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Abstract
Aircraft health management has been researched at both component and system levels. In instances of certain aircraft faults,
like the Boeing 777 fuel icing problem, there is evidence suggesting that a platform approach using an Integrated Vehicle
Health Management (IVHM) system could have helped detect faults and their interaction effects earlier, before they became
catastrophic. This paper reviews aircraft health management from the aircraft maintenance point of view. It emphasizes the
potential of a platform solution to diagnose faults, and their interaction effects, at an early stage. The paper conducts
a thorough analysis of existing literature concerning maintenance and its evolution, delves into the application of Artificial
Intelligence (AI) techniques in maintenance, explains the rationale behind their employment, and illustrates how AI
implementation can enhance fault detection using platform sensor data. Further, it discusses how computational severity
and criticality indexes (health indexes) can potentially be complementary to the use of AI for the provision of maintenance
information on aircraft components, for assisting operational decisions.
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Introduction

Aircraft component failure has the potential to cause the
destruction of life and property,1 so maintenance of these
components is necessary.2 Aircraft downtimes which re-
sult from unplanned maintenance, especially with com-
mercial aircraft, can be costly for airlines, judging from the
fact that direct maintenance costs about $234 million per
airline and $3.67 million per aircraft, as reported for the
thirty-seven 37 Maintenance Cost Technical Group
(MCTG) airlines.3 Aircraft maintenance is significant in
ensuring the reliability of aircraft components, by iden-
tifying and mitigating potential hazards, thereby pre-
venting accidents and enhancing overall flight operations.
It contributes to increased availability, reducing unplanned
downtimes and operational disruptions. Adhering to
regulatory standards set by aviation authorities is con-
tingent upon rigorous maintenance, which also extends an
aircraft's lifecycle and optimizes cost-efficiency by
averting major breakdowns. Furthermore, well-docu-
mented maintenance history positively influences an
aircraft's resale value because it demonstrates that it has
been consistently cared for and maintained in accordance
with manufacturer recommendations and regulatory re-
quirements.4 Maintenance strategies have been applied to

manage the health of aircraft components, from reactive
maintenance5 up to condition-based maintenance.5 In that,
subsequent development like approaching health man-
agement from a component level or system level has been
explored. Further, justification for a vehicle-level ap-
proach has been given, particularly, with Framework For
Aerospace Reasoning (FAVER),6 which covers how
beneficial it is to consider the relationship that exist be-
tween aircraft systems to enable faults and cascading
effects detection. It does so by relying on the individual
systems’ diagnostics. Due to this, in a scenario where
a system’s diagnostic is not available, faults and cascading
effects detection is impossible. This has presented an
opportunity to consider a platform solution, which will not
rely on systems’ diagnostics, but sensor data from the
systems to monitor their health. With the help of Artificial
Intelligence (AI), a platform diagnostic that can ensure
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a quicker fault and interaction effect can be developed.
This will fill the gap of not depending on systems’ di-
agnostics for faults and interaction effects detection.
Airlines have invested significantly in major aircraft
maintenance programs to improve efficiencies. They
continue to invest in emerging technologies, with Arti-
ficial Intelligence (AI) being a crucial part of it.6 This is
evidenced by an increase in investments in Data Exchange
Technologies (XML) as well as AI programs.6 There is
evidence that applying AI techniques in maintenance can
produce effective solutions in aircraft health management,
to help airline operators avoid unexpected interruptions
that occur due to aircraft component failure.7 This paper
covers the relationship between maintenance and AI in
aircraft component health management at the platform
level, and how AI techniques like machine learning can be
applied to platform sensor data to generate insights that
can support operational decisions. Tasks for replacing and
repairing failing components are usually handled by
Maintenance, Repair and Overhaul Organisations
(MROs).8 Maintenance has been approached in various
ways, but in recent times airline MROs adopt Integrated
Vehicle Health Management (IVHM) in maintaining
complex aircraft components.9 This approach gives
MROs the advantage of looking at physical assets as
a whole and considering their interacting components at
the same time.10 Implementing IVHM is usually sup-
plemented with AI due to AI’s ability to create method-
ologies that utilize the decision-making capabilities of AI
techniques, such as deep learning (DL) and machine
learning (ML), to develop fault diagnostics and prog-
nostics systems.11 To provide decision support to both
maintainers and operators, at the platform level of health
management, the health of components can be ascertained
and propagated through its corresponding subsystems and
systems,12 while providing health information at every
level.

This paper is organized into six different sections in-
cluding the present one. The sections that follow will
discuss the history of maintenance until the present day,
and cover the Maintenance, Repair, and Overhaul (MRO)
business, the key handler of maintenance activities, as it
significantly influences the delivery of aircraft mainte-
nance solutions. The next parts covers how MRO busi-
nesses have evolved, and the synergy between MRO
businesses and IVHM. IVHM and its implementation
across industries is also discussed. The fifth segment
discusses health management from a platform level, with
AI as an enabler and some of its techniques that have been
applied in maintenance. The sixth section discusses health
index computation and criticality index, as a supplement
to maintenance information on components, for making
operational decisions. The final section provides a con-
clusion to this paper.

A brief history of maintenance

Maintenance has to do with basic servicing procedures on
regular timescales, to preserve, as well as keep vehicles

lubricated and counteractive maintenance to restore them
when they have broken down.13 In past times, mainte-
nance was easier to perform due to the simple nature of the
physical assets and how the resources for making parts
that could be replaced were easily accessible. This was the
case until the industrial revolution when more powerful
machines were made, and manual efforts reduced.13 The
Wright Brothers were the first to fly a plane in 1903, in
Kitty Hawk.14 Maintenance was a craft learned through
experience and not often examined analytically.15 Its costs
grew as designers reached for higher performance leading
to increasingly complex equipment. Also, aviation
maintenance was unregulated, and most maintenance
activities were undocumented until the Air Commerce Act
of 1925 was introduced.16 The Act came along with li-
censing standards by the International Civil Aviation
Organization (ICAO) in 1948.16 By the late 1950s, the
magnitude of maintenance costs in the airline industry had
reached a level that demanded a new approach to main-
tenance.16 Boeing adopted a bottom-up approach17 as it
looked to invent new ways to troubleshoot after it
launched the first 747 aircraft in 1969.16 Aircraft had
started using built-in-test equipment (BITE) by this
time.18 The method was restricted by how the indicators
that were placed in the system were because they failed to
account for everything that could potentially malfunc-
tion.18 Nowlan and Heap15 in their revolutionary approach
to maintenance, established Reliability-Centered Main-
tenance (RCM) to realize the equipment’s inherent re-
liability capability. The maintenance program for the
Boeing 747 was the first effort to implement this ap-
proach.15 After this came the Maintenance Steering Group
(MSG-3) method, which took an up-bottom approach,
used in the design of the B757 and B767, and is now
a mainstream maintenance method for aircraft mainte-
nance. In 1992, NASA introduced Integrated Vehicle
Health Management (IVHM) to deliver an integrated
platform capability that ensured the reliable capture of the
health status of the overall aerospace system and helps to
prevent its degradation or failure by providing reliable
information about faults.19 Approaches like the Aircraft
Structural Integrity Program (ASIP) and Engine Structural
Integrity Program (ENSIP) played crucial roles in the
military aviation industry by ensuring the structural in-
tegrity of aircraft and engine components, respectively.
Every subsequent development in aircraft maintenance
thereafter can be attributed to technological innovation20

or technology enablers.13

Maintenance evolution timeline

Every physical asset undergoes wear and tear, and this is
more noticeable when it breaks down. When this happens,
it is rational to restore it to its functional state except the
asset was meant to be used once and disposed of.21 The
reason for a maintenance strategy can be traced across
industries to the need for increased availability and a re-
duced maintenance cost of physical assets.22–24 Also, as
assets have evolved into modern, multi-technological
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systems, they should be handled with appropriate engi-
neering methods, enhanced processes, and a set of
maintenance procedures that make sure the asset can
operate at full capacity.25 The techniques used to increase
availability, cut costs, and restore assets to a functional
state gave rise to maintenance strategy.26 A maintenance
strategy is coined out of five major pillars – reactive
maintenance, regularly scheduled preventative mainte-
nance, inspection, backup equipment, and equipment
upgrades.22 These factors serve as a foundation for de-
termining a maintenance mix, which depends on the fa-
cility, the equipment that must be maintained, and the
maintenance aim.22 When maintenance activities are
carried out and what measures are included are influenced
by the maintenance strategy.27

Technological advancement in how maintenance is
approached in the aviation industry is what has accounted
for its evolution,28 as shown in Table 1. Kobbacy et al.28

see it as a path that begins when an asset does not need
maintenance to a point where the asset is performing self-
maintenance,21 Ledet29 suggests that it began with Re-
active Maintenance, and Jin et al.30 propose that it has
developed through Reactive Maintenance (RM), Pre-
ventive Maintenance (PM), to Condition-based Mainte-
nance (CBM).30

The purpose of Reactive Maintenance (RM) is to fix the
asset when it is broken.31 Machines tend to break down
without warning, and it is essential to get them back
workingwhen this happens.13 As shown in Table 1, reactive
maintenance was emphasized in earlier times,13 and with it,
no prior data on the asset is required. Although the man-
power and the amount of money spent on equipment
maintenance are reduced, the drawbacks of this strategy
include unpredictable and fluctuating production capacity
and higher total maintenance costs.32 For instance, un-
scheduled maintenance contributes about 15% to 60% to
the production cost.33 RM is usually characterized by a low
failure severity and frequency, like repairing a fan blade of
an aircraft after a bird strike.30 When a life-critical system
like an aircraft is in play, estimating its dysfunction before it
happens is necessary. As a result, there is justification to
turn to the Preventive Maintenance (PM) approach.

With Preventive Maintenance (PM), replacement and
overhauling are done at certain stipulated time frames, ir-
respective of the status of the asset at that time to minimize
unexpected breakdowns.30 Wang34 classifies preventive

maintenance as a long-term maintenance policy that takes
a record of breakdowns to plan preventive interventions.
Maintenance times for assets in PM policy focusses on the
assets’ age. The underlining idea is that for whichever
comes first – the age or failure of the unit – it is then fixed or
changed.35,36 This is carried out by applying techniques that
extract from historical data of behaviour of assets, indices
like Mean Time Between Failure (MTBF), and Mean Time
To Repair (MTTR).32 Preventive replacements can help
minimize the number of random failures, but it can also
waste resources. It is best to synchronize maintenance and
inventory management strategies27 because even an ef-
fective preventive maintenance plan that increases equip-
ment availability suffers from these flaws:

1. Time-based or operation count-based PM programs
lead to possible under-maintained or over-maintained
equipment, especially in instances when the PM in-
terval is predetermined without considering various
operation regime shifts. For instance, it was found in
the case of gearboxes for helicopters that although
approximately half of the parts were in a convincingly
functional condition, they were taken out for repairs.28

2. Replacing the component before it fails limits how
much information can be learned from the equipment’s
lifecycle.30 Figure 1 depicts the difference between
reactive and preventive (proactive) maintenance.
PM is not the most cost-effective program choice
because of these challenges. Hence, more efficient
maintenance methods such as predictive maintenance
(PdM) are sought.

Predictive Maintenance (PdM) is the ‘right on time’
strategy. It can be grouped into reliability-centred main-
tenance and condition-based maintenance (CBM). In most
cases, it has been implemented as CBM as its performance
indicators are either measured periodically37,38 or observed
continuously.39 PdM makes pre-sets on failure rate and or
any other reliability indicator of the asset so that mainte-
nance is rolled out only when the pre-set rates or indicators
are reached or triggered. Integration is the strength of PdM
as it merges data with reasoning methods, and considers
physical factors and known engineering constraints, so that
it can diagnose a problem before it happens.33 This ap-
proach varies from preventative maintenance such that the
requirement for repair is determined by the asset’s actual

Table 1. Maintenance strategy evolution.

Evolution Strategy Data Aeon IVHM feature

Prescriptive CBM
What can you do when a failure occurs?

Big data 21st century Prognostics

Predictive CBM
Whichmachine health scenarios could result in a future failure and when?

Real-time data 1980s Diagnostics

Preventive RCM
What is the present health of the asset?

Historic data 1950s Statistical (data
driven)
Prognostics

Reactive How can we fix the failure that has occurred? No data
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state rather than a pre-determined schedule. It uses tech-
nologies to monitor the state of the asset to detect issues
sooner and intervene with higher accuracy.32 PdM has
proven benefits such that Rao40 reports that a CBM in-
vestment of $10,000 to $20,000 translates into a $500,000
yearly savings. The timeline depicted in Table 1 highlights
various ways maintenance can be approached, but the
question of when maintenance should take place remains.
The Potential Failure – Functional Failure (P–F) curve
throws light on this.

P–F interval impact on maintenance strategy

The P–F curve shows the time between an asset’s potential
failure and its predicted functional failure. It informs asset
owners of when it is ‘right’ to perform maintenance.13

Initially, the state of the system or component is in good
condition, but over time it begins to deteriorate. Figure 1
demonstrates the progression of failure, starting with the
beginning stages and worsening until it is noticeable. This
is when potential failure is detected (point P, in Figure 2).
The deterioration continues until the point of functional
breakdown (point F, in Figure 2). The P–F time interval
provides the amount of time that a monitoring system
could detect the deterioration and allow for maintenance to
be performed. This interval must be long enough to make
maintenance feasible and the monitoring effective. The
remaining useful life (RUL) refers to the amount of time
until functional failure as the deterioration moves away
from point P. Figure 2 displays the RUL at any given
moment, represented by point A on the curve. The P–F
interval must be long enough to enable for maintenance to
be performed in order for any action to be feasible and for
the monitoring to have been effective. Although Jenn-
ions13 explains how crucial this is for any organization that
uses high-value assets in the P–F Curve, Figueiredo-
Pinto41 asserts that Predictive maintenance is only prac-
ticable if the deterioration pattern depicted in the P–F
curve is generally constant, and a consistent gradient
profile is seen for every part’s cycle of operating life.
According to Refs 13,33,42 the P-F curve shown in Figure 1
aids in measuring performance per time (or usage), and
not just that but it also offers the ability to monitor
degradation such that action (maintenance) is taken when
the depletion is more perceptible before it reaches a point
of functional failure. As a result, it measures the

remaining useful life (RUL) of the asset for maintenance
decisions. Failures are approached differently based on
the categories they fall in. Failures that are seen to impact
health and safety, or that affect business operation are
deemed urgent, and hence receive immediate mainte-
nance. However, other failures that are not necessarily
affecting functionality or interrupting operations, although
their degradation is noticeable, are less likely to be tackled
in the same swift manner.13

Maintenance has evolved into Prescriptive Mainte-
nance (PxM). It is a layer or a step above Predictive
Maintenance. It draws from developing systems that can
intelligently observe, predict, and augment their func-
tional ability.43 It leverages embedded systems that have
been built into the assets, focussing on finding out the
source of faults, and not just the signs. After this, it will
feed the information gathered back to the system so that
maintenance can be done where it is needed. Prescriptive
maintenance is distinctive in the sense that not only does it
forecast asset failure like Predictive Maintenance does but
it also provides consequence-based suggestions for pro-
cesses and maintenance from prescriptive analytics.44

PxM is driven by the capability to have varied scenar-
ios and simulations outside of the reality of happenings to
allow maintenance teams to have a more exhaustive ap-
proach to the condition of the asset. Prescriptive main-
tenance heavily depends on huge data collected from
sensors placed on different points of assets and manipu-
lated or evaluated using various data analytic tools to
provide information on the condition of assets.44

In the future, maintenance strategy in aviation will
gravitate towards a Conscious Aircraft45 or self-mainte-
nance.21 Complex assets like aircraft will assume con-
sciousness like a human would in observing health states
and forecasting with precision, the remaining useful life of
components, subsystems, and systems. At this stage, it
will have the ability to monitor faults, diagnose faults,
judge faults and plan repairs, as well as improve and self-
learn on its own. A typical example is what is being done
in F-35 airplanes,46 where the Autonomic Logistics In-
formation System (ALIS); a comprehensive system that
serves as the central nervous system of the F-35 fleet, is
used to manage and analyse vast amounts of data gen-
erated by the aircraft's various systems during operations.
ALIS provides real-time health and diagnostic information
to maintainers, support personnel, operators, and enables

Figure 1. Preventive (proactive) and reactive maintenance approach.33
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efficient maintenance. The timelines depicted in Figure 2
are like what was proposed by Ledet29 that is, reactive
maintenance, planned maintenance, predictive mainte-
nance, reliability maintenance, and enterprise mainte-
nance. Gallimore et al.22 suggest that organizations, in this
case MROs, should find the most appropriate maintenance
strategy based on the facility, the equipment, and the
maintenance aim.

MROs and their role in maintenance

MROs are the branch of the aviation business that is largely
responsible for maintaining or restoring aircraft parts to
a functional state.47 This includes all technical, adminis-
trative, management, and supervisory responsibilities.8 For
instance, Hawker Pacific Aerospace (HPA) specializes in
the repair and overhaul of landing gear (in airplanes and
helicopters), hydromechanical components, wheels, brakes
and braking systems, and the distribution and sales of new
and overhauled aerospace spares.8,48–50 classify MROs by
organizational structure, by placing them under in-
dependent or third-party MROs, and airline-operated-and-
owned MROs. MROs have developed from when most
MRO tasks were only performed by airline-operated-and-
owned MROs.47 After the deregulation of the airline in-
dustry in 1978 in the USA,51 several new airlines did not
have established MRO facilities or spare parts inventory to
serve their fleet.52 The increase in the number of low-cost
carriers urged the entry of independent MRO sources that
provided low-cost services ranging from line maintenance
to inventory control.8 The smaller airline carriers opted to
outsource MRO activities to third parties because of the
capital-intensive nature of establishing an airline MRO.8

On the other hand, the larger airline operators were inclined
to retain a presence in this line of work as it meant they
could offer MRO-type services to other airlines.53 AAR
Corporation, whose operations include aircraft and engine
support, engineering, and logistics is another example of an
independent MRO organization.54 In contrast, an example

of an airline-operated-and-owned MRO is Lufthansa
Technik, a subsidiary of Lufthansa. The joint venture be-
tween Air France Industries and KLM Engineering &
Maintenance which has seen remarkable development in
terms of its MRO capabilities is another example of an
airline-operated-and-owned MRO organization.8 MRO
business must pay attention to the flow of value from one
organization to another to decide on what brings the most
benefits to it.55 This facilitates long-lasting connections
with clients, deliver more customization and superior
quality, decrease inefficient use of resource and labour, and
get feedback from using it, to be put back into the design
and manufacturing phase.56 In this way, whether the
business is Product-oriented or Service-oriented,55 it will be
able to make a good Return on Investment (ROI). Since
MRO organisations are largely responsible for mainte-
nance, it is feasible to link it to IVHM because it helps them
detect faults quicker before they happen. Maintainers want
to know when a component should be replaced or if it
should be replaced and an efficient way of coming to such
a conclusion is implementing IVHM, which relies heavily
on digitally enabled on-condition maintenance.13

Synergy between MROs and IVHM

It is a difficult task for an aerospace platform to deliver an
autonomous, well-timed, and exact evaluation of vehicle
health for both vehicle operations and maintenance.57

NASA established IVHM on the strength of communi-
cations technology, Decision Support Systems (DSS)
engineering, and sensor integration, to deliver a snapshot
of the health of systems and components, by providing
information on faults for spacecraft.13 Previously, IVHM
had been referred to by several other names such as Fault
Detection, Isolation and Reconfiguration (FDIR), Vehicle
Health Monitoring (VHM), Systems Health Management
(SHM), and Vehicle Health Management (VHM).58 There
is no definition of IVHM that is universal yet, by com-
paring the various definitions in Table 2, the concept can

Figure 2. The P–F interval.14
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be generalized as the holistic approach of evaluating the
present or subsequent health state of components, sub-
systems, or systems in a unified way such that it pro-
vides a suitable framework to make use of resources to
address the health state.59 IVHM’s objectives in the
aerospace sector include lowering MRO costs and in-
creasing aircraft availability by providing comprehen-
sive health monitoring and support for CBM.60 IVHM’s
framework for understanding how complex systems,
such as aircraft or other vehicles, can be made more
reliable is the ‘Sense-Acquire-Transfer-Analyse-Act’
(SATAA).13 ‘Sense’ involves using sensors and other
monitoring systems to collect data on the performance
and health of the system. ‘Acquire’ involves trans-
ferring the data collected by the sensors to a central
location where it can be accessed and analysed.
‘Transfer’ involves transmitting the data from the
system to a central location, either wirelessly or through
a physical connection. ‘Analyse’ involves using algo-
rithms and other tools to manipulate the data and
identify any problems or potential issues with the
system. ‘Act’ involves taking action based on the results
of the analysis, such as scheduling maintenance or
repairs.13 In the SATAA process, the stages are gen-
erally sequential, but it is important to note that the
process is not necessarily a linear one, and some stages
may be repeated or may occur concurrently with other
stages.13 The SATAA process is an ongoing process,
and the steps may be repeated multiple times in order to
continuously monitor the health and performance of the
system.61 The IVHM system typically relies on cutting-
edge machine learning techniques and Artificial In-
telligence (AI) to diagnose faults and estimate the re-
maining useful life of physical assets.62 There is a close
relationship between IVHM and MRO organizations, as
the data collected through IVHM can be used by MRO
organizations to improve their maintenance and repair
processes. For example, if an IVHM system detects
a problem with a component on an aircraft, it can alert
the MRO organization to the issue, allowing them to
schedule maintenance or repairs before the problem
becomes more serious.13

IVHM and its implementation
across industries

IVHM is seen as a capability to support condition-based
maintenance,63 allowing intelligent and suitable decisions
to be made based on present and future vehicle con-
ditions.10 It has been applied in four primary areas across
the aerospace industry57: diagnostics, prognostics, auto-
mated inspections, and anomaly detection.58 Some of the
practical applications of IVHM in organizations are shown
in Table 3. There have been huge advantages that have
come from the application of IVHM systems. Some of
these benefits are the early identification of failure and
replacement of critical units on mission operations before
accidents are caused by their malfunctioning,64 a mini-
mized human input which can translate into increased
reliability and maintainability65,66, and improved re-
sponsiveness for support operations.67 Despite these
benefits, adopting IVHM has its own considerable eco-
nomic and cultural barriers, with the main challenges
being its acceptance13 and the cost of hardware and
software required to execute IVHM tasks.68–70 This cost
covers the improvement and implementation of sensors
and software for processing data, as well as penalties for
additional weight, power, and computing resources.10 A
cultural shift is required for every user of an IVHM system
to accept the weakness of IVHM induced faults, such as
false alarms and sensor failure, especially in cases where
integration is fairly easy (for instance with Skywise)60 and
additional systems like sensors are not necessary or the
already existing ones can be relied upon. This system
should facilitate the detection of the health status of various
components and their effect on other units by using the data
gathered from the units.60 This can be achieved when
supporting technologies like sensor technology, and Arti-
ficial Intelligence (AI)60 are developed. It should be noted
that certification and airworthiness regulations represent
one of the main difficulties IVHM encounters because
modifications to hardware and software can have a negative
impact on an aircraft's ability to fly safely19. Any system
placed on an aircraft is covered by these regulations for
design, manufacturing, integration, and installation. To

Table 2. Definitions of IVHM.

Author Definition

Benedettini et al.10 ‘IVHM is a collection of data relevant to the present and future performance of a vehicle system and its
transformation into information can be used to support operational decisions’.

Esperon-Miguez
et al.122

‘IVHM comprises a set of tools, technologies, and techniques for automated detection, diagnosis, and prognosis
of faults to support platforms more efficiently’.

Rajamani et al.123 ‘IVHM describes a set of capabilities that enable sustainable and safe operation of components and subsystems
within aerospace platforms’.

Jennions et al.68 ‘IVHM describes a set of capabilities that enable effective and efficient maintenance and operation of the target
vehicle. It accounts for the collecting of data, conducting analysis, and supporting the decision-making process
for sustainment and operation’.

Jakovljevic et al.19 ‘IVHM ensures the reliable capture of the “health status” of the overall aerospace system and helps to prevent its
degradation or failure by providing reliable information about problems and faults’.
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make room for new sensors, it is frequently required to alter
the component being monitored, which creates additional
certification issues20. If this could be prevented, certification
may be quite simple as long as the hardware utilised on
a new health monitoring system employs components
similar to already approved devices available on the market
or even using the same devices (for instance, using the same
installed sensors instead of new ones). The focus of IVHM
was at the LRU level until it gravitated towards the
subsystems/systems level.71 There has been a shift towards
the vehicle level,72,73 where the advantage over component
level diagnostics is evident. Ezhilarasu and Jennions74

tackled health management at the vehicle level, using
digital twins and a reasoning layer, to detect faults, their
origin as well as their interaction effects. This approach is
instrumental in the early detection of faults like the left main
bus malfunction in the Cessna 680, in September 2010,
where the crew experienced an uncommanded transfer of
fuel from the right to the left fuel tank after following the
checklist procedures for a left main electrical bus fault in-
dication. The aircraft subsequently became left wing heavy
and exceeded the lateral imbalance limits. It returned to
Luton Airport where a flapless landing was completed
without further incident. The investigation established that
the isolation of the left main bus had caused a false fuel
cross-feed command which resulted in the uncommanded
fuel transfer.1 Aircraft component faults of this nature re-
quire IVHM systems that might not necessarily prevent the
faults but enable early detection for operational actions to be
taken quickly to avert further catastrophes.60 Away forward
is using the foundation laid down in Ezhilarasu and Jenn-
ions74 to tackle health management from a platform view.

Health management from the
platform view

Aircraft health management can be approached from
different levels. This paper has categorised it into four
levels: component, subsystem, system, and platform
levels. At the component level, what is considered is the

most ‘basic’ unit that faults can be traced. For example,
heat exchanger, air cycle machine, and a control valve.
The subsystem level consists of a combination of elements
form the component level. For example, a pump, a fuel
tank, or a Passenger Air Conditioner (PACK), which is
made up of several parts including the above-mentioned
components. In the same way, at the system level, it
consists of a combination of elements from the subsystem
level. For example, the aircraft fuel system, or the envi-
ronmental control system, which is made of several
subsystems like the PACK and the mixing manifold. At
the platform level, which can also be referred to as the
vehicle level, health management has to do with the entire
vehicle (aircraft). The name platform is as a result of the
nature in which health is managed. In this paper, platform
refers to taking sensor data from the component level and
propagating it through the subsystem and system levels up
to the vehicle level. Figure 3 embodies the inputs needed
to manage health from the platform. Health data that will
be collected will help provide maintenance information to
help answer the questions posed by various levels (i.e.
component, subsystem, system, and platform). This in-
formation, however, will not answer operational deci-
sions, but it will help provide inputs that can assist in
making operational decisions. Operational decisions refer
to the decisions that are made during the operation of an
aircraft, such as decisions related to flight planning and
maintenance.75 For instance, for an operational decision
like ‘can we fly,’ at the platform level, the maintenance
information from the platform health management can tell
the health status of the aircraft components but will not be
concerned with making the decision of whether to fly or
not. At the platform level of health management, the health
of the asset is determined by considering the health state
and the interaction effect of the components, subsystems,
and systems,76 giving it an advantage over the component
or system level approaches. The Boeing 777 engine
rollback at Heathrow Airport in 2008 is an example of
a real-world incident.77 The cause of the engine rollback,
according to an investigation into the occurrence, was

Table 3. Examples of IVHM applications in organizations.

Organization Description Link

Rolls Royce Rolls Royce has combined with Microsoft to enable predictive maintenance of their Trent XWB turbofan jet
engines, by employing data from historical feeds and real-time monitoring.

124

US DoD The ‘JSF’ is being developed by the US Department of Defense (DoD). The aircraft’s health management
capabilities are being ‘built in’ and incorporated into an integrated maintenance and logistics system.

125

The boeing
company

Boeing has on a commercial scale, and AHM system that leverages remote analysis of real-time airplane data to
support airlines and operators with personalized maintenance decisions.

126

NASA NASA is working on several IVHM systems for the next generation of reusable launch vehicles, as well as
personnel and cargo transport. IVHM technology will be employed to offer real-time information, allowing
for better decision-making and maintenance.

127

Lockheed Martin The US marine corps has ordered an ‘Enhanced Platform Logistics System’ from Lockheed Martin.
This will provide marine corps ground vehicles with the capacity to track their performance and offer
predictive data, allowing for CBM, enhanced logistical support, and more efficient fleet management.

10

US navy On its ships, the US Navy is deploying an integrated condition assessment system (ICAS) that interfaces with
distant support to enable system-l64,65 l supervision and performance trends for CBM.

10
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a decrease in thrust brought on by a limited fuel supply to
both engines. Further inquiry into the root cause found that
the fuel developed ice as a result of prolonged exposure to
a temperature of less than �70°C. The fuel feed pipe was
then damaged by this ice, which later burst, clogging the
fuel oil heat exchanger and other fuel lines. Another
example is the 2008 emergency evacuation of an Embraer
195 because of smoke in the cabin78 where, after an in-
quiry into the incident, it was determined that both ACMs
had suffered Stage 2 turbine blade failures. The resultant
imbalance had resulted in contact between the turbine
blade tips and the ACM casings, producing hot, finely
divided, metallic particles that were released into the cabin
air system, creating the reported symptoms of smoke and
fumes inside the aircraft. Diagnosing faults in scenarios
like the abovementioned incidents, where failure in one
component cascades into another component, and even-
tually into another system, requires a system that can
detect faults as well as any interaction effects between
components and systems.79 This can be achieved by
adopting a platform solution. Further, to support opera-
tional decisions, faults and interaction effect detection
could be supplemented with information on the health
index and criticality of the components.80 This is because
not all component failures affect the functionality of the
aircraft, so immediate attention should be given to ones
that are crucial.81 This presents various questions to be
answered in order to provide operational decisions, as
shown in Figure 3. In this vein, it is important to lay down
the dependencies that exist among the components,
subsystems, and systems as it was applied in damage
propagation modelling for aircraft engine by Abhinav,82

and Roemer,83 and Roemer12 in developing a hierarchical
reasoning structure for aerospace IVHM, where dis-
tinctions between independent relationships, serial de-
pendencies, and parallel dependencies were made uses
a parent–child approach to establish this relationship for
a health index framework for condition monitoring. From

a platform view, answering the questions at the base of the
pyramid in Figure 3 help to answer the one at the apex,
when the dependencies that exist among them are
established.

AI as an enabler for health management

The approaches that have been applied to manage the
health of complex assets and fall under: Data-Driven,
Model-Based and Expert Systems approaches.93 Data-
driven diagnostic methods rely on data collected from
sensors that are placed at strategic areas of the
system.77,94,95 For instance, Skywise, which is designed
by Airbus to handle integrations of commercial and op-
erational systems, processing large volumes of data such
as time-series data coming from aircraft sensors, struc-
tured data from operational and maintenance data and
unstructured data such as technical documents.96 Model-
based methods use a physics model of the system or
component to conduct the analysis on its health, by de-
veloping a virtual representation of the actual asset to
mimic its behaviour. Its application can be found in the use
of digital twins to mimic the behaviour of systems or
components to simulate what-if scenarios of actual sys-
tems. For examples, as discussed in Liu et al.85 and ap-
plied on an automotive brake pad for predictive
maintenance in Rajesh et al.86 In an extended approach,
there can be a hybrid of data-driven and model-based
techniques. For instance, digital twins of systems can be
developed, then used to produce data, which could be
processed to derive insights into fault modes in the actual
systems, as done with aircraft systems in Ezhilarasu et
al.74 An expert system is derived from two fundamental
concepts.97 First, that it contains specific knowledge about
a particular field, component, or system. This knowledge
is a fusion of existing facts from human experts and
documentation within that field. Although the system
closely models the human expert, it is not a replacement
for the human expert, but an assistant.98 Rolls Royce's
KBO Environment, which allows the company to capture
its knowledge base, as well as best practice and perfor-
mance, manufacturing, and cost criteria into a simulated
model to help engineers precisely explore and try multiple
“what ifs” against all identified constraints, is an example
of an expert system. Another example is RuleSentry�
which has been used by Lockheed Martin to simplify
system behaviour modification and operational decision
making to save time and effort (RuleSentry TM Config-
urable Decision Support, 2013). Platform level decisions
are typically concerned with efficiency matters like pri-
oritizing component failure modes. These health man-
agement decisions typically rely on the use of
technologies like artificial intelligence. To add to that, data
is increasing in relevance and size. With reference to
a report by the International Data Corporation (IDC), the
global data sphere was to grow from 33 zettabytes in 2018
to 175 zettabytes by 2025. These figures are noteworthy
when compared to the global total of 3 exabytes in 1986.
Aircrafts produce huge data. The Boeing 787 creates

Figure 3. Health management pyramid.
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nearly half a terabyte on a single trip, while the Airbus
A380-1000 generates approximately eight terabytes daily
. A General Electric (GE) jet engine creates about 20
terabytes of information per engine data per hour. For two
engines on an average six-hour cross-country flight from
New York to Los Angeles, the data generated is ap-
proximately 240 terabytes. The effective utilization of the
vast volume of generated data demands the integration of
key technologies like AI. These synergistic technologies
are instrumental in facilitating continuous communica-
tion, robust data storage, and clever data analysis, to
optimize data exploitation.

The term Artificial Intelligence (AI) originated from the
belief that all facets of intelligence, including learning, can
be precisely defined, and programmed into a machine to
simulate them.93 The word ‘artificial intelligence’ is used
to describe the development of tools that are intended to
conduct tasks that ordinarily call for human intellect.
Unlike how human intelligence develops naturally, these
tools are made by a combination of algorithms, computer
programmes, and other technologies. In other words, the
intelligence exhibited by AI systems is not something that
happens naturally; rather, it is something that the tool’s
designers intentionally manufactured and encoded into the
device. The difference between human and machine in-
telligence is further brought out by the ‘artificial’ character
of AI. Human intelligence is the outcome of a complex
interaction between heredity, environment, and experi-
ence, whereas artificial intelligence (AI) is created using
mathematical models and algorithms that are intended to
conduct specific tasks. This artificial intelligence is neither
sentient or self-aware; rather, it functions according to the
rules and logic established by its designers. Functioning in
this way would be called intelligent if it were displayed by
a person, thus the name artificial intelligence.94 Over the
years, the evolution of AI in aircraft maintenance has
followed a clear trajectory from rule-based methods to
machine learning and, ultimately, deep learning para-
digms. Initially, rule-based systems were employed to
detect and diagnose maintenance issues. However, the
inherent complexity of aircraft systems and the limitations
of rule-based approaches led to a transition towards
machine learning techniques. Machine learning models,
with their ability to autonomously learn patterns and
adapt, offered enhanced predictive maintenance capa-
bilities. In recent years, deep learning, a subset of machine
learning, has taken centre stage due to its proficiency in
handling vast and intricate datasets. The neural networks
used in deep learning excel in recognizing intricate pat-
terns and anomalies, thus revolutionizing aircraft main-
tenance by providing more accurate and proactive insights
into equipment health and performance. This shift towards
deep learning signifies a significant advancement in AI-
driven aircraft maintenance, promising greater efficiency
and safety in aviation operations. The definitions of AI,
highlighted in Table 4, dovetail towards a purpose of
assisting with decision-making in the real world. AI has
three primary types of assistance in maintenance: pre-
scriptive, predictive, and descriptive AI.95 AI has

transformed aircraft health management by facilitating
advanced data analytics, predictive maintenance, and fault
detection. Current trends in this field encompass the ap-
plication of cutting-edge AI algorithms capable of pro-
cessing vast datasets from aircraft systems. For instance,
commercial fleet monitoring tools like Boeing's AnalytX
platform utilizes AI and machine learning to monitor
aircraft health in real-time, enabling proactive mainte-
nance actions based on data-driven insights. Prognostics
and remaining useful life (RUL) estimation have also
improved significantly, with companies like Lufthansa
Technik implementing AI-based RUL prediction models
for critical components, allowing for more efficient
maintenance planning. AI monitoring techniques, in-
cluding those based on vibration, which have been used
for anomaly detection in unmanned aircraft, and acoustic
emissions, which have been used for diagnostics in
auxiliary power unit, have been developed. In some cases,
natural language processing has been employed, as done
in Duan et al., where mechanical monitoring readings
were treated as natural language sequences and inputted
into a transformer for extracting health indexes that reflect
the health status components. Recent approaches feature
an integration of AI with other technologies like the in-
ternet of things (IoT) and edge computing, as done in Hsu
et al., for RUL prediction on aircraft engines and digital
twins (DT) as done in Ezhilarasu et al., for fault diag-
nostics in aircraft. Furthermore, explainable AI (XAI)
models have become essential for critical aviation ap-
plications. Explainable AI techniques are employed to
ensure that the decision-making process of AI algorithms
can be understood and validated by human operators as
demonstrated in Zeldam et al. XAI has become essential to
maintenance and potentially holds the key to speed up AI
adoption and certification in aircraft health management.
This is because it creates an avenue to explain, validate,
and improve results from the application of AI techniques.
In that, the focus is being directed at how to consistently
measure the success of XAI models under criteria like
depth of explanation, stability , predictive accuracy, pri-
vacy and model coverage. These trends collectively
showcase the significant impact of AI in enhancing aircraft
health management and will continually be, especially
with the onset of a conscious aircraft.

AI techniques in maintenance

The application of AI techniques to optimize maintenance
has seen significant success after AI came to the scene in
the 1960s.91 After a considerable amount of time in de-
velopment, the use of AI in maintenance has been con-
tinuously increasing, and current developments in
machine learning and other AI technologies have sparked
a rise in its usage in areas such as condition-based
monitoring and predictive maintenance. This is evident
in the last 5 years; in that airlines have committed sig-
nificant investment to AI programs.97 Over time, applying
AI in maintenance has expanded to include several AI
approaches, as shown in Table 5, because of the
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uniqueness of each approach.91 For example, techniques
such as Genetic Algorithms (GAs) and Neural Networks
(NNs) can be used with Explainable AI (XAI), which
seeks to overcome the limitation of ‘black box’ ap-
proaches. This has helped to extend their use to tasks such
as scheduling and fault diagnosis.91 The Artificial Neural
Network (ANN), Convolutional Neural Network (CNN),
and Deep Convolutional Neural Network (DCNN) mainly
concentrate on using deep neural networks for complex
pattern recognition and image classification. These net-
works can be used to identify and categorize anomalies in
images, such as cracks or distortions in aircraft parts.98

Long Short-TermMemory (LSTM) is particularly suitable
for dealing with the issue of vanishing gradients that arise
during backpropagation, as it was used in Eldali and
Kumar.99 Fuzzy Logic is used as a way of addressing

uncertainty through the notion of degrees of truth instead
of binary values. For example, it has been applied to
determine fault severity in rotating machines.100 Naı̈ve
Bayes (NB) relies on the probability of an event hap-
pening, considering the occurrence of other events. For
instance, in a fault tree analysis, how probable it is for
a Passenger Air Conditioner (PACK) to malfunction,
given that the primary heat exchanger develops a fault. NB
has been used for system-level fault propagation analy-
sis.101 SVR, RF, and LR techniques model the connection
between an independent variable and one or more de-
pendent variables. Every physical asset begins de-
teriorating at the start of its usage (See Figure 1).
Monitoring this deterioration throughout the asset’s useful
lifecycle helps to effectively diagnose failure, to prevent
major asset downtime.13 In the field of artificial

Table 4. Definitions of AI.

Author(s) Academic field Definition

Baranov et al.128 Psychology Artificial intelligence (AI) is the sum of a computer’s functional skills for solving human
issues.

Kaplan and
Haenlein129

Business Artificial intelligence (AI) is described as a system’s capacity to accurately understand
external input, learn from it, and use what it has learned to achieve specified
objectives and tasks through flexible adaptation (p. 15).

Ransbotham
et al.130

Business and
management

Artificial intelligence (AI) is the study and development of computer systems that can do
activities that would ordinarily require human intellect, such as visual perception,
speech recognition, decision-making, and language translation (Oxford dictionary p.
2).

Russell and
Norvig131

Computer science AI is the study and development of rational agents that operate in accordance with given
inputs to attain the best possible results or goals (p. 7).

Wahl et al.132 Health Artificial intelligence (AI) is an area of computer science concerned with the emulation
of intelligent behaviour in computers (p. 1).

Weber and
Schütte133

Big data and cognitive
computing

AI is the study of attempting to teach robots to utilise language, develop abstractions and
concepts, and solve issues that are currently reserved for humans (p. 3).

Table 5. AI techniques applied in maintenance.

Author(s) AI technique Health management level Output

Daniyan et al.134 ANN Component level RUL
Dallapiccola et al.135 ANN, LSTM Component level Fault diagnosis

Akpudo et al.136 NN Component level RUL
Silva et al.137 NN Component level Fault diagnosis

Frank et al.138 FL Component level Fault diagnosis
Philips et al.139 KBS Component level Fault diagnosis
Adhikari et al.140 SVM, KNN, RVM Component level RUL

Kavana et al.141 ANN Component level Fault classification
Ozkat142 SVM Component level Fault diagnosis

Patil et al.143 SVR, RF, MLP Component level RUL
Chazhoor et al.144 KNN, LR, RF Component level RUL

Davari et al.145 DL System level Fault diagnosis
Hermawan et al.146 CNN, LSTM System level RUL

Putra et al.73 ML Vehicle level RUL
Markridis et al.72 ML Vehicle level Fault diagnosis
Chen et al.147 DCNN, NB Vehicle level Fault diagnosis

Ezhilirasu and Jennions74 ML Vehicle level Fault diagnosis
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intelligence (AI), the selection of AI techniques should be
based on the desired outcomes. It is crucial to think about
the intended results and select the AI techniques that are
most likely to achieve them in order to successfully apply
AI in maintenance.92 As shown in Table 5, several AI
techniques have been applied in maintenance to achieve
different results, although in some cases, some of the
techniques can be applied to achieve more than one
maintenance results. Applying AI techniques for main-
tenance at the platform level requires a system that builds
on health results obtained from prior levels.83 In this way,
from Figure 3, the health of components will be propa-
gated to the subsystem level, the system level, and then to
the platform. Health results reflect the health state of
components and are typically referred to as health index as
it was used in Kamtsiuris12 for developing a health index
framework, Khan et al.79 for health index behaviour based
on vehicle level reasoning, and Yin et al.103 for con-
structing a health index for aircraft ECS. The potential to
apply AI in a platform solution can be seen in how it has,
for example, through the application of Physics-Informed
Neural Networks (PINNs); which belong to a group of
neural networks that, in both their design and training, take
into account physical principles and limitations, been
applied in areas like modelling cumulative damage (fatigue
crack) in airplanes104 and machine degradation assess-
ment.105 Further, in Li et al.,105 PINNs were used to
generate a health indicator to check the health of com-
ponents. This approach can be applied in Figure 3.

Health index (HI) for
operational decisions

As a complementary information to the insight that will be
derived from applying AI techniques to sensor data, HI can
be beneficial to aircraft maintenance. It is helpful to be able
to tell if a fault has been detected in a component, but it is
more efficient to know the extent of that failure and its
effects.13 This paper proposes that for a platform approach
to health management, computing health indexes alongside
insights from applying AI could be more efficient for
providing maintenance information to support operational
decisions. Health index computations are rooted in finding
faults and their effect on components, along with their
cascading effects on other components.80 Built-In Test
Equipment (BITE) has been used as both in-field main-
tenance and to indicate the health state of a system.106 In the
1950s, BITE was used to ensure uninterrupted availability
and fault-free operation of critical weapons systems
(Minutemen I and II missiles) and aerospace equipment
(Saturn, Apollo).106,107 Similar techniques for estimating
a health index have emerged after BIT.108 For example,
Automatic Test Equipment (ATE),109 and Embedded
Diagnostics/Prognostics (ED/EP).110While it is common to
conceive of damage as an issue that increases mono-
tonically, the domain in which damage is assessed could
have non-monotonic characteristics. These may be external
effects, such as partial maintenance activities, or inherent

characteristics (such as recovery effects in the capacity of
batteries or semiconductors). It may be required to consider
specific damage propagation models for various failure
types since damage propagation may display different
symptoms depending on the fault mode.111 In a bottom-up
approach (components level to platform level), the health of
components can be disguised by the overall health at the
platform level.83 By generating a health index to offer
details on the health state of components, subsystems, and
systems, a top-down (platform to components) method can
effectively disclose the health of components (for main-
tenance decision) at the platform level. This maintenance
decision can eventually be used to assist operational de-
cisions. Managing the health of physical assets, like in the
approaches mentioned Table 5, provides useful information
for maintenance, but to assist an operational decision, the
IVHM system might need a high-level reasoner to deduce
that system’s criticality to the functioning of the entire
asset.63 Establishing the health of systems can be cat-
egorised under: (1) system health index-based, (2) in-
tegration of components’ remaining useful life (RUL), (3)
influenced component-based, and (4) multiple failure
modes approaches.112 The health index (HI) of a compo-
nent can be defined by the ‘functional availability’ of that
component to execute the intended purpose for which it was
made.83,113 Abhinav82 proposed a component level esti-
mation method in calculating a health index. This method
determines critical parameters that point to the performance
of the system from the data gathered, by computing how
distant a component’s present health parameter is from
certain operational boundaries. By calculating the differ-
ence between the present system state and predetermined
limits, these health indexes can be estimated. Each of these
health indexes is then normalised to the interval [0, 1],
where one (1) indicates a healthy component and zero (0)
indicates an unhealthy component. It is important to de-
termine the critical parameters because, in specific sit-
uations, not all parameters carry the same weight of
importance. For example, Abhinav82 identified efficiency
and flow as critical parameters to identify the health of an
aircraft engine’s compressor and turbine. Diagle et al.114

adopt the estimation of the end of useful life (EOL) of
a system in a distributed manner by decomposing it into
replaceable units, based on the concept of structural model
decomposition. The distributed framework computes the
health of components, which then feeds into their corre-
sponding systems to estimate the health of these systems.
One strength of this approach, which can help component
health index propagation, is how it provides a tool
(structural model decomposition) to merge local prog-
nostics results into a system-level result. In the case of
Chang et al.,115 a health index (Remaining useful life
(RUL)) was computed based on a multi-input neural net-
work, using long short-term memory (LSTM) for RUL
prediction, and the previous monitoring data and the future
operational condition settings. These two data streams are
manipulated and combined to predict the RUL of the ex-
amined components. Wang et al.116 applied a strategy in
a similar manner to estimate the system health of aero
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engines by taking into consideration several operating
conditions. At the platform level, it may be required to
propagate health states from preceding levels. Roemer113

proposes a reasoning architecture to propagate aggregated
component health indexes up to the system level, in Un-
manned Aerial Vehicles (UAVs). This propagation is done
by quantifying the remaining functionality at every point, in
three separate levels. At the lowest level, the diagnostic
reasoning starts with the raw sensor data and attempts to
categorise hidden failure mode symptoms. The mid-level of
the reasoning architecture is used to ascertain the overall
functional availability of the subsystems that make up the
whole, that is, what effects do the failure modes that have
been recognised have on the functional availability of the
subsystem? The challenge of determining and measuring
functional availability, but from a system-wide viewpoint,
is present at the system-level reasoning, the highest level of
onboard reasoning. At this level, the system’s capacity to
carry out planned activities is determined using the func-
tional availability evaluations, or condition indicators, from
all of the underlying components. This architecture has
a connection to the approach in Roemer,83 where a hier-
archical reasoning is designed to support IVHM to provide
real-time health state and information on remaining
available functionality from various levels of functionality;
LRU, assembly, subsystem, and overall system or vehicle.
After computing the health indexes at the component level,
a successive process rolls up the effects to the subsystem
level. The process in Roemer83 distinguishes between in-
dependent relationships, serial dependencies, and parallel
dependencies among the functional areas. This can be
instrumental in making operational decisions because the
nature of the relationship that exists between the compo-
nents can provide information on how crucial they are to the
asset’s functionality at the platform level. The methods in
these approaches can be applied to Figure 3 to aggregate the
health results from the component, subsystem, and system
levels to the platform. Kamtsiuris et al.12 tackle health
estimation of physical assets by employing an inheritance
mechanism. The authors describe a system as a set of
subsystems, components, or parts that are connected
structurally and functionally in a hierarchy.117 With this
hierarchy, a parent–child relationship is established be-
tween components, subsystems, and the system. Individual
components that make up a subsystem are referred to as
a ‘child’ of that subsystem, while that subsystem is the
‘parent.’ In the same vein, individual subsystems that make
up a system are referred to as a ‘child’ of that system, while
the system itself is the ‘parent.’ That is, every ‘parent’
inherits its health state from its ‘children’. The estimation of
health indexes can be rolled up to the platform level by
computing the health state of a ‘parent’ at every point and
propagating it to the next level in the hierarchy (i.e. from
component to subsystem, to system, and to the platform
levels). For example, following the structure of Figure 3,
a low efficiency in an Air Cycle Machine (ACM) and
Heat Exchanger fouling, at the component level, can be
propagated to the Passenger Air Conditioner (PACK) at
the subsystem level, and then to the ECS at the system

level to be seen at the platform level. Tamssaouet et al.118

approaches health index propagation in a slightly dif-
ferent way. Once a fault is detected, based on the system’s
functional architecture, its estimated health state is
propagated into the future to determine its system re-
maining useful life (SRUL). The input–output model, as
it is referred to, is a unified model for system degradation,
which considers interdependencies between compo-
nents, mission profile, and inner component degrada-
tions. The taxonomy it considers for a physical asset is
a components-system classification. Each component has
its own failure mode that leads to degradation and this
degradation impacts other related components. A com-
ponent fails when it reaches a supposed threshold and the
degradation of a system is characterised by its inoper-
ability, which includes its components’ inoperability.
The input data needed to implement this approach at the
system level is the failure threshold of the systems’
components, architecture, the online health indicator
value of the system’s components and the degradation
trends of the system’s components with their uncertainty.
Shigang et al.119 identify the task of hierarchical health
assessment as being able to analyse the effect of faults at
different levels of health management, given a de-
termined health status at the lower level. This falls in line
with the questions that will be faced in making opera-
tional decisions, as shown in the pyramid in Figure 3.
Shigang119 adopts a multi-layer Bayesian network for
hierarchical health assessment, by assigning probabilities
to fault statuses at lower levels and propagating it to
higher levels. A similar application of the Bayesian
networks is seen in Barua and Khorasani,120,121 where
a Component Dependency Model (CDM) for hierar-
chical fault diagnosis is developed to facilitate a sys-
tematic diagnosis of faults at different health
management levels of satellites. This can inform main-
tainers of the probability of a fault getting worse if that
fault can potentially affect the overall functioning of the
physical asset. In a nutshell, this section shows how
employing a HI to supplement the application of AI to
diagnose faults has the tendency to improve maintenance
information to support operational decisions.

Summary and conclusions

This paper attempts to report the relationship between AI
and maintenance, for tackling aircraft component health
management from the platform-level. To that effect, it
reviews how maintenance has evolved over time, up to
where Prescriptive Maintenance (PM) is being done to
support CBM, the role of MROs and why they typically
adopt IVHM for maintenance. It also touches on how the
level of health management has been at the component or
system levels and how due to the nature of certain aircraft
faults, these approaches might not be able to detect the
faults in time. Hence, justifying why a platform level
approach can be useful, as it will be able to detect faults
and the interaction effects of components quickly. Further,
it touches on what might be needed when handling aircraft
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component health from a platform view - providing in-
formation to answer the questions posed by Figure 3, for
assisting operational decision. It reviews work on health
index computation and suggests that an IVHM system
might need a reasoner that can output a criticality index of
the components to assist in making an operational
decision.
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Appendix

ANN Artificial neural network
LSTM Long short-term memory

NN Neural network
FL Fuzzy logic

KBS Knowledge-based systems
KNN K-nearest neighbours
RVM Relevance vector machines
SVM Support vector machine
SVR Support vector regression
RF Random forest

MLP Multilayer perceptron
LR Logistic regression
DL Deep learning

CNN Convolutional neural network
ML Machine learning

DCNN Deep convolutional neural network
NB Naı̈ve Bayes.
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