

CRANFIELD UNIVERSITY

MAULANA RANDA

DESIGN OF HARDWARE-ORIENTED SECURITY TOWARDS

TRUSTED ELECTRONICS

SCHOOL OF AEROSPACE, TRANSPORT, AND

MANUFACTURING

Doctor of Philosophy

Academic Year: 2017 - 2020

Supervisor: Prof. Ian K Jennions

Associate Supervisor: Dr. Mohammad Samie

July 2020

CRANFIELD UNIVERSITY

SCHOOL OF AEROSPACE, TRANSPORT, AND

MANUFACTURING

Doctor of Philosophy

Academic Year 2017 - 2020

MAULANA RANDA

Design of Hardware-oriented Security Towards Trusted Electronics

Supervisor: Prof. Ian K Jennions

Associate Supervisor: Dr. Mohammad Samie

July 2020

This thesis is submitted in partial fulfilment of the requirements for

the degree of Doctor of Philosophy

© Cranfield University 2020. All rights reserved. No part of this

publication may be reproduced without the written permission of the

copyright owner.

i

ABSTRACT

While the Internet of Things (IoT) becomes one of the critical components in the

cyber-physical system of industry 4.0, its root of trust still lacks consideration. The

purpose of this thesis was to increase the root of trust in electronic devices by

enhance the reliability, testability, and security of the bottom layer of the IoT

system, which is the Very Large-Scale Integration (VLSI) device. This was

achieved by implement a new class of security primitive to secure the IJTAG

network as an access point for testing and programming. The proposed security

primitive expands the properties of a Physically Unclonable Function (PUF) to

generate two different responses from a single challenge. The development of

such feature was done using the ring counter circuit as the source of randomness

of the PUF to increase the efficiency of the proposed PUF. The efficiency of the

newly developed PUF was measured by comparing its properties with the

properties of a legacy PUF. The randomness test done for the PUF shows that it

has a limitation when implemented in sub-nm devices. However, when it was

implemented in current 28nm silicon technology, it increases the sensitivity of the

PUF as a sensor to detect malicious modification to the FPGA configuration file.

Moreover, the efficiency of the developed bimodal PUF increases by 20.4%

compared to the legacy PUF. This shows that the proposed security primitive

proves to be more dependable and trustworthy than the previously proposed

approach.

Keywords:

Hardware Security, Physically Unclonable Function, Random Number Generator,

JTAG, IJTAG, FPGA

ii

ACKNOWLEDGEMENTS

I would like to thank all those who have supported me in accomplishing this

thesis. Without their endorsement, this thesis would not have been possible.

Foremost, I would like to pay my special regards to Dr. Anne Kusmayati for her

encouragement for me to undertake a PhD and for the financial support I received

through the Research and Development Agency of The Ministry of Defense of

the Republic of Indonesia.

I would like to express the deepest gratitude to my supervisor, Professor Ian

Jennions, for giving me the opportunity to work in Integrated Vehicle Health

Management (IVHM) Centre and encouraging me to have the freedom to develop

my ideas. These chances, together with his guidance, have helped to lead me

through the process.

I am also deeply indebted to Dr. Mohammad Samie, my associate supervisor,

who was also with me along this journey. His enthusiasm, constructive criticism,

and fruitful discussions without which this thesis would be sorely diminished are

most kindly acknowledged.

I wish to thank my wife and children for their support and patience over the course

of my study period

Finally, I dedicate this work to my mother and father.

iii

TABLE OF CONTENTS

ABSTRACT ... i

ACKNOWLEDGEMENTS.. ii

LIST OF FIGURES ... vi

LIST OF TABLES ... viii

LIST OF EQUATIONS .. ix

LIST OF ABBREVIATIONS .. x

1 INTRODUCTION ... 1

1.1 Background ... 1

1.2 Research Gaps/Industrial Needs: ... 3

1.3 Research Aim and Objectives ... 5

1.3.1 Problem Description ... 5

1.3.2 Hypothesis ... 6

1.3.3 Aim ... 7

1.3.4 Objectives .. 7

1.4 Research Methodology ... 7

1.4.1 Research limitation ... 10

1.5 The organisation of the thesis ... 11

1.6 Risk and mitigation plan .. 12

1.6.1 Hardware description language .. 12

1.6.2 Modified IJTAG integration ... 12

1.6.3 Randomness measurement ... 12

1.7 List of Published/Submitted Work ... 13

1.7.1 Journal Publications ... 13

1.7.2 Conference Publications .. 13

1.7.3 Virtual Conference Presentations ... 13

1.7.4 Under Submission for Journal Publication .. 14

1.8 References ... 14

2 DELAY-BASED TRUE RANDOM NUMBER GENERATOR IN SUB-

NANOMILLIMETER IOT DEVICES .. 16

2.1 Abstract ... 16

2.2 Introduction ... 16

2.3 Related Works .. 19

2.3.1 Random Number Generator ... 19

2.3.2 Random Number Generator in FPGA .. 21

2.3.3 Test for Randomness ... 23

2.3.4 Metrics .. 26

2.4 Experimentation .. 26

2.4.1 Design of Ring Counter RNG (RCRNG) ... 26

2.4.2 Experimental Limitation .. 28

2.5 Findings and Analysis ... 31

iv

2.6 Conclusion .. 38

2.7 References ... 39

3 A HIGH-SENSITIVITY SENSOR FOR THE DETECTION OF

UNAUTHORISED MODIFICATIONS OF FPGA CONFIGURATION BASED

ON A PHYSICALLY UNCLONABLE FUNCTION ... 43

3.1 Abstract ... 43

3.2 Introduction ... 43

3.3 Related Works .. 48

3.3.1 Physically unclonable function ... 48

3.3.2 PUF characterisation .. 51

3.4 Proposed works .. 52

3.4.1 Ring PUF as a digital sensor .. 52

3.4.2 Uniqueness .. 55

3.4.3 Average reliability ... 55

3.5 Experimental setup ... 56

3.6 Findings and discussion .. 60

3.6.1 RCPUF characterisation ... 60

3.6.2 RCPUF implementation as a sensor .. 63

3.6.3 Resistance to physical tampering and ageing 65

3.7 Conclusion .. 67

3.8 References ... 67

4 LAYERED SECURITY FOR JTAG/IJTAG USING A BIMODAL

PHYSICALLY UNCLONABLE FUNCTION... 73

4.1 Abstract ... 73

4.2 Introduction ... 73

4.3 Related Works .. 78

4.3.1 IEEE 1687 (IJTAG)... 78

4.3.2 Physically Unclonable Function (PUF) ... 81

4.3.3 PUF Metrics ... 83

4.3.4 Splittable random number generator .. 84

4.4 Proposed Works ... 85

4.4.1 IJTAG Security Mechanism .. 85

4.4.2 Cost benefit analysis .. 90

4.4.3 Bimodal PUF .. 92

4.4.4 Design and architecture of the bimodal PUF 94

4.4.5 Experimental Setup .. 98

4.5 Findings and Discussions ... 99

4.5.1 Bimodal PUF Characterisation ... 99

4.5.2 Security Analysis .. 105

4.6 Conclusion .. 107

4.7 Reference ... 108

5 CONCLUSION AND FUTURE WORKS .. 111

v

5.1 Addressing the Aim and Objectives of the Research 111

5.2 Future work ... 112

5.2.1 Environmental influence on the sub-nm TRNG 113

5.2.2 Integration of design-for-security in the Electronic Design

Automation (EDA) tool Design Rule Checking (DRC) 113

5.3 References ... 114

APPENDICES .. 115

Appendix A Raw data of the ring counter based random number generator

 .. 115

Appendix B Source code for ring counter-based random number generator

and physically unclonable function ... 117

vi

LIST OF FIGURES

Figure 1-1: Hierarchy of security .. 1

Figure 1-2: Flowchart of the research ... 8

Figure 2-1: RNG configuration (a) TRNG and (b) PRNG 20

Figure 2-2: Block diagram of TRNG implementation .. 22

Figure 2-3: Block diagram of TRNG implementation .. 28

Figure 2-4: Location selection flowchart ... 30

Figure 2-5: Uniformity of the RC pairs on the first run 32

Figure 2-6: Uniformity of the RC pairs on the second run 32

Figure 2-7: Uniformity of the RC pairs on the third run 33

Figure 2-8: Graphical presentation of the NIST test result 35

Figure 2-9: Comparison of the different input bit lengths in the NIST test 36

Figure 3-1: Block diagram of a random number generator 48

Figure 3-2: High-level schematic of delay-based PUF implementation 49

Figure 3-3: Initialisation of the ring counter .. 53

Figure 3-4: Block diagram of RC-based PUF ... 54

Figure 3-5: Response variance from a single challenge 56

Figure 3-6: Flowchart for PUF characterisation and the detection of the FPGA
configuration file modification .. 57

Figure 3-7: LFSR setup .. 58

Figure 3-8: Data acquisition setup .. 60

Figure 3-9: Comparison of the reliability of the PUF responses. 64

Figure 4-1: IEEE 1149.1 vs IEEE 1500 vs IEEE 1687 74

Figure 4-2: IJTAG network with SIB and 3 Instruments 75

Figure 4-3: IJTAG hierarchical network with a SIB ... 79

Figure 4-4: State diagram of the TAP controller ... 80

Figure 4-5: Flowchart of the IJTAG security with a reusable PUF response 85

Figure 4-6: Flowchart of the IJTAG security with 2 PUF implementations 86

Figure 4-7: Flowchart of the IJTAG security with the bimodal PUF 87

vii

Figure 4-8: Multi-Layer security mechanism for the IJTAG network using the
bimodal PUF .. 88

Figure 4-9: Classification of bimodal PUF .. 94

Figure 4-10: RC-based bimodal PUF ... 96

Figure 4-11: Experiment flow chart ... 98

Figure 4-12: Data acquisition setup .. 99

Figure 4-13: Reliability VS Number of unique responses in the regular PUF . 100

Figure 4-14: Efficiency of the new PUF designs compared to the legacy PUF
(ROPUF with a system clock as its enabling signal) 102

Figure 4-15: Reliability VS Number of unique responses from the bimodal PUF
 .. 103

Figure 4-16: Efficiency of the bimodal PUF designs compared to the legacy
ROPUF .. 104

Figure 4-17: Comparison of device utilisation... 105

viii

LIST OF TABLES

Table 2-1: Comparison Between TRNG and PRNG ... 17

Table 2-2: Minimum Input for Different RNG Test Suites 23

Table 2-3: Statistical Tests Within NIST SP 800-22 ... 25

Table 2-4: NIST SP 800-22 Test Results ... 34

Table 2-5: NIST test results with 10 million input bits 37

Table 2-6: Throughput comparison between the TRNG implementation in FPGA
 .. 38

Table 3-1: Various types of PUF .. 50

Table 3-2: Pseudo code for the RCPUF mechanism .. 54

Table 3-3: Experimental setup .. 59

Table 3-4: Reliability and uniqueness comparison of RCPUF 61

Table 3-5: Maximum working frequency and throughput 62

Table 3-6: Throughput comparison .. 62

Table 4-1: Splitting method for the splittable RNG ... 84

Table 4-2: Assumption comparison for the secret key and PUF challenge
confidentiality ... 89

Table 4-3: Pseudo-code for the RCPUF mechanism 97

Table 4-4: Efficiency of the new PUF design compared to the legacy PUF ... 101

Table 4-5: Efficiency of the bimodal PUF design compared to the legacy PUF
 .. 103

Table 4-6: Comparison of the proposed method with other IJTAG security
measures ... 107

ix

LIST OF EQUATIONS

(2-1) .. 19

(2-2) .. 20

(2-3) .. 26

(3-1) .. 55

(3-2) .. 56

(4-1) .. 81

(4-2) .. 81

(4-3) .. 81

(4-4) .. 90

(4-5) .. 90

(4-6) .. 90

(4-7) .. 90

(4-8) .. 91

(4-9) .. 91

(4-10) .. 91

(4-11) .. 92

(4-12) .. 92

(4-13) .. 92

(4-14) .. 92

(4-15) .. 93

(4-16) .. 94

x

LIST OF ABBREVIATIONS

PUF Physically Unclonable Function

SoR Source of Randomness

IoT Internet of Things

SR Shift Register

RC Ring Counter

RO Ring Oscillator

EDA Electronic Design Automation

DRC Design Rule Check

CPS Cyber-Physical System

IP Intellectual Properties

RoT Root of Trust

ECT Embedded Core Test

JTAG Joint Test Access Group

IJTAG Internal JTAG

TRNG True Random Number Generator

PRNG Pseudo-Random Number Generator

RNG Random Number Generator

VLSI Very Large-Scale Integration

RCRNG Ring Counter-based Random Number Generator

RCPUF Ring Counter-based Physically Unclonable Function

ROPUF Ring Oscillator-based Physically Unclonable Function

BRCPUF Bimodal Ring Counter-based Physically Unclonable Function

BROPUF Bimodal Ring Oscillator-based Physically Unclonable Function

nm nano millimetre

CRP Challenge-Response Pair

HDL Hardware Description Language

VHDL VHSIC-HDL, Very High-Speed Integrated Circuit Hardware
Description Language

NTV Near-Threshold Voltage

LUT Look-Up Table

FPGA Field Programmable Gate Array

xi

FIPS Federal Information Processing Standard

NIST National Institute of Standard and Technology

AIS Application Notes and Interpretation of the Scheme

PAR Placement and Route

VM Virtual Machine

IC Integrated Circuit

ID Identity

TERO Transient Effect Ring Oscillator

ASIC Application Specific Integrated Circuit

SRAM Static Random-Access Memory

LFSR Linear Feedback Shift Register

BIST Built-in Self-Test

TAP Test Access Port

IUT Instrument Under Test

SIB Segment Insertion Bit

TDR Test Data Register

TDI Test Data In

TDO Test Data Out

TMS Test Mode Select

TRST Test Reset

TCK Test Clock

FSM Finite State Machine

1

1 INTRODUCTION

1.1 Background

One of the moving components of industry 4.0 is the presence of a Cyber-

Physical System (CPS). It is defined as a networked-embedded system that

interacts with the environment [1], such as through autonomous vehicles or an

industrial control system. The core of the CPS is the Internet of Things (IoT),

which acts as an interface between the physical world and the cyber system.

While bringing in many advantages, the IoT also brings in a couple of challenges,

such as the security of the system. For an IoT device that has no area, time,

power, and energy restriction (such as in a manufacturing plant), the security of

the system can be easily implemented. However, for smaller IoT devices such as

medical implants, where all of the parameters are constrained, the application of

security measures needs to be well-thought-out. As suggested by Verbauwhede

[2], the security of the system needs to be present in every different level of the

system as a whole, as can be seen in Figure 1-1.

Register transfer level

Micro-architecture

Architecture

Crypto/algorithm
protocol (SW)

Application

PUF, RNG, etc

Implementation of design-for-security

System-on-chip

Authentication, privacy, etc

Smart card, smart energy, e-cars, etc

Figure 1-1: Hierarchy of security

2

A system or component needs to be trusted in order for it to run as expected for

its intended purpose. In the old days, the threat to a system was more apparent

in the communication channel between the nodes. One of the popular solutions

to such an old-style threat is to protect the data through the implementation of a

strong cryptographic protocol. However, the threat model for a modern system

not only comes into play in the communication channel itself but also the nodes.

When the component that provides the cryptographic protocol is not secure, the

service that it provides is also threatened. Therefore, a Root of Trust (RoT) needs

to be built into a system. Referring to Figure 1-1, Verbauwhede [2] defines the

RoT of a system as a measure to account for the trustworthiness of the systems

located in the lower-level layers. The extreme end of this definition means that in

order to have a secure system, the lowest layer of the system, the transistor level,

needs to be secure too.

The ever-evolving world of semiconductors has led to more complex Very Large-

Scale Integration (VLSI) devices in terms of structure and functionality. While this

advancement provides an advantage as there is more of a possibility of solving

different kinds of problems, it also becomes a problem in itself. The increase in

functional complexity means that more things can go wrong if it is not well-

designed. For example, a different type of confidential information stored in IoT

devices can be compromised if there is not enough protection. A Cloud-

computing service with shared resources can become an easy target for

intellectual property thievery [3]. The complexity of providing a secure

environment for this kind of technology is enhanced by the fact that it is getting

harder to perform affordable and fast testing procedures before the product is

deployed in the market. It is almost impossible to physically probe all pins in the

VLSI device to test its functionality.

The IEEE 1149.1 JTAG, IEEE 1500 Embedded Core Test (ECT), and IEEE 1687

Internal JTAG (IJTAG) have become the standard tests used to overcome the

aforementioned testing challenges. The three standards have their own

specificities and were made to be used side by side.

3

Other than the favourable circumstances that it brings in to the testability of the

embedded instruments, JTAG confronts various security-related difficulties when

it is utilised as the future standard of embedded instrument testing. The first is

that the JTAG does not have a built-in security mechanism to forestall

unauthorised access to the embedded instrument. A report about security breaks

by means of JTAG can be found in the news [4] and papers [5]. Majeric [6] and

Elnaggar [7] presented the JTAG fault injection attack and data integrity attack

consecutively to modify the Intellectual Property (IP) core maliciously, steal

classified information, reverse engineer the IP, and even stop the entire

framework if it is undermined. Hence the security of the IJTAG network that gives

access to the gadget is essential.

While it is also of importance to secure the embedded core, it is still a challenge

to provide security to the ECT standard. The reason for this is that the ECT

standard is prescriptive, which means that a modification to the standard will

break the compliance of the system to the standard. On the other hand, the IJTAG

standard is descriptive, which means that the engineer can have different

implementations of the standard so long as they follow the description of the

standard. Hence the security of the IJTAG will be the main topic of discussion in

this thesis.

There is ongoing research into providing better security in IJTAG networks such

as the use of a static secret key ([8], [9]) and dynamic secret key ([10], [11]) to

unlock the Segment Insertion Bit (SIB). However, they only secure access to the

IJTAG network without securing the output data from the embedded instrument.

An echeloned IJTAG data protection mechanism [12] that is proposed to secure

the access, as well as the output data, is also facing a scalability problem.

1.2 Research Gaps/Industrial Needs:

Having noticed the challenges, it is identified that building the security and root of

trust into electronics is a critical industrial requirements for the future embedded

systems. It is a need now to develop novel security mechanisms for devices'

4

access ports; especially, the widely used IJTAG network additional to the

conventional approach of data security using some form of cryptography. From a

hardware implementation point of view, building the security in the embedded

systems requires characterisation of embedded devices based on their

performance variations raised from physical changes and manufacturing

process. This is usually conducted by observing physical resources, which

expose the hardware in various performance variations; and employing it to

develop electronic signatures, device identification, and digital fingerprint. This;

obviously, involves various fields in design, test, and manufacturing of

electronics, while each has specific gaps; however, we limit the research to

address the following observed challenges:

• Gaps in the hardware root of trust

The bottom layer of the root of trust lies within the transistor level of the

device. However, the current access port and test mechanisms are

primarily developed without any consideration of the root of trust.

Therefore, it is of importance to secure access to the test mechanism as

well as securing its data to achieve better security.

• Gaps in observing the source of randomness in the hardware level

The emergence of sub-nano millimetre electronic device needs to be well

secured against adversaries. However, the current security measures are

only available in the form of algorithmically generated a random number,

which can be broken easily using deep learning. Thus, a true random

number generator based on the physical variation of the device needs to

be developed and characterised to understand its performance in sub-nm

technology.

• Gaps in the device identification

One of the critical aspects of security is to be able to identify whether a

device is an original, counterfeited or modified part. A security primitive

that can be used for such purpose is the Physically Unclonable Function

(PUF). However, the current mechanism for device identification using

PUF relies on the response of the PUF, which easily altered by

5

environmental change. Thus, it is of importance to develop a new

mechanism that has better resistance to environmental change.

• Gaps in performance analysis

The performance analysis of a PUF is done by comparing the response

variance of a PUF architecture implemented in two or more devices

exposed to environmental variation. This mechanism requires the device

to be in a test mode, which increases the down time of the system.

However, it is always a desire to lower the down time. Thus, it is of

importance to develop a new PUF performance analysis mechanism that

can be performed in mission mode; and hence, decreasing the down time.

1.3 Research Aim and Objectives

1.3.1 Problem Description

Given embedded electronics as a collection of primitive components, circuitries,

building blocks in the form of IPs fabricated as ASIC/FPGAs/SoCs; there are still

technical problems for exploiting the device's performance variation in the

development of root of trust. Such devices are equipped with test access ports,

networks, and mechanisms, which allow external device-to-device and internal

instrument-to-instrument communications needed for testing the function of

specific hardware entities within the device. They are not intended for testing the

performance of the device needed to assess the system concerning the security.

Therefore, existing advanced test mechanisms do not have the capability for

observing sources of randomness induced to the system unintentionally due to

manufacturing process variation. Such variations are monitored using

parameters such as power consumption, temperature, and propagation delays

for the same particular devices against the specific working condition. Monitoring

such signals requires enhancing internal test network with a proper sensor

network distributed across the entire device. As only a few sensors are fabricated

into the embedded electronics, designers would need to employ available

resources and primitives to form sensors for observing the sign of variation from

6

device to device. This leaves us with the following problems for building root of

trust:

Given embedded electronics with n number of sensors built using m primitives

distributed across the entire system, device performance variation is observed in

the form of propagation delays which drive electronic fingerprint, specific for a

particular device under test, different from all other similar prototypes. The

generated fingerprint is the key element needed for controlling access to the

hardware as well as the encryption of the data generated by the hardware. This

requires additional care in:

• Identifying proper signals linked with sources of randomness in the device

• Architecting right set of sensors using available primitives fabricated within

the device

• Generating fingerprints from signals observed from the source of the

randomness

• Integrating sensor network and the required signal path with the test

access mechanism

• Building the root of trust

The conventional design flow does not yet allow engineers to construct the device

identity and the root of trust, which is essential for the protection of vulnerabilities

in ASICs, FPGAs and SoCs. In response to the problem mentioned earlier, this

dissertation explores the accessibility of the conventional test access mechanism

to break the bottleneck of the development of security and trust in embedded

electronics.

1.3.2 Hypothesis

Building bimodal characteristics into the performance of the physically unclonable

function (which drives electronic fingerprint from the source of randomness

observed by the random number generators) enables designers to construct a

7

unique solution for obfuscating both the hardware and data, which lead to the

establishment of the root of trust essential for the test access mechanisms. In this

regard, the customizability of the security primitives within the test access allows

for the exploration of the devices' source of randomness to secure the access

and information of the IPs within the embedded electronics.

1.3.3 Aim

In order to address the aforementioned research gaps, this thesis aims to improve

the security of the embedded system through the development and

implementation of design-for-security.

1.3.4 Objectives

Based on the aim of the research above, the following key objectives have been

defined to achieve the aim:

1. Develop and characterise a novel random number generator design based

on the ring counter circuit (RCRNG).

2. Develop and characterise a novel digital physically unclonable function

based on the ring counter circuit (RCPUF).

3. To develop and characterise bimodal RCPUF (BRCPUF) to secure access

to the IJTAG network as well as its output data.

1.4 Research Methodology

In response to the gaps mentioned earlier, we propose a novel security

mechanism developed based on a Physically Unclonable Function (PUF), which

is a product of the utilisation of the physical randomness of an object/device that

is easy to produce, but non-invertable and unpredictable [13]. A PUF can also be

defined as a constrained True Random Number Generator (TRNG). Therefore,

an understanding of TRNG is a fundamental requirement to develop a PUF.

8

Build upon the requirement as mentioned above; this thesis will first discuss the

development of a true random number generator. The findings and experience

drawn from the development of a TRNG will be used to develop a PUF which will

then be used to develop the bimodal PUF to secure the IJTAG network.

The research methodology is divided into 4 phases, as illustrated in Figure 1-2.

The first phase is where the gaps in the field of research are discovered by

performing an extensive literature review. The scope of the research is then

defined to focus on the area of study. From there on, the aim and objectives of

the research are formalised. The research design is then developed as a

guideline for the experiment to be performed in accordance with the aim and

objectives of the research.

START Literature Review

Scope, aim, and
objectives

Research design

Development of
RCRNG

Development of
RCPUF

Development of
BIRCPUF

Data analysis

Writing
Conclusion and

recommendation
FINISH

Side objective:
Study of delay based random number

generator for sub nano milimeter
application

Side objective:
PUF as sensor for device identification to

detect unauthorised modification of
FPGA configuration.

Side Objective:
Implementation of bimodal PUF on

IJTAG to secure access and output data

Phase 1

Phase 2

Phase 3

Phase 4

Figure 1-2: Flowchart of the research

9

The second phase is the experimental phase. The initial idea of this research is

to find an efficient design-for-security element to secure an embedded system.

For that matter, this research proposed a new class of Physically Unclonable

Function (PUF) which will then be called a bimodal PUF. In order to develop a

bimodal PUF, knowledge on how to develop a regular PUF is a prerequisite.

Moreover, an understanding of the Random Number Generator (RNG) is needed

to construct a PUF as it is the basic building block of PUF. Therefore 3

experiments are designed to achieve the aim and objectives of the research.

The first experiment is to develop a random number generator based on the Ring

Counter (RC) circuit. Apart from getting an understanding of how the RNG works

and behave, this experiment also aimed to implement the developed RNG as a

model to study the characteristics of a delay-based RNG in sub-nano millimetre

technology. The reason why this topic is chosen to be studied is that the

behaviour of the TRNG as one of the critical components to provide security in

sub-nano millimetre (nm) devices is not well-studied. It is essential to understand

its characteristics when it is implemented in the sub-nm, so then the hardware

security designer knows what to expect and can develop a better implementation

of TRNG for security purposes in sub-nm devices.

After gaining a better understanding of the development of a TRNG, the second

experiment is conducted to develop a PUF based on the ring counter circuit. As

has already been mentioned above, the basic building block of a PUF is a random

number generator. In a digital circuit, the PUF is created by selectively choosing

an array for the Source of Randomness (SoR) comparison, so then the output is

reproducible. A challenge in the form of a binary number is used to select which

source of randomness is to be compared. The output of the PUF is then called

the response. Each challenge will, ideally, generate a unique response. This can

also be called a challenge-response pair (CRP). The source of randomness for

the PUF is based on the ring counter circuit. Aside from characterising and

gaining a better understanding of how the PUF works, this experiment also aimed

to implement the developed PUF as an affordable high-sensitivity digital sensor

10

to detect unauthorised modifications to the configuration file of multi-tenant

FPGA. This has now become an emerging trend in Cloud computing.

Lastly, the third experiment is conducted to develop a new class of physically

unclonable functions called a bimodal PUF. It is aimed to be a design-for-security

solution for embedded devices. The bimodal PUF is characterised and

implemented in the IJTAG network to not only efficiently secure the access to the

embedded instruments but also to secure the output data of the embedded

instruments.

All three experiments have a common thread in that they all utilise the ring

counter circuit as the main source of randomness. To the best of the author's

knowledge, no publication uses a ring counter as the primary source of

randomness in their research. Therefore, the utilisation of the ring counter circuit

as the main source of randomness is claimed to be one of the novelties in this

research. The other innovations in this research are as follows:

1. Study on the behaviour of a delay-based random number generator in sub-

nano millimetre technology.

2. A novel high-sensitivity digital sensor to detect unauthorised modifications

of the configuration file of a multi-tenant FPGA.

3. A new definition of the uniqueness and reliability parameters for PUF

characterisation.

4. A new class of PUF that can generate two simultaneous responses from

a single challenge. This new class of PUF will be called a bimodal PUF.

1.4.1 Research limitation

The majority of publications about hardware security include a discussion on the

performance of the proposed work under different environmental conditions. For

example, silicon-based hardware security primitives are said to incur a

behavioural change under different temperatures and/or supply voltage stress.

The system may not behave as it is intended to be or may leak confidential

information that the security primitives are trying to hide.

11

However, this thesis will not include such a test in the discussion part of each

chapter. Nonetheless, it does not lower the confidence level of the obtained

experimental result. The reason for this is that in order to perform such a

measurement, the decapsulation process needs to be done to the chip-under-

test [14]. All security primitives proposed in this thesis (TRNG, PUF, bimodal

PUF) are implemented as on-chip security. This means that the security

mechanism and the object have tried to secure what resides in the same chip.

Consequently, when an attacker is trying to break the security measures by

increasing the supply voltage or/and the temperature, and they conduct the

measurement without the decapsulating process, they will not be able to get an

accurate measurement, and therefore the obtained information will not be

accurate. If the attacker performs the decapsulation procedure, it will change the

physical properties of the security mechanism. Consequently, the response

generated by the security mechanism will also change. Moreover, the

temperature/voltage stress applied to the chip might even break the information

that the attacker is trying to get as it operates beyond the specification given by

the manufacturer.

1.5 The organisation of the thesis

The main content of the thesis is divided into three chapters in a paper format.

What this means is that each chapter/paper will have a literature review, aim and

objectives, research methodology and analysis. However, all three

chapters/paper do not stand on their own. They are more of a stepping stone to

the chapter following the previous one. Chapter 2 of this thesis discusses the

development of a random number generator which will be used as a building

block to build a PUF in Chapter 3. Similarly, the PUF developed in Chapter 3 will

be used as the foundation to develop the bimodal PUF in Chapter 4. The last

chapter of this thesis is the conclusion that serves as a retrospective examination

of what has been done in relation to the aim and objectives of the thesis. Chapter

5 also discuss the possibility of future work that can be done as a further

development of the things presented in this thesis.

12

1.6 Risk and mitigation plan

1.6.1 Hardware description language

Hardware design involves the use of Hardware Description Language (HDL).

There are three types of HDL; Verilog, System Verilog and VHDL (VHSIC-HDL

and Very High-Speed Integrated Circuit Hardware Description Language). For

this thesis, the author chooses to use the VHDL because it has non-C like syntax.

This is easier to be used by people who do not have a strong background in

programming. Nevertheless, the author needs some time to adapt to the VHDL

as well as the complexity of the Electronic Design Automation (EDA) software

used, e.g. ISE 14.7 from Xilinx.

The mitigation plan used to overcome this situation is to do the task manually, i.e.

to hard-code the VHDL file. Nevertheless, this limitation did not reduce the

confidence level of the results obtained in the experiment.

1.6.2 Modified IJTAG integration

The configurability of the IJTAG to include segment insertion bit is what separates

it with the JTAG. The IJTAG network needs to be synthesised together along with

other logic of the ASIC. However, because of the time and resource limitation,

the ASIC implementation of the proposed IJTAG network cannot be done.

As a solution to this situation, the author implements the modified IJTAG network

in FPGA. FPGA primitives and resources are used to model the IJTAG

functionality and integrate the proposed PUF for the IJTAG security mechanism.

1.6.3 Randomness measurement

The Statistical Test Suite for Random and Pseudorandom Number Generators

for Cryptographic Applications NIST SP 800-22 [15] standard was used to

measure the randomness of the RNG in this thesis. The standard consists of 15

statistical tests. The standard decides whether an RNG has the right amount of

13

randomness or not by thresholding the output of each of the statistical tests.

Because of this, it is possible for an RNG that falls below the threshold by just a

small amount to be considered to fail the test.

To overcome this situation, the NIST SP 800-22 suggests that the tester perform

a graphical analysis to determine the high-level performance of the RNG under-

test. The graphical analysis can be done by plotting the results of the statistical

tests in a bar chart or by plotting the generated random number using a heat map.

1.7 List of Published/Submitted Work

1.7.1 Journal Publications

M. Randa, M. Samie, I. Jennions. "Delay-Based True Random Number

Generator in Sub-Nanomillimeter IoT Devices," in Electronics 2020, 9, 817.

1.7.2 Conference Publications

M. Randa, M. Bozdal, M. Samie, I. Jennions. "Layered Security for IEEE 1687

Using a Bimodal Physically Unclonable Function," in Procedia Manufacturing.

2018; 16:24-30.

M. Bozdal, M. Randa, M. Samie, I. Jennions. "Hardware Trojan Enabled Denial

of Service Attack on CAN Bus," in Procedia Manufacturing. 2018;16:47-52.

1.7.3 Virtual Conference Presentations

J. Buu-Sao, M. Samie, M. Randa, et. al., "IoT Security – Hardware Perspective",

December 2018, the IoT Day Slam 2018, VIRTUAL Internet of Things

Conference: https://iotslam.com/session/iot-security-hardware-perspective/.

14

1.7.4 Under Submission for Journal Publication

M. Randa, M. Samie, I. Jennions. "A High-Sensitivity Digital Sensor For The

Detection of Unauthorised Modifications of Multi-Tenant FPGA Configuration

Files Based On A Ring Counter Physically Unclonable Function,". – Under review

for IEEE Access, July 2020

1.8 References

[1] G. Loukas, “A Cyber-Physical World,” in Cyber-Physical Attacks, London:

Elsevier, 2015, pp. 1–19.

[2] I. Verbauwhede, “Hardware Security Knowledge Area,” in The Cyber

Security Body Of Knowledge, 1.0., Andrew Martin and G. Danezis, Eds.

Bristol: University of Bristol, 2019.

[3] J. Robertson and M. Riley, “The Big Hack: How China Used a Tiny Chip to

Infiltrate U.S. Companies - Bloomberg,” Bloomberg.com, 2018. [Online].

Available: https://www.bloomberg.com/news/features/2018-10-04/the-big-

hack-how-china-used-a-tiny-chip-to-infiltrate-america-s-top-companies.

[Accessed: 02-Jun-2020].

[4] R. Johnson, “Sergei Skorobogatov Defends Backdoor Claims - Business

Insider,” Business Insider, 2012. [Online]. Available:

https://www.businessinsider.com/sergei-skorobogatov-defends-backdoor-

claims-2012-5?r=US&IR=T. [Accessed: 30-May-2020].

[5] S. Skorobogatov and C. Woods, “Breakthrough silicon scanning discovers

backdoor in military chip,” Lecture Notes in Computer Science (including

subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics), vol. 7428 LNCS, pp. 23–40, 2012.

[6] F. Majéric, B. Gonzalvo, and L. Bossuet, “JTAG Fault Injection Attack,”

IEEE Embedded Systems Letters, vol. 10, no. 3, pp. 65–68, Sep. 2018.

[7] R. Elnaggar, R. Karri, and K. Chakrabarty, “Securing IJTAG against data-

15

integrity attacks,” in Proceedings of the IEEE VLSI Test Symposium, 2018,

vol. 2018-April, pp. 1–6.

[8] J. Dworak, A. Crouch, J. Potter, A. Zygmontowicz, and M. Thornton, “Don’t

forget to lock your SIB: Hiding instruments using P16871,” in Proceedings

- International Test Conference, 2013, pp. 1–10.

[9] H. Liu and V. D. Agrawal, “Securing IEEE 1687-2014 Standard

Instrumentation Access by LFSR Key,” in Proceedings of the Asian Test

Symposium, 2015, vol. 2016-Febru, pp. 91–96.

[10] R. Baranowski, M. A. Kochte, and H. J. Wunderlich, “Fine-grained access

management in reconfigurable scan networks,” IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, vol. 34, no. 6,

pp. 937–946, Jun. 2015.

[11] K. Sudeendra Kumar, N. Satheesh, A. Mahapatra, S. Sahoo, and K. K.

Mahapatra, “Securing IEEE 1687 standard on-chip instrumentation access

using PUF,” in Proceedings - 2016 IEEE International Symposium on

Nanoelectronic and Information Systems, iNIS 2016, 2017, pp. 56–61.

[12] S. Kan, J. Dworak, and J. G. Dunham, “Echeloned IJTAG data protection,”

in Proceedings of the 2016 IEEE Asian Hardware Oriented Security and

Trust Symposium, AsianHOST 2016, 2017, pp. 1–6.

[13] S. Mulhem and W. Adi, “New Mathblocks-Based Feistel-Like Ciphers for

Creating Clone-Resistant FPGA Devices,” Cryptography, vol. 3, no. 4, p.

28, Dec. 2019.

[14] M. Hutter and J. M. Schmidt, “The temperature side channel and heating

fault attacks,” in Lecture Notes in Computer Science (including subseries

Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),

2014, vol. 8419 LNCS, pp. 219–235.

[15] A. Rukhin et al., “Special Publication 800-22 Revision 1a A Statistical Test

Suite for Random and Pseudorandom Number Generators for

Cryptographic Applications,” Apr. 2010.

16

2 DELAY-BASED TRUE RANDOM NUMBER

GENERATOR IN SUB-NANOMILLIMETER IOT DEVICES

2.1 Abstract

True Random Number Generators (TRNGs) use physical phenomena as their

source of randomness. In electronics, one of the most popular structures to build

a TRNG is constructed based on the circuits that form propagation delays such

as a ring oscillator, shift register, and routing paths. This type of TRNG has been

well-researched within the current technology of electronics. However, in the

future where electronics will use sub-nano millimetre (nm) technology, the

components become smaller and work on near-threshold voltage (NTV). This

condition has an effect on the timing-critical circuit as the distribution of the

process variation becomes non-gaussian. Therefore, there is an urge to assess

the behaviour of the current delay-based TRNG system in sub-nm technology. In

this research, a model of TRNG implementation in sub-nm technology was

created through the use of a specific Look-Up Table (LUT) in the Field-

Programmable Gate Array (FPGA), known as SRL16E. The characterization of

the TRNG was presented, and it shows a promising result, in that the delay-based

TRNG will work properly with some constraints in sub-nm technology.

2.2 Introduction

In the era of the internet of things (IoT), everyone feels the need for privacy and

security because their private data is floating around in the connected cloud [1].

As IoT-based systems have both hardware and software requirements, there is

always a potential for systems to be hacked if the hardware is not as well-secured

to a suitable level as the software. Research in recent years has demonstrated

the existence of malware that could be removed from the system if appropriate

software-level countermeasures are set up, correctly [2]. Hackers might target

such malware for hacking the physical systems. Therefore, hardware security is

also an essential requirement, besides the security of the software, to ensure that

17

the security of the system and the privacy of the user's data are well-established

[2].

Cryptography is now essential for securing access to both the data and hardware,

which is necessary for IoT-based systems [3]. A key is a vital aspect for

cryptography, and it can be created using a Random Number Generator (RNG).

There are two types of random number generator; a true random number

generator (TRNG) and a pseudo-random number generator (PRNG). The

comparison between TRNG and PRNG has been summarized in Table 2-1.

Table 2-1: Comparison Between TRNG and PRNG

 TRNG PRNG

Source of randomness Physical phenomenon Mathematical algorithm

Uniformity Yes Yes

Independence Yes No (Periodic/deterministic)

Efficiency low high

While a pseudo-RNG (PRNG) is simple to implement and sufficient enough for

many applications, there is always a desire to have a TRNG, especially for highly

critical systems. The reason for this is that PRNG was created from a

computational algorithm that has deterministic properties. When the algorithm

behind the PRNG is compromised, the random number that it generates is also

compromised. On the other hand, a TRNG utilizes a physical system that has

intrinsic randomness, which can be extracted to create an RNG. This results in

non-deterministic properties for the TRNG.

There have been various designs and technologies suggested for architecting

TRNGs for different types of IoT. For a big-sized IoT, such as a smart-fridge,

smart-toaster etc., a TRNG that uses optical scattering [4], [5] and radioactive

decay [6] as its source of randomness (SoR) can be used. While these TRNGs

are bulky and have low efficiency, they have an excellent randomness property.

For smaller IoT devices such as a smartphone, the use of sensors such as an

18

accelerometer and gyroscope as the source of randomness have been reported

to have excellent results [7]–[9]. However, the implementation of these

approaches still relies on external data processing, e.g. a PC, which is impossible

to include in resource-constrained devices such as an implanted IoT like a

pacemaker. For this type of IoT, a TRNG that utilizes the intrinsic parameters of

the devices is preferred as they do not have to rely on the external source of

randomness.

An all-digital RNG implemented in 65nm and 14nm technology was proposed in

[4] and [5] respectively. Pamula [4] proposes a high-quality RNG based on a

processed low-quality RNG with intrinsic SoR. Their analysis shows excellent

performance. However, the technology used is too big for an implanted IoT. In

[5], the author implements TRNG in the latest semiconductor technology.

However, the source of randomness used is not always available in the IoT

devices, making it difficult to achieve in IoT. In modern FPGA technology, the

SRL16E is standard, and it has the potential to be used in TRNG. The author in

[9, 10] uses the SRL16E and configures it to be a ring counter in order for it to

become one of the components of their TRNG. However, they only use the ring

counter as a complementary component to increase the periodicity of the RNG

and not as the primary source of randomness.

Moreover, the size of transistors in the future will become smaller beyond nano-

millimetre technology [6]. This causes the electronic devices to run at a near-

threshold voltage (NTV) [7]. These phenomena have an impact on the critical

timing of the device because the distribution of the process variation is non-

gaussian [8]. A couple of research studies have been done to address this issue

[9], [12]. However, from the extensive literature review, a report on the effect of

NTV in the time-critical application such as a delay-based random number

generator is not in existence.

This chapter presents a study on the implementation of delay-based TRNG

intending to explore TRNG performance and properties in sub-nm technology.

The sub-nm delay-based RNG was modelled in FPGA using a ring counter based

on the SRL16E configuration of Xilinx's LUT as the main source of randomness.

19

The rest of the chapter is organised as follows: Section 2.3 provides an

introduction to RNG implementation in the FPGA and the metrics for RNG

characterization. The experimental setup, practical limitations, and a framework

for location selection are presented in section 2.4. The results, findings, and

statistical analysis are discussed in Section 2.5. Finally, this chapter will be

concluded in Section 2.6.

2.3 Related Works

2.3.1 Random Number Generator

The idea of a random number generator is based on stochastic modelling in which

an observable random variable can be obtained from a random phenomenon. In

a random number generator, let S be the state space of the generator, which is

also a subset of a set Ω. The random variable generated is part of the random

space 𝑈 that is extracted using the extraction function 𝑔. What is being obtained

by 𝑔 is a mapped state space S by function f so that f:S→ S.

Ω ∈ 𝑆

𝑓: 𝑆 → 𝑆 (2-1)

𝑔: 𝑆 → 𝑈

In a True Random Number Generator (TRNG), f is the physical source of

randomness and 𝑔 is the logic or function used to process the source of

randomness further. In a Pseudo-Random Number Generator (PRNG), f and 𝑔

are the mathematical algorithms used to generate the random number. Both

TRNG and PRNG need an initial condition. In TRNG, the initial condition is any

current state of the physical system while in PRNG, the initial condition needs to

be provided by the seed 𝑥0. Figure 2-1 is given to illustrate this mechanism.

20

Physical system (S)
f:S → S

(transition function)

g:S → U

(Extractor function)

xt

xt+1

yt

Source of randomness

Ω

f:S → S

g:S → U

Seed x0

yt

(a) (b)

PRNG algorithm

Figure 2-1: RNG configuration (a) TRNG and (b) PRNG

In semiconductor devices, one of the sources of randomness is from the shift in

the D.C. current, also known as the burst noise [13]. This phenomenon happens

because of the modulation of the current flowing over a physical barrier. The

magnitude of this current can be calculated using the Schottky equation, as in

(2-2).

𝑖2̅ = 2𝑞𝐼𝐷∆𝑓 (2-2)

Where 𝑞 is the electronic charge, 𝐼𝐷 is the average value of the random current

pulses at the drain of the transistor and ∆𝑓 is the measurement bandwidth. From

(2-2), it can be seen that the bigger the bandwidth of the measurement, the higher

the current will become. It also suggests that the higher the pulsating current at

the drain, the more that the noise will increase. Burst noise is mostly caused by

a random variation such as crystallographic defects in the bipolar junction

transistor. Impurities can slip into the defect during the manufacturing process

and form a low resistance current path. When the current flows over this

resistance, some of it will leak, meaning that the output has current inconsistency.

21

Another source of randomness in semiconductor devices that comes from a

random variation in the manufacturing process is the flicker noise. Flicker noise

is also known as 1/f noise because it is mainly affecting the lower frequency

range, i.e., Megahertz frequency. Two theories can be used to explain the flicker

noise phenomenon, namely the number fluctuation theory [14] and mobility

fluctuation theory [15]. Number fluctuation theory explains that flicker noise

happens because there is an inconsistency in the number of electrons that can

pass through the defective current path at any given time. On the contrary,

mobility fluctuation theory states that flicker noise does not have any correlation

with the number of electrons that pass the defective current path. Still, the velocity

inconsistency of those electrons causes this. However, both theories agree that

the leading cause of the flicker noise comes from the defective current path of

the transistor, which is a random variation of the manufacturing process.

2.3.2 Random Number Generator in FPGA

FPGA refers to embedded electronics comprised of a vast number of digital

circuitries known as primitives that can be employed to configure a wide range of

different applications. There are two methods of RNG integration for FPGA

applications, either through building mathematics models of RNGs using FPGA

primitives which results in PRNGs [15] or by utilizing the random variation of the

FPGA manufacturing process, thus creating TRNGs [15]. Although FPGA

provides a sufficient level of randomness with high throughput for PRNG

applications, the random number that it generates is no longer secure if the

function behind the PRNG is compromised. This rest of this section focuses on

the implementation of TRNG in FPGA.

There are two main components used to build the TRNG in FPGA: the source of

randomness and the extractor. First, the source of randomness is the

combination of the state space S and transition function f, as in (2-1). The

transition function f is to prepare the state space S for generating the next random

number.

22

An example of a digital circuit that can be used as a source of randomness for

TRNG when implemented in FPGA is the shift-register. The shift register consists

of a chain of flip-flops. With the FPGA from Xilinx, the shift-register can be

simplified by utilizing the SRL16E [16] which is a particular mode of the LUT in

Xilinx's FPGA. This configuration will significantly reduce silicon area usage.

The second component to build TRNG in FPGA is the extractor. One of the

easiest ways to create an extractor function in FPGA is by using a comparator

circuit to compare the quality of the two sources of randomness. If one source of

randomness is better than the other, it will generate bit "1", and if it is the other

way around, it will produce bit "0".

A simplified block diagram of TRNG for the implementation in FPGA is presented

in Figure 2-2. The oscillation frequency of the two Sources of Randomness (SoR)

will be counted by the binary counter and compared in a comparator circuit to

generate the 1-bit random number. The 1-bit random number will be stored in a

register and concatenated. After the first random number generation is finished,

the finite state machine will tell the counter to start the SoR frequency counting

routine again. In order to generate a 128-bit random number, it needs to run 128

times.

Binary

counter

Binary

counter

Comparator

1-bit

random

number

Source of

randomness

Source of

randomness

Finite state

machine

Register

Figure 2-2: Block diagram of TRNG implementation

23

2.3.3 Test for Randomness

There are a couple of concepts that have been proposed in the literature to

measure the quality of the bits produced by the random number generator. One

of the parameters that can be easily tested with a non-statistical method is the

frequency test. The frequency test aims to measure the uniformity of the bits

produced by the RNG. An ideal uniform binary random number contains the same

number of ones and zeros. This means that it has 50% uniformity while 100%

uniformity means that the random number is made up of all ones or all zeros.

Another concept to measure the quality of a random number generator is by using

a statistical test. There are a couple of suites used to test the randomness of an

RNG such as DieHARD [17], FIPS140-2 [18], AIS-31[19], NIST SP800-22 [20],

and TestU01 [21]. Table 2-2 shows the differences between each test suite.

Table 2-2: Minimum Input for Different RNG Test Suites

Name of the test
suite

No. of test
types

minimum input
(bit)

Year of
publication

DieHARD 18 2.5 million 1995

FIPS 140-2 11 16 2001

AIS-31 9 3 million 2001

TestU01 266 32 (max) 2007

NIST SP800-22 15 1 million 2010

Every random number test suite measures the p-value of the RNG. The p-value

refers to the probability that the RNG under test will have the same quality as the

referenced RNG used in the test suite. The p-value is chosen to represent the

quality of an RNG to understand whether an RNG is good or bad. Nevertheless,

it does not provide any information on which part of the RNG makes it a lousy

RNG.

The p-value is compared to a significance level α, which is set by the tester. If the

p-value is lower than α, then it means that the RNG is rejected as being a good

24

RNG. For example, the National Institute of Standard and Technologies (NIST)

recommends setting the value of α to 1%. This means that there is a 1%

probability that the RNG under test will be as good as the referenced RNG.

However, as every RNG test suite is a statistical test, there are two types of error.

Type I, also known as a false-positive error, happens when the test suite fails to

detect a lower p-value of the RNG under test when it has a small p-value.

On the other hand, type II, also known as a false negative error, happens when

the test suite fails to detect a higher p-value of RNG under-test when it has a high

p-value. According to [17], a small p-value does not mean that the RNG is terrible.

Instead, it tells us that there is a high chance of type II error which is more

important from a practical point of view.

George Marsaglia published dieHARD in 1995 as an improvement of a random

number of quality measurement techniques developed by Donald Knuth. His idea

was to fix the p-value to a pre-chosen interval [α, 1 − α]. Beforehand, the p-value

is not fixed, which makes it challenging to interpret the result of the randomness

test.

The Federal Information Processing Standard (FIPS) 140-2 is a standard created

by NIST in 2001. They also created a new standard called the NIST SP800-22.

This is the latest tool used to quantify the quality of a random number generator.

The difference between the two is that FIPS is more a qualitative way to

standardize a random number generator. In contrast, NIST 800-22 is a more

quantitative way to measure a random number generator. However, FIPS140-2

has been criticized by industries because it takes too long to get a random

number certified. The certification process cannot be done by the creator of the

random number themselves—it must be done by a third-party company.

AIS-31 is an improvised version of FIPS 140-1. It also introduces a new testing

technique that focuses on how to measure the quality of a random number that

has been post-processed. The tests that are included from FIPS 140-1 are the

mono bit test, the poker test, the run test and the most extended run test. The

other test used is the autocorrelation test, the uniform distribution test (which

25

includes 2 sub-tests), a comparative test for a multinomial test and the last one

is the entropy test.

TestU01 is considered to be the most comprehensive test as it combines 266 test

suites from the existing test suite available in the literature and commercial

products. It divides the test into three packs: 1) "Small Crush" which consists of

10 tests, 2) "Crush" with 96 tests and 3) "Big Crush" which consists of 160 tests.

However, it only able to handle 32-bit inputs which are too limited for modern

RNGs in a cryptographic application.

In this experiment, NIST SP 800-22 Rev. 1a [16] will be used. It is a current

standard that is widely used and accepted to measure the randomness of the

random number generator. It consists of 15 statistical tests as described in Table

2-3. Every test has several parameters such as minimum bit length (n), block

length (m or M), and several sub-tests. The number of n needs to be supplied by

the user while m and M are parameters that can be set within the test suite.

Table 2-3: Statistical Tests Within NIST SP 800-22

TEST NAME n m or M

Frequency Test n ≥100 -

Frequency Test within a Block n ≥100 20 ≤ M ≤ n/100

Runs Test n ≥100 -

Longest-Run-of-Ones n ≥128 -

Binary Matrix Rank n ≥38912 -

FFT n ≥1000 -

Non-overlapping Template n ≥8m−8 2 ≤ m ≤ 21

Overlapping Template n ≥106 -

Maurer's Universal Statistical n ≥387840 -

Linear Complexity n ≥106 500 ≤ M ≤ 5000

Serial Test 2 < m <[log2 n]−2

Approximate Entropy m <[log2 n]−5

Cumulative Sums 100 -

Random Excursions n ≥106 -

Random Excursions Variant n ≥106 -

26

NIST SP800-22 is widely used in industry and commercial RNG products

because it is considered as having a low tolerance to error. Because of this, it is

hard to pass the NIST SP800-22 unless the RNG is perfect. This claim is

confirmed by [17], which mentions that high numbers of good RNG have difficulty

passing 20% of the NIST test.

2.3.4 Metrics

Cryptography applications need a high rate of random number generation. The

parameter used to measure the rate of the random number generation is known

as the throughput. Throughput is calculated using (2-3).

𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 =
𝑛 × 𝑓𝑚𝑎𝑥

𝑙𝑎𝑡𝑒𝑛𝑐𝑦

(2-3)

where n is the number of bit-length of the generated random number, 𝑓𝑚𝑎𝑥 is the

maximum working frequency of the design, and 𝑙𝑎𝑡𝑒𝑛𝑐𝑦 is the number of cycles

taken to generate the 1 bit of random number. 𝑓𝑚𝑎𝑥 is obtained by looking at the

post-route-and-placement report of the FPGA and not the maximum frequency of

the FPGA board.

2.4 Experimentation

2.4.1 Design of Ring Counter RNG (RCRNG)

The RNG based on the ring counter circuit will be implemented in the Kintex-7

FPGA development board, which consists of 7K325T FPGA from Xilinx. It utilizes

28 nm technology which is still widely used in critical systems nowadays, such as

in avionics and radar technology. The Kintex-7 FPGA is categorized as a −2L

device, means that it has a nominal voltage of 0.9 Volts. It is understandable that

the threshold voltage for 28 nm devices is 0.4 Volts, and the experiment should

27

ideally run at that voltage level. However, this experiment uses the nominal

voltage of the FPGA because lowering the voltage beyond the recommended

voltage can harm the FPGA. While the differences between the nominal voltage

used and the threshold voltage is an exciting topic to discuss, this experiment is

focused on the effect of the non-uniform distribution of the process variation

caused by the near-threshold voltage to the delay-based TRNG. This will leave

the research on the environmental impacts, such as voltage and temperature

differences, to others.

In this experiment, SRL16E will be used as the primary source of randomness for

TRNG. The motivation behind it is to test the feasibility of upcoming silicon

technology where the size of the transistor will become smaller. As stated in [16],

LUT in SRL16E mode has very short wiring, so the delay should be slight enough

to affect the timing or power consumption. This property will be used as the model

for future delay-based TRNGs in FPGAs where the wiring is tiny. However, the

differences in the delay are too small to be measured with today's technology.

Therefore, in this experiment, the configuration of the shift-register from SRL16E

for creating the ring counter is used. A ring counter is a shift-register with a

feedback loop. The introduction of the loop will increase the delay to the

measurable value of today's measurement technology.

The main component to build the RC-based TRNG is sliceM. It contains LUTs

that can be programmed as a 16-bit shift-register in the form of SRL16E from the

UNISIM library. By instantiating the LUT as shift-register, the resource usage of

FPGA can be minimized.

The idea of using a ring counter as a source of randomness for TRNG is the same

as the idea of using a ring oscillator to create a delay of a system clock. Two ring

counters initialized as 10101010…. or 01010101010… will oscillate when

activated. Depending on the process variation of the components used to create

the ring counter, the oscillation frequency will be different from one ring counter

to another. A 1-bit random number can be generated by comparing the frequency

of two ring counters. In this experiment, the 16-bit ring counter was initialized only

to have one bit of 1 and 15 bits of 0. This configuration was used to create a more

28

significant delay, so then the signal analyzer can easily see the difference in

frequency. However, this configuration will increase the latency of the design and

affect the overall throughput.

The TRNG is built based on the block diagram shown in Figure 2-2 without the

finite state machine. This configuration is then stacked in parallel, as in Figure

2-3. The reason for this is that by using a parallel configuration, it is possible to

generate an n-bit of random numbers in one run. This configuration also

increases the confidence level of the measurement and the bit generation

because it minimizes the effect of temperature and voltage change.

Counter

Counter

Comparator

1-bit

random

number

Register

Source of

randomness

Source of

randomness

Counter

Counter

Comparator

1-bit

random

number

Source of

randomness

Source of

randomness

. . .

. . .

. . .

. . .

Figure 2-3: Block diagram of TRNG implementation

2.4.2 Experimental Limitation

Before implementing the RCRNG, there are a couple of things that need to be

considered. The first is to find the location on the FPGA floorplan where the pair

of RCs that will be compared can produce the best entropy for the random

number generator. This can be done by inspecting every possible location in the

FPGA floorplan. After that, every likely pair of RCs also needs to be checked to

29

find the best entropy. However, there are 16000 sliceMs in Kintex-7 7K325T

FPGA. A single sliceM consists of 4 LUT that can be programmed as a four 16-

bit shift register (SRL16E). Therefore, there are 24 = 16 possible combinations on

a single sliceM. Testing all of the possible combinations of all of the potential

locations means to test 256.000 possible combinations, which will be time-

consuming. Therefore, some constraint needs to be applied to the experiment by

limiting the number of RC pairs that will be tested as follows:

1. The test will only be done by comparing the neighbouring LUTs on the same

slice. This makes it only possible to compare two pairs of LUT per sliceM.

2. To acquire the data, an integrated logic analyser, in this case, Chipscope Pro

14.7, was used. Even though it is a powerful tool to debug the circuit design of

FPGA, there are some practical limitations. For Kinetix-7 FPGA, the maximum

number of signals that it can read at a single time is 4096. Hence in order to

test all the possible pairs by applying the constraint on point 1), the

measurement needs to be done (16 x 16000)/4096 times, or about 62 times,

which is a time-consuming process. For this reason, the test will be limited to

as close as to the maximum number of signals of Chipscope as possible, which

is 4000 RC pair. Each pair will be captured 1000 times in order to be able to

understand the uniformity of the ring counter pair.

3. The process of placement will be done manually by applying the location

constraint to the ring counter pair and the relative location constraint to the

counter, so then it is located close to the ring counter.

Even though there are some limitations in this experiment, it still gives a clear

idea about the steps needed to find the best location for the RC pair to generate

a random number with the best entropy. The flowchart in Figure 2-4 is given for

a better understanding of the location selection process.

30

RNG

Circuit

Design

Test all possible

location and

combination

Data acquisition

Location with good

entropy found?

NIST

Test

Satisfy?Finish

Start

No

No

Yes

Yes

Figure 2-4: Location selection flowchart

Secondly, concerning the more technical aspect of the design, the delay in every

part of the circuit needs to be the same up to the counter logic. In FPGA, the

delay on the ring counter is not a problem, and it is assumed to be the same. This

is because, in FPGA, the ring counter was made by instantiating a LUT which

means that no wiring is needed to connect the component that builds the ring

counter. However, it is a bit of a challenge to make sure that the delay between

the ring counter and the counter is the same. This is because the manual routing

tool from ISE is complicated to use. Therefore in this experiment, the delay from

the ring counter to the counter is made as small and as similar as possible by

forcing the placement of the counter to be as close as possible relative to the ring

counter circuit.

31

Lastly, it is desirable to create a hard macro of the RCRNG circuit (at least from

ring counter to counter circuit) to fix the location, to lessen any delays between

the components and to make sure that there is no additional logic inserted into

the circuit. However, it remains a big challenge for FPGA designers to create a

hard macro from an instance that has an initialization value in one of the

components of the hard macro. In this case, the ring counter circuit needs to have

an initial value which will have consequences on the presence of a power net. In

ISE 14.7, the tool does not accept any power nets inside a hard macro. In this

experiment, to make sure that there is no additional logic added to the path

between the ring counter and the counter, they need to be forcibly located as

close as possible relative to the ring counter circuit. This can be done by using

rloc constraint.

2.5 Findings and Analysis

From the 4000 pairs of the ring counter, the uniformity of the bits generated from

each RC pair can be calculated. In Figure 2-5, the RC pair that have 100%

uniformity is not shown to clarify the graph. Perfect uniformity in a bit string is

reached when the number of ones is the same as the number of zeros, indicating

that the uniformity is 50%. From Figure 2-5, there are 45 RC pairs that have

precisely 50% uniformity. However, the initial design was to create a 128-bit

random number. Therefore another run of tests is needed to find the RC pairs

that have 50% uniformity. After undertaking the process for another two times, 32

and 55 RC pairs were found after the second and third location finding process,

as shown in Figure 2-6 and Figure 2-7. In total, 132 locations with 50% of

uniformity were found which is sufficient to build the 128-bit RNG.

32

Figure 2-5: Uniformity of the RC pairs on the first run

Figure 2-6: Uniformity of the RC pairs on the second run

1

50

99

1 223 445 667 889 11111333155517771999222124432665288731093331355337753997

%

Location of RC pair

Uniformity 1st run

1

50

99

1 223 445 667 889 11111333155517771999222124432665288731093331355337753997

%

Location of RC pair

Uniformity 2nd run

33

Figure 2-7: Uniformity of the RC pairs on the third run

NIST SP800-22 was used to measure the quality of the random number. Because

some of the tests in the NIST test suite need at least 106 bits of data, at least

10000 bitstreams are required for a 128-bit RNG. This will translate into sequence

length (128) and bitstreams (10000) for the input of the test suite. Raw data from

the pre-selected RC pair is fed into the test suite, and the results are as shown in

Table 2-4. The first ten columns are ten bins from 0 to 1. What is in the bin is the

p-value that falls within the range of that bin. For example, 3024 in the first row

and the first column means that there is a 3024 p-value that has a value between

0 to 0.1 in the frequency test. For each experiment, the optimum result is

achieved when the p-value is distributed uniformly across all bins. The p-value

column is the uniformity of the p-value. The χ 2 test determines the uniformity of

the p-value. The optimum value for the uniformity of the p-value is 1. However,

according to the guideline of the NIST test suite, it mentions that the minimum

value of 0.01 for the uniformity of the p-value is enough for the RNG under-test

to pass each test.

The NIST test, however, has a rigorous rule where the recommended significance

level is between 0.1% - 1%. This means that it will only tolerate an error of 1%.

For example, if the number of p-values that falls within a bin is outside of the

1

50

99

1 223 445 667 889 11111333155517771999222124432665288731093331355337753997

%
Uniformity 3rd run

34

range of ±1%, then it will be considered an error and will fail the χ 2 test. As an

example, in this experiment, 10000 bitstreams were produced. If the bitstreams

are divided into ten bins, each bin should have a 1000±1% p-value fall into it.

According to Table 2-4, none of the bins satisfies this rule. Therefore when the

program calculates the uniformity of the p-value, it will give error igamc:

UNDERFLOW. This means that the calculated uniformity of the p-value is too small.

This is the reason why the value of the p-value column is all zeros.

Table 2-4: NIST SP 800-22 Test Results

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 P-value Statistical test

3024 1067 1395 728 780 841 0 850 846 469 0 Frequency

3024 1067 1395 728 780 841 0 850 846 469 0 Block Frequency

2903 1247 782 898 948 586 554 541 925 616 0 Cumulative Sums

1092 1019 1104 1041 905 1070 764 1046 1091 868 0 Runs

2208 1227 1013 995 827 1030 610 800 646 644 0 Longest Run

10000 0 0 0 0 0 0 0 0 0 0 Rank

1156 1292 0 1987 0 2566 0 0 2999 0 0 FFT

1503 0 0 0 0 0 0 0 0 8497 0 Nonoverlapping Temp

10000 0 0 0 0 0 0 0 0 0 0 Overlapping Template

0 0 0 0 0 0 0 0 0 0 0 Universal

0 0 0 0 0 0 0 0 0 10000 0 Approximate Entropy

0 0 0 0 0 0 0 0 0 0 0 Random Excursions

0 0 0 0 0 0 0 0 0 0 0 Rand Excursions Var

1380 0 0 0 7654 0 0 0 0 966 0 Serial

10000 0 0 0 0 0 0 0 0 0 0 Linear Complexity

Aside from using the χ2 test, the NIST SP 800-22 also suggests another way to

analyze the uniformity of the p-value, which is using a graphical plot of the p-

value. Figure 2-8 has been given to investigate the results of the NIST further.

Figure 2-8 is the representation of Table 2-4 in graph format. To clarify the graph,

the maximum range of the y-axis is limited to 1500. In this graph, most of the p-

values fall outside the 1000±1% range but not by much. The only bin that falls

way over the tolerance range is C1. This result is an indication of a type II error,

where most of the p-value falls into the low bin. By looking at the proportion of

35

sequences that pass the test, even though it falls below the tolerance range of

9900/10000, the result is not bad at all. As already discussed in [17], even the

built-in PRNG of NIST SP800-22 has only a 15% probability of passing all tests.

Therefore, it can be said that the result of this experiment does not mean that the

RNG fails to produce an excellent random number but rather a type II errors in

the statistical measurement which is sometimes more useful from a practical point

of view.

Figure 2-8: Graphical presentation of the NIST test result

The results from Table 2-4 leads to the suspicion that something is not right with

the NIST test suite because of the parametrical error. Therefore, a test using the

NIST built-in PRNG was done to verify that the NIST test suite is working as it is

intended to be. In this case, the built-in PRNG that was used is the linear

congruential generator. The test was run using 1 million, 10 million, 100 million

and 1000 million bits to see the effect of the number of input bits on the results of

the test. The results have been shown in Figure 2-9. When the NIST test suite is

fed with the minimum input recommended by the standard, it did not return any

meaningful data. The uniformity is not valid using the minimum input even though

the generator under test is from the built-in PRNG. When the number of input bits

0

200

400

600

800

1000

1200

1400

F
re

q
u

en
cy

 o
f

P
-v

al
u

e

36

increased, the uniformity of the p-value improves. When 100 million and 1000

million input bits were given, the test result returned the same p-value and the

same uniformity of p-value as well. From this test, it can be concluded that in

order to get a meaningful result from the NIST test, a more significant number of

bits is needed than the recommended minimum input bit mentioned on the

standard.

Figure 2-9: Comparison of the different input bit lengths in the NIST test

Based on this finding, another NIST test was conducted using the experimental

data. This time, 10 million bits were used as the input of the test suite and this

number was increased to 100 million to see the effect of increasing the number

of input bits and how it relates to the output obtained from the NIST test. First, 10

million bits was divided into 1000 sequences with a length of 10000 each. The

result can be seen in Table 2-5. It shows that there is an improvement in the

uniformity of the p-value as expected. However, when the number of input bits

was increased to 100 million, the test returned an error message saying that the

number of bits is insufficient. The same error message also reported by [18].

Nevertheless, the result from Table 2-4 and Table 2-5 agree with the trend in

Figure 2-9. This means that despite the inability to acquire the results for the NIST

0

50

100

150

200

250

300

F
re

q
u
en

cy
 o

f
P

-v
al

u
e

1 million 10 million 100 million 1000 million

37

test with a higher input bit, the RCRNG can pass the NIST test when it is tested

with a larger input bit.

Table 2-5: NIST test results with 10 million input bits

Another discovery from the test result, as shown in Table 2-4 and Table 2-5 is

the distribution of the p-value from the experimental data that gravitate towards

the smaller p-value (column C1). This can be interpreted as one indication of

small periodicity. The reason for this phenomenon might come from the non-

gaussian distribution of the process variation of the NTV devices. It can be

concluded that when the SRL16E was used as a model source of randomness

for RNG in sub-nano millimetre electronics, the RNG can still perform well but

with small periodicity.

Using the XPower Analyzer tool from Xilinx, the estimated power consumption is

0.157 Watts. Table 2-6 presents the resource utilization and throughput of the

proposed design compared to the other TRNG implementation in FPGA. Based

on the post PAR (Placement and Route) analysis, the maximum frequency for

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 P-VALUE STATISTICAL TEST

535 82 83 55 44 41 54 39 30 37 0 Frequency

1000 0 0 0 0 0 0 0 0 0 0 Block Frequency

772 105 57 31 18 9 7 0 1 0 0 Cumulative Sums

922 18 8 9 12 8 7 2 7 7 0 Runs

706 111 60 38 28 24 8 11 6 8 0 Longest Run

104 150 78 103 172 54 66 86 96 91 0 Rank

614 124 46 46 33 31 30 34 15 27 0 FFT

102 85 95 123 91 94 124 96 105 85 0.042531 Nonoverlapping Template

611 165 30 45 51 32 25 15 16 10 0 Overlapping Template

0 0 0 0 0 0 0 0 0 0 0 Universal

1000 0 0 0 0 0 0 0 0 0 0 Approximate Entropy

0 0 0 0 0 0 0 0 0 0 0 Random Excursions

0 0 0 0 0 0 0 0 0 0 0 Random Excursions Variant

999 1 0 0 0 0 0 0 0 0 0 Serial

116 72 100 83 102 119 100 100 112 96 0.029401 Linear Complexity

38

this design is 74 MHz. In this experiment, the latency is 16×16 because of the

initialization of the ring counter. Therefore the throughput of the design is

calculated as 37 Mbps using equation (1). From Table 2-6, it appears that the

RC-based TRNG has the right balance between FPGA resource utilization and

its throughput.

Table 2-6: Throughput comparison between the TRNG implementation in FPGA

RNG Type Resource utilization
(LUT)

Throughput (Mbps)

PLL [19] 6144 69

Ring Oscillator [20] 3968 13.8

Metastability [21] 8960 50

Chaotic Oscillator [22] 43732 58,76

Ring Oscillator [23] 7296 4.77

Ring Counter 2048 37

The throughput can be increased by increasing the number of ones at the

initialization stage of the ring counter. It can be increased up to 0.6 Gbps when

all of the bits on the ring counter are initiated as ones. However, there is a

drawback to this. The faster the ring counter overflows the frequency counter, the

harder it is for the comparator to see any differences in frequency. It will think that

the frequency of the two ring counter is the same, and it will generate the same

bit every time. For the application of a random number generator, this property is

unwanted. However, for the application of a physically unclonable function, this

configuration will create a more stable bit generation which is preferred by many

researchers.

2.6 Conclusion

In this chapter, a random number generator based on the ring counter circuit has

been implemented in FPGA. The framework for the construction process was

39

described as well as the process of location selection to get the best randomness

out of the ring counter pair. Because of the limitation of the IDE tools used, there

are a couple of practical limitations in the experiments. This limitation has been

explained thoroughly and overcome. The evaluation using the NIST SP800-22

statistical suite was also presented, and the results have been discussed

thoroughly. One comment for the NIST test suite is that one needs to have a

significant input a bit beyond its recommended minimum input to get a meaningful

result.

In terms of the adaptability of delay-based RNG for sub-nano millimetre

technology, it is shown that the current delay-based RNG can still be

implemented. Even though the path delay is small and negligible, there are still

some differences in delay or frequency that can be extracted to construct a

random number generator. However, one should take note that the periodicity of

delay-based RNG in the sub-nano millimetre will be small.

2.7 References

[1] V. Chellappan and K. M. Sivalingam, “Security and privacy in the Internet

of Things,” in Internet of Things, Elsevier, 2016, pp. 183–200.

[2] J. Dofe, J. Frey, and Q. Yu, “Hardware security assurance in emerging IoT

applications,” in Proceedings - IEEE International Symposium on Circuits

and Systems, 2016, vol. 2016-July, pp. 2050–2053.

[3] S. Satpathy et al., “An All-Digital Unified Static/Dynamic Entropy Generator

Featuring Self-Calibrating Hierarchical von Neumann Extraction for Secure

Privacy-Preserving Mutual Authentication in IoT Mote Platforms,” in IEEE

Symposium on VLSI Circuits, Digest of Technical Papers, 2018, vol. 2018-

June, pp. 169–170.

[4] V. R. Pamula, X. Sun, S. Kim, F. Ur Rahman, B. Zhang, and V. S. Sathe,

“An All-Digital True-Random-Number Generator with Integrated De-

40

correlation and Bias Correction at 3.2-to-86 MB/S, 2.58 PJ/Bit in 65-NM

CMOS,” in IEEE Symposium on VLSI Circuits, Digest of Technical Papers,

2018, vol. 2018-June, pp. 173–174.

[5] S. Mathew et al., “μrNG: A 300-950mV 323Gbps/W all-digital full-entropy

true random number generator in 14nm FinFET CMOS,” in European Solid-

State Circuits Conference, 2015, vol. 2015-October, pp. 116–119.

[6] IRDS, “International roadmap for devices and systems 2017 edition,” 2018.

[7] R. G. Dreslinski, M. Wieckowski, D. Blaauw, D. Sylvester, and T. Mudge,

“Near-threshold computing: Reclaiming moore’s law through energy

efficient integrated circuits,” Proceedings of the IEEE, vol. 98, no. 2, pp.

253–266, Feb. 2010.

[8] A. S. Mutschler, “Near-Threshold Issues Deepen.” [Online]. Available:

https://semiengineering.com/near-threshold-issues-widen/. [Accessed: 20-

Jan-2020].

[9] J. Zhou, T. T. H. Kim, and Y. Lian, “Near-threshold processor design

techniques for power-constrained computing devices,” in Proceedings of

International Conference on ASIC, 2017, vol. 2017-October, pp. 920–923.

[10] D. B. Thomas and W. Luk, “FPGA-Optimised Uniform Random Number

Generators Using LUTs and Shift Registers,” in 2010 International

Conference on Field Programmable Logic and Applications, 2010, pp. 77–

82.

[11] D. B. Thomas and W. Luk, “The LUT-SR Family of Uniform Random

Number Generators for FPGA Architectures,” IEEE Transactions on Very

Large Scale Integration (VLSI) Systems, vol. 21, no. 4, pp. 761–770, Apr.

2013.

[12] H. Kaul, M. Anders, S. Hsu, A. Agarwal, R. Krishnamurthy, and S. Borkar,

“Near-threshold voltage (NTV) design: Opportunities and challenges,” in

Proceedings - Design Automation Conference, 2012, pp. 1153–1158.

41

[13] K. B. Cook and A. J. Brodersen, “Physical origins of burst noise in

transistors,” Solid State Electronics, vol. 14, no. 12, pp. 1237–1242, 1971.

[14] 1930- McWhorter, Alan L. (Alan Louis), “1/f noise and related surface

effects in germanium,” 1955.

[15] F. N. Hooge, “1/ƒ noise is no surface effect,” Physics Letters A, vol. 29, no.

3, pp. 139–140, Apr. 1969.

[16] A. Rukhin et al., “Special Publication 800-22 Revision 1a A Statistical Test

Suite for Random and Pseudorandom Number Generators for

Cryptographic Applications,” Apr. 2010.

[17] “On the interpretation of results from the NIST statistical test suite.”

[Online]. Available:

https://www.researchgate.net/publication/287224641_On_the_interpretati

on_of_results_from_the_NIST_statistical_test_suite. [Accessed: 01-Oct-

2019].

[18] Terry Moore, “GitHub - terrillmoore/NIST-Statistical-Test-Suite: The code

from NIST SP-800-22 for testing random-number generators, along with

docs for reference.” [Online]. Available:

https://github.com/terrillmoore/NIST-Statistical-Test-Suite. [Accessed: 29-

Mar-2020].

[19] V. Fischer and M. Drutarovský, “True random number generator embedded

in reconfigurable hardware,” Lecture Notes in Computer Science (including

subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics), vol. 2523, pp. 415–430, 2003.

[20] M. Dichtl and J. D. Golić, “High-Speed True Random Number Generation

with Logic Gates Only,” in Cryptographic Hardware and Embedded

Systems - CHES 2007, Berlin, Heidelberg: Springer Berlin Heidelberg,

2007, pp. 45–62.

[21] I. Vasyltsov, E. Hambardzumyan, Y. S. Kim, and B. Karpinskyy, “Fast

42

digital TRNG based on metastable ring oscillator,” in Lecture Notes in

Computer Science (including subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics), 2008, vol. 5154 LNCS,

pp. 164–180.

[22] İ. Koyuncu and A. Turan Özcerit, “The design and realization of a new high

speed FPGA-based chaotic true random number generator,” Computers

and Electrical Engineering, vol. 58, pp. 203–214, Feb. 2017.

[23] E. A. , M. T. , A. B. O. Taner Tuncer, “Implementation of Non-periodic

Sampling TrueRandom Number Generator on FPGA,” Journal of

Microelectronics, Electronic Components and Materials, vol. 44, no. 4, pp.

296–302, 2014.

43

3 A HIGH-SENSITIVITY SENSOR FOR THE DETECTION

OF UNAUTHORISED MODIFICATIONS OF FPGA

CONFIGURATION BASED ON A PHYSICALLY

UNCLONABLE FUNCTION

3.1 Abstract

Although the application of a Field Programmable Gate Array (FPGA) as in multi-

tenant Cloud-based services adds to the affordability of high-speed computation,

it demonstrates emerging security problems such as virtual machine attacks. A

malicious tenant makes its way into the other tenant's FPGA estate using the

vulnerability of the lengthy wires used in a Cloud-based FPGA. As a

consequence, there is a thread of FPGA modification created by altering the

configuration files for inserting a Hardware Trojan. This is known to be a source

of confidential data leakage or malicious behaviour. This chapter proposes the

implementation technique of a novel physical unclonable function that facilitates

the early detection of unauthorised modifications to the FPGA configuration file.

The proposed security measures are proven to have a high level of sensitivity to

small changes, and they have excellent resistance to physical tampering and

ageing.

3.2 Introduction

The demand for high-speed and affordable computation is some of the moving

factors behind the rise in multi-tenant Field Programmable Gate Arrays (FPGAs)

Cloud services such as from Amazon [1] and Microsoft [2]. The genomic

research, big data analytics, and real-time video processing are some of the

applications that benefit from this kind of service. Each tenant of the multi-tenant

FPGA Cloud service shares the same hardware resources within their Virtual

Machine (VM). The virtualisation was done to prevent an intervention between

each tenant.

While it offers a new possibility for fast computing, this scheme exposes the

systems to advanced security issues such as data leakage from long wires using

44

side-channel attacks [3]–[5]. Moreover, the FPGA's ability in runtime

reconfiguration makes it possible for malicious tenants to modify the configuration

file of other tenants without their consent. Such an attack, which is also known as

a VM escape attack [6], compromises the host's physical machine when it comes

to gaining access and control over the other VMs. It is sub-classed as a VM

hopping attack [6] when it occurs in the VM in the same physical machine.

Alternatively, it is sub-classed as a mobility attack [6] where a compromised

physical machine with a malicious VM is moved to other systems. In such a case,

the malicious VM can infect the other VMs in the new location as well.

Solutions to overcome the security shortcomings presently include bitstream

encryption to preventing reverse engineering [7], authentication for the bitstream

integrity check [8], and Physically Unclonable Function (PUF) for device

identification [9]. While the encryption and authentication already a standard in

modern FPGA, the industry still reluctant to integrate the PUF into the FPGA. The

problem comes from the instability of the key generated by PUF, which requires

additional care toward building error correction algorithms. Additionally, PUF is

yet susceptible to physical deterioration which will affect its performance in the

long run. However, Such shortages are negligible for less critical implementation,

such as device identification.

PUF extracts the imperfection of the Integrated Circuit (IC) manufacturing

process and utilises it for security purposes, such as in the development of a

random number generator [10], encryption/decryption key [11], and device

identification [12]. There has been ongoing research regarding the development

of PUFs for device identification (ID) in FPGA. Gu [13] proposed a PUF model for

device identification using D-flipflop and cross-coupled NAND gates. He also

presented an error correction mechanism to improve the reliability of the

generated ID. Ring oscillators, as one of the most popular primitives for PUF

design, were also recommended to create a device ID for FPGAs. Haile [14]

proposed a way to increase the reliability of the PUF response by implementing

a reconfigurable ring oscillator to reduce the temperature and voltage

interference. While a reliable PUF for device ID generation has the advantage of

45

identifying a device, it is not suitable to be used as a detector of unauthorised

modifications to the FPGA configuration file that can create a deviation in the ID.

The reason for this is that the introduction of an error correction mechanism will

force the deviate ID into the correct one. A slight change in ID, which is useful

information to detect modifications to the FPGA configuration file, will thus be

discarded. So, in order to utilise the PUF as a detector of unauthorised

modifications to the FPGA configuration file, the presence of an error correction

algorithm is not necessary. What is important is how to implement the PUF, so

then it becomes sensitive to a slight change in the FPGA configuration file.

An on-board digital sensor needs to be implemented to detect unauthorised

modifications to the FPGA configuration file, such as the insertion of a Hardware

Trojan. Kitsos [15] presented the utilisation of the Transient Effect Ring Oscillator

(TERO) as a sensor to detect Hardware Trojan in FPGAs. Although the sensitivity

of such sensors can be increased by adjusting the length of the TERO, the

proposed method cannot alleviate the need for a golden reference which is known

as an excellent and Trojan-free FPGA. Techniques involving side-channel

analysis allow for the detection of Hardware Trojans without the need for golden

references as presented by Fournaris [16]. He combined the side-channel study

with a logical test suite to trigger the hardware Trojan. Furthermore, he developed

an array of ring oscillators as a digital sensor to detect the presence of Hardware

Trojan without a golden reference. While offering excellent performance, the

proposed method uses a significant amount of FPGA resources.

Traditionally, it is the PUF's pure response that is directly used as a measure for

the detection of the FPGA modifications induced by Hardware Trojans. However,

there are various parameters including uniqueness, reliability, throughput and so

on that are suggested for characterising the PUF and analysing its performance.

Some of these parameters have the potential to provide a vision in relation to the

detection of malicious activities. In respect to the uniqueness of PUFs, most of

the research is directed toward the use of inter-chip distance. For instance, by

measuring the Hamming distance between the PUF responses among the

different implementations using a variety of devices [17]. When the Hamming

46

distance is close to 50%, it can be concluded that the PUF has an ideal inter-

distance parameter. However, this parameter is a bit misleading when it comes

to measuring the quality of PUF because each device has a manufacturing flaw

that is different from the others. Therefore when the same PUF design is

implemented in two identical apparatus, the responses will likely be different from

one to another because the devices have different random process variations.

Hence the racing condition that occurs in the individual devices also varies.

Reliability is one of the critical parameters used to detect the unauthorised

modification of FPGA configuration files. The majority of the literature defines

reliability as an intra-chip distance parameter used to measure the efficiency of

reproducing the response bits. Hamming distance is employed to evaluate the

consistency of the generated responses against the changes that are due to

varying operating conditions; for instance, changes in the subject in terms of

supplying voltage fluctuations and temperature. However, this definition prevents

the reliability measurement from being done while the FPGA is on a mission

mode. This is as it is too risky to change the voltage level, and it plays with the

environmental temperature while in mission mode. There is an urge to have a

new definition to measure the reliability of the PUF response, so then it can be

used in mission mode and so then it can be utilised as a way to detect

unauthorised modifications to the FPGA configuration file.

From the literature, the challenges associated with the malicious modification

detection of an FPGA configuration file are known to be a) difficulties related to

acquiring a golden reference, b) the limitation of the FPGA resources, and c) the

practicality of the implementation and interpretation of the detection technique.

Therefore it is of the utmost importance to develop strategies for detecting

Hardware Trojans and their associated malicious modifications, which should be

efficient and straightforward for both implementation and computation.

In this regard, we hypothesise that the average reliability of the PUF can be used

as a measure for the detection of FPGA modifications instead of the conventional

techniques that employ the PUF pure response directly as a measure. As an

advantage, it eliminates the need for error correction algorithms. Moreover, the

47

proposed method will not suffer from either physical deterioration or the ageing

process of the FPGA. Building on this hypothesis, this chapter presents an

implementation of a highly sensitive PUF-based device identification and

employs it for the detection of malicious modifications in the FPGA. It requires

building a novel PUF configuration architected as a Ring Counter-Based PUF

which is constructed based on the SRL16E mode of Xilinx’s LUT to simplify the

overall FPGA implementation flows. The proposed architecture is then tested to

characterise its various parameters and metrics, including uniqueness, reliability,

and throughput. The results from the experiment indicate that the change in a

single logic gate can be detected using the proposed mechanism. With the goals

mentioned earlier, this chapter makes the following contributions:

• First, a high-sensitivity digital sensor based on the Ring Counter PUF (RCPUF)

is developed to detect unauthorised modifications of multi-tenant FPGA

configuration files.

• A new definition of uniqueness parameter is then proposed for a better

understanding of the characteristics of the PUF in a device without the need

for external references.

• A new definition for the reliable measurement of PUF is proposed so then it

can be used for the detection of unauthorised modifications to the FPGA

configuration files without affecting the mission mode of the FPGA.

• Finally, The PUF will be characterised to measure their performance against

the parameters of uniqueness, reliability, and throughput.

The rest of the chapter is organised as follows. Section 3.3 will discuss the related

works on PUF implementation, classification, and characterisation. The proposed

PUF was constructed using the SRL16E mode of Xilinx’s LUT along with the

required experimental setup presented in sections 3.4 and 3.5, respectively.

Furthermore, the results and findings will be discussed in section 3.6. Finally, the

chapter will be concluded in section 3.7.

48

3.3 Related Works

3.3.1 Physically unclonable function

The idea of a PUF initially was introduced by R. Pappu in 2008 [18] as a solution

to overcome problems in number theory-based one-way functions by transferring

the medium’s microstructure to a fixed-length string of binary digits. He proposed

PUF as a “physical one-way function” for modern cryptographic practices. In a

digital circuit, creating a PUF is done by converting the physical imperfections of

the manufacturing process within an integrated circuit into a useful binary digit of

a fixed-length. Referring to this idea, the PUF is a fixed-length binary digit that

comes from a continuous flow of random binary digits, known as a Random

Number Generator (RNG). The binary digits of the RNG are extracted as a subset

of Ω from an initial entropy source S. The set S is preconditioned by the mapping

function f to be ready for extraction using the extraction function 𝑔, and so it

becomes a new random space U as shown in Figure 3-1.

Physical system (S)
f:S → S

(transition function)

g:S → U
(Extractor function)

xt

xt+1

yt

Source of randomness

Figure 3-1: Block diagram of a random number generator

In a digital circuit, S is the physical source of randomness (SoR), and 𝑔 is the

logic used to process the SoR further. Like all digital circuitry, the SoR also needs

an initial condition. It can be in the form of the current state of the physical system

or the need for it to be given externally by a seed 𝑥0. Figure 1 illustrates this

mechanism.

49

There are different ways to classify PUFs. One of them is by looking at how the

response is generated, e.g., weak PUF and strong PUF. Weak PUF [19] is a PUF

where the generation process is done purely by utilising the random variation of

the devices. Because of this, this type of PUF tends only to produce a few usable

responses, i.e., a response with high reliability, and in some cases, only one

usable response. On the other hand, the response generation of a strong PUF

[20] incorporates mathematical algorithms to process the random variation of a

device further so then the chance to get a more usable response is higher.

Figure 3-2 provides a high-level schematic of PUF implementation in an

integrated circuit. The source of randomness can be in the form of a single

physical entity such as an oscillating crystal or in the form of a digital circuit such

as a ring oscillator.

SoR

SoR

SoR

SoR

M
u

x
M

u
x

Counter

Counter

Comparator Response

Challenge

. . .

Figure 3-2: High-level schematic of delay-based PUF implementation

50

Table 3-1: Various types of PUF

Application Source of
Randomness

PUF name Advantage Disadvantage

Non-Silicon Optical PUF
Large CRP
space

Bulky

Silicon

Time-delay
based

Arbiter PUF
Large CRP
space

Vulnerable to
modelling
attacks

Ring oscillator
PUF Flexible

implementation
Low reliability

Ring counter
PUF

Intrinsic PUF SRAM PUF High reliability

Limited CRP
space

Mismatch-
based

Latch PUF Imitate the
behaviour of
SRAM PUF for
devices
without SRAM

Flip-flop PUF

Butterfly PUF

Reconfigurable
PUF

Physically
reconfigurable

Useful for key
renewal and
revoke

Vulnerable to
DoS attacks Logically

reconfigurable

Table 3-1 shows the various types of PUF. A pair of PUF challenges with their

corresponding response is called a challenge-response pair (CRP). While having

the advantage of large CRP spaces, the characterisation of the optical PUF [21]

needs a bulky external device which makes it less practical and costly to produce.

A time-delay-based PUF such as the arbiter PUF [22], ring oscillator PUF [23],

and ring counter PUF have an advantage in that they are very flexible in terms of

implementation. What it means is that their architecture can be applied to any

electronic device ranging from an Application Specific Integrated Circuit (ASIC)

51

to a Field Programmable Gate Array (FPGA). However, the reliability of this type

of PUF is lower compared to the other type of PUF. The reason for this is because

their flexible architecture needs to be specifically tailored for every

implementation. This makes it hard to get a level of acceptable reliability without

any iterative implementation process. The intrinsic PUF is based on primitives

that are already available in the device such as the Static RAM (SRAM) PUF [24]

without having to configure it. Because of their rigid structure, this type of PUF

tends to have high reliability. Researchers try to imitate the behaviour of SRAM

in the devices that do not have the same primitive behaviour according to the

development of mismatched-based PUFs such as latch PUF [25], flip-flop PUF

[26], and butterfly PUF [27]. Lastly, the recent development of PUFs presents

with the ability to change the CRP through the introduction of a reconfigurable

PUF [28]. This type of PUF has an advantage in that they can have a larger CRP

space. However, the reconfiguration process still has challenges in terms of

security.

One of the FPGA primitives that is widely used to build a PUF is the LUT (Look-

Up Table). The LUT is one of the main building blocks of FPGA as it is used to

create the logic element of the circuit. It can be configured to any kind of logic

gates as well as to a memory element such as the shift register. A chain of LUT

in series, while each configured as an inverter, creates a PUF-based ring

oscillator [29]. The LUT in Xilinx’s FPGA can also be configured into a 16-bit shift-

register using the SRL16E mode. This particular configuration reduces the use of

the FPGA resources by 16 times compared to the traditional approach for building

registers using a flip-flop chain. SRL16E can be utilised in many ways for the

development of PUFs. Thomas [30], [31] uses the SRL16E as a complementary

component to increase the periodicity of the random number generator (RNG),

which is the building block of PUF.

3.3.2 PUF characterisation

Different definitions of the parameters for PUF characterisation have been

extensively discussed in [17]. Despite the differences in how they construct their

52

definition, there is one thing that they have in common. The majority, if not all, of

the definitions of PUF characterisation, utilise Hamming distance as a quantifier.

The Hamming distance between the PUF responses of the same PUF

implementation in different devices is used to measure the uniqueness of the

PUF by [17]. This definition requires the tester to have 2 or more devices to

implement the same PUF, to generate the response, and to finally calculate the

Hamming distance of the PUF under test. Without the presence of the second

implementation or device, it is a bit of a challenge to get the uniqueness of the

PUF under-test.

Maiti [17] defines the reliability of the PUF response as a complement of the

averaged Hamming distance of the PUF response when it is measured at

different device temperatures or voltage levels. The requirement to have a

response to different temperatures and voltage levels limits the measurement in

terms of it only being performed in test mode. The characterisation in a test mode

will increase the downtime of a system. It is too risky to characterise the PUF

using this definition as it will jeopardise the functionality of the system.

Another parameter that is widely used in PUF characterisation is throughput. It is

a parameter used to measure the generation time of the PUF response. It is

essential to understand the throughput of the PUF, so then it can be efficiently

used in cryptography applications. The throughput is accounted as in equation

(2-3).

3.4 Proposed works

3.4.1 Ring PUF as a digital sensor

A ring counter is a shift-register with a feedback loop. It can be utilised as a delay

element used to build the PUF. The idea of using the ring counter as a building

block for the PUF is similar to the concept of using a ring oscillator to create a

delay in the system clock. Depending on the process variation of the components

involved in the structure of the ring counter, the oscillation frequency will be

different from one ring counter to another. Figure 3-3 shows the initialisation of

53

the ring counter. The 16-bit ring counter was initialised to have one bit of 1 and

15 bits of 0. This configuration is used to create a significant amount of delay, so

then the frequency counter can easily capture the frequency differences between

the two ring counters.

Figure 3-3: Initialisation of the ring counter

To meet the requirement of the sensor to make a measurement in mission mode

with minimal influence on temperature and voltage fluctuation, the PUF is

configured as in Figure 3-4. This configuration allows the PUF to run in parallel.

Consequently, all parts of the responses are generated at the same time. This

eliminates the influence of temperature and voltage change at the time of

generation, and it increases the confidence level of the measurement.

The PUF consists of 256 pairs of ring counter (RC) used to produce a 256-bit

response. The ring counter is implemented using the SRL16E mode Xilinx’s LUT

to simplify the design and reduce the silicon area usage. The SRL16E will be

configured as a shift-register, and the output is connected back to its input; thus,

it becomes a ring counter. Each RC pair has a 2-bit input. However, because of

the limitations of time and resources, the challenge is only of an 8-bit length

instead of 512-bit. The challenge will be used repeatedly for every 4 RC pairs.

The response generation mechanism for each RC pair is given in the pseudo-

code in Table 3-2.

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

54

SRL16E

1

Counter 1

(16 Bits)

Counter 2

(16 Bits)

M

1

M

2

Comparator

Ch3Ch4

1 Bit PUF

Response

Ch Register (8 Bits)

Res

1-1

Res

1-2

Res

1-64

Res

2-1

Res

2-2

Res

8-64

Res

4-1

Res

4-2

Res

4-64

Ch1Ch2Ch3Ch4Ch7Ch8

Res

2-1

Res

2-2

Res

8-64

Ch3Ch4

SRL16E

2

clk

clk

Figure 3-4: Block diagram of RC-based PUF

Table 3-2: Pseudo code for the RCPUF mechanism

mechanism RCPUF is

//component

challenge = {ch1, ch2}

SoR = {s1, s2}

counter = {c1, c2}

mux = {m1, m2}

comparator

//input-output

m1 {

input c1, input c2, select ch1, output muxout1

}

m2 {

input c1, input c2, select ch2, output muxout2

55

 }

comparator {

input muxout1, input muxout2, output PUF_response

 }

//processing

 while c1 or c2 !overflow

 c1 = s1

 c2 = s2

 else

 stop all counter

 hold counter value

 shift counter value to mux

 then if

 muxout1 > muxout2

 generate "1"

 else

 generate "0"

3.4.2 Uniqueness

In contrast with the traditional definition of uniqueness, we define it as the

comparison of the number of actual unique responses that the PUF generates

with the maximum number of unique responses that it should be able to generate,

as given in equation (3-1).

𝑈𝑛𝑖𝑞𝑢𝑒𝑛𝑒𝑠𝑠 =
𝑅𝑢

2𝐶 × 100% (3-1)

Where Ru is the number of unique responses of a PUF which can be calculated

using ‘tabulate’ function on MATLAB. 2C is the number of maximum responses to

the C-bit challenge, which is the number of challenges from the PUF.

3.4.3 Average reliability

Figure 3-5 shows the response of the PUF when a challenge is applied to it a

couple of times. It appears that it is not generating a single unique response.

Instead, it has a response variance with slightly different hamming distances from

one another. The response with the highest reproduction rate will be called the

dominant response, and it will be the formal response to that challenge. The

56

reliability of the Challenge-Response Pair (CRP) is the reproduction rate of the

dominant response. Subsequently, the overall reliability of the PUF is then given

by averaging the reliability of each dominant response as represented in equation

(3-2):

Figure 3-5: Response variance from a single challenge

𝜇𝑟 =
∑ 𝑟𝑐

2𝐶
 (3-2)

Where 𝜇𝑟 represents the average reliability of the dominant response, and rc

represents the percentage of occurrence of the dominant response to a

challenge.

3.5 Experimental setup

The RCPUF will be implemented in the Kintex-7 FPGA development board.

Figure 3-6 illustrates the process used for PUF characterisation. Assume that 100

iterations get 100 PUF responses, which can be used to obtain the dominant

response to a specific challenge. The iteration process was done until all of the

possible challenges are shifted 100 times to the PUF. In this case, because the

challenge to the RCPUF is 8-bit binary, there are 256 possible challenges. For

57

each CRP, the value of each dominant response is grouped to obtain the Ru for

use in the uniqueness calculation using equation . Next, the reliability of each

dominant response is used to calculate the average reliability and to get the

signature plot of the device. The throughput can be calculated by obtaining the

working frequency after the placement and route (PAR) process occur, and after

substituting the values in equation .

Start

Initialising tests

i=1, ch=1, Logic = 1

i=i+1

PUF Counter

overflow?

Read ith Response

from PUF

i>100

Yes

No

Yes

No

ch=ch+1

i=1

Ch>256

Find dominant Response of Chth

No

Yes

Experiment

Throughput

Eq.(2)

Specification

of RCPUF

(n , latency)

Specification of

Xilinx board

(fmax)

Reliability of Chthdominant

Response

Average Reliability Eq.(4)

Signature plot

Value of dominant Response

Uniqueness → Eq.(3)

Post Processing

End

Logic>2
NoLogic = 2

i=1, ch=1

Yes

Figure 3-6: Flowchart for PUF characterisation and the detection of the FPGA

configuration file modification

To test if the RCPUF-based sensor can detect any modification to the FPGA

configuration file, the logic that is implemented into the FPGA is changed. The

logical part of the device is represented by a linear-feedback shift-register (LFSR)

in a built-in self-test (BIST). A built-in self-test (BIST) is a circuit that allows an IC

58

to perform tests by itself. It involves a set of test patterns to check most of the

functionality of the device. The BIST consists of the memory used to store all of

the test patterns and a state machine to choose which test pattern is to be fed to

the device. The state machine can be realised using LFSR.

LFSR is a shift-register with a serial input (lfsr_tap) in the form of a linear function

of its previous states. The input is driven by XORing, which is a particular set of

the register’s outputs. This means that the state of the LFSR depends on the

chosen parts of the outputs and the register’s initial value (also known as seeds).

When it is appropriately configured, LFSR creates an infinite state. However,

because it has a finite number of registers, the LFSR will eventually come back

to its initial state.

The change in the logic to simulate the unauthorised modification is performed in

the 10-bit LFSR circuit. The original feedback loop consists of an XOR for the

seventh bit and tenth bit, as seen in Figure 3-7. The unauthorised modification

occurs by changing the XOR and the OR gate, which reduces the number of

LFSR states. As a result, the BIST will not be able to perform the self-test

thoroughly. This affects the reliability of the device indirectly. Such a logical

modification provides valuable input to measure the sensitivity of PUF

identification. If a single gate modification is not detected, further amendments

are continued until the unauthorised modification is detected. If the PUF sees the

induced unauthorised single gate modification, then the PUF’s sensitivity is

known to be sufficient for detecting any significant changes to the FPGA

configuration file.

Figure 3-7: LFSR setup

59

In this experiment, any change in the reliability of the PUF responses indicates a

modification to the FPGA configuration. The reliability of the PUF responses

depends on the frequency stability of the source of randomness. The frequency

stability is not only affected by environmental conditions such as temperature and

voltage fluctuation, but they are also affected by the resonance frequency of the

neighbouring circuit and wires [33]. The configuration in Figure 3-4 is used to

minimise the environmental influence, so then a better measurement can be

achieved.

Although the electronic design automation (EDA) tool can perform an automatic

placement in the circuit to avoid the resonance effect. We tend to employ the

resonance effect to detect unauthorised modifications to the FPGA configuration

in our experiment. Four experimental setups, given in Table 3-3, have been

prepared to validate the hypothesis mentioned earlier. Setups (A) and (B) include

cases where the PUF does not have a constrained location but where the

implemented logic might not or might be changed respectively, as in cases (A)

and (B). Such a change in logic represents the unauthorised modification of the

FPGA configuration file. The same method was done for the setups of (C) and

(D). However, both have a constrained location in the PUF.

Table 3-3: Experimental setup

 No logic change w/ logic change

Unconstrained A B

Constrained C D

For this experiment, only the location of the PUF is fixed. The location of the BIST

module will be placed and routed automatically by the ISE synthesis tool. “LOC”

attributes are used in the constraint file to fix the location of the PUF. It is also

necessary to use the “keep” attribute in the VHDL file and the “S” attribute in the

60

constraint file to keep the synthesis tool in order not to get rid of the ring counter

component.

Chipscope Pro 14.7 was used for data acquisition. Before the data acquisition

started, a data acquisition module needs to be configured inside the FPGA. The

purpose of this setup is to be able to capture the 256 PUF response in one go,

as illustrated in Figure 3-8. On the left side of Figure 3-8, there is a set of registers

for all possible challenges. Because the PUF was designed to have an 8-bit

challenge, 256 registers with the length of 8-bit for each register were prepared.

The finite state machine is a simple 8-bit binary counter that will call the next

challenge when the previous challenge has already been shifted through the

PUF.

Figure 3-8: Data acquisition setup

3.6 Findings and discussion

3.6.1 RCPUF characterisation

The PUF characterisation was proceeded with in order to measure the

uniqueness, reliability, and throughput of the proposed PUF. The Tabulate

function from MATLAB was used to account for the number of unique numbers

that PUF has. The next step is to calculate the uniqueness value using equation

(3-1). Table 3-4 shows how many unique numbers each configuration has, along

with its uniqueness. The average reliability was computed using equation (3-2).

RCPUF

M
u

x

Challenge

registers

(256 register of

8-bit challenge)

Finite state machine

Response

Registers (256

register of 256-

bit response)

Chipscope

61

Table 3-4: Reliability and uniqueness comparison of RCPUF

Parameter
Configuration

A B C D

of unique responses 217 224 96 140

Uniqueness (%) 84.76 87.50 37.50 54.68

Average Reliability (%) 5.86 5.70 62.08 59.51

There is an inverse correlation between the reliability and number of unique

responses in the PUF, as indicated in Table 3-4. The unconstrained PUF has a

high number of unique responses, but it is low in terms of its average reliability

value. This result is similar to the result in [34] in which they have a randomly

placed PUF. On the other hand, the constrained PUF has higher average

reliability but a lower number of unique responses. In practice, the chance to get

a unique response can be increased by increasing the length of the challenge.

However, reliability is an intrinsic parameter that cannot be controlled. Therefore

a constrained PUF has more advantages in terms of its higher than average

reliability value.

It is true that for a weak PUF, there only exists one typical usable response that

has the best stability [35]. However, with the improvement that has been made in

the area of the PUF error correction algorithm, such as in [36], it will be beneficial

to use a less stable response. Therefore the end-user will have more options to

use the PUF, for example, for private/public key generation [37]. It will be more

sensible to define the uniqueness of a PUF according to the number of actual

unique responses that the PUF can generate. A PUF with an n-bit challenge will

have 2n possible unique responses. Still, it is almost impossible to have a

maximum number of unique responses because of the random process variation.

For the throughput, information about the maximum working frequency for each

configuration needs to be acquired. This information can be found in the post-

PAR (placement and routing) report. Table 3-5 provides the counted maximum

working frequency for each design, and the throughput was calculated using

62

equation (2-3). The latency for the proposed design is 16 x 16 because of the

initialisation of the ring counter.

Table 3-5: Maximum working frequency and throughput

Parameter

Configuration

A B C D

Max. frequency (MHz) 96.674 96.674 134.048 134.048

Throughput (Mbps) 96.674 96.674 134.048 134.048

Table 3-6 shows the throughput comparison between the RCPUF and the other

PUF. Even though the throughput of the RCPUF is not as high as the other PUF

in Table 3-6, it does not diminish its functionality in terms of detecting

unauthorised modifications to the FPGA configuration file, which does not need

high-speed performance.

Table 3-6: Throughput comparison

PUF Type Throughput (Mbps)

Ring oscillator [38] 0.0018

Cross-couple inverter [39] 560

SRAM [40] 598

SR latches [34] 192

Ring counter 134

63

3.6.2 RCPUF implementation as a sensor

Having done the characterisation process of the RCPUF, the next step is to verify

the placement of the PUF for the purpose of device identification. As already

mentioned in Table 3-3, there are four different PUF configurations for this

experiment. The parameter that will be used for this purpose is the reliability

parameter. The result that was expected is that when there is a change to the

configuration file of the FPGA, there will be a change in the fingerprint of the

FPGA. In this experiment, the reliability parameter will be used to represent the

change in the FPGA fingerprint. If the reliability changes, it can be assumed that

there is a change in the fingerprint. Therefore the unauthorised change in the

FPGA configuration file can be detected.

The result of the experiment is shown in Figure 3-9. It does not show any

information about the value of the individual response, but it only indicates the

reliability of the PUF dominant responses. However, it is still able to detect an

unauthorised change in the FPGA configuration file by observing the changes in

the reliability plot of the PUF.

64

Figure 3-9: Comparison of the reliability of the PUF responses.

0

10

20

30

40

50

60

70

80

90

100
1 4 7

1
0

1
3

1
6

1
9

2
2

2
5

2
8

3
1

3
4

3
7

4
0

4
3

4
6

4
9

5
2

5
5

5
8

6
1

6
4

6
7

7
0

7
3

7
6

7
9

8
2

8
5

8
8

9
1

9
4

9
7

1
0
0

1
0
3

1
0
6

1
0
9

1
1
2

1
1
5

1
1
8

1
2
1

1
2
4

1
2
7

1
3
0

1
3
3

1
3
6

1
3
9

1
4
2

1
4
5

1
4
8

1
5
1

1
5
4

1
5
7

1
6
0

1
6
3

1
6
6

1
6
9

1
7
2

1
7
5

1
7
8

1
8
1

1
8
4

1
8
7

1
9
0

1
9
3

1
9
6

1
9
9

2
0
2

2
0
5

2
0
8

2
1
1

2
1
4

2
1
7

2
2
0

2
2
3

2
2
6

2
2
9

2
3
2

2
3
5

2
3
8

2
4
1

2
4
4

2
4
7

2
5
0

2
5
3

2
5
6

%
 o

f
re

lia
b

ili
ty

number of responses

Reliability of PUF responses

orig, constr orig, no constr log change, constr log change, no constrA B D C

65

When the location of the PUF is not fixed, the reliability plot of the PUF dominant

responses is not changed, regardless of whether there is a change to the FPGA

configuration file or not. This indicates that the FPGA’s fingerprint is also changed

and that the unauthorised modification to the FPGA configuration file is detected.

Whenever the synthesis tool automatically picks the location of the PUF, it will try

to find a site with the smallest disruption between each component to avoid the

resonance effect. On the other hand, when a constraint is applied to fix the location

of the PUF, the synthesis tool works hard to find the best possible routing for the

design. Because of the constraint applied, the unconstrained logical circuit will

eventually come across the path of the PUF component and disrupt the frequency

of the ring counter [41]. Therefore any change made to the configuration file results

in changes within the disruption. This turns to changes in the reliability of the PUF

response when the location of the PUF is fixed.

The fact that the logic change in this experiment is represented by changing the

XOR gate on the LFSR to the OR gate is an indication that the PUF as a sensor

has a high level of sensitivity to detect unauthorised modifications to the FPGA

configuration file.

3.6.3 Resistance to physical tampering and ageing

The developed detection mechanism has resistance to physical tampering,

including temperature and/or voltage alteration, and ageing. This can be

explained using the following example:

1. If an attacker is trying to completely break the detection mechanism by

altering the environmental condition (temperature and/or supply voltage) with

the purpose of changing the FPGA configuration file without being detected,

then the user will be alerted with the fact that the detection mechanism has

been compromised.

2. If the purpose of the attack is to change the reliability plot, the user will

understand that there is an ongoing effort to tamper the detection mechanism

66

or modification of the FPGA configuration file. After all, it will take a significant

amount of effort for the attacker to figure out that there is a detection

mechanism that uses PUF reliability as its sensor. Therefore this kind of

attack scenario is challenging to perform.

3. One of the possibilities for the attacker to change the FPGA configuration file

without being detected is by stabilising the reliability plot while performing the

modification of the FPGA configuration file. This kind of attack can be done

by altering the temperature and/or supply voltage. However, there are some

challenges that the attacker will face when performing such an attack:

a. First, the attacker needs to able to figure out that the PUF reliability is

used as a sensor.

b. Second, to understand how much temperature or voltage change is

needed to stabilise the reliability plot, the attacker needs to understand

the device’s sensitivity to environmental change.

c. Third, in order to perform an accurate side-channel reading to understand

the reliability plot, the device needs to be decapsulated [42]. Without the

decapsulating process, there is no guarantee that side-channel reading

is accurate.

The detection mechanism also has good resistance to the ageing process. This

can be done by making the reliability measurement both continuous and in real-

time. This can be easily done as the architecture of the PUF allows for the

measurement of the reliability performed in mission mode as described in section

3.4.1.

Having mentioned the attack scenario above, it can be concluded that the

detection mechanism has excellent resistance to environmental attacks and the

ageing process.

67

3.7 Conclusion

In this chapter, a high-sensitivity and affordable sensor to detect unauthorised

modifications to the configuration file of a multi-tenant FPGA service have been

developed. The sensor is based on a novel physically unclonable function with a

ring counter as its source of randomness. Instead of using the response of the

PUF, the sensor uses the average reliability as its signature. This makes the sensor

tamper-proof and eliminates the need for an error correction algorithm.

A comparison between a couple of PUF implementations has been made, and it

has been concluded that the PUF needs to be located in a fixed location on the

FPGA floorplan to be able to detect any unauthorised changes.

Furthermore, the characterisation of the novel ring counter PUF is performed. A

new definition of PUF characterisation has been introduced in this chapter. Based

on this new definition, it shows that there is an inverse correlation between the

reliability of the PUF and the number of unique responses that it can produce. This

new definition opens up a new possibility for PUF designers to balance the

reliability and uniqueness of the PUF responses.

3.8 References

[1] “Amazon EC2 F1 Instances.” [Online]. Available:

https://aws.amazon.com/ec2/instance-types/f1/. [Accessed: 06-Apr-2020].

[2] A. M. Caulfield et al., A Cloud-Scale Acceleration Architecture. .

[3] C. Ramesh et al., “FPGA Side Channel Attacks without Physical Access,”

in Proceedings - 26th IEEE International Symposium on Field-

Programmable Custom Computing Machines, FCCM 2018, 2018, pp. 45–

52.

[4] G. Provelengios, C. Ramesh, S. B. Patil, K. Eguro, R. Tessier, and D.

Holcomb, “Characterization of long wire data leakage in deep submicron

FPGAS,” in FPGA 2019 - Proceedings of the 2019 ACM/SIGDA

International Symposium on Field-Programmable Gate Arrays, 2019, pp.

68

292–297.

[5] I. Giechaskiel, K. Eguro, and K. B. Rasmussen, “Leakier Wires: Exploiting

FPGA Long Wires for Covert-and Side-channel Attacks,” ACM

Transactions on Reconfigurable Technology and Systems, vol. 12, no. 3,

pp. 1–29, Sep. 2019.

[6] D. Hyde, “A Survey on the Security of Virtual Machines,” St. Louis, 2009.

[7] J. Zhang et al., “Design and implementation of a delay-based PUF for

FPGA IP protection,” in Proceedings - 13th International Conference on

Computer-Aided Design and Computer Graphics, CAD/Graphics 2013,

2013, pp. 107–114.

[8] S. Trimberger, J. Moore, and W. Lu, “Authenticated encryption for FPGA

bitstreams,” in FPGA’ 2011, Proceedings of the 19th ACM/SIGDA

international symposium on Field programmable gate arrays, 2011, pp. 83–

86.

[9] C. Gu and M. O ’neill, “Ultra-compact and Robust FPGA-based PUF

Identification Generator,” in IEEE International Symposium on Circuits and

Systems (ISCAS), 2015, p. 934.

[10] S. Buchovecká, R. Lórencz, F. Kodýtek, and J. Buček, “True random

number generator based on ring oscillator PUF circuit,” Microprocessors

and Microsystems, vol. 53, pp. 33–41, Aug. 2017.

[11] B. Karpinskyy, Y. Lee, Y. Choi, Y. Kim, M. Noh, and S. Lee, “Physically

unclonable function for secure key generation with a key error rate of 2E-

38 in 45nm smart-card chips,” in Digest of Technical Papers - IEEE

International Solid-State Circuits Conference, 2016, vol. 59, pp. 158–160.

[12] U. Guin, A. Singh, M. Alam, J. Canedo, and A. Skjellum, “A secure low-cost

edge device authentication scheme for the internet of things,” in

Proceedings of the IEEE International Conference on VLSI Design, 2018,

vol. 2018-January, pp. 85–90.

69

[13] C. Gu, N. Hanley, and M. O’Neill, “Improved reliability of FPGA-based PUF

identification generator design,” ACM Transactions on Reconfigurable

Technology and Systems, vol. 10, no. 3, May 2017.

[14] H. Yu, P. H. W. Leong, and Q. Xu, “An FPGA chip identification generator

using configurable ring oscillator,” in Proceedings - 2010 International

Conference on Field-Programmable Technology, FPT’10, 2010, pp. 312–

315.

[15] P. Kitsos, K. Stefanidis, and A. G. Voyiatzis, “TERO-Based Detection of

Hardware Trojans on FPGA Implementation of the AES Algorithm,” in

Proceedings - 19th Euromicro Conference on Digital System Design, DSD

2016, 2016, pp. 678–681.

[16] A. P. Fournaris, L. Pyrgas, and P. Kitsos, “An FPGA hardware trojan

detection approach based on multiple parameter analysis,” in Proceedings

- 21st Euromicro Conference on Digital System Design, DSD 2018, 2018,

pp. 516–522.

[17] A. Maiti, V. Gunreddy, and P. Schaumont, “A systematic method to

evaluate and compare the performance of physical unclonable functions,”

Embedded Systems Design with FPGAs, pp. 245–267, 2013.

[18] R. Pappu, “Physical One-Way Functions,” Science, vol. 297, no. 5589, pp.

2026–2030, 2002.

[19] J. Guajardo, S. S. Kumar, G. J. Schrijen, and P. Tuyls, “FPGA intrinsic

PUFs and their use for IP protection,” in Lecture Notes in Computer

Science (including subseries Lecture Notes in Artificial Intelligence and

Lecture Notes in Bioinformatics), 2007, vol. 4727 LNCS, pp. 63–80.

[20] U. Rührmair, H. Busch, and S. Katzenbeisser, “Strong PUFs: Models,

constructions, and security proofs,” in Information Security and

Cryptography, no. 9783642143120, Springer International Publishing,

2010, pp. 79–96.

[21] R. Pappu, “Physical One-Way Functions,” Science, vol. 297, no. 5589, pp.

70

2026–2030, Sep. 2002.

[22] D. P. Sahoo, D. Mukhopadhyay, R. S. Chakraborty, and P. H. Nguyen, “A

Multiplexer-Based Arbiter PUF Composition with Enhanced Reliability and

Security,” IEEE Transactions on Computers, vol. 67, no. 3, pp. 403–417,

Mar. 2018.

[23] C. Q. Liu, Y. Cao, and C. H. Chang, “ACRO-PUF: A Low-power, Reliable

and Aging-Resilient Current Starved Inverter-Based Ring Oscillator

Physical Unclonable Function,” IEEE Transactions on Circuits and

Systems I: Regular Papers, vol. 64, no. 12, pp. 3138–3149, Dec. 2017.

[24] O. Willers, C. Huth, J. Guajardo, H. Seidel, and P. Deutsch, “On the

feasibility of deriving cryptographic keys from MEMS sensors,” Journal of

Cryptographic Engineering, vol. 10, no. 1, pp. 67–83, Apr. 2020.

[25] A. Ardakani, S. B. Shokouhi, and A. Reyhani-Masoleh, “Improving

performance of FPGA-based SR-latch PUF using Transient Effect Ring

Oscillator and programmable delay lines,” Integration, vol. 62, pp. 371–381,

Jun. 2018.

[26] S. Khan, A. P. Shah, S. S. Chouhan, N. Gupta, J. G. Pandey, and S. K.

Vishvakarma, “A symmetric D flip-flop based PUF with improved

uniqueness,” Microelectronics Reliability, vol. 106, p. 113595, Mar. 2020.

[27] X. Xu et al., “A highly reliable butterfly PUF in SRAM-based FPGAs,” IEICE

Electronics Express, vol. 14, no. 14, Jul. 2017.

[28] S. Khan, A. P. Shah, N. Gupta, S. S. Chouhan, J. G. Pandey, and S. K.

Vishvakarma, “An ultra-low power, reconfigurable, aging resilient RO PUF

for IoT applications,” Microelectronics Journal, vol. 92, p. 104605, Oct.

2019.

[29] F. Kodytek, R. Lorencz, J. Bucek, and S. Buchovecka, “Temperature

Dependence of ROPUF on FPGA,” Proceedings - 19th Euromicro

Conference on Digital System Design, DSD 2016, pp. 698–702, 2016.

71

[30] D. B. Thomas and W. Luk, “FPGA-Optimised Uniform Random Number

Generators Using LUTs and Shift Registers,” in 2010 International

Conference on Field Programmable Logic and Applications, 2010, pp. 77–

82.

[31] D. B. Thomas and W. Luk, “The LUT-SR Family of Uniform Random

Number Generators for FPGA Architectures,” IEEE Transactions on Very

Large Scale Integration (VLSI) Systems, vol. 21, no. 4, pp. 761–770, Apr.

2013.

[32] M. Bakiri, C. Guyeux, J.-F. Couchot, and A. K. Oudjida, “Survey on

hardware implementation of random number generators on FPGA: Theory

and experimental analyses,” Computer Science Review, vol. 27, pp. 135–

153, Feb. 2018.

[33] Xilinx, “AR# 65459: Power - Mitigating the Effects of Power System

Resonance.” [Online]. Available:

https://www.xilinx.com/support/answers/65459.html. [Accessed: 29-Apr-

2020].

[34] D. Yamamoto et al., “Uniqueness enhancement of PUF responses based

on the locations of random outputting RS latches,” in Lecture Notes in

Computer Science (including subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics), 2011, vol. 6917 LNCS,

pp. 390–406.

[35] U. Ruhrmair et al., “PUF modeling attacks on simulated and silicon data,”

IEEE Transactions on Information Forensics and Security, vol. 8, no. 11,

pp. 1876–1891, 2013.

[36] J. Delvaux, D. Gu, I. Verbauwhede, M. Hiller, and M. D. M. Yu, “Efficient

fuzzy extraction of PUF-induced secrets: Theory and applications,” in

Lecture Notes in Computer Science (including subseries Lecture Notes in

Artificial Intelligence and Lecture Notes in Bioinformatics), 2016, vol. 9813

LNCS, pp. 412–431.

72

[37] R. Maes, A. Van Herrewege, and I. Verbauwhede, “PUFKY: A fully

functional PUF-based cryptographic key generator,” Lecture Notes in

Computer Science (including subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics), vol. 7428 LNCS, pp.

302–319, 2012.

[38] C. Jin et al., “FPGA Implementation of a Cryptographically-Secure PUF

Based on Learning Parity with Noise,” Cryptography, vol. 1, no. 3, p. 23,

2017.

[39] S. Satpathy et al., “An All-Digital Unified Static/Dynamic Entropy Generator

Featuring Self-Calibrating Hierarchical von Neumann Extraction for Secure

Privacy-Preserving Mutual Authentication in IoT Mote Platforms,” in IEEE

Symposium on VLSI Circuits, Digest of Technical Papers, 2018, vol. 2018-

June, pp. 169–170.

[40] S. Chen, B. Li, and C. Zhou, “FPGA implementation of SRAM PUFs based

cryptographically secure pseudo-random number generator,”

Microprocessors and Microsystems, vol. 59, pp. 57–68, Jun. 2018.

[41] D. Merli, F. Stumpf, and C. Eckert, “Improving the quality of Ring Oscillator

PUFs on FPGAs,” in Proceedings of the 5th Workshop on Embedded

Systems Security, WESS ’10, 2010.

[42] M. Hutter and J. M. Schmidt, “The temperature side channel and heating

fault attacks,” in Lecture Notes in Computer Science (including subseries

Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),

2014, vol. 8419 LNCS, pp. 219–235.

73

4 LAYERED SECURITY FOR JTAG/IJTAG USING A

BIMODAL PHYSICALLY UNCLONABLE FUNCTION

4.1 Abstract

While bringing in advantages in terms of testability, the IEEE 1687, also known

as the IJTAG, also brings in new challenges in relation to security and scalability.

Reports about the discovery of the malicious usage of the JTAG, which is what

the IJTAG is based on, means that the IJTAG also possesses a similar property

if it is not appropriately secured. Moreover, the fact that the IJTAG is prepared to

be the standard of the future means that scalability needs to be well thought out

to guarantee its performance. This section proposes an efficient layered security

mechanism for JTAG/IJTAG using a new class of physically unclonable function

(PUF) called a Bimodal PUF. It moves beyond the conventional single-challenge

single-response PUF by introducing a second response to the PUF from the

same single challenge. As an advantage, a double-response PUF forms a 2-layer

security solution, one in the hardware layer by limiting the access to the

embedded instrument and the second for the data layer by securing the output

data that needs to be transmitted. Experiments conducted with FPGA show that

compared to the traditional single challenge-single response PUF, the bimodal

PUF has a doubled functionality while only adding 40% of the silicon area usage.

4.2 Introduction

A rapid shrinking down of the size of the transistors increases the complexity of

VLSI devices and their testing procedures. The manufacturers are able to

integrate more IPs into a single device as in on-chip embedded instruments, but

the IPs are less accessible in relation to conventional probes. This, in turn, makes

the necessary tests and quality checks more complex and challenging. It is a

crucial requirement to develop methods and tools for enabling technical tests and

proceeding with the characterisation of the VLSI devices. This is impossible to do

in a short time. From an economic point of view, while the market competition

requires manufacturers to release their products quickly, the extended testing

74

time means that there is a loss of profit and competition in the current challenging

market.

The latest industrial solution used to overcome the problem is the IEEE 1500

Embedded Core Test (ECT) [1] and the IEEE 1687 [2], also known as the Internal

JTAG (IJTAG). Both standards are an extension of the IEEE 1149.1 [3] JTAG,

and they use the same Test Access Port (TAP) controller as JTAG for interfacing

the Instruments-Under-Test (IUT) with the test equipment. The new standard

makes it possible to employ boundary scan techniques for testing the embedded

Intellectual Property (IP). The differences and similarities between the three

standards are presented in Figure 4-1.

IEEE

1687

IEEE

1500

IEEE

1149.1

Plug & play

interface

Segment

Insertion

Bit (SIB)

Boundary

scan

Hierarchical network

Core wraper

Mandated

Hardware

architecture

Fixed

length

TDR

ICL

BSDL & SVF

CTL

PDL

STIL

ICL : Instrument Connectivity Language

PDL : Procedural Description Language

CTL : Core Test Language

STIL : Standard Test Interface Language

BSDL: Boundary-Scan Description Language

SVF : Serial Vector Format

TDR : Test Data Register

Figure 4-1: IEEE 1149.1 vs IEEE 1500 vs IEEE 1687

While it can be said that an embedded instrument is also an IP core, both have

their own standards when it comes to testing their functionality. The differences

between IEEE 1500 and IEEE 1687 are related to the depth of the scan boundary

that it can perform. While the IEEE 1500 and IEEE 1149.1 have a mandatory

hardware architecture that needs to be followed by a system to comply with the

75

standard, the IEEE 1687 is more of a descriptive standard rather than a

prescriptive one. This makes it easier for it to be modified to add a new feature to

the standard. The IEEE 1687 will, therefore, be the main topic discussed in this

chapter.

One of the prominent features of IJTAG is its support when creating a dynamic

scan chain by implementing a Segment Insertion Bit (SIB) that acts as a gate in

front of the instrument on the chip as can be seen in Figure 4-2. The SIB has 2

working states, closed and open. Testing instruments thus require only opening

the relevant SIBs of the chosen instruments. However, in 2013, JTAG was

improved to also have the ability to have a variable scan chain through the

introduction of the SIB as in the IJTAG.

SIB

SIB

SIB

INSTRUMENT

INSTRUMENT

INSTRUMENT

TAP
controller

CHIP

TDO

TDI

TCK

TMS

TRST

Figure 4-2: IJTAG network with SIB and 3 Instruments

Along with the advantages that it brings to the testability of the embedded

instruments, IJTAG has several security-related challenges. The first one is that

IJTAG does not have built-in security measures to prevent unauthorised access

to the embedded instruments. A report about security breaches exploiting the

TAP controller can be found in both the news [4] and academic papers [5].

76

Majeric [6] presented the first JTAG fault injection attack. The attack exploits the

debugging capabilities of JTAG as a path for a fault injection attack. The attack

will provide a user privilege escalation, so then a normal user can perform tasks

previously limited to the administrator of the system. This kind of attack is harmful

in a way, in that it can be used to steal confidential information and copyrighted

material such as pirated software.

The architecture of IJTAG itself poses a security flaw in which the Test Data

Register (TDR) that is embedded in the IJTAG compliance IPs is a secret that is

only known by the IP maker. This flaw makes it possible for a malicious TDR to

be inserted into the IP that can manipulate the data shifted to said IP. This kind

of attack is called a data integrity attack [7]. Because the architecture of IJTAG

originates from the initial JTAG, it is also vulnerable to attacks that applied to the

JTAG. Moreover, on-chip instruments may contain confidential data, patented IPs

and critical cores that will stop the whole system if they are compromised. Hence

the security of the IJTAG network is essential.

Dworwak et al. proposed a security mechanism for IJTAG by architecting locking

techniques for the SIB using an n-bit signal [8]. Liu et al. [9] proposed a secret

key generation technique using the Linear-feedback Shift Register (LFSR).

However, the methods presented by Dworwak [8], and Liu [9] only utilise a static

secret key. Baranowski proposed a dynamic secret key generation using hash

core [10]. It solved the primary drawback of the static key, but it has scalability

issues. Sudeendra [11] proposed a method using the Physically Unclonable

Function (PUF) for the secret key generation and comparing it to the secret key

generated by LFSR. This technique has better scalability because it does not

need external memory to keep the secret key. Echeloned IJTAG data protection

was proposed in [12] to not only secure the access but also to secure the data

from the embedded instruments. It uses two cipher cores to encrypt both the Test

Data Input (TDI) and the Test Data Output (TDO) of the instrument. However, the

presence of 2 ciphers can create an unnecessary and excessive use of silicon

area. A graph colouring method to isolate the malicious instruments was

proposed in [13] to secure the IJTAG network against either a data transmission

77

attack or a sniffing attack. Although such a solution secures systems against

internal security breaches, the data is still left unprotected, and it can be sniffed

by attackers from the outside of the network.

Besides the prevention techniques mentioned above, there is also the IJTAG

attack detection technique that has been proposed by researchers. Xuanle [14]

proposed the use of a machine learning system to detect illegitimate access to

the IJTAG network by checking the number of shifting cycles. If the cycle is more

than the pre-defined cycle, then this shows that there is something that needs to

be investigated. However, this system cannot detect a more sophisticated attack,

and this may result in false positives. Xuanle then improved his findings by

implementing a Low-Density Parity Check (LDPC)-based feature reduction

technique [15]. His experiment result increased the detection accuracy by

increasing the previously insignificant amount of area overhead in the IJTAG

network.

Having conducted a literature review, it can be concluded that the available

security mechanism for the IJTAG network has a problem in which the security

of the data is not taken care of adequately. Even though there exist proposals

that try to secure the data coming from the network, their security mechanism is

lacking in scalability.

PUF is believed to be one of the scalable hardware security primitives [16][17].

Its design variation has been explored extensively by researchers. However, the

PUF has its own issue: its implementation takes up a lot of silicon area and/or

FPGA resources. As a consequence, the benefits of the new PUF design over

the design that it tries to improve on are not significant. For example, an increase

in the PUF’s reliability has to be paid for by using an error correction algorithm

that takes up a lot of silicon area to the point where it sometimes has to be

implemented externally. It can be concluded that the available PUF design is

already too saturated and that there needs to be a breakthrough to get significant

benefits from the already beneficial security primitives.

This chapter proposes a novel PUF-based security mechanism to prevent access

to the IJTAG network as well as to prevent access to the output data of the

78

instrument by unauthorised parties. The developed PUF breaks the norm of the

conventional PUF challenge-response pair by having two unique responses to a

single challenge, hence the name ‘bimodal PUF’. The first response will be used

to unlock the SIB, and the other one is used for obfuscating the output data

coming out from the instrument. By having two unique responses to a single

challenge, it is proven that the bimodal PUF shows a significant amount of

improvement compared to the legacy PUF design.

An overview of the PUF has been discussed in the next section. The section on

Proposed Works (4.4) discusses the development and characterisation of a new

class of PUF used to achieve the proposed security mechanism. A novel IJTAG

security protocol is presented in section 4.5, followed by the security analysis in

section 4.5.2. Finally; section 4.6 concludes this chapter.

4.3 Related Works

4.3.1 IEEE 1687 (IJTAG)

The IJTAG standard offers rules that are convenient and straightforward to follow

and implement by industries. It is mainly developed based on descriptions of the

system/network-on-chip. Its hierarchical design makes it possible for the SIB to

become a gateway to an embedded instrument or a doorway to a deeper layer of

hierarchy, as illustrated in Figure 4-3.

79

SIB

Instrument
1

0

1

0

1

SIB

0

1

0

1

SIB

0

1

0

1

Instrument
2

SIB

0

1

0

1

Instrument
3

Scan Register

Data Register

Figure 4-3: IJTAG hierarchical network with a SIB

The simplest form of SIB is a 1-to-2 demultiplexer connected directly to a 2-to-1

multiplexer. When the select input is “1”, the SIB will shift the data to the

instrument. Otherwise, the SIB will bypass the data to the next SIB when the

80

select input is “0”. The bit length of the address as the select input of the SIB is

the same as the number of SIBs in the IJTAG network.

The IJTAG uses the same Test Access Port (TAP) controller as the JTAG. The

TAP controller is a 16-state Finite State Machine (FSM) that regulates the data

flow to and from the electronic devices. The state diagram of a TAP controller is,

as shown in Figure 4-4.

Test Logic Reset

Run Test Idle Select DR Scan

Capture DR

Shift DR

Exit1 DR

Pause DR

Exit2 DR

Update DR

Select IR Scan

Capture IR

Shift IR

Exit1 IR

Pause IR

Exit2 IR

Update IR

1

0

1

1

0

0 0

00

1

1

0

1

1

1

0

0

1 1

1

1

0

0

1

1

1

00

0

1

0

Figure 4-4: State diagram of the TAP controller

From Figure 4-4, it can be seen that to reset the state of the TAP controller, it

always takes five clock cycle no matter where the initial state of the controller is.

For this reason, TRST becomes an optional pin to have in a TAP controller.

81

4.3.2 Physically Unclonable Function (PUF)

A PUF can be defined as a product of the utilisation of physical randomness of

an object/device that is easy to produce but non-invertable and unpredictable

[18]. Formally, PUF maps a set of finite numbers (challenges) onto a set of finite

numbers (response), in which both is a part of sample space 𝑆, as in equation

(4-1) [18].

𝑥1, 𝑥2, … , 𝑥𝑛 → 𝑦1, 𝑦2, … , 𝑦𝑛 ; (𝑥𝑖 , 𝑦𝑖 ∈ 𝑆, 1 ≤ 𝑖 ≤ 𝑛) (4-1)

Because the PUF is created from a physical system, its entropy and the ability to

produce a set of responses is limited by its physical dimension. If it is assumed

that the PUF is located on a sphere with a radius of 𝑅, then its entropy will be

limited by equation (4-2) [19].

 𝐻 ≤ 𝛼 ∙ 𝑅2 (4-2)

Where 𝐻 is the entropy of the system, and 𝛼 is the physical properties of the

sphere. In a silicon device, the maximum entropy of a PUF implemented in the

silicon is bound by 𝑁 silicon cells such as logic, memory, flip-flop, etc., with a 𝐶

information capacity in a single cell. Therefore equation (4-2) can be written as

equation (4-3) [20].

𝐻 ≤ 𝐶 ∙ 𝑁 (4-3)

82

From equations (4-2) and (4-3), it can be seen that the entropy of the PUF is not

unlimited but cannot be predicted until its architecture is implemented on a

physical system.

PUF has properties that make it suitable for key generation for use in

cryptographic applications. For instance, a PUF can produce a randomly

generated response every time the same challenge is given to it. The response

might always be the same, or it may change slightly, depending on the reliability

of the PUF. On the other hand, when a challenge is given to 2 different PUFs, the

2 PUFs will generate two different responses. This indicates that no PUF

implementation is the same, even when it is implemented in the same FPGA

family. This PUF behaviour is produced as a side effect of the manufacturing

variance, such as the variations in the transistors’ length, width, and thickness.

Even though PUF looks promising for use in security applications, the industry

still hesitates to implement it natively in their product. The first reason for this is

that most of the designs suggested for PUFs are too costly for implementation,

e.g. they take a lot of silicon area usage. Additionally, PUFs have reliability issues

related to producing a reproducible response without any error correction

algorithms in place. The addition of an error correction algorithm will increase the

silicon area usage even more. Therefore there is a desire to create a more

efficient and reliable PUF.

One of the FPGA primitives that is widely used to build a PUF is a LUT (Look-Up

Table). A LUT is one of the main building blocks of an FPGA as it is used to create

the logical element of the circuit. It can be configured to any kind of logic gate as

well as to a memory element such as a shift register. A chain of LUTs in series,

with each configured as an inverter, creates a PUF-based ring oscillator [21]. For

instance, the LUT in Xilinx’s FPGA can be configured into a 16-bit shift-register

using the SRL16E mode. This particular configuration reduces the use of FPGA’s

resources by 16 times compared to the traditional approach for building registers

using a flip-flop chain. SRL16E can be utilised in many ways for the development

of PUFs. Thomas [22], [23] used the SRL16E as a complementary component to

83

increase the periodicity of the random number generator (RNG), which is the

building block of the PUF.

4.3.3 PUF Metrics

There are three main parameters that characterise a PUF. These parameters are

reliability, uniqueness, and throughput.

The uniqueness of a PUF is measured by how many unique responses the PUF

can generate. A PUF with an 𝐶-bit challenge will have 2𝐶 possible unique

responses. However, because of the random process variation, it is almost

impossible to have a maximum number of unique responses.

A novel definition of the uniqueness of a PUF is proposed in Chapter 3 by

comparing the real unique response that it can produce with the maximum unique

responses that it should be able to produce.

When a challenge is applied 100 times to a PUF, it will not only generate a single

unique response, but it will also generate other responses with a slight hamming

distance difference between them. The response with the highest rate of

occurrence is called the dominant response, and it will be chosen as the formal

response to that challenge. The percentage of occurrences of the dominant

response is used as the basis of the reliability of the specific PUF response. The

overall reliability of the PUF is given by averaging the reliability of each of the

responses as given in equation (3-2).

For some applications such as cryptography, the PUF response needs to be

generated at high speed. The parameter used to measure the speed of the PUF

response generation is called the throughput, calculated using equation (2-3).

Where n is the number of bit-length of the generated PUF response, 𝑓𝑚𝑎𝑥 is the

maximum working frequency of the design, and the latency is the number of

cycles used to generate the one bit of PUF response. 𝑓𝑚𝑎𝑥 is not the maximum

frequency of the FPGA board but it was obtained by looking at the post-route-

and-placement report of the FPGA. For the latency, if the PUF is based on the

parallel 16-stage ring oscillator, then this means the number of lags is 16. This

84

means that it takes a 16 clock cycle to measure the frequency of the ring

oscillator. If it only takes two clock cycles to produce a 32-bit random number,

then this means that the number of lags is 2.

4.3.4 Splittable random number generator

Splittable Random Number Generators (RNGs) are widely used in functional

programming [24]. A regular RNG, also known as a linear RNG, involves the

mapping of a set of numbers onto another set of numbers through a random

phenomenon. In functional programming, a splittable RNG is created by dividing

a random number from a linear RNG using some of the methods described in

Table 4-1. All of the methods split a string of random numbers into two random

numbers with the same bit length. Assume that the original random number has

an 𝑖 bit length.

Table 4-1: Splitting method for the splittable RNG

Splitting method 1st part 2nd part

Half-and-half 𝑛1, 𝑛2, 𝑛3, … , 𝑛𝑖 2⁄ 𝑛(𝑖 2)⁄ +1, 𝑛(𝑖 2)⁄ +2, 𝑛(𝑖 2)⁄ +3, … , 𝑛𝑖

Odd-even 𝑛1, 𝑛3, 𝑛5, … , 𝑛2𝑖−1 𝑛2, 𝑛4, 𝑛6, … , 𝑛2𝑖

Bunny hop 𝑓(𝑖) 𝑔(𝑖)

There are some constraints to these splitting methods. The half-and-half and odd-

even are only applicable if the original random number has an even bit-length.

However, since the common bit-length of a random number for the application of

security of a digital system rarely has an odd bit-length, this limitation is not a

hindrance. The bunny-hop splitting method constructs the split random number

using a function repeatedly to pick the 𝑖𝑡ℎ bit for the splitted random number. It

has a disadvantage in that not every bit of the original random number will be

85

chosen to construct the split random number. The efficiency of the bunny-hop

splitting method depends on what function is used, e.g. 𝑓(𝑖) and 𝑔(𝑖), and the

length of the original and split random number.

4.4 Proposed Works

4.4.1 IJTAG Security Mechanism

There are a couple of options that can be used to implement a PUF into IJTAG

security measures as follows:

1. The implementation of a single PUF with a reusable response as in Figure

4-5. The first use of the response is to secure access to the IJTAG network.

The same response will also be used to secure the output data of the

embedded instrument. While this implementation looks feasible, the reuse

of the PUF response will threaten the security of the whole system. If the

attacker knows the challenge used to generate the correct response, they

can easily get access to the IJTAG network as well as decipher the output

data.

PUFTDI Correct?
SIB

Unlocked

Instruments

Obfuscated

output Data
TDO

Yes

No

Output
data

PUF
Response

Figure 4-5: Flowchart of the IJTAG security with a reusable PUF response

86

2. Implementation of 2 PUFs as in Figure 4-6. The response from the first

PUF can be used to secure access to the IJTAG network, and the

response from the second PUF can be used to chiper the output data.

From a practical point of view, this system will work just fine. However, the

efficiency of this new system is unlikely to be improved. The reason for this

is that while the reliability and the uniqueness of the system might

increase, the implementation of 2 PUF instances will also increase the

area occupation and power consumption of the system.

PUF 1

PUF 2

TDI Comparator Match?
SIB

unlocked

Instruments

Obfuscated

output Data
TDO

Yes

No

Output
data

PUF
Response 1

PUF
Response 2

Figure 4-6: Flowchart of the IJTAG security with 2 PUF implementations

3. Because it is impossible to achieve an efficient PUF implementation to

secure the IJTAG network by increasing the number of PUFs

implemented, the only option left is to find a way to increase the

functionality without adding to the area usage and power consumption.

While the throughput of a PUF depends on the device where the PUF

being implemented, the overall reliability and uniqueness of the PUF

response can be increased by increasing the number of responses that

can be generated by the PUF. This is where the bimodal PUF become a

possible option to efficiently secure the IJTAG network without having a

scalability issue, as illustrated in Figure 4-7.

87

Bimodal

PUF
TDI

Match?

SIB

Unlocked

Instruments

Obfuscated

output Data
TDO

Yes

No

Output
data

Response

1

Response

2

Secret

Key

Comparator

Figure 4-7: Flowchart of the IJTAG security with the bimodal PUF

Figure 4-8 illustrates the data flow in the IJTAG network with the addition of the

proposed bimodal PUF. The first response of the bimodal PUF will be used to

unlock the SIB, and the second response from the same challenge will be used

to obfuscate the output data.

88

Instrument
1

0 1

0 1

Bimodal
PUF

1st Response
(128-bit)

2nd Response
(128-bit)

Comparator

Modified
SIB

SIB

0 1

0 1

TDITDO

Secret key
(128-bit)

PUF Challenge
(8-bit)

Scan Register

Figure 4-8: Multi-Layer security mechanism for the IJTAG network using the

bimodal PUF

In order to support the lock-key mechanism, the SIB is configured as in Figure

4-8. The select input for the mux-demux of the modified SIB comes from the one-

bit output of a comparator. It compares the first responses of the bimodal PUF

with the secret keys that are assumed to be safe/unknown to the adversary. The

challenge of the PUF is also assumed to be secure/unknown to the adversary.

The secret key and the challenge to the PUF is assumed to be safe/unknown to

the adversary. Even if one of them is known, the adversary still needs to find out

the other. There is another assumption that can be made regarding the secret

89

key as can be seen in Table 4-2. However, the assumption used in this

experiment has the right balance between security and silicon area usage.

Table 4-2: Assumption comparison for the secret key and PUF challenge

confidentiality

PUF challenge Secret key Impact

Public Public Total data loss

Public Secret Attacker can use brute
force to guess the secret
key

Secret Public Attacker can use brute
force to guess the
challenge

Secret Secret Attacker can use brute
force but the time
needed increases
exponentially

The output data is obfuscated to make it secure from any unauthorised parties

who might use it illegally for malicious purposes such as stealing confidential data

or acquiring the logic of the instrument for reverse engineering. Data obfuscation

provides the same level of security as conventional straight forward encryption

techniques. The downside of traditional encryption techniques is that attackers

will easily recognise if the data has been encrypted. Therefore they can easily

find the counter to that encryption mechanism and steal the data. Hence a straight

forward encryption technique alone is not enough to secure the output data. On

the other hand, data obfuscation produces readable data, but in an obfuscated

form, so it is delivered as a ‘fake’ data if not de-obfuscated. The attacker will not

realise that the data is being obfuscated and they will assume that it is the correct

data from the instrument. Even if the attacker intends to inject a signal to activate

the hardware Trojan hidden inside the instrument, the output of the hardware

Trojan will not affect the other instruments as the signal is obfuscated regardless.

90

4.4.2 Cost benefit analysis

The efficiency of a new PUF architecture compared to its predecessor, the PUF

architecture, can be measured using equation (4-4).

𝜋 = ∆𝐹 − ∆𝐶 (4-4)

𝜋 is the efficiency (in percent) of the new PUF design compared to the previous

attempt to get at least the same level of functionality 𝐹. 𝐶 is the cost needed to

build a PUF. A positive value for 𝜋 means that the new PUF design has a better

implementation compared to its predecessor/reference design. In this regard, the

cost is a function on the FPGA resource or silicon area usage (𝐴) and power

consumption (𝑃). Meanwhile, functionality is the function of the PUF

characteristics such as reliability (𝑟), uniqueness (𝑢), and throughput (𝑡).

Therefore equation (4-4) can be written as equation (4-5).

𝜋 = ∆𝐹(𝑟, 𝑢, 𝑡) − ∆𝐶(𝐴, 𝑃) (4-5)

𝑟, 𝑢, and 𝐴 are represented in percentage. However, the throughput is a unit of

Hertz and power is a unit of Watt. Therefore the conversion of frequency and

power to a unit of percentage is needed as in equations (4-6) and (4-7).

𝑡 =
𝑡𝐻𝑧

𝑡𝑚𝑎𝑥
× 100%

(4-6)

𝑃 =
𝑃𝑊𝑎𝑡𝑡

𝑃𝑀𝑎𝑥
× 100%

(4-7)

Where 𝑡𝐻𝑧 is the throughput of the PUF and 𝑡𝑚𝑎𝑥 is the maximum throughput of

the PUF when implemented in the fastest ideal silicon. 𝑃𝑊𝑎𝑡𝑡 is the power

consumption of the design while 𝑃𝑚𝑎𝑥 is the maximum power that can be handled

91

by the device. However, to find the value of 𝑡𝑚𝑎𝑥 and 𝑃𝑚𝑎𝑥 in the design is still a

challenge. This value will be kept as a variable, and it will be assumed to be the

same if the compared PUF design is implemented in the same device.

Because 𝜋 is a unit of percentage, its maximum value should not go higher than

100%. However, its variable, 𝑟, 𝑢, 𝑡, 𝐴, and 𝑃 is also stated in percent. These

variables need to be normalised with a contribution factor, so then equation (4-5)

can be expanded into equation (4-8).

𝜋 = [𝛼(𝑟2 − 𝑟1) + 𝛽(𝑢2 − 𝑢1) + 𝛾(𝑡2 − 𝑡1)]

− [𝛿(𝐴2 − 𝐴1) + 휀(𝑃2 − 𝑃1)]

(4-8)

𝛼 + 𝛽 + 𝛾 = 𝛿 + 휀 = 1 ; 0 ≤ 𝛼, 𝛽, 𝛾, 𝛿, 휀 ≤ 1 (4-9)

Where subscript 1 is for the reference design, and subscript two is for the new

design. 𝛼, 𝛽, 𝛾 are the contribution factors of 𝑟, 𝑢, 𝑡 concerning the functionality of

the PUF while 𝛿 and 휀 are the contribution factors of 𝐴 and 𝑃 related to the cost

of the PUF.

Since there are two different responses generated by the bimodal PUF to a single

challenge, the efficiency of a bimodal PUF compared to the legacy PUF design

can be written as equation (4-10).

𝜋 = [𝛼((𝑟21 − 𝑟11) + (𝑟22 − 𝑟12)) + 𝛽(𝑢2 − 𝑢1) + 𝛾(𝑡2 − 𝑡1)]

− [𝛿(𝐴2 − 𝐴1) + 휀(𝑃2 − 𝑃1)]

(4-10)

Where the 𝑟21 and 𝑟22 are the first and the second responses of the bimodal PUF.

If the reference PUF is a regular PUF, then the 𝑟12 = 0 and equation (4-10)

become equation (4-11).

92

𝜋 = [𝛼(𝑟22 + 𝑟21 − 𝑟11) + 𝛽(𝑢2 − 𝑢1) + 𝛾(𝑡2 − 𝑡1)]

− [𝛿(𝐴2 − 𝐴1) + 휀(𝑃2 − 𝑃1)]

(4-11)

From equation (4-11), it can be concluded that the bimodal PUF is the only option

to increase the efficiency of the new PUF architecture without sacrificing its

scalability.

4.4.3 Bimodal PUF

The implication of equation (4-3) in the PUF design is that its entropy function can

be predicted once it is implemented in a physical system. Let 𝐸 be the entropy

equation of a PUF as a function of physical variance 𝑣 as in equation (4-12).

𝐸(𝑣); 0 ≤ 𝑣 ≤ 𝑣𝑖 (4-12)

Equation (4-12) implies that the entropy function will likely, but not necessarily,

have a positive gradient.

We define the conventional PUF response 𝑅 as the result of a black-box function

of entropy 𝑏(𝐸(𝑣)) which itself is a result of the black box function to the PUF

challenge 𝑏(𝐶). Formally, this definition can be written as in equations (4-13) and

(4-14).

𝐸(𝑣) = 𝑏(𝐶) (4-13)

𝑅 = 𝑏(𝐸(𝑣)) (4-14)

93

A function is a particular case of a relation in which one and only one output come

from one or more inputs. In relation, one or more outputs can be obtained from

one or more inputs. Because the things that connect the PUF challenge to the

entropy and the entropy to the PUF response are unknown (black box), it is

possible for it to be in the form of either a function or relation. To generalise things,

we define a PUF as a relation rather than a function. After all, the entropy is

predictable after the PUF is implemented. As a consequence, the black box

properties of a PUF are not valid anymore. It is only a black box for an observer

that has no information about the PUF’s implementation and response.

By using this definition to define a PUF, or rather a PUR (Physically Unclonable

Relation), it is possible for a PUF to have more than one response to a single

challenge. However, to keep things in context according to the aim of this

experiment, we will limit this possibility to only two responses.

Every relation needs three things that have to be defined: the range set {0,1}𝑙

(challenge), the domain set {0,1}𝑚 (response), and the rule of the assignment.

Because the relationship between entropy and response is a black box, it is only

possible to define a part of the relation, so then two responses can be obtained

from a single challenge. We define the bimodal PUF as a PUF instance that, in

parallel, generates two sequences of values that are statistically independent but

repeatable given the same challenge, subject to its reliability and uniqueness.

Given this definition, considering equations (4-13) and (4-14) and inspired by the

splittable random number generator in functional programming [24], the response

of a conventional PUF is to split after the generation process.

Let 𝑅 = {0,1}𝑚 be the response of a conventional PUF with the length of m-bit.

If 𝑟1 and 𝑟2 is the first and the second response of the bimodal PUF, then equation

(4-15) and (4-16) represent the rule of assignment for the bimodal PUF.

𝑟1 = {0,1}
𝑚𝑖
2 for 1 ≤ 𝑖 ≤

𝑚

2

(4-15)

94

𝑟2 = {0,1}
𝑚𝑖
2 for

𝑚

2
< 𝑖 ≤ 𝑚

(4-16)

There are different ways to split a random number, as mentioned in Table 4-1.

However, this chapter will only discuss the splitting mechanism as in equation

(4-15) and (4-16) and leave the other mechanism to others.

4.4.4 Design and architecture of the bimodal PUF

Figure 4-9 illustrates the available options to develop the bimodal PUF. First, a

different type of PUF as the core of the system can be chosen. This experiment

will use a LUT-based ring counter as the source of randomness. A ring counter

is a shift-register with a feedback loop. In ASIC, the ring counter was built by

chaining together a number of flip-flops and making a feedback loop from its

output. The same design principle can also be applied to FPGA.

Bimodal PUF

PUF Type
Splitting

Method

SRAM Ring Counter etc
Half-and-half

Odd-even

Bunny hop

Hash

function

Ring

Oscillator

Enabling

signal

System clock

Internal

Pulse

generator

Figure 4-9: Classification of bimodal PUF

95

The source of randomness in a PUF can be enabled using either a system clock

or an internal pulse generator. The system will create a PUF in a ready state so

long as the system is supplied with power. However, if the PUF is not required to

be active at any time and it only needs to be activated when the embedded

instrument is to be accessed, then an internal pulse generator as the enabling

signal is a more affordable option. The reason for this is because when the PUF

is always active, it will dissipate more heat and in return, it will decrease the life

span of the silicon. However, when the PUF is only activated when needed, it will

not have such a problem, and its life span will increase. The internal pulse

generator was implemented using the shift register mode of the SRL16E mode

of a LUT.

Lastly, there are a number of splitting methods that can be used to generate the

bimodality of the PUF responses as mentioned in Table 4-1. While comparing the

performance of the different splitting methods is an exciting topic to discuss, this

chapter only discusses the use of the half-and-half splitting method. This will

leave the research on the performance comparison between each splitting

method to others.

The bimodal PUF was configured as in Figure 4-10, making it possible for every

bit in the responses to be generated at the same time while also minimising the

environmental influences such as temperature and voltage variance on the

generated responses. Thus, a more confident data acquisition result can be

achieved.

The idea of using a ring counter as the source of randomness for PUF is similar

to the idea of using a ring oscillator to create a delay in the system clock. Two

ring counters initialised as 10101010…. or 01010101010… will oscillate when

activated. Depending on the process variation of the components used to create

the ring counter, the oscillation frequency will be different from one ring counter

to another. A 1-bit random number can be generated by comparing the frequency

of the two ring counters. In this experiment, the 16-bit ring counter was initialised

only to have one bit of 1 and 15 bits of 0. This configuration was used to create a

more significant delay, so then the signal analyser can easily see any difference

96

in frequency. However, this configuration will increase the latency of the design

and affect the overall throughput.

SRL16E

1

Counter 1

(16 Bits)

Counter 2

(16 Bits)

M

1

M

2

Comparator

Ch1Ch2

1 Bit PUF

Response

Ch Register (8 Bits)

Res

1-1

Res

1-2

Res

1-64

Res

2-1

Res

2-2

Res

8-64

Res

4-1

Res

4-2

Res

4-64

Ch1Ch2Ch3Ch4Ch7Ch8

Res

2-1

Res

2-2

Res

8-64

Ch3Ch4

SRL16E

2

Resp Register (256 Bits)

Demux

1st Resp (128 Bits) 2nd Resp (128 Bits)

Figure 4-10: RC-based bimodal PUF

The bimodal PUF consists of 256 pairs of ring counters (RCs) to produce two

different sets of responses with the length of 128-bit each. The ring counter was

implemented using the SRL16E mode in Xilinx’s LUT to simplify the design and

reduce the silicon area usage. The SRL16E was configured as a shift-register,

97

and the output was connected back to its input; thus, it becomes a ring counter.

Each RC pair has 2-bit input. However, because of the limitations in terms of time

and resources, the challenge only had an 8-bit length instead of a 512-bit length.

The challenge will be used repeatedly for every 4 RC pair. The response

generation mechanism for each RC pair was given in the pseudo-code shown in

Table 4-3. A demultiplexer was added at the output of the PUF to split the

response in half. This is needed to create the bimodality feature of the proposed

PUF.

Table 4-3: Pseudo-code for the RCPUF mechanism

mechanism RCPUF is

//component

challenge = {ch1, ch2}

SoR = {s1, s2}

counter = {c1, c2}

mux = {m1, m2}

comparator

//input-output

m1 {

input c1, input c2, select ch1, output muxout1

}

m2 {

input c1, input c2, select ch2, output muxout2

 }

comparator {

input muxout1, input muxout2, output PUF_response

 }

//processing

 while c1 or c2 !overflow

 c1 = s1

 c2 = s2

 else

 stop all counter

 hold counter value

 shift counter value to mux

 then if

 muxout1 > muxout2

 generate "1"

 else

 generate "0"

98

4.4.5 Experimental Setup

Kintex-7 was used for the implementation and performance verification of the

proposed techniques. There were four experiments performed in this chapter, as

illustrated in Figure 4-11.

START

ROPUF with clk en ROPUF with SR en RCPUF with clk en RCPUF with SR en

Analysis: reliability
& uniqueness

Positive result?

BIROPUF with clk en BIROPUF with SR en BIRCPUF with clk en BIRCPUF with SR en

Analysis: reliability
& uniqueness

END

NO

YES

Figure 4-11: Experiment flow chart

First, a performance comparison between the Ring Oscillator PUF (ROPUF) and

the Ring Counter PUF (RCPUF) with a different enabling signal was performed.

99

The enabling signal used was the system clock and the 16-bit Shift Register (SR).

The SR represents the internal enabling pulse. The shift register was initialised

to 1010101010101010, so then the interval between high and low is similar to the

system clock. The reliability and uniqueness of each setup were analysed to

verify the hypothesis. Next, 4-bimodal PUF, Bimodal ROPUF (BROPUF) and

Bimodal RCPUF (BRCPUF) were tested and analysed using the same setup as

the previous experiment. The characterisation process of the Bimodal PUF was

done following the same procedure as in Chapter 3 of this thesis.

Chipscope Pro 14.7 was used for data acquisition. A data acquisition module was

configured on the FPGA to capture the bimodal PUF response in a single

iteration. The data acquisition setup is illustrated in Figure 4-12. The finite state

machine is an 8-bit binary counter. The finite state machine will call the next

challenge when the previous challenge has already shifted through the PUF.

Figure 4-12: Data acquisition setup

4.5 Findings and Discussions

4.5.1 Bimodal PUF Characterisation

From the data acquired in the previous section, the bimodal PUF can be

characterised to get information about its uniqueness, reliability, and throughput.

Bimodal
PUF

Mux

Challenge
registers

(256
register of

8-bit
challenge)

Finite
state

machine

Response
Registers

(256
register of

128-bit
response)

Chipscope

Response
Registers

(256
register of

128-bit
response)

100

To obtain the information on how many unique numbers the PUF has, the

“tabulate” function on MATLAB was used. The next step was to calculate the

uniqueness value using equation . Figure 4-13 shows the comparison of the

uniqueness and average reliability of regular PUF when a different enabling

signal is applied. It can be seen that there is an inverse correlation between the

reliability and uniqueness of the PUF. This finding is similar to the results in

Chapter 3 of this thesis. There is also an increase in the reliability for both ROPUF

and RCPUF when a shift register is used as an internal pulse generator-based

enabling signal. The reliability of ROPUF is doubled when the shift register-based

internal pulse generator is used. On the other hand, the reliability improvement in

RCPUF is not that significant compared to the uniqueness decrement.

Figure 4-13: Reliability VS Number of unique responses in the regular PUF

The efficiency (𝜋) calculation was done using equation (4-8). However, since the

contribution factor (𝛼, 𝛽, 𝛾) and (𝛿, 휀) is unknown, it will be assumed that these

parameters are equal, following the constraint given in equation (4-9). Therefore,

𝛼 = 𝛽 = 𝛾 = 1 3⁄ and 𝛿 = 휀 = 1 2⁄ . Another assumption that needs to be made is

regarding the 𝑃𝑚𝑎𝑥 in equations (4-6) and (4-7). Because the PUF is implemented

RO CLK

RO SR

RC CLKRC SR

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

R
e
lia

b
ili

ty
 (

%
)

Unique responses (%)

Reliability vs Number of unique responses

101

in the same device, it is assumed that the 𝑃𝑚𝑎𝑥 is the same for every design in

this experiment. Thus, the differences in power consumption (ΔP) between the

legacy design and the new design is 0, as shown in Table 4-4. The total LUT

available in Kintex-7 FPGA is 203,800 LUT and it will be used to calculate the

percentage of resource usage 𝐴. Using the XPower Analyzer, it was discovered

that the power consumption and junction temperature for all designs is 162 mWatt

and 25.3 Celsius respectively. The throughput for each PUF design can vary as

shown in Table 4-4. The throughput is converted into a unit of percentage by

assuming that 𝑡𝑚𝑎𝑥 is 800 MHz, which is the same as the maximum I/O switching

frequency of Kintex-7 FPGA as stated in its data sheet [25].

Table 4-4: Efficiency of the new PUF design compared to the legacy PUF

Var ROPUF CLK ROPUF SR RCPUF CLK RCPUF SR

r1 31 59 12 15

r2 0 0 0 0

u 58 45 91 78

t 73.43 74.62 118.37 119.78

A 2048 2049 1280 1281

ΔP 0 0 0 0

Figure 4-14 illustrates the efficiency of the new PUF design compared to the

legacy ROPUF design with a system clock as its enabling signal. It can be seen

that even though the increase in efficiency is below 10%, the use of a ring counter

as the source of randomness for PUF is a benefit compared to the legacy

ROPUF. It can also be seen that by changing the source of randomness from a

ring oscillator to a ring counter, it increases the efficiency of the new design

compared to changing its enabling signal from a system clock to an internal pulse

generator.

102

Figure 4-14: Efficiency of the new PUF designs compared to the legacy PUF

(ROPUF with a system clock as its enabling signal)

Since the first experiment returned a positive result, i.e. an efficiency increase

based on equation (4-4), following the flowchart in Figure 4-11, the experiment

continued with the implementation of the bimodal PUF to see if it will return a

similar behaviour as the regular PUF. A comparison between the average

reliability and the uniqueness of the bimodal PUF has been presented in Figure

4-15. It shows that the use of a shift register-based internal pulse generator as

the enabling signal can increase the reliability of the bimodal PUF. However, in

contrast with the results in Figure 4-13, the reliability of the bimodal RCPUF

increases by 40% when using the shift-register-based internal pulse generator.

Figure 4-15 also shows that the reliability of the bimodal ROPUF decreases but

not by a significant amount.

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0

ROPUF SR

RCPUF CLK

RCPUF SR

𝜋 (%)

P
U

F
 N

A
M

E

103

Figure 4-15: Reliability VS Number of unique responses from the bimodal PUF

Table 4-5 and Figure 4-16: illustrate the efficiency of the new bimodal PUF design

compared to the legacy ROPUF.

Table 4-5: Efficiency of the bimodal PUF design compared to the legacy PUF

var BROPUF CLK BROPUF SR BRCPUF CLK BRCPUF SR

r1 31 70 41 31

r2 96 60 21 96

u 32 39 57 23

t 84.52 116.85 74.88 76.20

A 4096 4097 2816 2817

ΔP 0 0 0 0

BRO CLK

BRO SR

BRC CLK

BRC SR

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

R
e
lia

b
ili

ty
 (

%
)

Unique responses (%)

Reliability vs Number of unique responses

104

Figure 4-16: Efficiency of the bimodal PUF designs compared to the legacy ROPUF

It can be seen that the efficiency of the new design is increased compared to the

efficiency in Figure 4-14. It can also be seen that by changing the source of

randomness from a ring oscillator to a ring counter, it increases the efficiency of

the new design compared to changing its enabling signal from a system clock to

an internal pulse generator. Figure 4-12 shows that the bimodal ROPUF has

better efficiency than the bimodal RCPUF. However, to overcome the scalability

issue of IJTAG security measures, resource usage is a critical factor that needs

to be considered. Figure 4-17 displays a closer look into the FPGA resource

usage of each PUF design. It can be seen that the bimodal RCPUF only adds

40% of the FPGA resources compared to the regular PUF, but it has two different

responses that can be used to add more functionality. Therefore, it can be

concluded that the bimodal RCPUF is an ideal solution for IJTAG security

measures without the presence of a scalability problem.

23.8

28.5

10.1

20.4

0.0 5.0 10.0 15.0 20.0 25.0 30.0

BROPUF CLK

BROPUF SR

BRCPUF CLK

BRCPUF SR

𝜋 (%)

P
U

F
 N

A
M

E

105

Figure 4-17: Comparison of device utilisation

4.5.2 Security Analysis

In this section, the time needed to unlock the SIB will be discussed. For an

authorised user who has the right answer to the challenge to unlock the SIB, the

unlocking process takes N number of clocks. It requires five clocks to get the TAP

controller ready (TRST). If the PUF has a C-bit challenge, it will take a C clock

cycle to shift the challenge to the PUF. If the challenge generates a correct

response, then it will be shifted to the comparator. At the same time, an R-bit

secret key is shifted to the comparator. The comparison process takes another

two clock cycles. In total, the clock cycle to unlock the SIB is 𝑁 = 5 + 𝐶 + 𝑅 + 2 =

𝐶 + 𝑅 + 7 clock cycle. For the case of the proposed security mechanism, the

challenge is 8-bit, and the response is 128-bit. Therefore the total clock cycle to

gain access to the embedded instrument is a 143 clock cycle. Compared to a

similar approach in [11] that takes up to 65560 clock cycles to unlock the SIB, it

is clear that the proposed security mechanism is faster when it comes to

performing the unlocking process.

If the attacker succeeds in guessing the challenge for PUF, but they have no idea

about the obfuscation provided by the second PUF response, they will never get

2048 2049

1280 1281

4,096 4,097

2,816 2,817

0

500

1000

1500

2000

2500

3000

3500

4000

4500

RO CLK RO SR RC CLK RC SR BRO CLK BRO SR BRC CLK BRC SR

N
u

m
b

er
s

o
f

LU
T

u
se

d
Device Utilisation

106

the correct output data from the instrument. Thus the extracted data cannot be

used for reverse engineering. Even if the hardware Trojan activation command is

shifted to the instrument, the output will not affect another instrument as the

output data was obfuscated.

With this layered security protocol, not only it will prevent the instrument from

being accessed by an unauthorised party, but it will also preclude the use of

stolen data. It also protects another instrument from the effect of Hardware Trojan

activation.

There is a limitation in this security mechanism. The output data comes out from

the instrument and TDO in an obfuscated form. This means that the output data

cannot be used as an input for other instruments in the same network. Therefore,

this security mechanism cannot be used in mission mode, only in testing mode.

To use this mechanism in mission mode, one can use the mechanism as

described in [26] where an LFSR is utilised to de-obfuscate the output data before

it comes out of the instrument.

Table 4-6 compares the proposed IJTAG security measures with different

measures from the literature. The proposed security excels when compared to

the other proposed security measures in that it not only provides security focused

on the access to the IJTAG network, but it also secures the output data from the

embedded instrument. While paper [12] also provides access protection and data

security, its implementation using a chiper core makes it have a high area

overhead, affecting scalability. Hardness is a measure of how easy security can

be broken by an adversary. Papers [8] and [9] are the easiest as they only use

one static secret key (password) to unlock the access to the IJTAG network. The

dynamic password means that the secret key can be changed depending on what

challenge applies to the PUF. The secret key will also be different for every IJTAG

implementation, and its security measures will be on a different chip.

107

Table 4-6: Comparison of the proposed method with other IJTAG security

measures

Parameter Paper

[8]

Paper

[9]

Paper

[10]

Paper

[11]

Paper

[12]

proposed

Area overhead Low Medium High Medium High Medium

Scalability High Medium High Low Low High

Password Static Static Dynamic Dynamic Dynamic Dynamic

Hardness Low Medium High High High High

Data Protection N/A N/A N/A N/A Yes Yes

4.6 Conclusion

A multi-layer security mechanism to protect access and the data read in the

IJTAG network using bimodal PUF is proposed. The proposed technique benefits

from a single challenge and generates two responses that are used to unlock the

hardware and obfuscate the output data. Hence the utilisation of PUF to

obfuscate the output data provides a high level of data protection. The analysis

shows that it is faster to unlock when accessed by the authorised party compared

to previous work. This means that the time needed for testing will be faster while

maintaining its security. The use of bimodal PUF for generating secret keys also

adds to the advantages as each chip has a unique characteristic due to the

process variation. This can be used to create a dynamic key for every single chip.

A PUF performance comparison between the system clock and the internal pulse

generator as an enabling signal has also been made. It was discovered that the

reliability of the PUF response is increased when an internal pulse generator is

used. However, it sacrifices the uniqueness of the PUF as the reliability and

uniqueness are discovered to have an inverse correlation. Therefore, it is up to

the designer to choose which configuration to use to meet the requirements of

the system.

108

4.7 Reference

[1] IEEE Computer Society, 1500 - 2005 - IEEE standard testability method for

embedded core-based integrated circuits. Institute of Electrical and

Electronics Engineers, 2011.

[2] IEEE Computer Society. Test Technology Standards Committee., Institute

of Electrical and Electronics Engineers., and IEEE-SA Standards Board.,

IEEE standard for access and control of instrumentation embedded within

a semiconductor device - 1687. .

[3] Test Technology Standards Committee, IEEE Standard Test Access Port

and Boundary Scan Architecture, vol. 2001. 2001.

[4] R. Johnson, “Sergei Skorobogatov Defends Backdoor Claims - Business

Insider,” Business Insider, 2012. [Online]. Available:

https://www.businessinsider.com/sergei-skorobogatov-defends-backdoor-

claims-2012-5?r=US&IR=T. [Accessed: 30-May-2020].

[5] S. Skorobogatov and C. Woods, “Breakthrough silicon scanning discovers

backdoor in military chip,” Lecture Notes in Computer Science (including

subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics), vol. 7428 LNCS, pp. 23–40, 2012.

[6] F. Majéric, B. Gonzalvo, and L. Bossuet, “JTAG Fault Injection Attack,”

IEEE Embedded Systems Letters, vol. 10, no. 3, pp. 65–68, Sep. 2018.

[7] R. Elnaggar, R. Karri, and K. Chakrabarty, “Securing IJTAG against data-

integrity attacks,” in Proceedings of the IEEE VLSI Test Symposium, 2018,

vol. 2018-April, pp. 1–6.

[8] J. Dworak, A. Crouch, J. Potter, A. Zygmontowicz, and M. Thornton, “Don’t

forget to lock your SIB: Hiding instruments using P16871,” in Proceedings

- International Test Conference, 2013, pp. 1–10.

[9] H. Liu and V. D. Agrawal, “Securing IEEE 1687-2014 Standard

Instrumentation Access by LFSR Key,” in Proceedings of the Asian Test

109

Symposium, 2015, vol. 2016-Febru, pp. 91–96.

[10] R. Baranowski, M. A. Kochte, and H. J. Wunderlich, “Fine-grained access

management in reconfigurable scan networks,” IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, vol. 34, no. 6,

pp. 937–946, Jun. 2015.

[11] K. Sudeendra Kumar, N. Satheesh, A. Mahapatra, S. Sahoo, and K. K.

Mahapatra, “Securing IEEE 1687 standard on-chip instrumentation access

using PUF,” in Proceedings - 2016 IEEE International Symposium on

Nanoelectronic and Information Systems, iNIS 2016, 2017, pp. 56–61.

[12] S. Kan, J. Dworak, and J. G. Dunham, “Echeloned IJTAG data protection,”

in Proceedings of the 2016 IEEE Asian Hardware Oriented Security and

Trust Symposium, AsianHOST 2016, 2017, pp. 1–6.

[13] A. Das and N. A. Touba, “A Graph Theory Approach towards IJTAG

Security via Controlled Scan Chain Isolation,” in 2019 IEEE 37th VLSI Test

Symposium (VTS), 2019, vol. 2019-April, pp. 1–6.

[14] Xuanle Ren, Vítor Grade Tavares, and R. D. Shawn Blanton, “Detection of

illegitimate access to JTAG via statistical learning in chip - IEEE

Conference Publication,” in Design, Automation & Test in Europe

Conference & Exhibition (DATE), 2015.

[15] X. Ren, R. D. S. Blanton, and V. G. Tavares, “Detection of IJTAG attacks

using LDPC-based feature reduction and machine learning,” in

Proceedings of the European Test Workshop, 2018, vol. 2018-May, pp. 1–

6.

[16] A. Maiti, R. Nagesh, A. Reddy, and P. Schaumont, “Physical Unclonable

Function and True Random Number Generator : a Compact and Scalable

Implementation,” in Great Lakes Symposium on VLSI (GLSVLSI), 2009.

[17] M. Naveed Aman, S. Taneja, B. Sikdar, K. C. Chua, and M. Alioto, “Token-

based security for the internet of things with dynamic energy-quality

tradeoff,” IEEE Internet of Things Journal, vol. 6, no. 2, pp. 2843–2859,

110

Apr. 2019.

[18] S. Mulhem and W. Adi, “New Mathblocks-Based Feistel-Like Ciphers for

Creating Clone-Resistant FPGA Devices,” Cryptography, vol. 3, no. 4, p.

28, Dec. 2019.

[19] J. D. Bekenstein, “How does the entropy/information bound work?,” in

Foundations of Physics, 2005, vol. 35, no. 11, pp. 1805–1823.

[20] J. Wu and M. O’Neill, “On Foundation and Construction of Physical

Unclonable Functions,” 2010.

[21] F. Kodytek, R. Lorencz, J. Bucek, and S. Buchovecka, “Temperature

Dependence of ROPUF on FPGA,” Proceedings - 19th Euromicro

Conference on Digital System Design, DSD 2016, pp. 698–702, 2016.

[22] D. B. Thomas and W. Luk, “FPGA-Optimised Uniform Random Number

Generators Using LUTs and Shift Registers,” in 2010 International

Conference on Field Programmable Logic and Applications, 2010, pp. 77–

82.

[23] D. B. Thomas and W. Luk, “The LUT-SR Family of Uniform Random

Number Generators for FPGA Architectures,” IEEE Transactions on Very

Large Scale Integration (VLSI) Systems, vol. 21, no. 4, pp. 761–770, Apr.

2013.

[24] H. G. Schaathun, “Evaluation of splittable pseudo-random generators,”

Journal of Functional Programming, vol. 25, Feb. 2015.

[25] Xilinx and Inc, “Kintex-7 FPGAs Data Sheet: DC and AC Switching

Characteristics,” 2011.

[26] M. Randa, M. Bozdal, M. Samie, and I. K. Jennions, “Layered Security for

IEEE 1687 Using a Bimodal Physically Unclonable Function,” Procedia

Manufacturing, vol. 16, pp. 24–30, Jan. 2018.

111

5 CONCLUSION AND FUTURE WORKS

5.1 Addressing the Aim and Objectives of the Research

The advancement of semiconductor technology has both advantages and

challenges such as its testability. While the IJTAG has become the new standard

to overcome the testability problem of embedded instruments, it also presents a

security concern. Future embedded systems, with added functionality and of a

smaller size, present with an overlapping problem in terms of reliability and

security of the systems. This thesis aims to improve the security of the embedded

system by advancing the design-for-testability to design-for-security.

Past approaches to design-for-security have been discovered to have inefficiency

and scalability issues. This thesis presents a novel physically unclonable function

as a form of primitive security that allows for the untangling of the issues

mentioned above. It adds to the security of both the IJTAG network and the data

while also performing as a digital sensor for observing unauthorised modifications

of the configuration file for applications in multi-tenant FPGA.

This aim has been achieved by fulfilling the following objectives:

Objective 1: Develop and characterise a novel random number generator design

based on the ring counter circuit. A True Random Number Generator (TRNG)

based on the Ring Counter (RC) circuit has been developed and used as a model

to study the behaviour of delay-based random number generators when

implemented in sub-nano millimetre (sub-nm) IoT devices. It has been observed

that the delay-based random number generator is still able to perform well in sub-

nm devices despite its limitation in a short periodicity. The experiment also

revealed the fact that using the suggested minimum input of the NIST SP800-22

does not return a meaningful result. Thus, it is a good practice to have an input

that is 100 times bigger than the minimum recommendation of the NIST SP 800-

22 standard.

Objective 2: Develop and characterise a novel digital physically unclonable

function based on the ring counter circuit. A physically unclonable function

utilising ring counter circuits (RCPUF) as its source of randomness has been

112

developed and implemented as a digital sensor to detect unauthorised

modifications to the FPGA configuration file in multi-tenant FPGA. The digital

sensor based on the RCPUF is proven to have a high sensitivity to changes in

the FPGA configuration file as it can react a one logic gate change. The digital

sensor is also affordable in terms of the FPGA resource usage as it was designed

not to require the use of an error correction algorithm. This experiment also

presents a new definition of the reliability and uniqueness parameters for PUF

characterisation. This new definition minimises the environmental influence on

the measured PUF parameter. Therefore the data obtained from the

measurement is more accurate and trusted.

Objective 3: To develop and characterise bimodal RCPUF (BRCPUF) to secure

access to the IJTAG network as well as its output data. A new class of PUF that

can produce two simultaneous responses from a single challenge has been

developed. The novel PUF is called bimodal PUF. The bimodal PUF is based on

the RCPUF as in objective 2. On the process of developing the bimodal PUF, a

comparison between the use of a system clock and internal pulse generator was

made. It was discovered that the internal pulse generator increases the reliability

of the PUF as well as the bimodal PUF. However, there is an inverse correlation

between the uniqueness and the reliability parameter. Therefore there is a trade-

off that needs to be considered to satisfy the requirements of the system.

5.2 Future work

The hardware-oriented security measures presented in this thesis are already

capable of providing a secure and trusted environment for the system that it is

assigned to, which has been amply demonstrated in Chapters 2, 3, and 4.

However, from the study conducted during the research, there are many exciting

pieces of research left to be conducted. Nevertheless, to keep future research in

context with the research of this thesis, the following topic might be of interest to

conduct in the future.

113

5.2.1 Environmental influence on the sub-nm TRNG

In Chapter 2, a study on the behaviour of a TRNG in sub-nm technology has been

conducted with a focus on how the exceptional structure of the sub-nm device

affects the behaviour of the TRNG. However, while the environmental variation

within the range given by the current semiconductor manufacturer is known to be

harmless to the behaviour of the system, the delicate structure of the sub-nm

semiconductor device might present with different behaviour when operated with

an environmental variance, either negative or positive. Sub-nm technology, which

possibly is the quantum computer that requires a temperature close to the

absolute zero to work, is now getting closer to working at room temperature

through the development of diamond-based material. This advancement requires

the TRNG that becomes the root of the trust in the sub-nm device to be tested in

different environmental situations, such as a variance in temperature or variance

in voltage supply.

5.2.2 Integration of design-for-security in the Electronic Design

Automation (EDA) tool Design Rule Checking (DRC)

Modern EDA tools are designed to maximise the performance of the design by

performing a design rule check. However, the recent discovery of Meltdown [1]

and Spectre [2] has raised the awareness of semiconductor industries were

improving performance without considering security can be fatal to the privacy

and security of the users. However, there have still been no improvements made

to the EDA tools in terms of including a security aspect in the Design Rule

Checking (DRC) routine. With the multitude of research that has been conducted

about hardware security, it is now possible to compile the roots of malicious

behaviour or a security threat at the register transfer level of design. Traditionally,

a formal analysis is done to discover the flaws or malicious code in design.

However, the laborious process of a formal analysis is what makes the design

house reluctant to perform the task. Therefore an improvement in the EDA tool

to include the security aspect in their DRC process would be an interesting topic

to work on, considering that not many people have done similar research.

114

5.3 References

[1] M. Lipp et al., “Meltdown,” World Watch, vol. 9, no. 3, pp. 23–31, Jan. 2018.

[2] P. Kocher et al., “Spectre Attacks: Exploiting Speculative Execution,”

Communications of the ACM, vol. 63, no. 7, pp. 93–101, Jan. 2018.

115

 APPENDICES

Appendix A Raw data of the ring counter based random

number generator

The NIST SP 800-22 rev 1a suggest that to be able to use their statistical test

suite for random number generator characterisation, at least one million bit of

random number need to be provided as an input. However, it is discovered in

section 2.5 that in order to produce a meaningful and consistent result, the test

suite need to be tested with higher input bit. In our experiment, at least ten million

bit input is needed to get a consistent input.

According to the NIST SP 800-22 rev 1a, there are two method to analyse the

result of the statistical test suite. It is recommended to always use the first

method. However, when using the first analysis method did not satisfy the user,

the NIST standard allow the user to use the second method. The first method is

by quantitatively looking at the p-value output as in Table 2-4. The second method

to analyse the result is more qualitative, which is by using graphical presentation,

which means plotting the p-value table into a bar diagram or similar diagram. The

second method needed the user to have their intuition to judge whether the

random number generator under-test is satisfy their randomness requirement or

not.

Along with the research, it is discovered that a heat map of the random number

generated also can provide a meaningful information to analyse the characteristic

of the random number generator. Figure A-1 is a heat map of one million random

number generated by the ring counter-based random number generator. It shows

that there are 32 consecutive repetition of random number with 1000-bit length.

This mean, if the RNG is set to produce 1000-bit for every generation, it will

produce the same string of number for 32 clock cycle. In real case scenario, this

behaviour is more than enough to be used for cryptography or any other security

related application.

116

Figure A-1: Heat map of one million bit random number

117

Appendix B Source code for ring counter-based

random number generator and physically unclonable

function

The ring counter-based random number generator is implemented in Kintex-7

FPGA from Xilinx. It implemented using VHDL using the ISE 14.7 as the IDE.

Here we break down the source code for a better understanding of the thesis.

Table B-1: Source code for RCRNG comparator

top_file In hierarchical design of VHDL, top file is the

interface where an instance of a function

underneath it gets implemented. All components

that needed to build the RCRNG is declared in

this file and instantiated. The component

declaration defines the ports of all function

underneath the top file.

In the case of RCRNG, the components

declared on the top file are the enabling signal

from SRL16E and the core file, which consist of

the source of randomness and the signal

processing component such as frequency

counter and comparator. To simplify the

implementation process, the core file is not hard-

coded but generated using the generate

command.

 Core components The core components for the RCRNG is

declared in this file. It consists of a pair of

SRL16E-based ring counter, frequency counter,

counter stopping logic, and comparator.

118

 Frequency_counter Each ring counter connected to a frequency

counter. The frequency counter implemented

using a 16-bit binary counter.

 counter_stop This logic is implemented to stop the other

counter from counting whenever a counter is

overflow.

 comparator The comparator logic is used to compare the

value of a pair of counters after they stop

counting.

If the location of the generated ring counter is not important, there is no need to

create a constraint file (*.ucf) to fix the location of the ring counter. However, if

the location of the ring counter needs to be fixed, a constraint file need to be

created to fix the location of ring counter using the loc command.

The following are the code for each file listed above.

Table B-2: Source code for RCRNG top file

library IEEE;

Library UNISIM;

use UNISIM.vcomponents.all;

use IEEE.STD_LOGIC_1164.ALL;

entity TOP_FILE is

 Port (

 clk: in std_logic;

 clk2: in std_logic;

 clr: in STD_LOGIC

);

end TOP_FILE;

architecture Behavioral of TOP_FILE is

attribute loc: string;

attribute rloc: string;

attribute rloc of RN_gen: label is "X0Y0";

signal ro0_out, ro1_out, sro, oflow1, oflow2, compout_flow,

stop, clr1, resp, comp_out: std_logic;

signal countout1, countout0, comp_in1, comp_in2:

std_logic_vector (15 downto 0);

119

attribute keep: string;

attribute keep of sro, ro0_out, ro1_out, oflow1, oflow2,

countout1, countout0, compout_flow

,comp_out, comp_in1, comp_in2: signal is "true";

attribute s: string;

attribute s of ro0_out, ro1_out, oflow1, oflow2, countout1,

countout0, stop

: signal is "yes";

COMPONENT CORE_FILE

 PORT(

 clr1: IN std_logic;

 clk: IN std_logic;

 resp: OUT std_logic

);

 END COMPONENT;

begin

RN_gen:

 for i in 0 to 4000 generate

 begin

 RON_1: CORE_FILE

PORT MAP(

 resp => resp,

 clr1 => clk2,

 clk => sro

);

 end generate;

 SRL16E_inst: SRL16e

 generic map (

 INIT => X"AAAA")

 port map (

 Q => sro, -- SRL data output

 A0 => '1', -- Select[0] input

 A1 => '1', -- Select[1] input

 A2 => '1', -- Select[2] input

 A3 => '1', -- Select[3] input

 CE => '1', -- Clock enable input

 CLK => CLK, -- Clock input

 D => sro -- SRL data input

);

end Behavioral;

120

Table B-3: Source code for RCRNG core components

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.NUMERIC_STD.ALL;

library UNISIM;

use UNISIM.VComponents.all;

entity CORE_FILE is

 Port (

 resp: out std_logic;

 clr1: in std_logic;

 clk: in std_logic

);

end CORE_FILE;

architecture Behavioral of CORE_FILE is

signal ro0_out, ro1_out, oflow1, oflow2, compout_flow,

counter_in, stop: std_logic;

signal countout1, countout0: std_logic_vector (15 downto 0);

attribute keep: string;

attribute keep of ro0_out, ro1_out, oflow1, oflow2, countout1,

countout0, stop

: signal is "true";

attribute s: string;

attribute s of ro0_out, ro1_out, oflow1, oflow2, countout1,

countout0, stop

: signal is "yes";

------------- component instantiate --------------------------

component counter is

 port (

 count_in: in std_logic;

 clr: in std_logic;

 q: out std_logic_vector(15 downto 0);

 oflow: out std_logic;

 enable: in std_logic

);

end component counter;

component comparator is

 port (

 comp_in1, comp_in2: in std_logic_vector(15 downto 0);

 comp_out: out std_logic

);

end component comparator;

component counterstop is

121

port (

oflow1: in STD_LOGIC;

 oflow2: in STD_LOGIC;

 clr: in std_logic;

 stop: out STD_LOGIC

);

end component counterstop;

begin

------------------- INST BASED RO --------------------------

U1: SRL16e

 generic map (

 INIT => X"80")

 port map (

 Q => ro0_out

 A0 => '1',

 A1 => '1',

 A2 => '1',

 A3 => '1',

 CE => '1',

 CLK => CLK,

 D => ro0_out

);

 U2: SRL16e

 generic map (

 INIT => X"80")

 port map (

 Q => ro1_out,

 A0 => '1',

 A1 => '1',

 A2 => '1',

 A3 => '1',

 CE => '1',

 CLK => CLK,

 D => ro1_out

);

--------------------- counter -------------------------------

count_u0: counter

port map (

enable => stop,

count_in => ro0_out,

q => countout0,

oflow => oflow1,

clr=> clr1

);

count_u1: counter

port map (

enable => stop,

count_in => ro1_out,

q => countout1,

122

oflow => oflow2,

clr=> clr1

);

counterstop_u0: counterstop

port map (

oflow1 => oflow1,

oflow2 => oflow2,

stop => stop,

clr => clr1

);

comparator_u0: comparator

port map (

 comp_in1 => countout0,

 comp_in2 => countout1,

 comp_out => resp

);

end architecture behavioral;

Table B-4: Source code for RCRNG frequency counter

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_unsigned.all;

entity counter is

generic (n: natural:=16);

port(

 count_in, clr: in std_logic;

 q: out std_logic_vector(n-1 downto 0);

 oflow: out std_logic;

 enable: in std_logic

);

end counter;

architecture archi of counter is

 signal tmp: std_logic_vector (n-1 downto 0);

 signal halt: std_logic;

begin

 process (count_in)

 begin

 if(count_in'event and count_in ='1')then

 if (enable = '0') then

 if (clr='1') then

123

 tmp <= (others => '0'); -- making it zero

 else

 tmp <= tmp + 1;

 end if;

 end if;

 end if;

 end process;

 process (tmp)

 begin

 if tmp = 65535 then

 oflow <= '1';

 else

 oflow <= '0';

 end if;

 end process;

 q <= tmp;

end archi;

Table B-5: Source code for RCRNG counter_stop

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity counterstop is

 Port (

clr: in std_logic;

 oflow1: in STD_LOGIC;

 oflow2: in STD_LOGIC;

 stop: out STD_LOGIC

);

end counterstop;

architecture Behavioral of counterstop is

begin

process

begin

 if (clr='1') then

 stop <= '0';

 else

 stop <= oflow1 or oflow2;

 end if;

end process;

end Behavioral;

124

Table B-6: Source code for RCRNG comparator

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.NUMERIC_STD.ALL;

library UNISIM;

use UNISIM.VComponents.all;

entity comparator is

 Port (

 comp_in1, comp_in2: in std_logic_vector(15 downto 0);

 comp_out: out std_logic

);

end comparator;

architecture Behavioral of comparator is

attribute keep: string;

attribute keep of comp_in1, comp_in2, comp_out: signal is true";

begin

process

 begin

 if comp_in1 < comp_in2

 then comp_out <= '1';

 else comp_out <= '0';

 end if;

end process;

end Behavioral;

The following is the hierarchical structure of the ring counter-based physically

unclonable function (RCPUF).

Table B-7: Hierarchical structure of the RCPUF

Top file

 Core file

 mux Multiplexer is implemented to select

which ring counter to be compared.

 Counter Each ring counter connected to a

frequency counter. The frequency

125

counter implemented using a 16-bit

binary counter.

 Counter_stop This logic is implemented to stop the

other counter from counting whenever

a counter is overflow.

 Comparator The comparator logic is used to

compare the value of a pair of

counters after they stop counting.

In general, it has the same structure as the RCRNG hierarchical structure. The

only difference is that in RCPUF we can choose which ring counter to be

compared. This made possible by adding a 2-to-1 multiplexer that has input from

the ring counter, and the select input from the challenge of the PUF. Therefore,

we will only show the core file to show how the wiring and integration of the mux

to the RCPUF architecture.

Table B-8: Source code for RCPUF core file

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.NUMERIC_STD.ALL;

library UNISIM;

use UNISIM.VComponents.all;

entity CORE_FILE is

 Port (

 resp: out std_logic;

clr1: in std_logic;

 clk: in std_logic;

 chal1: in std_logic;

 chal2: in std_logic

);

end CORE_FILE;

architecture Behavioral of CORE_FILE is

signal ro0_out, ro1_out, ro2_out, ro3_out, oflow1, oflow2,

compout_flow, counter_in , stop, regresetflow, q_clr, pulse_i

: std_logic;

126

signal countout1, countout0, muxout1, muxout0: std_logic_vector

(15 downto 0);

signal q_resetreg: std_logic_vector (2 downto 0);

signal chal1_i, chal2_i, chal3_i, chal4_i, chal5_i, chal6_i,

chal7_i, chal8_i: std_logic_vector (7 downto 0);

attribute keep: string;

attribute keep of chal1, chal2, ro0_out, ro1_out,

ro2_out, ro3_out, muxout1, muxout0, oflow1, oflow2, countout1,

countout0, compout_flow, counter_in, regresetflow, q_clr, stop,

pulse_i, q_resetreg: signal is "true";

------------- component instantiate --------------------------

 COMPONENT ro3_macro

 PORT(

 input: IN std_logic;

 output: out std_logic

);

 END COMPONENT;

component ro_linear is

 port (

clk: in std_logic;

 wave: inout STD_LOGIC

);

end component ro_linear;

component mux is

 Port (

sel: in STD_LOGIC_VECTOR (1 downto 0);

 min0, min1: inout STD_LOGIC_vector (15 downto 0);

 mout: inout STD_LOGIC_vector (15 downto 0)

);

end component mux;

component counter is

 port (

 count_in: in std_logic;

 clr: in std_logic;

 q: out std_logic_vector(15 downto 0);

 oflow: out std_logic;

enable: in std_logic

);

end component counter;

component comparator is

 port (

 comp_in1, comp_in2: in std_logic_vector(15 downto 0);

 comp_out: out std_logic

);

end component comparator;

127

component counterstop is

port (

 oflow1: in STD_LOGIC;

 oflow2: in STD_LOGIC;

 clr: in std_logic;

 stop: out STD_LOGIC

);

end component counterstop;

COMPONENT pulse_stop

 PORT(

 clk: IN std_logic;

 reset: in std_logic;

 flag: IN std_logic;

 pulse: OUT std_logic

);

END COMPONENT;

component reg2 is

port (

 clk: in std_logic;

 regin: in std_logic;

 regout: out std_logic_vector(7 downto 0);

 reset: in std_logic

);

end component reg2;

 COMPONENT RO0

 PORT(

 input: IN std_logic;

 output: OUT std_logic

);

 END COMPONENT;

 COMPONENT RO1

 PORT(

 input: IN std_logic;

 output: OUT std_logic

);

 END COMPONENT;

begin

------------------- INST BASED RO --------------------------

U1: SRL16e

 generic map (

 INIT => X"80")

128

 port map (

 Q => ro0_out,

 A0 => '1',

 A1 => '1',

 A2 => '1',

 A3 => '1',

 CE => '1',

 CLK => CLK,

 D => ro0_out

);

U2: SRL16e

 generic map (

 INIT => X"80")

 port map (

 Q => ro1_out,

 A0 => '1',

 A1 => '1',

 A2 => '1',

 A3 => '1',

 CE => '1',

 CLK => CLK,

 D => ro1_out

);

---------------------- mux -----------------------

mux_u0: mux

port map (

sel => chal1,

 mout => muxout0,

 min0 => countout0,

 min1 => countout1

);

mux_u1: mux

port map (

 sel => chal2,

 mout => muxout1,

 min0 => countout0,

 min1 => countout1

);

--------------------- counter -------------------------------

count_u0: counter

port map (

enable => stop,

count_in => ro0_out,

q => countout0,

oflow => oflow1,

clr=> clr1

);

129

count_u1: counter

port map (

enable => stop,

count_in => ro1_out,

q => countout1,

oflow => oflow2,

clr=> clr1

);

counterstop_u0: counterstop

port map (

oflow1 => oflow1,

oflow2 => oflow2,

stop => stop,

clr => clr1

);

------------------ comparator --------------------------------

comparator_u0 : comparator

port map (

 comp_in1 => muxout0,

 comp_in2 => muxout1,

 comp_out => resp

);

end architecture behavioral ;

	ABSTRACT
	ACKNOWLEDGEMENTS
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF EQUATIONS
	LIST OF ABBREVIATIONS
	1 INTRODUCTION
	1.1 Background
	1.2 Research Gaps/Industrial Needs:
	1.3 Research Aim and Objectives
	1.3.1 Problem Description
	1.3.2 Hypothesis
	1.3.3 Aim
	1.3.4 Objectives

	1.4 Research Methodology
	1.4.1 Research limitation

	1.5 The organisation of the thesis
	1.6 Risk and mitigation plan
	1.6.1 Hardware description language
	1.6.2 Modified IJTAG integration
	1.6.3 Randomness measurement

	1.7 List of Published/Submitted Work
	1.7.1 Journal Publications
	1.7.2 Conference Publications
	1.7.3 Virtual Conference Presentations
	1.7.4 Under Submission for Journal Publication

	1.8 References

	2 DELAY-BASED TRUE RANDOM NUMBER GENERATOR IN SUB-NANOMILLIMETER IOT DEVICES
	2.1 Abstract
	2.2 Introduction
	2.3 Related Works
	2.3.1 Random Number Generator
	2.3.2 Random Number Generator in FPGA
	2.3.3 Test for Randomness
	2.3.4 Metrics

	2.4 Experimentation
	2.4.1 Design of Ring Counter RNG (RCRNG)
	2.4.2 Experimental Limitation

	2.5 Findings and Analysis
	2.6 Conclusion
	2.7 References

	3 A HIGH-SENSITIVITY SENSOR FOR THE DETECTION OF UNAUTHORISED MODIFICATIONS OF FPGA CONFIGURATION BASED ON A PHYSICALLY UNCLONABLE FUNCTION
	3.1 Abstract
	3.2 Introduction
	1.1
	3.3 Related Works
	3.3.1 Physically unclonable function
	3.3.2 PUF characterisation

	3.4 Proposed works
	3.4.1 Ring PUF as a digital sensor
	3.4.2 Uniqueness
	3.4.3 Average reliability

	3.5 Experimental setup
	1.1
	3.6 Findings and discussion
	3.6.1 RCPUF characterisation
	3.6.2 RCPUF implementation as a sensor
	3.6.3 Resistance to physical tampering and ageing

	3.7 Conclusion
	3.8 References

	4 LAYERED SECURITY FOR JTAG/IJTAG USING A BIMODAL PHYSICALLY UNCLONABLE FUNCTION
	4.1 Abstract
	4.2 Introduction
	4.3 Related Works
	4.3.1 IEEE 1687 (IJTAG)
	4.3.2 Physically Unclonable Function (PUF)
	4.3.3 PUF Metrics
	4.3.4 Splittable random number generator

	4.4 Proposed Works
	4.4.1 IJTAG Security Mechanism
	4.4.2 Cost benefit analysis
	4.4.3 Bimodal PUF
	4.4.4 Design and architecture of the bimodal PUF
	4.4.5 Experimental Setup

	4.5 Findings and Discussions
	4.5.1 Bimodal PUF Characterisation
	4.5.2 Security Analysis

	4.6 Conclusion
	4.7 Reference

	5 CONCLUSION AND FUTURE WORKS
	5.1 Addressing the Aim and Objectives of the Research
	5.2 Future work
	5.2.1 Environmental influence on the sub-nm TRNG
	5.2.2 Integration of design-for-security in the Electronic Design Automation (EDA) tool Design Rule Checking (DRC)

	5.3 References

	APPENDICES
	Appendix A Raw data of the ring counter based random number generator
	Appendix B Source code for ring counter-based random number generator and physically unclonable function

