 

accuracies as mentioned below: 

• Combinatorial circuit – non-faulty FPGA: 375/400 – 93.75% 

• Combinatorial circuit – faulty FPGA: 387/400 – 96.75% 

• Sequential circuit – non-faulty: 395/400 – 98.75 % 

• Sequential circuit – faulty FPGA: 390/400 – 97.5% 

6.4.4.2 FPGA Time to Failure/RUL 

Based upon the instantaneous health estimate, for instance in the case of LUT 

with Combinatorial circuit application and hardware Trojan implemented, the 

Table 6-5 A Simplistic Excerpt of FPGA Fault Dictionary – (LUT- TSPC FF) 
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Time to Failure (TtF)/Remaining Useful Life (RUL) can be calculated by 

subtracting the time at ‘prediction made’ from the time when the value of threshold 

voltage/frequency  shift equals the defined failure threshold. 

6.5 Summary 

The reliability of FPGAs is an issue of growing importance as process scaling 

approaches its extremity and FPGAs find their way into state-of-the-art SoCs, 

NoCs, and ACAPs. A firm understanding is needed for various changes that 

FPGAs experience as they age, the factors that influence them, and methods to 

predict their health accurately. Subjecting them to highly accelerated life 

conditions results in parametric deviations in MOSFETs, that make up the FPGA 

primitives (LUTs, CLBS, and registers). This chapter has focused on the 

degradation mechanisms of NBTI, their exploitation by hardware Trojans to 

degrade FPGA reliability by inflicting power and timing closures in FPGA based 

applications and developing an efficient health estimation method based on 

kernel learning method.  

This method exploits the features extracted from an FPGA primitive holding a 

logic circuit and its underlying P/NFETs. Additionally, the development of the 

Stochastic Filtering Optimization method helps to achieve better health 

estimation accuracy by addressing the hyperparameter selection problem.  

The results indicate an effective detection capability of this method, whereby it 

enables the capturing of actual degradation trends in critical and faulty 

components with enhanced accuracy (97%) as compared to the Euclidean and 

Mahalanobis based methods. The most important and useful attribute of this 

health estimation method is its ability to provide an early failure warning before 

the actual application circuit failure. In most cases, the estimated failure time Tf  
was found to be less than the actual failure time Taf . While in some cases, the 

error was observed in health estimation. We were able to identify two main 

reasons for it. Firstly, the magnitude of the failure class features in the projected 

space is significantly larger than the magnitude of the healthy class features. This 

resulted in biasing the conditional probability toward the faulty class. Secondly, 

both the healthy and failure classes are spaced well-apart in the higher 
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dimensional space. This makes their classification very easy; however, we 

resolved it by choosing the failure threshold value near to the theoretical failure 

limit. Nevertheless, in the higher dimensional space, it is imperative to have a 

method for tighter control on the distribution of faulty features. 

We also observed some variability in the FPGA circuit health estimate of the 

sequential logic, despite the inclusion of the regularisation parameter to counter 

the impact of component tolerances. Therefore, in order to control the spread of 

healthy class features in the projected space, the addition of an application-

specific constraint in the hyperparameter selection algorithm could prove useful.         
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7 DISCUSSION AND CONCLUSIONS 

The core aim of this research was to develop an integrated ‘Design for 

Prognostics and Security’ in FPGAs, taking into consideration the aggravated 

impact of the continual miniaturisation of technology node and the rising hardware 

threats, hardware Trojans in particular. The design provides a viable capability to 

both the industry and the researchers for prognosticating and managing the 

health of modern FPGAs using an integrated approach that combines the realms 

of FPGA reliability and security and gives an optimised solution in the form of the 

FPGA security scheme and a Kernel-based health estimation/prognostics 

method. This research is, therefore, a substantial effort to strengthen the realms 

of reliability and security that govern the health dynamics of Field Programmable 

Gate Arrays (FPGAs) for innumerable mission-critical applications.  

In this chapter, we present a brief discussion to highlight the salient findings and 

contributions to these realms. Section 7.1 gives an account of how the research 

aim and objectives have been achieved. This is followed by the presentation of 

key contributions to the existing VLSI reliability and security domains in Section 

7.2. Two key avenues for the future work are recommended in the final Section 

7.3.    

7.1 Addressing the Research Aim and Objectives 

The overall scientific research aim was to develop an integrated ‘Design for 

Prognostics and Security in Field Programmable Gate Arrays (FPGAs) that 

facilitates their reliability and security enhancement, enables NBTI-based 

hardware Trojan detection and mitigation within their reconfigurable fabric, and 

helps estimate their health. This aim has been achieved with the fulfilment of the 

following objectives: 

Objective 1: Develop an Integrated FPGA Health Management (IFHM) 

Framework. 

Evidence 1: This objective was accomplished with the development of a high-

level IFHM framework, which provides a guideline for the VLSI design and 



 

217 

manufacturing community (including researchers and expert end-users) to 

develop highly optimised FPGA security and prognostics schemes by adopting 

integrated approach. This framework was conceived on the pretext that the 

existing individualistic approach toward FPGA health management does not 

consider the essential elements of reliability, prognostics and security collectively. 

As a result, the fragmented solutions are developed which, however, do not 

reflect the true state of the operational condition of an FPGA. This framework 

negates the fragmented approach and provides a guidance for the FPGA 

researchers, design and manufacturing engineers, and expert end-users in 

establishing the relationship between ‘degradation/failure mechanism’ and 

‘hardware threat/attack’, determining ‘failure precursor’, constructing and 

optimizing the experimental set-up, defining test conditions and estimating the 

health of an FPGA in a composite manner. The subsequent design and 

development of the FRED sensor (Chapter 4), the FPGA Security Scheme 

(Chapter 5), and the Kernel-based health estimation method (Chapter 6) are the 

products of this framework and validate its concept.   

The subsequent automation of this framework and integration with electronic 

design automation (EDA) tools would be highly useful. 

Objective 2: Design and implement a small footprint and highly sensitive on-chip 

sensor for the detection of frequency and subsequent delay degradation in 

modern FPGAs due to aggravated BTI mechanism. 

Evidence 2: This objective was achieved by the design and implementation of a 

FREquency Degradation (FRED) detection sensor (Chapter 4). The sensor 

detects and provides a measure of decrement in the frequency of its uniquely 

designed dual delay-line based segments with the ageing of FPGA primitives due 

to the BTI degradation mechanisms. The fixed sensor segment (FSS) of FRED 

is used as a reference with near-zero stress and the dynamic sensor segment 

(DSS) is built to experience high temperature and voltage stresses. Configured 

with variant gate length and types, the sensor outputs an accurate measure of 

the frequency difference between the FSS and DSS segments. Due to near-zero 

stresses on FSS, it is equally good for the calibration of the sensor, which helps 
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maintain the measurement accuracy. The simulation and real-time experiments 

under normal and accelerated temperature and voltage conditions validated the 

effectiveness of the sensor in detecting and measuring small to large delay 

variability by observing changes in the frequency difference between the FSS 

and DSS segments.  

Based on its capability to capture FPGA ageing in terms of the frequency and 

delay degradation across the whole FPGA surface, FRED can be considered a 

good candidate for the detection of malicious circuits, called hardware Trojans, 

that are based on the parametric variations (such as threshold voltage) in 

transistors. 

Objective 3: Design and implementation of an FPGA Security Scheme capable 

of detecting a hardware Trojan and providing effective mitigation.  

Evidence 3: This was the most important objective and can be termed as the 

backbone of this research work. We achieved it by designing and implementing 

a unique FPGA Security Scheme comprising the design and implementation of a 

novel threshold voltage shift-based hardware Trojan sub-scheme, hardware 

Trojan detection sub-scheme comprising an improved version of FRED sensor, 

and a hardware Trojan mitigation sub-scheme based on the online transistor 

dynamic scaling (OTDS) (Chapter 5). 

This FPGA Security Scheme would prove to be a trustable and highly effective 

capability for a wider industrial community in bolstering their products’ reliability 

and performance. It would augment their capability to defend and deter against 

hardware Trojans. 

Objective 4: Prognosticate the health of an FPGA under the influence of 

hardware Trojan 

Evidence 4: We accomplished this key objective by developing a Kernel-based 

machine learning method to prognosticate the health of an FPGA under the 

influence of a hardware Trojan (Chapter 6). This method exploits the features 

extracted from an FPGA primitive holding a logic circuit and its underlying PFETs. 

Additionally, it is augmented with a stochastic filtering optimization method that 
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helps to achieve better health estimation accuracy by addressing the 

hyperparameter selection problem. The most important and useful attribute of this 

health estimation method is its ability to provide an early failure warning before 

the actual application circuit failure. This method provides a classification 

accuracy of 94% on average (calculated taking into consideration different circuit 

implementations on FPGA). 

7.2 Contribution to Knowledge    

Any research work that attempts to understand the intricacies of security in the 

wake of evolving cyber-attacks is, in itself, a decent contribution to the field of 

hardware security, in particular and cybersecurity, in general. We have delved 

much deeper into finding novel and practicable solution to FPGA reliability and 

security issues. In the process, we have made some significant contributions to 

the VLSI stream of micro and nanoelectronics. These include: 

• The integrated FPGA health management (IFHM) framework: is a highly 

useful tool for deriving valuable and relevant research data on FPGA security 

and reliability, especially for the semiconductors’ research community. It 

provides an all-encompassing and well-directed approach to understand the 

health contours of FPGA and develop efficient schemes accordingly. When 

automated, it would be a vital addition to the design rule check (DRC) 

feature/library of FPGA/ASIC design tools.  

• Lightweight On-chip FREquency Degradation (FRED) Detection Sensor: 
The designing and implementation process of FRED provides a cogent 

understanding of the varying parametric behaviour of CMOS transistors and 

FPGA primitives due to their interactions and exposure to various stochastic 

and systematic variations. The study and investigation of the changing 

threshold voltage and drain current, and their impact on frequency and circuit 

delays provide a useful knowledge for the sensor designer to optimise the 

sensor design. In addition, FRED with a high sensitivity and low area and 

power consumption along with improved quality factor can be incorporated in 

FPGA designs by the manufacturers not only for frequency and delay 

measurements but for accurate temperature readings as well, with some 
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minor modifications. Most importantly, it has been verified and validated to be 

an efficient hardware Trojan detector ( for threshold-voltage shift-based 

hardware Trojans). 

• Development of a Threat Model: We have developed a unique hardware 

Trojan threat model based on a high-end defence asset - a naval warship, 

fitted with an ‘Integrated Self-Protection System’ (ISPS) (Chapter 5, Section 

5.2). It helps understand the implications of a hardware Trojan-infected FPGA 

on the system/sub-system/module it has been fitted with. It could range from 

SoCs and NoCs to LRUs, complex computation modules, radar transceiver 

systems, and sensitive cipher-decipher assemblies. This model can be 

utilised to build different FPGA security schemes (based on the multiple types 

of hardware Trojans) to defy micro-architectural level hardware attacks and 

ensure the confidentiality, reliability, and the operational availability of 

computational systems.  

• Design and Implementation of a Novel Hardware Trojan: Leveraging the 

NBTI degradation mechanism’s growing intensity with the continual 

downscaling of FPGA technology node, we designed and developed a novel 

lightweight and stealthy hardware Trojan in a 28nm device (Chapter 5, Section 

5.3). This Trojan gets triggered with minor shifts in threshold voltage and 

disrupts the operation and function of any combinatorial and sequential circuit 

implemented in the FPGA. This design can be exploited by researchers to 

develop a threshold voltage triggered hardware Trojan based on PBTI 

degradation mechanism as well and accordingly develop various mitigation 

and prevention schemes.   

• FPGA Security Scheme: In consonance with the IFHM framework, we 

devised an FPGA/ASIC - implementable Security Scheme to counter the 

detrimental impact of hardware Trojans. This scheme involves: 1) Ingress of 

a stealthy threshold voltage-triggered hardware Trojan-(HT Infection 
Scheme), 2) Detection of hardware Trojan using lightweight Threshold 

Voltage - aware sensor (SVth)-(HT Detection Scheme), and 3) Mitigating the 

impact of hardware Trojan using online transistor dynamic scaling (OTDS)-

(HT Mitigation Scheme). The complete description is given in Chapter 5. This 
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scheme can be capitalised on by the UK Research and Innovation’s ‘Industrial 

Strategy Challenge aiming at radically updating the foundation of the UK’s 

insecure digital computing infrastructure. 

• Kernel-based FPGA Health Estimation/Prognosis: The culmination of our 

research work is the development of a Kernel-based method to prognosticate 

FPGA health under the influence of a threshold-voltage triggered hardware 

Trojan (Chapter 6). This alongwith the above contributions is also unique in 

the sense that it is a completely new approach towards FPGA health 

estimation/prognosis. To the best of our knowledge,  Machine Learning (ML) 

has not been used for an FPGA before. Previously, such techniques/methods 

have been limited to discrete electronic components.  

This method is the finality of the concept of IFHM framework that provides a 

composite picture of the health of an FPGA. This method can be further 

matured with extensive testing with a view to enhancing its classification 

accuracy to 100%. This method could be a most viable as well as cost and 

time efficient choice for the FPGA manufacturers to enhance their post-

manufacturing reliability monitoring and testing programs.      

7.3 Future Work 

While conducting this research work and writing down the thesis, we have been 

intrigued by a number of concerns. For instance, there is a relentless need to 

secure the semiconductor manufacturing supply chain completely. This includes 

trusted design kits, reliable tool flows, full-spectrum (encompassing reliability, 

prognosis, and security) design libraries, manufacturing, packaging, and 

assembly. The industry still seems reluctant or incapacitated to understand the 

varying nature of malicious hardware Trojans. How can we analyse them? Is 

there any anti-virus program for hardware abstraction level devices? Should it be 

developed on signatures or behaviour/anomaly? Would a completely-trusted 

delivery be possible in the future autonomous systems? How effective is Tamper 

resistance? What can be adjudged as the best set of practices to detect, mitigate, 

and prevent the threat of malicious hardware? What can we learn from the 

(failed?) efforts to detect subversion in VLSI devices, particularly FPGA based 
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SoCs? What can be a good defence, dependability, and trust strategy for the 

existing and future hardware development? 

Nevertheless, keeping our research work in perspective, we recommend the 

following as significantly important future works.  

7.3.1 Automation of Integrated FPGA Health Management  (IFHM) 
Framework 

The proposed IFHM framework is a manual guidance on gathering requisite 

information and data related to FPGA reliability, security, and prognostics. Based 

on the analysis of the collated data, the FPGA security, reliability, and prognostics 

are designed and developed in a composite manner. This approach is efficient in 

time, cost, and research effort expended in developing an optimised FPGA health 

scheme. However, the automation of this framework would quadruple its 

efficiency and help build more robust and all-encompassing designs. This can 

then be integrated with the EDA tool kits (developed by Xilinx, Altera, Synopsys, 

Cadence etc.,) as a Design Rule Check (DRC) for FPGA/ASIC/SoC design flows.  

7.3.2 Digital Security Hardening by Design – A Bio-inspired 
Approach 

Traditionally, the performance evaluation of embedded devices (microprocessor, 

ASIC, and FPGA) and systems (SoC, NoC, and ACAP) is the function of their 

parametric analysis against designed specifications of a known-good or golden 

device. The electrical and physical parameters of the embedded device/system 

under test/evaluation are compared with the standard parameters of the golden 

device. Any deviation so observed is simultaneously recorded as a peculiar 

behavioural response (symptom) of the device and categorised into specific 

hardware threat (hardware Trojan, side-channel attack, counterfeit). However, in 

the absence of a known-good or a golden device, the performance evaluation 

becomes a challenging task – time consuming, resource-intensive, and un-

reliable. Moreover, unavailability of tools to check the security of design, needs 

for security upgrade when breaches are detected after fabrication and release of 

the products, needs for hardware roots of trust, and lack of security model in 

component/devices libraries, currently used in EDA tools such as cadence and 
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Mentor Graphics, provide impetus for defining an all-inclusive bio-inspired 

intervention. 

In view of the above, a bio-inspired vaccination approach may be adopted in 

which the embedded devices/systems are treated as artificial beings infested with 

malicious circuitry/software and other bugs that remain dormant unless triggered 

internally or by any external source. Such an approach eliminates the 

requirement of a golden device and helps build performance profile of the device 

in a composite manner. Taking lead from the ‘Vaccination Mechanism’, 

embedded devices/systems could be made immune at the microarchitectural 

level against hardware threats - hardware Trojans in specific. The 

devices/systems can then be exposed to a large set of known threat models to 

acquire corresponding symptoms, learn from them, and then construct advanced 

security solutions comprising early threat detection and mitigation schemes for 

unknown threats (while mimicking engineering solutions from biological 

counterparts). This would entail: 

• Development of hardware Trojan models and integrating them with VLSI 

design along with the controllability mechanism to defuse them at the end 

of manufacturing tests. 

• Enhancing the existing design for testability (DFT) techniques with novel 

approaches that allow construction and integration of advanced 

reconfigurable sensors with the device, called Primitive Security Elements 

or simply security primitives.  

• Mechanisms to test the device/system through DFT, enabling fast and 

efficient data collection while the intended Trojans are activated or 

deactivated. 

• Data analysis and signal processing to determine symptoms associated 

with known Trojans. 

• Development of ML algorithms to extend the symptoms from known 

threats to unknown threats. 

• Performance evaluation based on the symptoms’ analysis and 

categorisation. 
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• Building components and devices libraries for various silicon technologies 

and foundries using threat models and associated symptoms as objects. 

7.3.3 Alleviation of Si-H Bond-Breaking Impact on CMOS Transistors 

The Si-H (Silicon-Hydrate) bonds’ breakage leads to the initiation of the 

degradation mechanisms of BTI and HCI. As a result, these phenomena  

generate performance issues for CMOS transistors and this trend seems to get 

more pronounced despite the miniaturisation of VLSI technologies and usage of 

heavily nitrided oxides. A number of materials other than amorphous silicon can 

be the viable candidates for the alleviation of this undesired phenomenon. It is, 

therefore, considered prudent to investigate new materials and their practicality 

for state-of-the-art semiconductor devices so as to suppress performance 

degradation mechanisms such as N/PBTI and help increase their reliability.      

7.3.4 Probability of Detection of Hardware Trojans Through Surface 
Effects’ Monitoring 

Despite the advanced thermal management/system monitors implemented within 

FPGAs/SoCs, detection of hotspots within FPGA fabric is not precise and 

accurate. As a result, any malicious circuit designed to trigger with high 

temperatures, will not be detected. We observed this during the accelerated 

thermal and power cycling experiments. The existing system monitors provide an 

overall junction temperature and all countermeasures/safeties are 

developed/activated accordingly. The hotspots’ generation point has a much 

higher temperature, sufficient enough to trigger NBTI with corresponding 

increase in threshold voltage, thereby triggering the Trojan without 

leaving/showing any noticeable trace /impact. There is, therefore, a critical need 

to study the possibility of detection of hardware Trojans and develop advanced 

and more robust techniques to enable their detection by swift 

identification/capturing of hotspots as well as monitoring and evaluating the 

device surface effects.     
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7.3.5 Impact of Run-time Transistor Width Scaling on the Usable 
Area of an FPGA Device  

The researchers/designers may have to make certain viable trade-offs between 

security implications (at any specific instant of time) and the FPGA optimal 

performance. As a result, compromises on area, power, and timing may take 

place. Keeping these factors in perspective, we have proposed this whole FPGA 

security scheme. We have kept the scheme viable in such a way that it should 

give improved area, power, and timing (system performance) figures, and at the 

same time never allowing hardware Trojan trigger by scaling transistor gates as 

and when thresholds are likely to be violated. However, despite this, the 

implementation and then the subsequent operation of OTDS (Online Transistor 

Dynamic Scaling) scheme during the device runtime, may impose some 

restrictions on the useable area/resources of FPGA and its dynamic 

reconfiguration. This could be the increase in the capacitive load of the circuit, 

causing a slight increase in the propagation delay of the monitored signal. In 

certain cases, there may be a considerable increase in the operating frequency. 

The question here is whether affecting transistor width will not have a massive 

effect on the FPGA device as a whole. We would, therefore, encourage the future 

researchers to critically evaluate the proposed OTDS scheme further and bring 

forth some highly useful performance evaluations.   

It is envisaged that the above-mentioned future work recommendations would 

help enhance the realms of VLSI reliability and security a step further our 

research work and provide a robust set of tools to tackle the most damaging 

hardware and cyber threats.  
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APPENDICES 

Appendix A Improving the Hardware Trojan 
Detectability 
Keeping the patterns of false prediction in perspective, we consider improving the 

proposed sensor’s detection sensitivity by adding two additional pairs of ROs to 

each of the sensor segment (Fixed and Dynamic). The frequencies of all these 

pairs of RO segments are measured consecutively, during different thermal 

cycles. Subsequently, the average of FSS (Fixed Sensor Segment) and DSS 

(Dynamic Sensor Segment) frequencies is calculated to determine the presence 

of malicious hardware Trojan.  

A.1 Spread Reduction by Averaging Method 

Assuming there is n number of ROs in the fixed and dynamic sensor segments, 

their respective frequencies can then be considered as random variables and 

denoted by a1, a2, …., an and b1, b2,....., bn, respectively. as the distribution of 

g0(ffd ) depends upon the frequency differences of both the fixed and dynamic 

sensor segments; we can derive the following equation: 

  Xi = Ai - Bi        (5-5) 

In this equation, Xis is Gaussian, as both the Ais  and Bis are Gaussian. We 

further assume the variables A and B to have the same mean and variance, as 

all the RO segments undergo the same process variations. The aim is to 

determine the mean and variance of a newly formed random variable Zn. 

Mathematically, this can be represented as follows: 
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The resultant random variable  𝒁𝒁𝒏𝒏 will be, therefore, Gaussian as all the Xis are 

Gaussian. Based on this, the mean and variance are expressed in the following 

mathematical form: 
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In the above equations, 𝑬𝑬[𝒁𝒁𝒏𝒏 ] is the expected value of the random variable 𝒁𝒁𝒏𝒏- 

equal to the mean of a Gaussian random variable. Whereas 𝒗𝒗𝒗𝒗𝒗𝒗(𝒁𝒁𝒏𝒏 ) represents 

the variance of the random variable 𝒁𝒁𝒏𝒏 and 𝒄𝒄𝒄𝒄𝒄𝒄 �𝑿𝑿𝒊𝒊,𝑿𝑿𝒋𝒋� is the covariance 

between the random variables 𝑿𝑿𝒊𝒊 𝑎𝑎𝑎𝑎𝑎𝑎 𝑿𝑿𝒋𝒋.In this mathematical model, we assume 

the frequencies of all the RO segments to be independent so that the random 

variables 𝑿𝑿𝟏𝟏,𝑿𝑿𝟐𝟐 , … . .𝑿𝑿𝒏𝒏 also become independent. It, therefore, results in all the 

covariances in (9) becoming zero.  
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 Keeping the above equation (9) in view, the mean (μ) and the standard 

deviation (σ) of 𝒁𝒁𝒏𝒏 can be derived as follows: 

  𝜇𝜇𝑍𝑍𝑛𝑛  =  𝜇𝜇           (5-11) 

  𝜎𝜎𝑍𝑍𝑛𝑛  =  𝜎𝜎
√𝑛𝑛

           (5-12) 
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As can be seen in (5-8) and (5-11), the mean of the average difference 𝒁𝒁𝒏𝒏  

remains unchanged when compared with each 𝑿𝑿𝒊𝒊. On the other hand, the 

variance of 𝒁𝒁𝒏𝒏 is dependent on √𝒏𝒏. A similar derivation is carried out to estimate 

the resultant mean and variance for the distribution at time t, gt(fFD ). We, 

therefore, infer that the overlapping area between the two distributions can be 

reduced to an almost negligible amount by adding additional RO pairs to both the 

fixed and dynamic segments, as is evident from Figure 5- 18(b). 
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Appendix B Determining Maximum Frequency 
Degradation 
An accurate and precise capturing of frequency degradation in ring oscillators is 

key to the correct and authentic assessment of hardware Trojan’s triggering, its 

impact, and a reliable measure of the sensor’s sensitivity. We, therefore, 

experimented to determine the maximum frequency degradation experienced by 

DSS RO pairs when negative bias and elevated temperatures are applied as per 

the hardware Trojan insertion scheme described in Section 5.3. 

and coarse as well as fine stretching operations (stress-time) used in [61] to 

minimise measurement errors. We observe how the frequency degradation (with 

subsequent delays and ageing), δf, changes with the percentage frequency 

differences at varying threshold voltages. A total of 10K samples were taken at 

each thermal (60, 90, and 125⁰C) and negative bias (-1.2V, -1.4V, and -2.0V) 

points. The scatter plot of frequency degradation δf against frequency difference 

𝛛𝛛ft DSS at time t is shown in Fig. 20, where 𝛛𝛛ft DSS = (ft(-2.0V) - ft(-1.4V) - ft(-1.2V)) / ft(-1.2V). 

As is evident, ft(-2.0V),  ft(-1.4V), and ft(-1.2V) are the frequencies of DSS RO pairs that 

are exposed to negative bias and increasing temperature stresses. A positive 

correlation (𝝆𝝆)for frequency degradation and normalised frequency differences is 

observed that indicates the ageing and delay degradation in this specific 

threshold voltage triggered hardware Trojan environment. Based on this 

experimental observation, we undertook mathematical analysis to determine the 

relationship that could enhance sensor accuracy defined by the interdependence 

of temperature, threshold voltage, oscillation count/frequency, and ageing/delays 

variability.  

As the DSS RO pairs are subjected to temperature and threshold voltage 

variations at time t, the oscillation count/frequency ft DSS begins to fall. It becomes 

lower than the frequency f0 DSS at time 0. This frequency degradation 𝜹𝜹𝜹𝜹 can, 

then, be given as: 

𝛿𝛿𝛿𝛿 =  𝑓𝑓0 𝐷𝐷𝐷𝐷𝐷𝐷 −  𝑓𝑓𝑡𝑡 𝐷𝐷𝐷𝐷𝐷𝐷                                                                                                       (5 − 13) 
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With the application of negative bias at three different values in time 0, the 

percentage frequency difference is resultantly calculated as: 

 𝜕𝜕𝑓𝑓0 𝐷𝐷𝐷𝐷𝐷𝐷 =  
𝑓𝑓0 𝐷𝐷𝐷𝐷𝐷𝐷,𝑉𝑉𝐷𝐷𝐷𝐷1 – 𝑓𝑓0 𝐷𝐷𝐷𝐷𝐷𝐷,𝑉𝑉𝐷𝐷𝐷𝐷2 – 𝑓𝑓0 𝐷𝐷𝐷𝐷𝐷𝐷,𝑉𝑉𝐷𝐷𝐷𝐷3 

𝑓𝑓0 𝐷𝐷𝐷𝐷𝐷𝐷,𝑉𝑉𝐷𝐷𝐷𝐷3 
            (5-14) 

where, 𝑽𝑽𝑫𝑫𝑫𝑫𝑫𝑫 > 𝑽𝑽𝑫𝑫𝑫𝑫𝑫𝑫 > 𝑽𝑽𝑫𝑫𝑫𝑫𝑫𝑫. As there exists a positive correlation between 𝜹𝜹𝜹𝜹 and 

𝝏𝝏𝒇𝒇𝟎𝟎 𝑫𝑫𝑫𝑫𝑫𝑫 , we aim at identifying DSS RO pair that experiences a maximum 

frequency degradation relative to percentage frequency differences at the afore-

mentioned negative bias and temperature stress values, mathematically: 

  𝛿𝛿𝛿𝛿 
𝜌𝜌
←   𝜕𝜕𝑓𝑓0 𝐷𝐷𝐷𝐷𝐷𝐷                                             (5-15) 

Then, the frequency degradation for the sensor can be expressed as follows: 

  𝛿𝛿𝛿𝛿 =  ∆𝑓𝑓𝑡𝑡 −  ∆𝑓𝑓0               (5-16) 

 where, 

  ∆𝑓𝑓𝑡𝑡 =   𝑓𝑓𝑡𝑡 𝐹𝐹𝐹𝐹𝐹𝐹 – 𝑓𝑓𝑡𝑡 𝐷𝐷𝐷𝐷𝐷𝐷              (5-17) 

We also consider the impact process variations (PVs) could have on frequency 

(delay/ageing) degradation 𝜹𝜹𝜹𝜹 and the percentage frequency difference 𝝏𝝏𝒇𝒇𝑫𝑫𝑫𝑫𝑫𝑫. 

With the positive correlation between the two, it is possible to have an optimal 

estimate 𝜹𝜹𝚲𝚲𝒇𝒇 for 𝜹𝜹𝜹𝜹. Minimum mean-square error (MMSE) estimator, for instance, 

provides versatility to achieve reduced mean square error and make more 

realistic estimates [62]. The DSS RO degradation is, therefore, expressed using 

the minimum mean-square error (MMSE) estimator, as follows: 

𝛿𝛿𝑓𝑓𝐷𝐷𝐷𝐷𝐷𝐷 =  𝜌𝜌
𝜎𝜎𝛿𝛿𝑓𝑓𝐷𝐷𝐷𝐷𝐷𝐷
𝜎𝜎𝜕𝜕𝑓𝑓𝐷𝐷𝐷𝐷𝐷𝐷

  (𝜕𝜕𝑓𝑓𝐷𝐷𝐷𝐷𝐷𝐷 −  𝜇𝜇𝜇𝜇𝑓𝑓𝐷𝐷𝐷𝐷𝐷𝐷) + μ𝛿𝛿𝑓𝑓𝐷𝐷𝐷𝐷𝐷𝐷          (5-18) 

where, 𝝆𝝆 defines the correlation between frequency degradation in dynamic 

sensor segment (𝜹𝜹𝒇𝒇𝑫𝑫𝑫𝑫𝑫𝑫) and percentage frequency difference (𝝏𝝏𝒇𝒇𝑫𝑫𝑫𝑫𝑫𝑫); 𝝈𝝈𝜹𝜹𝒇𝒇𝑫𝑫𝑫𝑫𝑫𝑫 and 

𝝈𝝈𝝏𝝏𝒇𝒇𝑫𝑫𝑫𝑫𝑫𝑫 connotate the standard deviations for 𝜹𝜹𝒇𝒇𝑫𝑫𝑫𝑫𝑫𝑫 and 𝝏𝝏𝒇𝒇𝑫𝑫𝑫𝑫𝑫𝑫 respectively. 

Whereas, μ𝜹𝜹𝒇𝒇𝑫𝑫𝑺𝑺𝑺𝑺 and 𝝁𝝁𝝁𝝁𝒇𝒇𝑫𝑫𝑺𝑺𝑺𝑺 represent the mean for 𝜹𝜹𝒇𝒇𝑫𝑫𝑫𝑫𝑫𝑫 and 𝝏𝝏𝒇𝒇𝑫𝑫𝑫𝑫𝑫𝑫 

respectively.  
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The MMSE estimator for the overall sensor degradation (𝜹𝜹𝜹𝜹), as opposed to a 

particular sensor segment, can now be expressed as follows: 

𝛿𝛿𝑓𝑓𝑠𝑠 =  ∆𝑓𝑓𝑡𝑡 −  ∆𝑓𝑓0 = �𝑓𝑓𝑡𝑡 𝐹𝐹𝐹𝐹𝐹𝐹 −  𝑓𝑓𝑡𝑡 𝐷𝐷𝐷𝐷𝐷𝐷� −  �𝑓𝑓0 𝐹𝐹𝐹𝐹𝐹𝐹 −  𝑓𝑓0 𝐷𝐷𝐷𝐷𝐷𝐷� 

         = − �𝑓𝑓0 𝐹𝐹𝐹𝐹𝐹𝐹 −  𝑓𝑓𝑡𝑡 𝐹𝐹𝐹𝐹𝐹𝐹� +  �𝑓𝑓0 𝐷𝐷𝐷𝐷𝐷𝐷 −  𝑓𝑓𝑡𝑡 𝐷𝐷𝐷𝐷𝐷𝐷�                      (5-19) 

Since, the frequency degradation is assumed to be negligible in case of fixed 

sensor segment RO pairs, 𝒇𝒇�𝟎𝟎 𝑭𝑭𝑭𝑭𝑭𝑭 =  𝒇𝒇�𝒕𝒕 𝑭𝑭𝑭𝑭𝑭𝑭 , the above equation can be written as:  

         = �𝑓𝑓0 𝐷𝐷𝐷𝐷𝐷𝐷 −  𝑓𝑓𝑡𝑡 𝐷𝐷𝐷𝐷𝐷𝐷� 

= 𝛿𝛿𝑓𝑓𝐷𝐷𝐷𝐷𝐷𝐷 =  𝜌𝜌
𝜎𝜎𝛿𝛿𝑓𝑓𝐷𝐷𝐷𝐷𝐷𝐷
𝜎𝜎𝜕𝜕𝑓𝑓𝐷𝐷𝐷𝐷𝐷𝐷

  (𝜕𝜕𝑓𝑓𝐷𝐷𝐷𝐷𝐷𝐷 −  𝜇𝜇𝜇𝜇𝑓𝑓𝐷𝐷𝑆𝑆𝑆𝑆) + μ𝛿𝛿𝑓𝑓𝐷𝐷𝐷𝐷𝐷𝐷            (5-20) 

The above relation implies that with 𝝆𝝆 being positive, the higher percentage 

frequency difference between the FSS and DSS RO pairs will, in turn, maximise 

the sensor frequency (and subsequent delay/ageing) degradation. It is 

represented by the separation between two distributions at t = 0 and t = t. This 

further implies that in the sensor with more RO pairs to select from, the one with 

the maximum percentage frequency difference within DSS RO pairs at t = 0 must 

be selected. This results in maximising the distance between the two distributions 

of frequency difference and minimising the probability of false prediction, as 

shown in Figure 5-18(a).  

Keeping in view the above mathematical derivations and ‘selection strategy’(as 

delineated in process flow – Figure 5-20), the detectability of hardware Trojan by 

the sensor is set for optimisation. Accordingly, we define the process variations 

based on transistor length (L) and oxide thickness (Tox), as given in Table 5-5 

and choose ‘PVc’ class of process variations as an extreme (worst) case to 

determine the pre-trigger value of frequency degradation, relative to percentage 

shift in the threshold voltage. Also, the two sensor segments (FSS and DSS) are 

implemented close to each other to eliminate the impact of undefined 

environmental variations upon measurements and the accuracy of detection. 

The process flow (Figure 5-20) targets the selection of the best (with maximum 

frequency degradation) FSS and DSS RO-pair by, initially, selecting all the six 
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RO-pairs and then capturing their frequencies. These frequencies are stored by 

two vectors, defined as𝑓𝑓𝐹𝐹𝐹𝐹𝐹𝐹 = [𝑓𝑓𝐹𝐹𝐹𝐹𝐹𝐹1,  𝑓𝑓𝐹𝐹𝐹𝐹𝐹𝐹2,𝑓𝑓𝐹𝐹𝐹𝐹𝐹𝐹3] and 𝑓𝑓𝐷𝐷𝐷𝐷𝐷𝐷 =  [𝑓𝑓𝐷𝐷𝐷𝐷𝐷𝐷1,

𝑓𝑓𝐷𝐷𝐷𝐷𝐷𝐷2, 𝑓𝑓𝐷𝐷𝐷𝐷𝐷𝐷3] and all the frequency differences are stored in a matrix defined as, 

∆𝑓𝑓 = �∆𝑓𝑓𝑖𝑖𝑖𝑖�𝑛𝑛𝑛𝑛𝑛𝑛, where ∆𝑓𝑓𝑖𝑖𝑖𝑖 =  𝑓𝑓𝐹𝐹𝐹𝐹𝐹𝐹(𝑖𝑖) −  𝑓𝑓𝐷𝐷𝐷𝐷𝐷𝐷(𝑗𝑗),∀(𝑖𝑖, 𝑗𝑗). If ∆𝑓𝑓𝑖𝑖𝑖𝑖 is positive, the fixed 

and dynamic RO-pair with minimum ∆𝑓𝑓𝑖𝑖𝑖𝑖 is selected. Otherwise, only negative 

∆𝑓𝑓𝑖𝑖𝑖𝑖 values are taken to update ∆𝑓𝑓. In such a condition, the resulting distribution 

𝑔𝑔0´ (. ) presents a significantly reduced spread, as is evident in Figure 5-18(c). 

However, at time t, the distribution 𝑔𝑔𝑡𝑡(. ) must be shifted to the right to increase 

𝛿𝛿𝛿𝛿 even further. In such a condition, DSS RO is selected with maximum 𝜕𝜕𝜕𝜕����⃗ 𝑑𝑑𝑑𝑑𝑑𝑑(𝑗𝑗)  

                 = 𝒇𝒇𝟎𝟎 𝑫𝑫𝑫𝑫𝑫𝑫,𝑽𝑽𝑫𝑫𝑫𝑫𝑫𝑫 (𝒋𝒋) – 𝒇𝒇𝟎𝟎 𝑫𝑫𝑫𝑫𝑫𝑫,𝑽𝑽𝑫𝑫𝑫𝑫𝑫𝑫 (𝒋𝒋) – 𝒇𝒇𝟎𝟎 𝑫𝑫𝑫𝑫𝑫𝑫,𝑽𝑽𝑫𝑫𝑫𝑫𝑫𝑫 (𝒋𝒋)

𝒇𝒇𝟎𝟎 𝑫𝑫𝑫𝑫𝑫𝑫,𝑽𝑽𝑫𝑫𝑫𝑫𝑫𝑫 (𝒋𝒋)
               (5-21) 

whereas, the corresponding FSS RO with maximum ∆𝑓𝑓𝑖𝑖𝑖𝑖 is selected to minimise 

the spread of both distributions, 𝑔𝑔0´ (. ) and 𝑔𝑔𝑡𝑡(. ). Once the optimal RO pair is 

selected, the frequency difference ∆𝑓𝑓𝑖𝑖𝑖𝑖 is then stored to form the distribution 𝑔𝑔0´ (. ). 

The threshold frequency 𝑓𝑓𝑡𝑡ℎ is finally calculated, to be referred to for the detection 

of hardware Trojan by comparing it with the frequency differences of FSS and 

DSS RO segments implemented in FPGA under authentication. 
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