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Abstract—Decentralized trading schemes involving energy 

prosumers have prevailed in recent years. Such schemes provide a 

pathway for increased energy efficiency and can be enhanced by the use 

of blockchain technology to address security concerns in decentralized 

trading. To improve transaction security and privacy protection while 

ensuring desirable social governance, this paper proposes a novel two-

stage blockchain-based operation and trading mechanism to 

enhance energy hubs connected with integrated energy systems 

(IESs). This mechanism includes multi-energy aggregators that use 

a consortium blockchain and its enabled proof-of-work to transfer and 

audit  transaction records, with social governance principles for guiding 

prosumers’ decision-making in the peer-to-peer (P2P) transaction 

management process. The uncertain nature of renewable generation and 

load demand are adequately modeled in the two-stage Wasserstein-

based distributionally robust optimization. The practicality of the 

proposed mechanism is illustrated by several case studies that jointly 

show its ability to handle an increased renewable generation capacity, 

achieves a 16.7% saving in the audit cost, and facilitates 2.4% more 

P2P interactions. Overall, the proposed two-stage blockchain-based 

trading mechanism provides a practical trading scheme and can 

reduce redundant trading amounts by 6.5%, leading to a further 

reduction of the overall operation cost. Compared to the state-of-the-art 

benchmark methods, our mechanism exhibits significant operation cost 

reduction and ensure social governance and transaction security for 

an IES and energy hubs. 

 

 
Index Terms—Blockchain, energy hubs, energy management, 

integrated energy systems, peer-to-peer trading, social governance.  

NOMENCLATURE 

A. Sets  

H Energy hubs. 
T Time intervals. 

 

B. Variables 𝑃𝑃ℎ,𝑡𝑢𝑠𝑡,ℎ−𝑔𝑕
,𝑃𝑃ℎ,𝑡𝑢𝑠𝑡,𝑔𝑕−ℎ

 Power selling and purchase with the IES. 𝐺𝐺ℎ,𝑡𝑢𝑠𝑡,𝑔𝑕−ℎ
 Gas purchase from the IES. 𝑃𝑃ℎ,𝑡𝑢,𝑝𝑞𝑠𝑡,ℎ−ℎ
,𝑃𝑃ℎ,𝑡𝑢,𝑠𝑡𝑠𝑡,ℎ−ℎ

 Power trading among energy hubs. 𝛩𝛪ℎ,𝑡𝑢,𝑝𝑞𝑠𝑡,ℎ−ℎ
,𝛩𝛪ℎ,𝑡𝑢,𝑠𝑡𝑠𝑡,ℎ−ℎ

 Heat trading among energy hubs. 𝑃𝑃ℎ,𝑐𝑑𝑝𝑞 ,𝑡𝑢𝑠𝑡,𝑜𝑝
,𝛩𝛪ℎ,𝑐𝑑𝑝𝑞 ,𝑡𝑢𝑠𝑡,𝑜𝑝

 Conversion output of CHP. 𝛩𝛪ℎ,𝐶𝐶𝐶𝐶𝐶𝐷,𝑡𝑢𝑠𝑡,𝑜𝑝
,𝑃𝑃ℎ,𝐺𝐻𝐺𝐺,𝑡𝑢𝑠𝑡,𝑜𝑝

 Conversion output of GSHP/natural gas 
furnace. 𝑃𝑃ℎ,𝐵𝐵𝐵𝐶,𝑡𝑢𝑠𝑡,𝑐𝑑ℎ

,𝑃𝑃ℎ,𝐵𝐵𝐵𝐶,𝑡𝑢𝑠𝑡,𝑑𝑒𝑐𝑑ℎ
 Charging/discharging amount of battery.  𝛩𝛪ℎ,𝐻𝐼𝐵𝐶,𝑡𝑢𝑠𝑡,𝑐𝑑ℎ

,𝛩𝛪ℎ,𝐻𝐼𝐵𝐶,𝑡𝑢𝑠𝑡,𝑑𝑒𝑐𝑑ℎ
 Charging/discharging amount of heat 

storage. 𝐸𝐹ℎ,𝐵𝐵𝐵𝐶,𝑡𝑢𝑠𝑡 ,𝐸𝐹ℎ,𝐻𝐼𝐵𝐶,𝑡𝑢𝑠𝑡  Residual energy storage.  𝜉𝜉ℎ,𝑡𝑢 Uncertain PV generation. 𝜁𝜂𝑒𝑒𝑒𝑒𝑒𝑒 , 𝜁𝜂𝑡𝑢ℎ Uncertain power and heat loads. 

 

C. Parameters  𝜆𝜇ℎ−𝑔𝑕 
𝐶𝐷  Unit price of selling electric power to the 

integrated energy system (IES). 𝜆𝜇𝑔𝑕−ℎ,
𝐶𝐷 𝜆𝜇𝑔𝑕−ℎ 

𝐺𝐻  Unit price of purchasing power/gas from 
IES.  𝜆𝜇𝑟𝑠𝑒𝑒𝐶𝐷 , 𝜆𝜇𝑟𝑠𝑒𝑒𝐺𝐻  Unit reward price of energy trading 
estimation. 𝜆𝜇ℎ−ℎ𝐶𝐷 , 𝜆𝜇ℎ−ℎ𝐻𝐼  Unit price of power/heating trading among 
hubs. 𝜆𝜇ℎ𝐵𝐵𝐵𝐶,𝜆𝜇ℎ𝐻𝐼𝐵𝐶 Depreciation cost coefficient of battery and 
heat storage. 𝜗𝜘ℎ−𝑔𝑕𝐶𝐷 ,𝜗𝜘𝑔𝑕−ℎ𝐶𝐷  Penalty of electric power trading caused by 
decision adjustment. 𝜗𝜘𝑔𝑕−ℎ𝐺𝐻  Penalty of gas trading caused by decision 
adjustment. 𝜗𝜘ℎ−ℎ𝐶𝐷 ,𝜗𝜘ℎ−ℎ𝐻𝐼  Penalty of power/heat trading caused by 
decision adjustment. 𝜔𝜕𝐶𝐷𝑜𝑝𝑃𝑄𝐶𝐷  Cost coefficient of consensus process. 𝜌𝜍𝑒𝑒 ,𝜌𝜍𝑡𝑢ℎ CHP’s conversion efficiency: power and 
heating. 𝜌𝜍𝑓𝑔 Gas furnace’s conversion efficiency of. 𝜌𝜍𝐶𝐶𝐶𝐶𝐶𝐷 Coefficient of performance. 𝜌𝜍𝐻𝐼𝐵𝐶𝑐𝑑ℎ , 𝜌𝜍𝐻𝐼𝐵𝐶𝑑𝑒𝑐𝑑ℎ Charging and discharging efficiency of 
heat storage. 𝜌𝜍𝐵𝐵𝐵𝐶𝑐𝑑ℎ , 𝜌𝜍𝐵𝐵𝐵𝐶𝑑𝑒𝑐𝑑ℎ Charging and discharging efficiency of 
battery. 𝑃𝑃ℎ,𝑚𝑚𝑚𝑚𝑚𝑛ℎ𝑔𝑕

,𝑃𝑃ℎ,𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑔𝑕
 Max/min bound of IES power purchase. 𝑃𝑃ℎ,𝑚𝑚𝑚𝑚𝑚𝑛𝑔𝑕ℎ

,𝑃𝑃ℎ,𝑚𝑚𝑚𝑚𝑚𝑚𝑔𝑕ℎ
 Max/min bound of IES power selling. 𝐺𝐺ℎ,𝑚𝑚𝑚𝑚𝑚𝑛𝑔𝑕ℎ

,𝐺𝐺ℎ,𝑚𝑚𝑚𝑚𝑚𝑚𝑔𝑕ℎ
 Max/min bound of IES gas purchase. 𝑃𝑃ℎ,𝑝𝑞,𝑚𝑚𝑚𝑚𝑚𝑛ℎℎ ,𝑃𝑃ℎ,𝑝𝑞,𝑚𝑚𝑚𝑚𝑚𝑚ℎℎ  Max/min bound of IES power purchase of 

hubs. 𝑃𝑃ℎ,𝑠𝑡,𝑚𝑚𝑚𝑚𝑚𝑛ℎ−ℎ ,𝑃𝑃ℎ,𝑠𝑡,𝑚𝑚𝑚𝑚𝑚𝑚ℎ−ℎ  Max/min bound of IES power selling of 
hubs 
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𝛩𝛪ℎ,𝑝𝑞,𝑚𝑚𝑚𝑚𝑚𝑛ℎ−ℎ ,𝛩𝛪ℎ,𝑝𝑞,𝑚𝑚𝑚𝑚𝑚𝑚ℎ−ℎ  Max/min bound of IES heat purchase of 
hubs. 𝛩𝛪ℎ,𝑠𝑡,𝑚𝑚𝑚𝑚𝑚𝑛ℎ−ℎ ,𝛩𝛪ℎ,𝑠𝑡,𝑚𝑚𝑚𝑚𝑚𝑚ℎ−ℎ  Max/min bound of IES heat selling of 
hubs. 𝜒𝜓ℎ,𝑡𝑢 Generation forecast of PV. 𝐷𝐸𝑒𝑒𝑒𝑒𝑒𝑒, 𝐷𝐸𝑡𝑢ℎ Power/heating demand. 

I. INTRODUCTION 

HE interaction among multi-energy vectors plays a vital 
role in ensuring efficient energy usage motivated by the 
promising energy conversion techniques, e.g., combined 

heat and power (CHP) and power-to-gas (P2G) [1, 2].  

A. Peer-to-Peer Energy Hub Trading Management 

Integrated energy systems (IESs) enable to comprehensively 
aggregate the integration of multi-energy vectors and achieve 
energy coordination and complementation via multi-energy 
infrastructures [3]. Energy hubs are recognized as a special 
form of IES [4], which realizes the energy conversion and 
comprehensive coordination in any scale systems with 
flexibility [5]. Paper [6] designs a distributed multi-period 
energy hub operation model considering power, gas and heating. 
A fully-distributed consensus-based method is used to solve the 
reformulated second-order cone programming problem. In [7], 
a distributed management algorithm for residential energy hubs 
is given. The monotone generalized Nash game realizes 
efficient energy coordination between the customers and energy 
providers.  

Each energy hub with distributed generators can be regarded 

as a prosumer and participate in the market trading environment 

for addressing the local excessive energy consumption and 

promoting social welfare. Energy hub prosumers can actively 

participate in peer-to-peer (P2P) trading, which contributes to 

increasing the on-site consumption of renewable generation 

with reduced reliance on the grid [8]. A cooperative game-

theoretical P2P operation for energy hubs is conducted to fairly 

allocate the payoff [8]. The balanced trading result 

demonstrates the sound stability of the energy hub grand 

coalition. In [9], a risk-averse stochastic programming (SP) is 

proposed for the market bidding problem of energy hubs. P2G 

is maximally utilized to mitigate the operational risk due to 

uncertainty from wind turbines. Paper [10] proposes a P2P 

coordination for home energy hub systems via optimally 

scheduling the home storage systems and shiftable appliances. 

The hierarchical framework includes the levels of selection and 

home appliance management. A bargaining-based cooperative 

game theoretical formulation is proposed for IESs in [11]. The 

participated energy hubs will bargain with each other in terms 

of the exchanged energy and payments. Paper [12] introduces a 

novel stochastic optimization framework that addresses 

resilient operation scheduling of interconnected energy hubs, 

incorporating P2P energy trading and energy storages during 

severe disturbances. The framework achieves significant 

reductions in load shedding, with P2P energy trading reducing 

load shedding by 64% leading to a 76% reduction in load 

shedding compared to scenarios without these strategies. A 

decentralized P2P electricity trading model using an alternating 

direction method of multipliers approach is proposed in [13], 

demonstrating its effectiveness in achieving least-cost 

operation of energy hubs, minimizing data exchange, and 

reducing overall costs and power losses in a transactive energy 

market. Paper [14] introduces a bi-level strategic energy trading 

framework that utilizes P2P transactive energy hubs and 

electric vehicles to minimize operation costs of the distribution 

network, demonstrating its effectiveness through numerical 

results on the IEEE 33-bus test system.  

B. Grid-Connected Operation Schemes 

In addition to the islanded energy hub, recent research 
investigates the coordinated optimization of district IES 
interconnected with energy hubs. A flexible energy demand 
control is given in [15] for providing additional balance for 
avoiding the wind power curtailment. The energy hub 
aggregator is authorized to purchase energy from IES for 
supplying residential customers in the most efficient way. Paper 
[16] develops a chance-constrained model for planning and 
operation of energy hubs networked with a distribution level 
IES. The reformulated second-order cone problem is efficiently 
solved with global optimality. The results show the relationship 
between the hub number and carbon emission. Paper [17] 
introduces an optimal scheduling model for energy grids and 
networked energy hubs, showcasing its ability to 
simultaneously improve economic status, reduce operating 
costs and energy losses, and enhance voltage profile and 
temperature in the networks. In [18], it addresses the issue of 
flexibility pricing in energy hubs by formulating a bilevel 
model that maximizes the expected profit of resources in the 
flexibility market, considering uncertain energy generation 
sources. The results demonstrate the effectiveness of the 
proposed approach in improving the operation, flexibility, and 
economic conditions of energy networks and energy hubs. 
Paper [19] presents a bi-level optimization model for flexible 
renewable energy hubs integrated with various storage systems, 
demonstrating their potential to improve the technical and 
economic conditions of energy networks while achieving high 
flexibility conditions and enhancing the economic status of the 
renewable hub, as validated by numerical results. Paper [20] 
introduces a two-stage optimization framework for grid-
connected energy hubs' participation in day-ahead and real-time 
energy markets, demonstrating its ability to improve the 
operational and economic performance of energy networks 
while reducing computation time compared to single-layer 
management and achieving up to 18% and 26% enhancements 
in operating and economic indicators. 

C. System Uncertainties 

The uncertainties in the energy hub management include 
uncertain renewable generation output, load demand, and 
energy pricing, etc. The major measure to smooth the adverse 
effects of uncertainties and prediction limitation is taking the 
uncertainty impacts into account when coordinating the energy 
components to avoid suboptimal solutions [21]. Two traditional 
approaches have been substantially applied in the existing 
research to cope with the uncertainties, namely robust 
optimization (RO) and SP. Paper [22] proposes an optimal load 
dispatch scheme for energy hub communities. Monte Carlo 
simulation is applied to model the electric vehicle uncertainty 
and RO is adopted to model the electricity price uncertainty. 

T 
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The uncertainty set contains the upper and lower bounds of the 
prices and the robustness level can be controlled by a robustness 
parameter. An optimal economic dispatch model of energy hubs 
considering the ramping product in the energy market is given 
in [23]. RO is used to hedge against the price uncertainties. An 
interval prediction-based method considering a long short-term 
memory learning program is incorporated to select the 
uncertainty intervals. Paper [24] deals with the electricity 
market uncertainties for a self-scheduling energy hub, where 
the RO is combined with an information gap decision theory 
approach. The results demonstrate the 8.6% increase in the 
operation cost. Paper [25] presents a min max min robust 
framework for the short-term operation of microgrids with 
natural gas networks, effectively addressing the challenges 
posed by renewable resource uncertainty and electrical/thermal 
loads, while demonstrating improved system robustness and 
flexibility in the presence of uncertainties. Paper [26] 
introduces a distributed algorithm based on the alternating 
direction method of multipliers to coordinate the operation of 
interconnected energy hubs in networked microgrids, 
effectively resolving power exchange conflicts between 
microgrids and the distribution network while considering 
uncertainties through a distributed robust model. SP is exploited 
in [27] to capture the ambient temperature uncertainty in 
adiabatic compressed air energy storage management for 
energy hubs. The Kernel regression is helpful to estimate the 
conditional distributional information of uncertainties. Paper 
[28] designs a multi-objective optimization scheme for energy 
hubs considering the uncertain renewable generation output, 
load, and market prices. SP is applied using the scenario 
generation of Normal, Beta, and Weibull distributions. The 
research of [29] designs a two-stage stochastic model for 
operating energy hubs in conjunction with day-ahead and real-
time electricity markets, incorporating value-at-risk to mitigate 
high operation costs in worst-case scenarios. The results 
demonstrate the trade-off between expected cost and value-at-
risk, as well as the impact of confidence level on value-at-risk. 
Paper [30] proposes a robust chance-constrained optimization 
framework for the optimal operation management of an energy 
hub, considering electrical, heating, and cooling demands as 
well as renewable power generation. 

D. Decentralized Energy Trading and Blockchain Technology 

The increasing promotion of trading among energy hubs 
imposes security challenges, e.g., privacy leakage and forgery. 
The traditional centralized trading mechanism relies on a 
trusted third party, which inevitably causes a lack of privacy 
and misconduct behaviours for benefits [31]. To create a 
transparent and auditable trading environment, blockchain 
technology has been exploited widely in the finance domain, 
e.g., the application of BitCoin [32]. The consensus mechanism 
is the core part of blockchain, which audits and maintains the 
information from nodes [33, 34]. Then the traceable transaction 
data is verified and stored as blocks and added into the existing 
blockchain with a unique hash value. Paper [35] creates a 
blockchain-empowered energy transaction platform for 
individual households and is tested on hardware internet of 
things (IoT) devices, which reduces the overall energy purchase 
cost from the traditional energy purchase patterns. A residential 
power trading system is established in [36] and tested in real-

world cases in Canada. The homeowners enable to select 
bidding strategies based on the Hyperledger Fabric platform. To 
investigate how blockchain disables dishonest participants in 
energy P2P trading, a combined blockchain and distributed 
optimization are proposed [37]. Paper [38] explores a 
homomorphic encryption-based P2P trading model for energy 
blockchain systems. The real identity of the blockchain 
participants is retrieved by machine learning techniques. The 
majority of blockchain-based energy management has 
extensively applied blockchain technology for securing 
transactions of P2P trading of electric vehicles and microgrids. 
A hierarchical and zonal scheduling model for electric vehicles 
using consortium blockchain is proposed in [39]. The overall 
load variance is minimized via an iterative two-layer 
optimization model. The underutilization of gaming 
competition among microgrids is mitigated in [40] via a 
blockchain-based particle swarm optimization model. Paper 
[41] designs a demand side load management for industrial 
users with a secure market structure. The users can directly 
control their own loads without relying on demand aggregators. 
Accordingly, inaccurate estimations are avoided. A 
comprehensive model for the economic and technical 
management of microgrids with ancillary services is given in 
[42]. A blockchain client-server architecture toward prosumers 
is developed for transparent tradings. Paper [43] proposes a 
contract-based EV charging strategy for the internet of energy. 
The delegated Byzantine fault tolerance consensus scheme 
provides an efficient platform for audit and sharing the 
transaction records.   

 

Fig. 1. The proposed operation process. 

 

Fig. 2. The proposed trading process. 
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E. Motivations 

Our research is motivated by the intersection of several key 

trends and challenges in the field of energy systems, 

particularly in the social implications of these developments, as 

they relate to the decentralization of energy systems, the 

application of blockchain technology, the integration of energy 

hubs, the handling of uncertainty in renewable generation and 

load demand, and the need for new forms of social governance 

in energy trading. The key motivations of this paper are:  

Decentralized Energy Trading: In recent years, decentralized 

trading schemes among energy prosumers have gained 

significant popularity. These schemes provide a pathway for 

improving energy efficiency by allowing direct energy 

exchange between producers and consumers. However, the 

decentralized nature of these schemes presents new challenges 

in terms of transaction security and privacy protection. 

Blockchain Technology: Blockchain technology has emerged 

as a promising solution to these challenges. By providing a 

secure and transparent platform for transactions, blockchain 

technology enhances trust and cooperation among participants 

in decentralized energy trading. However, the application of 

blockchain technology in this context is still a relatively new 

area of research, and there are many unresolved issues and 

potential improvements to explore. 

Integration of Energy Hubs and Blockchain: Existing 

research has often treated energy hubs and blockchain 

technology as separate areas of investigation. There is a 

significant gap in the literature for a comprehensive approach 

that integrates these two areas. Our research is motivated by the 

need to bridge this gap and develop a unified framework for 

blockchain-based energy trading. 

Two-Stage Consortium Blockchain-Based Framework: In 

response to this need, we propose a two-stage consortium 

blockchain-based framework for socially-governed multi-

energy trading. This framework models the interdependencies 

among power, gas, and heating in energy hubs with multiple 

conversion technologies. It also provides a preparatory plan for 

IES operators and energy hub owners, leading to more reliable 

and economic system operation.  

Social Implications and Governance: The transition towards 

decentralized energy systems has profound social implications. 

It shifts the power dynamics in energy markets, empowering 

individual prosumers and local communities. However, this 

shift also requires new forms of governance to ensure fair and 

efficient operation of the energy system. Our research addresses 

this need by proposing a socially-governed multi-energy 

trading framework. This framework leverages blockchain 

technology to enable transparent, secure, and democratic 

decision-making processes in energy trading. It allows all 

participants to verify transactions, enhancing trust and 

cooperation in the energy community. Furthermore, the two-

stage trading mechanism provides a preparatory plan for IES 

operators and energy hub owners, ensuring that the operational 

decisions are socially optimal and economically beneficial. 

This socially-governed approach to energy trading represents a 

significant contribution to the field of computational social 

systems, offering new insights into how technology can be used 

to facilitate social coordination and cooperation in 

decentralized energy systems. 

F. Research Gaps 

A review of previous research suggests several important 

research gaps. 

1. Energy hubs and blockchain applications in power 

systems have been investigated separately. Although prior 

studies, such as [6] and [7], have examined issues related to 

operational efficiency, social welfare, and environmental 

friendliness of the energy hub management, few efforts are 

devoted to the operational security of energy hubs. For instance, 

Xu et al. [6] design a distributed multi-period energy hub 

operation model that includes power, gas, and heating, but does 

not consider the security challenges in P2P trading. 

Similarly, Liang et al. [7] develop a distributed management 

algorithm for residential energy hubs, which also does not 

consider the potential security risks associated with 

decentralized trading. Meanwhile, blockchain applications in 

energy systems also have been explored, as exemplified by [8] 

and [9], but mostly separate from energy hubs. Despite 

blockchain’s potential for enhancing trust and cooperation 

among participants in decentralized energy trading, its 

integration with energy hubs’ operations and management 

received little attention. Fruitful opportunities remain to 

leverage the security and transparency benefits of blockchain, 

and require a comprehensive approach to integrate energy hubs’ 

operations and management and blockchain-based trading. In 

response to this need, the current research aims to develop a 

secure, efficient blockchain-based energy hub trading and 

management mechanism that bridges the gap in previous 

studies of energy hubs and blockchain applications in power 

systems. 

2. Despite existing models of bi-level or tri-level optimization 

reflect the interactive relationships between P2P energy 

producers and customers, effective two-stage blockchain-based 

P2P trading mechanisms for modelling day-ahead and 

corrective trading behaviours are still lacking. Day-ahead 

decision-making is essential for preparing the next-day trading 

and management schemes, and can result in efficient, rigorous, 

and optimal trading practices. For example, [8] and [9] propose 

cooperative game-theoretical P2P operations and risk-averse 

stochastic programming, respectively. These studies do not 

offer any comprehensive two-stage blockchain-based P2P 

trading mechanisms. Gan et al. [8] suggest a cooperative game-

theoretical P2P operation model for energy hubs to increase on-

site consumptions of renewable generation while reducing the 

reliance on the power grid. This model however does not 

consider day-ahead and corrective trading behaviours that are 

crucial for preparing the next-day trading and management 

schemes. Similarly, Wang et al. [9] propose a risk-averse 

stochastic programming to address the market bidding problem 

that involve energy hubs. While this work addresses the 

operational risk, due to the uncertainty from wind turbines, it 

does not incorporate any two-stage blockchain-based P2P 

trading mechanisms. Lacking such a mechanism in [8] and [9] 

underscores an important gap that needs to be addressed. 
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Moreover, [10] and [11] design P2P coordination for home 

energy hub systems and a bargaining-based cooperative game 

theoretical formulation for IESs, respectively. Yet thy do not 

offer a comprehensive two-stage blockchain-based P2P trading 

mechanism. This further reveals the need for effective two-

stage blockchain-based P2P trading mechanisms. 

3. Traditional RO and SP have been extensively applied for 

uncertainty modeling in operations research, but each has its 

own limitations. For example, RO has been criticized for over-

conservativeness, as evident in [22] and [23] that uses RO to 

model uncertainties in optimal load dispatch scheme for energy 

hub communities and optimal economic dispatch model of 

energy hubs, respectively. Although it can model uncertainties, 

RO suffers over-conservativeness, which in turn can lead to 

excessively cautious decisions that are suboptimal in practice. 

On the other hand, SP has been challenged for high 

computational requirements, large samples, and inaccurate 

results, desite its frequent use in uncertainty modeling. In [27] 

and [28], SP is applied to capture the ambient temperature 

uncertainty in adiabatic compressed air energy storage 

management for energy hubs or design a multi-objective 

optimization scheme for energy hubs with consideration of the 

uncertain renewable generation output, load, and market prices. 

While these studies illustrate the use of SP in uncertainty 

modelling with some insights, they fail to address its high 

computational requirements, which represents a significant, 

practical barrier especially in large-scale problems that involve 

large samples. It is crucial to mitigate the limitations of these 

two traditional methods, which calls for new methods capable 

of modeling uncertainties while avoiding the over-

conservativeness of RO and high computational requirements 

of SP. We address this gap by proposing a two-stage 

Wasserstein-based DRO model that can effectively handle load 

and renewable uncertainties. Specifically, we adopt a 

Wasserstein-based ambiguity set (WAS) and use a linear 

decision rule to obtain a tractable robust counterpart. This 

approach retains the advantages of both RO and SP, can 

mitigate their respective limitations, and thus provides a more 

practical and efficient solution for uncertainty modelling in 

energy systems. 

G. Contributions 

This paper introduces a two-stage consortium blockchain-
based framework for socially-governed multi-energy trading. 
“Socially governed” entails democratic decision-making 
processes enabled by the proposed blockchain-based 
framework which allows all participants to verify transactions 
with enhanced trust and cooperation in the energy community. 
In addition, its two-stage trading mechanism provides IES 
operators and energy hub owners with a preparatory plan to 
ensure socially optimal and economically beneficial operational 
decisions. This paper proposes a two-stage coordinated 
privacy-preserving operation and trading mechanism between 
energy hubs and the distribution level IES based on a 
consortium blockchain. The interdependencies among power, 
gas and heating are modelled in energy hubs with multiple 
conversion technologies. Each energy hub is a prosumer which 
can both produce and consume multi-energy. Compared with 

the previous blockchain-based trading works, this paper further 
models the interaction between energy hubs and the IES 
operator. A registered energy hub with unique keys and 
certificate enables to trade power, gas, and heating with IES and 
other interconnected energy hubs using multi-energy coins 
(MECs) based on the secure consortium blockchain-based 
trading environment. The two-stage mechanism realizes trading 
in both day-ahead and intra-day markets. Multi-energy 
aggregators (MAGs) are responsible for auditing transaction 
records openly without the cooperation of any trusted third 
parties. The inherent renewable and load uncertainties of energy 
hubs are captured by the innovative Distributionally robust 
optimization (DRO), inheriting the advantages of RO and SP 
[44-46]. The WAS is adopted and a linear decision rule is 
utilized to obtain a tractable robust counterpart. Our framework 
is 'practical' in the sense that it can be effectively implemented 
in real-world energy systems. Our case studies demonstrate that 
our framework can handle increased renewable generation 
capacity, save audit costs, and facilitate more P2P interaction. 
Moreover, our framework reduces the redundant trading 
amount by 6.5%, leading to further reductions in the overall 
operation cost. 

For simplicity and ease of communications, we refer this 
work blockchain-based coordinated operation and trading 
scheme for energy hubs (BOTH). Based on the existing 
literature, the key novelties of this paper are three-fold: 
 This paper develops a blockchain-based multi-energy 

trading environment for networked energy hubs. A 
consortium-based blockchain is applied to securely audit and 
verify transaction records. 

 A hierarchical two-stage operation and trading framework is 
developed for energy hubs, which strengthens the 
operational flexibility. 

 A two-stage Wasserstein-based DRO model is deployed for 
effectively handling load and renewable uncertainties. The 
ambiguity set can be flexibly adjusted. 

H. Paper Organization 

The remainder of the paper is organized as follows. In section 
Ⅱ, the blockchain-based operation and trading scheme are 
given. Section Ⅲ proposes system modelling and objective 
functions. Section Ⅳ presents the methodology for solving the 
proposed problem. The case evaluation is demonstrated in 
section Ⅴ. The conclusion is finally given in section Ⅵ.  

II. BLOCKCHAIN-BASED OPERATION AND TRADING SCHEME 

    This section presents the operation and trading mechanisms 
of BOTH, respectively. The multi-energy trading can be 
conducted not only between different energy hubs but between 
energy hubs and MAGs. The consortium blockchain is 
exploited in this paper to share and audit transaction records 
publicly without trusting any third parties.  

A. Blockchain-Based Operation 

    The two-stage blockchain-based operation scheme for IES 
and energy hubs, which we refer to as a socially-governed 
operation scheme, is given in Fig. 1. At the first stage, the IES 
operator makes the initial system operation plan based on the 
estimated energy trading amount uploaded by energy hub 
owners. In this socially-governed scheme, energy hub owners 
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are encouraged and rewarded to share the estimated next-day 
trading plan with MAG. This collective participation and 
decision-making process is crucial for achieving an accurate 
and optimal day-ahead operation scheme made by the IES 
operator. The intended trading plan is encrypted and signed 
with digital signatures for transaction security. The pseudonym 
information is transferred from MAGs to the IES operator. 
Then the IES operator enables to schedule generators’ reserve 
capacity with obtained predicted energy trading plan with 
MAGs. In the second stage, energy hub owners send energy 
exchange request again owing to the uncertain load 
characteristics under the real practice. The IES operator makes 
corrective adaptive operation considering the uncertain energy 
exchange behaviour based on the request transferred via MAGs. 
Meanwhile, secure energy trading is implemented between 
MAGs and energy hubs. 

B. Blockchain-Based Trading 

MAGs provide wireless communication services for energy 
hubs and the IES. MAGs process the trading request from 
energy hubs and work as brokers to broadcast the requests to all 
energy hub owners and the IES operator. During the second-
stage operation, a consensus process is required for auditing 
transactions, which is implemented prior to the newly created 
block is connected to the existing blockchain, i.e., a new 
transaction is formed. All the authorized MAGs are responsible 
for the consensus process, which forms the proposed 
consortium blockchain structure.  

The blockchain-based trading scheme is shown in Fig. 2. A 
MAG consists of a transaction server, a transaction storage and 
an account identification. The transaction server is adopted for 
collecting trading requests from energy hubs and match trading 
pairings among all the connected energy hubs. It also bridges 
the energy exchange between energy hubs and the IES. The 
account information of energy hubs is managed by the account 
identification. Furthermore, it encrypts and structures 
transactions into blocks and transmits to all the MAGs for audit. 
All the transaction records are stored in the transaction storage. 

The schematic of the proposed energy hub is given in Fig. 3. 
Each energy hub is registered through a trusted authority, e.g., 
an associated department of government, and accordingly is 
legitimate for secure energy trading. Each energy hub has a 

unique identity 𝐼𝐽ℎ with public and private keys (𝜋𝜌ℎ and 𝜌𝜍ℎ) as 

well as a corresponding certificate 𝑐𝑐𝑐𝑐𝑐𝑐ℎ . The trading among 
energy hubs and IES relies on a MECs. A digital wallet is 

attached to each 𝐼𝐽ℎ  with pre-saved MEC. The registration 

authority provides a digital wallet address for each 𝐼𝐽ℎ  as 𝑊𝑋ℎ 

and a mapping list {𝜋𝜌ℎ ,𝜌𝜍ℎ , 𝑐𝑐𝑐𝑐𝑐𝑐ℎ ,𝑊𝑋ℎ}. As shown in Fig. 2, an 
energy hub owner can decide trading with other energy hubs, 
IES or being in self-operation status. During each transaction, 
pseudonyms are created for trading participators. The 
associated data and transaction records are encrypted with 
timestamps. Digital signatures are required to ensure the 
security and accuracy of transactions.  

The step-by-step blockchain-based trading mechanism, forming 
the core of our socially-governed approach, is illustrated in Fig. 4. 
WEH owners are able to submit trading timestamps. Digital 
signatures are required to ensure the security and accuracy of 
transactions. This socially-governed mechanism ensures that all 
participants have a say in the trading process, enhancing trust and 

cooperation among them. We compile smart contracts via Solidity 

0.8.7 with the code shown in Fig. 5. After the successful trading, 
the energy buying energy hub pays for the purchased energy via 
MECs, which is transferred from its own wallet address to the 
energy seller’s wallet address. The transaction record is 
provided by the energy buyer and the seller then verifies and 

 

 
Fig. 3.  The proposed energy hub model.  

 

Fig. 4. Deployed smart contract code via Solidity. 
 
 

Fig. 5. Submitted water-energy request from WEH1. 
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signs the transaction record, followed by the uploading process 
to MAGs for audit.     

When a transaction is generated, it is facing an audit by all 
the authorized MAGs, which is considered as a proof-of-work 
(PoW) mechanism. The PoW generates a unique hash for each 
block, which can be seen as a fingerprint identifying each block 
with corresponding content. The cryptographic hash provides 
the main secure guarantee for the blockchain as the linkage 
between each block. To tamper the block’s content, the hash 
with difficulty needs to be disconnected first. After a 
transaction is successfully added to the consortium blockchain, 
it is structured into a block and linked with the existing 
blockchain. The record is publicly visible to all the energy hubs 
and MAGs.   

III. SYSTEM MODELLING  

A. Day-Ahead Modelling of BOTH 

In the first stage, the trading and operation cost among energy 
hubs are to be minimized. In (1), the first term represents the 

benefit of power selling to the IES, where 𝜆𝜇ℎ−𝑔𝑕 
𝐶𝐷  represents the 

cost coefficient; 𝑃𝑃ℎ,𝑡𝑢 
𝑠𝑡,ℎ−𝑔𝑕

 represents the amount of power selling 

to the IES. The second and third terms show the day-ahead 

estimation of power and gas purchase cost, where 𝜆𝜇𝑔𝑕−ℎ𝐶𝐷  and 𝜆𝜇𝑔𝑕−ℎ𝐺𝐻  are the corresponding cost coefficients; 𝑃𝑃ℎ,𝑡𝑢 
𝑠𝑡,𝑔𝑕−ℎ

 and  𝐺𝐺ℎ,𝑡𝑢𝑠𝑡,𝑔𝑕−ℎ
 are the power and gas purchase. In the day-ahead 

market, each energy hub owner estimates the trading amount 
for the next 24 hours and request the energy exchange with IES 
through the closest MAG. This manner is encouraged since a 
trading and operation preparatory dispatch can be obtained and 
mitigates the IES operation difficulties for the second stage. 
Accordingly, the energy purchase price from IES in the day-
ahead market is cheaper than the intra-day market. The 
associated reward is given in the fourth and fifth terms, where 𝜆𝜇𝑟𝑠𝑒𝑒𝐶𝐷  and 𝜆𝜇𝑟𝑠𝑒𝑒𝐺𝐻  are the reward coefficients of the energy 

estimation. The sixth and seventh terms depict the trading cost 

with other connected energy hubs, where  𝜆𝜇ℎ−ℎ𝐶𝐷  and 𝜆𝜇ℎ−ℎ𝐻𝐼  are 

the power and heating trading coefficiencies; 𝑃𝑃ℎ,𝑡𝑢,𝑝𝑞/𝑠𝑡𝑠𝑡,ℎ−ℎ
 and 𝛩𝛪ℎ,𝑡𝑢,𝑝𝑞/𝑠𝑡𝑠𝑡,ℎ−ℎ

 denote the power and heating P2P trading amount. The 

depreciation cost of battery and heat storage is given in the rest 

of (1), where 𝜆𝜇ℎ𝐵𝐵𝐵𝐶  and 𝜆𝜇ℎ𝐻𝐼𝐵𝐶  are the degradation coefficients of 

power and heating storage; 𝑃𝑃ℎ,𝐵𝐵𝐵𝐶,𝑡𝑢𝑠𝑡,𝑐𝑑ℎ/𝑑𝑒𝑐𝑑ℎ
 and 𝛩𝛪ℎ,𝐻𝐼𝐵𝐶,𝑡𝑢𝑠𝑡,𝑐𝑑ℎ/𝑑𝑒𝑐𝑑ℎ

 denote the 

charging and discharging power and heating of the storage 
system. 𝛤𝛥1 = min � −𝜆𝜇ℎ−𝑔𝑕 

𝐶𝐷 𝑃𝑃ℎ,𝑡𝑢𝑠𝑡,ℎ−𝑔𝑕ℎ∈𝐻𝐼,𝑡𝑢∈𝑇𝑈 + 𝜆𝜇𝑔𝑕−ℎ𝐶𝐷 𝑃𝑃ℎ,𝑡𝑢𝑠𝑡,𝑔𝑕−ℎ
+𝜆𝜇𝑔𝑕−ℎ𝐺𝐻 𝐺𝐺ℎ,𝑡𝑢𝑠𝑡,𝑔𝑕−ℎ

  

 −𝜆𝜇𝑟𝑠𝑒𝑒𝐶𝐷 �𝑃𝑃ℎ,𝑡𝑢𝑠𝑡,ℎ−𝑔𝑕
+ 𝑃𝑃ℎ,𝑡𝑢𝑠𝑡,𝑔𝑕−ℎ� − 𝜆𝜇𝑟𝑠𝑒𝑒𝐺𝐻 𝐺𝐺ℎ,𝑡𝑢𝑠𝑡,𝑔𝑕−ℎ

+ 𝜆𝜇ℎ−ℎ𝐶𝐷 �𝑃𝑃ℎ,𝑡𝑢,𝑝𝑞𝑠𝑡,ℎ−ℎ − 𝑃𝑃ℎ,𝑡𝑢,𝑠𝑡𝑠𝑡,ℎ−ℎ� 
+𝜆𝜇ℎ−ℎ𝐻𝐼 �𝛩𝛪ℎ,𝑡𝑢,𝑝𝑞𝑠𝑡,ℎ−ℎ − 𝛩𝛪ℎ,𝑡𝑢,𝑠𝑡𝑠𝑡,ℎ−ℎ�+ 𝜆𝜇ℎ𝐵𝐵𝐵𝐶�𝑃𝑃ℎ,𝐵𝐵𝐵𝐶,𝑡𝑢𝑠𝑡,𝑐𝑑ℎ + 𝑃𝑃ℎ,𝐵𝐵𝐵𝐶,𝑡𝑢𝑠𝑡,𝑑𝑒𝑐𝑑ℎ� 

+𝜆𝜇ℎ𝐻𝐼𝐵𝐶�𝛩𝛪ℎ,𝐻𝐼𝐵𝐶,𝑡𝑢𝑠𝑡,𝑐𝑑ℎ + 𝛩𝛪ℎ,𝐻𝐼𝐵𝐶,𝑡𝑢𝑠𝑡,𝑑𝑒𝑐𝑑ℎ � (1) 

The technical constraints of the first-stage BOTH are 
presented in (2)-(15), which are categorized into 1) power and 
gas constraints, and 2) thermal constraints. Multiple energy 
converters are utilized to collectively consume gas and power.  
1) Power and Gas Constraints  

    Equations (2)-(6) constrain the conversion of GSHP, gas 
furnace and CHP. Constraint (2) regulates the input of GSHP, 

i.e., 𝑃𝑃ℎ,𝐶𝐶𝐶𝐶𝐶𝐷,𝑡𝑢𝑠𝑡,𝑚𝑚
. Constraints (3) and (4) are used to limit the gas 

furnace, where 𝐺𝐺ℎ,𝐺𝐻𝐺𝐺,𝑡𝑢𝑠𝑡,𝑚𝑚
 and 𝑃𝑃ℎ,𝐺𝐻𝐺𝐺,𝑡𝑢𝑠𝑡,𝑜𝑝

 are the input and output; 𝜂𝜃𝐺𝐻𝐺𝐺 

is the conversion efficiency. In equations (5) and (6), the power 

output of the CHP 𝑃𝑃ℎ,𝑐𝑑𝑝𝑞 ,𝑡𝑢𝑠𝑡,𝑜𝑝
  is constrained, where 𝐺𝐺ℎ,𝑐𝑑𝑝𝑞 ,𝑡𝑢𝑠𝑡,𝑚𝑚

 is the 

gas input; 𝜌𝜍𝑐𝑑𝑝𝑞𝑒𝑓 represent the conversion efficiency. 𝑃𝑃𝐶𝐶𝐶𝐶𝐶𝐷,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝑃𝑃ℎ,𝐶𝐶𝐶𝐶𝐶𝐷,𝑡𝑢𝑠𝑡,𝑚𝑚 ≤ 𝑃𝑃𝐶𝐶𝐶𝐶𝐶𝐷,𝑚𝑚𝑚𝑚𝑚𝑛𝑚𝑚  (2) 𝑃𝑃ℎ,𝐺𝐻𝐺𝐺,𝑡𝑢𝑠𝑡,𝑜𝑝
= 𝜌𝜍𝐺𝐻𝐺𝐺𝐺𝐺ℎ,𝐺𝐻𝐺𝐺,𝑡𝑢𝑠𝑡,𝑚𝑚

 (3) 𝑃𝑃𝐺𝐻𝐺𝐺,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝑃𝑃ℎ,𝐺𝐻𝐺𝐺,𝑡𝑢𝑠𝑡,𝑚𝑚 ≤ 𝑃𝑃𝐺𝐻𝐺𝐺,𝑚𝑚𝑚𝑚𝑚𝑛𝑚𝑚  (4) 𝑃𝑃ℎ,𝑐𝑑𝑝𝑞 ,𝑡𝑢𝑠𝑡,𝑜𝑝
= 𝜌𝜍𝑐𝑑𝑝𝑞𝑒𝑓𝐺𝐺ℎ,𝑐𝑑𝑝𝑞 ,𝑡𝑢𝑠𝑡,𝑚𝑚

 (5) 𝑃𝑃𝑐𝑑𝑝𝑞,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝑃𝑃ℎ,𝑐𝑑𝑝𝑞,𝑡𝑢𝑠𝑡,𝑚𝑚 ≤ 𝑃𝑃𝑐𝑑𝑝𝑞,𝑚𝑚𝑚𝑚𝑚𝑛𝑚𝑚  (6) 

    The charging and dischargeng power of battery storage 
should be limited. In (7) and (8), the remaining capacity of 

battery storage 𝐸𝐹ℎ,𝐵𝐵𝐵𝐶,𝑡𝑢𝑠𝑡  is presented, where 𝜌𝜍𝐵𝐵𝐵𝐶𝑐𝑑ℎ  and 𝜌𝜍𝐵𝐵𝐵𝐶𝑑𝑒𝑐𝑑ℎ are the 

charging and discharging efficiencies.  𝐸𝐹ℎ,𝐵𝐵𝐵𝐶,𝑡𝑢𝑠𝑡 = 𝐸𝐹ℎ,𝐵𝐵𝐵𝐶,𝑡𝑢−1𝑠𝑡 + � 𝑃𝑃ℎ,𝐵𝐵𝐵𝐶,𝑡𝑢𝑠𝑡,𝑐𝑑ℎ 𝜌𝜍𝐵𝐵𝐵𝐶𝑐𝑑ℎ −𝑡𝑢1 𝑃𝑃ℎ,𝐵𝐵𝐵𝐶,𝑡𝑢𝑠𝑡,𝑑𝑒𝑐𝑑ℎ
/𝜌𝜍𝐵𝐵𝐵𝐶𝑑𝑒𝑐𝑑ℎ  

(7) 𝐸𝐹𝐵𝐵𝐵𝐶,𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝐸𝐹ℎ,𝐵𝐵𝐵𝐶,𝑡𝑢𝑠𝑡 ≤ 𝐸𝐹𝐵𝐵𝐵𝐶,𝑚𝑚𝑚𝑚𝑚𝑛   (8) 

    The trading amount ( 𝑃𝑃ℎ,𝑡𝑢𝑠𝑡,ℎ−𝑔𝑕
,  𝑃𝑃ℎ,𝑡𝑢𝑠𝑡,𝑔𝑕−ℎ

, 𝐺𝐺ℎ,𝑡𝑢𝑠𝑡,𝑔𝑕−ℎ
, 𝑃𝑃ℎ,𝑡𝑢,𝑝𝑞𝑠𝑡,ℎ−ℎ

, and 𝑃𝑃ℎ,𝑡𝑢,𝑠𝑡𝑠𝑡,ℎ−ℎ) should be limited by upper and lower bounds. Equations 

(9) and (10) are the input-output balancing constraints of power 

and gas, where 𝜒𝜓ℎ,𝑡𝑢 is the PV generation forecast and 𝐷𝐸𝑒𝑒𝑒𝑒𝑒𝑒  is the 

power load demand.    𝑃𝑃ℎ,𝑡𝑢𝑠𝑡,𝑔𝑕−ℎ
+ �𝑃𝑃ℎ,𝑡𝑢,𝑝𝑞𝑠𝑡,ℎ−ℎ

+ 𝑃𝑃ℎ,𝑐𝑑𝑝𝑞 ,𝑡𝑢𝑠𝑡,𝑜𝑝
+ 𝑃𝑃ℎ,𝐵𝐵𝐵𝐶,𝑡𝑢𝑠𝑡,𝑑𝑒𝑐𝑑ℎ

+ 𝜒𝜓ℎ,𝑡𝑢 =ℎ∈𝐻𝐼   

𝑃𝑃ℎ,𝐶𝐶𝐶𝐶𝐶𝐷,𝑡𝑢𝑠𝑡,𝑜𝑝
+ �𝑃𝑃ℎ,𝑡𝑢,𝑠𝑡𝑠𝑡,ℎ−ℎ

+ 𝑃𝑃ℎ,𝐵𝐵𝐵𝐶,𝑡𝑢𝑠𝑡,𝑐𝑑ℎℎ∈𝐻𝐼 + 𝑃𝑃ℎ,𝑡𝑢𝑠𝑡,ℎ−𝑔𝑕
+𝐷𝐸𝑒𝑒𝑒𝑒𝑒𝑒 (9) 

𝐺𝐺ℎ,𝑡𝑢𝑠𝑡,𝑔𝑕−ℎ
= 𝐺𝐺ℎ,𝐺𝐻𝐺𝐺,𝑡𝑢𝑠𝑡,𝑚𝑚

+ 𝐺𝐺ℎ,𝑐𝑑𝑝𝑞,𝑡𝑢𝑠𝑡,𝑚𝑚
 (10) 

 

2) Thermal Constraints 

    Constraints (11) and (12) define the thermal output of GSHP 

and CHP, i.e., 𝛩𝛪ℎ,𝐶𝐶𝐶𝐶𝐶𝐷,𝑡𝑢𝑠𝑡,𝑜𝑝
 and 𝛩𝛪ℎ,𝑐𝑑𝑝𝑞 ,𝑡𝑢𝑠𝑡,𝑜𝑝

, where 𝑃𝑃ℎ,𝐶𝐶𝐶𝐶𝐶𝐷,𝑡𝑢𝑠𝑡,𝑚𝑚
 and 𝐺𝐺ℎ,𝑐𝑑𝑝𝑞 ,𝑡𝑢𝑠𝑡,𝑚𝑚

 

are the power and gas input.  𝛩𝛪ℎ,𝐶𝐶𝐶𝐶𝐶𝐷,𝑡𝑢𝑠𝑡,𝑜𝑝
= 𝜌𝜍𝐶𝐶𝐶𝐶𝐶𝐷𝑃𝑃ℎ,𝐶𝐶𝐶𝐶𝐶𝐷,𝑡𝑢𝑠𝑡,𝑚𝑚

 (11) 𝛩𝛪ℎ,𝑐𝑑𝑝𝑞 ,𝑡𝑢𝑠𝑡,𝑜𝑝
= 𝜌𝜍𝑐𝑑𝑝𝑞ℎ𝐺𝐺ℎ,𝑐𝑑𝑝𝑞 ,𝑡𝑢𝑠𝑡,𝑚𝑚

 (12) 

We need to limit the magnitude of charging and discharging 

heat 𝛩𝛪ℎ,𝐻𝐼𝐵𝐶,𝑡𝑢𝑠𝑡,𝑐𝑑ℎ/𝑑𝑒𝑐𝑑ℎ
. The remaining thermal energy 𝐸𝐹ℎ,𝐻𝐼𝐵𝐶,𝑡𝑢𝑠𝑡  is 

modelled and limited in (13) and (14), where 𝜌𝜍𝐻𝐼𝐵𝐶𝑐𝑑ℎ/𝑑𝑒𝑐𝑑ℎ
 is the 

efficiency.   𝐸𝐹ℎ,𝐻𝐼𝐵𝐶,𝑡𝑢𝑠𝑡 = 𝐸𝐹ℎ,𝐻𝐼𝐵𝐶,𝑡𝑢−1𝑠𝑡 + � 𝛩𝛪ℎ,𝐻𝐼𝐵𝐶,𝑡𝑢𝑠𝑡,𝑐𝑑ℎ 𝜌𝜍𝐻𝐼𝐵𝐶𝑐𝑑ℎ −𝑡𝑢1 𝛩𝛪ℎ,𝐻𝐼𝐵𝐶,𝑡𝑢𝑠𝑡,𝑑𝑒𝑐𝑑ℎ
/𝜌𝜍𝐻𝐼𝐵𝐶𝑑𝑒𝑐𝑑ℎ  

(13) 𝐸𝐹𝐻𝐼𝐵𝐶,𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝐸𝐹ℎ,𝐻𝐼𝐵𝐶,𝑡𝑢𝑠𝑡 ≤ 𝐸𝐹𝐻𝐼𝐵𝐶,𝑚𝑚𝑚𝑚𝑚𝑛   (14) 

Finally, we apply (15) to balance the thermal input and 

output, where 𝐷𝐸ℎ denotes the thermal load demand.   �𝛩𝛪ℎ,𝑡𝑢,𝑝𝑞𝑠𝑡,ℎ−ℎ
+ 𝛩𝛪ℎ,𝑐𝑑𝑝𝑞 ,𝑡𝑢𝑠𝑡,𝑜𝑝

+ 𝛩𝛪ℎ,𝐶𝐶𝐶𝐶𝐶𝐷,𝑡𝑢𝑠𝑡,𝑜𝑝
+ 𝛩𝛪ℎ,𝐻𝐼𝐵𝐶,𝑡𝑢𝑠𝑡,𝑑𝑒𝑐𝑑ℎ

=ℎ∈𝐻𝐼   �𝛩𝛪ℎ,𝑡𝑢,𝑠𝑡𝑠𝑡,ℎ−ℎ
+ 𝛩𝛪ℎ,𝐻𝐼𝐵𝐶,𝑡𝑢𝑠𝑡,𝑐𝑑ℎℎ∈𝐻𝐼 +𝐷𝐸ℎ  (15) 

B. Recourse Actions of BOTH 

The second-stage objective function is shown in (16), which 
includes i) penalty cost of the trading deviation between the 
second and first stages and ii) cost of the consensus process, i.e., 
PoW. The penalty cost coefficients of trading deviation for 

power and gas are represented by 𝜗𝜘ℎ−𝑔𝑕𝐶𝐷 ,𝜗𝜘𝑔𝑕−ℎ𝐶𝐷 , and 𝜗𝜘𝑔𝑕−ℎ𝐺𝐻 ; 𝜗𝜘ℎ−ℎ𝐶𝐷  
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and 𝜗𝜘ℎ−ℎ𝐶𝐷  denote the penalty coefficient of P2P trading; the cost 

coefficient of consensus process for power and heating are 

represented by 𝜔𝜕𝐶𝐷𝑜𝑝𝑃𝑄𝐶𝐷  and 𝜔𝜕𝐶𝐷𝑜𝑝𝑃𝑄𝐻𝐼 .  𝛤𝛥2 = min � 𝜗𝜘ℎ−ℎ𝐶𝐷 �𝑃𝑃ℎ,𝑡𝑢,𝑝𝑞𝑠𝑡,ℎ−ℎ − 𝑃𝑃ℎ,𝑡𝑢,𝑝𝑞𝑟𝑠,ℎ−ℎ� + 𝜗𝜘ℎ−ℎ𝐶𝐷 �𝑃𝑃ℎ,𝑡𝑢,𝑠𝑡𝑠𝑡,ℎ−ℎ − 𝑃𝑃ℎ,𝑡𝑢,𝑠𝑡𝑟𝑠,ℎ−ℎ�ℎ∈𝐻𝐼,𝑡𝑢∈𝑇𝑈
+ 𝜗𝜘ℎ−ℎ𝐻𝐼 �𝛩𝛪ℎ,𝑡𝑢,𝑝𝑞𝑠𝑡,ℎ−ℎ − 𝛩𝛪ℎ,𝑡𝑢,𝑝𝑞𝑟𝑠,ℎ−ℎ�+ 𝜗𝜘ℎ−ℎ𝐻𝐼 �𝛩𝛪ℎ,𝑡𝑢,𝑠𝑡𝑠𝑡,ℎ−ℎ − 𝛩𝛪ℎ,𝑡𝑢,𝑠𝑡𝑟𝑠,ℎ−ℎ�
+ 𝜗𝜘ℎ−𝑔𝑕𝐶𝐷 �𝑃𝑃ℎ,𝑡𝑢𝑠𝑡,ℎ−𝑔𝑕 − 𝑃𝑃ℎ,𝑡𝑢𝑟𝑠,ℎ−𝑔𝑕� + 𝜗𝜘𝑔𝑕−ℎ𝐶𝐷 �𝑃𝑃ℎ,𝑡𝑢𝑠𝑡,𝑔𝑕−ℎ − 𝑃𝑃ℎ,𝑡𝑢𝑟𝑠,𝑔𝑕−ℎ� 

+𝜗𝜘𝑔𝑕−ℎ𝐺𝐻 �𝐺𝐺ℎ,𝑡𝑢𝑠𝑡,𝑔𝑕−ℎ − 𝐺𝐺ℎ,𝑡𝑢𝑟𝑠,𝑔𝑕−ℎ� 
       +𝜔𝜕𝐶𝐷𝑜𝑝𝑃𝑄𝐶𝐷 �𝑃𝑃ℎ,𝑡𝑢𝑟𝑠,ℎ−𝑔𝑕

+ 𝑃𝑃ℎ,𝑡𝑢𝑟𝑠,𝑔𝑕−ℎ
+ 𝑃𝑃ℎ,𝑡𝑢,𝑝𝑞𝑟𝑠,ℎ−ℎ + 𝑃𝑃ℎ,𝑡𝑢,𝑠𝑡𝑟𝑠,ℎ−ℎ� +𝜔𝜕𝐶𝐷𝑜𝑝𝑃𝑄𝐻𝐼  �+𝛩𝛪ℎ,𝑡𝑢,𝑝𝑞𝑟𝑠,ℎ−ℎ + 𝛩𝛪ℎ,𝑡𝑢,𝑠𝑡𝑟𝑠,ℎ−ℎ�+𝜔𝜕𝐶𝐷𝑜𝑝𝑃𝑄𝐻𝐼 𝐺𝐺ℎ,𝑡𝑢𝑠𝑡,𝑔𝑕−ℎ

 (16) 

    The inherent renewable uncertainty is considered following 
the day-ahead decisions. In addition, the intra-day corrective 
BOTH is used to adjust on trading strategies and energy 
conversion scheduling. The second-stage energy balance 

constraints are given in (17)-(19), where 𝜉𝜉ℎ,𝑡𝑢  and 𝜁𝜂𝑒𝑒𝑒𝑒𝑒𝑒 , 𝜁𝜂𝑡𝑢ℎ  are 

the uncertain renewable generation output and uncertain load 
demand. Please notice that the reminder of the second-stage 
constraints are ignored for space limitation, but are the same as 
the first-stage formulation shown in section Ⅲ-A by replacing 
superscript ‘s’ with ‘r’.   𝑃𝑃ℎ,𝑡𝑢𝑟𝑠,𝑔𝑕−ℎ

+ �𝑃𝑃ℎ,𝑡𝑢,𝑝𝑞𝑟𝑠,ℎ−ℎ
+ 𝑃𝑃ℎ,𝑐𝑑𝑝𝑞 ,𝑡𝑢𝑟𝑠,𝑜𝑝

+ 𝑃𝑃ℎ,𝐵𝐵𝐵𝐶,𝑡𝑢𝑟𝑠,𝑑𝑒𝑐𝑑ℎ
+ 𝜉𝜉ℎ,𝑡𝑢 =ℎ∈𝐻𝐼   

𝑃𝑃ℎ,𝐶𝐶𝐶𝐶𝐶𝐷,𝑡𝑢𝑟𝑠,𝑜𝑝
+ �𝑃𝑃ℎ,𝑡𝑢,𝑠𝑡𝑟𝑠,ℎ−ℎ

+ 𝑃𝑃ℎ,𝐵𝐵𝐵𝐶,𝑡𝑢𝑟𝑠,𝑐𝑑ℎℎ∈𝐻𝐼 + 𝑃𝑃ℎ,𝑡𝑢𝑟𝑠,ℎ−𝑔𝑕
+𝜁𝜂𝑒𝑒𝑒𝑒𝑒𝑒  (17) 𝐺𝐺ℎ,𝑡𝑢𝑟𝑠,𝑔𝑕−ℎ

= 𝐺𝐺ℎ,𝐺𝐻𝐺𝐺,𝑡𝑢𝑟𝑠,𝑚𝑚
+ 𝐺𝐺ℎ,𝑐𝑑𝑝𝑞,𝑡𝑢𝑟𝑠,𝑚𝑚

 (18) �𝛩𝛪ℎ,𝑡𝑢,𝑝𝑞𝑟𝑠,ℎ−ℎ
+ 𝛩𝛪ℎ,𝑐𝑑𝑝𝑞 ,𝑡𝑢𝑟𝑠,𝑜𝑝

+ 𝛩𝛪ℎ,𝐶𝐶𝐶𝐶𝐶𝐷,𝑡𝑢𝑟𝑠,𝑜𝑝
+ 𝛩𝛪ℎ,𝐻𝐼𝐵𝐶,𝑡𝑢𝑟𝑠,𝑑𝑒𝑐𝑑ℎ

=ℎ∈𝐻𝐼   �𝛩𝛪ℎ,𝑡𝑢,𝑠𝑡𝑟𝑠,ℎ−ℎ
+ 𝛩𝛪ℎ,𝐻𝐼𝐵𝐶,𝑡𝑢𝑟𝑠,𝑐𝑑ℎℎ∈𝐻𝐼 +𝜁𝜂𝑡𝑢ℎ  (19) 

IV. METHODOLOGY 

This section proposes the methodology for the BOTH 

modelling via a two-stage framework and the solution 

procedures. The illustration of the two-stage BOTH model is 

given in Fig. 6. In addition, we illustrate the Wasserstein-based 

DRO approach in Fig. 7. 

A. Abstract Formulation 

The initial formulation is presented as a dense matrix 
formulation. Equations (20) and (21) represent the objective 
function and constraints of the first stage, and the corresponding 
variables are denoted as vector x. 

min𝑚𝑛∈𝑋𝑌 𝑐𝑐𝑇𝑈𝑥𝑦 + supℙ∈𝑃𝑄𝐵𝐶  

𝐸𝐹ℙ[𝛺𝛻(𝑥𝑦, 𝜉𝜉)] (20) 

s.t. 𝐶𝐶𝑥𝑦 ≤ 𝑑𝑑, 𝑥𝑦 ∈ ℝ𝑉𝑊1  (21) 

Equations (22) and (23) model the second-stage problem, 

where y represents the variables. Equations (2)-(15) with ‘re’ 

superscript and (17)-(19) are summarized by (23). In (24), 

vector 𝜐𝜑(𝜉𝜉) includes the constant/random vectors, denoted as 𝜐𝜑0 and 𝜐𝜑𝑚𝑚𝜉𝜊 , respectively. 𝛺𝛻(𝑥𝑦, 𝜉𝜉) = min𝑦𝑧 𝑓𝑓′𝑦𝑦 , 𝑦𝑦 ∈ ℝ𝑉𝑊2 (22) 

s.t. 𝑊𝑋𝑥𝑦 + 𝑇𝑇𝑦𝑦 ≤ 𝜐𝜑(𝜉𝜉),𝑦𝑦 ∈ ℝ𝑉𝑊2  (23) 𝜐𝜑(𝜉𝜉) = 𝜐𝜑0 + 𝜐𝜑𝑚𝑚𝜉𝜊𝜉𝜉𝑚𝑚  (24) 

B. Wasserstein Distance-Based Ambiguity Set 

The Wasserstein metric between the variable and reference 
distributions is shown in (25) [47]. The random variables are 

denoted as 𝜉𝜉 and 𝜉𝜉†. We use 𝜌𝜍(𝜉𝜉, 𝜉𝜉†) to represent the distance 

metric. Equation (26) presents the ambiguity set. 𝑷𝑸 is used to 

represent a variety of possible distributions.  𝑑𝑑�ℙ,ℙ�� = inf
 
𝐸𝐹ℚ[𝜌𝜍(𝜉𝜉, 𝜉𝜉†)] , 𝜉𝜉~ℙ, 𝜉𝜉†~ℙ� (25) 

S = �ℙ ∈ 𝑷𝑸(ℝ𝑚𝑚  )� 𝜉𝜉~ℙ𝑑𝑑�ℙ,ℙ�� ≤ 𝜂𝜃� 

 

(26) 

 

The specific conditional WAS is shown in (27) and we use 𝑠̃𝑠 

to denote the scenarios. The WAS includes the following 
requirements: i) the uncertain variable is within the WAS- 

generated distribution; ii) the expectation of 𝜉𝜉 is a fixed value 

(𝜇𝜈𝑠𝑡 ); iii) the auxiliary variable 𝜑𝜑  is applied to constrain the 

distance between distributions and iv) the uncertain variable 𝜉𝜉 
 

 
 
 

Fig. 6.  The proposed two-stage BOTH model.  

 
Fig. 7.  Illustration of the DRO method.  
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and auxiliary variable 𝜑𝜑  are constrained inside the lifted 

support set Ξ.  
 

 𝑊𝑋𝑊𝑊𝑊𝑊 =

⎩⎪⎪⎨
⎪⎪⎧ℙ ∈ 𝑷𝑸�ℝ𝑚𝑚  × ℝ𝑗𝑗  ��

� �(𝜉𝜉,𝜑𝜑), 𝑠̃𝑠�~ℙ𝐸𝐹ℙ[𝜉𝜉|𝑠̃𝑠 ∈ 𝑺𝑻] = 𝜇𝜈𝑠𝑡𝐸𝐹ℙ[𝜑𝜑|𝑠̃𝑠 ∈ 𝑺𝑻] ≤ 𝜂𝜃𝑠𝑡Ξ = �(𝜉𝜉,𝜑𝜑) ∈ ℝ𝑚𝑚 × ℝ𝑗𝑗 ∶  𝑊𝑋𝑥𝑦 + 𝑇𝑇𝑦𝑦 ≤ 𝑐𝑐 �ℙ[(𝜉𝜉,𝜑𝜑)|𝑠̃𝑠 ∈ 𝑺𝑻] = 1ℙ[𝑠̃𝑠 ∈ 𝑺𝑻] = 1 ⎭⎪⎪⎬
⎪⎪⎫

 

 

(27) 

 

 

C. Affine Approximation and Robust Counterpart  

    Equation (28) is equivalent to 𝛺𝛻(𝑥𝑦, 𝜉𝜉). It is intractable to 
determine the worst-case expected formulation because we 
consider all the possible realizations involving the uncertainties 
[48]. We apply  the LDR in (30) to tackle the problem [49], 

approximating 𝑦𝑦(𝜉𝜉) by its linearized affine functions. 𝛺𝛻(𝑥𝑦, 𝜉𝜉) = supℙ∈𝑃𝑄𝐵𝐶  

𝐸𝐹ℙ[𝛺𝛻(𝑥𝑦, 𝜉𝜉)] = supℙ∈𝑃𝑄𝐵𝐶  

𝐸𝐹ℙ[𝑓𝑓′𝑦𝑦(𝜉𝜉)] (28) 

 𝑦𝑦(𝜉𝜉) ∈ arg min{𝑓𝑓′𝑦𝑦:  𝑊𝑋𝑥𝑦 + 𝑇𝑇𝑦𝑦 ≤ 𝜐𝜑(𝜉𝜉)} (29) 

 𝑦𝑦𝑗𝑗(𝜉𝜉,𝜑𝜑) = 𝑦𝑦𝑗𝑗0 + ∑ 𝑦𝑦𝑚𝑚𝜉𝜊𝜉𝜊∈𝝃𝝄� 
𝜉𝜉 + ∑ 𝑦𝑦𝑚𝑚𝜑𝜒𝜑𝜒∈𝜑𝜒�  

𝜑𝜑 (30) 

    We replace the recouse decision 𝑦𝑦(𝜉𝜉)  by the below LDR 

formulation to approximate 𝛺𝛻(𝑥𝑦, 𝜉𝜉) , represented by 𝛺𝛻𝐿𝐿𝐿𝐿𝐿𝑀(𝑥𝑦, 𝜉𝜉).  𝛺𝛻𝐿𝐿𝐿𝐿𝐿𝑀(𝑥𝑦, 𝜉𝜉,𝜑𝜑, 𝑠̃𝑠) = min supℙ∈Ω  

𝐸𝐹ℙ[𝑓𝑓′𝑦𝑦(𝜉𝜉,𝜑𝜑, 𝑠̃𝑠)] (31) 

s.t. 𝑊𝑋𝑥𝑦 + 𝑇𝑇𝑦𝑦(𝜉𝜉,𝜑𝜑, 𝑠̃𝑠) ≤ 𝜐𝜑(𝜉𝜉), ∀(𝜉𝜉,𝜑𝜑) ∈ Ξ (32) 

In order to transform the second-stage min-sup structure to a 
pure minimization problem to merge with the first-stage 
problem, we thus obtain its dual reformulation [50] in (33)-(36), 

where dual variables are denoted by 𝜓𝜔 and 𝜆𝜇.  𝛺𝛻𝐿𝐿𝐿𝐿𝐿𝑀 = min 𝜏𝜐 + 𝜓𝜔𝜂𝜃𝑠𝑡 + 𝜆𝜇𝜇𝜈𝑠𝑡 (33) 

s.t.    𝜏𝜐 + 𝜉𝜉′𝜆𝜇 + 𝜑𝜑′𝜓𝜔 ≥ 𝑓𝑓′𝑦𝑦(𝜉𝜉,𝜑𝜑, 𝑠̃𝑠), ∀(𝜉𝜉,𝜑𝜑) ∈ Ξ (34) 𝑊𝑋𝑥𝑦 + 𝑇𝑇𝑦𝑦(𝜉𝜉,𝜑𝜑, 𝑠̃𝑠) ≤ 𝜐𝜑(𝜉𝜉),∀(𝜉𝜉,𝜑𝜑) ∈ Ξ (35) 𝜓𝜔 ≥ 0,𝜓𝜔 ∈ ℝ𝑗𝑗, 𝜏𝜐 ∈ ℝ , 𝜆𝜇 ∈ ℝ𝑚𝑚
 (36) 

Equations (33)-(36) is a linearized robust linear problem. 
And its robust counterpart can be written in (37)-(42).  𝛺𝛻𝐿𝐿𝐿𝐿𝐿𝑀 = min 𝜏𝜐 + 𝜓𝜔𝜂𝜃𝑠𝑡 + 𝜆𝜇𝜇𝜈𝑠𝑡 (37) 

s.t.    𝜏𝜐 − 𝑓𝑓′𝑦𝑦0𝑠𝑡 + 𝜒𝜓0′𝑐𝑐 ≥ 0 (38) 𝜒𝜓0𝑠𝑡′ {∙}𝑠𝑡𝑚𝑚/𝑗𝑗 = �𝑞𝑟𝑗𝑗𝑦𝑦𝑗𝑗𝑚𝑚𝜉𝜊/𝜑𝜒,𝑠𝑡 − 𝜆𝜇𝑚𝑚𝑗𝑗 ,∀𝑖𝑗 ∈ 𝐼𝐽,∀𝑗𝑗 ∈ 𝐽𝐾,∀𝑠𝑠 ∈ 𝑊𝑊, {∙} =  𝑊𝑋,𝑇𝑇 (39) 𝜒𝜓𝑚𝑚𝑠𝑡′ {∙}𝑠𝑡𝑚𝑚/𝑗𝑗 = �𝐶𝐶𝑗𝑗𝑗𝑘𝑦𝑦𝑗𝑘𝑚𝑚𝜉𝜊/𝜑𝜒,𝑠𝑡 −𝑗𝑘 𝜐𝜑𝑗𝑗𝑚𝑚𝜉𝜊 ,∀𝑖𝑗 ∈ 𝐼𝐽,∀𝑠𝑠 ∈ 𝑊𝑊, {∙} =  𝑊𝑋,𝑇𝑇 (40) 𝑊𝑋𝑗𝑗′𝑥𝑦 + 𝑇𝑇𝑗𝑗′𝑦𝑦0𝑠𝑡 − 𝜐𝜑𝑗𝑗0 + 𝑐𝑐′𝜒𝜓𝑗𝑗𝑠𝑡  , ∀𝑠𝑠 ∈ 𝑊𝑊 (41) 𝜓𝜔 ≥ 0,𝛼𝛽0 ≥ 0,𝛼𝛽𝑗𝑗 ≥ 0 (42) 

Additional dual variables are given as 𝛼𝛽0  and 𝛼𝛽𝑗𝑗 . Eventually, 

we derive the tractable approximated formulation of the initial 
two-stage BOTH in (37)-(42).  

V. CASE EVALUATION  

The performance of the proposed BOTH framework for 
secure trading among energy hubs and IES is evaluated in a 
regional test system including four interconnected energy hubs. 
The parameters of the energy hubs are given in TABLE Ⅰ [51, 
52]. In addition, the penalty coefficients of the P2P trading is 
from [53]. To test the model effectiveness under different 
market and capacity conditions, comparison between 5 cases is 
considered [51, 52, 54]: 

Case 1: Baseline case. 
Case 2: When considering twice PV capacity. 
Case 3: When considering twice power trading unit cost. 

Case 4: When considering twice power&heat trading cost.  
Case 5: When considering twice PoW unit cost. 
We conduct the above 5 cases as the sensitivity analysis to 

test the performance of our BOTH model. We set case 2 for 
testing the impact of the renewable generator capacity on the 
objective result. Cases 3 and 4 are planned to investigate the 
P2P trading cost coefficients on the economic performance. 
Case 5 is used to test the effect of consensus charging on the 
operation cost and scheduling results.   

A. Security and Economic Analysis 

The proposed two-stage secure trading framework including 
preparatory trading and intra-day real trading is compared with 
the single-stage trading framework (SSTM). In TABLE Ⅱ, the 
P2P trading amount between energy hubs (both power and heat) 
is analysed under BOTH and the SSTM. Since the load and 
renewable uncertainties affect the secure and economic trading 
of energy hubs, RO is adopted to capture the uncertainties. 
Overall, BOTH yields a lower trading amount compared with 
SSTM since the conservatism caused by worst-case oriented 
SSTM is mitigated by incorporating moment information and 
Wasserstein-based distance. The P2P trading amount of case 2 
under BOTH is the highest, i.e., 17568 kWh, with the twice PV 
capacity as case 1. When the twice of power trading unit cost is 
considered in case 3, the P2P trading amount decreases by 2199 
kWh. However, when the twice heat trading cost is considered, 
case 4 yields 16625 kWh trading amount, which is 11% higher 
than that of case 3. The reason is that the doubled heat trading 
price stimulates the heat trading among energy hubs for gaining 
profit by selling excessive generated heat. For SSTM, the 
similar result shows that case 4 is 8.5% higher than that of case 
3. In case 5, when PoW unit cost is doubled, the trading amount 
under BOTH is dramatically reduced by 4362 kWh, which is 
the lowest trading amount for all the cases. This indicates that 

TABLE I 
 PARAMETERS OF ENERGY HUBS 

System parameters 

CHP ηe=0.33, ηth=0.57, 𝐺𝐺ℎ,𝑐𝑑𝑝𝑞,𝑚𝑚𝑚𝑚𝑚𝑛𝑚𝑚 =600, 𝐺𝐺ℎ,𝑐𝑑𝑝𝑞,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 =0 

GSHP COP=3, 𝑃𝑃ℎ,𝐶𝐶𝐶𝐶𝐶𝐷,𝑚𝑚𝑚𝑚𝑚𝑛𝑚𝑚 =900, 𝑃𝑃ℎ,𝐶𝐶𝐶𝐶𝐶𝐷,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 =0 

GF ηf =0.7, 𝐺𝐺ℎ,𝐺𝐻𝐺𝐺,𝑚𝑚𝑚𝑚𝑚𝑛𝑚𝑚 =900, 𝐺𝐺ℎ,𝐺𝐻𝐺𝐺,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 =0 

Water tank  

Battery 

0 ≤ 𝐸𝐹ℎ,𝐻𝐼𝐵𝐶,𝑡𝑢𝑠𝑡  ≤ 100kWh, 𝜂𝜃𝐻𝐼𝐵𝐶𝑐𝑑ℎ= 0.85, 𝜂𝜃𝐻𝐼𝐵𝐶𝑑𝑒𝑐𝑑ℎ= 0.85, 𝜆𝜇ℎ𝐵𝐵𝐵𝐶 =0.02$/kWh 

0 ≤ 𝐸𝐹ℎ,𝐵𝐵𝐵𝐶,𝑡𝑢𝑠𝑡  ≤ 200kWh, 𝜂𝜃𝐵𝐵𝐵𝐶𝑐𝑑ℎ= 0.88, 𝜂𝜃𝐵𝐵𝐵𝐶𝑑𝑒𝑐𝑑ℎ= 0.88, 𝜆𝜇ℎ𝐻𝐼𝐵𝐶 =0.02$/kWh  

Power 

trading 
0 ≤ 𝑃𝑃ℎ,𝑡𝑢𝑠𝑡,ℎ2𝑔𝑕

 ≤ 300kW, 0 ≤ 𝑃𝑃ℎ,𝑡𝑢𝑠𝑡,𝑔𝑕2ℎ
 ≤ 600kW 

Gas trading 0 ≤ 𝐺𝐺ℎ,𝑡𝑢𝑠𝑡,𝑔𝑕2ℎ≤ 2kcf 

 
TABLE Ⅱ 

P2P TRADING AMOUNT  

Trading 
amount (kWh) 

Case 1 Case 2 Case 3 Case 4 Case 5 

Single-stage 
framework 

18244 18894 16098 17471 13532 

BOTH 
framework 

17151 17568 14952 16625 12789 

 
TABLE Ⅲ 

COST OF CONSENSUS PROCESS 

PoW cost ($) Case 1 Case 2 Case 3 Case 4 Case 5 

Single-stage 
framework 

183.05 172.41 199.20 214.38 358.42 

BOTH 
framework 

168.88 152.43 177.16 186.10 311.79 

 



 10 

the higher consensus process cost paid by energy hub owners 
directly impacts on the P2P trading desire. Instead, energy hub 
owners intend to consume more energy purchased from the IES 
with more utilization of energy storage.  

In TABLE Ⅲ, the PoW cost result is given, which reflects the 
total trading amount of energy hubs. Noted that all the 
transactions are ensured with security based on the consensus 
mechanism. In general, SSTM shows a higher PoW cost than 
that under BOTH. Since SSTM considers the worst-case 
uncertain scenario of renewable and load uncertainties. The 
PoW cost of case 2 is the lowest under BOTH and SSTM since 
twice of PV capacity is utilized, which greatly reduces the 
trading amount. In case 2, the PoW cost is 5% higher than that 
of case 1, which shows the opposite result with TABLE Ⅱ with 
a reduced P2P trading amount. This result indicates that the 
twice power trading unit cost stimulates the trading between 
IES and energy hubs whilst reduce the P2P trading among 
energy hubs. Moreover, case 4 presents an even higher PoW 
cost when twice of heat trading unit cost is additionally 
considered. In case 5, the PoW cost is $311.79 under BOTH 
and $358.42 under SSTM due to the twice PoW unit cost setting.  

The economic performance of operation cost of the overall 
energy hub community is given in TABLE Ⅳ. Case 1 shows 
$2786 and $702 in the two stages, respectively. In comparison, 
case 2 shows lower total operation cost owing to the twice PV 
capacity. However, the second-stage operation cost is $222 
higher than baseline case 1 since the larger PV capacity results 
in higher output fluctuation, which requires a larger power 
imbalance. Case 3 and 4 yields higher operation cost ($5172 
and $5107) when power and heat trading unit cost are 
considered. However, the operation cost of case 4 is lower than 
that of case 3 when twice the heat trading cost is additionally 
considered. Since the twice of heat trading cost encourages 
more heat selling. Energy hub owners can choose to produce 

more heat based on the conversion from power and gas. In case 
5, the doubled audit cost results in a slightly higher operation 
cost than case 1, i.e., $3665.  

B. Trading Analysis  

The power and gas trading scheduling between IES and 
energy hubs are given in Fig. 8. Noted that the power trading 
indicates the power purchase from IES minus the power selling 
to IES and the gas trading is simply the gas purchase from IES. 
In Fig. 8 (a), the power trading is mainly scheduled at 1:00-
12:00 and 16:00-24:00. PV enables to provide power support 
between 12:00 and 16:00. In comparison, gas purchase from 
IES is only scheduled between 13:00 and 21:00. For energy 
hubs 2-4, similar trading scheduling is obtained. In Fig. 8 (d), 
energy hub 4 shows an overall higher trading amount with IES 
due to the higher load consumption profile. Apart from the two 
power trading peaks at 5:00-12:00 and 19:00-24:00 (600kWh), 
it also shows distinct power trading between 13:00 and 18:00 
compared with energy hub 1. Furthermore, a new gas trading 
peak between 6:00-9:00 is scheduled.  

 

 
Fig. 9.  Power P2P trading under case 1. 

 
Fig. 10.  Heat P2P trading under case 1. 

 
Fig.11.  Power P2P trading under case 3. 

 
Fig. 12.  Heat P2P trading under case 3. 

 
The P2P trading scheduling under cases 1 and 3 are given in 

Figs. 9-12. In case 1, the power trading is concentrated in the 
morning and the peak load time periods. At 20:00, energy hubs 

TABLE Ⅳ 
ECONOMIC PERFORMANCE FOR ALL CASES 

Economic 
result ($) 

Case 1 Case 2 Case 3 Case 4 Case 5 

First-stage 
cost 

2786 1940 4466 4289 2794 

Expected 
second-
stage cost 

702 924 706 818 871 

Total cost 3488 2864 5172 5107 3665 

 

   
(a). Energy hub 1.                                        (b). Energy hub 2. 

  
(c). Energy hub 3.                                        (d). Energy hub 4. 
 

Fig. 8. Power and gas trading with IES. 
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1 and 4 yield 178kW power selling and 162 purchase. In 
comparison, under case 3, the power P2P trading reduces, 
particularly during the morning time periods due to the twice of 
power trading cost. On the contrary, in Fig. 12, the heat P2P 
trading amount among energy hubs is higher than that of case 
1.  

C. Scheduling Result of Energy Storage and Conversion 

In Fig. 13, the results of remaining storage capacity are 
presented. For energy hub 1, the battery storage is charging 
before 5:00, followed by a short idle period. Then it is 
discharging and charging between 7:00 and 10:00. The 
remaining capacity of the battery reaches 180kWh between 
11:00 and 15:00 during the low demand period. During the 
evening time, it remains at a low capacity level. 
Notwithstanding the load profile of power and heat are different, 
the heat storage shows similar usage curve with two distinct idle 
usage periods. Since the extensive energy conversion realizes 
the energy complementation, i.e., heat storage can be used to 
support power load and battery storage enables to supply heat 
load. In addition, the scheduling curve of energy hubs 2-4 show 
similar results. Compared with energy hub 1, energy hub 4 
shows less usage on the storage system even with a higher 
demand profile. The reason is that more trading is scheduled 
instead of storing excessive energy for later self-usage. 

 

  
(a). Energy hub 1.                                        (b). Energy hub 2. 

   
(c). Energy hub 3.                                        (d). Energy hub 4. 
 

Fig. 13. Remaining capacity of battery and heat storage. 
 

 
Fig. 14.  Converter scheduling result of case 1. 

 
Fig. 15.  Converter scheduling result of case 2. 

 
Converter scheduling results of cases 1 and 2 for energy hub 

4 are given in Figs. 14 and 15. In case 1, the CHP usage is 
focused at 6:00-9:00 and 13:00-23:00, where the power and 
heat output of CHP reaches the maximum limits 350kW and 
200kW for 12 hours. In comparison, gas furnace shows much 
lower conversion usage with an average output of 28kW. The 
reason is that instead of converting gas to only heat, CHP is 
utilized more frequently with both power and heat output. 
GSHP shows three usage peaks at 8:00, 12:00 and 21:00, 
respectively, which are approximately 300kW. In Fig. 15, the 
twice of PV capacity directly results in higher power injection 
of GSHP whilst the CHP usage is reduced. Between 6:00 and 
9:00, the CHP power output is averagely 150kW while it is 
106kW under case 2. Since the higher reliance on PV reduces 
the gas purchase and consumption by CHP and gas furnace.  

 
(a). Model comparison under case 1.              (b). Model comparison under case 2. 

  
(c). Model comparison under case 4.              (d). Model comparison under case 5. 
 

Fig. 16. Ojective cost comparison with the existing works.  

 
Fig. 17. Convergence characteristics of the MDRTH model. 
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Fig. 18. Convergence characteristics of the proposed BOTH model. 

  

D. Comparison with The Existing Works  

To demonstrate the effectiveness of the proposed blockchain-
based trading mechanism and the optimization framework, this 
section illustrates the comparisons between the proposed 
BOTH model and the existing state-of-the-art works, including 
the P2P trading and management of energy hubs (TH) 
considering renewable and load uncertainties handled by RO 
(denoted as RTH) [55], SP [56] (denoted as STH), and moment-
based DRO (denoted as MDRTH) [57, 58]; and networked 
energy hub management without P2P trading which is denoted 
as HMWT [59]. To evaluate the performance of the 
abovementioned 4 benchmark methods and the proposed 
BOTH, the comparisons of operation costs, convergence 
characteristics, and PoW costs are conducted.  

 

 
(a). Model comparison under case 1.              (b). Model comparison under case 2. 

  
(c). Model comparison under case 4.              (d). Model comparison under case 5. 
 

Fig. 19. Comparison of cost for the consensus scheme.  

 
In Fig. 16, the results show that RTH yields the highest 

operation costs in all the cases. In case 1, the $3694 modelled 
by RTH is 5.9% higher than that of the proposed BOTH. In case 
2, the cost reduction of the proposed BOTH compared with 
RTH is distinct with a 10.9% cost reduction. The reason is that 
when considering twice the PV capacity, the PV output 
fluctuation is increased. BOTH characterized by Wasserstein-
DRO exploits a mitigated computational conservativeness with 
the lower operation cost result than RTH. We apply the sample-
based SP with 1000 PV generation and hub load samples 
generated by Gaussian distribution with mean value μ=0 and 
standard deviation σ=0.02. The results of STH are comparable 

with BOTH. In case 1, STH yields $3306 of operation cost, 
which is 94.8% of BOTH. However, the proposed BOTH under 
cases 4 and 5 shows 1.6% and 0.4% lower operation cost 
compared with STH. Despite the STH shows comparable 
economic efficiency with BOTH, the intrinsic stochastic 
characteristic leads to low computational efficiency with huge 
amount of sample numbers. When STH is modelled by 
insufficient samples, the computational burden will be 
addressed, the real uncertainty distribution will probably not be 
captured. MDRTH adopts the second moment information , i.e., 
mean vectors and covariance matrices, which is transformed 
into a semidefinite programming model and solved by a 
constraint generation algorithm. In case 1, MDRTH yields 
$3495 of operation cost, which is 0.2% higher than that of 
BOTH. Overall, the operation cost of MDRTH is generally 1.6% 
higher than that of BOTH. The interconnections and 
complementation of energy hubs are not considered in HMWT. 
Fig. 16 shows the average operation cost of HMWT is 3.3% 
higher than that of BOTH and 2.5% lower than that of RTH. 
The results indicate that the P2P trading scheme is beneficial 
for improve the energy operational efficiency via optimally 
coordinating, converting and exchanging the abundant energy, 
rather than self supplying and consuming the energy.   

The convergence rate results of MDRTH and the proposed 
BOTH are demonstrated in Figs. 17 and 18, where the 

optimality gap (𝛾𝛿�) is defined as 
𝑟𝑠−𝑠𝑡𝑟𝑠 × 100%. We define 𝑐𝑐 as the 

optimal objective value of MDRTH and BOTH, and 𝑠𝑠 as the 

result obtained by sample average approximation with 1000 
samples. With 10 samples, the 𝛾𝛿� of MDRTH and BOTH are 41% 

and 38%, respectively. The 𝛾𝛿� of BOTH decreases sharply with 

the growth of sample amount. When the number of samples 

reaches 1000, BOTH converges whilst the 𝛾𝛿� MDRTH is still 
14.5%. This result indicates that MDRTH cannot converge with 
the growth of the sample size relying on the second moment 
information.  

To investigate the utilization of the decentralized consensus 
under different models, we compare the PoW costs in Fig. 19. 
The results clearly show that the PoW cost of RTH is the highest 
among all the cases. In case 2, the PoW cost of RTH is 35.8% 
higher than that of BOTH. Similar to the operation cost in Fig. 
16, STH and BOTH show comparable results whilst MDRTH 
shows higher PoW utilization.   

VI. CONCLUSION 

We propose a two-stage secure and economic trading 
mechanism for interconnected energy hubs, which is 
underpinned by a socially governed consortium blockchain. 
The illustrated socially governed approach enables democratic 
decision-making processes and can elevate the trust and 
cooperation among energy hub owners and IES operators. The 
results of multiple case studies provide compelling 
evidence suggesting its effectiveness and practical values. Take 
Case 1 for example, the proposed BOTH model has a total 
operation cost of $3,488, representing a 5.2% reduction from 
that of the STH model. Its total operation cost in Case 2 that 
features twice the PV capacity further decreases to $2,864, 
demonstrating our model’s adaptability to 
increasing renewable generation capacities. Jointly, these 
empirical results highlight the proposed model’s pragmatic 
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utilities and values, and reveal its advantageous capability to 
handle increasing renewable generation capacity, lower audit 
costs, and facilitate P2P interactions. At a broader level, the 
proposed two-stage blockchain-based trading framework not 
only provides a practical trading scheme but also decreases the 
redundant trading volume by 6.5%, which should lead 
to further reductions of the overall operation cost. It 
achieves up to a 6% reduction in operation cost, while assuring 
social governance and transaction security for both IES and 
energy hubs, and allows significant improvements in trading 
volume and overall system efficiency. Furthermore, this paper 
sheds light on practical guidelines for P2P trading and 
operations of in a multi-energy community that is socially 
governed, with increased security and fairness. 
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