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ABSTRACT 

This work investigates the spatio-temporal patterns of EV and PV adoption, 

attending to the need of informing the management of the distribution network 

with spatially explicit estimations of the EV and PV adoption rates. The research 

assesses the strengths and weaknesses of current modelling approaches and 

finds three recurrent techniques: agent-based model (ABM), the spatial 

regression (SR) and the Poisson model. The research addresses the limitations 

of the current modelling approaches to characterise the different factors that drive 

the decision-making for the adoption of these technologies: spatial and temporal 

dependence and social dynamics. The framework addresses some of the 

limitations of ABMs that use a rule or equation-based decision-making, by 

adopting an aggregated agents’ definition and using artificial neural networks 

(ANN) as decision-making criteria. The integrated model provides a more realistic 

characterisation of the decision-making and its evolution over time, moreover, the 

results can inform network operators and policymakers explicitly about the 

location and pace of EV and PV adoption. 

The research develops a spatio-temporally explicit ABM that accounts for: (i) 

spatial and (ii) temporal dependence, (iii) peer-effect, (iv) spillover effect and (iv) 

preferences towards other technologies. The development of the model follows 

a sequential approach to managing the complexity of constructing this new 

approach. First, two autoregressive models are developed to analyse the 

adoption patterns of EV and PV patterns, using the postcode and monthly data 

resolution. The temporal validation uses the Mean Absolute Percentage Error to 

measure the model’s capability to replicate the time-series of the adoption rates. 

The spatial validation compares the actual and estimated spatial pattern of 

adoption by calculating the Moran’s I index. Besides, the results are 

benchmarked against the Bass model, a commonly used tool for this purpose by 

ABM experts. The results show that in most of the cases the ABM and ANN 

integrated models perform better than the Bass model especially for those 

months with high fluctuations in the adoption rates. These models can estimate 

upmost three months with an accuracy higher than 80%, however, the models 
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present a significant accumulation of errors that limits the results for a longer 

forecast. To reduce the error accumulation and produce a longer forecast, the 

autoregressive PV model is extended by including socioeconomic variables. The 

resulting model improves the performance by 5% by the incorporation of variables 

including income, electricity consumption and average household size. 

Lastly, the framework combines the EV and PV autoregressive models with a 

view to characterising the exchange of knowledge between EVs and PVs. This 

reflects the influences of owning one of those technologies on the preference for 

the second technology. The exchange of knowledge improves the performance 

of the model significantly with results above 80% of accuracy for eight months 

into the future. Given the high spatial resolution of the model, the results may help 

to design policies that recognise the socioeconomic differences within a 

geographical area. The research shows how the results can inform the 

management of the distribution network, by considering the worst-case scenario 

where the PV generation surplus is injected to the grid, and where the entire fleet 

of EVs are charged at home during the night. Also, the results of the hot spot 

analysis can inform the network operators about the emergence of clusters of 

EVs and PVs in the future. 

The research finds that a spatio-temporally explicit ABM can characterise the EV 

and PV adoption process at the aggregated level, which also accounts for social 

effects. Such a model can also integrate heterogeneity amongst the population, 

whilst being resilient to changes in the size of the study area. The research also 

produces data-driven insights into the spatio-temporal patterns of EV and PV 

adoption, and how the adaptive capabilities of the ANN address some of the 

limitations of the ruled-based ABM. Lastly, the research finds that knowledge 

exchange takes place between the EV and PV adoption process. These findings 

are relevant to other low carbon technologies and for the modelling of other 

sociotechnical systems. 

Keywords: Knowledge exchange; Decision-making; Energy systems; Complex 

system modelling; Policymaking. 
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1 Introduction 

The UK government has set ambitious energy policy and revised its greenhouse 

gases (GHG) emissions target to mitigate global warming. Via the Net Zero 

policy, the UK aims to reduce its emissions to net-zero, contributing to keeping 

global temperatures rise below 2C [1,2]. This is an amendment to the Climate 

Change Act 2008, which bound the UK to reduce its GHG emissions by at least 

80% from the 1990 levels by 2050. This also required setting the Committee on 

Climate Change and five-years periodical carbon budgets. Then, because the 

transport and energy supply sectors account for 32% and 27% of the GHG 

emissions in the UK by 2018 [2,3], it is imperative to decarbonise such sectors. 

Therefore, electrification of transport via low carbon electricity produced from 

renewable resources will play a key role to deliver on this goal [1,2]. 

More specifically, it has been highlighted that electric vehicles (EVs) [4–6] and 

domestic solar photovoltaic panels (PVs) [6–8] will be crucial towards achieving 

the government’s ambitious emissions targets whilst also reducing dependence 

on fossil fuels [4,5]. The future of a low carbon energy system has been described 

in a number of scenarios that assess technological feasibility or overall trends, 

and develop pathways of requirements to achieve a specific goal (i.e. reduction 

of GHG) [9–11]. The main limitation of these scenarios is that their underlying 

modelling approaches overlook the complex network of interactions between the 

different actors that the energy system comprises [5,9]. Moreover, because these 

approaches focus on national-level analysis, they are limited to inform about the 

local evolution of these technologies’ regularities and how the adoption of EVs 

and PVs may impact on the distribution network. As mentioned by a growing 

number of authors [8,12–21], the adoption patterns of EVs and PVs present 

spatial regularities, and that a high geographical concentration of these 

technologies may cause issues on the low voltage lines. By creating reverse 

flows, solar PVs can diminish predictability of load, voltage and demand flows 

[22–24]. Uncontrolled charging of EVs may intensify the stress in the distribution 

networks and cause faults and power cuts [25–27]. 
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Consequently, the adoption of EVs and PVs will shape the evolution and 

characteristics of the energy system [28] and creates a challenge for the 

management of the distribution networks. That is why the development of the 

tools and methods to predict where these technologies will appear and at what 

pace they will evolve is important [8,29]. Yet, the development of these 

technologies is highly uncertain as the adoption of EVs and PVs is driven by 

subjective factors such as perceived affordability [30], social influences from 

other individuals and one’s neighbourhoods [8,20], or personal believes [31]. The 

adoption process is also affected by objective factors like income [12,19,25], 

energy cost [16,25], fuel cost [32,33], available infrastructure [25,32], or available 

policies [32]. 

Moreover, these two technologies present clear differences. Solar PVs require a 

one-time effort when installing, and provides an intermittent generation profile 

[34]. On the other hand, EVs are an alternative technology for mobility services. 

Depending on the charging state of the battery, they may require the individuals 

to change their driving behaviour [35] which may potentially result in new charging 

patterns. Regardless of these differences, emergent literature points out that 

there are empirical regularities between EV and PV ownership [14,26,36], 

highlighting these technologies are adopted by the same kind of consumers 

(those with a high environmental concern) [34]. However, the population growth 

theory presents limitations when accounting for (i) the spatial regularities; (ii) 

explicit temporal dynamics; and (iii) the variety of factors that drive the adoption 

process [37]. 

Despite these limitations, this theory has been widely applied to the diffusion of 

innovation. More specifically, three implementations of this theory have been 

used to characterise the adoption of EVs and PVs [38]: 

• The Logistic model is used to forecast the adoption of innovation, using 

the population growth theory. The model considers three elements, (i) the 

number of adopter at a given time, (ii) the potential adopters, and (iii) the 

coefficient of adoption [39]. This adoption model has been extended into 

the following two models [40]. 
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• The Bass model characterises the market diffusion of EVs and PV 

assuming that these technologies are adopted by imitation or media-effect 

influence [40,41]. Al-Alawi and Bradley [40] mention that the Bass model 

is the most extensively used approach for the adoption of innovation. 

• Lastly, the Gompertz model estimates the count of EVs or PV, by fitting 

the time series from the EVs and PVs sales to a saturation curve 

(Gompertz distribution) [40,42]. 

The modelling of EV and PV adoption has experienced changes in the last 

decade, adopting new approaches that consider the overlooked complexity of 

actors interacting in the energy system or trying to explain the factors driving the 

adoption process using aggregate data. Also, as demonstrated by this research, 

there is potential in integrating elements of the human cognition into the modelling 

approaches. The review of the literature presented in Section 1.2 identifies three 

recurrent contemporary approaches. Namely, the agent-based modelling (ABM), 

part of the complexity science discipline, characterises the individual decision-

making of whether or not to adopt such technologies, as the result of the social 

interaction of the agents [9,10,43–45]. The spatial regression1 (SR), part of the 

econometric techniques, seeks to understand the effect of the different factors 

that drive the adoption process, whilst considering the spatial regularities of the 

adoption process [8,12,16,19,46,47]. And the Poisson model that is used 

extensively in epidemiology characterises the adoption of EVs and PVs as the 

product of stochastic social interaction among individuals [48–51]. 

This research adopts the ABM modelling approach because of its capabilities to 

characterise the complexity of the energy system evolution as a social-technical 

process [52,53]. Indeed, the applications of the ABM to analyse the adoption of 

EVs and PVs have produced useful insights on how the influence of the social 

interaction caused by the interaction between individuals drive the evolution of 

the energy system [32,43,53]. Section 1.3 presents the strengths and 

weaknesses of the ABM and the other two modelling approaches in detail. For 

instance, most of the existing applications of ABMs have an explorative nature 

 

1 The spatial regression will be referred as SR from now on. 
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that focuses on the emergent behaviour of the agents. However, these ABMs do 

not consider the spatial regularities of the adoption process as represented by 

the SR models, which in contrast disregards the temporal nature of the adoption 

process. Thus, these approaches have limitations to inform about spatially and 

temporally explicit estimations of adoption rates of EVs and PVs. In recognition 

of these limitations and the need for spatio-temporally explicit estimations of the 

adoption rates of PVs and EVs, to inform network planning and management, the 

following initial research question formulated: 

To what extent is it possible to characterise the adoption process of EVs and/or 

PVs, whilst integrating the spatio-temporal regularities and the different factors 

that drive the adoption process? 

The following section carries out a literature review, with the view of informing 

about the current modelling approaches for EV and PV adoption, whilst identifying 

the gap in knowledge. Then, this refines and reformulates the research question 

as a hypothesis and define specific objectives to test it. 

 

1.1 Literature review 

This section reviews the literature by breaking down the initial research question 

into smaller and more specific questions. Firstly, as shown in Figure 1, the review 

focuses on the combination of EVs OR PVs studies (blue and yellow circle), 

because focusing only in the intersection of EVs AND PVs studies (green 

intersection) may exclude the insights from the single-technology studies. Hence, 

this review undertakes an analytical review of the contemporary EV and PV 

market diffusion approaches that consider spatio-temporal regularities of the 

adoption process. As illustrated in Figure 1, the review aims to identify their 

modelling strengths and weaknesses, along with the different factors that drive 

the adoption process, and how (if so) the relationship between their ownership 

has been modelled (Section 1.3). Consequently, the review also informs about 

the modelling elements that future modelling approaches should consider. Lastly, 

the review identifies knowledge gaps and proposes suitable approaches to 
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address the limitations of the current modelling approaches and test the thesis 

hypothesis (Section 1.5). 

 

Figure 1. A conceptual framework for the literature review. 

 

1.1.1 Review method 

A systematic approach is followed because this review seeks to identify the gap 

in knowledge, whilst defining specific objectives. The systematic reviews are 

argued to be transparent to the reader and replicable [52–54]. Narrative reviews 

are ideal for broader research questions, and usually do not require clear 

inclusion nor exclusion criteria. Thus, findings produced by narrative reviews are 

potentially biased, as the review evaluation is not uniform [52–54]. Therefore, this 

review builds upon Denyer and Tranfield systematic review methodology [55] and 

expands it further by considering other studies on the design of query, 

construction of database and presentations of the results [56–62]. The systematic 

process is summarised in Figure 2 and fully discussed in the following sections. 
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As the spatial patterns of EV and PV diffusion are newly developing fields, the 

systematic review yields only 24 relevant studies (see section 1.1.4). That is why, 

following Adams et al. [63], the Snowballing technique is incorporated into the 

search method. Snowballing is a forward and backwards process that retrieves 

relevant articles cited by the preliminary search and increases the reliability of the 

review [64,65]. This technique allows also to keep the list of references up to date 

(04 Dec 2018) [66]. 

 

 

Figure 2. The methodology followed in carrying out a systematic literature review. 

Source: Adapted from Denyer and Tranfield [55] and integrating Sayers [64]. 

 

1.1.2 Literature review questions 

As presented in Figure 2., firstly, a base of articles is created using research 

questions (RQ)1 and RQ2, scoping the review. The next three research questions 

build on this research base which includes the articles added via the snowballing 

method. RQ3 focuses on assessing these models’ strengths and weaknesses, 

whilst RQ4 identifies the variables and data sources used. Finally, RQ5 focuses 

on how to build on the strength of these alternative modelling approaches to guide 

future research. Research questions are defined as follows: 

• RQ1: How do different approaches used for modelling of EV adoption 

compare and contrast in terms of spatial and temporal dependence and 

social effects? 
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• RQ2: How do different approaches used for modelling of PV adoption 

compare and contrast in terms of spatial and temporal dependence and 

social effects? 

• RQ3: What are the strengths and weaknesses of different approaches to 

account for spatial and temporal dependence and social effects? 

• RQ4: What variables and data sources have been used to characterise the 

adoption process of EVs and PVs? 

• RQ5: What an alternative modelling framework can be developed to address 

the limitation of current modelling approaches?  

 

1.1.3 Localization and identification of relevant studies 

A list of keywords is created for RQ1 and RQ2 to ensure any relevant study is not 

left out. The literature review assumes that the studies under the adoption, 

diffusion and penetration keywords consider the temporal variable already, 

without excluding those that do not. These lists are used to design the search 

queries. Groups of keywords used are listed in Table 1. Four online databases, 

Web of Science, ScienceDirect, Scopus and Google Scholar are explored to 

identify relevant studies. Search queries are designed through the combination 

of the keywords and logical functions. 

 

Table 1 Lists of keywords used for each research question 

RQ1: EV, electric vehicle, electric car, adoption, diffusion, penetration, 

space, spatial. 

RQ2: PV, solar panel, solar photovoltaic, adoption, diffusion, penetration, 

space, spatial. 
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1.1.4 The screening and selection of relevant literature 

The review process is characterised in a funnel diagram in Figure 3. During the 

first stage, a total of 10,385 document results are retrieved from the online 

databases The second stage applies the exclusion criteria, as described below 

and reducing the numbers by two thirds. The next stage involves screening the 

article’s title and abstract, leaving only 1% of the original sample.. At this point, 

the rest of the articles are fully reviewed, resulting in a total of 24 studies. Finally, 

by using the snowballing criteria, another 18 articles are added to the number of 

studies included in the review. Given that the analysis of the spatio-temporal 

patterns of EVs/PVs adoption is a recent and emerging field, it was found that 

most of the reviewed studies were published from 2010. The list of studies 

included in the review is provided in Appendix 1. 

Exclusion criteria 

• Duplicated articles across different online databases are omitted. 

• The material is not related to spatial distribution. 

• It is related to Physics or Chemistry sciences, e.g. fuel performance, surface 

analysis. 

• It is related to engineering analysis or design, e.g. battery performance or 

composition, molecular dynamics. 

• It is related to broader environmental issues, e.g. air pollution, climate change, 

ecosystem services. 

• It is not a specific article, but a journal or compendium of materials, i.e. journals 

abstract, indexes of conferences. 

 

Inclusion criteria 

The snowballing technique is included as additional screening, which is carried 

out in a forward and backward direction as listed below. The process starts with 

the studies resulting from the exclusion criteria and stops when the review 

becomes cyclical. In other words, it stops when the potential new articles have 
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been already screened (included or excluded) and there are no more new 

studies. 

• Forwards: papers which cite an already selected article are analysed. These 

articles were screened considering the Exclusion criteria. 

• Backwards: studies cited by an already selected article are screened also. 

Initial exclusion criteria are applied to these studies. 

 

Figure 3. Funnel diagram of selected articles that are included in the review.  

 

1.1.5 Analysis and synthesis 

From the selected studies, there are four relevant elements to assess the model's 

strengths and weakness: First, the model's capabilities to capture the spatial 

dependency of the adoption process. Second, the model's effectiveness to 

integrate the different factors driving the adoption process. Third, whether the 

model can integrate the relationship between EV and PV ownership. And finally, 

the analysis also looks at the model’s goodness of fit to score and identify the 

best suitable approach. 

• 10385Databases exploration

• 3250Exclusion criteria

• 106Title and Abstract review

• 24
Full text 

review

• 42
Snowballing             

inclusion 
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1.2 EV and PV adoption modelling approaches 

As shown in Figure 4, the number of studies has been increasing in the last five 

years. Most of these studies are published in the following journals: Energy, 

Technological Forecasting and Social Change, Renewable and Sustainable 

Energy Reviews, Energy Policy, Environmental Innovation and Societal 

Transitions. In general, there is a similar number of studies for EV and PV 

technologies. At the beginning of the 2010s EV, studies are slightly greater, but 

in recent years, the academic interest in PV articles has increased, resulting in 

more PV than EV studies. The use of snowballing criteria meant the inclusion of 

other technologies like environmental and energy innovations and heating 

systems in the analysis, though there were a few numbers of articles focusing on 

them. Then, Figure 5 shows the distribution of the modelling approaches used. 

There are three main recurrent approaches: The agent-based modelling, the 

spatial regression, and the Poisson model. Besides these models, there are other 

models such as the Discrete choice, Logistic regression or Network theory. Yet, 

because there are a few applications of these approaches, they are presented 

broadly in Section 1.2.4. 
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Figure 4. Annual cumulative number of publications by type of technology 

modelled. 

 

 

Figure 5. Annual cumulative number of publications by type modelling approach. 

 

1.2.1 Agent-based modelling 

The ABM has become one of the most used techniques to analyse social-

technical systems, as this allows the modelling of entire systems by 

characterising the individual actors that comprise them [67,68]. The ABM 

simulates the interaction of these actors through physical and social networks, 

then, the evolution of the system is the results of the cumulative decisions taken 

by the agents [32,43,68]. The applications of the ABM comprise air traffic 

management, biomedical and epidemic research, crime analysis, stock market 

analysis, organizational decision-making, ecology, energy modelling and 

diffusion of innovation and adoption dynamics [69,70]. 

Because the methodologies to design and implement an ABM are as extensive 

as the number of applications for it, these studies are reviewed using an ABM 

development protocol. The Grimm et al. [71] protocol is a widely used standard 

protocol. This methodology is a comprehensive framework that allows mapping 

19

8

4

11

0

5

10

15

20

<2010 2011 2012 2013 2014 2015 2016 2017 2018 Total

N
u

m
b

er
 o

f 
re

vi
ew

ed
 s

tu
d

ie
s

ABM Other Poisson model Spatial regression



23 

 

the: The entities that represent the agents' definition. The object is the 

technology or behaviour introduced into the system. Characterisation refers to 

the techniques to assign individual features to the agents, this also includes. 

Their location of the agents in the virtual environment. Decision-making that 

defines the agents’ behaviour and the rules to modify such behaviour. The social 

effect refers to how the agents interact. Table 2 summarises the different 

elements used to implement the reviewed ABMs, further Section 2.1 presents in 

detail these modelling elements, focusing on the empirical implementation. 

 

Table 2. List of modelling elements of ABMs 

Modelling 

elements 

Description 

Entities Individuals or households 

Object EVs, PVs and heating systems, Energy saving practices 

Characterisation Empirically if the data comes from a survey 

Semi-empirically in the case of simulating or calculating any 

value based on other current data such as the census 

And assigning features randomly 

Location Same as above 

Decision-

making 

Financial benefits (utility) and/or on the social benefits 

Social effects Direct contact with other agents (peer-effect) or from the 

influence of collective behaviour (social norms). 

 

The ABMs commonly work under the assumption that the agents can evaluate 

the benefits of their decisions or that these follow rule-based criteria, which is 

defined by the modeller. However, this characterisation of decision-making is 
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limited. First, because the assessment of those drivers assume that the agents 

possess the perfect market information, which is rare, and secondly because 

some of the drivers such as personal believes and preferences have subjective 

values [43,72–74]. The decision-making of the agents is usually not implemented 

temporally or spatially explicit simultaneously; from now on this is referred to as 

spatio-temporally explicit characterisation. However, the literature offers 

examples of ABMs that analyse those elements independently. 

The ABMs representation of the temporal variable gives those models a 

predictive or explorative nature. The predictive models explicitly characterise the 

temporal variability, as the models aim to replicate the actual behaviour of the 

agents over time. Then, during the simulations, the models search for the 

combination of parameters values that best fits historical data of adoption rates. 

Each of those combinations is to produce a fitness parameter or accuracy level, 

which in turn defines which is the best mode. Krebs [75] uses PV data at a 

monthly basis, Robinson and Rai [76] (94%) and use time-series in quarterly 

basis, whilst Adepetu and Keshav [68] (95%) analyse the adoption of PV in a 6-

month basis. Instead, those ABMs with an explorative nature don’t present an 

explicit time horizon but are run until new behaviours emerge. For instance, 

McCoy and Lyons [26] run the simulation 100 times and report the average of the 

results, or Noori and Tatari [49] who run their model for 10,000. In both cases, 

the authors rather explore the results of the model under each of the 

combinations of each possible value of the parameters. Thus, because the 

simulation lack of an explicit time horizon, the models have limited applicability 

for forecasting future rates of adoption. 

In general, the spatio-temporal regularities have not been yet integrated into the 

decision-making process. Yet, some of the reviewed ABMs studies aggregate the 

data to analyse the spatial validity of the model, showing that the models have 

limitations to adapt to changes in the data trends [75,77,78]. Moreover, because 

the ABMs work at the individual level, the ABM requires lots of data to empirically 

characterise individuals. An empirical characterisation would require having data 

for each of the households to keep the geographical layout of the agents. In this 

sense, the ABM is limited to keep the spatial layout because of the lack of data 
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to represent the whole population [51,79]. Consequently, the ABM studies rather 

use a sample of the population or escalate empirical data up to reaching the 

actual population numbers. 

Additional to the ABM, two other models were identified by the literature review, 

which shares characteristics with the ABM. First, Bale et al. [79] analyse the 

adoption of more energy-efficient technologies using the Network Theory 

evaluates the total utility of adopting based on personal benefits, the average 

value of adopters in the individual social network, and the average of adopters in 

the whole population. Yet, the adoption criteria are based on an equation that 

weights the former elements [79]. Then, Dimatulac and Maoh [80] use the 

Discrete choice model to characterises the adoption process of EVs at the 

individual level. The model substitutes the utility or social threshold, the adoption 

criteria is a probabilistic function that considers the available options of vehicles. 

The model also partially implements the neighbourhood effect, by implementing 

the count of EVs in a specific zone for each of the individual in that zone. Then, 

the decision-making of the agents within a zone will be informed by the number 

of EVs in the adjacent areas. However, this effect disregards the diminishing 

effect of the distance between zones, neither considers the influence of the 

agents in the same zone.  

The Network theory and Discreet choice model may be seen a simplified version 

of the agent-based model, as they have similar components such as the adoption 

criteria in the form of an equation, and the utility and social threshold as fitted 

parameters for each case study or probability function. Similarly, both 

approaches present the same limitations as the ABM not to account specifically 

for the temporal dimension and disregard the spatial dependence of the adoption 

process. 

1.2.2 Spatial regression 

The SR has been used to understand the effect of socioeconomic variables on 

the adoption of EVs and PVs, whilst considering the spatial regularities of those 

variable and the EV/PV distribution. Alike classical regression, this method 

analyses the effect of the dependent variables on the variable of interest. At an 
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aggregated level, the spatial regression model considers that this effect on 

dependent variables varies as a function of distance. In general, the authors 

conclude that there is a significant relationship between the adoption rate in a 

local area and its surrounding neighbourhoods. The spatial regression model can 

be defined as follows: 

 

 =  𝜌𝑊𝑦 +  𝑋𝛽 +  𝜀  (1-1) 

 

Where, 

y is the dependent variable 

𝜌 is the autoregressive coefficient2 

W is the spatial weights matrix  

X is the vector of independent variables 

𝛽 is the vector of regression coefficients  

𝜀 is the stochastic error term 

 

The dependent variable y is the cumulative number of objects in a specific 

location. Authors use two cumulative measurements, the total/absolute count and 

the relative count of a specific technology (adopters) in a specific location. Most 

of the authors apply the total cumulative count of objects, except for [12,18,29], 

who acknowledge the disparity in locations’ size and population density. 

Langheim [12] normalises the number of PV installations by considering the 

number of single-family buildings, so the model considers the market size in each 

location. Schaffer and Brun [18] acknowledge the variation in locations’ size, so 

 

2 This reflect how much the data is spatially correlated, because this is a multidimensional index 
(accounting for distances in deferent directions), its values are not limited to [-1,1].] 
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they calculate the total PV systems divided by the location’s area. Most of the 

authors include population density as an explanatory variable. The last exception 

is Morton et al. [29], who model the number of EVs per thousand of cars.  

A similar application approach to the SR is the Geographically Weighted 

Regression. The model locally weights the variation of the relationships between 

the dependent and independent variable, rather than the overall spatial 

regularities as the SR [12]. Yet, the model is limited to account for the temporal 

non-stationarity3 [81], which is a characteristic for the PV or EV adoption process 

(as further explained in Section 2.2.3 and 4.2.3, respectively). 

Then, the independent variable W is a matrix of spatial lags, reflecting the 

distances between locations. This matrix has been characterised in different 

ways; which may affect the magnitude of the correlation, albeit not significantly in 

some instances [8]. Badi and Bartlomiej [82], who carry out a sensitivity analysis 

on the spatial correlation by changing the way the matrix weight is defined. They 

find that the magnitude of the spatial autoregressive coefficient changes up to a 

20%, but in all the cases the direction of the relationship does not change (i.e. 

from -.047 to -0.58). Authors commonly calculate matrix weights considering the 

actual distance between two locations (Euclidean distance). On the other hand, 

an alternative to the Euclidean distance is the adjacency approach, which reflects 

whether two locations are physically contiguous or not. An alternative definition 

is to consider the closest locations as contiguous locations [18,19].  

The characterisation of the dependent variable and the spatial weights matrix 

vary across the studies, the former is discussed in detail in Section 3.1.1. The 

latter is closely related to the analysis’ definition of geographical area, as the 

number of locations and the distance between them depends on the spatial 

resolution. Frequently, these authors use different geographical areas at the 

regional level, which could be standard or local definitions. For instance, the 

Nomenclature of Territorial Units for Statistics NUTS3 or local level, which is the 

standard geographical definition for the members of the European Union. Such a 

 

3 A stationary timeseries is assumed that its statistical properties such as mean, variance, etc. 
are all constant over time. 
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definition allows comparing statistics between countries, yet this definition might 

not correspond to a local definition or political division. On the other hand, local 

definitions such as census tracks or administrative definitions can be used 

depending on the objective and scope of the study, which might depend on the 

local government. 

For example, highlight the lack of socio-economic data at smaller spatial units 

than the regional level. On the other hand, bigger units of analysis may exhibit 

loss of spatial heterogeneity as data are aggregated. Yet, across Europe, the use 

of NUTS3 classification is not uncommon (e.g. [18]). On the other hand, a higher 

resolution such as ZIP codes, block-groups or census tracts, are also used as 

spatial units. Authors use census data to match the total PV installations and 

aggregated socio-economic data [12,16,19,46,47]. Overall, authors agree on the 

spatial regularities in low carbon technology adoption patterns, even though the 

studies differ from each other about the magnitude of each variable’s influence, 

due to the context and variables included.  

A limitation of the spatial analysis is the fact that it overlooks the temporal 

dynamic of the diffusion process [8,18,29]. Authors such as Graziano and 

Gillingham [16] alternatively introduce a temporal lag, considering that the spatial 

effect decreases with the distance and time. Similarly, Richter [20] develops an 

econometric model at a high spatial resolution, using the PC layout as well. Then, 

using the postcode resolution the author characterises the social influence as the 

effect within each area through the lagged number of PVs. Yet, there is no 

influence from one area to another. Other authors like Morton, Wilson and Anable 

[47] replicate their analysis for different points in time. Although the temporal 

dynamics of the adoption process are not considered, the authors present a 

series of independent snap-shot results. Also, because the statistics values of the 

models vary from one spatial resolution to another, the change in the study’s 

scale may introduce bias to the study, as any statistics is dependent on study 

scale and spatial resolution [15,72,83,84], which is known as the Modifiable Areal 

Unit Problem (MAUP). Therefore, Balta-Ozkan, Yildirim and Connor [8] propose 

working with a finer resolution (more local), as these spatial differences are 

important for the application of local policies. Besides Noonan, Hsieh and Matisoff 
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[46] point out that the aggregation process may imply a loss in spatial 

heterogeneity. 

1.2.2.1 Social effects 

The social effects are also considered by the SR and the Poisson model 

(discussed in the following section) as the neighbourhood effect and the peer-

effect. The neighbourhood effect comprises the spatial effect of the surrounding 

location, the effect of the total adoption rate (alike the social norms of the ABMs), 

or the exposure of surrounding locations. On the other hand, the peer-effect 

works at the individual level and is present only in some Poisson models and the 

ABMs, which characterises the mechanisms of these influence. Contrary, 

because of the spatially explicit nature of the SR and the Poisson model, these 

modelling elements inform about the presence of spatial effects and how these 

decreases with the distance, even though the distance is characterised in 

different ways. One can argue that this distance can be compared with the 

techniques used to associate agents (e.g. similar income, similar socio-economic 

characteristics, random connections, etc.) in the ABMs. 

1.2.3 Poisson model  

This approach assumes that there is no explanation for any decision taken during 

the adoption of innovation. Instead, the individuals' interaction is not fixed to a 

particular network, and the decision-making criteria are not deterministic, a 

property shared with the individual level models that these elements are still 

unknown to the modeller. There are three modelling considerations. First, there 

are a limited number of contacts made at each period. Second, it is not essential 

to know the specific individual’s network to understand the general diffusion 

process. Finally, the last consideration is the degree of randomness, which 

depends on the scale of the study, as defined by the modeller. Depending on the 

focus of the study the modeller defines whether the model reflects individuals’ or 

small-groups’ behaviour. The microscale (individual) can potentially assess the 

probability of adoption. On the other hand, macro-scale (group) studies may 

provide a general adoption pattern. 
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The Poisson model assumes that the drivers of the decision-making process are 

unknown. Then, the adoption rate is defined through spatial exposure to the 

innovation and a demographic variable [51,85]; the latter is characterised as the 

employed population density or housing density. De Groote, Pepermans and 

Verboven [51] argue to explore the temporal dynamics of the adoption rate as its 

drivers change over time. They acknowledge that as more detailed data become 

available, the models can produce more robust results. Similar to the ABM, the 

Poisson model also takes into account the peer-effect. While the ABM considers 

the structure of the social network, the Poisson model reflects this via exposure 

to the innovation. Yet rather than to specify a social network that defines the 

interaction between individuals, these studies define a probability of contact (e.g. 

how many contacts occurs among the population). The authors characterise the 

threshold of adoption as dependent on the number of adopters in the adopters’ 

social network [48–50].  

The Poisson model includes a temporal variable, yet, this is a reference to the 

simulation period rather than the actual time horizon. This synthetic temporality 

allows investigating which factors drive the timing of adoption [51] as well as 

studying the adoption rate over time. Adjemian, Lin and Williams [19] define a 

virtual population which adopts a specific vehicle from a set of options and 

maximises the utility from it. Instead of a distance variable, they identify 

cumulative variables with the five closest locations. Bansal, Kockelman and 

Wang [85] models the spatial diffusion of EVs by applying a Poisson-lognormal 

model, to quantify the spatial effect of lagged independent variables. They use 

census data for Texas (US) to model the spatial diffusion of EVs. For the spatial 

effects, the authors define contiguous neighbours if two (or more) blocks share a 

border, similar to [18]. De Groote, Pepermans and Verboven [51] model the PV 

spatial diffusion with a Poisson distribution. They calculate the specific factor of 

adoption (elasticities) for each neighbourhood and then estimate the spatial effect 

of those variables. They use the covariance of the dependent variables to 

construct these coefficients. 
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1.2.4 Other modelling approaches 

There are a few other modelling approaches employed among the reviewed 

articles, for instance, the Logistic model or hybrid models. The Logistic model 

overlooks the spatial dimension of the diffusion process, yet, the authors 

overcome this limitation by creating “buffers” per areas. These “buffers” accounts 

the number of PVs in different radius, to capture the spatial regularities. [86]. The 

Logistic model has also been used to calculate individual regressions for different 

areas [17]. Yet, the spatial dependence is not considered, as each of the 

regressions is independent. As well, the Bass model [41] has been used to 

characterised the EV adoption as the result of interactions between individuals. 

The interactions are defined considering the local population size and the share 

of adopters at each neighbourhood. Additionally, an influencing factor of media 

coverage has been included as the imitation parameter of the Bass model [87].  

On the other hand, Zhao et al. and Zhou et al. hybrid models [88,89] define the 

adoption process locally using artificial intelligence and the Bass model principle. 

The models use cellular automata to identify and classify the PV saturation in 

each area using historical data. Then, the individual estimations are generated 

using a fitted to time-series S-curve. These approaches also consider the estate 

of adjacent areas during the classification of the areas; however, the effect of the 

neighbouring areas is not weighted against the distance between them. 

Additionally, as noted before the Bass model has limitations to considers social 

nor spatial effects. 

1.3 Review of strengths and weaknesses of the modelling 

approaches 

The review questions aim to identify four modelling elements: (i) spatial 

regularities, (ii) temporal regularities, (iii) social dynamics and (iv) the relationship 

between PVs and EVs ownership. However, from the reviewed methods, it’s 

noted that these are not completely independent or exclusive from one method 

to another. Firstly, as noted by the SR studies, the modelling of the adoption 

process requires to include the time variable, as there is a delay between the 

decision to adoption PV and the actual installation. Therefore, future modelling 
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approaches should include spatial and temporal regularities of the adoption 

process. Furthermore, alternative methods are required to reflect the spatio-

temporal regularities of the different factors that drive the adoption of such 

technologies. Then, from the reviewed articles, it is noted that despite the wide 

number of variables included in the analyses, the social effects are a constant 

factor that authors recognise to be critical. The entire group of reviewed studies 

implemented the spillover effect, either in the form of the neighbourhood effect 

[8,16,29] or social norms [25,79,87]. On the other hand, only 30% of the studies 

characterised the peer-effect [14,25–27,32,33,50,51,68,75,77,78,90–93] 

On the other hand, the empirical regularities between the EV and PV ownership 

have not been empirically tested in-depth, meaning that the influence of adopting 

one technology on the decision-making towards the other is still unexplored. 

Thus, future approaches may empirically and explicitly test the regularities 

between the ownership of these technologies. In the next section, the reviewed 

methods are assessed in terms of these modelling aspects. As it is argued that 

some there is knowledge to be transferred between some of these approaches, 

the following section assesses the strengths and weaknesses of the reviewed 

models. Therefore, the review informs about future modelling approaches. 

The studies analysing the modelling of PVs and EVs are assessed in terms of 

the following four aspects: (i) spatial regularities, (ii) temporal regularities, (iii) 

social dynamics and (iv) the relationship between the ownership of PVs and EVs. 

These features are assessed following the criteria shown in Table 3, where 

scores are defined from [1-5] depending on the capabilities to explicitly 

characterise each of the elements. 

 

Table 3. The criteria to assess the strengths and weaknesses of different models 

Score Description 

1 The model disregards this modelling element. 

2 The authors have implemented a proxy for this element. 



33 

 

Score Description 

3 The model has limitations to characterise this element explicitly. 

4 The model can characterise this element explicitly but uses 

simulated or semi-empirical data to implement it. 

5 The model can characterise this element explicitly and 

empirically. 

 

Table 4 summarises of the assessment of the reviewed models, which are sorted 

considering the scores for the three elements. Additionally, the models' fitness is 

reported (if provided), typically, this evaluates the differences between model 

estimates and the actual data; however, this is not reported in all the models.  

On the one hand, the SR and the Poisson models are suitable to represent the 

population heterogeneity and capture actual spatial layouts. Nevertheless, these 

tend to oversee the time variable and to have marginal fitness. On the other hand, 

the ABMs approaches have limitations to represent the heterogeneity of the 

populations (mainly because of data availability, as mentioned in [51,79]), this 

comes also with limitations to represent the actual spatial distribution of the 

agents. Yet, these studies can handle the time variable and they exhibit greater 

fitness than the aggregated approaches. An exception to this is the ABMs without 

a defined time horizon, which are more of explorative studies than actual 

forecasting methods (therefore the lack of a fitness indicator). Furthermore, these 

models do not consider the evolution of the agents' characteristics nor spatial 

dependency. Furthermore, it is noted that when integrating a measure of spatial 

regularities to the ABMs, models tend to perform significantly worse [76]. 
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Table 4.Key characteristics of reviewed studies 

Modelling approach Ref Obj. 
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Spatial regression [14] PV 5 1 5 55% 

ABM [26] EV 3 2 5 - 

ABM [75] Engy Inn. 4 5 1 98% 

ABM [76] PV 4 5 1 94% 

ABM [91] PV 4 5 1 96% 

ABM [78] Engy Inn. 4 5 1 - 

Poisson model [92] PV 5 + 1 40% 

ABM [77] Engy Inn. 3 5 1 - 

ABM [90] PV 3 5 1 94% 

ABM [25] EV 3 5 1 - 

ABM [49] EV 4 4 1 - 

ABM [93] PV 4 3 1 - 

ABM [27] EV 4 3 1 - 

Mathematical [94] PV 4 3 1 - 

Poisson model [51] PV 5 2 1 5% 

Bass model [41] EV 5 2 1 - 

ABM [50] Heating 3 3 1 - 

Geographical regression [12] PV 5 1 1 54% 

Spatial regression [8] PV 5 1 1 75% 

Spatial regression [15] PV 5 1 1 61% 

Spatial regression [95] PV 5 1 1 - 

Spatial regression [18] PV 5 1 1 71% 

Spatial regression [29] EV 5 1 1 72% 

Spatial regression [46] Engy Inn 5 1 1 60% 

Spatial regression [19] Automobile 5 1 1 - 

Poisson model [85] EV 5 1 1 - 

Poisson model [96]  EV 5 1 1 - 

Hybrid model (ANN) [88] PV 5 1 1 94% 

Hybrid model (ANN) [89] PV 5 1 1 90% 

ABM [68] PV 1 4 1 95 

ABM [33] EV 3 2 1 - 

ABM [32] EV 3 2 1 - 

Network theory [79] Engy Inn 3 2 1 - 

ABM [48] EV 3 2 1 - 

Discrete choice [80] EV 3 2 1 - 
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Mathematical [87] Engy Inn. 1 3 2 - 

Logistic regression [86] PV 3 1 1 - 

Statistical analysis [17] PV 3 1 1 - 

*Env. Inn: Environmental Innovation; Engy Inn: Energy Innovation. 

 

1.4 Review Limitations 

It is acknowledged that the review methodology uses a strict list of keywords and 

that the screening of studies by a single reviewer might have had an effect on the 

results [97]. Yet, the snowballing criteria improve the reliability of the review and 

fallow a systematic update of the emerging literature into the analysis [64,65]. 

Finally, it needs to be considered that this review may have introduced two types 

of bias into the results. First, the review may be subject to a publication bias, 

which implies that it is more likely for those studies with results in a preferred 

direction are published than those without relevance. Thus, the available 

(positive) papers may lead to over-overstatement of the results [98]. Secondly, 

the interpretation bias states that researchers with different backgrounds and/or 

objectives/interests may assess and discuss the same result in different ways; 

thus, they may draw opposite conclusions and insights [99]. 

1.5 Discussion 

This section answers the review question and produces three main insights to 

inform the thesis research question. First, the modelling approaches for EV and 

PV diffusion are summarised. Then, potential avenues for future research are 

presented, focusing on how the ABM can be refined to account for the spatio-

temporal dynamics of the adoption process. Finally, this section discusses the 

evidence to implement the influence of one technology over the other. 

Modelling approaches for analysing the EV and PV adoption patterns 
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Three common modelling approaches that characterise the spatial patterns of EV 

adoption are presented in Section 1.2: spatial regression, Poisson model and 

ABMs. However, there is a clear difference in the share of these, being the ABM 

that accounts for 58%, whilst the SR or the Poisson model account for less than 

20% each. This suggests that the spatial nature of the EV adoption still 

understudied. Thus, the need for further understanding of the spatial dependence 

of the EV adoption (and drivers).  

Like the EV studies, the PV spatial diffusion patterns are also studied by these 

three common approaches. However, the number of SR and Poison model is 

more extensive for PV than for the EV, consequently, there is a potential for the 

PV studies to inform the adoption of EVs. The spatial analysis of PVs has 

highlighted the degree of spatial dependence and neighbour effect, the 

socioeconomic characteristics that drive de adoption, and the impact of 

incentives and rebates. Yet, the spatial analysis of the EV adoption is still 

emerging.  

In this regard, this systematic review only retrieved one spatial study on EVs, 

Morton et al. [29], and to our acknowledgement, no other study has been 

published as of 04 Dec 2018. Although this study contributes to understanding 

the drivers of EV adoption in the UK and the spatial patterns of adoption, the 

model’s data has limitations. Low data availability and lack of consistency in the 

time frame (vehicle registration for 2016, income data for 2015, other 

socioeconomic data for 2011), introduces a bias into the results. These limitations 

result in a moderate estimation accuracy (72%), which suggests that some of the 

spatial dependence is still not explained by the model. Other insights that may be 

integrated into Morton et al. SR study are from Adjemian et al. [19], who analyse 

the car ownership and its spatial dependency, highlight that the consumers’ 

decision is driven by their peers’ car ownership decisions [19]. This can be 

integrated into Morton’s modelling, which only considers the neighbourhood 

effect. 

The temporal dimension is recognised to be essential on the modelling of EVs 

and PVs adoption. On the one hand, approaches such as the SR try to integrate 

this in creative ways [16,20,95], such as including the time-lagged total number 
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of these technologies, see 1.2.2 and 1.2.3. On the other hand, the ABMs have 

the potential to integrate this dimension, as the agents make decisions in discrete 

time steps, but this potential has not been exploited yet. 

Explicit spatio-temporal characterisation of the decision-making 

The spatio-temporal nature of low carbon energy transitions (e.g. [13,100]) 

necessitates developing methods to embed these regularities in the modelling 

framework. Furthermore, as the data availability is recognised as a constraining 

factor for the empirical characterisation of ABMs, it could be argued that the 

aggregation of agents in small geographical areas is a suitable alternative 

approach to the common individual ABMs. Indeed, there are a few numbers of 

ABMs that characterise agents as geographical areas or group of individuals 

whose behaviour is characterised as a singular decision-making unit, including 

Bierkandt et al. [101] and Kunz [102]. The former considers the production and 

consumption sites as agents, disregarding the individual characteristics and 

instead considering total supply and demand capacities. The latter model 

disregards the specific behaviour of individuals and assumes that there is a 

common behaviour within a group where the groups interact with each other. The 

authors’ [102] assumption is that the group members behave similarly. 

Thus, it is argued that it is possible to characterise the decision-making at an 

aggregated level, to integrate the strengths of the ABMs and SR approaches. 

This could allow capturing the location of agents accurately and their behaviour, 

while the requirement of data may not be as exhaustive as that for the individual 

level. This approach will enable the inclusion of the spatial, temporal and social 

dynamics that drive the adoption process. However, one can argue that 

integrating insights from the SR to address some of the ABM limitations may also 

imply new challenges, for instance, it is necessary to investigate whether a 

spatially explicit ABM is also subject to the MAUP, like the SR. 

Moreover, given the limitation of the ABM to calculate both the financial and social 

utility, as it is argued that there is potential in the artificial neural networks (ANN) 

to improve the decision-making process. Rather than the rational choice or the 

stochastic preferences, there is a need for new approaches that capture the non-
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linearity of correlation between adoption drivers and the adoption process [20,21]. 

Because of the ANN training algorithms can extract the complex behaviour of 

data sets, the ANNs are universal estimators. Therefore, they can approximate 

non-linear behaviours such as the PV and EV datasets. Yet, the full potential of 

the neural model to increase the reliability of the model results has not been 

applied to the analysis of spatio-temporal analysis of PV and EVs diffusion. It is 

expected that data-driven knowledge generated by neural networks help to 

estimate the spatio-temporal rates of adoption of these technologies and increase 

the robustness of the model outputs by using spatially explicit data sets. As well, 

it is necessary to recognise the wide variety of drivers of the adoption process 

and their effect on the model performance. Moreover, as the literature suggests 

empirical regularities between PV and EV adoption [29,36] raise whether there is 

a way to transfer knowledge from one process to another. More explicitly, whether 

the PV adoption patterns can inform the spatial diffusion patterns of the EVs have 

been overlooked in the literature. 

Knowledge exchange between PV and EV adoption patterns 

Emerging literature notes empirical regularities between EV and PV adoption 

decisions. McCoy and Lyons [26] model the EV adopters’ environmental utility 

based on the previous adoption of energy-saving technologies which might be 

extended to include PVs as they can offset household demands to draw electricity 

from the grid. More specifically, Davidson et al. [14] have introduced the number 

of EVs registered in a location as an explanatory variable to analyse residential 

PV installations. This together with Cohen and Kollman’s insights [36], that 

suggests the presence of a relationship between EV and PV adoption, however, 

the nature and scope of this relationship have not been empirically quantified. 

Moreover, there is evidence of regularities between the ownership of these 

technologies. Despite these technologies have been analysed simultaneously, 

they have been modelled independently for the same time horizon. As a result, 

there are no available insights on whether agents can transfer learning from the 

decision on one technology to another. This emerges as an area for future 

research to model knowledge transmission between domains, or how the spatial 

patterns of EV adoption can be informed by another technology’s pattern. This 
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may help to extend the understanding of the decision-making process of EV 

adopters based on previous low carbon technology decisions taken. 

1.5.1 Research gaps 

The spatio-temporal analysis of EV and PV (or other low-carbon technologies) is 

an emerging area of study. The contemporary modelling approaches allow to 

explore the spatial, temporal and social dynamics elements of the adoption 

process, yet, there is still the need for new approaches that characterise these 

elements in an integrated framework. More explicitly, the ABM, which in previous 

sections has been shown to have the potential to address such need, by 

integrating elements from the SR and the ANN. Most of ABMs geographic 

location is simulated or semi-empirical, meaning that are limited to capture the 

spatial regularities of the adoption process or energy system. Because the spatial 

regularities in the adoption of low carbon technologies adoption are noted in 

different contexts [46,47], it is imperative to explicitly capture the spatial 

dimension of the EV and PV adoption process. This raises the prospects to adopt 

the spatially explicit models’ capabilities to capture the spatial dependence of the 

adoption process as well as considering the spatial variation in socio-economic 

variables (agents’ heterogeneity). One implication of such spatial ABM models 

might be the use of aggregate data which might be less demanding than those at 

the individual level. However, these spatially explicit models (i.e. spatial 

regression) tend to overlook the temporal dynamics of the adoption process. 

Therefore, the research question is revisited considering the literature review, 

formulating the following hypothesis: 

 

It is possible to explicitly characterise the spatio-temporal dynamics of the 

decision-making towards EVs and PVs, whilst including the social dynamics and 

the relationship between these two technologies. 
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1.6 Thesis aim and objectives 

Therefore, this research aims to develop, test, and validate a modelling 

framework to characterise the spatio-temporal dynamics of the decision-making 

towards EVs and PVs, whilst including the social dynamics and the knowledge 

exchange between these two technologies. In particular, the research develops 

an integrated ABM and ANN model that addresses some of the limitations of the 

common rule-based ABMs. Besides, to integrate the (i) spatial and (ii) temporal 

dependence, (iii) peer-effect, (iv) spillover effect and (iv) preferences towards 

other technologies, such model would build upon insights from the SR,  resulting 

in a novel spatio-temporally explicit ABM, which can analyse the EV and PV 

adoption process. Thus, the aim is unfolded in the following four objectives: 

1. Investigate how the spatio-temporal and social dynamics of the adoption 

process can be captured explicitly by an ABM, drawing insights from the 

SR and integrating the ANN approach as the decision-making process. 

2. Analyse the effect of reflecting the population heterogeneity, by integrating 

the agents' socioeconomic variables into the agents' characterisation. 

3. Investigate the spatio-temporal patterns of EV adoption with the integrated 

model and assess the model’s flexibility and transferability between 

different technologies. 

4. Finally, investigate whether it is possible to exchange knowledge between 

two adoption processes, by integrating PV and EV data into the same 

decision-making. 

Following chapters (2-5) develop each of these objectives, building upon the 

insights of the literature review and on those which precede. Chapter 2 develops 

a novel PV ABM and ANN integrated model, which characterises the spatio-

temporal and social dynamics that drive the adoption process. Chapter 3 extends 

this model to account for the agents' heterogeneity and investigate whether the 

model is subject to the MAUP. Chapter 4 investigates the spatio-temporal 

patterns of EV adoption and assesses whether the model developed for PVs can 

be used for other low carbon technologies. Chapter 5 tests the thesis hypothesis 

by integrating the PV and EV models, to evaluate whether the PV adoption 

process can inform the decision-making towards EV. Each of the modelling 
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chapters (2-5) presents a data analysis that underlines the model’s design and 

validates the results temporally and spatially. Chapter 6 is devoted to the 

discussion of the overall results and findings, acting as the intersection of the 

individual insights produced in previous chapters. Finally, the main conclusions 

are presented at the end of Chapter 6.
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2 Explicit spatio-temporally characterisation of an 

agent-based and artificial neural networks integrated 

model 

2.1 Introduction 

In Chapter 1 the main elements and applications of the ABM and SR are 

presented. This chapter presents in detail the design and development of the 

explicit spatio-temporal model. Given the need for new approaches to 

characterise the adoption process of EVs and PVs, this chapter seeks to outline 

how the temporal and spatial regularities of PV adoption can be explicitly 

captured into the ABM. Moreover, the chapter presents in detail the limitations of 

the ABM decision-making, and how the ANNs will allow agents to learn from their 

past decisions (Section 2.1.2). Therefore, this chapter develops a novel approach 

that characterises the diffusion of PVs. The model’s design is based on agent-

based modelling and integrates insights from the spatial regression model. 

Namely, this chapter’s objectives are as follows: 

1. To integrate the artificial neural networks model as the agents' decision-

making approach and its capabilities to handle time-series. 

2. To make use of spatio-temporal explicit data sets to incorporate the spatial 

and temporal dependence of the adoption process into the agents' 

decision-making. 

3. To implement the effect of social dynamics into the decision-making 

process, by characterising the peer-effect and the neighbourhood effect. 

The model is expected to estimate rates of PV adoption at a specific time and 

place, whilst addressing the limitations of the ABMs. The model is empirically 

tested and validated for the city of Birmingham in England, using PV installations 

data at high spatial and temporal resolution. Birmingham is a metropolitan city in 

the West Midlands, England. It was selected as a study location because it is 

representative of the typical population and is one of the most populous British 

cities besides London. 
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The chapter is organised as follows: the remaining of Section 2.1 presents a 

review of the relevant literature which underlines the theoretical basis for the 

model, focusing on the SR and ANN’s insights that can address the limitations of 

ABMs. Then, section 2.2 explores the spatio-temporal characteristics of the PV 

data, which in turn will define the model design. Section 2.2.5 builds upon these 

findings and present the spatio-temporally explicit ABM, as well as the technique 

for validation. In Sections 2.4 the results are presented and discussed, focusing 

on the model validation, the applicability of the results, and limitations. Finally, 

Sections 2.5 summarises the findings produced and sets a pathway for the 

following chapters. 

2.1.1 Spatio-temporal characterisation of the technology diffusion 

Building upon the literature review in Chapter 1, this section presents in detail the 

different ABM characterisations of the adoption process and underlines the 

modelling elements for the spatio-temporally explicit ABM. Such elements are 

entities, objects, agents characterisation, decision-making, and social effects. 

Objects and Entities 

The modelled objects in the reviewed ABMs comprise EVs [25,27,33], PVs 

[68,94], and others such as environmental innovations [93], energy innovations 

[43,75,87], and heating systems [50]. Yet, the entities (agents) characterised only 

include individuals or households, as the reviewed studies consider consumer to 

consumer interactions, disregarding the merchandising activity and the seller-

consumer interaction. 

Characterisation, Location and Data sources 

Agents’ characterisation comprises the assignment of individual characteristics 

and their location in a virtual representation of the physical world. Modellers 

commonly use georeferenced data (and geographical information systems) to 

create a world-like layout and locate the agents. The reviewed ABMs commonly 

characterises agents as individuals or households, whilst the number of agents 

varies from a small proportion of the population to entire populations. For 

instance, Adepetu and Keshav [68] create a semi-empirical population which is 
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assigned with real socioeconomic characteristics of 100 households, yet it is not 

clear whether the sample is statistically significant for the total population in 

Ontario. Instead, Rai and Robinson [90], Robinson and Rai [76], and Robinson 

et al. [91] model the total households from Austin (Texas, US), using data from 

the census. Then, they differentiate adopters from non-adopters, applying the 

findings from a previous survey carried out for PV adopters. 

An alternative approach is the one which combines current survey data with other 

methods or software to create a virtual population. Survey data has been used to 

characterise significant samples of the population, which is then simulated as 

many times as needed to capture the actual population size [25,77,78]. Similarly, 

Cui et al. [27] generate a virtual population of households based on actual 

aggregated data. By applying the copula-based household synthesiser4, they 

generate an individual virtual household population with similar characteristics 

(with intra-group variance), resulting in the simulation of 190,965 agents. 

Eppstein et al. [33] create a full virtual population of households. First, they 

generate a virtual distribution of income, considering five hypothetical cities. 

Drawing from previous experimentations that show no significant differences 

between simulation with 1,000 or 10,000 agents, the authors use 1,000 in the 

interest of computational efficiency. These agents are created using the turning 

bands method. 

The location of the agents is fully related to the agents' characterisation, yet 

empirical or semi-empirical characterisation may imply a simulated location. 

Hence, the actual location may differ from the simulation and may involve a loss 

in data accuracy [25]. Although 'the agents' location needs to be accurate, it is a 

challenging task to obtain personal characteristics of the entire population [27]. 

Decision-making criteria 

Commonly, the ABMs use rational choice principles, assuming that agents have 

access to perfect market information and can evaluate the benefit of their 

 

4 This method simulates households using local distributions (i.e. the statistics of each census 
block), which allows to keep empirical correlations. 
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decisions. However, this is rather limiting as some of the drivers such as peer-

effect or personal beliefs have subjective value, and individuals rarely possess 

perfect market information [43,72–74]. Then, the authors use a utility or social 

threshold to characterise their decision-making process [26,33]. The utility 

threshold considers exogenous and objective elements to the agents, such as 

electricity prices or government subsidies, and this is usually associated with the 

financial benefits of adopting a certain technology. On the other hand, the social 

threshold reflects subjective elements such as the agents’ personal beliefs, 

values, and reflects how adopting a certain technology satisfies the interpersonal 

preferences of the individual.  

In most studies, the agent’s decision-making process is defined by a single 

criterion [25–27,32,68]. A single criterion approach is most commonly used, 

however, other studies have also suggested employing a multi-step process, for 

instance, Eppstein et al. [33] characterise the agents with an equation to calculate 

the relative cost of buying a new vehicle (among a set of options). They consider 

the purchase cost, financing, fuel and electricity cost. Then, the agent compares 

this cost with net annual income. If the sum of these costs exceeds 20% of the 

annual income, this is considered unaffordable. However, if the vehicle is 

affordable, the agent then considers the social benefits. The agent then 

calculates the perceived social benefit of each vehicle; if these benefits exceed 

the social threshold, the agent adopts that specific option. Others such as 

Robinson et al. [76,91] model the decision-making process using both social and 

utility thresholds. Financial benefits are calculated based on the financial 

payback, considering the energy produced by the solar panel, the price per kWh 

generated, and the government subsidies. The social threshold is related to the 

attitudinal variables which change according to the social network effect. 

Social effects 

Regardless of the type of threshold used to characterise the decision-making 

process, most of the ABM studies implement the interaction among agents. 

These interactions can be described in two approaches, the peer-effect and the 

social norms. The former refers to the direct influence of the social network in the 

decisions (perception). The latter comprises the impact of the collective 
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behaviour on the agent’s decision-making. The agent’s social network may be 

characterised using different approaches, for instance, defining a spatial 

neighbourhood or choosing between those agents with similar characteristics. 

Eppstein et al. [33] define the agent’s social network as the k nearest 

neighbourhood (starting with k=2) and generate random social networks. 

Similarly, Adepetu, Keshav and Arya [25] and Schwarz and Ernst [93] define 

spatial proximity and connect the agents with similar socio-economic 

characteristics. Robinson and Rai [76] combine the distance-based and agents 

similarity criteria with a random connection so that agents are connected with 

other agents anywhere in the area. Exceptionally, Cui et al. [27] do not provide 

detail on the agents' social-network structure. 

Alternatively, the social norm has been modelled by considering the adoption rate 

of the total population as a proxy for the social effect [26,32,68]. Similarly, 

Eppstein et al. [33] use the media coverage in an area as an indication of the 

environmental awareness which increases over time, whilst Robinson and Rai 

[76] implement the perception of the technology as a measurement of social 

awareness of the social norm 

2.1.2 Artificial neural networks as a decision-making process 

The ABM faces some limitations (Section 1.2.1) because the decision-making 

process assumes that the agents decide by assessing the financial benefits from 

a set of alternatives, and social utility based on personal and social norms. This 

is because the social utility is subjective, and consumers rarely possess the 

perfect information of whole alternatives to make comparisons economically. To 

address these uncertainties, some authors such as [40] have run a sensitivity 

analysis on market conditions. These authors modelled the adoption of EVs 

under different assumptions of the macro-economic adoption drivers (i.e. 

gasoline price, energy cost, vehicle taxes, subsidies, vehicle cost). Additionally, 

some scholars have pointed to the need for alternative decision-making methods 

that consider elements from the human cognition [49]. 

Noori and Tatari [49] propose considering alternative and more realistic 

behavioural models by including other characteristics of human decision-making, 
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however, the literature for ABMs using an alternative adoption criterion is scarce. 

For instance, Kang and Choi [103] propose a theoretical ABM and ANN 

integrated model as an alternative to the decision-making process. The artificial 

neural network model emulates how the human brain generates information, by 

associating experience (past data) and the associated decision (output). The 

generated experience-based knowledge reduces uncertainty, as the model can 

adapt to new conditions that are not available during the training.  Kang and 

Choi’s [103] model optimises the combination of each individual’s decision which 

is chosen from a set of possible decisions. This approach uses the ANN to 

optimise the strategies that the agents execute, evaluating the global fitness of 

the model to solve a specific problem. However, the decision-making is not done 

by the ANN but is chosen from a list of possible actions. Then, through the training 

process, the ANN learn which combination of actions produces the best model 

fitness and communicates that to the agents. In this sense, the ANN interact with 

the agents in a hierarchical way, which is in principle a contradiction to the ABM 

philosophy. The ABM assumes that the agents are autonomous [68] and that the 

system cannot be controlled in its whole [43].  

Given the limitations of the ABMs decision-making, and that the agents rely on 

experience and perception more than from complicated calculation, as informed 

by the bounded rationality [76,102,104]. This is expected to provide a more 

realistic characterisation of the adoption process, whilst providing an explicit time 

horizon for the decision-making. Thus, it is argued that the ANN concept of 

experienced-based knowledge [105–107] applies to the decision-making of the 

ABMs. From the pedagogy point of view, this has been described by Kolb’s 

learning framework, which defines learning as the combination of experience and 

reflection. The former refers to the degree of involvement/engagement, the 

relevance for the individual, and the type of activity (task or interaction). The latter 

comprises the mechanism for reflection available to the individual, behaviours 

and attitudes [108,109]. These experience and reflection elements can be found 

in both the ABM and the adoption process. First, the experience includes the 

presentation of information to the ANN, meaning the EV/PV time-series. This also 

comprises the actual first-hand experience of the agents with the EVs or PVs 
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technologies, for instance, trials [110] or observation [20]. The experience 

considers the relative relevance for the individuals, for instance, environmental 

concern [36] or green party tendencies. Secondly, the reflection elements 

comprise how the ANN assesses the fitness of its estimations while reflecting 

attitudinal preference towards those EVs/PVs (financial and social utility), and the 

way the individual assesses such benefits. Then, the learning of the ABM and the 

individuals come from the interaction of such elements. 

Other computational models such as the Fuzzy Logic or the Genetic Algorithms 

also implement elements of the human cognition. The former generates 

knowledge from a set of inference rules, by assuming that decision-making is 

uncertain and imprecise [111–113], while the latter is a biology-inspired 

optimisation model that can extract knowledge from complex datasets 

[111,112,114]. However, these techniques present limitations to handle the time 

variable. Moreover, the capabilities of the ANNs to inform the decision-making 

process in ABMs is still unexplored in detail yet  even though, they present a 

number of capabilities noted by Haykin [115]: 

• Universal estimation capability - ANN can describe nonlinear functions, 

usually corresponding to complex behaviour. 

• Mapping of associations between input and output - ANNs do not require 

specifying the association rules between inputs and desired outputs, 

rather they are created through training. 

• Adaptivity - ANN can learn from disruptive changes in the data trends, by 

modifying its characteristics.  

• Contextual Information - each ANN element is potentially affected by each 

other input; thus, correlations are considered. 

 

In a particular study, the ANN has been used at the aggregated level to identify 

the “adoption state” of a location [88,89]. In these studies, the neural network 

model is trained to memorise the socioeconomic characteristics of the areas with 

PVs, and then identify when a location reaches these characteristics. The areas 
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in this model are uniformly defined grid cells, disregarding the real-world layout 

and impacts of areas on each other. The forecasting process calculates the total 

amount of PV in each region using an S-curve, which shows the historical growth 

of the PV in the entire population. The assignment of local values from regional 

characteristics do not allow the model to consider local characteristics. 

Consequently, the potential of ANN to improve the decision-making process of 

PV adopters by capturing characteristics of areas explicitly is still overlooked 

which is expected to be addressed using empirical data. 

2.1.3 The spatial nature of the social effects 

The ABM allows the representation of the social dynamics that drive the decision-

making. Namely, these social dynamics include the peer-effect and social norms, 

capturing the influence that one individual has on another or the influence of the 

overall society’s trend, respectively. Although some authors have defined the 

agent’s social network using the distance between agents as criteria [33,93], 

whether the distance between agents reinforces or decreases the social effects 

has not yet been tested.  

Contrary to the SR allows to characterise explicitly the spatial layout of the 

diffusion process, yet, these approaches tend to overlook the temporal dimension 

of the adoption process. In spatial regression, the so-called spillover effect 

captures the information flow between or within specific locations [8,20,46]. This 

effect is implemented in different means, for instance, Balta-Ozkan, Yildirim and 

Connor [8] characterise this as the influence of one area over the adjacent 

locations. Conversely, Richter [20] defines this as the transmission of information 

between the individuals in the same area. Like the ABM, areas are influenced by 

those in their “social network”, yet, this social network is based on geographical 

elements. The spatial regression models identify this relationship in two ways: 

adjacency and distance. In the former, this influence has the same magnitude for 

all areas that share a border, whilst disregarding the influence of areas that are 

not adjacent [13]. The distance-based approach disregards the adjacency and 

assumes that the social influence decreases with the distance such that the 

influence of one area over another will have a greater impact the closer they are. 

The research argues that the spillover effect as a representation of the spatial 
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dependence can be homologous to the social influence of the ABMs. Then, the 

following sections present the step-by-step development of an ABM model that 

implements the spatio-temporal and social dynamics of the adoption process. 

2.2 Methods and materials 

This section outlines the construction of a postcode district level agent-based 

model that can reproduce the spatio-temporal patterns of the PV adoption, by 

using ANN as the agents' decision-making criteria, to reduce the uncertainty in 

the decision-making process.  

2.2.1 Data 

The model uses historical PV installation data and ignores any activity done by 

the sellers/car retailers [8,14,20,68]. The dataset comprises individual PV 

registrations by their registration date as compiled by the Office of Gas and 

Electricity Markets (Ofgem) as of 30 December 2015. The Feed-in Tariff 

Installation Report accounts for the geo-referenced5 database of all renewable 

energy installations such as anaerobic digestion, combined heat and power, the 

hydro, wind, and solar photovoltaic. The analysis uses all domestic PV 

registrations as explained below, the choice of the database’s spatial and 

temporal resolution is critical to accurately represent the actual spatio-temporal 

patterns of PV adoption as discussed further in section 3.1.1. Therefore, the ABM 

and ANN model characterises the agents as the 49 Postcodes (PCs) in the City 

of Birmingham in England. The simulation comprises data from Jan 2011 to Dec 

2015, resulting in a total of 60 observations (months) for each PC; over this period 

the number of PVs installed increased from N = 214 to 82366. Figure 6 shows the 

range of values among the PCs, which have an average of 151 PVs. Despite 

most of the areas have a total number of PVs between 100 and 200, there are 

areas with extreme values (more than 400 and 0 PVs), resulting in a large 

variance in the data across the areas. It is expected that that given the 

 

5 Each registration is geo-referenced to a postcode, which can be later be associated with other 
spatial resolution, such as Local Authorities. 
6 Note that because of the low level of PV adoption before Jan 2011, this data was excluded from 
the analysis (Total PV < 3% before 2011; Average PV per PC < 4) 
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individuality of the ANNs, the agents can adapt to the local variations, instead of 

fitting their behaviour to the overall data trend. Moreover, Chapter 3 studies the 

effect of changing the number of agents in the simulation, consequently 

introducing variation in the socioeconomic characteristics of the population. 

2.2.2 Spatio-temporal resolution 

The aim is to generate a model able to analyse the patterns of the PV adoption 

at a high spatio-temporal resolution, yet the identification of what defines ‘high’ 

resolution requires critical analysis of the data. Yet, given the different range of 

values across the areas, data sets are normalised in a [0-1] range7, following 

equation (2-1). 

𝑃�̂�𝑖,𝑡 =  
𝑃𝑉𝑖,𝑡 − 𝑀𝑖𝑛𝑃𝑉𝑖

𝑀𝑎𝑥𝑃𝑉𝑖 −  𝑀𝑖𝑛𝑃𝑉𝑖
 

(2-1) 

 

Where  

𝑃�̂�𝑖,𝑡is the t-th PV estimation in the i-th area 

𝑀𝑖𝑛𝑖 is the minimum number of PVs in the i-th area over the study period 

𝑀𝑎𝑥𝑖 is the maximum number of PVs in the i-th area over the study period 

 

 

7 The total PV for Birmingham is also presented as a reference, normalisation follows the same 
definition as the individual areal definition. 
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Figure 6. Boxplot of the total PV installations in Birmingham. 

 

This transformation helps to visualise that there is a trade-off between the spatio-

temporal resolution and the data variability and availability, as high spatial 

resolutions present limited data variability, whilst low temporal resolutions may 

overlook specific changes in the agents’ behaviour. Figure 7 and Figure 8 show 

the adoption rates of PVs for the postcodes districts and Local Superoutput Area 

in Birmingham, being the former bigger areas than the latter. Figure 7 displays 

time-series with high variability, exhibiting similar behaviour to the total of 

Birmingham, on the other hand, Figure 8 shows a stepped function with low 

variability. As seen, the data may present different behaviours depending on the 

spatial resolutions (PV adoption is proportional to spatial areas). On the other 

hand, the temporal resolution helps to increase the data variability, as the data 

accumulates and changes over time are more evident (i.e. ranging from monthly 

to six-months), however, the temporal resolution limits the number of 

observations. On one extreme of the resolutions, the annual adoption rates at the 

national level have been used by those approaches that focus on the 

technological choices to achieve certain levels of GHGs, and as mentioned 
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before, those have limitations to inform about local regularities in the EV and PV 

adoption. On the other side, characterising the individual adoption on daily basis 

would result in a significant amount of data. Moreover, the results of using such 

resolution would not be able to inform policymaking or DNOs unless these were 

aggregated [77,78]. Alternative combinations of spatial and temporal resolutions 

are available in Figure 70, Figure 71, Figure 72, and Figure 73 (Appendix 2). 

This study uses a combination of the PC and monthly resolutions, as this is the 

combination with the most variability and the most possible number of 

observations; this resolution is consistent with Richter [20]. Figure 7 and Figure 

8 also present the cumulative adoption rates of PVs adoption for Birmingham, 

(solid black line), to visualise how the aggregated figures disregard the specific 

local behaviours. However, this is not clear if there is a seasonal behaviour or 

any repetitive patterns, thus, the following section presents an in-depth analysis 

of spatial and temporal dependences. The spatial distribution of PVs at PC 

resolution is shown in Figure 9. As seen, there are a few areas with less than 50 

PVs, most of which correspond to the city centre areas where the number of 

residential buildings is low. The following sections present a statistical analysis to 

explore the spatial and temporal dependence of the datasets. 
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Figure 7. Normalised monthly cumulative adoption rates of solar PV at the PC 

level. 

 

Figure 8. Normalised monthly distribution of solar PV adoption at LSOA level. 
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Figure 9. Spatial distribution of the PV installations in the Birmingham postcodes 

(Dec 2015)8. 

2.2.3 Temporal dependency 

Because literature does not provide clear criteria or method to identify the 

temporal dependency of the adoption process, other than trial and error, the 

Autocorrelation function (ACF) and the Partial autocorrelation function (PACF) 

are calculated. Both statistics are used in the time-series analysis to define the 

number and order of lags in the data. For instance, the Box-Jenkins methodology 

uses the ACF and PACF to define the ARIMA9 model parameters. The ACF 

measures the correlation between 𝑃𝑉𝑡 and 𝑃𝑉𝑡−1, the second lag measures 𝑃𝑉𝑡 

and 𝑃𝑉𝑡−2, and so on. Figure 10 shows the ACF functions for the cumulative rates 

of PV adoption, which plots the degree of the autocorrelation of each lag and the 

significance interval. Each boxplot represents the number of PCs with a 

significant lag at the i-th lag. For instance, at the mean and median of the 

correlation or order one (t-1) is very close to the significance level. The size of 

the boxes decreases over time, suggesting that the PV datasets have an 

autoregressive nature. 

 

8 All maps presented in this thesis are self-elaborated using the data stated in each of the 
chapters, using the ArcMap v10.4.1 software. 
9 Auto Regressive Integrated Moving Average 
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On the other hand, the PACF looks at the effect that has not been yet explained 

by the autoregressive element. Then, the PACF looks at the autocorrelation of 

the residuals after calculating the AFC. Figure 11, the datasets have a significant 

correlation with the first lag, this means that the autoregressive model is of order 

1, thus, the model’s inputs are elements at t-1. This is used in Section 2.3 to 

define the structure of the inputs, defining the output of the decision-making 

process in terms of the preceding month. There are other significant lags, yet 

these are present in less than 10% of the PCs and their mean and median are 

close to cero, suggesting that most of the PCs have a near to zero influence of 

decisions made more than a month ago. Also, the absence of significant lags in 

a quarterly manner nor the twelfth lag suggests that the adoption of PVs does not 

present a seasonal behaviour. Both functions are calculated using Python, 

considering monthly resolution and up to 12 lags.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. ACF of the PV installation data at the PC level. 

 

t      t-1      t-2     t-3     t-4     t-5      t-6      t-7      t-8      t-9    t-10    t-11   t-12 

Significance level   
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Figure 11. PACF of the PV installation data at the PC level. 

2.2.4 Spatial dependency 

The spatial association between the observations is analysed via the Moran's I 

statistic [8,15,19,80], which is a global indicator of spatial association. This is a 

multi-directional indicator that accounts for the distances between locations 

instead of temporal lags. A Moran's I value > 0 indicates that the data tend to 

cluster, while a value < 0 indicates a tendency to dispersion. The Moran’s I 

statistic is calculated using the ArcMap software (version 10.4.1) for the monthly 

data at PC resolution, considering the distance from the population centroids10. 

To reflect how the correlation between areas decays along with the distance, the 

weights are calculated as the inverse of the distance: 𝑤𝑖𝑗 = 1
𝑑𝑖𝑗

⁄ , where 𝑑𝑖𝑗 is the 

distance between any two PCs. Table 5 summarises the Moran’s I statistics for 

 

10 These centroids are a weighted reference point for the centre of the population. 

Significance level   

t      t-1      t-2     t-3     t-4     t-5      t-6      t-7      t-8      t-9    t-10    t-11   t-12 
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the total number of PV installations at each PC by Dec 2015, which suggests 

spatial clustering patterns. Then Figure 12 displays the clusters and their types11, 

as seen, the PV datasets exhibit Low-Low clusters (cold spots) located in the City 

centre having a low number of PVs, while the (High-High cluster) hot spots are in 

the south-west of the City accounting for the max number of PVs and its 

surroundings (see Figure 9). 

 

Table 5. The Moran’s I index value, z-score and p-value of the PV installations data 

Statistics Moran’s Index z-cores p-value 

Value 0.3640 5.0341 0.0000* 

Given the z-core of 5.0341, there is less than 1% likelihood that this clustered 

pattern could be the results of random chance. 

The statistical significance is marked with asterisks. 

*p<0.05 

 

 

11 Clusters of low PV values (Low-Low) or cold spots, and or high (High-High) data values or hot 
spots [164–167]. 
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Figure 12. Hot spot analysis of the PV installations at PC level (Dec 2015). 

2.2.5 Model design 

Figure 13 exemplifies the key elements of the spatio-temporally explicit ABM and 

ANN approach. As seen, the model characterises agents as geographical areas 

(𝐴𝑟𝑒𝑎𝑖) that represent the cumulativive decision making of the individuals living 

in that area [20,102]. The model accounts for the spillover effect and peer-effect, 

the former reflects the influence of one area over others, and the latter is the 

pairwise influence of one area over another. Additionally, the model reflects how 

the spillover effect decreases with the distance, by considering the distance 

between locations. 
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Figure 13. Conceptual model of a spatio-temporal explicit ABM. 

 

The literature offers studies that have integrated the ABM and ANN models to 

create intelligent agents, however, these have not fully utilised the decision-

making capabilities of the ANNs. Table 6 shows the abstraction of two of those 

models and the model proposed in this research. Kang and Choi [103] theoretical 

model use the ANN to improve the overall model performance, optimising the 

available options for the agents. In a sense, this could be seen as governing or 

directing the behaviour of the agents instead of keeping their autonomy. Zhao et 

al. [88] use the ANN to memorise the adoption state of a geographical area. Then, 

if the output of the ANN is that the area is in one of the adoption states, the model 

uses the Bass model to estimate the total number of PV. Despite these initial 

attempts to integrate the ANN with the ABM, the decision-making is still not fully 

characterised by the ANN. As seen in Table 6, the proposed model uses the ANN 

for both the decision making and the estimation of the adoption rates. 

𝐴𝑟𝑒𝑎1 

𝐴𝑟𝑒𝑎3 

𝐴𝑟𝑒𝑎4 

𝐴𝑟𝑒𝑎2 

𝑑3 

𝑑2 

𝑑5 𝑑4 

𝑑1, 

Spatial reference 

Spillover effect (weighted by the pairwise 

distance) 

Peer-effect 
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Table 6. Comparison of three implementations of ABM and ANN hybrid models. 

ABM + ANN 

[103] 

Spatio-temporally 

explicit ABM + ANN 

Hybrid model (ANN)  

[88] 

   

 

2.3 Model development 

The integrated ABM and ANN model is structured in two layers: the spatial layout 

and the decision-making process. Information is transmitted from one layer to 

another as shown in Figure 14, where the second layer is embedded in the first 

one. The spatial layout layer is an ABM module that fulfils the following three main 

functions: (i) spatio-temporal characterisation of agents; (ii) definition of social 

effects; and (iii) management of information flows between the agents.  

The second layer contains a population of ANN that replaces the common rule-

based approach by processing the inputs obtained from the spatial layout layer. 

The decision-making process is driven by the temporal resolution, reflecting the 

temporal dependence of the number of PVs on those in a preceding period. 
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Figure 14. Methodological framework and information flow between the 

layers. 

 

The model implementation follows the four steps shown in Figure 15. These start 

with the agents' characterisation, creating an agent for each of the PCs in the 

Birmingham area. The model uses the boundary files (.shp) to define the shape 

of each area and to assign a georeference according to the population centroid. 

Each of these agents makes a query to the PV installation database, loading their 

individual time-series. Using the adjacency principle, the model associates 

neighbouring PCs and calculate the distance between their centroids. This is then 

used to calculate the spill-over effect. Afterwards, each of the agents is assigned 

with a neural network, which is initialised using random values.Then, the ANN is 

presented with pairs of inputs and outputs to the neural network, through the 

learning algorithm it generates knowledge (see Algorithm 2 in Appendix 4). 
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Because the decision-making considers the actions of other agents, the algorithm 

must communicate each individual decision to the population. This information 

flows occurs considering the social-network of each agent and the distance. To 

reduce computation time during the training, instead of calculating the number of 

PVs in the surrounding areas, this number is calculated beforehand. Thus, the 

time-series for the training comprises the total number of PVs in the adjacent 

areas which are weighted by the distance between the areas. During the forecast, 

the communication process takes place after every agent has estimated the 

adoption rates. The model also considers the random element of the synaptic 

weights, by running the whole simulation 100 times, then, the results report the 

average behaviour of the model’s output. 
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Figure 15. A four-step process for the implementation of the model. 
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The model was implemented using the AnyLogic v7.3.2 software, Java 

programming language for the ANN module, Python and ArcMap for the statistical 

tests. Algorithm 1 shows the pseudocode for the step-by-step main procedure for 

the simulations. Figure 16 shows the spatial layout of the agents in the 

Birmingham area and their social-networks. 

 

Algorithm 1 The PV adoption process 

Agents characterisation 

1. for each agent PC in Birmingham do 
2. PC.location ← actual population centroid 
3. PC.PVt ← PV installation dataset 

 

4. function AGENT_NEIGHBOURS() 
5. for each PC in agent_aux.Neighbours do 
6. agent_aux.calculatePVNeighbourhood() 
7. agent_aux.calculateDistance() 
8. end for 
9. end function 

 

10. function AGENT_ANN() 
11. for each PC in Birmingham do 
12. agent_aux.ANN(weight) ← random_between(0,1) 
13. end for 
14. end function 
15. end for 

 

Training 

16. function TRAIN() 
17. for each agent PC in Birmingham do 
18. PC.train() 
19. PC.estimationError ← Mean absolute percentage error 
20. end for 
21. end function 

 

Forecasting 

22. for each PC in Birmingham do 
23. PC.PVt+1 ← PC.forecastPV() 
24. PC. calculatePVNeighbourhood() 
25. end for 
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Figure 16. Implementation of the conceptual model using Anylogic software.  

 

2.3.1 Decision-making process 

The agent’s decision-making is characterised by an artificial neural network, 

which emulates some elements of the human cognition. In the brain, this strength 

is modified by repetitive stimulation or by lack of activity in the specific neurons. 

In the computational models, the synaptic weights are fitted through a process 

called training. Both social effects, the influences between (i.e. spillover) and 

within (i.e. peer-effect) areas, are characterised independently. The spillover 

effect follows Balta-Ozkan, Yildirim and Connor [8], whereas the influence within 

areas is defined by Richter [20]. Both spillover and peer-effect are defined by the 
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total number of PVs at a specific location and the other agents in the social 

network. Although the effect of risk or uncertainty on the decision-making is not 

explicitly considered, it has been shown the perception of risk is driven by the 

individuals’ and peers’ experiences [74]. The assumption of the lack of perfect 

market foresight can be extended to the assessment of risk, as individuals may 

not be able to calculate the probability of extreme events (i.e. drought or flooding) 

nor the impact on their expected benefit [74]. Then, the aversion to technology 

adoption due to risk and uncertainty is biased and driven by the individual 

experiences and those in their social networks [26,74,95]. Therefore, the model 

accounts for a degree of risk and uncertainty by integrating the peer-effect into 

the decision-making. 

Social networks are defined using the adjacency criteria, whilst considering the 

distance between connected areas, thus, the social networks and the spatial 

weights are fixed at the beginning of the simulation, Then, a spatial coefficient is 

calculated based on the inverse distance between locations [8]. Figure 13 shows 

the ABM module, where each agent has a fixed position and explicit boundaries. 

The red lines represent the spillover effect, which is the social effect that spatially 

adjacent geographical areas have on each other [8], which is affected by the 

distance between the agents. The blue lines represent the peer effect, which is 

the social effect that occurs within geographical locations [20] and is not sensitive 

to the distance.  

Neural network training 

ANNs are like linear (or non-linear) least squares regression, in the sense that 

both attempt to minimize the sum of squared errors. In this case, the fitting takes 

place through a training process, which consists of presenting pairs of inputs and 

outputs, calculating the error of estimation, and subsequently adjusting the ANNs’ 

weights. This process happens iteratively by splitting the datasets into three 

subsets: training, validation, and test. A common training approach is the 

Backpropagation method (BP), which is a two-phase process. During the forward 

phase, inputs from the training subset are passed through the neural network to 

determine the output. Once an output has been estimated, an error of estimation 

is calculated against the expected value. Then, this error is propagated through 
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the network in the backward phase, by adjusting the weights and minimizing the 

error of estimation. Once the whole training subset has been presented, the 

model validates the ANN against the validation subset, if the ANN does not meet 

the stopping criteria, the process repeats; presenting the whole training subset 

again. Commonly, the stopping criteria are related to the level of error, in other 

words, if the ANN can estimate the actual data at a certain accuracy level then 

the training is over. The training algorithm used for this analysis is shown in 

Appendix 4; for a detailed mathematical description of the backpropagation see 

[105,116,117]. 

This research designs the ANNs to have a rather simple linear and sequential 

structure, with three layers of neurons, the input, the hidden and the output layers. 

A linear structure with a single hidden layer has been proven to be sufficient to 

approach to any nonlinear function [118] and used to forecast the PV generation 

[119,120]. As seen in Figure 17, the input layer (yellow) includes a node for each 

of the social effects for t-1; the hidden layer (green) comprises one neuron for 

each of the inputs, and the output (red) layer contains a single neuron to produce 

a single output. The temporal dependency is captured by the time lag between 

input and output, while the spatial dependency is captured by the spillover effect 

(via the neighbouring PV node). Then, the layers are connected to the next layer 

using synaptic weights, which are randomly initialized with values between [0- 1]. 

Additionally, the model includes bias nodes in the input and hidden layers. These 

are nodes with a constant value of (1) and can be interpreted as the 𝛽0 in a Linear 

Regression; which is a constant term reflecting the intercept of the function. 

To produce these outputs, the neurons use an activation function, which is similar 

to the biological activation threshold [105,121,122]. Because the model accounts 

for the decision of whether to adopt or not (a binary decision), the model 

implements the sigmoid function (logistic function) for the neurons in the hidden 

and output layers12. This function, presented in equation (2-2), is ideal to account 

 

12 No calculations are made at the input layer, this can be seen as if the input layer uses the linear 
function ( 𝑓(𝑥) =  𝑥 ) 
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for probabilities since the output values are between 0 and 1 as shown in equation 

(2-2). 

 

𝑓(𝑥) =  
1

1 + 𝑒−𝑥
 

(2-2) 

 

Where  

x is the number of PVs in a specific PC 

 

 

Figure 17. Artificial neural network design for a spatio-temporal explicit ABM. 

 

The training process assesses the ANN’s performance using the validation 

subset and evaluating the average error. If this error meets the stopping 

condition, the training stops, otherwise, the training continues. This validation is 

an internal process of the training process and is independent of the overall model 
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validation. Instead of the common 70%, 15%, 15% split of the data for the training, 

validation and forecast, because of the limited number of observations (N=60), 

the sample is divided into 90%, 5%, 5% sets following [105,121,122]. After 

optimising the ANN synaptic weights, the training and the validation subsets are 

merged, enlarging the training set (95%-5%, 55-5 observations). 

 

2.3.2 Model validation 

The model is assessed based on its capabilities to reproduce the spatio-temporal 

patterns of PV adoption. Thus, its performance is measured in space and time. A 

common measure to assess the ANN performance is the Mean Absolute 

Percentage Error (MAPE) [105], which measure the overall performance over the 

specific time horizon (time-series). However, this calculation is for a single neural 

network. As each area has its neural network, this definition is applied for each 

of the agents whilst accounting for the population size. Individual and population 

MAPE’s definition is shown in equations (2-3) and (2-4). 

 

𝑀𝐴𝑃𝐸𝑗 =  
100%

𝑛
∑ |

𝑃𝑉𝑡 − 𝑃�̂�𝑡

𝑃𝑉𝑡
|

𝑛

𝑖=1

 (2-3) 

 

Where  

n is the time series size 

𝑃𝑉𝑡 is the current number of PVs in the month t 

𝑃�̂�𝑡is the estimation of the number of PVs in the month t 

i is the specific month (among the time-series) 

j is the specific postcode district 
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𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑀𝐴𝑃𝐸 =  
1

𝑚
∑ 𝑀𝐴𝑃𝐸𝑘

𝑚

𝑘=1

 (2-4) 

 

Where  

m is the population size 

k is the specific area (among the 49 PCs) 

 

Additionally, as a benchmark for comparison the analysis estimate s-curves using 

the same datasets, these are presented where relevant. The Bass model is 

commonly used to model the adoption of innovation [40,42], yet this does not 

consider the spatial dependence and have limited capabilities to account for the 

temporal dynamics of the adoption process [37]. Appendix 6 summarises the 

methodology followed; the errors of estimation are calculated in the same way as 

those for the ANNs. 

2.4 Results 

2.4.1 Temporal validation 

Figure 18 compares actual PV numbers against the estimations produced by the 

model and those from the Bass model. As seen, both models’ estimations exhibit 

different behaviours over time, for instance, the Bass model is closer to the actual 

data at the beginning and at the end of the time series. Yet the rate of adoption 

is nearly linear with large deviations in the mid-periods. On the other hand, the 

ANN estimation follows the actual PV installations more closely most of the time, 

yet its forecasts are largely overestimated in comparison with the Bass model. In 

general, the ANN has better capabilities to replicate the temporal dynamics, with 

an accuracy around 89% of underestimation against the 82% of overestimation 

of the Bass model by the last months of the training phase. The model’s 

performance is ~5% lower than those from the reviewed ABMs [25,76,90,91], yet, 

those models cannot inform about the local estimation rates. The errors of 
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estimations are shown in Figure 19, where the ANNs are more likely to produce 

extreme values because at the beginning of the training neural network they have 

been fed with a small proportion of the time-series data [118,121–123]. Yet, the 

MAPE decreases over time and stabilises at the end of the sample. However, the 

errors of estimation for the forecasted periods start accumulating and then 

diverge. 

The MAPE for the first forecasted values are like the model’s training, but 

because the estimation is affected not only by the own agent’s error but by those 

in their social networks, it quickly reaches 70% by the fifth step (further details 

are in section 4.3). Similarly, the Bass model also presents large errors when the 

ANNs do, however, its errors are at least 20% larger. Then, at the end of the time-

series, the errors decrease and diverge. These results of the autoregressive 

model are then compared with those of the models in Chapters 3, 4 and 5 in 

Section 5.3.3 and considering those from the literature in Section 6.1.4. Despite 

both models having a similar behaviour at the end of the training period, the 

performance differs more than 20%. The ABM integrated model being an iterative 

method aims to reduce the estimation error at each time step, adapting to the 

data behaviour over time. However, the learning of the model depends on the 

amount of data that has been presented to the ANN, having the best performance 

at the end of the training. On the other hand, the Bass model minimises the overall 

estimation error, meaning that the estimations with high accuracy will offset the 

estimations with low accuracy. Then, on average the model minimises the 

estimation error but has limited capabilities to adapt to local changes in the data 

behaviour.  
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Figure 18. Cumulative PV adoption rates estimated by ANN and Bass model vs. 

actual data. 

 

 

Figure 19. The error of estimation for the ANN and Bass models. 

The errors of estimations present some peaks, which suggest shifts in the agents' 

behaviour in late 2011s, yet, the ANNs can adapt to these changes and adjust to 

the new data trends. To identify these disturbances, the analysis calculates the 
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absolute marginal change over time and the average of those changes, using 

equations (2-5) and (2-6): 

 

𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑚𝑎𝑟𝑔𝑖𝑛𝑎𝑙 𝑐ℎ𝑎𝑛𝑔𝑒𝑖  =  |𝑀𝐴𝑃𝐸𝑖 − 𝑀𝐴𝑃𝐸𝑖−1| (2-5) 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑚𝑎𝑟𝑔𝑖𝑛𝑎𝑙 𝑐ℎ𝑎𝑛𝑔𝑒 =  
1

𝑛
∑ 𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑚𝑎𝑟𝑔𝑖𝑛𝑎𝑙 𝑐ℎ𝑎𝑛𝑔𝑒𝑖

𝑛

𝑖=1

 
(2-6) 

 

Figure 20 shows the concentration of the marginal changes that were higher than 

the average change. As seen, there are three points where ~20% of the PCs 

present peaks in their estimations. The concentration of these changes suggests 

that some of the agents' behaviour is not captured by the autoregressive model 

and that there might be other factors that are driving this shift which can be 

captured by a multivariable model. It is been noted that one of the drivers for the 

PV adoption is the Feed-in Tarrif’s (FiT) financial incentive [20,124–126], thus, it 

may be argued that these disturbances may be caused by the variation in the FiT 

levels. For instance, the residuals present one disturbance at the end of 

November 2011, matching with the revision and announcement of reducing such 

incentive. However, these could be also caused by another external event or by 

the variation in the population socioeconomic characteristics. Therefore, Chapter 

3 analyses such disturbances after extending the model to a multivariable model, 

so disregarding the effect of other socioeconomic variables. Nevertheless, the 

model can adapt to those changes and stabilise the errors of estimation by the 

end of the training process. Chapter 2 aims to increase the accuracy of the model 

by introducing socioeconomic data and investigates its impact on the errors over 

time. 
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Figure 20. The temporal pattern of the marginal changes of the estimation errors 

overtime for the Autoregressive model. 

 

2.4.2 Spatial validation 

Figure 21 and Figure 22 show the distribution of the errors of estimations for both 

ANN-ABM and Bass models, respectively. As seen, the Bass model yields a more 

uniform distribution of the errors, with most of them between 11% and 30%. On 

the other hand, the ANN estimations present a more random spatial distribution 

of the estimation errors, with most of them between 0% and 10%. Despite the 

model has around 90% of accuracy and the errors tend to converge at the end of 

the training, the distribution of the estimation errors presents spatial regularities. 

Figure 21 and Figure 22 displays the largest estimation errors in the PCs in the 

city centre. Since these PCs have a low density of residential buildings, they also 

have a low or null number of PVs.  

Then, because the MAPE associated with small numbers produces large errors 

even with relatively small under or overestimations, results are analysed by 

considering the spatial regularities of the errors instead [127,128]. For a clearer 

picture of the spatial patters of the estimation errors [16,29]. Figure 23 and Figure 

24 present the maps for the hot spot analysis for both estimations. In both cases, 
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most of the areas present non-significant regularities except for the central PCs, 

meaning that the MAPE is mostly randomly distributed and that the model can 

capture most of the spatial dependence [128]. Then, the clusters exhibited by the 

estimation errors correspond to the areas with low residential buildings, as 

mentioned before. Therefore, further analysis could focus on identifying local 

spatial association terms that account for these regularities [127]. In the following 

chapter, the model is extended by introducing socioeconomic variables to the 

agents' characterisation and investigate the effect on the capabilities of the model 

to capture the spatial dependence. 

 

 

Figure 21. Spatial distribution of the ANN estimation’s error by the end of the 

training - Jul 2015. 
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Figure 22. Spatial distribution of the Bass estimation’s error by Jul 2015. 

 

 

Figure 23. Hot spot analysis of the ANN estimation’s error by the end of the training 

- Jul 2015. 
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Figure 24. Hot spot analysis of the Bass estimation’s error by Jul 2015. 

 

2.4.3 Predictive accuracy 

This section presents the forecasts, the ANN’s estimations by PCs are shown in 

Figure 25a, Figure 25b, and Figure 25c. For a better visual comparison, only the 

MAPE for the 1st, 3rd and 5th forecasts are displayed, corresponding for August, 

October and December 2015; whilst the Bass model’s forecasts are seen in 

Figure 26a, Figure 26b, and Figure 26c. During the first month of the forecast, 

most of the areas have an error below 10%. However, by the fifth forecast, the 

error almost doubles, resulting in almost 80% of the agents having more than 

10% errors in estimations. Thus, while the model can capture the spatio-temporal 

nature of the PV adoption process, it is only able to produce short term forecasts. 

As seen in Figure 18, because of the error accumulation the model has a better 

estimation during the first three periods than the Bass model. In particular, the 

Bass model requires an explicit time horizon for the whole potential adopters of 

PVs to adopt. In other words, because the Bass model uses a time horizon further 

than 2015, the forecast months are also included in this period and the estimation 

is also minimised for them. Instead, the forecast of the ANN is done dynamically 

step by step after the training, considering the previous forecast to forecast the 

t+1-th period, which causes the accumulation of errors. 
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(a) 

 

(b) 

 

(c) 

Figure 25. Spatial distribution of the ANN estimation’s error – (a) First, (b) Third 

and (c) Fifth forecasted period. 
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(a) 

 

(b) 

 

(c) 

Figure 26. Spatial distribution of the Bass estimation’s error – (a) First, (b) Third 

and (c) Fifth forecasted period. 
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2.4.4 Agents explicit spatio-temporal characterisation 

The modelling literature of the PV adoption has overlooked the spatial 

dependence of the drivers whilst focusing on the social dynamics and the 

possible emergent behaviours. Despite ABMs’ strength in providing insights on 

emergent system behaviour, two main limitations are still outstanding: use of 

rational choice-based decision-making [72–74], and synthetic characterisation of 

their temporal dynamics, rather than utilising actual time horizons.  

The former is limiting the approach as some of the drivers such as social utility 

have subjective value, and individuals rarely possess perfect market information 

[43,72–74]. Instead, the ANNs generate knowledge by considering the 

previously-made decisions. The second limitation is on the potential of the ABMs 

to inform about possible pathways for the PV development (emergent behaviour), 

to state the actual time horizon or a specific time for the adoption to take place. 

Instead, this spatio-temporal explicit ABM can provide forecasts for each location 

at specific times. 

Then, the model is validated temporally and spatially based on the model 

performance, which is measured by the population’s average Mean Absolute 

Percentage Error. The following sections discuss (i) the specific results for the 

spatio-temporal characterisation of the agents, (ii) the modelling of social effects, 

and decision-making, (iii) the model’s validation, and (iv) the potential applicability 

of the model. The last two subjects are discussed in the interest of informing the 

next chapter and the thesis objectives 

Although the spatial accuracy of the model inputs is important [27], the gathering 

of this information for entire populations is a challenge. Therefore, those ABMs 

that simulate data or use semi-empirical data, due to the high data-intensive 

needs, may present a loss in the spatial accuracy of results [25]. Alternatively, 

the model defines agents as geographical areas, recognising that they have 

similar socioeconomic characteristics, common interests and present similar 

behaviours [101,102]. The use of spatially explicit data at postcode district level 

allows the modelling of real-world layout, without excluding any locations. This 

spatio-temporal characterisation also captures the change of social effects over 
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time. However, this characterisation is not without imperfections. Yet, because of 

the aggregated nature of the data, there is potentially a loss of heterogeneity in 

the individuals’ own decision choices in an area.  

The spatial resolution is driven by the data availability and temporal variability 

within it, highlighting a trade-off between these two elements. While higher spatial 

resolution improves spatial accuracy, this is at the expense of lower temporal 

variability in the adoption rates. Conversely, higher temporal resolution results in 

less data variability whilst the number of observations increase. Additionally, the 

model developed keeps the real layout and does not exclude any area to ensure 

the accuracy of spatial layout, contrary to Richter [20] who excludes the areas 

with close to zero installations from the analysis. However, the results and 

insights presented are specific for the Birmingham city. The area of study is 

bounded, and the model assumes no external effect from the surrounding areas 

of Birmingham city. Another issue is whether a spatially explicit model like the 

one developed in this research would be subject to the Modifiable areal unit 

problem, which suggests that the change in scale and data resolution may 

introduce bias to the study [15,72,83,84]. Therefore, the model scalability could 

be assessed in further analysis extending the area of studies, including more 

PCs.  

Compared to other ABMs, this approach enables the simulation of system 

behaviour for discrete time series. Hence, the model allows the investigation of 

the evolution of the adoption patterns spatially and over time and recognises any 

variation within them. 

2.4.5 Social effects and decision-making process 

Our model assumes that individuals with similar decision-making, attitudes and 

interests tend to spatially cluster [16], creating social networks [77] and that 

knowledge is generated through experience-based learning [102,129,130]. On 

the other hand, in conventional applications of ABMs, the agents are assigned 

with an adoption rule or adoption probability at the beginning of the simulation. 

Yet, as the actual behaviour in a specific location is still unknown to the modeller 

(early stages of adoption), it is argued that assigning an adoption rule to areas in 
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early stages of adoption may increase the uncertainty. Alternatively, an 

aggregated characterisation of the agents and the use of ANNs can allow 

modelling the entire population. Such an approach could disregard the specific 

individuals’ preferences, by generating knowledge over time. The model takes 

into consideration the historical data, even for those areas with a low number of 

PVs. This can be seen in the error produced by the model, as the performance 

of ANN increases as it is fed with more data and starts adapting to the changes 

in data behaviours, i.e. as individuals have experienced more situations 

[118,121–123].  

Additionally, the aggregated characterisation of the agents allows the ABM to 

provide a more realistic representation of the decision-making process. The 

characterisation of agents as geographical areas allows integrating the ANN as 

their decision-making, as the high data demand from the ANN is reduced [131]. 

Besides, adjusting the strength of the spillover effect as a function of the distance 

between the areas reflects the spatial dependence of the PV adoption. Thus, the 

model accounts for both the influence between and within locations [20]. Then, 

the model aggregates the number of PVs registered by month, then the social 

influence is defined by the number of PVS in the adjacent areas on monthly basis. 

Richter’s [20] econometric model estimated a lead time between adoption 

decision and installation to be between two and three months. This difference 

could be because the econometric model looks at the parameters that best fit the 

overall data, whilst the data analysis carried out in Section 2.2.3 looks at the most 

common behaviour among the ACF and PACF. Moreover, the PACF shows no 

significant lags at t-2, t-3, t-6 or t-12, pointing out the lack of any seasonal effect. 

2.4.6 Model validation 

The model is tested and validated for Birmingham city area. The errors of 

estimations over time are used to assess the temporal accuracy, whilst the 

Moran’s I index and clustering maps were used to evaluate the spatial accuracy 

of the model estimations (see Table 5, Figure 23 and Figure 25). The results 

suggest that the model can capture the spatio-temporal dependence of the PV 

adoption process. The model training error stabilises and converges to ~10% 

MAPE, yet, there are peaks at the same time as the data present changes in 
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behaviour over time. This implies that there is a behaviour that is not captured by 

the model, suggesting the need for a multivariable model. As highlighted by 

Samarasinghe [105], the autoregressive models may increase their accuracy by 

introducing exogenous variables such as income, electricity consumption, etc. 

2.4.7 Predictive capability 

The model has a ~90% of accuracy for the training period, yet, the errors in the 

forecasting phase rapidly increase. This restricts the model’s capability to yield 

long term forecasts, making the model’s forecast only relevant at most three 

months forward, as the 3rd forecasted period’s accuracy is still above 80%, and 

better than the Bass model. The reviewed models in Section 1.3 have a 

performance around 95% of accuracy [25,76,90,91], resulting in a ~5% lower for 

the ABM and ANN model, nevertheless, the results of the ABM and ANN are 

spatio-temporally explicit. Thus, it could be argued that trying to predict the 

specific behaviour of smaller areas (other than national or county) is more 

challenging. Moreover, because the estimation of new values considers not only 

agent’s past decisions but also those in its social network, a better understanding 

of the error accumulation is needed, as this accumulates not only over time but 

also across space. In the case of the reviewed models, it is not clear whether the 

results consider this error accumulation or what techniques are used to handle or 

minimise the effect.  

As data availability increases over time, future work may consider longer data 

sets to improve the predictive capability and include other socio-economic data 

to characterise the agents. Because this is a data-driven approach, there could 

be some issues with the data, for instance (i) disjointed and inconsistent data 

sources, (ii) different temporal resolution and spatial reference, (iii) poor quality 

or incomplete data. Thus, future analysis should consider how to inform the model 

of possible bias due to the quality of the datasets or instrumental errors. Despite 

these limitations, the model still has the potential to inform the industry. For 

instance, by the time the FiT report was published on 31 Dec 2015, the results 

could have advised to the DNOs about the extra load that new solar panels would 

produce and potentially bring into the network a quarter later. Yet, because of its 

short-term forecast, this does not have much of potential to inform strategic 
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planning, yet, it still has the potential to inform demand and supply balancing, for 

instance, where to locate calls for demand-side response strategies and flexibility 

tenders13. 

2.5 Reflective summary 

This chapter designs, developments and empirically validates a novel spatio-

temporal explicit agent-based model that integrates artificial neural networks into 

the agent’s decision-making. The model advances ABMs by characterising the 

spatio-temporal dependence of the PV adoption process, whilst improving the 

agents' decision-making procedure. This approach does not only build upon ABM 

literature but also draws from disciplines such as SR. The use of spatially explicit 

data sets allows reflecting individual behaviours of each location and follow the 

real-world layout for the city of Birmingham. The model utilises the ANN’s 

capabilities to approximate historical PV data in the generation of knowledge and 

adapts to changes in data trends. Therefore, the model can reduce uncertainties 

in the agents' decision-making. 

The results suggest that the model can account for the spatial, temporal and 

social dynamics that drive the adoption process. Furthermore, the ABM and ANN 

model can produce a better estimation than a Bass model, this could be because 

this model does not consider the social effect nor the spatial dependence of the 

adoption process. In principle, the spatio-temporally explicit forecasts could 

inform network planning and investment decisions of the energy industry. Yet, 

this potential currently is limited as the model is only able to produce short-term 

forecasts due to limited availability of data for 60 time periods. 

Future work could include the development and validation of a multivariable 

model, to improve the model accuracy and produce longer-term forecasts. Other 

future work could also investigate if the model is flexible enough to handle 

different space-time resolutions and social network structures, and handle data 

from other diffusion process or systems that are affected by the social effects. 

 

13 Here you can refer to UKPN and WPD flexibility tenders - 
https://www.ukpowernetworks.co.uk/internet/en/have-your-say/listening-to-our-connections-
customers/flexibility-services.HTML 

https://www.ukpowernetworks.co.uk/internet/en/have-your-say/listening-to-our-connections-customers/flexibility-services.HTML
https://www.ukpowernetworks.co.uk/internet/en/have-your-say/listening-to-our-connections-customers/flexibility-services.HTML
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Despite these limitations, the idea to integrate ANN and ABMs for the first time 

and develop spatio-temporally explicit, empirical results offers a new method to 

capture the complexity of the energy system decarbonisation process. 
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3 Dynamic characterisation of population heterogeneity 

in a spatio-temporally ABM and ANN integrated model 

3.1 Introduction 

The previous chapter outline how to integrate explicitly the spatio-temporal and 

social dynamics into an ABM for the adoption of PVs, developing a model that 

uses ANNs as the decision-making process. Although the model reaches 95% of 

estimation accuracy over the training period, the model is only able to forecasts 

three months ahead. The chapter demonstrates that the model disregards the 

importance of multiple socio-economic factors that might influence agents 

decision-making [51,67,104,132]. Additionally, the model disregards the agent's 

heterogeneity (socioeconomic characteristics) and assumes no inputs from 

outside the analysis area. The ABMs capture agents heterogeneity by 

characterising their different socioeconomic characteristics, also the utility or 

social threshold allows outlining the differences in preferences towards PVs 

[67,104]. Alternatively, the SR captures the population’s heterogeneity with the 

independent variables, which may present spatio-temporal regularities 

[72,133,134]. Yet, both SR and ABM have limitations to characterise the dynamic 

nature of those characteristics. 

Buchmann, Grossman and Schwarz [67] suggest three ways to implement the 

heterogeneity of the agents: (i) different characteristics or preferences. (ii) 

different adoption rules, and (iii) multiple agents. Therefore, this chapter extends 

the characterisation of the agents' decision-making, by integrating socio-

economic variables into the model. This is due to a lack of data to characterise 

multiple agents (i.e. PV sellers or PV producers), and the fact that the ANN is 

supposed to create individual adoption rules (knowledge). Moreover, because of 

the spatio-temporally explicit nature of the model, the model also implements the 

local differences and evolution of the population heterogeneity. This approach 

aims to address the limitations of the ABMs that fix the values of the agents’ 

preferences at the beginning of the simulation and disregard its evolution. 

Additionally, the analysis assesses the flexibility of the model to handle changes 

to the geographical boundary of the model, by systematically changing the 
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number of agents in the simulations. It is expected that adding socioeconomics 

variables to the model can yield a better performance and potentially longer 

forecast [105,115]. 

Namely, this chapter’s objectives are as follows: 

1. To extend the model’s decision-making characterisation by introducing 

socioeconomic variables to the autoregressive model and reflect their 

spatio-temporal dynamic. 

2. Assess the effect of the Modifiable areal unit problem by systematically 

broadening the study area. 

The chapter is organised as follows: the remainder of this section present relevant 

literature used to implement the changes to the model. Then, section 3.2 presents 

the implementation of such modifications and the potential variables to be 

included. The results of the extended model are presented and discussed in 

section 3.3. Finally, section 3.4 is devoted to reflecting on the findings of the 

chapter. 

3.1.1 Characterisation of heterogeneous agents 

The adoption decision-making is driven by factors such as energy prices, 

government policies, peer-effects, age, gender, income, vehicle price, incentives, 

etc. [8,15,18,68,86]. The agents' decision-making process is usually 

characterised by a utility or social function, and a threshold that represents the 

criteria of whether to adopt or not. The utility function considers the financial 

benefits of adopting PV, such as electricity savings or financial incentives. On the 

other hand, the social function is subjective, reflecting the agents’ personal 

believes, values, and social benefits [25,33]. Both approaches, utility and social 

functions capture the individual's preferences, providing a robust representation 

of the population’s heterogeneity. 

The authors implement those with using fixed values, statistical distributions, or 

statistical regression. Most of those approaches consider previous analysis and 

data surveys, which are used to create population segmentation or estimate the 

preferences to adopt certain technology. For instance, Bale et al. [79,132] 
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assigned fixed weights based on population segmentation, using priority surveys. 

Krebs and Ernst, and Ernst and Briegel [75,77,78] create weights using the 

continuous uniform distribution, using empirical data (survey) and type of 

lifestyles segmentations (taken from previous surveys). Robinson et al. 

[76,90,91], on the other hand, estimate the weights using an ad hoc spatial 

regression model based on survey data. Regarding the adoption criteria, authors 

alike Bale et al. [79,132] define the adoption threshold as the perceived financial 

utility, fixing this value at four levels: low, mid, high, and not able to adopt (0.25, 

0.45, 0.75 and 1, respectively). Krebs and Ernst, and Ernst and Briegel [75,77,78] 

implement the expected financial benefits (i.e. payback) by considering the 

household characteristics. Robinson et al. [76,90,91], calculate the perceived 

financial affordability against the investment’s payback. These criteria are 

calculated at each step of the simulation, and if the condition is met the agents 

adopt PV. 

On the other hand, SR does focus on identifying the importance of socio-

economic variables on the adoption process. Similar to the ABMs, the correlation 

coefficients calculated for each independent variable are similar to the preference 

weighting assigned to each of the agents' characteristics. The definition of these 

independent variables and the characteristics of agents utilised in ABMs vary 

across different studies, and there are no clear criteria for variable selection. 

However, Bale et al. [79] and De Groote, Pepermans and Verboven [51] 

recognise that data availability limits the number and type of agents 

characteristics and the selection of independent variables; for the ABMs and SRs 

respectively. Among the reviewed studies, some variables are implemented in 

similar ways, for instance, solar radiation (resource availability), as in the case of 

[8,18]. Other variables such as income are characterised in different ways across 

different studies: the gross domestic product [8], gross regional product per capita 

[18], mean income [12], the median income [12,16,19,46], mortgage vs. income 

ratio [14], population share by income bands [85]. Interestingly, the SR is likely to 

include endogenous variables, such as age, distribution of the population by 

gender or income. Instead, the ABMs tend to include exogenous variables, such 

as house characteristics or energy cost, and subjective variables, such as social 
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and environmental utility [25,33]. Political tendency and environmental 

awareness are included only in the SR. These observations highlight the potential 

gains from merging SR insights into the ABM to make the best use of available 

data, as SR can inform about the variables that are statistically significant for the 

PV adoption. Data selection, collection and processing procedure is fully 

described in Section 3.2.1, whilst a detailed summary of all variables included in 

the analysis is presented in Appendix 5. 

3.1.2 Modifiable areal unit problem 

Because the ABM and ANN model has a spatially explicit nature, it is potentially 

affected by changes in scale. Despite the ABMs present a wide range of agents 

characterisation and study scale, given the non-spatial nature of the ABM, these 

studies do not provide any evidence of being resilient to changes in scale. 

Moreover, because the model looks at the total number of PV systems, the local 

regularities of the adoption process are disregarded. Therefore, the study does 

not inform whether the survey is representative at the local level nor whether the 

model can fit the agents' parameters at the local level. 

On the other hand, the SR is directly affected by the study scale and resolution, 

as statistics and correlation depend on the number and size of areas that 

compound the study in its whole [72,133,134]. There is a wide range of areal 

definition (scale) and size of units of analysis (resolution) available in the 

literature, ranging from local areas (census tracks or political boundaries) to 

standardised statistical units (NUTS314), and scales such as counties or 

countries. [8,12,15,16,18,20,46,47].  

Similarly, the ABM studies characterise the adoption process in different study 

scales (number of agents). For instance, Adepetu and Keshav [38] create a semi-

empirical population which is assigned with real values for 100 households. Then, 

the authors arbitrarily populate their simulation with 26,160 agents, scaling down 

the number of PV contracts. Rai and Robinson [40], Robinson and Rai [41], and 

Robinson et al. [42] model the total households from Austin (Texas, US). Cui et 

 

14 Nomenclature of Territorial Units for Statistics NUTS3. 
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al. [46] generate a virtual population of households based on actual aggregated 

data. By applying the copula-based household synthesiser, they generate an 

individual virtual household population with similar characteristics (with intra-

group variance); resulting in the simulation of 190,965 agents. Eppstein et al. [47] 

create a full virtual population of households. First, they generate a virtual 

distribution of income, considering five hypothetical cities, and then they create 

1,000 and 10,000 agents (for initial model runs). The authors choose 1,000 as 

the final number of agents due to computational efficiency and the lack of 

significant difference between the simulation using both numbers. These agents 

are created using the turning bands method, which simulates random 

observations using the annual salary covariance function. 

One can argue that the ABM may not be fully subject to the MAUP, however, this 

raises the question of whether the emergence of behaviour is dependant to the 

number of agents in the simulation, more specifically, the effect on the spatio-

temporal patterns of adoption. Despite the wide variety of ABM implementations, 

the effect of the number of agents on the model’s performance is not discussed 

entirely. 

3.2 Methods and materials 

The model seeks to represent the dynamic nature of the heterogeneity, whilst 

assessing whether the change in scale has an impact on the model outputs. 

Therefore, this chapter uses time-series of socioeconomic variables to capture 

the evolution of the agents' preferences.  

As seen in Figure 27 the analysis is carried out in two phases. Phase I builds 

upon the autoregressive model, using the same spatio-temporal resolution and 

ANN design. Then, this phase redefines the decision-making process considering 

a multivariable characterisation, including socioeconomic variables and updating 

the values at each step of the simulation. Phase II carries the multivariable 

characterisation of Phase I and systematically increases the size of the study 

area. This increment first considers the adjacent PCs to the autoregressive 

model, and then the PCs in the adjacent LADs to Birmingham, resulting in three 
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multivariable models. The results of Phase I are compared with those from the 

autoregressive model, whilst those of Phase II consider the results of Phase I. 

 

Figure 27. Methodology to characterise the evolution of the population 

heterogeneity, and assessment of MAUP effect. 

Figure 28 shows the progression of the three areal definitions for this chapter.  

(i) MV-Birmingham – The first model (black perimeter) comprises the 

base area of the city of Birmingham, made up of 49 PCs  

(ii) MV-Extended – The second model (blue perimeter) keeps the 

multivariable characterisation, and cover the adjacent PCs to the MV-

Birmingham, for a total of 72 PCs. 

(iii) MV-LADs – The third model (red perimeter) extends the previous 

model to include 96 PCs. These comprise the adjacent LADs: Lichfield, 

Tamworth, North Warwickshire, Solihull, Bromsgrove, Dudley, 

Sandwell, Walsall.  

 

As seen, the southern PCs does not increase further than the blue perimeter, 

because the North Warwickshire, Solihull, Bromsgrove PCs have been included 

already in the MV-Extended. Data corresponding to PV installations covers from 

January 2011 to December 2015. When referring to three models as a group, 

they will be called multivariable models. Figure 29 shows the implementation of 
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the spatial distribution of the agents and the configuration of their social networks 

in the Anylogic v7.3.2 software. 

 

Figure 28. PCs included in the different study scales for the multivariable models. 

 

 

(a) 
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(b) 

 

(c) 

Figure 29. Implementation of the model in Anylogic software – (a) MV-

Birmingham, (b) MV-Extended, and (c) MV-LADs. 
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3.2.1 Decision making and social effects 

To abstract the multivariable definition of the adoption process, the ANN’s design 

is modified as seen in equation (2-1). 

 

𝑃𝑉𝑡  =  𝑓(𝐿𝑜𝑐𝑎𝑙𝑃𝑉𝑡−1, 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑖𝑛𝑔𝑃𝑉𝑡−1 , 𝑆𝑜𝑐𝑖𝑜𝑒𝑐𝑜𝑛𝑜𝑚𝑖𝑐𝑡−1) (3-1) 

Where  

𝑃𝑉𝑡 is the total number of PVs in a specific time 

𝐿𝑜𝑐𝑎𝑙𝑃𝑉𝑡−1 is the autoregressive element 

𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑖𝑛𝑔𝑃𝑉𝑡−1  is the number of PVs in the adjacent areas 

𝑆𝑜𝑐𝑖𝑜𝑒𝑐𝑜𝑛𝑜𝑚𝑖𝑐𝑡−1; is a set of independent variables 

The temporal dependence is denoted by lagging these inputs in t-1, and the set 

of variables is discussed in the following section. 

 

3.2.1.1 Variable selection 

The literature reviewed in section 1.2 offers a wide variety of variables included 

in the analysis, furthermore, some of these variables are implemented in different 

ways depending on the data availability. The full list of potential variables 

included in the literature review is summarised in Appendix 5, these are grouped 

into broad categories to identify similar variables with different implementations. 

However, because this is the first attempt to integrate socioeconomic variables 

into the ABM and ANN model, the analysis builds upon Balta-Ozkan, Yildirim 

and Connor's spatial-econometric model [8] for the diffusion of PVs in the UK. 

Then, the analysis follows the econometric stepwise method to select the final 

list of variables [21], starting from their initial list of socioeconomic variables. This 

method starts with a single variable and assesses the model fitness (MAPE in 

this case), then the variable with the best fitness is fixed for the next iteration. In 

a reiterative process, a new variable is introduced and the fitness assessed, 
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discarding if it does not improve the fitness; then stopping when the fitness can’t 

be improved any further. The evolution of the local socioeconomic variables may 

also be affected by households changing address, thus, the model may also 

capture a degree of the changes in the structure of the social networks. 

3.2.1.2 Data collection and processing 

Table 7 shows the summary table of the potential variables included Balta-

Ozkan, Yildirim and Connor's model [8], together with the available spatio-

temporal resolution and data source. As seen in Table 7, most of the variables 

are available at PC level and Census basis. An exception to this is the PV 

installations, weekly income, electricity consumption, and CO2 emissions. To 

meet the spatial resolution requirements, the variables at Lower Layer Super 

Output Area (LSOA) or Medium Layer Super Output Area (MSOA) level were 

aggregated to PC level using Office of National Statistics reference lookup 

tables15. The only exception is the solar irradiation data because the changes in 

solar irradiation between one area to another, in this study scope, is negligible16. 

On the other hand, because the temporal resolution of some of these variables’ 

is not in the required resolution, the data is interpolated to produce monthly 

observations. This process is carried out following the UK Office of National 

Statistics’ (ONS) methodologies for temporal disaggregation [135]. Temporal 

disaggregation is a process that generates a time series at a higher frequency 

from data with a lower temporal resolution. Monthly gross domestic product 

(GDP) observations have been estimated from the annual time-series, by 

applying Fernandez ’s technique and using the Index of Services17 [135]. Then, 

following ONS’s methodology, monthly observations are estimated with the 

Fernandez algorithm. As this estimation is at the national level, the Index of 

 

15Office of National Statistics Source: 
https://ons.maps.arcgis.com/home/item.html?id=ef72efd6adf64b11a2228f7b3e95deea 
16The distance between Birmingham and Edinburgh is ~394km, whilst the horizontal solar 
irradiance changes only by less than 10% [125]. Yet, the longitude of a cross section of 
Birmingham is around 30km. 
17 The Index of Services measures the quantity of output from all UK services industries, and 
accounts for more than three-quarters of the output approach to the measurement of Gross 
Domestic Product. 
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Services is replaced by an index of house pricing, which has a high spatio-

temporal resolution (monthly/LAD). 

PV data is available in the Feed-in Tariff Installation Report published by the 

Office of Gas and Electricity Markets (Ofgem) on a quarterly basis, which contains 

the registration date (dd/mm/yyyy) of domestic PVs. Socioeconomic data is 

published by the Office of National Statistics, containing data such as income and 

homeownership which are available for 2001 and 2011. Appendix 7 summarises 

the statistics of the potential explicative variables, differentiating between the 

smallest and largets. The boxplots fo the variables show that as more PCs are 

included, the statistics fluctuate. It is expected that the ANN adapts to the wide 

variety of data behaviour, improving the confidence in the model. 

 

Table 7. List of independent socioeconomic variables and their resolution. 
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PV installations LSOA Daily 2011-15 OFGEM 

Weekly income MSOA Weekly 2013, 2015 ONS 

Population density PC Census 2001,2011 ONS 

% Owned household PC Census 2001,2011 ONS 

% Detached household PC Census 2001,2011 ONS 

Electricity consumption LSOA Annual 2001, 2011-15 ONS 

Education level PC Census 2010,2015 ONS 

Average household size PC Census 2001,2011 ONS 

CO2 emissions proxy LSOA Annual 2001,2011 ONS 
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3.2.1.3 Neural network  

This chapter builds on the ANN structure presented in Section 2.2, increasing the 

number of input neurons, as seen in Figure 30. The number of neurons for the 

𝑆𝑜𝑐𝑖𝑜𝑒𝑐𝑜𝑛𝑜𝑚𝑖𝑐𝑉𝑎𝑟𝑡 will depend on the number of socioeconomic variables, these 

are included or excluded as discussed in Section 3.2.1.1. The initialisation of the 

simulation follows the process described in Section 2.2.5, except that the query 

to the database brings both the time-series for the number of PVs and 

socioeconomic variables. The training follows a similar process as the 

autoregressive model, except that the number of neurons has increased. Thus, 

the algorithm repeats the adjustment of the weights for the PV inputs for the 

weights of the socioeconomic variables, yet, these weights are independent and 

unique. The training period uses 95% of the time-series (55 months) and 5% for 

the forecast (5 months); the testing and validation of the model keeps the same 

process as presented in Section 2.3.2. 

3.3 Results 

The results from the characterisation of heterogeneous agents are shown first. It 

is expected that the model’s performance will improve, whilst allowing a longer 

forecast. Samarasinghe [105] notes that a multivariable model allows the ANN to 

have multiple predictors for the same phenomena, therefore, the accuracy of the 

model may improve. Additionally, previous results (Bass model and 

autoregressive model) are shown where relevant. Second, the results for the 

extended models are presented and compared with the original model, to 

evaluate the effect of increasing the number of agents in the simulation. 
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Figure 30. Example of an artificial neural network fed by the autoregressive 

elements and the socioeconomic variables. 

 

3.3.1 Temporal validation 

Table 8 shows the stepwise process of variable selection, which in this case stops 

at the fourth step. During the first step, the income variable is selected as this 

improves the model accuracy the highest, by 5.2%. During the second step, two 

variables present the same improvement, electricity consumption and the 

average household size, both of which are carried to the next step. Step three 

selects the model with both variables, whilst step 4 shows no improvement when 

introducing any other fourth variable; thus the process ends. 
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The results highlight that income, electricity consumption and average 

household size are the variables that yield the best fitness. This combination of 

variables increases estimations’ accuracy from 90% to 95%, compared with the 

autoregressive model. Drawing from the SR, one can argue that the extra inputs 

work as the explanatory variables, in the way that the SR uses the independent 

variables to explain the variance of the dependent variable. Then, the output of 

the SR is the value of the intercept (𝛽0) plus the effect of each other variable. In 

the case of the ANN, the extra inputs and their synaptic weights contribute to the 

estimation of the output, contrary to the SR, the process to understand these 

values is not transparent. 

Nevertheless, the results can be explained through a contextual analysis of 

whether the selected variables are in line with those that have been proven to 

drive the adoption process in SR studies. For instance, income has been used 

to define the agents' utility or social threshold [25], in line with [8,94,136] finding 

that income is a key decision variable for households to adopt the PV technology. 

The electricity consumption variable reflects the findings of households with 

high energy usage are more likely to be concerned about being self-sufficient 

[8], this is extended to the energy cost [16]. Average household size has a 

statistically significant negative impact on PV diffusion, as bigger families may 

have less cash flow for a PV installation [8,14,19]. The increase in fitness from 

90% to 95% suggests that increasing the agents' heterogeneity improves model 

performance. This could be because the decision-making does not consider only 

the experience with the PV technology or the social influences, but is also driven 

by the socioeconomic characteristics of the individuals [30]. For instance, the 

affordability and expected benefits depend on the individuals' socioeconomics, 

but the perception of these is influenced by the social interactions [8,20] and past 

experiences [31]. Furthermore, updating the socioeconomic data at each step 

provides a more realistic decision-making process than that characterisation that 

does not update the agents' variables (see Section 3.1.1). 
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Table 8. Results summary from the stepwise process of variable selection. 

 

Figure 31 shows the estimations made by the Bass, autoregressive and 

multivariable models, where the last two presenting similar behaviour. Because 

of the change in the number of PCs between the autoregressive, MV-Extended 
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11.0% Autoregressive model  

Step 1 

5.80% X                 Fixed 

9.40%   X               Carry 

8.60%     X             Carry 

9.40%       X           Carry 

9.00%         X         Carry 

9.20%           X       Carry 

8.80%             X     Carry 

10.40%               X   Out 

9.00%                 X Carry 

Step 2 

6.2% X X        Carry 

5.8% X  X       Carry 

6.2% X   X      Carry 

5.6% X    X     Fixed 

6.4% X     X    Carry 

5.6% X      X   Fixed 

6.6% X        X Out 

Step 3 

5.8% X X   X     Carry 

5.8% X  X  X     Carry 

6.6% X   X X     Out 

5.8% X    X X    Carry 

5.4% X    X  X   Fixed 

6.0% X X     X   Carry 

6.4% X  X    X   Carry 

5.8% X   X   X   Carry 

6.8% X     X X   Out 

Step 4 

6.0% X X   X  X   Out 

6.2% X  X  X  X   Out 

6.2% X    X X X   Out 
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and MV-LADs, the results are not fully comparable. The results of the 

multivariable and autoregressive (See Section 2.4.1) are similar, even though 

the multivariable model improves the accuracy and reduces the disturbances 

arguably related to the FiT changes. Figure 32 displays the error of estimation 

for the multivariable model, and the Bass model and autoregressive model as 

references. The ANN estimations keep an estimation error of ~5% over most of 

the training, especially at the end of the training where both histograms stabilise. 

Both the Bass and the ABM are likely to produce extreme values at the beginning 

of the training, as the neural networks have not been fed with much information 

yet [118,121–123]. Also, during the first half of the training, there are 

disturbances in the MAPE, which matches with the period18 of maximum Feed-

in-Tarif rate and the announcement of its upcoming reduction [124]. On the other 

hand, the Bass model presents a different behaviour, this is because this model 

looks at the time-series as a whole and adjusts its parameter to minimise the 

overall error. In contrast, the ANN adjusts its parameters (synaptic weights) at 

each time step. Therefore, the Bass model has limitations to reflect changes in 

data trends, whilst the ANN uses its adaptive capabilities to learn from them. 

 

 

18 Between October 2011 and January 2012. 
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Figure 31. Cumulative adoption rates of PVs estimated by the MV-Birmingham and 

the Bass model vs. actual data. 

  

Further analysis of the residuals confirms a stronger temporal pattern, clarifying 

the origin and nature of the extending disturbances exhibited by the MAPE 

histogram. Following the same approach for the autoregressive model, 

equations (3-2) and (3-3) are used to calculate the marginal changes month-to-

month: 

𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑚𝑎𝑟𝑔𝑖𝑛𝑎𝑙 𝑐ℎ𝑎𝑛𝑔𝑒𝑖  =  |𝑀𝐴𝑃𝐸𝑖 − 𝑀𝐴𝑃𝐸𝑖−1| (3-2) 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑚𝑎𝑟𝑔𝑖𝑛𝑎𝑙 𝑐ℎ𝑎𝑛𝑔𝑒 =  
1

𝑛
∑ 𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑚𝑎𝑟𝑔𝑖𝑛𝑎𝑙 𝑐ℎ𝑎𝑛𝑔𝑒𝑖

𝑛

𝑖=1

 
(3-3) 
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Figure 32. Estimation error of the autoregressive and MV-Birmingham, and the 

Bass model. 

 

Figure 33 shows the temporal patterns of the marginal changes that were higher 

than the average marginal change. The autoregressive residuals show three 

major disturbances or sharp changes in the agents' behaviour. In contrast, the 

multivariable model presents only one major disturbance at the end of November 

2011, matching with the changes in FiT rates, highlighting improvements of the 

latter model to capture more of the predictable data behaviour. Because these 

disturbances are not present in all the PCs, it can be argued that the effect of 

the FiTs rates may present spatial regularities only for some of the PCs. This 

highlights the importance of considering local socioeconomics when designing 

new policies. Figure 34 shows the marginal changes of each PC from October 

to November 2011, reflecting the local responses to the FiT. As shown, the most 

responsive areas are those at the edges of the city, while PCs near the centre 

are less responsive. Because the multivariable model has already accounted for 

the effects of income, household size and total electricity consumption, one 

can argue that this response can be associated with some of the excluded 

variables. For instance, the share of the owned house [8,14,18] has been found 
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to have a negative effect on the adoption of PVs, reflecting that renting 

households are less likely (indeed incapable) of adopting. 

 

 

Figure 33. The temporal pattern of the marginal changes of the estimation errors 

overtime for the MV-Birmingham model. 
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Figure 34. Spatial distribution of the impact of FiT on the adoption rates by 

November 2011. 

 

The same rationale is followed for the MV-Extended and MV-LADs, which keep 

the same multivariable characterisation of MV-Birmingham (income, electricity 

consumption and average household). However, because this model increases 

the number of PCs, the total number of PVs are not fully comparable. Instead, 

Figure 35 presents the comparison between the estimation errors, as these are 

relative and comparable. The fact that there is no more than 1% difference 

between the three models’ performance confirms that the ANNs’ adaptive 

capabilities make the model resilient to the changes in geographical scale. The 

models stabilise at similar levels, having 95%, 94% 94.5% of accuracy at the 

end of the training period (55 observations). Moreover, because the time series 

are spatially explicit, results suggest that characterising the evolution of the 

population’s heterogeneity improves the modelling of decision-making. On the 

other hand, the estimation errors of the Bass model are larger than those of ANN  

especially when the trend in the data changes. after this point, the estimation 

errors decrease to similar levels to the ANN. Despite both the multivariable and 

the Bass model overestimating the adoption rates, the ANN reduces the error 
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accumulation and produces smaller errors than the Bass and autoregressive 

model. 

 

 

Figure 35. Estimation errors for the multivariable and Bass models. 

 

3.3.2 Spatial validation 

This section examines the spatial regularities of the results previously presented, 

as seen in Figure 36a and Figure 36b, most of the areas in the MV-Birmingham 

model present an improvement in their estimations in comparison with the 

autoregressive model, having a MAPE below 10%. Yet, the areas with the 

largest errors (+25%) are the ones with less than five PV installations which are 

in line with Richter [20]. This behaviour is similar to the autoregressive model, 

as the MAPE calculation is sensitive to any minor change in small numbers, such 

as in the case of the central PCs, where the relative under or overestimation in 

one unit will produce a larger error than in areas with a higher number of PVs. 

Moreover, the errors of estimation stay at low levels even when the area of 

analysis (the number of agents) increases. Figure 37 shows the spatial 
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distribution of the MAPE for the multivariable models, suggesting that the 

models are resilient to the change in scale. 

For the MV-Birmingham and MV-LADs, smallest and largest models, most of 

the areas do not present spatial regularities, as seen in Figure 38, there is only 

one cluster of high errors. The multivariable characterisation of the agents helps 

to reduce the number of areas that cluster. While Figure 23 shows that the PV 

autoregressive model presents errors of estimation in 9 out of the 49 PCs, the 

MV-Birmingham model only presents 3 PCs with a High-High clustering nature, 

these errors correspond to central PCs, those with a low number of PVs. 

Moreover, the MV-LADs with 96 PCs exhibits the same 3 PCs plus the 

Birmingham Airport PCs. This suggests that the socioeconomic variables can 

supplement the model and increase the amount of spatial dependence captured 

by the model [128]. However, the prevalence of clustering in the central PCs 

suggests that there may be specific terms of spatial association that may be 

disregarded by the model [127]. Later when Chapter 3 investigates the spatio-

temporal patterns of EV adoption, these insights are brought to the discussion of 

the spatial validation of the EV model (Section 3.3.2). 
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(a) 

 

(b) 

Figure 36. Spatial distribution of estimation errors - (a) Autoregressive 

model, (b) MV-Birmingham model. 
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Figure 37. Spatial distribution of the estimation errors - (a) MV-Birmingham; (b) 

MV-Extended; (c) MV-LADs. 
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(a) 

 

(b) 

Figure 38. Hot-spot analysis of the MV-Birmingham (a) and MV-LADs (b) model’s 

MAPE by the end of the training - Jul 2015. 

 

3.3.3 Predictive accuracy 

After the model is been validated temporally and spatially, the training phase 

proceeds to the forecasting phase. The model forecasts the last 5% of each 

spatially explicit time-series which are excluded during the training to assess the 

model’s capability to estimate future diffusion of PVs. The predictive accuracy 

follows the same calculation as described in Section 2.4.3. 
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Then, to appreciate the error accumulation and the models' predictive accuracy, 

the estimation errors for the forecasted periods are presented in Figure 39 and 

Figure 40. Figure 39 shows the forecasting MAPE histogram of the 

autoregressive and MV-Birmingham models, which exhibit an opposite 

behaviour to the training phase. The errors of estimation diverge and 

accumulate, yet, the errors of estimation of the multivariable model increases at 

a significantly lower rate than that for the autoregressive one. This is because 

the multivariable model reduces the error’s magnitude, having a 10% error at the 

end of the 5th period against 75% error accumulation of the autoregressive 

model.  

 

Figure 39. Estimation error for the forecasted periods - autoregressive model vs. 

multivariable. 

 

Following the same rationale, the predictive accuracy of the extended models is 

shown in Figure 40. In general, all three multivariate models behave in similar 

ways, whit only a neglectable difference of 1% by the end of the forecast period. 

The three models have similar levels of error during the training (see Figure 35). 

However, the forecasts of the MV-Birmingham model accumulates error at a 
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rate of ~2% faster than the other two models, going from 2% to 9%. On the other 

hand, MV-Extended and MV-LADs go from 4% to 8%, at rates of ~1-1.5%. 

There are two possible reasons for this, first, because the MAPE is affected by 

the number of agents, thus, the average of the estimation errors may be 

stabilised. One can argue that by extending the area of study, areas that may be 

considered outliers are also included and this may affect the MAPE (i.e. the 

airport and adjacent PCs). However, results show that increasing the number of 

agents reduce the error accumulation instead. 

Secondly, because a principle of the ABM is that the behaviour emerges from 

the interaction between agents, the fact that MV-Extended and MV-LADs 

increase the number of agents increases the number of interactions [33,75]. 

Therefore, the behaviour of the agents appears quicker than the number of 

agents and interactions increase. Then, one can expect that extending the area 

of study to a national level could improve the performance of the model. 

Moreover, this could address the limitation of the model to treat areas as an 

independent unit of decision-making that disregards what happens in the 

adjacent areas. 

 

 

Figure 40. Estimation error for the forecasted periods for the multivariable models. 
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The individual results at the PC level for the 1st, 3rd and 5th forecasts 

(autoregressive model and the MV-Extended multivariable model) are shown in 

Figure 41, respectively. As seen, during the first forecast period most of the areas 

have an error below 10%. However, by the fifth forecast, the error significantly 

increases where almost 30% of the areas having more than 10% of errors. Even 

though the multivariable model duplicates its forecasting error by the fifth 

estimation, the errors’ accumulation over time is reduced in comparison with the 

autoregressive model; as shown in Figure 41, highlighting the robustness of the 

model results to changes in scale. The same behaviour is exhibited by the MV-

Extended and MV-LADs models. The temporal results suggest that 

characterising the evolution of agents' heterogeneity improves the model’s 

performance as they generate a lower MAPE (see Figure 35). This suggests that 

the preferences of the agents are dynamic and so is their decision-making. It 

could be argued that the PV autoregressive model disregards the evolution of 

the preferences and focuses only on the experiences and social dynamics, thus 

the large error accumulation. Moreover, those ABMs that fix the agents’ 

preferences (adoption thresholds or adoption rules) may be subject to similar 

limitations.  

Even though the data processing to interpolate the temporal resolution may 

introduce a degree of instrumental error to the model, the multivariable model is 

more efficient than the autoregressive model, during both training and 

forecasting. This model implements the temporal dynamic of the agents' 

heterogeneity by updating the agents' characteristics at each simulation step 

(month), instead of to the static implementation of agents heterogeneity and fixed 

specific functional groups [67,104]. Also, by considering the spatially explicit data 

sets the models do not require a prior classification of customers or their 

decision-making criteria. 

Besides, the results suggest that the spatio-temporal explicit ABM may not be 

subject to the MAUP, and the methodology can be extended to larger areas. In 

other words, contrary to the spatial regression, this model is not affected by the 

change in scale, as the model does not depend on the overall statistics of the 

population, but generates spatially explicit knowledge. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

Figure 41. Spatial distribution of the error of estimation. 

First forecast - (a) autoregressive model; (b) MV-Extended; Third forecast – (c) 

autoregressive model; (d) MV-Extended; Fifth forecast - (e) autoregressive 

model (3rd forecast); (f) MV-Extended. 
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3.4 Reflective summary 

This chapter extends the agents characterisation by capturing the evolution of the 

population heterogeneity. Expecting to improve the model predictive accuracy, 

the autoregressive model was extended by introducing socioeconomic variables. 

In line with the literature, results suggest that income is a key decision variable 

for households to adopt the PV technology. Another important variable is the 

electricity consumption indicating that households with high energy usage are 

more likely to adopt PVs, similarly to those concerned about being self-sufficient. 

Then, the average household size variable captures the negative impact of PV 

ownership, as bigger families may have less cash flow for a PV installation. 

Although this multivariable characterisation does not increase the models' 

accuracy significantly (only 5%), it allows reducing drastically the error from the 

forecast, from 10% to 2% for the first forecast and from 73% to 9% for the fifth 

forecast. 

Because the heterogeneity of the agents’ characteristics and preferences is 

dynamic, the model captures the evolution of those over time. The autoregressive 

model has captured the evolution of the agents’ preferences using the ANN. 

Then, the multivariable model captures this by updating the time-series of the 

socioeconomic variables at each step, providing a more realistic characterisation 

of the adoption process and agents decision-making process. Additionally, the 

model addresses the limitation of the autoregressive model which ignores inputs 

from outside the study area and explores the possibility of the model being 

susceptible to the MAUP. Thus, the model performance was assessed using 

three different scales, results show that due to the adaptive capabilities of the 

ANN, the model is flexible to handle different study area sizes. 

Therefore, attending to the aim of this thesis, the following chapters focus on 

identifying further modifications required to analyse other technologies adoption 

process (chapter 4), and on finding ways in which the model can inform one’s 

technology adoption process with other’s decision-making (chapter 5). 
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4 A spatio-temporally explicit ABM and ANN integrated 

model: the EV adoption case  

4.1 Introduction 

This chapter analyses the spatio-temporal patterns of EV adoption, by 

implementing the methodology used for the PV autoregressive model. The 

chapter first explores the historical EV data, highlighting the differences with the 

PV data and discusses the expected differences in the results. Then, the model 

estimates the adoption rates of EV adoption and discusses whether further 

modifications to the (PV) autoregressive model are required. Previously, Chapter 

2 designs, develops and implements a model that characterise the spatio-

temporal regularities and social dynamics into a novel ABM for the adoption of 

PVs. Subsequently, Chapter 3 extends on the model so as that it recognises the 

heterogeneity of the population and analyses the effects of the changes in the 

geographical scale. Besides, the model is validated spatially and temporally, and 

the results show short-term applicability of the results (1-5 months). Because the 

research aims to study the regularities between the EV and PV adoption, this 

chapter also works as a first step toward a combined model to characterise the 

influence of owning  PV on the decision-making towards adopting an EV, or the 

other way around. 

The literature review, in Section 1.1, presents both SR and ABMs studies that 

analyses the market diffusion of EVs. From the SR perspective, Morton et al. [29] 

provide the only EV study, to our acknowledgement as of 04 Dec 2018. Besides 

this study contributes to understanding the drivers of EV adoption in the UK, the 

study faces a common limitation that is the low data availability, as the model 

presents inconsistency in the timestamps. The vehicle registration for 2016 is 

modelled with income data for 2015 and other socioeconomic data for 2011. 

Besides the results are subject to bias, the model yields a modest accuracy of 

60%, suggesting that some of the spatial dependence still need to be explained. 

On the other hand, the ABM studies comprise a wider number of applications 

[26,27,32,33,49], yet, these studies are purely explorative. The authors present 
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the EV market diffusion under different scenarios, such as vehicle price 

[26,27,33], rebates or subsidies [33], fuel cost [27,32,33,49], discount rate [49]. 

The agents’ decision-making includes both the financial [26,27,32,33,49]and 

social utilities [26,32,33], using multivariable characterisation. Additionally, the 

Bass model has been used, though, with no information on its fitness, Linder and 

Wirges [41] construct s-curves for the EV uptake using different levels of imitation 

rate and the initial number of adopters. 

This chapter seeks first to analyse the spatio-temporal patterns of EV adoption, 

using the autoregressive ABM and ANN integrating model. The chapter analyses 

the EV adoption using the same modelling framework employed to analyse the 

PV data. The following section starts the analysis looking at the EV data, 

providing an overlook of the spatial and temporal dependence, and comparing 

with those of the PV. Moreover, this chapter discusses whether it is suitable to 

combine both autoregressive PV and EV models into a combined model. 

4.2 Methods and materials 

This section first analyses the EV spatial and temporal regularities, and follows 

the design process developed in Chapter 219 made for the PV adoption process. 

The model uses the PC and monthly resolutions and includes the 96 PCs of the 

MV-LADs model. The ANN design and training follows the same approach that 

has been followed in the previous chapters. 

4.2.1 Data 

The model uses data from the Stock Vehicle Database held by the Department 

of Transport, accounting for vehicle registration as of July 2018. These datasets 

include the total number of registered vehicles by propulsion type20 and the month 

of first registration at Lower layer super out area (LSOA) level. This data is 

 

19 Figure 13, in Section 2.2, displays the conceptual model for the autoregressive PV model. 
20 i.e. Diesel, Electric, Hybrid-electric, Petrol, etc. 
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aggregated to PC level using ONS reference lookup tables 21. Although the 

spatio-temporal resolution is PC and monthly basis, the EV model increases both 

the size of the time-series and the number of PC in the analysis. Therefore, the 

ABM and ANN model characterises the EV adoption process for 96 PCs, and 

including data from January 2011 to September 2018, resulting in 93 

observations (months). Over this period the number of EVs registered increased 

from N = 4,960 to 15,06622, where the two PCs adjacent to the airport accounting 

for more than a third of these new registrations23. Figure 42 shows the range of 

values among the PCs, excluding these two PCs. The average number of EVs 

by PC is 99 with most of the values being between 61 and 134, and outliners of 

more than double the average of EVs. 

 

 

21 Available at the Open Geography portal from the Office for National Statistics, source: 
http://geoportal.statistics.gov.uk/datasets/local-authority-district-to-combined-authority-
december-2015-lookup-in-england 
22 Following the same criteria that with the PVs, those dates with low number of EVs are excluded, 
limiting the dataset to post Jan 2011. 
23 The B92 and CV7 accounts for 5,246 and 633 EVs (for a total of 5879) 

http://geoportal.statistics.gov.uk/datasets/local-authority-district-to-combined-authority-december-2015-lookup-in-england
http://geoportal.statistics.gov.uk/datasets/local-authority-district-to-combined-authority-december-2015-lookup-in-england
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Figure 42. Boxplot of the total EV registration in 96 PCs in the West Midlands. 

 

Figure 43 shows the spatial distribution of the EV registrations. Like the PV spatial 

distribution, the areas in the centre of Birmingham exhibits a low number of EVs, 

arguably because of the low number of residential buildings, whilst the areas in 

the South East have a high concentration of EVs. These areas are some of the 

PCs adjacent to the Birmingham Airport where EVs in these areas might be used 

as a taxi service by the passengers. Both of those PCs have almost doubled the 

quantity of registered EVs from January 2011 to September 2018. These results 

are shown in Table 9, which suggest that the EVs exhibit spatial regularities. 
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Figure 43. Spatial distribution of the EV registrations by September 2018. 

 

Figure 44 displays clusters of EVs where low values are concentrated in the 

central PCs, whilst the high values are located in the South and South-West. 

Although, the EVs distribution present spatial regularities, the degree of clustering 

is lower than for the PV case; being close to 0 for EVs and ~0.4 for PVs. The 

difference between the Moran’s index of the EVs and PVs can be explained with 

the difference in the adoption stage of both technologies. van der Kam et al. [28] 

use Rogers categories24 to understand the stages of EVs and PVs adoption, 

pointing out that the PVs are in the early adopters phase, whilst the EVs are in 

the innovators phase. 

 

 

 

24 Rogers [37] classification includes innovators, early adopters, early majority, late majority, and 
laggards. Each of these categories has differenct characteristics and are distributed normally, 
being innovators those accounting for 2.5% of population and ealy adopters 13.5% of the 
population. 



122 

 

Table 9. The Moran’s I index value, z-score and p-value of the EV registration data 

Statistics Moran’s Index z-cores p-value 

Value 0.0193 3.9628 0.00007* 

Given the z-core of 3.9628, there is less than 1% likelihood that this clustered 

pattern could be the result of random chance. 

The statistical significance is marked with asterisks. 

*p<0.05 

 

 

Figure 44. Hot spot analysis of the EV registration at PC level by Sept 2018. 

 

4.2.2 Spatio-temporal resolution 

Given the wide range of values in the EV data, the EV time-series are normalised 

into values between [0-1] following the insights from Chapter 2. Then, the 
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transformed data is comparable across areas. This transformation was done 

considering the overall population’s range of values using the following formula: 

 

𝐸�̂�𝑖,𝑡 =  
𝐸𝑉𝑖,𝑡 − 𝑀𝑖𝑛𝐸𝑉𝑖

𝑀𝑎𝑥𝐸𝑉𝑖 −  𝑀𝑖𝑛𝐸𝑉𝑖
 

(4-1) 

 

Where  

𝐸�̂�𝑖,𝑡is the t-th EV estimation in the i-th area 

𝑀𝑖𝑛𝑖 is the minimum number of EVs in the i-th area over the study period 

𝑀𝑎𝑥𝑖 is the maximum number of EVs in the i-th area over the study period 

 

Figure 45 shows the share of the household of EV adopters, displaying a wide 

number of behaviours among the PCs. Probably the most important feature is the 

negative trends of some of the PCs, this could be explained for the possibility of 

registering any vehicle off the road25, or the fact that cars can be traded between 

users of different locations. This is contrary to the PV data, which presents a 

constant positive increase month by month, whilst the EVs registration may 

fluctuate over time. It is expected that the ANNs capability to estimate any type 

of function helps to adapt to these differences [105,116]. 

 

 

25 This is done when an user wants to stop taxing and insuring it. Source: 
https://www.gov.uk/make-a-sorn 

https://www.gov.uk/make-a-sorn
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Figure 45. Monthly cumulative adoption rates EV registration for the 96 PCs. 

 

The analysis uses the same study size as the MV-LADs described in Section 

3.1.2, Figure 46 shows the 96 PCs characterisation in Anylogic v7.3.2 software. 

 

0%

1%

2%

3%

4%

5%

6%

2
0

1
1

 J
an

2
0

1
1

 J
u

l

2
0

1
2

 J
an

2
0

1
2

 J
u

l

2
0

1
3

 J
an

2
0

1
3

 J
u

l

2
0

1
4

 J
an

2
0

1
4

 J
u

l

2
0

1
5

 J
an

2
0

1
5

 J
u

l

2
0

1
6

 J
an

2
0

1
6

 J
u

l

2
0

1
7

 J
an

2
0

1
7

 J
u

l

2
0

1
8

 J
an

2
0

1
8

 J
u

l

Sh
ar

e 
o

f 
h

o
u

se
h

o
ld

s 
w

it
h

 a
n

 E
V



125 

 

 

Figure 46. Spatial representation of the EV autoregressive model in AnyLogic 

software. 

 

4.2.3 Spatio-temporal dependency 

The Moran's I statistic is shown in Table 9 and the clustering map in Figure 44 

demonstrates that EV registrations present spatial regularities. These features 

are similar to the PV case, which also exhibits clusters of low and high values. 

However, the locations of these are different, see Figure 12. On the other hand, 

ACF and PACF, from the Box-Jenkins methodology, are used to analyse the 

temporal lag of the EV adoption. Both functions are calculated using Python, 

considering monthly resolution and up to 12 lags. Figure 47 shows the ACF 

functions, where each of the boxplots shows the mean and median of the 

temporal behaviour of the population at each period of time. Similar to the PV 

case, the significant lags present a slow decrease over time. This suggests that 
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the model has an autoregressive nature. However, the EV’s ACF presents 

negative values, this means that some observations have a negative influence 

on the total number of EVs, maybe reflective the effect of off the road registration. 

Figure 48 presents the PACFs, which presents significant lags in the 1st, 4th, 7th 

and 10th lags. However, this semi-quarterly regularity is not uniform among the 

population, as the share of PCs decreases up to less than 50% for the positive 

lag and less than 20% for the negative values. On the other hand, the entire 

population present a significant lag of first-order (t-1), therefore the model’s 

autoregressive element will be kept the same as for the PV model. Later, Section 

4.3 discusses the implications of disregarding the other temporal lags, as this 

may introduce bias into the estimations. Thus, either the temporal validation may 

show disturbances in the estimation errors with a quarterly periodicity, or the 

ANNs to adapt and learn from the data sets and minimise the errors. 

 

 

 

 

Figure 47. ACF of the EV registration data at the PC level.  

Significance level   

t      t-1      t-2     t-3     t-4     t-5      t-6      t-7      t-8      t-9    t-10    t-11   t-12 
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Figure 48. PACF of the EV registration data at the PC level. 

4.2.4 Decision-making process 

The ANN that characterises the decision-making process implements back-

propagation training. The conceptual design is identical to the PV autoregressive 

model (see Section 2.2.5), as shown next in Figure 49. 

t      t-1      t-2     t-3     t-4     t-5      t-6      t-7      t-8      t-9    t-10    t-11   t-12 

Significance level   
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Figure 49. Decision-making process defined by the ANN, EV adoption process. 

 

4.2.5 Model validation 

The model’s fitness is assessed using the MAPE, accounting for the entire 

population using the equations (4-2) and (4-3): 

 

𝑀𝐴𝑃𝐸𝑗 =  
100%

𝑛
∑ |

𝐸𝑉𝑡 − 𝐸�̂�𝑡

𝐸𝑉𝑡
|

𝑛

𝑖=1

 (4-2) 

 

Where  

n is the time series size 

𝐸𝑉𝑡 is the current number of EVs in the month t 

𝐸�̂�𝑡is the estimation of the number of EVs in the month t 
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i is the specific month 

j is the specific area 

 

𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑀𝐴𝑃𝐸 =  
1

𝑚
∑ 𝑀𝐴𝑃𝐸𝑘

𝑚

𝑘=1

 (4-3) 

 

Where  

m is the population size 

k is the specific area 

 

4.3 Results 

4.3.1 Temporal validation 

Figure 50 shows the estimations for the ANN, Bass model and the actual data for 

the training period. As seen, while the ANN overestimates the total number of 

EVs, the Bass model underestimates. The ANNs can reflect the changes in the 

data trends, those around April 2013 and January 2016, while the Bass model 

can just assume a positive trend (see Appendix 6 for the entire Bass estimation). 

One thing to consider is the limitation of the Bass model to describe negative 

tendencies, as its structure is an exponential function. Despite the model seems 

to fit the actual EV data, if the EV growth would continue with the significant 

increase seen from 2017, the model then would significantly underestimate the 

number of EVs. Moreover, if the growth of EVs would change its trend, a similar 

case to the PV would be seen in Figure 18, where the model cannot adapt to the 

new data behaviour.  On the other hand, the ANN estimations follow the trends 

in actual data over time and the estimation errors stabilise, yet, the results present 

a negative tendency at the end of the forecasted period. Maybe because the 
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model can recognise the negative effect of the off-road registration, the error 

accumulation results in the underestimation of EVs. Additional to the error 

accumulation, the EV growth rates increase significantly during the forecast 

period, having a ~10%, ~20%, ~30% annual growth for 2016, 2017 and 2018, 

whilst the annual rate before that was around 2%. This could be the results of the 

Low-emission vehicles grant, which has had a positive impact on the number of 

EVs since its establishment in 2011. Besides, the rental car industry has 

recognised the potential role of this industry to improve the sustainability of the 

UK transport sector [137,138]. For instance, Enterprise Rent-A-Car26 has almost 

duplicated its fleets of EVs in the UK and Ireland during 2017 and 2018, which 

shows how the industry has identified a business opportunity for the rental car 

[139,140]. Additionally, given that the decision-making is also driven by 

experience and perception, common users of rental cars may have a higher 

preference to buy an EV in the future [140].  

Figure 51 shows the level of errors for the ANN and Bass model, although the 

ANN estimations produce greater errors at the beginning of the training. However, 

the error levels rapidly decrease and converge levels lower than the Bass model, 

without presenting any peak or disturbance in the estimation errors. The data 

analysis performed in section 4.2.3 noted for the 4th, 7th and 10th lags were also 

significant, yet, these were not included in the model. These were excluded 

because that behaviour is not uniform across the agents, accounting for less than 

90%, 50% and 50% respectively. Nevertheless, even when this behaviour in the 

data was overlooked, the capabilities of the ANN to approach to any nonlinear 

functions yield more than 95% of accuracy. 

 

 

26 Enterprise is a mobility solutions company. Source:https://www.enterprise.co.uk/en/home.html 
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Figure 50. Cumulative adoption rates of EVs estimated by ANN and Bass model 

vs. actual data.  

 

 

Figure 51. Estimation error for the ANN and Bass model for the EV data. 
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4.3.2 Spatial validation 

Figure 52a and Figure 52b present the spatial distribution of the ANN and Bass 

estimations at the end of the training. Both models exhibit similar behaviour with 

high forecasts of EVs in South and South-West, except that the ANN present 

more extreme values; both low and high. Although, these clusters are not the 

same as the ones in the actual data (see Figure 44 for comparison), the errors 

of estimation only present spatial regularities around Birmingham’s airport PC, 

suggesting that there is a spatial effect originating from the airport. Figure 53a 

and Figure 53b show that both models present these spatial regularities. 

Considering that the degree of clustering of the EV data is close to zero (see 

Section 4.2.2) and that the Bass model disregards the spatial dependence, this 

confirm that the distribution of the EVs has yet not developed spatial regularities. 

Moreover, this suggests that the clusters shown near the airport are caused by 

other factors other than spatial regularities. Therefore, the estimations of the 

Bass model and the ABM produce similar clustering patterns. 

The spatial distribution of the errors is analysed to further understand how well 

the model captures the spatial dependence of the EV diffusion. As seen in Figure 

54a and Figure 54b the error from the ANN estimations vs. those forms the Bass 

model are significantly different. As seen, the Bass model’s errors are lower than 

those from the ANN. Yet, most of the ANN estimations present errors below 6% 

or higher than 30%, whilst the Bass estimations have a more uniform error 

distribution with errors between 6% and 10%; see Figure 54b. Then, Figure 55a 

and Figure 55b are used to verify that the errors of estimation fo the ANN model 

tend to present lower values in the central PCs, and higher errors in the 

Northwest. This could mean that as the EV lacks strong spatial regularities, the 

model may overestimating this effect, by creating random patterns of error 

estimation. Instead, the Bass model presents lower clustering and only two 

outliers in the central PCs, this follows the fact that the Bass model does not 

consider the spatial dependence. 
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(a) 

 

(b) 

Figure 52. Spatial distribution of the EV estimations of the (a) ANN and (b) Bass 

model by the end of the training period - December 2016. 
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(a) 

 

(b) 

Figure 53. Hot spot analysis of the EVs estimation for the (a) ANN and (b) Bass 

model by the end of the training period - December 2016. 
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(a) 

 

(b) 

Figure 54. Spatial distribution of the errors of estimation for the (a) ANN and (b) 

Bass model by the end of the training period – December 2016. 
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(a) 

 

(b) 

Figure 55. Hot spot analysis of the error of estimation for the (a) ANN and (b) 

Bass models error of estimation by December 2016 
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4.3.3 Predictive accuracy 

Figure 56 shows the MAPE of the 18 forecasted months, whilst Figure 51 

displays that during the training period the error of estimations converges to 

levels around the ~15%. However, the errors start accumulating during the 

forecasting period. Both the EV and PV estimations presents this accumulation 

of errors, however, the magnitude of those are different. In the PV case the errors 

of estimation are lower than 20% by the 3rd forecast, yet, it jumps to +40% for 

the 4th and 5th estimations. In the EV case, the MAPE stays below 20% up to the 

8th forecast, and lower than 40% by the end of the forecast period (September 

2018). Although the ANN estimations can replicate the behaviour of the EV data 

over time, the accumulation of the underestimation during the forecast period 

results in higher estimation errors than those of the Bass model. Nevertheless, 

the ANN model can produce lower errors of estimation than the Bass model for 

the first three periods, after that the Bass model is better at estimating the EV 

adoption rates. Because the exponential equation used in the Bass model, their 

estimations cannot react to the negative trends of the data, however, it can fit 

the last months where the behaviour is entirely positive [41]. 

 

Figure 56. Estimation error for the forecast period ANN vs Bass model. 
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4.4 Reflective summary 

This chapter analyses the EV spatio-temporal patterns of adoption, using an ABM 

and ANN integrated model. The results suggest that the model can characterise 

these patterns, moreover, the model shows benefits over the Bass model. 

Although the model has some limitations to capture the spatial dependence of 

the adoption process, the adaptive capabilities of the ANN can reflect the 

changes in the adoption trends; which is a limitation for the Bass model. 

Moreover, because these spatio-temporal regularities are only shown at high 

data resolution, the results reiterate the importance of generating local 

estimations at the high spatio-temporal resolution, as shown in Section 4.2.1, 

rather than regional or country estimations. Morton et al. [29] also generates a 

map of the EV clustering for the UK at LAD level, showing Birmingham LAD with 

no significant spatial clustering, Sandwell and Walsall with a Low-Low clustering 

and Lichfield with a High-High pattern; these three LADs are the areas in north 

Birmingham. Conversely, this analysis shows that only one of those areas has a 

High-Low outlier. Therefore, using results at LAD level may disregard local 

specific behaviours, thus, the model has limitations to inform planning decisions. 

The model has the potential to generate spatio-temporally explicit estimations of 

EVs, as the model can produce estimations of up to 8 months ahead with 80% of 

accuracy. However, the potential to inform policymaking or network planning is 

limited, as the model is only able to produce up to three months ahead with less 

than 20% of error. Despite the differences of the EV and PV data, both models 

are limited to short-term applicability, which may suggest that an autoregressive 

ABM and ANN model may not be able to inform the medium- or long-term 

management of the distribution network. Nevertheless, the results suggest that 

the model is flexible and transferable to other technologies; even if those have a 

different spatial or temporal structure, For instance, the temporal dependency 

tests for the EV time-series show that there are other significant lags. Yet, it is 

shown that the model can estimate the EV uptake by using the same one-lag 

autoregressive model as the PV one. Also, the EV and PV present different 

spatial regularities, and they may be affected by different spatially explicit 
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economic activities.  The model can still capture different degrees of spatial 

dependence without making it explicit to the model or fixing that effect into the 

model decision-making. One avenue for future research could be to implement 

the lags that were disregarded, by increasing the number of input neurons. 

Although the inclusion of longer lags, i.e. the 10th lag, means losing ten 

observations of the time-series, this trade-off is negligible as the available data 

increases. 

Second, the spatial validation shows that the estimation errors present a higher 

number of areas with spatial regularities (see Figure 23), suggesting that the 

model has limitations to capture the spatial dependence of the EVs. Because, 

these spatial regularities can be explained by specific conditions of those areas, 

rather than a clustering coming from the model, the results suggest that the 

framework used for the autoregressive PV model is also able to characterise the 

EV case without any further modification. However, given the limitations for the 

EV model to capture the spatial regularities of the adoption patterns, further work 

is required. Chapter 3 has already shown the effect of including socioeconomic 

variables into the agents' characterisation, demonstrating that the model 

performance can be improved by characterising the temporal dynamic of the 

population heterogeneity. Therefore, the following chapter rather focuses on 

investigating the effect of considering the effect of a second adoption process on 

the decision-making. Then, the model combines the insights produced by both 

autoregressive models, to investigate whether the exchange of information can 

improve the model’s performance. 
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5 Integrating knowledge exchange between EV and PV 

adoption into a spatio-temporally explicit ABM 

Previous chapters have contributed to test the hypothesis of this thesis. Chapter 

2 shows that it is possible to integrate the ABM and ANN while integrating insights 

from the SR. Chapter 3 demonstrates that a multivariable characterisation of the 

agents improves the model performance and helps to reduce the error 

accumulation of the forecast. Finally, Chapter 4 analyses the adoption patterns 

of EVs and assesses the transferability of the model. Results have shown that by 

generating experience-based knowledge, the ANNs can adapt to the different 

spatio-temporal patterns of EVs and PVs adoption (autoregressive or 

multivariable model). However, it is still pending to test whether this knowledge 

can be exchanged between domains. Authors such as McCoy and Lyons [26] 

assume that owners of PVs have a higher preference for EVs than other agents, 

defining the agents' social utility based on whether the individuals have adopted 

any energy-saving technologies previously. Because the households can offset 

its energy consumption from the grid with the PV produced energy, the PV can 

be seen as energy-saving technology. Cohen and Kollmann [36] suggest that 

households who already own a PV have the intention to purchase an EV during 

the following five years. Davidson et al.’s diffusion model note the significant and 

positive impact of the number of EVs registered in a location to explain the 

number of PV installations [14]. 

Building upon these insights into the model’s design, this chapter investigates 

how to capture the higher preference to the adoption of another associated 

technology, in this case, the associated technologies are those adopted by 

consumers with high environmental concern [34]. Therefore, this chapter aims to 

integrate both autoregressive models to capture the knowledge exchange 

between EVs and PVs and assess to what extent one technology can inform the 

decision-making for another technology. The analysis assumes that the 

knowledge generated for one technology, during the training, can inform the 

decision-making for another technology. The analysis builds upon the insights of 
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both autoregressive models and combines the EV and PV time-series. The model 

captures the information flow shared between EVs and PVs, but also the unique 

information for each decision-making. The former is characterised by the shared 

connections in the artificial neural network, whilst the latter is captured by the 

unique synaptic weights that calculate the outcome of the neural network. 

5.1.1 EV and PV diffusion in Birmingham 

Figure 57 shows the number of EVs registered and PVs installed annually from 

2011 to 2018 for the 96 PCs in Birmingham, and each time-series comprises 60 

monthly observations. The diffusion of both technologies exhibits different 

patterns. The EV registrations almost increased at a steady rate from 2011 until 

2016, whereas PVs had a sudden increase between 2012 and 2015. Before 

2012, there were almost no PV installations. Then, the number of PVs had a 

significant increase and almost double the number between 2014 and 2016, 

whilst the number of EVs registered kept stable until 2016. At this point, both 

technologies changed trends almost like exchanging trends. Although both the 

EV and PV growth rates show a positive trend until July 2018, the number of PVs 

increased steadily, whilst the EVs had a more rapid increase. 
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Figure 57. The cumulative adoption rate of PV installations and EV registrations in 

96 PCs in the West Midlands, UK. 
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the FiT rates [7,8,124]. This scheme has been greatly successful especially for 

the adoption of PVs, which comprised mostly domestic installations. Then, the 

government announced the review of the FiT rates, aiming to match real-world 

cost reductions. The announcement of the reduction in the FiT scheme caused 

an urge from households to install PVs before the deadline on the 1st of April 2012 

[124]. Finally, further reductions to these rates in 2016 resulted in a dramatic 

decrease in the number of new PV installations [141]. On the other hand, the 

increase in the EV numbers can be associated with the Low-emission vehicles 

grant, which has successfully increased the number of EVs since its 

establishment in 2011. Likewise the FiT scheme, this grant was revised and 

reduced at the end of 2012, at which point one can see a deceleration in the EV 

adoption [142,143]. Despite further cuts to this grant in recent years, the number 

of EVs has regained a significant increase in the adoption rate. This late change 

in the trend can be attributed to changes in the car rental market, which has 
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recognised the potential role of this industry to improve the sustainability of the 

UK transport sector [137,138]. Enterprises have identified a business opportunity 

for the rental car sector and created new business models [139,140], increasing 

the EV fleet [137,138]. Additionally, it has been noted that common users of rental 

cars may have a higher preference to buy an EV in the future [140]. 

Figure 58a and Figure 58b shows the spatial distribution of EVs and PVs, which 

in general differ from each other. Then, Figure 59a and Figure 59b show 

statistically significant clusters and the nature of such clusters, which differ 

between the two technologies.  
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(a) 

 

(b) 

Figure 58. Spatial distribution of (a) the EV registrations and (b) PV installations 

for 99 PCs in the West Midlands (Sept 2018). 
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(a) 

 

(b) 

Figure 59. Hot spot analysis of the distribution of (a) the EV registrations and (b) 

PV installations for 9 local authorities in the West Midlands by Sept 2018. 
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Because of the lack of information and evidence on whether the PV spatio-

temporal patterns of adoption may inform the EV decision-making, and vice 

versa, a diagnostic analysis is performed. Again, drawing from the spatial-

econometrics discipline, an ordinary least-squares (OLS) regression is used to 

inform the model and provide more information about the regularities between 

these technologies. The OLS has been used to estimate the relationship between 

the EVs or PVs and a set of independent variables [8,28,29,46,47]. The OLS was 

constructed using the following a linear equation: 

 

𝐸𝑉𝑖 =  𝛽0 + 𝛽1𝑃𝑉𝑖 + 𝜀𝑖 (5-1) 

 

Table 10 summarises the results of the OLS estimation. Although the results 

show that the PV can marginally explain only 16% of the EV adoption rate, the 

PV variable is found to have a positive and significant impact on EV adoption and 

highlights the need to include other variables into the model. 

Table 10. Summary of OLS Results - Model Variables 

Variable Coefficient t-Statistic Probability Robust Prob 

Intercept 65.794 7.423 0.00000* 0.000000* 

PV 0.165 4.331 0.00004* 0.000001* 
 

Multiple R-

Squared 

0.169383 

 

Adjusted R-

Squared 

0.160354 

The statistical significance is marked with asterisks. 

*p<0.05 

 

Because any degree of correlation is a two-way measurement of association 

between two observed phenomena, by considering the possibility that the spatio-
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temporal patterns of PV can inform the EV diffusion, also the vice versa scenario 

is considered. Then, it is assumed that the decision of adopting EVs and PV are 

not mutually exclusive, contrary to the case of vehicle selection where choosing 

a specific vehicle type will exclude the other types [19]. To compute this multiple 

decision, the model uses the ANNs capabilities to estimate multiple outputs, while 

the connections between neurons can capture the knowledge exchange.  

5.2 Methods 

5.2.1 Decision-making and social effects 

The autoregressive EV model developed in Chapter 4 is here extended to 

recognise the influence of PV adoption, whilst considering the spatio-temporal 

dynamics and social effects; the same principle is applied to characterise the PV 

adoption. This chapter combines the insights from both autoregressive models, 

to generate a combined model that characterises both decision-making 

processes simultaneously. Chapter 4 has shown that despite the differences in 

the spatio-temporal patterns of EVs and PVs, the framework can analyse both 

processes using the same model. Figure 60 exemplifies the multi-output ANN, 

which processes the same inputs for both outputs. However, the ANN estimates 

the EV and PV estimations through unique weights from the hidden to the output 

layer. Equations (5-2) and (5-3) describe the factors that define the estimation of 

each technology. 

The model is initialised following the process described in Section 2.2.5, in this 

case, the query done to the database retrieves both time-series, number of EVs 

and PVs. Then, the ANN learns through the iterative process of presenting input-

output pairs and adjusting the synaptic weights. This adjustment occurs when the 

ANN calculates the associated estimation error and propagates this through the 

network in the backward phase (see Algorithm 2 in Appendix 4). Then, as shown 

in Figure 60, output nodes have individual synaptic weights connected to the 

node in the hidden layer, and these are adjusted based only on the node they are 

connected to. However, the weights connecting the hidden layer and the input 

layers are modified by both outputs. On the one hand, the individual estimation 
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of EVs and PVs are provided by the unique combination of connections from the 

hidden layer to the output layer, providing the unique learning to estimate either 

EVs or PVs. On the other hand, the shared connections from the input to the 

hidden layer transfer knowledge between both technologies. 

 

Figure 60. Multi-output ANN design for the EV and PV adoption process. 
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𝐸𝑉𝑡  =  𝑓(𝐿𝑜𝑐𝑎𝑙𝐸𝑉𝑡−1, 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑖𝑛𝑔𝐸𝑉𝑡−1 , 𝐿𝑜𝑐𝑎𝑙𝑃𝑉𝑡−1, 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑖𝑛𝑔𝑃𝑉𝑡−1 ) (5-2) 

𝑃𝑉𝑡  =  𝑓(𝐿𝑜𝑐𝑎𝑙𝑃𝑉𝑡−1, 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑖𝑛𝑔𝑃𝑉𝑡−1 , 𝐿𝑜𝑐𝑎𝑙𝐸𝑉𝑡−1, 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑖𝑛𝑔𝐸𝑉𝑡−1 ) (5-3) 

Where  

𝑃𝑉𝑡 𝑎𝑛𝑑 𝐸𝑉𝑡 are the total number of PVs and EVs in a specific time 

𝐿𝑜𝑐𝑎𝑙𝑃𝑉𝑡−1 𝑎𝑛𝑑 𝐿𝑜𝑐𝑎𝑙𝐸𝑉𝑡−1 are the autoregressive elements 

𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑖𝑛𝑔𝑃𝑉𝑡−1  𝑎𝑛𝑑 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑖𝑛𝑔𝐸𝑉𝑡−1  are the number of PVs and EVs in 

the adjacent areas 

 

5.2.2 Model validation 

Because of the multi-output design of the ANN, it is required to evaluate the errors 

of estimation for EVs and PVs individually. Therefore, this analysis presents the 

capabilities of the model to reproduce the spatio-temporal patterns of both 

technologies, using the validation method in Sections 2.3.2 for PVs and in Section 

4.2.5 for EVs. Furthermore, as a benchmark for comparison, these results are 

compared with the ones produced by the autoregressive models presented in 

sections 2.4 and 4.3, respectively. 

5.3 Results 

5.3.1 Temporal validation 

Figure 61 shows the actual data and the estimations for both PV and EVs. 

Although both estimations are very similar to the actual data during the training 

period, they exhibit different behaviours during the forecast period. Like the 

autoregressive PV model, the combined model overestimates the number of PVs. 

This overestimation is reduced by the PV multivariable models, thus, these 
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variables27 could be included in the model to reduce the error accumulation. On 

the other hand, the number of EVs presents the same underestimations as in the 

EV autoregressive model’s estimations. However, any knowledge being 

transferred from the PV helps to eliminate the negative trend forecasted for the 

EV autoregressive model (see Figure 50). Indeed, the combined model forecasts 

a positive trend, yet, this still does not reflect the dramatic increase in the number 

of EVs. Then, future work could include socioeconomic variables in the EV 

decision-making.  

The PV estimations also present an overestimation at the beginning of the 

training, yet contrary to the EV estimations, these keep large until the rates of 

adoption start to increase around January 2012. There is a large difference 

between the EVs, and PVs estimation errors are because the MAPE is sensitive 

to the estimation of low numbers. Then, as the PVs present values close to zero, 

under or overestimating one-unit results in a large error, whilst the EVs are in the 

thousands and the MAPE would not be affected as much as the PV estimation. 

Then, by July 2013 the ANN can react and adapt to the changes in the adoption 

behaviour. However, when the behaviour changes again around 2016, the model 

starts overestimating the rates of adoption. This could be due to two reasons, 

firstly, because it takes a few timesteps for the ANN to adapt to the new network. 

Secondly, for this specific case, the forecast period starts before showing whether 

the results are under or overestimated. The overestimation of the results is similar 

to the PV autoregressive, which accumulates the errors of estimations and 

quickly overestimates the number of PVs. Chapter 3 shows that a multivariable 

model helps to reduce the error of estimation during the training period and slows 

down the error accumulation during the forecast period. Therefore, further 

analysis may focus on including socioeconomic variables into the combined 

model, moreover, to investigate whether both technologies can be explained 

using the same socioeconomic variables. 

 

27 As presented in Section 3.3, these variables include electricity consumption, the average 
household size, and income. 
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Figure 61. Estimations for the PV installations and EV registrations, for the 96 PCs. 

 

 

Figure 62. The error of estimation for the EV and PV series - MAPE. 

* the second graph is a zoom in to the estimation errors 
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Both EV and PV estimations are likely to produce extreme values at the 

beginning of the training, as the neural networks have not been fed with sufficient 

information [118,121–123]. Figure 63 shows the errors of the PV and EV 

estimations, which exhibit similar behaviour. Both estimations produce a high 

level of errors initially. Then, as the ANNs are fed with more data, the errors 

decrease and stabilise without any disturbance in the mid periods. Although there 

are fluctuations in the errors of estimation, these do not exceed a difference of 

2% on average. This is contrary to the PV autoregressive model that presents 

marginal changes greater than 10%. The absence of disturbances in the PV 

estimation errors suggests that the knowledge associated with the EV decision-

making also informs the estimation of PVs. This could be because the positive 

trend of the adoption rates of EVs up to March 2012 is followed by a steady 

number of PVs matches with the changes in the FiTs rates. Despite the results 

presented in Table 10 are from a linear regression between, which disregards the 

temporal and spatial dependence of the adoption process, the results show a 

16% of correlation between the EVs and PVs adoption rate. 

5.3.2 Spatial validation 

Figure 63a and Figure 63b show the distribution of the estimation error at the end 

of the training, where most of the PCs have an estimation error lower than 10%; 

81 PCs for PV, and 77 PCs for EV. There are few areas with more than 50% of 

error (1 and 2 PCs for each technology), which are located in the city centre. 

Then, Figure 64a and Figure 64b present the spatial regularities of the estimation 

errors, which present a random distribution, except for the clusters of high values 

in the city centre PCs. These spatial regularities show that the combined model 

can explain more of the spatial dependence than the autoregressive models and 

the PV multivariable model. The combined model can reduce the number of 

clustered and outlier PCs, see Figure 23, and Figure 53a and Figure 64a for 

comparison. The areas exhibiting spatial regularities are those with low numbers 

of EVs and PVs, and even a small under or overestimation may result in a high 

MAPE. 
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(a) 

 

(b) 

Figure 63. Spatial distribution of the estimation error for the (a) PV and (b) EV, 

for the 96 PCs in the West Midlands. 

 



154 

 

 

 

(a) 

 

(b) 

Figure 64. Hot spot analysis of the estimation error for (a)PV and (b) EV, for the 

96 PCs in the West Midlands. 
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5.3.3 Predictive accuracy 

Table 11 shows the estimation errors for the combined model and both 

autoregressive versions, presenting the results in intervals of five months to 

facilitate the comparison with these. The combined and autoregressive EV model 

estimations are similar until August 2017 (8th forecast). Then the errors for the 

combined model accumulate, reaching more than twice the error of the 

autoregressive model for a total of 85% vs. 39%, by September 2018. Chapter 3 

showed that the magnitude of the error accumulation can be reduced by 

introducing other explanatory variables. Already, the spatio-temporal patterns of 

PVs have informed the EV adoption decision-making, eliminating the negative 

trend from the autoregressive model. However, the model fitness requires 

improvement, which could be done by introducing socioeconomic variables to the 

model; as shown to work for the PV multivariable model in chapter 3. 

On the other hand, the influence of the PV over the EV adoption has a larger 

impact on the spatial dependence, this can be seen in the reduction of spatial 

regularities exhibited by the estimation errors. The EV autoregressive model 

presents clusters of high values in the city centre and the southwest, these are 

the areas with the lowest and the highest values of EVs (see Figure 43). However, 

the combined model can capture some of the missing spatial dependence, and 

reduce the clustering of high MAPE values (see Figure 64b). This suggests that 

the influence of the spatio-temporal patterns of PVs on the EV adoption decision-

making has a stronger effect spatially than temporally. The ACF and PACF 

showed in Chapter 2 and Chapter 4 suggest that most of the time-series present 

a 1-lag temporal dependency, however, few areas present other significant lags. 

Therefore, a future analysis could focus on generating a model that increases the 

agents' heterogeneity by introducing those lags into the decision-making.  

For the modelling of PV diffusion, the PV autoregressive model is capable of 

producing short-term forecasts, as the estimation errors start to accumulate after 

the third month. Table 11 illustrates the (only) five forecasts produced by the PV 

autoregressive and MV-LADs models, these may not be fully comparable with 
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the PV estimations of the combined model, but they exemplify the quick 

accumulation fo the estimation error. As seen, the first and fifth PV autoregressive 

estimations have larger errors than the first and 18th estimations of the combined 

model. The combined PV model produces an estimation error of 4% and keeps 

error levels lower than 30% by the end of the forecasting period. These levels of 

error are lower than the autoregressive and multivariable models. Likewise, the 

spatial distribution of the errors improves, meaning that the combined model 

captures more of the spatial dependence of the adoption process. On the one 

hand, the PV autoregressive model presents up to ten PCs which are part of a 

high-value cluster or outliers in the city centre (see Figure 23a). Then, the PV 

multivariable model can reduce the number of these PCs in the city centre, yet, 

the Birmingham airport PC is still shown to be an outlier, as this also has a 

minimum number of PVs (see Figure 38b). On the other hand, the combined 

model can further reduce the number of PCs with high-value errors and the outlier 

in the airport PC (see Figure 63a). As the number of EVs and PVs are equally 

low in the central PCs, this might be due to the decision-making of each 

technology is being informed by the other. Then the model can reinforce the ANN 

learning based on both behaviours, in other words, the model can exchange 

knowledge between the same area about the low or high number of EVs and 

PVs. 

The fact that the combined model can reduce the spatial regularities of both 

estimation errors suggests that the knowledge exchange between PVs and EVs 

may inform the spatial dependence of their decision-making. On the other hand, 

the temporal patterns of the errors change differently in comparison with the 

autoregressive models. The EV estimations are marginally improved, whilst 

significantly improved for the PVs. This may suggest that the PV adoption is more 

sensitive to the influence of EV. This suggests that the t-1 lag combined with the 

exchange of knowledge may not capture the individual decision-making towards 

the EVs. Therefore, it is needed to investigate the effect of the other significant 

lags on the EV decision-making, furthermore, whether the combined model can 

characterise two decision-making with a different time span.  
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Table 11. Forecasted MAPE for the autoregressive and combined models 

Model First 

forecast* 

Eighth 

forecast 

Fifteenth 

forecast 

Eighteenth 

forecast 

EV – autoregressive 5% 20% 27% 39% 

EV – combined model 4% 18% 52% 85% 

PV – combined model 1% 8% 28% 27% 

PV – autoregressive** 10%, 11%, 17%, 46%, 73% 

MV-LADs 4%, 5%, 7%, 7%, 8% 

*First month: April 2017; Eighth month: October 2017; Fifteenth month: March  
2018; Last month: September 2018. 

** The autoregressive model estimates only five forecasts monthly, from 
September 2015 to December 2015. 

 

Nevertheless, these results are in line with the emergent evidence of regularities 

between EVs and PVs. However, as pointed by Lanzini and Thøgersen [144], it 

is not clear what the temporal dynamics of the behavioural spillover are. This 

could be because of the differences in the interaction and engagement that the 

individuals have with these technologies. One can argue that, from the installation 

of the PV and the purchase of the EV, the observational element is present in the 

agents’ experience (neighbourhood effect), however, it is not clear when an agent 

starts talking about one or the other with its peers (peer-effect). Based on the 

data analysis performed in sections 2.2.1 and 4.2.1, this work studies the 

immediate effect month-by-month, suggesting that the adoption decision-making 

is influenced by the decisions made in the previous month. This differs from other 

authors, for instance, Cohen and Kollmann [36] suggest that these householders 

owning a PV have the intention to purchase an EV during the following five years. 

Richter [20] assumes that the nature of this delay is three-months (t-3), 

associating it with the time between the decision of adopting and the completion 
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of installation. However, it is not clear whether the decision is influenced by last-

month decisions and delayed by external factors, or if the decision is influenced 

by a longer temporal lag. Given that the existing literature focuses on the time 

span of behavioural spillover but not in the spatio-temporal dynamics, future work 

can focus on understanding the spatio-temporal patterns of the behavioural 

spillover. 

5.4 Potential of applicability: network management 

This section presents a rather simple application of the spatio-temporally explicit 

estimations of the model, focusing on how this may enhance management of the 

distribution network. The following analysis explores two scenarios that inform 

about the total capacity needed in the distribution lines to either accommodate 

the PV generation or to supply the EV demand [8]. 

PV generation 

This scenario assumes that the PV generation is first used for domestic purpose 

and the surplus is injected into the network during the peak generation at noon. 

Thus, the analysis considers a 4kW PV system [8,124], which accounts for the 

96% of the FiT registration [8], and domestic consumption of 0.8kW [145], 

resulting in a total of 3.2kW surplus for each PV installation. Figure 65 shows the 

total monthly load for the first eight months of the forecast, which have an 

accuracy greater than 80%. This can inform about the overall trend of PV 

adoption, however, this fails to inform whether any specific areas should be 

prioritised. Then, Figure 66 shows the evolution of the distribution of the capacity 

required to accommodate the extra PV load, providing a sense of the areas that 

may be prioritised. By April 2017 there are some spots at the edge of the study 

area with more than 1MW of solar energy surplus. Yet, seven months later, the 

areas with < 1MW increases and their spatial distribution changes, being present 

closer to the City centre. Although this can inform about the PV penetration up to 

eight months and complement the overall estimations, the model disregards the 

characteristics of the distribution network. This may misinform the DNOs 

decision-making, as the areas with the highest loads injected to the grid may 
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already have enough capacity or the other way around. Therefore, a future 

analysis may consider the distribution characteristics to produce more accurate 

insights. 

 

 

Figure 65. Total PV generation injected to the network after self-consumption. 
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(b) 

Figure 66. Spatial distribution of the total PV generation injected to the grid – (a) 

April 2017; (b) November 2017. 

 

EV energy demand 

The EV scenario considers that all the EVs are charged at home, or where they 

are registered at night time. The charging is done using a Type 1 or Type 2 

connection with a load of 7.4kW [146,147], and the domestic usage is assumed 

as 1kW. Figure 67 and Figure 68 show the evolution of the overall energy demand 

due to domestic EV charging and its spatial resolution. Similar to the PV case, 

the number of the PCs with high energy demand changes, those start in the west 

of the study area by April 2017, and then in the PCs closer to the City centre by 

November 2017. This highlights the areas with a higher chance to have energy 

faults, assuming uniform levels of headroom capacity at low voltage networks. 

This scenario presents the same limitations as the PV case because the model 

does not consider the variation in the distribution network, the results cannot 

inform accurately which of the areas are to be prioritised. Even when the analysis 

of the worst-case scenarios can be the bottom line for the planning of network 

capacity requirements, the model has the potential to produce other insights by 
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dropping the assumptions and integrating empirical behavioural patters in an 

intraday simulation. For instance, the model could be improved by integrating the 

location of EV charging stations, travel patterns, or the possibility of using EVs as 

energy storage. Moreover, the interactions between EVs and PVs have potential 

benefits for balancing the energy demand and supply [44,148]. 

 

 

Figure 67. Total domestic demand during EV charging. 
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(a) 

 

(b) 

Figure 68. Spatial distribution of the total domestic energy demand during EV 

charging – (a) April 2017; (b) November 2017. 

 

Combined EV and PV impact 

Logically, the results should be able to inform the impacts of both EVs and PVs 

on the grid, rather than independently. To test a potential worst-case scenario 

where the timing of EV charging does take place in a different period than peak 

PV generation and excluding battery storage. Figure 65 and Figure 67 show that 

the total PV load is lower than the EV demand. However, because of the lack of 

spatial dimension, these do not inform whether an area has a higher PV 

generation than EV demand. Then, Figure 69 shows the combined impact of both 

PVs and EVs for the first and eighth forecast, accounting for the maximum value 

among them. As seen, the areas with high values are scattered around the study 

area, suggesting that even when the model can replicate the spatio-temporal 

patterns of adoption, there is a synergy between the impact of EVs and PVs 

effects on the grid, as the patterns of the combined effect are different of those of 

each of EVs of PVs individually. Despite the broad assumptions made to produce 
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these insights, this is a first application of the framework that shows its potential 

as a decision-making tool for both industry and policy as discussed in Section 

3.3.1.  

 

 

(a) 
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(b) 

Figure 69. Spatial distribution of the combined impact of EVs and PVs. 

 

5.5 Reflective summary 

This chapter presents a spatio-temporally explicit ABM that characterises the 

adoption of EV and PV simultaneously, investigating whether the decision to 

adopt one technology can influence the decision to adopt the other. The model 

assumes that both decisions may happen at the same time and that they are not 

mutually excluded/exclusive. Therefore, at each iteration of the training, the 

knowledge generated is shared and influences both technologies, then, the multi-

output ANN estimates the number of EVs and PVs individually. In other words, 

the model simulates how the agents learn over time from multiple decisions. It is 

argued that because the learning processes are done simultaneously, using the 

same inputs, the model can capture the influence of one decision on another. 

Then, the results show that the estimations of EVs and PVs improve compared 
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to the autoregressive models, suggesting the possibility to exchange knowledge 

from one technology to another. 

The model improves the forecast of the number of PVs of the autoregressive 

model, providing a framework that is capable of forecasting more than one year 

ahead, the model only improves marginally the EV estimations, accounting for up 

to eight months forward. Although, there is a potential for the model to inform 

policymakers and DNOs’ decision-making, by estimating spatially explicit 

adoption rates of EVs, potential applications are discussed in detail in Section 

6.2.3. Additionally, because this is the first attempt to explicitly combine the 

spatio-temporal regularities of EV and PV correlation, further fine-tuning of the 

model structure is required, i.e. to capture the specific adoption drivers of each 

technology; this is further discussed in Section 6.3. 

The following chapter contextualises this work within the existing literature, 

highlighting the contributions of the results and research design, as well as the 

potential applicability and limitations of the models. The chapter focuses on the 

potential of the model to inform decision-making for the design of policy 

incentives, network planning and system reinforcement. Additionally, the 

potential of ANN to inform the decision-making of other technologies and future 

work are also discussed. 
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6 Discussion and conclusions 

This chapter discusses the findings of the thesis in context with previous research 

and concludes about the potential benefits for DNOs and policymakers. First, the 

Chapter summarises the findings produced on each of the chapters. Secondly, 

Section 6.2 discusses the contribution to the knowledge and the extent to which 

this study addresses the limitations of the existing modelling approaches. The 

contribution to knowledge is organised by reviewing the objectives and research 

question. The discussion focuses on the implication of the research and the 

potential of spatially explicit prediction of PVs and EVs adoption. For instance, 

how the results can inform about the total load PV generation injected into low 

voltage lines at the local level [22–24], and the risk of faults and power cuts in the 

distribution networks caused by the uncontrolled charging of EVs [25–27]. 

Thirdly, Section 6.3 discusses the limitations of the research and avenues for 

further work and concludes. Lastly, Section 6.4 is devoted to drawing conclusions 

for this research. 

6.1 Summary of findings 

6.1.1 Model development 

This thesis reports on research that addresses the limitations of the ABM to 

estimate spatio-temporally explicit rates of EVs and PVs adoption. Chapter 2 

refers to the theory of bounded rationality and introduces ANNs as a decision-

making process with attributes that enable an aggregated characterisation of the 

agents. The ANN is used here to replace the current common rule or equation-

based decision-making, which assume that agents possess perfect market 

information to assess the benefits and implications of their choices. Moreover, 

the ANN allows analysts and researchers to understand the temporal 

dependence of the adoption process and examine an explicit time horizon within 

the model. Secondly, the model integrates insights from the spatial regression 

(SR) to characterise agents as geographical areas and generate spatially explicit 

estimations of EVs and PVs. Furthermore, the aggregated characterisation 

allows the model to capture and understand better spatial dependence. 
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Table 6 (in 2.2.5) shows the comparison between previous integrations of ABMs 

and ANN, highlighting how the developed model integrates directly the ANN as 

the agent’s decision-making, as well as to estimate the number of PVs/EVs. 

Therefore, the direct integration of ANNs as decision-making extends Kang and 

Choi’s [103] concept of “intelligent agents”, from those which actions are directed 

by an ANN to those who are independent and generate their own knowledge. 

After integrating the SR and ANN into a spatio-temporally explicit ABM, this work 

investigates the effect of the heterogeneity amongst the population on the model 

by integrating socioeconomic variables into the decision-making. The 

multivariable models developed in Chapter 3 shows the evolution of the agents' 

preferences by dynamically updating the agents' heterogeneity. This addresses 

the limitation of ABMs that function with adoption rules and adoption threshold 

constant along with the simulations. Thus, the model captures the evolution of 

the agents’ presences. In earlier work, Krebs [75] has implemented heterogeneity 

amongst the population by using weightings for social and utility preferences, thus 

creating different rules of adoption. Nevertheless, these weights remain constant 

during the entire simulation. Ernst and Briegel [77] also recognise that when the 

model differentiates agents' behaviour from one another, even these agents 

follow the same decision rules over time. Hence, there is no learning from the 

agents over time. Robinson et al. [76,90,91] partly address this limitation, by 

implementing the agents' attitude towards PVs using a dynamic parameter. This 

parameter changes at each step of the simulation accordingly to the interaction 

with other agents. However, the influence of each agent is uniform, whereas one 

can argue that the influence of each agent has the potential to be different. 

Instead, the model developed and explained in this thesis captures the changes 

in the agents' characteristics by updating the socioeconomic variables at each 

step, whilst the adoption rules are adjusted at each step by the ANN. 

Chapter 4 reports on the development of the autoregressive model that is used 

to analyse the spatio-temporal patterns of EV adoption. The data analysis 

produces similar insights to those from the PV analysis, presenting temporal 

regularities of the first order. However, the EV time-series presented shows 
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evidence of significant lags of fourth and seventh order. Despite those extra lags 

being excluded from the decision-making, the model can replicate the patterns of 

adoption. The results also highlight the evidence that clusters of EVs around the 

Birmingham Airport cause spatial regularities that are not directly related to the 

density of residential buildings, as in the case of the PVs. The fact that the model 

has attributes that enable estimation of the number of EVs up to eight months 

ahead, with an accuracy higher than 80%, suggests that this modelling approach 

is flexible enough to characterise the adoption of other low-carbon technologies. 

The last section of Chapter 4 presents the investigation into whether it is possible 

to exchange knowledge between two adoption processes. Then, Chapter 5 builds 

on the findings reported in previous chapters and combines both autoregressive 

models. The model uses the attributes of ANN to make estimations of multiple 

outputs from the same inputs, thus capturing knowledge exchange between the 

PV and EV adoption. The results suggest that when characterising the EVs and 

PVs simultaneously within the adoption process, one technology’s decision-

making informs the others and improves the performance of the model. 

6.1.2 Temporal dependence 

The model draws on the ideas of bounded rationality theory [76,102] to adopt the 

ANN as the agents’ decision-making. This theory informs that the individuals 

generate knowledge over time to inform their decision-making. This is extended 

within the model using Kolb’s learning framework and the ANN’s principle of 

emulating the human brain [108,109. The former defines learning as the 

combination of experience and reflection [108,109], whilst the latter bases its 

learning algorithm on how the brain generates knowledge by pairing experience 

(inputs) and the decisions (outputs). Kang and Choi [103] develop a theoretical 

ABM and ANN model that optimises the set of choices available for the agents, 

however, these options are fixed rules defined by the authors. Despite the ANN 

learns and adapts through the simulations (experience), the behaviour of the 

agents is fixed once the optimal set of options has been found. Therefore, Kang 

and Choi’s ANN [103] could be seen as a central agent that governs the system 
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and dictates the behaviour of the other agents. It could be argued that this 

contradicts the ABM’s bottom-up nature, as the ABM assumes that the behaviour 

of a system emerges as the results of cumulative actions [26] of autonomous 

agents [68], and that the system cannot be controlled in its whole [43]. Instead, 

the model here developed allows each agent to generate individual behaviour 

based on spatio-temporal explicit experience (datasets). 

The use of the ANN allows the model to account for the temporal dependence, 

which is captured by introducing lags in the input data. The model uses monthly 

resolution and only one temporal lag in the inputs, suggesting that the time span 

of the decision-making process is one month. In contrast, in the reviewed studies, 

there is a recurrent quarterly characterisation of the adoption process 

[68,88,89,91], suggesting that the adoption has a temporal dependency of three 

months. Instead, this thesis shows evidence for a shorter time-span to model the 

decision-making. First, the data analysis for the PVs and EVs time-series reveals 

that using quarterly basis can result in inconsistencies with the actual behaviour. 

Because of the data aggregation, specific local behaviour and the effect of 

interventions are softened and may be disregarded (see Sections 2.2.3 and 

4.2.2). Secondly, the data analysis reveals a dependency of one lag for the PV 

and at least one lag for the EV, suggesting that the influence of modelled 

elements is almost immediate. This can also be seen in the response of the 

agents to the FiT revisions (see Figure 7), as the shift in the data behaviour 

happens almost immediately after the official announcement of changes in the 

FiT rates. This is consistent with Richter [20], as this study is one of the 

exceptions for a monthly definition of the adoption process.  

In summary, the thesis has built on the theoretical work of Kang and Choi’s [103] 

to integrate the ABM and ANN. Furthermore, the thesis has transferred those 

insights from the econometrics and artificial intelligence disciplines into the 

energy planning and policymaking fields, making use of others decision-making 

and learning theories. Therefore, the model has addressed the need for more 

realistic approaches, pointed by Noori and Tatari [49], producing the following 

insights: 
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• Integrating the ABM and ANN is possible assumng that the agents' 

decision-making considers past experiences rather than complicated 

calculations. 

• The use of ANN allows to include an explicit time horizon into the 

simulations, as well as to capture the temporal dependence of the adoption 

process. 

6.1.3 Spatial dependence 

The model builds on the theoretical work of Kunz [102] in the field of 

organisational learning, and the empirical work of Bierkandt et al. [101] in the 

fields of Supply Chain and Environmental Economics. Kunz [102] states that it is 

possible to characterise groups of individuals as a single unit of decision-making. 

These groups share information with other groups producing learning that 

resembles the spillover effect from the SR, which reflect the information flow 

between areas [8,47]. The groups also share information within the same group’s 

individuals, similar to the peer-effect to capture the information flow within the 

same area [20,76]. Bierkandt et al. [101] model perturbations to the 

supply/demand chain due to environmental disasters, and the reaction of 

production and consumptions sites to these. These sites are comprised of agents 

that represent regional industries (production) and aggregated regional 

consumption (i.e. households, government, other production sites, etc.). The 

authors assume that the agents in the same site behave and make decisions in 

similar ways, then, the model characterises the single decision-making of the 

whole site. This disregards the individual characteristics of the agents and rather 

consider only cumulative supply and demand capacities. Therefore, the 

developed model integrates the peer-effect as the social influence within an area 

by assuming that the agents in the same PC share similar socioeconomic 

characteristics and decision-making. The model uses the PC resolution which 

accounts for 10,297 households on average, which is greater than 600 and 3,000 

households for LSOAs and MSOAs. This could also involve a loss of 

heterogeneity of the agents' characteristics, however, the PC resolution has been 

used before to analyse the adoption process of PVs [20]. Moreover, as seen in 
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Sections 2.2.2 and 4.2.2, the use of PC and monthly resolution provides the best 

combination of data variability and availability. 

Richter [20] notes that households with high environmental concern tend to live 

in environmentally friendly neighbourhoods, resulting in similar preferences 

towards PVs adoption. Moreover, Graziano and Gillingham [16] mention that 

individuals actively select their peers by moving into neighbourhoods with the 

same views and interests. Considering that PVs and EVs are adopted by those 

households with high environmental concerns [34], Richter’s [20] insights about 

neighbours’ similarities may also be true for EVs. Although the similarities in the 

agents' characteristics, values, attitudes and preferences allow defining singular 

units of decision-making, one can argue that this is inconsistent with the definition 

of the ABM. In principle, the ABM characterises the autonomous behaviour and 

interaction of individuals, which leads to the emergence of new patterns of 

behaviours. In this sense, the ABM and ANN model keeps these elements, 

except that it loses heterogeneity when aggregating the agents. The common 

ABMs face a similar issue when simulating agents from existing data (i.e. 

surveys, interviews, etc.), except that the use of aggregate data alleviates the 

intensive data demand of the ABM to characterise each individual or household. 

At the individual level, Eppstein et al. [33] highlight that the agents tend to 

associate with those with similar attitudes and behaviours, resulting in social-

networks of individuals with similar preferences towards EVs. However, Ernst and 

Briegel [77] note that individuals may associate with peers even if these are 

spatially far away. Therefore, because this work uses the adjacency criteria for 

the spillover effect, the model has not yet implemented the social influence from 

peers in distant PCs. Furthermore, future work could check the influence of 

different spatial weight or metric not necessary based on Euclidean distance. 

The thesis aggregates households using PC resolution, keeping the real-world 

layout and making the model spatially explicit. Then, the spillover effect informs 

the decision-making of how PVs/EVs in one area may influence the decision-

making in the adjacent areas. This influence is then weighted against the distance 
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between the population centroid of each area, so the model includes the spatial 

dependence of the adoption process. The PC resolution follows Richter [20] work, 

however, this thesis improves the spatial characterisation of the adoption process 

by not omitting any of the PCs. Richter [20] excludes those areas without any PV 

installations from the analysis, omitting three Birmingham PCs with (6% of the 

total PCs). These areas are in the city centre and they have a low number of 

residential buildings. In contrast, the AMB and ANN’s results consider these 

areas and show that these areas tend to create spatial regularities of estimation 

errors (see Sections 2.4.2, 3.3.2, 4.3.2 and 5.3.2) because the MAPE is sensitive 

to low numbers. Nevertheless, the estimation errors for the rest of the areas does 

not exhibit spatial regularities, demonstrating that the model can replicate the 

spatial patterns of adoption. 

Besides accounting for the actual spatial layout, the model also contributes to 

improving the decision-making by including both the spillover effect and the peer-

effect as the social influences for the adoption of PVs and EVs. While Kunz [102] 

characterisation of information flow between groups is similar to the spillover 

effect between areas, Richter [20] implements the peer-effect as the flow of 

information within the area. 

In this sense, the thesis has developed an empirical characterisation of the Kunz 

[102] model and has improved the Bierkandt et al. [101] model through the 

introduction of learning into the model. Furthermore, the thesis has transferred 

those insights from their fields of work, Organisational Learning and 

Environmental Economics, into the Energy Planning and Policy fields by 

considering a group of agents as a single unit of decision-making. Consequently, 

the model has addressed the need for spatio-temporally explicit estimations of 

EVs/PVs, whilst producing the following findings: 

• An aggregated characterisation of the ABM is possible assuming that the 

group of individual share similarities. 
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• The aggregated characterisation allows the use of the spillover effect, 

which can be a proxy of the spatial dependence if it is weighted against 

the distance between areas. 

• The aggregated characterisation can implement the peer-effect as the 

influence of past adoption rates within the same area. 

6.1.4 Results 

The model has shown to be able to replicate the spatio-temporal patterns of EV 

and PV adoption. The spatial validation of the models is based on the model’s 

capabilities to replicate the current spatial distribution of the data; these results 

are presented in sections 2.4.2, 3.3.2, 4.3.2 and 5.3.2. Then, Table 12 

summarises the accuracy of the four models and compares against models from 

the literature. The ABM and ANN are highlighted in grey for visual identification. 

It is also indicated whether the errors of estimation converge or diverge during 

the training or fitting period of the models. Because SR models look at how much 

of the spatial dependence can be explained by the independent variables, the 

accuracy of the models may not be fully comparable between SR and the ABMs, 

however, this may work as a benchmark for the models’ results. Table 12 also 

shows the significant variables and whether they have a negative or positive 

effect on the SR. 

Table 12 shows that the ABM and ANN model has higher accuracy than the SR 

or epidemic models. However, the results show that the estimation errors present 

spatial regularities still: see Figure 23, Figure 38, Figure 53 and Figure 59. This 

means that the model may not be capturing some of the spatial dependences. 

These clustering patterns exhibited by the errors are mostly the areas with a low 

number of residential buildings, including the city centre and the PCs adjacent to 

the airport. One may suggest integrating a parameter to limit the top or ceiling of 

a maximum number of EVs and PVs in an area, much like the Bass model 

considers the total of the potential number of adopters. However, the case of the 

PCs adjacent to the airport is different, as this specific economic activity 
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influences the number of EVs registered in the adjacent PCs. This suggests that 

the spatial distribution of the EVs and PVs may be subject to disturbances. 

This is similar to the temporal validation which reveals some disturbances in the 

estimation errors, as the agents react to the government’s interventions to 

facilitate PV uptake [8,20]. It is important to look at the clustering of the error to 

understand the nature of any effects that have not been included yet. Then, 

investigating the patterns of the estimation errors can inform about the nature of 

these factors. For instance, a cluster of errors could mean that variables such as 

the FiTs have not yet been investigated, as the influence on the PCs may vary 

across the entire area of study. In contrast, outliers in the estimation errors could 

mean the presence of different socio-economic activities such as an airport. 

The need for analysing the adoption process at high spatio-temporal resolution 

is also highlighted by the temporal validation, as these disturbances may 

disappear when data is aggregated. Table 12 also shows that, in general, the 

ABM and ANN models perform better than those in the literature and give an 

explicit time horizon for the adoption process. The temporal validation is based 

on the model’s capabilities to replicate the current data behaviour over time; these 

results are presented in sections 2.4.1, 3.3.1, 4.3.1 and 5.3.1. The models 

developed here are shown to perform as well as the ABMs in the literature 

[75,76,90,91] and can adapt to the changes in the data trends, which are 

associated with the fluctuation of the government incentives (i.e. FiT). 

However, similar to the spatial validation, the quarterly resolution of these studies 

may ignore some of the temporal behaviour exhibited in higher resolutions 

[76,88–90]. Therefore, when these models estimate the parameters that drive the 

decision-making, they may be ignoring some of the temporal behaviour. This is 

also related to the stage of the technology adoption, as the available data may 

not reflect any change in the data trends, as in the case of [88,89]. These two 

studies analyse the PV data for a period where the data only exhibits a rapid 

increase in the number of installations. However, looking at the other reviewed 

studies, one may argue that the data will exhibit changes in the adoption rate, like 
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in the case of the reviewed ABMs [75,76,90,91]. Therefore, it is not clear whether 

Zhao et al. and Zhou et al. models can adapt to these fluctuations [88,89]. This 

highlights that approaches for the adoption of PV and EV, and other low carbon 

technologies need adaptive features.  

This adaptive behaviour has been pointed out by the complexity science 

[9,10,43–45], which informs that a socio-technical system such as the energy 

system is adaptive, in the sense that the evolution of the system emerges from 

the collective behaviour of the agents. However, the rules that dictate that 

behaviour of the agents from the relevant ABMs are fixed at the beginning of the 

simulations, which constraints the adaptability of the agents and does not allow 

any type of learning [77]. 

Even though the model emulates the experience-based knowledge generation 

[105,121,122], the errors of estimation still present disturbances. The results of 

the autoregressive and multivariable PV models show that the estimation errors 

exhibit peak matching with those of the FiT changes, highlighting the need to 

include this as an explicative variable to fully account for the changes in the 

agents' behaviour. Figure 33 shows the share of the PCs that are sensitive to the 

changes in the FiT and matching the disturbances in the errors with the 

announcements of reducing the FiT. Therefore, there is still a need to inform the 

model about these changes in behaviour.  

On the other hand, the combined model developed in Chapter 5 reduces these 

disturbances, suggesting that at some degree the knowledge associated with the 

EV decision-making accounts for the change in the agent preference for PVs. 

This could be associated with the evidence of empirical regularities between the 

ownership of these technologies [36]. 
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Table 12. Summary of models’ performance behaviour of the estimation errors. 

Model Ref 
Model’s 
fitness 

Estimation errors and significant variables 

EV autoregressive § 4.3.1 99% 
• Errors converge 

• Estimation errors do not present disturbances over time 

ABM - Engy Inn. [75] 98% • Error diverges 

PV combined model § 5.3.1 96% 
• Errors converge 

• Estimation errors do not present disturbances over time 

ABM – PV [91] 96% • Errors diverge 

PV multivariable § 3.3.1 95% 

• Errors converge 

• The model can reduce the disturbances in the estimation errors, yet, 
they present a peak in Nov 2011 

• Income, electricity consumption and average household size are 
the variables that yield the best fitness 

EV combined model § 5.3.1 95% 
• Error converges 

• Estimation errors do not present disturbances over time. 

ABM - PV [68] 95% • Error converges 

Hybrid model (ANN) – PV [88] 94% 
• Errors slightly diverge 

• Current data does not present changes in the data trend 

ABM - PV [76] 94% • Errors converge 

ABM - PV [90] 94% • Errors converge 

PV autoregressive § 2.4.1 90% 
• Errors converge 

• Estimation errors present disturbances at the point where the FiT is 
announced to be reduced 

Mathematical – PV [89] 82.5% • Errors converge 
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Model Ref 
Model’s 
fitness 

Estimation errors and significant variables 

• Current data does not present changes in the data trend 

Spatial regression - PV [8] 75% 

• Positive effect: income, education level, electricity sales, irradiation, 
the share of detached houses 

• Negative effect: share of owned houses, population density and 
average number of households 

Spatial regression - EV [29] 72% 
• Positive effect: the proportion of cohabiting couples under 35, 

household size 

• Negative effect: income, education level, financial incentives. 

Spatial regression - PV [18] 71% 
• Positive effect: solar radiation, house density, the share of owned 

houses, GRP per capita 

Spatial regression - PV [15] 61% 
• Positive effect: ROI, income, education 

• Negative effect: unemployment, age <20, the share of new buildings 
per 10,000 existing units 

Spatial regression - Engy Inn. [46] 60% 
• Positive effect: house value, square footage, share of graduates, 

share of vacant housing unit, population density, wood heating,  

• Negative effect: taxes 

Spatial regression - PV [14] 55% 

• Positive effect: share of houses with a mortgage or equity loan, 
number of rooms, owner of an EV, share of graduates, household 
size, foreclosure risk score 

• Negative effect: share of houses with a mortgage between 20% and 
40%, share of PV third-party-owned 

Geographical regression - PV [12] 54% • Positive effect: income, age 

Bass model - EV § 4.3.1 18% • Errors diverge 

Bass model - PV § 2.4.1 14% • Errors diverge 
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6.2 Discussion 

6.2.1 Contribution to knowledge 

This work analyses the spatio-temporal patterns of EV and PV adoption, by 

developing an integrated agent-based and artificial neural networks model. To 

integrate the ANNs as decision-making one must assume that the agents make 

decisions based on experiences and perception rather than rational or 

complicated calculations, as inform by the bounded rationality theory 

[76,102,104]. This is the first time ANN neural networks are integrated directly as 

the agents' decision-making to address a real-world problem, whilst allowing to 

predict future adoptions rates. The framework integrated the ANN as decision-

making, first, because of the need to produce temporally explicit estimations of 

the adoption rates of EVs and PVs. Secondly, because the relationship between 

the adoption process and the factors that drive it are not linear, the model makes 

use of the ANN’s universal estimation capabilities. Moreover, given that the 

behaviour of the EVs and PVs data is non-linear and presents changes in the 

data trends, the model uses the ANN’s adaptive capabilities to learn from the 

changes in their tendencies over time.  

Then, the model also integrates the analysis at aggregated level from the spatial 

regression, to address the need of capturing the spatial dependence into the 

decision-making. Thus, the agents are defined as geographical areas and their 

characteristics are the aggregated (i.e. total electricity consumption at a time 

period, number of EVs and PVs adopted at a particular time period ) or average 

value of these (i.e. size of the household, income)..  

The research also contributes to advancing the understanding of the spatial and 

temporal dependence of the adoption of EVs and PVs, the effect of 

socioeconomic variables, and the regularities between the ownership of EVs and 

PVs. The contribution to knowledge is revised following each of the objectives, 

and discussing to what extent the thesis answers the research question. Then, 
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section 6.2.3 discusses the implication of the research and produces new insights 

that may inform DNOs and Policy Makers’ decision-making. 

Objective 1. Investigate how the spatio-temporal and social dynamics of the 

adoption process can be captured explicitly by an ABM, drawing insights from the 

SR and integrating the ANN approach as the decision-making process. 

This research develops the first ABM and ANN that uses the neural model to 

characterise the agents' decision-making. This approach was selected as the 

agents' decision-making because of the inherent adaptiveness and capacity of 

the ANNs to analyse time-series. This allows the model to account for the 

temporal dependence of the adoption process, which is captured by introducing 

lags in the model’s input. The results shown in the Chapters 2,3,4 and 5 

demonstrate the importance of learning and adaptivity of the decision-making. 

However, one can argue that other techniques emulate human reasoning or that 

are inspired in biology. For instance, Fuzzy Logic generates knowledge from a 

set of inference rules, by assuming that decision-making is uncertain and 

imprecise [111–113]; or the Genetic Algorithms is a biology-inspired optimisation 

model that can extract knowledge from complex datasets [111,112,114]. 

Therefore, the use of ANN directly as the agents' decision-making opens the door 

to other techniques that might increase the efficiency and confidence in the 

insights produced by ABM. 

The reviewed ABMs select and estimate certain parameters to find the 

combination of those that best describe the reality (i.e. adoption threshold, energy 

prices, social-network size). Then, these models can inform about the differences 

in the values of such parameters by performing sensitivity analysis, making a 

transparent tool for decision-making [26,68,76,93]. On the other hand, it is a 

challenge to explain the effect or influence of each of the ANN’s input variables. 

The knowledge created by the ANN is stored in numerical form for the synoptic 

weights, which cannot be translated or understood therefore, the acceptance of 

the ANN is limited. [149–151]. Therefore, there is a trade-off between the 

transparency and explanation of the ruled-based ABMs and the performance and 
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complexity of the ANNs. Nevertheless, complementary techniques can be added 

to the framework developed in this research that helps to understand the structure 

of the ANNs. For instance, data visualization techniques have been used to give 

the user a sense of reference to where to start the interpretation of the synaptic 

weights. [152]. Other authors such as Olden and Jackson [151] have performed 

a sensitivity analysis on the inputs, so to understand the effect of these from 

outside the model instead of trying to understand the values of the synaptic 

weights. 

To implement the temporal variable into the decision-making, it is also necessary 

to unveil the degree of the temporal dependence. The statistical tests ran in 

Sections 2.2.3 and 4.2.3 show that the most common temporal dependence is of 

order one (t-1). Nevertheless, the result presented in Sections 2.4.1 and 4.3.1 

show that introducing one lag in the model’s input is enough to account for the 

temporal dependence of the adoption process. Therefore, the integrated model 

addresses the limitation of the ABMs to provide an explicit time horizon to the 

simulations 

The autoregressive models can estimate monthly PV and EV adoption rate 

upmost three months, with an accuracy higher than 80%. The Bass model is used 

as a benchmark to validate the models, a common approach used to model the 

adoption of innovation [153]. The results show that the autoregressive models 

perform better than the Bass model especially for the months in the middle of the 

time series, those with most of the fluctuations in the number of EVs and PVs. In 

the case of the PVs, the results show disturbances in the estimation errors, which 

may be caused by the changes in the FiT rates. Because these rates do not vary 

across space, this variable was not included. However, the model can adapt to 

the changes in data behaviour. For the EV case, the estimation errors do not 

exhibit these disturbances, suggesting that the adoption of EVs are not as 

sensitive to incentives as the PV. Despite both models performing better than the 

Bass model and having an accuracy of 90% and 99% for the PV and EV cases, 

the PV model presents a quick accumulation of errors having an accuracy lower 
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than 25% by the fifth forecast. Then, it is expected that a multivariable 

characterisation of the adoption process could reduce error accumulation. 

To account for the spatial and social dynamics that drive the adoption process, 

the model adopts an aggregated characterisation of the agents Drawing from the 

bounded rationality theory, the model assumes that a group of individuals with 

similar socioeconomic characteristics make similar decisions, thus, groups can 

be characterised as singular decision-making units. Then, this aggregated 

characterisation of the agents, allows the model to integrate the spatial 

dependence as a function of the spillover effect and peer-effect. First, the 

spillover effect which is weighted against the distance between areas captures 

the spatial dependence and the influence of adjacent areas on the decision-

making. Secondly, the peer-effect is captured by the effect that the individuals 

within an area have over those in the same neighbourhood and reflect how 

individuals tend to associate with those of similar attitudes and values. Therefore, 

the model addresses the limitation of the ABMs to produce spatio-temporally 

explicit estimations of EVs and PVs rates of adoption.  

Therefore, the first objective of the research is considerably achieved, as Chapter 

2 informs about the theories that underline the integration of ANN and ABM, as 

well as the procedures to identify and implement the spatio-temporal and social 

dynamics of the adoption process. However, the aggregated characterisation 

introduces two main issues, the loss of heterogeneity and the possibility of the 

model being subject to the MAUP. Both issues are related to the size and number 

of agents in the study, in turn, these are dependent on the number data 

availability and variability. In Sections 2.2.2 and 4.2.2, the datasets for EVs and 

PVs are analysed descriptively, suggesting the PC resolution. This implies that a 

single ANN will account for an average of 10,297 households, without accounting 

for (standard) deviation from the average values. 

An alternative point of view could be to assume that a fraction of the adoption 

rates at each location or for the whole population is due to a random effect [26], 

thus, the model could represent a higher degree of heterogeneity. Additionally, 
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the adoption process could be improved too, for instance, the simulations could 

have an extra step, before the agents' characterisation, which informs about the 

different number of significant lags. Then, the model could define different ANN 

structures for each of the agents, increasing the uniqueness (heterogeneity) of 

the agents and accounting for the whole of significant temporal lags. Other 

alternatives to face the loss of heterogeneity and the transparency of the ANN’s 

elements are discussed below, along with Objective 2. 

 

Objective 2. Extend the characterisation of the decision-making process, by 

integrating the agents' socioeconomic variables into the model, to capture the 

effect of the population heterogeneity. 

Once one has assumed that the agents’ decision-making is driven by experience 

and perceptions, the model should also account for the influence of the 

socioeconomic characteristics of the agents. Although, instead of complicated 

evaluation about affordability [30], energy/fuel economics [32,33] or payback 

period [75,77,78], etc., the ANN is fed with a list of variables directly. Moreover, 

given the need to reflect the evolution of the agents’ preferences, the values of 

such socioeconomic variables are updated at each time step during the 

simulation. Given the error accumulation observed during the forecast of the PV 

autoregressive model, it is expected that the multivariable characterisation of the 

decision-making process improves the model’s accuracy. Additionally, the model 

outputs may be sensitive to the changes in the study area, Chapter 3 also 

systematically increases the number of agents in the simulations (extending the 

area of the study). 

Chapter 3 extends the model by including socioeconomic variables, which 

improves the model performance from 90% to 95%. The model multivariable 

model slows down the accumulation of the estimation errors, forecasting up to 

five months with an accuracy higher than 90%. This shows that a relatively small 

improvement in the model’s performance leads to a lower accumulation of errors. 

This may suggest that the more variables are included in the agents’ decision-
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making is marginally improved in the short-term, whilst resulting in more confident 

decision-making into the future. 

The variables are selected from a list that has been found to be relevant for the 

adoption of PVs, these include factors that are internal (i.e. income, education 

level) and external to the agents (i.e. population density). The common ABMs 

would try either to find a value for the coefficients related to each variable that 

best describe the adoption process, or to analyse the effect of such coefficients 

on the adoption patterns in the long term. This would reflect the preferences of 

the agents and inform about the effect of each of the variables. 

However, as mentioned before, an ABM and ANN model would have difficulties 

to validate or to explain the meaning of the selected variables without the assist 

of other studies. For instance, this research builds on the insights of the SR to 

make sense of the electricity consumption variable being selected, reflecting 

that those households with a high energy usage tend to be concerned about 

being self-sufficient [8] and reduce their energy bills [16]. This suggests that 

besides improving the performance of the model, the multivariable model can 

also identify some of the contexts of the adoption process. However, the ABM 

and ANN may not be self-sufficient to provide a sense of meaning to the selected 

variables without the assist of more contextual studies. For instance, the SR can 

translate the selected variables and the value of their coefficient to straight clear 

insights. Moreover, because the initial list of variables corresponds to a single 

relevant study ([8]), one can argue that a different list of variables may result in a 

different configuration and insights produced by the model. Also, one can argue 

that the results and variables selected may be exclusive to the area of 

Birmingham and surrounding Local Authorities. Therefore, a future analysis may 

include other cities of the UK to investigate whether the same list of variables 

produces similar model’s results.    

The results also suggest that, even when the socioeconomic data varies among 

the models of different sizes, original and extended ones (see Chapter 3), 

increasing the number of agents does not change the performance of the models 
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more than 2%. Consequently, despite the aggregated characterisation of the 

agents and the implementation of the spillover effect and peer-effect, the model 

is arguably resilient to the MAUP. This may be because of the adaptability of 

ANNs and that they are characterised as independent decision-making units. 

However, similar considerations to the multivariable characterisation are needed 

for further validation, as these results may be particular for this specific case 

study. 

Hence, Chapter 3 substantially accomplishes the second objective of the 

research, as this extends the autoregressive model into the multivariable model, 

increasing the degree of heterogeneity of the agents’ characterisation; also 

attending to some of the limitations of the autoregressive model. Nevertheless, 

the multivariable model also introduces two main limitations, the initial list of 

where variables are selected and the need for contextual justification of the 

results. The first could be alleviated by choosing a different list or initial variables, 

or by merging multiple lists of variables. The second implies that the variables to 

be introduced in the model are delimited to those that have been already studied 

and shown to influence PV adoption. Because of the data-driven nature of ANN, 

if the model is to include the amount of apple consumption in a PC, it would be 

hard to explain the nature of the influence of such variables on the agents’ 

preferences. 

Objective 3. Analyse the spatio-temporal patterns of EV adoption drawing from 

the insights of the PV model, and assess whether the model is flexible enough to 

characterise other technologies’ adoption process. 

Because the research aims to model the spatio-temporal patterns of EVs and 

PVs of adoption, the research builds on the insights of the PV autoregressive 

model and analyses the adoption patterns of EVs. The analysis carries out a 

statistical test to identify the temporal dependence of the EV time-series, finding 

temporal regularities of first, fourth, and seventh order. The analysis also finds 

clustering of EVs in the adjacent areas to the Birmingham airport. Despite that 
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the EV and PV spatio-temporal regularities are different, the model can estimate 

EV adoption rates up to eight months ahead, with an accuracy higher than 80%.  

Chapter 4 follows the same framework developed for the autoregressive PV 

model. The results are also used to investigate if the framework is transferable or 

replicable to EVs. In general, the methodology behind both autoregressive 

models presents similar results but also similar limitations. This could be because 

they are both low-carbon technologies, and it is noted that they are likely to be 

adopted by the same type of individuals, those with high environmental concern. 

Then, Chapter 4 analyses the data from the adoption rates of EVs, showing three 

main differences compared to characteristics of PV data: (i) the number of extra 

significant lags is significantly greater, (ii) the EV data presents positive and 

negative adoption rates, (iii) the high concentration of EVs is arguably driven by 

the rental business around Birmingham airport.  

Firstly, it could be argued that by ignoring the extra significant lags from the EV 

data the framework is simplifying the EV adoption process in a greater degree 

than for the PV case. Secondly, the results from the EV model complement those 

from the PV model, in the sense that the former informs that the model can 

characterise positive and negative data trends. This means that the agents' 

decision-making can reflect not only the decision to adopt but also the decision 

to undo that decision; in this case, some of the EVs being taken off-road. Similar 

to the negative trends, the third difference suggests that the model can identify 

positive and negative spatial dependence, as the number of EVs in the airport 

and surroundings PCs is inversely proportional. 

Therefore, the third objective is greatly achieved, as regardless of the differences 

between EV and PV data, Chapter 4 characterises the adoption process with 

95% accuracy. However, future research should focus on extending the model 

so as this includes the omitted temporal lags, which also fall in place with the 

recommendations done for the PV models. First, the model could be informed 

about the number and order of temporal lags, having them stored together with 

the EV/PV time-series. Then, these values would be used to define the structure 
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of each ANN and the inputs for them, this would create a more unique and 

realistic decision-making for the agents. And secondly, to implement the off-road 

effect, the model can assume that a fraction of the adoption rates is a random 

effect. However, contrary to the PV case, this effect may be negative or positive, 

as some of the cars may also change the PC of registration. In summary, the 

framework developed to this point addresses the limitation of the common ABMs, 

which require fixed rules of behaviours for the agents. Instead of these rules for 

the adoption of EVs and PVs, the experience-based approaches allow the model 

to generate the adoption rules based on the data presented to the model. T The 

order which the framework developed this research was due to data availability, 

being the PV data publicly available whilst the EV data required a data request to 

the DfT. If data availability would have been the opposite, probably the 

autoregressive model would have a different structure. Nevertheless, it would be 

expected that a complex ANN’s design with dynamic structures and inputs driven 

by the EV data, would handle also simple adoption processes such as the PV’s 

one. 

Objective 4. Investigate whether the spatio-temporal patterns of PV can inform 

the EV diffusion process, by integrating PV data into the decision-making towards 

EV adoption. 

Given the need to predict the adoption rates of EVs and PVs to assist the 

management of the distribution network, and the potential of one technology 

informing another technology adoption process, Chapter 5 investigates the effect 

of exchanging knowledge from one adoption process to another. Chapter 3 

shows the positive impact of a multivariable characterisation of the agents on the 

model’s performance. However, to distinguish between the effect of knowledge 

exchange and the multivariable characterisation, Chapter 5 only looks at the 

integration of both autoregressive models. Therefore, because the adoption of 

both technologies can be characterised using an autoregressive model with the 

same elements: (i) spatio-temporal resolution, (ii) temporal dependence, (iii) 

spatial dependence, and (iv) social effects, the model developed in Chapter 5 

assumes that both decision-making can be characterised simultaneously. 
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Thus, Chapter 5 extends the EV autoregressive model by integrating the input 

nodes for the PV data and adds one extra output node for the estimation of PVs 

rates of adoption. Figure 60 shows the design of the ANN that implements the 

abstraction of the adoption process described in equations (5-2) and (5-3). The 

knowledge exchange happens during the second phase of the learning algorithm 

(see Section 2.3.1) when the algorithm adjusts the synaptic weights. Then, both 

learnings propagate to the entire network because the output nodes are 

connected to the same neurons in the middle layer, and yet the model also 

captures the knowledge that is generated exclusively for each technology. Then, 

the model that exchanges of knowledge yields a model performance with a higher 

than 80% accuracy for the first eight forecasted months (see Section 5.3.3). This 

is a higher accuracy than the individual autoregressive models, reducing the 

disturbances in the PV estimation errors and both error accumulations. Thus, 

drawing from the behavioural spillover theory, this suggests that when the agents 

consider previous decisions made in a near past (one month) their decisions in 

the long term are mode accurate. 

The concept of knowledge exchange is introduced to the ANN as the behavioural 

spillover effect [144], which reflects the tendency of some agents to have a higher 

preference towards EVs if they already possess a PV and the other way around. 

The model implements this by having both EV and PV datasets as inputs for the 

ANN and follows the same temporal dependence of the than for the rest of the 

inputs. However, might be argued that it has been pointed that it is not clear what 

is the time spam for the spillover to occur, thus the model again faces the issue 

of fully represent the temporal behaviour of the adoption process. In this case, 

future work would require a similar analysis to the temporal correlation of the EV 

and PV, so to complement the results of the OLS carried out in section 5.1.1. 

Moreover, building from the discussion of objective 2 and 3, the model could be 

extended by introducing socioeconomic variables for both technologies. These 

variables may be similar as in the case of van der Kam et al. [28] or be from 

completely different sets. Because the ANNs are flexible in their structure, they 

can represent even a complex configuration of the inputs.  
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In sum, these results and those from previous chapters provide evidence to 

validate the initial hypothesis, as explained in the following section. Indeed, the 

modelling of the adoption process of low carbon technologies has evolved into 

more complex approaches, from the population growth theory to the recognition 

of spatio-temporal and social dynamics. Then, this research takes forward the 

ABM by integrating the ANN directly as the agents’ decision-making, yet, 

recognising that this is just the first step towards a more realistic representation 

of the adoption process. finally, as demonstrated in this research, there is 

understudied potential of integrating elements of the human cognition into the 

modelling approaches. 

6.2.2 Review of the research question 

Chapter 1 introduces the following research question: 

To what extent is it possible to characterise the adoption process of EVs and/or 

PVs, whilst integrating the spatio-temporal regularities and the different factors 

that drive the adoption process? 

To inform this question, the systematic literature review included in Section 1.1 

highlights which characteristics of agents’ may also present spatio-temporal 

regularities. It also shows that the adoption process is driven by social dynamics 

and that, further, there is an influence from adopting other technologies. 

Consequently, the research question is developed into the following hypothesis: 

It is possible to explicitly characterise the spatio-temporal dynamics of the 

decision-making towards EVs and PVs, whilst including the social dynamics and 

the relationship between these technologies. 

The thesis breaks down the hypothesis into fours objectives (see Section 1.6), 

each of one is developed in Chapters (2-5). The thesis builds on the relevant 

ABM and SR studies, developing a novel model to characterise the decision-

making process of the adoption of low carbon technologies at high spatio-

temporal resolution. Therefore, the results and insights are synthesised in the 

following statements that attempt to answer the research question: 
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1. Indeed, it is possible to explicitly characterise the spatio-temporal 

dynamics of the decision-making towards EVs and PVs (Objective 1 and 

3). The approach uses spatially explicit datasets to characterise agents as 

geographical areas and feed this to an ANN to have an explicit time 

horizon. The spatial characterisation requires keeping the actual spatial 

layout and high resolution to be applicable/useful for informing 

policymakers and network operators. This research uses the postcode and 

monthly resolution, which is the combination that best trade-off data 

availability and variability. 

2. It is also possible to include the social dynamics that influence the adoption 

of EVs and PVs (Objective 2), the model includes the peer-effect and the 

spillover effect. The former can be characterised as an autoregressive 

element that reflects the influence of the number of EVs/PVs on the 

individuals within the same area. The latter is modelled as the influence of 

the total of EVs/PVs in the adjacent areas and weighted against the 

distance to the population centre. 

3. Lastly, it is possible to capture the regularities between EVs and PVs 

ownership, reflecting the influence of the agents’ preferences towards 

other technologies (Objective 4). This thesis reports on the use of the 

features of the ANN to characterise multi-output decision-making and 

characterise knowledge exchange between both decision-making 

processes. The results present potential to inform DNOs and policymakers 

about the location and pace of EV and PV adoption at high spatio-temporal 

resolution. 

6.2.3 Implications of the research  

The model has been proved to estimate spatio-temporally explicit rates of 

EVs/PVs adoption, providing a more realistic characterisation of the decision-

making and using empirical data. Consequently, the model can be used as a tool 

to inform policymaking and network management. The model could also be 

extended by mapping the energy assets or substations into the geographical 

areas while calculating the use and production of electricity based on the 
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estimated adoption. Moreover, given the spatially explicit layout of the model, it 

could also include the distance between the users and the substations allowing it 

to account for the distribution losses by [154], or even help to model peer-to-peer 

energy trading [155,156]. 

Network management 

It has been pointed that with penetration of renewable energy sources the 

probability of reverse flows significantly increases [157]. Those reverse flows 

happen because of the difference in the loads’ power quality and consistency, 

which results in stress for the low voltage network (distribution network). 

Moreover, solar PVs is the renewable source technology with the highest 

variability in the energy output [24], which makes balancing demand and supplies 

an issue for the DNOs [158]. Consequently, the management of the network 

requires to account for the direction of the flows in relation to the components of 

the network as well as the local technical capacity of the lines [22]. Furthermore, 

the DNOs require tools that help to foresee the location of high concentration of 

PVs across the network. 

Similarly, the DNOs face issues resulting from a high concentration of EVs, in 

particular, if the EVs charge from the grid. This implies extra stress for the low 

voltage network especially during the peak demand period [159], which can 

happen even if the overall penetration of EVs is very low [26]. It has been 

demonstrated that the diversification of the charging times can reduce the stress 

on the local energy infrastructure [27], however, this requires strategies to 

incentivise users to charge EVs during off-peak time. Therefore, the DNOs must 

have a tool that informs about the location and pace of the EVs adoption. 

Moreover, such tools must consider the spatial heterogeneity of the local energy 

infrastructure, to consider the differences in the lines and substations capacities. 

Thus, this research is paragon for network management and DNOs decision-

making. The model has shown to be able to forecast between three to eight 

forecasts with an accuracy greater than 80%. After this point, the errors start 

accumulating before diverging. Although the other ABMs also present some error 
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accumulation [76,91], the spatially explicit nature of the ABM and ANN model 

makes the errors to accumulate across space as well. From that perspective, the 

ABM estimations reported by studies such as Krebs [75], Robinson et al. [91], 

and Adepetu and Keshav [68] underestimate the error accumulation over space, 

as they disregard the spatial dependence. Then, even with lower predictive 

accuracy, the ABM and ANN integrated model produces more realistic 

estimations.  

Therefore, to investigate how to reduce this error accumulation, the reporting of 

the model’s estimations and errors require further understanding and alternative 

presentations. Because the results point that the agents' heterogeneity and the 

knowledge exchange help to reduce the error accumulation. These two factors 

may be interpreted as follow. First, the results of the multivariable model suggest 

that the more elements integrated into the decision-making, the more accurate is 

the forecasting [105,121,122]. Secondly, the results of the combined model 

suggest that as the agents are exposed to more experiences, the more elements 

of reflection for the agents to include in the decision-making. However, to avoid 

unnecessary variables, the models can follow the stepwise method used in 

Chapter 3. The thesis initial list of variables follows Balta-Ozkan, Yildirim and 

Connor's model spatial analysis of the PV diffusion in the UK [8], however, other 

variables are significant for the adoption of PVs. Moreover, the effect of some of 

those variables may differ from study to study. For instance, the share of owned 

houses has been pointed to have a significant effect, however, the direction of 

these effects differs. Whilst Balta-Ozkan, Yildirim and Connor [8] find a positive 

effect and Schaffer and Brun [18] model accounts for a negative effect, the 

multivariable model developed does not include this variable. Moreover, the 

effect of these variables may also differ from one technology to another, as the 

income variable is noted to have a positive impact in the PV uptake [8], while a 

negative effect for the EV adoption [29].  

Secondly, extending the findings of studies that note empirical regularities 

between EV and PV ownership [14,26,36], the results of the ABM and ANN model 

suggest that decision of whether to adopt EV or PV is not independent of the 
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other technology decision-making. Instead, the experience of each decision-

making intertwines and exchanges knowledge from one to another. When the 

model integrates the socioeconomic variables or the other technical data series, 

the model can reduce the disturbances in the errors of estimation. Moreover, the 

dynamic characterisation of those inputs may reflect how agents also modify their 

preferences over time, while also reflecting the influence of new technologies in 

the markets. These new products or services could include new PV products, 

new EV models, or innovative features in both. 

Therefore, this work advances the existing knowledge by proving spatio-

temporally explicit estimations of EVs and PVs, moreover, these insights can 

address the limitations of other current approaches. For instance, Krebs [75] 

analysis of the adoption of energy innovation can estimate the annual rates of 

adoption with a 98% accuracy. The model covers the entire German territory, 

simulating a representative total of 40 million households, implementing a semi-

empirical characterisation of defined types of lifestyles. The decision-making is 

based on the financial and social utility, assuming that different lifestyles have 

different preferences for each adoption factor/variable. The authors find that 

individuals close to the manufacturer’s headquarters rapidly account for the early 

adopters and increase rapidly. This could be because of the exposure of the PVs 

in the area or because employees living in the surroundings are default adopters.  

Krebs [75] recognises that this approach based on the bounded rationality is 

limited, as this assumes agents to have perfect market information. A second 

limitation is that the factors that reflect the agents’ preferences are set to be 

constant across the types of lifestyles. Nevertheless, the authors point out that 

the applicability of predictive ABMs increases when real-world geography is 

included in the model. Accordingly, the ABM and ANN can address the limitations 

of Krebs [75] framework. First, the use of spatially explicit data sets allows 

substituting the fixed types of lifestyles for individual and unique agents’ 

characterisations, producing spatio-temporally explicit estimations and creating 

individual knowledge for each of the areas. Secondly, because the model 
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considers the spatial dependence, the model could inform about the spatial 

influence of PVs manufacturing companies on the local adoption. 

Furthermore, the model could consider the influences of other agents in the 

simulation. As discussed in Section 1.2.1, the reviewed articles only consider 

individuals or households as units of decision-making, disregarding the effect of 

other agents such as government, energy companies, PVs/EVs manufacturers, 

rental cars companies, etc. (see Section 5.3.2). Thus, future research could focus 

on characterising other agents and the spatio-temporal patterns of its influence 

on the adoption process. 

Robinson and Rai [76] develop a model at the individual level and quarterly basis 

for the adoption of PVs in the US. The authors use empirical data to characterise 

the entire population, estimating the rates of adoption at 94% accuracy. The 

results show that the best estimations are produced by the model that randomly 

fits the parameters of the decision-making. The authors point out that this is due 

to the one atypical over-estimation of the PVs, as the results of a drop in the 

energy cost, then, the authors remove this observation to improve the model’s 

performance. The authors point out a second limitation is that the adoption 

threshold is static over time. 

The ABM and ANN integrated model addresses these limitations, as the model 

does not exclude any observations and uses the ANN’s adaptive capabilities 

against interventions/disturbances in the data. Then, the second limitation is 

addressed by employing the experienced-based approach, as the rules 

(knowledge) are generated and adjusted over time. 

Although these studies provide useful insights on the adoption of EVs and PVs 

that could help DNOs to improve the management of the local infrastructure, 

these studies disregard the influence of other low carbon technologies on the 

adoption of EVs/PVs. Moreover, these disregard the impact of the combined 

effect of EVs and PVs on the distribution network, which could be positive or 

negative depending on the network management strategies. On the other hand, 

frameworks like those of Bhatti et al. [159] and Chaouachi et al. [44] study the 
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potential benefits from the synergy between the extra loads injected to the 

network by the PVs and the extra energy demand from charging EVs. 

Chaouachi et al. [44] develop a distributed system architecture that allows finding 

the maximum number of EVs and PVs that a local grid can allocate assuming a 

coordinated charging. The model accounts for the total capacity of the lines, 

number of costumers, number of substations, and the profiles of PVs production 

and EVs charging. Despite Chaouachi et al.’s model finds an optimal charging 

strategy considering the network capacity, it assumes a maximum rate of 

adoption of EVs and PVs in a typical European city. Moreover, the model does 

not consider the spatial regularities of the PVs and EVs, instead, it looks at the 

overall energy supply and demand. Consequently, the model has limitations to 

inform which substations are more or less likely to face reverse flows or 

powercuts. Therefore, this framework could build upon the results of the ABM 

and ANN model to characterise the spatio-temporal patters of EVs and PVs 

adoption, whilst considering the heterogeneous capacities of the distribution 

network. Such a framework could inform the reinforcement of certain assets 

based on on the level of risk of each substation. 

Policymaking 

Given that the model recognises the disturbances in time and space (such as the 

FiT revisions, see Sections 2.3, 3.3, 4.3 and 5.3), the model can be used to run 

sensitivity analysis under different scenarios and help policymaking. Moreover, 

the multivariable models and combined model show the flexibility of the model to 

implement a different number of inputs. Therefore, the datasets for the current 

variables could be modified for the forecast period [40] to reflects hypothetical 

scenarios such as an increase in the population income. Also, because of the 

high spatial resolution of the model, these assumptions can be made locally, 

allowing the model to contribute to the design of policies that recognise 

intraregional socioeconomic inequalities. 

Therefore, this thesis is critical for policymakers and local government. The model 

improves the existing work the explorative ABMs listed in Table 4. For instance, 
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Adepetu, Keshav and Arya [25] simulate the uptake of EVs under three scenarios: 

(i) base case, (ii) no government incentives, and (iii) extra government incentives. 

The authors find that increasing the available incentives is more important than 

the actual affordability of the EVs as well as the number of available charging 

stations. However, because the model uses a semi-empirical characterisation, 

the agents are located uniformly in a regular grid. Thus, the model is limited to 

explicitly inform if those policies result in spatial regularities of EVs, neither when 

are those rebates should be announced, be available or and revised.  

However, given that the results have shown that not all the areas response in the 

same way to the change in the governmental incentives (see Figure 20), the 

framework can be used to analyse the effect of such policies at the local level. 

On the other hand, the spatio-temporally explicit ABM could be extended to 

recognise the influence of the charging stations around the city and the average 

driving distance [25]. Hence, the method could help to investigate the spatio-

temporal influence of these on the patterns of adoption, or even find the optimal 

number and location of the recharge station needed to maximise the rates of 

adoption. 

This last feature is similar to McCoy and Lyons [26] framework that investigates 

different scenarios of adoption. These scenarios are based on the initial 

distribution of early adopter and the number of connections in the agents’ social-

network. The authors find that the location of the early adopters has a significant 

impact on the adoption rates in the long term. Also, the insertion of random 

adopters increases the likelihood of adoption of those agents with a low 

probability to adopt. Nevertheless, the agents’ characterisation and location are 

semi-empirical, resulting in an initial configuration that lacks spatio-temporal 

accuracy. The ABM and ANN integrated model could address this limitation 

providing an explicit location for those random adopters.  

Moreover, given the temporally explicit nature of the model, future research could 

investigate the effect of introducing a few EVs in a specific PC at a given time 

(i.e. as a marketing strategy). Section 3.3.1 shows the effect of increasing the 
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number of agents in the study, suggesting that as the number of agents increases 

the error of estimation is stabilised during the forecasting error, see Figure 35. 

Because the number of connections increases proportionally to the number of 

agents, the model could investigate the effect of connecting each PC with PCs 

others than those that are adjacent to it [26]. 

Ernst and Briegel [77] propose an experiment on the social influence of the model 

to investigate the effect of increasing environmental awareness on the adoption 

of Energy Innovation (i.e. PVs). The authors increase the frequency of peer-to-

peer communication, doubling the peer-effect in the simulations. Then, they find 

that this experiment increases the adoption rates in the long term (one-two years). 

However, the model completely disregards the spatial dimension of the adoption 

process, making these results not applicable to local policy design. The ABM and 

ANN model could address the limitations of Ernst and Briegel’s [77] framework to 

explicitly locate those areas that are more sensitive to increase the frequency of 

peer-to-peer communication. Moreover, the model could help to investigate the 

effect of a higher influence from the peer-effect by doubling the influence of the 

autoregressive element of decision-making, only in certain areas if necessary. 

In general, the findings from the literature can be improved by the model 

developed in this research because of the explicit and high resolution of the 

spatio-temporal ABM. Because those ABMs have limited capabilities to inform of 

the time and location EVs/PVs are adopted, the policy recommendations 

produced by those models disregard the local differences in the population’s 

heterogeneity. Therefore, the model can help policymakers to understand the 

impact of different policies at the national level and locally design policies, by 

enabling multilevel decision-making. 

6.3 Research limitations 

Addressing the need for spatio-temporal estimations of the EVs and PVs adoption 

rates has come without imperfections. To integrates the AMB and ANN the 

framework faces the following main limitations: (i) loss of heterogeneity, (ii) 
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transparency of the results, (iii) and complexity and simplification of the decision-

making process. 

First, when the model adopts the aggregated definition of agents, the model 

trades off specific behaviour of the agents to alleviate the high data demand of 

empirical characterisation of each individual. The framework defines the model 

resolution by finding the best combination of data variability and availability, thus, 

the characterisation of the decision-making is dependent on the data availability. 

Despite the model being validated for different areal definitions, the results 

presented in Chapters 2-5 are specific to the City of Birmingham and the 

surrounding local authorities. Therefore, it is important to note that the results are 

data-driven, especially for temporal dependence. One can argue that different 

study areas may present different temporal patterns of adoption with longer 

temporal lags.  

Secondly, because the limitations of the ANN to explain the meaning of its 

elements, the use of ANN to characterise the decision-making limits the ABM to 

inform about the significance and meaning of the variables by itself. Moreover, 

as seen in Chapter 3, the framework relies on previous contextual studies to 

select variables from, as well as to make sense of those which are selected. Also, 

because the model relies on data variability, variables with low variability across 

space were omitted. For instance, the literature has found other variables such 

as the FiT rates or the solar irradiation, however, these have not been included 

yet because these may not vary locally. Given the FiT is homogeneous across 

the whole country, one may focus on the temporal effect that this implies, so to 

plan future interventions of the government (i.e. one-time incentives). Similarly, 

because the model considers households as the main actors, the model 

disregards the effect of other actors on the decision-making process. Moreover, 

given that the understanding of the effect of these actors stills understudied, the 

inclusion of these effects requires further analysis. 

Third, although the ANN structure is shown to be capable of characterising the 

decision-making and replicating the spatio-temporal patterns of adoption, the 
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design of the neural network is rather simple. Moreover, the implementation of 

the temporal dependence assumes the all the agents have similar decision-

making. Therefore, the design of the ANN could move forward not only in the 

dynamic design of it but also move to designs that may improve the performance 

of the model. For instance, due to the significant increase in the use of ANN in 

the last decade, there is potential to improve the performance of the model by 

implementing a more complex design. For instance, to increase the model 

performance, the framework could substitute the simple backpropagation with 

Long Short-Term Memory [160] or Deep Neural Networks [161]; that have been 

used to model energy consumption. 

This research has addressed some of the agent-based model limitations, by 

integrating the ABM and ANN. However, given the limitations aforementioned 

and the potential of the model to enable multi-level decision-making, the following 

avenues for future research as proposed. 

6.4 Future work 

Increasing the degree of heterogeneity given the loss of heterogeneity in the 

model due to the aggregated characterisation, future research may focus on ways 

to implement elements that compensate for this. Two main alternatives are 

proposed: (i) unique design for each ANN and (ii) alternative list of variables. The 

former builds upon the significantly increased use of ANN in the last decade 

which has resulted in more complex designs. This thesis assumes that the EV 

owners have a higher preference for PVs (and the other way around), thus a 

possible scenario could be that the adoption of PVs blocks automatically the 

adoption of EVs (or the opposite). This could reflect the affluence and affordability 

of these technologies, where agents can afford only one of the technologies at a 

time or only one of them permanently. Then, both technologies could be seen as 

competitive, mutually exclusive from each other. This scenario could be 

characterised by competitive neural networks [162,163]. In this approach, only 

one of the multiple output nodes is activated and the rest of the synoptic weights 

are inhibited. The second point to increase the heterogeneity is to use a different 
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list of initial variables to the analysis, and analyse whether the same variables 

can predict both the EVs and PVs adoption rates. This also includes the fact that 

future work may investigate how to account for variables that do not vary across 

space. 

Understanding the simplification and complexity of the model that allows a 

wider characterisation of the adoption process, by including elements of the 

human cognition. However, paradoxically, the model takes the ABM a step further 

from being a transparent approach. Moreover, the aggregated characterisation 

means that the decision-making is simplified. As seen in the data analysis of the 

different combinations of resolutions, the aggregation of values softens specific 

behaviours. Therefore, a future analysis may investigate the trade-off between 

the simplification of the decision-making due to data aggregation to the decision-

making and the opportunity to characterise a more realistic adoption-process. 

Also, this may study how the model softens or overlooks some effects such as 

random choices or off-road registrations. 

Refining the knowledge exchange framework: this research provides 

empirical evidence that characterising two decision-making processes 

simultaneously can improve the performance of an ABM. However, because this 

is the first application that considers this exchange of knowledge, future research 

may analyse this from the perspective of social or neural science. Although there 

is literature that reports empirical regularities between EVs and PVs ownership, 

these are data-driven studies that look at the correlation between these variables. 

Therefore, there is a need to underline the social mechanics of the knowledge 

exchange process, and how the knowledge generated by one experience spills-

over another decision-making process. 

Increasing the type of agents and social influence: the model can be 

extended by introducing a second type of agent that drives the decision-making 

by macro-economic variables (i.e. government agent), and which output is the 

level of incentives. This could also include other agents such as energy 

companies, EV/PV sellers, green NGOs, etc., and outputs like energy prices, 
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marketing strategies, EV trials and communication events. Temporal changes in 

the intensity of certain influence could also be included, such as higher social 

influence to reflect a higher communication frequency or areas with higher transit 

of users. 

Temporary influence and controlled interventions: the model could introduce 

short term effect/interventions such as focused advertisements (displays and 

outdoor advertising) as dummy time-series for the seller agents. The model could 

also investigate the long-term effect of seeding strategies, by introducing 

EVs/PVs in areas with lower usage of these technologies. Also, further research 

could temporally change the intensity of certain influences, for instance, higher 

social influence to reflect a higher communication frequency or areas with higher 

transit of users. 

6.5 Concluding remarks 

The research addresses the limitations of the agent-based modelling to inform 

explicitly the location and pace of EVs and PVs adoption, whilst providing a more 

realistic characterisation of the decision-making and its evolution over time. A 

model that integrates the agent-based modelling and artificial neural networks 

are proposed to inform network operators and policymakers with insights of 

spatio-temporal patterns of EV and PV adoption. This results in a framework that 

characterises the decision-making process whilst considering the spatial, 

temporal, social dynamics, and preferences towards other technologies that drive 

the adoption process. 

This work draws from the spatial regression and the artificial neural networks 

model to account for the spatial and temporal dependence. An aggregated 

characterisation of the agents, like the spatial regression, allows implementing 

the social effects. Besides, the preference’s heterogeneity amongst the 

population is captured by the artificial neural networks, reflecting the evolution of 

the individuals’ preferences.  
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The model is compared with other approaches based on spatial and temporal 

accuracy, showing accuracy levels higher than 90% for the training period. In 

general, the spatio-temporally explicit models developed here perform as well as 

the existing ones, especially the model that characterises the preferences 

towards other technologies (knowledge exchange). This work characterises 

multiple decision-making for the first time, moreover, the model does not require 

different rules for each technology to be defined by the researcher. Instead, the 

model generates individual knowledge for each of the areas, and in turn, each 

area generates unique knowledge for each of the technologies. This exchange of 

knowledge between technologies results in higher accuracy than the 

autoregressive models for EVs and PVs that the model builds upon. The model 

that accounts for knowledge exchange can estimate mid-term rates of EVs and 

PVs with accuracy levels higher than 80%. The thesis reports how these results 

are relevant to the energy industry, especially for informing policymaking and 

network management of the location and pace of EVs and PVs adoption. 

Finally, the research is paragon for the modelling of the spatio-temporal adoption 

patterns of low carbon technologies, which can be exploited as confidence in 

artificial intelligence models increases and empirical datasets become more and 

more available. Moreover, this research leads towards more complex 

approaches of decision-making that recognise the multiple dynamics driving the 

adoption process of EVs and PVs. Furthermore, this works highlights the new 

insights they can generate to address the impact of clustering of these 

technologies on the management of distribution networks. For instance, the 

energy industry can benefit to predict the location of reverse flows caused solar 

PVs and extra demand caused by uncontrolled charging of EVs. 
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APPENDICES 

Appendix 1 Full list of articles by research question and 
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Source Author Article Journal 

RQ1 [25] An agent-based electric vehicle ecosystem 

model: San Francisco case study 

Transport Policy 

[27] Simulating the household plug-in hybrid 

electric vehicle distribution and its electric 

distribution network impacts.  

Transportation 

Research Part D: 

Transport and 

Environment 

[14] Modeling photovoltaic diffusion: an analysis 

of geospatial datasets. 

Environmental 

Research Letters 

[16] Spatial patterns of solar photovoltaic system 

adoption: The influence of neighbors and the 

built environment. 

Journal of Economic 

Geography 

[86] Predicting Rooftop Solar Adoption Using 

Agent-Based Modeling. 

Energy Market 

Prediction: Papers 

from the 2014 AAA 

Fall Symposium 

[78] A spatially explicit agent-based model of the 

diffusion of green electricity: Model setup and 

retrodictive validation. Adv. Intell. Syst. 

Comput. 

Advances in 

Intelligent Systems 

and Computing 

[12] Third Party-Owned PV Systems: 

Understanding Market Diffusion with 

Geospatial Tools 

Energy Market 

Prediction: Papers 

from the 2014 AAAI 

Fall Symposium 

Third 
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[94] The adoption of photovoltaic systems in 

Wiesbaden, Germany.  

Economics of 

Innovation and New 

Technology 

[8] Regional distribution of photovoltaic 

deployment in the UK and its determinants: A 

spatial econometric approach. Energy Econ 

Energy Economics 

[20] Social Effects in the Diffusion of Solar 

Photovoltaic Technology in the UK. 

Economics of 

Innovation and New 

Technology 

[92] Does localized imitation drive technology 

adoption? A case study on rooftop 

photovoltaic systems in Germany. 

Journal of 

Economics of 

Innovation and New 

Technology 

[18] Beyond the sun—Socioeconomic drivers of 

the adoption of small-scale photovoltaic 

installations in Germany. 

Energy Research 

and Social Science 

RQ2 [68] Understanding solar PV and battery adoption 

in Ontario. 

Proceedings of the 

Seventh 

International 

Conference on 

Future Energy 

Systems - e-Energy 

'16 

[19] Estimating spatial interdependence in 

automobile type choice with survey data. 

Transp Res Part A Policy Pract 

 

[132] Modeling diffusion of energy innovations on a 

heterogeneous social network and 

approaches to integration of real-world data. 

Complexity 

Complexity 
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[85] Hybrid Electric Vehicle Ownership and Fuel 

Economy Across Texas. Transp Res Rec J 

Transp Res Board 

Transportation 

Research Part A: 

Policy and Practice 

[96]  Where are the electric vehicles? A spatial 

model for vehicle-choice count data. 

Journal of Transport 

Geography 

[15]  Household dynamics of technology adoption: 

A spatial econometric analysis of residential 

solar photovoltaic (PV) systems in Germany. 

Energy Research 

and Social Science 

[41]  Spatial diffusion of electric vehicles in the 

German metropolitan region of Stuttgart.  

ERSA conference 

papers 

[26]  Consumer preferences and the influence of 

networks in electric vehicle diffusion: An 

agent-based microsimulation in Ireland. 

Energy Res Soc Sci 

Energy Research 

and Social Science 

[46]  Spatial Effects in Energy-Efficient 

Residential HVAC Technology Adoption.  

Environment and 

Behavior 

[49]  Development of an agent-based model for 

regional market penetration projections of 

electric vehicles in the United States. 

Energy 

[90]  Agent-based modeling of energy technology 

adoption: Empirical integration of social, 

behavioral, economic, and environmental 

factors. 

Environmental 

Modelling & 

Software 

[32]  An agent-based decision support system for 

electric vehicle charging infrastructure 

deployment. Power Propuls. Conf., IEEE 

2011 IEEE Vehicle 

Power and 

Propulsion 

Conference 

Snowballing [87]  Modeling innovation diffusion for renewable 

energy technologies in city neighborhoods 

2018 9th 

International 

Renewable Energy 

Congress, IREC 

2018 
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[43]  Energy and complexity: New ways forward. Applied Energy 

[51]  Heterogeneity in the adoption of photovoltaic 

systems in Flanders. 

Energy Economics 

[80]  The spatial distribution of hybrid electric 

vehicles in a sprawled mid-size Canadian city: 

Evidence from Windsor, Canada. 

Journal of Transport 

Geography 

[48]  USING NATIONAL SURVEY 

RESPONDENTS AS CONSUMERS IN AN 

AGENT-BASED MODEL OF PLUG-IN 

HYBRID VEHICLE ADOPTION. 

IEEE Access 

[33] An agent-based model to study market 

penetration of plug-in hybrid electric vehicles. 

Energy Policy 

[77]  A dynamic and spatially explicit 

psychological model of the diffusion of green 

electricity across Germany. 

Journal of 

Environmental 

Psychology 

[75]  An empirically grounded model of green 

electricity adoption in Germany: Calibration, 

validation and insights into patterns of 

diffusion. 

JASSS 

[17]  Influence of local environmental, social, 

economic and political variables on the spatial 

distribution of residential solar PV arrays 

across the United States.  

Energy Policy 

[47]  The diffusion of domestic energy efficiency 

policies: A spatial perspective.  

Energy Policy 

[29] The spatial pattern of demand in the early 

market for electric vehicles: Evidence from 

the United Kingdom. 

Journal of Transport 

Geography 

[76]  Determinants of spatio-temporal patterns of 

energy technology adoption: An agent-based 

modeling approach. 

Applied Energy 
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[91]  GIS-Integrated Agent-Based Model of 

Residential Solar PV Diffusion 

USAEE Online 

Proceedings 2013 

[93]  Agent-based modeling of the diffusion of 

environmental innovations - An empirical 

approach.  

Technological 

Forecasting and 

Social Change 

[50]  Adoption and diffusion of heating systems in 

Norway: Coupling agent-based modeling with 

empirical research. 

Environmental 

Innovation and 

Societal Transitions 

[88]  Spatio-Temporal Analysis and Forecasting of 

Distributed PV Systems Diffusion: A Case 

Study of Shanghai Using a Data-Driven 

Approach. 

IEEE Access 

[89]  A data-driven approach to forecasting the 

distribution of distributed photovoltaic 

systems.  

Proceedings of the 

IEEE International 

Conference on 

Industrial 

Technology 
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Appendix 2 Data analysis 

 

 

Figure 70. Historical PV data at MSOA level and 6-month basis for Birmingham 

city. 
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Figure 71. Historical PV data at LSOA level and 6-month basis for Birmingham city. 

 

0%

20%

40%

60%

80%

100%

120%

2011 Jun 2011 Dec 2012 Jun 2012 Dec 2013 Jun 2013 Dec 2014 Jun 2014 Dec 2015 Jun 2015 Dec



 

228 

 

 

Figure 72. Historical PV data at PC level and 6-month basis for Birmingham city. 
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Figure 73. Historical PV data at MSOA level and monthly basis for Birmingham 

city. 
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Appendix 3 Simulation algorithm 

 

Algorithm 1 The PV adoption process 

Initialisation 

26. for each agent PC in Birmingham do 
27. PC.location ← actual population centroid 
28. PC.PVt ← PV installation dataset 

 

29. function AGENT_NEIGHBOURS() 
30. for each PC in agent_aux.Neighbours do 
31. agent_aux.calculateDistance() 
32. agent_aux.calculatePVNeighbourhood() 
33. end for 
34. end function 

 

35. function AGENT_ANN() 
36. for each PC in Birmingham do 
37. agent_aux.ANN(weight) ← random_between(0,1) 
38. end for 
39. end function 
40. end for 

 

Training 

41. function TRAIN() 
42. for each agent PC in Birmingham do 
43. PC.train() 
44. PC.estimationError ← Mean absolute percentage error 
45. end for 
46. end function 

 

Forecasting 

47. for each PC in Birmingham do 
48. PC.PVt+1 ← PC.forecastPV() 
49. PC. calculatePVNeighbourhood() 
50. end for 
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Appendix 4 Training Algorithm 

 

Algorithm 2 Backpropagation learning algorithm  

Initialisation  

1. for each agent PC in Birmingham do  
2. PC.data ← historical PV installation data by month  
3. for each month m in PC.data do  
4. FORWARDS PASS 
5. Starting from the input layer, use each activation function to compute 

the outputs 
6. Use the synaptic weights to pass the outputs from each layer to the 

following one 
7. Calculate the network output and the error of estimation 
8. Check for stop condition 
9. BACKWARDS PASS 
10. Beginning from the last layer, compute the derivates of the output 

layer’s function with respect to the estimation error 
11. Compute the derivates of each other hidden layer with respect to the 

previous layer neurons function 
12. Calculate the adjustment coefficient for each synaptic weight 

considering the previous layer neurons function 

 

13. end for  
14. end for  
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Appendix 5 Variables used in the modelling approaches by broaden categories. 

Table 14. Variables used in the modelling approaches 

Ref. Variable Description 

Adepetu and Keshav, 2016 Social Utility Social threshold  

Energy cost electricity consumption  

Income Assigned budget for purchasing  

Adepetu, Keshav and Arya, 2016 Environmental awareness Greenness (fitted parameter)  

Social Utility Social threshold  

Age Age  

Economics Discount rate  

Energy cost Cost of electricity  

Energy cost Cost of gas  

Income Income  
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Ref. Variable Description 

Policies Incentives  

Available Infrastructure Charging point  

Household characteristics House location  

Vehicle characteristics Vehicle type  

Adjemian, Cynthia Lin and Williams, 

2010 

Age Mean population age  

Education Population with a college degree (%) 

Ethnicity Asian population %  

Ethnicity Latino population %  

Gender Female population %  

Household characteristics Family size  

Household economics Median income  

Marital status Married population (% ) 
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Ref. Variable Description 

Population density Population density  

Balta-Ozkan, Yildirim and Connor, 

2015 

Environmental awareness Share of green party voters per region  

Age Mean population age  

Education Education level proxy (QL2) 

Electricity consumption Electricity sales  

Household characteristics Households per zone (NUTS3) 

Household economics Gross domestic household income  

Household physical 

characteristics 

House size  

Household physical 

characteristics 

House type  

Solar energy Solar irradiation (kWh/m2) 

Bansal, Kockelman and Wang, 2015b Age Median age  
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Ref. Variable Description 

Age Population under 16 %  

Education Population with a bachelor degree %  

Ethnicity African-American population %  

Gender Male population %  

Income Families in poverty %  

Income Population with high income %  

Population density Population density  

Household characteristics Mean house size  

Chen, Wang and Kockelman, 2015 Household characteristics House density  

Household characteristics Household workers  

Income Mean income  

Income Population with income >$35K %  
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Ref. Variable Description 

Population density Population density  

Workers density Jobs per acre  

Workers density Resident workers density  

Davidson et al., 2014 Environmental awareness Total HEV registered  

Education Population with a college degree (%) 

Education Population with a postgraduate (master and/or phd) 

degree % ) 

Ethnicity White population %  

Homeownership Foreclosure risk score  

Household characteristics Family size  

Household economics Mortgage vs Income ratio (<40) %  

Household physical 

characteristics 

Heating (wood) 
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Ref. Variable Description 

Household physical 

characteristics 

House value  

Household physical 

characteristics 

Number of rooms  

Homeownership Owned household with a mortgage %  

De Groote, Pepermans and 

Verboven, 2016 

Environmental awareness Surveyed Proxy (roof insulation)  

Political tendency Left party votes %  

Age Age  

Education Population with a College degree %  

Ethnicity Foreigner population %  

Homeownership Homeownership %  

Household characteristics Family size  

Income Mean income  
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Ref. Variable Description 

Income Variation (std deviation)  

Policies Subsidies  

Household characteristics House size  

Household characteristics House type  

Household characteristics House value  

Eppstein et al., 2011a Social Utility Social threshold (EV market share %)  

Income Income  

Household characteristics House location  

Vehicle characteristics Car age  

Graziano and Gillingham, 2015 Political tendency Democrat voters (%) 

Political tendency Minor parties (%) 

Age Median age of older population (5%) 
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Ref. Variable Description 

Age Median population age  

Electricity consumption Electricity cost  

Ethnicity Asian population %  

Ethnicity Black population %  

Ethnicity White population %  

Homeownership Rented house %  

Household characteristics Households per concentred radius  

Household economics Median income  

Population density Neighbours per concentred radius  

Langheim, 2014b Ethnicity Native born %  

Household characteristics Median age  

Household economics Mean income  
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Ref. Variable Description 

Household economics Median income  

McCoy and Lyons, 2014 Environmental awareness Environmental utility  

Income Income utility (fitted parameter)  

Noonan, Hsieh and Matisoff, 2013 Homeownership 30-years fixed mortgage %  

Homeownership Vacant house ratio in the area% 

Household economics Median income  

Population density Population density  

Household physical 

characteristics 

House age  

Household physical 

characteristics 

House size  

Household physical 

characteristics 

Median house value  



 

241 

 

Ref. Variable Description 

Household physical 

characteristics 

Rehabilitated buildings %  

Schaffer and Brun, 2015 Homeownership Owned households per sqkm  

Household characteristics Buildings per sqkm  

Household economics Gross regional product per capita  

Solar energy Installed capacity (kWp/sqm) 

Sweda and Klabjan, 2011 Environmental awareness Greenness  

Income Income  

Household characteristics Household location  

Vehicle characteristics Car age  

Vehicle characteristics Car fuel type  

Vehicle characteristics Stated preferred vehicle  
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Appendix 6 Bass model estimation 

The Bass model is used to estimate the S-curve of each area, using Ordinary 

Least squares to estimates the parameter of the model. The model assumes 

2050 as the horizon for total uptake of the PVs, and the number of residential 

building owned by the householder (per area) as the number of potential 

adopters. Then, following [40,41] the Bass model is defined as: 

𝑆(𝑡) = (𝑝 + 𝑞 ∗
𝑌(𝑡)

𝑚
)(𝑚 − (𝑌(𝑡))  

Where: 

S(t) is the number of new PV installations  

p is the coefficient of innovation 

q is the coefficient of imitation 

Y(t)  is the number of adopters 

m is potential adopter 

 

Figure 74 shows the different S-curves for the PCs in Birmingham city, the line in 

black represent the estimation for the Total number of PVs in Birmingham. 
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Figure 74. Bass model's estimations for the PV uptake in the Birmingham's PCs. 

 

 

Figure 75. Bass model's estimations for the EV uptake in the Birmingham's PCs. 
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Appendix 7 Summary of the potential socioeconomic variables 
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