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Abstract— The primary aims of prognostics encompass the 

timely detection of potential failures, mitigation or elimination of 
unscheduled maintenance, prediction of the most suitable timing 
for preventive maintenance replacement, optimization of 
maintenance cycles and operational readiness, and enhancement 
of system reliability by improving design and logistical support for 
existing systems. In order to facilitate the progress of these 
approaches, currently available datasets provide a unique and 
reliable compilation of flight-to-failure trajectories linked to small 
aircraft engines that have been observed in actual flight 
conditions. Furthermore, the paper offered an improved neural 
network that utilized the TanH hyperbolic tangent function. This 
neural network was enhanced later by integrating it with the 
TanH, linear, and Gaussian functions. Additionally, a random 
holdback validation approach was employed in the paper. The 
results suggest that the NN TanH technique, when implemented, 
has the potential to significantly enhance the reliability of an 
aircraft component. This is achieved through accurate estimates 
of the remaining useful life (RUL) and a proactive understanding 
of the failure system. 

Keywords—prognostics, health management, remaining useful 
life, aircraft engine, neural network. 

I. INTRODUCTION 
Prognostics offer insights into the deteriorated condition of 

a system and enable precise forecasts on the probable timing of 
a future system breakdown. The purpose of prognostication is to 
identify deterioration and offer predicted insights, such as 
evaluations of system health and estimations of remaining useful 
life (RUL). This presents several advantages. The objectives of 
prognostics include: (i) providing advanced notice of potential 
failure; (ii) reducing the occurrence of unscheduled 
maintenance; (iii) forecasting the optimal timing for preventive 
maintenance replacement; (iv) enhancing maintenance cycles 
and operational readiness; (v) decreasing costs associated with 
inspections, inventory, and time; and (vi) improving system 
reliability through the enhancement of design and logistical 
support for current systems [1], [2]. Prognostic data typically 

encompasses the processes of data acquisition (DA), data 
processing (DP), and data manipulation (DM) performed by 
sensors and processing within sensor frameworks [3]. These 
processes involve the collection, analysis, and manipulation of 
data to generate feature data (FD), which includes condition 
indicators that serve as primary indicators of failure. 
Additionally, state detection (SD) is achieved through the 
utilization of processing and calculation routines within feature 
vector frameworks. Furthermore, health assessment (HA) and 
prediction assessment (PA) are conducted within prediction 
frameworks or information frameworks to evaluate the overall 
health status and make predictions based on the available data. 
The prediction subsystem of the prognostic and health 
management/monitoring system (PHM) consists of many 
frameworks, namely the sensor framework, characteristic vector 
framework, forecast framework, and control and data flow 
framework [4], as seen in Fig. 1. 

Fig. 1. Operational diagram of the PHM system capability (adopted from [4]) 

II. PROGNOSTICS AND CONDITION BASED MAINTENANCE 
The PHM system is characterized by its intricate nature, 

comprising several interconnected subsystems. The 
conventional techniques for this intricate system rely on 
probabilistic considerations and exhibit several limitations when 
contrasted to the novel ideas put forward and examined. The 
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probability distribution characterises the collective behaviour of 
several identical entities rather than the behaviour of an 
individual entity. Additionally, it should be noted that the 
accuracy of the parameters associated with the distribution 
functions utilised in the procedure is questionable, as previously 
demonstrated. A more pragmatic strategy involves the 
utilization of condition-based maintenance (CBM), wherein 
function data are derived from failure-critical indicators. 
Subsequently, signal conditioning, data transformations, and 
domain transformations are conducted, as required, to generate 
data that constitute a failure-to-failure progression (FFP) 
signature. Prediction algorithms effectively analyse FFP 
signatures, yielding precise estimations of system health and 
usable lifespan. Enhanced precision is attained by converting 
FFP signature data into deterioration progression signature 
(DPS) data and subsequently converting DPS data into 
functional failure signature (FFS) data. The data obtained from 
FFS are subjected to processing through various prediction 
algorithms, such as extended Kalman filtering (EKF), random 
walking, and other trend analysis algorithms. These algorithms 
have demonstrated the ability to generate predictions with a high 
level of accuracy and achieve rapid convergence. For example, 
one approach involves employing a heuristic argument to 
decrease the number of signature models utilised in EKF, 
thereby enhancing the adaptive prediction estimates. The rapid 
and precise convergence of this phenomenon proves to be highly 
advantageous in the context of CBM for PHM systems [5]. 

The PHM system in the CBM architecture engages in the 
monitoring, capturing, and processing of CBM signals in order 
to extract information on the state of health (SoH) of various 
system elements, including devices, components, assemblies, 
and subsystems. Additionally, extraneous signals are subjected 
to processing to provide predictive information, such as SoH and 
RUL. These processed signals are then utilized to effectively 
manage system maintenance and logistics [6]. The framework 
has six components: (i) a sensor framework, (ii) a feature vector 
framework, (iii) a prediction framework, (iv) a health 
management framework, (v) a performance validation 
framework, and (vi) a control and data flow framework.  

III. RELATIONSHIP OF PHM TO SYSTEM RELIABILITY 
The relationship between PHM and system reliability is 

inherently interconnected. For instance, consider a scenario 
where the PHM system is specifically engineered to effectively 
prognosticate the precise moment when each target is likely to 
experience functional impairment. Additionally, assume that the 
fault and health management framework of this system 
facilitates timely replacement or repair of each target prior to the 
occurrence of functional failure. It is further assumed that 
maintenance activities are performed subsequent to the detection 
of degradation in each target. Lastly, it is assumed that the PHM 
system's ability to replace or repair a target is quicker than the 
time it takes for an unexpected outage to transpire. In systems 
that are equipped with PHM-enabled systems, the effective 
mean time before failure (MTBF) of the system is enhanced [7], 
resulting in an increase in the reliability of the system. In 
addition to enhancing system reliability, PHM has the potential 
to decrease system maintenance expenses through the extension 
of the operational lifespan of predictive targets. Furthermore, it 
has the advantage of decreasing the overall cost associated with 

the management of planned events in comparison to unforeseen 
occurrences, including both temporal and material aspects.  

The foundational framework for PHM-enabling systems is 
often established by employing one of many conventional 
modelling methodologies. These methods may be categorized as 
model-based predictions or physics-based models, data-driven 
forecasts, or hybrid-based predictions [6], [8], [9]. Model-based 
predictions are frequently characterised by enhanced accuracy 
in estimating forecasts, although their use in intricate systems 
might pose challenges. Data-driven methodologies are often 
more straightforward to implement, yet they may provide lower 
levels of accuracy and precision in predictive projections. 
Hybrid methodologies exhibit a notable degree of precision and 
accuracy, rendering them valuable in the context of intricate 
systems that include both on- and off-vehicle domains. This 
characteristic allows optimization of both data-driven models 
and model-based models [10]. Fig. 2 shows the categorization 
of prognostic approaches.  

 
Fig. 2. Categorisation of Prognotics (adopted from Pecht (2008)) 

The precise prediction of RUL is a crucial component of 
prognostics and holds considerable significance in improving 
the reliability of aviation systems through many methods. The 
effective implementation of optimal maintenance planning is 
supported by the capability to provide accurate RUL 
predictions. This empowers maintenance teams to schedule 
maintenance activities with improved accuracy. Instead than 
relying on pre-established schedules or arbitrary intervals for 
the replacement of components, maintenance may be carried 
out with precision at the necessary moment. This strategy 
successfully reduces unnecessary maintenance interventions 
and decreases the probability of component problems caused by 
excessive usage or neglect. 

The application of RUL estimations can significantly 
enhance the extension of aircraft component lifespan by 
enabling timely replacement of these components when judged 
necessary. This method not only reduces the frequency of 
component replacements but also enhances the overall lifespan 
use of each component, leading to cost savings. The utilization 
of intelligent decision-making, which involves data analysis 
and predictive modeling, is employed in the prediction of RUL. 
Maintenance teams has the capacity to effectively allocate 
resources by taking into account the estimated RUL of various 
components. This enables them to prioritize their work and 
focus their efforts on areas that demand the utmost attention. 
Through the use of this technique, it ensures that critical 
systems are swiftly attended to, thus enhancing their reliability. 
Through the use of proactive maintenance procedures, 



companies may successfully reduce possible faults before they 
exert a detrimental impact on reliability. 

IV. AN APPROACH FOR ENHANCING SYSTEM RELIABILITY 
THROUGH THE IMPLEMENTATION OF PHM – A CASE STUDY 

A. Data Exploration 
The data set utilised and analysed in this paper was sourced 

from NASA's prognostic data repository. This repository has 
eight distinct data sets comprising flight-to-fault paths for a total 
of 128 aircraft engines, each subjected to varying flight 
circumstances. Failures in the flow (F) and efficiency (E) of 
several subsystems, including the fan, low pressure compressor 
(LPC), high pressure compressor (HPC), high pressure turbine 
(HPT), and low pressure turbine (LPT), might potentially 
manifest, as seen in the following table I. 

TABLE I.  FAILURE DATA SET 

 

In order to develop prediction models based on data, it is 
important to use a dataset that includes trajectories leading up to 
system failure. To enhance the advancement of these 
methodologies, the provided data sets offer a novel and 
authentic collection of flight-to-failure trajectories pertaining to 
small aircraft engines, observed under realistic flying 
conditions. The synthetic dataset included in this paper was 
generated using a damage propagation model based on 
established modelling methodologies. The dataset encompasses 
a power management system that enables the engine to function 
throughout a broad spectrum of thrust levels across all flight 
conditions, which are categorized into three distinct flight 
classes based on the duration of the flight. It is assumed that each 
flight of the fleet only operates in a particular flight class [11]. 
The dataset was produced using a simulation of a new 
commercial modulated air propulsion system (N-CMAPSS) 
dynamic model. The dataset was collaboratively contributed by 
the prognostics centre of excellence (PCoE) at NASA in 
conjunction with the University of Zurich and PARC [12].  

Each dataset comprises a comprehensive collection of flight 
data pertaining to an aircraft engine simulation, encompassing 
second-by-second records from a total of 100 flights or instances 
of engine failure. Each individual unit undergoes a specific flight 
time, as denoted by the flight class, and then enters an 
anomalous deterioration condition based on the assigned file 
number and the designated failure type. The dataset comprises 
several components. Firstly, it includes generic air flow cycles 

along the engine length, encompassing total temperature, total 
pressure, and flow. Secondly, it incorporates two rotating 
speeds, compressor stall margins, and various operational 
parameters, such as Mach number, altitude, throttle resolver 
angle (TRA), current cycle number, and flight class. Lastly, it 
consists of a binary health state indicator. In addition to the 
thermodynamic model of the engine, this data set encompasses 
an atmospheric model that is capable of operating within a range 
from sea level up to 40,000 feet. The atmospheric model is 
designed to accommodate Mach values ranging from 0 to 0.90 
as well as sea temperatures spanning from -60 to 103 degrees 
Fahrenheit. 

B. Methods 
The approach employed for the creation of the N-CMAPSS 

dataset adheres to the methods outlined in reference [13] and 
illustrated as follows. In summary, the technique aligns with the 
subsequent procedure according to [12]: 

• Flight conditions refer to the specific set of 
circumstances and environmental factors that an aircraft 
encounters throughout its operation in the atmosphere. 
These conditions encompass several variables such as 
altitude, airspeed, temperature, humidity, and wind 
speed, and the engine simulator utilizes real flight 
circumstances that are captured on board a commercial 
jet. 

• Implement degradation. The degradation of engine 
components occurs with each flight. 

• A simulation of impaired flying. The N-CMAPSS 
dynamical model [14] is used to simulate a 
comprehensive flight that encompasses the climbing, 
cruise, and descent circumstances. 

• The concept of flight until failure refers to the 
phenomenon of an aircraft continuing to operate until it 
reaches a point of mechanical or structural failure. The 
health condition of the engine deteriorates as a result of 
the depreciation of its components. The process of 
simulating complete flights with progressively 
worsening conditions persists until the engine's health 
index reaches zero, indicating the end-of-life stage. 

C. Model and Results 
The authors employed two training techniques, including an 

improved neural network NtanH and another complex neural 
network (NN) model, and implemented a random holdback 
validation approach using the N-CMAPSS DS02-006 dataset. 
NNs are renowned for their user-friendly nature, versatility, and 
adaptability, as they are founded on models inspired by the 
structural organisation of the human brain. During the training 
process, the neural network is capable of deducing the 
connections between the input and output, thereby establishing 
the relative potency of inter-neuronal connections. Each 
individual neuron within the network computes a weighted sum 
of its inputs and generates a binary signal when the cumulative 
input surpasses a predetermined activation threshold. This 
intricate mechanism enables the network to successfully execute 
highly intricate tasks. 

Dataset Failure Modes Units Flight Classes Size 

DS01 HPT 10 1,2,3 7.6M 

DS02 HPT+LPT 9 1,2,3 6.5M 

DS03 HPT+LPT 15 1,2,3 9.8M 

DS04 Fan 10 2,3 10.0M 

DS05 HPC 10 1,2,3 6.9M 

DS06 LPC+HPC 10 1,2,3 6.8M 

DS07 LPT 10 1,2,3 7.2M 

DS08 All 54 1,2,3 35.6M 



The procedure for generating the dataset implies that the 
failure modes of the main rotating engine sub-components, 
namely the fan, LPC, HPC, HPT, and LPT, demonstrate a 
continual decline. The deterioration effects are simulated by 
modifying the flow capacity and efficiency of the engine sub-
components, which are represented by the engine health 
parameters 𝜃 . The prediction results and the corresponding 
measurements, including the training and validation, are shown 
separately in Fig. 3, as depicted below.  

(a) NNs training results 

 
(b) NNs validation results 

Fig. 3. Outcomes of the predictions conducted under various scenarios. (a) 
The outcomes of the training process; (b) The outcomes of the validation 
process 

For validation, a holdback portion is used. The random seed 
is set to 1234 for reproducibility, and the default holdback 
portion is fixed at 0.333 with the learning rate preset at 0.1. That 
is, one third of the data will be held out of model building for 
validation. This model has 41 variables as input variables, one 
hidden layer with 41 nodes, and an output layer. Statistics for 
the training and the holdout validation data are provided. For 
each node in the hidden layer, there is an intercept and parameter 
estimate for each of the input variables. As aforementioned, the 
first layer opts to use 41 nodes using the TanH hyperbolic 
tangent function. The penalty method is executed using the 

squared value and setting the number of tours to 1 due to 
computation complexity. The NN-NtanH R-square value of 
0.9943 on the training set is equivalent to the validation set.  

The simplified NtanH training algorithm is illustrated as 
follows: 

New Column( "H1_1_1", 
 "Numeric",  
Formula( 
  TanH 

( weights(𝜔1) * variables), 
 Set Property( "Intermediate", 1 ) ); 
… 
 
New Column( "H1_n_1", 
 "Numeric", 
 Formula( 
  TanH 

( Weights (𝜔𝑛) * variables), 
 Set Property( "Intermediate", 1 )); 
 
New Column( "Predicted RUL_1", 
 "Numeric",  
Formula( 
  𝜔1 * :H1_1_1, +…,  + 𝜔𝑛* :H1_3_1), 
 Set Property( 
  "Predicting", 
  {:RUL,  

Creator( "Neural" ), Std Dev( )}));; 
 

A more complex model is later built, opting to use equal 41 
nodes for the TanH, linear, and Gaussian functions on the hidden 
layer, ultimately resulting in 41 nodes in the hidden layer of the 
proposed model. As a presumption, the complex model runs the 
risk of creating a model that relies on too much randomness. Fig. 
4 below compares the difference in complexity between the 
NtanH and the complex model.  

(a) Training diagram of NN NtanH 



(b) Training diagram of NN complex model 

Fig. 4. Training graphs of the neural network models NN NtanH and the 
complicated model. (a) This figure illustrates the training process of a 
neural network utilizing the hyperbolic tangent activation function 
(NtanH); (b) This diagram depicts the training process of a neural network 
employing a complicated model 

       Several measurement and evaluation metrics are proposed 
to compare the prognostic results. The following measures of fit 
are included: 

• Generalized RSquare: A metric that may be utilized for 
broad regression models. The value of the function is 
determined by the probability function 𝐿  and 
normalized to attain a maximum value of 1. The value 
assigned to a perfect model is 1, whereas a model that 
performs no better than a constant model is assigned a 
value of 0. The generalised RSquare metric may be 
reduced to the conventional RSquare metric when 
dealing with continuous normal responses inside the 
typical least squares framework. The generalised 
RSquare, sometimes referred to as the Nagelkerke or 
Craig and Uhler R2, is a normalised adaptation of Cox 
and Snell's pseudo R2.  

• RASE: Gives the RSquare for the model as in the square 
root of the mean squared prediction error. This is 
computed as follows: square and sum the prediction 
errors (differences between the actual responses and the 
predicted responses) to obtain the SSE. Denote the 
number of observations by 𝑛. RASE is denoted as (1): 

                                                     𝑅𝐴𝑆𝐸 =  √
𝑆𝑆𝐸

𝑛
                         (1) 

• Mean Abs Dev: The mean of the absolute discrepancies 
between the observed reaction and the projected 
response. In cases where the answer is nominal or 
ordinal, the observed differences are within the range of 
1 and p, which represents the estimated probability for 
the specific level of response that was seen. 

• -LogLikelihood: Gives the negative of the log-
likelihood. 

• SSE: Provides the sum of squares for the inaccuracy. 
This feature is accessible exclusively in cases where the 
response is uninterrupted. 

• Sum Freq: Provides the total count of observations 
utilised in the study. When a Freq variable is supplied 
in the neural launch window, the Sum Freq function 
calculates the sum of the values in the frequency 
column. 

The complex model exhibits a decline in model accuracy, 
as indicated by the RSquare value and other metrics in Tables 
II and III. Additionally, the evaluated value of the complex 
model increases with the square root of the mean squared 
prediction error and other relevant metrics. Despite variations 
in outcomes across different models, neural network models 
provide the advantage of accommodating a number of input 
variables, regardless of the presence of multicollinearity among 
these parameters or their limited influence on the dependent 
variable. Therefore, it can be confirmed that the optimized 
neural NtanH model demonstrates superior performance 
compared to the complex model when applied to the used 
dataset. 

TABLE II.  NN-TANH MEASUREMERNT RESULTS 

(A) TRAINING RESULTS                                      (B) VALIDATION RESULTS 

Measures Value 

RSquare 0.9943186 

RASE 1.6864235 

Mean Abs Dev 1.2315266 

Loglikelihood 6813165.7 

SSE 9980079.4 

 

TABLE III.  COMPLEX NN MEASUREMERNT RESULTS 

(A) TRAINING RESULTS                                      (B) VALIDATION RESULTS 

 

V. CONCLUSION AND FUTURE WORK 
Prognostics are generally methods or algorithms that are 

deployed to attempt to model an expected future event (i.e., 
component failure). The primary objective of this initiative is to 
provide timely alerts about probable failures, minimise instances 
of unplanned maintenance, predict the most opportune times for 
maintenance activities, optimise maintenance cycles, promote 
operational readiness, save costs, and improve the overall 

Measures Value 

RSquare 0.9923164 

RASE 1.9609583 

Mean Abs Dev 1.3880437 

Loglikelihood 7342425.6 

SSE 13493897 

Measures Value 

RSquare 0.9943197 

RASE 1.6860187 

Mean Abs Dev 1.2314788 

Loglikelihood 3405651.1 

SSE 4986896.9 

Measures Value 

RSquare 0.9923078 

RASE 1.9624767 

Mean Abs Dev 1.3879187 

Loglikelihood 3672020.3 

SSE 6756388.2 



reliability of a system. The present study conducted an analysis 
on a dataset sourced from NASA's forecast data repository, 
employing the methodologies previously delineated. The 
authors utilized two training methodologies, including an 
enhanced neural network architecture known as NtanH and a 
complex model accommodated with linear and Gaussian 
activation functions. In addition, a random holdback validation 
strategy was applied utilising the provided dataset. The training 
procedure encompassed the adjustment of the flow capacity and 
efficiency of the primary rotating engine sub-components, 
denoted as engine health parameters θ. A number of 
measurement and assessment metrics have been established in 
order to facilitate the comparison of prognostic outcomes. The 
findings demonstrate that the suggested NN-NTanH 
methodology has a strong capacity to enhance the overall 
dependability of the aircraft subsystem through accurate 
prediction of RUL and effective health management in 
comparison to the other model. In conclusion, the accurate 
forecast of RUL is a crucial component of prognostic, since it 
greatly enhances the dependability of aviation systems. This 
technology facilitates the ability of airlines and operators to 
optimize their maintenance planning, minimize periods of 
inactivity, improve safety measures, achieve cost savings, 
prolong the lifespan of components, and make choices based on 
data analysis. The cumulative advantages mentioned above 
enhance the reliability and efficiency of aircraft systems, thereby 
guaranteeing a higher level of safety and dependability in air 
transportation. The authors will further emphasise the 
integration of various data-driven and physics-based models into 
a hybrid prognostic method to achieve enhanced results in the 
future. 
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