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ABSTRACT 

Quantifying land use sources and understanding the dynamics of organic carbon 

(OC) in river catchments are essential to reduce both on-site and off-site impacts 

of soil OC (SOC) erosion. The aim of this research is to improve determination of 

the dominant terrestrial land-use sources of OC in freshwater sediment at a 

catchment scale and to assess the likely processes driving spatial and temporal 

changes in these sources. Four interlinked studies were conducted on two 

catchments to investigate specific objectives. 

First, OC fingerprinting and carbon loss modelling (a combination of “net” soil 

erosion and OC spatial distribution modelling) were carried out using existing OC 

and n-alkane biomarker data from Carminowe Creek, a mixed land use 

catchment in Cornwall, UK.  This unique combination of two sediment origin 

techniques crucially identified that riparian woodland disconnected upslope 

eroded SOC and, concomitantly, provided an input of woodland-derived OC to 

the streams, giving an increased understanding of sediment and OC transport 

processes.  

Secondly, extensive new data from Loch Davan catchment, Aberdeenshire, was 

used to find the effect of novel combinations of n-alkane concentration ratios, n-

alkane compound-specific stable isotopes (CSSI) and short-chain neutral lipid 

fatty acid (SC-NLFA) biomarkers on land use source discrimination using a 

Bayesian un-mixing model. In comparison to using only n-alkane ratios, a 

combination of n-alkane ratios and CSSI improved discrimination between arable 

and pasture land uses and using a combination of n-alkane ratios and SC-NLFA 

reduced error when discriminating four land uses (arable, pasture, forest and 

moorland). 

Thirdly, in an innovative approach, OC source proportions were identified, in both 

streambed and suspended sediment (SS), at a headwater sub-catchment and 

catchment scale. Different drivers of OC dynamics were detectable at the two 

different scales (sub-catchment and catchment scale), and different dominant 
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land use sources were found in streambed and SS OC leading to improved 

identification of processes driving spatial and temporal OC dynamics.   

And finally, soil erosion “hotspots” (i.e. where there is high risk of soil degradation) 

can be identified by modelling catchment erosion using a variety of different 

erosion models. The utility of these soil erosion models in identifying hotspots, 

and guiding Best Management Practices (BMP), depends upon their accuracy 

and there is a need to assess model usefulness. Thus, a new method was 

developed and tested using streambed sediment land use -specific yields 

estimated using OC fingerprinting as a benchmark to determine which erosion 

model best identified the relative land use OC yields in streambed sediment. 

The new methods and findings from their application will improve determination 

of dominant terrestrial land-use sources of OC in freshwater sediment at a 

catchment scale, and support development of BMP to reduce impacts on land 

productivity and water quality due to changes in climate and human activity.  

Keywords:  

Organic carbon fingerprinting, carbon loss modelling, soil erosion, connectivity, 

n-alkanes, short-chain neutral lipid fatty acids 
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1 Introduction 

“…soils are recognised as a vital part of our economy, environment and 

heritage, to be safeguarded for existing and future generations”  

The Scottish Soil Framework (Scottish Government, 2009) 

Soils are the largest carbon pool on Earth and provide vital ecosystem services, 

including biomass production, grazing land, forestry and water filtering capacity 

(European Commission, 2021; Vogel et al., 2018; Wiesmeier et al., 2019). The 

ability to store carbon and absorb water (reducing the risk of flooding and 

drought), makes soil an indispensable part of climate change mitigation and 

adaptation (European Commission, 2021). This has led to “healthy soil” being a 

key part of many policies and strategies to further climate, biodiversity and 

economic objectives within the EU; such as the Green Deal for Europe (European 

Commission, 2022a), EU Soil Observatory (European Commission, 2022b) and 

the Scottish Soil Framework (Scottish Government, 2009). The recent EU Soil 

Strategy is an important deliverable of the European Green Deal (European 

Commission, 2022a) and aims to increase the carbon in agricultural soils, and 

ensure that, “by 2050, all soil ecosystems are in a healthy condition” (European 

Commission, 2021). One of the main obstacles to achieving these aims is soil 

erosion. Soil erosion leads to loss of fertile productive soil (Verstraeten et al., 

2002), and leads to damaging off-site problems including water pollution and 

detrimental effects on infrastructure and aquatic environments due to 

sedimentation (Bilotta and Brazier, 2008; Owens et al., 2016; Rickson, 2014). 

Soil erosion is affect by the frequency and intensity of rainfall events, both of 

which are expected to increase under climate change (Nearing, Pruski and 

O’Neal, 2004). Identification of soil erosion “hotspots”, where there is high risk of 

soil degradation, is a key step in ensuring land can be cultivated to maintain 

healthy soils and minimize the risk to watercourses (Baggaley et al., 2020). 

Hotspots occur due to the combined effect of land management intensity and soil 

properties (Cloy et al., 2021) and there is no simple link between soil erosion 

hotspots and the soil organic carbon (OC) load in the waterways. The amount of 
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soil OC (SOC) and sediment eroded within a catchment is affected by catchment 

properties such as topography (slope), soil properties such as structure, texture, 

chemistry and OC content (soil erodibility), and also changes in land use and 

management - activities such as agriculture, deforestation and construction. The 

likelihood that the eroded sediment and OC will reach the waterways depends on 

the relationship between the catchment and the waterways - the connectivity 

(Fryirs, 2013).  

In recent years, organic sediment fingerprinting (SF) techniques have been 

successfully employed to estimate the relative contribution of different terrestrial 

sources to organic matter load in waterways using vegetation and land use 

specific biomarkers, including a combination of bulk stable carbon and nitrogen 

isotopes and n-alkanes (Glendell et al., 2018; Zhang et al., 2017) and compound-

specific stable isotopes (CSSI) of fatty acids and n-alkanes (Alewell et al., 2016; 

Cooper et al., 2015; Hirave et al., 2020a). The SF approach involves the 

collection of terrestrial catchment source samples and comparison of their 

physical and biogeochemical features or “fingerprints” to estimate the relative 

contribution of different upstream sources to a “sink” sediment (e.g., stream or 

lake). With a suitable set of OC biomarkers (or tracers), statistical unmixing 

models can be used to identify both the sediment sources and the amount of 

sediment contributed by each source. Bayesian modelling techniques are 

commonly employed (Cooper et al., 2015; Kelsey et al., 2020; Mabit et al., 2018) 

due to their ability to account for variability in both source and mixture (Stock and 

Semmens, 2016).  

Tracers used in organic carbon fingerprinting (OCF) must be characteristic of the 

sources and be able to both identify and differentiate between them (Collins et 

al., 2020). In addition, tracers must be conservative (stable) between their 

upslope origins and the point at which they are sampled in the “sink” sediments 

(Collins et al., 2020). The primary source of SOC is from plant tissue, and a 

variety of organic compounds are transferred from plant to soil via plant residue 

deposition (e.g. leaf litter, root turnover). Bulk stable isotope signature for carbon 

(13C) has been used previously as a tracer within OCF approaches (Glendell et 
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al., 2018; Zhang et al., 2017). However, more recent studies have suggested that 

it is not conservative (Hirave et al., 2020b). In contrast, n-alkanes, which are 

vegetation-specific neutral lipids derived from plant waxes (Lichtfouse et al., 

1998), are considered to be comparatively stable against degradation in soil and 

sediment environments because of their relatively low solubility in water and 

resistance to microbial degradation (Collins et al., 2020; Eglinton and Eglinton, 

2008; Lichtfouse et al., 1998). The different numbers of C atoms in the n-alkane 

molecule are characteristic of different origins. Short-chain n-alkanes (<C20) are 

dominant for bacteria or algae/plankton sources (Meyers, 2003). Submerged and 

floating aquatic macrophytes and lower plants (e.g. mosses) are dominated by 

mid-length chain n-alkanes (i.e., C20-C25) (Ficken et al., 2000; Meyers, 2003). 

Higher terrestrial plants are dominated by long-chain n-alkanes (>C25) with a 

strong odd-to-even carbon preference (odd-carbon-numbered chains 

predominate) (Eglinton and Hamilton, 1967; Ficken et al., 2000): Trees and shrub 

are dominated by C27 or C29 and grass is dominated by C31 or C33 (Bush and 

McInerney, 2013; Meyers, 2003; Zech et al., 2013). Therefore, long-chain (> C23) 

n-alkanes are suitable for tracing the origin of SOC from different land uses since 

as they are predominantly produced by higher plants. Ratios are commonly 

calculated for use as tracers: the relative percentage of n-alkanes C27, C29 and 

C31 (Torres et al., 2014); the C27 to C31 ratio (Puttock et al., 2014); PAQ, to 

understand aquatic versus terrestrial plant input (Ficken et al., 2000); the Odd-to-

Even Predominance (OEP) for which higher values indicate less degraded 

organic matter (Zech et al., 2013); and the Average Chain length (ACL) (Fang et 

al., 2014) a summary of which can be found in Chapter 2 (Table 2).  

The “fingerprint” for a specific soil can be considered the combination of past and 

present tracers (i.e. past and current vegetation) at a particular site. 

Consequently, due to rotation between land uses in agricultural catchments, 

arable, pasture and grasslands could end up with a very similar fingerprint 

(Upadhayay et al., 2017) and using a single technique can lead to limited land-

use based source differentiation (Alewell et al., 2016; Glendell et al., 2018). In 

addition to n-alkane ratios, there are other land use specific tracers. Variability in 

the carbon isotopic signatures (δ13C) of organic compounds is driven both by 
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plant physiology/biochemistry and environmental factors (e.g. temperature, 

humidity, isotopic composition of water/CO2) and is, therefore, (theoretically) 

unique for each individual plant and able to differentiate between different land 

cover types (Cooper et al., 2015 and references therein). Measuring δ13C of 

individual n-alkanes or fatty acids provides a compound-specific stable isotope 

(CSSI) signature (Chikaraishi and Naraoka, 2003). Once fresh plant material has 

degraded to humic substances within the soil the CSSI signature is not expected 

to degrade over time (Blessing, Jochmann and Schmidt, 2008; Hirave et al., 

2020b). CSSI analysis using long-chain fatty acids (LCFAs, >C22) or n-alkanes 

have been successfully employed in land-use-specific sediment source 

apportionment  (Alewell et al., 2016; Blake et al., 2012; Gibbs, 2008; Hancock 

and Revill, 2013; Hirave et al., 2020a; Lavrieux et al., 2019; Mabit et al., 2018; 

Upadhayay et al., 2017).  However, more research is needed to assess if the 

addition of CSSI to n-alkane ratios improves land use discrimination in river 

catchments. In addition, tracing terrestrial-to-aquatic fluxes of SOC can be further 

complicated by the direct deposition of organic material (leaf fall/litter) into the 

waterways from which the sediment samples are taken, masking the signature 

from any eroded terrestrial soil. Combining soil tracers of plant, fungal and 

bacterial origin may provide a fingerprint more characteristic of the soil rather than 

just the current land cover vegetation and allow greater discrimination between 

land uses. Similar to n-alkanes, fatty acids are transferred from plant leaves and 

roots and bind strongly to mineral particles in the soil (Blake et al., 2012). Short 

chain (shorter than C22) neutral lipid fatty acids (NLFA) can be of microbial or 

fungal rather than plant origin and have conventionally not been used as tracers 

in biogeochemical fingerprinting. Fatty acids (FA) are commonly used to measure 

abundance in soil microbial and fungal communities and the spatial distributions 

of soil microbial communities have been shown to depend mainly on soil 

properties (soil types and land cover) (Xue et al., 2018). Neutral lipids can persist 

in soils for decades and have proved to be effective tracers in distinguishing past 

land use (Lavrieux et al., 2012). Evidence that shorter chain FA may be 

preferentially degraded by soil microorganisms (Matsumoto et al., 2007) could 

suggest legacy effects of past crop cover or agricultural rotation may not be as 
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pronounced in the signature of SC-NLFA (Blake et al., 2012). Previous studies 

have found that fatty acids (FA), considered common to prokaryotic and 

eukaryotic organisms, were particularly relevant for land-use discrimination and 

distinguishing crop-specific signatures (Blake et al., 2012; Ferrari et al., 2015). 

Currently, research is needed to explore the potential of combined n-alkane 

ratios, CSSI and SC-NLFA to improve land use discrimination in OCF - improving 

the accuracy with which land use specific origins of stream OC can be identified.  

Although OCF using suitable tracers can be used to identify the land use specific 

origin of stream OC, e.g., arable land, it is unlikely to pinpoint the exact origin of 

that OC as the same land use can exist in multiple locations in a catchment. 

Therefore, research is also needed to investigate if combining OCF source 

apportionment with other estimates of soil OC origins can further improve 

accuracy in apportioning OC sources.  

The high degree of spatial heterogeneity in many river catchments - due to 

different combinations of catchment characteristics such as topography, soil 

properties, land use and management results in different likelihoods of soil 

erosion and connectivity to the streams (Vercruysse, Grabowski and Rickson, 

2017). Discrepancy between upslope erosion sources and SOC transferred to 

waterbodies can be due to catchment connectivity factors, such as preferential 

runoff pathways (e.g. tramlines) and buffer zones (e.g. permanent riparian 

vegetation) (Gomes et al., 2019; Grabowski and Gurnell, 2016; Wohl et al., 2019). 

Catchment erosion sources can be predicted using erosion models that make 

quantitative predictions about how soil is redistributed within catchments. The 

Revised Universal Soil Loss Equation (RUSLE) (Desmet and Govers, 1996; 

Renard et al., 1997; Wischmeier and Smith, 1978) is a popular model for soil 

erosion prediction due to its simplicity in terms of required input data and relative 

reliability of soil loss estimates (Risse et al., 1993) and has been used extensively 

worldwide to predict potential soil loss by water erosion (Alewell et al., 2019; 

Borrelli et al., 2014; Borselli, Cassi and Torri, 2008; Ganasri and Ramesh, 2016; 

Mahoney, Blandford and Fox, 2021; Michalek, Zarnaghsh and Husic, 2021; 

Rajbanshi and Bhattacharya, 2020; Tan et al., 2018; Wu, He and Ma, 2020). It 
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estimates long-term average annual soil loss based on rainfall intensity, soil 

properties (erodibility), topography and land use and management. The extensive 

scientific literature and data accessibility for RUSLE (Alewell et al., 2019; ESDAC, 

2014, 2015a; Panagos et al., 2014, 2015a) mean it is readily applied to a wide 

variety of catchments using existing data. RUSLE was originally designed for use 

in agricultural environments with primarily mineral soils and moderate slopes. 

Alternatively, in Scotland, tools have been developed to represent the specific 

soil conditions in that region and to predict how soils respond to land use and 

management pressures. These soil risk maps help stakeholders plan agricultural 

activities to minimize the risk of erosion and manage their soils sustainably 

(Baggaley et al., 2020; Lilly and Baggaley, 2018). The erosion risk map (ERM) of 

Lilly and Baggaley (2018) covers a large proportion of the Scottish mainland and 

shows the erosion risk of bare soil under intense or extended rainfall; risk for 

mineral soils is classified separately from those with organic (peaty) surface 

layers.  

Irrespective of the erosion model chosen, there is unlikely to be a simple link 

between areas of soil erosion and the OC load in waterways due to the diverse 

processes influencing the fluxes of SOC in catchments. The probability that 

eroded soil propagates downslope to a waterway potentially causing off-site 

effects depends on the degree of connectivity between the source and the 

waterway (Borselli, Cassi and Torri, 2008; Fryirs, 2013). The index of connectivity 

(CI) approach of Borselli et al. (2008) was designed to assess catchment 

connectivity using the available topographic information only. This sediment 

connectivity index was successfully applied in other European catchments 

(López-Vicente et al., 2013) and was further developed by Cavalli et al. (2013) to 

allow calculation of the index using only a high resolution digital terrain model, 

such as those derived from LiDAR. Using the CI approach, sources identified 

using soil erosion methods (e.g. RUSLE) can be connected, through catchment 

slopes, to terrain “sinks”, providing an estimate of connection between upslope 

erosion hotspots and streams. Measuring and mapping the soil OC content of 

catchment soils and combining this with RUSLE and CI in a “carbon loss model” 

(CLM), can give an alternative (to OCF) estimation of the relative importance of 
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land use sources of SOC to catchment streams. Currently, research is needed to 

assess whether combining a CLM with OCF source apportionment can help to, i) 

reduce ambiguity in apportioning OC fluxes when the same land use exists in 

multiple locations within a catchment, and ii) identify factors affecting OC delivery 

to streams e.g., buffer zones.  

Additionally, in combining a CLM with OCF, the OCF source apportionment can 

be considered as a “land use -specific” relative OC yield (Blake et al., 2012) which 

is compared to the relative importance of land use sources estimated by the CLM. 

The utility of any soil erosion risk model in identifying hotspots and guiding BMP 

depends upon their accuracy. Batista et al. (2019) refuted the notion that soil 

erosion models can be validated and instead emphasized the necessity of 

defining “fit-for-purpose tests” that allow for a broad investigation of model 

usefulness. The spatial and temporal variability of soil erosion require multiple 

observations in time and space, making quantitative erosion measurements 

expensive, time consuming and uncertain (Batista et al., 2019). This results in a 

limited amount of detailed data quantifying sediment yields, especially at a 

catchment scale (Rompaey et al., 2001). Research is currently needed to assess 

if OCF estimates of “land use -specific” relative OC yield (when used as a 

benchmark) could be an invaluable tool to evaluate if erosion models are “fit-for-

purpose” or assess the suitability of one erosion model over another.   

There remain challenges in the application OCF including i) effects on tracer 

signatures due to sorting effect of particles by size during mobilization, transport 

and deposition and ii) ensuring all sources of SOC are included. More research 

is needed to identify methods to address these challenges as better 

understanding of the tracers used in OCF - how their fingerprints are affected in 

the field by erosion, transport and deposition environments, and in sample 

collection, processing and analysis - leads to reduced uncertainty in OCF source 

apportionment. Improved confidence in OCF could lead to an improved 

understanding of catchment OC dynamics and an improved benchmark to assess 

if erosion models are “fit-for-purpose”.   
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1.1 Research aim and objectives 

Improved identification of “hotspots”, where there is high risk of OC erosion and 

soil degradation, is a key step to help maintain the “healthy soils” that are a key 

part of policies and strategies to further climate, biodiversity and economic 

objectives within the EU. The aim of this research is to improve determination of 

the dominant terrestrial land-use sources of OC in freshwater sediment at a 

catchment scale and to assess the likely catchment processes driving spatial and 

temporal changes in these sources. This research would support the 

development of targeted sediment management strategies to reduce impacts on 

land productivity and water quality due to changes in climate and human activity.
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Figure 1 Research aim and objectives 
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Objective 1: To assess if combining OCF and a carbon loss model (CLM) can 

enhance knowledge of the fate of eroded soil OC and terrestrial-to-aquatic OC 

fluxes  

Objective 2: To assess if the use of sediment-associated shorter-chain neutral 

lipids fatty acid (SC-NLFA) concentrations and carbon isotope signatures in 

addition to those for longer-chain n-alkane tracers, improves the ability of 

sediment fingerprinting to distinguish between land-use specific sources of 

freshwater OC load  

Objective 3: To consider land-use specific origins of freshwater OC in streambed 

and suspended sediment and estimate intra-annual catchment soil OC dynamics 

using OCF.  

Objective 4: To compare CLM constructed using i) RUSLE and ii) the Scottish 

erosion risk map (ERM) of Lilly and Baggaley, (2018), to determine which erosion 

model best identifies the relative land use OC yields in streambed sediment using 

OCF as a benchmark 

1.2 Study Sites 

1.2.1 Objective 1 - Carminowe Creek, Cornwall, UK 

In the mixed land use Carminowe Creek catchment, there has been an increasing 

input of woodland-derived organic matter to sediments at the catchment outlet 

(Loe Pool) over a period of 60 years. The increased input is likely related to 

enhanced soil erosion, or an increase in riparian woodland disconnecting inputs 

from upslope arable sources (Glendell et al., 2018). Existing data of Glendell et 

al. (2018) was used to assess if combining OCF and a CLM could enhance 

knowledge of the fate of eroded soil OC and terrestrial-to-aquatic OC fluxes in 

the catchment. 

1.2.2 Objectives 2, 3 and 4 - Loch Davan and Logie Burn, 

Aberdeenshire, Scotland, UK 

Between 2007 and 2018, Loch Davan and its main feeder stream, Logie Burn, 

were classified as having poor to moderate ecological status (SEPA, 2021). It 
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was likely that inputs of nutrient rich sediment resulting from land use 

intensification had contributed to a significant reduction in the loch area over the 

last century (Addy, Ghimire and Cooksley, 2012). Thus, the catchment is well 

suited to the study and research findings would have direct management 

applications in identifying erosion risk “hotspots” and the sources and drivers of 

OC input to the Logie Burn and its tributaries.  

1.3 Thesis outline 

The thesis has been written in a paper format and is made up of four journal 

articles arranged as individual chapters (Chapters 2 to 5) followed by a discussion 

and conclusions. Chapter 2 will be published in the Journal of Soils and 

Sediments (accepted on Tuesday 15th March 2022). Chapters 3, 4 and 5 will be 

submitted for review after completion of this thesis. All original work was carried 

out by the author of this thesis, with contributions of the co-authors as stated in 

Table 1.1. 

Chapter 2: Showed how uniquely combining multiple modelling approaches to 

investigate catchment carbon dynamics allowed for an increased understanding 

of sediment and organic carbon transport processes in the study catchment, in 

Cornwall. 

In Chapter 3: Showed that using a combination of soil biomarkers of plant, fungal 

and bacterial origin would allow greater discrimination between land uses in OCF 

and explored the potential of short chain (shorter than C22) neutral lipid fatty 

acids to improve land use discrimination in the Loch Davan catchment in Scotland 

as a case study.  

In Chapter 4: Streambed and suspended sediments were compared to, i) define 

temporal changes in land use sources using OCF and ii) investigate factors 

affecting n-alkane biomarker signature 

In Chapter 5: OCF was used as a benchmark to compare the ability of different 

erosion models to predict relative land use OC yields in streambed sediment and, 

by extension, the soil OC degradation hotspots to be targeted for Best 

Management Practices (BMP) 
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An appendix is included at the end of the document providing additional 

information on the data used in this thesis. 

Table 1: Author contributions to chapters already submitted or intended for 

publication in peer-reviewed academic journals.  

Author Contribution 

Katy Wiltshire  Data analysis, methodology development, 

discussion, layout, writing (All Chapters) 

Toby Waine (supervisor) 

Robert Grabowski (co-supervisor) 

Guidance on method and structure, advice, 

editing (All Chapters) 

Jeroen Meersmans (supervisor) 

Miriam Glendell (co-supervisor) 

 

Conceptualisation and funding acquisition. 

Guidance on method and structure, advice, 

editing (All Chapters) 

Barry Thornton 

(Laboratory advisor) 

Guidance on laboratory analysis and methods 

(Chapter 3 and 4). 

Steve Addy 

(Fieldwork and catchment advisor) 

Guidance on catchment definition and fieldwork 

organisation (Chapter 3 and 4) 

Nikki Baggaley 

(Soils and soil erosion advisor) 

Guidance on soil erosion data availability and 

interpretation (Chapter 5) 

Fiona Napier 

(Case partner) 

Guidance on catchment definition and analysis 

(Chapters 3, 4 and 5) 
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2 Assessing the source and delivery processes of 

organic carbon within a mixed land use catchment 

using a combined n-alkane and carbon loss 

modelling approach 

Abstract 

Purpose: Understanding fluxes of soil organic carbon (OC) from the terrestrial-to-

aquatic environments is crucial to evaluate their importance within the global 

carbon cycle. Sediment fingerprinting (SF) is increasingly used to identify land 

use specific sources of OC, and, while this approach estimates the relative 

contribution of different sources to OC load in waterways, the high degree of 

spatial heterogeneity in many river catchments makes it challenging to precisely 

align the source apportionment results to the landscape. In this study, we 

integrate OC SF source apportionment with a carbon loss model (CLM) with the 

aim of: i) reducing ambiguity in apportioning OC fluxes when the same land use 

exists in multiple locations within a catchment, and ii) identifying factors affecting 

OC delivery to streams e.g., buffer zones. 

Methods: Two main approaches were used in this study: (i) identification of the 

sources of freshwater bed sediment OC using n-alkane biomarkers and a 

Bayesian based unmixing model, and (ii) modelling and analysis of spatial data 

to construct a CLM using a combination of soil OC content modelling, RUSLE soil 

erosion modelling and a connectivity index. The study was carried out using 

existing OC and n-alkane biomarker data from a mixed land use UK catchment. 

Results: SF revealed that woodland was the dominant source of the OC found in 

the streambed fine sediment, contributing between 81% and 85% at each 

streambed site. In contrast, CLM predicted that arable land was likely the 

dominant source of OC, with negligible inputs from woodland. The areas of 

greatest OC loss in the CLM were predicted to be from arable land on steeper 

slopes surrounding the stream channels. Results suggest extensive riparian 

woodland disconnected upslope eroded soil OC and, concomitantly, provided an 

input of woodland-derived OC to the streams.  It is likely the woodland 
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contribution to streambed OC is derived from litter and leaves rather than soil 

erosion. 

Conclusion: This study demonstrates how location-specific OC sources and 

delivery processes can be better determined using sediment fingerprinting in 

combination with CLM, rather than using sediment fingerprinting alone. It 

highlights that, although wooded riparian buffer strips may reduce the impact of 

upslope, eroded soil OC on waterways, they could themselves be a source of OC 

to stream sediments through more direct input (e.g., organic litter or leaf debris). 

Characterising this direct woodland OC as a separate source within future 

fingerprinting studies would allow the contributions from any eroded woodland 

soil OC to be better estimated. 

Introduction 

Soils provide essential ecosystem services, including biomass production, 

grazing land, forestry, water filtering capacity and, most critically for climate 

regulation, storage of carbon (Vogel et al., 2018; Wiesmeier et al., 2019). The 

importance of soil organic carbon (SOC) is widely recognized for soil structure, 

productivity, and the global C cycle. Soil erosion linked to climate change and 

human activity threatens the ability of this largely non-renewable resource (Gobin 

et al., 2004) to continue its vital roles and has detrimental effects on infrastructure 

and aquatic environments due to excess land to water sediment fluxes (Bilotta 

and Brazier, 2008; Owens et al., 2016; Rickson, 2014). 

The assessment of the relative contribution of different terrestrial sources to 

organic matter load in waterways can be achieved using sediment fingerprinting 

(SF) with plant-specific biomarkers (Alewell et al., 2016; Cooper et al., 2015; 

Glendell et al., 2018; Hirave et al., 2020a; Zhang et al., 2017). Although SF can 

identify the land use specific origin of stream OC, it cannot pinpoint the exact 

origin of that OC if the same land use exists in multiple locations within a 

catchment - each with different susceptibility to erosion and connectivity to the 

streams. Source classifications within SF are often too broad (e.g., arable land or 

forest) to enable precise sources (e.g., specific fields or landscape features) to 

be determined and management strategies to be targeted (Owens et al., 2016). 
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The ambiguity in OC origin can be reduced if the spatial distribution of erosion 

prone areas and their likely connection to the streams can be identified. Net 

catchment erosion can be modelled using sediment delivery models (e.g., 

WaTEM/SEDEM (Van Oost, Govers and Desmet, 2000; Van Rompaey et al., 

2001; Verstraeten et al., 2002)), however, accurate predictions for these models 

require calibration, commonly carried out using outlet sediment yield data (Krasa 

et al., 2019; Luo et al., 2020). However, sediment yield data are not available for 

many catchments, and is usually only available at the catchment outlet. For 

catchments where a lack of sediment yield data may negate the advantage that 

could be obtained from the application of more sophisticated erosion and routing 

models, a simple carbon loss model (CLM) can be constructed using spatially 

distributed carbon sampling (commonly collected for land use specific SF), 

together with an empirical erosion model, such as the Revised Universal Soil 

Loss Equation (RUSLE) (Desmet and Govers, 1996; Renard et al., 1997; 

Wischmeier and Smith, 1978), and a connectivity index (CI) which provides an 

estimate of potential connection between areas of upslope erosion and streams. 

The extensive literature and data accessibility for RUSLE and CI mean these 

methods can be easily applied in a wide variety of catchments using available 

data (Alewell et al., 2019; Cavalli et al., 2013; ESDAC, 2014, 2015a; Panagos et 

al., 2014, 2015a).   

In Carminowe Creek catchment, Cornwall, UK, there has been an increasing 

input of woodland-derived organic matter to sediments in Loe Pool (the lake at 

the catchment outlet) over a period of 60 years (Glendell et al., 2018). Glendell 

et al. (2018) concluded this increase could be related to enhanced soil erosion, 

or alternatively, an increase in riparian woodland disconnecting OM inputs from 

upslope arable land uses. They suggested that coupling fingerprinting with soil 

erosion modelling could be a useful tool for quantifying these terrestrial-to-aquatic 

OC fluxes. To this end, this study quantifies the relative contributions of woodland 

and arable soil OC to the sediments of multiple sites in streams leading to Loe 

Pool using the existing n-alkane biomarker data of Glendell et al. (2018) with a 

Bayesian unmixing model SF approach. SF estimates were compared with the 

sources of eroded soil OC reaching the streams estimated using a CLM to assess 
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the origins and delivery processes of streambed OC. The aim of this paper is to 

evaluate whether location-specific OC sources and delivery processes can be 

better determined using SF in combination with CLM, rather than SF alone. 

2.1 Material and methods 

Two main approaches were used in the study: (i) identification of the sources of 

freshwater bed sediment OC using n-alkane biomarkers and a Bayesian based 

unmixing model, and (ii) modelling and analysis of spatial data to construct a CLM 

using a combination of % SOC content modelling, RUSLE soil erosion modelling 

and a connectivity index (CI) (Borselli, Cassi and Torri, 2008; Cavalli et al., 2013) 

(SOC% x RUSLE x CI). 

2.1.1 Study catchment  

Carminowe Creek catchment (4.8 km2) in south-west England, UK (Figure 2) 

drains into a large freshwater lake, Loe Pool (0.54 km2). Carminowe Creek 

comprises two main streams (referred to below as “North” and “South” streams), 

with a joint outlet to Loe Pool on its eastern side. The mean annual precipitation 

is ca. 1,000 mm and mean annual temperature is ca. 11°C (Met Office, 2021a). 

The catchment bedrock of Devonian mudstone, siltstone and sandstone is 

overlaid by freely draining loamy soils. The principal land use within the 

catchment is arable with areas of permanent grassland found on steeper slopes 

and woodland predominantly found along the riparian corridor (Glendell et al., 

2018). 
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Figure 2: Carminowe Creek catchment, UK, showing the different land uses and 

terrestrial and aquatic sample locations (adapted from Glendell et al. (2018)) and 

a summary of percentage cover and mean slope (in degrees – derived from LiDAR 

based digital terrain and surface model for SW England [TELLUS SW-Project] 

©NERC (Centre for Ecology & Hydrology; British Antarctic Survey; British 

Geological Survey) (Ferraccioli et al., 2014)) for catchment land uses 

2.1.2 Samples and analysis 

Existing soil and sediment data were used for this research.  Full details of sample 

collection, processing and analysis can be found in Glendell et al. (2018) and are 

briefly summarised here. Four land uses were considered in their study: Arable, 

temporary grassland referred to as “ley”, permanent grassland referred to as 

“grassland” and woodland (including riparian woodland areas). Seventy-five soil 

cores (8 cm diameter, depth 0–15 cm) were taken (30 from arable, 26 from ley, 

14 from grassland and five from woodland were collected from 0–15 cm soil depth 

in summer 2015 (Figure 2). Where required (e.g., in woodland) leaf litter was 

removed from the surface before sample collection. In addition, streambed 

sediment samples were collected at six locations along the North and South 

tributaries (upstream, midstream and downstream) and at the joint catchment 

outlet. These locations will be referred to as Outlet (OL), North Lower (NL), North 

Mid (NM), North Upper (NU), South Lower (SL), South Mid (SM) and South Upper 

(SU). Soil samples were oven dried at 40 °C before sieving. Streambed samples 

were wet sieved to remove coarse vegetation debris. The criteria for sieving the 

source and sediment samples were to retain as much soil/sediment as possible 
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while removing anomalously large residual vegetation or sandy/stoney debris. 

For the streambed sediments a 250 µm sieve removed coarser vegetation/sand 

debris from the finer sediments but as this sieve size would have removed too 

much soil from the courser soil samples these were sieved to 2mm. In each case 

the soil/sediment passing through the sieve was retained for analysis.  

All the soil and streambed samples were processed and analysed for total C (n = 

75), however, n-alkane concentrations (μg g−1 C) were only obtained for a sub-

set of soil source samples (eleven from arable, nine from ley, seven from 

permanent grassland and four from woodland land use) selected on the basis of 

likely high hydrological connectivity with the streams to characterise for SF 

(Glendell et al., 2018).  

2.1.3 Software and Data Maps 

The 1 m x 1 m resolution Digital Elevation Model (DEM) was obtained from LiDAR 

based Digital Terrain Model data for South West England (Ferraccioli et al., 

2014). Pit-filling was undertaken in ESRI ArcMap (V10.6) (ESRI, 2017) prior to 

topographic data generation to remove potential processing errors within the 

DEM. For the estimation of soil loss in RUSLE, the DEM was resampled to a 

resolution of 20 m x 20 m. Twenty metres is a typical resolution for DEM in erosion 

modelling as the processes to be captured by the RUSLE erosion modelling are 

at a hill-slope scale (Van Oost et al., 2006). The land cover dataset was based 

on the Centre for Ecology & Hydrology (CEH) Land Cover map of 2015 

(LCM2015), as adapted by Glendell et al. (2018) (Figure 2). Sub-catchments 

contributing to the seven streambed sediment sample sites were delineated in 

ESRI ArcMap (V10.6) (ESRI, 2017). In addition, a stream buffer representing the 

land within 20 m of the stream was delineated for each of the sub-catchments (20 

m was selected to match the resolution of the CLM maps).  

Unless otherwise stated, all statistical analyses were carried out in R (version 

3.6.3) (R Core Team, 2020) and RStudio (version 1.1.463) (RStudio Team, 

2018). 
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2.1.4 N-alkane tracers 

Due to their nature (straight-chain hydrocarbons lacking functional groups), n-

alkanes are stable, long-lived molecules that can survive in the fossil record for 

millennia (Bush and McInerney, 2013) leading to their use as biomarkers in 

tracing vegetation changes, not only over decades and centuries (Chen et al., 

2017, 2022; Glendell et al., 2018; Wang et al., 2015), but in studies of 

paleoecology and paleoclimatology (Glaser and Zech, 2005; Meyers, 2003; Zech 

et al., 2009). N-alkanes within sediments are more resistant to degradation than 

other organic biomarkers (e.g. sterols, n-alkanoic acids, n-alkanols). The longer 

the chain length, the less soluble the n-alkane becomes in water, reducing their 

metabolism by microorganisms (Cranwell, 1981; Ranjan et al., 2015). As a result, 

alkanes of chain-length >C24 are generally resistant to biodegradation (Singh, 

Kumari and Mishra, 2012) and are suitable as conservative sediment tracers. 

Selection of the sub-set of source soil samples for n-alkane analysis in this 

catchment (Glendell et al., 2018) was originally carried out with the aim of 

sediment source fingerprinting at the catchment outlet. Therefore, source soil 

samples within the sub-catchments at the seven streambed sediment sample 

locations were unevenly distributed. For this reason, all soil samples from the 

entire catchment were included in the n-alkane source apportionment model to 

characterise the land use sources. To characterize the n-alkane distribution 

within soils under different land use sources this study used n-alkane 

concentrations (μg g−1 C) for chain lengths C15 to C33. N-alkanes proxies 

obtained from the relative abundances of n-alkanes were used as “fingerprints”: 

the relative percentage of n-alkanes C27, C29 and C31 (Torres et al., 2014); the 

C27 to C31 ratio (Puttock et al., 2014); Paq, to understand aquatic versus 

terrestrial plant input (Ficken et al., 2000); the Odd-to-Even Predominance (OEP) 

(Zech et al., 2013; and the Average Chain length (ACL) (Fang et al., 2014) were 

used (Table 2). 
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Table 2 Description of n-alkane derived ratios considered as tracers within the 

MixSIAR sediment fingerprinting source apportionment model for Carminowe 

Creek catchment, UK 

n-alkane ratios Description 

%C27, %C29, %C31 Percentage of alkane “i” where: %C𝑖 =

C𝑖

(C27+C29+C31)
  (Torres et al., 2014) 

C27 / C31 C27 to C31 ratio estimating the 

proportion of wood to grass derived 

organic matter (Puttock et al., 2014) 

𝑷𝑨𝑸 =  
𝐂𝟐𝟑 +  𝐂𝟐𝟓

𝐂𝟐𝟑 + 𝐂𝟐𝟓 +  𝐂𝟐𝟗 +  𝐂𝟑𝟏
 

Paq, to understand aquatic versus 

terrestrial plant input (Ficken et al., 

2000) 

𝑶𝑬𝑷 =  
𝐂𝟐𝟕 +  𝐂𝟐𝟗 +  𝐂𝟑𝟏 + 𝐂𝟑𝟑

𝐂𝟐𝟔 + 𝐂𝟐𝟖 + 𝐂𝟑𝟎 +  𝐂𝟑𝟐
 

Odd-over-even predominance (OEP). 

(Zech et al., 2013)  

𝑨𝑪𝑳 =  
𝟐𝟕 × 𝐂𝟐𝟕 +  𝟐𝟗 × 𝐂𝟐𝟗 +  𝟑𝟏 × 𝐂𝟑𝟏 + 𝟑𝟑 × 𝐂𝟑𝟑

𝐂𝟐𝟕 + 𝐂𝟐𝟗 + 𝐂𝟑𝟏 +  𝐂𝟑𝟑
 

Average Chain length (Fang et al., 

2014) 

2.1.4.1 Tracer selection 

The Bayesian source apportionment model applied in this study, MixSIAR, 

accounts for the variability in both sources and mixture through uncertain source 

characterisation and thus offers an advancement on conventional linear models 

(Stock and Semmens, 2016). The geology and soils in this small catchment are 

uniform, which should minimise within-source group tracer variability due to these 

factors.  The study of Glendell et al. (2018) found that the n-alkane tracers could 

not distinguish well between the arable and ley land uses in this catchment and 

therefore in the tracer selection procedure these land uses were combined giving 

three land use sources arable (n=20), grassland (n=7) and woodland (n=4). N-

alkane tracers were selected using the following procedure. Firstly each tracer 

was assessed for normality using the Kolmogorov-Smirnov test. A “range test” 

was then carried out by comparing boxplots of each potential tracer in source 

samples against the mixtures (streambed sediment) to assess if the range of 

values for the streambed sediments was within the full range of values for the 
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terrestrial land use sources. The boxplots were created in Excel with the “full 

range” defined by the whiskers (extending up from the top of the box to the largest 

data element that is ≤1.5 times the interquartile range (IQR) and down from the 

bottom of the box to the smallest data element that is >1.5 times IQR); values 

outside this range were considered outliers. The full range (excluding outliers) 

was used to account for the small sample sizes available to characterise each 

land use and the variability in the source fingerprints. The streambed sediment 

mixtures are represented by a single measurement in each case without any 

knowledge of the potential mean and distribution. It is therefore possible that the 

single measurement represents either a value close to the maximum or minimum 

of the possible tracer values rather than the mean and therefore selecting tracers 

based on the means and inter-quartile range of the sources was considered too 

restrictive. Finally, a Kruskal-Wallis non-parametric test followed by a post-hoc 

Dunn test was employed to determine if the tracers could distinguish between the 

three land use sources. 

2.1.4.2 Virtual mixtures 

Once a suitable set of n-alkane tracers had been selected land use discrimination 

was assessed using a “virtual” mixture with 50/50 contributions from each source 

by taking the mean of the two sources to represent a 50% contribution from each. 

Errors were calculated as mean absolute differences between the modelled 

(MixSIAR) and virtual mixture composition. 

2.1.4.3 Bayesian unmixing model (MixSIAR) implementation 

MixSIAR uses the mean and standard deviation to characterise tracer properties. 

MixSIAR is “fully Bayesian” (source data fit hierarchically) and estimates the ‘true’ 

source means and variances used in the mixture likelihood. Source means and 

standard deviations used in the mixture likelihood are allowed to deviate from the 

user specified values with the amount of deviation dependent on source sample 

sizes. Estimates of sediment proportions are made using Markov chain Monte 

Carlo (MCMC) simulations. A full description of this model can be found in Stock 

and Semmens (2016) and Stock et al. (2018). MixSIAR was formulated using a 

residual error term and an uninformative prior in all model runs. The MCMC 
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parameters were set as follows: chain length = 100,000, burn = 50,000, thin = 50, 

chains = 3 (convergence of all models was evaluated using the Gelman-Rubin 

diagnostic). 

2.1.5 Carbon Loss model 

A carbon loss model (CLM) was constructed as follows: 

𝐶𝐿𝑀 =  SOC% x SL x CI (2-1) 

where SOC% is a map of the soil organic carbon content (%), SL is a soil loss 

map constructed using RUSLE and CI is a map of connectivity index as defined 

by Borselli et al., (2008) and Cavalli et al., (2013). 

2.1.5.1 SOC content mapping 

To map soil OC (%) across the catchment, soil samples were interpolated using 

a linear regression model implemented in R (version 3.6.3) (R Core Team, 2020) 

packages “raster” (Hijmans, 2020), “sp” (Pebesma and Bivand, 2005) and “gstat” 

(Pebesma, 2004). Seven land-use and topographic environmental predictor 

maps were generated using ESRI ArcMap (V10.6) (ESRI, 2017): land use, slope, 

curvature, flow length (longest upslope distance along the flow path, from each 

cell to the top of the drainage divide), accumulated flow (accumulated weight of 

all cells flowing into each downslope cell), topographic wetness index (Mayer et 

al., 2019) and aspect (i.e. compass direction that the steepest slope is facing at 

a given location). The land uses considered within the model were grassland, 

arable (a combination of arable and temporary grassland or ley), broadleaf 

woodland and riparian woodland as these were the land uses available on the 

land use map adapted from Glendell et al. (2018).  Climate and soil parameters 

were not considered as predictors, as, except for one sample, all samples were 

taken on the same soil type and climate data were not expected to vary 

significantly across this small catchment (<5km2). The model was selected by 

highest adjusted R2 and lowest Akaike Information Criterion (AIC)  (Meersmans 

et al., 2012). A leave-one-out cross-validation was implemented, and the root 



 

31 

mean square error (RMSE) and R2 of the model simulations were calculated to 

check model accuracy against observations.  

2.1.5.2 Connectivity Index 

To define the degree of connectivity between upslope sediment sources and 

catchment streams, CI was calculated using the method of Cavalli et al. (2013) 

and the catchment DEM using ESRI ArcMap (V10.6) (ESRI, 2017). For use as a 

weighting with the soil organic carbon content and RUSLE, CI was re-scaled from 

0 to 1.  

2.1.5.3 Soil loss modelling  

Long-term average annual soil loss in RUSLE is calculated as: 

𝑆𝐿 = 𝑅. 𝐾. 𝐿. 𝑆. 𝐶. 𝑃 (2-2) 

where SL is the mean soil loss (t ha−1 yr−1), R is the rainfall intensity factor (MJ 

mm ha−1 h−1 yr−1), K is the soil erodibility factor (t ha h ha−1 MJ−1 mm−1), S and L 

are the slope and slope-length factors, C and P are the dimensionless cover-

management factor and conservation support practice factor that are heavily 

dependent on the land use and management.  In this small catchment (<5 km2), 

single values were used for the RUSLE R and K factors, based on existing 

derived spatial datasets (R - ESDAC, 2015; Panagos et al., 2015) (K - ESDAC, 

2014; Panagos et al., 2014) (Table 2).  A C factor map was created by assigning 

literature values for arable land, grassland, forest and urban areas to the land 

cover map (Section 2.1.3) (Bakker et al., 2008; Borrelli et al., 2018b; Gadiga and 

Martins, 2015; Oliveira, Nearing and Wendland, 2015; Van Rompaey and 

Govers, 2002) (Table 3). The conservation support practice factor (P) was not 

considered in this study and was set to 1. RUSLE LS factor was generated from 

the DEM in R (version 3.6.3) (R Core Team, 2020) using packages “raster” 

(Hijmans, 2020) and “RSAGA” (Brenning et al., 2018: version 7.6.3, method 

“Desmet and Govers”). The RUSLE factor maps and %SOC map were used to 

calculate SOC loss using packages “raster”, “RSAGA” and “rgdal” (Bivand, Keitt 

and Rowlingson, 2019). 
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Table 3 RUSLE factors used to estimate long-term average annual soil loss for 

Carminowe Creek catchment, UK. R is the rainfall intensity factor (MJ mm ha−1 h−1 

yr−1), K is the soil erodibility factor (t ha h ha−1 MJ−1 mm−1), S and L are the slope 

and slope-length factors, C and P are the dimensionless cover-management factor 

and conservation support practice factor. 

RUSLE Factor Value 

R 
586.85 (MJ mm ha-1 h-1 yr-1) 

C arable 0.21  (Range 0.12 - 0.34) 

C forest 0.005  (Range 0.01 - 0.001) 

C grassland 0.0625  (Range 0.2 - 0.005) 

C urban 0.005  (Range 0.01 - 0.001) 

K 0.041 (t ha h ha-1 MJ-1 mm-1) 

P 1 

  

2.1.5.4 Land use specific distribution of carbon loss 

The value of C-factor within RUSLE model can be used to account for the 

differences in erosion potential between land uses. However, the range of values 

found for the C factor in the literature (Table 3) can lead to a one or two orders of 

magnitude difference in RUSLE output. Therefore, it was important to evaluate 

the magnitude of the errors associated with the RUSLE C-factor as well as that 

introduced by the modelling of SOC content (%SOC) using a Monte Carlo 

analysis with 3,000 iterations. The RUSLE C factor was sampled from a uniform 

distribution defined by the maximum and minimum values found in the literature 

(Table 3) and %SOC content was sampled from a uniform distribution defined by 

+/-1 RMSE from the leave-one-out cross-validation of the %SOC content map 

(see 2.1.5.1). At each iteration the SOC loss from arable and woodland land uses 

were calculated, generating a probability distribution for comparison with 

sediment source proportions estimated using SF. 
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2.2 Results 

2.2.1 N-alkane distribution 

The n-alkane distribution of the samples in this catchment are discussed in 

Glendell et al., (2018) and are summarised here. As expected, C27 and C29 

dominated the woodland n-alkane distribution (63%) with a smaller contribution 

from those homologues dominant in grasslands (C31, C33 - combined proportion 

of 28%) (Figure 3a). Conversely, the arable land use n-alkane distribution was 

dominated by contributions from C31, C33 homologues dominant in grasslands 

(combined proportion of 56%) with smaller contributions from those homologues 

dominant in woodlands (C27, C29 - combined proportion of 36%). Both land uses 

had a much smaller contribution from homologues’ dominant in lower plants and 

mosses (C23, C25 - combined proportion of 8-9%). The relative proportions of 

the n-alkane homologues in the streambed sediments were dominated by C27 

and C29 (combined proportion of 67-71% for all streambed sites except OL which 

had a slightly lower proportion of 62%) (Figure 3a). 
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Figure 3 a) Relative mean concentration (%) for mid and long-chain n-alkane homologues for the soils of land uses, arable and 

woodland and streambed sediments OL, NU, NM, NL, SU, SM and SL, and b) Range comparison for %C, mid and long-chain n-

alkane homologues, and n-alkane ratios between terrestrial land uses and streambed sediments OL, NU, NM, NL, SU, SM and SL 

for the Carminowe Creek catchment, UK 
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2.2.2 Source apportionment 

To evaluate whether location-specific OC sources and delivery processes can be 

better determined using SF in combination with a CLM, rather than SF alone the 

relative contributions of woodland and other land uses were first quantified using 

the n-alkane biomarker data and MixSIAR.  

The Kolmogorov-Smirnov test revealed that all n-alkane tracers (C27/C31 ratio, 

%C27, %C29, %C31, OEP, PAQ and ACL) were not significantly different from a 

normal distribution (p > 0.05). The Kruskal-Wallis non-parametric test for the 

three land use sources (arable, grassland and woodland) revealed that the 

distribution of n-alkane tracers was not the same for every land use (p < 0.05) for 

all tracers except OEP. However, the post-hoc Dunn test which compares the 

land uses pairwise revealed the n-alkane tracers could not distinguish grassland 

from arable. Consequently, as this study is essentially concerned with the relative 

contribution of woodland and “non-woodland” sources the grassland and arable 

data were combined into one source which will henceforth be referred to as 

“arable”. Analysing this combined arable source, the Kolmogorov-Smirnov test 

revealed that all n-alkane tracers were not significantly different from a normal 

distribution (p > 0.05), except for C27/C31 ratio (p=0.022). The Kruskal-Wallis 

non-parametric test for the two land use sources (arable and woodland) revealed 

that the distribution of n-alkane tracers was not the same for every land use (p < 

0.05) for all tracers except OEP. OEP was therefore excluded as a tracer. The 

range test revealed that for %C27 and %C29 the range of values for the 

streambed sediments was within the full range of values for the terrestrial land 

use sources and these two tracers were therefore selected for use in source 

apportionment (Figure 4). The difference in range between the streambed 

sediment n-alkanes and those of the terrestrial land uses was primarily due to the 

relative depletion of %C31 in the streambed sediments (Figure 3b) which 

commensurately reduced the average chain length (ACL) and increased the 

C27/C31 ratio. The values of the n-alkane proxy for aquatic versus terrestrial 

plant input (PAQ) were generally within the range of the woodland (PAQ 0.12-

0.17) however, a few sample sites had larger PAQ values (0.19-0.2). Ankit et al., 
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(2022) ascribe PAQ values <0.1 to terrestrial vegetation and 0.1–0.4 to emergent 

macrophytes which could suggest some input of n-alkanes from the latter in 

streambed sediments. However, the woodland PAQ values are also all above 0.1 

and it unlikely that emergent macrophytes would make a significant contribution 

to terrestrial soils. Using MixSIAR and the selected n-alkane tracers (%C27 and 

%C29) land use discrimination was assessed using a “virtual” mixture. The mean 

absolute difference between the modelled (MixSIAR) and virtual mixture 

composition was only 0.2% suggesting n-alkane tracers %C27 and %C29 could 

discriminate well between the two land use sources.  

Source apportionment using MixSIAR with n-alkane tracers %C27 and %C29 

found the dominant OC source at every streambed site was woodland. There was 

little difference between the seven streambed sites with woodland contributing 

between 81% and 85% at each site (Table 4). 
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Figure 4 Box plots of n-alkane ratios for the soils of land use types, arable (A), and woodland (W) and streambed sediments OL, NU, 

NM, NL, SU, SM and SL for the Carminowe Creek catchment. The middle line of the box represents the median and the “x” the mean. 

The box represents the first to third quartile and the whiskers extend from minimum to maximum values excluding outliers (blue dots) 
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Table 4 Proportion of woodland soil OC input to the streambed sediments OL, NU, 

NM, NL, SU, SM and SL for the Carminowe Creek catchment estimated using 

Sediment fingerprinting (SF) and a Carbon loss model (CLM) at a sub-catchment 

and 20 m stream buffer scale 

 Estimated proportion of woodland soil OC (% ± 1SD) 

 OL NL NM NU SL SM SU 

SF 
81.64± 
13.14 

85.07± 
11.58 

85.47± 
11.03 

84.61± 
11.70 

81.39± 
12.68 

82.23± 
12.43 

83.29± 
11.79 

CLM (sub-catchment) 
0.81± 
0.52 

0.40± 
0.26 

0.34± 
0.22 

0.65± 
0.42 

1.37± 
0.88 

1.17± 
0.77 

0.38± 
0.26 

CLM (20m buffer) 
3.64± 
2.24 

1.39± 
0.89 

0.98± 
0.65 

1.21± 
0.76 

7.68± 
4.43 

3.18± 
2.04 

1.11± 
0.74 

 

2.2.3 Carbon Loss model 

The %OC of the samples in this catchment are discussed in Glendell et al., (2018) 

and are summarised here. The mean %OC was greatest within woodland 

(7.80±1.98%) land use followed by grassland (5.40±1%), ley (3.77±1.01%) and 

arable land use (3.05±0.61%). In general, the %OC content of streambed 

sediments was lower than that of terrestrial land uses, with the highest %OC in 

streambed sediments (Site SM 3.7%) comparable to that of ley and arable soils. 

The lowest %OC were found at sites NU (1.16%) and OL (1.55%), which had 

relatively little woodland nearby, with NU being surrounded by arable and 

grassland and OL located near steeply sloping grasslands. The largest %OC was 

seen at site SM (3.68%), which is located next to an extended area of woodland.  

The CLM required the spatial distribution of soil OC and to this end the %OC 

across the catchment was predicted by interpolating %OC of each soil sample 

using linear regression (Table 5). Land use showed the strongest significant 

relationship (p<0.05) with %OC (adjusted R2=0.54). OC content showed weak 

significant relationships (p<0.05) with curvature (adjusted R2=0.07), TWI 

(adjusted R2=0.12), flow length (adjusted R2=0.18) and accumulated flow 

(adjusted R2=0.13), however, when considered together with land use none of 
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these other covariates were significant. No significant relationships with %OC 

were found for the other covariates (slope and aspect). The highest adjusted R2 

(0.54) and lowest AIC were obtained when land use alone was used as a 

predictor (Table 5). The leave-one-out cross-validation checking model accuracy 

against observations had a root mean square error (RMSE) of 1.35 and R2 of 

0.43. The land uses considered within the model were grassland, arable (a 

combination of arable and ley), broadleaf woodland and riparian woodland 

(Section 2.1.3). The highest SOC content was predicted in broadleaved 

woodland (7.29%), followed by grassland (5.76%), riparian woodland (5.26%) 

and arable land (3.17%).  

The combined CLM (SOC% x RUSLE x CI) reveals areas of greatest OC loss are 

predicted in arable land on the relatively steeper slopes surrounding the stream 

channels (Figure 5). In each of the seven sub-catchments of Carminowe Creek 

(OL, NU, NM, NL, SU, SM and SL), the proportion of woodland soil OC input to 

the streambed sediments was estimated using the CLM at a sub-catchment and 

20 m stream buffer scale (Table 4). The two scales (sub-catchment and 20 m 

stream buffer) were used to assess if streambed OC proportions were more 

aligned with local riparian conditions, rather than those in the wider sub-

catchment. At the sub-catchment scale woodland represents only 6% to 9% of 

the total land use for each streambed sediment site. This percentage rises at the 

20m buffer scale (37-58%) as most of the woodland is located in close proximity 

to the streams. The CLM estimated that woodland soil OC represented a 

relatively small proportion of eroded soil OC likely to reach the streams (<1.4 at 

a sub-catchment scale and up to up to 7.7±4.4% at a 20 m stream buffer scale) 

with the overwhelming majority originating in arable land. 

Table 5 SOC content regression relationship and Root Mean Square Error (RMSE) 

and R2 value resulting from leave-one-out cross-validation. In the context of the 

linear regression relationship, the variables “grassland”, “riparian” and 

“woodland” are dummy variables which are equal to one when that land use is 

present and zero otherwise. 

SOC content regression relationship RMSE R2 
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SOC% =3.1694 + 2.5950(grassland) + 2.0931(riparian) + 4.1166(woodland) 1.35 0.43 

 

 

Figure 5 a) Carbon Loss Model (CLM) and b) Combined CLM and land use map for 

Carminowe Creek catchment, UK 

2.3 Discussion 

We combined a CLM with SF to characterize OC distribution in soils under 

different land uses and to quantify the sources of OC in Carminowe Creek, a 

small, mixed land use, UK catchment.  

The CLM predicted areas of greatest OC loss in arable land on the relatively 

steeper slopes surrounding the stream channels. The proportion of woodland soil 

OC input to the streambed OC estimated by CLM at a sub-catchment scale, 

<1.4% is smaller than would be expected given its area coverage (6-9%), close 

proximity to the streams (high connectivity), and relatively high %OC (5.26-7.29 

cf. 3.17-5.76% for arable). This is due mainly to a greater protection from erosion 

afforded by the permanent vegetation found in woodland compared to arable land 

which has more variable vegetation cover due to human-induced processes 

(Poesen, 2018). This is reflected in the RUSLE C-factor which is much higher 
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(resulting in a significantly higher level of estimated erosion) for arable land than 

woodland (arable 0.12 - 0.34, woodland 0.01-0.001). In addition, some of the 

arable land in this catchment is located on the steep slopes leading down to the 

stream network which is likely to increase both the speed, and the erosive 

potential of water runoff and increase the probability of eroded sediment reaching 

the streams (Renard et al., 1997). The proportion of woodland soil OC input to 

the streambed OC estimated by CLM at a 20 m stream buffer scale is larger (up 

to 7.7%) due to the larger proportion of woodland at this scale (37-58%) but is 

still significantly smaller than the contribution from arable land due to the higher 

levels of erosion predicted for that land use. There is a large discrepancy between 

the CLM estimates of woodland soil OC contributions to streambed OC and those 

estimated by SF. Neither the carbon loss estimated in close proximity to the 

streams (CLM 20 m stream buffer scale), nor that in the wider catchment, came 

close to the 81% - 85% woodland contribution estimated by SF. The discrepancy 

between the CLM estimates of woodland soil OC contributions to streambed OC 

and those estimated by SF suggests that woodland soil is being input to streams 

by processes not modelled by the CLM and/or, there is a source of woodland 

vegetation biomarkers not originating from soil.  

Carminowe Creek has extensive riparian woodland. This, riparian woodland 

vegetation can reduce delivery of upslope fine-grained sediment to streams 

(Grabowski and Gurnell, 2016; Wu et al., 2021) and, therefore, Carminowe 

Creek’s extensive riparian woodland is likely to have reduced the presence of 

eroded arable soil OC in the creek bed sediments. As SF estimates OC source 

contributions directly from streambed sediments, it represents a combination of 

both potential contribution from upslope terrestrial sources and processes within 

the stream channel and riparian zone. Terrestrial-to-aquatic fluxes of OC can 

originate in this active and dynamic river “corridor”, which encompasses both the 

active stream channel and the riparian zone (Wohl et al, 2017) through direct 

input (e.g. organic litter or leaf debris) and overflow of river banks and the riparian 

zone (Borrelli et al., 2018b; Bright et al., 2020). Bank erosion could, therefore, 

have contributed woodland soil to the streams. However, a recent assessment of 

branched tetraether lipids (membrane lipids of soil bacteria) in Carminowe Creek 
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suggested the absence of a clearly recognizable soil brGDGT (branched glycerol 

dialkyl glycerol tetraethers) signal in creek bed sediments could be explained if 

there was a relatively limited input of soil material into the creek (Guo et al., 2020). 

Lewis et al., (2021) found the amount of wood in streams was best explained by 

riparian tree canopy cover and the length of tree-lined channel upstream. There 

could be leaves/needles directly associated with this deposited woody debris and 

its presence in the stream channel can capture additional leaf litter and/or twigs 

(Lewis et al., 2021).  

Hirave et al. (2020b) found little or no difference between n-alkane concentrations 

between fresh plant biomass and the soil organic horizon (O horizon) suggesting 

that it may be difficult to distinguish between n-alkane signatures from those two 

sources. Stout, (2020) found the average chain length and OEP (odd-even 

predominance) of fresh mature leaves increased and decreased respectively in 

the corresponding leaf litter and further in the corresponding soil, which they 

attributed to preferential and progressive degradation of the more abundant 

C27/C29 homologues relative to the less abundant C31/C33. As a result, OEP is 

relatively higher and %C31 relatively lower for leaves/litter compared to the more 

degraded OM in the associated soil. In this study, when comparing the streambed 

sediment to the terrestrial soils, the OEP values of streambed sediments were 

similar to or greater, and the %C31 values similar or lower. Direct input of 

leaf/wood organic matter to the stream sediments could explain the respectively 

higher and lower OEP and %C31 values of these sediments. Characterising this 

direct woodland OC as a separate source within future fingerprinting studies 

would allow the relative contributions from this more direct source and any eroded 

woodland soil OC to be estimated. This may require the inclusion of biomarkers 

of plant, fungal and bacterial origin to provide a fingerprint more characteristic of 

the soil rather than just the vegetation. Although, the bacterial brGDGT 

biomarkers of Guo et al. (2020) were not found to be land-use-specific, other 

biomarkers, such as fatty acids considered common to prokaryotic and eukaryotic 

organisms, have been found relevant for land use discrimination (Ferrari et al., 

2015). 
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Monte Carlo techniques were used to propagate uncertainties in both the SF and 

CLM estimates of land use contributions to streambed OC. As the study is 

concerned with relative contributions from land use sources the CLM uncertainty 

analysis was concentrated on factors that were strongly land use dependent 

(RUSLE C-factor and OC spatial modelling). The uncertainties associated with 

the other RUSLE factors and CI were considered independent of land use. 

Uncertainties in SF results can arise due to factors affecting source and sediment 

characterisation such as sample size and particle size fractions. The sample size 

for characterising streambed sediment and woodland in this study was small (only 

one sample for each streambed site and four samples for the woodland soil). The 

authors recommend as large a sample size as possible (within practicality and 

budget constraints) to facilitate a more robust characterisation of the distributions 

of both soil sources and streambed mixtures resulting in a more robust range test 

of tracer conservativeness.  Finer, lighter particles are more likely to be mobilised 

by water in the terrestrial environment and therefore, as in this study, aqueous 

sediments may end up with a finer particle size distribution than terrestrial 

sediments. The particle size fractions of the soil and sediment samples used in 

this study were determined by using sieve sizes that retained as much 

soil/sediment as possible, while removing anomalously large debris. This resulted 

in different size fractions, <2 mm and <250 µm respectively, for the soil and 

(relatively finer) streambed sediments. In the study of Geng et al. (2019), the 

distribution and preservation of n-alkanes was found to differ between coarse 

(>250 µm) particulate organic matter (POM) and fine POM (<250 µm). The coarse 

POM had a greater abundance of plant-derived n-alkanes (n > 20) with chain-

length shortening in the fine POM fraction suggesting a stronger decomposition 

of n-alkanes in that fraction. The respectively higher and lower OEP and %C31 

values found for the Carminowe Creek streambed sediments (<250 µm) indicate 

less degradation than the coarser (<2 mm) soil sediments and, therefore, there 

is unlikely to be an effect due to particle size similar to that found by Geng et al. 

(2019). It is generally accepted that OM (including n-alkanes) are preferentially 

associated with the finer particle size fractions (<63 µm) (Quenea et al., 2004; 

Quénéa et al., 2006). In addition, studies have found the majority of OC resides 
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in the finer soil fractions (De Mastro et al., 2020; Yu et al., 2019). This finer fraction 

was present in both soil and sediment samples, however, runoff from eroding 

landscapes can be enriched in these finer, clay sized particles (Nitzsche et al., 

2022; Starr et al., 2000) and could have affected the n-alkane distribution of 

streambed sediments relative to the source samples in this study (Laceby et al., 

2017). In future studies, analysing terrestrial source soils at different particle size 

fractions could help quantify any effects on n-alkane distributions due to this 

factor. Uncertainty could be further reduced by using different methods to isolate 

the finer fraction within the soil samples. Under field conditions, various 

mechanisms cause soil aggregates to break apart creating finer particle fractions; 

disintegration of aggregates is a complicated mixture of mechanical (raindrop 

impact, field traffic/tillage, roots, earthworms) and hydraulic stresses (Felde et al., 

2021). Therefore, using different methods to isolate the finer fraction within the 

soil samples could highlight any differences in biomarker distribution due to 

breaking down aggregates using methods such as dry crushing (along more 

“natural planes of mechanical weakness” i.e., those likely to fail in the field (Felde 

et al., 2021)) compared to wet/dry sieving and/or sample grinding. 

2.4 Conclusions 

This study revealed that combing a CLM with SF enhanced the understanding of 

the fate of eroded OC and terrestrial-to-aquatic fluxes for a mixed land use 

catchment. The results of this study support others that found riparian buffers 

reduced soil OC loss from terrestrial-to-aquatic ecosystems (Liu et al., 2020; 

Valera et al., 2019; Zhang et al., 2010). The approach has highlighted that the 

amount of upslope OC erosion cannot be reliably equated with delivery to 

streams unless i) sites of intermediate storage or “buffers” are also considered 

(Owens, 2020; Trimble, 1983) and, ii) estimates of other plant-derived OC 

sources e.g., direct input of leaf/wood organic matter can be made. It is likely that, 

although wooded riparian buffer strips may reduce the impact of upslope, eroded 

soil OC on waterways, they could themselves be a source of OC to stream 

sediments through more direct input (e.g., organic litter or leaf debris). 

Characterising this direct woodland OC as a separate source within future 
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fingerprinting studies would allow the contributions from any eroded woodland 

soil OC to be better estimated. This study was focussed on streambed sediments 

and therefore, average, longer-term OC fluxes. In future studies it will be 

important to assess suspended sediment as well as bed sediments to assess any 

seasonal changes in terrestrial OC origins and delivery processes.  
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3 Assessing n-alkane and neutral lipid biomarkers as 

tracers for land-use specific sediment sources  

Abstract 

Organic carbon (OC) fingerprinting (OCF) methods using taxonomical/plant-

specific biomarkers such as n-alkanes have been successfully used to distinguish 

sediment sources originating from different land uses at a catchment scale. In 

this study, we hypothesise that using a combination of soil biomarkers of plant, 

fungal and bacterial origin may allow greater discrimination between land uses in 

OCF studies, and we explore the potential of short chain (shorter than C22) 

neutral lipid fatty acids (SC-NLFA) to improve land use discrimination, 

considering the Loch Davan catchment (34 km2) in Scotland as a case study.  

Fatty acids are commonly used to measure abundance and diversity of soil 

microbial and fungal communities. The spatial distribution of these soil 

communities has been shown to depend mainly on soil properties and therefore 

soil types and land management practices.  N-alkane and SC-NLFA 

concentrations and their compound specific isotope signatures (CSSI) in four 

land cover classes (crop land, pasture, forest, and moorland) were characterised 

and their contribution to six virtual sediment mixture samples was modelled. 

Using a Bayesian un-mixing model, the performance of the combined n-alkane 

and SC-NLFA biomarkers in distinguishing OC sources was then compared to 

OCF using n-alkane biomarkers alone. The addition of SC-NLFA biomarkers led 

to a significant decrease in error when distinguishing between all land use specific 

sediment sources (error reduction 1.8-9%). Distinguishing between arable and 

pasture land is known to be difficult due to agricultural rotation and, although the 

addition of SC-NLFA biomarkers did improve the discrimination between arable 

and pasture land use, it was the addition of n-alkane CSSI δ13C that provided the 

greatest reduction in error when discriminating between these land uses. These 

results suggest that if a catchment OCF study was required to distinguish only 

arable and pasture land use, the combined use of n-alkane ratios and CSSI 

should improve the discrimination. However, for this catchment, where 

discrimination between four different land uses was required, the combination of 
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n-alkane ratios and SC-NLFA tracers provided the best capability for land use 

sediment source discrimination based on their reproduction of known source 

apportionments. The use of virtual mixtures as presented in this study provides a 

simple method that could be carried out before any OCF study to determine if 

addition or removal of tracers can improve relative error in source discrimination. 

3.1 Introduction 

Fine grained sediment is a natural and important component of fluvial systems, 

however, increased fluxes can impact stream ecological health and river 

functioning (Owens et al., 2005; Scheurer et al., 2009; Stenfert Kroese et al., 

2020). Catchment soils provide a broad range of ecosystem services and fulfil 

many roles including structural and resources, filter and reservoir, fertility and 

biodiversity and climate regulation (Dominati, Patterson and Mackay, 2010; 

McBratney, Field and Koch, 2014). Natural processes such as erosion, fertility 

loss and the loss of soil carbon can be greatly accelerated by changes in climate 

and human activity (Battin et al., 2009; Gobin et al., 2004; Koch et al., 2013), 

resulting in increased lateral fluxes of soil OC (SOC) to waterways. Therefore, it 

is of vital importance to identify sources of sediment within catchments to inform 

effective management strategies.  

Sediment fingerprinting has emerged in the last 20 years as an essential 

approach to quantify the relative contribution of different land use sources to 

organic matter load in waterways (Alewell et al., 2016; Chen et al., 2017; Glendell 

et al., 2018; Hancock and Revill, 2013; Liu et al., 2021b; Walling, Owens and 

Leeks, 1999). However, broad land use classifications (e.g., agricultural land 

cover, natural land cover) do not enable precise SOC origins to be determined 

or, consequently, management strategies to be targeted (Owens et al., 2016). 

The narrower the source group classifications (e.g., cropland, pasture, forest, 

moorland) the greater the spatial resolution of sediment origin, however, each 

source needs to be clearly discriminated by at least one tracer. In consequence, 

the more numerous the source groups, the more unlikely it is that clear 

discriminators will be available for every source (Collins et al., 2020; Pulley and 

Collins, 2018). Virtual sample mixtures (e.g. the mean of two sources 
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representing a 50% contribution from each) may be used to evaluate OC 

fingerprinting (OCF) un-mixing model predictions (Pulley and Collins, 2018) and 

were used by Palazón et al., (2015) to support the selection of a OCF procedure 

with the greatest capacity for source discrimination. Virtual mixtures could, 

therefore, be used to assess if using a particular set of tracers can successfully 

distinguish between all chosen land use sources and, in addition, provide a 

method of testing whether the addition or removal of tracers improves land use 

discrimination when using an un-mixing model for OCF. 

Fingerprinting methods using taxonomic /plant-specific tracers (e.g. n-alkane 

ratios) (Galoski et al., 2019; Glendell et al., 2018; Liu et al., 2021a; Zhang et al., 

2017) and compound-specific stable isotope (CSSI) signatures of long-chain 

(longer than C22) fatty acids (LCFAs)  (Alewell et al., 2016; Hirave et al., 2020b), 

have been successfully applied to distinguish sediment sources originating from 

different land uses at a catchment scale. However, as tracers such as fatty acids 

and n-alkanes can persist in sediments for decades to centuries (Smeaton et al., 

2021) the “fingerprint” for a specific land use can be considered to reflect both 

past and present biomarkers at a particular site and moment. Consequently, due 

to the agricultural rotation, arable land and temporary grassland may end up with 

similar signatures (Upadhayay et al., 2017). Tracing the fate of terrestrial-to-

aquatic fluxes of sediment can be further complicated by the direct deposition of 

plant or woody material in the streams and rivers from which the sediment 

samples are taken, masking the signature from any eroded terrestrial soil. 

Combining soil biomarkers of plant, fungal and bacterial origin may allow greater 

discrimination between land uses and provide a fingerprint more characteristic of 

the soil rather than the current land cover vegetation. 

Microbial communities have the potential to identify sediment originating from 

different land uses (Zhang et al., 2016b). Soil microbial communities directly 

affect soil functionality through cycling of soil nutrients and carbon storage and, 

as the spatial distributions of soil microbial communities have been shown to 

depend mainly on soil properties (Xue et al., 2018), it is likely that this will also 

represent the heterogeneity in soil type and land cover. To be recognized as a 
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suitable tracer, a biomarker needs to be unique with respect to the sources they 

need to discriminate, and not be altered over time in transport or within their 

depositional environment (conservative). Short chain (shorter than C22) neutral 

lipid fatty acids (SC-NLFA) can be of microbial or fungal rather than plant origin 

and have conventionally not been used as tracers in biogeochemical 

fingerprinting. These fatty acids (FA) are conserved and transformed into the 

neutral lipids of higher trophic consumers within the soil (Ruess et al., 2005). 

Neutral lipid biomarkers can persist in soils for decades and have proved to be 

effective in distinguishing past land use (Lavrieux et al., 2012). However, 

evidence that shorter chain FA may be preferentially degraded by soil 

microorganisms (Matsumoto et al., 2007) could suggest legacy effects of past 

crop cover or agricultural rotation may not be as pronounced in the signature of 

SC-NLFA (Blake et al., 2012). Previous studies have shown that C16 and C18 

length fatty acids can distinguish crop-specific signatures (Blake et al., 2012), that 

fatty acids, considered common to prokaryotic and eukaryotic organisms, were 

particularly relevant for land use discrimination (Ferrari et al., 2015) and that lipid 

composition can show the effects of catchment land use on particulate OM in 

streams (Lu et al., 2014). The potential for SC-NLFA to distinguish between 

historical land uses by identifying specific microbial/fungal communities opens 

the potential for improved source attribution and commensurately, a need to verify 

any improvement.  

Fingerprinting methods to distinguish land use sources are often carried out using 

only one type of biomarker such as CSSI of LCFAs (Alewell et al., 2016; Hirave 

et al., 2020b) or n-alkanes (Galoski et al., 2019) which may lead to difficulties in 

land use source differentiation (Alewell et al., 2016; Glendell et al., 2018). Even 

in OCF studies where more than one type of tracer is used (Glendell et al., 2018; 

Liu et al., 2021a; Zhang et al., 2017) there has not been an explicit investigation 

into which combination of tracers provided the best capacity for land use source 

discrimination by reproducing known source apportionments. To this end, this 

study; i) uses multiple types of biomarkers (n-alkane ratios and SC-NLFA) and 

their CSSIs to estimate the proportional contribution of land use sources to 

streambed sediment mixtures and ii) explores the use of virtual mixtures to 
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determine if addition or removal of tracers can improve relative error in source 

discrimination. Soil samples from four land uses from a Scottish catchment (Loch 

Davan) were used i) as sources to generate virtual sample mixtures and ii) to 

characterise the sources for OCF. The catchment has four major land uses 

(arable, pasture, forest and moorland) which are all potential sources of sediment 

within catchment streams. The aims of this study were to, i) use virtual mixtures 

and a Bayesian un-mixing model to determine which combination of tracers 

provided the best capacity for land use source discrimination by reproducing 

known source apportionments and ii) use the best set of tracers to estimate the 

proportional contribution of each land use to the catchment streambed 

sediments. 

3.2 Material and methods 

3.2.1 Study Site 

The Dee is a major river in north-east Scotland whose catchment covers an area 

of about 2100km2 on predominantly Precambrian metamorphic and igneous 

rocks. The Dee flows for over 130 km from its headwaters in the Cairngorms and 

reaches the North Sea on Scotland’s east coast at Aberdeen. The Dee catchment 

is an important source of drinking water (Jenkins, D., 1985) and a designated 

Special Area of Conservation (SAC) due to the presence of species such as otter, 

Atlantic salmon and freshwater pearl mussel 

(https://sac.jncc.gov.uk/site/UK0030251). Loch Davan is a shallow (mean depth 

1.2 m) throughflow lake located within the Muir of Dinnet National Nature Reserve 

(NNR) and drains through Davan Burn to the River Dee between Ballater and 

Aboyne (Jenkins, D., 1985). The main water input to Loch Davan is via Logie 

Burn and its feeder streams, and derives primarily from over-land surface flows 

(Smith, Tetzlaff and Soulsby, 2018). Loch Davan’s catchment covers an area of 

ca. 34 km2 in which Logie Burn and its feeder streams drain a variety of land uses 

including moorland (29%) and forest (22%) at higher elevation and arable (10%) 

and pasture (31%) at lower elevation (Figure 6b). The catchment reaches a 

maximum elevation in the west (750 m a.s.l.) gradually decreasing to the east 

and south to a minimum at Loch Davan (165 m a.s.l.). Areas of steepest slope 
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(13-37 degrees: Figure 6c) are found under moorland and forest land cover to 

the west and north-west of the catchment, with arable and pasture land cover 

dominating the relatively flat (typically < 3 degree slope) lowlands.  The 

catchment mean annual precipitation is 780 mm with average annual minimum 

temperature of 3.5°C and average annual maximum temperature of 12.17°C (Met 

Office, 2021b). The major soil types observed in the catchment are mineral 

podzols (49%), brown soils (22%), and alluvial soils (11%) with around 5% of 

soils being peat or peaty gleys/podzols (“1:25,000 Hutton Soils Data” copyright 

and database right The James Hutton Institute (2018); Figure 6d). The lake area 

of Loch Davan has been significantly reduced over the last century, likely due to 

inputs of nutrient rich sediment due to land use intensification (Addy, Ghimire and 

Cooksley, 2012); between 2007 and 2018, the loch and its main feeder stream, 

Logie Burn, were classified as having poor to moderate ecological status (SEPA, 

2021). 
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Figure 6: Loch Davan study catchment. a) Study catchment location, b) Land use of the Loch Davan catchment (34 km2), suspended 

and streambed sediment sampling locations (red dots: Sites 1, 2 and 3, referred to as BS1, BS2 and BS3) and terrestrial soil sampling 

locations (black crosses),based upon Corine land cover 2012 for the UK, Jersey and Guernsey (Cole et al., 2015), c) catchment slope 

(degrees) derived from OS Terrain 5  © Crown copyright and database rights  2021 Ordnance Survey (100025252)(Ordnance Survey, 

2021),  d) Catchment soils based on “1:25,000 Hutton Soils Data” copyright and database right The James Hutton Institute (2018). Used 

with the permission of The James Hutton Institute. All rights reserved. 
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3.2.2 Sample collection 

In this study, a field campaign was carried out in June 2019 to collect soil and 

sediment samples within the Loch Davan catchment and Logie Burn stream 

network. Soil samples from four land uses (arable, pasture, forest and moorland) 

were collected to characterise potential sediment sources of OCF. Streambed 

samples were collected at three locations to estimate the proportional 

contribution of each of the land use source to the streambed sediments in two 

tributaries and a joint outlet (Figure 6b). 

3.2.2.1 Source sampling 

Replicate soil samples were taken to characterise each of the four land uses 

arable (n=16), forest (n=16), moorland (n=18) and pasture (n=19) at sites shown 

with a cross (+) in Figure 6b. Sampling sites were chosen on the basis of likely 

hydrological connectivity and were stratified by land use and soil type (Table 6). 

For each sampling point, litter was removed before taking a sample. Three 

replicate samples were taken at random within a 2 m radius of the sampling point 

using a steel cylinder (6cm depth and 6cm diameter). All samples were 

georeferenced by using a GPS device (horizontal accuracy sub-meter real-time), 

stored in plastic bags and freeze-dried on return to the laboratory. The samples 

were then passed through a 2 mm sieve to remove stones and larger organic 

material before being ground. A composite sample was formed for each site by 

adding an equal weight of each of the three finely ground samples. Samples were 

stored in sealed containers at room temperature until required for analysis.  

Table 6 Number of soil samples taken for each land use and soil type combination 

 

Alluvial 
soils 

Brown 
soils 

Mineral 
gleys 

Mineral 
podzols 

Peaty 
gleys 

Peaty 
podzols 

No 
data 

Montane 
soils Total 

arable 2 3 2 9 0 0 0 0 16 

forest 2 2 2 10 0 0 0 0 16 

moorland 3 4 4 3 1 1 1 1 18 

pasture 4 3 4 7 1 0 0 0 19 

Total 11 12 12 29 2 1 1 1  
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3.2.2.2 Streambed sampling 

Bed sediment samples were taken at 3 locations (Figure 6b), representing two 

tributaries and a joint outlet. The locations were carefully chosen above their 

confluence in the stream network so the contributions from each tributary could 

be assessed. Logie Burn originates in two main headwaters (Figure 6) with the 

northern most branch (BS1) supporting similar cover of pasture (30%), forest 

(29%) and moorland (28%) with around 10% arable land. The western branch 

(BS2) predominantly passes though moorland (78%) with around 14% of the land 

use being pasture, less than 5% forest and no arable land. A third site (BS3) was 

located close to the outlet of Logie Burn to Loch Davan integrating input from the 

whole catchment. At each site three samples of bed sediments were taken with 

a steel cylinder (6 cm depth and 6 cm diameter) along a transect across the 

streambed and composited. All samples were georeferenced using GPS, stored 

in plastic bags and freeze-dried on return to the laboratory. The samples were 

then passed through a 2 mm sieve to remove stones and larger organic material 

before being ground and stored at room temperature until further analysis. 

3.2.3 Laboratory Analysis 

3.2.3.1 Extraction of n-alkanes 

To isolate the hydrocarbon fraction of the samples for analysis, total lipid 

extraction was followed by lipid fractionation (Dove and Mayes, 2006). For quality 

and quantification control purposes, the following solution was added by weight 

as the internal standard for alkanes: docosane (C22) and tetratriacontane (C34) in 

decane (0.03mg/g each alkane, 50µl solution to each sample) was added prior to 

extraction. First 3 ml of 1 M Ethanolic KOH solution was added to each sample 

in a tube before they were capped and heated for 16 hours at 90°C in a dry-block 

heater. The following steps were then repeated twice: 3 ml N-heptane was added 

to each tube which were capped and swirled before 1 ml of deionised water was 

added and the tubes re-capped and shaken vigorously; after separation into two 

liquid layers, the top (non-aqueous) layer was transferred to a new glass tube. 

The resulting solution was evaporated to dryness on a dry-block heater fitted with 

a sample concentrator blowing nitrogen (N2) into the tube. The resultant was re-
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dissolved in 0.3 ml heptane with warming before transferring the sample to SPE-

Si cartridge, adding 2 ml heptane and collecting the elution in a 1.5 ml 

autosampler vial. Solution in the vial was then evaporated to dryness. 

3.2.3.2 Extraction of NLFAs 

The samples (5 – 10 g) were analysed by lipid extraction with a single phase 

chloroform mixture before fractionation on a SPE Si column and mild 

methanolysis. The solvents chloroform and methanol (1:2) were used in lipid 

extraction and, in addition, 0.15 M of citrate buffer (0.8:1:2 of citrate buffer: 

chloroform: methanol (Bligh and Dyer (B&D) solvent ratio)).  15 - 20 ml B&D 

solvent was added to the sample in a glass media bottle (closed using PTFE lined 

cap) which was then sonicated for 30 minutes (in ultrasonic bath). This was 

followed by centrifuge at 700 RCF for 10 minutes before the upper layer was 

poured into a clean glass media bottle. Chloroform (4 ml) and citrate buffer (4 ml) 

were added before centrifuging at 700 RCF for 10 minutes. Successful separation 

was indicated by both layers appearing clear and, using a vacuum pump, the 

upper (aqueous) layer was removed and discarded leaving the bottom organic 

layer. The glass bottle was then placed in an evaporator at 37°C and dried under 

N2. 

The neutral lipids were then separated from the lipid extract by fractionation (Solid 

Phase Extraction). Commercially prepared SPE columns were loaded onto 

vacuum manifold and prepared with ~0.5 g sodium sulphate (Na2SO4) and 

chloroform before the lipid extracts were added along with 1 ml chloroform. Five 

ml chloroform was used to elute the neutral lipids (sterols). These were collected 

in a clean glass bottle placed in an evaporator at 37°C and dried under N2 for 4-

5 hours. To quantify the FAMES against an internal standard, 60 µL of C19:0 

methyl ester (Methyl nonadecanoate in methanol: 25 mg L-1) was added to the 

dried phospholipid fraction after SPE and evaporated to dryness under N2. 

The samples were then methylated by adding 1 ml of toluene:methanol (1:1) 

(stored on Na2SO4) and 1 ml of 0.56 g potassium hydroxide in 50 ml methanol to 

the neutral lipid fraction (NLF). This was swirled and incubated @37°C for 30 

minutes. Subsequently, 0.25 ml of acetic acid 59 ml L-1, 5 ml of hexane:chloroform 
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(4 : 1)(v/v) and 3 ml deionised water were added and the NLF glass bottle was 

centrifuged at 700 RCF for 10 minutes. The upper organic phase was collected 

in a Gilson pipettor and the lower aqueous phase discarded. The resultant liquid 

was dispensed through 10 ml pipette tip packed with glass-wool and Na2SO4 into 

clean glass bottle and rinsed with a few ml of hexane. The glass bottle was placed 

in an evaporator at 20-25°C and dried under N2. The dried FAMEs were then 

stored in a freezer at -20°C.  

3.2.3.3 Analysis of n-alkanes and FAMES by GC-C-IRMS  

Individual n-alkane and FAMEs were quantified and their δ13C values determined 

by GC-C-IRMS using a Trace GC Ultra gas chromatograph (Thermo Finnigan, 

Bremen, Germany) equipped with a GC PAL autosampler (CTC Analytics AG, 

Zwingen, Switzerland) following the method described in Thornton et al., (2011).  

3.2.4 N-alkane and SC-NLFA tracers 

3.2.4.1 N-alkanes 

N-alkanes are widely used plant biomarkers (Bush and McInerney, 2013). These 

naturally occurring unbranched hydrocarbons are an important constituent of 

cuticular plant leaf-waxes, deposited in soil by leaf-fall, and are relatively resistant 

against degradation (Zech et al., 2011). N-alkanes are stable, long-lived 

molecules that can endure in the fossil record for millennia (Bush and McInerney, 

2013). This has led to their use as biomarkers in tracing vegetation input to soil 

and sediments over decadal and centennial time scales (Chen et al., 2017, 2022; 

Glendell et al., 2018; Wang et al., 2015) and also in  paleoecology and 

paleoclimatology (Glaser and Zech, 2005; Meyers, 2003; Zech et al., 2009). The 

longer the n-alkane chain length, the less soluble they are in water, reducing their 

metabolism by microorganisms (Cranwell, 1981; Ranjan et al., 2015). 

Consequently, alkanes of chain-length >C24 are generally resistant to 

biodegradation (Singh, Kumari and Mishra, 2012) making them suitable as 

conservative sediment tracers. Plants produce a range of n-alkanes with a strong 

odd-over-even predominance (OEP) and one or two dominant chain lengths: 

trees and shrubs are characterised by C27 or C29, grass is characterised by C31 

or C33 (Bush and McInerney, 2013; Meyers, 2003; Zech et al., 2013) and lower 
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plants and mosses by C23 and C25. Short-chain length n-alkanes (<C23) are 

typically derived from aquatic algae (Ficken et al., 2000; Meyers, 2003). 

Variability in the carbon isotopic signatures (δ13C) of n-alkanes is driven both by 

plant physiology/biochemistry and environmental factors (e.g. temperature, 

humidity, isotopic composition of water/CO2) and is therefore (theoretically) 

unique for each individual plant and able to differentiate between different land 

cover types (Cooper et al., 2015 and references therein).  

N-alkane concentrations and δ13C were obtained for carbon chain lengths C21 to 

C38 where δ13C is defined as: 

δ 𝐶 
13  =   𝑅( 𝐶 

13 𝐶 
12⁄ )𝑠𝑎𝑚𝑝𝑙𝑒 𝑅( 𝐶 

13 𝐶 
12⁄ )𝑟𝑒𝑓 − 1⁄  (3-1) 

where R(13C/12C)sample and R(13C/12C)ref are the absolute isotope ratios of a 

sample and the reference material (in this case - Vienna PeeDee Belemnite) 

respectively.  

The data was sub-set (Figure 7a) to include only those biomarkers that were 

present in each soil sample and in all streambed sediment samples. This sub-set 

included carbon chain lengths C23-C31 from which ratios were then calculated 

for use as tracers: the relative percentage of n-alkanes C27, C29 and C31 (Torres 

et al., 2014); the C27 to C31 ratio (Puttock et al., 2014); Paq, to understand aquatic 

versus terrestrial plant input (Ficken et al., 2000); the Odd-to-Even Predominance 

(OEP) (Zech et al., 2013; and the Average Chain length (ACL) (Fang et al., 2014) 

(Table 7). 

 

Figure 7 Summary of tracer selection methodology 
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Table 7 N-alkane ratios considered as tracers for land use discrimination 

n-alkane ratios Indicative of: Reference 

C27 / C31 C27 to C31 ratio 

estimating the proportion 

of wood to grass derived 

organic matter  

(Puttock et al., 

2014) 

%Ci =
Ci

(C27 + C29 + C31)
 

% of alkane “i” (Torres et al., 

2014) 

𝑃𝐴𝑄 =  
C23 +  C25

C23 + C25 +  C29 +  C31
 

Relative contribution of 

higher aquatic vs. 

terrestrial plants  

(Ficken et al., 

2000) 

𝑂𝐸𝑃 =  
C27 +  C29 +  C31

C26 + C28 + C30
 

Organic matter 

degradation: 

odd-over-even 

predominance (OEP) 

Adapted from 

(Zech et al., 

2013) 

𝐴𝐶𝐿 =  
25 × C25 + 27 × C27 +  29 × C29 +  31 × C31

C25 + C27 +  C29 +  C31
 

Average chain length 

(ACL) - weight-averaged 

number of carbon atoms 

of the higher plant C25–

C31 n-alkanes 

Adapted from 

(Jeng, 2006) 

 

3.2.4.2 SC-NLFA 

Similar to n-alkanes, fatty acids are transferred from plant leaves and roots and 

bind strongly to mineral particles in the soil with a δ13C signature reflecting plant 

cover C isotope (Blake et al., 2012). Different plant types produce the same fatty 

acids but with different CSSI signatures (Chikaraishi and Naraoka, 2003) which 

(once fresh plant material has degraded to humic substances within the soil) do 

not degrade over time (Blessing, Jochmann and Schmidt, 2008; Hirave et al., 

2020b). Some Gram positive bacteria, particularly some actinobacteria, can 

accumulate large amounts of neutral lipids (Lanfranconi, Alvarez and Alvarez, 

2015).  These bacterial lipids are of increasing interest to the industrial market, in 

the production of components of cosmetics, lubricants, and coatings, or as a 

source for next generation biofuels (Lanfranconi, Alvarez and Alvarez, 2015; 
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Röttig and Steinbüchel, 2013). The NLFA 18:2ω6,9 is present in plant storage 

lipids and is also the dominant fatty acid in most fungi (Olsson et al., 2005). Ferrari 

et al. (2015) found that straight chain fatty acids, considered common to 

prokaryotic and eukaryotic organisms, were particularly relevant for land-use 

discrimination - especially 18:0. Neutral lipid molecular biomarkers such as iso- 

and anteiso-C15:0 fatty acid methyl esters (bacterial origin) can persist in soils 

for decades and have proved to be effective in distinguishing land use (Lavrieux 

et al., 2012). This suggests SC-NLFA could be suitable as conservative, land use 

specific sediment tracers. Seven of the 36 SC-NLFA biomarkers analysed in this 

study were found in both streambed sediments and all terrestrial soil samples: 

i15:0, a15:0, 16:0, 10-Methyl-16:0, 12-Me-16:0, 18:2ω6,9, and 18:0. The relative 

concentration of these seven SC-NLFA was then obtained by dividing the 

measured concentration by the sum of all concentrations. 

3.2.4.3 Tracer Selection 

Tracers should i) discriminate between all the potential sediment sources and, (ii) 

be conservative (remain stable during transport and deposition (Collins et al., 

2020; Hirave et al., 2020a)). All tracer values were first checked for normal 

distribution using the Kolmogorov-Smirnov test. A Kruskal- Wallis (KW) and 

posthoc Dunn's test was then carried out to select tracers which showed 

significant differences between land use sources (Figure 7b). The tracers which 

passed the KW test were then assessed using box plots (Excel) to ensure 

biomarker values from all mixtures were within the full range of corresponding 

land use sources (Figure 7c). In addition, δ13C biomarker tracers were only 

selected if their corresponding concentration values were within the range of 

stream sediment mixtures (Collins et al., 2020). The full range (excluding outliers) 

was used for the range test as, according to Bayesian inference, best practice 

suggests comparison of full distributions for hypothesis testing (Fenton and Neil, 

2018). The streambed sediment mixtures are represented by a single 

measurement without any knowledge of the potential mean and distribution. This 

single measurement could represent a value close to the maximum or minimum 

of the possible tracer values rather than the mean and therefore selecting tracers 
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based solely on the means and inter-quartile range of the sources was 

considered too restrictive. 

Unless otherwise stated, all MixSIAR runs, statistical and error analyses were 

carried out in R (version 3.6.3) (R Core Team, 2020) and RStudio (version 

1.1.463) (RStudio Team, 2018). 

3.2.5 Bayesian unmixing model (MixSIAR) implementation 

The MixSIAR model was first developed for ecological studies but is increasingly 

being used in catchment sediment fingerprinting (Lachance et al., 2020; Smith, 

Karam and Lennard, 2018; Stenfert Kroese et al., 2020). Tracer properties can 

be characterised using the mean and standard deviation and the model is fitted 

using Markov chain Monte Carlo (MCMC). Source means and standard 

deviations used in the mixture likelihood are allowed to deviate from user 

specified values with the amount of deviation dependent on source sample sizes.  

A full description of this model can be found in Stock and Semmens (2016) and 

Stock et al. (2018). Sediment source proportions were estimated using 3000 

MCMC simulations with MixSIAR formulated using a residual error term and an 

uninformative prior. The MCMC parameters were set to those for a “normal” run 

(Stock and Semmens, 2016) (chain length = 100,000, burn = 50,000, thin = 50, 

chains = 3) and the Gelman-Rubin diagnostic was used to evaluate convergence 

of all models. 

3.2.6 Virtual Mixtures 

Land use discrimination was assessed using “virtual” mixtures with 50/50 

contributions from each of the four sources (arable, pasture, forest and moorland) 

by taking the mean of two sources to represent a 50% contribution from each 

(Collins et al., 2020). This resulted in six virtual 50/50 mixtures: Arable-Forest 

(AF50), Arable-Moorland (AM50), Arable-Pasture (AP50), Forest-Moorland 

(FM50), Forest-Pasture (FP50) and Moorland-Pasture (MP50). Errors were 

calculated as mean absolute differences between the modelled and virtual 

mixture composition. 
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3.3 Results and Discussion 

3.3.1 N-alkane ratios 

Plants produce a range of n-alkanes with a strong odd-over-even predominance 

(OEP) and one or two dominant chain lengths: trees and shrubs are characterised 

by C27 or C29, grass is characterised by C31 or C33 (Bush and McInerney, 2013; 

Meyers, 2003; Zech et al., 2013) and lower plants, macrophytes and mosses by 

C23 and C25. Within this catchment the relative proportions of n-alkanes in arable 

and forest soil samples were very similar (Figure 8). As expected, C27 and C29 

chain lengths dominated the forest soil n-alkane signature (42%) with relatively 

smaller contributions from C31 which is indicative of grasslands (C31 32%) and 

homologues C23 and C25 (26%), indicative of lower plants, macrophytes and 

mosses. However, C27 and C29 were also dominant in arable soil samples (46%) 

and even more so in streambed sediment (BS) samples (53-56%). Moorland soil 

samples were dominated by C31 (46%) and had the smallest contribution from 

C23 and C25 (15%, cf. 26-46% for other land uses and 31-36% for BS). In 

contrast, pasture land soil samples were dominated by C23 and C25 (46%) and 

had the smallest contribution from C31 (17%) even though C31 is usually 

dominant in grasslands. It is possible that, in this catchment, pastures are located 

in wetter areas with more mosses contributing to higher C23 and C25 abundance.  
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Figure 8: Relative mean concentration (%) for mid and long-chain n-alkane 

homologues for the soils of land uses, arable, forest, moorland and pasture 

streambed sediments BS1, BS2 and BS3. 

The values of the n-alkane proxy for aquatic versus terrestrial plant input (PAQ) 

were similar in arable and forest soils (0.38±0.15 and 0.35±0.17 respectively), 

higher in pasture soils and streambed sediments (0.58±0.12 and 0.43 to 0.55, 

respectively) and lower in moorland soils (0.18±0.14) (Table 8; Figure 9). These 

values for PAQ are larger than those ascribed by Ankit et al., (2022) to terrestrial 

vegetation (<0.1) and actually lie predominantly in the range attributed to 

emergent macrophytes (0.1–0.4) (Ankit et al., (2022). Although, it seems unlikely 

that aquatic macrophytes would make a significant contribution to terrestrial soils 

across the catchment, their presence could account for the relatively higher PAQ 

and C23/C25 contribution in streambed sediments and possibly in pasture soils 

if these are located in wetter areas. Although the differences in PAQ between soil 

types were not significant (Kruskal-Wallis p<0.05), alluvial soils (recent riverine 

and lacustrine alluvial deposits) showed a relatively larger PAQ (Figure 10). The 

number of soils samples taken on alluvial soils for each land use (Table 6: arable 

2 of 16 = 12.5%; forest 2 of 16 = 12.5%; moorland 3 of 18 = 17% and pasture 4 

of 19 = 21%) is unlikely to account for the differences in PAQ seen for those land 

uses as moorland and pasture had similar percentages of alluvial soil samples 

but had the lowest and highest values of PAQ respectively.  
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OEP is often used as a measure of organic matter degradation with lower OEPs 

indicative of higher degradation (Zech et al., 2013). Stout, (2020) found the OEP 

was relatively lower for soil compared to the less degraded leaves/litter and in 

addition found preferential and progressive degradation of the more abundant 

C27/C29 relative to the less abundant C31/C33 from fresh leaves, through litter 

to the corresponding soil; the %C31 was relatively higher for soil compared to the 

less degraded leaves/litter. In this study, the OEP values of both streambed 

sediments and pasture soils were much smaller than those in arable, forest or 

moorland soils, which could suggest that they were more degraded. However, 

their corresponding %C31, which (particularly for the bed sediments) are 

relatively depleted would suggest the opposite. The n-alkane ratios for alluvial 

soils which showed significantly larger (Kruskal-Wallis p<0.05) %C27 and lower 

%C31 than the other soil types (Figure 10). The range of values for these ratios 

seen in the alluvial soil type was similar to that seen in streambed sediments 

which also showed relatively large %C27 and lower %C31. Light soil fractions 

can exhibit relatively higher amounts of mid-chain n-alkanes with low CPI values 

compared to bulk soil (Carbon preference index (CPI) is another n-alkane ratio 

proxy for the predominance of odd over even, similar to OEP) (Griepentrog et al., 

2016). As finer sediments are more likely to be mobilised during water run-off 

than coarser sediments (Sirjani, Mahmoodabadi and Cerdà, 2022), streambed 

sediments could become relatively enriched in finer soil particles. This could 

account for the relatively large proportions of n-alkanes C25-C29 compared to 

C31 (Figure 8) as well as the low OEP values (Figure 9) seen in streambed 

sediments. 

Although contribution from aquatic macrophytes/lower plants and mosses could 

account for the relatively higher C23/C25 (and PAQ) contribution in streambed 

sediments, equally elevated values were found in pasture soils. A larger input of 

pasture soil (relative to other land uses) to streambed sediments could account 

for their relatively higher C23/C25. When studying emergent aquatic plants He et 

al., (2020) found that long chain n-alkanes (e.g., C29) were predominantly 

derived from leaves (as opposed to roots) in wetland surface sediments/soils but 

that the contribution from mid-chain n-alkanes (e.g., C23) from roots was likely 
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equal to or greater than those from leaves. Griepentrog et al. (2016) also found 

the relative abundance of n-alkanes differed depending on the specific origin of 

the OM. For forest vegetation they found root biomass was characterized by a 

higher relative abundance of mid-chain n-alkanes (<C26) and low CPI whereas 

leaves had much higher CPI since they consisted almost exclusively of C27 and 

C29. Therefore, if a similar characterisation of the relative abundance of n-

alkanes is found in pasture vegetation, a larger contribution of n-alkanes from 

roots rather than leaves could be contributing to relatively higher C23 abundance 

in pasture soils.  

The ranges of n-alkane ratios in streambed sediments were outside the maximum 

and minimum values for the land use sources for C27/C31 and %C31 (Figure 9). 

The difference in range between the streambed sediment n-alkanes and those of 

the terrestrial land uses was primarily due to the relative depletion and enrichment 

of %C31 and %C27 respectively in the streambed sediments which 

commensurately reduced the average chain length (ACL) and increased the 

C27/C31 ratio (Table 8). On average, pasture soils also showed a depletion and 

enrichment of %C31 and %C27 respectively, relative to the other land uses 

(Table 8), however, the smallest %C31 and largest %C27 and ratios were found 

in forest soils (Figure 9). Within a forest environment both leaves and needles 

show increased C27/C31 ratio compared with soil, with C27 being particularly 

dominant in leaves. Hence, the higher C27/C31 ratio seen in forest soil samples 

could be due to a higher contribution of less degraded leaves/needles or litter 

(Griepentrog et al., 2016). An input of less degraded leaves/needles or litter to 

the streams could also account for the relatively high C27/C31 ratio found in 

streambed sediments. However, the relatively higher %C31 of less degraded 

leaves/litter would also be accompanied by a corresponding increase in OEP 

(Stout 2020), which was not observed in streambed sediments in this study. An 

alternative explanation could be related to bacterial sources of n-alkanes, with 

distributions from C11 to C35 often without an increase in OEP (Ladygina, 

Dedyukhina and Vainshtein, 2006). A microbial n-alkane pool could be 

responsible for mid and long-chain n-alkanes with low OEP in leaf litter samples 

(Zech et al., 2011). Grimalt et al., (1988) found that, when sediments from a 
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previously freeze-dried core were stored under water for a month, the n-alkane 

profiles previously ranging between C25 and C33 with high OEP were 

transformed into mixtures of C22-C29 n-alkanes with negligible OEP. They 

suggested this could be due to microbial transformations either due to n-alkane 

sources of bacterial origin, or to the re-working of organic matter by bacteria. 

Increased presence or activity of microbes due to the presence of water could 

account for the lower presence of long-chained n-alkanes (C31) and low OEP in 

the streambed sediment samples and possibly in the alluvial soils. The low OEP 

and relatively low %C31 seen in pasture soils cannot be directly linked with water 

sources and are interspersed with arable land throughout the catchment (Figure 

6b). However, soil sampling sites were chosen on the basis of likely hydrological 

connectivity with the streams, that is, located on accumulated flow lines, so it 

these locations could be expected to support high soil moisture content. However, 

this explanation is confounded by the fact that similar reduction in OEP was not 

observed in samples taken in other land uses, which were also preferentially 

located in hydrologically well-connected locations. 

In summary, the n-alkane values of the streambed sediments are similar to the 

forest soils in terms of their lower %C31 and higher %C27 values and similar to 

the pasture soils in their low OEP. Tracer conservativeness relies on these 

characteristics having the same source, that is, the high C27/C31 and low OEP 

are due to the presence of forest soil and pasture soil respectively in the 

streambed sediments and not significantly to the direct input of leaves/litter and/or 

microbial transformations as discussed above. As the streambed sediment 

mixtures are represented by a single measurement without any knowledge of the 

potential mean and distribution, the single measurement could represent a value 

close to the maximum or minimum of the possible tracer values rather than the 

mean. It is recommended in future fingerprinting studies to take a larger number 

of samples to represent the streambed sediments and so characterise a 

distribution which can be compared more easily with those of the terrestrial 

sources. More confidence that n-alkane ratios in the streambed sediments show 

the same range as the land use soils would lead to more confidence in rejecting 

alternative sources for streambed OC. The following tracer selection was carried 



 

77 

out on the assumption that any tracer for which all streambed sediment samples 

fell within the full range of corresponding land use sources could be classed as 

conservative. 

Table 8 Mean (+/- 1SD) values of n-alkane ratios for forest, pasture, arable and 

moorland land uses and streambed sediment sources (BS1, BS2 and BS3) 

 

C27/C31 %C27 %C29 %C31 OEP PAQ ACL 

arable (16) 1.10± 

0.99 

30.63± 

9.65 

34.10± 

2.54 

35.27± 

9.69 

4.26± 

2.72 

0.38± 

0.15 

28.38± 

0.55 

forest (16) 1.02± 

1.01 

29.90± 

12.78 

29.42± 

3.56 

40.68± 

13.02 

3.76± 

2.09 

0.35± 

0.17 

28.55± 

0.74 

moorland (18) 0.45± 

0.56 

17.60± 

9.95 

30.24± 

5.53 

52.17± 

12.63 

7.22± 

3.40 

0.18± 

0.14 

29.34± 

0.66 

pasture (19) 1.20± 

0.55 

35.07± 

6.26 

33.55± 

1.62 

31.38± 

5.20 

0.87± 

0.93 

0.58± 

0.12 

28.03± 

0.36 

BS 1 3.59 52.73 32.56 14.70 1.23 0.55 27.42 

BS 2 1.72 39.83 37.02 23.15 1.71 0.43 27.93 

BS 3 3.08 47.13 37.54 15.32 1.82 0.49 27.64 
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Figure 9: Range of n-alkanes ratios C27/C31, %C27, %C29, %C31, OEP, PAQ and 

ACL from forest, pasture, arable and moorland land uses and streambed sediment 

sources. The box is extended from the 25–75 percentiles, the line is plotted at the 

median and whiskers show the maximum to minimum range excluding outliers 

(dots). 
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Figure 10 Range of n-alkanes ratios %C27 and %C31 from different soil types (Alluvial, Brown soils, Mineral Gleys, Mineral 

Podzols, Peaty Gleys, Peaty Podzols and Montane soils) and streambed sediment sources The box is extended from the 25–75 

percentiles, the line is plotted at the median and whiskers show the maximum to minimum range excluding outliers. 
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3.3.1.1 Tracer selection 

All n-alkane ratios showed significant differences between land use sources 

(Table 9). The ranges of C27/C31 and %C31 ratios in streambed sediments were 

outside the maximum and minimum values for the land use sources (Figure 9). 

Hence the remaining five n-alkane ratios (%C27, %C29, OEP, PAQ and ACL) 

were selected as tracers. Individually, only OEP and PAQ ratios could 

discriminate between most land uses, however together, these five biomarkers 

could discriminate between all land cover class combinations (Table 9). To 

distinguish four land use sources, a minimum of three tracers is required (Phillips 

and Gregg, 2003). The availability of five conservative n-alkane biomarkers 

confirms their suitability to be used without the need for additional types of 

biomarkers to distinguish between the four land use sources in this catchment.  

Table 9: Kruskal-Wallis (KW) and posthoc Dunn's test: significant differences in n-

alkane ratios (p < 0.05) distinguished between soil samples from different land use 

sources. Sources in bold indicate n-alkane ratios for streambed sediment within 

the range for terrestrial sediments 

 Significant difference (p<0.05) 

 C27/C31 %C27 %C29 %C31 OEP PAQ ACL 

Arable-Forest   ✓     

Arable-Moorland ✓ ✓ ✓ ✓  ✓ ✓ 

Arable-Pasture     ✓ ✓  

Forest-Moorland ✓ ✓   ✓ ✓ ✓ 

Forest-Pasture   ✓ ✓ ✓ ✓  

Moorland-Pasture ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

 

3.3.2 N-alkane CSSI δ13C 

Five of the 18 CSSI δ13C biomarker signatures measured in this fingerprinting 

study were detected in both streambed sediments and all terrestrial soil samples 

(C23, C25, C27, C29 and C31). The range of n-alkane CSSI δ13C values in the 
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soil samples and streambed sediment samples were all within those typical of n-

alkanes in C3 land plants (ca. 39-30‰ (Chikaraishi and Naraoka, 2003)) except 

for C23 which showed less depleted values in both terrestrial samples (arable, 

forest and moorland) and streambed sediment samples BS1 and BS2 (Figure 

11). However, some of the streambed sediment CSSI δ13C signatures for C25, 

C27 and C29 chain lengths were less negative than, and outside the maximum 

and minimum values for, the land use sources (Figure 11). In their study of peat 

deposits Yan et al., (2021) revealed preferential degradation under aerobic 

conditions of mid-chain n-alkanes relative to their long-chain homologs (C29 and 

C31), resulting in an increase in both the relative proportions of long-chain n-

alkanes and less depleted δ13C values of mid-chain n-alkanes. However, it seems 

unlikely that this is the cause of the less depleted δ13C values of C25-C29 n-

alkanes in the streambed sediments in this study, as relative proportions of n-

alkanes C25-C29, indicative of lower plants and woody material, are greater than 

the longer chain C31, indicative of grasslands (Figure 8). Alternatively, Wang et 

al., (2016) study of n-alkanes in fine and coarse particle fractions of surface peat 

revealed that δ13C values of odd-numbered n-alkanes (C23– C33) were generally 

enriched in the finer fraction. They attributed this to greater heterotrophic 

reworking during degradation within the finer fractions compared to the coarser 

fraction. If finer sediments were preferentially mobilised during water run-off, 

streambed sediments may have become relatively enriched in finer soil particles 

(Nitzsche et al., 2022; Sirjani, Mahmoodabadi and Cerdà, 2022). 
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Figure 11: Range of δ13C values (‰) of n-alkanes (C23-C31) from forest, pasture, 

arable and moorland land uses and streambed sediment sources The box is 

extended from the 25–75 percentiles, the line is plotted at the median and whiskers 

show the maximum to minimum range excluding outliers (dots). For comparison, 

typical n-alkane δ13C values for C3 land plants (ca. 39-30‰) and freshwater plants 

(ca. 27-23‰) are shown as green and blue shaded areas respectively (Chikaraishi 

and Naraoka, 2003).   

3.3.2.1 Tracer Selection 

All the CSSI δ13C in the soil samples were found to distinguish between land uses 

(Table 10). However, the CSSI δ13C biomarker signatures for C25, C27 and C29 

were outside the maximum and minimum values for the land use sources (Figure 

11). Hence, only C23 and C31 CSSI signatures were selected as tracers and, 

together, these two biomarker signatures discriminated between all land cover 

class combinations except between arable and forest, and moorland and forest 

(Table 10). The availability of only two conservative n-alkane CSSI δ13C 

biomarker signatures meant that they could not be used on their own to 
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distinguish between four land use sources in this catchment and would not be 

able to discriminate well between forest land cover and either arable or moorland.  

Table 10: Kruskal- Wallis (KW) and posthoc Dunn's test: significant differences in 

n-alkane CSSI δ13C (p < 0.05) distinguished between soil samples from different 

land use sources. Sources in bold indicate n-alkane CSSI δ13C value for streambed 

sediment within the range for terrestrial sediments 

 Significant difference (p<0.05) 

 C23 C25 C27 C29 C31 

Arable-Forest      

Arable-Moorland     ✓ 

Arable-Pasture ✓ ✓    

Forest-Moorland   ✓   

Forest-Pasture  ✓ ✓ ✓ ✓ 

Moorland-Pasture  ✓  ✓ ✓ 

 

3.3.3 SC-NLFA concentrations 

Seven of the 36 SC-NLFA biomarkers analysed in this study were detected in 

both streambed sediments and all terrestrial soil samples: i15:0, a15:0, 16:00, 

10-Methyl-16:0, 12-Me-16:0, 18:2ω6,9, 18:00. Of these, all SC-NLFA relative 

concentrations (with the exception of 16:00) could distinguish between land uses 

(Table 11). Biomarkers a15:0 and 12-Me-16:0 were outside the maximum and 

minimum values for the land use sources and, therefore, only four SC-NLFA 

biomarkers (i15:0, 10-Methyl-16:0, 18:2ω6,9 and 18:00) were selected as tracers 

and, together, these biomarkers could discriminate between all land cover class 

combinations except arable and pasture (Table 11). The availability of four 

conservative SC-NLFA relative concentration biomarkers meant that they could, 

if required, be used without the need for additional biomarkers to distinguish 

between the four land use sources in this catchment.  
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Iso 15:0 (i15:0) is a biomarker for gram-positive bacteria and has been used to 

study trophic relationships in soil food webs (Haubert et al., 2006) and 10-Methyl-

16:0 is characteristic of actinomycetes (Tekaya et al., 2021). Actinomycetes are 

especially abundant in soils, particularly soils which are alkaline or rich in organic 

matter, where they form an important part of the microbial population (Barka et 

al., 2016; Zaitlin et al., 2003). Large numbers of actinomycetes enter freshwater 

from land with soil runoff (Zaitlin et al., 2003). NLFA 18:2ω6,9 is present in plant 

storage lipids and is the dominant fatty acid in most fungi (Olsson et al., 2005). 

Within a forest environment Ferlian et al., (2014) found the fungal biomarker 

18:2ω6,9 was more abundant in litter as compared to soil whereas the opposite 

was true of bacterial biomarkers such as i15:0 which were more abundant in the 

soil.  

The relative mean concentrations of SC-NLFA i15, 10-Methyl-16, 18:2ω6, and 

18:0 for forest soil samples were very different from samples from other land uses 

(Figure 12) with roughly equal contributions from all four biomarkers (i15:0 32%, 

10-Methyl-16:0 22%, 18:2ω6,9 21% and 18:0 25%). Arable and moorland show 

a similar profile dominated by the fungal biomarker 18:2ω6,9 (50% and 59% 

respectively) with correspondingly smaller contributions from the bacterial 

biomarkers i15:0 and 10-Methyl-16:0 (combined contribution of 18% and 19% 

respectively) and biomarker 18:0 (32% and 22% respectively) ubiquitous in both 

bacteria and plants. The relative mean concentrations of SC-NLFA in pasture 

land soil samples had a larger contribution from the bacterial biomarkers i15:0 

and 10-Methyl-16:0 (combined contribution of 29%) than those in 

arable/moorland soils and a correspondingly smaller contribution from the fungal 

biomarker 18:2ω6,9 (37% respectively). The study of Zaitlin et al., (2003) found 

actinomycetes were especially abundant in runoff from terrestrial sources with 

faecal contamination, suggesting an increased contribution of bacterial 

biomarkers in pasture land relative to arable or moorland could be due to the 

presence of grazing animals. It is not known why bacterial biomarkers dominate 

the signature in forest soils, however, bacterial and fungal communities can vary 

with nutrient availability and particle size fractions (Hemkemeyer et al., 2018, 

2019; Zhang et al., 2016a) contributing to spatial heterogeneity and bacterial 
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diversity between land uses. There is a relatively larger contribution from bacterial 

biomarkers in the streambed sediments (BS1 29%, BS2 45%, and BS3 37%) 

relative to most of the land uses (arable 18%, moorland 19%, pasture 29% and 

forest 54%). This could be due to a larger contribution from forest soils to 

streambed sediments as the sample site for BS2 is within an area of forest. 

Alternatively, the range of δ13C of n-alkanes suggested streambed sediments 

could have become relatively enriched in finer soil particles, and in the study of 

Hemkemeyer et al., (2018) actinobacteria were shown to exhibit preference for 

the fine silt particle fraction. 

 

Figure 12: Relative mean concentration (%) for SC-NLFA for the soils of land uses, 

arable, forest, moorland and pasture streambed sediments BS1, BS2 and BS3  
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Figure 13 Range of SC-NLFA i15:0, 10-Methyl-16:0, 18:2ω6,9 and 18:00 from forest, 

pasture, arable and moorland land uses and streambed sediment sources The box 

is extended from the 25–75 percentiles, the line is plotted at the median and 

whiskers show the maximum to minimum range excluding outliers (dots). 

Table 11: Kruskal- Wallis (KW) and posthoc Dunn's test: significant differences in 

Neutral lipid fatty acid (NLFA) relative concentration (p < 0.05) distinguished 

between soil samples from different land use sources. Sources in bold indicate 

NLFA concentrations for streambed sediment within the range for terrestrial 

sediments 

 Significant difference (p<0.05) 

 i15:0 a15:0 16:0 
10-Methyl-
16:0 

12-Methyl-
16:0 18:2ω6,9 18:0 

Arable-Forest ✓   ✓  ✓ ✓ 

Arable-Moorland     ✓  ✓ 

Arable-Pasture        

Forest-Moorland ✓ ✓  ✓ ✓ ✓  

Forest-Pasture ✓   ✓   ✓ 

Moorland-Pasture  ✓   ✓ ✓ ✓ 
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3.3.4 SC-NLFA CSSI δ13C 

CSSI δ13C signatures of conservative SC-NLFAs (selected above) (i.e., i15:0, 

16:00, 10-Methyl-16:0, 18:2ω6,9 and 18:00) (Table 7) were considered as 

potential tracers. Of these, all SC-NLFA CSSI δ13C (with the exception of 16:00) 

could distinguish between land uses (Table 12). The CSSI δ13C values for i15:0 

and 18:2ω6,9 were outside the maximum and minimum values for the land use 

sources and therefore only 10-Methyl-16:0 and 18:00 were selected as tracers 

(Figure 14). Together, these biomarkers could only discriminate between forest 

land and the other three land uses (Table 12). The availability of only two 

conservative SC-NLFA CSSI δ13C biomarkers and their ability to distinguish a 

limited number of land use classes meant that they could not be used on their 

own to distinguish between the four land use sources in this catchment.  

Table 12: Kruskal- Wallis (KW) and posthoc Dunn's test: significant differences in 

NLFA CSSI δ13C (p < 0.05) distinguished between soil samples from different land 

use sources. Sources in bold indicate NLFA CSSI δ13C for streambed sediment 

within the range for terrestrial sediments 

 Significant difference (p<0.05) 

 i15:0 16:00 10-Methyl-16:0 18:2ω6,9 18:00 

Arable-Forest   ✓ ✓  

Arable-Moorland      

Arable-Pasture      

Forest-Moorland   ✓   

Forest-Pasture ✓  ✓ ✓ ✓ 

Moorland-Pasture ✓     
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Figure 14: Range of δ13C values (‰) of SC-NLFA from forest, pasture, arable and moorland land uses and streambed sediment 

sources The box is extended from the 25–75 percentiles, the line is plotted at the median and whiskers show the maximum to 

minimum range excluding outliers (dots). 
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3.3.5 Combination of tracers that provided the best land use source 

discrimination 

Six “virtual” mixtures with 50/50 contributions from each of the four sources 

(arable, pasture, forest and moorland) were created to test the performance of 

MixSIAR in distinguishing between land uses when using the following tracer 

combinations; a) n-alkane ratios alone (baseline scenario), b) n-alkane ratios + 

CSSI signatures, c) n-alkane ratios + SC-NLFA concentrations, d) n-alkane ratios 

+ SC-NLFA concentrations + SC-NLFA CSSI signatures and e) all tracers  (Table 

13).  The use of additional biomarkers resulted in statistically significant 

differences in errors. Scenario b resulted in a significant increase in error when 

distinguishing arable land use from forest (21.2%) or moorland (7.2%) but a 

decrease in error when distinguishing all other land uses (Table 13). If the “best” 

tracer set is defined as minimising the error when distinguishing between land 

use sources, then using a tracer combination of n-alkane ratios + CSSI (Scenario 

b) was the most accurate (6.2% error) in distinguishing between arable and 

pasture land use sources. Scenario c resulted in a significant decrease in error 

when distinguishing all land use combinations (error reduction 1.6-8.2%). Using 

a tracer combination of n-alkane ratios + NLFA concentrations (Scenario b) was 

best when distinguishing between moorland and either arable or pasture land use 

sources. Scenario d also resulted in a significant decrease in error when 

distinguishing all land use combinations (error reduction 1.8-9%). Using a tracer 

combination of n-alkane ratios + NLFA concentrations + CSSI (Scenario d) was 

best when distinguishing between forest and either arable or moorland land use 

sources. Combining all the tracers (Scenario e) generally decreased the error 

compared to the baseline scenario (a) but showed larger errors compared to 

scenarios c and d. Distinguishing between arable and pasture land is known to 

be difficult due to agricultural rotation (Glendell et al., 2018; Upadhayay et al., 

2017) and, for the baseline scenario (a) n-alkane ratios alone), relatively high 

errors were found when trying to distinguish between pasture and arable land 

(19.6% Table 13). However, even higher errors were found when distinguishing 

pasture from forest land cover (23% Table 13) and the addition of SC-NLFA 

biomarkers (Scenario d) reduced this error by 9%. Despite the individual SC-
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NLFA tracers not being able to distinguish between arable and pasture land 

(Table 11 and Table 12), the addition of SC-NLFA biomarkers to n-alkanes did 

improve the discrimination between these two land uses. However, it was the 

addition of n-alkane CSSI δ13C to the baseline that provided the greatest 

reduction in error when discriminating between these two land uses. These 

results suggest that if a catchment OCF study was required to distinguish only 

arable and pasture land use, the combined use of n-alkane ratios and CSSI 

should improve the discrimination. However, for this catchment, where 

discrimination between four different land uses is required, the combination of n-

alkane ratios and SC-NLFA tracers (Scenario d) provided the best capacity for 

land use source discrimination based on the reproduction of known source 

apportionments. 

This study has shown that the use of a combination of SOC biomarkers of plant, 

bacterial and fungal origin (n-alkane ratios and SC-NLFA) can reduce the error in 

distinguishing soil from different land uses. In addition, differences in soil fatty 

acid profiles (particularly NLFA) can be useful as markers to differentiate soils 

with different history of use (Ferrari et al., 2015). Soil fungal community structures 

under afforestation have been shown to be controlled by original land use 

practices (Xue et al., 2022) and soil biomarkers of bacterial origin (e.g. fatty acid 

methyl esters) have proved to be effective, not only in distinguishing current land 

uses, but also in distinguishing soil under land that had changed use decades 

before (e.g. grassland to forest (Lavrieux et al., 2012)). Combining SOC 

biomarkers from different soil communities may allow future studies to achieve 

even more accurate SOC source attribution using multiple source group 

classifications based not just on the current land use but on known conversions 

of land use (e.g., cropland to forest). If SC-NLFA could distinguish former 

grassland under afforestation from existing forest and grasslands these tracers 

could be used to see the effect of this land use change on the sources of 

sediments in nearby streams. 

Table 13: Mean absolute differences between the modelled and virtual mixture 

composition (%) with biomarkers for Scenario a) n-alkane ratios alone (baseline 

scenario), b) n-alkane ratios + CSSI signatures, c) n-alkane ratios + SC-NLFA 
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concentrations, d) n-alkane ratios + SC-NLFA concentrations + SC-NLFA CSSI 

signatures and e) All tracers.  Land use 50/50 combinations: Arable-Forest (AF50), 

Arable-Moorland (AM50), Arable-Pasture (AP50), Forest-Moorland (FM50), Forest-

Pasture (FP50) and Moorland-Pasture (MP50). Asterisk (*) indicates significant 

difference from baseline (Scenario a); (p<0.05)). 

 Mean absolute differences between the modelled and virtual 
mixture composition  

a b c d e 

AF50 8.6 29.8* 5.2* 2.6* 12.8* 

AM50 10.2 17.4* 2.0* 2.2* 9.4 

AP50 19.6 6.2* 13.6* 16.8* 8.2* 

FM50 5.2 4.8* 3.6* 0.2* 4.4* 

FP50 23.0 21.6 18.8* 14.0* 13.6* 

MP50 9.4 7.2* 4.0* 7.6* 5.8* 

Mean Error 12.7 14.5 7.9 7.2 9.0 

Number of 
tracers 5 7 9 11 13 

 

3.3.6 Contribution of land use sources to catchment streambed 

sediments  

In this study catchment, where discrimination between four different land uses 

was required, the combination of n-alkane ratios and SC-NLFA tracers (Scenario 

d) provided the most accurate land use source discrimination based on their 

reproduction of known source apportionment. Modelling the relative land use 

contribution to the three streambed sediment samples using this tracer set and 

MixSIAR estimated that the main source of OC was pasture land cover type at all 

sites (68-80%: Figure 15).  
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Figure 15: Percentage contribution of four land use sources (arable, forest, 

moorland and pasture) modelled using sediment fingerprinting (n-alkane ratios, 

and short chain (<C22) NLFA concentrations and CSSI signatures as tracers) and 

a Bayesian unmixing model (MixSIAR) for three streambed sediment samples 

(BS1, BS2 and BS3) – in each case this accompanied by the corresponding 

percentage land use cover for the sub-catchments of BS1, BS2 and BS3. 

Arable land use covered approximately 10% of the BS3 catchment area and also 

of the sub-catchment relating to BS1. At both BS1 and BS3, arable land made a 

larger contribution to the streambed sediments (16% and 17% respectively: 

Figure 15) than would be expected given the amount of arable land within those 

sub-catchments. For ca. 400 m upstream of BS1 the stream is passing through 

arable land, some of which is located on steeper slopes (> 5°) which could have 

led to a locally higher level of erosion and input of arable soil to the stream 

(Wischmeier and Smith, 1978). Similarly, Pulley and Collins, (2018) found 

sediment sources in close proximity to their sediment sampling locations were of 

the greatest importance in their fingerprinting study in a UK agricultural 

catchment, and Lei et al., (2021) found that concentrations of nutrients in streams 
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were intensified by steeper slopes in agricultural and pasture fields in Germany. 

These results support other studies that have found arable land makes a larger 

contribution to river sediments than would be predicted from the proportion of 

land that it covers within a catchment (Wang et al., 2021).  

At streambed sites BS1 and BS3 30% and 25% of the respective sub-catchment 

land is covered in forest, however forest land contributed only 13% and 8% 

respectively to the streambed sediments. These results are similar to a study 

carried out in another Aberdeenshire catchment (Tarland (Hirave et al., 2020a)) 

which found minimal inputs from forest land uses to the headwater stream 

suspended sediment flux (ca. 2%) due to high canopy cover and a dense organic 

layer on the soil surface resulting in low erosion rates. Wang et al., (2021) also 

found the contributions from forest and moorland to riverbed sediments were 

considerably smaller than those from arable land (forest 8% and moorland 6%: 

cf. arable 45%). However, forest accounts for less than 5% of the land cover in 

the sub-catchment at BS2 but contributed 14% of the streambed OC. The forest 

land in the BS2 sub-catchment is located on land at low risk of erosion (Lilly and 

Baggaley, 2018), however, all forest land is in close proximity to BS2, suggesting 

that these proximal areas had a large influence on the composition of streambed 

sediments, possibly through direct input of woody material to the stream (Lavrieux 

et al., 2019).  

When considering BS3, located at the catchment outlet, nearly 30% percent of 

the catchment land cover is moorland, however, the MixSIAR model predicted a 

contribution of only 3% from moorland. Similarly, at BS2 and BS3, moorland 

encompasses nearly 80% and 30% of the land cover respectively but made the 

smallest contribution to the streambed sediments (20% and 3% respectively). 

Moorland covers large areas of the Loch Davan catchment and is located on the 

steepest slopes (Figure 6c) in areas at higher erosion risk (Lilly and Baggaley, 

2018). The erosion risk map covering this catchment (Lilly and Baggaley, 2018) 

was constructed by estimating the erosion risk of bare soil under severe or 

protracted rainfall, with steeper slopes resulting in faster runoff. The minimal input 

of moorland soil to the streambed sediments suggests that despite their location 
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on steep slopes the vegetation cover found on these moorlands makes this land 

use relatively resistant to soil erosion. Hirave et al., (2020a) also found that 

moorland contributed marginally to suspended stream sediments (<2%), despite 

covering 16% of the catchment area, which they attributed to the thick organic 

layer covering the soil surface for this land use resulting in less erodibility of the 

soil.  

At each streambed site there was a larger contribution from pasture land to the 

streambed sediments (BS1 68%, BS2 80% and BS3 72% respectively: Figure 

15) than would be expected given the amount of pasture land within those sub-

catchments (30%, 14% and 30% respectively). This study supports the high 

contribution (annual average 56-79%) of permanent grasslands to the suspended 

sediments and higher soil erosion rate estimates from improved grassland (as 

opposed to extensive arable land use), reported for other areas of in Scotland 

(Hirave et al., 2020a; Rickson et al., 2019).  

3.4 Conclusion 

Using a Bayesian un-mixing model, the performance of the combined n-alkane 

and SC-NLFA biomarkers in distinguishing land use was compared to OCF using 

n-alkane biomarkers alone. The addition of SC-NLFA biomarkers led to a 

significant decrease in error when distinguishing between all land uses (error 

reduction 1.8-9%). Distinguishing between arable and pasture land is known to 

be difficult due to agricultural rotation and, although the addition of SC-NLFA 

biomarkers did improve the discrimination between arable and pasture land, it 

was the addition of n-alkane CSSI δ13C to the baseline that provided the greatest 

reduction in error when discriminating between these land uses. The results of 

this study suggest that if a catchment OCF study was required to distinguish only 

arable and pasture land use, the combined use of n-alkane ratios and CSSI 

should improve the discrimination. However, for this catchment, where 

discrimination between four different land uses was required, the combination of 

n-alkane ratios and SC-NLFA tracers provided the best capacity for land use 

source discrimination based on their reproduction of known source 

apportionments. The contribution of land use sources to streambed sediments 
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was estimated using a combination of n-alkane ratios and SC-NLFA biomarkers 

and results identified pasture to be the main contributor to streambed OC (68-

80% of OC), followed by arable or forest land (8-17%) and moorland (3-6%). The 

use of virtual mixtures as presented in this study provides a simple method that 

could be carried out before a OCF study to determine if addition or removal of 

tracers can improve relative error in source discrimination.  Further studies are 

required to determine whether these findings can be generalised to other 

catchment settings by testing whether different sets of biomarkers (n-alkane, SC-

NLFA, concentrations, CSSI δ13C signatures) are consistent in better 

distinguishing between certain land use combinations (e.g., arable-pasture) in 

varied geographical areas.  
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4 Seasonal OC dynamics: Investigating challenges in n-

alkane fingerprinting using streambed and 

suspended sediments 

Abstract 

Agricultural practices can accelerate the rates of soil erosion and organic carbon 

(OC) loss, increasing input of nutrient rich sediment to surface waters. These 

processes are potentially amplified by climate change and future increases in the 

frequency of extreme climatic events. It is, therefore, of vital importance to identify 

sources and drivers of OC transfer from land to water to inform effective 

management strategies for mitigating the on-site and off-site impacts of 

accelerated soil erosion.  

Organic C fingerprinting (OCF) using n-alkanes is a valuable tool to estimate the 

relative contribution of different land use sources to sediment OC. However, there 

remain challenges in the application OCF including i) effects on tracer signatures 

due to sorting effect of particles by size during mobilization, transport and 

deposition and ii) ensuring all sources are included. With the aim of identifying 

methods to address these challenges, and thereby reduce uncertainty in source 

apportionment, an OCF study was carried out in a mixed land use catchment in 

Scotland.  

Suspended sediments (SS) were collected bi-monthly at three stream sites (two 

headwater sub-catchments and catchment outlet) over a period of eighteen 

months (June 2019 – Dec 2020). OC land use source apportionment was 

estimated, using n-alkane fingerprinting and a Bayesian unmixing model, to 

identify seasonal changes in land use OC sources. Potential rainfall, stream 

discharge and agronomic drivers of these seasonal changes were then identified 

with the following specific aims. Firstly, to estimate effects due to enrichment in 

finer particles by comparing n-alkane signatures for i) SS, ii) streambed sediment 

(existing data), and iii) terrestrial soils. Secondly, to determine if the same drivers 

were important at a headwater sub-catchment and catchment scale. And finally, 
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to estimate if a small amount of arable land in a headwater sub-catchment made 

a substantial enough input to SS OC to be included as a fingerprinting source. 

The methods employed in this study i) revealed SS rather than streambed 

sediment most closely approximated biomarker signatures in terrestrial soils, 

suggesting that differences in n-alkane signatures between terrestrial soil 

sources and stream sediments were unlikely to be affected by the enrichment in 

finer particles, ii) identified drivers of variation in SS source proportions in a 

headwater catchment included land preparation/planting and moorland heather 

burning in spring, and heavier prolonged rainfall in late autumn and winter, 

leading to saturated soils and increased runoff. These drivers were not detected 

at the catchment scale, where livestock poaching of riparian pasture soils may be 

driving increased OC input to streams especially in late autumn/winter and iii) 

validated the land use sources selected for OCF by identifying the small amount 

of arable land in a headwater sub-catchment made a substantial enough input to 

stream OC to be included as a fingerprinting source. In addition, the n-alkane 

ratio “PAQ” (used to understand aquatic versus terrestrial OC input) for arable, 

forest and pasture soils was found to be in the range normally associated with 

emergent macrophytes and mosses. This finding has implications for research 

interpreting the origins of aquatic sediments using the expected ranges of PAQ 

in terrestrial and aquatic vegetation - especially in climates which provide ideal 

conditions for the growth of mosses in source soils. 

By revealing that n-alkanes signatures were unlikely to be affected by the 

enrichment in finer particles, and validating the choice of land use sources, these 

methods addressed two of the key challenges in OCF, and thereby increased 

confidence in the source apportionment. 

Keywords: organic carbon dynamics, erosion, bed sediment, suspended 

sediment, n-alkane fingerprinting 

4.1 Introduction 

Soils provide vital ecosystem services, including food and timber production and 

water filtering capacity and are of increasing importance for climate regulation 
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through storage of carbon (Vogel et al., 2018; Wiesmeier et al., 2019). Soil 

erosion and organic carbon (OC) loss are natural catchment processes that can 

be intensified by agricultural practices, leading to loss of soil resources and 

increasing input of nutrient rich sediment to waterways (Addy, Ghimire and 

Cooksley, 2012; Blake et al., 2021; Wiesmeier et al., 2015; Wohl et al., 2015). 

Erosion processes will be amplified by climate change and predicted increases 

in extreme climatic events (Jung, Lee and Park, 2014; Klimaszyk and Rzymski, 

2013; Scheurer et al., 2009). Because of the inherent variability of waterways, 

good ecological status cannot be defined using absolute standards and the Water 

Framework Directive 2000/60/EC (WFD) instead defines it as “a slight departure 

from the biological community which would be expected in conditions of minimal 

anthropogenic impact”. It is, therefore, of vital importance to identify 

anthropogenic impacts on terrestrial-to-aquatic fluxes of OC, to inform effective 

management strategies and mitigate the impacts of soil OC loss on waterbody 

ecological status. In addition, the relative contribution from terrestrial sources to 

streams varies spatially as well as temporally (Huisman et al., 2013; Koiter et al., 

2013a; Lamba, Karthikeyan and Thompson, 2015). It is, therefore, important to 

assess OC dynamics at both upstream sites, and at the catchment outlet, to 

reduce ambiguity in OC source identification (Hirave et al., 2020a; Lamba, 

Karthikeyan and Thompson, 2015). 

The relative contribution of different terrestrial sources to organic matter load in 

waterways can be estimated using OC fingerprinting (OCF) techniques using 

plant-specific biomarkers such as n-alkanes and long-chain fatty acids (Alewell 

et al., 2016; Chen et al., 2017; Glendell et al., 2018; Hirave et al., 2020a; Zhang 

et al., 2017). The temporal variability of soil erosion rates, and hence terrestrial-

to-aquatic transfer of soil OC, varies between different land uses. In arable land, 

connectivity, run-off and erosion rates vary seasonally according to crop type, 

inter-crop groundcover and harvest times, whereas permanent vegetation cover 

in forest and moorland is usually associated with reduced sediment fluxes 

through interception of runoff, increased water infiltration and organic matter 

accumulation (Sherriff et al., 2019). Fingerprinting of SS can reveal temporal 

variability in sediment sources during individual hydrological events (Alewell et 
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al., 2016; García-Comendador et al., 2021; Liu et al., 2017; Mukundan et al., 

2010; Uber et al., 2019) as well as seasonal variability in sediment sources 

(Hirave et al., 2020a; Lamba, Karthikeyan and Thompson, 2015; Pulley et al., 

2019). Organic sediment fingerprinting techniques using plant-specific 

biomarkers such as n-alkanes are, therefore, a valuable tool to estimate the 

relative contribution of different land use sources to organic matter load in 

waterways. However, although the utility and robustness of sediment 

fingerprinting approaches has been evaluated in numerous studies many 

challenges remain (Collins et al., 2020; Guzmán et al., 2013; Hirave et al., 2020b; 

Mukundan et al., 2012), including i) effects on tracer signatures due to sorting 

effect of particles by size during mobilization, transport and deposition and ii) 

ensuring all sources are included. Finding methods to assess the impact of 

particle size sorting and identify any “missing” sources would help to reduce 

uncertainty in source apportionment. 

Biomarkers (Bush and McInerney, 2013) and the longer the n-alkane chain 

length, the less soluble they are in water. This lack of solubility reduces their 

metabolism by microorganisms (Cranwell, 1981; Ranjan et al., 2015), making n-

alkanes of chain-length >C24 generally resistant to biodegradation (Singh, 

Kumari and Mishra, 2012) and suitable as conservative tracers in OCF. However, 

the sorting effect of particles by size during mobilization, transport and deposition 

processes is a key challenge to the assumption that biomarkers remain 

conservative (Laceby et al., 2017). In Chapters 2 and 3 it was shown that the 

signature of n-alkane biomarkers in streambed sediments differed from that of 

the terrestrial soils due to either i) input of less degraded organic matter (e.g. 

leaves/litter) to the streams directly from the riparian zone or ii) particle size 

effects due to finer, lighter particles being preferentially eroded and transported 

to the streams. If the latter, then the signature of n-alkane biomarkers of particles 

remaining in suspension and collected as suspended sediment (SS) would be 

expected to show even more deviation from terrestrial soils than the streambed 

sediments which would be expected to accumulate the coarser, heavier particles. 

It was hypothesised that differences in n-alkane signature were due to enrichment 

in finer particles and that this would be evidenced by the signature of n-alkane 
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biomarkers in streambed sediments, as opposed to SS, being most closely 

approximated to those in terrestrial soils.  

Secondly, variation in source classification, and in particular the omission of an 

important source can alter the source apportionment (Vercruysse and Grabowski, 

2018). In OCF studies, land use sources can be defined using large scale land 

cover maps such as Corine land cover 2012 for the UK, Jersey and Guernsey 

(Cole et al., 2015). However, as changes in agricultural management often 

happen at a faster rate than updates to large scale land cover maps, ground 

truthing may contradict the information in the maps, leading to uncertainty in the 

definition of land use sources.  

In a mixed land use catchment in Scotland, SS were collected bi-monthly at three 

stream sites (two headwater sub-catchments and catchment outlet) over a period 

of eighteen months (June 2019 – Dec 2020). OC land use source apportionment 

was estimated, using n-alkane fingerprinting and a Bayesian unmixing model, to 

identify seasonal changes in land use OC sources. Potential rainfall, stream 

discharge and agronomic drivers of these seasonal changes were then identified 

with the following specific aims. Firstly, to estimate effects due to enrichment in 

finer particles by comparing n-alkane signatures for i) SS, ii) streambed sediment 

(existing data), and iii) terrestrial soils. Secondly, to determine if the same drivers 

were important at a headwater sub-catchment and catchment scale. And finally, 

to estimate if a small amount of arable land in a headwater sub-catchment made 

a substantial enough input to SS OC to be included as a fingerprinting source. 

4.2 Material and methods 

4.2.1 Study site 

Loch Davan is a shallow (mean depth 1.2 m) lake located within the Muir of Dinnet 

National Nature Reserve (NNR) and derives inputs primarily from over-land 

surface flows (Smith, Tetzlaff and Soulsby, 2018). The lake area has been 

significantly reduced over the last century, likely due to inputs of nutrient rich 

sediment resulting from land use intensification (Addy, Ghimire and Cooksley, 

2012). Between 2007 and 2018, the loch and its main feeder stream, Logie Burn, 
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were classified as having poor to moderate ecological status (SEPA, 2021). The 

catchment (ca. 34 km2) includes a mix of land uses (moorland 29%, forest 22%, 

arable 10% and pasture 31%) and soil types (mineral podzols 49%, brown soils 

22%, alluvial soils 11% and peat or peaty gleys/podzols c.a. 5%) (Figure 24b and 

d). Areas of steepest slope (13-37 degrees: Figure 24c) are found under 

moorland and forest land cover to the west and north-west of the catchment with 

arable and pasture land cover dominating the relatively flat (typically < 3 degree 

slope) lowlands. The catchment mean annual precipitation is 780 mm with 

average annual minimum temperature of 3.5°C and average annual maximum 

temperature of 12.17°C (Met Office, 2021b).  
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Figure 16: Loch Davan study catchment. a) Study catchment location, b) Land use in the Loch Davan catchment (34 km2), suspended 

and streambed sediment sampling locations (red dots: Sites 1, 2 and 3) and terrestrial soil sampling locations (black crosses),based 

upon Corine land cover 2012 for the UK, Jersey and Guernsey (Cole et al., 2015), c) catchment slope (degrees) derived from OS Terrain 

5  © Crown copyright and database rights  2021 Ordnance Survey (100025252)(Ordnance Survey, 2021), d) Catchment soils based on 

“1:25,000 Hutton Soils Data” copyright and database right The James Hutton Institute (2018). Used with the permission of The James 

Hutton Institute. All rights reserved. 
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Table 14: Characteristics of Loch Davan and catchment (CEH, 2021) 

Loch Davan  Catchment 

 

 

Surface area (km2) 0.42 Area (km2) 33.83 

Mean depth (m) 1.2 Catchment-to-lake ratio 80.2 

Maximum depth (m) 2.7 Mean elevation (m) 278.25 

Elevation (Above Ordnance Datum) (m) 167  Mean slope (°) 6.44 

Perimeter length (km) 3   

Water body volume (m3) 505,904    

 

4.2.2 Sample collection 

A field campaign was carried out in June 2019 to collect soil and sediment 

samples within the Loch Davan catchment and Logie Burn stream network to 

characterise the four land use sources (arable (n=16), forest (n=16), moorland 

(n=18) and pasture (n=19)) and streambed sediments in terms of their n-alkane 

concentrations and δ13C compound-specific stable isotope (CSSI) composition 

(sampling sites shown in Figure 6b). Suspended and bed sediment sample 

locations were chosen just above junctions in the stream network so the 

contributions from each sub-catchment could be quantified. The northern sub-

catchment (Site 1) has almost equal extents of pasture (30%), forest (29%) and 

moorland (28%) with around 10% arable land. In the western sub-catchment (Site 

2), moorland is the dominant land cover (78%) with around 14% of land use being 

pasture, less than 5% forest and no arable land. Site 3 was located close to the 

outlet of Logie Burn to Loch Davan to integrate the input from the whole 

catchment which has a land use composition of arable (10%), pasture (34%), 

forest (25%) and moorland (31%).  

The methods for collection, processing and analysis of the terrestrial and bed 

sediment samples and detailed description of the n-alkane tracers can be found 

in Chapter 3. 

Suspended sediments were collected bi-monthly at the three sites over a period 

of eighteen months (June 2019 – Dec 2020) to characterise the seasonal 
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changes in OC flux. Time integrated mass samplers (Phillips, Russell and 

Walling, 2000) were used to collect SS at all sampling locations. Unfortunately, 

due to high flows at Site 1, the sampler was lost twice, and therefore no 

suspended sediments were collected between August 2019 and January 2020. 

Suspended sediment from the traps was collected and placed in clean food grade 

plastic buckets, left to settle for 5 days before the supernatant was removed and 

the remaining water left to evaporate at room temperature for up to 6 weeks. The 

dried sediment was then decanted and freeze dried. Samples collected after 

March 2020 were not freeze dried due to Covid-19 lockdown restrictions and were 

only air dried. Samples were weighed and passed through a 2 mm sieve before 

being ground and stored at room temperature until required for analysis. 

4.2.3 Sample analysis 

The suspended sediment samples were analysed for n-alkanes and δ13C CSSI 

as described in Chapter 3. 

Validating a terrestrial source of SS OC can be accomplished by measuring OC 

content and nitrogen content (%N); with lower C/N ratios (4 to 10) associated with 

organic matter derived from aquatic organisms, and higher values (≥ 20) 

indicative of a terrestrial origin (Ankit et al., 2022; Meyers, 1997). 

All suspended sediment and terrestrial soil samples were analysed for carbon 

and nitrogen concentrations (%, w/w) using a Flash EA 1112 Series Elemental 

Analyser connected via a Conflo III to a DeltaPlus XP isotope ratio mass 

spectrometer (all Thermo Finnigan, Bremen, Germany). USGS40 was used as 

reference material for C and N concentrations, measured using the mass 

spectrometer area output. Long term precisions for a quality control standard 

(dried milled topsoil) were: total C 3.80 ± 0.15 % and total N 0.28 ± 0.02 % (mean 

± SD). Data processing was carried out using Isodat 2.0 (Thermo Fisher 

Scientific, Bremen, Germany). 
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4.2.4 OC fingerprinting  

4.2.4.1 Tracer selection 

The n-alkane tracers considered in the OCF of suspended sediments are 

described in detail in Chapter 3 Section 2.4.1, and consist of: the relative 

percentage of n-alkanes C27, C29 and C31 (Torres et al., 2014); the C27 to C31 

ratio (Puttock et al., 2014); PAQ, to understand aquatic versus terrestrial OC input 

(Ficken et al., 2000); the Odd-to-Even Predominance (OEP) (Zech et al., 2013; 

and the Average Chain length (ACL) (Fang et al., 2014). 

All tracer values were first checked for normal distribution using the Kolmogorov-

Smirnov test. A Kruskal- Wallis (KW) and posthoc Dunn's test was then carried 

out to select tracers which showed significant differences between land use 

sources (Figure 7b). The tracers which passed the KW test were then assessed 

using box plots in Excel to ensure biomarker values from all mixtures were within 

the full range of corresponding land use sources (Figure 7c). In addition, δ13C n-

alkane CSSIs were only selected if their corresponding concentration values 

were also within the range of values of stream sediment mixtures (Collins et al., 

2020). 

4.2.4.2 Source Classification 

With reference to the Corine land cover 2012 for the UK, Jersey and Guernsey 

(Cole et al., 2015), the northern sub-catchment (Site 1) supported arable, pasture, 

forest and moorland land cover, but in the western sub-catchment (Site 2) arable 

land cover was missing (Figure 24b). However, areas of the Site 2 sub-catchment 

designated as pasture and moorland on the land cover map were found to be 

regularly ploughed and/or used for game crops (Game & Wildlife Conservation 

Trust, 2022) (Figure 17). It was uncertain whether the presence of these cropped 

fields would constitute a substantial enough arable source to warrant using a four-

source classification (arable, pasture, forest and moorland) rather than a three-

source (pasture, forest and moorland) model. Organic C fingerprinting at sites 1 

and 3 was carried out using a four-source classification (arable, pasture, forest 

and moorland). Organic C fingerprinting at Site 2 was carried out using both a 

three-source classification (pasture, forest and moorland) and a four-source 
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classification (arable, pasture, forest and moorland). The best source 

classification was selected based whether land use source proportions, and 

changes in those proportions, could be explained using known drivers of OC 

dynamics within the catchment. 

 

Figure 17 Location of Game Crops (Game & Wildlife Conservation Trust, 2022) in 

sub-catchment of Site 2 

4.2.4.3 Bayesian unmixing model (MixSIAR) implementation 

After selecting tracers, MixSIAR (Stock and Semmens, 2016) was used to model 

the land use source apportionment. The MixSIAR model was first developed for 

ecological studies but is increasingly applied in catchment sediment fingerprinting 

research (Lachance et al., 2020; Smith, Karam and Lennard, 2018; Stenfert 

Kroese et al., 2020). Tracer properties can be characterised using the mean and 

standard deviation and the model is fit using Markov Chain Monte Carlo (MCMC) 

methods. Sediment source proportions were estimated using 3000 MCMC 

simulations with MixSIAR formulated using a residual error term and an 

uninformative prior. The MCMC parameters were set to those for a “normal” run 

(Stock and Semmens, 2016) (chain length = 100,000, burn = 50,000, thin = 50, 

chains = 3) and the Gelman-Rubin diagnostic was used to evaluate convergence 

of all models. 
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Unless otherwise stated, all MixSIAR runs, statistical and error analyses were 

carried out in R (version 3.6.3) (R Core Team, 2020) and RStudio (version 

1.1.463) (RStudio Team, 2018). 

4.2.4.4 Virtual mixtures 

Land use discrimination was assessed using “virtual” mixtures with 50/50 

contributions from each of the four sources (arable, pasture, forest and moorland) 

by taking the mean of two sources to represent a 50% contribution from each 

(Batista, Laceby and Evrard, 2022; Collins et al., 2020). This resulted in six virtual 

50/50 mixtures: Arable-Forest (AF50), Arable-Moorland (AM50), Arable-Pasture 

(AP50), Forest-Moorland (FM50), Forest-Pasture (FP50) and Moorland-Pasture 

(MP50). Errors were calculated as mean absolute differences between the 

modelled and virtual mixture composition. 

4.2.5 Agricultural activities, rainfall and stream discharge data 

Agricultural data was provided by the Game and Wildlife Conservancy Trust at 

Auchnerran Demonstration Farm, located within the Loch Davan catchment. 

Rainfall and stream discharge data was provided by the James Hutton Institute 

from a weather station located on Auchnerran Demonstration Farm. 

Rainfall and Logie Burn discharge data were first aggregated by the time interval 

over which SS was collected (Table 15). Hourly rainfall data was first summed to 

calculate total rainfall per day. Mean rainfall per day, and mean stream discharge 

were then calculated for each SS period.  

Table 15: Date and period of collection of suspended sediment samples  

Sample name Sample Date Period of collection  

August 2019  27/08/2019  19/06/2019 to 26/08/2019 

October 2019 23/10/2019 27/08/2019 to 22/10/2019 

December 2019 17/12/2019 23/10/2019 to 16/12/2019 

February 2020 11/02/2020 17/12/2019 to 10/02/2020 

April 2020 14/04/2020 11/02/2020 to 13/04/2020 

June 2020 04/06/2020 14/04/2020 to 03/06/2020 
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July 2020 29/07/2020 04/06/2020 to 28/07/2020 

September 2020 22/09/2020 29/07/2020 to 21/09/2020 

November 2020 17/11/2020 22/09/2020 to 16/11/2020 

 

The association between land use source proportions estimated using OCF and 

mean daily rainfall (mm), stream discharge (m3 s-1), and OC content and C/N of 

sediments, was assessed in Excel using the Pearson product-moment correlation 

coefficient (r). 

4.3 Results and Discussion 

Organic C fingerprinting using n-alkanes is a valuable tool to estimate the relative 

contribution of different land use sources to sediment OC. However, there remain 

challenges in the application OCF including i) effects on tracer signatures due to 

sorting effect of particles by size during mobilization, transport and deposition and 

ii) ensuring all sources are included. With the aim of identifying methods to 

address these challenges and thereby reduce uncertainty in source 

apportionment it was assessed i) whether the signature of n-alkane biomarkers 

of streambed sediments or SS most closely approximated those in terrestrial soils 

to evaluate whether differences in n-alkane signatures were due to enrichment in 

finer particles, ii) if the same drivers were important at a headwater sub-

catchment and catchment scale (catchment outlet) and iii) if a small amount of 

arable land in a headwater sub-catchment made a substantial enough input to 

stream OC to be included as a fingerprinting source.  

4.3.1 Composition of n-alkane biomarkers in streambed and 

suspended sediments 

The OC content and %N values of SS (8-11% and 0.61-0.81% respectively) were 

higher than those in bed sediments (0.6-1.1% and 0.03-0.08% respectively). 

Organic carbon and nitrogen contents of muddy sediments were generally higher 

than those in sandy sediments and OC content and %N can decrease as 

sediments become sandier (Dai and Sun, 2007). Particle size fractions and 

sand/silt/clay variations have not been explicitly measured in this study and all 
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soils and sediments were sieved to <2 mm. However, a visual inspection revealed 

SS to be finer than either soils or bed sediments and the bed sediment samples 

were much sandier than SS. At sites 1 and 3 the average C/N ratio in streambed 

(13.39 and 15.66 respectively) and suspended (13.54±0.79 and 12.67±0.96 

respectively) sediments was similar to those in arable and pasture soils. 

However, at Site 2, although suspended sediment C/N was again similar to that 

in arable and pasture soils (12.77±1.79) C/N in streambed sediment was 

comparable to moorland or forest soil (C/N=23). The sub-catchment of Site 2 is 

dominated by moorland and forest land cover (86%) which would be consistent 

with the higher C/N seen at this site, however, the streambed sediment OC at 

Site 2 has a combined contribution of only 20% from these two sources (Chapter 

3), inconsistent with the high C/N ratio. It is not known why this streambed sample 

should show such a high C/N ratio. 

At all sites, the %C31 (15 to 23) and %C27 (40 to 53) of streambed sediments 

were lower and higher than those observed in the terrestrial soils (%C31 ca. 31 

to 52; mean %C27 ca.18 to 35), respectively (Table 16). Lower %C31 and higher 

%C27 are characteristic of less degraded leaves/litter relative to their associated 

soil (Stout, 2020) and could indicate input of this source to stream sediments 

(Chapter 2). However, this is usually commensurate with a relatively high OEP 

which was not observed in streambed sediments at any site (OEP 1.2-1.8 c.f. 

terrestrial soils mean OEP 0.9 to 7.2). Alternatively, finer sediments can show an 

increase in mid-chain length n-alkanes relative to longer-chain lengths when 

compared to coarser sediments (Griepentrog et al., 2016). Finer sediments are 

more likely to be mobilised during water run-off than coarser sediments (Sirjani, 

Mahmoodabadi and Cerdà, 2022), and therefore, aquatic sediments become 

relatively enriched in finer soil particles. In addition, particles remaining in 

suspension or resuspended from in-situ streambed sediments would be expected 

to be lighter/finer than the streambed sediments which would be expected to 

accumulate more of the coarser, heavier particles entering the streams. It was 

hypothesised that if relatively lower %C31 and higher %C27 in streambed 

sediments was due to an enrichment in finer particles, then %C31 and %C27 

should be even lower and higher respectively in SS. In effect, the %C31 (mean 
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ca. 20 to 23) and %C27 (mean ca. 39-44) of SS were closer to those observed in 

terrestrial soils (mean %C31 31 to 52; %C27 18 to 35), than were the %C31 (15 

to 23) and %C27 (40 to 53) of streambed sediments (Table 16). These results 

suggest relatively lower %C31 and higher %C27 in stream sediments were not 

due to an enrichment in finer particles.  

Alternatively, the study of Grimalt et al. (1988) found that storing a previously 

dried soil sample under water at room temperature (~ 25°C) for a month changed 

the n-alkane signature, preferentially degrading long-chained n-alkanes in 

preference to mid-chain length n-alkanes due to  microbial decomposition. This 

suggests relatively lower %C31 and higher %C27 could be caused by storage of 

samples under water at a room temperature of ca. 25°C. Following collection, soil 

samples are immediately dried (e.g., freeze drying), however, some aqueous 

samples may be left for excess water to evaporate before being further processed 

or stored. In this study, the SS samples were left in a laboratory for excess water 

to evaporate (a period of up to 6 weeks at an unspecified “room” temperature), in 

contrast to the streambed sediment samples which were freeze-dried 

immediately on return to the laboratory. Therefore, the effect reported by Grimalt 

et al., (1988) is unlikely to be responsible for the lower %C31 and higher %C27 

ratios observed in streambed and SS in this study, as  the %C31 and %C27 of 

SS were closer to those observed in terrestrial soils than were the %C31 and 

%C27 of streambed sediments. 

Under field conditions, various mechanisms cause soil aggregates to break apart 

creating finer particle fractions; disintegration of aggregates is a complicated 

mixture of mechanical (raindrop impact, field traffic/tillage, roots, earthworms) 

and hydraulic stresses (Felde et al., 2021). The particle size selectivity of soil 

erosion is usually correlated to the energy of the erosive process (e.g., wind or 

water erosion) with greater erosive force resulting in less selectivity (Koiter et al., 

2013b). In addition, Armstrong et al., (2011) found particle size distribution was 

notably finer for material eroded from lower slopes, which had broader slower 

flows. In this study the bulk soil fraction (<2000 µm) has been used to retain as 

much OC as possible within the soil and sediment samples. Bulk soil fraction 
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(<2000 µm) was also used in the fingerprinting studies of Glendell et al., (2018) 

and Hirave et al., (2020), whereas other studies restricted their particle sizes to 

<63 μm  or <100 µm using various methods including; gently disaggregated and 

sieved (Blake et al., 2012), dry sample ground to fine powder (steel coffee 

grinder), sieved to <100 μm and reground (Gibbs, 2008) and dry sieved through 

a 63-μm sieve (Hancock and Revill, 2013). Felde et al., (2021) found different 

physical structure, bacterial diversity and organic matter composition when 

aggregates were dry crushed (broken down along more “natural planes of 

mechanical weakness”) compared to wet sieving. In addition, although it is 

generally accepted that OM (including n-alkanes) are preferentially associated 

with the finer particle size fractions (<63 µm) (Quenea et al., 2004; Quénéa et al., 

2006), Geng et al. (2019) found the signature and preservation of n-alkanes 

differed between coarse (>250 µm) and fine (<250 µm) particulate organic matter; 

with the coarse fraction containing a greater abundance of n-alkanes (n > 20). 

Therefore, the process of isolating finer fractions could itself introduce uncertainty 

into source characterisation. The method presented here, of comparing 

streambed and suspended sediment to assess effects on tracer signatures due 

to sorting effect of particles by size, can be applied to any catchment for which 

there has been no restriction on particle size carried out during sample 

preparation. Therefore, avoiding potential effects on n-alkane signature 

introduced by the process of isolating finer particle fractions. 
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Table 16 Mean (+/- 1SD) values of OC content, %N, C/N, and n-alkane ratios in forest, pasture, arable and moorland sources and 

streambed and suspended sediments (adapted from Chapter 3 Table 3) 

    n-alkanes 
 

OC content %N C/N C27/ C31 %C27 %C29 %C31 OEP PAQ ACL 

Soils           

arable (16) 3.79 ± 1.09 0.29 ± 0.08 13.72 ± 3.23 1.10 ± 0.99 30.63 ± 9.65 34.10 ± 2.54 35.27± 9.69 4.26 ± 2.72 0.38 ± 0.15 28.38 ± 0.55 

forest (16) 12.31 ± 8.0 0.55 ± 0.34 22.59 ± 6.17 1.02 ± 1.01 29.90 ± 12.78 29.42 ± 3.56 40.68 ± 13.02 3.76 ± 2.09 0.35 ± 0.17 28.55 ± 0.74 

moorland (18) 21.42 ± 13.88 0.99 ± 0.54 20.01 ± 6.21 0.45 ± 0.56 17.6 ± 9.95 30.24 ± 5.53 52.17 ± 12.63 7.22 ± 3.40 0.18 ± 0.14 29.34 ± 0.66 

pasture (19) 3.67 ± 0.94 0.30 ± 0.07 12.54 ± 1.83 1.20 ± 0.55 35.07 ± 6.26 33.55 ± 1.62 31.38 ± 5.20 0.87 ± 0.93 0.58 ± 0.12 28.03 ± 0.36 

Bed Sediment          

Site 1 1.08 0.08 13.39 3.59 52.73 32.56 14.70 1.23 0.55 27.42 

Site 2 0.62 0.03 23.23 1.72 39.83 37.02 23.15 1.71 0.43 27.93 

Site 3 0.99 0.06 15.66 3.08 47.13 37.54 15.32 1.82 0.49 27.64 

Suspended Sediment    

Site 1 (7) 8.13 ± 2.70 0.61 ± 0.21 13.54 ± 0.79 1.73 ± 0.34 39±4 37±2 23 ± 2 4.18 ± 1.01 0.41 ± 0.10 27.94 ± 0.26 

Site 2 (9) 10.65 ± 5.43 0.81 ± 0.32 12.77 ± 1.79 2.33 ± 0.54 44±3 36±3 20 ± 3 4.89 ± 1.39 0.48 ± 0.08 27.70 ± 0.15 

Site 3 (9) 9.71 ± 2.64 0.76 ± 0.20 12.67 ± 0.96 1.88 ± 0.47 41±4 37±1 22 ± 3 4.74 ± 1.20 0.41 ± 0.07 27.91 ± 0.19 
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4.3.1.1 Tracer selection for OC fingerprinting 

The ranges of n-alkane ratios in suspended sediments were outside the 

maximum and minimum values of land use sources for C27/C31 and %C31 n-

alkane tracers (Figure 18). Hence the remaining five n-alkane ratios (%C27, 

%C29, OEP, PAQ and ACL) were selected as tracers. The ranges of all the CSSI 

δ13C values (C23, C25, C27, C29 and C31) in suspended sediments (excluding 

outliers) were within the maximum and minimum values for the land use sources 

(excluding outliers) (Figure 19). However, the corresponding C27 n-alkane 

concentration was outside the maximum and minimum values for the land use 

sources and therefore, only CSSI signatures for C23, C25, C29 and C31 were 

selected as tracers.  
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Figure 18: Range of n-alkane ratios from forest, pasture, arable and moorland land uses and suspended sediment sources The 

box is extended from the 25–75 percentiles, the line is plotted at the median, a cross marks the mean, and whiskers show the 

maximum to minimum range excluding outliers (dots). 
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Figure 19: Range of δ13C values (‰) of n-alkanes (C23-C31) from forest, pasture, arable and moorland land uses and suspended sediment 

sources. The box is extended from the 25–75 percentiles, the line is plotted at the median, a cross marks the mean, and whiskers show 

the maximum to minimum range excluding outliers (dots). 
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4.3.1.2 Land Use Discrimination 

Six “virtual” mixtures with 50/50 contributions from each of the four sources 

(arable, pasture, forest and moorland) were created to test the performance of 

the following tracer combinations in MixSIAR model in distinguishing between 

land use sources: i) n-alkane ratios alone and ii) n-alkane ratios + CSSI 

signatures (Table 13).  The use of the additional δ13C biomarkers resulted in 

statistically significant differences in errors for all land use combinations except 

when distinguishing moorland and pasture (Table 13 MP50). Using both n-alkane 

ratios + CSSI signature resulted in a significant increase in error (p <0.05) when 

distinguishing arable land use from forest (10.4%) and moorland (3%) but a 

decrease in error when distinguishing between all other land uses (except 

between moorland and pasture). Based on the mean error across all land uses, 

n-alkane ratios alone were chosen as tracers for OCF of SS.  

Table 17: Mean absolute differences between the modelled and virtual mixture 

composition (%) with biomarkers for two scenarios i) n-alkane ratios alone, and ii) 

n-alkane ratios + CSSI signatures.  Land use 50/50 combinations: Arable-Forest 

(AF50), Arable-Moorland (AM50), Arable-Pasture (AP50), Forest-Moorland (FM50), 

Forest-Pasture (FP50) and Moorland-Pasture (MP50). Asterisk (*) indicates 

significant difference in two scenarios (p<0.05)). 

 Mean absolute differences between the modelled and virtual mixture 
composition in %  

n-alkane ratios n-alkane ratios + CSSI signatures 

AF50 10 20.4* 

AM50 10.4 13.4* 

AP50 21 13* 

FM50 3 1.2* 

FP50 23.6 20.8* 

MP50 9 9 

Mean Error 12.8 13.0 

Number of tracers 5 9 
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N-alkane signatures for the arable, temporary grassland (ley), grassland land in 

the Carminowe Creek catchment, Cornwall (Glendell et al., 2018) were very 

similar between arable and pasture land, likely due to agricultural rotation and, 

consequently, n-alkane signatures were only able to distinguish between 

woodland and “non-woodland” sources (Chapter 2). However, in this catchment, 

pastures were dominated by n-alkane chain lengths C23 and C25 characteristic 

of lower plants and mosses, creating a contrast with arable soils which were 

dominated by the longer chain lengths C27-C31, allowing n-alkanes to distinguish 

between cropland and permanent pasture. 

4.3.2 Drivers of change in SS OC source attribution: Sites 1 and 3 

The rainfall, stream discharge and agronomic drivers of seasonal changes in SS 

OC land use sources were identified at a headwater (Site 1) and catchment (Site 

3) scale. 

Arable land was the dominant land use source of SS OC at Site 1 throughout the 

monitoring period (June 2019 - November 2020), with contributions varying 

between a minimum of 37±26% in April 2020 and a maximum of 54±26% in June 

2020 (Figure 20a). The mean contribution from arable soils over the monitoring 

period (June 2019 to December 2020) was 44±6%. On average, the contributions 

from forest and pasture soils were similar (21±2% and 23±4% respectively) and 

showed no substantial changes during the monitoring period. Moorland provided 

the least contribution to SS OC (13±7%) with the exceptions being in April and 

November 2020. 

The mean SS OC content at Site 1 was 8.13±2.70% which is consistent with a 

mixture of input from the lower OC content arable and pasture soils (3.79±1.09% 

and 3.67±0.94% respectively) and the higher OC content moorland and forest 

soils (21.42±13.88% and 12.31±8.0% respectively). Organic matter from aquatic 

organisms (e.g. algae) usually have C/N values between 4 and 10, whereas 

protein-poor, cellulose-rich vascular land plants have higher C/N ratios >20 (Ankit 

et al., 2022; Meyers, 1997). However, the mean C/N ratios for the terrestrial land 

uses in this catchment were found to be 13.72±3.23 (arable) and 12.54±1.83 

(pasture) with only moorland and forest showing C/N ratios greater than 20 
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(20.01±6.21 and 22.59±6.17 respectively). The C/N ratio of SS at Site 1 

(13.54±0.79; Table 16, Figure 20b) was very similar to that in arable and pasture 

soils, indicating a terrestrial origin of SS OC dominated by either arable or pasture 

soils. 

The relative contribution of terrestrial and aquatic OC to SS OC was evaluated 

using the PAQ index (Ficken et al., 2000) (Figure 20b). Ankit et al. (2022) ascribe 

PAQ values <0.1 to terrestrial vegetation, 0.1–0.4 to emergent macrophytes and 

values > 0.4–1 to sub-merged/floating aquatic plants. Alternatively, Li et al., 

(2022) found PAQ of terrestrial vegetation to be 0.2±0.2, macrophytes 0.9±0.1, 

and soil 0.2±0.1. In the Loch Davan catchment, the PAQ value in moorland soils 

(0.18±0.14) was similar to that found by Li et al., (2022) however the other 

terrestrial soils in this catchment showed greater mean values of 0.38±0.15 

(arable), 0.35±0.17 (forest) and 0.58±0.12 (pasture) in the range usually 

attributed to macrophytes. Emergent macrophytes and mosses (Bush and 

McInerney, 2013; Ficken et al., 2000) show n-alkane signatures dominated by 

C23-C25 n-alkanes and commensurately high PAQ values. The relatively warm 

winters and cool, wet summers, in Scotland provide ideal conditions for mosses 

(https://www.nature.scot/plants-animals-and-fungi/mosses-and-liverworts) and 

therefore, the higher PAQ values in arable, forest and pasture soils in this 

catchment could be due to greater abundance of mosses. In addition, some of 

the lower lying pasture grazing areas in this catchment were located in a wet 

marsh habitat, which supported higher abundance of mosses and lower plants, 

likely contributing to the relatively higher PAQ seen in pasture soils (Game & 

Wildlife Conservation Trust, 2022). The relatively high mean PAQ values in the 

SS samples (Site 1 0.41±0.10, Site 2 0.48±0.08, and Site 3 0.41±0.07; Figure 

20b, Table 16) were also in the range usually attributed to macrophytes (Ankit et 

al., 2022; Li et al., 2022). Although this could mean that SS OC was mainly 

derived from autochthonous (aquatic plant) sources, the allochthonous (terrestrial 

soil) sources in this catchment also show higher PAQ and the SS OC could 

therefore be derived from terrestrial sources. These results imply that care should 

be taken when interpreting terrestrial or aquatic origins of sediments using PAQ 

ranges typically attributed to terrestrial vegetation, emergent macrophytes and 
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sub-merged/floating aquatic plants, in climates providing ideal conditions for the 

growth of lower plants and mosses on source soils. The SS PAQ was lowest in 

April and November 2020 (Figure 20b, suggesting terrestrial input to SS OC may 

be highest at these times, likely due to agricultural operations in the spring and 

increased rainfall in the autumn.  

April and November 2020 also corresponded with the highest predicted 

contributions to SS OC from moorland (Figure 20a). Runoff and erosion can take 

place when low intensity rain falls onto exposed saturated soils, most likely in 

winter and early spring (Evans and Brazier, 2005). In addition, higher winter 

rainfall may lead to increased erosion from steeper areas which might be less 

connected during drier periods (Hirave et al., 2020a). The relatively high rainfall 

in October/November 2020 (Figure 21b) most likely saturated the moorland soils 

and led to an increased runoff from the steeply sloping moorland. However, the 

largest contribution from moorland was in April 2020 (Figure 20a). Burning areas 

of moorland heather removes the older vegetation and allows plants to 

regenerate and is practiced widely across UK uplands as part of vegetation 

management for livestock and red grouse, as well as for conservation (Game & 

Wildlife Conservation Trust, 2022). Burning of sections of moorland took place in 

March 2020 (Figure 21a) and the process of burning and/or the resulting areas 

of sparser vegetation likely resulted in the increased contribution of moorland soil 

OC to SS OC in April 2020. 

There was no significant correlation between SS source proportions and mean 

rainfall, however, this is not unexpected as runoff will depend on the saturation 

levels of soils with some soils only contributing sediments when they are 

saturated, leading to a delay between the onset of heavier rainfall and the 

increase in sediment contribution. 

Percentage C and %N content of SS were highly correlated (r=0.96), suggesting 

a common source of both elements. The only notable difference between the two 

elements was in June 2020 when a relative increase in %N compared to OC 

content resulted in a relatively lower C/N ratio (Figure 20b). Fertiliser is applied 

to many arable/pasture fields near Site 1 in late March/April when the fields are 
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prepared, planted and fertilised (Figure 21a). Greater protection from erosion is 

afforded by the permanent vegetation found in woodland, permanent pasture or 

moorland compared to arable land which has more variable vegetation cover 

(Poesen, 2018). It is possible that the relatively bare fields present during the late 

spring/ early summer contributed to the relatively larger contribution from arable 

soil OC to SS OC in June 2020 and a consequently higher %N from the recent 

fertiliser application.  
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Figure 20 Site 1 a) Land use source proportions from arable, pasture, forest and moorland (error bars ±1 SD), c) Bulk C/N and n-

alkane ratio PAQ, where PAQ = (C23+C25)/(C23+C25+C29+C31) (Ficken et al., 2000) 
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Figure 21 a) Agronomic practices and locations (personal communication from Auchnerran Demonstration Farm (Game & Wildlife 

Conservation Trust, 2022)) and b) Variation in mean daily rainfall (mm) and mean stream discharge (m3 s-1) over each sampling period 

in the Loch Davan catchment. 
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Near the catchment outlet (Site 3), arable land use was the dominant source of 

SS OC throughout the monitoring period, with contributions varying between 

41±26% and 61±28%. The mean contribution of arable soils over the monitoring 

period (June 2019 to December 2020) was 46±7%. On average, the contributions 

from forest and pasture soils were similar (21±1% and 22±7% respectively) 

however, pasture showed relatively larger input of soil OC to SS OC in October 

2019, February and November 2020. Moorland contributed the least soil OC to 

SS OC (11±0.06%) with the exception of December 2019, when it contributed 

more than either forest or pasture soil OC (23±18%, cf. 20±20% and 16±13%). 

As at Site 1, the C/N ratio of SS at Site 3 (12.67±0.96; Table 16, Figure 22b) was 

very similar to that in arable and pasture soils, indicating a terrestrial origin of 

POC dominated by either arable or pasture soils. Percentage C and %N were 

highly correlated (r=0.90). A drop in the C/N ratio in June 2020 (Figure 22b) may 

be due to crop cultivation practices and nitrogen fertiliser applications known to 

take place in April/May in the north-west of the catchment (Figure 21a). However, 

no commensurate increase in arable soil contribution as at Site 1 was observed 

at this site. Alternatively, the relative increase in %N could be due to a slightly 

higher contribution of SOC from moorland soils (17% cf. mean 12%) in June 2020 

as moorland soils show a higher %N (mean 0.99±0.54%) relative to the other 

land uses (0.29% to 0.55%) (Table 16). However, no corresponding increase in 

%N was seen in SS in December 2019 which had an even higher SOC 

contribution from moorland soils (24%).  

The largest contribution at Site 3 from pasture soil to SS was observed in October 

2019 and November 2020 (Figure 22a). Grazed grassland fields and stream 

channel banks with evidence of soil poaching can be important sediment sources 

(Blake et al., 2018; Mills and Bathurst, 2015; Pulley et al., 2019). Cattle were 

present, and had access to the Burn, in the autumn/winter of 2019 and 2020 when 

a degree of poaching occurred (personal communication from Auchnerran 

Demonstration Farm (Game & Wildlife Conservation Trust, 2022)). It is possible 

that this process contributed to the increased sediment input from pasture land 

during these months. Cattle access to streams for watering is a common practise 
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in this region, contributing to sediment mobilization and causing bank erosion and 

poaching of near-channel soils (Stutter, Langan and Demars, 2007). 

Alternatively, Huisman et al. (2013) found that streams contained and transported 

“newer” sediments in the spring season (based on 7Be sediment dating), while 

relatively old sediments (165 to 318 days) were transported within the channel 

during autumn, suggesting that sediment resuspension could play a key role in 

stream channels during the latter part of the year. As streambed sediments in the 

Davan catchment were dominated by soil of pasture origin (Chapter 3), greater 

mobilisation of this sediment during autumn and winter months may have led to 

an increase in its contribution to SS at this time. 

In this catchment, effective management strategies for mitigating the on-site and 

off-site impacts of soil erosion could include restricting livestock direct access to 

the streams, reducing the duration of the grazing season or grazing animals in 

areas less prone to erosion to avoid poaching issues in pasture soils. Arable soils 

were the dominant contributor to SS OC, especially during periods where the 

fields are relatively bare and/or when fields are well connected to the streams. 

Reduction in arable contribution to SS OC could therefore be achieved by 

reducing connectivity through the use of stream buffer strips and permanent 

riparian vegetation which would have the added benefit of reducing livestock 

direct access to streams. 
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Figure 22 Site 3 a) Land use source proportions for arable, pasture, forest and moorland (error bars ±1 SD) and b) Bulk C/N and 

PAQ, where PAQ = (C23 + C25)/(C23+C25+C29+C31) (Ficken et al., 2000). 
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4.3.3 Defining source classifications for SS OCF: Site 2 

At Site 1, arable soils were the dominant contributors to SS OC over the monitoring 

period. Contributions from forest and pasture soils were similar and showed no 

substantial changes during the monitoring period and moorland provided the 

smallest contribution, except for April and November 2020. Drivers of change in 

SS source proportion included land preparation/planting and moorland heather 

burning in spring, and heavier prolonged rainfall in late autumn and winter leading 

to saturated soils, increased runoff and stream discharge and remobilisation of 

streambed sediment. However, these drivers were not evident at the catchment 

outlet (Site 3) showing a lack of consistency between drivers detectable at 

headwater and catchment scale. At the catchment scale, SS OC source 

attribution revealed that livestock poaching of riparian pasture soils may be 

driving increased soil OC input to streams in late autumn/winter. 

Table 18 Mean SS OC source contributions (%) for OCF carried out using a three 

source (forest, moorland and pasture) and four source (forest, moorland and 

pasture) classification. 

 Mean contribution (%) (± 1 SD) 

 3 sources 4 sources 

arable N/A 44±9 

forest 55±14 25±4 

moorland 14±8 8±5 

pasture 31±16 23±11 

 

In contrast to Site 1, the dominant source of SS OC using a three-source 

classification at Site 2 was forest with a mean contribution of 55±14% (Table 18; 

Figure 23b). This forest contribution was much greater than seen at sites 1 or 3. 

Chapter 2 revealed that extensive riparian forest in the Carminowe Creek 
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catchment, Cornwall, disconnected upslope eroded SOC and direct input of litter 

and leaves dominated OC input to the streams. As Site 2 in the Davan catchment 

is located within forest land it is possible similar processes led to a greater 

contribution of forest-derived OC to SS OC. However, direct input of less 

degraded litter and leaves to the streams can be evidenced by higher OEP (odd-

over-even predominance – a measure of organic matter degradation) and lower 

%C31 in SS relative to the terrestrial soils (Chapter 2). In this sub-catchment, 

although %C31 was lower than that in the terrestrial soils (20±3; terrestrial range 

31 to 52), OEP was within the range of terrestrial soils (4.89±1.39; terrestrial 

range 0.89 to 7.22) (Table 16), suggesting that there was unlikely to be a 

substantial input of less degraded litter and leaves to the streams at Davan Site 

2. Alternatively, there could be increased erosion of the riparian forest soil. If this 

was the case it would be expected that forest derived SOC input would increase 

following periods of high rainfall/stream discharge (October to December 2019, 

July 2020 and November 2020; Figure 21b). A relatively large contribution of 

forest derived SOC was observed in December 2019, however, no similar peak 

in forest SOC contribution was seen at the catchment outlet (Site 3). In addition, 

the largest forest SOC contribution was observed in June 2020 when the mean 

rainfall and stream discharge were both relatively low (Figure 21b). 

Using a four-source classification, the contribution of forest to SS OC was slightly 

greater than that seen at Sites 1 and 3 (mean 25±4%; Site 1 and 3 both 21%), 

likely due to its forest location. However, the dominant SS OC source was from 

arable land, with a minimum contribution of 31±25% in August 2019 and a peak 

of 60±24% in December 2019 (Figure 23a). This result is surprising given the 

relatively small area of land used for growing crops in this sub-catchment. 

However, at least two of the arable fields were located next to the Burn and were 

highly connected (Figure 17). These results would support other studies that have 

found a larger contribution from arable land use to river sediments than would be 

expected from the proportion of land area within a catchment (Wang et al., 2021). 

Similar to the forest SOC contributions to SS OC in the three-source 

classification, the peaks in arable contribution in the four-source classification 

could be seen in December 2019 and June 2020. Although the peak forest SOC 
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contribution in the three-source model in June 2020 was difficult to explain, the 

increase in arable contribution in the four-source classification at this time could 

be due to runoff from the relatively bare fields present during the late spring/early 

summer (as seen at Site 1). The high contribution of SOC from arable soil to SS 

OC seen in November 2019 could be due to increased runoff due to higher rainfall 

and substantially higher stream discharge at this time of year (Figure 21b).  

Since both peaks in arable contribution in the four-source classification can be 

explained by known OC drivers, and there were no satisfactory explanations for 

the corresponding peaks in forest contributions of the three-source model, it was 

concluded that the contribution of arable SOC to SS OC was substantial enough 

to make the four-source classification the best choice in this sub-catchment.  

The SS PAQ was lowest in February 2020 (Figure 23b), suggesting terrestrial 

input to SS OC may reach a maximum at these times in this sub-catchment. The 

C/N ratio (and OC content, %N) peaked in February 2020 (Figure 23b) when the 

maximum contribution of moorland SOC to SS OC was evident in both the three-

source and four-source classification models (Figure 23a and b). Unlike at Site 1, 

in the four-source classification model moorland contribution to SS OC in this 

sub-catchment was significantly positively correlated with OC content (r=0.71; 

p<0.05) and C/N (r=0.85; p<0.05). Similar to Site 1, if the relatively large rainfall 

seen in November 2019 saturated the moorland soils, there could have been an 

increased runoff from the steeply sloping moorlands in the winter period (Evans 

and Brazier, 2005). In this sub-catchment there was no evidence of increased 

contribution of SOC from moorland soils to SS OC due to burning of heather, as 

seen at Site 1 in April 2020. 
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Figure 23 Site 2 a) Land use source proportions for four source OCF (arable, 

pasture, forest and moorland) (error bars ±1 SD, b) Land use source proportions 

for three source OCF (pasture, forest and moorland) (error bars ±1 SD), and c) Bulk 

C/N and PAQ, where PAQ = (C23 + C25)/(C23+C25+C29+C31)(Ficken et al., 2000) 

4.4 Conclusions 

Organic C fingerprinting using n-alkanes is a valuable tool to estimate the relative 

contribution of different land use sources to sediment OC. However, there remain 

challenges in the application OCF including i) effects on tracer signatures due to 

sorting effect of particles by size during mobilization, transport and deposition and 

ii) ensuring all sources are included. The methods employed in this study firstly 

revealed SS rather than streambed sediment most closely approximated 

biomarker signatures in terrestrial soils, suggesting that differences in n-alkane 
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signatures between terrestrial soil sources and stream sediments were unlikely 

to be affected by the enrichment in finer particles. Secondly, drivers of variation 

in SS source proportions in a headwater catchment included land 

preparation/planting and moorland heather burning in spring, and heavier 

prolonged rainfall in late autumn and winter, leading to saturated soils and 

increased runoff. These drivers were not detected at the catchment scale, where 

livestock poaching of riparian pasture soils may be driving increased OC input to 

streams especially in late autumn/winter. In addition, the unique finding of this 

study, that PAQ in arable, forest and pasture soils was in the range normally 

associated with emergent macrophytes and mosses, has implications for 

research interpreting the origins of aquatic sediments using the expected ranges 

of PAQ in terrestrial and aquatic vegetation (Ankit et al., 2022) - especially in 

climates, such as that in Scotland, providing the ideal conditions for the growth of 

mosses in source soils. Finally, the land use sources selected for OCF were 

validated by identifying the small amount of arable land in a headwater sub-

catchment made a substantial enough input to stream OC to be included as a 

fingerprinting source. 

By revealing that n-alkanes signatures were unlikely to be affected by the 

enrichment in finer particles, and validating the choice of land use sources, these 

methods addressed two of the key challenges in OCF, and thereby increased 

confidence in the source apportionment in this catchment. 
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5 Using OC fingerprinting to evaluate the performance 

of erosion risk models in a Scottish catchment 

Abstract 

Tackling rural diffuse pollution, including surface runoff and soil erosion, is a key 

factor in river basin management to improve the status of waterbodies. 

Identification of hotspots, where a high risk of soil degradation could increase the 

risk of diffuse water pollution, are a key step in the implementation of Best 

Management Practices (BMP) so that land can be cultivated to maintain a healthy 

soil and environment and minimize the risk to watercourses. Hotspots can be 

identified by modelling catchment erosion using readily available empirical 

models such as the Revised Universal Soil Loss Equation (RUSLE) whose 

extensive application based on accessible data means that it can be easily 

applied in a wide variety of catchments. In addition, in Scotland, soil risk maps 

have been developed to help stakeholders plan agricultural activities to minimize 

the risk of erosion and manage their soils sustainably. The utility of these soil 

erosion and risk models in identifying hotspots, and guiding BMP, depends upon 

their accuracy and there is a need to assess model usefulness.  

This study was carried out in the catchment of Loch Davan, Aberdeenshire, 

Scotland. Organic carbon loss models were constructed to compare land use 

specific OC yields based on RUSLE (which calculates long-term average annual 

soil loss in tons ha−1 yr−1) and the Scottish erosion risk map (ERM) of Lilly and 

Baggaley, (2018) (which shows the risk of a bare soil being eroded by water). 

Existing OC fingerprinting (OCF) was used as a benchmark to determine which 

erosion model best identified the relative land use OC yields in streambed 

sediment.  

Although, the ERM best identified the relative land use OC yields in streambed 

sediment, the results of RUSLE were very similar suggesting that, in this 

catchment, RUSLE erosion rate estimates could be used to quantify the amount 

of soil eroded from the high-risk areas defined by the ERM. In addition, the 

method identified that, in this catchment, the RUSLE C-factor for moorland should 
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be set similar to that for forest rather than the value quoted in the literature. In 

future studies, similarly adjusting all C-factors to get land use source proportions 

closer to those of the OC fingerprinting benchmark could ultimately result in more 

accurate RUSLE erosion rate estimates. 

Keywords: terrestrial-aquatic fluxes, organic carbon loss modelling, sediment 

fingerprinting, erosion risk 

5.1 Introduction 

Soils provide many benefits for society including producing crops and timber, 

regulating water flow, and storing carbon. Although soil erosion is a natural 

process, modern land management techniques can lead to increased rates which 

impact crop yields, lead to a loss of soil carbon from the land, and pollute 

waterbodies (Lilly and Baggaley, 2014). Tackling rural diffuse pollution, including 

surface runoff and soil erosion, is a key factor in river basin management to 

improve the status of waterbodies. Pathways of pollution from agriculture to 

freshwater are complex and, often, poorly understood. Hotspots can contribute 

greater than average amounts of pollutants due to the combined effect soil 

properties and land management (Cloy et al., 2021). Identification of these 

hotspots, where a high risk of soil degradation could increase the risk of diffuse 

water pollution, are a key step in the implementation of Best Management 

Practices (BMP) so that land can be cultivated to maintain a healthy soil and 

environment and minimize the risk to watercourses (Baggaley et al., 2020). 

Hotspots can be identified by modelling catchment erosion. Erosion models 

include readily available empirical models such as the Revised Universal Soil 

Loss Equation (RUSLE) (Desmet and Govers, 1996; Renard et al., 1997; 

Wischmeier and Smith, 1978) whose extensive application based on accessible 

data means that it can be easily applied in a wide variety of catchments (Alewell 

et al., 2019; ESDAC, 2014, 2015a; Panagos et al., 2014, 2015a). In Scotland, 

new and improved tools have been developed to represent the specific soil 

conditions in this region and to predict how soils respond to land use and 

management pressures and soil risk maps have been made available to help 

stakeholders plan agricultural activities to minimize the risk of erosion and 
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manage their soils sustainably (Baggaley et al., 2020; Lilly and Baggaley, 2018). 

However, the utility of soil erosion and risk models in identifying hotspots and 

guiding BMP depends upon their accuracy (Batista et al., 2019) and needs to be 

evaluated.  

The output of erosion models such as RUSLE have previously been assessed 

using sediment yield data (Borrelli et al., 2014; Sherriff et al., 2019). However, 

sediment yield at the outlet of a catchment reflects a complex suite of geomorphic 

processes. Individual models estimate erosion risk based on a specific process 

or processes (e.g., RUSLE-based models estimate soil loss due to inter-rill and 

rill erosion) whereas sediment yield will reflect all geomorphological processes 

active in the catchment (e.g., gullying, sediment deposition/remobilisation, tillage 

erosion, bank and channel erosion) (Borrelli et al., 2018a). Consequently, 

upslope soil erosion is not always associated with sediment yield if other 

processes (e.g. sediment storage) buffer the system (Boardman, 2001; Owens, 

2020). Batista et al. (2019) refuted the notion that soil erosion models can be 

validated and instead emphasized the necessity of defining “fit-for-purpose tests” 

that allow for an assessment of model usefulness. There is, therefore a need to 

assess model usefulness using alternative approaches and one direct method of 

assessing sediment sources in a catchment is sediment source fingerprinting 

(Mukundan et al., 2012).  

Fingerprinting methods using taxonomic /plant-specific tracers (n-alkanes) have 

been successfully applied to distinguish sediment sources originating from 

different land uses (Galoski et al., 2019; Glendell et al., 2018; Liu et al., 2021a; 

Zhang et al., 2017) and are an essential tool to quantify the relative contribution 

of different land use sources to organic matter load in waterways (Alewell et al., 

2016; Chen et al., 2017; Glendell et al., 2018; Hancock and Revill, 2013; Liu et 

al., 2021b; Walling, Owens and Leeks, 1999). In Chapter 3, a unique combination 

of n-alkanes and short-chain neutral lipid fatty acids was used to estimate the 

proportion of streambed OC originating from different land uses in the catchment 

of Loch Davan, Aberdeenshire, NE Scotland. These OC fingerprinting (OCF) 

proportions could be considered as a “land use -specific” relative OC yield (Blake 
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et al., 2012) which could then be compared with the estimates of erosion risk 

models. When used as a benchmark, these OCF estimates could be an 

invaluable tool to assess the suitability of one erosion model over another for a 

given catchment. The closer the estimates of the erosion model to those of the 

OCF, the more confidence stakeholders could have that the processes 

represented by the erosion model and the areas it identifies as high risk are those 

that should be targeted for the implementation of BMP. 

The erosion risk map developed by Lilly and Baggaley, (2018) (ERM) covers a 

large proportion of the Scottish mainland and shows the inherent risk of bare soil 

being eroded under intense or prolonged rainfall. It was hypothesised that OC 

erosion estimates made using the ERM, specifically developed for the wide range 

of mineral and organic soils and varied topography in Scotland, should be more 

accurate than those based on the widely used RUSLE model which was 

developed for use in agricultural environments with primarily mineral soils and 

moderate slopes (Wischmeier and Smith, 1978). To this end, in this study in the 

catchment of Loch Davan, land use specific OC yields from RUSLE and ERM are 

compared using the existing OCF as a benchmark to determine which erosion 

model best identifies the relative land use OC yields in streambed sediment and, 

therefore, the soil OC degradation hotspots to be targeted for BMP.  

5.2 Material and methods 

5.2.1 Study Site and existing OC fingerprinting data 

Loch Davan is a shallow (mean depth 1.2 m) lake located within the Muir of Dinnet 

National Nature Reserve (NNR) and its catchment (ca. 34 km2) has a mean 

annual precipitation of 780 mm and average temperature varying between 3.5°C 

and 12.17°C (Met Office, 2021b). The lake area of Loch Davan has been 

significantly reduced over the last century, likely due to inputs of nutrient rich 

sediment resulting from land use intensification (Addy, Ghimire and Cooksley, 

2012) and between 2007 and 2018, the loch and its main feeder stream, Logie 

Burn, were classified as having poor to moderate ecological status (SEPA, 2021). 

The catchment drains a variety of land uses (moorland (29%), forest (22%), 

arable (10%) and pasture (31%) (Figure 24b)) and soil types (mineral podzols 
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(49%), brown soils (22%), alluvial soils (11%), peat or peaty gleys/podzols (5%) 

(Figure 24d)). Areas of steepest slope (13-37 degrees: Figure 24c) are found 

under moorland and forest land cover to the west and north-west of the catchment 

with arable and pasture land cover dominating the relatively flat (typically < 3 

degree slope) lowlands.  
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Figure 24: Loch Davan study catchment. a) Study catchment location, b) Land use of the Loch Davan catchment (34 km2), suspended 

and streambed sediment sampling locations (red dots: Sites 1, 2 and 3) and terrestrial soil sampling locations (black crosses),based 

upon Corine land cover 2012 for the UK, Jersey and Guernsey (Cole et al., 2015), c) catchment slope (degrees) derived from OS Terrain 

5  © Crown copyright and database rights  2021 Ordnance Survey (100025252)(Ordnance Survey, 2021),  d) Catchment soils based on 

“1:25,000 Hutton Soils Data” copyright and database right The James Hutton Institute (2018). Used with the permission of The James 

Hutton Institute. All rights reserved. 
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5.2.2 Pre-existing data 

The following existing data were used in this study (collection and analysis 

described in detail in Chapters 3 and 4 respectively): 

1. Proportions of land use specific OC sources in streambed sediments at 

Sites 1, 2 and 3 (locations shown in Figure 24b) (to be used as OCF 

benchmark) 

2. OC content (%OC) in soil samples (locations shown in Figure 24b) 

5.2.3 Land use specific OC yield 

The ERM (Lilly and Baggaley, 2018) (Figure 25) can be used to predict the 

relative contributions of sediment from each land use in terms of their risk of 

erosion, however the predictions are based on the inherent risk of bare soil and 

no account is taken of the different likelihood that soil will be bare due to 

differences in vegetation cover and land management. Therefore, for the 

purposes of this research the ERM was adapted to include the same “land use 

and management factor” as used within RUSLE to estimate the amount of bare 

soil coverage. 

RUSLE utilises a dimensionless cover-management factor (C), defined by the 

land use and management, when calculating the long-term average annual soil 

loss according to the equation: 

𝑆𝐿 = 𝑅. 𝐾. 𝐿. 𝑆. 𝐶. 𝑃 (5-1) 

where SL is the mean soil loss (t ha−1 yr−1), R is the rainfall intensity factor (MJ 

mm ha−1 h−1 yr−1), K is the soil erodibility factor (t ha h ha−1 MJ−1 mm−1), S and L 

are the slope and slope-length factors, P is the dimensionless conservation 

support practice factor. A C factor map with a single C factor for each land use 

was created from the Corine land cover 2012 for the UK, Jersey and Guernsey 

(Cole et al., 2015) and the C-factor data of Europe described by (ESDAC, 2015a; 

Panagos et al., 2015b) in ESRI ArcMap (V10.6) (ESRI, 2017). This was done by 

assigning the values given in the table of C-factor per land-cover type and country 

(Table 19) to the respective land use areas in the Corine land cover map. The 
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likely variation in these land use values (Table 19: “Range”) were based on the 

most cited studies covering different countries in Europe reported by Panagos et 

al. (2015b). The remaining RUSLE factors were calculated as follows: The 

RUSLE R and K factors were derived respectively from maps generated and 

described by (ESDAC, 2015b; Panagos et al., 2015a) and (ESDAC, 2014; 

Panagos et al., 2014). The R and K factor maps were generated in ESRI ArcMap 

(V10.6) (ESRI, 2017) by interpolating a raster surface using kriging from points 

defined by the centroid of each cell of the original 500x500m resolution R and K 

maps. The conservation support practice factor (P) was not considered in this 

study and was set to 1. The RUSLE LS factors were generated from the DEM in 

R (version 3.6.3) (R Core Team, 2020) using packages “raster” (Hijmans, 2020) 

and “RSAGA” (Brenning, Becker and Bangs, 2018) using the method described 

by Desmet and Govers, (1996). The RUSLE factor maps were combined to 

produce RUSLE soil loss estimates within R.  

Table 19: Range and mean of RUSLE C-factors used for calculation of average 

annual soil loss within the Loch Davan catchment (adapted from Panagos et al. 

(2015b: Table 2)) 

 C-factor 

Land Use Range Mean 

Arable 0.07-0.35 0.21 

Pasture 0.05-0.15 0.1 

Forest 0.0001-0.003 0.0016 

Moorland 0.01-0.1 0.055 
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Figure 25: Erosion Risk Map of Loch Davan catchment adapted from Lilly, A. and Baggaley N.J. 2018. Soil erosion risk map of 

Scotland (partial cover). James Hutton Institute, Aberdeen.    
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Both RUSLE and ERM model on site soil erosion risk, not OC sediment yield 

(Alewell et al., 2019; Lilly and Baggaley, 2018; Wischmeier and Smith, 1978). 

Therefore, for comparison with the estimates of OCF these models were 

combined with i) an estimate of potential connectivity between areas of upslope 

erosion and streams and ii) the percentage of OC in soils.   

5.2.3.1 Estimating connectivity between areas of upslope erosion and 

streams 

To define the connectivity between upslope sediment sources and streams CI 

was calculated using ESRI ArcMap (V10.6) (ESRI, 2017) using the method of 

Cavalli et al. (2013) and the catchment DEM. This approach was selected as it 

requires a small number of parameters, uses widely available data, and is 

spatially explicit. For use as a weighting with RUSLE, CI was re-scaled from 0 to 

1. The CI was classified into “high”, “medium” and “low” connectivity (Hooke, 

Souza and Marchamalo, 2021) using a quantile classification in ESRI ArcMap 

(V10.6).  

5.2.3.2 Soil OC content (%) 

The OC% of each soil sample was interpolated using universal kriging 

(sometimes called external drift kriging) implemented in R (version 3.6.3) (R Core 

Team, 2020) using packages “raster” (Hijmans, 2020), “sp” (Pebesma and 

Bivand, 2005) and “gstat” (Pebesma, 2004). Seven land-use and topographic 

environmental predictors were considered as covariates: land-use (pasture, 

woodland, arable and moorland), slope, curvature, accumulated flow, aspect, 

topographic wetness index (TWI) (Mayer et al., 2019) and soil type. Climate data 

were not considered as predictors as they were not expected to vary significantly 

across the catchment. The OC (%) values and covariates were first checked for 

normality using the Kolmogorov–Smirnov (K–S) test. OC (%) was then log-

transformed to improve normal distribution for regression modelling. A back-

transformation of OC (%) was carried out following prediction. The best model 

was assessed on the basis of the smallest Akaike Information Criterion (AIC) and 

highest adjusted R2 (Meersmans et al., 2012). Covariates that were significantly 

(p < 0.05) associated with OC (%) were retained and the best model was selected 
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in a forward stepwise regression. A leave-one-out cross-validation routine was 

implemented, and the root mean square error (RMSE) and R2 of the model 

performance calculated using the differences between the N “observed” values 

and model predictions. 

5.2.3.3 Carbon Loss Models (CLM) 

Four CLM were constructed in this study which will be referred to as RUSLE, 

RUSLE_ADJ, ERM_A, ERM_B and ERM_C and are described below (Figure 26).  

 

Figure 26: Structure of Carbon Loss Models (CLM) "RUSLE", RUSLE_ADJ”, 

"ERM_A", "ERM_B" and "ERM_C" 

5.2.3.3.1 RUSLE 

A CLM was constructed as follows: 

𝐶𝐿𝑀 𝑅𝑈𝑆𝐿𝐸 = 𝑆𝑂𝐶% × 𝑆𝐿 × 𝐶𝐼 (5-2) 

where SOC% is a map of the soil organic carbon content (%), SL is a soil loss 

map constructed using RUSLE and CI (re-scaled from 0 to 1) is a map of 

connectivity index as defined by Borselli et al., (2008) and Cavalli et al., (2013). 
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The value of C-factor within RUSLE model can be used to account for the 

differences in erosion potential between land uses and it was important to 

evaluate the magnitude of the errors associated with this factor as well as that 

introduced by the modelling of SOC content (%SOC) using a Monte Carlo 

analysis with 3,000 iterations. The RUSLE C factor was sampled from a uniform 

distribution defined by the minimum and maximum values found in the literature 

(Table 19) and %SOC content was sampled from a uniform distribution defined 

by +/-1 RMSE from the leave-one-out cross-validation of the %SOC content map. 

At each iteration the proportions of SOC loss from arable, forest, moorland and 

pasture land uses were calculated, generating a probability distribution from 

which the mean land use proportions were derived.  

5.2.3.3.2 RUSLE_ADJ 

The RUSLE C-factor (Table 19) used to account for vegetative cover and land 

management/grazing was around 35 times greater for moorland land use than it 

was for forest; implying less soil cover and/or greater erosional impact from land 

management/grazing for the moorland compared to forest land. In another mixed 

land use sub-catchment Hirave et al., (2020a) found that both forest and 

moorland contributed marginally to suspended stream sediments (<2%) which 

they attributed to well vegetated ground cover resulting in reduced soil erodibility. 

In addition, in their study to identify soil erosion rates in Scotland, Rickson et al., 

(2019) defined erosion rates for forest/woodland to be equal to those of wildscape 

(semi-natural landscape). It was hypothesised that the level of soil cover and 

impact of land management/grazing in moorland could be like that in forest land, 

and therefore, for this CLM (RUSLE_ADJ), the C-factor for moorland was set 

equal to that for forest. 

5.2.3.3.3 ERM_A 

Areas with both high erosion risk (HER) and high connectivity (HC) to the streams 

were identified in ESRI ArcMap (V10.6) (ESRI, 2017) by the overlap of areas 

designated “high” risk in the ERM (Lilly and Baggaley, 2018) and areas classified 

as “high” connectivity in the CI map. The proportion of these areas within each of 

the four land uses (arable, forest, moorland and pasture) was then calculated. In 
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a Monte Carlo analysis with 3,000 iterations the land use proportions were 

multiplied by soil %OC content sampled from a uniform distribution defined by the 

mean soil %OC for each land use +/-1 SD generating a probability distribution 

from which the mean land use proportions were derived.  

5.2.3.3.4 ERM_B 

The ERM predictions are based on the inherent soil erosion risk from bare soil 

and the land use proportions of soil OC input to the stream estimated by ERM_A 

do not take into account the vegetation cover and the likelihood that soil will be 

left bare. Hence, in ERM_B the proportions of soil OC input to the stream 

estimated by ERM_A were multiplied by the RUSLE C-factor (Figure 26, Table 

19) to account for the likelihood that soil will be left bare due to differences in 

vegetation cover and land management practices. 

5.2.3.3.5 ERM_C 

Similar to CLM RUSLE_ADJ, for this CLM (ERM_C), the land use proportions of 

soil OC input to the stream found using ERM_A were multiplied by the RUSLE 

C-factor with the factor for moorland set equal to that for forest.  

5.2.3.3.6 Comparing medium and high erosion risk levels 

The three CLM, ERM_A, ERM_B and ERM_C, described above were applied to 

areas with high erosion risk and high connectivity to the streams. In addition, to 

assess if the SOC land use proportion defined by the OCF benchmark would be 

more closely matched by erosion rates from areas defined as “high” or “medium”, 

a second set of CLM was constructed. In the second set of CLM, areas were 

identified in ESRI ArcMap (V10.6) (ESRI, 2017) by the overlap of areas 

designated “high” and “medium” risk in the ERM, and areas classified as “high” 

connectivity in the CI map. The proportion of these areas within each of the four 

land uses (arable, forest, moorland and pasture) were then calculated and the 

three CLM, ERM_A, ERM_B and ERM_C, were constructed as described above. 
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5.2.4 Comparison CLM and OC fingerprinting land use specific OC 

yield 

The land use specific OC yields of each CLM were compared using the existing 

OCF as a benchmark to determine which model best identified the relative OC 

yield in streambed sediments. 

For each CLM the proportions of soil OC yield (loss) from arable, forest, moorland 

and pasture land uses were calculated. The absolute difference between these 

land use proportions and those estimated using OCF were then calculated. 

The model that best identified the relative OC yield in streambed sediments was 

determined by finding the CLM that showed the lowest mean absolute difference 

for all land uses. 

5.3 Results 

5.3.1 Soil OC distribution 

Interpolation of OC% using regression kriging found land use to be the best 

predictor of the quantity and spatial variability of soil OC% (R2=0.46, RMSE=7.86: 

Table 20). The relationships between soil OC% and other covariates were much 

weaker (slope (R2=0.19), aspect (R2=0.1) and TWI (R2=0.09)) and these 

covariates were not significant when modelled together with land use. No 

significant relationships with soil OC% were found for the other covariates (soil 

type, curvature and accumulated flow). These results support the assertion of 

Wiesmeier et al., (2019) that terrain attributes such as slope, aspect and 

curvature, although influential for soil OC content at small spatial scales (<100 

m), are less relevant across larger landscapes, where soil OC is averaged across 

soil properties so that other factors (such as land use) become dominant. 

Soils under moorland supported the largest soil OC% (21.4±13.9% (± 1 SD)) and 

%OC of forest soil was also relatively high (12.3±8.0). The similarity of the OC% 

of pasture (3.7±0.9) and arable soils (3.8±1.1) suggests that these land uses have 

similar levels of OC inputs and outputs and that pastures in this catchment may 

be temporary (in agricultural rotation) rather than permanent pastures (Martin et 

al., 2011; Meersmans et al., 2008). 
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Table 20: In the context of the linear regression relationship, the variables “forest”, 

“moorland” and “pasture” are dummy variables which are equal to one when that 

land use is present and zero otherwise. 

Regression relationship RMSE R2 Mean total OC 

(%) 

OC% = exp(1.3010 + 1.0513 (forest) + 1.5317 (moorland) – 

0.0451 (pasture)) 

7.86 0.46 10.04 

 

5.3.2 Comparison of land use specific OC yield using CLM and OCF  

Land use specific OC yields from the eight CLM (RUSLE, RUSLE_ADJ and three 

ERM (ERM_A, ERM_B and ERM_C at two different erosion risk levels; Section 

5.2.3.3) were compared using OCF as a benchmark to determine which model 

most closely approximated the relative OC yield in streambed sediments. 

In this study catchment both RUSLE and the ERM identified areas at highest risk 

of erosion on steeply sloping (>8 degrees: Figure 24c) land in the north and west 

of the catchment (ERM_A Figure 27d; Figure 28d; Figure 29d) dominated by 

moorland. It was therefore unsurprising that most of CLM constructed using these 

models attributed the majority of eroded soil OC reaching the streams  to 

moorland (48-96% Figure 27c-e; 68-100% Figure 28c-e; 34-93% Figure 29c-e), 

which contrasts with the OCF benchmark that estimated pasture as the dominant 

source of OC (68-80%) and a contribution of only 3-6% from moorland soils to 

streambed OC at all sites (Figure 27a; Figure 28a; Figure 29a).  

5.3.2.1 CLM RUSLE and RUSLE_ADJ 

At all sites CLM RUSLE attributed the majority of stream OC to moorland (85-

98%) with correspondingly small amounts from other land uses (arable (4-5%), 

pasture (2-8%) and forest (1-8%)) (Figure 27b; Figure 28b; Figure 29b). At Site 2 

CLM RUSLE_ADJ attributed the majority of stream OC to moorland (76%) with 

the remaining 24% attributed to pasture. At Sites 1 and 3 CLM RUSLE_ADJ 

attributed stream OC much more equally between moorland (36%), arable (24-

26%) and pasture (33-34%) with only small amounts from forest land (4-8%). 
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CLM RUSLE_ADJ provided a closer match to the OCF benchmark than CLM 

RUSLE (mean absolute difference to OCF benchmark Site 1=20 cf. 42, Site 

2=35cf. 46 and Site 3=20 cf. 41; Figure 30).  

5.3.2.2 CLM ERM_A  

For CLM ERM_A no account was taken of the likelihood that soil would be bare 

(exposed to erosion) due to differences in vegetation cover and land 

management (i.e. no C-factor; Section 5.2.3.3). Using only areas at “high” erosion 

risk (Figure 27d; Figure 28d; Figure 29d) CLM ERM_A attributed the majority of 

stream OC to moorland (Site 1=56%, Site 2=100%, Site 3=73%) with the 

remainder attributed to forest. Using areas at “high and medium” erosion risk 

(Figure 27e; Figure 28e; Figure 29e) CLM ERM_A again attributed the majority 

of stream OC to moorland (Site 1=61%, Site 2=99%, Site 3=72%) with very small 

amounts attributed to arable (1-2%) and pasture (1-6%) and the remainder 

attributed to forest. Neither of these CLM provided a close approximation to the 

OCF benchmark, with mean absolute differences to OCF benchmark of Site 

1=42, Site 2=47 and Site 3=44 for “high risk” and Site 1=40, Site 2=47 and Site 

3=36 for “high and medium risk”.  

5.3.2.3 CLM ERM_B 

For CLM ERM_B the likelihood that soil would be bare (exposed to erosion) due 

to differences in vegetation cover and land management was characterised using 

the RUSLE C-factor (Section 5.2.3.3). Using only areas at “high” erosion risk 

(Figure 27d; Figure 28d; Figure 29d) CLM ERM_B attributed the majority of 

stream OC to moorland (Site 1=96%, Site 2=100%, Site 3=93%) with very small 

amounts attributed to arable (3%), pasture (1-3%) and forest (1-3%). Using areas 

at “high and medium” erosion risk (Figure 27e; Figure 28e; Figure 29e) CLM 

ERM_B again attributed the majority of stream OC to moorland (Site 1=83%, Site 

2=99%, Site 3=77%) with very small amounts attributed to arable (5-9%) and 

pasture (1-6%) and forest (1-2%). Neither of these CLM provided a close 

approximation to the OCF benchmark with mean absolute differences to OCF 

benchmark of Site 1=46, Site 2=47 and Site 3=45 for “high risk” and Site 1=40, 

Site 2=47 and Site 3=36 for “high and medium risk”. 
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5.3.2.4 CLM ERM_C 

For CLM ERM_C the likelihood that soil would be bare (exposed to erosion) due 

to differences in vegetation cover and land management was characterised using 

the RUSLE_ADJ C-factor (moorland = forest; Section 5.2.3.3). Using only areas 

at “high” erosion risk (Figure 27d; Figure 28d; Figure 29d) CLM ERM_C still 

attributed the majority of stream OC to moorland (Site 1=48%, Site 2=100%, Site 

3=34%) but with larger amounts attributed to arable (2-25%), pasture (12-29%) 

and forest (13-39%) at Sites 1 and 3. Using areas at “high and medium” erosion 

risk (Figure 27e; Figure 28e; Figure 29e) CLM ERM_C attributed the majority of 

stream OC to moorland only at Site 2 (68%). At Site 1 and Site 3 pasture was the 

dominant source (52% at each site) with lesser amounts attributed to arable (24% 

and 34% respectively), moorland (16% and 11% respectively) and forest (9% and 

3% respectively). These CLM provided a closer approximation to the OCF 

benchmark than either ERM_A or ERM_B, with mean absolute differences to 

OCF benchmark at Site 1=35, Site 2=27 and Site 3=21 for “high risk” and Site 

1=10, Site 2=31 and Site 3=12 for “high and medium risk”. 
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Figure 27: Source Contribution (%) at Site 1 streambed sediments estimated by a) Sediment fingerprinting, b) Land Cover and c) 

CLM RUSLE and CLM_RUSLE_ADJ, d) CLM ERM_A, ERM_B and ERM_C erosion risk level “High” and e) CLM ERM_A, ERM_B 

and ERM_C erosion risk level “High or Medium” 
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Figure 28: Source Contribution (%) at Site 2 streambed sediments estimated by a) Sediment fingerprinting, b) Land Cover and c) 

CLM RUSLE and CLM_RUSLE_ADJ, d) CLM ERM_A, ERM_B and ERM_C erosion risk level “High” and e) CLM ERM_A, ERM_B 

and ERM_C erosion risk level “High or Medium” 
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Figure 29: Source Contribution (%) at Site 3 streambed sediments estimated by a) Sediment fingerprinting, b) Land Cover and c) 

CLM RUSLE and CLM_RUSLE_ADJ, d) CLM ERM_A, ERM_B and ERM_C erosion risk level “High” and e) CLM ERM_A, ERM_B 

and ERM_C erosion risk level “High or Medium” 
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Figure 30: Mean absolute difference between OC land use source proportions estimated by CLM and OCF for streambed sediment 

sites 1, 2 and 3 
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5.3.2.5 Comparison between CLM RUSLE and CLM ERM 

CLM ERM_C (high and medium risk) showed the lowest mean absolute 

difference to OCF benchmark for all land uses. This CLM was therefore selected 

to characterise the areas of Loch Davan catchment most likely to contribute OC 

to the feeder streams (Figure 31). 

Using CLM with the RUSLE C-factor for moorland equal to that for forest (CLM 

RUSLE_ADJ and CLM_ERM_C) lowered the mean absolute difference between 

CLM and the OCF benchmark (e.g. Site 1 RUSLE=42, RUSLE_ADJ=20 and 

ERM_B=40, ERM_C=10 (high and medium erosion risk)). These results suggest 

that, as hypothesised, erosion from forest and moorland were more similar than 

the order of magnitude difference in C-factor reported by Panagos et al., (2015b) 

would suggest. This is likely due to the mostly mature heather, moorland 

vegetation providing cover similar to a woodland under-storey. CLM ERM_B land 

use source proportions were similar to those of CLM RUSLE (mean absolute 

difference <5 for all sites; Figure 32) and CLM ERM_C land use source 

proportions were similar to those of CLM RUSLE_ADJ (mean absolute difference 

10, 4 and 13 for Sites 1, 2 and 3 respectively; Figure 32). Therefore, although it 

was not originally formulated for use on steep slopes and more organic soils such 

as those found in this Scottish catchment CLM RUSLE performed almost as well 

as the CLM ERM in this study once the C-factor had been calibrated using the 

OCF benchmark. Using RUSLE_ADJ mean soil erosion was estimated to be 0.83 

t ha-1 yr-1 for arable land, 0.63 t ha-1 yr-1 for pasture land, 0.02 t ha-1 yr-1 for forest 

land and 0.04 t ha-1 yr-1 moorland. Areas identified as “high” risk and “medium” 

risk by the ERM had mean soil erosion estimates of 1.51 and 0.88 t ha-1 yr-1 

respectively for arable land, 1.26 and 0.64 t ha-1 yr-1 respectively for pasture land, 

0.04 and 0.03 t ha-1 yr-1 respectively for forest land and 0.04 and 0.04 t ha-1 yr-1 

respectively for moorland (Table 21).The areas defined as high risk by the ERM 

showed a higher mean erosion rate than those defined as medium risk, except 

moorland which had the same erosion rate in both areas. 
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Figure 31: Areas most likely to provide OC to the Logie Burn and its major 

tributaries. These are areas with "High or Medium" erosion risk (Lilly and 

Baggaley, 2018) and high connectivity to the streams within arable or pasture land. 

Table 21 Estimated rates of soil erosion (t ha-1 yr-1) using RUSLE_ADJ for the whole 

Loch Davan catchment, and areas defined as “High” and “Medium” risk by ERM  

 Mean soil erosion in t ha-1 yr-1 

 

Whole 
catchment 

Areas defined as  

“High” risk by ERM 
Areas defined as 
“Medium” risk by ERM 

Arable 0.83 1.51 0.88 

Pasture 0.63 1.26 0.64 

Forest 0.02 0.04 0.03 

Moorland 0.04 0.04 0.04 
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Figure 32 Mean absolute difference between OC land use source proportions 

estimated by CLM RUSLE and CLM ERM_B, and CLM RUSLE_ADJ and CLM 

ERM_C for streambed sediment sites 1, 2 and 3 

5.4 Discussion 

The addition of the land use and management factor (RUSLE C-factor) 

substantially increased the estimated contribution from moorland from 56% to 

96% (Figure 27e ERM_A compared to ERM_B) and 61% to 85% (Figure 27f 

ERM_A compared to ERM_B) at Site 1, and 73% to 93% (Figure 28e ERM_A 

compared to ERM_B) and 61% to 85% (Figure 28f ERM_A compared to ERM_B) 

at Site 3 due to the following reasons. Firstly, although the C-factor for arable land 

is much higher than those for either moorland or forest due to the increased 

likelihood that arable land will have bare soil during tillage, crop planting and crop 

establishment, the amount of arable land at high soil erosion risk was so small 

that the C-factor made little difference to the estimated OC source proportions 

from arable land. Secondly, the C-factor for moorland sourced from the literature 

(mean 0.055: Table 19) was an order of magnitude larger than that for forest 



 

179 

(mean 0.0016: Table 19), greatly reducing the estimated contribution from forest 

land and commensurately increasing that from moorland. This large difference in 

C-factor between forest and moorland is also evident in the negligible amount of 

erosion predicted from forest land (1%) and the 88% contribution from moorland 

estimated by CLM RUSLE (Figure 27d). Panagos et al., (2015b), from whose 

European scale study the C-factors were sourced, describe moorland as 

“vegetation with low and closed cover, dominated by bushes, shrubs and 

herbaceous plants”. Although a similar low and closed cover was found on the 

moorland for this catchment, it was hypothesised that the level of soil cover and 

impact of land management/grazing for the moorland should be similar to that for 

forest land and not have ca.35 times greater likelihood of erosion as is suggested 

by the relative sizes of the C-factors presented by Panagos et al., (2015b).  

The results of this study showed that RUSLE performed almost as well as the 

ERM in comparison to the OCF benchmark. When tracing pathways of diffuse 

pollution from agriculture to the waterways there remains uncertainty in erosion 

rates for soil and land use combinations (Cloy et al., 2021). Erosion risk maps 

such as the ERM can identify areas where a high risk of soil degradation could 

increase the risk of diffuse water pollution (Baggaley et al., 2020), however they 

do not provide quantitative estimates of soil or OC erosion rates. The results of 

this study suggest that, for this catchment, RUSLE erosion rate estimates (t ha−1 

yr−1) could be used to quantify the amount of soil eroded from the high and 

medium risk areas defined by the ERM. The estimates of RUSLE_ADJ soil 

erosion for this catchment are less than the soil erosion rates per land use defined 

by Rickson et al., (2019) in their study to identify soil erosion rates in Scotland 

(mineral soils: arable 2.4 to 4.3 t ha-1 yr-1, grasslands 2.4 to 4.3 t ha-1 yr-1, forest 

0.6 t ha-1 yr-1 and wildscape (semi-natural landscape) 0.6 t ha-1 yr-1; organic soils: 

arable 5 to 10 t ha-1 yr-1, grasslands 0.39 to 1 t ha-1 yr-1, forest 0.13 t ha-1 yr-1 and 

wildscape 0.13 t ha-1 yr-1). As the estimates of Rickson et al., (2019) were based 

on empirical observations and a literature review it is possible that those 

estimates came from more dramatic erosion events than those occurring in this 

catchment. 
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CLM ERM_C (high and medium erosion risk) showed the lowest mean absolute 

difference with the OCF benchmark for all land uses and was selected to 

characterise the areas of Loch Davan catchment most likely to contribute OC to 

the feeder streams. However, at Site 2 there was still a large discrepancy 

between the contribution from pasture and moorland estimated by the OCF (80% 

and 6% respectively) and that attributed by the CLM ERM_C (32% and 68% 

respectively). This is due in part to the negligible contribution predicted from forest 

from all CLMs in this sub-catchment, compared to the 14% attributed to forest by 

OCF. Unlike, Sites 1 and 3, Site 2 is located in an area of forest. Considering the 

low likelihood of soil erosion predicted by all the erosion risk models in this study 

it is possible that more direct input of forest leaves and litter contributed the 

majority of the forest OC to the stream at Site 2 rather than upslope eroded forest 

soil OC (Chapter 2). In addition, in chapter 4 it was found that poaching by cattle 

of the near-stream channel areas (especially during the winter months) could 

have contributed to sediment mobilization from pasture lands in this catchment. 

This more direct soil erosion source would not be present in the estimates of any 

of the CLM and may account for the larger proportion of pasture OC predicted by 

the OCF in contrast to the CLM at all sites. 

The amount of eroded soil OC cannot be reliably equated with stream OC unless 

sites of intermediate storage or “buffers” are also considered and estimates of 

other OC sources e.g., more direct input of organic matter (litter/leaves/near-

channel poaching by livestock) can be made (Chapter 2). Although it is virtually 

impossible to imagine a river catchment where upslope eroded soil OC is the only 

contributor to stream sediment OC, the better the OC sources can be defined 

when carrying out OCF the more valuable it becomes as a tool to validate the 

output of erosion risk models. In this study, the method identified that the RUSLE 

C-factor for moorland should be set similar to that for forest rather than the value 

quoted in the literature (Panagos et al., 2015b). In future studies, estimates of the 

C-factor for all land uses could also be adjusted within the Monte Carlo analysis 

to calibrate the model and obtain  land use source proportions more closely 

approximating to those found by the OCF benchmark, ultimately resulting in more 

accurate erosion rate estimates. It is possible that a carbon loss model calibrated 
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in this way could then be applied with better confidence in similar catchments in 

the same geographical area where OCF has not been done, aiding catchment 

managers to map areas of high erosion risk and quantify OC losses.  

5.5 Conclusions 

In this study, it was hypothesised that OC erosion estimates made using the 

ERM, specifically developed for the wide range of mineral and organic soils and 

varied topography in Scotland, should be more accurate than those based on the 

RUSLE model which was developed for use in agricultural environments with 

primarily mineral soils and moderate slopes. To this end, land use specific OC 

yields from CLM constructed using RUSLE and ERM were compared using the 

existing OCF as a benchmark to determine which erosion model most closely 

approximated the relative land use OC yields in streambed sediment and, 

therefore, the soil OC degradation hotspots to be targeted for BMP. Although, the 

ERM most closely approximated the relative land use OC yields in streambed 

sediment based on mean absolute differences to the OCF benchmark, the results 

of RUSLE were very similar, suggesting that, in this catchment, RUSLE erosion 

rate estimates could be used to quantify the amount of soil eroded from the high-

risk areas identified by the ERM. In addition, the method identified that the 

RUSLE C-factor for moorland should be set similar to that for forest rather than 

the value quoted in the literature (Panagos et al., 2015b) suggesting that in future 

studies, all land use C-factors could be adjusted similarly to get land use source 

proportions closer to those of the OCF benchmark and ultimately result in more 

accurate RUSLE erosion rate estimates. 
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6 Discussion 

“…erosion models must be tested: if we fail to understand how far erosion 

models deviate from reality, then how useful can these models be – for 

scientists or decision-makers?” (Batista et al., 2019) 

Soil erosion and concomitant freshwater sedimentation are identified as major 

causes of terrestrial and aquatic degradation and, given the ecological and social 

costs resulting from these issues, they are becoming ever more prominent in the 

international environmental agenda (Upadhayay et al., 2017). The main 

objectives of the Water Framework Directive 2000/60/EC (WFD) are non-

deterioration of water status and the achievement of good status for all EU waters 

(European Commission, 2010, 2022c; Voulvoulis, Arpon and Giakoumis, 2017). 

Because of inherent variability of waterways, good ecological status cannot be 

defined using absolute standards and WFD alternatively defines it as “a slight 

departure from the biological community which would be expected in conditions 

of minimal anthropogenic impact) (European Commission, 2022c). Therefore, 

although we do not want to remove the natural sediment resource from our 

waterways, it is of vital importance to identify sources of terrestrial-to-aquatic 

fluxes of soil OC at a river catchment scale so that anthropogenic impact can be 

estimated. 

The aim of this research was to improve determination of the dominant terrestrial 

land-use sources of OC in freshwater sediment at a catchment scale and to 

assess the likely catchment processes driving spatial and temporal changes in 

these sources. This aim was achieved by, firstly, combining multiple modelling 

approaches to investigate catchment carbon dynamics allowing for an increased 

understanding of sediment and organic carbon transport processes at a 

catchment scale (Objective 1). The combined modelling approaches revealed 

extensive riparian woodland disconnected upslope eroded soil OC and, 

concomitantly, provided an input of woodland-derived OC to the streams.  It was 

found that woodland contribution to streambed OC was derived from litter and 

leaves rather than soil erosion. In addition, ambiguity in OC origin was reduced 

by identifying not only the dominant land use source of stream OC (OC 
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fingerprinting (OCF)) but areas of high carbon loss and connectivity within the 

broad land use classifications (carbon loss modelling).  

Secondly, combining OC biomarkers from different soil communities (plant, 

fungal, bacterial) reduced error when discriminating land use sources using OCF 

(Objective 2). 

Thirdly, the longer-term accumulation of sediment on the streambed was required 

for comparison with the longer-term estimates of a carbon loss model. However, 

the shorter-term suspended sediment samples provided evidence of intra-annual 

variation in OC sources for comparison with agricultural and climate changes 

throughout the year (Objective 3). In addition, comparing suspended and 

streambed sediment was used to assess if particle size sorting due to 

mobilization, transportation and deposition processes affected biomarker tracers. 

Finally, the land use specific OC yields (carbon loss models) using RUSLE and 

the Scottish erosion risk map (ERM) of Lilly and Baggaley, (2018) were compared 

using OCF as a benchmark to determine which erosion model best identified the 

relative land use OC yields in streambed sediment (Objective 4). 

6.1 Combining multiple modelling approaches to investigate 

catchment carbon dynamics 

Erosion models are employed to make quantitative estimates of how soil is 

redistributed in complex landscapes (Borrelli et al., 2018a; Panagos et al., 2015c; 

Schmidt, Alewell and Meusburger, 2019). This knowledge is vital to maintaining 

healthy soil ecosystems which are a key part of climate, biodiversity and 

economic objectives within the EU (e.g., Green Deal for Europe (European 

Commission, 2022a), EU Soil Observatory (European Commission, 2022b) and 

the Scottish Soil Framework (Scottish Government, 2009)). However, any model 

of real-world phenomena must undergo a “fit-for-purpose” test to give confidence 

that the model predictions do not deviate too far from “reality” (Batista et al., 

2019).  However, how can “reality” be defined? The output of erosion models 

such as RUSLE have previously been assessed using sediment yield data 

(Borrelli et al., 2014; Sherriff et al., 2019). However, individual models estimate 
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erosion risk based on a specific process or processes (e.g., RUSLE-based 

models estimate soil loss due to inter-rill and rill erosion) whereas sediment yield 

reflects all geomorphological processes active in the catchment (Borrelli et al., 

2018a). OCF proportions could be considered as a “land use -specific” relative 

OC yield (Blake et al., 2012) which can then be compared with the estimates of 

carbon loss models. When used as a benchmark, OCF estimates can be an 

invaluable tool to assess if carbon loss models are “fit-for-purpose” or assess the 

suitability of one erosion model over another for a given catchment. However, 

similar to sediment yield, OCF of stream sediments reflects all OC input 

processes active in the catchment. Providing an equal comparison with estimates 

of OC loss made using carbon loss models requires confidence that the OC in 

the streams originates from the processes modelled by the carbon loss model 

(terrestrial soil erosion). Any discrepancy between carbon loss model estimates 

and those estimated by OCF methods can reveal the presence of a source not 

modelled by the erosion model to OC input to streams (Chapter 2). For example 

a mismatch between fingerprinting results and RUSLE estimates was attributed 

to stream bank erosion (Lamba, Karthikeyan and Thompson, 2015). However, 

although stream banks have long been considered as sources in OCF (Collins 

and Walling, 2007; Gateuille et al., 2019; Koiter et al., 2013a; Mukundan et al., 

2010), Chapter 2 revealed an important source which, to the author’s knowledge, 

has never been incorporated as a source in OCF: direct input of woodland litter 

and leaves. If appropriate, characterising this direct woodland OC as a separate 

source within future fingerprinting studies should allow the contributions from any 

eroded woodland soil OC to be better estimated. Consequently, this will give 

more confidence in fingerprinting estimates of OC originating from eroded soil, 

facilitating their use as a “fit-for-purpose” test of carbon loss models.  

In Chapter 5 estimates of relative contributions of OC from each land use source 

were used to assess the suitability of two different erosion models using OCF of 

streambed sediments as a benchmark. Estimates of the model closest to the 

benchmark should be more reliable (closer to “reality”). The areas of high erosion 

risk identified by the selected model, reduced ambiguity in OC origin by identifying 

specific areas within the broad OCF land use classifications. These areas provide 
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the potential to target individual stakeholder land or individual sections of hillside, 

rather than catchment wide land uses providing a more precise target or “hotspot” 

for best management practices (BMP). 

6.1.1 Further research 

RUSLE contains a “C-factor” to account for how land cover, crops and their 

management cause soil loss to vary between land uses. Comparative C-factor 

values quoted in the literature for arable, grassland and forest can often differ by 

an order of magnitude (e.g. arable ca.0.13, grassland ca.0.04 and forest ca.0.004 

for the study by (Borrelli et al., 2014)) with the general assumption that erosion 

from arable land (with levels of vegetation cover potentially varying seasonally 

and yearly) will be greater than that from grassland which will be greater than that 

from forest. When estimating proportions of soil OC losses from each land use a 

limitation of RUSLE is that literature C-factor values for the same “land use” can 

also differ by orders of magnitude between studies (e.g. grasslands in Europe 

0.005 (Van Rompaey and Govers, 2002), ca.0.04 (Borrelli et al., 2014)), often 

dominating the uncertainty in RUSLE results (Estrada-Carmona et al., 2017). In 

addition, recent studies have shown that the assumption that erosion from arable 

land was significantly greater than from non-arable land was increasingly 

uncertain (Hirave et al., 2020a; Rickson et al., 2019). In Chapter 5, it was 

identified that the RUSLE C-factor for moorland should be set similar to that for 

forest rather than the value quoted in the literature (Panagos et al., 2015b). In 

future studies, estimates of the C-factor for all land uses could also be adjusted 

within the Monte Carlo analysis to calibrate the model and obtain land use source 

proportions more closely approximating to those found by the OCF benchmark, 

ultimately resulting in more accurate erosion rate estimates. A carbon loss model 

calibrated in this way could then be applied with better confidence in similar 

catchments where OCF has not been done, aiding catchment managers to map 

areas of high erosion risk and quantify OC losses. 

As noted in Chapter 2, the advantage of using RUSLE in a carbon loss model is 

that the extensive literature and data accessibility for RUSLE mean it can be 

easily applied in a wide variety of catchments using available data. However, the 
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disadvantage is that RUSLE models gross (rather than net) erosion rates. In this 

research it was used with a connectivity index which provided an estimate of 

connection between upslope areas of erosion and streams. Net catchment 

erosion can be modelled using sediment delivery models (e.g., WaTEM/SEDEM 

(Van Oost, Govers and Desmet, 2000; Van Rompaey et al., 2001; Verstraeten et 

al., 2002)). However, accurate predictions for these models require calibration, 

commonly carried out using outlet sediment yield data (Krasa et al., 2019; Luo et 

al., 2021). As sediment yield data are not available for many catchments, and are 

usually only available at the catchment outlet, incorporating these net catchment 

erosion models into a carbon loss model would facilitate calibration using the 

OCF land use -specific relative yields. In future studies, this could provide more 

accurate net rates of terrestrial-to-aquatic fluxes key to estimating anthropogenic 

impacts for assessment of water quality under directives such as WFD. 

6.1.2 Research Impact 

Organic carbon fingerprinting generates land use -specific relative OC yield which 

can then be compared with the estimates of a carbon loss model (constructed 

using any “net” erosion model). This combination of multiple modelling 

approaches can be employed in other catchments to: 

i. increase understanding of sediment and organic carbon transport 

processes by estimating the relative land use contributions from soil OC 

erosion and also identifying the likelihood of other sources of OC input to 

streams 

ii. assess the relative suitability of different erosion models using OCF of 

streambed sediments as a benchmark 

iii. calibrate erosion models - including refinement of model parameters 

such as the RUSLE C-factor 

6.2 OC fingerprinting tracers 

N-alkane biomarkers in sediments provide a record of the kinds of plants that 

populate a catchment (i.e. where grasses are abundant, C31 is the dominant n-

alkane, whereas C27 and C29 are more abundant where trees dominate (Puttock 
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et al., 2014)). Ideally, OC biomarkers will not change (i.e., show conservative 

behaviour) between sediment source (up slope point of erosion) and sink 

(stream) so that a direct comparison can be made. Yet, particle size and transport 

selectivity can result in downstream fining and an enrichment of organic matter 

content (Koiter et al., 2015). The particle size selectivity is usually correlated to 

the energy of the erosive process (e.g., water erosion) with greater erosive force 

resulting in less selectivity (Armstrong et al., 2011; Haddadchi, Olley and Pietsch, 

2015; Koiter et al., 2013b). It was thought this particle size selectivity may have 

resulted in streambed sediment n-alkane ratios %C31 and %C27 that were lower 

and higher respectively than those observed in the associated terrestrial soils in 

the Loch Davan catchment (Chapter 3). It was hypothesised that any differences 

terrestrial and stream sediment n-alkane tracers would be more pronounced in 

suspended sediment (SS) than streambed sediments (which would be expected 

to accumulate the coarser, heavier particles entering the streams). However, the 

contrary was found (with SS n-alkane ratio values generally between those of the 

streambed sediments and terrestrial soils) and it was concluded that lower %C31 

and higher %C27 were unlikely to be due to particle size fining.  

In Chapter 3, it was reported that alluvial soils (recent riverine and lacustrine 

alluvial deposits) showed a similarly lower and higher %C31 and %C27 

suggesting a link between lower and higher %C31 and %C27 values and current 

and previously aquatic environments. Lower and higher %C31 and %C27 values 

may be characteristic of n-alkanes in sediments that have spent (an unspecified) 

time in an aquatic environment. If SS is representative of “newer” sediment within 

the streams and bed sediment as “older” this would also explain why the %C31 

and %C27 values of SS were closer to those of the terrestrial sources. If the lower 

and higher %C31 and %C27 signatures found in these two catchments 

(Carminowe Creek and Loch Davan) are replicated in other catchments this 

would have implications for the use of n-alkane ratios as conservative tracers in 

OCF as the n-alkane signatures would not be preserved between source and sink 

(stream).  
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In addition, alluvial soils the signatures of n-alkanes for arable, forest, moorland 

and pasture land uses are very similar and it is unlikely that n-alkanes could be 

used to distinguish between land uses in these soils The relative signatures of n-

alkanes in pasture soils shows little difference between those in alluvial soils and 

those in all soil types (Figure 33). There is progressively more difference in the 

relative signatures of n-alkanes alluvial soils and those in all soil types for arable 

soils and forest soils with the greatest differences shown in moorland soils (Figure 

33). It was discussed in Chapter 4 that pasture soils were likely to have a higher 

contribution from mosses and be relatively wetter than the other land uses. 

Therefore, it is hypothesised that the wetter the soils are within each land use, 

the less difference there will be between n-alkane signatures in alluvial soils and 

the other soil types. These results suggest that taking samples of land use 

sources in close proximity to stream channels (and likely on alluvial soils) may 

not be representative of soil from that land use in the wider catchment. More 

accurate OCF results may be obtained by characterising separate sources for 

“alluvial” and “wider catchment” sources. 
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Figure 33: Signature of n-alkanes C23-C31 in alluvial soils and all soils in the Loch 

Davan catchment 

The PAQ ratio (ratio of shorter-chain n-alkanes (C23+C25) contributed by 

macrophytes (higher aquatic plants) and mosses, to n-alkanes indicative of both 

aquatic and terrestrial vegetation (C23 +C25 +C29 +C31)) is often used to 

interpret the relative contribution of higher aquatic vs. terrestrial plants to 

sediments in rivers and lakes. The finding of this research, that PAQ in arable, 

forest and pasture soils was in the range normally associated with emergent 

macrophytes and mosses (Chapter 4), has implications for research interpreting 

the origins of aquatic sediments using the expected ranges of PAQ in terrestrial 

and aquatic vegetation - especially in climates, such as that in Scotland, providing 

the ideal conditions for the growth of mosses in source soils. Measuring PAQ in 

potential terrestrial and aquatic sources can lead to reliable estimates of 

terrestrial-to-aquatic contributions in surface sediments (Li et al., 2022). However, 
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this is not possible for palaeoenvironment reconstruction studies and the relative 

terrestrial and aquatic plant contributions are often evaluated using the PAQ 

ranges of (Ficken et al., 2000) with a PAQ value of < 0.1 used as a terrestrial 

plant indicator (Ankit et al., 2022; Tian et al., 2022; Wang et al., 2019). Although 

this PAQ range may be a reliable indicator of the presence of emergent 

macrophytes and mosses, and accordingly a wetter environment, the results 

presented in Chapter 4 suggest it may not be a reliable estimator of the absence 

of terrestrial soil input to lakes and sedimentary basins. It would be instructive to 

investigate PAQ in other areas that have similarly warm winters and cool, wet 

summers to those in Scotland to see if the relatively high PAQ values in soils are 

replicated. 

As discussed in Chapter 3, distinguishing between arable and pasture land is 

known to be difficult due to agronomic rotation. In the Carminowe Creek 

catchment, Cornwall there was very little difference in the n-alkane signatures of 

arable, temporary grassland and permanent grassland and consequently the n-

alkane biomarkers were only able to distinguish between two land uses: 

“woodland” and “not woodland” (Chapter 2). However, in the Loch Davan 

catchment pastures were dominated by n-alkane chain lengths C23 and C25, 

characteristic of lower plants and mosses, creating a contrast with arable soils 

which were dominated by longer chain lengths (C27-C31) allowing n-alkane 

tracers to distinguish between all land uses in the catchment including arable and 

pasture. However, investigations were still carried out to determine if sediment-

associated SC-NLFA concentrations and carbon isotope signatures in addition to 

those for longer-chain n-alkane tracers, improved the ability of sediment 

fingerprinting to distinguish between land-use specific sources. This was tested 

using virtual mixtures and established that the addition of SC-NLFA biomarkers 

led to a significant decrease in error when distinguishing between all land 

(Chapter 3).  

6.2.1 Further research 

The streambed sediment n-alkane ratios %C31 and %C27 were lower and higher 

respectively than those observed in the associated terrestrial soils in both the 
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Loch Davan catchment in Scotland (Chapter 3) and in the Carminowe Creek 

catchment in Southern England (Glendell et al., 2018). Comparing these n-alkane 

ratios in the finer SS and coarser streambed sediments in the Loch Davan 

catchment suggested these differences were unlikely to be due to either i) an 

enrichment in finer particles or ii) the storage of terrestrial sediments in water (at 

room temperature). The use of n-alkanes as tracers in OCF would benefit from 

further research into this issue. 

Although this research and that of others (Blake et al., 2012; Ferrari et al., 2015; 

Lavrieux et al., 2012; Lu et al., 2014) have confirmed SC-NLFA biomarkers can 

successfully distinguish different land uses there is little or no evidence to explain 

why they do so.  In order to become a more widely used OCF tracer more 

research will be needed to confirm i) why SC-NLFA can distinguish between land 

uses and ii) how conservative they are, and over what time scales. 

In the Carminowe Creek catchment, the n-alkane biomarkers were only able to 

distinguish between two land uses: “woodland” and “not woodland”. In addition, 

it is likely the woodland contribution to streambed OC was derived from litter and 

leaves rather than woodland soil. If, as suggested in Chapter 3, the plant, fungal 

and bacterial origin of SC-NLFA provide a fingerprint more characteristic of the 

soil rather than just the land cover vegetation, applying them in the Carminowe 

Creek catchment could improve discrimination between i) the arable, temporary 

grassland and permanent grassland land uses, and ii) woodland soils and 

woodland litter and leaves. 

6.2.2 Research Impact 

In future OCF studies, combining soil biomarkers of plant, fungal and bacterial 

origin could provide: 

i. greater discrimination between land use sources 

ii. a fingerprint more characteristic of the soil rather than just the land cover 

vegetation.  
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6.3 Sediment management in the Loch Davan catchment 

The lake area of Loch Davan has been significantly reduced over the last century, 

likely due to inputs of nutrient rich sediment resulting from land use intensification 

(Addy, Ghimire and Cooksley, 2012) and between 2007 and 2018, the loch and 

its main feeder stream, Logie Burn, were classified as having poor to moderate 

ecological status (SEPA, 2021). Loch Davan and Logie Burn fall under the remit 

of SEPA’s River Basin Management Planning for the River Dee catchment. With 

the aim of these waterbodies reaching “Good” water status by 2027 the action 

plan aimed at reducing diffuse source inputs. 

To this end this research was carried out with the aim of i) identifying the land use 

sources of OC input to the Logie Burn and its tributaries, ii) identifying erosion 

risk “hotspots" and iii) estimating intra-annual agronomic and climate drivers of 

stream OC inputs. 

6.3.1 Land use sources 

Sediment fingerprinting using a novel combination of n-alkane and SC-NLFA 

biomarkers identified that pasture was the dominant contributor to streambed OC. 

The dominant contributor to SS was arable land. The OC content of SS was 

considerably higher than that in streambed sediments (Chapter 4, Table 16) 

consistent with SS having a finer particle size distribution (Koiter et al., 2015) 

and/or streambed sediments having a higher sand content (Dai and Sun, 2007). 

If livestock poaching of near channel land was the primary input mechanism for 

pasture soil to the streams (Chapter 4) it would be expected that soils would be 

delivered to the channel in larger masses due to compaction of the soil, shorter 

transport distances and direct input. These larger masses would be more likely 

to remain on the streambed rather than be quickly transported away in 

suspension. Mills and Bathurst, (2015) found livestock poaching of channel banks 

in areas of unfenced pasture, resulting in bank erosion and increased availability 

of sediment to water flows. Riparian soils prone to occasional flooding are often 

used for grassland as opposed to arable uses (Stutter, Langan and Demars, 

2007) and, therefore, if OC from arable sources had to travel further to the 

streams the fining of particles due to mobilization, transportation and deposition 
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processes may result in most of the arable soil OC remaining in suspension. 

Although it does not make a dominant contribution to the streambed sediments, 

arable soil OC may make a larger contribution to the OC within Loch Davan where 

sediments are more likely to fall from suspension in the less vigorous hydrological 

environment. 

6.3.2 Seasonal OC dynamics  

Although temporal drivers of terrestrial-to-aquatic OC fluxes were identified in the 

Loch Davan catchment, the restricted time scale (June 2019 to November 2020) 

did not allow for an assessment of repeated or long-term drivers in this catchment 

which would be of greater utility to SEPA’s River Basin Management. Drivers of 

change in SS source proportion included land preparation/planting and moorland 

heather burning in spring, and heavier prolonged rainfall in late autumn and winter 

leading to saturated soils, increased runoff and stream discharge and 

remobilisation of streambed sediment. SS proportions at the catchment outlet 

revealed that livestock poaching of riparian pasture soils may be driving 

increased OC input to streams in late autumn/winter. 

In Chapter 4 the importance of source classification to source apportionment was 

discussed and it was shown how the drivers of terrestrial-to-aquatic OC fluxes 

were used to confirm that the presence of a small number of cropped fields in a 

sub-catchment (not present on the catchment land cover map) constituted a 

substantial enough arable source to warrant using a four-source classification 

(arable, pasture, forest and moorland) rather than a three-source (pasture, forest 

and moorland). The dominant arable contribution to SS OC in the sub-catchment 

was likely due to the fact the arable fields are located next to the Burn and, 

consequently, highly connected. The contributions of land use sources to SS OC 

estimated using the three and four -source classifications were very different; with 

the three-source classification showing a dominant forest contribution and the 

four-source a dominant arable contribution. These different estimations would 

have led to very different recommendations for BMP and assessment of 

anthropogenic impacts. This method would therefore be valuable in mixed land 

use catchments where multiple stream sediment sources require the definition of 
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source classes in multiple sub-catchments – particularly if up-to-date land cover 

maps are not available.  

6.3.3 OC loss and soil erosion 

There remains uncertainty in erosion rates for soil and land use combinations 

when tracing pathways of diffuse pollution from agricultural land to waterways 

(Cloy et al., 2021). The ERM (described in Chapter 5) has been used by the 

Scottish Environment Protection Agency (SEPA), Scottish Water and Scottish 

Government to assess the risks posed to waters from soils from field to regional 

scale (Baggaley et al., 2020), however they do not provide quantitative estimates 

of soil or OC erosion rates. In a recent report to the Scottish Government, Rickson 

et al., (2019) assessed the annual cost of erosion in Scotland by adopting the 

approach that soil erosion rates should be driven by land use, but the likelihood 

of erosion occurring should be driven by erosion risk class (as defined by the 

ERM). The similarity of the land use specific carbon loss estimates of RUSLE and 

ERM in this research (Chapter 5) suggested RUSLE erosion rate estimates could 

be used to quantify the amount of soil eroded from the high and medium risk 

areas defined by the ERM in this catchment. Areas identified as “high” risk and 

“medium” risk by the ERM had mean soil erosion estimates of 1.51 and 0.88 t ha-

1 yr-1 respectively for arable land, 1.26 and 0.64 t ha-1 yr-1 respectively for pasture 

land, 0.04 and 0.03 t ha-1 yr-1 respectively for forest land and 0.04 and 0.04 t ha-

1 yr-1 respectively for moorland (Table 21). These estimates are less than the soil 

erosion rates per land use defined by Rickson et al., (2019) in their study to 

identify soil erosion rates in Scotland (mineral soils: arable 2.4 to 4.3 t ha-1 yr-1, 

grasslands 2.4 to 4.3 t ha-1 yr-1, forest 0.6 t ha-1 yr-1 and wildscape (semi-natural 

landscape) 0.6 t ha-1 yr-1; organic soils: arable 5 to 10 t ha-1 yr-1, grasslands 0.39 

to 1 t ha-1 yr-1, forest 0.13 t ha-1 yr-1 and wildscape 0.13 t ha-1 yr-1) suggesting the 

erosion rates for the Loch Davan catchment are relatively low. 

6.3.4 Further Research 

The estimates of Rickson et al., (2019) are intended to inform soil resource 

policies in Scotland and it would be instructive to compare these land use 
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estimates with the OCF benchmark in the Loch Davan catchment to see how well 

they perform. 

At the start of this research, it was intended to take a lake core within Loch Davan 

to assess the longer-term sources of aqueous OC and their inter-annual variation. 

Restricted access to Loch Davan for the purposes of taking samples (outside the 

bird breeding season – i.e. before the end of March or after the end of August) 

coupled with Covid-19 lockdowns unfortunately prevented this. Assessment of 

the land use source contributions of OC within a lake core could provide 

confirmation that arable contribution dominates the lake sediment OC and 

discover if the improvement of water status from “Poor/Moderate” to “High” was 

due to a reduction in the amount of sediment coming from arable land. 

6.3.5 Research Impact 

Soil erosion in the Loch Davan catchment is not high and the water status 

classification for the loch and Logie Burn has risen from “Poor/Moderate” to “High” 

in the last few years (SEPA, 2021). However, reducing anthropogenically driven 

SS in the catchment would be beneficial for soil conservation and ensure the water 

quality status for Logie Burn and Loch Davan remain “high”.  

Pasture land was the dominant contributor to streambed sediments.  Given the 

likely role of grazing livestock in soil erosion, possible solutions to reduce soil 

erosion in pasture land are to: reduce livestock access to the streams through 

the use of stream buffer strips, reduce the length of the grazing season and 

move grazing animals to areas less prone to erosion and/or well connected to 

the streams to avoid poaching issues. 

Arable soils were the dominant contributor to SS OC, especially during periods 

where the fields are relatively bare (e.g. following field planting/sowing). 

Reduction in arable contribution to SS OC could therefore be achieved by 

reducing the connectivity through the use of stream buffer strips and permanent 

riparian vegetation. 
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7 Conclusions 

Quantifying land use sources and understanding the dynamics of organic carbon 

(OC) in river catchments is essential to reduce both on-site and off-site impacts 

of soil OC erosion. OC fingerprinting (OCF) is a popular tool to estimate the 

relative contribution of different land use sources to sediment OC, but this novel 

research has shown how it can also be an invaluable tool to understand 

catchment OC dynamics. 

OCF and carbon loss modelling (a combination of “net” soil erosion modelling 

and OC spatial distribution modelling) was carried out using existing OC and n-

alkane biomarker data from Carminowe Creek, a mixed land use catchment in 

Cornwall, UK (Objective 1; Chapter 2).  While previous analysis of the data 

(Glendell et al., 2018) had revealed only a likely dominance of woodland soil OC 

(SOC) over arable SOC input to the stream. This unique combination of two 

sediment origin techniques crucially identified that riparian woodland 

disconnected upslope eroded SOC and, concomitantly, provided an input of 

woodland-derived OC to the streams, giving an increased understanding of 

sediment and OC transport processes in the study catchment.  

Soil data from Loch Davan catchment Scotland has provided an unique, land use 

-specific dataset for soil and sediments containing: C and N content, bulk stable 

isotope δ13C and δ15N, n-alkane concentrations, n-alkane compound-specific 

stable isotopes (CSSI) and short-chain (C<20) neutral lipid fatty acid biomarkers 

(SC-NLFA). The n-alkane concentration data from Carminowe Creek was only 

able to distinguish between two land uses, woodland and “not woodland” due to 

the similarity of the n-alkane signature in arable, temporary pasture (ley) and 

grassland land uses in that catchment. The Loch Davan catchment n-alkane 

concentrations, n-alkane CSSI and SC-NLFA biomarkers were used to find the 

effects of novel combinations of these biomarkers on land use source 

discrimination using a Bayesian un-mixing model (Objective 2; Chapter 3). In 

comparison to using only n-alkane concentrations, the combination of n-alkane 

concentration and CSSI improved the discrimination between arable and pasture 

land uses and using a combination of n-alkane concentration and SC-NLFA 
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reduced error when discriminating all four land uses (arable, pasture, forest and 

moorland). 

Organic C fingerprinting using the longer-term accumulation of sediment on the 

streambed was required for comparison with the longer-term estimates of carbon 

loss modelling and the shorter-term suspended sediment (SS) samples provided 

evidence of intra-annual variation in OC sources (Objective 3; Chapter 4). An 

innovative, holistic approach assessed SS OC source proportions, in both 

streambed and suspended sediment, at a headwater sub-catchment and 

catchment scale. Different drivers of OC dynamics were detectable at the two 

different scales (sub-catchment and catchment scale), and different dominant 

land use sources were found in streambed and suspended sediment OC leading 

to improved identification of processes driving spatial and temporal OC dynamics.  

In addition, although OCF using n-alkanes is a valuable tool to estimate the 

relative contribution of different land use sources to sediment OC, there remain 

challenges in its application including i) effects on n-alkane signatures due to the 

sorting effect of particles by size during mobilization, transport and deposition and 

ii) ensuring all sources are included. The approaches presented in Chapter 4 

provide a new method to address these key challenges in OCF and increased 

the confidence in source apportionment. 

Soil erosion “hotspots” (where there is high risk of soil degradation) can be 

identified by modelling catchment erosion using a variety of different models such 

as the Revised Universal Soil Loss Equation (RUSLE) and the Scottish erosion 

risk map (ERM) of Lilly and Baggaley, (2018). In Chapter 5, a new method was 

presented of using streambed sediment land use -specific yields estimated using 

OCF as a benchmark to determine which erosion model best identified the 

relative land use OC yields in streambed sediment (Objective 4; Chapter 5). This 

method could be an invaluable new tool to assess the utility of these soil erosion 

risk models in identifying hotspots and guiding Best Management Practices 

(BMP). 

The research has provided novel methods and datasets to improve determination 

of the dominant terrestrial land-use sources of organic carbon in freshwater 
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sediment at a catchment scale and identified catchment processes driving spatial 

and temporal changes in these sources. These methods will support the 

development of targeted sediment management strategies to reduce impacts on 

land productivity and water quality due to changes in climate and human activity. 

Ultimately, it will help to maintain the “healthy soils” that are a key part of policies 

and strategies to further climate, biodiversity and economic objectives within the 

EU and trying to ensure that, “by 2050, all soil ecosystems are in a healthy 

condition” (European Commission, 2021). 
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APPENDICES 

 Loch Davan Data 
The following tables are available at: “10.17862/cranfield.rd.19397651” where 
information on how to access other data used in this Thesis can also be found. 

A.1 Loch Davan catchment soil and sediment samples 

• Soil and bed sediment samples collected 18th-19th June 2019.  

• Bed sediment samples: BS1 - bed sediment sample at Site 1, BS2 - bed 
sediment sample at Site 2 etc.  

• Suspended sediment collectors were installed in the streams on the 
following dates: Sites 1 and 2: 18th June 2019, and Site 3 19th June 
2019.  

• Suspended sediment collected at the site and on the date recorded in the 
Sample ID (e.g. sample 270819-1 was collected at Site 1 on 27-08-2019 
[sediment accumulated in the sediment collector between 19th June 
2019 and 27th August 2019]) 

• Code N/A: no data available 
 

Table 22 N-alkane concentration data (nano moles per g soil) for the Loch Davan 

catchment (BS = bed sediment data, SS suspended sediment data) 

Land use Sample ID C23 C24 C25 C26 C27 C28 C29 C30 C31 

Forest A3 0.55 0.89 1.06 0.45 1.19 0.22 0.76 0.07 0.44 

Forest A4 0.28 0.76 0.25 0.32 0.38 0.20 0.54 0.09 0.81 

Forest A5 0.29 0.68 0.29 0.31 0.47 0.19 0.64 0.09 0.86 

Forest A6 0.42 0.62 0.49 0.27 0.62 0.13 0.48 0.05 0.40 

Forest A7 0.40 0.74 0.46 0.37 0.81 0.28 1.10 0.20 2.42 

Forest A8 0.70 0.91 1.27 0.47 1.52 0.22 0.74 0.07 0.41 

Forest A9 0.33 0.78 0.41 0.38 0.74 0.33 1.07 0.21 1.97 

Forest A10 0.42 0.69 0.38 0.40 0.76 0.56 1.59 0.30 1.97 

Forest A11 1.00 0.96 1.45 0.63 1.74 0.28 1.48 0.15 1.57 

Forest A12 0.25 0.88 1.22 0.48 1.97 0.43 2.13 0.31 4.77 

Forest A13 0.89 0.43 1.02 0.34 1.61 0.27 1.60 0.19 3.32 

Forest A14 0.52 0.74 0.57 0.43 0.85 0.35 1.25 0.21 2.03 

Pasture A16 0.51 0.63 0.71 0.31 0.79 0.17 0.74 0.09 0.63 

Arable A17 0.53 0.50 0.70 0.32 1.10 0.32 1.45 0.12 0.90 

Arable A18 1.50 0.78 2.31 0.69 3.05 0.31 1.81 0.09 0.73 
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Arable A19 0.28 0.69 0.45 0.39 0.57 0.27 0.65 0.18 0.67 

Arable A20 0.65 0.59 0.83 0.41 1.30 0.51 2.15 0.43 2.91 

Arable A23 0.32 0.60 0.65 0.40 1.18 0.46 2.21 0.42 3.07 

Arable A24 1.55 0.44 1.65 0.38 2.21 0.24 1.52 0.09 0.79 

Arable A26 0.65 0.30 0.79 0.25 1.29 0.24 1.40 0.15 1.38 

Arable A28 0.30 0.28 0.32 0.12 0.97 0.26 1.49 0.14 1.65 

Arable A30 0.59 0.22 0.71 0.18 0.97 0.17 1.12 0.13 1.35 

Arable A31 0.48 0.41 0.64 0.25 1.13 0.26 1.55 0.18 1.87 

Arable A32 0.60 0.30 0.64 0.22 0.94 0.20 1.38 0.19 2.12 

Moorland A33 3.61 0.35 0.86 0.32 2.81 0.90 5.77 0.52 11.00 

Moorland A34 0.07 0.69 0.17 0.27 0.46 0.31 0.97 0.21 1.47 

Moorland A35 1.27 1.24 1.15 0.45 2.64 0.82 4.59 0.51 9.13 

Moorland A36 0.73 0.63 1.15 0.38 1.45 0.30 1.53 0.17 1.51 

Moorland A37 2.94 1.36 4.52 1.24 4.44 0.52 2.93 0.21 1.77 

Moorland A38 1.16 0.58 0.95 0.46 2.19 0.68 3.22 0.40 7.30 

Moorland A40 0.62 0.81 0.63 0.54 1.27 0.65 3.45 0.67 10.53 

Moorland A41 0.47 0.64 0.58 0.46 1.48 0.53 2.60 0.42 6.20 

Moorland A42 1.09 0.98 1.31 0.78 3.08 1.00 10.18 1.15 21.02 

Moorland A44 0.25 0.83 0.61 0.46 1.33 0.55 2.50 0.34 3.14 

Forest A45 0.31 0.53 0.39 0.26 0.70 0.21 0.83 0.11 1.34 

Moorland A46 2.94 0.89 2.46 0.81 5.74 1.20 13.76 1.66 37.69 

Moorland A47 0.37 0.82 0.79 0.49 1.41 0.52 2.58 0.52 7.80 

Moorland A48 0.77 0.76 0.76 0.48 1.42 0.56 2.95 0.41 6.53 

Moorland A49 1.27 0.79 1.10 0.68 2.63 0.98 6.76 0.77 13.58 

Moorland A50 0.39 0.63 0.41 0.39 1.63 0.68 2.03 0.19 2.40 

Arable A51 0.29 0.70 0.44 0.38 0.51 0.25 0.62 0.15 0.59 

Pasture A52 0.42 0.59 0.60 0.37 0.79 0.23 0.83 0.12 0.71 

Pasture A53 0.41 1.02 0.19 0.59 0.20 0.50 0.22 0.26 0.24 

Arable A54 0.54 1.33 0.27 0.88 0.37 0.76 0.44 0.40 0.52 

Arable A55 0.36 1.30 0.27 0.70 0.31 0.55 0.33 0.35 0.37 

Pasture A56 0.61 1.04 0.37 0.65 0.41 0.55 0.33 0.29 0.25 

Pasture A57 0.22 0.24 0.07 0.20 0.11 0.16 0.13 0.09 0.12 

Pasture A58 0.63 1.03 0.36 0.75 0.42 0.61 0.49 0.32 0.50 
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Pasture A59 0.74 1.51 0.29 0.60 0.25 0.29 0.13 0.08 0.08 

Pasture A60 0.50 1.33 0.27 0.73 0.29 0.52 0.26 0.27 0.24 

Pasture A61 0.48 0.81 0.15 0.48 0.16 0.40 0.15 0.19 0.13 

Pasture A62 0.48 0.80 0.11 0.44 0.10 0.32 0.09 0.13 0.07 

Pasture A63 0.44 1.22 0.16 0.56 0.17 0.42 0.17 0.20 0.18 

Pasture A64 0.14 0.18 0.03 0.13 0.04 0.10 0.04 0.05 0.04 

Moorland A65 0.92 0.49 0.23 0.34 0.50 0.35 0.68 0.16 0.99 

Pasture A66 0.45 1.10 0.23 0.62 0.27 0.49 0.30 0.28 0.31 

Pasture A67 0.54 0.91 0.28 0.75 0.41 0.66 0.37 0.34 0.32 

Pasture A68 0.32 0.72 0.11 0.54 0.14 0.48 0.16 0.28 0.16 

Pasture A69 0.53 1.44 0.37 1.02 0.51 0.99 0.67 0.69 0.84 

Pasture A70 0.62 1.09 0.28 0.87 0.34 0.86 0.31 0.49 0.26 

Pasture A71 0.70 1.34 0.48 0.80 0.63 0.76 0.60 0.45 0.63 

Forest A72 0.75 2.62 0.51 2.78 1.00 1.34 0.95 0.54 1.61 

Moorland A73 0.59 0.94 0.68 1.46 2.39 2.08 8.82 1.21 10.17 

Moorland A74 0.10 0.10 0.07 0.16 0.16 0.13 0.47 0.08 0.55 

Arable A77 0.35 1.46 0.24 0.53 0.23 0.37 0.19 0.18 0.20 

Forest A78 0.79 2.13 0.49 1.65 0.55 0.46 0.30 0.09 0.26 

Pasture A79 0.60 1.38 0.24 0.67 0.27 0.52 0.27 0.29 0.27 

Arable A80 0.34 0.86 0.15 0.53 0.16 0.44 0.18 0.25 0.18 

Forest A101 0.90 1.82 0.34 1.62 0.55 0.88 0.83 0.32 1.08 

BS BS1 0.14 0.36 0.16 0.17 0.28 0.11 0.23 0.06 0.09 

BS BS2 0.14 0.50 0.20 0.24 0.32 0.16 0.20 0.09 0.09 

BS BS3 0.12 0.33 0.14 0.17 0.22 0.11 0.21 0.05 0.13 

SS 270819-1 0.36 0.63 0.55 0.29 0.88 0.19 0.78 0.09 0.43 

SS 110220-1 0.40 0.99 0.73 0.41 1.42 0.33 1.32 0.18 0.88 

SS 140420-1 0.31 0.75 0.57 0.39 1.08 0.32 1.25 0.19 0.86 

SS 040620-1 1.64 0.99 2.02 0.62 2.78 0.30 2.23 0.14 1.23 

SS 290720-1 1.39 0.90 1.57 0.48 1.72 0.23 1.44 0.11 0.93 

SS 220920-1 0.46 0.60 0.69 0.28 1.09 0.22 1.00 0.12 0.67 

SS 171120-1 0.18 0.72 0.34 0.28 0.60 0.21 0.69 0.12 0.42 

SS 270819-2 0.51 0.53 0.41 0.26 0.62 0.11 0.45 N/A 0.26 

SS 231019-2 0.51 0.28 0.51 0.18 0.74 0.12 0.65 0.05 0.44 
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SS 171219-2 1.13 0.54 1.67 0.36 2.13 0.23 1.66 0.09 1.03 

SS 110220-2 0.57 0.91 2.22 0.76 4.43 0.93 4.57 0.20 1.42 

SS 140420-2 0.57 0.71 0.73 0.31 1.03 0.22 0.79 0.09 0.45 

SS 040620-2 0.99 0.61 1.41 0.35 1.85 0.21 1.26 N/A 0.56 

SS 290720-2 0.96 0.67 1.49 0.50 2.23 0.36 1.78 0.15 1.03 

SS 220920-2 0.68 0.82 1.07 0.40 1.47 0.31 1.26 0.14 0.82 

SS 171120-2 0.23 0.64 0.45 0.25 0.77 0.22 0.62 0.10 0.36 

SS 270819-3 1.21 0.63 1.56 0.42 2.25 0.25 1.65 N/A 0.75 

SS 231019-3 0.37 0.90 0.59 0.37 0.98 0.25 0.93 0.14 0.54 

SS 171219-3 0.43 0.77 1.02 0.46 2.01 0.44 2.17 0.25 1.37 

SS 110220-3 0.62 0.99 0.92 0.41 1.50 0.30 1.37 0.20 0.89 

SS 140420-3 0.62 0.90 1.08 0.46 1.88 0.36 1.71 0.19 0.96 

SS 040620-3 0.46 0.55 0.70 0.27 1.17 0.23 1.20 0.13 0.87 

SS 290720-3 1.86 1.11 2.12 0.70 2.99 0.37 2.53 0.19 1.62 

SS 220920-3 1.22 0.90 1.46 0.54 2.11 0.30 1.92 0.16 1.17 

SS 171120-3 0.18 0.54 0.32 0.21 0.62 0.16 0.52 0.09 0.31 

 

Table 23 N-alkane compound-specific δ13C (‰) data for the Loch Davan catchment 

(BS = bed sediment data, SS suspended sediment data) 

Land use 
Sample 
ID C23 C24 C25 C26 C27 C28 C29 C30 C31 

Forest A3 -26.53 -31.79 -33.55 -32.40 -33.82 -35.12 -35.71 -33.81 -38.72 

Forest A4 -45.46 -30.41 -34.41 -31.12 -35.14 -34.01 -36.25 -35.73 -36.40 

Forest A5 -34.55 -30.37 -33.33 -30.39 -34.92 -33.28 -35.93 -37.53 -36.45 

Forest A6 -34.27 -31.42 -34.38 -31.96 -34.74 -35.30 -37.42 -35.39 -38.50 

Forest A7 -32.68 -29.87 -33.34 -31.82 -35.27 -35.31 -36.32 -35.41 -36.40 

Forest A8 -34.32 -31.79 -33.55 -32.31 -32.75 -33.98 -34.30 -35.33 -37.33 

Forest A9 -27.37 -29.82 -33.07 -30.76 -33.28 -33.63 -34.60 -33.93 -35.25 

Forest A10 -32.04 -29.78 -34.02 -32.31 -34.45 -34.86 -34.67 -37.63 -36.08 

Forest A11 -29.30 -30.52 -33.09 -31.28 -32.70 -33.32 -33.86 -33.55 -34.92 

Forest A12 -37.45 -30.50 -32.31 -30.89 -33.32 -34.92 -36.28 -34.88 -36.05 

Forest A13 -32.08 -33.50 -32.39 -33.55 -32.27 -34.95 -34.21 -36.51 -35.05 
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Forest A14 -34.01 -32.41 -32.83 -32.36 -34.79 -33.70 -36.31 -34.17 -35.87 

Pasture A16 -33.01 -32.16 -34.26 -32.51 -35.29 -32.75 -37.43 -35.55 -38.87 

Arable A17 -32.90 -32.14 -34.70 -32.56 -36.00 -35.51 -37.23 -36.21 -37.74 

Arable A18 -32.96 -33.00 -32.80 -32.92 -32.05 -34.97 -33.87 -37.53 -37.43 

Arable A19 -36.28 -30.80 -33.91 -31.54 -34.55 -33.65 -36.74 -32.78 -37.50 

Arable A20 -30.93 -30.60 -33.58 -31.98 -34.43 -34.19 -36.11 -34.22 -35.82 

Arable A23 -32.25 -26.09 -33.57 -33.18 -34.95 -33.76 -36.29 -34.56 -37.24 

Arable A24 -34.25 -24.76 -33.90 -32.87 -34.64 -35.04 -35.45 -34.71 -36.86 

Arable A26 -31.50 -20.50 -24.04 -33.90 -34.62 -33.91 -36.09 -34.40 -36.69 

Arable A28 -30.50 -23.42 -31.08 -24.86 -35.37 -33.26 -36.07 -32.91 -36.71 

Arable A30 -29.45 -19.72 -32.78 -26.68 -33.38 -33.26 -35.48 -35.66 -35.73 

Arable A31 -32.91 -30.80 -32.05 -31.59 -34.49 -34.60 -36.14 -34.47 -36.75 

Arable A32 -30.22 -16.90 -32.02 -27.94 -33.97 -32.20 -35.12 -33.24 -35.56 

Moorland A33 -35.37 -15.19 -29.42 -30.95 -35.71 -35.35 -36.32 -35.88 -35.82 

Moorland A34 -50.58 -26.48 -31.75 -29.40 -34.96 -32.12 -35.90 -31.64 -35.89 

Moorland A35 -34.73 -30.47 -32.69 -30.70 -35.53 -35.25 -36.43 -35.19 -35.94 

Moorland A36 -16.72 -30.03 -33.43 -32.46 -34.49 -34.88 -35.83 -35.89 -36.62 

Moorland A37 -36.55 -33.45 -33.07 -32.79 -33.04 -35.24 -35.35 -35.68 -36.46 

Moorland A38 -34.70 -32.06 -33.53 -32.78 -35.76 -35.34 -35.78 -35.27 -35.13 

Moorland A40 -26.89 -31.70 -34.28 -32.40 -34.30 -33.23 -34.27 -34.61 -34.27 

Moorland A41 -21.51 -32.63 -34.15 -33.27 -35.17 -34.45 -35.47 -34.75 -35.32 

Moorland A42 -33.83 -30.55 -34.10 -32.57 -35.23 -34.46 -34.70 -36.20 -35.23 

Moorland A44 -22.42 -30.46 -34.78 -31.63 -36.14 -34.63 -36.45 -34.80 -36.99 

Forest A45 -27.65 -28.42 -32.32 -29.73 -34.72 -33.47 -35.74 -35.41 -36.49 

Moorland A46 -36.00 -32.55 -35.89 -33.21 -35.91 -34.90 -35.68 -36.22 -35.25 

Moorland A47 -32.04 -29.49 -31.91 -30.66 -33.46 -33.49 -35.14 -34.12 -34.32 

Moorland A48 -32.32 -30.04 -33.53 -32.11 -35.23 -34.78 -34.99 -34.87 -34.82 

Moorland A49 -32.86 -32.09 -33.21 -33.28 -34.02 -34.20 -33.43 -34.90 -33.65 

Moorland A50 -31.44 -29.50 -32.68 -32.13 -36.86 -36.16 -36.26 -35.20 -36.20 

Arable A51 -25.73 -28.94 -32.48 -30.75 -34.04 -31.89 -36.27 -32.02 -36.93 

Pasture A52 -33.64 -29.44 -33.45 -31.60 -34.51 -33.40 -35.94 -35.38 -36.66 

Pasture A53 -30.86 -34.24 -34.37 -35.48 -35.74 -36.66 -37.75 -37.51 -38.39 

Arable A54 -31.95 -34.11 -33.58 -35.04 -35.60 -35.67 -36.16 -36.34 -36.19 
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Arable A55 -32.98 -34.62 -34.71 -34.15 -34.36 -35.33 -36.62 -35.94 -36.63 

Pasture A56 -40.60 -34.46 -34.39 -35.18 -34.46 -36.22 -36.21 -36.97 -38.48 

Pasture A57 -36.13 -35.02 -34.38 -35.51 -34.85 -35.80 -35.62 -36.37 -36.49 

Pasture A58 -35.59 -34.18 -34.49 -35.45 -35.14 -35.98 -36.01 -36.80 -36.78 

Pasture A59 -41.85 -34.24 -34.75 -35.20 -35.41 -36.42 -37.51 -37.71 -39.48 

Pasture A60 -33.46 -33.62 -34.65 -34.73 -35.47 -35.63 -37.33 -37.07 -38.05 

Pasture A61 -34.22 -34.85 -34.28 -35.54 -35.89 -36.31 -37.86 -37.43 -39.20 

Pasture A62 -68.82 -34.45 -33.92 -35.55 -36.90 -36.94 -38.88 -38.29 -40.92 

Pasture A63 -35.06 -33.71 -33.55 -34.25 -35.34 -35.87 -37.37 -37.05 -37.85 

Pasture A64 -46.04 -35.32 -35.81 -36.09 -36.88 -36.51 -37.53 -37.22 -38.32 

Moorland A65 -28.11 -33.73 -33.63 -34.36 -34.97 -35.37 -35.48 -36.46 -35.11 

Pasture A66 -31.99 -33.16 -33.77 -34.07 -34.84 -34.93 -36.26 -35.98 -36.95 

Pasture A67 -40.61 -34.99 -34.76 -35.37 -34.67 -36.19 -36.49 -36.79 -38.27 

Pasture A68 -32.47 -33.51 -33.61 -34.19 -34.64 -35.16 -36.86 -36.05 -38.88 

Pasture A69 -48.24 -33.34 -34.12 -34.33 -34.88 -35.15 -36.50 -36.17 -37.12 

Pasture A70 -32.65 -33.58 -32.64 -35.54 -33.60 -35.36 -36.44 -35.84 -38.48 

Pasture A71 -33.98 -34.22 -34.05 -34.37 -34.33 -35.32 -35.65 -36.18 -36.14 

Forest A72 -31.26 -30.19 -31.16 -29.93 -32.74 -31.47 -34.16 -23.02 -33.45 

Moorland A73 -32.44 -33.03 -32.86 -33.90 -34.89 -35.15 -33.58 -35.32 -34.02 

Moorland A74 -32.99 -32.58 -33.45 -34.11 -35.27 -34.87 -33.62 -35.52 -34.29 

Arable A77 -32.27 -33.73 -34.26 -34.51 -34.63 -35.15 -36.56 -35.78 -36.74 

Forest A78 -78.77 -31.15 -32.07 -31.48 -33.92 -33.31 -36.52 -34.74 -36.17 

Pasture A79 -33.58 -33.54 -33.85 -34.27 -34.25 -34.92 -35.57 -35.87 -36.58 

Arable A80 -35.39 -33.89 -34.20 -34.81 -34.52 -35.60 -37.11 -36.14 -37.74 

Forest A101 -31.77 -32.35 -33.45 -32.61 -35.70 -34.34 -35.88 -35.71 -35.41 

BS BS1 -28.35 -31.16 -34.16 -30.34 -35.59 -30.18 -32.53 -31.69 -33.88 

BS BS2 -28.72 -28.23 -30.09 -30.57 -31.89 -29.03 -33.56 -31.54 -34.89 

BS BS3 -36.77 -30.45 -31.68 -30.05 -32.30 -30.51 -33.98 -31.51 -35.28 

SS 270819-1 -37.13 -31.60 -34.00 -33.22 -35.11 -32.08 -36.41 -32.30 -37.69 

SS 110220-1 -7.22 -32.37 -35.51 -32.23 -35.17 -32.41 -35.97 -32.10 -37.08 

SS 140420-1 -36.20 -32.36 -35.18 -31.71 -35.16 -31.89 -35.83 -33.74 -36.93 

SS 040620-1 -33.04 -31.00 -32.21 -28.70 -34.01 -34.19 -35.33 -35.55 -36.44 

SS 290720-1 -31.22 -29.81 -31.78 -30.29 -33.49 -32.07 -35.75 -28.61 -37.07 
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SS 220920-1 -35.50 -32.93 -35.16 -33.11 -34.57 -31.41 -35.75 -30.56 -36.86 

SS 171120-1 -35.05 -31.86 -33.16 -28.99 -34.28 -32.40 -35.54 -30.16 -36.38 

SS 270819-2 -33.12 -29.40 -32.88 -32.12 -33.96 -35.30 -36.64 N/A -37.92 

SS 231019-2 -32.83 -32.39 -34.28 -33.34 -33.98 -32.95 -35.57 -36.95 -36.19 

SS 171219-2 -35.00 -31.71 -34.34 -32.52 -34.53 -35.80 -36.41 -36.48 -37.08 

SS 110220-2 -34.89 -31.93 -33.04 -31.66 -34.97 -36.41 -35.47 -33.28 -36.71 

SS 140420-2 -34.31 -31.77 -33.92 -29.26 -34.21 -33.41 -35.70 -33.98 -36.78 

SS 040620-2 -34.47 -32.40 -33.92 -33.71 -33.80 -34.93 -34.80 N/A -35.64 

SS 290720-2 -34.97 -32.47 -33.27 -32.82 -33.63 -33.91 -34.90 -35.72 -35.96 

SS 220920-2 -15.67 -31.02 -33.38 -31.75 -33.80 -32.68 -35.30 -33.22 -35.87 

SS 171120-2 -35.28 -36.03 -33.71 -21.05 -32.47 -31.98 -34.03 -30.09 -35.91 

SS 270819-3 -35.61 -35.05 -35.44 -35.07 -35.45 -36.63 -36.23 N/A -37.28 

SS 231019-3 -39.47 -32.04 -34.95 -31.53 -34.45 -33.64 -36.64 -32.59 -37.22 

SS 171219-3 -34.80 -32.73 -34.56 -33.84 -35.26 -33.47 -35.65 -29.30 -36.63 

SS 110220-3 -34.94 -31.87 -34.39 -30.12 -35.28 -32.70 -35.34 -30.56 -36.25 

SS 140420-3 -35.41 -33.51 -34.61 -32.99 -33.97 -31.97 -35.38 -31.11 -36.34 

SS 040620-3 -34.11 -33.30 -35.00 -33.41 -34.13 -30.12 -36.23 -30.54 -37.01 

SS 290720-3 -33.50 -29.97 -32.49 -29.04 -34.03 -30.64 -35.52 -35.45 -36.21 

SS 220920-3 -32.65 -30.93 -32.73 -28.40 -32.81 -30.56 -35.37 -32.30 -36.51 

SS 171120-3 -33.61 -33.28 -34.41 -24.41 -34.16 -31.94 -35.60 -31.22 -36.45 

 

Table 24 Neutral lipid fatty acid (NLFA) concentrations (nano moles ester per g 

soil) for the Loch Davan catchment (BS = bed sediment data).  

Land use 
Sample 

ID i15:0 a15:0 16:00 
10-Me-

16:0 
12-Me-

16:0 18:2w6,9 18:00 

Forest L3 10.48 5.24 37.17 3.54 3.23 22.18 18.17 

Forest L4 16.40 6.81 42.75 10.25 3.11 9.22 11.45 

Forest L5 19.62 7.82 45.38 7.92 3.02 6.50 9.75 

Forest L6 19.78 8.54 37.17 14.35 4.70 5.69 9.77 

Forest L7 12.65 9.10 39.64 18.89 5.28 4.46 9.96 

Forest L8 18.75 7.55 39.15 3.21 3.90 7.79 19.65 

Forest L9 18.77 6.96 38.07 12.40 3.32 9.87 10.60 
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Forest L10 20.99 6.91 36.38 15.55 3.56 9.71 6.90 

Forest L11 19.07 8.71 40.77 11.66 3.92 5.80 10.07 

Forest L12 10.38 5.59 44.15 7.06 2.47 6.22 24.14 

Forest L13 22.83 8.63 37.76 8.75 3.21 7.60 11.21 

Forest L14 13.03 7.58 50.09 5.04 3.84 10.72 9.71 

Pasture L16 17.18 8.28 39.73 12.63 4.76 6.08 11.33 

Arable L17 12.07 12.65 47.57 5.81 3.63 4.68 13.59 

Arable L18 7.56 11.10 36.18 6.49 8.22 10.54 19.91 

Arable L19 14.76 11.28 44.87 6.42 4.35 3.97 14.35 

Arable L20 6.91 4.80 59.27 3.24 3.07 10.95 11.77 

Arable L23 2.28 4.21 25.35 1.63 2.10 47.81 16.62 

Arable L24 9.29 5.00 24.66 1.48 4.76 38.08 16.73 

Arable L26 4.97 4.72 34.28 1.12 2.68 35.72 16.52 

Arable L28 1.90 3.39 45.69 1.85 1.69 32.99 12.49 

Arable L30 2.56 4.90 29.11 2.76 3.42 40.15 17.10 

Arable L31 2.04 3.62 45.34 1.10 2.08 33.04 12.79 

Arable L32 5.94 4.45 25.77 1.52 3.27 40.81 18.24 

Moorland L33 5.93 5.63 47.77 2.65 2.37 23.17 12.49 

Moorland L34 8.23 4.17 45.94 1.74 1.54 26.80 11.58 

Moorland L35 6.15 3.82 48.91 1.88 1.61 25.38 12.26 

Moorland L36 5.98 4.62 35.06 1.14 2.21 34.46 16.54 

Moorland L37 9.70 7.06 35.31 3.32 3.20 27.45 13.96 

Moorland L38 7.52 6.41 36.06 2.01 2.08 37.70 8.22 

Moorland L40 4.57 4.63 34.83 1.42 2.60 44.57 7.39 

Moorland L41 5.50 3.79 41.71 1.83 1.88 32.30 12.98 

Moorland L42 2.17 3.33 36.02 1.19 2.23 48.24 6.82 

Moorland L44 4.37 2.85 58.40 0.83 1.21 22.67 9.69 

Forest L45 3.41 4.72 36.76 2.32 2.77 39.69 10.33 

Moorland L46 7.01 3.52 34.86 1.74 1.50 36.94 14.44 

Moorland L47 6.74 3.92 44.05 2.55 1.86 28.57 12.31 

Moorland L48 6.94 3.54 40.65 1.49 1.90 32.49 12.98 

Moorland L49 2.91 2.47 45.39 1.18 1.34 38.00 8.72 

Moorland L50 5.17 4.71 34.03 1.99 1.56 35.78 16.76 
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Arable L51 4.82 5.44 31.25 2.13 2.66 41.54 12.15 

Pasture L52 2.69 5.21 28.54 2.93 3.72 44.12 12.79 

Pasture L53 6.78 5.02 32.40 2.34 2.96 29.54 20.96 

Arable L54 5.68 3.79 52.53 1.47 1.92 22.67 11.93 

Arable L55 5.98 5.53 31.22 2.43 2.92 37.60 14.32 

Pasture L56 4.74 3.76 43.65 1.63 3.14 28.55 14.52 

Pasture L57 3.90 3.68 47.77 1.80 1.71 28.66 12.47 

Pasture L58 3.82 2.93 54.47 1.30 1.75 21.93 13.80 

Pasture L59 5.04 4.29 40.34 1.53 2.65 30.42 15.73 

Pasture L60 3.03 4.07 34.99 1.89 3.19 36.65 16.18 

Pasture L61 2.42 4.61 40.46 1.96 2.31 31.82 16.41 

Pasture L62 9.84 6.93 61.93 4.87 2.74 4.43 9.26 

Pasture L63 14.97 9.46 49.13 6.86 3.69 4.15 11.75 

Pasture L64 9.33 6.36 61.05 4.20 2.81 5.42 10.85 

Moorland L65 13.36 6.03 57.83 3.82 2.80 5.99 10.17 

Pasture L66 11.99 6.90 51.53 3.66 3.94 7.94 14.05 

Pasture L67 7.46 6.89 51.41 5.06 4.10 7.88 17.20 

Pasture L68 8.73 10.34 38.38 6.67 6.26 8.24 21.38 

Pasture L69 13.33 9.37 45.56 4.65 3.80 6.46 16.83 

Pasture L70 15.84 10.93 46.06 6.59 4.28 3.99 12.30 

Pasture L71 13.43 8.95 49.14 5.45 4.14 4.43 14.46 

Forest L72 13.16 7.45 49.35 11.93 3.59 3.88 10.65 

Moorland L73 12.96 4.68 44.23 9.23 1.94 20.86 6.09 

Moorland L74 11.97 5.50 44.07 7.81 2.08 23.06 5.51 

Arable L77 9.52 8.68 33.92 5.05 5.88 6.77 30.17 

Forest L78 12.92 4.74 41.54 22.11 3.48 3.96 11.25 

Pasture L79 10.41 7.63 38.26 5.26 5.78 7.53 25.14 

Arable L80 4.08 5.03 50.80 3.60 3.86 8.59 24.03 

Forest L101 13.83 6.70 47.34 12.76 3.02 5.21 11.15 

BS BS1 4.94 15.80 35.63 5.94 11.00 12.88 13.80 

BS BS2 4.79 19.51 30.85 11.83 12.55 4.90 15.58 

BS BS3 6.32 16.65 33.93 8.16 10.69 8.64 15.61 

 



 

224 

Table 25 Neutral lipid fatty acid (NLFA) compound-specific δ13C (‰) data for the 

Loch Davan catchment (BS = bed sediment data) 

Land use 
Sample 
ID i15:0 a15:0 16:00 

10-Me-
16:0 

12-Me-
16:0 18:2w6,9 18:00 

Forest L3 -31.23 -40.52 -34.35 -32.27 -31.75 -33.31 -36.72 

Forest L4 -28.07 -26.38 -32.86 -28.85 -30.27 -32.57 -33.57 

Forest L5 -30.17 -27.90 -36.84 -30.21 -28.65 -31.07 -32.26 

Forest L6 -30.60 -29.94 -33.80 -30.19 -30.69 -32.61 -34.54 

Forest L7 -30.23 -28.35 -32.90 -29.81 -29.52 -31.93 -33.13 

Forest L8 -31.35 -32.40 -34.30 -32.77 -31.50 -21.71 -34.60 

Forest L9 -29.53 -28.65 -33.32 -30.62 -32.06 -17.66 -34.54 

Forest L10 -29.46 -28.13 -32.38 -29.71 -29.52 -24.11 -30.38 

Forest L11 -31.46 -30.03 -32.56 -32.39 -30.44 -21.15 -36.23 

Forest L12 -30.01 -27.15 -32.73 -30.07 -28.24 -31.79 -35.90 

Forest L13 -29.58 -28.73 -33.04 -30.95 -30.48 -33.14 -38.23 

Forest L14 -30.64 -27.80 -32.87 -32.11 -29.31 -33.38 -33.68 

Pasture L16 -29.87 -29.21 -33.85 -30.42 -30.31 -31.98 -33.98 

Arable L17 -32.59 -31.40 -34.21 -34.42 -32.30 -33.35 -36.29 

Arable L18 -30.05 -27.82 -34.02 -47.27 -30.71 -33.53 -34.53 

Arable L19 -31.89 -30.00 -33.78 -34.86 -30.81 -33.65 -36.15 

Arable L20 -30.38 -28.94 -32.94 -45.39 -31.39 -31.55 -35.73 

Arable L23 -30.18 -28.96 -35.31 -61.23 -28.27 -33.32 -37.31 

Arable L24 -30.73 -28.40 -35.31 -53.15 -32.18 -33.22 -36.70 

Arable L26 -33.11 -29.64 -34.45 -61.04 -32.52 -34.07 -38.18 

Arable L28 -31.37 -27.85 -34.09 -31.05 -29.69 -33.06 -36.56 

Arable L30 -29.15 -28.23 -34.32 -32.01 -31.25 -33.35 -35.50 

Arable L31 -31.36 -28.72 -34.19 -66.56 -29.14 -33.21 -35.52 

Arable L32 -29.53 -27.42 -34.11 -61.20 -31.65 -33.32 -35.30 

Moorland L33 -31.38 -28.55 -33.98 -31.42 -31.64 -32.39 -36.24 

Moorland L34 -30.57 -29.64 -33.99 -30.73 -31.20 -32.64 -37.03 

Moorland L35 -31.40 -44.66 -33.98 -31.11 -31.28 -32.89 -36.85 

Moorland L36 -30.40 -28.57 -34.54 -68.57 -31.46 -33.86 -37.59 

Moorland L37 -32.30 -30.27 -35.35 -34.34 -33.12 -33.10 -36.26 
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Moorland L38 -12.38 -42.68 -34.08 -44.74 -33.56 -33.00 -35.55 

Moorland L40 -30.75 -29.25 -33.94 -53.06 -38.46 -32.64 -33.37 

Moorland L41 -30.55 -28.50 -34.58 -32.65 -34.50 -32.86 -38.14 

Moorland L42 -31.67 -29.08 -35.43 -54.54 -33.26 -33.53 -37.10 

Moorland L44 -29.81 -27.77 -33.78 -57.10 -31.46 -33.65 -36.71 

Forest L45 -30.24 -29.06 -34.70 -29.99 -30.74 -33.44 -35.57 

Moorland L46 -31.43 -29.01 -35.62 -33.20 -31.85 -33.13 -36.74 

Moorland L47 -31.30 -45.67 -35.13 -32.10 -31.52 -33.74 -36.14 

Moorland L48 -30.97 -30.50 -33.07 -32.45 -32.82 -32.45 -37.42 

Moorland L49 -29.30 -29.05 -32.54 -32.33 -33.21 -34.10 -37.09 

Moorland L50 -31.21 -44.92 -34.87 -31.51 -30.01 -33.78 -36.86 

Arable L51 -31.77 -28.78 -34.99 -29.25 -45.46 -33.06 -36.98 

Pasture L52 -31.95 -29.05 -34.78 -32.79 -32.11 -33.28 -36.68 

Pasture L53 -31.02 -46.95 -36.21 -25.92 -32.87 -33.84 -38.67 

Arable L54 -31.66 -45.94 -34.47 -32.33 -34.66 -33.61 -37.68 

Arable L55 -32.87 -48.04 -35.51 -23.26 -32.50 -33.43 -37.41 

Pasture L56 -32.12 -28.59 -34.89 -31.35 -32.39 -33.64 -38.10 

Pasture L57 -30.45 -46.17 -34.25 -31.63 -33.24 -33.19 -36.88 

Pasture L58 -32.07 -45.91 -33.52 -33.38 -32.03 -33.66 -37.55 

Pasture L59 -32.83 -48.60 -34.78 -21.89 -33.26 -33.86 -37.94 

Pasture L60 -32.84 -45.94 -33.79 -30.06 -32.31 -32.34 -36.22 

Pasture L61 -32.11 -28.95 -34.26 -32.14 -32.51 -33.26 -37.71 

Pasture L62 -32.67 -30.72 -34.15 -34.24 -32.49 -34.46 -36.87 

Pasture L63 -33.86 -32.76 -34.28 -33.96 -31.34 -33.84 -35.82 

Pasture L64 -32.48 -29.76 -34.02 -34.97 -31.96 -34.75 -37.08 

Moorland L65 -29.68 -28.52 -31.90 -31.36 -29.79 -32.66 -34.77 

Pasture L66 -30.55 -29.47 -34.56 -43.30 -31.45 -34.30 -37.01 

Pasture L67 -30.80 -28.88 -33.80 -32.03 -31.28 -33.06 -37.77 

Pasture L68 -33.37 -29.41 -34.26 -32.70 -30.48 -32.68 -38.38 

Pasture L69 -32.45 -29.98 -35.31 -36.65 -32.41 -35.39 -37.83 

Pasture L70 -31.89 -30.11 -34.48 -33.18 -32.06 -33.82 -36.99 

Pasture L71 -31.55 -30.18 -34.11 -36.15 -32.02 -33.87 -38.05 

Forest L72 -30.61 -33.80 -34.44 -31.63 -30.44 -31.15 -34.19 
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Moorland L73 -30.34 -27.92 -32.93 -31.27 -31.17 -31.05 -33.48 

Moorland L74 -31.11 -29.93 -33.76 -31.36 -30.78 -36.59 -34.40 

Arable L77 -31.85 -28.29 -34.73 -32.75 -31.39 -22.90 -37.41 

Forest L78 -30.26 -34.34 -34.31 -29.75 -31.73 -32.79 -33.99 

Pasture L79 -29.82 -27.50 -34.03 -48.56 -30.38 -23.78 -37.99 

Arable L80 -29.09 -26.81 -35.65 -49.56 -31.59 -36.38 -37.86 

Forest L101 -31.10 -29.07 -34.20 -31.25 -31.41 -32.83 -36.94 

BS BS1 -10.01 -29.08 -34.74 -36.59 -29.89 -38.17 -36.95 

BS BS2 -30.86 -29.82 -32.04 -46.30 -29.43 -21.08 -34.27 

BS BS3 -8.90 -30.35 -34.90 -42.22 -31.24 -25.89 -38.22 

 

Table 26 C (%, w/w), N (%, w/w), δ13C (‰) and δ15N (‰) for the Loch Davan 

catchment (BS = bed sediment data, SS suspended sediment data) 

Land Use Sample ID C (%, w/w) δ13C (‰) N (%, w/w) δ15N (‰) 

Forest 3 11.02 -29.18 0.81 4.47 

Forest 4 8.92 -28.78 0.38 2.23 

Forest 5 10.41 -28.36 0.53 3.31 

Forest 6 6.35 -28.21 0.34 2.86 

Forest 7 20.85 -28.35 0.70 3.32 

Forest 8 5.70 -29.35 0.30 3.42 

Forest 9 7.54 -28.42 0.22 3.35 

Forest 10 27.55 -28.38 0.78 3.96 

Forest 11 31.84 -28.81 1.59 2.05 

Forest 12 7.95 -28.74 0.46 3.58 

Forest 13 4.46 -28.80 0.19 1.15 

Forest 14 8.95 -28.71 0.42 4.04 

Pasture 16 3.42 -29.72 0.30 5.24 

Arable 17 5.58 -29.76 0.41 2.58 

Arable 18 3.94 -29.15 0.26 3.88 

Arable 19 3.25 -29.76 0.24 3.91 

Arable 20 4.65 -28.52 0.33 4.12 

Arable 23 3.39 -28.63 0.29 6.24 
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Arable 24 5.83 -29.20 0.44 4.64 

Arable 26 3.91 -28.63 0.33 5.77 

Arable 28 4.41 -28.53 0.35 4.35 

Arable 30 3.81 -28.47 0.26 5.30 

Arable 31 5.09 -28.52 0.40 5.26 

Arable 32 3.24 -28.61 0.24 6.81 

Moorland 33 25.89 -28.55 1.46 2.01 

Moorland 34 5.73 -28.32 0.44 0.22 

Moorland 35 18.15 -29.05 1.00 0.31 

Moorland 36 4.74 -29.12 0.38 4.88 

Moorland 37 25.00 -29.59 1.59 3.19 

Moorland 38 18.22 -28.84 1.03 1.26 

Moorland 40 14.01 -28.06 0.56 1.15 

Moorland 41 10.69 -28.79 0.62 1.63 

Moorland 42 23.41 -28.49 0.89 0.58 

Moorland 44 7.83 -28.94 0.30 2.34 

Forest 45 11.37 -28.78 0.41 0.02 

Moorland 46 39.78 -28.69 2.06 1.27 

Moorland 47 7.81 -28.41 0.53 4.44 

Moorland 48 9.70 -28.60 0.47 1.01 

Moorland 49 37.95 -27.68 1.91 3.24 

Moorland 50 23.66 -29.38 1.46 0.95 

Arable 51 2.43 -29.03 0.23 6.89 

Pasture 52 1.91 -28.88 0.15 5.04 

Pasture 53 4.45 -29.41 0.29 7.09 

Arable 54 4.51 -29.18 0.34 3.85 

Arable 55 3.02 -29.11 0.22 6.55 

Pasture 56 4.91 -29.70 0.34 4.60 

Pasture 57 4.42 -29.36 0.38 4.88 

Pasture 58 5.24 -29.20 0.43 5.35 

Pasture 59 4.32 -30.03 0.27 4.52 

Pasture 60 3.21 -29.05 0.30 5.81 

Pasture 61 2.62 -29.91 0.22 4.63 



 

228 

Pasture 62 3.00 -29.78 0.28 3.76 

Pasture 63 4.47 -29.40 0.36 4.71 

Pasture 64 5.15 -29.36 0.45 4.48 

Moorland 65 7.45 -27.90 0.52 2.30 

Pasture 66 3.09 -28.87 0.29 6.64 

Pasture 67 4.38 -29.53 0.29 5.44 

Pasture 68 2.32 -29.59 0.19 5.30 

Pasture 69 2.85 -29.18 0.29 6.06 

Pasture 70 3.14 -29.85 0.20 4.87 

Pasture 71 3.84 -28.85 0.30 6.36 

Forest 72 8.28 -28.18 0.42 2.03 

Moorland 73 47.69 -28.17 1.42 -0.67 

Moorland 74 34.83 -28.91 1.09 -0.58 

Arable 77 3.40 -29.11 0.28 7.45 

Forest 78 17.62 -27.22 0.77 1.46 

Pasture 79 2.97 -28.51 0.26 7.51 

Arable 80 2.15 -29.61 0.19 6.81 

Forest 101 8.24 -28.32 0.51 3.68 

BS BS1 1.08 -29.33 0.08 3.61 

BS BS2 0.62 -26.36 0.03 4.88 

BS BS3 0.99 -29.75 0.06 4.21 

SS 270819-1 8.15 -30.00 0.58 3.68 

SS 110220-1 12.53 -29.92 0.92 3.31 

SS 140420-1 5.50 -29.63 0.40 3.19 

SS 040620-1 9.05 -29.65 0.77 4.15 

SS 290720-1 8.75 -29.81 0.63 4.17 

SS 220920-1 8.77 -29.87 0.64 3.44 

SS 171120-1 4.18 -29.54 0.30 3.09 

SS 270819-2 7.91 -29.11 0.63 3.19 

SS 231019-2 4.63 -29.06 0.41 2.34 

SS 171219-2 8.64 -29.39 0.67 3.05 

SS 110220-2 22.22 -30.10 1.29 1.40 

SS 140420-2 14.11 -29.43 1.09 2.77 



 

229 

SS 040620-2 10.02 -29.26 0.80 3.64 

SS 290720-2 12.52 -29.37 1.07 3.46 

SS 220920-2 11.31 -28.85 0.98 4.71 

SS 171120-2 4.51 -28.92 0.37 0.79 

SS 270819-3 12.38 -30.08 0.89 4.66 

SS 231019-3 9.90 -30.01 0.79 3.98 

SS 171219-3 6.72 -29.75 0.53 3.74 

SS 110220-3 9.62 -29.86 0.75 4.07 

SS 140420-3 12.30 -29.88 0.88 4.50 

SS 040620-3 11.88 -29.94 1.07 5.77 

SS 290720-3 10.16 -29.96 0.81 5.39 

SS 220920-3 9.97 -30.04 0.78 4.69 

SS 171120-3 4.43 -29.65 0.38 4.60 

 

  

 

 

 

 

 

 


