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ABSTRACT 

The uninterrupted supply and reliable distribution of drinking water is fundamental 

in a modern society; however, water pipelines are subject to a range of 

operational and environmental factors which can lead to asset failure. For the 

privatised water-sector in the UK, utility companies are moving towards the 

deployment of statistical models for proactive asset management. For some 

companies, statistical models have facilitated the migration away from static 

annual burst targets, to targets which are dynamic and adjusted to observed 

environmental conditions. There is an increasing need for the development of 

accurate pipeline failure prediction models to support asset management and 

regulatory reporting. This thesis evaluates several quantitative measures to 

improve current methods of pipeline failure prediction. The aim of this thesis is to 

establish the impact of soils, weather and trees on water infrastructure failure and 

to develop a series of material-specific drinking water pipeline failure models for 

an entire distribution network. 

A quantitative assessment investigating the impact of data cleaning on the 

attained model error of a series of previously developed models was conducted. 

Material-specific variable selection and step-wise modelling approaches was 

used to construct a series of improved statistical models, which have an 

increased representation of the environmental factors leading to pipeline failure. 

A detailed national tree inventory was investigated for its use in enhancing 

pipeline failure predictions and for calculating failure rates of different pipe 

materials under varying soil shrink swell and tree density conditions. The value in 

creating separate winter and summer pipeline failure models was also evaluated, 

to increase representation of the highly seasonal nature of pipeline failure. Finally, 

a satellite approach was used to generate soil-related land surface deformation 

measurements across a regional area was investigated. The result is a series of 

enhanced statistical models for the prediction of water pipeline failure and a 

greater understanding into the environmental drivers leading to asset failure. 

Keywords: Statistical modelling; pipeline failure; prediction; environmental risk; 

water utilities 
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1 Introduction 

1.1 Overview 

This thesis investigates the complex interactions between soil, weather and trees 

and their impact on the failure rates of common pipe materials across the 

geographically largest water distribution network in the United Kingdom (UK). The 

evaluation of new datasets and data processing techniques has resulted in an 

improved understanding of the operational and environmental conditions leading 

to infrastructure failure. This has led to the development of a series of statistical 

models for the prediction of pipeline bursts, which builds on and improves a series 

of existing models. Opportunities and recommendations for future research are 

highlighted throughout, drawing upon the lessons learnt from the present 

research. 

 

This chapter describes the context of the study, underlining the importance of the 

topic and the potential wider impacts in a global setting. An overview of previous 

efforts and techniques used to model the interactions between soil, weather and 

trees is detailed in Section 1.3. Section 1.4 discusses the motivation of the 

research and helps position the thesis in the context of the current knowledge 

gap. Section 1.5 details the overall research aim, discussing five objectives 

developed to satisfy the research aim. The individual approaches to the overall 

research methodology and the format of the thesis are provided in Section 1.6. 

Section 1.7 provides a list of publications and details the dissemination of the 

thesis to date, along with a proposed publication strategy. 

1.2 Research Context 

There is a critical reliance across public, commercial and industry sectors on the 

consistent and uninterrupted provision of water. Water supply is essential for 

human health, commercial activity and socio-economic development. In many 

locations throughout the world, drinking water distribution networks are 

dependent on an increasingly ageing and deteriorating network of buried 

infrastructure, which is impacted on by numerous operational and environmental 

pressures (Pelletier et al., 2003). Currently, in the UK alone, estimates suggest 
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that approximately 3 billion litres of potable and treated water is lost from leaking 

pipes each day, which is approximately 18% of all water distributed (Ofwat, 2018). 

This is despite investments of over £110 billion to date (Institution of Civil 

Engineers, 2014). It is also noted, that by 2050 water demand in the UK could 

increase up to 35% per household (Vale and Poole, 2011). With the current status 

of pipeline leakage, plus a potential increase in water demand, effective asset 

management is vital to ensure that the demand of water is met for future 

generations. 

 

Globally, water pipeline failure has the potential to cause disruption to society in 

numerous ways. A direct impact of a burst water pipe can include water 

discoloration, increased turbidity and the reduction of pressure in the distribution 

network (Cook et al., 2015). For the privatised water sector in the UK, this can 

lead to large fines set by the regulatory body, Ofwat. Secondary impacts of 

pipeline failure are numerous, and can include damage to proximal infrastructure 

assets (such as gas, sewer, telecommunication and transport infrastructure), the 

creation of sand wash-out and sinkhole events leading to cascading failures 

(leading to building damage, loss of electricity and gas, vehicle damage), and 

also the incurred costs and disruption of water pipeline repair (Farewell et al., 

2017; Wols and van Thienen, 2014; Yamijala et al., 2009). 

 

There is a desire in the water industry to become proactive in the way they 

manage their assets. In order to achieve this, an improvement in the ability to 

predict pipeline failure is key for this transition, along with an improved 

understanding into the conditions which lead to asset deterioration (Farmani et 

al., 2017; Rostum, 2000). However, identifying the conditions which lead to 

infrastructure failure is inherently difficult as the failure of water pipes is controlled 

by a large number of complex factors with different spatio-temporal variabilities 

(Boxall et al., 2007). 

 

Several approaches have been developed to understand the current risks posed 

upon water distribution networks, the most common form of which is 
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mathematical based models (Francis et al., 2014; Kleiner and Rajani, 2001; Park, 

2004; Rajani and Kleiner, 2001; Xu et al., 2011; Yamijala et al., 2009). 

Mathematical models, which have been applied to the analysis of water pipeline 

failure, can be broadly classified into physical models and statistical models 

(Wilson et al., 2017). Physical models simulate the behaviour of pipe materials 

by analysing the mechanical performance of the pipeline itself, the internal loads 

due to operational practices, and pipe material deterioration due to external 

factors (Rajani and Kleiner, 2001). Statistical models can be used with a variety 

of input data and have the ability to summarise the impacts of a wide range of 

external variables leading to the failure of potable water pipes. For this reason, 

statistical models are the most widely used method for the prediction of water 

pipe failure globally, with many studies applying such models in a range different 

geographical locations (Berardi et al., 2008; Boxall et al., 2007; Folkman, 2018; 

Kabir et al., 2016; Martínez-Espiñeira et al., 2017; Wang et al., 2013; Yamijala et 

al., 2009). 

 

Globally, each water distribution network has its own unique set of prevailing 

risks. Therefore, there is no statistical model or approach which serves as a 

global solution for the prediction of water pipeline failure. Typically models will 

include operational variables such as age, material and diameter, as these factors 

are highly predictive for asset failure (Kimutai et al., 2015). With the development 

of accurate environmental datasets, such as detailed soils and weather data, 

more studies are now investigating the impact of environmental conditions 

preceding incidences of failure. This increased representation of the environment 

has led to the development of more complex models, which not only evaluate the 

operational conditions and management of the pipes, but also provide an insight 

into the environmental drivers of pipeline failure (Kleiner and Rajani, 2001; Makar 

and Kleiner, 2000; Saadeldin et al., 2015; Yamijala et al., 2009). 

 

The impacts to water distribution networks are not exclusive to just weather, soil 

and operational factors. Many other factors also have the potential to impact upon 

buried infrastructure, some of which are currently unquantifiable and in some 
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cases even currently unknown, such as the malicious tampering of pipes (Boxall 

et al., 2007). If possible, an improved representation of new factors in statistical 

modelling may improve the accuracy of current pipeline failure predictions and 

help the further understanding of the risks posed upon the water distribution 

network. It is important to note that statistical modelling approaches cannot 

summarise all of the potential impacts on a network but can include (based on 

user expertise) variables which are most likely to be predictive of water 

infrastructure failure in a particular region. 

1.3 Research Focus 

In the UK, water distribution networks typical span across regional areas and are 

subject to a wide range of contrasting environmental conditions, which can impact 

on the failure rates of different pipeline materials. This research focusses on 

Anglian Water’s distribution network1, which is situated in the region of East 

Anglia of the UK. East Anglia has amongst the highest ground movement 

potential in the country due to extensive deposits of clay soils and a large intra-

annual difference in the available soil water content from winter to summer 

seasons (Farewell et al., 2017; Pritchard et al., 2014). For regulation purposes, 

and to help Anglian Water obtain a weather-adjusted baseline for the number of 

bursts they should expect given the weather they experienced in a given year, a 

series of statistical models have been developed for Anglian Water plc. under the 

‘Water Infrastructure Serviceability Performance Assessment’ (WISPA) project. 

WISPA aimed to generate a variable baseline of burst water mains, based on the 

observed weather and soil conditions. This provided a favourable alternative to 

using static “tramline” targets, which failed to represent variability in prevailing 

weather or environmental conditions. The motivation behind the development of 

statistical models for asset failure prediction was the series of cold winters (which 

had not been seen for the previous 15 years) which meant that Anglian Water 

 

1 Geographically, Anglian Water is the largest water and sewerage company in the UK, covering 20% of 
England and Wales’ total land area. Potable drinking water is supplied to a total of 2 million households 
and 124,063 businesses, with over 1 billion litres of water being supplied each day. The Anglian Water 
network is serving one of the fastest growing parts of the UK, with a predicted 34% increase in the 
number of households by 2031 (Anglian Water, 2018). 
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struggled to meet their regulatory targets for the number of bursts mains. Anglian 

Water was the first utility operator in the UK to use model predictions to set targets 

for burst water mains in their annual reporting. 

 

Figure 1-1: Monthly mean average burst rates (bursts per 1,000 km per week) for 

the 6 main pipe material groups over the Anglian Water region 

Note: pipe materials are Iron (I), asbestos cement (AC), polyvinylchloride (PVC), polyethylene (PE), steel and 

ductile Iron (SDI) and pipes classified as “other” (O) 

There are numerous factors which can lead to the failure of water pipes. Broadly, 

factors can be categorised into two main groups, environmental (weather, soils, 

trees) and operational (asset health, age, material, diameter, hydraulic pressure, 

previous pipeline repairs, construction methods, and previous maintenance 

Summer related failure 

Winter related failure 

Summer related failure 

Low and stable burst rate in all 
seasons (extensive in pipe 
length) 

Low and stable burst rate in all 
seasons (small overall pipe 
length) 

Varying rate of failure in all 
seasons (small overall pipe 
length) 

Summer related failure 
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strategies or investment). All factors leading to pipeline failure can be further 

classified to be either static or dynamic, with many variables exhibiting a time 

dependant or seasonal relationship to burst water mains (Farmani et al., 2017). 

Therefore, identifying the factors which directly contribute to pipe failure is 

inherently difficult and has been the focus of numerous scientific investigations 

(Folkman, 2018; Gould et al., 2011; Kimutai et al., 2015; Martínez-Espiñeira et 

al., 2017; Pelletier et al., 2003). With such a wide range of contributory factors, 

this thesis does not aim to re-describe all known variables, except from the ones 

included in the developed models, but a comprehensive summary of a range of 

variables can be found in (Gould et al., 2011; Kleiner and Rajani, 2001; Wilson et 

al., 2017; Yamijala et al., 2009).  

Environmental factors such as weather and soil can have either a direct or indirect 

impact on the failure of different pipe materials. An example of a direct weather-

related impact on pipeline failure would be the successive embrittlement of iron 

pipes caused by prolonged periods of cold weather or air frost. However, indirect 

impacts of prolonged cold weather are also evident, where the mechanism of 

increased external pressure being exerted on the pipeline by frost-loading of the 

surrounding soil has been reported (Gould et al., 2011). Conversely, prolonged 

periods of dry weather (leading to increased evapotranspiration and high soil 

moisture deficit) can cause shrinkable soils, such as clay, to shrink. This can lead 

to increased external pressure in the surrounding soil leading to pipeline failure. 

This mechanism of failure has shown to increase observed circumferential 

failures in some pipe materials, particularly in Asbestos Cement (AC) pipes 

(Folkman, 2018). Weather variables influencing pipeline failure tend to be highly 

dynamic and can vary on day to day basis. Other environmental factors, such as 

soil and tree impacts tend to be less dynamic, with factors, such as soil pH, depth 

to underlying bedrock and the presence of trees being regarded as static where 

variability only occurs over a long-time period.  

The operational management of water pipelines have a known and established 

impact on pipeline failure. Due to the often-extensive lengths of pipes in a water 

companies’ asset-base, there are numerous operational factors which can lead 

to the failure of water pipes. The most common factor leading to pipe failure is 
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the age of the asset, where older pipes are more likely to fail. For many UK water 

companies, there are still small lengths of the distribution network which can be 

dated back to the early 1900’s. Several studies statistically describe the 

relationship between asset age and pipeline failure probability (Kleiner and 

Rajani, 2001; Yamijala et al., 2009). The asset-base of individual water 

companies is often highly varied and encompasses a wide-range of different pipe 

materials of different ages, materials and diameters. In addition to this, water 

demand, pressure management, and internal water pipe temperatures have also 

been found to have a statistically significant impact on the failure of different pipe 

materials. Therefore, a statistical modelling approach must be capable of 

including a range of different variables, from both environmental and operational 

datasets. Independently, the factors which can lead to pipe bursts are well-known 

and extensively researched. However, due to the wide-range of contributory 

factors, the risks of pipeline failure are very heterogenous and can vary at small 

spatial scales. This means that water utility companies need to understand the 

specific risks which are prevalent in their own distribution network, as one set of 

specific risks may not necessarily be applicable to another geographical location.  

Due to the seasonality of pipeline failures in some pipe materials (Figure 1-1), 

statistical models are highly suitable for the prediction of pipeline failure. For this 

reason, the models developed in WISPA focussed on operational variables such 

as pipe age and diameter and various soil and weather conditions. For the ease 

of investigation, approximately 30 pipeline materials have been grouped, based 

on their physical properties, into 6 simplified material categories. For some pipe 

materials, failure rates are highly influenced by the antecedent and prevailing 

environmental conditions typical of the different seasons (Clayton et al., 2010; 

Gould et al., 2011; Kleiner and Rajani, 2001). Figure 1-1 highlights this 

seasonality, where notable increases in pipeline failure exist for Iron, asbestos 

cement (AC) and polyvinylchloride (PVC) pipes, for the summer and winter 

seasons, respectively. For pipeline materials, such as polyethylene (PE) and 

steel and ductile Iron (SDI), the failure rates are less influenced by season, and 

have a near continual rate of failure. Across the Anglian Water distribution 

network, pipes classified as “other” (O) have a varying failure rate across the 
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different seasons, with no distinct trend evident for any particular season. The 

seasonal trends of failure rates in different pipe materials relate directly to the 

model accuracies gained within the WISPA project, see Figure 1-2. 

 

Figure 1-2: Annual WISPA model performance for individual material types. Data 

points represent the annual model error. Model error is calculated by the % 

difference in observed and predicted bursts (annually) 

Note: pipe materials are Iron (I), asbestos cement (AC), polyvinylchloride (PVC), polyethylene (PE), steel and ductile Iron 

(SDI) and pipes classified as “other” (O) 

Pipe materials which exhibit a highly seasonal rate of failure, such as Iron, AC 

and PVC, attained the lowest average model error in the previously developed 

WISPA models. Together, these three pipeline materials represent over 64% of 

the total network length and ~89% of all observed bursts (from 2006 – 2016). The 

largest range in model error from WISPA was recorded in PE pipes, with model 

predictions showing numerous instances of over and under-prediction. 

Polyethylene pipes make up over 27% of the network but account for only 7% of 

observed bursts. Nearly all model prediction for SDI and O pipes was over-

predicted during the 11 years, to a high degree on inaccuracy. However, these 

Model 

Overestimation 

Model 

Underestimation 
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material groups only represent around 8% of the distribution network, and under 

4% of observed bursts (Figure 1-2). 

This research aims to improve the modelling performance of the previously 

developed WISPA models, by 1) rigorous data cleaning, 2) material-specific 

variable selection, 3) material specific model building, 4) using additional 

secondary data sources such as trees and satellite derived variables. An 

exploration of the specific environmental conditions which lead to pipeline failure 

is anticipated to permit an enhanced ability to predict pipe failure. The work 

presented in this thesis provides a critique of the previously developed WISPA 

models, as well as an evaluation of new methods and datasets to construct a 

series of enhanced statistical models for Anglian Water. These models were 

designed to accurately predict the total number of bursts in a given period (week, 

quarter or annually). 

Accurate burst information is important as it can help inform important business 

decisions, such as determining the total capital invested into tackling pipeline 

failures, the accurate setting of burst targets which are agreed with the regulator, 

and in the long-term, helping to reduce the customer bill’s by making water 

distribution more efficient.  

On this premise, many companies are looking towards data-driven approaches 

to aid business operations. Statistical models can help identify pipes which are 

most at risk of failure based on the pipes physical condition (material, age, 

diameter and previous incidences of failure) and the prevailing environmental 

conditions (soil, weather and tree conditions). In doing so, modelled predictions 

can be used to identify the most at-risk parts of the distribution network.  

The models developed within this thesis include both static and dynamic 

operational and environmental datasets (Table 1-1). Akaike’s Information 

Criterion (AIC) was used to identify predictive variables of pipeline failure for each 

pipeline material. The variables which was identified as being predictive for each 

material type were consequently used to construct material-specific stepwise 

Poisson regression models. Only variables which are predictive of pipeline failure 

for each material type are included in the model testing, allowing for the 
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development of parsimonious models which include only relevant variables for 

each pipe material type. Stepwise Poisson regression models were selected due 

to their ability to include several different classes of data, which is important given 

the wide-range of different factors contributing to pipeline failure. The general 

mathematical form for the stepwise Poission regression models is detailed in 

Section 2.3.1.  

An advantage of using statistical models when aiding burst detection is the ability 

to remove bias and subjectivity when deploying task forces. Statistical models, 

when used correctly, can succinctly synthesise a large amount of empirical 

information which is not always achievable by humans, particularly in times of 

high business pressure. Furthermore, statistical models can account for a wide-

range of different scenarios and help inform critical business decisions, both 

retrospectively and prospectively. However, it is important to note that such 

models are not intended to replace human efforts in predicting burst pipes, but 

act as an operational tool to help inform and aid operational management 

decisions.  

The methods and modelling approaches presented within the thesis are 

transferable to other geographical locations, as the techniques can be applied 

where relevant data exists. The evaluation of several new datasets and the 

inclusion of new environmental parameters has the potential to improve pipeline 

failure prediction and is an essential step in the evolution of different water 

pipeline failure models. 

1.4 Motivation of research 

The increased accessibility of additional environmental datasets and 

improvement in computing power has facilitated statistical modelling at 

successively finer spatial and temporal resolutions. This research investigates 

the potential of several data-driven techniques to create a series of material-

specific water pipeline failure models for an entire drinking water distribution 

network. An overview of the different datasets used throughout this research is 

presented in Table 1-1. Through an increased understanding of the 

environmental and operational factors leading to water infrastructure failure, utility 
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operators are able to monitor the performance of the network and identify 

geographical areas which would benefit from increased investment or different 

proactive management practices. 

From an industrial perspective, the previously developed WISPA models have 

been useful for regulation purposes and for asset planning, however, Anglian 

Water now wants to use statistical modelling for proactive asset management 

and the short-term forecasting of asset failure. On this premise, the reliability of 

the pipeline failure prediction needs to be improved. 

No previous studies have included the representation of trees into statistical 

models predicting bursts in different pipeline materials. This thesis evaluates the 

use of a recently released national tree inventory, which presents a novel 

opportunity to analyse the impacts of trees to an entire water distribution network. 

In addition to the representation of trees in statistical models, this research also 

evaluates a beta version of a new high resolution (5 km tiled) weather dataset 

from the Met Office (MORECS) and evaluates the use recently launched satellite 

data (Sentinel 1) for the low-cost and regional monitoring of soil related ground 

deformation. A description of the datasets used in this thesis are outlined in Table 

1-1.  

The wider motivation of this work can be seen as seeking to conserve water 

resource by further understanding the environmental risks posed to buried water 

distribution networks helping to mitigate against further pipeline failures. 

Moreover, the modelling techniques described within this thesis are suitable for 

the prediction of other buried assets, such as sewerage and gas pipelines.  
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Table 1-1: Description of the datasets used throughout this thesis.  

Type  Dataset  Reference  Data Type  Resolution Details 

Used in 

Objectives 

Soils  

 

 

National Soils 

Map  

Hallett et al., 

2017 

GIS Vector 1:250,000 GIS map containing information relating to a wide range of soil factors, including soil 

texture, corrosivity to iron, depth to bedrock, shrink swell likelihood, hydrology of soils 

type and hydrological rock type. 

Data licensing type: Shared data from the National Soils Research Institute 

2, 3, 4, 5  

National Perils 

Directory  

Pritchard et 

al., 2014  

GIS Vector  1:250,000 GIS map containing information relating to the flood susceptibility, climate adjusted clay 

hazard, soft and compressible soil hazard.  

Data licensing type: Shared data from Cranfield University 

2, 3, 4, 5  

Weather 

 

MORECS  Met Office, 

2018a 

Tabular  40 km and 

5 km tiled 

grid  

The Met Office Rainfall and Evaporation Calculation System (MORECS) dataset, 

containing weekly estimates of Soil Moisture Deficit (SMD), temperature, sunshine 

hours and vapour pressure.  

Data licensing type: Shared data from the Met Office 

2, 3, 4  

Met Office 

Regional 

Climate 

Summaries 

Met Office, 

2018b 

Tabular Monthly  Regional climate summaries including temperature, rainfall, days air frost (mean, 

minimum and maximum). The climate summaries provide climatic information from 

1971-2018.  

Data licensing type: Open data from the Met Office 

2, 3, 4 

Daily 

Volumetric Soil 

Water Content  

CEH, 2017 Tabular In situ 

point  

30-minute measurements of volumetric water content taken at a depth of 10 cm at two 

sites. Measurements were taken with a time-domain transmission probe.  

Data licensing type: Open data from the Centre of Ecology and Hydrology 

2,3,4 
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Tree National Tree 

Map  

Bluesky, 

2018 

GIS Vector Centimetre  The GIS layer includes the height and canopy extent of all trees over 3.5 m in a GIS 

format. 

Data licensing type: Shared data from Bluesky 

5 

Operational Pipe Network Anglian 

Water 

GIS Vector Centimetre GIS vector layer including information to the location, length, material, age, and 

diameter of pipeline. 

Data licensing type: Shared data from Anglian Water 

3, 4  

Burst Dataset  Anglian 

Water 

GIS Vector Meter  GIS vector file which includes information upon the timing and location of a historical 

archive of pipeline bursts. Further information includes the type of burst (i.e. proactive 

or reactive).  

Data licensing type: Shared data from Anglian Water 

1, 2, 3, 4 

Satellite 

 

Sentinel 1  ESA, 2015 Synthetic 

Aperture 

Radar (SAR)  

3 x 20 m in 

Range and 

Azimuth 

Sentinel 1a images collected in Single Look Complex (SLC) and Interferometric Wide 

(IW) mode. The images were collected in VV polarisation. The relevant precise orbit 

information was also acquired to ensure correct co-registration of image pairs. 

Data licensing type: Open data from the European Space Agency (ESA) 

1, 2, 3, 4  

SRTM  NASA, 2017 Digital 

Elevation 

Model (DEM) 

90 m  Provides a rasterised output of elevation at a 90 m resolution. 

Data licensing type: Open data from the National Aeronautics and Space 

Administration (NASA) 

5 
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1.5 Research aim and objectives 

The requirement of more accurate and fully representative models for the 

prediction of water pipeline failure is vital to assist the operational management 

of water distribution networks. There is scope to improve current methods of 

pipeline failure prediction by enhancing the representation of soil, weather and 

trees variables within operational statistical models. 

 

The aim of this research is: 

To establish the impact of soils, weather and trees on water infrastructure 

failure and to develop a series of material-specific drinking water pipeline 

failure models to predict bursts for an entire distribution network. 

 

In order to test the aim, a series of research objectives have been developed to: 

1. Determine the impact of extensive data cleaning and pre-processing on the 

improvement of water-pipeline failure predictive modelling. 

2. Use variable selection techniques to identify predictive variables, and with 

these, construct a series of material-specific water infrastructure failure 

models. 

3. Measure the impact of trees on the failure rates of buried water pipes and 

establish whether a national tree inventory can enhance predictive models. 

4. Quantify the impact of using separate winter and summer models for the 

enhanced prediction of water infrastructure failure. 

5. Measure and evaluate the seasonal response of soil-related road and rail 

infrastructure movement using the Persistent Scatterers Interferometry 

technique to test if this would be a useful input to statistical modelling of 

pipeline failure. 
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1.6 Research approaches and thesis format 

This thesis adopts a range of different approaches in order to address the 

research aim and objectives. The thesis has been prepared in the style of 

formatted papers, with Chapters 2 to 5 representing individual research papers.  

 

Objective 1 concerns the process of cleaning the historical pipe burst data 

provided from Anglian Water plc., ensuring that a fully consistent and quality-

controlled dataset is available for the investigation of Objectives 2 to 4. Pre-

processing of the historical dataset of pipeline failure is a fundamental step to 

ensure that errors are not introduced into the dataset which is used for statistical 

modelling. 

 

Objective 2 uses a quantitative approach to select the predictive soil, weather 

and operational variables for specific pipeline material types. Material-specific 

predictive variables are then used for the development of individual pipeline 

failure models using Poisson regression, which is a form of Generalised Linear 

Model (GLM), as the statistical modelling technique. This technique was selected 

for consistency with previous Ofwat approved methods of pipeline failure 

prediction. Objective 2 tests the use of a beta version of a new meteorological 

dataset (MORECS), which offers an improved spatial resolution of key weather 

variables in comparison to previously available datasets. The developed models 

are then used as a foundation for Objectives 3 and 4. Objectives 1 and 2 are 

detailed within an individual research paper, which is included as Chapter 2 of 

the thesis. 

 

Objective 3 investigates the use of an additional secondary dataset, which 

represents the presence of trees of different heights in proximity to the distribution 

network and evaluates the dataset’s ability to enhance the models developed in 

Objective 2. Rate of failure analysis is used in Objective 3 to provide a quantitative 

investigation into the impact of trees on historical cases of pipeline failure. Using 

the same variable selection approach in Objective 2 (AIC), combinations of 

predictive tree height variables was identified and then added to the material 
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specific Poisson regression models. A direct comparison between the models 

developed in Objective 2, and the tree enhanced models developed in Objective 

3 was then compared. Objective 3 is addressed as an individual research paper 

and is included as Chapter 3 in the thesis. 

 

Objective 4 builds upon the most predictive models as developed through 

Objectives 1 to 3, and further enhances these models by increasing the 

representation of seasons into the model training and testing. This method is a 

novel approach to separately test and train statistical models using individual 

summer and winter datasets. Objective 4 is addressed as an individual research 

paper and is included as Chapter 4 in the thesis. 

 

Having tested new weather and tree datasets for their use in the statistical 

modelling of pipeline failure, Objective 5 investigates if near-real time remote 

sensing data can also be used to generate key modelling variables. A technique 

named Persistent Scatterers Interferometry (PSI) (Ferretti et al., 2001, 2000) is 

used to generate detailed regional measurements of soil-related surface 

deformation. Time series analysis was then undertaken to identify seasonal 

trends in soil-induced movement in different classes of above-ground 

infrastructure. Objective 5 is addressed within Chapter 5 of the PhD thesis, and 

is presented as an individual published research paper. 

 

Chapter 6 provides a synthesis of the findings outlined in Chapters 2 to 5 and 

describes how the results contribute to the research aim as outlined in this 

chapter. An account of the findings for each objective is also provided in Chapter 

6, discussing the novelty and intellectual contribution of the thesis. Alongside this, 

a series of recommendations are also made to provide guidance for future 

studies. 
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Figure 1-3: An overview of the research methodology followed. Each chapter has 

a series of individual objectives which have been designed to satisfy five 

individual objectives of the PhD thesis 
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1.7 Dissemination from the PhD thesis 

At the time of writing this thesis, one paper has been published in an international 

peer-reviewed journal and 3 papers are currently being prepared for submission 

in a similar format to Chapters 2, 3 and 4. Matthew North has been the first author 

on all chapters formatted as academic papers, and has written the content, 

conducted the practical research and data analysis, and has drawn discussion 

and conclusions. Dr Timothy Farewell and Dr Stephen Hallett have also 

contributed by acting as academic supervisors and have also helped in the 

preparation in submitted and published manuscripts. Additional advice and 

guidance for the technical aspect of the research methodology has been provided 

by Dr Daniel Farewell and Miss Audrey Bertelle in Chapters 2 and 5, respectively. 

A specific note of the author contribution is provided at the end of each 

manuscript. All papers are intended for submission to international peer-reviewed 

journals, of which the details are provided below: 

 

Currently un-submitted papers 

North, M., Farewell, T., Farewell, D., Hallett, S. (un-dated) ‘The development of 

water pipeline failure models for six materials using Poisson regression. A case 

study of Anglian Water, UK.’ Intention of publishing in “Environmental Modelling 

and Software” (Chapter 2) 

 

North, M., Farewell, T., Hallett, S. (un-dated) ‘Quantifying the impacts of trees on 

water infrastructure failure across an entire distribution network: enhancing 

current statistical-based methods of drinking water pipeline failure prediction’ 

Intention of publishing in “Environmental Modelling and Software” (Chapter 3) 

 

North, M., Farewell, T., Hallett, S. (un-dated) ‘Seasonal model training and testing 

to improve prediction accuracy of Iron and asbestos cement water pipeline failure 

models’ Intention of publishing in the “Proceedings of the Institute of Civil 

Engineers (ICE) – water management” collection (Chapter 4) 
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Published papers 

North, M., Farewell, T., Hallett, S. and Bertelle, A. (2017) ‘Monitoring the 

Response of Roads and Railways to Seasonal Soil Movement with Persistent 

Scatterers Interferometry over Six UK Sites’, Remote Sensing, 9(922). doi: 

10.3390/rs9090922. (Chapter 5) 

 

 

Note: Despite each chapter being presented as an individual research paper, 

references to individual chapters are made (i.e. Chapter 2) as opposed to 

formatted citations (i.e. North et al., 2017). This is due many of the manuscripts 

not yet published in their final form to date. 
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2 The development of water pipeline failure models for 

six materials using Poisson regression: a case study of 

Anglian Water, UK 

This chapter investigates Objectives 1 and 2, and is presented in the form of one 

unpublished research paper, intended for the journal Environmental Modelling 

and Software: 

North, M., Farewell, T., Farewell, D., Hallett, S. (2018) The Development of water 

pipeline failure models for six materials using Poisson regression: a case study 

of Anglian Water, UK. (unpublished) 

The components of this chapter can be considered in three parts: 1) the 

performance of data-cleaning and pre-processing to create a more reliable 

dataset for statistical modelling, 2) the selection of key environmental (soil and 

weather) and operational variables for the prediction of water infrastructure 

failure, and 3) building a series of material specific water infrastructure failure 

models for the Anglian Water distribution network. This chapter forms the basis 

of the models discussed in Chapters 3 and 4. 

 

Figure 2-a: Objectives aimed to be investigated within this chapter in context of 

the overall thesis 
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Abstract 

Statistical models that predict the location and timing of water pipeline failure 

allow utility companies to manage assets in a more cost-effective manner. 

Different pipe materials exhibit different failure mechanisms, which are controlled 

by variations in weather, soil and infrastructure-related factors. This study used 

Poisson GLMs and selected variables using Akaike’s Information Criterion (AIC) 

to develop six material-specific water pipeline failure models (iron, asbestos 

cement, polyvinylchloride, polyethylene, steel and ductile Iron, pipes classified as 

“other”). An 8-year (2008-2016) dataset of infrastructure failure over an entire 

38,000 km water distribution network was used for model training and prediction, 

using a 50% hold out sample. Model input datasets included soil, weather and 

infrastructure information. Results have highlighted 31 variables which are 

predictive of asset failure. The lowest error between observed and predicted 

bursts was attained for asbestos cement pipes (0.59%) and Iron pipes (2.64%). 

Findings are discussed in context of the environmental causes of pipeline failure 

and the applications of the proposed methods, considering the implications for 

the wider utility sector. 

 

Key words: Water Infrastructure, Pipe Burst, Weather, Soils, Generalized Linear 

Models, Variable Selection 
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Highlights 

 Identification of soil, weather and operational variables predictive of asset 

failure 

 Water pipeline failure predictions using Poisson regression 

 Variable selection and model building performed using Akaike’s 

Information Criterion 

 Development of material-specific pipeline failure models 

 Prediction of pipeline failure over a whole water distribution network 

2.1 Introduction 

Globally, water distribution networks are ageing and are subject to a wide-range 

of environmental and infrastructure factors which induce pipeline failure. 

Understanding the factors leading to infrastructure failure is vital for utility 

companies seeking to maintain a resilient and efficient potable distribution 

network. Water companies use mathematical modelling to predict asset failure 

(Kleiner and Rajani, 2001; Pritchard et al., 2014; Yamijala et al., 2009). This is of 

particular importance given global climatic change, as the processes leading to 

asset deterioration may be accelerated or adopt different spatial or temporal 

patterns (Pritchard et al., 2015a; Wols and van Thienen, 2014). 

There is a close relationship between the environment and pipeline failures 

(Farmani et al., 2017; Francis et al., 2014; Wols and van Thienen, 2014; Yamijala 

et al., 2009). In understanding the spatial and temporal variability of these 

relationships, statistical modelling can aid the prediction of the timing and location 

of burst water mains. Drawing upon predictions of pipeline failure, water utilities 

may adopt proactive management approaches to mitigate network risks, to aid 

reporting to regulatory bodies, to minimise disruption to water provision, and to 

reduce expensive reactive management practices and related financial penalties. 

Weather factors, such as rainfall, high or low temperature, days of air frost, 

sunshine and high Soil Moisture Deficit (SMD) can exert direct or indirect stresses 

on the pipe network by impacting on the soil that surrounds the pipe, or the water 

inside it (Gould et al., 2011; Wols and van Thienen, 2014). Differential soil 
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movements are common in many clay rich soils and increase failure rates of 

buried assets (Francis et al., 2014; Wols et al., 2014). In temperate climate 

countries, such as the UK, the seasonal shrinking and swelling of clay soils is 

controlled by soil moisture (Chapter 5). Soil movement correlates with higher rate 

of burst pipes in summer (periods of soil shrink) and autumn/winter (periods of 

soil swell) (Gould et al., 2011; Wols and Van Thienen, 2014). Other factors, such 

as air temperature, have a more direct impact on the failure rates of some pipe 

materials, where the materials possess different tolerances to temperature 

thresholds (Wols and Thienen, 2016). 

2.1.1 Approaches for modelling water pipeline failure  

Modelling approaches suitable for the analysis of pipeline failure may be 

categorised into physical and statistical approaches (Kleiner and Rajani, 2001; 

Rajani and Kleiner, 2001). Physical models simulate the behaviour of pipe 

materials by analysing the mechanical performance of the pipeline itself, the 

internal loads due to operational practices, and material deterioration due to 

external factors (Rajani and Kleiner, 2001). These models are either probabilistic 

(including potentially unknown mechanisms of failure or random variation) or 

deterministic (including only known mechanisms of failure with no random 

variation). These methods are useful in identifying how pipes react under different 

environmental and operational conditions. However, they require a large amount 

of detailed input data which is often costly or difficult to obtain. Typical input data 

suitable for physical models was summarised by Rajani and Kleiner (2001) into 

three categories: operational factors (such as structure of material, material type, 

soil-pipe interactions and installation quality), loading on the pipe (internal 

pressure and external pressure) and material deterioration (such as chemical, 

biological and electro-chemical interactions). Conversely, statistical models 

provide a useful alternative due to their ability to be used with varying levels of 

input data (Farmani et al., 2017; Rajani and Kleiner, 2001; Yamijala et al., 2009). 

Geographical Information Systems (GIS) can attribute pipeline data with soil, 

weather and infrastructure data at a range of different spatial scales. Typically, 

this has been used to investigate the environmental conditions present at the time 
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of and preceding pipeline failure (Wols and van Thienen, 2014). Statistical models 

are often used to predict water pipe failure due to their relative low cost by 

comparison to physical models, and their ability to be used with a range of 

different input data. Several types of statistical models exist and have been 

applied to predict water pipe failure, such as Proportional Hazard model (Park, 

2004), Artificial Neural Networks and Neuro-fuzzy Systems (Jafar et al., 2010; 

Tabesh et al., 2009), Bayesian belief networks (Francis et al., 2014), and 

Generalised Linear Models (GLM’s) (Farmani et al., 2017; Yamijala et al., 2009). 

Authoritative reviews of the various statistical methods for predicting water pipe 

failure are available (Kleiner and Rajani, 2001; Wilson et al., 2017). 

Selection of the correct model and input variables is critical for proactive asset 

management (Farmani et al., 2017). The model should be accurate, reproducible, 

adaptable and practical in an industrial context. This study investigates the ability 

of Poisson regression generalised linear models to predict pipeline failures. This 

approach was selected for its simplicity, adaptability, practicality and 

reproducibility. 

2.1.2 Variable and model selection methods for statistical models 

To develop an accurate and interpretable statistical model, careful selection of 

input variables is vital (Li et al., 2013). Several techniques have been developed 

which quantify the predictive ability of individual variables. Statistical tests such 

as Akaike’s Information Criterion (AIC) and Bayesian Information Criterion have 

been used in many disciplines since their creation in the 1960’s (Morozova et al., 

2015). Several studies have used AIC to evaluate the influence of covariates on 

the prediction of a response variable, or for final model selection, using water 

infrastructure failure datasets (Park, 2004; Weirich et al., 2015). AIC is suitable 

for exploratory analysis and time series applications, such as forecasting, 

whereas Bayesian Information Criterion is better suited to confirmatory analysis 

and controlled experiments (Aho et al., 2014). Both methods can be employed in 

a stepwise approach, where the effect of either adding variables (forwards 

selection), or removing variables (backwards elimination), or a hybrid mixture of 

the two approaches can be adopted (Zhang, 2016). Other variable selection 
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techniques include model averaging, such as Bayesian Model Averaging (BMA), 

and penalised regression methods, such as Least Absolute Shrinkage and 

Subset Operator (LASSO) and the Elastic Net. Model averaging methods such 

as BMA allow the incorporation of a priori knowledge to variable selection and 

allow for model uncertainty to be averaged across all models selected (Morozova 

et al., 2015). Penalised regression methods such as LASSO or Elastic Net have 

been less widely used with water utility datasets but have been implemented for 

variable selection and model building in other scientific disciplines. Penalised 

regression methods decrease model complexity whilst keeping all explanatory 

variables, which is one advantage of these models. Whilst other approaches 

could have been used to select variables, this study has implemented AIC 

stepwise variable selection, as this is easily calculated from GLM models, which 

is the currently approved method of pipeline failure prediction by the UK water 

industry regulator, Ofwat. Furthermore, in comparison with other variable 

selection techniques, AIC stepwise methods are relatively easy to implement and 

communicate, an important consideration when addressing the pragmatic 

reproducibility and application of the work in an industrial context. 

2.1.3 Overview of this study 

This paper presents a statistical approach to select variables and build models to 

predict the location and timing of water mains bursts across an entire 38,000 km 

potable water distribution network, over an 8-year (2008 – 2016) period for the 

Anglian Water region of the UK (Figure 2-1). 

Variable selection was undertaken using AIC to build, what is here termed, 

predictive stepwise GLM for six groups of pipe materials: Iron, Asbestos Cement 

(AC), Polyvinylchloride (PVC), Polyethylene (PE), Steel and Ductile Iron (SDI) 

and pipes classified as “Other” (O). O pipes represent either unclassified or rare 

pipe materials. Following a preliminary process of variable selection, a series of 

individual stepwise GLMs (Nelder and Wedderburn, 1972) was built for each pipe 

material based on the selection of the most predictive variables as indicated by 

the AIC. 
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This study improves understanding of the impact of environmental conditions on 

the rates of failure in common pipe materials. The development of material-

specific stepwise pipe failure models highlights contributory environmental 

factors which directly impact specific pipe materials. Older pipe materials such as 

Iron and AC pipes are strongly influenced by environmental conditions such as 

temperature (Wols and Thienen, 2014), SMD (Gould et al., 2011) and soil 

properties (Farmani et al., 2017). Newer pipe materials, such as PE, are more 

resistant to environmental conditions (Davis et al., 2007). 

 

Figure 2-1: Study area extent of the Anglian Water service area. The drinking water 

distribution network is shown as red, and the relative position of the service area 

is shown as an insert map 

Note: MORECS is the Met Office Rainfall and Evapotranspiration Calculation System, and represents the weather 

data used within this study 
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2.2 Materials 

2.2.1 Study area 

Anglian Water’s drinking water distribution network covers an area of 

approximately 27,500 km-2 in East Anglia, and the town of Hartlepool (Figure 2-

1). The prevailing climate of the region is temperate oceanic, with distinct 

seasonal variations in temperature and precipitation events throughout the year. 

Temperatures across East Anglia range from a typical maximum average 

temperature of 22.2°C in July to a minimum average temperature of 1.1°C in 

February. Rainfall is highest during months November, December and January, 

whilst the driest months are July, August and September (Met Office, 2018a). 

Across East Anglia there are considerable deposits of silts, clays and peat soils 

which are derived from marine and riverine alluvium from previous glaciations 

and transgressions of the North Sea (Pritchard et al., 2015b). Due to the intra-

annual variation of sunshine hours, temperature and precipitation there is a 

strong seasonal pattern of SMD, with a high SMD during summer and autumn 

months, and a low SMD during winter and spring. This, combined with the 

abundance of shrinkable soils in East Anglia (Pritchard et al., 2015a), create high 

ground movement potentials in this region. 

Because pipe failures are influenced by infrastructure parameters (material, age 

and diameter), weather parameters (temperature, soil moisture deficit), and soil 

parameters (corrosivity, texture, ground movement potential), these are the three 

main families of data used in this study. Substantial data cleaning was required 

to ensure data consistency, veracity and validity to train and test the predictive 

models, which is detailed in Section 2.2.5. The following sections describe the 

input data and the data processing required. 
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2.2.2 Infrastructure data 

Pipe and burst data was provided by Anglian Water plc., representing the East 

Anglian region of the UK, see Figure 2-1. 

2.2.2.1 Pipe network data 

The oldest pipes in the Anglian Water distribution network are Iron pipes, followed 

by AC, PVC, PE & SDI pipes. O pipes have a wide range of typical installation 

dates ranging from 1881 to 2001 (Table 2-1) and are generally constructed from 

rare materials (such as lead or glass reinforced plastic) or remain unclassified. A 

description of the operational variables included in the models is provided in 

Table 2-1, a description of the specific diameter and age bands is provided in 

Table 2-2, and a summary of all material types and the distribution network is 

provided in Table 2-3. 

Table 2-1: Description of the infrastructure variables included 

Variable Name Description  Units Variables 

Material Simplified material (Table 2-3) Category 1 

Diameter Band Categorised bands (Table 2-2) Category 1 

Age Band Categorised band (Table 2-2) Category 1 

Pipe age mean Mean age of pipe Date 1 

Pipe age max Maximum age of pipe Date 1 
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Table 2-2: Age Band and Diameter Band ranges used in this study 

Age Band Range 

0 Unknown 

1 <1881 

2 1881 to 1900 

3 1901 to 1920 

4 1921 to 1940 

5 1941 to 1960 

6 1961 to 1980  

7 1981 to 2000 

8 2001 to 2020 

Diameter Band Range 

1 <165 mm 

2 165 to 320 mm 

3 321 to 625mm 

4 >625mm 

 

Table 2-3: Pipe installation date, length and number of bursts by pipe material Note: 

pipe materials are Iron (I), Asbestos Cement (AC), Polyvinylchloride (PVC), Polyethylene (PE), Steel and Ductile 

Iron (SDI), and pipe materials classified as “Other” (O). Total length of pipe is based on service week (07.10.2008). 

The total bust number value extends temporally from 07.10.2008 to 27.09.2016 

Material 
Installation range Total length (km) 

(% of network) 

Total bursts 

(% of bursts) 

bursts per km 

of pipe 

I 1881 to 1921 11,735 (30. 22%) 19,212 (48.10%) 1.63 

AC 1920 to 1941 7,259 (18.69%) 9,027 (22.6%) 1.24 

PVC 1960 to 2001 6,126 (15.77%) 7,395 (18.51%) 1.20 

PE 1981 to present 10,538 (27.14%) 2,818 (7.05%) 0.26 

SDI 1960 to 2001 1,902 (4.89%) 739 (1.85%) 0.38 

O 1881 to 2001 1,267 (3.26%) 749 (1.87%) 0.59 

Total  38,827  39,940  
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2.2.2.2 Pipe burst data 

A total of 39,940 bursts was analysed from the 7th October 2008 to the 27th 

September 2016 and was provided by Anglian Water. For this investigation, 

bursts which are classified as “reactive” was used as opposed to total number of 

both proactive and reactive bursts. A reactive burst is defined as a burst which 

was identified or reported by a third party, such as a member of public. A proactive 

burst is defined as a burst which was identified by a member of the company and 

was not reported officially by the public. Reactive bursts was selected for 

investigation as it is this category of pipeline failure in which Anglian Water was 

unable to predict the timing and location of. The largest burst rate per kilometre 

of pipe is seen in Iron, AC and PVC pipes. These pipe materials account for 

89.21% of the overall reactive bursts during the observation period. 

2.2.3 Soil data 

This study used Cranfield University’s datasets: National Soil Map and Natural 

Perils Directory and associated soil property datasets (Hallett et al., 2017; 

Pritchard et al., 2014), to determine the influence of soil variables on the rate of 

water infrastructure failure. The 1:250,000 maps include information related to a 

wide range of physical factors relating to soil, and is a result of an extensive field-

based campaign from 1939 to 1987 (Hallett et al., 2017). Soil is critical due to its 

immediate proximity to the laid pipe materials. In total, 49 soil variables was 

selected for investigation. These variables were categorised into five groups 

relating to soil texture, corrosivity to Iron, depth to rock, shrink-swell likelihood 

and the hydrology of soils (see Table 2-4). Soils information was attributed to 

each pipeline and burst using a GIS (see Section 2.2.5). 16 variables was 

included to evaluate the influence of clay, silt, sand and peat soil texture on the 

failure of buried assets. Variables included the minimum, maximum and average 

percent of soil texture in each soil association (being a collection of soil types 

typically occurring together in a landscape), along with a variable to describe the 

texture of the most abundant soil type in each soil association. This allowed an 

evaluation as to how soil texture impacts upon the failure of buried assets in 

common soil properties in the UK. 6 variables was included which evaluate soil’s 
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corrosivity to ferrous Iron. Alongside this, 3 variables was included which 

evaluated the minimum, maximum and the average pH of the soil association in 

which the burst occurred. The soils pH can directly impact the corrosivity of the 

soil, and therefore the potential degradation of different pipe materials, 

particularly metallic pipe materials. The depth of underlying geology has the 

potential to control ground movement potential as it can determine the available 

soil water content  (Chapter 5). Therefore, several variables describing the 

drainage and the hydrological properties of the soil, including hydrology of soils 

type and hydrological rock type, was included as explanatory variables as they 

can influence soil ground movement potential in the region. On this basis, the 

average, maximum and minimum depths of bedrock was also included as initial 

variables for this study. A full description of these variables is in Boorman, Hollis 

and Lilly (1995).  

 

Table 2-4: Description of the soil variables included in this study 

Attribute Description  Variables 

Data from the National Soil Map of England and Wales  

Clay % Clay soil content. (Minimum, maximum, weighted mean and 

the value of the most abundant soil series). 

4 

Silt % Silt soil content. (Minimum, maximum, weighted mean and the 

value of the most abundant soil series). 

4 

Sand % Sand soil content. (Minimum, maximum, weighted mean and 

the value of the most abundant soil series). 

4 

Peat % Peat soil content. (Minimum, maximum, weighted mean and 

the value of the most abundant soil series). 

4 

Organic Carbon % Organic carbon soil content (minimum, maximum, weighted 

mean). 

3 

pH The pH of the soil (measured mean, min and max) of the soil 

association. 

3 

Depth to Rock Depth to bedrock (mean, min and max) (cm). 3 
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Corrosivity to 

Iron 

5 level categorical classification of the corrosivity of the soil to 

ferrous Iron at 1m depth. Dominant class and % composition of 

individual classes. 

6 

Shrink Swell 6 levels categorical classification of the shrinkability of the soils. 

Dominant class and % composition of individual classes in the soil 

association. 

7 

Hydrology of 

Soil and 

Geology 

Provides information of the water regime of the soils. Hydrological 

soil type (HOST) and Hydrological rock type (HYDROCK). 

Dominant class in the soil association provided. 

2 

Flood 

Susceptibility 

Indication if the soil shows evidence of having been flooded. 1 

Climate-

adjusted clay 

hazard 

A 9-class shrink swell classification indicating the likelihood of the 

soil to expand and contract, modified by the potential SMD (1961-

1990). Calculated for the highest shrink swell class at different 

minimum % contributions. 

6 

Soft and 

compressible 

soils hazard 

Soils which contain soft soils or are at risk of containing soft soil. 2 

 Total variables:  49 

2.2.4 Weather data 

2.2.4.1 Days air frost 

The total number of day’s air frost has been included as a variable with a known 

impact on the failure rate of buried pipelines, particularly Iron (Wols and Thienen, 

2016). This data was acquired, at no cost, from the Met Office climate summaries 

dataset for eastern England, where the average number of day’s air frost has 

been recorded for the period from 1971 to 2018 (Met Office, 2018a). These data 

provided the regional monthly average number of days in which air frost occurred 

across the Anglian Water distribution network. 

2.2.4.2 MORECS weather data (40 km and 5 km) 

Weather and climate data was obtained from the Met Office Rainfall and 

Evaporation Calculation System (MORECS) (Met Office, 2018b). MORECS 

provides weekly estimates of actual evaporation, potential evaporation, SMD, 
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and hydrologically effective runoff at two spatial resolutions, 40 km and 5 km tiled 

output. The gridded output from both datasets (MORECS 40 km and 5 km) was 

attributed to each pipeline and burst incident using a GIS. In total, 74 weather 

variables was selected for investigation (Table 2-5). These variables are 

categorised across four themes: rainfall, SMD, sunshine, and temperature. 

Variables which represented the minimum, maximum and mean rainfall, SMD 

and temperature in a 1, 2- and 4-week period preceding the burst event was 

included in the model’s development. The inclusion of multiple variables, over 

different time periods, allowed for the representation of all potential environmental 

conditions in the case where there was a lag between the date of the actual burst 

occurrence and the reported burst date.  

2.2.4.2.1 Derived temperature variables 

A range of different temperature variables was included in this study due to the 

acknowledged influence temperatures exert upon the failure rate of different pipe 

materials, and the many ways temperature can be investigated (Farmani et al., 

2017; Wols and Thienen, 2016, 2014). The inclusion of multiple temperature 

variables, at 1°C increments (from 0 to 10°C), allowed the effective identification 

of thresholds most likely to lead to infrastructure failure in different pipe materials. 

In following this approach, it was posited that if multiple thresholds were identified 

then an alternative, more continuous, modelling of temperature could be 

considered, but this was not expected to be the case. A summary of the methods 

used to create the temperature accumulation and temperature change are 

described in Table 2-5.  

2.2.4.2.2 Soil Moisture Deficit (SMD) 

Numerous SMD variables was included in this study, due to the known impact of 

differential soil movements on water infrastructure failure (Wols and van Thienen, 

2014). Several variables, describing different SMD conditions was included to 

identify potential threshold where pipeline failure, in different pipe materials, 

occur. Due to the abundance of soils with high shrink swell potential across East 

Anglia (Pritchard et al., 2015b), it is likely that SMD is an important variable for 

predicting water pipe failure across the water distribution network. MORECS 5 
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km includes a modelled output of SMD in different land cover types (grassland, 

deciduous and coniferous). The available water content, based on soil texture, 

are included as either low (e.g. sandy soils), medium (e.g. loamy soils) or high 

(e.g. peaty soils) helped to include a better representation of SMD as input 

variables. 

2.2.4.2.3 Rainfall 

Rainfall influences the amount of available soil moisture, therefore controlling 

ground movement potential in clay soils. On this basis, a total of 6 rainfall 

parameters was included in the initial variable selection. These variables were 

derived from both the 40 km and 5 km MORECS datasets and represent the total 

accumulated rainfall at 1, 2 and 4-week intervals. 

2.2.4.2.4 Sunshine hours 

Sunshine hours was included due to the potential impact on differential soil 

movements across the region. Sunshine has a direct impact on the rates of 

evapotranspiration therefore potential ground movement potential (Clark, 2002). 

2.2.4.2.5 Atmospheric Vapour Pressure 

A variable describing the atmospheric vapour pressure was also included as an 

initial explanatory variable. Vapour pressure is the partial pressure that water 

vapour exerts at any one time, its units are measured in hectopascals (hPa). 

Vapor pressure has been reduced in each MORECS grid square to mean sea 

level using a lapse rate of -0.025 hPa / 100 m respectively (Hough and Jones, 

1997).  

Table 2-5: Description of the weather variables included in this study 

Variable Name Description  Units Dataset  Variables 

Days Air Frost Total number of day’s air frost in a 
month 

days Met Office Climate 
Statistics 

1 

Rainfall Total accumulated rainfall over 1, 2 
and 4-week period preceding the 
reported burst date 

mm MORECS 5 and 
40km  

6 
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SMD Weekly mean SMD under different 
land uses (grassland, deciduous, 
coniferous, real land use) and in 
soils with different water holding 
abilities (High, Medium, Low) 

mm MORECS 5 and 40 
km  

10 

SMD Change The absolute change in mean SMD 
from the week the burst was 
reported to 1, 2 or 4 weeks before 

mm MORECS 5 and 
40km  

6 

Sunshine Hours Total weekly sunshine hours 
preceding the reported burst date 

hours MORECS 5 km 1 

Vapour Pressure  Vapour pressure is a variable which 
indicated the partial pressure that 
atmospheric water vapour exerts at 
any one time. Variable describes the 
weekly vapour pressure in the week 
preceding the reported burst date 

hPa MORECS 5 km  1 

Temperature Max Maximum air temperature recorded 
in the week the burst was reported 

°C MORECS 40 km  1 

Temperature Min Minimum air temperature recorded 
in the week burst was reported  

°C MORECS 40 km  1 

Temperature Mean  Mean air temperature recorded in 
the week the burst was reported 

°C MORECS 40 km  1 

Temperature Change The absolute change in mean air 
temperature from the week the burst 
was reported to 1, 2 or 4-weeks 
before 

°C MORECS 5 and 40 
km 

6 

Temperature ≤ (0 to 10°C) 
over 1 week 

The accumulated air temperature 
beneath a threshold (0 - 10°c, in 1°c 
increments) in a 1-week period 
preceding the reported burst date. 
Air temperature accumulations are 
calculated in 1°c increments below 
the threshold value. The greater the 
value of this variable, the colder the 
temperature was, for a prolonged 
period of time, in the previous week 
to the burst date 

°C MORECS 5 and 40 
km 

20 

Temperature ≤ (0 to 10°C) 
over 4 weeks 

The accumulated air temperature 
beneath a threshold (0 - 10°c, in 1°c 
increments) in a 4- week period 
preceding the reported burst date. 
Air temperature accumulations are 
calculated in 1°c increments below 
the threshold value. The greater the 
value of this variable, the colder the 
air temperature was, for a prolonged 
period of time, in the previous 
weeks to the burst date 

°C MORECS 5 and 40 
km 

20 

   Total Variables: 74 
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2.2.5 Data preparation  

To ensure that a fully consistent and error-free dataset was used for statistical 

modelling, data preparation was undertaken to ensure that the successful 

merging pipe, burst and environmental datasets. The result was a weekly 

summary of bursts per operational pipes joined with the environmental variables 

(as described in Sections 2.2.3 and 2.2.4). Pipes cohorts was created based on 

the grouping of pipe material, age and diameter. This ensured the creation of 

homogenised sections of pipes with similar characteristics. A description of the 

methods used to create pipe cohorts is given in Figure 2-2. The creation of pipe 

cohorts is essential to reduce the computational resource needed for statistical 

analysis and has been previously noted in several investigations (Kleiner and 

Rajani, 2001; Rostum, 2000; Xu et al., 2011).  

Individual datasets was created for the 6 individual material groups. Further 

sampling was then undertaken to attain separate model train and test datasets. 

For this, a 50% random sample was taken from the dataset, this created two 

datasets of equal length which was used for model training and model testing. 
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Figure 2-2: An overview of the pre-processing steps used to join the pipe network, 

burst and environmental data together, for the creation of a material-specific pipe 

cohort dataset  

2.3 Methods 

2.3.1 AIC variable selection method and stepwise GLM method 

GLM’s have been extensively used for environmental modelling due to their ability 

to evaluate an array of independent variables and non-normal count data, such 

as failures from infrastructure systems (Kleiner and Rajani, 2001; Yamijala et al., 
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2009). GLM’s generalise linear regression and link a set of explanatory variables 

to a response variable (Zhang, 2016). The Poisson GLM used in this study is 

given in equation 2-1: 

𝑃(𝑌 = 𝑦|�̅�) = 𝑒−µ µ𝑦

𝑦!
    

where 

𝜇 = 𝐸(𝑌|�̅�)    

and 

log(µ) =  log(L) + 𝛽0 + 𝛽1 𝑥1 + ⋯ + 𝛽𝑘 𝑥𝑘  eq. 2-1 

In this case, the total number of reactive bursts recorded in each pipe cohort 

(expressed above as 𝑦) is the response variable. The list of explanatory variables 

(represented as �̅� variables) are described in detail in Tables 2-1, 2-4 and 2-5. 

An offset of log length, log(L), was used to provide a model of the rate of pipe 

breaks, so direct comparisons of failure rates can be made between different pipe 

materials. In this study, variable selection was performed using the Akaike 

Information Criterion (AIC) (Akaike, 1974). This technique was selected to 

perform model comparisons based on each models’ ability to predict the 

response variable. The formula for AIC is given in equation 2-2: 

𝐴𝐼𝐶 = (−2) log(𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑) + 2(𝑛𝛽) eq. 2-2 

AIC was used as the basis to add explanatory variables which do, and remove 

those that do not, add to the model’s ability to predict the response variable. This 

allowed the development of parsimonious stepwise models with the minimum 

number of required variables (Yamijala et al., 2009). 

AIC was used initially to select influential variables to be used to create a stepwise 

GLM for each pipe material. In the first instance, the full list of variables (plus a 

null model) was evaluated using a series of Poisson GLMs to predict the 

response of pipe bursts based on each variable individually. A subset of the full 

dataset was used in this initial step to minimise the computational resource 

needed to evaluate the large range of variables. For each pipe material, a sample 
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dataset of 5 million observations, covering the study period, was used to run the 

GLM. For each of the pipe materials, a null model was run first. After this, AIC 

values was used as a threshold to eliminate covariates which were worse 

performing than the null model. This created a list of variables which was taken 

forward to the next step. The best performing variable (as indicated by the lowest 

AIC value) was then removed from the explanatory variable list and added to a 

stepwise model. At each step, variables with a higher AIC value than the best 

performing variable in the previous step was excluded. This allowed the removal 

of variables which did not add value to the stepwise GLM. This process was 

continued until either there was no more variables left to evaluate, or a maximum 

number of 12 steps was reached. The maximum of 12 steps was selected to 

minimise the possible influence of overfitting or the selection of uninformative 

parameters from noise. This process of variable selection and GLM model 

building is presented below in Figure 2-3. 
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Figure 2-3: A flowchart of the methods used to select influential variables and 

create the stepwise GLMs 
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2.3.2 Model building and testing 

Upon the final selection of stepwise models for each pipe material, predictions 

were made for each developed model’s, and predictions run so the best model 

could be selected based on the minimum Root Mean Squared Error (RMSE) 

between observed and predicted bursts. GLM models were trained using 50% of 

the full dataset and tested using the remaining 50%, as a hold-out sample. 

Predictions of pipe failure was recorded for each of the model steps for each 

material. The residual between observed and predicted, AIC, RMSE and Mean 

Absolute Error (MAE) was extracted from the model fit or calculated to describe 

the fit of the models. RMSE and MAE are standard metrics to evaluate model 

performance, analysing the deviance between a set of observed and predicted 

outcomes (Farmani et al., 2017). 

All data analysis was undertaken in the open-source software R (version 3.2.3) 

(R Core Team, 2015) using Cranfield University’s high-performance computing 

facility. The use of the high-performance computing facility was integral to the 

method, owing to the large volume of utility data and computational requirements 

of the methods chosen. 

2.4 Results 

2.4.1 Variable selection  

Diameter Band and Age Band were the most frequently selected variables in this 

study, both being selected a total of 4 times across the final models (Table 2-6). 

Diameter Band was identified as being a predictive variable in Iron, AC, SDI and 

O, whilst Age Band was selected as being a predictive variable in Iron, AC, PVC, 

and O models. The inclusion of pipe age minimum, maximum and average 

variables was also found to be predictive in the Iron, SDI, PVC and PE models, 

which suggests using the absolute age of the pipes (either maximum, minimum 

or average) is a viable alternative to categorised age in some investigated 

pipeline materials. Using a dynamic age range is important as it helps the models 

to adapt over time, as we would expect the rate of failure of a pipe material to 

change as they age. 
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Soil properties was repeatedly identified as being predictive of pipeline failure in 

many of the final models. The climate-adjusted clay hazard variable was selected 

as an important explanatory variable for Iron, AC and SDI pipe materials. This 

indicates the potential impact of soil shrink and swell on the failure rate of these 

pipe materials. Soils which have a high corrosivity to Iron was also selected as 

an important explanatory variable in the AC, SDI and PVC final models. Depth to 

bedrock geology was identified as an influential variable for both Iron and AC 

pipes, whilst the hydrological rock type variable was identified as being predictive 

for the failure of PE pipes. The hydrology of soil type variable was also identified 

as a predictive within the SDI model. The identification of depth to bedrock, 

hydrological rock type and hydrology of soil type as predictive covariates suggest 

that soil drainage, periodic water-logging and soil hydrology are important factprs 

impacting upon the failure of these pipe materials. Soil texture was also identified 

as being predictive for several of the pipe materials, particularly in the AC model. 

Two sand texture variables was selected for the AC model, thereby indicating the 

influence of sand soil texture to the failure of AC pipelines. The final selected 

model for PVC also included silt minimum and soft and compressible soil hazard 

variables therefore suggesting that soft, unconsolidated alluvium is an important 

variable for the predicting the failure of PVC pipes. 

 

Table 2-6: Variable selection count across all pipe materials for all models. 

Numbers represent the order of selection in stepwise model building 

Note: grey numbers indicate that the variable was identified as being predictive but was not included in the final 

model  

  I AC PVC PE SDI O 

Infrastructure Age Band 7 8 3   3 

Diameter Band 2 1  4 1 1 

Pipe age minimum     3  

Pipe age maximum 9  5    

Pipe age average    3   
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Soil  Corrosivity to Iron  4 6  4  

Climate-adjusted clay hazard 3 5   8  

Depth to rock 6 2     

Hydrology of Soils Type (HOST)     2  

Hydrological Rock Type (HYDROCK)    2   

Shrink Swell 10      

Sand Minimum   8    

Sand Maximum  7     

Sand washout hazard  9     

Silt Minimum   2    

Soft soil (% “at risk”)      6 

Soft and compressible soils hazard   9    

Weather Day’s Air Frost 5      

SMD (MORECS 40 km)  3     

SMD change 2 weeks (MORECS 40 km)     10  

SMD Deciduous Medium soil (MORECS 5 km) 4     4 

SMD Deciduous Low soil (MORECS 5 km)     6  

Temperature change 1 week (MORECS 5 km) 8    7  

Temperature ≤ 0°C 4 weeks (MORECS 5 km)     5  

Temperature ≤ 2°C 1 week (MORECS 5 km)      5 

Temperature ≤3°C 4 weeks (MORECS 40 km)   4    

Temperature ≤4°C 4 weeks (MORECS 40 km)  6     

Temperature ≤5°C 1 week (MORECS 5 km) 1      

Temperature ≤5°C 1 week (MORECS 40 km) 11      

Temperature ≤5°C 4 weeks (MORECS 40 km)    1  2 

Rainfall (MORECS 40 km)   7    

Vapour Pressure (MORECS 5 km)   1    
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Important weather variables identified as being predictive of pipeline failure 

include 10 temperature and 4 SMD variables, along with the total number of day’s 

air frost, rainfall and vapour pressure. Temperature was identified as an important 

variable in all pipe materials investigated, with Iron, SDI, and O pipeline failure 

models including two or more temperature related variables. The final Iron model 

includes 2 temperature related variables from MORECS 5 km dataset 

(Temperature change 1 week and Temperature ≤5°C 1 week) and the equivalent 

variable from MORECS 40 km dataset (Temperature ≤5°C 1 week). The selection 

of temperature variables from both MORECS 40 km and 5 km datasets suggests 

that spatial resolution of temperature measurements is less important for the 

prediction of pipeline failure. The number of day’s air frost was also included in 

the Iron model, thereby further confirming the vulnerability of Iron pipes in 

temperatures under 5°C. Despite the inclusion of temperature variables at 1°C 

increments under 10°C, all variables selected show that pipe materials are more 

susceptible to failure under a 5°C threshold. Further to this, AC, PVC and PE 

models included temperature variables which are represent longer durations of 

cold temperatures over 4 weeks, whilst Iron pipes included variables which 

represent temperature change over a shorter 1-week period, see Table 2-6. O 

and SDI pipeline failure models contain temperature variables of both a 1 and 4-

week duration, suggesting there is no clear response to the duration of cold 

weather and the failure of these pipe materials. 

SMD variables were included in the final Iron, AC, SDI and O models. The most 

common SMD variable type to be identified as being predictive is SMD in a 

deciduous land cover type in either low or medium density (MORECS 5 km 

dataset), see Table 2-6. In all final models which contain an SMD related variable 

(with the exception of O) a climate-adjusted clay hazard variable is also included. 

This suggests that there is prominent effect of clay shrink across the Anglian 

region which impacts upon the failure of Iron, AC, and SDI pipeline materials. 

The failure of PVC is also influenced by weather variables, rainfall and vapour 

pressure, and is the only pipe material for which these variables was identified as 

being predictive. 
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Table 2-7: Final model variables for the six different pipe materials 

Note: material groups are Iron (I), asbestos cement (AC), polyvinylchloride (PVC), polyethylene (PE), steel and 

ductile Iron (SDI), and pipes classified as “other” (O)  

Material  Variables  

I Temperature ≤5°C 1 week (MORECS 5 km) + diameter band + climate-adjusted clay hazard 

+ SMD deciduous (M) + day’s air frost + depth to bedrock + age band + temperature change 

1 week (MORECS 5 km) + pipe age max + shrink-swell (1) + temperature ≤5°C 1 week 

(MORECS 40 km) 

AC Diameter band + depth to bedrock + SMD + corrosion to Iron + climate-adjusted clay hazard 

+ temperature ≤4°C 4 weeks (MORECS 40 km) + sand maximum + age band + sand washout 

hazard 

PVC Vapour pressure + silt minimum + age band + temperature ≤3°C 4 weeks (MORECS 40 km) 

+ pipe age maximum + corrosion to Iron + rainfall + sand minimum + soft and compressible 

soils hazard 

PE Temperature ≤5°C 4 weeks (MORECS 40km) + hydrological rock type + pipe age average 

SDI Diameter band + hydrology of soils type + pipe age minimum + corrosion to Iron + temperature 

≤0°C 4 weeks (MORECS 5 km) + SMD deciduous (L) + temperature change 1 week 

(MORECS 5 km) + climate-adjusted clay hazard 

O Diameter band + temperature ≤5°C 4 weeks (MORECS 40 km)+ age band + SMD deciduous 

(M) + Temperature ≤2°C 1 week (MORECS 5 km) 

  

2.4.2 Model prediction 

When applied to the 50% hold-out sample, all final stepwise models improve the 

predictive ability in comparison to a null model (Figure 2-4). This is evidenced by 

a reduction of RMSE as additional variables are added to the stepwise models. 

As shown in Table 2-8, the range in percent difference between predicted and 

observed bursts was -3.15% to 21.85%, over the 8-year study period.  
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Figure 2-4: RMSE plotted against step for all models. Dashed lines represent the 

lowest RMSE which also represents the final model selection 

The pipelines exhibit a strong seasonal pattern of bursts, with a marked increase 

of failures in the winter season (see Figure 2-5). The model captures this 

seasonal variation well. An overestimation of the model was observed for winter 

2011, where ~100 bursts were over-predicted. However, the residual difference 

between predicted and observed bursts for Iron pipes is -112.1 bursts over the 8-

year period, which is an overestimation of 2.64% of the observed amount. The 

predictive accuracy of the Iron model is evidenced by a low RMSE and MAE value 

of 0.0250 and 0.0012, which is aligned to the results reported within Yamijala et 

al. (2009). 
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Figure 2-5: Time series of monthly model predictions vs. observations for final 

models in all pipe materials. Predictions were made using a 50% hold out sample 

The final model selected for AC overestimated observed bursts by 0.59% over 

the 8-year observation period, this is the lowest percent change between 

observed and predicted bursts for all six material-specific models. The RMSE and 

MAE for AC was 0.0245 and 0.0011, respectively. The peaks of observed pipeline 

failures mostly occur during summer months (Figure 2-5), the model predictions 

largely capturing this pattern, particularly in years 2013, 2014 and 2015. An 

underestimation of the observed bursts is evident in the summers of 2009 and 

2011. The residual between observed and predicted bursts is 18.9 bursts over 

the 8 years of observation. 

PVC pipelines exhibit higher rates of failure in summer months, except for spring 

2013. The predictions for the final PVC model appear to be relatively well aligned 

to the observed bursts. The residual between observed and predicted bursts for 

the final model is -98.1 bursts over the 8-year period, which is -3.15% of the 

observed bursts. No seasonal pattern in observed or predicted bursts is evident. 

A low RMSE and MAE value evidences the predictive ability of the PVC model, 

see Table 2-8. 



 

 52

The final PE model underestimated the observed bursts by 8.46%, leading to a 

residual of -84.6 bursts over the 8-year observation period. The predictions had 

an RMSE and MAE of 0.1096 and 0.0002, respectively. As shown in Figure 2-5, 

there is no distinct seasonal variation evident for PE bursts with regular bursts 

events occurring annually. 

The final model for SDI overestimated the observed bursts by 13.1%, with a 

residual of 34.6 between observed and predicted bursts. There is no consistent 

seasonal pattern to the observed failure rate of SDI pipes, with failures occurring 

in all seasons (Figure 2-5). The model performs poorly at capturing the peaks in 

pipe failures. However, SDI pipelines comprise less than 5% of the overall length 

of the distribution network for Anglian Water, and just 1.85% of bursts come from 

this material (Table 2-3). 

The largest error between predicted and observed bursts is found in O pipes, 

where the model overestimated bursts by 21.85%. The residual difference of O 

pipes is 58.8, during the 8-year observation period. It is important to note that O 

pipes constitute only 3.26% of the entire length of the water distribution network, 

and just 1.87% of bursts are classified in this material. Observed failures for O 

pipes follow a similar seasonal trend to Iron pipes, with distinct peaks of failures 

in winter. This is most likely because many of the pipes classified as “other” are 

metallic and have a similar failure mechanism to Iron pipes. The model captures 

this seasonal variation well, from years 2010 – 2012, however seems to be 

unresponsive to variations in pipe failures from 2013 – 2017. The final model 

selected for O pipes, in comparison to the other models, has the lowest RMSE 

and MAE of 0.0094 and 0.001, respectively. 
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Table 2-8: Final model selection and summary statistics 

Note: observation period is the 7th October 2008 to the 27th September 2016  

Material Observed 

(o) 

Predicted 

(p) 

Residual 

difference 

(p – o) 

% 

change 

(p – o) 

RMSE MAE 

I 4242 4354.1 112.1 2.64% 0.0250 0.0012 

AC 3157 3175.9 18.9 0.59% 0.0245 0.0011 

PVC 3133 3034.9 -98.1 -3.15% 0.0226 0.0090 

PE 999 1083.6 84.6 8.46% 0.1096 0.0002 

SDI 264 298.6 34.6 13.1% 0.0104 0.0002 

O 269 327.8 58.8 21.85% 0.0094 0.0001 

 

2.5 Discussion 

The literature reveals that pipe materials possess different tolerances to 

environmental and operational conditions. A series of stepwise GLM’s were 

created to explore and evaluate the influence of soil type and weather on the rate 

of failure for 6 common pipe materials. This paper has permitted a) the selection 

of the most informative parameters for predicting pipeline failure for individual 

material types, and b) the assessment of the ability of a modelling approach to 

predict water pipe failure, drawing on an 8-year historic dataset from Anglian 

Water plc. 

The results summarised in Table 2-8 suggest that all the developed models have 

a good ability to predict bursts. The RMSE values in this study are below the 

errors reported in other studies which use other modelling techniques such as 

Evolutionary Polynomial Regression (Farmani et al., 2017) and are similar to the 

results published in (Tabesh et al., 2009) where Artificial Neural Networks and 

Neuro-fuzzy Systems prediction methods were evaluated. The increase in RMSE 
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upon the addition of new variables (Figure 2-4) can be attributed to the increased 

variance within the datasets, along with the possible effect of overfitting the model 

to response variable. However, in using a quantified stepwise approach, the 

model which has attained the lowest RMSE, with the minimum number of 

variables allowed for the selection of a model with the highest model fit and 

minimum number of required variables.  

The development of six individual stepwise GLM’s, based on pipe material, 

enabled the selection of predictive covariates being related specifically to the 

material type. This led to the development of six parsimonious models, without 

the need for inclusion of un-informative parameters relating to other material 

types. It is noted by Wols and van Theinen (2014), that separating pipe materials 

into distinct classes is a critical step in determining the individual impacts of 

weather, soil and operational factors on the rates of failure. Moreover, analysis of 

individual material types is a computationally efficient way of predicting bursts 

over an entire distribution network. 

Several repetitions in the selected predictive variables are apparent, with the 

most notable being pipe age and diameter. As key infrastructure factors, it was 

anticipated that age and diameter would prove predictive for all pipe materials. 

Pipes of different materials are often installed at certain time periods (Table 2-3). 

An improvement to this analysis would be to create material-specific age and 

diameter bands, to represent better the variance within the material group. 

However, the use of variable pipe age min, max and average was also included 

within this study, and was predictive for the failure Iron, SDI, PVE and PE pipes, 

which demonstrates its viability as an alternative to categorised age bands. 

This study identified that temperatures under a 5°C weekly mean is more 

predictive of bursts than temperatures between 5-10°C for all investigated pipe 

materials. This information is important for water utilities to understand the 

thresholds within which pipelines are most likely to fail. The duration of 

temperature was also analysed, and it was found that bursts in AC, PVC and PE 

pipe materials is easier to predict using temperature changes over a longer 4-

week period, whilst the failure of Iron pipes is easier to predict using temperature 
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change and temperature over 1 week. This corresponds to the findings presented 

by Rajani et al. (2012), where they noted that short-term fluctuation of extreme 

low temperatures (< 0°C) induced higher failure rates within Iron pipes. 

Conversely, prolonged dry weather in summer periods is known to impact upon 

soil shrinkage rates which leads to a higher failure rates in AC pipelines (Gould 

et al., 2011). This mechanism is clearly evident in Figure 2-5, where notable 

peaks of AC failure occur within summer and autumn periods, where shrinkable 

soils, such as clay, are most likely to be shrunk. For materials, Iron, AC and SDI 

the finalised selected models incorporate both an SMD along with a clay soil 

variable. This indicates that these pipe materials are subjected to clay shrink-

swell processes, as the literature suggests (Gould et al., 2011). 

Variables from both the MORECS 40 km and 5 km data products was identified 

as being predictive in all six pipe material types investigated. An equal number of 

temperature variables was selected from both datasets for predicting asset 

failure. Spatially, temperature variations across the Anglian region will remain 

relatively uniform, except for coastal areas. Therefore, it can be assumed that the 

representation of temperature at either a 5 km or 40 km spatial resolution is 

sufficient for predicting water pipe failure. The MORECS 5 km SMD variables was 

found to be better at predicting asset failure in comparison to the 40 km spatial 

resolution dataset. SMD varies at a much finer resolution than temperature, owing 

to the spatial heterogeneity of soil types. Therefore, the increased spatial 

representation of SMD at a 5 km scale, with representation on land cover type 

and density, proved to be more predictive of asset failure. Smaller scale micro-

meteorological factors such as shading, relief and topography have not been 

included in this study due to a lack of data representing such conditions. 

Furthermore, in order to represent micro-meteorological variables within the 

model would require a further splitting the distribution network into smaller cohorts 

which represent such factors, leading to an increasingly complex dataset.  

It is unclear from the existing literature whether temperature or shrink-swell 

related risks are important to the failure of PE and PVC pipelines (Rajani and 

Kleiner, 2001). It is noted by Davis et al. (2007) that PVC (and PE) pipelines are 
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newer pipe materials, and the failures attributed to these material types can 

sometimes be explained by poor manufacturing processes, or issues in 

installation, and not always to the prevailing environmental conditions.  

The selection of depth to bedrock, hydrological rock type and hydrology of soil 

type variables in the final models of Iron, SDI and PE suggests that there is an 

influence of soil hydrology and soil drainage on the failure rate of these materials. 

There is a well-established relationship between the shrink-swell likelihood and 

soil moisture availability (Gould et al., 2011; Wols and van Thienen, 2014). 

However, periodic water-logging and soil drainage is an important consideration 

missing from many of the current statistical models. An increase of soil saturation 

around metallic pipelines (such as Iron and SDI) has previously been noted to 

lead to higher rates of failure (Park, 2004; Wasim et al., 2017). However, 

increased soil saturation can also create a seasonal soil movement pattern in 

certain soils (Chapter 5), investigating the effects of soil drainage and period 

water-logging on observed infrastructure movement using a satellite-based 

method. In shallow, freely-draining soils, minimal infrastructure movement 

occurred. However, in soils which are periodically water-logged a distinct 

seasonal variation in observed above-ground infrastructure movement occurred. 

These infrastructure movements corresponded to seasonal SMD. This seasonal 

movement in soil types might help further explain failures caused by differential 

soil settlement, along with the impact of waterlogged soil conditions causing 

corrosion or pitting failures to pipelines (Kleiner and Rajani, 2001). Soils which 

have impeded drainage across the Anglian region include loamy and clayey soils 

with naturally high ground water, loamy and sandy soils with naturally high ground 

water and a peaty surface, slowly permeable seasonally wet loamy and clayey 

soils, and slightly acid loam and clayey soils. Combined, these soil groups 

constitute 31.3% of soils in England and Wales, therefore evidencing the potential 

further impact of these soil groups on infrastructure failure extending beyond the 

study area selected in this study (Hallett et al., 2017). 

Several studies have considered soil parameters in predicting water pipe failure 

(Park, 2004; Wols et al., 2014; Yamijala et al., 2009). Soil texture is a key variable 
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in determining soil moisture availability, movement potential and drainage 

(Boorman et al., 1995). This study highlighted two sand texture variables (the 

maximum percentage of sand in the soil association and sand washout hazard) 

which are predictive of asset failure in AC pipes. There is a low likelihood that 

sand is having a direct impact on the pipe material itself (with the exception of 

sand abrasion). However, sandy soils can give rise to cascading infrastructure 

failures, which is the successive failure of other buried assets which are co-

located to the water distribution network. In a recent investigation (in the same 

study area), cascading infrastructure events are more than three times as likely 

to occur within a sandy soil (Farewell et al., 2017). This has the potential to lead 

to a higher incidence of reactive bursts being recorded within sandy soils, 

therefore making the sand texture class variable predictive. 

Silt minimum and soft and compressive soils hazard was identified as being 

predictive for PVC pipelines. Davis et al. (2008) used a physical probabilistic 

modelling technique to investigate the impact of failures within PVC pipelines. 

The authors found that pipeline fractures developed from internal cracks which 

existed at the time of manufacture. With increasing external pressure, the 

manufacturing defects are exploited and a rise in pipeline failure was observed 

to occur. Silty soils are highly compressible (Pritchard et al., 2014), therefore this 

mechanism of soil compression inducing higher failure rates for PVC pipelines is 

highly likely for this pipe material. 

The application of the work discussed within can be used anywhere detailed soil, 

weather and a historical archive of pipeline failure data exists. National soil 

datasets such as Statsgo in North America (US Department of Agriculture, 2008) 

and Australian Soil Resource Information System (ASRIS, 2018) provide a 

comprehensive inventory of soil-related variables, like the ones used in this study. 

Weather datasets such as Agri4cast in Europe (Joint Research Centre, 2018) are 

also freely-available and provide information upon key variables similar to the 

ones used in this study. 
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2.6 Conclusions 

The combination of the environmental datasets used, and the models developed, 

offer the potential to help water utilities undertake proactive management of 

assets based on distinct environmental conditions. There is a strong seasonal 

pattern of failure of Iron, SDI, O and AC pipe materials across the Anglian Water 

network. Therefore, it is possible to predict bursts for these pipe materials with a 

high statistical accuracy. Key findings of this work include the prominent effect of 

clay shrink / swell, the seasonal waterlogging and soil hydrology impacts on 

pipeline failure and the identification of < 5°C temperature threshold for asset 

failure. An inclusion of a variable representative of soil temperature at pipe depth 

(c. 1 m) would be expected to improve the model’s predictive ability, as 

discrepancies are likely to exist using air temperature as a proxy. The availability 

of such data is currently lacking but would be possible through the deployment of 

an in-situ network of smart sensors placed in the soil around the pipe in strategic 

locations. 

The modelling approach of variable selection using AIC and Poisson GLMs has 

permitted the development of informative, yet parsimonious models for six 

common pipe materials. The results obtained are analogous to previous studies, 

confirming the ability of these models to predict water pipe failure. A limitation of 

this current study is the lack of information relating to the type of burst. Information 

concerning the type of failure observed (i.e. longitudinal, circumferential, pitting 

etc.) could be incorporated in future studies where such data are available. 

Further understanding of the mechanisms leading to PE and PVC pipeline failure 

is still required. For the newer pipe materials types, e.g. PVC and PE, as the 

installed assets age, a better understanding of the factors leading to their 

deterioration will be gained, as the historical archive of data grows (Davis et al., 

2008). However, clear relationships between Iron, AC, SDI and O pipeline to 

environmental conditions exist. Headway has been made in furthering the 

understanding of PVC failure with the identification of soft, unconsolidated soil 

variables being predictive of failure.  
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The findings within have contributed to the general understanding of the 

environmental pressures which lead to asset failure across the Anglian Water 

network. These methods have the potential to be applied in other locations where 

data are available. Such information will lead to the development of more resilient 

and efficient water distribution networks, a key concern in the light of global 

climatic change. The models described within this study are now in operational 

use by Anglian Water plc as part of their Water Infrastructure and Serviceability 

Performance Assessment (WISPA) project. 
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3 Quantifying the impact of trees on water 

infrastructure failure across an entire distribution 

network 

This chapter investigates Objective 3, and is presented in the form of one 

unpublished research paper, intended for the journal Environmental Modelling 

and Software:  

North, M., Farewell, T., Hallett, S. (2018) Quantifying the impact of trees on water 

infrastructure failure across an entire distribution network (unpublished) 

The two components of this chapter comprise: 1) an identification as to the rates 

of failure in different pipe cohorts under low (0-5%), medium (5-30%), and high 

(30-100%) tree density and soil shrink swell conditions, and 2) establishing how 

a series of statistical models can be further improved through the inclusion of 

tree-related data variables. The chapter describes and evaluates the Poisson 

regression models developed in Chapter 2, considering methods of enhancing 

current methods of prediction by evaluating the use of a national tree inventory. 

Figure 3-a: Objectives aimed to be investigated within this chapter in context of 

the overall thesis 
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Quantifying the impact of trees on the failure rates of different 

pipeline materials across an entire distribution network 

M. Northa, T. Farewella, S. Halletta 

a School of Water, Energy and Environment, Cranfield University, Bedfordshire, MK43 

0AL, United Kingdom 
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Abstract: 

Trees and large vegetation influence localised soil movements by increasing 

water loss through their evapotranspiration, causing proximal clay-rich soils to 

shrink. Such conditions can increase failure rates in drinking water pipelines. This 

study measured the failure rates of four pipe materials under varying tree density 

and soil conditions, investigating whether a series of material-specific pipeline 

failure models could be improved using data from a national tree inventory. 

Failure rates in Iron and polyvinylchloride pipes was found to be 6.4 and 3.5 times 

higher respectively in shrinkable clay soils in areas of high tree densities in 

comparison to pipes with the same tree density in non-shrinkable soils. 

Polyethylene pipes were found to be stable under all tree density and soil 

conditions, whereas asbestos cement pipes had varying failure rates. Predictive 

tree height variables was selected using Akaike’s Information Criterion, with 

these being then added to a series of Poisson regression models. However, the 

inclusion of tree height did not significantly improve model accuracy, except by a 

limited improvement in the prediction of Iron pipeline failure. 

Keywords: Trees, Water Infrastructure, Soil, Weather, Failure Rate, Akaike’s 

Information Criterion, Poisson Regression 
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Highlights  

  Tree density, height and distance impact on asset failure 

  Variable selection using Akaike’s Information Criterion (AIC) 

  Tree-induced summer soil shrinkage and associated water asset failure 

  Enhancement of predictive models incorporating relevant secondary 

datasets 

3.1 Introduction  

Trees are integral to sustainable urban environments due to their ability to reduce 

air temperature and pollution (Nowak et al., 2006), to sequester carbon (Nowak 

and Crane, 2002), and to exert a positive impact on the health and well-being of 

people (Chiesura, 2004; Yannas, 2001). However, the detrimental impact of trees 

on the built environment has long been recognised in the scientific literature, 

particularly the impacts of trees on above-ground infrastructure such as buildings, 

pavements and roads (Mercer and Reeves, 2011; Randrup et al., 2001; Watson 

et al., 2014). The impacts of trees on above-ground infrastructure is often visible, 

resulting in the cracking, heaving or subsidence of structures (Jones and 

Jefferson, 2012; Watson et al., 2014). However, establishing the impact of trees 

on below-ground assets, such as water, sewerage and gas pipelines, is more 

difficult due to the associated cost and disruption of inspecting these buried 

assets (Torres et al., 2017). 

3.1.1 Tree impacts to water infrastructure failure 

Trees can impact on infrastructure either directly or indirectly. Direct interaction 

of trees on buried infrastructure can include processes such as root penetration, 

where tree roots grow along the path of least resistance and have the potential 

to exploit cracks or installation defects in pipelines. Tree roots have also been 

observed to proliferate in areas close to water sources such as leaking water 

pipes or sewer systems, making this type of buried utility particularly vulnerable 

(Gasson and Cutler, 1998; Jones and Jefferson, 2012; Torres et al., 2017). 

However, tree root intrusions are unlikely to generate bursts in drinking water 

mains, due to the high internal pressure within the pipe. More commonly the 
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impact of trees on high-pressured water mains are indirect and include processes 

such as exacerbated clay-related shrink and swell and changes to the available 

soil water content within the ‘active zone’ (Day et al., 2010; Navarro et al., 2009). 

The active zone is the area which is influenced by the extent and depth of tree-

related impacts on the soil (Jones and Jefferson, 2012). 

Several factors converge to influence the depth and extent of the active zone, 

which may be summarised in 3 categories: tree, soil and external factors. Tree 

influences can include the species of tree, root depth and structure, height, age, 

gross primary productivity, asymmetric root growth, and the influence of a stand 

of multiple trees together (Biddle, 1979; Guo, 2017; Mercer and Reeves, 2011). 

A comprehensive summary of the physical interactions of trees and the active 

zone can be found within Biddle (1979). Numerous soil properties can influence 

the depth and extent of the active zone, including soil texture, drainage, 

hydrological regime, soil hydraulic conductivity, soil suction, and shrink swell 

potential (Guo, 2017). External factors influencing both soil and trees can include 

the presence of impervious surfaces such as pavements and roads, increased 

localised drainage, and also weather influences, particularly the balance between 

rainfall and evapotranspiration (Watson et al., 2014). Based on unique 

combinations of tree, soil, weather, and external factors, the zone of influence a 

tree can exert is highly variable in depth and extent, as it is controlled by 

numerous interacting factors. 

Typically the active zone depth is 1.5 to 2 m (Biddle, 1979), however,  other 

studies have shown that this can extend to 4 m in extreme cases in the UK, and 

up to 6 m in other countries (Jones and Jefferson, 2012). Some further studies 

have also suggested that the zone of influence of trees can be extended by 1.5 

times the original depth and extent where multiple trees are located together 

(Guo, 2017), further highlighting the potential impact of trees on pipes assets 

which are typically buried at 0.75 to 2 m depth.  

In shrinkable clay soils, trees can intensify the extent of soil shrinkage due to 

increased water loss through evapotranspiration. This process is controlled by 

the prevailing weather, most notably the balance in water availability arising from 
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the rates of precipitation and evapotranspiration. A common index for measuring 

the soil water balance is Soil Moisture Deficit (SMD), which is a measurement 

used to describe the amount of water needed (in mm) to return the soil to field 

capacity (Pritchard et al., 2015a). In temperate climate countries, the associated 

pattern of clay shrink swell is highly seasonal, with a maximum soil shrinkage in 

summer and early autumn (high SMD), and soil heave during winter and late 

spring (low SMD). This seasonal variation in SMD has been shown to impact 

upon above ground infrastructure such as roads and railways (Chapter 5), but 

also on the failure rates of different pipeline materials (Chapter 2).  

Due to the known impacts of trees on subsidence, the UK’s National Joint Utilities 

Group (NJUG) has provided a set of regulations for the guidance of siting utilities 

near trees (NJUG, 2007). These regulations also consider the ground movement 

potential of clay and peat soils and propose three zones of influence where trees 

are likely to cause tree-related damage to utility networks. Due to the relative 

infancy of the NJUG guidelines, in comparison to the age of water distribution 

networks, these regulations do not provide a solution to the impact of trees on 

pre-existing infrastructure networks but do act as a guidance for the installation 

of new utilities. 

3.1.2 Methods to measure and predict tree related damage 

Several in situ techniques exist to investigate tree-induced ground movement, 

such as electrical resistivity tomography (Jones et al., 2009), and levelling and 

site surveys of tree-induced ground movement (Gasson and Cutler, 1998; Guo, 

2017). These techniques provide an accurate method to measure tree-related 

ground movement directly. However, they are not practical for the analysis of 

tree-impacts on buried utility networks across a regional area, due to the limited 

spatial extent of observation and high associated costs. Therefore, mathematical 

modelling using a range of different environmental datasets and infrastructure 

information provides a favourable alternative, or complement, to physical 

measurements. Such techniques can summarise the impacts and interactions on 

a range of different environmental pressures across a whole distribution network, 

in a manner aligned to the needs of utility operators. 
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Water companies seek to become proactive in the way they manage their assets 

(Kleiner and Rajani, 2001; Yamijala et al., 2009). Statistical models have the 

ability to predict water pipe failure by attributing a range of different environmental 

(typically weather and soils) and operational factors to a historical record of 

previous bursts. Following the selection of an appropriate statistical model, 

historical locations of previous pipe failures and associated environmental data 

can be represented using a Geographical Information System (GIS), and the 

relationships between operational and environmental factors can be statistically 

modelled. 

Accurate and detailed tree inventories are available at the local, regional or 

national scale (Östberg, 2013). With such data becoming increasingly accessible, 

there is now greater potential to statistically model the interactions between trees 

and the built environment. This study presents a measurement of the impact of 

tree-related ground movement on the failure of buried water pipes to establish 

whether variables created from a national tree map can enhance the predictive 

ability of four material-specific water pipeline failure models. The tree-related 

properties considered represent the location, height and density of trees proximal 

to drinking water pipes. Using both rate of failure analysis and Akakie’s 

information Criterion (AIC) (Akaike, 1974), influential tree variables have been 

selected which are predictive of pipeline failure for four common pipe materials, 

Iron, Asbestos Cement (AC), Polyvinylchloride (PVC) and Polyethylene (PE). The 

predictive variables identified was added to a series of material-specific pipe 

failure models, described and developed in Chapter 2. A direct comparison 

between the tree-enhanced and previously developed models is further provided. 

3.2 Study area, model and dataset description 

3.2.1 Study area 

Anglian Water drinking water distribution network covers an area of c. 27,500 km-

2 in East Anglia, England (Figure 3-1). The prevailing climate of the region is 

temperate oceanic, with distinct seasonal variations in temperature and regular 

precipitation events throughout the year. Temperatures across the East Anglian 

region range from a typical maximum average daily temperature of 22.2°C in July 
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to a minimum average temperature of 1.1°C in February. Rainfall is highest during 

the months November, December and January, whilst the driest months are July, 

August and September (Met Office, 2018a). 

Across East Anglia, England, there are considerable deposits of silts, clays and 

peat soils which are derived from marine and riverine alluvium from previous 

glaciations and transgressions of the North Sea (Pritchard et al., 2015b). Due to 

the intra-annual variation of sunshine hours, temperature and precipitation there 

is a strong seasonal pattern of SMD. High SMD is typically recorded during 

summer and autumn months, and a low SMD typically recorded during winter and 

spring. On this basis, East Anglia has amongst the highest ground movement 

potential in the UK due to the abundance of shrink swell prone soils and prevailing 

weather conditions (Pritchard et al., 2015a). Trees are widespread across the 

East Anglia region, with large variations in the density, height and species of trees 

which are located against infrastructure networks, often varying with changes in 

urban and rural landscapes. 



 

 72

 

Figure 3-1: Study area extent of the Anglian Water service area; (insert map shows 

the relative position of the distribution network in context of the UK) 
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3.2.2 Tree dataset description 

The tree inventory used for this investigation is provided by commercial provider 

Bluesky Ltd. (Bluesky, 2018). The map, known as the “National Tree Map” TM, 

uses aerial imagery sources to map every tree over 3 m, covering the full extent 

of England and Wales. The accuracy of the map is >90 % for the full extent of 

England and Wales and >95 % for trees within 50 m from buildings (Bluesky, 

2018). The output is in distributed in a GIS format, and provides the point location 

and canopy extent of individual trees, with attributes including the individual tree 

height. No information is included pertaining to the tree species. 

3.2.3 Water Infrastructure data description 

Water infrastructure data was provided for this investigation by Anglian Water plc, 

comprising a dataset with historical incidences of pipeline failure from 28th 

December 2005 to 27th December 2016. This data has been cleaned and pre-

processed to ensure that a consistent, complete and accurate dataset is used for 

statistical modelling. A description of the pre-processing and data cleaning steps 

to create the pipe cohorts used for statistical analysis are detailed in Chapter 2. 

A total of 4 main pipe material groups have been selected for investigation, 

representing over 96 % of the total length of the Anglian Water pipe network. 

These pipe material groups comprise Iron, AC, PVC and PE. Two other material 

categories, steel and ductile Iron pipes are classified as “other”, was excluded 

from this study due to their small sample size. The total length of pipe analysed 

in this study is 38,438 km, being the mean network length over the period of 

investigation (Table 3-1). The total number of reactive bursts across the 4 

materials analysed was 42,623 over the 10-year observation period, where a 

reactive burst is defined as a burst reported to the Anglian Water leakage team 

by a third party, rather than one “proactively” identified by the company’s leakage 

inspector teams. 
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Table 3-1: Summary of the failure rates of the investigated pipe materials across 

the Anglian Water distribution network. Burst rates (pipe bursts per 1,000 km per 

week) are calculated for reactive bursts only 

Material Typical 

Installation 

Range 

Total 

Length 

(km) 

Total  

Reactive 

Bursts 

Burst 

Rate 

(Bursts/

1000km/

per 

week 

Total 

Bursts 

(May-

Oct) 

Burst 

Rate 

(May-

Oct) 

Total 

Bursts 

(Oct-

May) 

Burst 

Rate 

(Oct-

May) 

AC 1920 to 1941 7,000 9,282 2.31 4,809 2.86 4,473 1.91 

I 1881 to 1921 11,226 20,737 3.21 3,172 1.17 17,565 4.68 

PVC 1960 to 2001 5,951 9,275 2.71 2,220 1.55 3,731 1.87 

PE 1981 to present 10,761 3,229 0.52 650 0.25 2,579 0.71 

Total:                                   39,438 42,623    

 

3.2.4 Pipeline failure model description 

The water pipeline failure models used within this study are developed using 

Poisson regression, a form of generalised linear model (Coxe et al., 2009; Nelder 

and Wedderburn, 1972). These models have been built using a step-wise model 

building approach using Akaike’s Information Criterion (AIC) as the variable 

selection method (Chapter 2). A full description of the model building and variable 

selection process is provided in Chapter 2. This Chapter provides a full 

description of the datasets and the variables included in the models. Table 3-2 

describes the variables included in the material-specific models. For a specific 

description of the weather, soil and operational variables, details are given in 

subsequent Tables 3-2 to 3-6. 
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Table 3-2: Variables included in the original material-specific water pipeline failure 

models (Chapter 2) 

Material  Model Variables 

AC Diameter band + SMD + corrosion to Iron + climate-adjusted clay hazard + sand min + 

depth to bedrock + age band + temperature ≤4°C over 4 weeks 

I Days air frost + temperature ≤5°C over 1 week + diameter band + shrink swell + climate-

adjusted clay hazard + SMD + age band + temperature change over 1 week + depth to 

bedrock + pipe age maximum 

PVC Silt minimum + vapour pressure + age band + corrosion to Iron + soft and compressive soils 

hazard + sand minimum + pipe age maximum + rainfall + temperature ≤3°C over 4 weeks 

PE Temperature ≤4°C over 1 week + hydrological rock type + pipe age average 

 

3.2.5 Weather Variable Description 

A series of variables which represent the weather conditions at the time of and 

preceding failure are included as being predictive of water pipeline failure. 

Weather data has been obtained from the Met Office Rainfall Evapotranspiration 

Calculation System (MORECS) dataset (Met Office, 2018b). This provides a 

gridded output of modelled meteorological data with a spatial resolution of 5 km. 

The 5 km MORECS dataset is a beta version of the dataset and has been 

provided to the authors for testing to determine its suitability for statistically 

modelling water infrastructure failure. The number of day’s air frost data has been 

acquired from the Met Office regional climate statistics, and represents the 

number of days per month when air frost was observed in East Anglia (Met Office, 

2018a). The dynamic weather variables included in the models represent weekly 

temperature, SMD, rainfall and vapour pressure. A description of the included 

weather variables is given in Table 3-3.  

 

 

 



 

 76

Table 3-3: A description of the weather variables included in the original material-

specific water pipeline failure models 

Variable Description  Included in models 

Days air frost Total number of days air frost in a month I 

Rainfall Total accumulated rainfall in the 1 week preceding 

the reported burst date 

PVC 

SMD Weekly mean SMD under different land uses 

(grassland, deciduous, coniferous, real land use) 

and in soils with different water holding abilities 

(High, Medium, Low) in the week preceeding the 

reported burst date 

AC, I 

Temperature ≤ (0 to 

10°C) over 1 weeks 

The accumulated air temperature beneath a 

threshold (0 - 10°c, in 1°c increments) in a 1-week 

period preceding the reported burst date. Air 

temperature accumulations are calculated in 1°c 

increments below the threshold value. The greater 

the value of this variable, the colder the temperature 

was, for a prolonged period of time, in the previous 

week to the burst date 

I, PE 

Temperature ≤ (0 to 

10°C) over 4 weeks 

The accumulated air temperature beneath a 

threshold (0 - 10°c, in 1°c increments) in a 4- week 

period preceding the reported burst date. Air 

temperature accumulations are calculated in 1°c 

increments below the threshold value. The greater 

the value of this variable, the colder the temperature 

was, for a prolonged period of time, in the previous 

weeks to the burst date 

AC, PVC 

Temperature Change The absolute change in mean air temperature from 

the week the burst was reported to 1, 2 or 4-weeks 

before 

I 

Vapour pressure Vapour pressure is a variable which indicated the 

partial pressure that atmospheric water vapour 

exerts at any one time 

PVC 
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3.2.6 Soils Data Description 

Soils information has been taken from the National Soil Map of England and 

Wales and associated soil property datasets (Hallett et al., 2017). The soil map 

used in this study is produced at a 1:250,000 scale and contains detailed 

information relating to a wide range of different physical and chemical factors, 

including soil texture, corrosivity, depth to rock, shrink and swell capacity and soil 

hydrological regime. For a full description of the soil variables included in the final 

models, refer to Table 3-4. 

Table 3-4: A description of the soil variables included in the original material-

specific water pipeline failure models 

Variable Description  Included in models 

Climate-adjusted 

clay hazard 

% of clay in the most abundant soil series AC, I 

Corrosion to Iron 6 level categorical classification of the corrosivity of 

the soil to ferrous Iron at 1m depth. Dominant class 

and % composition of individual classes 

AC, PVC 

Depth to bedrock Depth to bedrock (mean, min and max) (cm) AC, I 

Hydrological rock 

type 

Provides information of the hydrological rock type of 

the soil. Dominant class in the soil association 

provided. A full description of this variable is provided 

by (Boorman et al., 1995) 

PE 

Sand minimum Minimum % of sand content AC 

Shrink swell A 6 level categorical classification of the shrinkability 

of the soil 

I 

Silt minimum Minimum % of silt soil content PVC 

Soft and 

compressible soils 

hazard 

Soils at risk of including soft soil or compressible 

soils 

PVC 
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3.2.7 Operational Variable Description 

Due to the known importance of operational variables in the prediction of water 

pipeline failure (Kleiner and Rajani, 2001), a series of key variables representing 

the age and diameter of pipeline was included (Table 3-5). Several age-related 

variables was included accommodating the various ways age can be 

represented. The variables included were found, using AIC in a forward’s 

stepwise approach, to be the most predictive variables for each specific material 

type, as described in Chapter 2. The measurements of the pipeline used to define 

the diameter and age bands are given in Table 3-6. 

Table 3-5: A description of the operational variables included in the original 

material-specific water pipeline failure models 

Variable Description  Included in models 

Diameter Band Categorised bands (Table 3-6) AC, I 

Age Band Categorised bands (Table 3-6) AC, I, PVC 

Pipe age (maximum) Maximum age of pipe I, PVC 

Pipe age (average) Mean age of pipe PE 

Table 3-6: Age Band and Diameter Band ranges used in this study 

Age Band Range 

0 Unknown 

1 <1881 

2 1881 to 1900 

3 1901 to 1920 

4 1921 to 1940 

5 1941 to 1960 

6 1961 to 1980  

7 1981 to 2000 

8 2001 to 2020 
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Diameter Band Range 

1 <165 mm 

2 165 to 320 mm 

3 321 to 625 mm 

4 >625mm 

 

3.2.8 Tree variables 

A series of variables was derived from the National Tree Map, representing the 

height, location and density of trees proximal to pipelines across the Anglian 

Water distribution network. Trees have different water consumptions, based on 

their height, diameter, age, foliage, species and gross primary productivity 

(Biddle, 1972). Directly, the water consumption of trees can have a measurable 

impact on ground movement in shrinkable soils, such as clay, as trees can 

change the localised water balance often creating a deficit of water in the 

immediate proximity of the tree, causing clay soils to shrink (Clayton et al., 2010). 

Trees of younger age, increased leaf area, with a larger basal height, typically 

have a higher water consumption which increases the risk of ground movement 

and the failure of adjacent water pipes (Biddle, 1972, Clayton et al., 2010). These 

characteristics change with individual tree species, however, a disadvantage of 

using the National Tree Map is that it includes no classification of individual tree 

species. Alternative methods, such as image classification from optical sensors 

(spaceborne and airborne) can be used to identify individual tree species based 

on their spectral properties (Walton et al., 2008). Individual tree classification 

methods were not used in this study due to the additional complexity and 

computational resource needed to classify the species of all trees adjacent to the 

water distribution network.  

To reduce the computational demand of the data processing in the GIS tool 

ArcMap (version 10.3.1), the National Tree Map was processed using 9 individual 

British National Grid 100 km-2 Ordinance Survey (OS) grid squares. A further pre-

processing step included removing all trees located >40 m from the pipe network.  
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 Table 3-7: Tree height band and associated measurements 

Tree Height Band Measured Height 

1 < 5 m  

2 >5 – 10 m 

3 >10 – 20 m  

4 >20 – 30 m 

5 >30 m 

The Anglian Water  pipe network was split into cohorts representing homogenous 

pipe materials, ages and diameters located in the same soil types. The creation 

of pipe cohorts permitted the analysis of tree impacts on homogenised cohorts of 

pipes, to increase computational efficiency. The average length of each pipe 

cohort is 0.633 km long (with a standard deviation of 1.139 km). For each pipe 

cohort, multiple buffers of 10, 20 and 40 m was created and the total area of tree 

canopy (as a percentage) within each buffer zone was recorded. For each pipe 

cohort’s buffer zone, the total area of trees in each height category (Table 3-7) 

was recorded enabling the total percentage of canopy coverage for each tree 

height band to be calculated per pipe cohort (Figure 3-2). This led to the formation 

of variables which indicated the percentage of the total area of trees per height 

band in each individual pipe cohorts. The variables created were descriptive of 

tree height, the proximity of trees to the pipe network (at 10, 20 and 40 m 

distances) and the density of tree cover surrounding each pipe cohort (as a 

percentage cover). Another variable was created which evaluated all tree canopy 

cover, irrespective of height, for each pipe cohort. This variable was used for the 

investigation of the rate of failure for different pipe materials, described in Section 

3.3.1. 

Due to the potential annual changes to the pipe distribution network, the 

processing of the pipe network and National Tree Map data was repeated yearly, 

to ensure that all pipes over the 10-year observation period had the correctly 

associated tree-related variables for pipes which were in service that year. 



 

 81

 

Figure 3-2: A visualisation of the GIS approach taken to create tree variables. 10, 

20 and 40m buffer zones are indicated as shades of blue adjacent to the pipeline 

which is coloured in black. 

3.3 Methods 

3.3.1 Rate of failure analysis 

Initial analysis investigated the mean average failure rates (bursts per 1,000 km 

of pipe per week) for AC, Iron, PVC and PE pipe materials per month. This 

investigation allowed the analysis of the trends of water pipe failure rates over 

the period of observation, to identify the changes in failure rate, per pipe material, 

between the summer and winter seasons. No representation of tree influence 

was used, but the results provided a baseline for the average failure rates for 

different pipeline materials. 

Further investigations included calculating the failure rates (bursts per 1,000 km 

per week) of different pipeline materials under different tree density and soil 

shrink and swell conditions, at 10, 20 and 40 m buffer distances. A total of 3 

categories of tree densities (percentage of pipe cohort covered by tree canopy) 

was used, which represents 0-5 % (low density tree cover), 5-30 % (medium 

density tree cover) and 30-100 % (high density tree cover). These categories 

Individual buffer zones at 10, 20 

and 40 m  
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were used to ensure that a representative length of pipe and number of bursts 

are recorded in each category so that a sufficient sample size was maintained for 

the calculation of burst rates. 

For this investigation, a 6-level categorical classification of the soil shrink and 

swell potential was used, which was acquired from the National Soil Map of 

England and Wales (Hallett et al., 2017). The shrink swell variable used describes 

the shrink swell potential of the most dominant soil type within the soil association. 

The 6-level categorical classification was further classified into 4 bands, 

representing low, medium, high and very high shrink swell potential (Table 3-8). 

This reclassification was done to ensure that a sufficient sample size of pipes was 

included in analysis of each shrink swell category. Shrink swell class 6 is an 

alluvial clay or peat, which has very high shrink swell potential that is not realised 

unless effective drainage is installed to at least 2 m depth, hence its inclusion in 

the “Medium” shrink swell potential category. 

Table 3-8: Shrink swell categories used in this present study. Shrink swell class is 

the original banding from the National Soils Map of England and Wales. Shrink 

swell potential category is how they have been grouped in the present study 

Shrink swell potential 

category 

Shrink swell class Volumetric shrinkage 

“Low” 1, 2 <3% 

“Medium” 6, 3 5 – 12 % 

“High” 4 12 – 15 % 

“Very High” 5 >15% 

 

The rates of failure investigating tree density and shrink swell potential was 

calculated for the summer period only (May to October) which is the season most 

likely to show a stronger pattern of failure rates in shrink-swell soils (Mercer and 

Reeves, 2011). For the calculation of seasonal failure rates, no burst data was 

removed, and the failure rates were calculated using 100% of the burst and pipe 

data from the respective season being investigated.  
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3.3.2 Akaike’s Information Criterion (AIC) analysis 

Akaike’s Information Criterion (AIC) has been widely used as a variable selection 

method in scientific disciplines (Aho et al., 2014). AIC provides a test that 

quantifies how predictive a set of covariates are to a response variable in a given 

set of data. To this extent, AIC can be used for the creation of statistical models 

(Zhang, 2016), but also for the identification of predictive covariates. A full 

mathematical description of AIC is given in (Akaike, 1974). A specific example of 

the use of AIC for building stepwise Poisson regression models for water 

infrastructure failure is provided (Chapter 2). 

To identify the most influential tree variables, relating to tree height and the 

proximity to buried assets, a series of individual AIC analyses was undertaken. 

This helped establish the relative predictive ability of all newly developed tree 

covariates in comparison to the weather and soil covariates already included into 

pipeline failure models. 

As a second step, the predictive ability of different combinations of different tree 

heights was investigated. This analysis was undertaken with a soil shrink swell 

variable, due to the known impacts of trees on shrinkable soils (Guo, 2017; 

Mcpherson and Peper, 1996; Mercer and Reeves, 2011). The different 

combinations of tree height bands were evaluated sequentially using AIC from 

the smallest tree height band (T1) to the largest tree height band (T5). This 

resulted in the testing of 6 combinations of tree height and shrink swell variables. 

3.3.3  Poisson Regression – Tree Enhanced Modelling 

For each material type, the most predictive combination of tree height variables, 

as indicated by the lowest AIC, was then added to the water infrastructure failure 

models described in Table 3-2. A direct comparison between the models without 

and those with the inclusion of tree factors was undertaken. Both models were 

trained and tested on identical data (using a 50% hold-out sample). Model 

performance was evaluated using the Root Mean Squared Error (RMSE) and 

Mean Absolute Error (MAE) between observed and predicted bursts. RMSE and 

MAE are standard statistical metrics used to evaluate model performance and 
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can be used to compare different models directly. All data analysis and predictive 

modelling was undertaken in the open-source software R (version 3.2.3) (R Core 

Team, 2015). 

3.4  Results 

3.4.1 Seasonal failure rates of pipe materials 

There are clear seasonal trends observed in the failure rates (bursts per 1,000 

km of pipe per week) in AC, Iron and PVC pipes (Figure 3-3). Conversely, the 

failure rate in PE pipes shows no seasonal trend and exhibits a near constant 

monthly average failure rate of 0.25 to 0.5 bursts per 1,000 km of pipe per week. 

The highest monthly average failure rate is recorded in Iron pipes, where there 

are > 3 bursts per 1,000 km of pipe per week observed during the winter season 

between December and February. A notable rise in monthly failure rates during 

the summer season is also observed in AC, PVC and Iron pipes, from June to 

September. AC pipes show the largest increase of ~1 burst per 1,000 km per 

week from June to September, whilst PVC and Iron pipes show a smaller 

increase of ~0.5 bursts per 1,000 km or pipe per week from June to July, and 

then a slower increase towards September (Figure 3-3). 
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Figure 3-3: The average monthly rate of failure (pipe bursts per 1,000 km of pipe 

per week) for Asbestos Cement (AC), Iron (I), Polyvinylchloride (PVC) and 

Polyethylene (PE) pipelines 

Note: percentages indicate the relative change in bursts rates (representing the largest difference) from either 

January to May, May to October, or October to December. Dashed lines indicate the summer and winter periods 

investigated in this study 

3.4.2 The impact of tree density and proximity on the failure rates of 

pipe materials 

The analysis into the impact of tree density and soil shrink swell potential on water 

pipeline failure was undertaken for the summer period only. This has been 

chosen as the risk of tree-related ground movement to the water utility network is 

greatest in summer, as there is a higher water demand causing proximal clay-

rich soils to shrink. The summer period used, as highlighted in Figure 3-3, 

captures the peak of AC, Iron and PVC pipeline failures, and includes a total of 5 

months (May to October). Upon the final grouping of pipe cohorts into tree density 

and shrink swell categories, entries with no bursts recorded and <1 km of pipe 

were excluded from analysis, ensuring that a fully representative sample size is 

maintained and that meaningful burst rates are reported. 

Summer  Winter  Winter  

-70% bursts  

+111% bursts 

+46% bursts 

+45% bursts  

-47% bursts       
(note: low burst rate) 

+52% bursts                 
(note: low burst rate) 

+137% 
bursts  

-12% bursts  -32% bursts  

-6% bursts  -22% bursts  

+19% bursts 
(note: low burst 
rate) 
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The failure rates in Iron and PVC pipes, at a 40 m distance, was 6.4 and 3.5 times 

higher respectively than the failure rates observed under the same tree density 

in a low shrink swell soil (Figure 3-4). 

AC pipes were found to have varying failure rates under all tree densities and soil 

shrink swell potentials. The lowest failure rate recorded in AC was observed in 

pipes situated in low shrink swell potential soils with low tree density (0-5 % 

coverage) in a 40 m buffer distance, resulting in a failure rate of 1.59 bursts per 

1,000 km of pipe per week. Conversely, the highest failure rates in AC pipes was 

recorded in a high shrink swell soil under medium tree density conditions (5-30 

% coverage), being 4.09 bursts per 1,000 km of pipe per week. The failure rate 

in AC pipes was found to increase proportionately with ground movement 

potential and higher tree densities. 

The summer failure rates in Iron pipes was found to increase with ground 

movement potential and tree density. This pattern of failure is replicated in the 

10, 20 and 40 m analysis (Figure 3-4). The failure rate in Iron pipes, buried in a 

low shrink swell potential soil and low tree density (0-5 %) was 1.90, 1.84 and 

1.55 pipe bursts per 1,000 km per week in 10, 20 and 40 m distance, respectively. 

The failure rates increase in both a medium and high shrink swell soil, with the 

highest failure rates in Iron pipelines reaching 7.73 bursts per 1,000 km per week 

under very high shrink swell soils and high tree density (30-100 %) at a 40 m 

distance. 

Despite the clear increase in failure rates under high tree density and very high 

ground movement potential (in the 40 m analysis), the failure rates in PVC pipes 

remain consistent in low, medium and high shrink swell potential and tree 

densities. No clear trends in the variation of failure rates are therefore apparent 

for PVC material, with failure rates ranging from 2.29 under medium ground 

movement potential and high tree density (30-100 %) at a 20 m distance, to 3.94 

bursts per 1,000 km per week under very high ground movement potential and 

high tree density (30-100 %) in a 20 m buffer distance. Failure rates under the 

same very high ground movement potential and tree density in 40 m was 2.4 

times greater than the failure rates in a 20 m distance, at 9.7 bursts per 1,000 km 
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per week, therefore indicating the influence of high tree density and ground 

movement potential to the failure of PVC pipes. 

The lowest rates of pipe failure, in all shrink swell and tree density conditions, 

was observed in PE pipes, aligned with the results in Figure 3-3. Under all shrink 

swell and tree density conditions the failure rates of PE pipe material are mostly 

consistent at < 1 bursts per 1,000 km of pipe per week. There is a slightly larger 

failure rate in PE pipes in very high shrink swell soils, under medium tree density 

(5-30 % canopy coverage) at 10 m, where the failure rates of PE reach 1.4 bursts 

per 1,000 km per week. 

3.4.3 AIC analysis of tree height variables vs. operational, weather 

and soil variables 

Individual analysis of the predictive ability of each model variable was assessed 

using AIC. Following the results in Section 3.3.2, only variables representing the 

percentage of tree canopy coverage in different tree heights bands (1 – 5) up to 

a 40 m distance was included for this investigation. A comparison of the predictive 

ability of tree height categories (bands 1 to 5) and the previously selected 

operational, weather and soil model variables (Chapter 2) are highlighted in 

Figure 3-5. A null variable was also included so a direct comparison to a dummy 

variable could be determined. Lower AIC values indicate a greater contribution of 

the individual variable in predicting reactive bursts. As individual models were 

developed for each material type, the AIC values obtained are not comparable 

across the material specific models.   
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Figure 3-4: Summer (1st June – 31st October) water pipeline failure rates for 4 

materials Asbestos Cement (AC), Iron, Polyethylene (PE) and Polyvinylchloride 

(PVC) under different tree densities and shrink swell conditions. For each material, 

results are also shown for the analysis of tree density at 10 m, 20 m, and 40 m 

distances. Error bars represent the 95% confidence interval for the Poisson mean 

estimate  

Note: Low, Medium, High, and Very High refer to the soil shrink swell category described in Section 3.2.6 
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Figure 3-5: Individual AIC analysis comparing the predictive ability of tree height 

variables in comparison to the operational, weather and soil variables included in 

the material specific models 

 

In all pipe materials investigated, no variables representing tree height was found 

to improve the quality of model fit, in comparison to operational, weather and soil 

variables (Figure 3-5). For AC pipes, variables representing trees of small height 

(i.e. height band 1 and 2) was identified as being the most predictive, with 
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variables representing taller trees (band 5) being identified as the least predictive 

of pipeline failure. For AC pipes, operational variables (Diameter Band), weather 

variables (SMD) and soil variables (corrosivity, climate-adjusted clay hazard, 

sand minimum content and sand washout potential) was highlighted being 

predictive of pipeline failure, see Figure 3-5. Tree height bands 3 and 5, and also 

Temperature ≤ 4°C over 4 weeks was less predictive than the null model, 

suggesting that these variables hold no ability to improve model fit, despite their 

initial selection in Chapter 2. 

In Iron pipes, the most influential covariates are the previously selected weather 

variables (total number of days air frost, temperatures ≤5°C over 1 week and 

SMD), operational variables (diameter band) and soil variables (shrink swell 

potential, corrosivity and climate-adjusted clay hazard). All tree variables have a 

very similar AIC, suggesting minimal contribution to the quality of model fit in 

different tree height variables. 

In PVC pipes, a mixture of soil, weather and operational variables was identified 

as being more predictive than tree height variables. There is greater difference in 

AIC value between the best performing tree variable (tree height band 2) and the 

least predictive tree variable (tree height band 1). A total of 3 variables was 

identified as being less predictive than the null model, which included 2 tree 

height variables (bands 3 and 1) and a weather variable (temperature ≤3°C over 

4 weeks. 

In PE pipes, smaller trees (tree height band 2 and 1) was selected as being the 

most predictive of pipeline failure, whilst taller trees (height band 3, 4 and 5) was 

selected as being less predictive than the null model. In total, only 3 other 

variables are included in the PE pipeline failure model (temperature ≤4°C over 1 

week, hydrological rock type and pipe age average), and only tree height bands 

1 and 2 variables was selected as being more predictive than the null model. 
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3.4.4 The impact of combining tree height variables for the 

prediction of pipeline failure 

For all pipe materials there is no consistent selection of a combination of tree 

height variables which are predictive of pipeline failure, see Figure 3-6. In Iron, 

AC and PE pipes, the largest reduction in AIC, is observed with the addition of 

the tree height band 1 variable. In PVC pipes, the largest reduction in AIC is 

observed with the addition of tree height band 1 and 2 variable. 

Figure 3-6: AIC analysis for the different combinations of tree height variables and 

shrink swell in predicting water pipe failure for six pipe materials. T1 to T5 

represents tree height bands 1 to 5. Black arrows indicate the combinations of tree 

height variables with the lowest AIC value 
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3.4.5 Enhancing current water failure prediction models 

Upon the selection of the most predictive combination of tree height variables for 

each material types (Figure 3-6), the tree height variables were added to the 

models previously described. A description of the variables included in the tree-

enhanced models are shown below in Table 3-9. 

Table 3-9: A list of the final model variables for Asbestos Cement (AC), Iron (I), 

Polyvinylchloride (PVC) and Polyethylene (PE) tree-enhanced drinking water pipe 

failure models 

Material  Model Variables 

AC Diameter band + SMD + corrosion to Iron + climate-adjusted clay hazard + sand min + 

depth to bedrock + age band + temperature ≤4°C over 4 weeks + shrink swell + tree height 

1 + tree height 2 + tree height 3 

I Days air frost + temperature ≤5°C over 1 week + diameter band + shrink swell + climate-

adjusted clay hazard + SMD + age band + temperature change over 1 week + depth to 

bedrock + pipe age maximum + tree height 1 + tree height 2 + tree height 3 + tree height 4 

PVC Silt minimum + vapour pressure + age band + corrosion to Iron + soft and compressible 

soils hazard + sand minimum + pipe age maximum + rainfall + temperature ≤3°C over 4 

weeks + shrink swell + tree height 1 + tree height 2 + tree height 3 + tree height 4 + tree 

height 5 

PE Temperature ≤4°C over 1 week + hydrological rock type + pipe age average + shrink swell 

+ tree height 1 + tree height 2 

 

The final results of the tree-enhanced model predictions showed no improvement 

in prediction accuracy using tree-related variables, apart from a very slight 

improvement in model error (-0.007 %) in the Iron model, see Table 3-10. 
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Table 3-10: Summary statistics of models with and without the representation of 

trees. RMSE is the Root Mean Squared Error and MAE is the Mean Absolute Error 

Note: ‘Mat’ is material type referring to either asbestos cement (AC), Iron (I), polyvinylchloride (PVC) or 

polyethylene (PE) 

Model Mat Observed 

(o) 

Predicted 

(p) 

Residual 

difference 

(p – o) 

Model Error 

% difference 

 (p - o) 

RMSE MAE 

No trees AC 4579 4698.21 119.21 2.201% 51.043 40.334 

With trees AC 4579 4698.57 119.57 2.209% 51.215 40.528 

No trees I 10385 10356.00 -28.97 -0.279% 147.577 112.003 

With trees I 10385 10356.70 -28.34 -0.272% 147.783 112.308 

No trees PVC 4651 4609.93 -41.07 -0.883% 32.038 26.057 

With trees PVC 4651 4609.41 -41.59 -0.894% 32.017 26.061 

No trees PE 1553 1677.87 124.87 8.040% 33.032 29.543 

With trees PE 1553 1678.93 125.93 8.108% 32.388 29.324 

 

For all models, the inclusion of the tree variables accounted for a change in burst 

prediction which was <1 burst over the 10-year period, suggesting poor model 

sensitivity to the addition of new covariates. The overall model error is low, with 

the most accurate model predicting bursts to -0.2 % of the observed bursts over 

a 10-year period. The least performing model was PE, which over-predicted 

bursts by 8 % during the 10-year period. 

3.5 Discussion 

The seasonal differences in pipe failure rates has been widely reported in the 

scientific literature (Clayton et al., 2010; Gould et al., 2011; Kleiner and Rajani, 

2001; Wols and Thienen, 2014). Understanding the material-specific and 

seasonal trends in failure rates is integral for effective infrastructure 

management, as it helps utility operators to improve the life cycle costing of pipe 

materials in a quantitative manner (Davis et al., 2007). Moreover, an improved 
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understanding into the failure rates of different pipeline materials helps utility 

operators to proactively manage the distribution network, by prioritising the 

rehabilitation of the most at-risk assets. By using relevant environmental 

datasets, this paper has demonstrated how to gain a greater understanding of 

the environmental impacts on the water distribution network using relevant 

secondary datasets. This paper has a) quantified summer time failure rates for 

four common pipe materials under varying soil and tree density conditions, b) 

investigated whether a series of water infrastructure failure models can be 

enhanced using tree-related variables which are representative of tree height. 

3.5.1 Pipeline failure rate analysis under tree density and soil shrink 

swell conditions 

Investigating tree impacts up to a distance of 40 m of the pipe network is aligned 

with previous studies (Mercer and Reeves, 2011), where tree-related 

infrastructure damage has been noted at similar distances owing to the water 

consumption of different tree species and associated soil movements. Gasson 

and Cutler (1998) noted the importance of recognising soil type when 

investigating the impacts of trees on infrastructure, suggesting that trees in a non-

shrinkable soil can be situated, with less risk, at closer proximity to infrastructure. 

When analysing the impacts of trees on a regional network of buried 

infrastructure, assuming a “worse-case” scenario of the potential maximum 

extent of tree impact on infrastructure is a suitable approach. This ensures that 

the potential impacts of trees, irrespective of soil type or tree species, are 

considered.  

The highest failure rates observed in this study was recorded in Iron and PVC 

pipelines, with a tree density of 30-100 % and a very high shrink swell potential 

soil. This finding confirms the impact of a stand of trees have on the failure rates 

of Iron and PVC pipe materials in summer. Typically, the failure rates in Iron, PVC 

and AC pipe materials increase with higher tree density and soil shrink swell 

potential. The increase in summer failure rates of Iron and AC has been 

previously documented and has been attributed in the main to soil shrinkage. PE 

pipes exhibited no variability in failure rate under all soil and tree density 
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conditions. A lack of information is available in the scientific literature relating to 

the failure rate of PE pipe materials. One potential reason for this being the 

relative infancy of this pipe material in comparison to other materials making it 

more stable and tolerant to the environmental conditions being discussed 

(Pietrucha-Urbanik, 2015). 

The impact of multiple trees located together on the failure rates of different water 

pipeline materials has not been previously investigated, despite the known impact 

of individual trees on differential soil movements (Biddle, 1979; Clayton et al., 

2010; Day et al., 2010). The increase in failure rates under very high ground 

movement potential and high tree density conditions was expected, given the 

widely reported impact of individual trees causing differential soil movement in 

clay rich soils. The failure rates of Iron and PVC at 40m reported under very high 

shrink swell potential and 30-100 % tree density cover was 7.73 and 9.70 bursts 

per 1,000 km of pipe per week, respectively. By comparison, the failure rates 

reported in the same tree density conditions (30-100 % at a 40 m distance) in a 

low shrink swell soil was just 1.19 and 2.72 bursts per 1,000 km per week for Iron 

and PVC pipes respectively. No relationships were found for AC and PE pipes 

under these conditions. However, there was a small sample size of pipe recorded 

within very high shrink swell soil and high tree density (30-100 %) which did not 

allow the generation of a failure rate for these pipe materials. 

 

3.5.2 AIC analysis of tree height and combination of tree height 

variable 

This study reveals that pipe materials are impacted differently by different tree 

heights, with a different combination of tree variables selected as being predictive 

for each pipe material. Only in PVC pipe material a combination of all tree heights 

was identified as being predictive (tree height bands 1 to 5), whilst in PE only 

small trees (tree height bands 1 and 2) was identified as predictive. Trees of low 

to medium height was selected as being most predictive of failure in AC and Iron 

pipes. 
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A potential reason for the inconsistent selection of tree height variables being 

predictive of pipeline failure are the numerous other factors which contribute to 

the failure of buried assets. The AIC analysis verified that operational, weather 

and soil factors are more predictive than tree variables in all material types 

investigated. In addition, above-ground indicators such as tree height are not 

always descriptive of below-ground properties of tree root architecture (Burgess 

et al., 2001). For example, asymmetric root growth, root depth, and tree root 

intrusion are all known factors impacting upon infrastructure but have not been 

represented in the National Tree Map and cannot be described by using tree 

height data alone. An inclusion of information which represents the below-ground 

properties of trees, such as rooting information, rooting depth, and rooting extent, 

has the potential to further develop the models described within, and help better 

represent trees in the models described. 

3.5.3 Tree-enhanced water infrastructure failure models 

The inclusion of additional tree-related variables led to the increase of model error 

for AC, PVC and PE pipe failure models, with only Iron pipes achieving a slight 

reduction in model error (Table 3-10). One potential reason for the increase in 

error is the inclusion of more variables leading to overfitting of the GLM and 

increased complexity within the model. Furthermore, the AIC analysis shown in 

Figure 3-5 highlights that the most dominant and predictive variables are not tree 

related, and consist of a range of different soil, weather and operational variables. 

For Iron and AC pipes in particular, weather and soil variables such as SMD, 

temperature and soil texture are highly predictive of asset failure and was already 

represented in the material-specific models. Therefore, the lack of sensitivity of 

the models to the addition of new variables, such as tree height and density, might 

be explained by the most dominant variables being already included, and the 

addition of less predictive variables not improving overall model accuracy. 

This study used pipe cohorts for the investigation of tree density, where pipes of 

the same material, age and diameter were grouped together. Tree density was 

calculated for each individual pipe cohort and represented as a percentage of 

canopy coverage. The mean average length of the pipe cohorts analysed is 0.663 
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km long, however, the standard deviation of all pipe cohort lengths is large at 

1.139 km. An alternative approach for modelling tree impacts and density to the 

distribution network would be to split the network into regular divisions of pipe 

length (i.e. 500 m), then investigating the impact of tree density of different tree 

heights on regular lengths of pipe. It is expected that in using regular lengths of 

pipe, a clearer and more comparable representation of tree density and height 

would be gained across the network. A potential problem with this approach 

would be the representation of soil heterogeneity, as soil varies at an irregular 

scale. Therefore, setting a maximum distance of 500 m, which includes smaller 

lengths of pipe cohort, would overcome this. However, the creation of smaller 

pipe cohorts may increase the computational resource needed for analysis, 

particularly when investigating the impact of trees across a regional network of 

buried infrastructure.  

The tree inventory used within this investigation has no representation of tree 

species, which is a known major contributing factor to ground movement in 

shrinkable soils (Mercer and Reeves, 2011; Östberg, 2013; Randrup et al., 2001). 

To this extent, a classification of tree species using high resolution satellite or 

airborne multispectral imagery may provide more detailed information for 

predicting the impacts of tree-related ground movement and provide means of 

generating a key variable for statistical modelling (Ruiliang, 2013). Other studies 

have also described the impact of the removal of trees on infrastructure damage 

(Rawlins et al., 2015). In using a static tree inventory, no representation of the 

potential removal of trees is included. Other studies have described change 

detection methods to identify the removal of trees and large vegetation using a 

time series of either satellite or aerial images (Walton et al., 2008). The 

development and integration of such information within the statistical models may 

increase the representation of trees in the included modelling covariates and help 

further improve current methods of prediction. 

The methods developed within this study can be used anywhere detailed soil, 

weather and tree inventories exist. The value of the work discussed is particularly 

relevant to urban geographical locations which contain highly shrinkable soils and 
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vegetation co-located against buried infrastructure. Soils with high ground 

movement potential are found throughout the world (Mokhtari and Dehghani, 

2012). However, ground movement potential is only realised in locations where 

there is a sufficient SMD to permit the soils to shrink and swell in accordance with 

fluxes in the available soil water content. Typically, these geographical locations 

are in temperate climate countries with distinct wet and dry seasons, or also in 

semi-arid or arid environments where shrinkable soils can respond to short period 

of rainfall (Jones and Jefferson, 2012). This research has highlighted that high 

densities of trees situated in shrinkable soils can lead to increased failure rates 

in some pipe materials. Such information is important for the successful pro-

active management and planned rehabilitation of buried assets. 

3.6 Conclusions 

Unique relationships between tree densities, soil shrink swell potential and the 

rates of failure in four common pipe materials have been evaluated across an 

entire water distribution network. Clear increases in failure rates was observed 

for Iron and PVC pipe materials which are buried in highly shrinkable soils with 

30-100 % of tree canopy coverage in the pipe cohort (Figure 3-4). AC pipes show 

a varied response in failure rates, typically increasing with soil shrink swell 

potential and increased tree density. Modern PE pipes showed a stable rate of 

failure under all soil shrink swell conditions. Analysis of tree density up to a 

distance of 40 m from the pipe network provided an increased representation of 

pipeline failure in Iron and PVC pipe materials and is a recommendation for future 

studies wishing to undertake a similar analysis. 

Despite the tree variables having a clear impact upon the rates of failure in Iron 

and PVC pipes, the use of tree height and density variables within a series of 

material specific predictive models did not improve model accuracy. However, 

future research could include adding a representation of tree species as a model 

variable and identifying recent felling or planting of trees which are co-located to 

the network. Furthermore, the use of a regular length of pipe cohort to measure 

tree canopy coverage has the potential to increase the representation of tree 

density for individual sections of pipeline. Another recommendation of further 
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research would be to undertake statistical analysis of the residuals between 

predicted and observed bursts to determine whether any cyclical patterns exist in 

the model predictions. This may help to further identify any repetitive weaknesses 

exist in the model, such as poor prediction accuracy in a given season, or month.   

The findings have contributed to the wider general understanding of the impact 

of trees on four common pipe materials (AC, Iron, PVC and PE), across an entire 

distribution network. These methods have the potential to be applied to other 

locations where the data permits. Such methods are critical for the planning and 

pro-active management of water infrastructure, particularly given increasing 

pressure on global water resources and expected increase in water demand. 

Despite the known impacts of trees on utility networks, as identified in this paper, 

it is important to prevent tree loss due to the numerous positive impact’s trees 

have on the environment and society. Several methods exist for the successful 

co-location of trees and buried assets. For example, the artificial control of soil 

moisture regime in high risk soils, planting of deep-rooting tree species, planting 

of non-water intensive tree species and also installation of physical barriers have 

all been found to mitigate against the impact of trees on infrastructure (Randrup 

et al., 2001). These management techniques, combined with the findings 

presented in this paper, provide water utility companies the opportunity to pro-

actively manage the most at-risk assets based on unique soil and tree conditions. 
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4 Seasonal model testing and training to improve the 

prediction accuracy of Iron and asbestos cement water 

pipeline failure models 

This chapter investigates Objective 4 and is presented in the form of one 

unpublished research paper, intended for the journal Proceedings of the 

Institution of Civil Engineers – Water Management. 

North, M., Farewell, T., Hallett, S. (2018) Seasonal modelling to improve the 

prediction accuracy of Iron and asbestos cement water pipeline failure models. 

(unpublished) 

This chapter investigates the continued development of the models described in 

Chapter 3. The impact of using separate seasonal and non-seasonal model 

training and testing datasets is evaluated within. For this investigation, focus has 

been made only to the development of Iron and asbestos cement pipes due to 

their highly seasonal pattern of pipeline failure. 

Figure 4-a: Objectives aimed to be investigated within this chapter in context of 

the overall thesis 
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Abstract: 

The failure rates of Iron and Asbestos Cement (AC) pipelines are strongly 

controlled by environmental conditions typical of the different seasons. This study 

evaluates the impact of seasonally training two material-specific Poisson 

regression models using data representative of either the summer or winter 

season only. It is expected that an increased representation of using only 

seasonal data, representative of either the summer or winter period only, has the 

potential to improve current methods of pipeline failure prediction. The model 

covariates include detailed weather, soils and tree variables, and an 11-year 

dataset of historical pipe failure across an entire water distribution company in 

the UK. Using identical data, direct comparisons between seasonally trained and 

non-seasonally trained models was made using a series of statistical measures. 

An improvement in the prediction of Iron pipes was obtained when trained on 

separate seasonal data, with a reduction of annual average model error (% 

difference between observed and predicted burst values) of -0.36%. There was 

no improvement in the predictive ability of AC pipes when trained on seasonal 

data, with a reduction of annual model error of -0.08%, and an increase in RMSE 

and MAE. 

Keywords: Seasonal, Soil, Weather, Trees, Poisson regression, Model training, 

Model testing 
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4.1 Introduction  

In temperate climate countries, the failure rates of Iron and Asbestos Cement 

(AC) pipes are strongly influenced by the weather conditions typical of the 

different seasons (Clayton et al., 2010; Davis et al., 2008; Gould et al., 2011). For 

the case of the Anglian Water distribution network (UK), a clear increase of Iron 

pipeline failure rates occurs during the winter months, whilst a clear increase in 

AC pipeline failures occur during the summer months (Figure 4-1). This seasonal 

pattern of failure lends itself well to statistical modelling of predicting infrastructure 

failure, and has been the subject of numerous previous investigations (Farmani 

et al., 2017; Kimutai et al., 2015; Rostum, 2000; Wilson et al., 2017; Yamijala et 

al., 2009; Chapter 2; Chapter 3). 

Figure 4-1: Monthly average burst rate (pipe bursts per 1,000 km of pipe per week) 

for Iron (I) and Asbestos Cement (AC) pipes for the Anglian Water distribution 

network, UK. Dashed lines represent the marked boundaries of summer and winter 

seasons used in this study. Tick marks on the x axis indicate the middle of the 

month 

The development of statistical methods for pipeline failure prediction has been of 

key research interest since the 1980’s, as statistical approaches allow water utility 

operators to understand the stresses to the network in a cost-effective and non-

Winter related failure Winter related failure 

Summer related failure 

Summer related failure 
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disruptive manner. Statistical modelling allows utility companies to summarise a 

wide range of operational and environmental pressures upon a network, without 

the need for expensive in situ observations. 

4.1.1 Seasonal influences of pipe failure 

Previous investigations have revealed a wide range of environmental and 

operational causes of failures within Iron and AC pipes (Clayton et al., 2010; 

Davis et al., 2008; Chapter 2; Chapter 3). Iron pipes are typically the oldest pipe 

materials used in water distribution networks in the UK, with some operational 

pipes dating back to the late 1800’s. Iron pipeline failure is induced by cold 

weather, where pipes fail due to the successive embrittlement and long-term 

weakening of the pipeline material, often propagating from pipe manufacturing or 

installation defects (Farrow et al., 2017). Due to the cold weather mechanism of 

failure (such as successive embrittlement and thermal forces between the 

internal and external temperatures within the pipe), weather variables such as 

accumulated low temperatures, number of day’s air frost and temperature 

changes have been previously found to be highly effective for modelling Iron 

pipeline failure (Chapter 2). 

In the case of AC pipes, the environmental factors leading to pipeline failure are 

typical of the summer season within the UK (Wols and van Thienen, 2014). AC 

pipes were widely installed between 1920 and 1940, many of which are still 

currently operational. Several studies have noted the rise of AC pipe failures 

during dry summer months. This increase in failure has largely been attributed to 

the increased bending stresses of the pipe, caused by differential soil movement 

(in shrinkable clay-rich soils), and has led to an increased frequency of observed 

circumferential failures (Farrow et al., 2017). To this extent, weather variables 

such as Soil Moisture Deficit (SMD) and soil variables such as the indication of 

clay soils or high shrink swell potential have been found to be effective for the 

prediction of AC failures (Chapter 2). 

Iron pipes also have a small rise in failures from June to September (Figure 4-1). 

The increase of failures in Iron pipes during summer can also be attributed to 

differential soil movements, in a similar mechanism to the common pipeline 
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failures in AC, and has been previously investigated (Clayton et al., 2010). To this 

extent, modelling variables such as SMD, trees, and soil shrink swell potential 

are also effective for the modelling of Iron pipeline failures, often combined with 

the cold weather variables indicative of winter pipeline failure (Chapter 2). 

4.1.2 Current status of prediction accuracy 

A series of material-specific water infrastructure failure models have been 

developed for the Anglian Water distribution network, which covers a large region 

of approximately 27,500 km-2 in the east of the UK (Chapter 3). Material specific 

variable selection has identified a series of key operational, soil, weather and tree 

variables which are predictive of failure for individual material types, a description 

of the models and included variables are provided in Section 4.2.2. For a full 

description of model development, variable selection and datasets used refer to 

(Chapter 2; Chapter 3). 

For the models developed in Chapter 3, the mean yearly model error (% 

difference between observed and predicted bursts) for both Iron and AC models 

is -1.62% and 2.44%, respectively. Figure 4-2 highlights the consistent 

underestimation of bursts during the winter season (as indicated by the blue 

circle) in Iron pipes, and summer bursts (as indicated by the orange circle) in AC 

pipes. For both Iron and AC, model performance during the “off-peak” season of 

bursts appears to be satisfactory, with model error increasing with the number of 

observed bursts. 
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Figure 4-2: Scatter plot showing the seasonal variations in prediction accuracy for 

Iron (I) and Asbestos Cement (AC). Dashed line is a 1:1 linear line, whilst the black 

line notes the line of best fit from the linear model. Data points represent model 

predictions per month 

4.1.3 Research aim and motivation 

This study aims to establish whether using separate “winter” and “summer” 

training and testing datasets can improve the prediction accuracy for Iron and AC 

pipeline failure models. It is expected, that with an increased representation of 

the distinct seasonal characteristics in specific training datasets, the Poisson 

regression model may achieve improved prediction accuracy. This study aims to 

achieve a further understanding in the ability of Poisson regression models to 

represent the seasonal trends in pipeline failure, establishing whether the use of 

separate summer and winter only training and testing datasets can improve the 

performance of the models. 

 

Model 
Underestimation 

Model 
Underestimation 
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4.2  Materials and Methods 

4.2.1 Anglian Water datasets description 

For this investigation, a historical dataset of pipe bursts for the period from 28th 

December 2005 to 27th December 2016 was provided for model testing and 

training by Anglian Water plc. 

Only Iron and AC pipe materials were used due to the highly seasonal pattern of 

failure rates and notable underestimation of predicted bursts achieved in previous 

investigations, Figure 4-2 (Chapter 3). Iron and AC pipes have a combined length 

of over 18,226 km across the distribution network, which is 49% of the total length 

of the Anglian Water distribution network. A total of 30,019 observed bursts was 

recorded in Iron and AC pipes, which is 70% of the total observed bursts during 

the observation period. A summary of pipe length, total number of bursts and 

associated seasonal burst rates (bursts per 1,000 km of pipe per week) in both 

summer and winter seasons is provided in Table 4-1. Summer has been defined 

from the 1st May – 1st October, and winter has been defined as the 1st October – 

30st April, to capture both the winter and summer peak failures in Iron and AC 

pipes respectively (Chapter 3). 

Table 4-1: Summary of the failure rates of Iron and AC pipe materials during the 

observation period. Burst rates (bursts per 1,000 km of pipe per week) are 

calculated for reactive bursts only 

Note: summer failure rates are calculated from the 1st May to the 30th September, and winter failure rates are 

calculated from the 1st October to the 30th April 

Material Typical 

installation 

range 

Total 

length 

(km) 

Total 

bursts 

Burst 

rate  

Total 

bursts 

(May-

Sep) 

Burst 

rate 

(May-

Sep) 

Total 

bursts 

(Oct-

Apr) 

Burst 

rate 

(Oct-

Apr) 

I 1881 to 1921 11,226 20,737 3.21 3,172 1.17 17,565 4.68 

AC 1920 to 1941 7,000 9,282 2.31 4,809 2.86 4,473 1.91 

Total:                        18,226 30,019    
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Separate datasets were created for Iron and AC pipe materials from a cleaned 

and quality checked dataset. Details of the data pre-processing and data quality 

checks are detailed within (Chapter 2). Measures were made to ensure that only 

pipes which are operational at the time of the burst was included in the analysis, 

and that decommissioned and out of service pipes were excluded. This ensured 

the reliable estimation of pipe network length. 

4.2.2 Environmental dataset description 

Detailed information relating to the prevailing characteristics of soil, weather and 

trees was used as model variables in this study. Soils data was taken from the 

National Soils Map of England and Wales and associated soil property datasets 

(Hallett et al., 2017). The Met Office Rainfall and Evaporation Calculation System 

(MORECS) dataset, with a spatial resolution of 5 km, was used for the generation 

of weather variables for this investigation (Met Office, 2018b). Detailed 

information regarding the density of trees aligning the distribution network, in a 

40 m distance, was also calculated from Bluesky’s “National Tree Map”, which 

represents the heights and locations of every tree >3 m in the UK (Bluesky, 2018). 

For brevity, a full description of the datasets and the formation of specific 

variables included within the models has not been provided within but is 

extensively described in Chapters 2 and 3. 

4.2.3 Model description 

Poisson regression, which is a form of Generalised Linear Model (GLM), works 

by linking a response variable to a series of explanatory variables. For this study, 

the number of reactive bursts is the response variable, and the explanatory 

variables are a series of environmental variables describing the soil, weather and 

tree conditions. A reactive burst is defined as a burst which has been discovered 

by a third party, and not one by the leakage detection teams. Only reactive bursts 

have been used as the response variable, as these are the bursts which have 

been reported by the public and pose the largest threat of fines by the regulatory 

body, Ofwat. Due to the scheduled maintenance and reporting of proactive bursts 

within the distribution network, the dates recorded for timing of proactive burst 

often does not correlate to the actual time of burst occurrence, leading to 
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difficulties when trying to predict proactive bursts, hence their exclusion from this 

present study. Reactive bursts are often reported in a timely manner, therefore 

can be linked more closely to the environmental conditions at the time of pipeline 

failure. 

Explanatory weather variables are dynamic and vary over time. Poisson 

regression links the impact of both dynamic (such as weather) and static variables 

(such as soils, trees and operational factors) to the response variable, which in 

this case is reactive bursts. In this study, a series of material-specific Poisson 

regression models which are described and developed in (Chapter 3) have been 

used. The variables included in the material-specific models are shown in Table 

4-2. For brevity, a full description of the model variables is not provided within but 

can be found in (Chapter 3). 

Table 4-2: Model variables included in the final model selection. Tree height band 

measurement are 1 (< 5 m), band 2 (5 – 10 m), band 3 (10 – 20 m), band 4 (20 – 30 

m) 

Variable type Iron  Asbestos Cement (AC) 

Operational Diameter Band Diameter Band 

Age Band Age Band 

Maximum Pipe Age  

Soils Climate-adjusted clay hazard Climate-adjusted clay hazard 

Depth to bedrock Depth to bedrock 

Shrink Swell Potential Corrosivity to Iron 

 Minimum Sand Content  

 Maximum Sand Content 

Weather Number of days of air frost  Weekly mean SMD (real land use) in the 

week of the reported burst date  

The absolute change in mean SMD from 

the week the burst was reported to 1, 2 or 

4-weeks before 

The accumulated air temperature 4°C in a 

4- week period preceding the reported 

burst date. Air temperature accumulations 

are calculated in 1°c increments below the 
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threshold value. The greater the value of 

this variable, the colder the temperature 

was, for a prolonged period of times, in the 

previous weeks to the burst date 

The accumulated air temperature beneath 

5°C in a 1-week period preceding the 

reported burst date. Air temperature 

accumulations are calculated in 1°c 

increments below the threshold value. The 

greater the value of this variable, the 

colder the temperature was, for a 

prolonged period of time, in the previous 

week to the burst date 

 

Weekly mean SMD (real land use) in the 

week of the reported burst date 

 

Trees % area coverage of trees classified as 

height band 1 up to a 40 m distance from 

the pipeline 

% area coverage of trees classified as 

height band 1 up to a 40 m distance from 

the pipeline 

% area coverage of trees classified as 

height band 2 up to a 40 m distance from 

the pipeline 

% area coverage of trees classified as 

height band 2 up to a 40 m distance from 

the pipeline 

% area coverage of trees classified as 

height band 3 up to a 40 m distance from 

the pipeline 

% area coverage of trees classified as 

height band 3 up to a 40 m distance from 

the pipeline 

% area coverage of trees classified as 

height band 4 up to a 40 m distance from 

the pipeline 

 

 

4.2.4 Model performance evaluation 

Identical datasets and material specific model variables was used for the 

evaluation of seasonally and non-seasonal model training and testing to ensure 

that results could be directly compared. To create the seasonal model, the 

training and testing data was further split, in accordance to the observations date 

based on a summer (1st May to 30th September) or winter (1st October to 30th 

April) split. This resulted in 4 datasets, summer train and test datasets, and winter 
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train and test datasets. For the evaluation of the non-seasonal model, a total of 2 

datasets (train and test) was used which included burst observations throughout 

all seasons. Upon model testing of the seasonal models, the datasets were re-

joined to ensure that a directly comparable dataset was re-created. For a full 

overview of the data preparation and sampling of the data, see Figure 4-3. 

Model performance was evaluated using the statistical measures Root Mean 

Squared Error (RMSE), Mean Absolute Error (MAE), correlation coefficient of 

determination (R2), and also the percentage difference between observed and 

predicted values. These statistical metrics are common for the evaluation of 

predicted versus observed values and have been widely used in the scientific 

literature (Farmani et al., 2017; Kabir et al., 2016; Kimutai et al., 2015; Yamijala 

et al., 2009). 
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Figure 4-3: An overview of the methodology followed in the seasonal vs. non 

seasonal model predictions  

Note: RMSE is the Root Mean Squared Error, MAE is the Mean Absolute Error, R2 is the correlation coefficient of 

determination between observed and predicted values, and model error is the percentage difference between 

observed and predicted bursts 

4.3 Results 

Only the Iron model achieved a slight improvement in performance when it was 

trained and tested on a separate winter and summer dataset. This improvement 
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in performance is evidenced by a reduction of RMSE and MAE across the 

observation period (Table 4-3). 

When trained on the seasonal data, AC increased the 11-year RMSE by 0.65 and 

MAE by 0.05 from the non-seasonally trained data, therefore suggesting that 

there was no value in seasonally training this model (Table 4-4). The original 

models, which were not trained on the separate seasonal data, obtained an 

average yearly model error average of -1.62% and 2.44% for Iron and AC, 

respectively. For both materials, the models which were trained using seasonal 

data had a lower yearly model error average, with a reduction in -0.36% and 

0.08% model error for Iron and AC respectively.  

Figure 4-4 shows the distribution of monthly summarised observed and predicted 

bursts for both the seasonally trained and non-seasonally trained models. Aligned 

with the improvement of model error, RMSE and MAE, Iron shows a small 

increase in R2, from 0.6 to 0.635, when the model is trained on separate seasonal 

datasets. AC showed a very small increase in R2, of just 0.01, therefore 

suggesting there is no improvement when seasonally training AC pipe material. 

For both Iron and AC models, very minor changes are observed when assessing 

the model error each year between the seasonally trained and non-seasonally 

trained models, see Table 4-3 and 4-4, respectively. By using seasonal training 

data, a reduction in yearly model error was observed in Iron for 8 continuous 

years (2006 to 2013), and an increase in model error was observed from 2014 to 

2016. For AC, the results are mixed, and a total of 5 years showed a reduction in 

model error and a total of 6 years showed an increase in model error, with no 

consistent years of model over or underestimation. The largest reduction in error 

between the seasonally and non-seasonally trained models for Iron pipes was 

achieved in 2011, where the models annual average error reduced by 3.47%. 

The largest reduction in error between the seasonally and non-seasonally trained 

models for AC pipes was achieved in 2012, with an annual reduction in error of 

1.43%. 
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Table 4-3: Statistical description of the difference between non-seasonal and 

seasonally trained models for Iron 

Note: RMSE is Root Mean Squared Error and MAE is Mean Absolute Error. RMSE and MAE are analysis of the 

deviance between yearly Observed (Obs) and Predicted (Pred) as shown in the table. Model Error is the 

percentage difference between yearly Obs and Pred burst values. Green text indicates an improvement in model 

error, and red text indicates a reduction in model error  

Non Seasonal Model  

Year RMSE MAE Obs Pred residual RMSE MAE Model Error 

2006 0.04599 0.00395 1053 1018.00 -35.00 

147.78 112.31 

-3.44% 

2007 0.04534 0.00355 1026 835.79 -190.21 -22.76% 

2008 0.04180 0.00344 906 929.48 23.48 2.53% 

2009 0.05054 0.00447 1279 1065.20 -213.80 -20.07% 

2010 0.04939 0.00512 1194 1529.98 335.98 21.96% 

2011 0.04305 0.00336 950 857.81 -92.19 -10.75% 

2012 0.04372 0.00350 949 909.51 -39.49 -4.34% 

2013 0.04130 0.00356 889 1047.17 158.17 15.10% 

2014 0.03491 0.00246 621 688.27 67.27 9.77% 

2015 0.03894 0.00274 722 740.62 18.62 2.51% 

2016 0.03939 0.00287 796 734.82 -61.18 -8.33% 

   Total : 10385 10356.65   Average: -1.62% 

Seasonal Model 

 Year RMSE MAE Obs Pred residual RMSE MAE Model Error 

2006 0.04599 0.00397 1053 1031.98 -21.02 

133.03 101.59 

-2.04% 

2007 0.04533 0.00357 1026 842.39 -183.61 -21.80% 

2008 0.04180 0.00343 906 922.65 16.65 1.80% 

2009 0.05053 0.00448 1279 1072.98 -206.02 -19.20% 

2010 0.04937 0.00503 1194 1482.13 288.13 19.44% 

2011 0.04304 0.00341 950 885.57 -64.43 -7.28% 

2012 0.04372 0.00351 949 916.93 -32.07 -3.50% 

2013 0.04129 0.00352 889 1027.12 138.12 13.45% 

2014 0.03492 0.00247 621 693.98 72.98 10.52% 

2015 0.03894 0.00276 722 750.40 28.40 3.78% 

2016 0.03938 0.00286 796 729.91 -66.09 -9.06% 

      Total:  10385 10356.04      Average: -1.26% 



 

 120

Table 4-4: Statistical description of the difference between non-seasonal and 

seasonally trained models for AC 

Note: RMSE is Root Mean Squared Error and MAE is Mean Absolute Error. RMSE and MAE are analysis of the 

deviance between yearly Observed (Obs) and Predicted (Pred) as shown in the table. Model Error is the 

percentage difference between yearly Obs and Pred burst values. Green text indicates an improvement in model 

error, and red text indicates a reduction in model error 

Non-seasonal model 

Year RMSE MAE Obs Pred Residual RMSE MAE Model error 

2006 0.04592 0.00374 522 457.46 -64.54 

51.22 40.53 

-14.11% 

2007 0.04075 0.00301 413 367.31 -45.69 -12.44% 

2008 0.04124 0.00304 407 398.80 -8.20 -2.06% 

2009 0.04536 0.00362 493 448.31 -44.69 -9.97% 

2010 0.04050 0.00331 404 456.31 52.31 11.46% 

2011 0.04414 0.00373 488 508.37 20.37 4.01% 

2012 0.03982 0.00299 388 394.77 6.77 1.71% 

2013 0.04144 0.00327 425 451.75 26.75 5.92% 

2014 0.03721 0.00280 347 383.24 36.24 9.46% 

2015 0.03708 0.00284 309 431.44 122.44 28.38% 

2016 0.03952 0.00301 383 400.81 17.81 4.44% 

      Total:  4579 4698.57      Average: 2.44% 

Seasonal Model 

Year RMSE MAE Obs Pred Residual RMSE MAE Model error 

2006 0.04591 0.00375 522 459.31 -62.69 

51.87 40.58 

-13.65% 

2007 0.04075 0.00299 413 364.04 -48.96 -13.45% 

2008 0.04124 0.00304 407 398.48 -8.52 -2.14% 

2009 0.04536 0.00362 493 449.52 -43.48 -9.67% 

2010 0.04050 0.00331 404 457.94 53.94 11.78% 

2011 0.04413 0.00373 488 509.79 21.79 4.27% 

2012 0.03981 0.00297 388 389.09 1.09 0.28% 

2013 0.04145 0.00328 425 454.47 29.47 6.49% 

2014 0.03722 0.00279 347 382.74 35.74 9.34% 

2015 0.03709 0.00285 309 433.56 124.56 28.73% 

2016 0.03953 0.00300 383 399.10 16.10 4.03% 

      Total:  4579 4698.05      Average: 2.36% 
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Figure 4-4: Scatter plots comparing the predicted vs. observed yearly number of 

bursts in Iron (I) and Asbestos Cement (AC) pipelines for seasonal and non-

seasonal models  

Note: Model outputs which were not trained using the seasonal split in data are on the left, whilst the seasonally 

trained models are shown on the right. The dashed line represents a 1:1 linear trend line, whilst the black line 

represents the line of best fit through the data points from the linear model 

 





 

 123

 

Figure 4-5: Time series plot of non-seasonally trained model, seasonally trained 

model, and observed bursts for Iron and AC pipes. Bursts represent the number 

of monthly bursts 
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4.4 Discussion 

The overall performance in predicting bursts in Iron pipes was improved slightly 

when using a seasonal training and test dataset. This is evidenced by a 

consistent reduction in annual model error from 2006 to 2013. The largest 

reduction in model error from the non-seasonal to the seasonal model was gained 

in 2011 (-3.47%), however, a notable reduction in error (2.52%) was also 

observed in 2010. Iron pipes follow a strong seasonal pattern of failure and have 

a uniform and consistent trend of bursts with distinct peaks during winter months 

(Figure 4-5). A defined peak of bursts is seen in the observed values during every 

winter season, with the exception of 2014, when there was a lower number of 

observed bursts (621) in comparison to other years (mean yearly observed bursts 

is 944). Despite this, both the seasonal and non-seasonal models did well in 

predicting Iron pipeline failure for this year, with model RMSE alike to previous 

investigations predicting pipeline failure (Farmani et al., 2017; Tabesh et al., 

2009). This suggests that the conditions leading to a lower rate of observed bursts 

are fully represented in the explanatory variables, as both the seasonal and non-

seasonal models captured the reduction of observed bursts for 2014, see Figure 

4-5. 

Observed failures in AC pipelines show varying annual trends, with peak burst 

observations occurring during summer and autumn time, and other peaks of 

bursts also occur regularly throughout other parts of the year. The seasonally 

trained model did not show an improvement over the non-seasonally trained 

model, with only a slight reduction in percent change between predicted and 

observed values over the 11-years of analysis. RMSE and MAE increased with 

the seasonally trained data test, suggesting there is little increased benefit of 

using a seasonally trained and tested model for AC pipeline failure prediction. 

With a highly fluctuating annual pattern of observed pipeline failures, splitting the 

original dataset into separate summer and winter was not as effective at capturing 

the peak burst values for AC pipe material. Despite this, the RMSE of both the 

seasonal and non-seasonal models is aligned to previous investigations using 

alternative methods for the prediction of pipeline failure (Farmani et al., 2017; 

Tabesh et al., 2009). 
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Upon comparison of the seasonally and non-seasonally trained models, a very 

small difference in enhanced predictive ability was observed. As described in 

(Chapter 2; Chapter 3), several of the final model variables in Iron and AC pipeline 

failure models already have a prior representation of seasonality within them. For 

example, weather variables included in the Iron model (SMD, number of days air 

frost, and temperature ≤5°C over 1 week) and AC model (SMD, and temperature 

≤4°C over 4 weeks) can sufficiently describe the conditions typical of either the 

summer or winter seasons. The representation of dynamic weather variables 

already included within the Poisson regression models may part explain the lack 

of improvement when using separate seasonal training datasets for Iron and AC 

pipeline failure prediction. This is because the changes in weather typical of the 

different seasons are already represented, via the included variables, within the 

model. 

No directly comparable studies can be found which investigates the change in 

model performance upon using a separate winter and summer training and test 

datasets for the prediction of water pipeline failure. This is despite the known 

seasonal causes of pipeline failure and widespread application statistical models 

(Clayton et al., 2010; Gould et al., 2011; Kleiner and Rajani, 2001). A 

recommendation for future research would be to undertake separate variable 

selection and model building, using techniques outlined in (Chapter 2), to build a 

series of summer and winter specific models. This may help to further improve 

the representation of seasonal factors leading to pipeline failure. Undertaking 

separate seasonal variable selection and model building would allow the 

development of a parsimonious model which is fully representative of the season 

it is modelling, as opposed to using a model which has been built upon variables 

which are representative of pipeline failure throughout the different seasons. 

One disadvantage of using separate winter and summer train/test datasets is the 

reduction in sample size used for predictive modelling. Statistical approaches rely 

on a sufficient sample size to generate reliable and accurate predictions (Rostum, 

2000). Upon further sub-sampling of the data to create separate winter and 

summer train and test datasets, the overall sample size used for model training 
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and testing is reduced but becomes more representative. This study has 

overcome this by using a sufficiently long time series of observations, spanning 

11-years of analysis, to maintain a sufficient sample size in each dataset. 

However, for smaller scale investigations, the approach of creating separate 

winter and summer train and test datasets could become problematic if an 

insufficient number of burst observations are included in the seasonal train and 

test datasets. 

This study evaluates the seasonal representation of environmental factors (soils, 

weather and trees) and operational factors (age and diameter) to the failure of 

Iron and AC pipes. Upon the evaluation of numerous weather, soil and tree 

datasets, and now with the impact of seasonal model training and testing, the 

representation of meaningful and predictive environmental factors within the 

developed models are nearly at a maximum. Therefore, other variables such as 

key operational factors, which have not been represented within the models, 

provide the most potential for further improving the predictive ability. Factors such 

as network pressure management, previous incidences of bursts, installation and 

manufacturing factors, water temperature and water source provide the most 

promise, in this regard. The integration of data through citizen science, new 

satellite sensors, acoustic loggers, and smart-water monitoring systems provide 

promise for the generation of new data which may improve predictions of pipeline 

failure in statistical models. 

4.5 Conclusions 

This paper has demonstrated an alternative approach for model training and 

testing suitable for a series of previously developed water infrastructure failure 

models (Chapter 3). The aim of this study was to establish whether using 

separate winter and summer training and testing datasets could improve water 

pipeline prediction accuracy for Iron and AC pipes. The results demonstrated that 

a small improvement in the predictive ability of the failure of Iron pipes was 

achieved upon using separate winter and summer train and test datasets, and 

little to no improvement was achieved for the predictive ability of the failure of AC 

pipelines. A small improvement in performance was discussed to be largely 
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attributed to the representation of seasons already being included within several 

weather variables, such as SMD and Temperature. 

This work has helped establish whether currently operational methods for water 

infrastructure failure prediction can be improved using separate seasonal 

datasets. Further recommendations for this work are to undertake separate 

variable selection and model building for separate winter and summer pipeline 

failure models. The development of separate winter and summer models, with 

the potential inclusion of network pressure and water demand may help fully 

capture the intra-annual variability of water supply between summer and winter 

seasons (Wengström, 1993), and is a promising area of statistical model 

development. The continued development of operational predictive models is 

essential for water utility companies to build network resilience, by proactively 

identifying bursts and improving the accuracy of burst targets, which help utility 

companies to avoid fines by regulators. Despite the methods in this paper being 

applied to only one utility company in the UK, the techniques are transferable to 

different water utility companies globally where similar data permits. 
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5 Monitoring the response of roads and railways to 

seasonal soil movement with Persistent Scatterers 

Interferometry over six UK sites. 

This chapter investigates Objective 5, and is presented in the form of one 

published research paper. 

North, M., Farewell, T., Hallett, S., Bertelle, A. (2017) Monitoring the response of 

roads and railways to seasonal soil movement with Persistent Scatterers 

Interferometry over six UK sites, Remote Sensing, 9(922). 

doi:10.3390/rs9090922.  

The main components of this chapter can be broken down into 1), establishing 

the effectiveness of the Persistent Scatterers Interferometry (PSI) technique to 

measure soil-related deformation in different types of above-ground 

infrastructure, 2) identify the seasonal response of major soil groups through 

satellite remote sensing. A discussion of the PSI technique and its use in 

statistical based modelling of water pipeline failure is made in Chapter 6. 

Figure 5-a: Objectives aimed to be investigated within this chapter in context of 

the overall thesis 
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Abstract:  

Road and rail networks provide critical support for society, yet they can be 

degraded by seasonal soil movements. Currently, few transport network 

operators monitor small-scale soil movement, but understanding the conditions 

contributing to infrastructure failure can improve network resilience. Persistent 

Scatterers Interferometry (PSI) is a remote sensing technique offering the 

potential for near real-time ground movement monitoring over wide areas. This 

study tests the use of PSI for monitoring the response of major roads, minor roads 

and railways to ground movement, across six study sites in England, using 

Sentinel 1 data in VV polarisation in ascending orbit. Some soils are more stable 

than others; a national soil map was used to quantify the relationships between 

infrastructure movement and major soil groups. Vertical movement of transport 

infrastructure is a function of engineering design, soil properties and traffic 

loading. Roads and railways built on soil groups prone to seasonal water-logging 

(Ground-water gley soils, Surface-water gley soils, Pelosols, and Brown soils) 

demonstrated seasonal subsidence and heave, associated with an increased risk 

of infrastructure degradation. Roads and railways over Podzolic soils 

demonstrated relative stability. Railways on Peat soils exhibited the most extreme 

continual subsidence of up to 7.5 mm y-1. Limitations of this study include the 

short observation period (~13 months, due to satellite data availability) and the 

regional scale of the soil map, (mapping units contain multiple soil types with 

different ground movement potentials). Future use of a higher resolution soil map 

over a longer period will advance this research. Nevertheless, this study 
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demonstrates the viability of PSI as a technique for measuring both seasonal soil-

related ground movement, and the associated impacts on road and rail 

infrastructure. 

Keywords: Persistent Scatterers Interferometry; Sentinel 1; Synthetic Aperture 

Radar; Infrastructure monitoring; Soil movement; Soil compression; Shrink swell; 

Environmental risk; Road; Railway 

5.1 Introduction 
Ground movement is the soil-related geohazard most damaging to infrastructure 

in the UK (Institution of Civil Engineers, 2014). As such, the ability to measure 

the impact of soil movement on infrastructure networks, in a cost-effective 

manner, offers great value to utilities, insurance companies and governments. 

Infrastructure resilience can be compromised by infrastructure pressures (ageing 

assets, embrittlement, thinning, increasing demand and loading), environmental 

pressures (changing climate, soil movement), and financial pressures. However, 

a fully functioning and fault-resistant system of infrastructure is important for the 

critical operation of healthcare, transport, trade and commerce. The UK 

government is set to invest £100 billion in infrastructure by 2021 to ensure that 

the UK’s infrastructure needs are met for future generations (HM Infrastructure 

and Projects Authority, 2016). Monitoring the structural condition of infrastructure 

networks is essential to ensure its long-term resilience. Developing suitable 

methods to monitor infrastructure networks, at the regional to national scale, is 

also a key challenge. (HM Infrastructure and Projects Authority, 2016). 

 

Several in situ techniques are available for the local monitoring of infrastructure 

assets, including manual visual inspection, levelling, total station surveying and 

GPS technologies (Lan et al., 2012). These approaches provide highly accurate 

measurements of deformation at a single point, yet they require significant 

investment of human resources and equipment to obtain a high density of 

measurements suitable for wide-scale infrastructure monitoring. On this premise, 

satellite remote sensing, particularly with the onset of new generation high 

resolution Synthetic Aperture Radar (SAR) sensors, can measure deformation 
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over areas several tens of km wide, whilst retaining high precision and accuracy. 

This allows the cost-effective monitoring of surface deformation (Crosetto and 

Monserrat, 2009). 

 

Advanced Differential Synthetic Aperture Radar Interferometry (D-InSAR) 

techniques, such as Persistent Scatterers Interferometry (PSI), offer promise for 

the monitoring of large scale soil movement and long-term deformation of 

infrastructure networks. PSI requires at least 20 SAR images to measure surface 

deformation over months or years, removing the effects of atmosphere, 

topography and signal noise (Ferretti et al., 2001, 2000). Several applications of 

PSI have been previously investigated. Some examples include, monitoring 

either natural or anthropogenic urban subsidence (Lan et al., 2012; Stramondo 

et al., 2008; Zhao et al., 2009), measuring the intra-annual variability of soil 

related ground movement (Culshaw et al., 2006; Huang and Lee, 2006; Lan et 

al., 2012), the detection of natural hazards such as landslides (Lauknes et al., 

2010; Tofani et al., 2013), as well as observing the structural condition of 

infrastructure (Chen et al., 2012; Ventisette et al., 2011). 

 

The PSI technique is of great potential value to utility companies wishing to 

monitor assets in near real-time and could ultimately lead to observations of an 

entire infrastructure network with a high spatial and temporal resolution. In a 

recent study of Mexico City, a density of 575 PS targets per km-2 was achieved 

using the European Space Agency’s Sentinel 1 data (Crosetto et al., 2015). With 

the advent of very high resolution SAR data, such as TerraSAR-X, a PS density 

of up to 5,201 targets per km-2 have been recorded (Yu et al., 2013). Lower 

resolution datasets such as the ERS, and the ENVISAT satellite constellations 

have an archive of data extending back to 1992, enabling historical evaluations 

of surface deformation, if required (Terrafirma, 2010). However, new satellite 

missions such as the Sentinel 1 offer an increased spatial resolution with a 

quicker revisit period of 6 days drawing on a combination of Sentinel 1a and 1b, 

making it a promising new tool for environmental monitoring. On this basis, PSI 

applied to Sentinel 1 data could provide high density measurements of ground 
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movement on a regional scale and over a range of different land cover types (Lan 

et al., 2012). Furthermore, PSI outputs can be integrated into a Geographical 

Information System (GIS) which allows for a greater understanding of the 

relationships between surface deformation and the natural environment (Aldiss 

et al., 2014; Meisina and Zucca, 2006). Additional data such as soil maps, 

geological maps and climate and meteorological data, can all provide information 

to further explain observed deformation phenomena (Aldiss et al., 2014). 

Therefore, remote infrastructure observation with PSI has the potential to prompt 

proactive asset maintenance, increase network resilience and reduce the need 

for expensive in situ monitoring. 

 

One example of a PSI investigation is Aldiss et al.’s study (Aldiss et al., 2014), 

where a large time series of 60 ERS and ENVISAT images in descending orbit 

were collected between March 1997 – December 2005, with ground movement 

being quantified over a 95 x 55 km scene over London, UK. The study found that 

PSI targets in large parts of the Thames estuary subsided between 0.9 and 1.5 

mm y-1 with the fastest soil subsidence rate being, on average 2.1 mm y-1. By 

combining PSI outputs with geological data in a GIS, the authors noted that 

regional patterns of uplift and subsidence are controlled by both deep geological 

features, such as the relative mass of underlying geology, and shallow geological 

features such as fault lines. Boyle et al.’s study (2000), noted that the shrink swell 

behavior of the London clays can give rise to 50 mm y-1 of vertical movement 

(cumulative shrink and swell) over wide areas. This rate of movement was 

attributed largely to dry summers and wet winters. Both studies (Aldiss et al., 

2014; Boyle et al., 2000) noted the importance of external factors such as 

extreme meteorological conditions, local topography, urban fabric, vegetation, 

and anthropogenically-induced subsidence such as tunneling and water 

abstraction. 

 

National soil maps, such as the one used in this study (Keay et al., 2009), often 

estimate ground movements based on the laboratory assessment of clay soils’ 

volumetric change potential. Such categorical maps are widely used by utilities, 
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with classes such as “high” and “low” ground movement potential (Pritchard et 

al., 2015a). Quantification of the vertical movement of soils is difficult due to 

numerous external factors (vegetation, agriculture, erosion etc.). Therefore, 

applying PSI over engineered surfaces which maintain high coherence can act 

as one possible method to quantify soil movement. 

 

Previous studies have investigated the effects of engineering design on the rates 

of observed surface movement (Lan et al., 2012; Yu et al., 2013). The importance 

of foundation depth is consistently noted as a predominant control over surface 

deformation of structures. This paper seeks to measure directly how road and rail 

networks respond to the movement of different soils. By investigating the use of 

PSI over 6 different UK urban areas (Bristol, Bath, Bournemouth, Kings Lynn, 

Peterborough and Grantham), a wide range of environmental conditions, soil 

types and asset responses can be included in the analysis. This work will improve 

the current knowledge of how different types of infrastructure respond to soil 

movement, particularly in the UK, and will help determine the suitability of the PSI 

technique to monitor critical infrastructure networks nationally. 

5.2 Materials and methods 
 

This study uses Sentinel 1a C-band SAR data to produce a time-series of 

interferograms used in the PSI process. Sentinel-1 Single Look Complex (SLC) 

data has a swath width of 250 km in Interferometric Wide (IW) mode, with a spatial 

resolution (pixel size) of 3 x 20 m in range and azimuth, respectively. The tandem 

satellites (Sentinel 1a and 1b) cycle over 175 different orbits and have a full-global 

repeat cycle of 6 days. Many areas, such as the UK, receive more frequent data 

acquisition. 

 

Sentinel 1 images were selected based on the same orbit number to ensure full 

spatial coverage of the study areas. Precision orbit ephemerides files were 

downloaded for each SAR image to ensure that no errors occurred in the co-

registration of the data, this process, known as de-bursting, ensures phase 

continuity over the burst limits. If no precise orbit files are applied, then linear 
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features can appear in some interferograms (Crosetto et al., 2015). Images were 

also selected as per the minimum separation between two orbits for each pair 

(perpendicular baseline) at an interval of at least 12 days, so limiting the temporal 

and spatial decorrelation of the interferometric pairs. Data were collected in two 

separate areas (see Figure 5-1) so comparison between infrastructure responses 

over a large area could be undertaken. For the Western study area (Bristol, Bath 

and Bournemouth), data were downloaded from the 8th September 2015 to the 

31st December 2016, with a polarization of VV (Vertical transmit and Vertical 

receive) in ascending orbit. In total, 23 images were downloaded for processing, 

including one master image which was selected as the 16th July 2016. For the 

Eastern study area (Grantham, Peterborough and Kings Lynn), 23 images were 

collected from the 13th January 2016 to the 8th March 2017, also collected in VV 

polarisation in ascending orbit. The master image for all Eastern England sites 

was selected as the 16th August 2016. See Table 5-1 for a description of the 

image dates, perpendicular and temporal baselines of the Sentinel 1a images 

used in this study. 

 

All PSI processing was conducted using Harris Corporation’s ENVI SARscape 

software v5.3. After the SAR images were connected (spatially and temporally), 

a series of interferometric pairs were created. These image pairs were then 

consequently co-registered to the master images’ slant geometry. Each of the 

slave images were then co-registered to the master to calculate the phase 

difference between each image pair. A Doppler filter was applied to reduce the 

temporal decorrelation of the image pairs. In this step, a SRTM 3 Digital Elevation 

Model (DEM) was downloaded with a spatial resolution of 90 m to correct errors 

related to phase and atmospheric effects between the interferometric pairs. For 

each study site Ground Control Point (GCP) files were created to correct the 

images geometrically, after this step a Goldstein filter was applied to decrease 

the signal-to-noise ratio by filtering the differential phase (Goldstein and Werner, 

1998). Values of 5 in range and 1 in azimuth were used in the multi-looking phase 

to obtain square pixels for the image pairs. This step is used to avoid the effects 

of over and under sampling on geocoded images. 
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The interferometric pairs were then processed by the first and second inversion 

steps in the ENVI PSI workflow to locate the potential Persistent Scatterers (PS). 

The first inversion step estimates the residual height and displacement velocity 

of the study area, and is applied to flatten the interferograms. Reference points 

are used in this step (one or more) and are automatically selected (based on high 

coherence and minimal deformation) for the removal of the offset phase from all 

interferograms. For the processing of large areas, the scene is split into sub-areas 

where individual processing is undertaken. A mosaicking operation is then 

conducted to merge all smaller subset areas to produce the final velocity map, 

and in this instance several reference points are selected. The second inversion 

step removes the atmospheric phase effects from the interferograms using the 

low and high pass filters, which correct the spatial and temporal distributions of 

atmospheric effects. The low pass filter accounts for the spatial distribution of 

atmospheric variations. The high pass filter accounts for the temporal distribution 

of atmospheric variations. The second model inversion creates the date-by-date 

displacements, which is then used to create the geocoded output, which is 

displacement along the Line of Sight (LOS). All deformations are relative to the 

reference points which were previously identified as being stable, through 

detailed visual checks of these data. Visual checks included making sure that the 

reference points had a stable deformation profile and that they were a suitable 

target (i.e. a highly engineered structure or exposed bedrock). The interferometric 

workflow is based on Ferretti et al.’s methodology, and for a mathematical 

account of the algorithms used see (Ferretti et al., 2001, 2000). 
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Table 5-1: Dates of Sentinel 1 images and their perpendicular (Bperp) and temporal 

(Btemp) baselines for Bristol, Bath, Bournemouth, Grantham, Kings Lynn and 

Peterborough 

 Bristol Bath Bournemouth  

Date Bperp Btemp Bperp Btemp Bperp Btemp 

19-Nov-2015 -51.04 m -240 -49.76 m -240 -48.22 m -240 

01-Dec-2015 -26.69 m -228 -25.62 m -228 -23.93 m -228 

13-Dec-2015 36.48 m -216 37.01 m -216 36.28 m -216 

06-Jan-2016 79.81 m -193 80.28 m -193 80.69 m -193 

18-Jan-2016 -13.55 m -180 -12.22 m -180 -10.56 m -180 

30-Jan-2016 -13.55 m -168 34.51 m -168 36.29 m -168 

11-Feb-2016 61.99 m -156 62.75 m -156 63.24 m -156 

30-Mar-2016 -78.46 m -108 -77.46 m -108 -75.60 m -108 

23-Apr-2016 29.07 m -84 28.88 m -84 28.15 m -84 

10-Jun-2016 -51.98 m -36 -51.34 m -36 -50.14 m -36 

04-Jul-2016 31.98 m -12 31.74 m -12 30.64 m -12 

16-Jul-2016* 0.00 m 0 0.00m 0 0.00m 0 

28-Jul-2016 -17.18 m 12 -16.62 m 12 -18.17 m 12 

09-Aug-2016 -41.68 m 24 -41.10 m 24 -39.72 m 24 

21-Aug-2016 -23.03 m 36 -22.90 m 36 -23.06 m 36 

02-Sep-2016 118.61 m 48 117.87 m 48 116.71 m 48 

14-Sep-2016 32.81 m 60 32.81 m 60 32.63 m 60 

26-Sep-2016 -24.01 m 72 -23.57 m 72 -23.30 m 72 

01-Nov-2016 69.37 m 108 69.65 m 108 69.59 m 108 

13-Nov-2016 74.92 m 120 75.22 m 120 74.93 m 120 

25-Nov-2016 32.35 m 132 33.09 m 132 34.33 m 132 

19-Dec-2016 -37.74 m 156 -36.24 m 156 -34.43 m 156 

31-Dec-2016 35.72 m 168 36.40 m 168 36.39 m 168 
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 Grantham Kings Lynn Peterborough  

Date Bperp Btemp Bperp Btemp Bperp Btemp 

13-Jan-2016 29.43 m -216 33.8966 m -216 31.4909 m -216 

06-Feb-2016 72.79 m -192 73.777 m -192 72.6985 m -192 

01-Mar-2016 -89.76 m -168 -84.46 m -168 -88.76 m -168 

18-Apr-2016 -19.41 m -120 -18.63 m -120 -19.28 m -120 

12-May-2016 -105.47 m -96 -101.63 m -96 -104.62 m -96 

05-Jun-2016 31.86 m -72 31.38 m -72 30.18 m -72 

29-Jun-2016 -62.16 m -48 -60.12 m -48 -61.79 m -48 

23-Jul-2016 8.829 m -24 9.02 m -24 9.028 m -24 

04-Aug-2016 12.73 m -12 12.8 m -12 12.63 m -12 

16-Aug-2016* 0.00 m 0 0.00 m 0 0.00 m 0 

09-Sep-2016 -72.56 m 24 -69.2 m 24 -71.73 m 24 

21-Sep-2016 -79.30 m 36 -75.10 m 36 -77.98 m 36 

03-Oct-2016 46.36 m 48 46.49 m 48 46.15 m 48 

15-Oct-2016 71.74 m 60 72.11 m 60 71.76 m 60 

27-Oct-2016 21.81 m 72 22.85 m 72 20.59 m 72 

08-Nov-2016 -42.22 m 84 -36.16 m 84 -41.21 m 84 

26-Dec-2016 75.52 m 132 76.92 m 132 75.13 m 132 

07-Jan-2017 26.39 m 144 26.50 m 144 23.90 m 144 

19-Jan-2017 -21.13 m 156 -24.98 m 156 -19.71 m 156 

31-Jan-2017 -27.96 m 168 -22.01 m 168 -26.86 m 168 

12-Feb-2017 53.10 m 180 55.20 m 180 53.38 m 180 

24-Feb-2017 58.00 m 192 60.06 m 192 58.65 m 192 

08-Mar-2017 37.62 m 204 38.51 m 204 38.01 m 204 
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Transport infrastructure data were freely sourced from the UK Ordnance Survey 

Meridian 2 dataset, which provides a frequently updated and accurate network of 

principle infrastructure types across Great Britain. The data provides information 

on the location and extent of motorways, A-roads, B-roads, Unclassified roads 

and Railways at the nominal viewing scale of 1: 50,000. Data are provided in a 

GIS ready format, with road classification provided as attributes. Road types were 

categorised into minor roads (Unclassified and B-roads) and major roads (A-

roads and Motorways) to simplify the analysis. From these categorisations, a 

buffer distance of 2 meter’s (from the center line of infrastructure) was created for 

minor roads, 3 meter’s for major roads and railways, and 4 meter’s for motorways. 

This buffer zone was then used to subset the PSI output, ensuring that only those 

PSI points in close proximity to the infrastructure were analysed, reducing the 

number of PS points returned from pavements (sidewalks), surrounding buildings 

and vegetation and adjacent unconsolidated ground. 

 

By analysing the PSI output in a GIS environment, each PS point was attributed 

with information pertaining to the major soil group, which permitted contrasting 

the information about ground deformation with major soil groups. This study uses 

Cranfield University’s National Soil Map (Keay et al., 2009). The 1:250,000 scale 

soil map contains information related to soil properties including ground 

movement potential (based on the laboratory assessment of volume change 

potential of soils, categorized from “low” to “high”), texture, drainage, fertility, land 

cover and habitats. The major soil groups included in this study were Brown soils, 

Ground-water Gley soils, Lithomorphic soils, Pelosols, Podozolic soils, Surface-

water Gley soils, and Peat soils, see Table 5-2 below for their descriptions (FAO 

2015). 

 

Validation of the PSI outputs was undertaken over the closed Meldon quarry site 

(50.716084 N, -4.026326 W), see Figure 5-1. Meldon Quarry has been disused 

since 2007 (Dartmoor National Park Authority, 2017), and comprises a mixture of 

metamorphic and igneous rocks. To this extent, the geology is highly stable and 

so presents itself as an area of high coherence, excepting natural erosion and 
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deposition. The PSI processing over Meldon Quarry was undertaken with an 

identical model set up as for the 6 other test sites, so direct comparison upon the 

reliability of the results could be determined. 

Table 5-2: Short descriptions of the major soil groups discussed in this study 

along with their associated classification in the World Reference Base (WRB) 

Major Soil 

Group Type 

Description Soil 

Movement 

Potential  

WRB 

Classification  

Brown soils Widespread soils with predominantly brownish 

or reddish sub surface. They have no gleying 

above 40 cm depth and are mainly associated 

with agriculture land use. 

Moderate-

High 

Arenosols 

Cambisols 

Luvisols 

Regosols 

Ground-water 

Gley soils 

Soils normally developed over permeable 

materials which appear uniformly gleyed. 

These soils are subject to periodic 

waterlogging by fluctuating groundwater-

tables. 

High Gleysols 

Lithomorphic 

soils 

Often shallow soils which have been formed 

over bedrock, or soft material at 30 cm depth. 

Moderate-

Low 

Arenosols 

Histosols 

Leptosols 

Phaeozems 

Pelosols Slowly permeable clay soils with no gleyed 

subsurface horizon above 40 cm depth. These 

soils can show significant desiccation in dry 

seasons. 

Moderate-

High 

Cambisols 

Luvisols 

Podzolic soils Soils usually formed as a result of acid 

weathering conditions, and have an 

unincorporated acid layer at their surface. 

Moderate-

Low 

Podzols 

Umbrisols 

Surface-water 

Gley soils 

Seasonally waterlogged, and slowly permeable 

soils, which appear predominantly mottled 

above 40 cm depth. 

High Planosols 

Stagnosols 

Peat soils Organic soils derived from partially 

decomposed plant remains that accumulated 

under waterlogged conditions. 

High Histosols 
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Figure 5-1: Study area extents shown with major soil group and infrastructure 

extent. Western sites (1: Bristol; 2: Bath, 3: Bournemouth, shown in red) Eastern 

sites (4: Grantham; 5: Kings Lynn; 6: Peterborough, shown in blue). The insert 

map locates the sites within the UK. Dashed red and blue outlines represent the 

area extent of the Sentinel 1 data frames (Western England – relative orbit number 

30, Eastern England – relative orbit number 132). The locations of Meldon Quarry 

validation test site, Tadham Moor and Redmere meteorological stations, have 

been shown in the insert map 
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In total, six sites were selected for this study, separated into two distinct study 

areas, see Figure 5-1 and Table 5-3. The prevailing climate across all sites is 

classified as temperate oceanic, with all areas receiving regular precipitation 

events throughout the year. Sites situated in the West of England receive on 

average 195 mm more precipitation annually than sites in Eastern England. Of 

the six sites, Bournemouth receives the highest annual precipitation, 835 mm, 

whilst Grantham receives the least, 608 mm. Temperature ranges exhibit very 

little variation between all six sites, with typical maximum average summer 

temperatures of ~21° C and minimum average winter temperatures of ~1° C. 

Bournemouth receives the highest range in monthly total precipitation, from 47.8 

mm in July to 100.7 mm in December. Grantham receives highest monthly 

precipitation in October, 59.3 mm, and 36.8 mm in February. Bristol and Bath 

show similar precipitation trends to Bournemouth, whilst Kings Lynn and 

Peterborough show similar trends to Grantham. Due to the seasonal changes in 

temperature and precipitation all study sites have annual profiles of soil moisture 

which gives rise to the conditions required for the shrinking and swelling of clay 

soils. Moreover, soils which are prone to seasonal waterlogging (i.e. Ground-

water Gley soils, Brown soils, Pelosols and Surface-water Gley soils) may also 

show shrink and swell cycles in accordance to available soil moisture. In situ soil 

moisture data were obtained from two representative meteorological stations 

(data provided by the Centre for Ecology and Hydrology). The data provided in 

Figure 5-2 shows the daily averaged (from 30 minute measurements) soil 

Volumetric Water Content (VWC) taken at a depth of 10 cm using a Time-domain 

Transmission probe. As expected, the Eastern site (Redmere) held the lowest 

VWC value 14.8% (2nd September 2016), with a range of 26.6%, whilst the 

Western site (Tadham Moor) had a significantly larger VWC, 49.5% (1st August 

2016), and a range of 33.9%, Figure 5-2. Therefore, some degree of surface 

deformation was expected in all study sites where clay soils, or soils which have 

significant volume change potential, are present. 
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Figure 5-2: Daily Volumetric Water Content (VWC - %) for the corresponding 

periods of PSI investigation for Western and Eastern England. VWC is measured 

at 10cm depth from two in situ meteorological stations: Tadham Moor (Western 

England, 51.207099, -2.828639) in red and Redmere (Eastern England, 52.443551, 

0.433083) in blue 

The Bristol and Bath study sites both have had an extensive history of coal mining 

dating back nearly 800 years (Terrafirma, 2010), as well as mineral mining which 

can be dated back to 2000 years. Due to high likelihood of surface deformation, 

a previous PSI investigation using ERS and ENVISAT data have been 

undertaken over Bristol and Bath (Terrafirma, 2010), and despite the historic 

mining activity, compressible alluvium and shrink swell soils being present, no 

surface deformation was observed using PSI in this study. This present study 

measures recent surface deformations over Bristol and Bath using Sentinel 1 

data. However, our results can be compared with previous Differential Synthetic 

Aperture Radar Interferometry (DinSAR) investigations in the area, offering 

continuity of surface deformation data between previous and current satellite 

missions. 

 

The other sites have been selected based on the high potential for infrastructure 

responses to shrink swell cycles of soil. Sites selected in Eastern England have 

the highest shrink-swell potential of soils in England, based on the largest annual 

Soil Moisture Deficit (SMD) (Pritchard et al., 2015b). It is noted (Pritchard et al., 

2015b), that Eastern England has the highest SMD rates in the country, and is 

calculated from the daily precipitation, evapotranspiration and drainage of the 

soil, and describes the amount of water needed for the soil to return to field 
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capacity (in mm). Furthermore, the response of railways to peat soils deformation 

in the Peterborough area was included, which is of importance given the 

significant peat wastage rates described in (Holman and Kechavarzi, 2011). The 

predominant land use in Eastern England sites is agriculture. Bournemouth has 

been selected as a control site, with freely and quickly draining bedrock lithology 

(of chalk and gravels) and Podzolic soils which are not prone to soil deformation. 

To our knowledge, Bournemouth, Kings Lynn, Peterborough and Grantham have 

not been included in any previous PSI investigations. The sites selected all have 

different urban densities, which help in understanding the effectiveness of PSI for 

monitoring infrastructure across a range of landscapes. The study areas of Bristol 

and Bournemouth have the most-dense urban fabric, whilst Bath and 

Peterborough contain a mix of rural and urban areas. Grantham and Kings Lynn 

are mostly a rural (agricultural) landscape, with pockets of dense settlements 

allowing for the PSI process to be undertaken. A description of the lengths of 

infrastructure, study area extent and a description of urban coverage is provided 

in Table 5-3. 

Table 5-3: Study area characteristics and infrastructure lengths for the study sites 

Study Site 

(Western or 

Eastern Area) 

Area 

(km-2) 

Length of 

minor 

roads 

(km) 

Length of 

major 

roads 

(km) 

Length of 

railways 

(km) 

Historic 

mining 

present? 

Urban 

coverage 

density 

Bristol (W) 118 817 108 34 Yes Mostly Urban 

Bath (W) 165 265 76 31 Yes Urban/Rural 

Bournemouth (W) 284 1207 126 22 No Mostly Urban 

Grantham (E) 688 837 149 71 No Semi-Rural 

Peterborough (E) 539 907 144 55 No Urban/Rural 

Kings Lynn (E) 585 1261 190 130 No Semi-Rural 
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5.3 Results 

5.3.1 Minor road, major road and railways infrastructure movement 

A total of 70,406 PS points was analysed for minor roads, major roads and 

railways across the six study areas. Western sites returned higher PS densities 

than Eastern sites in all infrastructure classes analysed, due to the study areas 

focusing predominantly on urban centres. Returned PS densities were highest 

for railways in all six study sites, with an average density of 18.23 PS targets 

returned per km of track, suggesting suitability of this infrastructure class for PSI 

analysis. Due to their relative widths, major roads (motorways buffered at 4 m, A-

roads buffered at 3 m) returned a higher PS density than minor roads (B-roads 

and Minor-roads buffered at 2 m), returning 15.34 PS targets compared to 9.28 

PS, respectively, per km of infrastructure. The resulting PSI velocity maps are 

shown in Figure 5-3. PS densities varied across the six study sites, with urban 

areas such as Bristol and Bournemouth achieving a very high PS density of 3799 

PS km-2 and 2058 PS km-2 respectively. Bath and Peterborough, which are an 

urban / rural mix attained only 795 and 730 PS km-2, respectively. As expected, 

the semi-rural study areas of Grantham and Kings Lynn achieved significantly 

less at 414 PS km-2 and 343 PS km-2, respectively.  

Railways exhibited the largest range of movement for all infrastructure types 

investigated, see Table 5-4. This is particularly so for Bath, where the average 

change in railway track level was -2.59 mm y-1 (standard deviation 5.38 mm y-1), 

with Brown soils and Pelosols showing the highest rates of deformation. On 

average, railway tracks subside -0.88 mm y-1. However, cyclical patterns of 

infrastructure movement of greater velocities that 0.88 mm y-1 were observed for 

Brown soils, Pelosols, Ground-water Gley soils and Surface-water Gley soils in 

Bristol, Grantham, Kings Lynn and Peterborough. Railways heave up to 2.5 mm 

for these major soil groups during winter months (December to April), and subside 

up to 5 mm during the summer months (April to September). Railways over Peat 

soils in Peterborough, exhibited the highest subsidence rate observed in this 

study, -7.5 mm y-1. As Table 5-5 highlights, a very small sample size of 113 PS 

points were analysed for railway tracks over Peat soils, so further investigation of 
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this would be necessary to comment on these findings with confidence. 

Deformation of railways in Bath and Bournemouth present a linear pattern of 

deformation. Railway infrastructure in Bath is observed to subside when over 

Brown soils and Pelosols, whilst Bournemouth shows no deformation over 

Podzolic soils, see Figure 5-4. No subsidence was detected for railways over 

Lithomorphic soils in Bath and Peterborough. 

 

Due to the extensive coverage of major and minor roads, more major soil groups 

have been analysed in the Western and Eastern study areas. Patterns and 

deformation trends remain mostly similar between minor roads, major roads and 

railways, with minimal differences between them, see Table 5-4. Cyclical patterns 

of deformation are observed in Bristol, Grantham, Kings Lynn and Peterborough, 

with Brown soils, Surface-water Gley soils, Lithomorphic soils, Pelosols, and 

Ground-water Gley soils all showing subsidence in summer months, and 

corresponding heave during winter months. Bristol presents the most uniform 

deformation profile of shrink and swell, with subsidence during the drying period 

(spring into summer), and heave during the wetting period (autumn into winter). 

The Eastern study sites show a larger variation of surface deformation between 

the major soil groups, with each major soil group showing different surface 

deformation characteristics. Ground-water Gley and Brown soils in Peterborough 

show a lagged response to the general shrink swell sequence in all infrastructure 

classes, with the maximum subsidence observed during December 2016. This 

lag corresponds to the Eastern study areas soil moisture profile (Figure 5-2), 

where a low soil moisture content was recorded until late November 2016. 
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Figure 5-3: Surface deformation map showing PSI values expressed as millimetres 

per year for the six study areas. Dark red indicates subsidence of up to 30mm y-1 

whilst bright green indicates uplift of up to 30mm y-1. Insert map shows the 

location of the sites in the UK 
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Table 5-4: Summary description of PS targets analysed in Bristol, Bath and 

Bournemouth 

 

 

Type Study Area Average PS 

deformation 

rate mm  y-1 

Standard 

deviation 

Maximum 

uplift 

value mm  

y-1 

Minimum 

subsidence 

value mm  

y-1 

Number 

of PS 

points 

Density 

of PS 

(PS km-2) 

Minor 

road 

(West) 

Bristol -0.24 3.18 25.05 -21.35 16557 13.16 

Bath -0.60 3.00 11.90 -23.52 4005 7.71 

Bournemouth 0.26 3.09 23.16 -25.34 16986 13.11 

Mean -0.19 3.09 20.03 -23.40 12516 11.32 

        

Major 

road 

(West) 

Bristol 0.04 2.83 16.13 -21.91 2920 25.54 

Bath -0.83 2.91 17.29 -18.28 1211 14.08 

Bournemouth 0.30 2.87 15.44 -22.78 1554 10.64 

Mean -0.16 2.87 16.28 -20.99 1891 16.75 

        

Railway 

(West) 

Bristol -0.84 4.30 21.99 -18.92 688 22.93 

Bath -2.59 5.38 14.85 -24.45 484 15.61 

Bournemouth 0.14 4.07 19.22 -15.28 487 18.03 

Mean -1.09 4.58 18.68 -19.55 553 18.85 

        

Minor 

road 

(East) 

Grantham -0.02 3.69 22.62 -25.06 5005 5.46 

Peterborough 0.38 3.32 24.96 -20.36 9504 10.39 

Kings Lynn -0.25 2.91 23.47 -18.39 3882 5.89 

Mean 0.03 3.30 23.68 -21.27 6130 7.24 

        

Major 

road 

(East) 

Grantham 0.03 3.87 20.76 -24.89 1048 6.55 

Peterborough 0.24 3.08 25.56 -14.38 2328 16.16 

Kings Lynn -0.20 3.03 13.16 -13.45 736 19.08 

Mean 0.02 3.32 19.82 -17.57 1370 13.93 

        

Railway 

(East) 

Grantham -0.01 4.27 18.05 -19.14 1220 15.64 

Peterborough -1.59 5.57 23.40 -20.67 1607 29.21 

Kings Lynn -0.38 4.97 20.64 -16.00 184 8.00 

Mean -0.66 4.93 20.69 -18.60 1003 17.61 
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Table 5-5: Sample size of PS points analysed for minor roads, major roads and 

railways by major soil group. Grey shading represents very low sample sizes 

(<100) which have been consequently removed from analysis 

 

 

 

 

 

 

 

 

 

 

 

 

  Brown 

soils 

Ground-

water 

Gley 

soils 

Lithomo

rphic 

soils 

Pelosols Pozolic 
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Minor roads 9276 1134 3925 7409 13490 2210 0 

Major roads 1990 440 768 882 1165 385 0 

Railways 457 204 108 469 333 10 0 

E
a

s
t 

Minor roads 5028 7885 1549 2426 16 1428 0 

Major roads 887 1717 386 838 0 279 0 

Railways 524 1284 291 354 0 445 113 
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Figure 5-4: Trends in vertical movement (mm) by major soil group and infrastructure type. Points show median value for all PSI 

points on an infrastructure type and major soil group. Solid line show a loess-smoothed trend through the plotted medians. 

Dashed lines identify 1st January. To ensure validity, classes with less than 100 PSI points have been removed from this plot 

(Table 5-5)   
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5.3.2 Validation test site 
 

Using identical parameterisation as per the analysis described, a PSI 

investigation over the disused Meldon quarry (Figure 5-1) was undertaken to 

assess the general performance of the technique over a known area of no 

deformation. The results suggest that there was a deformation with a range of 

2.24 mm between the minimum and maximum median PSI values within the 

quarry. Generally, there is 1 to 1.5 mm of error attributed each month to the 

median of all data values, represented by grey shading in Figure 5-5. The annual 

profile of surface deformation demonstrates a smooth, stable annual trend, with 

fluctuations of ± 1.5 mm during March and April. Surface deformation has been 

calculated by the median of 1,579 PS points which have been returned from bare 

rock surfaces within the quarry itself. It is expected that there is minimal 

movement in this quarry, apart from the natural weathering processes affecting 

the quarry’s exposed outcrops. Therefore, it can be assumed that an error of 

approximately ± 1.5 mm can be attributed to the PSI measurements obtained in 

this study. The full area of observation contained 186,749 PS points, with an 

average range of 11.64 mm. This further confirms the stability of the PSI points 

over an area of known stability (i.e. Meldon Quarry) and gives confidence in the 

accuracy of the outputs in the six study areas included in this study. 

 

Figure 5-5: Median ground deformation (mm) for 1579 PSI points over Meldon 

Quarry, Dartmoor National Park (50.716084, -4.026326). Solid line: loess-smoothed 

trend through the plotted median PSI values. Grey ribbon indicates the inter-

quartile range of Median values 
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5.4 Discussion 

 

Sentinel 1 is highly effective to monitor infrastructures over the selected study 

sites. The response to seasonal soil moisture changes has been detected in three 

types of infrastructure investigated. Observed surface deformation has been 

discussed as a function of major soil group type, soil moisture change and the 

infrastructure’s engineered design. Observed deformation across all sites reveal 

unique spatial and temporal patterns of measured movement, which have been 

discussed as functions of regional water use and the shrink swell potential of the 

different soil types studied. Sentinel 1 has proved itself to be effective at capturing 

these patterns across relatively wide study areas. This holds operational promise 

for long-term monitoring of infrastructure using Sentinel 1 with PSI. 

 

It is evident that different soil types have an influence on observed infrastructure 

movement. This is particularly so for soils which are seasonally waterlogged and 

exhibit cycles of drying and wetting. Surface deformation of infrastructure has 

been observed to deform (along LOS) in all infrastructure classes analysed, 

mostly coinciding with the expected periods of soil shrink (summer months), and 

soil heave (autumn and winter months). The main soil groups included in this 

study which are prone to seasonal volume change are Ground-water Gley soils, 

Brown soils, Pelosols, and Surface-water Gley soils. All these major soil groups 

condition the heave and shrink of infrastructure, see Figure 5-4. Several surface 

deformation trends do not appear to follow seasonal pattern of shrink and swell. 

These unexpected results may be attributed to regional factors associated to the 

regional water regime, such as intense agriculture, water abstraction, irrigation 

and the presence of rivers and lakes. Direct analysis of these factors is out of 

scope for this paper, yet for Eastern study sites it should be noted that this region 

is under highly intensive agricultural land use, with significant drainage and 

irrigation, so it may not follow the expected seasonal response to soil moisture 

change. In such areas, variations from the expected deformation patterns are 

particularly evident for Brown soils (common agricultural soils) and Ground-water 

Gley soils in Peterborough, where a lag in infrastructure shrink is present, 
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demonstrating a maximum subsidence in December 2016. This lag might be the 

result of active water management, such as irrigation and drainage from 

agricultural practices, which stabilises water content during summer, and drains 

land during winter. These effects are particularly prevalent in the Fenlands 

(Eastern study sites) where the artificial pumping of water manages peat drainage 

(Holman and Kechavarzi, 2011). Moreover, upon analysis of the soil moisture 

content for Redmere (Figure 5-2), a low soil moisture was recorded until 

November that year, which further explains the lagged result seen in surface 

deformation over soils directly affected by the, often anthropogenically controlled, 

soil moisture content of this area. Remotely sensed soil moisture measurements 

have the potential to enhance the understanding of the relationships between 

surface soil moisture change and observed ground movement using PSI. Several 

limitations to this method would exist such as ensuring that the acquisition dates 

of the soil moisture data were aligned to the dates of the SAR images. This is 

particularly important given that surface soil moisture has the potential to change 

on a daily time scale, given the preceding weather conditions. On this basis, this 

method was not applied during this investigation, as in situ measurements 

provided a more continuous description of the soil moisture conditions throughout 

the study. 

 

By comparison, Bournemouth shows relative stability (Figure 5-4) in 

infrastructures. The main soil groups are Podzolic soils, Brown soils, Ground-

water Gley soils and Surface-water Gley soils. The observed stability can be 

attributed to the freely draining soils over permeable bedrock in Bournemouth, 

consisting predominantly of chalk, limestone, sands and gravels. 

 

Variations in deformation rates are evident for Lithomorphic soils (FAO, 2015), in 

Bath, Bristol, Grantham, Kings Lynn and Peterborough. For example, Bath, Kings 

Lynn and Peterborough show minimal deformation over Lithomorphic soils whilst 

Grantham and Bristol show significant deformation profiles. As a major soil group, 

these soils are mostly very shallow and consist of seven sub-groups (Clayden 

and Hollis, 1984). Therefore, analysis of the major soil group in this case may not 
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fully represent the area’s soil characteristics and thus the resultant infrastructure 

movement being observed. Further analysis of more detailed soil classes is 

required to fully characterise the interactions between Lithomorphic Soil types 

and infrastructure movement. 

 

Despite its low sample size of just 113 PS points, infrastructure underlain by Peat 

soils showed subsidence rate of -7.5mm y-1. Peterborough is the only site to have 

included analysis of Peat soils, but the findings of this remain important due to 

the high potential impact subsidence can have on the railway network operation 

and safety. Rates of deformation observed in this study are slightly less than 

(Holman and Kechavarzi, 2011) assessment of the East Anglia Fenland wastage, 

where it is noted that mean average wastage (over open fenland) can vary 

between 19 mm yr-1 and 127 mm y-1 for thin and thick deposits of Peat soils 

respectively (Holman and Kechavarzi, 2011). However, (Holman and Kechavarzi, 

2011; Thomson et al., 2007) make no direct mention of the impact of 

infrastructure on peat wastage. The railway observed within this study is situated 

on a raised, highly-engineered embankment just to the west of the Holme fen 

nature reserve. The impact of the railway embankment compressing the peat may 

lead to compaction of the Peat soil, which is suggestive as to the cause of rates 

of subsidence observed within this study. 

 

A validation of the PSI output was undertaken over the disused Meldon Quarry, 

in Dartmoor National Park (Figure 5-5). This test site was selected for its highly 

stable bedrock and coherence. No vertical movement was expected during this 

observation period, apart from some deposition from the weathering of the quarry 

walls. Figure 5-5 shows minimal movement from the 1579 PS points on the 

quarry. However, in between March and May 2016, uplift and subsidence of 

approximately ±1.5 mm is observed. As this movement is consistent across the 

inter-quartile range of the points, and more sudden and extreme than expected, 

it is suggested that this movement is due to issues of the data, data cleansing or 

PSI technique. This level of uncertainty must be taken into consideration when 

reporting these results. Given the scale of the movements considered in this 
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study and their seasonal patterns, observations of the trend, rather than individual 

movement, is suggested as being appropriate. Obtaining levelling or GPS data 

during this study’s observation period for a number of locations in all study sites 

would improve the validation of the results. 

 

The rates of deformation in this study are aligned to previous investigations which 

have used PSI to monitor earth surface movement in the UK (Aldiss et al., 2014). 

Apart from (Boyle et al., 2000; Pritchard et al., 2015b), there is limited work 

reporting investigation of the relationships between major soil group type and 

infrastructure movement using PSI, particularly in the UK, so limited direct 

comparisons can be made. Several papers have investigated infrastructure 

deformation using the PSI technique (Chen et al., 2012; Lan et al., 2012; Zhao et 

al., 2009), but these studies use PSI to assess the structural condition of 

infrastructure assets in areas of known continual ground deformation. These 

studies note the importance of regional deformation phenomena, such as ground-

water abstraction, legacy mining works or seismic activities as key considerations 

to make when investigating infrastructure deformation at a network level. The 

rates of deformation from these studies (Chen et al., 2012; Lan et al., 2012; Zhao 

et al., 2009) are highly variable, but often much higher than those reported in this 

study (up to -73.3 mm y-1) in the case of (Lan et al., 2012). 

 

Peduto et al. (2017) used PS InSAR to monitor the impacts of soil movement 

upon building damage in Rotterdam, Netherlands. Observed deformations of >10 

mm y-1 were attributed to high risk soil types such as clay and peat. Despite the 

observed surface deformation velocities being higher than in this current study, 

the high-risk soils identified correlate to this present study, therefore increasing 

confidence in the findings presented. Spatial correlations of deformation were 

analysed, and PS observations categorized into moving / non-moving, using a 2 

mm y-1 threshold. The approach of categorizing buildings into moving / non-

moving classes would help better identify at-risk areas in linear infrastructure 

assets which might help to prompt proactive management by utility operators. 
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Previous PSI investigations of Bristol and Bath have revealed no evidence that a 

legacy of mining in this area has induced any long-term subsidence (Terrafirma, 

2010). This paper found no notable trends in mining-induced subsidence when 

analysing the PSI output with historic mining extents. This is aligned to the results 

in (Terrafirma, 2010), however the limited observation period of this study should 

be taken into consideration. The Terrafirma study (2010) also noted that 

differential compaction was evident across both Bristol and Bath, which is 

confirmed in this current study, which is seen to reflect the diverse range of soil 

types found across the Bristol and Bath basin. To our knowledge, this is the first 

study of its kind investigating Bournemouth, Peterborough, Kings Lynn and 

Grantham using PSI, so no direct comparison of results can be made. 

5.5 Conclusions 

This study has applied a surface deformation investigation using PSI in six UK 

study sites to determine the impact that different soils have on the LOS 

deformation of roads and railways. Sentinel 1 has been shown to be effective at 

measuring surface deformation of these thin, linear infrastructure assets across 

a range of environmental settings, thus demonstrating PSI with Sentinel 1’s 

potential for wide scale infrastructure monitoring. By combining PSI outputs with 

the 1:250,000 scale National Soil Map, this study has identified, in these areas, 

four major soil groups which pose a ground movement risk to infrastructure 

networks (Brown soils, Ground-water Gley soils, Pelosols, and Surface-water 

Gley soils). These soils are characterised by seasonal waterlogging. The change 

in soil moisture is associated with volume change in clay soils. Minor and major 

roads showed a similar response to soil movement, whilst railways appeared to 

act independently, particularly when over Peat soils. Podozolic soils remained 

stable in this study for all infrastructure classes investigated, due to the 

permeable nature of these soils over freely draining bedrock. Further 

investigations are required to determine the response of Lithomorphic soils, as 

the results were inconclusive due to the broad taxonomic nature of this group. 

Major soil groups in this study can contain numerous soil series, with many 

different soil textures and properties. This can lead to differential ground 
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movement even within a classified major soil group. The use of higher resolution 

soils data will help better explain observed deformation trends. Re-running the 

PSI analysis with a higher resolution soil map would allow better characterization 

of the observed movements to individual soil series. Furthermore, inclusion of a 

higher resolution DEM (such as Shuttle Radar Topography Mission (SRTM) 1 

Arc-Second Global) would also help achieve better correction in the geocoding 

stage. The inclusion of new Sentinel 1 data to increase the length of time series 

would also be highly beneficial to reveal long term trends soil-related 

infrastructure deformation. 

Furthermore, a comparison between PSInSAR and other techniques such as the 

Small BAseline Subset (SBAS) (Berardino et al., 2002) and Intermittent SBAS 

(ISBAS) (Sowter et al., 2013) would help to further establish the suitability of 

these techniques for wide scale monitoring of infrastructure deformation. SBAS 

and ISBAS generate near continuous coverage of ground deformation 

measurements, even over vegetated areas. This could help to better identify 

surface deformation phenomena occurring adjacent to linear infrastructure 

assets, which have the potential to cause a long-term risk or embankment failure. 

In the absence of in situ levelling data, a validation site was established within a 

disused quarry in Dartmoor National Park, England. The results from this exercise 

returned the expected result of an associated error of ±1.5 mm, which suggests 

a good performance of the Persistent Scatterers Interferometry technique 

investigating soil impacts on infrastructure. 

This work contributes to an increased understanding of the risks posed by soil 

movement to infrastructure networks in the UK. It has helped to quantify 

relationships between infrastructure movement and major soil groups. This is 

critical for the planning and monitoring of large-scale infrastructure projects, such 

as the planned High-Speed Rail 2 project in the UK, where an understanding of 

the soil related risk is key to the success of the project. This paper has 

demonstrated the potential of PSI and Sentinel 1 to be used as a tool for remotely 

monitoring environmental risks to transport infrastructure networks. 

 



 

 159

Acknowledgments: This work was supported by the UK Natural Environment 

Research Council [NERC Ref: NE/M009009/1]. Costs for open access 

publication are provided through Cranfield University via the RCUK block grant. 

The authors would also like to acknowledge the Centre for Ecology and 

Hydrology (NERC) for providing meteorological data. 

Author Contributions: All authors made significant contributions to this work. 

M.N, T.F, A.B, designed the methodology and implemented the experiments. 

M.N, T.F and S.H wrote the paper, and revised the manuscript to its final format. 

5.6 Bibliography 

Aldiss, D., Burke, H., Chacksfield, B., Bingley, R., Teferle, N., Williams, S., 

Blackman, D., Burren, R., Press, N., 2014. Proceedings of the Geologists ’ 

Association Geological interpretation of current subsidence and uplift in the 

London area , UK , as shown by high precision satellite-based surveying. 

Proc. Geol. Assoc. 125, 1–13. https://doi.org/10.1016/j.pgeola.2013.07.003 

Berardino, P., Fornaro, G., Lanari, R., Member, S., Sansosti, E., Member, S., 

2002. A New Algorithm for Surface Deformation Monitoring Based on Small 

Baseline Differential SAR Interferograms. IEEE Geosci. Remote Sens. 40, 

2375–2383. 

Boyle, J., Stow, R., Wright, P., 2000. In-SAR Imaging of London Surface 

Movement for Structural Damage Management and Water Resource 

Conservation; Report for BNSC Link Programme, Project 4; National 

Remote Sensing Centre: Farnborough, UK. 

Capes, R., Marsh, S. 2009. The Terrafirma Atlas - The Terrain Motion Information 

Service for Europe, GMES-ESA 2009. Available Online: 

http://esamultimedia.esa.int/multimedia/publications/TerrafirmaAtlas/pagefl

ip.html (accessed 06.08.2017) 

Chen, F., Lin, H., Li, Z., Chen, Q., Zhou, J., 2012. Interaction between permafrost 

and infrastructure along the Qinghai–Tibet Railway detected via jointly 

analysis of C- and L-band small baseline SAR interferometry. Remote Sens. 



 

 160

Environ. 123, 532–540. 

https://doi.org/http://dx.doi.org/10.1016/j.rse.2012.04.020 

Clayden, B., Hollis, J., 1984. Criteria for differential soil series; Soil Series 

Technical Monograph No. 17; Rothamsted Experimental Station: 

Harpenden, UK. 

Crosetto, M., Devanthéry, N., Monserrat, O., Crippa, B., 2015. Exploitation of the 

full potential of PSI data for subsidence monitoring. Proc. IAHS 372, 311–

314. https://doi.org/10.5194/piahs-372-311-2015 

Crosetto, M., Monserrat, O., 2009. Persistent scatterer interferometry: Potentials 

and limits. In Proceedings of the TSPRS Hannover Workshop 2009: High 

Resolution Imaging for Geospatial Information, Hannover, Germany, 2-5 

June 2009. 

Culshaw, M., Tragheim, D., Donnelly, L.B., 2006. Measurement of ground 

movements in Stoke-on-Trent (UK) using radar interferometry. In 

Proceedings of the 10th Congress of the International Association for 

Engineering Geology and the Environment (IAEG 2006), Geological 

Society, London, UK, 6-10th September 2006, pp. 1–10. 

Dartmoor National Park Authority, 2017. Meldon Aplite Quarry - Educational 

Register of Geological Sites, Available Online 

http://www.devon.gov.uk/geo-meldon-aplite-quarry.pdf (accessed 

8.07.2017). 

FAO, 2015. World reference base for soil resources 2014: International soil 

classification system for naming soils and creating legends for soil maps 

(Update 2015), World Soil Resources Reports World Soil Resources Report 

106. ISSN 0532-0488. pp192. http://www.fao.org/3/i3794en/I3794en.pdf. 

(Accessed: 20 April 2019). 

Ferretti, A., Prati, C., Rocca, F., 2001. Permanent Scatterers in SAR 

Interferometry. IEEE Geosci. Remote Sens., 39, 8–20. 



 

 161

Ferretti, A., Prati, C., Rocca, F., 2000. Nonlinear Subsidence Rate Estimation 

Using Permanent Scatterers in Differential SAR Interferometry, IEEE 

Geosci. Remote Sens., 38, 2202–2212. 

Goldstein, R.M., Werner, L., 1998. Radar interferogram filtering for geophysical 

applications, Geophys. Res. Lett., 25, 4035–4038. 

HM Infrastructure and Projects Authority, 2016. National Infrastructure Delivery 

Plan 2016-2021, HM Government, London. 

Holman, I., Kechavarzi, C., 2011. A revised estimate of peat reserves and loss in 

the East Anglian Fens Commissioned by the RSPB, Department of Natural 

Resources, Cranfield University, Cranfield, UK. pp. 44. 

Huang, Y., Lee, C., 2006. Detecting Ground Surface Movements With Differential 

Insar Techniques. In Proceedings of the ASPRS Annual Conference, Reno, 

Nevade, 1-5th May 2006. 

Institution of Civil Engineers, 2014. The State of The Nation Infrastructure 2014. 

Inst. Civ. Eng. 

Keay, C.A., Hallett, S.H., Farewell, T.S., Rayner, A.P., Jones, R.J.A., 2009. 

Moving the National Soil Database for England and Wales (LandIS) towards 

INSPIRE Compliance. Int. J. Spat. Data Infrastructures Res. 4, 134–155. 

https://doi.org/10.2902/1725-0463.2009.04.art8 

Lan, H., Li, L., Liu, H., Yang, Z., 2012. Complex Urban Infrastructure Deformation 

Monitoring Using High Resolution PSI. IEEE J. Sel. Top. Appl. Earth Obs. 

Remote Sens. 5, 643–651. https://doi.org/10.1109/JSTARS.2011.2181490 

Lauknes, T.R., Piyush Shanker,  a., Dehls, J.F., Zebker, H. a., Henderson, I.H.C., 

Larsen, Y., 2010. Detailed rockslide mapping in northern Norway with small 

baseline and persistent scatterer interferometric SAR time series methods. 

Remote Sens. Environ. 114, 2097–2109. 

https://doi.org/10.1016/j.rse.2010.04.015 



 

 162

Meisina, C., Zucca, F., 2006. PS InSAR Integrated with Geotechnical GIS : Some 

Examples from Southern Lombardia. Geod. Deform. Monit. Geophys. Eng. 

Roles 131, 65–72. 

Peduto, D., Nicodemo, G., Maccabiani, J., Ferlisi, S., 2017. Multi-scale analysis 

of settlement-induced building damage using damage surveys and DInSAR 

data : A case study in The Netherlands. Eng. Geol. 218, 117–133. 

https://doi.org/10.1016/j.enggeo.2016.12.018 

Pritchard, O.G., Hallett, S.H., Farewell, T.S., 2015a. Probabilistic soil moisture 

projections to assess Great Britain’s future clay-related subsidence hazard. 

Clim. Change 133, 635–650. https://doi.org/10.1007/s10584-015-1486-z 

Pritchard, O.G., Hallett, S.H., Farewell, T.S., 2015b. Soil geohazard mapping for 

improved asset management of UK local roads. Nat. Hazards Earth Syst. 

Sci. 15, 2079–2090. https://doi.org/10.5194/nhess-15-2079-2015 

Sowter, A., Bateson, L., Strange, P., Ambrose, K., Fifik, M., 2013. DInSAR 

estimation of land motion using intermittent coherence with application to 

the South Derbyshire and Leicestershire coalfields. Remote Sens. Lett. 4, 

979–987. https://doi.org/10.1080/2150704X.2013.823673 

Stramondo, S., Bozzano, F., Marra, F., Wegmuller, U., Cinti, F.R., Moro, M., 

Saroli, M., 2008. Subsidence induced by urbanisation in the city of Rome 

detected by advanced InSAR technique and geotechnical investigations. 

Remote Sens. Environ. 112, 3160–3172. 

https://doi.org/10.1016/j.rse.2008.03.008 

Thomson, A.M., Mobbs, D.C., Milne, R., Skiba, U., Levy, P.E., Jones, S.K., Billett, 

M.F., Van Oijen, M., Ostle, N., Foereid, B., Smith, P., Randle, T., Matthews, 

R.W., Gilbert, J., Halsall, L., Brewer, A., Baldwin, M., Mackie, E., Bellamy, 

P., Rivas-Casado, M., Bradley, R.I., Grace, J., Lewis, P., Quaife, T., Jordan, 

C., Tomlinson, R.W., 2007. Report Inventory and projections of UK 

emissions by sources and removals by sinks due to land use, land use 

change and forestry Annual Report, June 2007. Database 200. 



 

 163

Tofani, V., Raspini, F., Catani, F., Casagli, N., 2013. Persistent Scatterer 

Interferometry (PSI) Technique for Landslide Characterization and 

Monitoring. Remote Sens. 5, 1045–1065. 

https://doi.org/10.3390/rs5031045 

Ventisette, C. Del, Intrieri, E., Luzi, G., Casagli, N., Fanti, R., Leva, D., 2011. 

Using ground based radar interferometry during emergency : the case of the 

A3 motorway (Calabria Region , Italy ) threatened by a landslide. Nat 

Hazards Earth Syst., 11, pp. 2483–2495. https://doi.org/10.5194/nhess-11-

2483-2011 

Yu, B., Liu, G., Zhang, R., 2013. Monitoring subsidence rates along road network 

by persistent scatterer SAR interferometry with high-resolution TerraSAR-X 

imagery. J. Mod. Transp., 21, 236–246. https://doi.org/10.1007/s40534-

013-0030-y 

Zhao, Q., Lin, H., Jiang, L., Chen, F., Cheng, S., 2009. A study of ground 

deformation in the guangzhou urban area with persistent scatterer 

interferometry. Sensors 9, 503–518. https://doi.org/10.3390/s90100503 

 

 

 

 

 

 

 

 

 



 

 164

6 Discussion and conclusion  

This research has investigated and implemented several quantitative techniques 

to enhance current methods of pipeline failure prediction. In doing so, a number 

of complex interactions between environmental (such as soils, weather and trees) 

and operational factors to the failure rates of different pipeline materials have 

been revealed. This chapter aims to discuss the research presented in Chapters 

2 to 5 and provide a general discussion into how the methods used have helped 

to answer the specific research objectives and aim. The limitations of the study, 

the key findings from each objective, the consequent contributions to knowledge, 

the identification of promising future research and concluding remarks are given 

within this chapter. 

6.1 Implications of research for the UK’s water sector 

The regulatory body for the UK’s water distribution network (Ofwat) has allowed 

Anglian Water plc to adopt statistical predictions in the setting of annual burst 

main targets, which are adjusted to the prevailing environmental conditions. This 

has allowed the migration away from static burst targets, with no environmental 

representation, to dynamic burst targets which are based on environmental 

conditions and previous incidences of water pipeline failures. 

This acceptance of data-driven approaches by the regulator underlines the 

necessity for the development of robust and accurate water infrastructure failure 

models. Anglian Water is the first water utility company in the UK to have Ofwat 

approved statistical models for the setting of annual leakage targets, through the 

Water Infrastructure Serviceability Performance Assessment (WISPA) initiative. 

As a result, this present research has focused only on the development of 

Poisson regression models which are the currently approved statistical methods 

of prediction. 
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This is despite the known alternatives modelling approaches as described in 

(Farmani et al., 2017; Kleiner and Rajani, 2001; Tabesh et al., 2009; Wilson et 

al., 2017; Yamijala et al., 2009). This thesis focusses on Poisson regression 

models to ensure that the methods developed can be applied directly into an 

approved industrial context. Moreover, Poisson regression models were initially 

selected for their relative ease of implementation in comparison to other methods, 

the applicability to a wide range of data types and ability to predict bursts 

accurately aligned with other modelling techniques (Kimutai et al., 2015). 

This thesis has presented a framework which water companies can adopt to 

identify key environmental and operational factors leading to the failure of 

different pipe materials and allow then to construct a series of predictive pipeline 

failure models from the appropriate datasets. Water companies have a corporate 

responsibility to conserve water and employ best practice when trading in a 

natural resource, therefore the reliability and efficiency of water distribution is a 

key priority for water companies. Considering this, water companies are striving 

to become innovative and effective in reducing pipeline failures and become 

proactive in the way they manage their assets. Therefore, statistical models, such 

as the ones developed within this thesis, have numerous associated positive 

impacts.  

Water companies receive financial penalties for pipeline bursts which are found 

by the public (i.e. reactive bursts). Bursts which are found by the company’s 

leakage team (i.e. proactive bursts) receive no financial penalties. On this basis, 

statistical models which help predict the number of bursts in a given period, under 

different environmental conditions, can help water companies determine what is 

the required operational resource needed to pro-actively detect burst water 

mains. Moreover, an increased understanding of the factors leading to asset 

failure, which is gained through variable selection in the model development, can 

increase the company’s resilience to future pipeline failure. Statistical models and 

failure rate analysis can also help companies to quantify the most at-risk assets 

in the network, which is important for asset rehabilitation strategies and the 

replacement of old pipelines. Water companies have an obligation, set by the 
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regulator, to ensure that water pipes maintain appropriate levels of asset health 

to ensure the reliable distribution of water. Therefore, quantifying failure rates 

under different environmental conditions can provide a measure of asset health 

in a non-invasive and cost-effective manner, whilst minimising the need to 

physically inspect buried assets.  

6.2 Discussion of key findings from Objective 1 

There is a strong consensus in the scientific literature that data preparation, data 

cleaning and the creation of homogenous pipe cohorts is vital to the success of 

statistical modelling of water pipeline failure (Gould, 2011; Kleiner and Rajani, 

2001; Rostum, 2000; Xu et al., 2011). A pipe cohort is defined as a group of pipes 

with similar characteristics. Objective 1 was to determine the impact of data 

cleaning, pre-processing and the creation of pipe cohorts to the improvement of 

water-pipeline failure prediction. To achieve this objective, a methodological 

approach to data preparation was applied on a historical archive of Anglian Water 

utility data. Pipe cohorts were grouped by pipe material, age, diameter, which are 

buried in the same district metered area and soil type for the entire Anglian Water 

drinking water distribution network (Chapter 2). 

In order to quantify the impact of data cleaning on the improvement of water-

pipeline failure predictions, a series of comparisons of model testing was made 

using the newly developed pipe cohort data and previously developed WISPA 

models (Figure 6-1). Initially, the WISPA models trained on previous “un-cleaned” 

data, from 2004 – 2012, was re-tested using a 50% hold-out sample of the newly 

prepared pipe cohort data, representing bursts from 2006-2016, and the results 

recorded. As a second step, the WISPA models were then re-trained using the 

remaining 50% hold-out sample of the newly developed pipe cohort data (2006 – 

2016) and re-tested using the same dataset as before. This allowed a direct 

comparison of the impacts of data cleaning to the prediction accuracy of the 

previously developed WISPA models. 
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Figure 6-1: Flow diagram of the methods used to evaluate the value of data 

cleaning and the creation of pipe cohorts to WISPA model prediction accuracy 

It was found that after data cleaning and the creation of pipe cohorts, a reduction 

in model error was found for all pipe materials, with the exception of polyethylene 

pipelines (Table 6-1). In comparison to the implementation of the other objectives 

(Objectives 2, 3 and 4), Objective 1 resulted in the largest reduction of model 

error, with the other objectives showing further small improvements in model error 

upon the implementation of data-cleaning on the datasets used for model testing 

and training.  

The largest improvement in model performance was recorded in Steel and Ductile 

Iron (SDI) pipes and pipes classified as “other” (O), where a reduction of 31.42% 

and 17.41% total model error over the 10 years of analysis was achieved, 

respectively. The 10-year average WISPA model error for Asbestos Cement 

(AC), Iron and Polyvinylchloride (PVC) was reduced by 12.49%, 4.61%, 13.67%, 

respectively. Unexpectedly, the average 10-year model error for Polyethylene 

(PE) pipes increased by 4.49%. Despite the increase in model error for PE, the 
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mean average annual residual between predicted and observed bursts is just 4 

bursts per year. In comparison to other materials, the burst rate of PE is generally 

low, given the total overall length of PE pipe in the distribution network (c. 10,000 

km, representing 27% of the overall network length). The total number of 

observed bursts in 10 years (2006-2016) for PE pipes is 1,553 bursts, for which 

the WISPA model, trained on the new pipe cohort data, over predicted reactive 

bursts with a mean average of 12.5 per year. The WISPA PE model, trained on 

previously data, overestimated bursts with a mean average of 3.8 bursts per year. 

However, with marked improvements in the other 5 material groups, the benefits 

of data cleaning and the formation of pipe cohort data was seen to outweigh the 

increase in model error for just 1 pipeline material. On this basis, the newly 

developed pipe cohort data was used in the subsequent investigation of 

Objectives 2, 3, and 4. 

Table 6-1: Change in model error in WISPA model after data cleaning and the 

creation of pipe cohorts (Objective 1) 

Note: Obs is observed reactive bursts and Pred is predicted reactive bursts. Material labels are Asbestos Cement 

(AC), Iron (I), Polyvinylchloride (PVC), Polyethylene (PE), Steel and Ductile Iron (SDI) and pipes classified as 

“other” (O). Model error is the % difference between observed and predicted bursts from 2006 - 2016. RMSE is 

Root Mean Squared Error and MAE is Mean Absolute Error. Green indicates a reduction in model error, whilst 

red indicates a reduction an increase in model error 

 Material Obs 

bursts 

Pred 

bursts 

Model 

error 

RMSE MAE 

WISPA AC 4579 4161.31 -10.04% 0.04128 0.00303 

WISPA data cleaned AC 4579 4694.07 2.45% 0.04128 0.00321 

WISPA  I 10385 9895.97 -4.94% 0.04330 0.00347 

WISPA data cleaned I 10385 10350.78 -0.33% 0.04329 0.00354 

WISPA PVC 4651 4061.57 -14.51% 0.03833 0.00267 

WISPA data cleaned PVC 4651 4612.25 -0.84% 0.03833 0.00284 

WISPA  PE 1553 1599.66 2.92% 0.02041 0.00080 

WISPA data cleaned PE 1553 1678.16 7.46% 0.02041 0.00082 

WISPA  SDI 368 569.20 35.35% 0.01461 0.00053 
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WISPA data cleaned SDI 368 383.04 3.93% 0.01460 0.00042 

WISPA  O  413 552.49 25.25% 0.01441 0.00046 

WISPA data cleaned O 413 448.12 7.84% 0.01441 0.00041 

 

It is important to note the potential sources of error from either the pipe or burst 

datasets upon the formation of the pipe cohort data. Potential sources of error 

from the utility company can include mistakes being introduced to the datasets 

upon the incorrect recording of burst incidences, misclassification of either pipes 

or bursts, and errors introduced to the dataset by manipulation and transformation 

of data formats (Boxall et al., 2007). These uncertainties within the primary 

datasets must be correctly identified and handled to ensure that errors do not 

persist within the datasets used for model prediction. Adding to this complexity, 

the removal of misclassified bursts or pipes is not a viable option due to the 

potential loss of important information within the datasets, and a statutory need 

to report all relevant information to the regulatory body. Therefore, the formation 

of a robust data preparation strategy, as like the one outlined in Chapter 2, can 

help minimise the potential loss of operational information, and join unknown or 

misclassified bursts and pipes using a methodological approach. Visual checks 

of the data was important throughout all data preparation steps to ensure the 

correct and logical joining of datasets. 

6.3 Discussion of key findings from Objectives 2, 3 and 4 

Objectives 2, 3 and 4 are associated with creating and enhancing Poisson 

regression models to improve the current Ofwat approved methods of prediction 

(WISPA). In doing so, an increased representation of environmental factors such 

as soil, weather and trees into a series of material-specific pipeline failure models 

was undertaken. Key topics which are relevant to all three objectives are 

discussed within this current section. 
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6.3.1 Importance of domain knowledge 

Statistical modelling relies on domain knowledge for the appropriate selection 

and creation of variables which are likely to be predictive of pipeline failure. 

Throughout Chapters 2, 3 and 4, several preliminary studies were undertaken to 

better understand the environmental processes leading to pipeline failure. 

For the work presented in Chapter 2, a preliminary investigation of the impacts 

into different soil and weather conditions on the failure rates of different pipeline 

materials was undertaken, but for brevity this was omitted within the research 

paper. For instances where variables needed to be created, such as weekly 

accumulated temperature, weekly temperature change, soil moisture deficit 

change, understanding the dynamics of environmental conditions and their 

impact on the rates of pipeline failure was of key importance for the creation of 

informative modelling covariates. A similar approach was adopted within Chapter 

3, results from which was included in the research paper, where the pipeline 

failure rates were calculated under different tree density, soil shrink swell 

potential, pipe material and distance of analysis. This approach allowed the 

effective identification of the environmental conditions which led to higher rates 

of pipeline failure and created a sufficient understanding of the environmental 

processes occurring to allow the creation of informative variables used in 

statistical modelling. For Chapter 4, a preliminary investigation was undertaken 

to identify the average monthly failure rates of Iron and AC pipes. This helped to 

highlight the distinct intra-annual patterns of pipeline failure and was used to 

create the “summer” and “winter” train and test datasets for the Anglian Water 

region. 

Unless previous investigations have been undertaken directly over the same 

study area, the use of exploratory data analysis is important for any future studies 

wishing to replicate the research presented within. This is because information 

cannot always be inferred from previous studies which was undertaken in 

different geographical areas, due to the variations in weather, soil and tree 

dynamics which create spatially varying environmental risks. 
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6.3.2 Choice of variable selection technique 

Variable selection has been a key component of this research, as it has facilitated 

the non-bias and quantitative identification of predictive weather, soil and tree 

variables which were used to form the material-specific pipeline failure models. 

Akaike’s Information Criterion (AIC), used in a forwards selection stepwise 

approach, was used in Chapters 2 and 3 as the variable selection method 

(Akaike, 1974). The rationale behind the choice of the AIC technique is multi-fold. 

Firstly, AIC is a metric which is easily generated from Poisson regression models. 

Several studies, across numerous scientific disciplines have used AIC as a 

method to choose variables which are used within stepwise regression models 

(Li et al., 2013; Morozova et al., 2015; Williams et al., 2015; Zhang, 2016). 

Secondly, to develop an operationally viable method for water utility companies 

wishing to adopt statistical models, using metrics such as AIC, which are easily 

generated from the Ofwat approved models, is highly appropriate to maintain 

ease of implementation. 

In some cases, the use of AIC has selected variables which are previously known 

to impact water pipeline failure, such as the climate-adjusted clay hazard variable, 

cold weather temperatures and total number of days with air frost (Chapter 2). 

However, AIC also proved effective at identifying new, and previously un-

explored variables, such as hydrology of soils, depth to bedrock, and 

combinations of tree height and density variables (Chapter 2; Chapter 3). 

6.3.3 Stepwise model building approach 

The previously developed WISPA models included similar variables for all 

material types, despite numerous previous investigations highlighting the 

material-specific interactions with different environmental processes (Clayton et 

al., 2010; Davis et al., 2008, 2007; Gould, 2011; Kleiner and Rajani, 2001; Makar 

and Kleiner, 2000; Rajani and Kleiner, 2001). Objective 2 aimed to build a series 

of six material-specific water infrastructure models, which have an increased 

representation of the failure mechanisms common across different pipeline 

materials. This removed the need to include other un-informative parameters 

relating to other material types, leading to the development of a parsimonious 
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model, which is a key priority in the formation of statistical models (Aho et al., 

2014; Farmani et al., 2017; Rajani et al., 2012; Zhang, 2016). Due to the size of 

a typical water distribution network, splitting the network into distinct material 

groups is a computationally-effective way of analysing the large volume of 

operational and environmental data. Therefore, the employment of material 

specific models over an entire network is not as troublesome as it might first 

appear. This being said, the use of high-performance computing was integral for 

the stepwise model building approach, owing to the large volume of operational 

and environmental datasets which was represented weekly. 

Previous investigations have noted the issue of multicollinearity within variable 

selection and model building processes using an AIC step-wise approach 

(Morozova et al., 2015). This issue was controlled in Chapter 2 by limiting the 

size of the developed model to a maximum of 12 steps. The use of Root Mean 

Squared Error (RMSE) was used as a statistical metric to evaluate the model’s 

performance at every step. This helped to ensure that the addition of new 

variables had a positive impact on the model’s predictive ability, and that the 

smallest size model (in terms of model covariates), with the highest predictive 

accuracy, was selected as the most appropriate model. The maximum use of 12 

steps was used in this study as no material specific model showed an 

improvement in predicting bursts past this step. For other studies wishing to 

implement a step-wise modelling approach, setting the number of steps used for 

model creation should be flexible to accommodate for different modelling 

covariates and datasets. Users should look to stop the forward stepwise 

approach when there is no additional value in adding variables.  

6.3.4 Verification of model predictions 

Throughout Chapters 2, 3 and 4, a verification of the model outputs has been 

undertaken using a range of statistical measures using a 50% hold out sample. 

Statistical evaluation has been key in identifying the most accurate Poisson 

regression model, based on the residuals between predicted and observed 

bursts, RMSE, MAE, R2, and the percent difference between predicted and 

observed bursts.  
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By statistically evaluating model performance, the modelled outputs can be 

compared with other studies, or to results from other modelling techniques. This 

helps to position the accuracy of the models developed against other studies, 

raising confidence in the model predictions. Moreover, a quantification of the 

improvement to the model upon the addition or removal of covariates can help 

improve the understanding of the model’s sensitivity to included model variables. 

Further verification of model accuracy could include the implementation of other 

statistical evaluations, such as Receiver Operating Characteristic (ROC). Such 

statistical measures help to identify the fraction of correct predictions in 

comparison to total predictions in individual classes, and help to develop an 

understanding of true/false positive rates (Wilson et al., 2017; Winkler et al., 

2018). 

An understanding into the sensitivity of the developed statistical models was 

gained in Chapter 2, where RMSE was used as an indicator to identify the 

influence of adding new variables to the model’s ability to predict bursts. A 

detailed sensitivity analysis investigation, such as Monte Carlo Analysis, might 

be beneficial as it could determine the effect of model variance over numerous 

test runs using different samples of model train and test datasets. This would help 

build a more robust understanding of the model’s reliability to consistently predict 

water pipeline bursts, which would help build upon the method implemented. 

6.3.5 Discussion of tree enhanced model 

Chapter 3 investigated the impact of tree density, tree height and the proximity of 

trees to pipes and the failure rates of four common pipeline materials across an 

entire drinking water distribution network. Previous investigations into the impact 

of trees on the failure of buried assets have been lacking to-date, especially at a 

regional scale. However, several studies have investigated the impact of 

individual trees on above-ground infrastructure, such as buildings and roads, 

(Mercer and Reeves, 2011; Navarro et al., 2009) or at the local scale to buried 

infrastructure networks, such as sewerage networks (Östberg et al., 2012; Torres 

et al., 2017). Using a national tree inventory, Chapter 3 developed an appropriate 

method for utility companies wishing to understand the impacts of trees, soil and 



 

 174

weather to buried drinking water pipes across a regional area, which is aligned to 

the scale of observation required by utility operators. 

Despite the identification of increased failure rates in pipe materials under very 

high shrink swell soils and high tree densities, there was almost no improvement 

in the model’s predictive ability upon the inclusion of variables representing tree 

height and density. An alternative approach for modelling tree impacts would be 

to split the pipe network into a regular division of pipe lengths (i.e. 500 m intervals) 

and investigate the impact of trees on regular lengths of pipe. Currently, the 

analysis is undertaken using pipe cohorts, where sections of pipe of homogenous 

material, age and diameter are grouped together. Therefore, there is a large 

variation in pipe cohort length. In having a set length of pipe, tree density will 

become more comparable across the distribution network, and it is expected that 

a clearer representation of tree density will be gained within the model. 

The dataset used for the creation of tree variables has no representation of tree 

species or any indication of the recent removal of trees. The National Tree Map 

was acquired in 2015 and represents the location and heights of the tree during 

that year. The additional representation of these factors could enhance statistical 

methods prediction, due to the known impact of these variables have upon 

differential ground movement (Mercer and Reeves, 2011; Navarro et al., 2009; 

Östberg et al., 2012). In this regard, either satellite or aerial remote sensing 

provides promise for the creation of additional tree variables which can be used 

for predictive modelling. For example, several studies have highlighted methods 

which enable the classification of tree species, at the individual tree canopy level, 

using optical sensors and the spectral signatures of different tree species 

(Ruiliang, 2013; Sheeren et al., 2015; Zhang and Qiu, 2012). Other studies have 

also described change detection techniques to identify the recent removal of trees 

and large vegetation in urban environments using a time series of satellite or 

aerial images (Walton et al., 2008). The inclusion of such information, combined 

with the national tree inventory, have the potential to increase the representation 

of the influences of trees on buried assets, and potentially improve the current 

prediction accuracy within the developed models. 
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6.3.6 Discussion of seasonally trained and tested model 

The failure rates of some pipeline materials are controlled by the environmental 

conditions typical of the different seasons. The impact of training and testing both 

the Iron and AC Poisson regression models seasonally was detailed in Chapter 

4. 

Only a small improvement to the prediction accuracy of Iron pipelines was found 

upon using separate seasonal training and testing datasets. This was, in part, 

due to the prior representation of seasons within the weather variables included. 

On this basis, the use of dynamic variables, such as weather data, is important 

for the prediction of pipeline failure so that the annual trends in changing 

environmental conditions are fully represented within the model covariates. 

This study did not evaluate the effectiveness of undertaking seasonal variable 

selection and model building to create separate summer and winter models. From 

an operational viewpoint, there is less value in the development of separate 

models, due to the need to deploy different models in accordance with the 

different seasons. This adds unnecessary complexity to the utility operations and 

deployment of statistical methods. However, it could be expected that the 

separate development of summer and winter models would increase predictive 

ability for each respective season, as it would lead to the development of a 

parsimonious model which is fully representative of environmental conditions 

typical of the different seasons. One disadvantage of using separate seasonal 

models is the reduction in the overall sample size which is available to train and 

test the models. A reduction in sample size has been noted to impact the 

accuracy of statistical methods in previous investigations (Rostum, 2000). 

Furthermore, “unseasonal” environmental conditions, particularly in the light of 

global climatic change, are likely to become more common. Developing models 

on data which are typical of either winter or summer seasons only, the models 

will have less representation of potential “unseasonal” weather, which will lead to 

a reduction of model error during these periods. 
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6.3.7 Handling uncertainty within environmental datasets and model 

predictions 

Throughout Chapters 2, 3 and 4, relevant secondary datasets have been used to 

model the environmental conditions which led to the failure of drinking water 

pipelines. Understanding the uncertainties within the model input data are 

important as it can help minimise the risk of compounding error effects upon 

merging datasets together and using them for model training and testing. 

The environmental data used for the representation of weather, soils and trees 

has been acquired from reputable sources, such as the Met Office, Bluesky and 

the National Soil Resources Institute (NSRI) of Cranfield University. It is important 

to understand the progeny of these datasets to increase confidence in the data 

being used to develop the models. Both the Met Office and Bluesky have an ISO 

9001 accreditation, which means that the distributed data has been managed and 

quality controlled to ensure it meets customer and regulatory requirements. The 

NSRI have ISO 19119 accreditation, meaning that Geographical Information 

Services (GIS) data are quality checked and conformant to international 

standards. These certifications of standards affirm the quality of the data used 

within the thesis, but it is important to note that such certification does not replace 

the need of other quality checks which need to be implemented by the user. Such 

quality checks include understanding the type of data (i.e. categorical, 

continuous, and discrete) which is being used in modelling, the variance of 

values, the inclusion of coerced null variables, and processes such as gap-filling. 

The Poisson regression models used for Chapters 2 to 4 estimate the probability 

of a burst occurring, based on the unique operational and environmental 

conditions. Where necessary, the high and low confidence limits, which are also 

generated upon the formation of the burst estimate, have been included in all 

reported results to help communicate the associated uncertainty. Other statistical 

modelling techniques, such as Bayesian networks, also allow the generation of 

probability estimates, and are highly suitable for the modelling of uncertain and 

complex processes, such as those found in the environment (Uusitalo, 2007). 

Several studies have used Bayesian networks for the modelling of water pipeline 
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failure (Francis et al., 2014; Kabir et al., 2016; Ogutu et al., 2017). However, one 

disadvantage of Bayesian networks, over Poisson regression, is the need for the 

input data to be discretised. This may cause difficulties in the preparation of some 

datasets, such as handling categorical soils data or operational variables such as 

age and diameter bands, which have been developed to increase the simplicity 

of analysis (Uusitalo, 2007). Therefore, the ability of Poisson regression models, 

to include a range of variables (continuous, discrete or categorical) is a significant 

advantage over Bayesian methods, as it allows water utility companies to predict 

pipeline failure in a pragmatic and reproducible manner.  

6.4 Discussion of key findings from Objective 5 

Chapter 5 investigated the use of Persistent Scatterers Interferometry (PSI) 

combined with Sentinel 1 to measure soil-related deformation of above-ground 

infrastructure (Ferretti et al., 2001). Sentinel 1a was launched in 2014 as part of 

the European Space Agency’s Copernicus programme, and has an improved 

spatial and temporal resolution in comparison to other freely available Synthetic 

Aperture Radar (SAR) sensors, such as the European Remote-sensing Satellite 

(ERS) and Environmental Satellite (ENVISAT). Capitalising on the improved 

spatial resolution of Sentinel 1, and a sufficient archive of satellite data, Chapter 

5 investigated the combination of PSI and Sentinel 1 for its use in measuring soil-

related deformation to above ground infrastructure. The rationale of Chapter 5 

was to determine the feasibility of using PSI and Sentinel 1 to generate regional 

land-surface movement measurements which could then consequently be used 

for statistical modelling of water infrastructure failure. It was hypothesised that for 

pipes which are buried in soils where measured above-vertical ground 

infrastructure movement was occurring, there would be a higher incidence of 

bursts in buried water pipes. Several issues, which are discussed within this 

section, inhibited the use of PSI measurements to be used as model covariates. 

However, Chapter 5 revealed the value in using PSI measurements, combined 

with a 1:250,000 scale detailed soils map, to measure the soil-related impacts 

directly against different above-ground infrastructure types. Such information is 
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important for transport operators and for the planning and monitoring of large-

scale infrastructure projects such as the UK’s High Speed Rail 2 (HS2) project. 

One of the primary issues which inhibited the use of the PSI output being adopted 

as a modelling covariate was the consistency and density of PSI measurements. 

The PSI method is sensitive to a range of different factors, such as the presence 

of vegetation and maintenance work, such as road resurfacing, which can impact 

upon the density of the PSI output. Despite the overall density of PSI 

measurements being high in urban areas, for the purpose of statistical modelling, 

a high density of measurements would also have to be included which represent 

rural pipe cohorts, which was not always achievable due to the aforementioned 

reasons. As an alternative technique, the Intermittent Small Baseline Subset 

(ISBAS) technique (Sowter et al., 2013) can provide near-continuous coverage 

of surface deformation measurements in both rural and urban environments, and 

might provide a favourable alternative to PSI for the generation of regional 

surface deformation measurements. 

PSI data uses an archive of satellite data for the generation of surface 

deformation measurements. Therefore, the PSI technique can only evaluate 

previous deformation phenomena (up to the most recent image date), over a 

relatively long time series (20+ interferometric pairs). However, PSI is a 

potentially valuable tool to monitor known areas of high ground movement and 

pipeline failure within a distribution network, to understand the current status of 

annual shrink and swell cycles, and to further investigate surface deformation 

dynamics in known areas where pipeline failures are common. 

Chapter 5 was the first study to combine and analyse the results of the surface 

deformation measurements recorded from PSI and Sentinel 1 to the National Soil 

map of England and Wales. This helped to contribute to the wider understanding 

of how major soil groups impact upon measured surface deformation. In the lack 

of available in situ levelling data, a novel approach for the validation of PSI 

outputs was undertaken using a disused quarry as a reference site. This 

approach provides a useful alternative methodology for other studies with a lack 

of ground measurements for validation. Owing to the computational resource and 
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user-expertise needed to implement PSI, it is impractical to suggest this 

technique as an operationally viable tool to generate measurements which are 

suitable for the statistical modelling of water pipeline failure. However, Objective 

5 has been successful as a proof of concept for the use of satellites to measure 

soil-related deformation of above ground infrastructure through the unique 

combination of Sentinel 1, PSI and a detailed soils inventory. 

6.5 Contributions to knowledge 

A summary of the novel aspects of this work and the consequent contributions to 

knowledge are summarised in the following points: 

 

 The creation of six material-specific water failure models which incorporate a 

range of different soil, weather and tree variables predictive of the failure of 

common pipeline materials, leading to the improvement of an existing 

modelling design. The methods developed in this thesis demonstrate a data-

driven approach in which water companies can adopt to identify key variables 

which can be used to predict pipeline failure. Statistical predictions of pipeline 

failure can be used in the operational management of assets where 

information regarding the expected number of bursts under different 

environmental conditions can be used to aid proactive burst detection. A shift 

towards the proactive management of assets is important given the growing 

pressure on water companies to reduce total leakage from the distribution 

network. Operational tools, such as models developed within can help 

companies reduce total leakage, and therefore achieve a more sustainable 

business model. Minimising water loss is particularly important given global 

climate change, where there is a growing awareness of water conservation in 

the public, and a tighter governmental regulation on burst water mains.  

 

 The generation of new knowledge upon how tree density and soil conditions 

lead to the differential failure rates in common pipeline materials over an entire 

distribution network in the UK. The methodology devised also has applicability 

to other water utility operators, where the data permits, and are scalable to 
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other buried assets such as gas pipelines and sewerage networks. Increased 

knowledge upon tree-soil-weather interactions to buried pipes is important 

given the current increase of green urban spaces. Urban greening is occurring 

globally to help sequestrate CO2 and other greenhouse gasses, whilst reducing 

latent heat in urban heat islands. With a drive to increase urban green spaces, 

an understanding of the impacts of trees on buried assets is needed to achieve 

long-term resilience in buried infrastructure networks. Therefore, the work 

developed within Chapter 3 has contributed towards an improved 

understanding of water pipeline failure rates under different tree, soil and 

weather conditions. Such information is useful for utility owners and local 

authorities whose assets are directly impacted on by trees and are looking to 

prioritise the replacement of the most at-risk assets in the network. 

Furthermore, an improved understanding into the failure rates in different pipe 

materials help companies to have more accurate life-cycle costings of pipe 

materials, which is important for long-term business strategy.  

 

 The development of a methodology to measure the seasonal soil-related 

movement in different types of above-ground infrastructure using relevant, 

satellite data, secondary geographical datasets and the Persistent Scatterers 

Interferometry technique. Such methods are important as they provide 

infrastructure operators the means to monitor wide-scale infrastructure 

networks in a cost-effective and accurate manner. This minimises the need for 

extensive ground measurements of levelling campaigns which are labour 

intensive, expensive and disruptive. The work presented within Chapter 5 also 

details a method for the validation of the PSI output when there is a lack of 

ground-truth data. An area of known stability, i.e. a disused quarry, was used 

to validate PSI measurements against, which provides a useful alternative for 

future studies wishing to undertake PSI investigations retrospectively where 

ground-truth data are not available.  
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 The testing of 3 new datasets (MORECS 5 km, National Tree Map and Sentinel 

1), to determine their suitability for predicting pipeline failure: 

o The MORECS 5 km dataset provided an increased representation of 

meteorological variables in the models developed in Chapter 2 and led to 

an improved model prediction accuracy in comparison to the previously 

used MORECS dataset, which has a coarser resolution. Testing the beta 

version of MORECS 5 km dataset within this thesis has contributed to the 

development of the dataset in terms of providing an un-biased critique of 

the datasets value for burst detection in the water industry. Such 

information is important as the MORECS 40 km dataset is the current 

industry standard of meteorological data, therefore the release of 

MORECS 5 km is highly anticipated.  

 

o The National Tree Map was used to calculate, for the first time, the varying 

failure rates of different pipeline materials under different tree density and 

soil shrink-swell potential. However, the variables created from the 

National Tree Map did not improve statistical methods of pipeline failure 

prediction as expected. 

 

o Upon combining Sentinel 1 with the National Soils Map of England and 

Wales, results highlighted that minor roads, major roads and railways 

which are built on 4 (out of 7) major soil groups, showed a seasonal pattern 

of infrastructure movement. The use of Sentinel 1 data, combined with the 

PSI technique, was evaluated for its potential use in providing modelling 

covariates which describe soil related ground movement. It was concluded 

that the results generated by this method were not suitable to be included 

into the developed models, however several alternative approaches such 

as the use of ISBAS and higher resolution data (such as TerraSAR-X) may 

have better promise for water pipeline failure modelling.  
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6.6 Recommendations for future research 

Considering the scope and the constraints of this present research, several 

aspects have been highlighted for future research and development, namely that: 

 

 An increased representation of new network management and 

operational factors may lead to improved model accuracy: 

The inclusion of detailed operational and network management factors may 

increase the predictive ability of the models developed. This study has 

increased the representation of environmental factors (soils, weather and 

trees) within the current methods of prediction, however, there is further scope 

to increase the representation of wider operational and network management 

factors within models described. For example, a representation of pipeline 

pressure, or changes to the way pressure is managed within the distribution 

network has a known impact on the failure of buried assets, but is currently 

lacking in the developed models (Kimutai et al., 2015). Other factors can 

include information upon previous pipeline failures, transient, cyclical and 

surge pressures within the distribution network, and external loading impacts 

to pipeline failure (Rezaei et al., 2015). 

 

 Integrating data sources from new technologies into the statistical 

models may improve representation of factors currently missing: 

The data generated from new emergent technologies, such as new satellites, 

citizen science and novel sensors, such as acoustic loggers and smart water 

metering systems, may provide valuable input data for water pipeline failure 

prediction. Assimilation of such data into the developed models may provide 

an increased representation of factors which have not been currently 

considered. 

 

 Directly comparing other statistical models may help position the 

accuracy of the currently Ofwat approved methods to other modelling 

techniques: 
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A comparison of numerous statistical modelling techniques, such as decision 

tree analysis, Bayesian Belief Networks, and Proportional Hazards model 

would allow the direct comparison of the Poisson regression modelling 

technique to other methods. A critique of different models, applied over the 

same distribution network, may permit the change of approved methods by the 

regulator, Ofwat. However, sufficient reason and evidence would have to be 

gained in order to change the current approved methods. 

 

 Working towards the development of a short-term forecasting model for 

pipeline failure prediction using real-time weather forecasts: 

The integration of short term (2 week) forecasts of pipeline failure is a key 

development area for utility companies wishing to understand network risks to 

aid proactive management practices. The development of a forecasting model, 

based on the models described combined with real-time weather forecasts, 

has the potential to improve the current understanding of operational risks over 

the distribution network, or at the district metered area level. 

 

 A clearer representation of trees in the statistical modelling may lead to 

an improvement of burst prediction: 

The development of an alternative methodology to create variables 

representative of trees height and density into the developed statistical models 

has the potential to further improve prediction accuracy. The current 

methodology of creating variables which represented the percentage of tree 

canopy coverage (in different tree height bands up to a 40 m distance of the 

pipe) within individual pipe cohorts did not improve the current methods of 

pipeline failure prediction. This was discussed to be because of the highly 

varying length of pipe cohorts which were created across the distribution 

network. In separating the pipe network into regular divisions of length (i.e. 500 

m), it could be expected that a more comparable dataset of tree-related risks 

will be gained and will be better represented within the statistical models. 

Further information relating to tree species would also be expected to enhance 

the predictive ability of the developed models and could be acquired through 
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image classification using optical remote sensing (either airborne or 

spaceborne) platforms.  

6.7 Concluding remarks 

This thesis has analysed a range of environmental factors which can lead to the 

increased failure of common pipeline materials over a regional distribution area 

in the UK. The results discussed are applicable to other temperate climate 

countries, with the methods developed being appropriate where similar data 

exists. Moreover, the environmental conditions discussed and represented within 

the models developed are suitable to other types of buried infrastructure, such as 

gas or sewerage pipelines. 

A quantitative investigation into the impact of data cleaning and the creation of 

pipe cohorts was undertaken, using a series of previously developed water 

infrastructure failure models (Objective 1). This analysis highlighted the value and 

benefits of a methodological approach for the preparation of data used for 

statistical modelling and led to the reduction of model error for the previously 

developed WISPA models in 5 out of 6 material types. The creation of a cleaned 

and pre-processed dataset is not only important for the prediction of pipeline 

failure, but is important given the statutory need to report accurate burst and 

pipeline information to the industry regulator. 

The data developed in Objective 1 was used subsequently for the material-

specific variable selection and model building to develop new series of Poisson 

regression pipeline failure prediction models. Several datasets representing 

operational, soil and weather conditions (Chapter 2) and tree-related variables 

(Chapter 3) was evaluated. As a result, six material-specific pipeline failure 

models have been developed, which are representative of the environmental 

conditions which led to infrastructure failure for each individual material type. 

Chapter 2 evaluated a beta version of MORECS dataset, with an improved 5 km 

spatial resolution (Met Office, 2018), and Chapter 3 evaluated the use of the 

National Tree Map (Bluesky, 2018) for its use in statistical modelling of pipeline 

failure for the first time. Chapter 4 investigated the impact of seasonally training 

and testing the developed models, to increase the representation of the 
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seasonality of pipeline failure predictions. Chapter 5 described the acquisition of 

satellite-derived measurements to quantify the impacts of soils on above-ground 

infrastructure movement. Despite the usefulness of results in understanding soil-

related risks to above ground infrastructure, the results from Chapter 5 was 

discussed to not be suitable for the inclusion of statistical modelling of water 

pipeline failure, due to the inconsistency of the measured output, interference 

from vegetation, and a lack of rural PSI measurements, see Section 6.4. 

However, Chapter 5 combined satellite-derived surface deformation 

measurements to the National Soil Map of England and Wales (Hallett et al., 

2017) for the first time, and revealed the influence of seasonal soil movement to 

different types of above-ground infrastructure. Such information is useful for the 

inference of deformation occurring to buried in assets beneath above-ground 

infrastructure, such as water pipes. 

This thesis has evaluated a range of different environmental pressures leading to 

the failure of drinking water pipes. As a framework, it has described suitable 

approaches for utility companies, infrastructure operators, and academics to 

develop material specific pipeline failure prediction models using the relevant 

secondary environmental datasets, in a cost-effective, reproducible and 

pragmatic approach. Such research is timely as statistical models are now being 

used by Anglian Water to aid proactive management of assets and set annual 

burst targets. Therefore, the development of robust and accurate methods of 

pipeline failure prediction is of great importance. 

The use of the approaches developed within this study are encouraged for all UK 

water utility companies, as it enables them to better understand the 

environmental and operational risks to the distribution network. Direct 

measurements of pipeline failure rates, under a range of environmental 

conditions, facilities the generation of accurate annual burst targets, which can 

help minimise the risk of large fines by the regulator. Accurate and reliable 

predictions of pipeline failure can also lead to the increased ability to proactively 

manage the network, by prioritising the rehabilitation of the most at-risk assets, 

based on the unique environmental and operational conditions.  
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By reducing water loss within the distribution network, several positive impacts 

can be gained. An example of a direct impact of reducing water loss, is the 

reduction in energy that is required to treat water pre-distribution. With fewer 

pipeline failures, more water can be reliably distributed to the consumer, which 

saves the utility company money and energy in treating potable water which 

would have otherwise been lost. By saving money and energy in the water 

treatment phase, an increase in potential investment can be given to rehabilitate 

the most at-risk assets in the network, which would help to reduce further water 

loss. Moreover, utility companies could also use saved money to fund vital 

research and development projects giving the utility operator a competitive edge. 

An example of an indirect impact of proactive leak detection is allowing business 

and industry to function without any disturbances in their water supply, which has 

numerous benefits for the nation’s economy and trade. Other organisations such 

as schools and hospitals also require an uninterrupted supply of water and would 

benefit from increased resilience against pipeline failure. Therefore, even with 

just the two examples given, it is evident that the positive impacts of proactive 

management in water supply extends much further than the distribution network 

itself.  

Ultimately, proactive leak detection, through the employment of statistical 

models, can lead to greater resilience within the distribution network which 

consequently leads to an increased operational performance. On this basis, the 

development of methods to proactively detect burst water pipes is a critical step 

for water utility companies and is essential for achieving wide-spread 

sustainability within the UK’s water industry.  
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