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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• Flow Cytometry Gating strategies (dy-
namic, static, absent) assessed in drink-
ing water. 

• Dynamic gating gave better cell assess-
ment in more variable raw water and 
distributed waters 

• Static gating suited for stable and low 
cell count final water and is reproduc-
ible and rapid. 

• Fluorescence fingerprinting cells & 
background augments traditional met-
rics for water quality. 

• Gate-free strategy including background 
particles is useful in waters with low 
residual cells.  
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A B S T R A C T   

Flow cytometry has been utilized for over a decade as a rapid and reproducible approach to assessing microbial 
quality of drinking water. However, the need for specialized expertise in gating—a fundamental strategy for 
distinguishing cell populations—introduces the potential for human error and obstructs the standardization of 
methods. This work conducts a comprehensive analysis of various gating approaches applied to flow cytometric 
scatter plots, using a dataset spanning a year. A sensitivity analysis is carried out to examine the impact of 
different gating strategies on final cell count results. The findings show that dynamic gating, which requires user 
intervention, is essential for the analysis of highly variable raw waters and distributed water. In contrast, static 
gating proved suitable for more stable water sources, interstage sample locations, and water presenting a 
particularly low cell count. Our conclusions suggest that cell count analysis should be supplemented with 
fluorescence fingerprinting to gain a more complete understanding of the variability in microbial populations 
within drinking water supplies. Establishing dynamic baselines for each water type in FCM monitoring studies is 
essential for choosing the correct gating strategy. FCM fingerprinting offers a dynamic approach to quantify 
treatment processes, enabling options for much better monitoring and control. This study offers new insights into 
the vagaries of various flow cytometry gating strategies, thereby substantially contributing to best practices in 
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the water industry. The findings foster more efficient and reliable water analysis, improving of standardizing 
methods in microbial water quality assessment using FCM.   

1. Introduction 

Bacterial proliferation in drinking water challenges aesthetic and 
hygienic standards at drinking water treatment works (WTW), within 
distribution systems (DWDS), and at the point of use (e.g., tap). 
Compromised treatment safeguards can result in the distribution of 
substandard water to consumers, posing public health risks due to the 
connected elements of the DWDS. This issue is compounded by a lack of 
dynamic controls in DWDS, deteriorating infrastructure, and climate- 
linked uncertainties. For over a century, the heterotrophic plate count 
(HPC) method has assessed drinking water microbiological quality 
(Sartory, 2004; WHO. World Health Organization, 2022). However, it is 
not free from limitations which include underestimating microbial load, 
displaying taxonomic bias, being time-consuming, and revealing data on 
trends retrospectively which prevents timely data-led remedial action to 
counteract poor water quality (Hoefel et al., 2003; Cheswick et al., 
2019). Flow cytometry (FCM) has been adopted in several countries' 
water industries for microbial water quality assessment. FCM has been 
employed for raw water quality monitoring (Besmer et al., 2014, 2016; 
Coggins et al., 2020), identifying issues in WTW assets (Phe et al., 2005; 
Brown et al., 2019; Farhat et al., 2020), tracking bacteria dynamics in 
DWDS (Gillespie et al., 2014; Besmer et al., 2017; Van Nevel et al., 
2017a), and other applications including assessing wastewater treat-
ment plant effluents, water reuse systems, and specific asset perfor-
mance challenges such as membrane integrity (Vital et al., 2010, 2012; 
Liu et al., 2017; Massicotte et al., 2017; Schleich et al., 2019; Gabrielli 
et al., 2021). 

Flow cytometry, when combined with the cellular markers SYBR 
Green I (SG) and Propidium Iodide (PI), provides a rapid and repro-
ducible characterisation of microbial populations. SYBR Green identifies 
nucleic acids (DNA and RNA) of all (total) cells, while PI used in 
conjunction with SG marks cells with compromised membranes (Gatza 
et al., 2013). Integral to the characterisation of drinking water using 
FCM is the gating step. Gating is used to assess the levels of specific 
markers of interest on selected particle subsets, without confounding 
data from other subsets. In this context, some authors may refer to an 
“analysis region” rather than a “gate”. In drinking water, hierarchical 
gating is usually applied, consisting of primary gating used to define cell 
population boundaries, after which the intact cell count (ICC) and total 
cell count (TCC) are measured. Secondary gating typically distinguishes 
high (HNA) and low (LNA) nucleic acid content in microbes, although 
the value of these metrics in practical microbial water quality assess-
ment remains contentious (Prest et al., 2016) as pH and other environ-
mental stressors can change the fluorescence of cells due to changes in 
how the dyes interact with them (Cheswick et al., 2020). During anal-
ysis, singlet gating is sometimes applied to minimise the distortion 
which aggregates impose on the pulse width and area to distinguish 
singlets from aggregates (doublets or triplets). Singlet gating is per-
formed using either forward scatter (FSC) or side scatter (SSC) param-
eters. Further gating levels are rarely applied in drinking water studies 
and fluorescence compensation is not normally undertaken (Safford and 
Bischel, 2019). Other dyes exist for evaluating different facets of bac-
terial physiology although their application is currently limited to 
research applications (Nocker et al., 2011), and rarely applied for 
operational uses (Wang et al., 2010). 

Despite its extensive deployment, the subjectivity of FCM's gating 
process, which sets cell population boundaries, introduces variability 
(Chicurel, 2002; Maecker et al., 2005; Bashashati and Brinkman, 2009; 
Hassard and Whitton, 2019). A biomedical study on intracellular cyto-
kine staining precision found manual gating significantly contributed to 
this variability, with coefficients of variation between 17 and 44 % on 

the same samples (Maecker et al., 2005). Moreover, a survey of UK water 
utilities indicated that most of those applying FCM for drinking water 
analysis employed a static gating step despite the dynamic processes 
within WTW and DWDS (Hassard and Whitton, 2019) underscoring the 
intrinsic biases, human error and variability often associated with the 
gating process (Van Nevel et al., 2017b; Buysschaert et al., 2018; Wang 
and Brinkman, 2019). In FCM for drinking water analysis, the early 
approach involved manual gating for cell population selection. As 
techniques advanced, practitioners adopted static gating, applying 
consistent criteria across similar water-type samples. This was later 
complemented by dynamic gating, which adjusts to each sample's 
unique characteristics through either user-assisted or computer-aided 
modifications to predefined ‘snap’ gate (Prest et al., 2013; Maecker 
et al., 2005). Both these approaches are used in the water sector to cope 
with increased data volumes from high-throughput bench FCM and 
automated FCM instruments (Suni et al., 2014; Bashashati and Brink-
man, 2009). When conducting a large study or involving multiple op-
erators or sites, creating a gating template becomes essential. However, 
despite efforts to lessen subjectivity and improve efficiency, gating 
variability remains a persistent issue (Verschoor et al., 2015; Hassard 
and Whitton, 2019; Staats et al., 2019). Mitigation strategies such as 
assigning gate configuration to a single expert have limitations, partic-
ularly concerning time constraints and the imperatives of other more 
‘urgent’ regulatory analyses in water industry laboratories (Nomura 
et al., 2008). Consequently, to improve the reliability and speed of mi-
crobial water quality monitoring, novel strategies like machine learning 
guided assignment of gates, ungated analysis, and fluorescence finger-
printing are being employed, offering new approaches to real-time data 
interpretation and anomaly detection (Le Meur et al., 2007; Koch et al., 
2013; Favere et al., 2020). 

Fluorescence fingerprinting using FCM (used with or without 
gating), is an innovative technique transforming flow cytometric 2D 
histograms into images, simplifying the comparison and detection of 
microbial community changes (Koch et al., 2013). It has the potential to 
reduce gating subjective interpretation as all the fingerprint is described 
not just subsets of cells. When paired with automated evaluation, it 
enables quick and precise categorization of water samples through inter- 
sampling side-by-side comparison (Chan et al., 2018). While traditional 
offline statistical computation methods offer insights, their retrospective 
nature makes them inherently reactive. The Microbial Community 
Change Detection (MCCD) model offers an advance by monitoring mi-
crobial community stability semi-autonomously using an outlier score 
based on fingerprints and distance-based outlier calculations. This 
approach could enable early anomaly detection, underpinning proactive 
responses based on elements of the fingerprint (Sadler et al., 2020). 
However, most of the water sector is still using offline approaches 
without fingerprinting and thus new insights into gating effects in 
drinking water are required. Recently, a new model was developed to 
investigate bacteriological presence in treated water from WTW using 
automated FCM. Different machine-learning methods were tested. The 
best classification accuracy (89.33 %) was achieved using a combination 
of machine learning algorithms increasing options for timely in-
terventions to ensure safe drinking water (Kyritsakas et al., 2023). 
Despite this advance, there is still a requirement to understand the 
relative merits of gating as the most commonly applied approach using 
FCM for drinking water. 

The majority of comparative studies have focused on static single- 
location sampling (Van Nevel et al., 2017b; Chan et al., 2018), while 
longitudinal, multi-location sampling is less well reported (Van Wam-
beke et al., 2011; Liu et al., 2017; Ling et al., 2018). The latter, 
increasingly employed in the water industry, evaluates the impact of 
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treatment processes on water quality at various WTW stages by 
comparing temporally poor but spatially rich sampling between and 
within works (Li et al., 2017; Bruno et al., 2018). 

To the authors' knowledge, no longitudinal drinking water focused 
study has yet systematically assessed a chosen gating strategy's impact 
and reliability. To address this research gap we undertook a year-long 
experiment, with each WTW interstage undergoing analysis via FCM 
circa weekly with final water measured at various frequencies ranging 
from daily to weekly. The novelty of this work is that resultant flow 
cytometric scatter graph plots were processed through both static and 
dynamic gating approaches for comparison (Staats et al., 2019). This 
study hypothesised that flow cytometric data for cell quantification and 
fingerprinting analysis could together better inform microbial water 
quality. It postulated three core hypotheses: (i) the choice between static 
and dynamic gating significantly impacts FCM results for ICC, TCC, 
HNA, and LNA; (ii) cell quantification and fingerprinting provide 
distinct insights into water quality events in WTW; and (iii) a new 
approach, processing flow cytometric scatter plots without gating prior 
to fingerprinting, may enable new insights into water quality assess-
ments generally and specifically for WTW and DWDS operations using 
FCM. 

2. Materials and methods 

2.1. Monitoring full-scale WTW and its DWDS 

Between April 2019 and March 2020, water samples were collected 
from various stages of a WTW and its associated DWDS in the South of 
England. The WTW, which sources water from a river (Sussex Ouse) via 
a small impounding reservoir, employs treatment processes commonly 
applied in the UK for surface waters. These include a Clarifier (CF), 
Rapid Gravity Filter (RGF), Ozone exposure, Granular Activated Carbon 
filter (GAC), UV disinfection, and a Chlorine Contact Tank (CCT) (Fig. 1- 
1). Each treatment process within the WTW underwent weekly moni-
toring and water quality analysis assessing physical, chemical, micro-
bial, and cytometric parameters, detailed further below. Daily samples 
were also taken from the final water reservoir outlet and analyzed for 
the same set of parameters. The studied service reservoir (SR), 16 km 
downstream from the WTW in the DWDS, had no reported inputs from 
other supplies throughout the investigation and was sampled weekly. 
Drinking water obtained from consumer tap samples within this largely 
single source DWDS were also collected and analyzed circa weekly. 

2.2. Physical and chemical parameters 

Physical and chemical parameters were measured as follows, with 
each sample taken in duplicate as per the regulatory procedures stipu-
lated by Standing Committee of Analysts (2010). Initially, sample taps 
were flushed for three minutes, then flame sterilized for 30 s. After a 
further 30-s flush, samples were collected in sterile 250 ml bottles 
containing a pre-measured dose of sodium thiosulphate, sufficient to 
neutralize the chlorine residual/disinfectant. Within 24 h of sampling, 
the samples were transported to the laboratory for analysis, kept at a 
temperature of 4–8 ◦C. Water constituents including turbidity, pH, and 
total and free chlorine residual were measured adhering to the Standard 
Methods for the Examination of Water and Wastewater (APHA-AWWA, 
2012), employing the 2130 B nephelometric method for turbidity, 4500 
for pH, and 4500-Cl G (DPD colorimetric method) for chlorine residual. 
In addition to standard methods, we used automated online sensors and 
automated meter readings (AMR) to measure water quality parameters 
such as free chlorine, pH, and turbidity for each sample. Chlorine con-
tact time data was obtained from the AMR which records data every 15 
min from at different points within the WTW. The water utility ensured 
accuracy by calibrating these online chlorine concentration probes at 
least once a month against benchtop instruments, using prepared 
analytical standards. 

2.3. Microbiological parameters 

Microbiological assessments were carried out on collected samples 
following the guidelines outlined by APHA-AWWA (2012). The analysis 
of Escherichia coli and total coliforms were performed using the Colilert® 
test (IDEXX, UK) based on the most probable number (MPN) enzyme 
substrate method (9223). This test uses defined substrate technology, 
wherein bacterial enzymes react with specific nutrients, causing a colour 
change when the target bacteria - E. coli or coliforms - are present. 
Heterotrophic plate count (HPC, 9215) at 22 ◦C was used to determine 
the total viable counts. Cryptosporidium was measured through the 
method of pathogenic protozoa enumeration (9711), which concen-
trates water samples, magnetically purifies them to isolate protozoa, and 
uses fluorescent markers for their identification under a fluorescence 
microscope. Clostridia perfringens was measured using the membrane 
filtration method (9260) - the water sample was filtered, the bacteria- 
retaining filter was placed on a selective medium and incubated at 
44 ◦C, and the appearance of black colonies after a 24-h incubation 
period indicated the presence of Clostridia perfringens. 

Fig. 1-1. Flowsheet of WTW used in the study. River is located in the South of England with a river abstraction from the Sussex Ouse River (UK). Sample points are 
indicated in orange. The filter is a Rapid Gravity Filter (RGF). 
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2.4. Flow cytometric measurements of drinking water 

Cytometric analysis was executed following a specific procedure. If a 
sample displayed a TCC or an ICC concentration surpassing 1,000,000 
and 800,000 cells/ml respectively, it was diluted using steralised 
Evian™ water filtered through a 0.2 μm Polyethersulfone (PES) filter. 
Following dilution, samples were prepared for TCC and ICC detection 
via fluorescence staining, adopting the protocol detailed by Whitton 
et al. (2018). For TCC detection, a stain was produced by diluting SG 
(10,000 × stock. S-7567; Thermo Fisher Scientific, UK) with Dimethyl 
sulfoxide (DMSO) filtered to 0.22 μm (Z290807, Sigma-Aldrich, UK), 
yielding a working concentration of 100 × SG. ICC detection stain was 
created by combining five parts of 100 × SGI and one part of PI (1 mg. 
ml−1, corresponding to 1.5 mM; Thermo Fisher Scientific, UK). The 
samples and stains were combined in a 96-well plate and incubated in a 
Grant Instruments™ PHMP thermoshaker (Thermo Fisher Scientific, 
UK) for 15 min at 35 ◦C and 400 rpm. Post incubation, 50 lL of each 
sample was analyzed using a BD Accuri C6 flow cytometer (Becton 
Dickinson U.K. Ltd., U.K.), equipped with a 488 nm solid-state laser. 
Green fluorescence was registered in the FL1 channel at 533 nm and red 
fluorescence in the FL3 channel at 670 nm. To distinguish bacteria from 
background signals in the flow cytometric scatter plots, primary and 
secondary gating was employed. The specifications for gate configura-
tion are provided in the next section. Counts of microorganisms within 
the gate formed the basis for TCC, ICC, HNA, and LNA calculations. The 
Limits of Detection (LOD) and Limits of Quantification (LOQ) for FCM 
were established through serial dilution experiments using a series of 
high cell count real groundwater samples diluted with 0.22 um filtered 
Evian™ water. Specifically, the LOQ values for TCC and ICC were found 
to be 700 and 1000 cells/ml, respectively. Similarly, the LOD values for 
TCC and ICC were ascertained to be 200 and 400 cells/ml, respectively, 
which is broadly in accordance with earlier work (Hammes et al., 2008). 

2.5. Fluorescence fingerprinting analysis 

Flow cytometric scatter plots were delineated using two distinct 
gating approaches: static and dynamic. Both were implemented using 
FlowJo (v10.7.2) software. The static method utilized a fixed gate as 
outlined by Prest et al. (2013). In contrast, the dynamic method adjusted 
the gate for each plot to distinctly separate bacteria from background 
signals. This dynamic approach required human judgment to determine 
the optimal gate for each sample, relying on the user's expertise. 
Throughout the study, a single FCM operator was employed to minimise 
subjectivity related bias in the FCM gating process. Monitoring of the 
microbial population was two-fold, involving both cell count determi-
nation and cellular fluorescence fingerprinting. Cell counts within the 
gates were automatically quantified using FlowJo, whereas the fluo-
rescence fingerprinting adhered to Koch et al.'s (2013) protocol for 
Cytometric Histogram Image Comparison (CHIC). This approach en-
ables the interpretation of trends in microbial community structures 
without a prior definition of gates in a manner that is independent of the 
user. Briefly, the process of converting FCM scatter plots to bitmap im-
ages, extracting features, and comparing images through ‘XOR’ infor-
mation retrieval which were conducted using FlowJo (v10) and ImageJ 
(v1.54d-) software. This process represents a form of ‘phenotypic’ 
community analysis relevant on FCM fluorescence data. In this analysis, 
the FCM data is subjected to transformation, discretisation and is 
concatenated into a single-dimensional vector which is used as basis for 
subsequent characterisation. Additional statistical measures, such as 
Bray-Curtis analysis, and the construction of non-metric multidimen-
sional scaling (nMDS) plots and clustering analysis, were performed 
using R (2022−02−3). To better characterise contributing factors 
influencing variability in microbial populations, the operational events 
noted onsite by WTW staff and metadata including key operational 
variables such as free, chlorine, temperature, pH etc. were linked to 
specific measurements. During fluorescence fingerprinting analysis, 

different evaluation parameters were utilized. Stress measurements 
evaluated how well the nMDS plot preserves the original dissimilarity 
structure of the data and improves interpretation by visualising the data. 
The Within-Cluster Sum of Squares (WSS) was employed to evaluate 
cluster compactness, while the Between-Cluster Sum of Squares (BSS) 
examined the dissimilarity between clusters. The Silhouette measure 
was used for two distinct assessments: it evaluated how well each data 
point fit into its assigned cluster and quantified the distinctiveness be-
tween clusters. As above, p-value set at significance of α = 0.05 was used 
to determine the statistical significance of these observations. 

2.6. Data analysis 

Statistical evaluations of the resulting datasets, each corresponding 
to a gating method, entailed a series of tests and parameters. Given the 
non-normal distribution and potential variation in dataset sizes, median 
values, and Standard Deviation (SD) was utilized to capture central 
tendencies and variations. The Coefficient of Quartile Variation (CQV) 
was employed to provide insight into the relative variability related to 
the median. The CQV is a measure of relative variability based on the 
interquartile range (IQR). The IQR, which is the difference between the 
third quartile (Q3) and the first quartile (Q1), represents the range 
within which the central 50 % of the data values lie. Box and whisker 
plots were used to visualize data distribution, showing medians, quar-
tiles, and outliers. To compare the dynamic gated and static gated 
datasets, the Mann-Whitney U test (U test) and the Brown-Forsythe test 
(F-test) were applied. The U test, a non-parametric method, compares 
medians of two groups, checking for significant differences in central 
tendency. It assumes independent observations and similar distribution 
shapes, which were met. The Brown-Forsythe test assesses variances 
between groups, determining if data spread is comparable. This robust 
test also requires independent observations and homogeneity of vari-
ances across similar-sized groups, conditions that were fulfilled. These 
methods were chosen for their suitability in analysing non-normally 
distributed data and their comprehensive evaluation of both central 
tendencies and variabilities in the datasets from different gating stra-
tegies. Statistical associations between cell count, fluorescence finger-
printing, and microbial/chemical indicators were assessed using 
Spearman's rank correlation coefficient. The variables were ranked, 
observed a consistent monotonic relationship, and were independent, 
thus meeting assumptions for this test. These statistical evaluations and 
calculations were conducted using Python (v3.11) and its libraries, 
specifically Numpy, Pandas, and Scipy. 

3. Results and discussion 

3.1. WTW and DWDS monitoring using FCM 

The WTW sample points are presented in Fig. 1-1 and the cell counts, 
determined using a dynamic gating method, are shown in Fig. 1-2. From 
the raw to tap water, cell count varies from <LOD to 6.1 × 106 cells/ml. 
Overall, 41 % of samples obtained from the SR outlet, and 23 % of tap 
water samples were either at or below LOD. Both ICC and TCC reduced 
across the WTW treatment processes with the only exception being the 
UV treatment step, the impact of which could not be detected with FCM. 
On average, the raw water showed the highest cell count (3.4 × 106 

cells/ml) with subsequent treatment steps reducing the cell count; post- 
clarifier (1.3 × 106 cells/ml), post-RGF (7.7 × 105 cells/ml), post-GAC 
(1.7 × 105 cells/ml) and final water (666 cells/ml). The cell counts 
then increased progressively through the DWDS as the average SR cell 
count was 937 cells/ml and 1.9 × 104 cells/ml in tap water (Fig. 1-1). 
There was a single drinking water compliance event (operational event) 
during the sampling regime which was a single colony detection (1 CFU 
/100 ml) of Clostridium perfringens detection in the final water. This is 
indicated in Fig. 1-1, at the point of detection the TCC was 27,690 cells/ 
ml and the ICC was 18,400 cells/ml. This was compared to counts of 
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8400 and 840 cells/ml for TCC and ICC respectfully for the samples 
taken the day prior to the operational event representing a 3-fold in-
crease in TCC and a 21 fold increase to ICC suggesting inefficient 
disinfection. Investigation of the FCM data alongside online process 
datasets determined the likely root cause to be a period of interrupted 
ozone dosage. The increase in cell count highlights the impact of up-
stream treatment processes for (i) maintaining efficacious disinfection at 
WTW and (ii) minimising assimilable nutrients which together act to 
maintain water which is complaint to standards. There was no evidence 
indicating any ‘enhanced growth’ or other signs of compromised water 
stability. Specifically, there is no observed delayed increase in microbial 
counts in the SR or tap water. Further work is needed to identify the role 
of pre-ozonation for providing upstream benefits to disinfection. 

In our initial analysis of the data, we employed a dynamic gating 
approach. The results indicated that the WTW was effective in both 
removing and inactivating cells. It is probable that the increased vari-
ability in the cell count is linked to increased water ages in distribution 
(Machell and Boxall, 2014) and variable levels of free chlorine residual 
(Supplementary Fig. 1, Liu et al., 2013). To validate, the CQV statistic 
was calculated on each set of samples, which increased from 42 % for 
final water to 65 and 92 % for SR outlets and tap water samples, 
respectively (Table 1-1) – highlighting the lower biostability indicative 
of regrowth, blending of supplies of different quality or, potentially, 
ingress into the DWDS. The stability in numbers of ICC observed be-
tween final water and SR outlet in most samples was indicative of an 
adequate free chlorine residual (<0.05–1.24 mg/l) supressing the mi-
crobial population through inhibiting regrowth (Supplementary Fig. 1). 
In the absence of a free chlorine residual in most DWDS globally, the 
microbial water quality deteriorates, leading to bacterial instability as 
most conventional WTW are not removing assimilable nutrients to levels 
which inhibit bacterial growth (van der Kooij, 1990; Chen et al., 2001; 
Hammes and Egli, 2005). Contributing factors to regrowth include 
DWDS pipe degradation, external contaminants entering the system (i. 

e., ingress), and the reduction of residual chlorine levels through decay 
and organics reactive to chlorine (Douterelo et al., 2016; Yan et al., 
2022; Wang et al., 2012; Nescerecka et al., 2018). To expand the broader 
significance of this finding, additional sampling in the SR and customer 
taps is recommended, as the findings from this study on limited sample 
size could have some limitations in broader applications. Enhanced 
monitoring at the SR inlet, within the SR, and in the outlet can help 
optimize the microbial quality of stored and subsequently distributed 

Fig. 1-2. Abundance of Intact Cells Across Various Stages of the Water Treatment Workflow. Sampling was carried out at five distinct stages: Raw, Post-Clarifier, 
Rapid Gravity Filter (RGF), Ozone/Granular Activated Carbon (GAC), and Ultraviolet (UV)/Contact Tank. The symbols highlighted in blue represent Flow Cytometry 
(FCM) data gathered concurrently with the detection of faecal indicator organisms (FIOs) in the corresponding samples. The symbol ¶ is included as it represented 
timepoint during detection of faecal indicator in sample. 

Table 1-1 
Cell counts during the 1-year period. SD = standard deviation, CQV = Coeffi-
cient Quartile of Variation.   

DYNAMIC GATE cells/ml 
(unless stated) 

STATIC GATE cells/ml 
(unless stated) 

Raw water 
Median = 170,257 
SD = ± 1.16 × 106 

CQV = 30 % 

Median = 156,221 
SD = ± 1.19 × 105 

CQV = 24 % 

Post-clarifier 
Median = 67,563 
SD = ± 4.81x104l 

CQV = 24 % 

Median = 64,186 
SD = ± 4.61 × 104 

CQV = 23 % 

Post-RGF 
Median = 33,767 

SD = ± 2.52 × 104 

CQV = 37 % 

Median = 33,930 
SD = ± 2.35 × 104 

CQV = 36 % 

Post-GAC 
Median = 6159 

SD = ± 5.80 × 103 

CQV = 38 % 

Median = 6154 
SD = ± 5.72 × 103 

CQV = 37 % 

Final water 
Median = 22 
SD = ± 52 

CQV = 42 % 

Median = 18 
SD = ± 2.75 × 102 

CQV = 43 % 

Service 
reservoir 

Median = 65 
SD = ± 89 

CQV = 65 % 

Median = 59 
SD = ± 81 

CQV = 68 % 

Tap water 
Median = 165 

SD = ± 2.75 × 103 

CQV = 92 % 

Median = 181 
SD = ± 2.26 × 103 

CQV = 89 %  
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water supplies focusing on this key asset for water quality (Martel et al., 
2002; Doronina et al., 2020). 

3.2. Impact of gating approach on drinking water assessment using FCM 

The ICC was quantified using both dynamic (user defined) and static 
gating approaches. Regardless of whether dynamic or static gating is 
applied, both methods display a similar variability in the ICC values 
across the WTW (Fig. 1-3). Both gating methods provide similar median 
ICC values. At each sample point the median ICC values for all sample 
locations were within 22 % of each other, were statistically different in 
final waters (U test, 477 = 232, p < 0.05, Table 1-2), but statistically 
similar in interstage samples. Therefore, each gating method can be used 
to detect trends in microbial quality in drinking water but further in-
sights into the vagaries of cell count within different treatment processes 
was needed (Liu et al., 2013). The raw water had the greatest range in 
the cell counts from 1.4 × 106–6.1 × 106 and with Q25 and Q75 values 
of 1.4 × 105 for the static and 2.5 × 105 for the dynamic gate (Fig. 1-3). 
As for the minimum and maximum, they were 5.1 × 103 and 6.1 × 106, 
respectively. In contrast, the Q25 and Q75 data were 1.3 × 105 and 2.1 
× 105, and the minimum, maximum cells counts were 4.7 × 103 and 5.3 
× 105. The Q25 was similar between dynamic and static gates. The Q75 
results were generally lower for the static gate compared with the dy-
namic with the raw water results being most effected by gating strategy 
(Fig. 1-3). 

The SD for raw water was 1.2 × 105 cells/ml for static and 1.2 × 106 

cells/ml for dynamic gating (Table 1-1), constituting a statistically sig-
nificant result (F-test, 29,27 = 1.69, p = 0.05, Table 1-2). The SD for 
final water was 2.8 × 102 cells/ml for static and 52 cells/ml for dynamic 
gating (Table 1-1) which is also statistically significant (F-test, 238, 239 
= 0.035, p = 0, Table 1-2). The frequency of statistically extreme ICC 
values (data points beyond 1.5 times the IQR) was greatest using dy-
namic gating applied to raw water, whereas the static gate had greater 
frequency of extreme values in final water. The ICCs determined using 
dynamic gating were 0.1–7 % higher than those determined with static 

gating averaged across all sampling point. Despite the low ICC (gener-
ally <LOD), the distribution of the final treated water data shows similar 
median (18–22 cells/ml) and interquartile values (Q25th = 12–14 cells/ 
ml, Q75th = 30–34) for both dynamic and static gating but with static 
gating showing a higher range of cell counts (462–2882 cells/ml). The 
SR and tap water had similar data distribution for both gating methods 
(Fig. 1-3). This finding shows the practical value of gate adjustment for 
precise and accurate quantification of bacterial cells in drinking water 
source waters, sub-potable, and treated supplies. The difference between 
gating strategies was most apparent in raw water due to its high degree 
of variability in this case i.e., fluvial surface waters without a substantial 
reservoir buffer. In addition, the divergence of cell count enumeration 
between different gating strategies in treated water occurred primarily 
due to differences between samples near or below derived methodo-
logical LOQ and those with higher regrowth potential. 

To demonstrate differences in gating strategies on the ICCs observed, 
the datasets were compared using a ratio metric: the ICC of the static 
gate to the ICC of the dynamic gate (Figs. 1-4). A gating ratio of 1 means 
there was no difference between the two strategies. A ratio nearing 
0 indicates a higher count using the dynamic gate. Conversely, a ratio 
above 1 suggests a higher cell count in the static gate. The ICC values for 
raw water, treated water at various stages (post-clarifier, post-RGF, post- 
GAC), and service reservoir were closely aligned, as shown by a ratio 
range of 0.76 to 1.23. An exception was observed for post-RGF samples, 
which had a significantly lower ratio of 0.26 (Fig. 1-4). In contrast, the 
final water, SR and tap water samples displayed wider ratio ranges of 
0.09 to 6.83. 0.05–1.85, and 0.08 to 1.75, respectively, suggesting 
greater discrepancies between the two gating methods in the treated and 
distributed water samples. To delve deeper into this observation, fin-
gerprints were compared from each population of FCM data – to assess 
which aspects of the fingerprint contributed to differences observed. 
Fig. 1-5 provides scatter plots for samples from each treatment stage 
where green markers indicate samples where the ICC, as determined by 
static gating, was either half (with a ratio of 0.5 or less) or twice (with a 
ratio of 2 or more) that of the count determined by dynamic gating. 

Fig. 1-3. Box-and-whisker plots display visualize key patterns and differences in FCM ICC data distribution, spanning stages from source to tap during the water 
treatment process. The treatment involves chlorination using free chlorine, maintaining residual chlorine in the distribution phase. Key components represented in 
the plot include the minimum, first quartile, median, mean (x), third quartile, maximum, interquartile range, whiskers, and extreme values (◯). Disinfected water is 
demarcated as a cutout. Values below the equipment's Limit of Quantification (LOQ) are included for reference, while those below the Limit of Detection (LOD) have 
been omitted for clarity. Samples exceeding 40,000 events per second were diluted prior to analysis on FCM. The dynamic gate is presented via a contiguous line and 
static gating is presented via a dashed line. The sample size for dynamic gate (ND) and static gate (NS). 
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Table 1-2 
Comparative Analysis of Intact Cell Count (ICC) Measurements from different points of Water Treatment Works (WTW) process using Fixed-Gate and Adjusted-Gate 
Strategies. The mean, median, and variability for both strategies were statistically analyzed using the t-test, Mann-Whitney U test, and F-test respectively. The count of 
samples included in each comparison is denoted in parentheses. The variable ‘p’ signifies the statistical significance of the observation; a value of p < 0.05 indicates a 
statistically significant observation. All significant observations are emphasized through bold text and underline.   

STATIC GATE 

Raw water Post-Clarifier Post-RGF Post-GAC Final water Service reservoir Tap water 

DYNAMIC 
GATE 

Raw water 

U(56) = 0.903, p 
= 0.367       

F(29, 27) ¼
95.54, p < 0.05 

Post- 
Clarifier  

U(55) = 0.367, 
p = 0.714      

F(27, 28) =
1.09, p = 0.41 

Post-RGF  

U(56) = −0.0311, 
p = 0.975     

F(27, 29) = 1.15, 
p = 0.36 

Post-GAC  

U(54) = 0.164, 
p = 0.870    

F(27, 27) =
1.03, p = 0.47 

Final water  

U(477) ¼ 2.32, p 
< 0.05   

F(238, 239) ¼
0.035, p < 0.001 

Service 
reservoir  

U(60) = 0.190, 
p = 0.849  

F(30,30) = 1.21, 
p = 0.31 

Tap water  

U(202) = 0.0920, 
p = 0.927 

F(113, 89) ¼
1.48, p < 0.05  

Fig. 1-4. Comparative Analysis of Flow Cytometry (FCM) Intact Cell Count (ICC) values between static and dynamic gating strategies. The data are presented as the 
ratio of values achieved using static gating to those obtained through dynamic gating. The red line serves as an indicator, illustrating the point at which the values 
from both gating strategies converge, signifying identical results. 
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These thresholds were selected to identify which fingerprint elements 
contributed to the differences in cell counts derived from each gating 
method deployed. In the post-RGF, final, and tap water samples, the 
prevalence of green markers often spans the entire gate. In certain in-
stances, some events even venture outside the gate, implying a challenge 
to this method in distinguishing between cells and background debris 
(Fig. 1-5). For such samples, it is thus recommended to employ dynamic 
gating especially as these samples represent water which is intended for 
human consumption as thus justify analysis and interpretation costs to 
utilities. While limited research specifically focuses on gating of mi-
crobial cells in drinking water, investigations in other contexts have 
explored the nuances of gating. For example, Suni et al. (2014) found no 
significant difference between automated and manual gating when 
analysing cytokine FCM data due to relative homogeneity of this sample 
type. The variability in final water observed in this study arises from the 
dynamic cytometric background caused by chlorination, compounded 
by the difficulty in differentiating low fluorescence cell counts (i.e., 
LNA) from this background (see Fig. 1-5). This variability is partly due to 
a decrease in fluorescence resulting from oxidative stress (Wert et al., 
2013), but could be a consequence of the inherently binary nature of 
gating—where a cell is either classified within a gate or outside and thus 
is inflexible to adapt to inherently dynamic nature of microbial pop-
ulations in aquatic environments such as drinking water. This also 
further complicates the setting of arbitrary cell thresholds for assessing 
microbial water quality. 

Variability in tap water, as illustrated in Fig. 1-5, is influenced by 
events in the DWDS such as ingress (Fox et al., 2016) or regrowth, which 
can modify microbial populations (i.e., abundance) and distribution (i. 

e., assembly). Based on the findings by Staats et al. (2019), it has been 
recommended that manual dynamic gating should be deployed where 
practical with the gate set above the cell “halo” at the boundary of the 
negative population. This counters increased background, potentially 
specific to the sample, ensuring better detection of subtle responses. To 
translate the implications of these findings to drinking water where cell 
populations are more heterogenous, it is suggested to use static gates 
where drinking water is stable such as final waters from a WTW. In 
contrast, dynamic gating is essential for monitoring unstable raw water 
and possibly during DWDS which is often subjected to mixed supplies, 
ingress and regrowth. For final water analysis, employing static gating 
helps minimise user subjectivity, a factor of particular importance when 
cells counts are used in a diagnostic capacity for setting water quality 
triggers or baselines for operational assessment. However, within these 
generalisations, disparities did exist between the gating approaches 
(Fig. 1-3, Table 1-3). When analysing samples with low cell counts in 
flow cytometry, the differentiation between actual cells and background 
noise or artifacts becomes challenging. The decision between using 
dynamic gating versus static gating is crucial in these circumstances. 
Dynamic gating allows for adaptability and fine-tuning based on the 
specific characteristics of each sample. This can be particularly benefi-
cial when cell populations are sparse, as it enables a more accurate 
distinction between target cells and potential interference. On the other 
hand, static gating, with its fixed parameters, may not capture these 
nuances as effectively, potentially leading to missed cells or inclusion of 
unwanted signals. As such, during periods of low cell counts, the choice 
of gating strategy can significantly impact the accuracy and reliability of 
the analysis. However, unpredictable events, such as the alteration in 

Fig. 1-5. Overlapping of the one-year FCM scatter graphs obtained for each stage of the WTW. The X-axis represents the Green fluorescence induced by staining cells 
with SYBR Green while the Y-axis represents the Red fluorescence induced by using Propidium iodide stain. The red polygon is a gate used for selecting the cell 
population. The green scatter plot indicate that the cell count determined using a static gate is half or double the one gotten using a dynamic gate. Details of the 
overlapped scatter plot are provide for Final water and Tap water in order to visualize the dynamic background. 

L. Claveau et al.                                                                                                                                                                                                                                 



Science of the Total Environment 912 (2024) 169138

9

microbial patterns seen Post-RGF on 10th May 2019 (Fig. 1-5), call for 
adaptive gating strategies. Operational events such as RGF / GAC 
backwash or return to service (Vital et al., 2012), pump duty standby 
(Besmer et al., 2016) or membrane cleaning (Pluym et al., 2023) 
contribute reproducible differences in microbial populations but are 
unlikely to cause the significant shifts in abundance and distribution 
observed at this WTW. Nomura et al. (2008), emphasized that static 
gating aids in maintaining consistency of analysis in pre-stained 
lyophilised human cells. Instrument setup, something not considered 
here, was noted as being the major source of variability in FCM data 
generation and its subsequent interpretation. The authors tested a 
common template with dynamic “snap-to” gates which resulted in least 
variability between laboratories. Even without use of these dynamic 
gates, consistent results were obtained using a fixed template checked by 
an expert operator / analyst reinforcing this work on drinking water 
bacteria. The necessity and frequency of review and adjustment are 
contingent upon the specific water under study. In this research, the 

credibility of an emerging method that has been garnering considerable 
attention: a gate-free approach to FCM. To investigate this, considering 
analyses both with and without background, aiming to offer more 
consistent, unbiased results and circumvent the limitations of traditional 
gating methods. 

3.3. Assessing the ICC value using cell count and fluorescence 
fingerprinting of cells 

The ‘no-gate’ methodology has rarely been applied within the 
drinking water literature as most studies opt to eliminate background 
interference through gating before initiating fluorescent fingerprinting. 
In contrast, this work aimed to ascertain the benefits of traditional gated 
and ‘no-gate’ strategies using fingerprinting, examining data from 
various stages of the WTW. Yet, our fluorescence fingerprinting analysis 
is in broad agreement with Chan et al. (2018) and Cheswick et al. 
(2019): that is -relying solely on cell count is an inadequate metric for 

Table 1-3 
Overview of the cluster content from Fig. 2 for the “fixed-gate” and “no-gate” strategy. The percentage represents the portion of samples within a sample group (e.g., 
Raw water, Post-clarifier, etc.) present in the corresponding cluster. The similarity of the samples within a group, the dissimilarity of the samples between groups, and 
the compactness of a cluster are respectively represented by the silhouette score, the between-cluster sum of squares (BSS), and the within-cluster sum of squares 
(WSS).   

STATIC GATE  NO GATE  

Cluster no 1 Cluster no 2 Cluster no 3 Cluster no 4 Cluster no 5 Cluster no 1 Cluster no 2 Cluster no 3 

%Raw water 90 – 10 – – 100 – – 
%Post-Clarifier – – – 90 10 90 – 10 

%Post-RGF 20 – 10 70 – 100 – – 
%Post-GAC – – 90 10 – 90 10 – 

%Final water – 100 – – – – 45 55 
%Service reservoir – 100 – – – – 20 80 

%Tap water – 96 – – 4 – 35 65 
Silhouette score 0.554 0.959 0.228 0.4589 0.531 0.651 0.422 0.503 

WSS 0.014 0.062 0.121 0.0376 0.0498 0.554 0.563 0.743 
BSS 5.679 6.805  

Fig. 1-6. A. Non-metric Multidimensional Scaling (NMDS) ordination plots from Cytometric Histogram Image Comparison (CHIC) analysis used to produce microbial 
phenotypic fingerprints, using ‘fixed-gate’ (Panel A) and ‘no-gate’ (Panel B) strategies. Utilizing K-means clustering and the gap statistic, optimal clustering was 
determined, grouping water samples into different clusters based on their similarities. The detailed composition of these clusters can be found in Table 1-3. Cor-
relation vectors are depicted, illustrating linear relationships between cytometric patterns of water samples and plate count data (heterotrophs, coliforms, and E. coli). 
Please note that the Clostridia vector was omitted from this analysis due to a single detection event >0 CFU / 100 ml. This detection event is signified by a (¶), symbol 
adjacent to the corresponding sample. 
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assessing microbial water quality. Essentially, similar cell counts in 
water samples may present different fluorescence fingerprinting char-
acteristics enabling more insights into the processes governing (micro-
bial) water quality. NMDS was used to display differences between 
distributions of cells. 

Fig. 1-6A shows the dissimilarity between the samples of each 
treatment step of the WTW based on their microbial fluorescence 
fingerprinting using a gated approach. In contrast, Fig. 1-6B displays the 
same information, when background was included in the fluorescent 
fingerprinting analysis. The hypothesis was that greater differentiation 
between samples can be generated through analysis of all particles in the 
fingerprint (including bacteria and background). The differentiation of 
the samples coming from the different stages of the WTW (Fig. 1-6) was 
similar for both gating strategies although the location of samples within 
the NMDS was different. Clean water and raw and treated water were 
differentiated on the NMDS1 axis for both strategies suggesting that they 
are equivalent in monitoring changes in cell fluorescence fingerprinting. 
When using the static gate strategy clean water samples were more 
compacted and closer to the centroid of the cluster (silhouette = 0.96, 
WSS = 0.062) compared to the no-gate strategy (0.42 < silhouette 
<0.50, 0.56 < WSS < 0.74) as if the inclusion of the FCM background 
brought additional insight into the cell population. It was noticed that 
the factor driving the difference within the clean water samples was 
mainly the sample composition in HNA and LNA bacteria suggesting 
that the background gives additional insight into the size/fluorescence/ 
activity of the microbial population of clean water samples. Le Meur 
et al. (2007) demonstrated that ungated FCM data reveal substantial 
nonbiological differences in samples. Pertinent, as this expands FCM's 
utility as an insightful method for assessing the quality and safety of 
other aspects of drinking water (e.g, particle penetration). Typically, its 
primary application is to quantify microbial cell counts, but there's an 
intriguing aspect that sometimes gets overlooked: the potential value of 
non-biological content in drinking waters when analyzed with FCM. 
When we discuss non-biological content, we are referring to abiotic 
particles and substances present in the water that aren't biologically 
active. These could be minerals, salts, metals, debris or other inorganic 
or organic materials. In FCM, these elements can produce commonly 
termed as inorganic “background signals”. Under standard conditions, 
these signals might be dismissed as mere noise or interference, but under 
specific circumstances, they can provide invaluable insights. One such 
circumstance is during situations characterized by a high background, 
like backwash water events or sloughing from GAC filters (Hess et al., 
2021). In these scenarios, the elevated background can actually be a 
significant indicator of water quality. The increased non-biological 
content might signal at operational issues or changes within the treat-
ment processes. Another scenario of interest is during periods of ultra- 
low cell counts, specifically when these counts fall below the LOD. In 
such instances, where microbial cells are sparse or potentially 

undetectable, the background signals offer new insights. Any deviation 
or change in this background might indirectly indicate shifts which 
could signal a broader problem like changes to microbial communities, 
altered growth conditions or even particle associated viruses. For 
instance, changes in parameters like pH, turbidity, or nutrient concen-
trations can provide clues about the underlying biological activity. Thus 
it is essential to view these background signals not as mere static or noise 
but as potential early warning indicators. Monitoring for sudden shifts or 
anomalies in these non-biological parameters can pre-emptively high-
light potential challenges or changes in water quality. In essence, while 
the primary focus of FCM in water treatment is understandably on 
biological content, there's a compelling case to be made for the relevance 
and utility of non-biological content in certain scenarios. 

To discern populations of FCM events that share similar distribu-
tions, a k-means clustering approach was employed. The rationale for 
adopting clustering, particularly the k-means method, is rooted in its 
ability to group data points based on inherent patterns and similarities. 
In the context of flow cytometry data, clustering can simplify the com-
plex array of detected events by grouping them into distinct categories 
or clusters, each representing a specific microbial distribution or 
pattern. By doing so, this method facilitates a more structured and 
interpretable visualization of the microbial landscape present in the 
water samples. This structuring becomes evident when examining the 
fluorescence fingerprinting of clean water, including various stages like 
final water, SR outlet, post-clarifier, post-RGF, post-GAC, and raw water 
samples. A distinct difference in their microbial patterns is observable, 
which is corroborated by the formation of five clusters in Fig. 1-6A and 
three clusters in Fig. 1-6B. Such clear delineations underline the effec-
tiveness of the clustering approach in providing a comprehensive 
overview of microbial diversities and similarities across different water 
samples. In the no-gate approach, Cluster 1 represented raw and treated 
(post-clarifier, post-RGF, post-GAC) water samples with >90 % of these 
samples being co-located. Whereas Clusters 2 and 3 represent clean 
water samples. The distribution was more variable with (10–45 %) of 
these samples being located in Cluster 2 and 10–80 % of samples being 
located in Cluster 3 (Table 1-3. Cluster 2 was primarily derived from 
final water and Cluster 3 from DWDS and tap water (Fig. 1-6). The 
separation based on the fluorescence fingerprinting was similar to that 
found using cell counts (Fig. 1-2) which shows a clear separation be-
tween the clean water samples (final water, and service reservoir outlet) 
and the treated and raw water samples. Regarding tap water samples, 
their cell abundance shows that they were dispersed and sometimes 
close to the cell abundance of Post-GAC water 9 (Fig. 1-2) suggesting 
that tap water microbial quality declines. Fingerprinting analysis (Fig. 1- 
6B) shows that the microbial pattern of tap water is as close as final 
water and SR outlet when cell alone are included, but background 
provides additional bandwidth to quantify differences apparent to water 
quality. The sample which also featured a final water Faecal Indicator 

Table 1-4 
Overview of the Pearson correlation (r) value for each vector shown in Fig. 2 for the “fixed-gate” and “no-gate” strategies. The Pearson correlation (r) value for chlorine 
residual and chlorine contact time vectors are part of other NMDS plots. The plots are not shown because they could not be included in Fig. 2 due to their value being 
only relevant for clean water samples. The p-value represents the significance of the observation. The stress indicates how well the reduced-dimensional space from the 
NDMS plot fits the original data.   

STATIC GATE  NO GATE  

r p-value stress r p-value stress 

Coliforms 0.502 <0.001 

0.047 

0.438 0.001 

0.133 

E. coli 0.228 <0.001 0.186 0.001 
ICC 0.588 <0.001 0.527 0.001 
TCC 0.592 <0.001 0.528 0.001 
TVC 0.262 <0.001 0.245 0.001 
HNA 0.001 0.927 0.074 0.002 
LNA 0.001 0.926 0.074 0.002 

Chlorine residual 0.07 0.001 0.01 0.022 0.247 0.16 
Chlorine contact time 0.037 0.258 9.029 e-05 0.018 0.514 0.123  
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Organism (FIO) detection was on the edge of Cluster 3 (Fig. 1-6B) and 
provides promise that FCM could be applied in future to signal changes 
associated with poor water quality, additional datasets or pilot studies 
would be need to confirm these observations. 

Associations cells count and cell pattern with microbial indicators. 
Fig. 1-6B shows that the correlated vectors of the microbial in-

dicators (coliforms, E. coli, TVC, ICC, and TCC) point in the direction of 
the cluster comprised of raw and treated water samples and the vector 
length indicates a strong correlation. This observation suggests that the 
FCM clusters can distinguish between water types and this associates to 
the presence of microbial indicators (coliforms, r = 0.5, p < 0.001), and 
cell counts including ICC (r = 0.59, p < 0.001), and TCC (r = 0.51 p <
0.001) (Table 1-4). During the microbial water quality (Fig. 1-2; Fig. 1- 
6B), cell count was at its highest during this year (ICC > 10,000 cells/ml) 
and the fingerprint distributed at the extremity of the Cluster 3. This 
shows the effectiveness of the fingerprinting analysis associated with the 
no-gate strategy to assess water quality. Le Meur et al. (2007) work 
demonstrated that ungated FCM data can be used to create a systematic 
and efficient method of data quality assessment. It also raises the pros-
pect of using dynamic models e.g., Sadler et al. (2020) and AI 
augmented approaches as outlined within on both bacteria and the 
background populations. In the literature, HNA and LNA are seen as 
sensitive to chlorination (Ramseier et al., 2011); therefore, we verified 
their correlation with chlorine residual and chlorine contact time. The 
correlation between the fluorescence fingerprinting of the clean water 
samples and the chlorine residual (p > 0.05) and contact time (p > 0.05) 
shows that they are not the ones driving the differences between clean 
water samples along HNA and LNA. However, other studies mentioned a 
correlation with nutrient availability (Wang et al., 2010); therefore, this 
correlation remains to be verified. 

3.4. Future perspectives for the use of FCM and fingerprinting for 
microbial quality assessment 

Flow cytometry is gaining significance in the realm of bacterial 
counts. However, it is essential to emphasize that FCM should not be 
viewed as a replacement for the measurement of indicator organisms in 
compliance monitoring as there is no direct correlation between the 
total bacterial counts ascertained by FCM and traditional indicator or-
ganisms. Instead, FCM should be embraced as a supplementary tool. Its 
strength lies in its ability to provide insights that are both more sensitive 
compared to culture based methods and closer to real-time when 
compared to conventional culture-based methods. Furthermore, while 
considering bacterial culture tests, it is pertinent to note that the ma-
jority of bacteria cultured during these tests are non-pathogenic. As a 
result, they do not pose a significant public health risk, especially for 
healthy individuals. In the context of drinking water safety, indicator 
organisms, which suggest potential faecal contamination, play a pivotal 
role. Fortunately, in water that has been treated appropriately, the 
presence of these organisms is a rarity and within health based targets 
outlined by the WHO. 

When investigating deeper into the capabilities of FCM, it becomes 
evident that the method offers a holistic and reproducible measurement 
of the microbial community including non-culturable organisms. Such 
comprehensive insights make FCM superior to the use of surrogate or-
ganisms like E. coli, known for their high susceptibility to multiple 
stressors in WTW and DWDS. In addition, it is efficient and ideal for 
routine measurements, acting as a way of directing more advanced 
techniques focused on species and strain identification such as Matrix- 
Assisted Laser Desorption/Ionization - Time Of Flight Mass Spectros-
copy, DNA sequencing or qPCR. Furthermore, when direct microbial 
monitoring is combined with modeling, it can effectively demonstrate 
the efficacy of innovative WTW and DWDS designs. However, it's worth 
noting that numerical modeling of WTW and DWDS remains a signifi-
cant challenge, primarily due to the multifaceted complexities inherent 
in real-world systems and operation of these assets. In the pursuit of 

process optimization and investigations, FCM stands out as an invalu-
able tool. The emerging trend of online FCM suggests a future where it 
could be employed for real-time disinfection monitoring leveraging new 
forms of machine learning to optimize gating to be more dynamic to 
changing water quality. Additionally, the advent of no-gate FCM 
fingerprinting has broadened the horizons, offering more avenues 
through which FCM can be applied. Lastly, the integration of artificial 
intelligence and machine learning tools marks a transformative phase in 
this domain. Such innovations are set to revolutionize the landscape by 
empowering automated microbial water quality event detection. 

4. Conclusions 

This study underscored the equivalent efficacy of the static and dy-
namic gating approaches in determining the ICC value and their asso-
ciation with microbial indicators. Both gating strategies demonstrate 
value depending on specific circumstances. Static gating showed effec-
tiveness in monitoring low-cell-count water, while dynamic gating was 
ideal for analysing microbiologically unstable water. In instances of 
unexpected events, a periodically adjusted static gate was recommended 
to ensure consistency. However, the determination of ICC value alone 
was insufficient to holistically interpret water quality. Despite cell count 
and fluorescence fingerprinting yielding similar categorizations for raw, 
treated, and clean water, the study emphasized the distinct value of 
fluorescence fingerprinting. This method provided additional insights 
into the cellular composition, revealing that two samples with the same 
cell count might not necessarily present similar microbial risk. Attempts 
to correlate ICC from clean waters with microbial indicators underlined 
the challenge of rarely finding contaminated clean water samples, thus 
inhibiting potential correlation. While both cell count and fluorescence 
fingerprinting methods displayed strong correlations with microbial 
indicators, the correlation between cell count and these indicators was 
constrained by the lower limit of quantification of culture-based 
methods. The no-gating strategy introduced an innovative perspective 
into the interpretation of clean water samples by offering additional 
insight into the microbial population in terms of HNA and LNA. While 
this approach didn't significantly impact the interpretation of raw and 
treated water samples, it provided further understanding of the micro-
bial composition in clean water samples. Though it was determined that 
this metric does not reflect the state of chlorine residual and chlorine 
contact time, the study posited it might instead reflect nutrient avail-
ability. In conclusion, this research highlights the importance of 
choosing appropriate methods and strategies for water analysis based on 
specific conditions and requirements. It emphasizes the necessity of 
further studies to confirm correlations and causal relationships. It also 
encourages the exploration of innovative approaches, such as the no- 
gating strategy, to yield richer insights into water quality analysis. 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.scitotenv.2023.169138. 
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total bacterial cell counts as a descriptive microbiological parameter for drinking 
water treatment processes. Water Res. 42 (1–2), 269–277. https://doi.org/10.1016/ 
j.watres.2007.07.009. 

Hassard, F., Whitton, R., 2019. Understanding the Use of Flow Cytometry for Monitoring 
of Drinking Water. Drinking Water Inspectorate. https://www.dwi.gov.uk/research/ 
completed-research/monitoring-microbiological/understanding-the-use-of-flow- 
cytometry-for-monitoring-of-drinking-water/. 

Hess, A., Baum, C., Schiessl, K., Besmer, M.D., Hammes, F., Morgenroth, E., 2021. 
Stagnation leads to short-term fluctuations in the effluent water quality of biofilters: 
a problem for greywater reuse? Water Research X 13, 100120. 

Hoefel, D., Grooby, W.L., Monis, P.T., Andrews, S., Saint, C.P., 2003. Enumeration of 
water-borne bacteria using viability assays and flow cytometry: a comparison to 
culture-based techniques. J. Microbiol. Methods 55 (3), 585–597. https://doi.org/ 
10.1016/S0167-7012(03)00201-X. 

Koch, C., et al., 2013. CHIC-an automated approach for the detection of dynamic 
variations in complex microbial communities. Cytometry A 83 (A(6)), 561–567. 
https://doi.org/10.1002/cyto.a.22286. 

van der Kooij, D., 1990. Assimilable organic carbon (AOC) in drinking water. In: 
Drinking Water Microbiology: Progress and Recent Developments. Springer, 
pp. 57–87. 

Kyritsakas, G., Boxall, J., Speight, V., 2023. Forecasting bacteriological presence in 
treated drinking water using machine learning. Front. Water 5. https://www.front 
iersin.org/articles/10.3389/frwa.2023.1199632. 

Le Meur, N., et al., 2007. Data quality assessment of ungated flow cytometry data in high 
throughput experiments. Cytometry A 71 (6), 393–403. https://doi.org/10.1002/ 
cyto.a.20396. 

Li, C., et al., 2017. Characterization of bacterial community dynamics in a full-scale 
drinking water treatment plant. J. Environ. Sci. (China) 51, 21–30. https://doi.org/ 
10.1016/j.jes.2016.05.042. Elsevier B.V.  

Ling, F., et al., 2018. Drinking water microbiome assembly induced by water stagnation. 
ISME J. 12 (6), 1520–1531. https://doi.org/10.1038/s41396-018-0101-5. Springer 
US.  

Liu, G., Verberk, J.Q.J.C., van Dijk, J.C., 2013. Bacteriology of drinking water 
distribution systems: an integral and multidimensional review. Appl. Microbiol. 
Biotechnol. 97 (21), 9265–9276. https://doi.org/10.1007/s00253-013-5217-y. 

Liu, J., et al., 2017. Geographic distribution pattern of low and high nucleic acid content 
bacteria on a river-catchment scale. Mar. Freshw. Res. 68 (9), 1618–1625. https:// 
doi.org/10.1071/MF16068. 

Machell, J., Boxall, J., 2014. Modeling and field work to investigate the relationship 
between age and quality of tap water. J. Water Resour. Plan. Manag. 140 (9), 
04014020. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000383. 

Maecker, H.T., et al., 2005. Standardization of cytokine flow cytometry assays. BMC 
Immunol. 6, 1–18. https://doi.org/10.1186/1471-2172-6-13. 

Martel, K.D., Kirmeyer, G.J., Murphy, B.M., Noran, P.F., Kirby, L., Lund, T.W., 
Anderson, J.L., Medhurst, R., Caprara, M., 2002. Preventing water quality 
deterioration in finished water storage facilities. J. AWWA 94 (4), 139–148. https:// 
doi.org/10.1002/j.1551-8833.2002.tb09458.x. 

Massicotte, R., et al., 2017. Comparison between flow cytometry and traditional culture 
methods for efficacy assessment of six disinfectant agents against nosocomial 
bacterial species. Front. Microbiol. 8 (FEB), 1–14. https://doi.org/10.3389/ 
fmicb.2017.00112. 

Nescerecka, A., Juhna, T., Hammes, F., 2018. Identifying the underlying causes of 
biological instability in a full-scale drinking water supply system. Water Res. 135, 
11–21. https://doi.org/10.1016/j.watres.2018.02.006. 

Nocker, A., Caspers, M., Esveld-Amanatidou, A., van der Vossen, J., Schuren, F., 
Montijn, R., Kort, R., 2011. Multiparameter viability assay for stress profiling applied 
to the food pathogen listeria monocytogenes F2365. Appl. Environ. Microbiol. 77 
(18), 6433–6440. https://doi.org/10.1128/AEM.00142-11. 

Nomura, L., Maino, V.C., Maecker, H.T., 2008. Standardization and optimization of 
multiparameter intracellular cytokine staining. Cytometry A 73 (11), 984–991. 
https://doi.org/10.1002/cyto.a.20602. 

Phe, M.H., et al., 2005. Nucleic acid fluorochromes and flow cytometry prove useful in 
assessing the effect of chlorination on drinking water bacteria. Water Res. 39 (15), 
3618–3628. https://doi.org/10.1016/j.watres.2005.06.002. 

Pluym, T., García-Timermans, C., Vervloet, S., Cornelissen, R., Boon, N., de Gusseme, B., 
2023. Flow cytometry for on-line microbial regrowth monitoring in a membrane 
filtration plant: pilot-scale case study for wastewater reuse. Environ. Sci.: Water Res. 
Technol. 9 (8), 2128–2139. 

Prest, E.I., et al., 2013. Monitoring microbiological changes in drinking water systems 
using a fast and reproducible flow cytometric method. Water Res. 47 (19), 
7131–7142. https://doi.org/10.1016/j.watres.2013.07.051. 

Prest, E.I., et al., 2016. Long-term bacterial dynamics in a full-scale drinking water 
distribution system. PloS One 11 (10), 1–20. https://doi.org/10.1371/journal. 
pone.0164445. 

Ramseier, M.K., von Gunten, U., Freihofer, P., Hammes, F., 2011. Kinetics of membrane 
damage to high (HNA) and low (LNA) nucleic acid bacterial clusters in drinking 

L. Claveau et al.                                                                                                                                                                                                                                 

https://doi.org/10.17862/cranfield.rd.23735649
http://refhub.elsevier.com/S0048-9697(23)07768-9/rf0005
http://refhub.elsevier.com/S0048-9697(23)07768-9/rf0005
https://doi.org/10.1155/2009/584603
https://doi.org/10.3389/fmicb.2014.00265
https://doi.org/10.1038/srep38462
https://doi.org/10.1038/srep38462
https://doi.org/10.3389/fmicb.2017.01900
https://doi.org/10.1016/j.mimet.2019.03.022
https://doi.org/10.3389/fmicb.2018.02557
https://doi.org/10.3389/fmicb.2018.02557
https://doi.org/10.1002/cyto.a.23302
https://doi.org/10.1016/j.watres.2018.03.032
https://doi.org/10.1016/j.envint.2019.06.003
http://refhub.elsevier.com/S0048-9697(23)07768-9/rf0055
http://refhub.elsevier.com/S0048-9697(23)07768-9/rf0055
http://refhub.elsevier.com/S0048-9697(23)07768-9/rf0055
http://refhub.elsevier.com/S0048-9697(23)07768-9/rf2405
http://refhub.elsevier.com/S0048-9697(23)07768-9/rf2405
http://refhub.elsevier.com/S0048-9697(23)07768-9/rf2405
http://refhub.elsevier.com/S0048-9697(23)07768-9/rf0060
https://doi.org/10.1016/j.watres.2019.115243
https://doi.org/10.1080/1573062X.2020.1787471
https://doi.org/10.1080/1573062X.2020.1787471
https://doi.org/10.1128/AEM.00109-16
https://doi.org/10.1038/s41545-020-0065-7
https://doi.org/10.1038/s41545-020-0065-7
https://doi.org/10.1016/j.watres.2019.115353
http://refhub.elsevier.com/S0048-9697(23)07768-9/rf0090
http://refhub.elsevier.com/S0048-9697(23)07768-9/rf0090
http://refhub.elsevier.com/S0048-9697(23)07768-9/rf0090
https://doi.org/10.1016/j.jenvman.2021.112151
http://refhub.elsevier.com/S0048-9697(23)07768-9/rf0100
http://refhub.elsevier.com/S0048-9697(23)07768-9/rf0100
https://doi.org/10.1016/j.watres.2014.07.029
https://doi.org/10.1021/es048277c
https://doi.org/10.1016/j.watres.2007.07.009
https://doi.org/10.1016/j.watres.2007.07.009
https://www.dwi.gov.uk/research/completed-research/monitoring-microbiological/understanding-the-use-of-flow-cytometry-for-monitoring-of-drinking-water/
https://www.dwi.gov.uk/research/completed-research/monitoring-microbiological/understanding-the-use-of-flow-cytometry-for-monitoring-of-drinking-water/
https://www.dwi.gov.uk/research/completed-research/monitoring-microbiological/understanding-the-use-of-flow-cytometry-for-monitoring-of-drinking-water/
http://refhub.elsevier.com/S0048-9697(23)07768-9/rf0125
http://refhub.elsevier.com/S0048-9697(23)07768-9/rf0125
http://refhub.elsevier.com/S0048-9697(23)07768-9/rf0125
https://doi.org/10.1016/S0167-7012(03)00201-X
https://doi.org/10.1016/S0167-7012(03)00201-X
https://doi.org/10.1002/cyto.a.22286
http://refhub.elsevier.com/S0048-9697(23)07768-9/rf0140
http://refhub.elsevier.com/S0048-9697(23)07768-9/rf0140
http://refhub.elsevier.com/S0048-9697(23)07768-9/rf0140
https://doi.org/10.3389/frwa.2023.1199632
https://doi.org/10.3389/frwa.2023.1199632
https://doi.org/10.1002/cyto.a.20396
https://doi.org/10.1002/cyto.a.20396
https://doi.org/10.1016/j.jes.2016.05.042
https://doi.org/10.1016/j.jes.2016.05.042
https://doi.org/10.1038/s41396-018-0101-5
https://doi.org/10.1007/s00253-013-5217-y
https://doi.org/10.1071/MF16068
https://doi.org/10.1071/MF16068
https://doi.org/10.1061/(ASCE)WR.1943-5452.0000383
https://doi.org/10.1186/1471-2172-6-13
https://doi.org/10.1002/j.1551-8833.2002.tb09458.x
https://doi.org/10.1002/j.1551-8833.2002.tb09458.x
https://doi.org/10.3389/fmicb.2017.00112
https://doi.org/10.3389/fmicb.2017.00112
https://doi.org/10.1016/j.watres.2018.02.006
https://doi.org/10.1128/AEM.00142-11
https://doi.org/10.1002/cyto.a.20602
https://doi.org/10.1016/j.watres.2005.06.002
http://refhub.elsevier.com/S0048-9697(23)07768-9/rf0215
http://refhub.elsevier.com/S0048-9697(23)07768-9/rf0215
http://refhub.elsevier.com/S0048-9697(23)07768-9/rf0215
http://refhub.elsevier.com/S0048-9697(23)07768-9/rf0215
https://doi.org/10.1016/j.watres.2013.07.051
https://doi.org/10.1371/journal.pone.0164445
https://doi.org/10.1371/journal.pone.0164445
http://refhub.elsevier.com/S0048-9697(23)07768-9/rf2400
http://refhub.elsevier.com/S0048-9697(23)07768-9/rf2400


Science of the Total Environment 912 (2024) 169138

13

water by ozone, chlorine, chlorine dioxide, monochloramine, ferrate (VI), and 
permanganate. Water Res. 45 (3), 1490–1500. 

Sadler, M.C., Senouillet, J., Kuenzi, S., Grasso, L., Watson, D.C., 2020. Computational 
surveillance of microbial water quality with online flow cytometry. Front. Water 2 
(November), 1–12. https://doi.org/10.3389/frwa.2020.586969. 

Safford, H.R., Bischel, H.N., 2019. Flow cytometry applications in water treatment, 
distribution, and reuse: a review. Water Res. 151, 110–133. 

Sartory, D.P., 2004. Heterotrophic plate count monitoring of treated drinking water in 
the UK: a useful operational tool. Int. J. Food Microbiol. 92 (3), 297–306. https:// 
doi.org/10.1016/j.ijfoodmicro.2003.08.006. 

Schleich, C., et al., 2019. Mapping dynamics of bacterial communities in a full-scale 
drinking water distribution system using flow cytometry. Water (Switzerland) 11 
(10), 1–14. https://doi.org/10.3390/w11102137. 

Standing Committee of Analysts, 2010. The Microbiology of Drinking Water (2010) - Part 
2 – Practices and procedures for sampling Methods for the Examination of Waters 
and Associated Materials. Methods for the Examination of Waters and Associated 
Materials, Bristol. Available at: https://www.gov.uk/government/uploads/system 
/uploads/attachment_data/file/316769/MoDW-2-232.pdf.  

Staats, J., et al., 2019. Guidelines for gating flow cytometry data for immunological 
assays. Methods Mol. Biol. 2032 (September 2019), 81–104. https://doi.org/ 
10.1007/978-1-4939-9650-6_5. 

Suni, M.A., et al., 2014. Performance of plate-based cytokine flow cytometry with 
automated data analysis. Wiley Interdisciplinary Reviews: Computational Statistics 6 
(5), 359–366. https://doi.org/10.1002/wics.1318. 

Van Nevel, Sam, et al., 2017a. Flow cytometry for immediate follow-up of drinking water 
networks after maintenance. Water Research 111, 66–73. https://doi.org/10.1016/j. 
watres.2016.12.040. Elsevier Ltd.  

Van Nevel, S., et al., 2017b. Flow cytometric bacterial cell counts challenge conventional 
heterotrophic plate counts for routine microbiological drinking water monitoring. 
Water Research 113, 191–206. https://doi.org/10.1016/j.watres.2017.01.065. 
Elsevier Ltd.  

Van Wambeke, F., et al., 2011. Vertical and longitudinal gradients in HNA-LNA cell 
abundances and cytometric characteristics in the Mediterranean Sea. Biogeosciences 
8 (7), 1853–1863. https://doi.org/10.5194/bg-8-1853-2011. 

Verschoor, C.P., Lelic, A., Bramson, J.L., Bowdish, D.M.E., 2015. An introduction to 
automated flow cytometry gating tools and their implementation. Front. Immunol. 6, 
380. 

Vital, M., et al., 2010. Evaluating the growth potential of pathogenic bacteria in water. 
Appl. Environ. Microbiol. 76 (19), 6477–6484. https://doi.org/10.1128/ 
AEM.00794-10. 

Vital, M., et al., 2012. Flow cytometry and adenosine tri-phosphate analysis: alternative 
possibilities to evaluate major bacteriological changes in drinking water treatment 
and distribution systems. Water Research 46 (15), 4665–4676. https://doi.org/ 
10.1016/j.watres.2012.06.010. Elsevier Ltd.  

Wang, S., Brinkman, R.R., 2019. Data-driven flow cytometry analysis. Methods Mol. Biol. 
1989, 245–265. https://doi.org/10.1007/978-1-4939-9454-0_16. 

Wang, Y., Hammes, F., de Roy, K., Verstraete, W., Boon, N., 2010. Past, present and 
future applications of flow cytometry in aquatic microbiology. Trends Biotechnol. 28 
(8), 416–424. https://doi.org/10.1016/j.tibtech.2010.04.006. 

Wang, H., et al., 2012. Effect of disinfectant, water age, and pipe material on occurrence 
and persistence of legionella, mycobacteria, pseudomonas aeruginosa, and two 
amoebas. Environ. Sci. Tech. 46 (21), 11566–11574. https://doi.org/10.1021/ 
es303212a. 

Wert, E.C., Dong, M.M., Rosario-Ortiz, F.L., 2013. Using digital flow cytometry to assess 
the degradation of three cyanobacteria species after oxidation processes. Water Res. 
47 (11), 3752–3761. 

Whitton, R., et al., 2018. Flow cytometry-based evaluation of the bacterial removal 
efficiency of a Blackwater reuse treatment plant and the microbiological changes in 
the associated non-potable distribution network. Sci. Total Environ. 645, 
1620–1629. https://doi.org/10.1016/j.scitotenv.2018.07.121. 

World Health Organization, 2022. Guidelines for drinking-water quality: incorporating 
the first and second addenda. World Health Organization. 

Yan, X., Lin, T., Wang, X., Zhang, S., Zhou, K., 2022. Effects of pipe materials on the 
characteristic recognition, disinfection byproduct formation, and toxicity risk of pipe 
wall biofilms during chlorination in water supply pipelines. Water Res. 210, 117980 
https://doi.org/10.1016/j.watres.2021.117980. 

L. Claveau et al.                                                                                                                                                                                                                                 

http://refhub.elsevier.com/S0048-9697(23)07768-9/rf2400
http://refhub.elsevier.com/S0048-9697(23)07768-9/rf2400
https://doi.org/10.3389/frwa.2020.586969
http://refhub.elsevier.com/S0048-9697(23)07768-9/rf0235
http://refhub.elsevier.com/S0048-9697(23)07768-9/rf0235
https://doi.org/10.1016/j.ijfoodmicro.2003.08.006
https://doi.org/10.1016/j.ijfoodmicro.2003.08.006
https://doi.org/10.3390/w11102137
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/316769/MoDW-2-232.pdf
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/316769/MoDW-2-232.pdf
https://doi.org/10.1007/978-1-4939-9650-6_5
https://doi.org/10.1007/978-1-4939-9650-6_5
https://doi.org/10.1002/wics.1318
https://doi.org/10.1016/j.watres.2016.12.040
https://doi.org/10.1016/j.watres.2016.12.040
https://doi.org/10.1016/j.watres.2017.01.065
https://doi.org/10.5194/bg-8-1853-2011
http://refhub.elsevier.com/S0048-9697(23)07768-9/rf0280
http://refhub.elsevier.com/S0048-9697(23)07768-9/rf0280
http://refhub.elsevier.com/S0048-9697(23)07768-9/rf0280
https://doi.org/10.1128/AEM.00794-10
https://doi.org/10.1128/AEM.00794-10
https://doi.org/10.1016/j.watres.2012.06.010
https://doi.org/10.1016/j.watres.2012.06.010
https://doi.org/10.1007/978-1-4939-9454-0_16
https://doi.org/10.1016/j.tibtech.2010.04.006
https://doi.org/10.1021/es303212a
https://doi.org/10.1021/es303212a
http://refhub.elsevier.com/S0048-9697(23)07768-9/rf0305
http://refhub.elsevier.com/S0048-9697(23)07768-9/rf0305
http://refhub.elsevier.com/S0048-9697(23)07768-9/rf0305
https://doi.org/10.1016/j.scitotenv.2018.07.121
http://refhub.elsevier.com/S0048-9697(23)07768-9/rf0315
http://refhub.elsevier.com/S0048-9697(23)07768-9/rf0315
https://doi.org/10.1016/j.watres.2021.117980

	To gate or not to gate: Revisiting drinking water microbial assessment through flow cytometry fingerprinting
	1 Introduction
	2 Materials and methods
	2.1 Monitoring full-scale WTW and its DWDS
	2.2 Physical and chemical parameters
	2.3 Microbiological parameters
	2.4 Flow cytometric measurements of drinking water
	2.5 Fluorescence fingerprinting analysis
	2.6 Data analysis

	3 Results and discussion
	3.1 WTW and DWDS monitoring using FCM
	3.2 Impact of gating approach on drinking water assessment using FCM
	3.3 Assessing the ICC value using cell count and fluorescence fingerprinting of cells
	3.4 Future perspectives for the use of FCM and fingerprinting for microbial quality assessment

	4 Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	References


