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ABSTRACT5

This paper presents a method for fault-tolerant control of small fixed-wing Unmanned Aerial6

Vehicles (UAVs). The proposed design is based on multiple-model L1 adaptive control. The7

controller is composed of a nominal reference model and a set of suboptimal reference models. The8

nominal model is the one with desired dynamics that are optimal regarding some specific criteria. In9

a suboptimal model the performance criteria are reduced, it is designed to ensure system robustness10

in the presence of critical failures. The controller was tested in simulations and it was shown that11

the multiple model L1 adaptive controller stabilizes the system in case of inversion of the control12

input, while the L1 adaptive controller with a single nominal model fails.13

INTRODUCTION14

Unmanned Aerial Vehicles (UAVs), commonly known as drones and referred to as Remotely15

Piloted Aircraft (RPA) by the International Civil Aviation Organisation (ICAO), are aircraft without16

a human pilot aboard. According to the assigned missions or to their size, there are many different17

classes of UAVs (Valavanis and Vachtsevanos, 2015). This work focuses on small fixed-wing UAVs18

that is, with wingspans less than 2 metres and payload smaller than 2 kg. Small UAVs are gaining19

growing interest because of their low cost, high manoeuvrability, and simple maintenance. They20

are used for a wide range of military and civilian tasks (Austin, 2011). The operation of UAVs,21

especially in urban environments, needs a high degree of safety and reliability. However, small22

UAVs are generally built with low-cost components and materials, which increases the probability23
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of occurrence of faults and failures. For that reason, the design of fault-tolerant control systems is24

required (Blanke et al., 2006; Ducard, 2009; Patton, 1997; Zhang and Jiang, 2008).25

Fault-tolerant control is defined as a system that possesses the ability to accommodate failures26

automatically (Zhang and Jiang, 2008). Fault-tolerant control systems are classified as either27

passive or active (Hwang et al., 2009; Rotondo, 2017). Passive fault-tolerant control is based on28

robust control while assuming the worst case conditions (Amin and Hasan, 2019; Benosman, 2011;29

Edwards et al., 2000; Wang, 2010; Yang et al., 2001). Nevertheless, the designed controllers tend to30

be conservative from performance viewpoint (Jiang and Yu, 2012). Active fault-tolerant controllers31

are composed of a fault detection scheme and a supervision module. On the basis of the information32

of the former, the supervision module may decide how to reconfigure the controller (Abbaspour33

et al., 2020; Amin and Hasan, 2019; Rotondo, 2017). However, applying such advanced control34

systems for small UAVs is difficult, because of their limited computing resources.35

A compromise between the two approaches is adaptive control, which is based on the reconfig-36

uration of the controller parameters without involving an explicit fault detection module (Bodson,37

2003; Ma et al., 2020; Nian et al., 2020; Tao, 2004; Xue et al., 2020; Yang et al., 2014).38

A crucial aspect in applying adaptive control techniques to real-world systems is the transient39

response guarantee, in the absence of which, overly poor tracking behaviour can occur before40

ideal asymptotic convergence takes place (Zang and Bitmead, 1990). Moreover, the transient41

performance improvement cannot be achieved through high-gain feedback, which will degrade42

the robustness of the closed-loop system. However, most adaptive control methods focus on the43

asymptotic performance, providing no transient performance guarantee without resorting to high-44

gain feedback. One solution to this issue is based on L1 adaptive control (Hovakimyan and Cao,45

2010). The adaptive control architecture decouples the estimation loop from the control loop46

through the introduction of a low-pass filter. As a result, arbitrarily fast adaptation can be used47

without sacrificing system robustness. The benefit of L1 adaptive control is its capacity for fast and48

robust adaptation that leads to desired transient performance for both system signals, inputs and49

outputs. These characteristics make it suitable for systems with unknown dynamics and subject to50
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possible faults and external disturbances, such as small UAVs.51

Despite the excellent performance of L1 adaptive control, for fault-tolerant control (Ackerman52

et al., 2017; Ahmadi et al., 2019; Dobrokhodov et al., 2013; Mühlegg et al., 2015; Patel et al.,53

2009; Sørensen and Breivik, 2015; Tian et al., 2020; Zhou et al., 2019), it is still true that when54

the uncertainties induced by disturbances, faults or failures are too large, they may reduce the55

performance of the controller or even make the system unstable. Actually, if a fault or a failure occurs56

on the system, the unknown parameters may go outside the predefined sets of the control design,57

which may lead to poor system performance or more critically to system instability. Furthermore,58

when a fault affects the system actuators it reduces their capabilities and, if the nominal performance59

of the system is maintained, the actuators will work beyond their nominal set point, which might60

lead to severe failures that cannot be compensated by a fault-tolerant controller. Therefore, it is not61

reasonable to maintain the same desired performance of the system, because after a fault or a failure62

it is not possible to recover the nominal performance. This is especially true for non-redundant63

systems such as low-cost UAVs.64

The proposed solution is based on the application of the multiple model L1 adaptive controller65

(Souanef and Fichter, 2015). The key idea is to design an L1 adaptive controller with a nominal66

reference model and a set of suboptimal reference models. The nominal model is the model with67

desired dynamics that are optimal regarding some specific criteria. A suboptimal model does not68

necessarily verify these specifications. It is designed to ensure system robustness in the presence of69

large uncertainties. This multiple-model L1 adaptive control design can expand the performance70

of the L1 adaptive control schemes to effectively deal with plant hard failures such as the inversion71

of the control direction (a long-standing issue that is difficult for a single-model adaptive controller72

to deal with) which may be caused by uncertain system structural damage and component (actuator73

or sensor) failures.74

A similar approach for performance degradation based on multiple model control was presented75

in (Jiang and Zhang, 2006; Zhang and Jiang, 2003). The design was made under the assumption that76

the model of the plant has no uncertainties, which is not realistic, especially for post-fault systems.77
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Furthermore, only actuator faults were addressed while structural faults were not considered.78

The main contributions of this paper are:79

• Development of a method for adaptive fault-tolerant control based on an L1 adaptive80

controller with a nominal reference model and a set of suboptimal reference models, so as81

to avoid system instability in the presence of hard faults/failures.82

• Extension of the method proposed in (Souanef and Fichter, 2015) to Multi-Input Multi-83

Output (MIMO) systems.84

NOTATION85

Throughout the paper, ∥ · ∥ denotes the 2-norm and ∥ · ∥∞ denotes the infinity norm of a vector or86

a matrix. The notation ∥𝜉∥L∞ denotes the L∞-norm of the vector 𝜉 (𝑡). For a stable proper transfer87

matrix 𝐺 (𝑠), ∥𝐺 (𝑠)∥L1 denotes its L1-norm. R𝑛 denotes the n-dimensional real vector space.88

I denotes an identity matrix of appropriate dimensions. Boldface notation is used for matrices,89

vectors, and tensors; italics are for for all variables and lower-case Greek letters; and Roman for all90

numerals, upper-case Greek characters, and mathematical operators.91

PROBLEM FORMULATION92

For control design, the dynamic model of an aircraft can be formulated as the following class93

of MIMO systems (Lavretsky and Wise, 2013)94

¤x(𝑡) = A𝑝𝑥(𝑡) + B𝑝u𝑝 (𝑡) + f (𝑡, x), x(0) = x0,

y(𝑡) = Cx(𝑡),
(1)95

where A𝑝 = A + ΔA ∈ R𝑛×𝑛 is an unknown matrix, A ∈ R𝑛×𝑛 is a known matrix, ΔA ∈ R𝑛×𝑛96

an unknown matrix of the system dynamics, B𝑝 = B(I𝑚 + ΔB) ∈ R𝑛×𝑚 is an unknown matrix,97

B ∈ R𝑛×𝑚 is a known matrix, ΔB ∈ R𝑚×𝑚 is an unknown matrix of the control input uncertainties,98

C ∈ R𝑚×𝑛 is a known matrix, x(𝑡) ∈ R𝑛 is the state vector which is assumed to be available through99

measurement, u𝑝 (𝑡) ∈ R𝑚 is the control input vector y(𝑡) ∈ R𝑚 is the output vector and f (𝑡, x) ∈ R𝑛100

is a vector of unknown nonlinear functions.101
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Now consider the control102

u𝑝 (𝑡) = u(𝑡) + K𝑙x(𝑡), (2)103

where K𝑙 ∈ R𝑚×𝑛 is a gain matrix that defines A𝑚 = A + BK𝑙 , where A𝑚 ∈ R is a Hurwitz matrix104

that defines the desired dynamics of the system. The resulting system to be controlled by the105

adaptive control is106

¤x(𝑡) = A𝑚x(𝑡) + B𝜔u(𝑡) + f̃ (𝑡, x), (3)107

where 𝜔 = I𝑚 +ΔB and f̃ (𝑡, x) = ΔAx(𝑡) + (𝜔− I𝑚)K𝑙𝑥(𝑡) + f (𝑡, x). Assuming f̃ (𝑡, x) = B
(
𝜃⊤x(𝑡) +108

𝜂𝑚 (𝑡)
)
+ 𝜂𝑢 (𝑡), the system in (3) can be parametrised as follows109

¤x(𝑡) =A𝑚x(𝑡) + B
(
𝜔u(𝑡) + 𝜃⊤x(𝑡) + 𝜂𝑚 (𝑡)

)
+ 𝜂𝑢 (𝑡), (4)110

where 𝜃⊤ ∈ R𝑚×𝑛 is a matrix of constant unknown parameters representing model uncertainties,111

𝜂𝑚 (𝑡) ∈ R𝑚 is an unknown matched disturbance, and 𝜂𝑢 (𝑡) ∈ R𝑛 is an unknown unmatched112

disturbance.113

Assumption 1. The unknown model parameters are bounded, i.e., 𝜃 ∈ Θ, where Θ is a known114

compact convex set. The system input gain matrix 𝜔 is assumed to be an unknown (non-singular)115

strictly row-diagonally dominant matrix with sgn(𝜔𝑖𝑖) known. Also, it is assumed that there exists116

a known compact convex set Ω such that 𝜔 ∈ Ω ⊂ R𝑚×𝑚.117

Assumption 2. The non-linear function 𝜂𝑚 (𝑡) is uniformly bounded, i.e., there exist unknown

real constant 𝐿𝑚 > 0, such that for all 𝑡 ≥ 0 the following bound hold:

∥𝜂𝑚 (𝑡)∥ ≤ 𝐿𝑚 .

Assumption 3. There exist unknown real constant 𝐿𝑢 > 0, such that for all 𝑡 ≥ 0 the following
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bound hold

∥𝜂𝑢 (𝑡)∥ ≤ 𝐿𝑢 .

Remark 1. Assumptions 2 and 3 are acceptable for real systems, given that a superior bound118

of disturbances, which the system may hold without being broken, is usually known from technical119

specifications or engineering insights.120

The objective is to design a state-feedback controller to ensure that the output of the system121

tracks a given piecewise continuous bounded reference signal 𝑟 (𝑡) and consequently maintain the122

stability of the control system despite the presence of faults and/or external disturbances.123

L1 ADAPTIVE CONTROL124

We consider the architecture of the L1 adaptive controller which is composed of the state125

predictor, the adaptation law and the control law (Figure 1).126

Fig. 1. Block diagram of the L1 adaptive controller.

The state predictor is defined as127

¤̂x(𝑡) =A𝑚x̂(𝑡) + B
(
�̂�(𝑡)u(𝑡) + 𝜃⊤(𝑡)x(𝑡) + 𝜂𝑚 (𝑡)

)
+ 𝜂𝑢 (𝑡), (5)128

where x̂(𝑡) is the predicted state and 𝜃 (𝑡), �̂�(𝑡), 𝜂𝑚 (𝑡), and 𝜂𝑢 (𝑡) are the estimates of the unknown129

system parameters and disturbances.130
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The sliding surface is defined as131

𝜎(𝑡) = 𝜆x̃(𝑡), (6)132

where x̃(𝑡) = x̂(𝑡) − x(𝑡) is the state estimation error and 𝜆 ∈ R𝑚×𝑛 is a constant arbitrary matrix,133

chosen such that 𝜆B is non-singular and the coefficients 𝜆(𝑖, 𝑗) : 𝑖 = 1..𝑛; 𝑗 = 1..𝑚 form a stable134

hyperplane.135

The estimation of the matched disturbance 𝜂𝑚 (𝑡) is defined by136

𝜂𝑚 (𝑡) =


−(𝜆B)−1 (𝜆A𝑚x̃(𝑡) + 𝜌𝜎(𝑡)
)
− �̂�𝑚 (𝑡) B⊤𝜆⊤𝜎(𝑡)

∥B⊤𝜆⊤𝜎(𝑡)∥ , if 𝜎(𝑡) ≠ 0,

0 otherwise,
(7)137

where 𝜌 > 0 is arbitrary and the estimated bound �̂�𝑚 (𝑡) is given by138

¤̂𝐿𝑚 (𝑡) = Γ∥𝜎⊤(𝑡)𝜆B∥, (8)139

where Γ ∈ R+ is the adaptation rate.140

The estimation of the unmatched disturbance 𝜂𝑢 (𝑡) is defined by141

𝜂𝑢 (𝑡) =


−�̂�𝑢 (𝑡) 𝜆⊤𝜎(𝑡)
∥𝜆⊤𝜎(𝑡)∥ , if 𝜎(𝑡) ≠ 0,

0 otherwise,
(9)142

where the estimated bound �̂�𝑢 (𝑡) is computed by143

¤̂𝐿𝑢 (𝑡) = Γ∥𝜎⊤(𝑡)𝜆∥, (10)144
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The input gain matrix 𝜔 and unknown parameters matrix 𝜃 are estimated by145

¤̂𝜔(𝑡) = −Γ Proj
(
�̂�(𝑡), u(𝑡) 𝜎⊤(𝑡)𝜆 B

)⊤
,

¤̂𝜃 (𝑡) = −Γ Proj
(
𝜃 (𝑡), x(𝑡) 𝜎⊤(𝑡)𝜆 B

)
.

(11)146

The control law is given by147

u(𝑠) = −K D(𝑠)
(
�̂�1(𝑠) + �̂�2(𝑠) − K𝑔 r(𝑠)

)
, (12)148

where D(𝑠) is an 𝑚 × 𝑚 proper transfer matrix; K ∈ R𝑚×𝑚; K𝑔 = −(CA−1
𝑚 B)−1 is the pre-filter149

of the MIMO control law; �̂�1(𝑠) is the Laplace transformation of �̂�1(𝑡) = 𝜃⊤(𝑡)x(𝑡) + �̂�(𝑡)u(𝑡);150

H𝑚 (𝑠) = C(𝑠I − A𝑚)−1B; H0(𝑠) = C(𝑠I − A𝑚)−1; and �̂�2 = 𝜂𝑚 (𝑡) + H−1
𝑚 (𝑠)H0(𝑠)𝜂𝑢 (𝑠).151

The design of D(𝑠) and K should lead to a strictly proper and stable filter transfer matrix

F(𝑠) = 𝜔KD(𝑠) (I + 𝜔KD(𝑠))−1,

with static gain F(0) = I.152

Let153

𝐿 = max
𝜃∈Θ

∥𝜃∥1, H(𝑠) = (𝑠I − A𝑚)−1B,

G(𝑠) = H(𝑠)
(
I − F(𝑠)

)
.

(13)154

The L1 adaptive controller is subject to the L1 norm condition155

∥G(𝑠)∥L1𝐿 < 1. (14)156

Moreover, the design of F(𝑠) needs to ensure that157

G𝑢 (𝑠) = (𝑠I − A𝑚)−1 − F(𝑠)H(𝑠)H−1
𝑚 (𝑠)H0(𝑠), (15)158

8 Souanef, June 7, 2022



is proper and stable. Furthermore, since the transfer matrix G𝑢 (𝑠) is proper and stable it has an L1159

norm (Hovakimyan and Cao, 2010).160

Remark 2. It has been shown in (Souanef et al., 2015) and (Souanef, 2019) that the adaptation161

laws of the external disturbances in equations (7) and (9) use the estimated bounds from equations (8)162

and (10). This relaxes the assumption that the bounds of the external disturbances are known, which163

is required in L1 adaptive control based on projection-type adaptive laws (Cao and Hovakimyan,164

2008).165

Remark 3. If a fault or failure occurs on the system, the unknown parameters may go outside166

the predefined sets. Therefore, the stability conditions in (14) and (15) may become not satisfied.167

Hence, it is necessary to maintain system stability and a minimum of good performance, this is done168

through the design of a set of suboptimal models which become effective when large uncertainties169

appear on the plant.170

MULTIPLE MODEL L1 ADAPTIVE CONTROL OF MIMO SYSTEMS171

Considering probable faults scenario, a set of plant parameterisations, based on multiple models,172

is arranged, and the objective is that the satisfactory controller is selected automatically to deal173

with every situation. This means that the model which is the best match of the plant is selected.174

The desired performance of each model is made through the design of the pair (𝐴𝑚(𝑖) ,B𝑖), for175

𝑖 ∈ I.176

The system in (1) can consequently be parameterised as follows177

¤x(𝑡) =A𝑚(𝑖)x(𝑡) + B𝑖
(
𝜔𝑖u(𝑡) + 𝜃⊤𝑖 x(𝑡) + 𝜂𝑚(𝑖) (𝑡)

)
+ 𝜂𝑢(𝑖) (𝑡), (16)178

where A𝑚(𝑖) ∈ R𝑛×𝑛 are known Hurwitz matrices that define the desired dynamics of the system179

B𝑖 ∈ R𝑛×𝑚 are the desired input matrices, 𝜔𝑖 ∈ R𝑚×𝑚 are unknown constant matrices representing180

the system input gain, 𝜃⊤
𝑖
∈ R𝑚×𝑛 are matrices of constant unknown parameters representing model181

uncertainties, 𝜂𝑚(𝑖) (𝑡) ∈ R𝑚 are unknown matched disturbances, and 𝜂𝑢(𝑖) (𝑡) ∈ R𝑛 are unknown182

unmatched disturbances.183
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Assumption 4. The system input gain matrices 𝜔𝑖 are assumed to be unknown (non-singular)184

strictly row-diagonally dominant matrices with known signs of diagonals. Also, it is assumed that185

the unknown parameters are bounded, i.e., 𝜃𝑖 ∈ Θ𝑖, where Θ𝑖 are known compact convex sets.186

Furthermore, the functions 𝜂𝑚(𝑖) and 𝜂𝑢(𝑖) are uniformly bounded, i.e., there exist unknown real187

constants 𝐿𝑚(𝑖) > 0 and 𝐿𝑢(𝑖) > 0, such that for all 𝑡 ≥ 0 |𝜂𝑚(𝑖) (𝑡) | ≤ 𝐿𝑚(𝑖) and
𝜂𝑢(𝑖) (𝑡) ≤ 𝐿𝑢(𝑖) .188

Controller Design189

The multiple model L1 adaptive controller, as shown in Figure 2, is composed of a set of state190

predictors, a set of adaptation laws, a set of control laws and a control input selector (switching191

system). The state predictors are defined by

Fig. 2. Block diagram of the multiple model L1 adaptive controller.

192

¤̂x𝑖 (𝑡) =A𝑚(𝑖) x̂𝑖 (𝑡) + B𝑖
(
�̂�𝑖 (𝑡)u(𝑡) + 𝜃⊤𝑖 (𝑡)x(𝑡) + 𝜂𝑚(𝑖) (𝑡)

)
+ 𝜂𝑢(𝑖) (𝑡), (17)193

where x̂𝑖 (𝑡) are the predicted states and, 𝜃𝑖 (𝑡), �̂�𝑖 (𝑡), 𝜂𝑚(𝑖) (𝑡), and 𝜂𝑢(𝑖) (𝑡) are the estimates of the194

unknown system parameters and external disturbances. The initial state of the state predictor is195

equal to the plant state at switching time 𝑡𝑘 :196

x̂(𝑡𝑘 ) = x(𝑡𝑘 ). (18)197
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The sliding surfaces are given by198

𝜎𝑖 (𝑡) = 𝜆𝑖x̃𝑖 (𝑡), (19)199

where x̃𝑖 (𝑡) = x̂𝑖 (𝑡) − x(𝑡) are the state estimation errors and 𝜆𝑖 ∈ R𝑚×𝑛 are constant arbitrary200

matrices, chosen such that 𝜆𝑖B𝑖 are non-singular and the coefficients 𝜆𝑖 (𝑘, 𝑗) : 𝑘 = 1...𝑛; 𝑗 = 1...𝑚201

form a stable hyperplane.202

The adaptation laws are given by203

¤̂𝜔𝑖 (𝑡) = −Γ𝑖 Proj
(
u(𝑡) 𝜎⊤

𝑖 𝜆𝑖B𝑖
)⊤
,

¤̂𝜃𝑖 (𝑡) = −Γ𝑖 Proj
(
x(𝑡) 𝜎⊤

𝑖 𝜆𝑖B𝑖
)
,

𝜂𝑚(𝑖) (𝑡) =


−(𝜆𝑖B𝑖)−1 (𝜆𝑖A𝑚(𝑖) x̃𝑖 (𝑡) + 𝜌𝑖𝜎𝑖

)
− �̂�𝑚(𝑖) (𝑡)

B⊤
𝑖
𝜆⊤
𝑖
𝜎𝑖

∥B⊤
𝑖
𝜆⊤
𝑖
𝜎𝑖 ∥ if 𝜎𝑖 ≠ 0,

0 if not,

𝜂𝑢(𝑖) (𝑡) =


−�̂�𝑢(𝑖) (𝑡)

𝜆⊤
𝑖
𝜎𝑖

∥𝜆⊤
𝑖
𝜎𝑖 ∥ if 𝜎𝑖 ≠ 0,

0 if not,

¤̂𝐿𝑚(𝑖) (𝑡) = Γ𝑖∥𝜎⊤
𝑖 𝜆𝑖B𝑖∥,

¤̂𝐿𝑢(𝑖) (𝑡) = Γ𝑖∥𝜎⊤
𝑖 𝜆𝑖∥,

(20)204

where 𝜌𝑖 > 0 are arbitrary and Γ𝑖 ∈ R+ are the adaptation rates.205

Let

H𝑚(𝑖) (𝑠) = C𝑖

(
𝑠I − A𝑚(𝑖)

)−1B𝑖 and H0(𝑖) (𝑠) = C𝑖

(
𝑠I − A𝑚(𝑖)

)−1
.

The control laws are given by206

u𝑖 (𝑠) = −K𝑖 D𝑖 (𝑠)
(
K𝑔(𝑖) r(𝑠) − �̂�(𝑖) (𝑠)

)
, (21)207
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where �̂�(𝑖) (𝑠) = �̂�1(𝑖) (𝑠) + �̂�2(𝑖) (𝑠)𝜂𝑢(𝑖) (𝑠), �̂�1(𝑖) (𝑠) are the Laplace transformations of �̂�1(𝑖) (𝑡) =208

𝜃⊤
𝑖
(𝑡)x(𝑡) + �̂�𝑖 (𝑡)u𝑖 (𝑡), �̂�2(𝑖) (𝑠) = 𝜂𝑚(𝑖) (𝑠) + H−1

𝑚(𝑖) (𝑠)H0(𝑖) (𝑠)𝜂𝑢(𝑖) (𝑠), K𝑔(𝑖) = −(C𝑖A−1
𝑚(𝑖)B𝑖)

−1 are209

the pre-filters of the MIMO control laws, D𝑖 (𝑠) are 𝑚 × 𝑚 strictly proper transfer matrices and210

K𝑖 ∈ R𝑚×𝑚.211

Let B†
𝑖
=

(
B⊤
𝑖

B𝑖
)−1 B⊤

𝑖
be the pseudo-inverse of B𝑖, considering that B𝑖 has full column rank,212

then �̂�2(𝑖) (𝑡) = 𝜂𝑚(𝑖) (𝑡) + B†
𝑖
𝜂𝑢(𝑖) (𝑡).213

For analysis purposes, without loss of generality, it is assumed that the control laws use the214

same filter parameters. D𝑖 (𝑠) are chosen D𝑖 (𝑠) = D0 (𝑠)
𝑠

and K𝑖 = 1, where D0(𝑠) is a proper stable215

transfer matrix.216

Therefore, the control laws can be written as217

u𝑖 (𝑠) =
D0(𝑠)
𝑠

(
K𝑔(𝑖) r(𝑠) − �̂�(𝑖) (𝑠)

)
. (22)218

The switching logic is defined by219

min
𝑖∈I

{
𝐽𝑖 = 𝑐1 ∥x̃𝑖∥2 + 𝑐2

∫ 𝑡

0
𝑒−𝑐3 (𝑡−𝜏) ∥x̃𝑖 (𝜏)∥2𝑑𝜏

}
, (23)220

where 𝑐1, 𝑐2 and 𝑐3 are arbitrary positive real. The model that minimises the criterion becomes the221

selected model and its output is applied to the plant.222

Remark 4. For practical implementation the discrete-time version of the switching logic in223

(23) is given by224

min
𝑖∈I

𝐽𝑖 = 𝑐1 ∥x̃𝑖 (𝑘𝑇)∥2 + 𝑐2
𝑐3𝑘𝑇 + 1

𝑗∑︁
𝑗=0

∥x̃𝑖 ( 𝑗𝑇)∥2
 , (24)225

where 𝑇 is the sampling period.226

Remark 5. It is assumed in this work that the switching is arbitrary, i.e., not dwell time or average227

dwell time. To prevent arbitrarily fast switching, a non-zero waiting time𝑇𝑚𝑖𝑛 > 0 is introduced after228

every switching. By the end of the waiting period 𝑇𝑚𝑖𝑛, the controller corresponding to the model229

with the minimum index is chosen (switched) to control the plant Narendra and Balakrishnan230
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(1997). Note that 𝑇𝑚𝑖𝑛 is different from the dwell time 𝜏, and a switching signal has a dwell231

time 𝜏 > 0, used for waiting another controller being activated, if the switching times satisfy232

𝑡𝑘+1 − 𝑡𝑘 ≥ 𝜏, ∀𝑘 > 0 (Liberzon, 2003).233

Remark 6. It is a common practice to stop the control switching when 𝐽𝑖 (𝑡) ≤ 𝜖∀𝑖 = 1, 2, ..., 𝑁,234

for some pre-chosen, arbitrary and small 𝜖 > 0 Tan et al. (2017a).235

Remark 7. It is quiet understood that both traditional projection-based adaptive law (Cao and236

Hovakimyan, 2008) and the piecewise-constant adaptive law (Cao and Hovakimyan, 2009) can be237

applied to the design of the multiple model L1 adaptive controller. The advantage of the sliding238

mode adaptation law is that it permits to estimate the upper bounds of the external disturbances239

which makes the system more robust.240

Controller Analysis241

In this section, the performance of the L1 adaptive controller is analysed. More specifically it242

is shown that:243

• The reference models resulting from perfect knowledge of the uncertainties and a corre-244

sponding non-adaptive controller are stable, subject to some conditions involving the filter245

𝐷0(𝑠).246

• The prediction errors, i.e. the errors between the states of the plant and those of the state247

predictors, are bounded.248

• The differences between the states/input of the system and those of the reference systems249

are proportional to the prediction error250

For a switching system, it is not straightforward to compute the L1 norm condition in (14) and251

(15). Actually, for Linear Time Invariant (LTI) systems, the L1 norm is readily computed from252

the impulse response. However, for a switched system, the impulse response is time dependent253

(switching signal-dependent), and computing the L1 norm is not as straightforward as in the LTI254

case.255

A similar approach to (Snyder, 2019) is applied here. It is based on a new method of analysing256
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L1 adaptive control. This approach results in necessary and sufficient conditions provided in the257

form of linear matrix inequalities (LMIs).258

Reference Models Analysis259

The reference system with the nominal parameters is defined as follows260

¤x𝑟 (𝑡) =A𝑚(𝑖)𝑥𝑟 (𝑡) + B𝑖
(
𝜔𝑖u𝑟 (𝑡) + 𝜃⊤𝑖 x𝑟 (𝑡) + 𝜂𝑚(𝑖) (𝑡)

)
+ 𝜂𝑢(𝑖) (𝑡), x𝑟 (0) = x0

u𝑟 (𝑠) = − D0(𝑠)
𝑠

(
𝜈𝑟 (𝑖) (𝑠) − K𝑔 (𝑖)r(𝑠)

) (25)261

where 𝜈𝑟 (𝑖) (𝑠) = 𝜈1(𝑖) (𝑠)+𝜈2(𝑖) (𝑠), 𝜈1(𝑖) (𝑠) are the Laplace transformations of 𝜈1(𝑖) (𝑡) = 𝜃⊤𝑖 x𝑟 (𝑡) + 𝜔𝑖 (𝑡)u𝑟 (𝑡)262

and 𝜈2(𝑖) (𝑠) = 𝜂𝑚(𝑖) (𝑠) + 𝜙𝑖 (𝑠)𝜂𝑢(𝑖) (𝑠), with 𝜙𝑖 (𝑠) = H−1
𝑚(𝑖) (𝑠)H0(𝑖) (𝑠).263

Alternatively we can write 𝜈2(𝑖) (𝑡) = 𝜂𝑚(𝑖) (𝑡) + B†
𝑖
𝜂𝑢(𝑖) (𝑡).264

Remark 8. It should be noted that the reference control law is not implementable, since it265

depends on the unknown parameters and it is used only for analysis purposes.266

Letting
(
A 𝑓 ,B 𝑓 ,C 𝑓 ,D 𝑓

)
be a minimal realisation of D0(𝑠) with 𝑛 𝑓 states, the reference system267

dynamics can be written in state-space form268


¤x𝑟 (𝑡)

¤x 𝑓1 (𝑡)

¤x𝐼1 (𝑡)


=


A𝑚(𝑖) + B𝑖𝜃⊤𝑖 0 −B𝑖𝜔𝑖

B 𝑓 𝜃
⊤
𝑖

A 𝑓 B 𝑓𝜔𝑖

D 𝑓 𝜃
⊤
𝑖

C 𝑓 D 𝑓𝜔𝑖

︸                                  ︷︷                                  ︸
�̄�𝑖


x𝑟 (𝑡)

x 𝑓1 (𝑡)

x𝐼1 (𝑡)



+


B𝑖

B 𝑓

D 𝑓

︸  ︷︷  ︸
�̄�𝑖

𝜈2(𝑖) (𝑡) −


0

B 𝑓𝐾𝑔𝑖

D 𝑓𝐾𝑔𝑖


𝑟 (𝑡)

[𝑢𝑟 (𝑡)] =
[

0 0 −I
]

︸          ︷︷          ︸
�̄�


x𝑟 (𝑡)

x 𝑓1 (𝑡)

x𝐼1 (𝑡)


,


x𝑟 (0)

x 𝑓1 (0)

x𝐼1 (0)


=


x0

0

0


,

(26)269
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where x 𝑓1 , x𝐼1 are the states of D0(𝑠) and the integrator respectively.270

The reference control law can be rewritten in more compact form as271

¤x(𝑡) = Ā𝑖x̄(𝑡) + B̄𝑖𝜈2(𝑖) (𝑡) + Ē𝑖𝑟 (𝑡), x̄(0) = x̄0,

u𝑟 (𝑡) = C̄x̄(𝑡),
(27)272

where x̄⊤(𝑡) ≜
[
x⊤𝑟 (𝑡), x⊤𝑓1 (𝑡), x

⊤
𝐼
(𝑡)

]
.273

Lemma 2 Give an arbitrary matrix Q = Q⊤ > 0, if there exists a constant symmetric matrix

P > 0 verifying

Ā⊤
𝑖 P + PĀ𝑖 ≤ −Q, ∀𝜃𝑖 ∈ Θ𝑖 and ∀𝜔𝑖 ∈ Ω𝑖,

then the Lyapunov function 𝑉 = x̄⊤P̄x̄ guarantees the stability of the switching reference systems274

in (27).275

This fact is straightforward from the converse Lyapunov theorem for LTI systems.276

Transient Performance and Steady-State Performance277

In the following Lemma, it is stated that the prediction errors x̃𝑖 (𝑡) and the estimation errors of278

the unknown parameters are bounded.279

Lemma 3 The following bound holds for the norm of the prediction error ∀𝑖 ∈ I280

∥x̃𝑖∥L∞ ≤ 𝛿, (28)281

where 𝛿 > 0 is an arbitrary small real.282

Furthermore, the prediction errors x̃𝑖 (𝑡) converge asymptotically to zero, i.e.,283

lim
𝑡→∞

x̃𝑖 (𝑡) = 0. (29)284

Proof. The proof is omitted here because of lack os space. Interested readers are referred to285

15 Souanef, June 7, 2022



Souanef (2019).286

Theorem. There exist positive constants 𝜅2 and 𝜅3 such that, for each model 𝑖 the error between

the actual system and the reference system is bounded by

∥x𝑟 (𝑡) − x(𝑡)∥ ≤ 𝜅2

∥u𝑟 (𝑡) − u(𝑡)∥ ≤ 𝜅3.

Furthermore, if the closed-loop system is stable then287

lim
𝑡→∞

∥x𝑟 (𝑡) − x(𝑡)∥ = 0 and lim
𝑡→∞

∥u𝑟 (𝑡) − u(𝑡)∥ (30)288

Proof. In this section, the dependence of the parameters on (𝑡) is dropped unless it is not clear289

from the context.290

From (22) it can be written291

u(𝑠) = −𝐷0(𝑠)
𝑠

(
𝜔𝑖u(𝑠) + 𝜈𝑖 (𝑠) + �̃�𝑖 (𝑠) − K𝑔𝑖r(𝑠)

)
, (31)292

where �̃�(𝑖) (𝑠) = �̃�1(𝑖) (𝑠) + �̃�2(𝑖) (𝑠), �̃�1(𝑖) (𝑠) are the Laplace transformations of �̃�1(𝑖) = 𝜃⊤
𝑖

x(𝑡) +293

�̃�𝑖 (𝑡)u(𝑡) and �̃�2(𝑖) (𝑠) = 𝜂𝑢(𝑖) (𝑠) + 𝜙𝑖 (𝑠)𝜂𝑢(𝑖) (𝑠).294

Consequently, the closed-loop systems (16) and (31) can be written as follows295


¤x

¤x 𝑓1
¤x𝐼1


=


A𝑚(𝑖) + B𝑖𝜃⊤𝑖 0 −B𝑖𝜔𝑖

B 𝑓 𝜃
⊤
𝑖

A 𝑓 B 𝑓𝜔𝑖

D 𝑓 𝜃
⊤
𝑖

C 𝑓 D 𝑓𝜔𝑖




x

x 𝑓1

x𝐼1


+


B𝑖

B 𝑓

D 𝑓


𝜈2(𝑖)

+


0

B 𝑓

D 𝑓


�̃�𝑖 −


0

B 𝑓𝐾𝑔𝑖

D 𝑓𝐾𝑔𝑖


r.

(32)296

The error between the state of the reference system and the actual plant, 𝑒 = 𝑥𝑟 − 𝑥, can be297
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expressed as298


¤e

¤x 𝑓1
¤x𝐼1


=


A𝑚(𝑖) + B𝑖𝜃⊤𝑖 0 −B𝑖𝜔𝑖

B 𝑓 𝜃
⊤
𝑖

A 𝑓 B 𝑓𝜔𝑖

D 𝑓 𝜃
⊤
𝑖

C 𝑓 D 𝑓𝜔𝑖



𝑒

𝑥 𝑓1

𝑥𝐼1


+


B𝑖

B 𝑓

D 𝑓


�̃�𝑖 . (33)299

The control error can also be formulated as follows300

e𝑢 = u𝑟 − u =

[
0 0 −I

] 
e

x 𝑓1

x𝐼1


. (34)301

From (16) and (17), the prediction error dynamics can be written as302

¤̃x𝑖 = A𝑚(𝑖) x̃𝑖 + B𝑖
(
�̃�𝑖u + 𝜃⊤𝑖 x + 𝜂𝑚(𝑖)

)
+ 𝜂𝑢(𝑖) . (35)303

Thus304

�̃�𝑖 = B†
𝑖

( ¤̃x − A𝑚(𝑖) x̃
)
. (36)305

Passing B†
𝑖
¤̃x through the filter (𝑠I + 𝐷0(𝑠)𝜔𝑖)−1 𝐷0(𝑠), we can write306


¤x 𝑓2
¤x𝐼2

 =


A 𝑓 B 𝑓𝜔𝑖

C 𝑓 D 𝑓𝜔𝑖



𝑥 𝑓2

𝑥𝐼2

 +


B 𝑓

D 𝑓

 B†
𝑖
x̃. (37)307
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Applying this to the error dynamics in (33) we have308



¤e

¤x 𝑓1
¤x𝐼1
¤x 𝑓2
¤x𝐼2


=



A𝑚(𝑖) + B𝑖𝜃⊤𝑖 0 −B𝑖𝜔𝑖 −B𝑖C 𝑓 −B𝑖D 𝑓𝜔𝑖

B 𝑓 𝜃
⊤
𝑖

A 𝑓 B 𝑓𝜔𝑖 0 0

D 𝑓 𝜃
⊤
𝑖

C 𝑓 D 𝑓𝜔𝑖 0 0

0 0 0 A 𝑓 B 𝑓𝜔𝑖

0 0 0 C 𝑓 D 𝑓𝜔𝑖





e

x 𝑓1

x𝐼1

x 𝑓2

x𝐼2



+



−D 𝑓B†
𝑖

−B 𝑓B†
𝑖
A𝑚(𝑖)

−D 𝑓B†
𝑖
A𝑚(𝑖)

−B 𝑓B†
𝑖

−D 𝑓B†
𝑖


x̃,

. (38)309

and310

e𝑢 =
[

0 0 −I −C 𝑓 −D 𝑓𝜔𝑖

]


e

x 𝑓 1

x𝐼1

x 𝑓2

x𝐼2


+
[
−D 𝑓B†

𝑖

]
x̃. (39)311

Letting

�̄�𝑖 =


−B𝑖C 𝑓 −B𝑖D 𝑓𝜔𝑖

0 0

0 0


, 𝐽𝑖 =


−D 𝑓B†

𝑖

−B 𝑓B†
𝑖
A𝑚(𝑖)

−D 𝑓B†
𝑖
A𝑚(𝑖)


,

�̄�𝑖 =


−B 𝑓B†

𝑖
A𝑚(𝑖)

−D 𝑓B†
𝑖
A𝑚(𝑖)

 , �̄�𝑖 =

[
0 C 𝑓 D 𝑓𝜔𝑖

]
,
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it follows from (38) and (39) that312


¤̄e

¤̄x 𝑓2

 =


Ā𝑖 H̄𝑖

0 F̄𝑖




ē

x̄ 𝑓2

 +


J̄𝑖

Ḡ𝑖

 x̃, (40)313

and314

e𝑢 =
[

C̄ L̄𝑖
] 

ē

x̄ 𝑓2

 +
[
−D 𝑓B†

𝑖

]
x̃, (41)315

where ē =

[
e⊤, x⊤

𝑓1
, x⊤
𝐼1

]⊤
and x̄ 𝑓2 =

[
x⊤
𝑓2
, x⊤
𝐼2

]⊤
.316

Note that the reference system is stable and the filter represented by F̄𝑖 is a subsystem of the317

reference system when 𝜃 = 0. Therefore, from Lemma 1, there exists positive definite matrices318

Q𝑖 (𝜔𝑖) > 0 such that for all 𝜔𝑖 ∈ Ω,319

F̄⊤
𝑖

Q̄𝑖 + Q̄𝑖F̄𝑖 ≤ −I. (42)320

Let �̄�𝑖 (𝑡) = x̄⊤
𝑓2

Q̄𝑖x̄ 𝑓2 , where 𝑉𝑖 (0) = 0. Differentiating along the system trajectories it follows that321

¤𝑉𝑖 =x̄⊤𝑓2
(
F̄⊤
𝑖 Q̄𝑖 + Q̄𝑖F̄𝑖

)
x̄ 𝑓2 + 2x̄⊤𝑓2Q̄𝑖Ḡ𝑖x̃

≤ −
x̄ 𝑓22 + 2∥x̄ 𝑓2 ∥𝛽𝐹 ∥x̃∥L∞

≤ −
x̄ 𝑓22 + 𝛽2

𝐹 ∥x̃∥2
L∞

(43)322

where the last line follows from square completion and 𝛽𝐹 =
√
𝑛max𝑖∈I ∥Q̄𝑖Ḡ𝑖∥.323

By integrating it is straightforward to show that the following bound holds for x̄ 𝑓2324

∥x̄ 𝑓2 ∥L∞ ≤ 𝜅1, (44)325

where 𝜅1 =
√
𝑛max𝑖∈I ∥Q̄𝑖Ḡ𝑖∥𝛿 and 𝛿 is the upper bound of x̃𝑖 defined in Lemma 2.326

We now define the Lyapunov functions �̄�𝑖 = ē⊤P̄𝑖 ē. Differentiating along the system trajectories327
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it follows that328

¤𝑊𝑖 = ē⊤
(
Ā⊤
𝑖 P̄𝑖 + P̄𝑖Ā𝑖

)
ē + 2ē⊤P̄𝑖H̄𝑖x̄ 𝑓2 + 2ē⊤P̄𝑖J̄𝑖x̃

≤ −∥ē∥2 + 2∥ē∥𝛽𝑒∥x̃∥L∞

≤ −∥ē∥2 + 𝛽2
𝑒 ∥x̃∥2

L∞
,

(45)329

where 𝛽𝑒 =
(
𝜅1 max𝑖∈I

P̄𝑖H̄𝑖

 + √
𝑛max𝑖∈I

P̄𝑖J̄𝑖 ) .330

Therefore, the following bound holds331

∥ē∥L∞ ≤ 𝜅2, (46)332

where 𝜅2 =

(
𝜅1 max𝑖∈I

P̄𝑖H̄𝑖

 + √
𝑛max𝑖∈I

P̄𝑖J̄𝑖 )𝛿.333

Furthermore334

∥𝑒𝑢∥L∞≤ ≤∥C̄∥∥ē∥L∞ +
L̄𝑖 x̄ 𝑓2L∞

+
D 𝑓B†

𝑖

 ∥x̃∥L∞ ,

≤𝜅3,

(47)335

where 𝜅3 = ∥C̄∥𝜅2 +
(
max𝑖∈I

L̄𝑖 + max𝑖∈I
D 𝑓B†

𝑖

 )𝛿.336

This completes the proof. □337

UAV LATERAL-DIRECTIONAL CONTROL IN CASE OF INVERSION OF THE COMMANDS338

A critical situation in flight control systems is that in case of structural damage of the aircraft,339

the control direction can be inverted. In fact, if an aircraft suffers damage, a control surface may340

generate a totally opposite angular acceleration, which means the actuation signs will be changed341

(Liu et al., 2010; Tan et al., 2017b). The inversion of the sign of the control direction can also342

result from actuators or software faults. This situation cannot be handled by L1 adaptive controller343

with a single model. Actually, a conservative condition in adaptive control is that the sign of input344

vector must be known and should not change (Ioannou and Sun, 2012).345
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Controller Design346

The lateral-directional equations of motion of a fixed-wing aircraft are described by the set of347

states (𝛽, 𝑝, 𝑟, 𝜙), where 𝛽 is the sideslip angle, 𝑝 is the roll rate, 𝑟 is the yaw rate and 𝜙 is the roll348

angle. The control inputs are the aileron deflection 𝛿𝑎 and the rudder deflection 𝛿𝑟 .349

The objective is to design a control input 𝑢 = [𝛿𝑎, 𝛿𝑟]⊤ to enable tracking of the roll command350

𝜙𝑐 and the sideslip angle command 𝛽𝑐.351

From (Stevens and Lewis, 2003), the linearised model of the lateral-directional dynamics of a352

fixed-wing aircraft can be written in matrix form as follows353



¤𝛽

¤𝑝

¤𝑟

¤𝜙

︸︷︷︸
¤x

=



𝑌𝛽
𝑉𝑎

𝑌𝑝
𝑉𝑎

𝑌𝑟
𝑉𝑎

− 1 𝑔

𝑉𝑎

𝐿𝛽 𝐿𝑝 𝐿𝑟 0

𝑁𝛽 𝑁𝑝 𝑁𝑟 0

0 1 0 0

︸                           ︷︷                           ︸
A𝑝



𝛽

𝑝

𝑟

𝜙

︸︷︷︸
x

+



𝑌𝛿𝑎
𝑉𝑎

𝑌𝛿𝑟
𝑉𝑎

𝐿𝛿𝑎 𝐿𝛿𝑟

𝑁𝛿𝑎 𝑁𝛿𝑟

0 0

︸           ︷︷           ︸
B𝑝


𝛿𝑎

𝛿𝑟

︸ ︷︷ ︸
u

,

(48)354

where (𝑌𝛽, 𝑌𝑝, 𝑌𝑟 , 𝑌𝛿𝑎 , 𝑌𝛿𝑟 ), (𝐿𝛽, 𝐿𝑝, 𝐿𝑟 , 𝐿𝛿𝑎 , 𝐿𝛿𝑟 ) and (𝑁𝛽, 𝑁𝑝, 𝑁𝑟 , 𝑁𝛿𝑎 , 𝑁𝛿𝑟 ) are the lateral-directional355

stability derivatives, 𝑉𝑎 is the trimmed airspeed and 𝑔 is the gravity. It should be recalled that the356

stability derivatives cannot be measured, and they vary depending on flight conditions.357

Taking the external disturbances and the model uncertainties into account, the system in (48)358

can be extended as follows359

¤x = A𝑝x + B𝑝u + f (𝑡, x). (49)360
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The system with its nominal desired dynamics can be parameterised to become similar to the

class of MIMO systems in (16) defined by

¤x =A𝑚(0)𝑥 + B0
(
𝜔0u + 𝜃⊤0 x + 𝜂𝑚(0)

)
+ 𝜂𝑢(0) (𝑡).

A second model for the case of inversion of the sign of the aileron command is given by

¤x =A𝑚(1)𝑥 + B0𝛽1
(
𝜔1u + 𝜃⊤1 x + 𝜂𝑚(1)

)
+ 𝜂𝑢(1) (𝑡),

where 𝛽1 =


−1 0

0 1

 .361

A third model for the case of inversion of the sign of the rudder command is given by

¤x =A𝑚(2)𝑥 + B0𝛽2
(
𝜔2u + 𝜃⊤2 x + 𝜂𝑚(2)

)
+ 𝜂𝑢(2) (𝑡),

where 𝛽2 =


1 0

0 −1

 .362

A fourth model for the case of inversion of both the signs of the aileron and the rudder commands

is given by

¤x =A𝑚(3)𝑥 + B0𝛽3
(
𝜔3u + 𝜃⊤3 x + 𝜂𝑚(3)

)
+ 𝜂𝑢(3) (𝑡),

where 𝛽3 =


−1 0

0 −1

 .363

The input matrix 𝐵0 was taken to be the same for both models.364

Simulation Results365

In order to show the efficiency of the multiple model controller, simulations were first made366

using only the nominal controller, i.e., the L1 adaptive controller with one model. Two situations367
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were considered in this case:368

1. Control inputs loss of effectiveness of 50% without the inversion of the commands;369

2. Control inputs loss of effectiveness of 50% with the inversion of the sign of the aileron370

command.371

Furthermore, the following uncertainties were added to the plant at simulation time 𝑡 = 7 𝑠:372

• Linear-in-state unknown parameters;373

• Matched disturbance 𝑑𝑚 = sin(2𝜋𝑡) deg.374

Simulation results for the nominal L1 adaptive controller, without inversion of actuation signs,375

are shown in Figure 3. As expected, the system has good performance in the presence of uncer-376

tainties. The aileron command 𝛿𝑎 and the rudder command 𝛿𝑟 are within acceptable limits.377
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Fig. 3. Closed-loop tracking performance of the nominal controller without inversion of the sign
of the commands.

In the second scenario of loss of effectiveness of 50% with the inversion of the sign of the378

aileron command, the system with only the nominal controller has become unstable as it can be379

observed in Figure 4. This is a direct consequence of the fact the adaptation laws (7)-(11) cannot380

match the correct control direction when it is inverted.381
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Fig. 4. Closed-loop tracking performance of the nominal controller with inversion of the sign of
the aileron.

Next, the multiple model controller was applied. The tuning parameters and the desired382

dynamics of the suboptimal controller were the same as the nominal controller. Three situations383

were considered in simulations:384

1. Control inputs loss of effectiveness of 50% with the inversion of the sign of the aileron385

command;386

2. Control inputs loss of effectiveness of 50% with the inversion of the sign of the rudder387

command;388

3. Control input loss of effectiveness of 50% with the of both the signs of the aileron and the389

rudder commands.390

Moreover, the same uncertainties as in previous simulations were added to the plant. The failures391

were introduced at simulation time 𝑡 = 7 𝑠.392

The simulation results in the case of inversion of the sign of aileron command, the rudder393

command, and both the ailerons and the rudder commands, are shown in Figure 5, Figure 6 and394

Figure 7, respectively. In each situation, the system has stayed stable and has shown a good tracking395

performance. The aileron command 𝛿𝑎 and the rudder command 𝛿𝑟 were within acceptable limits.396
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Fig. 5. Closed-loop tracking performance of the multiple model controller with inversion of the
sign of the aileron.
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Fig. 6. Closed-loop tracking performance of the multiple model controller with inversion of the
sign of the rudder.

Furthermore, as it is shown on Figure 8, the matching model to each failure case corresponds397

to the minimum cost function defined in (23).398

These simulations conclude that the application of the multiple model L1 adaptive controller is399

justified in case of structural damages or faults that lead to inversion of the sign of the control input400

of flight systems.401
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Fig. 7. Closed-loop tracking performance of the multiple model controller with inversion of the
sign of both the aileron and the rudder.
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(a) 1st failure case.
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(b) 2nd failure case.

0 5 10 15 20 25
0

0.05

0.1

0.15

0.2

Time [s]

J i
 

 

J
1

J
2

J
3

J
4

(c) 3rd failure case.
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(d) 4th failure case.

Fig. 8. Cost Functions

SUMMARY402

In this paper, an approach for L1 adaptive fault-tolerant control MIMO systems is proposed.403

The aim is the fault-tolerant control of small fixed-wing UAVs in the presence of critical failures.404
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The design is based on a nominal model for a fault-free plant and a set of suboptimal models for the405

plant under failures. The switching between the models is based on a simple quadratic criterion.406

The main advantage of this approach is that it allows a larger class of uncertainties and faults to407

be considered and can achieve better accommodation and preserve system integrity. Simulations408

have shown that the multiple model L1 adaptive has stabilised the system in case of inversion of409

the control input, while the controller with a single model has failed.410

PRACTICAL APPLICATIONS411

Small drones or Unmanned Aerial Vehicles (UAVs) that is, with wingspans less than 2 metres412

and payload smaller than 2 kg, are generally built based on commercial Radio Controlled (RC)413

airplane. Small UAVs are gaining growing interest because of their low cost, high manoeuvrability414

and simple maintenance. Autonomy, although relative because they are still operated under human415

supervision, is the main feature of small UAVs compared to RC airplane. Autonomy has been made416

possible through the development of advanced autopilot (flight control) systems. They are used for a417

wide range of military and civilian tasks, such as: inspection, detection, transportation, monitoring,418

search and rescue, photography, imaging, mapping, intelligence, surveillance, reconnaissance,419

agriculture, entertainment etc. However, small UAVs are generally built with low-cost components420

and materials, which increases the probability of occurrence of faults and failures. The proposed421

flight control solution permits to maintain the UAVs in flight in the presence of hard failure, while422

other approaches fail. Therefore, the mission can be safely terminated, either automatically, or423

manually. Alternatively, it it can also be decided to complete the operation in degraded (limited)424

mode. Therefore, this solution is recommended for the operation of drones, especially in urban425

environments that needs a high degree of safety and reliability.426
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