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ABSTRACT 

While several studies have reported on the utility of low-cost sensors for air 

quality campaigns in advanced countries including the development of data 

correction and quality improvement mechanisms thereby using them to 

complement regulatory monitors, there is, in contrast, limited information on the 

use of low-cost sensors for air pollution applications in Ghana and wider parts of 

Sub-Saharan Africa. This PhD study presented a proof of concept approach on 

the feasibility of factory calibrated Alphasense OPC-N2 for two main purposes. 

Firstly, the suitability of low-cost sensors for high-density ground-based air 

pollution studies and the applicability of the high-resolution data for quantification 

of atmospheric emissions. Pearson’s correlation analysis was applied to establish 

the reproducibility of the selected sensors for high-density ground-based air 

quality monitoring specifically for PM species due to the spatial and temporal 

variability and suitability of PM for developing urban air quality standards. Trend 

analysis, calendar plots and sectorial plots in the components of wind were 

experimented using the high-resolution data to quantify particulate matter (PM) 

and its sources. Hourly averaged data from the selected sensors have 

demonstrated the reproducibility of low-cost OPC-N2 for use in the selected 

environments for PM with correlation coefficients (Pearson’s, R) between 0.97 

and 0.98 for PM1, PM2.5 and PM10. For quantification of the species monitored, 

PM10 values were 500 µg/m3; PM2.5 were a little below 90 µg/m3 and PM1 values 

were a little below 60 µg/m3. These levels though preliminary, agree with PM 

pollution reported from these types of environments. It was also found that PM 

pollution was locally characterised with low wind speed (≤ 2 ms-1) tied to 

background activities and the surrounding environment which includes traffic, 

wind-blown dust and roadside food cooking and vending activities. The statistical 

difference in mean values (t-values of 17.3, 11.4 and 4.2 for PM1, PM2.5 and PM10 

respectively) of the reported PM species have shown that the sensors are better 

suited for PM10 monitoring. Findings from this study provide a benchmark for 

future (AQ) studies in Ghana, particularly in the selected exemplar urban areas. 

It demonstrates the feasibility of the current generation of relatively low-cost PM 
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sensors for a high-density ground-based air quality monitoring in environments 

typical of large parts of West and Sub Saharan Africa. 

 

 

Keywords: Air pollution; Ghana; Sub-Saharan Africa; Low-cost sensing; Air 

quality 
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1 RESEARCH CONTEXT AND NEEDS 

1.1 Background 

Adverse health effects associated with exposure to poor AQ have been 

demonstrated in several studies (e.g. Cohen et al., 2005; WHO, 2006; Bauer et 

al., 2019; HEI, 2019). Complex and expensive conventional monitoring 

approaches requiring large investment and infrastructure are used to monitor air 

quality (AQ) in many jurisdictions. These approaches provide accurate data on 

AQ species of health concern to inform air pollution monitoring and mitigation 

strategies. AQ species of health relevance monitored using these conventional 

approaches include particulate matter – PM (PM2.5 and PM10), ozone (O3) and 

nitrogen dioxide (NO2), (WHO, 2006). These types of conventional monitoring 

approaches are characterized by some limitations. Of particular mention are 

“who” collects the data, “where” the data is collected and “how” the data is 

accessed and reported (Snyder et al., 2013).  

In most parts of Sub-Saharan Africa (SSA), air quality monitoring (AQM) is limited 

or non-existent and most of the countries lack monitoring capacity and AQ 

standards (Petkova et al., 2013). These limited AQM capabilities encountered in 

SSA, similar to other developing economies, are as a result of limited resources 

including funds, expertise, awareness of the magnitude of air pollution and its 

adverse effects on public health and lack of comprehensive development and 

implementation of guidelines including regulations (see Gulia et al., 2015; Han 

and Naeher, 2006). Meanwhile, several recent health and epidemiologic studies 

have reported that exposure to atmospheric emissions is on the rise for many 

countries in SSA, due to the drive for industrialization/ economic development 

integrated with urbanization (Ingwe et al., 2008; Droege, 2008; Ikram et al., 2012; 

UN, 2014; Pope et al., 2018).  

These issues highlight the need for relatively low-cost appropriately sensitive 

AQM approaches. Addressing these highlighted issues of air pollution requires 

appropriate routine local/ regional AQ data. Sparsely distributed conventional 

monitoring approaches characterizing SSA, is insufficient and are not capable of 
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providing a representative ground-based air quality data to influence air pollution 

mitigation strategies and epidemiological studies (Bell et al., 2011; Stienle et al., 

2013). Additionally, the complex and varying sources of air pollution in urban 

settings (e.g. traffic-related pollution) cannot be fully determined with current 

unevenly distributed AQ networks in SSA (HEI, 2000). 

The emergence of low-cost environmental sensing approaches presents an 

alternative to current conventional AQM approaches. Relatively low-cost cutting-

edge high-resolution sensors are flexible, capable of collecting fast, reliable, real-

time, in situ data (e.g. Brauer et al., 2012; Amann et al., 2013) for a range of 

important pollutants (e.g. SO2, NOx, CO, O3, PM1, PM2.5, PM10, total VOCs and 

CO2) with a single system when properly operated. Many low-cost sensors have 

been evaluated under ambient environmental conditions (Gao et al., 2015; 

Holstius et al., 2014; Wang et al., 2015) and controlled conditions (Austin et al., 

2015; Wang et al., 2015). These studies have demonstrated that low-cost 

sensors are promising but evidence on the performance of low-cost sensors in 

tropical environments such as those encountered in SSA have not been fully 

documented (Lewis and Edwards, 2016). 

There is to date limited information on the performance of low-cost sensors for 

monitoring different air pollutants alongside more expensive regulatory 

monitoring equipment in Ghana and wider SSA and how these low-cost devices 

can be used to bridge AQ data gaps in resource-constrained settings as those 

encountered in many parts of SSA including Ghana. 

In the absence of evidence on the performance of low-cost sensors, the end-user 

cannot effectively deploy low-cost sensors for the intended purpose (Castell et 

al., 2017; Jovašević-Stojanović et al., 2015; Lewis and Edwards, 2016). 

Additionally, the challenge facing this emerging state-of-the-art approaches for 

AQM is partly because information regarding low-cost sensor performance is at 

an early stage in SSA (Mead et al., 2013; Holstius et al., 2014; de Souza et al., 

2017; Amegah, 2018) and to complement data for scientific research these data 

need to meet an acceptable level of quality. 
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This study concentrated on how low-cost sensors can be used to obtain reliable 

ground-based observational air quality data. PM was used as a key species 

because of existing and growing evidence on its adverse health effects, spatial 

and temporal variability as well as suitability for developing urban air quality 

guidelines (WHO, 2006; Cohen et al., 2005; HEI, 2019). There are reports on 

limited ground-based data on PM species (specifically PM2.5 and PM10) in SSA 

(Schwela, 2012a; Petkova et al., 2013; Amega and Agyei-Mensah, 2016), 

information regarding PM1 monitoring and its effect on public health is limited. 

Low-cost sensors are capable of reporting PM1 data and could provide reliable 

data for air pollution health effect studies as well as air pollution mitigation 

strategies. 

In this study, the term resource-constrained setting(s) is used interchangeably 

with low and middle-income country (ies) (LMICs) and / SSA. LMICs for this 

research are defined as communities with limited access to information, 

resources and opportunities. This case study in Ghana will serve as a benchmark 

for long-term deployment of a dense network of low-cost AQ monitors in Ghana 

and the wider SSA region. 

1.2 Research questions 

The two key scientific research questions which have been developed based on 

the context of this research are as follows: 

1. How can low-cost high-resolution sensors (LCS) be used to obtain 

observational air quality data appropriate for air pollution studies in SSA 

specifically Ghana and similar environments typical of SSA? 

2. How can relatively fast temporal (sub-hourly) data from LCS nodes be 

used to extract source features of key atmospheric pollutants in SSA and 

similar environments? 

 

1.3 Aims and Objectives  

This study investigated the applicability of low-cost sensors to understand the 

extent to which these devices can be used to obtain observational AQ data to 
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bridge AQ data gaps in environments with limited/ no regulatory monitoring 

stations. This study focused on SSA using Ghana as an exemplar for wider SSA. 

The specific objectives are as follows: 

1. To critically review the current state of AQM in Ghana and the possibilities 

of low-cost sensors. 

2. To assess whether low-cost sensors can be used to bridge AQ data gaps 

in SSA by undertaking experimental performance study of selected low-

cost sensors under varying urban settings in Ghana. 

3. To evaluate the applicability of high-temporal data reported from LCS for 

source feature extraction of key atmospheric pollutants in SSA. 

1.4 Study Overview 

This research is structured into 6 chapters as follows:  

Chapter 1 sets the research context of the PhD study;  

Chapter 2 addresses objective 1 which forms an integral part of this PhD mainly 

identifying gaps through critical literature review and putting the research into 

context based on the selected study area.  

Chapter 3 details the methodology and materials adopted to achieve the 

objectives  

Chapter 4 provides the key findings for objective 2 and 3. Paper 1 [Gameli et al., 

(2020). Applicability of factory calibrated optical particle counters for high-density 

air quality monitoring networks in Ghana, Heliyon, 6 (6) e04206] addresses 

objective 2 and 3 of this study. Firstly on the short term performance of the 

selected low-cost sensors for AQM and the application of the high-resolution data 

for source apportionment studies. A commentary [Clean Air Journal (Gameli et 

al., (2018). The need for open data on air quality monitoring in logistically difficult 

environments, 28:25 – 26)] has been produced which addresses key areas on 

the application of low-cost sensors specifically in SSA taking into account the 

poor communication of AQ data and limited public knowledge on AQ levels and 

corresponding health effects. This further led to an initiative “Clean Air One 

Atmosphere” to demonstrate the potentials low-cost sensors offer in addressing 



 

5 

the huge knowledge gap on air pollution in SSA. The commentary and the 

initiative are linked to objective 1 of this study – the current state of AQM in SSA. 

Chapter 5 provides an overall discussion and critical outlook for future research 

by integrating the key findings from the previous chapters and  

Chapter 6 is the overall conclusions and future work. 

 

This research produced a peer-reviewed paper Gameli et al., (2020). Applicability 

of factory calibrated optical particle counters for high-density air quality 

monitoring networks in Ghana, Heliyon, 6 (6). A commentary on Gameli et al., 

(2018). The need for open data on air quality monitoring in logistically difficult 

environments, Clean Air Journal, 28 (25 – 26). This research also produced an 

initiative on the possibilities low-cost sensors offer regarding the usability of 

meaningful opensource data for public education in environments with limited 

knowledge on air quality/ pollution and its impacts on human health “Clean Air 

One Atmosphere” specifically Ghana and wider Africa.  
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2 LITERATURE REVIEW 

2.1 Introduction 

Globally, outdoor air pollution is estimated to have caused nearly 5 million premature 

deaths in 2017. These deaths were attributed to outdoor exposure to fine particulate 

matter, i.e. PM2.5 (HEI, 2019). Half a million additional premature deaths were 

attributable to ozone (O3) in the same year (HEI, 2019).  

A range of adverse health effects including aggravating symptoms of asthma, 

respiratory and cardiovascular diseases, stroke, chronic obstructive pulmonary 

disease and lung cancer are linked to outdoor air pollution. An estimated 90% of air 

pollution-related deaths occurred in low and middle-income countries including those 

encountered in Africa as compared to advanced countries (WHO, 2014; HEI, 2019). 

A recent National Aeronautics and Space Administration (NASA) modelled study 

estimated that about 780,000 premature deaths annually in Africa (Table 2-1) are 

linked to air pollution (Bauer et al., 2019). In Ghana alone, 28,000 premature deaths 

per annum (WHO, 2018) are attributable to exposure to atmospheric emissions. 

Evidence on the adverse effects of air pollution on human health is limited in SSA 

(Petkova et al., 2013) including Ghana. This in part is linked to paucity of observational 

AQ data and consequently exposure to air pollution health effect studies from the 

region (Ahmed et al., 2017; Bauer et al., 2019).  

In most of the cases, AQ programmes have been discontinued (Petkova et al., 2013) 

due to drop in funds and in some scenarios the projects are ad-hoc targeted at a 

particular objective within a stipulated time frame based on conditions of grants/ 

sponsors (Schwela, 2012a). 

Table 2-1: Regional breakdown of estimated air pollution-related deaths adapted from 

Bauer et al., 2019 

Region Estimate 

Africa 782,248 

Sub-Sahara 563,218 

West Africa 104,865 

Central Africa 25,459 

Southern Africa 17,085 



 

7 

Air pollution adversely impacts the wider environment specifically ecosystems 

including agriculture (Melamed et al., 2016). It is reported to decrease farm yields, 

influence temperature and rainfall patterns (Maas and Grennfelt, 2016) which poses a 

major threat to livelihoods in SSA including Ghana (Ramanathan and Feng, 2009).  

High-income countries, such as the USA have AQ management systems which allow 

for development, implementation and evaluation of air pollution mitigation strategies 

based on reliable ground-based AQ data (e.g. National Ambient Air Quality Standards 

– NAAQS, provides standards for monitoring criteria species available 

https://www.epa.gov/criteria-air-pollutants) (Snyder et al., 2013). These systems 

include but are not limited to extensive compliance monitoring, source attribution of 

emissions integrated with emission reduction programmes.  

Over time, these robust approaches have resulted in a reduction of pollutant emissions 

simultaneously with industrial and economic growth (USEPA, 2017). Similar systems 

are required in low- and middle-income countries such as Ghana and larger parts of 

SSA which are currently experiencing rapid economic development associated with 

increased atmospheric emissions mainly PM and O3 precursors such as NOx, CH4 

and VOCs (HEI, 2019). In most cases, these robust systems are based on the use of 

expensive and static instrumentation. In high-income countries, these approaches 

have been recently complemented by the use of low-cost sensors specifically for those 

types of pollutants with higher spatial variability (Rai et al., 2017) (e.g. use of optical 

particle counters for PM and electrochemical cells for NO, NO2 and CO) and for 

monitoring near-source emissions as well as personal exposure (Seinfled and Pandis, 

1998; Solomon et al., 2008). Some of these supplementary monitoring approaches 

include infrared cells for CH4 and CO2 monitoring, photoionization detector (PID) 

sensors for total VOC sensing (Masson et al., 2015; Esposito et al., 2016; Sun et al., 

2016) and electrochemical cells for O3, H2S and SO2 (e.g. Baron and Saffell, 2017). 

As reported by Amegah and Agyei-Mensah (2016), AQ monitoring networks are 

rudimentary in SSA. Though Ghana undertakes AQ monitoring, the approach is limited 

to sparsely distributed stations mainly in the capital Accra. AQ monitoring networks 

are limited in Ghana (Amegah and Agyei-Mensah, 2016). Studies on AQ and 

associated health effects are limited with reliance on short-term or modelled AQ data. 
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These types of studies do not provide an extensive and accurate understanding of air 

pollution and its adverse effects (Bauer et al., 2019).  

Industrialisation, population growth (which has been projected to be more than 2 billion 

between 2010 and 2050 (UN, 2011)) in Africa coupled with increasing energy use, 

transportation and food production has worsened AQ and will continue to in Africa. 

The current Health Effects Institute report (HEI, 2019) has shown that more than 90% 

of the world’s population lives in these areas where WHO guidelines for healthy air are 

exceeded (Figure 2-1). The majority of the countries in Africa represents some of the 

worse cases globally (Amegah, 2018; Bauer et al., 2019; Katoto et al., 2019). Ghana 

is characterised with industrialisation (e.g. recent oil and gas exploration activities and 

road and railway development projects) population growth coupled increased 

motorisation, increasing urbanisation, energy use and food production. Similar pattern 

and trend are observed in other parts of SSA (Bauer et al., 2019). There is limited 

capability in undertaking AQ monitoring in SSA countries because the utilisation of 

reference-grade monitors involves skilled human capital for operation, maintenance 

and calibration of instruments with standardized protocols (e.g. CEN, 2012; CEN, 

2014). In contrast, most commercially available low-cost sensors can be deployed 

without long term human intervention or specialized/ technical skills making them 

suitable for addressing AQ data gaps in the Ghanaian case similar to wider SSA. The 

cost involved in operating reference-grade instruments does not allow for high-density 

deployments (i.e. a typical reference-grade instrumentation costs ~$250,000 in 

addition to operational costs e.g. routine maintenance and calibration; Rai et al., 2017) 

but local authorities need to increase the density of monitoring to understand spatial 

variation of atmospheric emissions in urban centres. The characteristics of low-cost 

sensors make them suitable for such cases (EU, 2008) because they are cheap (a 

unit costing ~$100, Rai et al., 2017), robust, operate on low-power, ability to report in 

situ data in seconds/ minutes rather than hours, minimal infrastructural requirement 

and user-friendly as well as the ability to report data to internet based-platforms (Mead 

et al., 2013; Snyder et al., 2013; Kumar et al., 2015; Rai et al., 2017; Castell et al., 

2017). The operation of low-cost sensors though requires additional costs in terms of 

long-term data analytics with careful correction and replacement of components/ 

cleaning of parts, the approach is relatively cheaper as compared to operating 

reference-grade monitors (Snyder et al., 2013; Karagulian et al., 2019). 
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Figure 2-1: Annual average PM2.5 concentrations in 2017 relative to WHO AQ 

Guidelines (adapted from HEI, 2019) 

This review provides critical insights into conventional monitoring techniques and the 

novel use of state-of-the-art low-cost sensors. It presents a case on the utility of the 

current state of low-cost sensors for providing reliable ground-based AQ data in 

environments with limited/ non-existent AQ monitoring stations specifically Ghana and 

wider SSA. The current challenges and opportunities in using these types of sensors 

for comprehensive AQ monitoring programmes in such environments are limitation of 

skills regarding instrument optimization, data mining, and deployment strategies of 

which this review provides critical areas to consider. 

2.2 Conventional monitoring approaches versus low-cost sensors 

Conventional AQ monitoring approaches consisting of expensive and complex 

instrumentation requiring large infrastructure are employed in measuring chemical 

species namely PM, NOx, CO, O3 and sulphur dioxide (SO2) in urban settings (Kumar 

et al., 2014; Mouzourides et al., 2015; Sharma et al., 2013). In advanced countries, 

cities have established AQ monitoring stations based on AQ standards/ directives. In 

the European Union (EU), AQ monitoring sites are determined by the EU AQ Directive 

2008/50/EC (Rai et al., 2017). These directives explicitly stipulate a minimum number 

of static stations for a specific target key air pollutant in line with levels of air pollution, 

population and area (Rai et al., 2017). An official monitoring station covering about 
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100,000 people as against cities in developing countries (Rai et al., 2017). These 

approaches are defined by AQ monitoring standards/ directives. For example, there 

are about 300 monitoring stations in the UK (DEFRA, 2011) as compared to 600 in 

India (CPCB, 2017). In Ghana, there are only 16 regulatory monitoring stations 

sparsely distributed in the capital Accra for monitoring PM species (GhEPA, 2019). 

These conventional, reference-grade instrument monitoring approaches follow 

standardized quality assurance/ quality control (QA/QC as detailed in e.g. 2008/50/EC, 

Rai et al., 2017; CEN, 2012; CEN, 2014) protocols. 

This approach of using expensive, fixed, complex instrumentation with large logistical 

demands for AQ monitoring is now changing with the emergence and utility of low-

cost sensors. Low-cost sensors offer the opportunity to undertake ubiquitous AQ 

monitoring in a network for monitoring personal exposure (Chow et al., 2009), indoor 

AQ monitoring (e.g. Wan Young and Sung-Ju,2006) and hazardous leaks (Gianfranco 

et al., 2012).  

A considerable amount of time is spent indoors hence indoor AQ is of health 

importance. Morawska et al., (2001) reported that indoor AQ levels are mostly 

influenced by location, type of dwelling and behaviour (e.g. tobacco smoking, type of 

energy use for cooking and heating as well as cleaning practices). The limited 

distribution of and costs associated with the use reference grade monitors are not 

capable of providing these types of information hence the need for a new approach 

with low-cost sensors which require data analytical skills, minimal infrastructure and 

handy for these types of monitoring similar to personal monitoring, identifying hotspots 

of air pollution and hazardous leaks (Mead et al., 2013; Moltchanov et al., 2015; Rai 

et al., 2017). 

Similar to indoor monitoring, the large data gap encountered in Ghana and wider parts 

of SSA (Schwela, 2012a; Petkova et al., 2013; Bauer et al., 2019) is potentially 

challenging to address with conventional monitoring approaches considering the 

operational cost and human capital involved in running them. A cheaper, robust and 

high spatiotemporal resolution network could offer a feasible approach in filling these 

data gaps (e.g. Jovasevic-Stojanovic et al., 2015; Castell et al., 2017) though there 

are additional costs to time and resources required to maintaining the sensors, 

cleaning and analysing the reported data.  
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There is growing evidence on the utility of these devices for emission source feature 

extraction by deploying them in high density (e.g. Mead et al., 2013); road-side 

monitoring (e.g. Wang et al., 2009 air quality campaign for the Olympic Games) and 

high-way traffic monitoring and meteorological conditions as reported by Padró-

Martínez et al. (2012). In Ghana and wider parts of SSA, it is challenging to supplement 

current conventional monitoring approaches as the majority of the AQ campaigns are 

discontinued coupled with poor resolution data (Petkova et al., 2013). A properly 

operated network of miniaturised low-cost high-resolution sensors suitable for high-

density deployment presents a feasible alternative (Mead et al., 2013; Snyder et al., 

2013; Kumar et al., 2015; Moltchanov et al., 2015; Rai et al., 2017). Table 2-2 

illustrates conventional and new approaches to AQ sensing. 

Low-cost sensors have the potential to drastically reduce the costs associated with 

conventional AQ monitoring approaches and provide meaningful ground-based 

location-specific high-resolution AQ dataset (Moltchanov et al., 2015) for air pollution-

related studies. For example, the cost of employing a reference-grade/ regulatory 

equipment is about US$ 250,000 as compared to low-cost devices costing 

approximately US$ 100 (Rai et al., 2017). The operation of reference-grade 

instruments as highlighted in the introductory section inquires additional costs related 

to routine maintenance and calibration. Though there are associated costs on running 

of low-cost devices for example power, internet, security, data mining and post-

processing, the utility of low-cost sensors is relatively cheaper as compared to 

reference-grade / conventional approaches. Low-cost sensors are suitable for 

obtaining high spatiotemporal data (i.e. if deployed in a high-density) that can be tied 

to internet-based platforms and be remotely accessed (Kanaroglou et al., 2005). This 

new approach provides avenues for gathering high-resolution spatiotemporal AQ data 

in near real-time suitable for air pollution management projects (Bossche et al., 2016; 

de Nazelle et al., 2013). For example, low-cost sensors can be used to (i) supplement 

conventional AQ monitoring; (ii) improve the link between pollutant exposure and 

human health; (iii) emergency response including hazardous leak detection and 

source compliance monitoring and (iv) improve community’s engagement and 

awareness towards AQ issues (Rai et al., 2017). 

Commercially available low-cost sensors have been examined both under ambient 

environmental conditions (e.g. Gao et al., 2015; Holstius et al., 2014; Wang et al., 
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2015) controlled conditions (e.g. Austin et al., 2015; Wang et al., 2015) and have 

reported on the feasibility of the current state of low-cost sensors for AQM though with 

caveats. These studies, recommended approaches, for example, machine learning to 

improve data quality but there is limited information on feasibility studies using low-

cost sensors for AQM in Ghana and wider SSA. 

Table 2-2: Conventional versus low-cost monitoring approaches (Mead et al., 2013; 

Snyder et al., 2013; Kumar et al., 2015; Rai et al., 2017) 

Item Conventional  Low-cost 

General characteristics 

Large logistical demands Handy 

Complex Simplified 

Require human 
intervention 

Do not require human 
intervention 

Routine maintenance and 
calibration 

Do not require routine 
maintenance and 
calibration 

Usually fixed Fixed and mobile 

Mostly sparsely 
distributed 

Favours high-density 
deployment 

Expensive (single unit 
~$250,000) 

Low-cost (single unit 
~$100) 

Require technical skills for 
operation 

Do not require any special 
skills for operation 

Require considerable 
power to operate 

Operate on low power 

Performance not affected 
by environmental 
variables 

Performance is limited by 
environmental variables 

A unit report data on 
single species 

A unit can report data on 
multiple species at the 
same time 

Require large 
infrastructure 

Can be deployed easily 
anywhere 

Data collection Limited to local authority Anyone 

Access to data Limited to local authority Anyone 

Objectives of data 
collection 

Mostly compliance Testing of new 
technologies and 
applications 

Data resolution Often hourly Seconds to minutes 
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Item Conventional  Low-cost 

Data storage Local authority Internet-based platforms  

 

Castell et al., 2017 recommended OPCs for particulate matter monitoring and de 

Souza et al., (2017) experimented the use of Alphasense OPC-N2 use in Nairobi 

Kenya, Eastern Africa. The results from these studies have shown that low-cost 

sensors can be used for establishing baseline data in these types of environments 

with the potential of providing reliable ground-based location-specific AQ monitoring 

approaches. These studies are providing promising future opportunities for LMICs 

including Ghana and wider SSA that will allow overcoming the long-term AQ data gaps 

encountered in SSA. 

2.3 The need for relatively low-cost PM monitoring approaches in 

SSA – the Ghanaian perspective 

An understanding of the magnitude of air pollution and associated health effects in 

Ghana and wider parts of SSA is limited due to data gaps. Nevertheless, recent 

estimates have shown that majority of air pollution-related premature deaths occur in 

Africa yearly (see Table 2-1 for regional breakdown) (Amegah and Agyei-Mensah, 

2016; WHO, 2016; Bauer et al., 2019).  

For example, the EU member states developed local AQ limits (EU, 2008) based on 

current and reliable regional and local AQ data. Current trends in Europe have shown 

that a reduction in long-term exposure to PM10 by 5 μg/m3 prevents about 3000 to 

8000 premature deaths per annum (Medina et al., 2004). In terms of health cost, 

DEFRA (2004) reported similar findings for PM2.5 to be around 7 to 8 months loss of 

life expectancy with a corresponding health cost of £20 billion in the UK. 

The fundamental challenge in SSA is the lack of reliable and up to date country-

specific AQ data (Schwela, 2012a; Petkova et al., 2013). As echoed in the introduction 

of this study, it is challenging to make informed decisions in the absence of reliable, 

routine and user-friendly accessible AQ data. This is because such data is imperative 

for many interventions and applications such as undertaking source apportionment 

studies (Mead et al., 2013); accurate assessment of exposure to air pollution health 

studies (Amegah, 2018); inform policy direction (e.g. transportation and town 
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planning); exposure inventories; AQ prediction and modelling (Schwela, 2012a; 

Petkova et al., 2013); development of efficient and location-specific air pollution 

mitigation strategies and tracking and evaluation of implemented air pollution 

mitigation strategies in the majority of SSA countries (Petkova et al., 2013) including 

Ghana. In contrast to LMICs including those in SSA, AQ monitoring is limited which 

subsequently makes the development of AQ standards challenging (Petkova et al., 

2013). 

The WHO database (2014) has shown that there are limited data from most of the 

countries in Africa including Ghana on PM (PM10 and PM2.5) as a high-risk pollutant 

(Figure 2-2 and 2-3). As per the WHO (2014) update, ambient and indoor air pollution 

levels of PM2.5 and PM10 are reported from 92 countries comprising of 1100 cities 

around the world for the years 2003 to 2010. 

 

Figure 2-2: Mean ambient air pollution of particulate matter with an aerodynamic 

diameter of 10 μm or less [PM10] in country urban areas adapted from the WHO database 

reported levels from 2010 to 2016 (adapted from WHO, 2014) 
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Figure 2-3: Mean ambient air pollution of particulate matter with an aerodynamic 

diameter of 2.5 μm or less [PM2.5] in country urban areas adapted from the WHO 

database reported levels from 2010 to 2016 (adapted from WHO, 2014). 

Though advanced countries have complemented sparsely distributed AQ networks 

with low-cost approaches, the situation in SSA including Ghana represents some of 

the worse globally (Amegah, 2018; Katoto et al., 2019; Bauer et al., 2019). For 

example, current trends have shown that ground-based AQ monitoring campaigns are 

fragmented and often stalled in SSA (Bauer et al., 2019).  

A major propelling factor of air pollution in Africa is population growth associated with 

urbanization, motorization, migration as an urge for economic growth. Schwela 

(2012a) have shown that these driving forces exert pressure on atmospheric 

emissions through increasing vehicle fleet – an extensive energy consumer and 

source of air pollution in urban settings. Schwela (2012a) echoed the increasing daily 

emissions of key atmospheric species namely CO, NOx and hydrocarbons are mostly 

from vehicles in SSA that are often poorly managed. However, the UN (2015) report 

projected Africa’s population to be between 1.65 – 1.71 billion by 2030 [Population 

2030 Demographic challenges and opportunities for sustainable development 

planning] This implies that air pollution research in Africa must be integrated with air 

pollution mitigation strategies specifically with a focus on adopting environmentally 

friendly approaches for economic growth and behavioural changes including proper 

waste management practices. 

https://www.un.org/en/development/desa/population/publications/pdf/trends/Population2030.pdf
https://www.un.org/en/development/desa/population/publications/pdf/trends/Population2030.pdf
https://www.un.org/en/development/desa/population/publications/pdf/trends/Population2030.pdf
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However, current trends have shown that AQ campaigns including regulatory 

monitoring in Africa are few. As reported in Bauer et al (2019), a handful of studies 

have reported on continuous AQM field approaches. Few studies that have provided 

some information on atmospheric emission in the region include West Africa 

Atmospheric Composition Measurement in 2006 reported by Reeves et al., (2010) 

which provided the basis for the Sahelian Dust Transect reported by Marticorena et 

al., (2010). Also, Swap et al., (2002) reported on field campaign conducted in 2000 by 

the Southern African Regional Science Initiative. Knippertz et al., (2017) and Zuidema 

et al., (2016) respectively reported on aerosol-cloud interactions in West Africa and 

observation of aerosols above clouds and aerosols above cloud interactions in 

Southern Africa. 

Further to this, as at 2019, Katoto et al reported on the current evidence of ambient air 

pollution in SSA. Evidence from this work has shown that only 60 peer-reviewed 

articles were published on ambient air pollution in SSA. This work further stipulated 

that out of this 60, only 37 described levels of ambient air pollution while the rest 

provided evidence on the assessment of air pollution health effects. It was also 

observed in these studies on ambient air pollution in SSA by Katoto et al (2019) that 

majority of the data used for exposure assessment were only from selected cities and 

temporary collaborative international projects. The results of these exposure 

assessment studies have also shown that as compared to the current WHO 

guidelines, measurements were in 10-20 fold higher (Katoto et al., 2019). Also, from 

the 23 studies on exposure health effects assessment, most of the countries in SSA 

contributed no data at all. However, 14 of these exposure assessment studies 

originated from South Africa indicating the huge scientific knowledge gap on the air 

quality monitoring and its associated health effect studies in SSA. This has reechoed 

the challenges of AQM in SSA as reported by for example Schwela (2012a); Petkova 

et al (2013); WHO, (2014) and Bauer et al (2019). 

In the case of Ghana, this is due to several issues including (1) limited evidence on 

the use of low-cost devices for AQ campaigns in the region, (2) issues related to 

hardware of such devices, (3) reliable power supply, (4) reliable internet for data 

telemetry for devices without Secure Digital (SD) cards and global packet radio service 

(GPRS) and (5) tampering of instruments coupled with limited skilled human capital to 

operate these devices and analyse and interpret the reported data. 



 

17 

 

Environmental Quality Department of the Ghana Environmental Protection Agency 

(GhEPA) is responsible for AQ projects including monitoring and data processing, 

public awareness creation and enforcement of AQ standards. Many projects have 

been embarked on to protect public health; of particular importance is phasing out lead 

in gasoline (Schwela, 2012a) and recently a reduction of sulphur in fuels from 3,000 

ppm to 50 ppm and issuance of new fuel level standards effecting from September 

2017 (Appoh and Terry, 2018). 

 

Recently, the agency in collaboration with the Ghana Standards Authority developed 

and implemented standards for reporting AQ data specifically to control the influx of 

low-cost devices for AQ monitoring and reporting of data (personal communication, 

GhEPA, 2019) since the performance of such devices have not been fully documented 

to understand the precision of and quality of data from low-cost sensors in Ghana and 

similar environments. 

 

As part of the Megacity Partnership project, GhEPA recently developed an AQ 

management plan for Accra (“The Greater Accra AQ Management Plan” (AQMP), 

personal communication, GhEPA, 2019). This plan was initially developed from two 

samples namely the Waterberg-Bojanda Priority Area Draft AQ Management Plan and 

the South Coast AQ Management District AQMP (Appoh and Terry, 2018) to mitigate 

air pollution and ensure that AQ standards are adhered to for public health protection 

and environmental sustainability. This current AQMP is to serve as an exemplar for 

the rest urban areas in Ghana specifically regional capitals and those regions prone 

to urbanization due to economic reasons, for example, Takoradi (due to oil and gas 

exploration activities). 

 

Currently, the agency employs filter-based approach towards data collection and uses 

a high-volume cascade impactor (Andersen Impactor, Tisch Environmental Inc., USA) 

and a mini volume sampler (MiniVol portable Air Sampler, Airmetrics, USA) for 

monitoring PM10 and PM2.5, respectively. This monitoring approach includes chemical 

analysis of filter samples. This PM data can help understand source contributions to 

particulate matter (Appoh and Terry, 2018). This PM monitoring consists of 16 stations 

consisting of roadside, residential, industrial and commercial all based in Accra (Figure 
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2-4). AQ data is manually populated for PM10 and PM2.5 from these stations at a 24-

hour averaged data point every 6-days. The approach provides ~5 data points monthly 

(personal communication, GhEPA, 2019).  

 

Figure 2-4: Map overview of GhEPA regulatory monitoring in Ghana showing historical 

(red dots), existing (green dots) and proposed stations (yellow dots) adapted from the 

Greater Accra AQ Management Plan (GhEPA, 2018) 

2.4 Challenges with low-cost sensors for AQM 

Though low-cost sensors are useful in providing high-resolution spatiotemporal AQ 

data, data inconsistency as compared to reference-grade instrumentation and 

between similar LCS from the same manufacturer, as well as different manufacturers, 

has been a challenge due to the effects of temperature, relative humidity as well as 

cross-interference (Mead et al., 2013; Kumar et al., 2015). Studies have shown that 

machine learning techniques (e.g. correction for hygroscopic growth for PM sensors 

as shown by Malings et al., 2019; correction for cross-interference for NO2 EC cells as 

shown by e.g. Mead et al., 2013) can be applied to account for these issues to improve 
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understanding of the quality of reported data from low-cost sensors; a useful approach 

for establishing evidence on local pollutant sources (Caslaw and Beevers, 2013; Mead 

et al., 2013; Kumar et al., 2015).  

Ongoing and reported AQ studies with low-cost sensors have shown that end-users 

must consider sensor reproducibility, stability, repeatability and limits of detection to 

select the appropriate device for a specific monitoring objective. Brief information has 

been provided on the performance characteristics of low-cost PM sensors (Table 2-

3), details on the EC NO2 and O3 cells can be found here Rai et al., (2017) as this 

study focused on PM though some critical information has been provided on other low-

cost technologies for AQ monitoring.  

 

Sensor reproducibility refers to the ability of the sensor to reproduce similar response 

under varying environmental conditions (e.g. changes in temperature and relative 

humidity). While some studies have documented the reproducibility of metal oxide 

sensors (MOS), no evidence has been established on that of electrochemical (EC) 

cells. (Rai et al. 2017). Moltchanov et al. (2015) and Piedrahita et al. (2014) evaluated 

the reproducibility of MOS by computing correlation coefficient (R2) values of many 

identical sensors under similar conditions. High R2 values were reported by 

Moltchanov et al (2015) i.e. R2 = 0.85-0.98 and Piedrahita et al (2014) reported R2 = 

0.21-0.98 values. 

 

The stability refers to the ability of the sensor to produce the same output value when 

measuring the same measurand over a period. Under laboratory conditions, Spinelle 

et al (2015a) and Spinelle et al (2016) studied the stability of four and two varying MOS 

and EC cells respectively for six months. Sensor drifts ranging from 0.009-0.081 ppb 

O3 per day for MOS sensors and 0.016-0.142 ppb O3 per day for EC sensors. These 

findings translated to -2 to 15 ppb difference for MOS sensors and 3 to 26 ppb 

difference for EC sensors. No notable difference between MOS and EC O3 sensor 

stability characteristics but different drift values were observed for different models of 

the MOS and EC sensors indicating that sensor manufacturing might influence sensor 

stability (Rai et al. 2017). 
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2.5 Characteristics of low-cost PM sensors 

On reproducibility, reported measurements from lo-cost PM sensors have shown poor 

performance when compared to referenced-grade data but post data applications such 

as calibration improved the reproducibility of these types of sensors (Sousan et al., 

2016b). Some studies have reported on the quantification of reproducibility using the 

co-efficient of variation (CV) principle (see Table 2-3, Rai et al., 2017). Sousan et al., 

(2016a and 2016b) reported CV values of 0.9-16%. Some studies reported R2 values 

to be between 0.25-1.0 (see Table 2-3, Holstius et al., 2014; Jiao et al., 2016; Kelly et 

al., 2017). Another principle used to define the reproducibility of low-cost PM sensors 

is the normalized root mean square (nRMSE). By exposing low-cost PM sensors to 

presumably fine particle sources (e.g. cigarette smoke as shown by Manikonda et al., 

2016), there is the possibility of higher reproducibility nRMSE, 2.6-22.3% as compared 

to coarse particles sources (e.g. dust Manikonda et al., 2016) poor reproducibility with 

nRMSE of 46.1-118.2%. Additionally, the accumulation of dust over longer periods of 

deployment worsens sensor reproducibility. This has been confirmed with the 

Manikonda et al., (2016) study specifically poor reproducibility when sensors are 

exposed to larger particle sizes as compared to smaller particles (Rai et al., 2017). 

Stability of low-cost sensors, in general, is crucial especially if these types of sensors 

are to be used for the long-term (Rai et al., 2017). Jiao et al., (2016) in a 2-6-month 

performance study of low-cost PM sensors have shown that sensor stability can be 

improved when “days of use” is added as a predictor in a regression model perused 

calibration methodology. In this study, adjusted-R2 (R2
adj) has been reported to 

improve from 0.45-0.56.  This study (Jiao et al., 2016) has shown that sensor response 

changes based on the period of deployment. Further studies are required to address 

low-cost sensor stability. 

Low-cost PM sensor repeatability proves difficult to measure. This is because low-cost 

PM sensors are not capable of maintaining a specific particle concentration (Rai et al., 

2017). Information on the characteristics of low-cost PM sensors as reported by Wang 

et al., (2015) is presented in Table 2-3. In this study, Wang and co used the co-efficient 

of variation (CV) principle to demonstrate the repeatability of these types of PM 

sensors, which ranged from 2-28% (Table 2-3). Results have shown that at low PM 
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concentrations, repeatability of the sensors worsens. All the PM sensors used in the 

study showed 23-26% range CV (Wang et al., 2015). 

Wang et al., (2015) reported that low-cost PM sensors are generally suitable for 

measuring PM (i.e. PM2.5 and PM10). The limits of detection of the low-cost PM sensor 

is critical to consider because studies have reported that very low concentrations (<10 

g/m3) are challenging to measure (Rai et al., 2017). These results make current low-

cost PM sensors suitable for monitoring PM10 (Castell et al., 2017) since PM10 

concentrations are always higher than PM2.5 (Rai et al.,2017). 

Sensor repeatability refers to the ability of the sensor to provide the same response 

for successive measurements when all environmental parameters and operating 

systems remain the same. Standard deviations (SD) of MOS and EC sensor outputs 

were studied under chamber conditions to ascertain the repeatability of MOS and EC 

sensors. Good repeatability was reported by Spinelle et al (2016) using three different 

MOS O3 sensors at 100 ppb (SD = 0.2-3.3 ppb). Poor repeatability was recorded for 

SP-61 MOS sensor with SD value of 19.8 ppb under similar conditions. Williams et al 

(2014c) found varying repeatability characteristics for different MOS O3 sensor models 

(SD = 2.6 - 46.2) depending on temperature, humidity and O3 concentration. This study 

did not report the O3 levels under which the studies were performed making it difficult 

to conclude measurement uncertainties. SD values for the EC O3 values vary from 

0.4-1.9 ppb at 100 ppb O3. It is concluded that the MOS and EC sensors have similar 

repeatability, but measurement uncertainty depends on how the performance of the 

sensors and typically <5% at 100 ppb O3 concentration. 

The limit of detection of a sensor (LOD) is referred to as the “lowest concentration of 

a pollutant that can be differentiated from zero concentration”. This is mathematically 

three-times the standard deviation (SD) of the sensor output obtained at zero 

concentration. Ideally, the lowest LOD value is recommended as this determines the 

lowest concentration level a sensor can detect. Several studies have reported the LOD 

values of low-cost PM and gaseous sensors in European cities (Rai et al. 2017; Wang 

et al. 2015).
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Table 2-3: Characteristics of low-cost PM sensors adapted from Rai et al (2017); Stavroulas et al., 2020; Liu et al., 2019; Tagle et al., 

2020; Badura et al., 2018. 

Model Comparison with 

reference 

measurements(R2) 

Repeatability 

and 

reproducibility 

Limit of 

detection 

(μg/m3) 

Effect of particle 

composition on sensor 

output 

Effect of particle 

size on sensor 

output 

Effect of humidity 

on sensor output 

Effect of 

temperature 

on sensor 

output 

Alphasense 

OPC-N2 
R2

lab = 0.94–0.99a CVRr = 4.2–16%a 

 

 

NA 

 

δPC ≈ 30, estimated from 

Sousan et al.(2016a). 

 

ηd = 0.83–1.01a 

 

 

NA 

 

NA 

 

Dylos models 

    1100 Pro and 

1700 

 

R2
lab = 0.97–0.99b 

R2
lab = 0.64–0.95c 

R2
lab = 0.91–0.98d 

R2
fld = 0.81–0.99b 

R2
fld = 0.58–0.99e 

R2
fld = 0.70–0.90f 

R2
fld = 0.48–0.78g 

R2
fld = 0.40–0.45h 

R2
fld = 0.74–0.84i 

R2
fld = 0.55j 

CVRr = 1.4–

8.0%d 

R2 = 0.67–0.98h 

nRMSE = 13.4–

46.1%c 

<1b δPC ≤ 20, estimated from 

Sousan et al.(2016b). 

δPC ≤ 20, estimated from 

Northcross et al. (2013). 

Did not seem to affect the 

sensor output under 

ambient conditions 

ηd = 0.6–1.1, 

estimated from 

Sousan et al. 

(2016b). 

ηd = 0.25–4.0, 

estimated from Han 

et al. (2017). 

 

ηd = 0.5–4.8, 

estimated from Han 

et al. (2017). 

Slight correlation 

between sensor 

output and humidity 

(R2= 0.18). j  

Seems affected by 

humidity. h 

NA 

No 

correlation 

between 

sensor output 

and 

temperature 

(R2= 0.03). j 

Sensor 

response 

probably not 

dependent on 

temperature. 
h 

Plantower PMS 

1003 

R2
fld = 0.82–0.93k 

R2
fld = 0.69–0.99k 

R2= 0.99k 0.721–

10.5k 

NA NA Slight correlation 

between sensor 

output and humidity 

(R2= 0.09–0.17) k 

No 

correlation 

between 

sensor output 

and 
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Model Comparison with 

reference 

measurements(R2) 

Repeatability 

and 

reproducibility 

Limit of 

detection 

(μg/m3) 

Effect of particle 

composition on sensor 

output 

Effect of particle 

size on sensor 

output 

Effect of humidity 

on sensor output 

Effect of 

temperature 

on sensor 

output 

temperature 

(R2 < 0.02) k 

Plantower PMS 

3003 

R2
lab = 0.73–0.97k NA NA NA NA NA NA 

Samyoung 

DSM501A 

 

R2
lab = 0.88–0.90l 

R2
lab ≈0.50m 

R2
lab = 0.58–0.97c 

R2
fld = 0.07–0.46r 

 

CVRt = 2–28%l 

nRMSE = 22.3–

52.7%c 

4.28–11.4l 

10r 

δPC ≤ 8, estimated from 

Wang et al. (2015). 

δPS ≤ 18, estimated 

from Wang et al. 

(2015). 

δRH-PM ≤2.8, 

estimated from 

Wang et al. (2015). 

δT-PM ≤1.2, 

estimated 

from Wang et 

al. (2015). 

Sharp 

DN7C3CA006 

R2
lab = 0.98–0.99d 

 

CVRr = 0.8 –

7.1%d 

 

NA 

 

δPC ≤ 2, estimated from 

Sousan et al. 

(2016)b 

 

NA 

 

NA 

 

NA 

 

Sharp 

GP2Y1010AU0F 

 

R2
lab = 0.42–0.99c 

R2
lab = 0.95–0.99d 

R2
lab = 0.98–0.99l 

R2
lab = 0.92–0.98m 

R2
fld = 0.72n 

R2
fld = 0.99o 

CVRt =5–25%l 

CVRr= 0.9–

5.9%d 

nRMSE = 2.6–

118.2%c 

26.1–26.9l δPC ≤ 6, estimated from 

Wang et al. (2015). 

δPC ≤ 4, estimated from 

Sousan et al.(2016).b 

. 

δPS ≤ 2.4, estimated 

from Wang et al. 

(2015). 

δRH-PM ≤ 1.5, 

estimated from 

Wang et al. (2015) 

δT-PM ≤ 1.5, 

estimated 

from Wang et 

al. (2015). 

Baseline 

response 

linearly 

proportional 

to 

temperature. 
o Seems 
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Model Comparison with 

reference 

measurements(R2) 

Repeatability 

and 

reproducibility 

Limit of 

detection 

(μg/m3) 

Effect of particle 

composition on sensor 

output 

Effect of particle 

size on sensor 

output 

Effect of humidity 

on sensor output 

Effect of 

temperature 

on sensor 

output 

unaffected by 

temperature.n 

Shinyei 

PPD42NS 

 

R2
lab = 0.66–0.99p 

R2
lab = 0.93–0.96l 

R2
fld < 0.16h 

R2
fld = 0.53–0.98q 

R2
fld = 0.55–0.94e 

R2
lab = 0.50–0.80k 

CVRt =4–28%l 

R2 = 0.91–0.94e 

R2 = 0.25–0.44h 

4.59–6.44l 

1p 

δPC ≤ 18, estimated from 

Wang et al. (2015). 

δPS ≤ 24, estimated 

from Wang et al. 

(2015). 

δPS ≤ 13, estimated 

from Austin et al. 

(2015). 

δRH-PM ≤ 8.0, 

estimated from 

Wang et al. (2015). 

Seems affected by 

humidity.q 

Slight correlation 

between sensor 

output and humidity 

(R2 = 0.01–0.27).e 

δT-PM ≤ 1.6, 

estimated 

from Wang et 

al. (2015). 

Seems 

affected by 

temperature.q 

No 

correlation 

between 

sensor 

output and 

temperature 

(R2= 0.01).e 

Shinyei 

PPD60PV 

 

R2
fld = 0.43h R2 = 0.98–1.0h NA NA NA Seems unaffected 

by humidity.h 

Seems 

unaffected by 

temperature.h 

Purple Air PA-II 

 

R2 = 0.87–0.98s R2 = 0.98–1s NA NA NA R2 = 0.996-1s R2 = 0.989-1s 

 

Nova PM sensor 

SDS011 

R2 = 0.55–0.71t 

R2 = 0.63–0.87u 

R2 = 0.79–0.86v 

 

NA NA NA NA RH>80% negatively 

affected sensor 

response.t 

RH>75% 

overestimate PM 

NA 
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Model Comparison with 

reference 

measurements(R2) 

Repeatability 

and 

reproducibility 

Limit of 

detection 

(μg/m3) 

Effect of particle 

composition on sensor 

output 

Effect of particle 

size on sensor 

output 

Effect of humidity 

on sensor output 

Effect of 

temperature 

on sensor 

output 

and underestimate 

at RH<50%u 

Plantower 

PMS7003 

R2 = 0.83–0.89v 

 

NA NA NA NA NA NA 

Winsen ZH03A R2 = 0.74–0.81v NA NA NA NA NA NA 

R2 and CV are the coefficients of determination and variance, respectively. The subscript is lab or fld when referring to compar ison between sensor and reference measurements under laboratory or field conditions, 

respectively; subscript is Rt or Rr when referring to repeatability or reproducibility, respectively. nRMSE is the normalized root mean square error, which is defined as nRMSE =  
(√

1

n
∑ (MAi−MBi)

2)n
i=1

1

2n
∑ MAi+MBi
n
i=1

, where MAi and MBi 

are the ith values measured by sensors A and B, respectively, and n is the number of measurements. δPC, δPS, δRH-PM, δT-PM is the change in sensor response due to change in particle composition, particle size, relative 

humidity, and temperature, respectively, measured at the same mass concentration. It is defined as δx = yhigh/ylow, where the subscript x is PC, PS, RH-PM, and T-PM when refereeing to particle composition, particle size, 

relative humidity, or temperature, respectively. yhigh and ylow are the different (high and low) sensor responses under different conditions. NA stands for not available. The alphabets refer to the following studies - a: (Sousan 

et al., 2016a), b: (Northcross et al., 2013), c: (Manikonda et al., 2016), d: (Sousan et al., 2016b), e: (Holstius et al., 2014), f: (Steinle et al., 2015), g: (Han et al., 2017), h: (Jiao et al., 2016), i: (Jovašević-Stojanović et al., 2015), j: (Williams 
et al., 2014a), k: (Kelly et al., 2017), l: (Wang et al., 2015), m: (Alvarado et al., 2015), n: (Olivares and Edwards, 2015), o: (Olivares et al., 2012), p: (Austin et al., 2015), q: (Gao et al., 2015), r: (Zikova et al., 2016), s: (Stavroulas et al., 
2020), t: (Liu et al., 2019), u: (Tagle et al., 2020), v: (Badura et al., 2018)     
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Generally, low-cost PM sensors seem to be appropriate for measuring both PM2.5 

and PM10 concentrations. Since particle concentrations below 10 μg/m3 cannot 

be detected and since PM10 values will always be bigger than PM2.5, low-cost PM 

sensors are better suited for monitoring PM10 (Castell et al., 2017).  

In addition to the above, the performance of the Alphasense OPC-N2 low-cost 

PM sensor has been vigorously studied under real-world conditions in advanced 

countries. For example studies by Sousan et al 2016a; Spinelle et al., 2017; and 

Crilley et al 2018 have shown that the impact of temperature and relative humidity 

on the quality of data reported by OPC-N2 is insignificant. In SSA, Pope et al., 

2018 and de Souza et al., 2017 have demonstrated the use of the OPC-N2 for 

PM monitoring including traffic-related exposure. As a point of reference, Table 

2-3 have shown the suitability of low-cost PM sensors for PM monitoring with 

emphasis on the effects of particle size and environmental variables on data 

quality. Of specific relevance to this PhD studies, the Alphasense OPC-N2 was 

selected and its functionality tested in Ghana as past studies have shown minimal 

sensitivity to the impacts of temperature and relative humidity on the reported 

data. 

2.6 Addressing data quality in low-cost sensors 

The aim of making low-cost sensors handy often lead to compromise in some 

areas. For examples sensor characteristics such as power requirement, price, 

selectivity, reproducibility, and sensitivity is compromised for miniaturization. This 

makes low-cost sensors to suffer some measurement artifacts resulting in poor 

data quality (Hagler et al., 2018). End-users need to seek ways to address these 

data quality challenge. Rai et al., (2017) reported that it is important for end-users 

(e.g. individuals, government agencies, academic institutions and citizen 

scientists) to note the performance characteristics of low-cost sensors before 

employing them. Ideally, the effects of temperature, relative humidity and cross-

interference (for EC cells) must be accounted for when using these types of 

sensors.  
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Of specific importance in this study is the OPC for PM monitoring. Hygroscopic 

growth under increased relative humidity often results in PM particle under-

reporting using these types of sensors (Malings et al., 2019). This has to be 

corrected for; for example for regulatory monitoring, PM measurements are 

reported under particular temperature and humidity (i.e. 20-23°C and 30-40%) 

respectively (US EPA, 2016b). On-going research using sensor applications is 

focused partly on using models (Cross et al., 2017), machine learning 

(Zimmerman et al., 2018) and multiple linear regression models (Jiao et al., 2016; 

Zimmerman et al., 2018) to improve data quality when using low-cost sensors for 

AQ monitoring.  

One of the methodologies used in developing these types of data correction 

mechanisms is by collocating low-cost sensors with reference grade/ regulatory 

monitoring equipment in a similar environment representative of the sampling 

environmental conditions (Hagler et al., 2018). This period of collocation is 

necessary for developing data correction algorithms that are then integrated with 

the raw sensor data (Hagler et al., 2018) which is then applied after relocating 

the low-cost sensor. In homogenous environments, data correction mechanisms 

developed for a specific environment are applied assuming concentration at 

these varying locations are influenced by similar background activities over a 

specific time (Moltchanov et al., 2015). In some cases, commercial software has 

been developed to support this technique based on the homogeneity of the 

sampling environment (e.g., Advanced Normalization Tool for AirVision; 

http://agilaire.com/pdfs/ANT.pdf) (Hagler et al., 2018). Since environmental 

parameters introduce inconsistencies in these types of sensors (see Zheng et al., 

2018; Zikova et al., 2017a, 2017b; Jayaratne et al., 2018), studies with LCS have 

focused on developing data correction mechanisms using these variables (i.e. 

relative humidity and temperature). For particle size under-reporting (Koehler and 

Peters, 2015; Zhou and Zheng,2016) and Liu et al., (2017) suggested using 

factory calibration approach by adjusting the device output to match that from the 

reference equipment. Malings et al., (2019) have shown that factory calibration is 

not enough for correcting low-cost PM sensor output inconsistencies under real-

world conditions and have suggested a two-way approach to deal with it. This 
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involves firstly accounting for aerosol hygroscopic growth employing particle 

composition and an absolute empirical formula using linear/ quadratic equations 

of environmental variables (temperature and relative humidity; see Malings et al., 

2019). 

2.7 Summary 

The current generation of low-cost sensors has shown that these devices could 

complement existing sparsely distributed AQ stations and provide benchmark 

data for AQ studies in environments with no regulatory AQ monitoring typical of 

many urban areas in Ghana and wider SSA as these devices have shown 

promising results in advance countries. Current evidence shows that LCS offer a 

unique approach to governmental agencies in Ghana and wider SSA for bridging 

AQ data gaps specifically in identifying hotspots of air pollution and providing 

information for tracking and evaluation of air pollution mitigation strategies, 

emergency responses and engaging citizens on air pollution health exposure. 

Studies with low-cost sensors for AQ monitoring have shown that optical particle 

counters are suitable for monitoring particulate matter. The current form of EC 

cells can be used to obtain indicative data at the initial stage but will require post-

data correction and analysis to establish data correction mechanisms. Data 

validation and calibration methodologies should be developed for the use of these 

devices if they are to complement regulatory monitoring approaches in these 

types of settings.
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3 MATERIALS AND METHODS 

Universally, there is no agreed definition of a low-cost sensor but anything with 

cost less than the instrumentation cost required for demonstrating compliance 

with AQ regulation can be referred to as low-cost. This cost should be as low as 

possible to achieve aims such as supplementing conventional air pollution 

monitoring; emergency response management, hazardous leak detection and 

source compliance monitoring; increasing community awareness and 

engagement on issues relating to AQ and improving the link between human 

health and pollutant exposure (Rai et al., 2017). In this research low-cost refers 

to a single unit (node) costing ~£4,000 capable of monitoring gaseous pollutants 

mainly O3, NO, NO2, CO; speciated particulates such as PM1, PM2.5 and PM10 

and VOCs as well as environmental parameters such as relative humidity and 

temperature. 

3.1 Instrumentation 

Two AS510 multi-sensor nodes (Atmospheric Sensors, UK), were used for this 

study. These nodes measure: CO, NOx, O3, VOCs, PM and key environmental 

parameters relative humidity (RH) and temperature (T). Table 3-1 lists the 

species measured and the technologies used for these measurements. The 

resolution of the nodes used in this study for all measured species was 60 s for 

the duration of the study. This study focused on particulates and details of the 

Optical Particle Counter (OPC) component of the node is presented in Table 3-

1. The OPC (Alphasense, UK OPC-N2) measures scattered light from 

particulates from the sampling beam to reconstruct particle mass levels (Hinds, 

1999). The scattered light in a sampled air stream for measuring enters the OPC-

N2 through a laser beam. This measurement is based on the intensity of the light 

scattered grouping the particles through the Mie theory calibration and particle 

number concentration approach developed by Alphasense. The calibration 

(factory) of the OPC-N2 is by using Polystyrene Spherical Latex Particles of a 

known diameter and RI. For particles of different density, correction factors are 

applied. The particle masses loaded are then calculated per the particle size 

spectra and concentration data. The particle species measured are PM1 (particles 
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with size ≤ 1 μm); PM2.5 (particles with size ≤ 2.5 μm) and PM10 (particles with 

size ≤ 10 μm). Each of these particle sizes is classified at about 10,000 particles 

per second into 16 bins ranging from 0.38 to 17 μm. The resultant is a particle 

size histogram which is estimated per user-defined time scales. For this specific 

study, this time scale was set to 60 seconds. This calculation takes into account 

the particle density and refractive index (RI) using default settings 1.65 g/ml and 

RI+i0 respectively (OPC-N2 Monitor, Alphasense Ltd UK, 2015).  For more on 

the description of the OPC design and operation see Alphasense reference note 

(OPC-N2 Monitor, Alphasense Ltd UK, 2015). 

Table 3-1: Summary of technical characteristics of the AS510 Static Sensor Node 

with details of the OPC 

Measurands / Activity Technology 

Particle size distribution Optical particle counter (OPC) 

CO, NO, NO2 and O3 Electrochemical (ECs) 

VOCs Photo ionization (PID) 

CO2 Non-dispersive infra-red (NDIR) 

T and RH Capacitive 

Timestamp and location Global positioning system (GPS) 

Data telemetry General packet radio service (GPRS) 

OPC details Particle range 0.38-17 μm 

Data bins 16 

Flow rate 1.2 L/min 

Sample flow 
rate 

220 mL/min 

The unit requires a data-capable subscriber identity module (SIM) card service, 

which can be provided either by Atmospheric Sensors or by other providers by 

discussion; local storage on 16GB secured digital (SD) card of extended results 

from a test for later recovery and to act as a backup of results sent over the 

general packet radio service (GPRS) link; mains power supply, with waterproof 

connector and externally visible light-emitting diode (LED) to indicate unit status. 

The data from this node can be sampled at high rates usually averaged over 20 

seconds with transmission at every 15 minutes. This can be configured to suit 
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end-user’s preference or application. The unit may be used either indoors, or 

outdoors if protected by a Stevenson Screen, or similar enclosure and wall mount 

brackets are supplied with each unit, permitting easy installation (Atmospheric 

Sensors UK, AS510 Manual). 

3.2 Quality assurance/quality control 

The framework developed and used in selecting deployment sites must follow the 

principles listed below with guidance from the European Union air quality directive 

(2008/50/EC).  

i. The proposed site for deployment must be based on possibilities of 

high concentrations of atmospheric pollutants and likely to affect the 

local population. 

ii. Levels obtained must be representative of the entire area. 

iii. Sites must be selected to avoid measuring small micro-environments 

but representative of the entire vicinity (100 m for traffic-related areas 

and 250 m x 250 m for industrial sites). 

iv. The proposed site for deployment must present complex/ varying 

sources of atmospheric emissions and not influenced by a single 

source. 

v. For rural monitoring, the sites must not be closer than 5 km to 

industries. 

vi. The proposed sites must be representative of similar settings not in 

their immediate surrounding. 

vii. Instruments must be installed to ensure that flow around the inlet is 

unrestricted. 

Also, consideration should be given to confounding factors namely security, 

access, availability of electrical power, visibility of the site (instrument), inferring 

sources, the safety of the entire public and operator (in this case me as the 

researcher), planning requirements and desirability of collocation. 

In addition to the above quality assurance protocols, the measurement data 

reported by the low-cost sensor (in this case the OPC-N2) must meet preliminary 
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data quality protocols echoed in existing literature. Mainly, the preliminary data 

on local levels will only be accepted if relative humidity reported by the sensors 

is ≤ ~85% including atmospheric temperature concurrently collected from the low-

cost sensor is representative of the specific environment where the sensors are 

deployed. Additionally, a minimum of 3-week data may not be included in the data 

analysed due to stabilization of the sensors (see for example Sousan et al., 2016; 

Jiao et al., 2016; Kelly et al., 2017). For understanding the precision of low-cost 

sensors, the sensors must be co-located at the same height as close as possible 

to reference-grade/ regulatory monitors. This is similar for understanding 

precision between similar/ different low-cost sensors measuring the same 

species by co-deploying the selected low-cost sensors. Though no evidence 

currently exists on the distance between the selected sensors and or/ regulatory/ 

reference-grade monitors, a distance of ~10cm is recommended and adopted in 

this study. Also, refer to Table 2-3 for further details. In environments with limited/ 

non-existent location-specific wind component data, it concurs that NOAA data 

be used in such cases for source identification (see López and Schliep 2019). 

Though the guidance here was used to inform the siting of the instrument, some 

challenges were encountered. It, therefore, makes some recommendations here 

an open-ended approach which is influenced by the knowledge of the investigator 

(in this case, me as the researcher). 

• It was challenging to define whether or not the area has higher pollution 

levels detrimental to human health as there is no historical or current 

regulatory AQ data at Cape Coast (UCC site in this case). For Accra, the 

low-cost sensor was collocated with regulatory equipment, but the data 

from the regulatory equipment could not be used for understanding the 

precision of the low-cost Alphasense OPC-N2 and to further develop 

calibration protocols for the use of Alphasense OPC-N2. 

• Additionally, it was difficult to understand whether the levels of PM are 

representative of the entire area due to lack of AQM in the region as well 

as the transboundary effect of air pollution and varying background 

activities depending on location. 
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3.3 Site selection and data acquisition  

Both AS510 multi-sensor nodes (each containing electrochemical sensors for 

CO, O3 and NOx; photoionization detector sensor for VOCs; an infrared sensor 

for CO2 and OPC-N2 for PM) were co-deployed at a central site at Cape Coast, 

Ghana based on the quality assurance protocols in Section 3.2 above. This site 

was selected as being typical of expanding urban settings outside of Accra with 

a broadly similar composition as other urban areas of this type.  Co-deployment 

was for 6 weeks (August 9th to September 18th, 2018; See Figure 3-1) and 

provided a baseline for comparison of data between the sensor nodes. Cape 

Coast is situated in the south of the country on the Gulf of Guinea with a 

population of approximately 170,000 (GSS, 2012). The region is relatively humid 

with mean monthly relative humidity (RH) ranging between 85% and 99% from 

the nearest weather station at Takoradi (~63 km from Cape Coast) as compared 

with a range of 77% to 85% in Accra (Climate in Cape Coast, Ghana). The 

predominant wind direction at Cape Coast (deployment site – see Figure 5-1 

under Section 5.6 on page 72) is from the NNE which has the potential to 

transport pollutants from across the region to Cape Coast as well as for onshore 

relatively clean air masses to be transported. Nodes were mounted 10 cm apart 

(to understand the precision of AS510 for a high-density deployment at a height 

of ~4 m (to prevent vandalism and allow airflow into the inlets – see the adopted 

framework in Section 3.2) above the ground (Figure 3-1). Typical sources in the 

area (Cape Coast) include unpaved roads (re-suspended dust), road-side food 

preparation (biomass and gas combustion), taxi rank (vehicular) and roads used 

by private vehicles as well as heavy trucks and commercial vehicles. 

After completion of the initial 6 weeks co-deployment measurement period, one 

node was relocated to central Accra (approximately 147 km north of Cape Coast) 

alongside the GhEPA reference high volume sampler used for monitoring PM10 

is located (see Figure 3-2). Accra covers approximately 225.67 km2 with a 

population of 2.5 million (GSS, 2012) and is the economic and industrial capital 

of Ghana. The node was moved there as a study investigating the potential for 

https://weather-and-climate.com/average-monthly-Rainfall-Temperature-Sunshine,cape-coast-gh,Ghana
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cross-validation of sensors or radically different operational cycles. This type of 

low resolution, low technical overhead PM monitoring in Ghana is more 

widespread than online routine PM monitoring across the region (HEI, 2019). The 

reference site is a residential area (associated with poor waste management 

practices including garbage burning at the monitoring site – though GhEPA’s AQ 

monitoring equipment is located in this area) close to the relatively high use 

Dansoman Highway, a local open market (including open food preparation), a 

fuel station and more dispersed road-side food vendors.  

 

Figure 3-1: Overview of the deployment area at the University of Cape Coast (UCC) 

The green circle shows the location of the two co-deployed nodes ~10 cm apart 

(05°06′N 01°15′W) 

Due to the limited availability of local meteorological data, modelled wind data 

from the Global Forecast System (GFS) repository was used for source 

apportionment in this study (NOAA, 2019; López and Schliep 2019). The GFS is 

a dataset from the National Oceanic and Atmospheric Administration (NOAA) and 

the National Centres for Environmental Prediction (NCEP) (López and Schliep 
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2019). Within this database, wind data since 2011 is saved at 3-hour intervals 

daily in velocity vector format with a resolution of 0.5 degrees and ~50 km.  

 

Figure 3-2: Overview of the Dansoman-Accra site deployment (Green circle: 

location of the node collocated ~10 cm apart with the GhEPA monitoring reference 

device) GhEPA (5°32′28′′N 0°16′8′′W) 

3.4 Data processing and analysis  

In Figure 3-3, a framework on the novel approach used for low-cost sensor 

deployment and data acquisition in this study is presented.  Firstly, the selected 

low-cost sensors were factory calibrated and then deployed in the field in Ghana 

based on best practices such as site and height (see subsection 5.2 of chapter 

5). The selected sensors were installed and the data transmitted via global packet 

radio service to a central internet-based platform. This data is then accessed 

using credentials provided by the manufacturer (in this case Atmospheric 

Sensors, UK) using a file transfer protocol system (FileZilla for this particular 

research) with a personal computer. A folder repository is generated for this data 

(two folders were created with the names node5 and node79 for this research).  
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This folder includes readme files specifically on the type/ format of data, for 

example, time resolution, key species monitored, header files and specific values 

to use for investigation of the data such as temperature corrected (TC) values. 

This data is then imported into the analytical environment (R in this case) and 

examined with scripts (data mining tools). This interrogation of the data takes into 

account dates and time as well as reported measurements of key species e.g. 

PM values. The reported data is cleaned by removing zeros and unwanted 

values.  

This cleaning process involves selected specific species of interest (e.g. PM – 

PM1, PM2.5 and PM10; CO, NO, NO2, O3, and CO2). TC values were selected in 

this case as it has been shown in chapter 1 and 2 of this research that these 

environmental variables introduce inconsistencies in the low-cost sensor data. 

No data correction mechanism was applied in this case as the study focused on 

how sensor manufacturer’s data correction algorithms, as well as factory 

calibrated low-cost sensors (i.e. current state of low-cost sensors), can be useful 

for AQM in the defined environments. This approach was adopted because 

during this PhD study, no further data correction mechanism was possible due to 

limited resources (for example reference/ regulatory-grade regional monitoring 

dataset with similar/ applicable resolution and poor resolution dataset from the 

regulatory equipment used by the GhEPA including monthly mismatching 

datasets from the deployed OPC-N2 and regulatory datasets).  Nevertheless, 

these preliminary data provided evidence on the feasibility of using these types 

of sensors for various gases monitoring in these environments.  

Preliminary plots such as summaryPlots are then generated to interrogate the 

data. Consequently, time series plots are developed and analysis undertaken per 

satisfaction based on atmospheric science standards e.g. observed levels of 

PM2.5 not greater than PM10. These preliminary plots are the basis for analysis 

such as trend analysis (using timeVariation function), bivariate polar plots (using 

polarPlot function) and cluster analysis (using polarclusterPlot function). 

Additionally, mathematical models can be integrated into these types of analysis 

to understand the precision/ consistency between the selected low-cost sensors, 
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for example, Pearson’s correlation analysis (inbuilt command in the “openair” 

package) was used to determine the consistency between the two nodes which 

influenced the applicability and suitability of the Alphasense OPC-N2 for AQM in 

the defined environments. This approach was used because it is widely accepted 

and used as an indication of the levels of bivariate correlation between selected 

the species. 

All analysis in this study was based on the “openair” package for air pollution data 

analysis; a widely accepted tool for air pollution data analysis developed by David 

Carslaw (2015) using the R language and environment. 

 

Figure 3-3: Schematic framework for LCS (low-cost sensor) deployment and 

usability of reported data tied to the protocols in subsection 3.2 of chapter 3. 

3.4.1 Source apportionment 

The bivariate polar plot approach adapted from Carslaw and Ropkins (2012) 

using the reported data from the low-cost sensor to plot the mixing rations of PM 

alongside modelled wind components. The approach of having a concentration 

of pollutants plotted in polar coordinates to identify sources is not new (Carslaw 

Clean data and put into working format (temperature corrected – TC values selected)

Examine the data and use basic plots (e.g. 
summaryPlot) to understand the data

Generate preliminary plots (e.g. time series plots) to 
further examine the data and proceed with analysis if 

satisfied

Access data with user credentials from manufacturer using file transfer protocol systems 
(e.g. FileZilla)

File repository of data including readme files Import the data into analytical environment (e.g. R)

Factory calibrated LCS

Field deployment Data transmitted to internet-based platforms via GPRS
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and Ropkins, 2012) but is suited to small sensors because these devices are 

capable of acquiring huge AQ data at higher resolutions and in some cases 

higher spatiotemporal data if they are deployed in a high-density (see e.g. Mead 

et al., 2013; Snyder et al., 2013; Rai et al., 2017). This approach has been 

demonstrated by source apportionment studies in an airport setting and in 

exploring characteristics of dispersion of pollutants in street canyons (Carslaw et 

al., 2006).  

Bivariate polar plots suggest potential sources of air pollutants based on wind 

speed, wind direction and pollutant level. The acquired measurement data (in this 

case concentrations of PM) are plotted as a function of wind speed and direction. 

The data are grouped into bins based on wind speed and wind direction. Means 

are then calculated for each of these bins (Carslaw and Ropkins, 2012; Carslaw, 

2015). The combination of wind speed and direction is an efficient approach in 

differentiating varying sources of air pollution (Carslaw and Beevers, 2013). By 

approximating available wind direction data to 10°, typical surface measurements 

are usually between 0-30 ms-1. Wind speed intervals beyond 30 ms-1 are difficult 

to justify (Carslaw and Beevers, 2013) and hence not included.  

This aggregation of data provides a reduction technique without a bias analysis 

of the plots since wind component data is variable and tend to diffuse making raw 

data to yield limited results (Carslaw, 2015). These types of plots have been 

tested on a wide variety of data and it has been suggested that wind direction 

intervals of 10 to 30° capture enough detail of pollutant dispersion to allow for 

source identification (Carslaw and Beevers, 2013). In pollution prediction the 

relationship between variables is non-linear but the interactions between these 

variables are important. To account for this, a surface fitting model, the 

Generalized Additive Model (GAM) (e.g. Hastie and Tibshirani, 1990; Wood, 

2006) is applied to the polar plots (Carslaw and Ropkins, 2012) to provide a 

smoothing approach useful for pollution prediction. 

3.4.2 Cluster analysis for source identification and extraction 

Cluster analysis is a useful tool for identifying features and source extraction from 

polar plots (details can be found here Carslaw, 2015). This is an advanced 
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technique which selects groups with similar characteristics and maps them and 

provides means to understand source features than the polar plots. Bivariate 

polar plot interpretation is limited by the ability of the investigator that may lead to 

bias. Since some patterns may not be plotted in the selected intervals of the wind 

components (Carslaw, 2015), cluster analysis using the k-means algorithm 

provides a better approach. This algorithm for clustering was introduced by 

Hartigan (Hartigan, 1975). This procedure allocates several observations into K 

clusters. The data allocation process groups the pollution data with similar diurnal 

patterns into one group using the k-means. With the k-means, (i.e. grouping the 

data by making in-group data points more similar to each other than to out-of-

group data points), cluster analysis is performed in which features in bivariate 

polar plots are identified and categorized (Shi et al., 2014). This categorisation 

helps to identify records in the original time series data, enhancing post-

processing for identification of potential source characteristics.  

Firstly, k points are randomly selected from the space represented by the objects 

that are being clustered into k-groups. These group points are then represented 

as centroids and every object is attached to a group with the closest centroid 

(Carslaw, 2015). The k centroids are then recalculated after assigning all objects; 

recalculation and group assignment is done until the centroids no longer move, 

in which case the objects are grouped to minimize the algorithm’s metric. The 

three most important variables in this analysis are wind speed, direction measure 

and concentration. 

Furthermore, the polarCluster command used in this research is similar to other 

“openair” applications. There is however no specific methodology for selecting 

the number of clusters for these types of analysis. The process, however, 

involves a test running of a selected number of clusters to reveal potential 

sources to the satisfaction of the investigator.  This basic approach, however, is 

to have a solution of clusters and chose the one that offers the most appropriate 

solution for visualization and interpretation – post-processing (Carslaw and 

Ropkins, 2012). In the case of this study, 4 clusters were used because removal 

of one cluster or class removed a significant amount of resolution in the bivariate 

polar plots and the populations of each cluster are reasonably comparable. The 
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addition of a fifth class or cluster was not used as on analysis of the dataset, this 

fifth cluster was composed of very few data points. This knowledge influenced 

the number of clusters used for the analysis presented in section 4.5 

In this approach, more weight is given to the concentration rather than the wind 

components though this tends to identify clusters with similar concentrations with 

varying sources (Carslaw and Ropkins, 2012). Data binned by cluster can be 

presented as a stacked bar chart time series (Carslaw, 2015). This approach is 

often used to support outputs from the cluster analysis (Carslaw and Ropkins, 

2012). 
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4 RESULTS  

This chapter presents findings from this research specifically on the pilot study 

and the experimental approach to identifying sources of atmospheric pollution 

with the use of low-cost sensors. Based on the aims and specific objectives of 

this research, this section is presented in two sections; firstly focused on the 

short-term functionality of the selected sensors to understand the extent to which 

these types of sensors can be used to obtain observational ground-based AQ 

data in resource-constrained settings as well as the consistency between the two 

devices considering data reproducibility. The second part focused on how high-

resolution data from these types of sensors can be used for applications such as 

emission source identification. These aspects are of particular importance 

especially in environments with limited AQ monitoring capabilities as those 

encountered in Ghana and the majority of the countries in SSA. 

4.1 Performance of selected atmospheric sensor nodes in Ghanaian 

urban areas for PM measurement 

As reported by several studies on the utility of low-cost sensors, the effects of 

environmental variables specifically temperature and relative humidity (. Studies 

reporting on the use of the Alphasense OPC-N2 for field campaigns have shown 

that these types of OPCs are suitable for PM monitoring with insignificant effect 

from these variables. On data quality, relative humidity below 85% has been 

found not to significantly affect the reported OPC data (Crilley et al., 2018) . 

Spinelle et al., (2017) also found no impact of temperature and relative humidity 

on reported OPC-N2 data. The reported data from this study as shown in Figure 

4-1 have shown that these preliminary requirements with relative humidity being 

~85%. In addition to the above, the measurements on environmental variables is 

representative of the study area as reported in Chapter 3 section 3.2. Additionally, 

in cases where the effects of particle composition affect the reported low-cost 

OPC data, studies, for example, Malings et al., 2019 and Crilley et al 2020 have 

demonstrated applicable methodologies for data correction for OPCs in 

measuring PM species provided there’s a statistically sufficient amount of 
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regulatory data concurrently collected in following the quality assurance/ control 

protocols stated in Section 3.2.  

 

Figure 4-1: Hourly time series plot of Temperature (red) and Relative Humidity 

(grey) at UCC corresponding to acceptable ranges recommended for these types 

of sensors 

Hourly averaged PM (PM10, PM2.5 and PM1) data from the selected two nodes 

during the deployment at Cape Coast (i.e. UCC site) showed that the reported 

data from the nodes are highly reproducible as the signal acquisition of the two 

nodes is similar (Figure 4-1: a, b and c) with corresponding Pearson’s correlation 

analysis (R) of 0.97 and 0.98 for PM1, PM2.5 and PM10, respectively (Figure 4-1). 

The first 3 weeks of deployment have not been included in this analysis as issues 

with data telemetry compromised the amount of data recorded. 
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Figure 4-2: Hourly time series and corresponding Pearson correlation plot of data 

from Node 79 versus Node 5 at UCC: (a) PM1, (b) PM2.5, and (c) and PM10 with 

reported data from the selected LCS 

The mean PM values of the two nodes have shown the inconsistency between 

the two nodes. Comparing the mean values of each of the PM categories from 

the two devices and the corresponding t-values it can be seen that there is a 

statistical difference (see Table 4-1) which reduces for PM categories in the order 

of PM1, PM2.5 and PM10.  

A 

B 

C 
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Though a similar response of PM measurement data is demonstrated by the time 

series plots from the two nodes (Figure 4-1) this statistical difference in mean 

values for each of the nodes in shows that the selected nodes are suitable for 

PM10 measurements in most polluted and resource-constrained settings (Castell 

et al., 2017).  

Table 4-1: Mean and standard deviation of PM in µg/m3 with t and p-values 

showing the statistical difference between the two nodes at UCC. 

Species Node 5 Node 79 Statistical difference 

Mean SD Mean SD t p-value 

PM1 11.4 8.9 12.9 10.1 17.3 <2.2e-16 

PM2.5 24.7 19.7 26.8 21.3 11.4 <2.2e-16 

PM10 149 175.1 156.6 179.2 4.2 1.9e-5 

These findings are in agreement with the assertion that current OPCs require 

optimisation (e.g. application of machine learning/ post data correction with 

sophisticated mathematical models) for measuring fine particles since they 

measure particles lager than 0.3 µm. The statistical difference between the two 

nodes from the same manufacturer with p-value <0.05 echoed the challenges on 

the use of low-cost sensors, for example, depending on inbuilt correction 

algorithms which is mainly influenced by time and resources invested by the 

manufacturer (Baron and Saffell, 2017). These differences show the need for post 

data correction/ validation (Mead et al., 2013; Baron and Saffell, 2017) as inbuilt 

data correction mechanisms.  

PM10 concentrations peak at 500 µg/m3. This is in agreement with levels recorded 

in other polluted environments (Wang et al., 2015) and SSA (Brauer et al., 2012; 

HEI, 2019). Though these pilot findings are in agreement with levels of PM 

pollution recorded in such environments specifically Ghana, limited studies are 

using these types of low-cost sensors for comparison and justification. Studies 

with emerging low-cost sensors have shown that low-cost sensor technologies 

suffer environmental artefacts namely relative humidity and temperature thereby 
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affecting the measured data and do not agree well with measurements from 

instruments using different measurement technologies/ principles (Watson et al., 

1998; Wilson et al., 2002; Chow et al., 2008). For example, Zheng et al., (2018) 

found that low-cost PM2.5 sensor Plantower model PMS3003 corresponds very 

well with a scattered light spectrometer (r of 0.8) versus low correlation with a 

beta attenuation monitoring (r of 0.5). These findings provide a benchmark for 

future studies with these types of low-cost sensors especially in developing data 

correction/ validation and calibration procedures for the use of low-cost sensors 

for AQ monitoring in Ghana and similar environments. 

Calendar plots were used to identify the days where the recommended WHO AQ 

guideline values of 25 and 50 µg/m³ for PM2.5 and PM10, respectively were 

exceeded (Figure 4-2). This type of analysis is currently unachievable with the 

GhEPA monitoring settings as only 24-hour averaged data can be collected 

roughly 5 times a month. Even though the reported data from the AS510 nodes 

used in this study is not validated with data from site-specific reference 

equipment, the PM levels reported are in agreement with levels recorded 

previously in SSA (Amegah, 2018; HEI, 2019). This finding shows that the 

selected nodes can be used for real-time daily monitoring of PM in highly polluted 

regions as shown by Castell et al (2017). 

  

Figure 4-3: Calendar plot of PM at UCC for September 2018 showing potentials of 

comparing reported data to location-specific regulatory standards e.g. WHO daily 

mean values (25 µg/m³ for PM2.5 and 50 µg/m³ for PM10) if validated. Dark orange 

values represent days where the daily guidelines were exceeded  
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4.2 PM trends 

Trends of PM species showed peak levels in the mornings which are attributable 

to typical sources such as unpaved roads (re-suspended dust), road-side food 

vendors (biomass and hydrocarbon combustion), taxi ranks (tailpipe) and roads 

used by heavy trucks and commercial vehicles (Figure 4-3). Urbanisation coupled 

with increasing motorization is indeed a major source of air pollution in SSA 

(Petkova et al., (2013) Schwela, 2012a; Amegah and Agyei-Mensah, 2016).  

A drop in PM level was observed on Friday which is attributable to reduced 

human activities and peaks again on Sundays due to increased anthropogenic 

activities. These findings are unachievable with conventional and sparsely 

distributed AQM stations (e.g. in Ghana, data is averaged 24 hr and collected 

every 6 days).  

Understanding the complexity of emission sources in urban areas requires 

monitoring at fine scales (Jerrett et al., 2005; Karner et al., 2010; Eeftens et al., 

2012) and ability to potentially establish a dense network without large 

infrastructure. Low-cost sensors offer these opportunities and can be used in 

resource-constrained settings (Snyder et al., 2013, Mead et al., 2013, Castell et 

al., 2017). 
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Figure 4-4: Trends of PM1 and PM2.5 (top) and PM10 (bottom) by hour and day of the week (left), by weekday (centre) and by hour of 

the day (right) at the UCC sampling site
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4.3 Local PM sources  

Polar plots were used to identify the sources of monitored species based on the 

high-resolution data from the low-cost devices (Figure 4-4) for this period. The 

trend between PM1 and PM10 suggests that an important source of particulate 

matter is located towards the NNE.  

This source is either biased towards lighter particles or that larger particles are 

removed before arriving at the monitoring site. The reported data potentially 

points towards a more local source of lighter particulates nearer to the monitoring 

site which has an important role in composition at lower wind speeds. Under still 

conditions, it seems there is no major local source.  

Overall PM levels were relatively high (20 µg/m3 for PM1, 35 µg/m3 for PM2.5 and 

220 µg/m3 for PM10 as compared to the recommended 25 µg/m3 and 50 µg/m3 

limits of the WHO for PM2.5 and PM10, respectively). Locally PM1 and PM2.5 

concentrations were high while high PM10 concentrations were experienced at 

higher wind speed. 

   

Figure 4-5: Hourly bivariate polar plot of PM1, PM2.5 and PM10 at the UCC site 

These results reflect that both nodes were installed (at the UCC site) in a traffic 

dominated area. The region to the NNE is mostly unpaved flat area close to the 

Gulf of Guinea. The nature of the deployment site (unpaved roads with associated 

re-suspended wind-blown dust) coupled with the topography of the area (a 

relatively flat field) would be expected to have contributed to higher PM10 levels 

with increased wind speed. Especially considering that the area to the NNE is 

dominated by unpaved road, win-blown dust and sea salt from the nearby coast. 

As it has been shown that coarse PM dispersion is linked to higher wind speed 
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(Carslaw and Ropkins, 2012) we would expect a reduction in the PM10 signal at 

lower wind speeds (2-5 ms-1) and higher levels were observed at higher wind 

speed (6-8 ms-1). 

4.4 PM trends between two different socio-economic settings 

In Accra, peak values of PM1 were observed on Monday which then drastically 

reduced to a concentration below 50 µg/m3 (Figure 4-5). This preliminary finding 

could be linked to emissions from background activities such as garbage burning, 

vehicular emissions or linked to the functionality of the deployed device. In a study 

to understand the patterns of air pollution in the neighbourhoods of Accra, it was 

observed that poorer households are highly exposed to air pollution. This in part 

is due to the use of biomass and/ or solid fuel as a source of energy for heating 

and cooking (Dionisio et al., 2010). 

   

Figure 4-6: Trend plots for PM1 at Dansoman-Accra and UCC-Cape Coast showing 

(left panel) day of week, (middle panel) hour of day by week and (right panel) 

integrated hour of day  

Apart from Monday and Friday, PM1 concentrations remain relatively high at 

Cape Coast (Figure 4-5), a relatively poor socio-economic setting is potentially 

linked to this assertion; energy source (use of biomass and/ or solid fuel as a 

source of energy for heating and cooking) as compared to the site in Accra. 

Though higher PM level is expected because of the nature of the deployment 

site; near the Dansoman Highway and a residential area and mini refuse damp 

(e.g. garbage is sometimes burnt during cleaning activities including car tyres), 

future research is required to provide a better understanding of this finding since 

the peak occurs on a single day (Monday). This will help establish whether the 

spike is attributable to sensor response or refuse burning activities.  
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Monday morning peaks (rush hour) were not observed at Cape Coast as 

compared to Accra, the concentrations remained moderately higher for the rest 

of the period except for Friday. 

4.5 Source characterisation of PM species 

At low wind speed (i.e. ≤ 2 ms-1), elevated levels of PM were observed, implying 

that local sources contributed most heavily to PM concentrations (Figures 4-6a, 

4-8a and 4-10a). For PM1 and PM2.5 higher concentrations were experienced at 

westerly and north-westerly winds whereas the lowest concentrations were 

experienced at north-easterly winds (Figures 4-6a and 4-8a). For PM10, higher 

concentrations were observed at northerly and north-easterly winds (Figure 4-

10a). Using the cluster analysis to extract source feature, cluster 4 (associated 

with northerly winds with speeds from 4-7 ms-1) contributed to PM levels as high 

as 11 µg/m3 for PM1; 24 µg/m3 for PM2.5 and 125 µg/m3 for PM10.  

The analysis has shown that higher wind speeds (7-8 ms-1) from the north 

contributed to the elevated PM. Regardless of the wind speed, PM1 is highest 

when winds are from the NNW direction (Figure 4-6a). For PM2.5, higher levels 

were experienced at low wind speeds and from NNW (Figure 4-8a). PM10, on the 

other hand, is highest with both low wind speed from the north (associated with 

cluster 1) and high wind speed from the northeast (associated with cluster 4) 

(Figure 4-10b). This indicates a likely source to NNW for finer particles but more 

distant sources of coarse particles to NNE.  

An examination of the background environment has shown that this type of result 

is expected as N is mainly an unpaved flat area  (lorry/ taxi park) adjacent the 

main road which is usually dusty though paved; E is the main road which is often 

used by taxis, commercial vehicles and heavy-duty cars (diesel engines); NE is 

the mini-market with roadside food vendors including cooking; S is mainly office 

complexes with the coast about 3 km away; W is the main road but mostly 

unpaved about 100 m away from the deployment and NW is similar to NE except 

for high levels of wind-blown dust from the unpaved road.  
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To demonstrate this, a time-domain analysis was carried out using the clusters 

identified. The categorical bar chart obtained with this analysis (Figures 4-7, 4-9 

and 4-11) have shown that the peaks of PM are associated with cluster 4 (Figures 

4-7 4-9 and 4-11). At relatively higher wind speed (4-8 ms-1 associated with 

cluster 4), the effects of meteorology on atmospheric pollution changes are 

reduced (Carslaw and Beevers, 2013) which accounted for the agreement in the 

sources of PM as linked to the temporal variation plot. It is important to note that 

this cluster analysis consistently grouped pollution levels from potentially the 

same source/ wind direction which was not shown in the bivariate polar plots. The 

downward trend shown in the PM species with high local levels (Figures 4-6a, 4-

8a and 4-10a) and the contribution of the clusters from NNE winds as shown in 

the temporal variation plots (Figures 4-7, 4-9 and 4-11) is basically because they 

are influenced by road traffic emissions as previous studies have reported similar 

scenarios (e.g. Kim et al., 2014).  

Cluster 4 associated with N winds dominated in contributing to PM concentration, 

the temporal variation plots for each of the species by the contribution of each of 

the clusters have shown that daily averages are influenced not only by cluster 4. 

There are instances where non-dominating clusters contributed to higher PM 

levels. For example, for PM1, from August 30th to October 1st, cluster 3 and 4 

dominates with minor contributions from cluster 2 and the least being cluster 1. 

On daily averages, though the temporal patterns have shown that cluster 3 

contributed to levels beyond 20 µg/m3. Additionally, there are instances where 

more than one cluster contributed to the levels recorded with some clusters 

mainly associated with low concentrations and the vice versa. Between 

September 1st and September 19th, all clusters contributed to PM1 levels but 

cluster 1 contributed to the lowest levels recorded on September 16th with a daily 

average of a little below 5 µg/m3. Cluster 3 though not dominant, contributed to 

higher daily average (i.e. beyond 20 µg/m3) followed by cluster 4 which dominates 

with daily averages of a little below 15 µg/m3. A similar trend was observed from 

October 2nd to 16th.  
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Similar to the cluster contribution to PM1, daily averages of PM2.5 have shown that 

from August 30th to September 18th, all 4 clusters contributed to PM2.5 levels. The 

lowest daily average contribution is associated with cluster 1 of concentrations 

below 10 µg/m3. The dominating cluster contributing to PM2.5 is 4 but with 

concentrations not more than 38 µg/m3 whereas cluster 3 though not dominating, 

is associated with the highest daily average of 48 µg/m3.  

With PM10, though there are some areas of cluster 3 associated with higher 

levels, high daily averages are associated with cluster 4. These daily levels were 

as high as 200 µg/m3. The least contributing cluster to daily levels is cluster 1 with 

concentrations 10 µg/m3. Associating the clusters with the specific wind 

components have shown that concentrations of PM within urban areas are 

influenced by outstanding environmental and meteorological conditions tied to 

anthropogenic activities. These findings are in agreement with similar findings by 

Zikova et al., (2017) using these types of sensors for PM estimation across urban 

centres. These findings do not only reflect possible multiple sources of PM with 

some specks attributed to higher wind speed specifically for PM10 but contributed 

to established evidence on the operation of low-cost sensors within established 

atmospheric sensing standards to obtain appropriate data for source 

identification (e.g. Mead et al., 2013; Zikova et al., 2017). From the viewpoint of 

established atmospheric chemistry, winds are responsible for the transportation 

and mixing of chemical constituents which has been re-echoed in this study with 

the utility of low-cost high-resolution sensors for source apportionment studies 

using Ghana as an exemplar for wider SSA. 
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Figure 4-7: (a) Hourly bivariate polar plot and (b) 4 cluster plot of PM1 at UCC 

 

Figure 4-8: Temporal variation in daily PM1 concentration at UCC by the 

contribution of each cluster for the entire period of deployment 
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Figure 4-9: (a) Hourly bivariate polar plot and (b) 4 cluster plot of PM2.5 at UCC 

 

Figure 4-10: Temporal variation in daily PM2.5 concentration at UCC by the 

contribution of each cluster for the entire period of deployment 
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Figure 4-11: (a) Hourly bivariate polar plot and (b) 4 cluster plot of PM10 at UCC 

 

Figure 4-12: Temporal variation in daily PM10 concentration at UCC by the 

contribution of each cluster for the entire period of deployment 

4.6 Indicative measurement of gaseous species 

In this section, a synopsis is presented on the initial data reported from the 

deployed nodes on gaseous species. Exemplar species CO, NO2, CO2 and O3 

are presented. Though data correction mechanisms are required based on 

regional values, the utility of the nodes for understanding the presence of 

atmospheric pollutants specifically for CO, NO2, CO2 and O3 is provided.  

i. Hourly time series plot of CO, NO2, and O3 
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Using data from one (as an exemplar) of the nodes deployed at Cape Coast, an 

initial visualization of the reported data is presented for the gases CO, NO2 and 

O3. For all the species reported here (i.e. CO, NO2 and O3) some readings are in 

the negative. For the NO2 species, all the data reported are in the negative but 

the opposite is reported for O3 and a combination of positive and negative values 

reported for the CO. Nonetheless, CO was 2500 ppb, O3 was a little above 200 

ppb and NO2 was ~100 ppb. Also, an inverse relationship is observed between 

the NO2 and O3 data echoing the cross-interference of the NO2 and O3 

electrochemical sensors. 

 

Figure 4-13: Indicative hourly time series plot of CO, NO2 and O3 at UCC 

 

ii. Hourly time series plot of CO2 

Initial hourly time series plot of CO2 have shown that peak levels could reach as 

high as 700ppm. A significant amount of the data reported have shown that hourly 

averages are between 625 – 655ppm. This is illustrated in Figure 4-14.  
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Figure 4-14: Indicative hourly time series plot of CO2 at UCC 

 

iii. Indicative trend analysis of CO2 

Figure 4-15 shows an indicative trend analysis of CO2. The top panel shows day 

of the week, left bottom panel shows hour of the day, the middle bottom panel 

shows monthly and the bottom right panel shows daily. Levels of CO2 peaks at 

0600hrs and 1800hrs and drops at 1200hrs each day. Peak values for CO2 is 

650ppm which occurred on Monday around 0500hrs and drops to 580ppm 

around 1200hrs. A similar trend was though the peak levels were not the same 

for all the days. Hourly average CO2 observed is 628ppm.  The least average of 

CO2 was recorded on Tuesday.  
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Figure 4-15: Indicative trend analysis of CO2 at UCC 

 

4.7 Summary 

Low-cost sensors allow for in near real-time, autonomous in-situ AQ data 

measurement in environments previously unachievable as well as providing high-

resolution data for an understanding of air pollution in urban settings. The use of 

low-cost sensors is swiftly increasing and offer the potential to propel regulatory 

action in environments with limited monitoring capabilities. The findings 

presented here have contributed to firstly bridging the scientific knowledge gap 

that exists in Ghana and wider SSA on the use of low-cost sensors and offers a 

new approach to undertaking AQM in quantifying and identifying air pollution 

sources.  

The optical particle counters (Alphasense OPC-N2 in this case) have shown to 

be suitable for characterizing PM species and can be used to track and evaluate 

exposure levels, understand emission trends, define pollution level at varying 

locations with different background activities and suitable for reporting reliable 

high-resolution data useful for source identification. In the Cape Coast (study 
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area) scenario, increased wind speed resulted in high PM10 levels. The nature of 

the deployment site at Cape Coast and background activities accounted for this; 

closeness to a traffic dominating area coupled with unpaved roads and the Gulf 

of Guinea.  

For gas-phase pollutants, indicative levels are reported for the species CO, NO2, 

O3 and CO2. Concerning NO2 and O3 the initial results presented highlight the 

need for post data correction based on the availability of regional values of the 

monitored species. Calibration and data validation (e.g. Mead et al., 2013; Kumar 

et al., 2015; Lewis et al., 2016) is integral for the use of this devices but in many 

cases not undertaken (Mijling et al., 2018).  

Future studies need additional focus on data correction/validation when using 

these types of sensors in these types of environments (specifically Ghana and 

wider SSA). The statistical difference in mean values with reported data from the 

two nodes highlighted the limitation of relying on inbuilt data correction 

mechanisms by low-cost sensor manufacturers for effects of temperature and 

relative humidity on the performance of low-cost sensors (Becker et al., 2000; 

Lee, 2001; Baron and Saffell, 2017). 

In resource-constrained settings such as those found in Ghana and the wider 

SSA, the utility of low-cost sensors for AQ studies to inform decision making is 

challenging because guidelines on the use of such devices are not fully defined 

(Williams et al., 2014b) and information regarding the use of low-cost sensors is 

at a fundamental stage. These findings provide initial results indicative of the 

measured species of which future AQ projects can be built on to develop 

correction mechanisms to obtain representative data. 

This study of air pollution data was undertaken as a source apportionment 

exercise. In this section, the possibility of identifying potential sources of PM (i.e. 

air pollutants of interest) is demonstrated using bivariate polar plots and cluster 

analysis on acquired high-temporal resolution PM data from the low-cost sensor 

systems.  
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Source feature identification was maximized by applying post-processing 

techniques to characterize sources with a similar contribution to PM levels as 

observed at the University of Cape Coast Science Market (Cape Coast 

Municipality of the Central Region of Ghana). The methodology as presented in 

this study can be applied to other pollutant species provided an appropriate 

amount of data is gathered of an appropriate quality with local wind data. 

Accurate local wind data is required as modelled data only provides information 

indicative of the wind components influencing the sources identified. This 

analysis highlights the possibilities of using low-cost sensors and integrating data 

from these devices with meteorological data to identify sources of PM (or other 

pollutants of interest) especially in highly polluted environments with complex 

sources of air pollutants but limited AQM capacities. This will help in developing, 

implementing and tracking specific mitigation measures. This methodology has 

the potential to improve our understanding of air pollution sources using data from 

multiple PM sensors (or other AQ species of interest) to identify multiple sources 

in urban areas.  
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5 GENERAL DISCUSSION 

5.1 Introduction 

Large areas of developing countries are poorly monitored including large portions 

in rural environments in the developed countries (Schwela, 2012a; Petkova et al., 

2013; Amegah and Agyei-Mensah, 2016; Martin et al., 2019; HEI, 2019). Air 

quality monitors tend to be deployed in cities around the world but worse in 

developing countries specifically SSA. Exploring the feasibility and applicability 

of low-cost sensors for AQM in such environments to bridge data gaps is 

expanding rapidly.  

This study presents scientific evidence on a proof of concept of the feasibility of 

low-cost sensors for AQM under real-world conditions in developing countries 

(i.e. Ghana in this case) to understand the reproducibility of low-cost sensors to 

provide information for characterising key air pollutants or similar (Chapter 4, 

Sections 4.1; 4.2 and 4.4) and the extent to which high-resolution data from low-

cost sensors can be used for emission source identification (Chapter 4, Sections 

4.3 and 4.5) in these environments with fragmented air quality monitoring 

approaches. With limited scientific knowledge on the use of low-cost sensors for 

quantifying air pollution and identifying emission sources, this study presented 

vital information on the utility of low-cost sensors specifically deployment, data 

acquisition, management, and analysis to address air pollution health crises.  

Scientific knowledge on the suitability of low-cost sensors for AQM in SSA is at 

an early stage. For example, de Souza et al (2017) have shown that low-cost 

sensors are capable of providing a high-spatiotemporal data if deployed in a high-

density in these environments though the authors recommend future studies to 

develop calibration toolbox for improved data quality. This was tested in Ghana 

by deploying selected low-cost sensors under varying urban settings to 

investigate the suitability low-cost sensors for obtaining a high-spatiotemporal 

data (i.e. by co-deploying the two nodes) to quantify key air quality species (PM 

– PM1, PM2.5 and PM10; CO, NO, NO2, CO2 and O3). It is deduced from the results 

of this research that indeed, low-cost sensors are capable of providing high-
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spatiotemporal data by how low-cost sensors characterise atmospheric pollutants 

if deployed in a high density.  

Of particular mention is the reproducibility and consistency between the two PM 

sensors (Alphasense OPC-N2) in quantifying PM species justifying the 

functionality and feasibility of low-cost sensors for AQM in such environments. 

The gaseous species, reported indicative measurements highlighting the need 

for post-data correction based on regional values. Nonetheless, this study is the 

first of its kind using these types of sensors and have contributed to bridging the 

scientific knowledge deficit in using these types of sensors for AQM in Ghana and 

wider SSA.  

In this research, the results from the pilot study at Cape Coast and Accra (study 

areas) in Ghana have shown that these sensors are capable of providing baseline 

data to influence decisions by quantifying and establishing sources of 

atmospheric pollutants. For example, location-specific air pollution mitigation 

strategies and actionable regulatory measures. Firstly, observational levels of the 

monitored species (PM in this case) have been presented and the measurements 

compared to established WHO requirements as well as studies reporting PM 

levels from this types of environments (e.g. HEI, 2019; Dionisio et al., 2010).  

5.2 Deployment of low-cost sensors for AQ studies 

Currently, the challenge remains on the exact protocols to follow regarding how 

end-users can deploy low-cost sensors to obtain baseline data (Williams et al., 

2013). The scenario is worse in developing countries including those 

encountered in wider SSA. This in part is due to the limited number of studies 

emanating from the region on the use of low-cost sensors. Site selection and 

installation (e.g. at what height and type of urban setting) of low-cost sensors to 

provide baseline data is still a challenge.  

Another key consideration is limited knowledge on the number of sensors to 

deploy to obtain representative data in a specific urban setting. To the best of our 

knowledge, this PhD research has provided the needed fundamental protocols 

(site selection, sensor installation, data acquisition, management and analysis) 
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to adopt in the use of these types of sensors in these environments (Chapter 3, 

Sections 3.2 and 3.3).  

At Cape Coast (pilot study area), the selected sensors were co-deployed 

approximately 10 cm apart and 4 m (above the ground adjacent in traffic 

dominated setting coupled with varying background activities. The two nodes 

were co-deployed about 10 cm apart in the same environment to investigate the 

feasibility of AS510 nodes for high-density deployment taking into account data 

reproducibility and precision. The ~4 m height was selected to avoid public 

vandalism though breathing zone is about 1.5 m. The protocols experimented for 

this study is adopted from the EU directive (2008/50/EC) (Chapter 3, Section 

3.2). 

No regulatory air quality monitoring exists in Cape Coast as at the time of this 

study. The area is representative of other emerging urban environments in wider 

SSA because no regulatory monitoring is established in the area coupled with 

varying and complex emission sources (refer to Chapter 3). The main goal was 

to test the appropriateness of these sensors for obtaining reliable ground based-

data for quantifying key air quality species and suitability of the high-resolution 

data for emission source apportionment studies.  

Though the selected sensors were used to monitor PM, CO, NO, NO2, CO2 and 

O3, this study focused on PM but highlighted the need for skills and calibration 

requirement to obtain a representative data for the gaseous species. This is in 

agreement with current evidence on the suitability of current state of low-cost 

sensors for AQM in developing countries (see Kumar et al., 2015; Castel et al., 

2017; Snyder et al., 2013) though studies are required to establish this.  

The findings on quantification and source identification of PM as documented 

have shown that indeed, these types of sensors can be used for traffic-related 

monitoring, for example, NO, NO2, CO, CO2 and O3 (though not included), fine 

particles (in this case PM1 and PM2.5) as well as coarse particles (PM10) and able 

to function in a highly polluted environment such as Cape Coast and Accra typical 

of wider emerging urban settings and megacities respectively in SSA. Secondly, 

the reproducibility of the selected sensors was determined to provide evidence 
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on establishing a high-density network to provide high spatiotemporal data for 

understanding urban air quality. This information is paramount to developing 

location-specific mitigation measures and routine AQM for tracking of such 

interventions. Studies have reported on spatial variation in air pollution at about 

1-10 km (e.g. Lefler et al., 2019) but the associated cost with conventional 

monitoring and logistical requirements make the use of conventional monitoring 

challenging thereby limiting distribution for these types of work, for example, a 

single unit is about $250, 000 aside operational and maintenance cost whereas 

a single unit of the low-cost sensor is about $100 (Rai et al., 2017).  

The approach documented in this research with low-cost sensors presents a 

unique opportunity for addressing AQM data gaps in SSA by employing relatively 

cheaper methodologies (refer to Table 2-2 in chapter 2 on characteristics).  

5.3 Sensor intercomparison 

Hourly averaged PM (PM10, PM2.5 and PM1) data from the selected two nodes 

during the deployment at Cape Coast (i.e. UCC site) showed that the reported 

data from the nodes are highly reproducible as the signal acquisition of the two 

nodes is similar (Figure 4-2: a, b and c) with corresponding Pearson’s correlation 

analysis (R) of 0.97, 0.97 and 0.98 for PM1, PM2.5 and PM10, respectively (Figure 

4-22: a, b and c). The first 3 weeks of deployment have not been included in this 

analysis as issues with data telemetry led to limited data for the study. Several 

studies have reported on the precision between the same low-cost sensors from 

a specific manufacturer and different manufacturers (see for example Rai et al., 

2017) as well as low-cost sensor and regulatory/ reference-grade monitors (see 

for example Malings et al., 2019; Baron and Saffell, 2017; Mead et al., 2013) 

using regression models. In this PhD research, such an approach was developed 

and experimented using Pearson’s correlation analysis as reported above. These 

types of approaches are relevant for establishing the precision between 

similar/different low-cost sensors and reference-grade monitoring equipment for 

high-density deployment. In the case of Ghana as documented here, the 

approach was used to provide evidence on the reproducibility of the selected 

sensors.  
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Further to the above, the mean PM values of the two nodes are significantly 

different. Comparing the mean values of each of the PM categories from the two 

devices and the corresponding t-values it can be seen that this statistical 

difference (see Table 4-1) reduces for PM categories in the order of PM1, PM2.5 

and PM10. Additionally, since PM10 values > PM2.5 values > PM1 values as 

demonstrated in the statistical difference between the PM species indicates that 

low-cost PM sensors are suitable for coarse particle monitoring in these types of 

environments as compared to fine particles but further studies are required to 

support this preliminary claim. This finding, however, is in agreement with 

previous reports using these types of sensors, for example, Castell et al., 2017. 

Studies on the use of low-cost sensors for AQM seek to know whether low-cost 

sensors have passed “fitness for purpose” stage to support air pollution 

applications (e.g. routine air quality monitoring, emission source monitoring and 

tracking air pollution). For example, Malings et al., (2019); Baron and Saffell, 

(2017) and Mead et al., (2013) have reported on data quality and specific 

calibration mechanisms (e.g. use of regression models) that can be employed to 

improve data quality. As shown in Table 2-3 of this research, apart from 

Alphasense OPC-N2 (used in this study), Dylos models 1100 Pro and 1700 and 

Sharp DN7C3CA006, the effects of temperature and relative humidity have a 

significant effect on the performance of low-cost PM sensors. This echoes similar 

reports from for example Hagler et al., (2018); Zikova et al., (2017a), (2017b) and 

Jayaratne et al., (2018). The preliminary findings presented in this research 

however have shown that the effects of these environmental variables are 

insignificant specifically for the Alphasense OPC-N2. This is in agreement with 

similar findings in advanced countries on the use of Alphasense OPC-N2 (see 

Rai et al., 2017). Additionally, the temperature and relative humidity 

measurements reported from the selected sensors are in agreement with 

average readings from the locations (study areas). 

The evidence documented in this study demonstrating the suitability of low-cost 

PM sensors for obtaining location-specific reliable data for AQM has shown that 

these types of sensors are useful for bridging the air quality data gap in SSA.  
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The challenge, however, remains partly on limited technical know-how, funding 

and little information on the usability, visualization, analysis and interpretation of 

low-cost sensor data. To some degree, the use of the current state of low-cost 

sensors to support local policies based on the reported data is limited. This piece 

of work contributes greatly to bridge these scientific knowledge gaps making the 

approaches documented in this research vital information for future air quality 

research using low-cost sensors.  

In light of this, the application of a widely accepted open-source tool, “openair” 

package for air pollution data analysis was experimented using the high-

resolution data acquired from the selected low-cost sensors. This study has 

shown that if appropriate data mining tools are developed, for example, a toolbox 

for trend analysis, source identification and daily averages, low-cost sensor data 

can provide a reliable source of information on local air quality. These are based 

on understanding daily levels of atmospheric levels, trends, emission source 

feature extraction and comparison of air quality levels within varying urban 

settings.  

The data mining tools developed for these types of analysis were based on the 

packages in the “openair” manual and are reproducible provided an appropriate 

data is acquired from low-cost sensors. The challenges encountered in 

performing these visualization and analysis are tied to the changing format of 

data reported from the same manufacturer of the selected sensors used in this 

research for example date and time formats and header files which consistently 

influenced and delayed the development and application data mining tools.  

Low-cost data is presented in many formats and most difficult for end-users to 

understand, visualize or analyse. In some cases (as experienced in this 

research), these challenges were experienced though the selected sensors were 

from the same manufacturer. Data storage, gaps in reporting (due to low-latency 

per the manufacturer's feedback) and access (solely internet-based) have been 

a challenge nevertheless this research has proven that the application of reliable 

open-source data analysis protocols can be employed to understand air quality 

in environments with limited monitoring approaches using reported data low-cost 
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sensors. The tools used from the “openair” package has been documented and 

interpretation provided. 

5.4 Wider comparisons (PM) 

These findings are in agreement with the assertion that current OPCs require 

optimisation (e.g. application of machine learning/ post data correction with 

sophisticated mathematical models) for measuring fine particles since they 

measure particles lager than 0.3 µm. Also, the statistical difference between the 

two nodes from the same manufacturer with p-value <0.05 echoed the challenges 

on the use of low-cost sensors, for example, depending on inbuilt correction 

algorithms which is mainly influenced by time and resources invested by the 

manufacturer (Baron and Saffell, 2017). 

PM10 concentrations peak at 500 µg/m3. This is in agreement with levels recorded 

in other polluted environments (Wang et al., 2015) and SSA (Brauer et al., 2012; 

HEI, 2019). Though these pilot findings are in agreement with levels of PM 

pollution recorded in such environments specifically Ghana, limited studies are 

using these types of low-cost sensors for comparison and justification. Studies 

with emerging low-cost sensors have shown that low-cost sensor technologies 

suffer environmental artifacts namely relative humidity and temperature thereby 

affecting the measured data and do not agree well with measurements from 

instruments using different measurement technologies/ principles (Watson et al., 

1998; Wilson et al., 2002; Chow et al., 2008). For example, Zheng et al., (2018) 

found that low-cost PM2.5 sensor Plantower model PMS3003 corresponds very 

well with a scattered light spectrometer (r of 0.8) versus low correlation with a 

beta attenuation monitoring (r of 0.5). These findings, however, provide a 

benchmark for future studies with these types of low-cost sensors especially in 

developing data correction/ validation and calibration procedures for the use of 

low-cost sensors for AQ monitoring in Ghana and similar environments. 

Additionally, the reported data plotted in this calendar format (Figure 4-3) 

demonstrate the potentials LCS offer in reporting high-resolution routine and site-

specific data suitable for tracking air pollution regulations. Comparisons can be 

drawn using data from these types of sensors if the reported data is improved/ 
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validated. Rai et al., 2017 has reported that LCS does offer the opportunity to 

increase a community’s awareness of air pollution and help track exposure to 

human health as well as support emergency responses. The capability of LCS to 

obtain routine site-specific data which can be quantified with data mining 

approaches as demonstrated in this calendar plot is useful for air pollution control 

specifically in environments with limited knowledge on air pollution and its 

adverse health impacts such as Ghana and wider SSA. 

Here, the approach was experimented by comparing the reported data to current 

WHO AQ guideline values of 25 and 50 µg/m³ for PM2.5 and PM10 respectively for 

September 2018. These thresholds were exceeded. Even though the reported 

data from the AS510 nodes used in this study is not validated with data from site-

specific reference equipment, the PM levels reported are in agreement with levels 

expected and recorded previously in SSA (Amegah, 2018; Bauer et al., 2018; 

HEI, 2019) and have shown that high-temporal data from low-cost PM sensors 

are suitable for tracking air quality guidelines and inform decisions. Further to 

this, this type of analysis is currently unachievable with the GhEPA monitoring 

regime as only 24-hour averaged data can be collected roughly 5 times a month. 

Low-cost sensors have changed the paradigm of air quality monitoring in the past 

decade. They present a revolutionary advancement to increase spatial air quality 

monitoring in urban settings (Morawska et al., 2018) due to the handy 

characteristics and minimal infrastructural requirements of low-cost sensors. In 

the light of this, most governments, research institutions, civil societies have 

developed an interest in the utility of low-cost sensors to increase the temporal 

and spatial resolution of air quality monitoring (Morawska et al., 2018). 

Most of the studies using low-cost sensors report varying degrees of success 

coupled with a focus on recommendations for studies. Until now, no specific 

procedures have been developed on the use of low-cost sensors for 

observational air quality monitoring specifically in developing countries. These 

countries are experiencing poor air quality and lack monitoring capabilities and 

limited evidence on the functionality of low-cost sensors in these environments. 

For example, White et al., (2012) and Snyder et al., (2013) reported on the use 
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of low-cost sensors by the US EPA in the USA. In Europe, Borrego et al., (2015) 

recommended regulating the use of low-cost sensors and to include in the 

European Air Quality Directive. The US and Europe have provided grants for 

projects focused on the performance evaluation of low-cost sensors (see for 

example CITI-SENSE, 2016; USEPA, 2016). This research presents a case on 

the use of the current state of low-cost sensors for understanding urban air quality 

specifically in these types of environments. 

Here, the study focused on the performance of the selected low-cost sensors and 

how they can function in SSA using varying urban settings in Ghana as examples. 

On the performance of the selected sensors under varying urban settings in 

Ghana, it has been shown that these types of sensors can obtain appropriate 

data to understand trend levels, daily air quality levels and offer a reliable data 

for air quality studies and complement regulatory monitors. This is important for 

understanding the behaviour of air quality species and the opportunities these 

sensors offer in undertaking these studies.  

Diurnal patterns of PM (as the focused species in this study) were defined. The 

levels of PM per this study are consistent with reported PM levels in these types 

of environments emphasising the capability of these types of sensors for 

supplementing AQM in these environments. At each location (Cape Coast and 

Accra), the feasibility of these sensors to obtain observational data in 

understanding air quality levels with varying background activities were explored.  

As expected, high levels of PM were observed especially in poor socio-economic 

settings considering land use and unpaved roads. For example, the current HEI 

report (HEI, 2019) have shown that poorer about 92% of the world’s population 

lives in areas experiencing poor air quality specifically those from poorer socio-

economic settings. Comparing the reported data from Accra (an affluent setting) 

to Cape Coast (an emerging and poor socioeconomic setting), air quality levels 

were poor at Cape Coast. These findings have demonstrated the capability of 

low-cost sensors built on proven atmospheric approaches for these types of 

monitoring. 
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5.5 PM trends 

Trends of PM species showed peak levels in the mornings which are attributable 

to typical sources such as unpaved roads (resuspended dust), road-side food 

vendors (biomass and hydrocarbon combustion), taxi ranks (tailpipe) and roads 

used by heavy trucks and commercial vehicles (Figure 4-4). Urbanisation coupled 

with increasing motorization is indeed a major source of air pollution in SSA 

(Petkova et al., (2013) Schwela, 2012a; Amegah and Agyei-Mensah, 2016). A 

drop in PM level was observed on Friday which is attributable to reduced human 

activities and peaks again on Sundays (Figure 4-4) due to increased 

anthropogenic activities. Though this is not documented, Ghanaians are 

identified as highly religious people hence the high specks of PM levels on 

Sundays is attributable to motorization for religious activities specifically church 

activities. This does require further studies as meteorological parameters are 

influential in atmospheric emissions. These findings are unachievable with 

conventional and sparsely distributed AQ monitoring stations (e.g. in Ghana, data 

is averaged 24 hr and collected every 6 days). Also, understanding the complexity 

of emission sources in urban areas requires monitoring at fine scales (Jerrett et 

al., 2005; Karner et al., 2010; Eeftens et al., 2012) and ability to potentially 

establish a dense network without huge infrastructure. Low-cost sensors offer 

these opportunities and can be used in resource-constrained settings (Snyder et 

al., 2013, Mead et al., 2013, Castell et al., 2017). 

In Accra, peak values of PM1 were observed on Monday which then drastically 

reduced to a concentration below 50 µg/m3 (Figure 4-6). This preliminary finding 

could be linked to emissions from background activities such as garbage burning, 

vehicular emissions or linked to the functionality of the deployed device. In a study 

to understand the patterns of air pollution in the neighbourhoods of Accra, it was 

observed that poorer households are highly exposed to air pollution. This in part 

is due to the use of biomass and/ or solid fuel as a source of energy for heating 

and cooking (Dionisio et al., 2010). 

Apart from Monday and Friday, PM1 concentrations remain relatively high at 

Cape Coast (Figure 4-6), a relatively poor socio-economic setting is potentially 
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linked to this assertion; energy source (use of biomass and/ or solid fuel as a 

source of energy for heating and cooking) as compared to Accra. Though higher 

PM level is expected because of the nature of the deployment site; near the 

Dansoman Highway and a residential area and mini refuse damp (e.g. garbage 

is sometimes burnt during cleaning activities including car tyres), further research 

is required to provide a better understanding of this finding since the peak occurs 

on a single day (Monday).  Monday morning peaks (rush hour) were not observed 

at Cape Coast as compared to Accra, the concentrations remained moderately 

higher for the rest of the period except for Friday. 

Further to this, the co-location of the low-cost sensor used with the GhEPA 

regulatory grade equipment in this study was aimed at determining the precision 

of the OPC-N2 for PM monitoring. However, due to lack of statistically sufficient 

data from the regulatory equipment (~5 data points in a month as compared to 

60 s data routinely) made this comparison unattainable. Additionally, low power 

latency resulting in data gaps from the low-cost sensor does not support this 

comparison as there have been variations in monthly data. Specifically, the data 

from the low-cost and regulatory data vary in terms of months (i.e. variability in 

monthly data from the low-cost sensor and the regulatory equipment). The results 

as presented here on the PM species however is representative of PM pollution 

in these types of environments but long-term monitoring and application of 

reference-grade monitors with similar temporal approaches are required for 

determining the precision of the low-cost sensors.  

5.6 Applicability of high-resolution data from low-cost sensors 

for emission source identification  

To establish the applicability of the high-resolution data for emission source 

identification, windRose command in the R environment was used to generate 

wind variation during the period of deployment. Reported data from Node 5 (as 

an exemplar) with meteorological data following protocols defined in section 3.2 

was used to show the frequency of wind contribution in percentage (represented 

as counts) by wind direction. Intervals of 10% were used to establish wind 

conditions and highlight the sources of atmospheric emissions reported in section 
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4.3 and 4.5. This is shown in Figure 5-1. This, therefore, shows that NNE winds 

are the main source of atmospheric emissions at Cape Coast (the study area). 

These were shown in the polar plots where the polarPlot command pointed to 

local sources as shown in the Figures 4-7a, 4-9a and 4-11a used to identify the 

sources of monitored species based on the high-resolution data from the low-cost 

devices (Figures 4-5; 4-7a; 4-9a; and 4-11a) for this period. The trend between 

PM1 and PM10 suggests that an important source of particulate matter is located 

towards the NNE. This source is either biased towards lighter particles or that 

larger particles are removed before arriving at the monitoring site. The data also 

potentially points towards a more local source of lighter particulates nearer to the 

monitoring site which has an important role in composition at lower wind speeds. 

Under still conditions, it seems there is no significant local source. Overall PM 

levels were relatively high (20 µg/m3 for PM1, 35 µg/m3 for PM2.5 and 220 µg/m3 

for PM10 as compared to the recommended 25 µg/m3 and 50 µg/m3 limits of the 

WHO for PM2.5 and PM10 respectively). Locally PM1 and PM2.5 concentrations 

were high while high PM10 concentrations were experienced at higher wind 

speed. 
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Figure 5-1: windRose of meteorological data at UCC during the period of 

deployment 

 

These results reflect that both nodes were installed (at the UCC site) a few meters 

away from the main road and in a traffic dominated area. The region to the NNE 

is a mostly unpaved flat area close to the Gulf of Guinea. The nature of the 

deployment site (unpaved roads with associated resuspended wind-blown dust) 

coupled with the topography of the area (a relatively flat field) would be expected 

to have contributed to higher PM10 levels with increased wind speed. Especially 

considering that the area to the NNE is dominated by unpaved road, wind-blown 

dust and sea salt from the nearby coast. As it has been shown that coarse PM 

dispersion is linked to higher wind speed (Carslaw and Ropkins, 2012) we would 

expect a reduction in the PM10 signal at lower wind speeds (2-5 ms-1) and higher 

levels were observed at higher wind speed (6-8 ms-1).  

At low wind speed (i.e. ≤ 2 ms-1), elevated levels of PM were observed, implying 

that local sources contributed most heavily to PM concentrations (Figures 4-5; 4-

7 a, b; 4-9 a, b; 4-11 a and b). For PM1 and PM2.5 higher concentrations were 

experienced at westerly and northwesterly winds whereas the lowest 

concentrations were experienced at northeasterly winds (Figure 4-5). For PM10, 

higher concentrations were observed at northerly and northeasterly winds (Figure 

4-5). Using the cluster analysis to extract source feature, cluster 4 (associated 

with northerly winds with speeds from 4-7 ms-1 in Figures 4-7b; 4-9b and 4-11b) 

contributed to PM levels as high as 11 µg/m3 for PM1; 24 µg/m3 for PM2.5 and 125 

µg/m3 for PM10.  

The analysis has shown that higher wind speeds (7-8 ms-1) from the north 

contributed to the elevated PM. Regardless of the wind speed, PM1 is highest 

when winds are from the NNW direction (Figure 4-7a). For PM2.5, higher levels 

were experienced at low wind speeds and also from NNW (Figure 4-9a). 

However, in the case of PM10, is highest with both low wind speed from the north 

(associated with cluster 1; Figure 4-11a) and high wind speed from the northeast 

(associated with cluster 4) (Figure 4-11a). This indicates a likely source to NNW 
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for finer particles but more distant sources of coarse particles to NNE. An 

examination of the background environment has shown that this type of result is 

expected as N is mainly an unpaved flat land (lorry/ taxi park) adjacent the main 

road which is usually dusty though paved; E is the main road which is often used 

by taxis, commercial vehicles and heavy-duty cars (diesel engines); NE is the 

mini-market with roadside food vendors including cooking; S is mainly office 

complexes with the coast about 3 km away; W is the main road but mostly 

unpaved about 100 m away from the deployment and NW is similar to NE except 

for high levels of wind-blown dust from the unpaved road. To demonstrate this, a 

time-domain analysis was carried out using the clusters identified. The 

categorical bar chart obtained with this analysis (Figures 4-8; 4-10 and 4-12) has 

shown that the peaks of PM are associated with cluster 4 (Figures 4-7b; 4-9b and 

4-11b). At relatively higher wind speed (4-8 ms-1 associated with cluster 4), the 

effects of meteorology on atmospheric pollution changes are reduced (Carslaw 

and Beevers, 2013) which accounted for the agreement in the sources of PM as 

linked to the temporal variation plot. It is also important to note that this cluster 

analysis consistently grouped pollution levels from potentially the same source/ 

wind direction which was not shown in the bivariate polar plots. The downward 

trend is shown in the PM species with high local levels (Figures 4-5; 4-7a, b; 4-

9a, b; 4-11a and b) and the contribution of the clusters from NNE winds as shown 

in the temporal variation plots (Figures 4-8; 4-10 and 4-12) is basically because 

they are influenced by road traffic emissions as previous studies have reported 

similar scenarios (e.g. Kim et al., 2014). 

In this study, this k – means cluster analysis is used to explore the effects of wind 

components on the measured concentrations of PM at Cape Coast over time 

(Figures 4-7a; 4-9a and 4-11a). 

Further to this, cluster 4 associated with N winds dominated in contributing to PM 

concentration, the temporal variation plots for each of the species by the 

contribution of each of the clusters have shown that daily averages are influenced 

not only by cluster 4. Also, there are instances where non-dominating clusters 

contributed to higher PM levels. For example for PM1, from August 30th to October 
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1st, cluster 3 and 4 dominates with minor contributions from cluster 2 and the least 

being cluster 1 (Figure 4-8). This was observed on daily averages, though the 

temporal patterns have shown that cluster 3 contributed to levels beyond 20 

µg/m3. Additionally, there are instances where more than one cluster contributed 

to the levels recorded with some clusters mainly associated with low 

concentrations and the vice versa. For example from September 1st to September 

19th, all clusters contributed to PM1 levels but cluster 1 contributed to the lowest 

levels recorded on September 16th with a daily average of a little below 5 µgm-3 

(Figure 4-8). Cluster 3 though not dominant, contributed to higher daily average 

(i.e. beyond 20 µg/m3) followed by cluster 4 which dominates with daily averages 

of a little below 15 µg/m3. A similar trend was observed from October 2nd to 16th 

(Figure 4-8). 

Similar to the cluster contribution to PM1, daily averages of PM2.5 have shown that 

from August 30th to September 18th, all 4 clusters contributed to PM2.5 levels 

(Figure 4-10). Also, the lowest daily average contribution is associated with 

cluster 1 of concentrations below 10 µg/m3. The dominating cluster contributing 

to PM2.5 is 4 but with concentrations not more than 38 µg/m3 whereas cluster 3 

though not dominating, is associated with the highest daily average of 48 µg/m3 

(Figure 4-10). 

With PM10, though there are some areas of cluster 3 associated with higher 

levels, high daily averages are associated with cluster 4. These daily levels were 

as high as 200 µg/m3 (Figure 4-12). The least contributing cluster to daily levels 

is cluster 1 with concentrations 10 µg/m3. Associating the clusters with the 

specific wind components have shown that concentrations of PM within urban 

areas are influenced by outstanding environmental and meteorological conditions 

tied to anthropogenic activities. These findings are in agreement with similar 

findings by Zikova et al., (2017) using these types of sensors for PM estimation 

across urban centres. Past studies on PM pollution in urban settings in SSA have 

pointed out that biomass burning, traffic, industry/ energy and Saharan dust 

contribute to elevated PM levels (see for example Aboh et al., 2009; Ahiamadjie, 

2017; Naidja et al., 2018; Ofosu et al., 2012; WHO, 2006). The findings presented 
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in this research using the reported data from low-cost sensors tied to background 

activities are in agreement with this evidence. Anthropogenic activities and wind-

blown dust from the surrounding environment as established in section 3.3 have 

buttressed this observation.   

These findings do not only reflect possible multiple sources of PM with some 

specks attributed to higher wind speed specifically for PM10 but contributed to 

established evidence on the operation of low-cost sensors within established 

atmospheric sensing standards to obtain appropriate data for source 

identification (e.g. Mead et al., 2013; Zikova et al., 2017). From the viewpoint of 

established atmospheric chemistry, winds are responsible for the transportation 

and mixing of chemical constituents which has been reechoed in this study with 

the utility of low-cost high-resolution sensors for source apportionment studies 

using Ghana as an exemplar for wider SSA. 

In addition to the above on PM sources, clear patterns have been observed in 

the variation of PM species. Outstanding meteorological conditions play a major 

role in the behaviour of PM species (Pu et al., 2011; Gu et al., 2015) as observed 

at Cape Coast. PM distribution is therefore influenced by the two main seasons 

in Ghana and depending on the region. The major wet season ranges between 

April to July, followed by lean wet from August to October/ November and a dry 

season from December to March (personal communication, GhEPA, 2019). The 

relatively stable pollution source (i.e. NNE winds) at Cape Coast indicated the 

leading role of meteorological conditions on PM pollution. As observed in Figure 

4-7a, PM1 is local at low wind speeds at the western sector of the polar plot. A 

similar observation is reported for PM2.5 except that this was at the eastern sector 

of the polar plot in Figure 4-9a. For PM10 (Figure 4-11a), this observation spanned 

from the eastern sector to the NNE of the polar plot. This has shown the variability 

of PM species in urban settings and the need for these types of low-cost 

monitoring approaches to understanding PM pollution. The wind removal 

capability which is mainly influenced by climatic conditions, topography and 

geographical location (Pu et al., 2011; Gu et al., 2015) was observed for PM 

species considering the levels of PM1 and PM2.5 (higher levels at lower wind 
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speeds only) and PM10 (higher levels at both low and relatively higher wind 

speeds). This also indicates the contribution of traffic to fine particle pollution at 

The air pollution scenario represented in this study at Cape Coast as highlighted 

the findings of a similar study using these types of sensors in a similar setting in 

Eastern Africa by Pope et al., 2018. Also, ground-level PM2.5 pollution is 

influenced by vertical wind shear as observed by Wang et al., 2020. The high 

levels of PM2.5 (and potentially PM1) are attributable to this vertical wind shear 

phenomenon though further studies are required to confirm these preliminary 

findings. The observations as reported in this piece of work on PM pollution at 

Cape Coast however have shown the robustness of the OPC-N2 low-cost sensor 

in obtaining the needed data for these types of analysis.    

 This study provided explicit documentation on the application of high-resolution 

data reported from the selected low-cost sensors to understand emission sources 

using PM as an exemplar species (Chapter 4, Sections 4.3 and 4.5). On source 

identification, this research has shown that low-cost sensors can be used to 

obtain appropriate data useful for emission source apportionment studies.  

Based on proven and widely accepted standards, the bivariate polar and cluster 

analysis were used to identify sources of PM. The results presented have shown 

that low-cost sensors are capable of providing the needed data on key 

atmospheric species that can be used to identify sources of emissions. These 

sensors are useful for air quality applications such as emission source monitoring 

and provide in these types of environments. The utility of low-cost sensors will 

provide vital information for developing, implementing, and tracking air pollution 

mitigation approaches.  

5.7 Indicative measurement of gaseous species 

This research has re-echoed findings early researches on the utility of low-cost 

sensors specifically gas-phase low-cost monitors (i.e. electrochemical sensors 

for CO, NO2 and O3 and non-dispersive infrared detector sensors for CO2) have 

documented in advanced countries. As shown in for example Barron and Saffell 

(2017), Malings et al., (2019), Hagler et al., 2018 and Mead et al., 2013, the need 

for post-data correction mechanisms is highly recommended. The results, 
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however, presented a first-hand knowledge on the presence of health-damaging 

atmospheric pollutants specifically CO, NO2 and O3. The CO2, a key component 

of climate change has also been documented. By observing the trend analysis of 

the CO2 for example, a major contributory factor is anthropogenic activities tied 

to the background activities. The trends have pointed to vehicular emissions and 

use of solid fuels; a widely established source of atmospheric emission in major 

parts of Africa as reported in current trends (for example Bauer et al., 2019; HEI, 

2019; Amegah and Agyei-Mensah, 2016; Schwela, 2012a). Additionally, the 

varying shaded area of the CO2 trend analysis in sub-section iii of section 4.6 has 

shown the variability of the data over the course of the deployment. Though this 

variability is observed, it has also pointed out the robustness of low-cost sensors 

to measure atmospheric emissions at varying degrees and or levels. This is 

however not to indicate that low-cost sensor data is not without issues and 

therefore must be corrected against regulatory/ reference grade monitors. This 

type of studies have been carried out in advance countries, for example, Barron 

and Saffell (2017), Malings et al., (2019), Hagler et al., 2018 and Mead et al., 

(2013). However, in environments such as Ghana and wider parts of Africa with 

limited logistics for undertaking these types of studies, the current generation of 

low-cost sensors do offer basic information on air quality monitoring. This piece 

of work therefore has provided benchmark data for future works. 

5.8 Summary 

The reported data for the PM species is in agreement with the levels reported in 

such environments highlighting the usefulness of low-cost sensors for 

establishing ground-based AQM stations to obtain reliable data that will spur 

regulatory actions. Additionally, Castell et al., (2017) reported that low-cost 

sensors are suitable for PM monitoring and feasible for air pollution studies in 

developing countries. Analysis of the acquired data has shown that indeed low-

cost sensors can be deployed in environments with no regulatory/ reference-

grade monitors to understand air quality levels and sources of atmospheric 

emission. This proof of concept study in Ghana presented here has reaffirmed 

this conception and contribute significantly to the scientific knowledge base on 
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the use of low-cost sensors for air quality monitoring to obtain reliable data for air 

pollution control strategies. 

In summary, this study has shown how low-cost sensors can be deployed to 

initially obtain observational air quality data in environments with non-existent or 

limited air quality monitors as well as obtaining the required data to track sources 

of atmospheric emissions. The study has demonstrated to what degree low-cost 

sensors can be deployed for understanding urban air quality and provides the 

basis for future works using these types of sensors. These types of approaches 

are suitable for developing cost-effective location-specific air pollution mitigation 

measures. 
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6 CONCLUSIONS AND FUTURE WORK 

6.1 Introduction 

This research identified the potentials low-cost sensors offer in providing reliable 

ground-based AQ data in environments with limited/ no regulatory AQ monitoring 

stations; specifically, in LMICs using urban environments of Ghana typical of 

wider SSA as an exemplar. Its aim centred on investigating the applicability and 

feasibility of low-cost sensors to understand the extent to which these devices 

can be used to obtain meaningful AQ data to support applications such as: 

i. emission source monitoring  

ii. source identification with high-resolution data reported from these 

types of devices 

iii. tracking and evaluation of air pollution mitigation policies 

iv. increasing the community’s awareness on air pollution and its health 

effects in these types of environments with limited public knowledge on 

the subject  

v. supplement conventional monitoring approaches, and  

vi. establishing a dense network to obtain high-spatiotemporal data at fine 

scales for emission source identification in urban areas in these types 

of environments  

To achieve these aims:  

(i) studies were carried out to understand the state of AQ monitoring in low- and 

middle-income countries with a focus on Ghana as an exemplar for wider SSA 

and the possibilities low-cost sensors offer to bridge the identified data gaps – 

Objective 1;  

(ii) a pilot study was undertaken in Ghana with two selected low-cost multi-sensor 

nodes manufactured by Atmospheric Sensors UK Ltd at Cape Coast and Accra 

to determine the functionality of the devices in such environments with high levels 

of atmospheric emissions and whether the acquired data could be useful for AQ 

studies – Objective 2 and  
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(iii) an experimental approach to defining emission sources with the high-

resolution data obtained with the selected low-cost sensors to determine whether 

such sensors could be deployed in a high-density for source apportionment 

studies in urban areas of Ghana and wider SSA – Objective 3.  

This chapter provides a résumé of the key findings; an overview of how each of 

the objectives contributed to achieving the aims of this PhD research.  

Overall, this research provided a valuable knowledge regarding critical insights 

on conventional versus low-cost monitoring approaches and how the latter could 

be used to bridge AQ data gaps in environments with limited/ no regulatory AQ 

monitoring stations specifically Ghana as an exemplar for wider parts of SSA 

(Chapter 2).  

Following on Chapter 2, a proof of concept study was undertaken in Ghana under 

varying urban settings. The selected nodes have shown that  

(i) current OPCs (Alphasense OPC-N2) are suitable for monitoring 

particulates (PM10, PM2.5 including PM1 as an air quality priority) 

and  

(ii) (ii) EC cells are suitable for providing indicative data on gas-phase 

species (CO, NO, NO2 and O3) but  

(iii) (iii) further study is required to develop data validation and 

calibration methodologies for the use of these types of sensors if 

they are to complement regulatory monitoring in these types of 

environments.  

A collocation study with regulatory grade equipment was undertaken at 

Dansoman, Accra site run by the Ghana Environmental Protection Agency 

(GhEPA) with an initial plan of developing calibration and data validation 

procedures for the use of the OPCs for PM monitoring. This collocation was tied 

to obtaining statistically sufficient data for developing calibration and validation 

procedures. 
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Figure 6-1: Schematic overview of the relationship between the specific objectives 

of this PhD research showing the novel contribution of this research to current 

scientific knowledge on the utility of low-cost sensors to bridge air quality data 

gaps in these environments. AQM (air quality monitoring), LCS (low-cost sensor) 

and SSA (Sub-Saharan Africa). 

6.2 Key findings, implications and contribution to knowledge  

The World Health Organization (WHO) has developed and implemented AQ 

guidelines to protect human health globally. In many of the jurisdictions globally, 

country-specific AQ management systems have been developed. The European 

Union, for example, has set measures to curb air pollution (EU AQ Directive 

2008/50/EC, Rai et al., 2017).  

In Ghana, specifically many parts of SSA, country-specific standards are limited/ 

non-existent though most of these countries aspire to adhere to the WHO AQ 

guidelines. This is challenging due to lack of monitoring capabilities specifically 

concerning the cost and human skill requirement associated with employing 

State of AQM in 
SSA: Ghanaian 

Perspective 

•Use of conventional monitoring approaches coupled with poor resolution data.

•Limited due to associated cost of using conventional monitoring approaches.

•Rudimentary due to limited skilled human capital.

Emergence and 
use of LCS for 

AQM

•Limited information on use in Ghana and wider SSA.

•Proof of concept study to understand functionality, performance and suitability of LCS for 
AQM in Ghana and wider SSA.

•Proof of concept study to understand the applicability of LCS data for emission source 
identification.

Guidance on use 
of LCS for AQM

•LCS deployment protocols.

•LCS data management including visualization, analysis and interpretation framework.

•Utility of current state LCS for AQM and applications for air pollution control. 

•Further studies on calibration and data validation mechanisms for LCS data improvement.
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current conventional AQ monitoring approaches (Schwela, 2012a; Petkova et al., 

2013; Bauer et al., 2019).  

Overall, Chapter 1 is presented as a contextual framework of this research 

emphasising on the rationale and general background of the study. It provided a 

critical understanding and perspective of the study where aims and specific 

objectives were unequivocally stated. It served as a road map for the subsequent 

chapters of this research.  

Based on the critical review, Chapter 2 showed that low-cost sensing 

technologies offer a unique way of extending the existing conventional monitoring 

approaches and can provide high density and coverage of empirical 

measurements to improve our understanding of exposure science and control. 

This chapter showed how low-cost sensors are useful for providing reliable 

ground-based AQ data in LMICs specifically Ghana and wider SSA. It compares 

the critical issues related to the use of conventional versus low-cost monitoring 

approaches, limitations and opportunities.  

On the utility of low-cost sensors for bridging AQ data gaps, this chapter 

highlighted approaches to adopt to improve data quality specifically for the use of 

OPCs in monitoring particulate matter (e.g. DEFRA, 2017; Liu et al., 2017; 

Malings et al., 2019). Most importantly, Chapter 2 provided critical insights into 

the utility of low-cost sensors for real-time AQ monitoring, acquisition of high 

spatiotemporal resolution data for emission source identification, emergency and 

hazardous leak monitoring, emission source monitoring, increasing community’s 

awareness on AQ and supplementing regulatory AQ monitoring approaches 

(Mead et al., 2013; Kumar et al., 2015; Rai et al., 2017; Castell et al., 2017).  

In Chapter 3, the novel application of low-cost sensors under varying 

environmental settings in Ghana and the acquisition of observational air quality 

data adopted in this research to produce these benchmark findings have been 

documented. This chapter demonstrated that low-cost sensors are capable of 

providing reliable data though studies are required to understand the precision of 

low-cost sensors as against regulatory monitors. The preliminary deployment 

strategies presented in this chapter have shown that in the absence of regulatory 
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air quality monitors, low-cost sensors can be employed to provide firsthand 

knowledge on local air quality to inform decisions as well as complementing 

existing sparsely distributed air quality stations. 

In the pilot study, we employed Pearson’s correlation analysis to specifically 

explore the reproducibility in characterizing PM species. For the gaseous species 

(CO, NO, NO2, O3 and CO2) monitored, indicative measurements were 

determined with standardized scientific methods though not provided in the main 

thesis except for CO. To the best of our knowledge, this type of work is the first 

of its kind in Ghana and wider SSA though similar, a handful of these studies 

were undertaken in Eastern Africa.  

These types of approaches are benchmarks for future AQ studies with these 

types of sensors specific to these environments; in the case of the gaseous 

species, post data correction methodologies can be developed based on the 

availability of regional values.  

This work has provided the needed information required for studies using these 

sensors for example development of data validation and calibration 

methodologies as reported in similar works in advanced countries (see e.g. Mead 

et al., 2013; Popoola et al., 2016; Malings et al., 2019).  

Chapter 4 showed that these types of sensors are useful for acquiring high-

resolution data in these environments useful for understanding patterns and 

trends of air pollution.  

Trend analysis of the reported data has shown that poorer socio-economic 

settings (in this case Cape Coast, an emerging urban setting) are associated with 

higher levels of atmospheric pollution as compared to affluent settings (in this 

case Accra). Similar findings have been reported by Dionisio et al., (2010) 

associating poor AQ to poorer socio-economic settings. Studies are required to 

understand the precision of these sensors if they are to supplement conventional 

monitoring approaches currently used in these environments.  

The results with the approaches adopted using the selected LCS have been 

presented in two sections to the methodologies in chapter 3. The first part 
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presented is on the performance of the two selected identical sensors (addressed 

Objective 2). 

In this short-term study, analysis of the reported data has shown that indeed low-

cost sensors can provide the needed information on local air quality to understand 

exposure levels as compared to recommended thresholds. PM levels reported 

using these sensors are beyond the recommended World Health Organization 

guidelines similar to current findings in these types of environments using 

modelled data (e.g. Bauer et al., 2019; HEI, 2019). This information is lacking in 

many parts of SSA considering limited monitoring capabilities (e.g. Petkova et al., 

2013; Schwela, 2012a).  

The results have shown higher reproducibility in characterizing PM species. The 

findings suggest that the current generation of low-cost PM sensors (OPCs) are 

suitable for monitoring PM (e.g. Castell et al (2017) reported on the use of these 

types of sensors for AQ campaign in highly polluted environments specifically 

developing countries) but studies are required to confirm this. The approach used 

in this study nevertheless is novel and can be used in bridging AQ data gaps 

(Schwela, 2012a; Petkova et al., 2013; Bauer et al., 2019; HEI, 2019) 

encountered in these types of environments. 

The second part focused on the utility of the reported data from the selected low-

cost sensors (PM sensor Alphasense OPC-N2 in this case) to extract source 

features of the sampled species (PM10, PM2.5 including PM1 in this scenario) in 

low- and middle-income countries specifically Ghana as an exemplar for similar 

environments e.g. wider SSA (Objective 3).  

The results have shown that the reported data from these types of devices are 

suitable for source identification and if deployed an in high-density, will provide 

vivid information for source apportionment studies in these types of environments 

(see e.g. Mead et al., 2013). In our experiment, PM sources were defined using 

bivariate polar plots and cluster analysis integrated with trend analysis (see 

Carslaw, 2015).  
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The results have echoed similar findings in environments typical of the 

deployment site. High PM levels were associated with low wind speed 

demonstrating local sources mainly traffic and wind-blown dust. The study has 

shown that in environments typical of the deployment site, elevated PM sources 

are expected locally regardless of the influence of wind components. The findings 

are associated with the background environment indicating that these types of 

sensors are useful for firstly providing meaningful AQ data and secondly, high-

resolution data appropriate for source apportionment studies.  

The novelty of this study is that low-cost sensors can provide high-spatiotemporal 

data (if deployed in a high-density) at fine-scale to support source identification 

of monitored key pollutants (or any species of interest). In Ghana, for example, 

the current monitoring approach provides only ~5 data points per month coupled 

with sparsely distributed AQ monitoring stations limiting these types of analysis 

though sampled filters can be examined for chemical speciation. 

6.3 Limitations of this research 

• Limited high-resolution data and lack of resources to obtain a reference-

grade equipment limit our understanding of the performance of the 

selected low-cost devices considering precision and accuracy; 

 

• Poor resolution data characterized by the monitoring approaches in Ghana 

inhibits our ability to develop calibration and data validation methodologies 

for the use of selected low-cost devices; 

 

• The inability of the deployed sensors to rely on the secondary power 

source (e.g. solar energy) to operate resulted in data gaps for example 

during power fluctuations and a fire incident destroying one of the batteries 

(i.e. node 79 at Dansoma-Accra, reference site) hence relatively small data 

points were used throughout the study which may influence the models on 

source identification. 
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• Lack of in-country site-specific data on wind components may have 

influenced the results of the source apportionment studies since the 

experiment relied on modelled wind data from NOAA. 

6.4 Recommendations 

• This study demonstrate the need for research firstly on collocating 

reference-grade monitors with the deployed nodes considering a high 

resolution (e.g. minute/hourly resolution) to provide sufficient and 

appropriate data for validation and calibration. 

 

• We recommend studies to provide a convincing report on the use of 

these types of sensors to supplement and bridge AQ data gaps 

encountered in SSA. 
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