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ABSTRACT 

Rapid media filtration is used to treat most surface water sources for municipal 

drinking water supply. This thesis presents results of an investigation into how 

media filters in Scottish Water, built decades ago to different standards, can meet 

increasingly stringent water quality requirements.  

A new method for efficient assessment of filter performance and diagnosis of 

issues using online data were developed. A recursive partitioning algorithm 

applied to operationally relevant predictor variables was shown to efficiently and 

effectively characterise the conditions associated with elevated turbidity over an 

extended period of operation. Tree models can then be used to communicate a 

diagnosis in operational terms to aid the efficient management of individual 

pathogen barriers in a multi-barrier system. 

Robust rapid filtration requires effective coagulation. An investigation was 

conducted at a water treatment works (WTW) to understand the influence of zeta 

potential. The effective zeta potential window was modelled & observed to 

change with conditions. The online measurement of zeta potential was shown to 

be useful for process optimisation by providing a quantitative measurement with 

a mechanistic basis for coagulation conditions. This provides advantages over jar 

testing which may poorly represent the system under investigation. 

Pilot and full-scale trials of an alternative expanded aluminosilicate media show 

that the additional bed expansion achieved by replacing sand with the lower 

density material can, at comparatively low cost, improve the performance of rapid 

gravity filters with a common design limitation. The effective application of new 

finer grade expanded aluminosilicate was shown at pilot and full scale.  

This thesis presents a suite of efficient solutions to ensure aging 20th century 

filters robustly meet challenges in 21st century.  This is achieved by improving 

understanding of how and why specific constraints limit the performance of 

existing RGFs and developing strategic solutions to overcome common 

limitations to process performance. 
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1 Introduction 

1.1 Background 

The purpose of water treatment for municipal supply is to remove, or render harmless, 

contaminants from environmental water sources to provide wholesome drinking water 

that presents minimal public health risk. Removal of contaminants is commonly 

achieved through the destabilisation and precipitation of dissolved and colloidal 

material (coagulation) followed by aggregation (flocculation) and physical separation 

of the resulting particulate matter (clarification & filtration). Residual pathogens are 

deactivated, and their re-growth suppressed with chlorine. In most large potable water 

supply systems, rapid media filtration processes are the final barrier for removal of 

particulates before water reaches the tap. This thesis focuses on filtration in Scottish 

Water through investigation of the technical and strategic causes for sub-optimal 

process operation and considers solutions for improving filtration performance.  

Filter performance is commonly gauged by measuring the turbidity into and out of the 

process. Turbidity is an indicator of the cloudiness of the water caused by colloids and 

particulates and is usually measured as the light scattered  at 90° measured in 

nephelometric turbidity units (NTU). Though turbidity does not describe the quantity 

and character of suspended particles at concentrations of interest in water, it is 

cheaply measured and remains a ubiquitous indicator of physical water treatment 

performance. The World Health Organisation suggests that prior to chlorination water 

should average below 0.2 NTU and not exceed 0.5 NTU for large drinking water 

supplies (WHO, 2015). The recent recast of the revised EU Drinking Water Directive 

has proposed that turbidity should be considered a biological parameter which should 

be monitored online (European Parliament, 2019). Elevated turbidity is considered 

indicative of sub-optimal performance, increased risk of pathogen passage, reduced 

disinfection performance and elevated risk of gastrointestinal illness (Huck et al.,  

2001; Léziart et al., 2019; Mann et al.,  2007).  

Rapid media filtration systems are typically large concrete constructions with a long 

operational life which are expensive to build and modify. Civil components have 

typically had an estimated asset life of 60 years, with the filter media and mechanical 

elements estimated to be replaced every 20 years (Water Industry Commission for 
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Scotland, 2009). Several changes have occurred since the design and construction of 

most of the filters in use today, these include: 

1. The regulation of water quality over time has become increasingly more 

stringent. Specifically, the recast Drinking Water Directive includes turbidity as 

a microbiological parameter, with a limit of 1 NTU that should be maintained at 

less than 0.3 NTU for 95% of samples and should not exceed 0.5 NTU for 15 

consecutive minutes (European Parliament, 2019). 

2. The concentration of natural organic matter (NOM) in surface waters has 

increased in northern Europe and America (Pagano et al., 2014). This 

increasing loading of NOM has challenged filters beyond the operational 

expectations at the time of design. 

3. The standard of filter design and approaches to operation have progressed 

since many of the filters in use today were built. For example, it has become 

more common to design filters with dual media or with a larger coarse media. 

Media beds are typically backwashed at higher rates or using the combination 

of air and water. After washing, the first few bed-volumes of water do not 

typically enter supply but are instead “run to waste”. 

It is the responsibility of water utilities to make the most effective use of their assets, 

providing good value to society by keeping them operational for their full design life 

(and beyond in many cases). Innovative solutions are required to enable ageing filters 

to be able to meet higher water quality expectations in the face of more challenging 

conditions. This must also be considered alongside the level of investment which is 

appropriate for treatment systems with limited remaining design life. The focus of this 

research was to develop and apply new approaches in order to deliver filter 

performance fit for the 21st century from filters that were designed for the 20th century. 

1.1.1 Rapid media filtration in water treatment 

Records suggest that the use of sand as a media to filter water has been practised for 

over 4000 years (Baker, 1949). Today, there are broadly three types of media filters 

which can be considered in terms of the primary mechanism which underpins their 

operation: 1) Depth filters use an inert media to collect particles which are then 

physically removed; 2) adsorption contactors exploit surface properties of a media to 
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remove specific contaminants, and 3) biological filters which provide a substrate for 

microorganisms grow on and then break down contaminants. This thesis is concerned 

with the application of rapid depth filtration.  

The story of developments in depth filtration is one of relatively limited and slow 

progress constrained by limited incentives, risk aversion and relatively long-lived and 

expensive assets. However, one major innovation in media filtration was the 

development of rapid filtration from slow filtration processes. Rapid filtration relies 

predominantly on physical and chemical processes for removal of contaminants, this 

distinguishes them from slow filters for which biological processes are also vital (Ives, 

1970). Rapid filtration is typically used to remove colloidal particles between 0.01 and 

10µm, normally using sand media with an effective size which is typically over 500µm 

with pores in the region of 35-50µm (Amirtharajah, 1988). In order to ensure that 

particles are removed by physical means, water for rapid media filtration should be 

treated by coagulants to de-stabilise and aggregate particles prior to their collection 

on media grains.  

To maintain effective particle removal rapid filters typically require careful operation 

and maintenance. Performance deterioration can occur if the condition of the filter 

deteriorates, or if aspects of filter design may mean that it is incapable of meeting 

performance requirements, or due to the way that the filter or pre-treatment stages are 

operated. Figure 1 illustrates the main components of a rapid depth filter and some of 

the issues which can affect performance.  
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Figure 1 Diagram showing a typical depth filter including some of the issues which can 

affect performance, depending on the asset condition (blue), operation (pink) and 

capability (red). 

The major advances in rapid filtration in the last century have been the adoption of 

dual and multi media filters in the 1960s and the shift to deep-bed coarse mono-media 

filtration in the 1990s (Hendricks, 2006). More recently the inclusion of run-to-waste 

facilities have reduced risks associated with high levels of particles commonly 

observed at the start of a filter run. These changes to process design have been 

accompanied by advances in monitoring and control which have been followed by 

reduction in the numbers of operators and engineers overseeing filtration processes. 

The relatively slow rate of innovation is due to the combination of long asset life 

expectancy, understandable risk aversion in public health engineering and the 

acceptable performance of a relatively narrow set of standard designs. Another barrier 

to innovation is that filtration is a technology that is relatively simple to implement and 

operate acceptably but complicated to fully optimise. A depth filter in water treatment 

should operate robustly, performing well during adverse conditions (Huck and Coffey, 

2004). Filtration is difficult to optimise because there are complex interacting physical 

and chemical processes occurring that influence the efficacy of particle removal. This 

is further complicated by the fact that some of the components such as the media bed 
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are fixed for long periods of time whilst the condition of the water to be treated 

fluctuates. Some of the important variables that govern filtration performance include: 

• The physico-chemical properties of the media surface including surface charge, 

surface activation, chemical species. 

• The physical properties of the media grain including size, density, shape, 

friability and roughness. 

• The aggregate properties of the media grains within localised areas of the filter 

bed govern properties such as porosity and the transition between regions with 

different properties though the profile of the bed. 

• Characteristics of the water to be treated including temperature, corrosivity and 

solids load. 

• The hydraulic and solids loading rate and the rate of change of these variables. 

• Characteristics of the particles and aggregates to be removed including size, 

charge, strength and density. 

• Physical forces imparted on the media during the filter wash to dislodge 

deposited solids. 

• The characteristics of the particles dislodged from the media during the filter 

wash, including size and density. 

• Factors governing the efficiency of the transport of dislodged solids from the 

filter.  

1.1.2 Measurements for quantifying filter performance  

There are two common bases for characterising the performance of a filtration system, 

these are the quality of filtered water and the efficiency. The most common means of 

assessing filtered water quality is through the measurement of turbidity. Turbidity 

quantifies the extent to which suspended particles scatter light subject to their 

concentration, size and colour (Anderson, 2005). Efficiency of filters can be considered 

in terms of productivity or water efficiency; contaminant capture in terms of particles 

or mass of solids capture; hydraulically in terms of head loss; or cost in terms of capital 
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and operational expenditure. This project is primarily concerned with the performance 

of filters in terms of turbidity in relation to a target of 0.1 NTU in filtered water. As an 

optical property, the turbidity of a sample does not directly link to a health risk. 

However, turbidity has been associated with the presence of bacteria, the shielding of 

micro-organisms from disinfection, causing additional chlorine demand, increasing 

disinfection-by-product (DBP) formation and promoting biological growth in distribution 

systems (LeChevallier, Evans and Seidler, 1981; McCoy and Olson, 1986). In the UK, 

the prescribed value for turbidity is 4 Nephelometric Turbidity Units (NTU) and water 

must be below 1 NTU to demonstrate sufficient preliminary treatment prior to 

disinfection and upon leaving the WTW (Scottish Statutory Instruments, 2014; 

Statutory Instruments, 2016) . 

Turbidity measurement in filtration is ubiquitous and therefore has the advantage of 

already being relatively consistently measured and recorded. The specification of low 

turbidity in filtered water as being < 0.1 NTU (LeChevallier and Kwok-Keung, 2004). 

The use of a turbidity value of 0.1 NTU as a benchmark for good performance, though 

broadly considered to be reasonable and appropriate, can be criticised on three fronts: 

sensitivity, specificity and substitutability.  

Sensitivity: in treated waters turbidity instruments are working at the lower range of 

their capability so that random error may be in the same order of magnitude as the 

observed value (Russell, 2014). Gregory (1994) concludes that conventional turbidity 

measurements are not sufficiently sensitive to particles in the Cryptosporidium oocyst 

size range.  There is typically inconsistency in the readings given by turbidity 

instruments of different design (Letterman et al., 2004). In addition, the reduction in 

disinfection efficiency by turbidity particles has been shown to be dependent upon the 

material which generates light scatter (Farrell et al., 2018; Léziart et al., 2019). 

Specificity: turbidity is a function of the surface area and refractive index of the particles 

within a given system, rather than their risk. Previous investigators have concluded 

that turbidity is not a quantitative indicator of Cryptosporidium removal capability or 

strongly related to particle counts (Bridgeman, Simms and Parsons, 2002; Huck et al., 

2002a). As turbidity describes the relative extent to which suspended particles scatter 

light due to the combined effects of concentration, size and colour of suspended 

particles it is not a conserved quantity in the way that other measurements of water 
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quality are, such as suspended solids (Bridgeman et al., 2002; Davies-Colley and 

Smith, 2001). Equivalent turbidity values have been shown to be representative of 

different particle concentrations, dependent on the composition of the turbidity material 

(Farrell et al., 2018; Léziart et al., 2019). 

Substitutability: particle counters have been demonstrated to have greater sensitivity 

to filter breakthrough than turbidimetry (Hargesheimer et al., 1998). However, it is not 

the case that a particle counter is a substitute for turbidity monitoring, rather a 

supplement as they have been demonstrated to measure different things which are 

not linearly related (Bridgeman et al., 2002). Though limitations to the sensitivity of 

turbidity have been observed in comparison to particle count monitoring, its simplicity, 

reliability and economy ensure that turbidity remains the most widely used parameter 

for monitoring filter performance (Gregory, 1994; Hartshorn et al., 2014; Huck et al., 

2001).  

In water supply systems in the developed world public health risk is primarily 

associated with contamination or challenge events and the frequency of typical 

regulatory monitoring is ineffective at capturing such events (Rizak and Hrudey, 2007). 

On-line turbidity meters, which provide a record to evidence filtration performance with 

a degree of granularity far greater than can be achieved by regulatory sampling, have 

been widely interpreted to indicate removal performance of water-borne pathogens 

(Lusardi and Consonery, 1999). 

The World Health Organisation suggests that prior to chlorination large municipal 

supplies should average below 0.2 NTU and not exceed 0.5 NTU (WHO, 2015). A best 

practice target of 0.1 NTU has previously been proposed to limit the risk of pathogen 

passage (EPA, 1998).  

1.1.3 Key particle properties 

Contaminant particles of primary concern in water treatment consist of suspended, 

colloidal, and dissolved materials with varied properties. Colloidal particles and 

dissolved molecules are driven to continuous (Brownian) movement due to thermal 

agitation and other natural and engineered hydrodynamics. Bratby (2016) summarises 

that this motion results in interactions between colloids, dissolved molecules, and ions 
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on convergent trajectories and interaction between particles and static surfaces from 

which there are three important potential outcomes: 

• Electrostatic or steric repulsion could alter particle trajectory preventing 

collision.  

• Particles could collide and separate again and return on a different trajectory.  

• Molecules or ions could collide and become chemically adsorbed by ionic, 

covalent, hydrogen, dipolar bonding or van der Waals attraction.  

Removal of contaminant particles by conventional coagulation, flocculation and 

filtration processes is dependent on the manipulation of properties such that the 

number of collisions, or the success in terms of attachment of these collisions, is 

increased. The property that allows colloidal particles to persist in a dispersion is 

known as stability. Colloidal stability primarily arises from the presence of surface 

charge and hydration of surface layers of a colloid (Stumm and Morgan, 1996). 

Stability is therefore achieved either from properties which reduce the likelihood of 

interaction with other particles or properties which reduce the likelihood that any given 

interaction would result in aggregation.  

The water molecule exists as a dipole, with positive charge arising from the two 

hydrogen atoms and negative charge arising from the oxygen atom’s free electrons. 

This property of water serves to bind water molecules at the interface of solids and 

results in the orientation of water molecules in the vicinity of a charged surface. 

Particles with significant surface charge co-ordinate water molecules and ions in 

proximity into an electrical double layer (Chapman, 1913; Gouy, 1910; in Stumm and 

Morgan, 1996). The first layer, or Stern layer, consists of water molecules and ions 

adsorbed onto the solid surface due to chemical interactions. The second layer is 

known as the diffuse layer and consists of a cloud of ions and counter ions balanced 

to neutralise this particle charge. This co-ordination prevents particles converging to a 

proximity which would allow weak intermolecular Van der Waals forces to drive particle 

attachment (Stumm and Morgan, 1996). This particle stability must be overcome in 

order for effective filtration to be achieved. 

1.1.4 Pre-treatment for rapid filtration 
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The pre-treatment to de-stabilise particles is the most important variable affecting 

filtration efficiency (Amirtharajah, 1988). Coagulation in water treatment is typically 

achieved by dosing aluminium or iron salts or pre-polymerised coagulants such as 

poly-aluminium chloride (PACl). When dosed, trivalent metal ions become rapidly 

hydrolysed into different species depending upon the process conditions. These 

hydrolysis products then interact to destabilize the particle system. The efficacy of 

these different hydrolysis products varies considerably. Use of pre-hydrolysed metal 

salts improves control of the hydrolysis species formed and so can be used for more 

reliably maintaining effective coagulation conditions over a range of pH and 

temperature conditions particularly in low turbidity waters (Van Benschoten and 

Edzwald, 1990). 

Colloidal and dissolved contaminants can become destabilised by the addition of 

coagulants through four key mechanisms which vary depending on the particles 

involved and the coagulant used (Bratby, 2016; Hendricks, 2006).  

• Double layer compression: by increasing the ionic strength of a solution the 

thickness of the double layer is reduced. 

• Charge neutralisation: Cationic coagulant hydrolysis products are incorporated 

within the diffuse layer weakening the electrostatic repulsion between particles.  

• Adsorption destabilisation: Dissolved cationic metal hydrolysis species become 

adsorbed to the negatively charged surfaces of particles directly reducing the 

effective surface charge. 

• Particle bridging: Polymerised ions can act to de-stabilise particles during 

coagulation by forming a bridge between particles. 

• Enmeshment: At sufficient concentration and pH, coagulant metal ions 

precipitate and form a weak amorphous structure which enmeshes colloids and 

particles.  

For effective aggregation of destabilised particles to take place, sufficient collisions 

between particles must occur. Flocculation is a two-stage process. Firstly, peri-kinetic 

flocculation arises from the random movement of particles due to thermal agitation 

and has limited effect once flocs grow beyond a certain size. Secondly, orthokinetic 
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flocculation requires agitation, promoting particle interactions by introducing velocity 

gradients.  

1.1.5 Detachment and shear 

The accumulation of deposits over the course of a filter run, described in 

phenomenological models, results in narrowing of pores within the media and a 

consequential increase in the interstitial flow velocity for any given approach velocity. 

Increasing velocity increases the drag force on the deposited particles and detachment 

and shear occurs when these drag forces are greater than the forces of attachment or 

the strength of the floc (Amirtharajah, 1988). 

1.1.6 Theories of filtration 

Fundamental theories of depth filtration start with an assumption of an idealised 

homogenous uniform stable particle filtration system and describe mass or particle 

population transfer from the liquid phase to the filter media with depth (Equation 1). 

This has been further developed to describe the interaction of (contaminant) particles 

and collectors (media grains) in terms of two stages, namely transport and attachment. 

These transport and attachment efficiencies, quantified in fundamental theories of 

filtration, can be used to characterise the relationship between physical characteristics 

of a filtration system and performance of the filtration process from the filter coefficient 

(λ) as defined in Equation 2 (Yao, Habibian and O’Melia, 1971).   

Equation 1 Fundamental filtration model (Iwasaki, 1937) 

−
𝛿𝐶

𝛿𝐿
 = 𝜆𝐶 

Where: C = particle concentration or mass (nbr/L or mg/L), L = depth within the filter media (m), and 
𝜆 is the filter coefficient. 

Equation 2 definition of the filter coefficient (Yao et al., 1971) 

𝜆 =  
3(1 − 𝛷)𝜂𝛼

2𝑑𝑐
 

Where: Φ = porosity, 𝜂 = transport efficiency, 𝛼= attachment efficiency and 𝑑𝑐 = diameter of the 
collector (m) 

Transport, or the movement of the contaminant particle to the surface of the collector 

is governed by the physical characteristics of the system. The efficiency of attachment 

is then governed by physio-chemical surface effects. Transport mechanisms within 
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depth filtration include straining, sedimentation, interception, diffusion, inertia and 

hydrodynamic action (illustrated in Figure 2 from Ives, 1970).  

 

Figure 2 Illustration of fundamental transport mechanisms adapted from Ives (1970) 

Models to estimate transport efficiency on the basis of physical properties typically 

simplify transport as the sum of three mechanisms: diffusion, interception and gravity 

Equation 3 (Yao et al., 1971). Other mechanisms of transport are considered to be 

negligible. 

Equation 3 Equation for single collector efficiency (Yao et al., 1971) 

𝛈𝟎 = 𝛈𝑫 + 𝛈𝑰 + 𝛈𝑮 

Where: ηD is the transport by diffusion, ηI is the transport by interception, and ηG is the transport 
due to gravity.  

Trajectory theories have been developed to adapt fundamental theories of transport 

to the dynamic hydraulic properties of filters during the run (Rajagopalan and Tien, 

1976; Tufenkji and Elimelech, 2004). One established approach is described by 

equations relating transport, by different mechanisms, to physical characteristics of 

the system including: the aspect ratio (Equation 4), Peclet number (Equation 5), Van 

der Waals number (Equation 6), attraction number (Equation 7), gravity number 

(Equation 8) and porosity (Equation 9). The dominant mechanisms of diffusion 

(Equation 10), interception (Equation 11) and gravity (Equation 12) can then be 

quantified by relating them to the physical characteristics and their sum can be used 

to estimate transport efficiency (Equation 3).   
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Equation 4 Aspect ratio between particle and collector sizes 

𝑁𝑅 = 
𝑑𝑝

𝑑𝑐
 

Where: 𝑑𝑝 = particle diameter (m) and 𝑑𝑐 is the collector diameter (m) 

Equation 5 Peclet number quantifying the ratio of transport by convection and diffusion 

𝑁𝑃𝑒 = 
𝑈𝑑𝑐
𝐷∞

 

Where: U = fluid approach velocity (m/s), 𝐷∞ = bulk diffusion coefficient (m/s2) 

Equation 6 Van der Waals number quantifying the ratio of van der Waals interaction 

energy to particle energy 

𝑁𝑣𝑑𝑊  =  
𝐴

𝑘𝑇
 

Where: A = Hamaker constant (J), k = Boltzmann constant (1.381x10-3 J/K), T = fluid absolute 
temperature (K) 

Equation 7 attraction number; represents combined influence of van der Waals 

attraction forces  

𝑁𝐴 =
𝐴

12𝜋µ𝑎𝑝2𝑈
 

Where: A  = Hamaker constant (J), ap = particle radius (m), U = fluid approach velocity (m/s), µ = 
absolute fluid viscosity (kg/m-s),  

Equation 8 gravity number; ratio of Stokes particle settling velocity to approach velocity 

of the fluid 

𝑁𝐺 = 
2

9
 
𝑎𝑝
2(𝜌𝑝 − 𝜌𝑓)𝑔

µ𝑈
 

Where: 𝜌𝑝=particle density (kg/m3), 𝜌𝑓=fluid density (kg/m3), g = acceleration due to gravity (m/s2) 

Equation 9 porosity parameter 

𝐴𝑠 = 
2(1 − 𝛾5)

2 − 3𝛾 + 3𝛾5  − 2𝛾6
 

Where: 𝛾 =  (1 − Φ)1/3, and Φ = porosity 

Equation 10 Diffusion transport mechanism 

η𝐷 = 2.4𝐴𝑆
1/3
𝑁𝑅
−0.081𝑁𝑃𝑒

−0.715𝑁𝑣𝑑𝑊
0.052 
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Equation 11 Interception transport mechanism 

η𝐼 = 0.55𝐴𝑆𝑁𝑅
1.675𝑁𝐴

0.125 

Equation 12 Gravitational transport mechanism 

η𝐺 = 0.22𝑁𝑅
−0.24𝑁𝐺

1.11𝑁𝑣𝑑𝑊
0.053 

Fundamental models can be used to illustrate how changes to media materials and 

design may impact filter performance. For example, increasing size or porosity will 

reduce the removal rate requiring an increased depth to achieve the same rate of 

particle removal (Figure 3).  However, smaller, less-porous media incur high head loss 

and may become blinded by larger particles. Equally, these models can also be used 

to illustrate how converting from a mono media to a dual media filter can reduce the 

risk of blinding but retain a high rate of particle removal within the depth of filter. 

However, it should be noted that fundamental models, whilst useful for understanding 

some properties of filters are typically ineffective at predicting the performance of real 

filters (Crittenden et al., 2012). The real-life accuracy of fundamental models is limited 

because change to the characteristics of particles, pores and surface chemistry occurs 

over a filter run in a non-uniform way which cannot readily be observed (Amirtharajah, 

1988; Ives, 1970). 
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Figure 3 Simulated removal rates for particles of different size based on fundamental 

modelling. Removal rate approximated using the method of Rajagopalan and Tien 

(1976) with the following assumptions: Partcicle density = 1050 Kg/m3,  temperauture 

= 10°C, attachment efficiency = 1. 

Limitations in the applicability of fundamental models led to the development of 

alternative approaches to filtration modelling which allow for the filter coefficient to 

develop over the course of a filter run, recognising that deposited material changes 

the porosity and surface characteristics within the media (Equation 13) (Amirtharajah, 

1988; Ives, 1970). Phenomenological models developed from these principles 

describe change over time t(s) and vertical distance Z(m) in the measurable 

characteristics of a filtration system in terms of the concentration of suspended solids 

C(Z,t), the accumulation of deposits within the bed σ(Z,t) and the development of a 

hydraulic gradient i(Z,t) (Hendricks, 2006). These equations are used to describe the 

development and progression through the depth of media of a saturated zone of solids 

in which the attachment and detachment rates are equal, along with a wave front 

covering a zone of deposit accumulation and suspended particle reduction. This 
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results in a class of models which is more applicable to reliable design but may be of 

limited use for generalisation (Amirtharajah, 1988) 

Equation 13 Phenomenological model of filter coefficient Ives (1970) 

𝜆 =  𝜆0(1 +
𝛽𝜎

𝑓
)𝑦(1 −

𝜎

𝑓
)𝑧(1 −

𝜎𝑢
𝑓
)𝑥 

Where: 𝛽 is a geometric constant describing filter grain packing, 𝜎 = specific deposit (m), 𝑓= specific 
deposit porosity, x,y & z are estimated empirically. 

Though filtration theory is not capable of capturing all of the complex interactions 

between the variables listed above, it provides a useful framework to identify potential 

mechanisms which can be exploited with the aid of experimentation to improve 

performance. From the theory covered above it can be inferred that media selection 

requires a trade-off between transport efficiency and solids handling capacity. Though 

coarse porous media have advantages in terms of solids handling capacity and 

hydraulic efficiency this is limited in practice by bed depth and sensitivity to ineffective 

pre-treatment.  

1.1.7 Context of the sponsoring organisation in the research 

This research was supported by Scottish Water, a large publicly owned water utility 

delivering the public water supply in Scotland. The majority of water supplied by 

Scottish Water comes from surface water sources which is then treated by coagulation 

and filtration. These filtration works are spread across a large area, treating source 

waters of varying quality. Scottish Water was formed in 2002 from the amalgamation 

of regional water authorities which were themselves earlier amalgamations of local 

water authorities. Most of the filters in use by Scottish Water today were built at some 

point in the last 70 years by one of the former local or regional water authorities. This 

means that there are filters with a variety of designs, ages and condition which have 

been inherited by Scottish Water. The objective of this project was to identify how a 

target of 0.1 NTU could be maintained in filtered water within the Scottish Water region. 

Recently a programme of surveys has assessed and collated the design and operation 

of WTWs across Scotland and characterised the design limitations. Many of the filters 

in operation today do not meet current design practice. Many have poor hydraulic 

control, insufficient backwash and no run-to-waste facility. Upgrading or replacing 

these assets to meet current design standards would incur considerable cost and 
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Water utilities are required to manage these risks whilst providing good value to 

customers. 

1.2 Aims & Objectives 

The aim of this work was to determine and specify the causes for sub-optimal effluent 

turbidity from depth filtration processes and develop solutions to ensure robust filter 

operation. The realization of this aim was pursued through the following objectives: 

1. Develop novel methods for assessment of filtration performance and diagnosis 

of the potential causes of operational issues associated with rapid gravity filters 

using online data. 

2. Develop methods for modelling and optimising upstream coagulation using 

online zeta potential measurement, and demonstrate how this influences 

filtration performance 

3. Understand the potential application of a novel aluminosilicate filter media 

within Scottish Water filtration systems. 
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1.3 Thesis overview 

An EngD is similar to a PhD but is aimed to prepare students for a career in 

industry. It combines industrially relevant research with novel scientific 

investigation and a taught course programme. Students spend most of the 

programme on placement within a sponsoring company. In order to achieve the 

sponsor’s aim it was necessary to engage with scientific, design and operational 

causes of sub-optimal filtration and pre-treatment processes. 

This thesis is presented as three experimental sections (chapters 2-4) and a 

management chapter that discusses the implementation of the knowledge gained 

from the previous chapters (Chapter 5). The experimental chapters are intended 

to be self-contained and formatted in a style similar to that of a journal article. 

However, the word limit typically demanded by journal papers is relaxed in order 

to allow more detailed explanation of relevant scientific concepts and 

methodology. 

The current submission status of the papers is summarised in Table 1. All 

chapters were written by Andrew Upton and edited by Professors Peter Jarvis 

and Bruce Jefferson. All experimental work and data analysis was planned and 

completed by Andrew Upton.  

In order to deliver improvements in the performance of filtration processes across 

Scottish Water it was first necessary to understand where and why filtration 

performance was sub-optimal. The first chapter addresses objective 1 and 

presents novel methods for the performance assessment and diagnosis of 

filtration issues using online data. The investigation critically appraises the 

existing available methods for assessing filtration performance and presents a 

novel data driven decision support system for the prioritisation of preventative 

maintenance of filters. This chapter has been published in the Chemical 

Engineering Journal (Upton et al., 2017). 

Maintaining optimal pre-treatment of water was identified as being key to 

maintaining filtration performance. The second chapter addresses objective 2 

and presents the findings of research into the application of new online charge 
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measurement instrumentation for identifying and maintaining optimal pre-

treatment conditions for robust filtration performance. 

Key legacy constraints in the design of the backwash system in many filters were 

identified. The third chapter presents research on using an alternative filter media 

material in pilot scale experiments to determine how it can be applied to mitigate 

legacy filtration design risks associated with filtration backwash.  

Chapter 5 discusses in more detail how and where the alternative media material 

could be applied to address design limitations across the asset base at Scottish 

Water and the potential savings available. 

Chapter 6 synthesises the investigations presented in the previous chapters into 

a cohesive discussion.  

Chapter 7 concludes the key findings of the research and identifies the key areas 

of research required to further improve filtration performance and operation. 
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Table 1 Current status of paper submissions 

Ch 
No 

Paper 
No 

Objective 
No 

Title Journal Status 

2 1 1 Rapid gravity filtration 
operational 
performance 
assessment and 
diagnosis for 
preventative 
maintenance from on-
line data 

Chemical 
Engineering 
Journal 

Published 

2017  

313 

250-260 

3 2 2 Online zeta potential 
measurement for 
maintaining optimal 
coagulation conditions 
in low turbidity and low 
alkalinity surface water 

Water 
Research 

In 
preparation 

4 3 3 Improving the 
performance of sand 
filters with constrained 
up-wash rates using 
low-density expanded 
clay media. 

Water and 
Environment 
Journal (or 
similar) 

In 
preparation 

5 - 3 Economic improvement 
of filtration performance 
for Scottish Water using 
low density media 

- - 

6 - 1,2,3 Discussion: Implications 
of the work for water 
treatment in the UK 

- - 

7 - 1,2,3 Conclusions and future 
work 

- - 
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2 Rapid gravity filtration operational performance 

assessment and diagnosis for preventative 

maintenance from on-line data 

2.1 Abstract  

Rapid gravity filters, the final particle barrier in many water treatment systems, are 

typically monitored using on-line turbidity, flow and head loss instrumentation. Current 

metrics for assessing filtration performance from on-line turbidity data were critically 

assessed and observed not to effectively and consistently summarise the important 

properties of a turbidity distribution and the associated water quality risk. In the 

absence of a consistent risk function for turbidity in treated water, using on-line 

turbidity as an indicative rather than a quantitative variable appears to be more 

practical. Best practice suggests that filtered water turbidity should be maintained 

below 0.1 nephelometric turbidity units (NTU), at higher turbidity we can be less 

confident of an effective particle and pathogen barrier (EPA, 1998; Logsdon et al., 

2002). Based on this simple distinction, filtration performance has been described in 

terms of reliability and resilience by characterising the likelihood, frequency and 

duration of turbidity spikes greater than 0.1 NTU. This view of filtration performance is 

then used to frame operational diagnosis of unsatisfactory performance in terms of a 

machine learning classification problem. Through calculation of operationally relevant 

predictor variables and application of the Classification and Regression Tree (CART) 

algorithm, the conditions associated with the greatest risk of poor filtration 

performance can be effectively modelled and communicated in operational terms. This 

provides a method for an evidence-based decision support which can be used to 

efficiently manage individual pathogen barriers in a multi-barrier system. 

2.2 Introduction 

Rapid gravity filters provide the final barrier to particulates in most large municipal 

water supply systems. Public health risk arising from large water supply systems is 

primarily associated with short duration contamination or challenge events, such as 

those associated with extreme weather events, which are poorly captured by 

regulatory sampling programmes (Rizak and Hrudey, 2007). Breakthrough and 

transient periods of high turbidity have been associated with increased concentrations 

of oocysts, suspended solids and spore forming bacteria in distribution systems 



 

24 

(Gauthier et al., 2003; Huck et al., 2002b). In addition, turbidity is widely interpreted 

and assumed to indicate removal performance of water-borne environmental 

pathogens (Foladori et al., 2015; Lusardi and Consonery, 1999). Therefore, on-line 

turbidity meters provide a record to evidence filtration performance with a degree of 

granularity far greater than can be achieved by regulatory sampling. 

Turbidity quantifies the extent to which suspended particles scatter light subject to their 

concentration, size and colour (Anderson, 2005). As an optical property, turbidity is 

not a direct health risk but has been associated with the presence of bacteria, the 

shielding of micro-organisms from disinfection, causing additional chlorine demand, 

increasing disinfection-by-product (DBP) formation and promoting biological growth in 

distribution systems (Lechevallier et al., 1981; McCoy and Olson, 1986). In the UK, 

the prescribed value for turbidity is 4 nephelometric turbidity units (NTU) at the 

customer’s tap, with an indicative limit of 1 NTU for water leaving the treatment works 

(Statutory Instruments, 2000). The World Health Organisation suggests that prior to 

chlorination large municipal supplies should average below 0.2 NTU and not exceed 

0.5 NTU (WHO, 2015). A best practice target of 0.1 NTU has been proposed to limit 

the risk of pathogen passage (EPA, 1998). Water utilities aim to maintain low filtered 

water turbidity in order to minimise risk of bacteriological failure, reduce the cost of 

additional chemical dosing and lower DBP formation (Huck et al., 2001). Though 

limitations to the sensitivity of turbidity have been observed in comparison to particle 

count monitoring, its simplicity, reliability and economy ensure that turbidity remains 

the most widely used parameter for monitoring filter performance (Gregory, 1994; 

Hartshorn et al., 2014; Huck et al., 2001). 

Visualisation of turbidity records is routinely used to assess and diagnose performance 

(Martin, 2014). Typically, efforts by operators and scientists to monitor and improve 

the performance of filtration processes in terms of turbidity have used averages, 

percentile statistics, or compliance with a target value over various periods (DeMers 

and LeBlanc, 2003; Egerton, Hall and Watts, 1999; Huck et al., 2001; Logsdon et al., 

2002). To aid consistent and objective management, investigators and practitioners 

have developed turbidity robustness indices (TRIs) to improve understanding of 

performance (EPA, 1998; Hartshorn et al., 2014; Li and Huck, 2008). However, these 

metrics have not routinely been applied in practice. One of the aims of the research 

was to assess the suitability and reliability of these indices. Alternative approaches to 
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performance assessment can be based around the best practice target of 0.1 NTU 

(EPA, 1998). Performance can then be described in terms of the likelihood, frequency, 

and duration of quality target breaches. Such an approach, allows the application of 

basic reliability engineering metrics such as the mean time between failures (MTBF) 

and the mean time to recovery (MTTR) which can be applied to indicate reliability and 

resilience. 

Once detected, a process fault is typically diagnosed by one of the following: by 

reference to prior information in quantitative or qualitative models of the process; by 

using historical data; or by combining one or more approach (Venkatasubramanian et 

al., 2003a). Purely quantitative modelling approaches to diagnosis of filtration 

performance are impractical because the underlying complex non-linear particle 

separation process is not accurately described by theory and measurement. 

Phenomenological and theoretical filtration models often rely on measurements which 

are not routinely collected in full scale water treatment (Gitis et al., 2010; Yuan and 

Shapiro, 2011). Turbidity, for example, is not a quantitative measurement. The 

formalisation of qualitative knowledge into models is challenged by behavioural 

complexity of the process, inflexibility to new conditions and the generation of spurious 

diagnoses (Venkatasubramanian et al., 2003b). Process history based methods have 

been broadly categorised as quantitative or qualitative depending upon the method by 

which historical data are transformed and applied within the diagnostic system 

(Venkatasubramanian et al., 2003c). Current guidance suggests a form of manual 

qualitative trend analysis for rapid gravity filter fault diagnosis. This requires the time-

consuming manual inspection and interpretation of filter monitoring trends in order to 

identify potential issues and confirmation with further physical inspections and process 

investigation (Logsdon et al., 2002). This investigation proposes a quantitative method 

to identify key operational issues associated with elevated filtrate turbidity, applicable 

over extended periods to provide easily interpretable diagnostic models for rapid 

gravity filtration operation and maintenance decisions. Such models can guide 

investigations reducing the time and financial and environmental cost incurred. 

The magnitude of the failure was not included into the analysis. As these methods are 

applied to turbidity levels below what can be resolved organoleptically, using the 

magnitude of failure implicitly assumes a relationship between turbidity and risk. There 

does not appear to be a scientific basis to assume that risk is a consistent function of 
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turbidity between 0 and 1 NTU. Firstly, turbidity is a function of the surface area and 

refractive index of the particles within a given system. Previous investigators have 

concluded that turbidity is not a quantitative indicator of Cryptosporidium removal 

capability and is not strongly related to particle counts (Bridgeman et al., 2002; Huck 

et al., 2002a). Gregory (1994) concludes that conventional turbidity measurements are 

not sufficiently sensitive to particles in the oocyst size range.  There is typically 

inconsistency in the readings given by turbidity instruments of different design 

(Letterman, Johnson and Viswanathan, 2004). The reduction in disinfection efficiency 

by turbidity particles has been shown to be dependent upon the material which 

generates light scatter (Farrell et al., 2018; Léziart et al., 2019).  

Treatment operators and managers need efficient, effective, robust and justifiable 

tools and methods for the aggregation and interpretation of large volumes of filter 

monitoring data into useful information from which evidence based decisions can be 

made (Logsdon et al., 2002). Using a turbidity target, such as the best-practice level 

of 0.1 NTU, we can frame the analysis of control system data as a classification 

problem whereby we identify the conditions associated with greater likelihood of high 

filtrate turbidity. Tree based methods use recursive binary splitting of the feature space 

to fit a stepwise function. Classification trees have been chosen for this application 

based on their primary virtue which is interpretability (James et al., 2013). This is key 

for the efficient and successful retrospective implementation of such a decision 

support tool for operators and managers facilitating more effective management of 

individual pathogen barriers. Further advantages of the classification tree methods are 

that they work effectively using discrete and continuous variables of any distribution 

and are insensitive to outliers (Hastie, Tibshirani and Friedman, 2009).   

The primary criticisms of classification trees are comparatively poor accuracy, a 

tendency to over-fit, instability and poor capture of additive structure (Hastie et al., 

2009). The objective of this investigation was to develop workable methods which can 

be applied to improve operational and preventative maintenance decision making on 

water treatment assets and for this reason interpretability trumps accuracy in this 

application. Though it is likely that alternative classification methods may produce 

better classification accuracy, the generation of the classification tree models allows 

far more broadly accessible communication and sense checking of the diagnosis. The 
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tendency of classification trees to over-fit the data can be mitigated by appropriately 

using k-fold cross validation to estimate the extent of model pruning required.  

Though classification trees have been implemented by numerous algorithms, the two 

most popular methods are the classification and regression tree approach (CART) and 

the C4.5 and C5.0 algorithms (Kuhn and Johnson, 2013). The main distinctions 

between the implementation of these methods are the use of different functions to 

inform the split location, alternative pruning procedures, the possibility for multiway 

splits on categorical predictors and the potential for conversion to rules. CART has 

been widely applied and popular due to its accessibility and ease of interpretation 

when applied to non-linear processes (Hastie et al., 2009). CART has been applied to 

understanding and managing water contamination events and mechanisms (Frederick 

et al., 2016; Thoe et al., 2014). Through recursive partitioning of explanatory variables, 

the conditions associated with an outcome of interest can be simplified and presented 

in an interpretable tree format using the classification and regression tree (CART) 

algorithm (Breiman et al., 1984). The CART algorithm is used in this study to produce 

interpretable models describing the operational conditions associated with the 

occurrence of elevated filtrate turbidity.  

The aims of this paper were therefore to develop intelligent, data-driven decision 

support systems by assessing and developing existing performance metrics for 

summarising the performance of filtration processes in terms of turbidity and utilising 

other typical sources of data to identify the likely causes. 

2.3 Materials and methods 

Data was extracted from the control system at a water treatment plant in Scotland 

treating a mix of two upland surface water sources by coagulation, flocculation, 

dissolved air flotation, rapid gravity filtration and chlorination. A data flow diagram is 

included in the supplementary materials (Figure_Apx 1). Data for the whole of 2015 

describing turbidity, flow, level and head loss for four filters as well as raw water 

temperature and clarified water turbidity data was extracted at 30 second intervals. 

Data handling and analysis was performed using a PostgreSQL 9.4 database, R 3.2.0, 

and RStudio (PostgreSQL Global Development Group, 2015; R Core Team, 2015; 

RStudio, 2017). The key R packages used were lubridate (Grolemund and Wickham, 

2011), ggplot2 (Valero-Mora, 2010), dplyr (Wickman et al., 2021), RPostgreSQL 
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(Conway et al., 2013), caret (Khun et al., 2011) and rpart (Therneau and Atkinson, 

2015). 

Data for individual filters were split into in-service and out of service periods and 

individual filter runs were delineated based on threshold values for flow, level and head 

loss. Prior to analysis the turbidity time series at 30 second intervals was cleaned to 

remove specific artefacts. High turbidity values likely associated with trapped bubbles 

or detachment of biofilm within the sample line were removed, then a Hampel filter 

was applied over the natural log transformed turbidity time series with a window length 

of 15 observations and a threshold of 3 standard deviations. This removed outliers, 

attributable to measurement, data collection and sampling error, from the local trend 

over a rolling window. Removed data was replaced with the local median value. This 

process removed false low and high outliers from bubbles passing through the 

measurement cell preventing them from influencing assessment of the frequency and 

duration of real turbidity spikes in the filtered water. Bubbles can cause interference 

with the measurement of turbidity by causing light scatter as particles would or 

resulting in temporary loss of flow to an instrument. In this case, as is typical, the 

sample was passed through a degasser before the instrument but this was not 

completely successful. 

A number of performance statistics were applied to turbidity data in order to 

communicate the relative merits of different approaches. The simple descriptive 

statistics applied were the mean, median, standard deviation, 90th, 95th and 99th 

percentiles. To describe the distribution of turbidity data over a period of operation a 

number of turbidity robustness metrics (TRIs) have been proposed evolving from the 

original TRIE Equation 14 proposed by Huck ( 2001) 

Equation 14 Original form of the Turbidity Robustness Index E (E is an arbitrarily 

chosen distinctive letter)  (TRIE) metric 

𝑇𝑅𝐼P𝐸 =
1

2
[
𝑇𝑝

𝑇50
+
𝑇50
𝑇𝑔𝑜𝑎𝑙

] 

Where: Tgoal = targeted turbidity value, 𝑇𝑝. =pth percentile turbidity value  (e.g.95th%ile) 

 

The TRI function summarises a distribution of turbidity data in a single value by taking 

a quotient of percentiles as a proxy for variance and right skew, the quotient of the 
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median and a goal value to locate the distribution followed by averaging of these two 

terms. This metric has been applied to demonstrate changes in clarifier and filter 

performance (Hurst et al., 2004; Zhang et al., 2012). Subsequent modifications to 

improve metric performance were proposed in Equation 15, which involved weighting 

the terms of the original metric to provide outcomes more consistent with expectations 

and an algorithm was applied to assign the weights (Li and Huck, 2008). A further 

investigation simplified the allocation of weighting based on the time below the turbidity 

goal Equation 16 (Hartshorn et al., 2014). 

Equation 15 Calculation of Turbidity Robustness Index D (D is an arbitrarily chosen 

distinctive letter) (TRID) metric 

𝑇𝑅𝐼90𝐷 = [𝐴1
𝑇90
𝑇50

+ 𝐴2
𝑇50
𝑇𝑔𝑜𝑎𝑙

] 

Where: 
𝑖𝑓 𝑊 ≤ 𝑁 &  𝑇90 /𝑇50   ≤ 𝑇50/𝑇𝑔𝑜𝑎𝑙    𝐴1 =  0.9, 𝐴_2 = 0.1 𝑒𝑙𝑠𝑒 

𝑖𝑓 𝑊 ≤ 𝑁 &  𝑇90/𝑇50  > 𝑇50/𝑇𝑔𝑜𝑎𝑙   𝐴1 =  0.1, 𝐴2 = 0.9  𝑒𝑙𝑠𝑒 

𝑖𝑓 𝑊 > 𝑁 &  𝑇90/𝑇50  ≤ 𝑇50/𝑇𝑔𝑜𝑎𝑙   𝐴1 =  0.1, 𝐴2 = 0.9 𝑒𝑙𝑠𝑒 

𝑖𝑓 𝑊 > 𝑁 &  𝑇90/𝑇50 > 𝑇50/𝑇𝑔𝑜𝑎𝑙   𝐴1 =  0.9, 𝐴2 = 0.1 

and 
N = 0.5 
and 

𝑊 = (
𝑇50
𝑇𝑔𝑜𝑎𝑙

+
𝑇60
𝑇𝑔𝑜𝑎𝑙

+
𝑇70
𝑇𝑔𝑜𝑎𝑙

+
𝑇80
𝑇𝑔𝑜𝑎𝑙

+
𝑇90
𝑇𝑔𝑜𝑎𝑙

) ∗ 10 

Equation 16 Calculation of Turbidity Robustness Index J (J is an arbitrarily chosen 

distinctive letter) (TRIJ) metric 

𝑇𝑅𝐼𝐽𝑝 = [(1 −
𝐺%

100
) ∗

𝑇𝑝

𝑇50
] + [

𝑇50
𝑇𝑔𝑜𝑎𝑙

∗
𝐺%

100
] 

Where: G% = time below turbidity goal, Tp = pth percentile turbidity 

A new approach to managing filtration can be developed from a binary view of 

performance based on compliance with 0.1 NTU. The simple discrete failure rate 

aggregates two distinct aspects of performance, reliability and resilience. Though 

limited, common metrics can be used to summarise these different aspects of 

performance. Reliability, or the frequency of failure events over a given period, is often 

characterised using the mean time between failures (MTBF) Equation 17. Resilience, 

the time that a system takes to return to acceptable performance when a failure event 

does occur, can be described using the mean time to recovery (MTTR) Equation 18. 
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Equation 17 Mean time between failures (MTBF) 

𝑀𝑇𝐵𝐹 =  
∑ (𝑠𝑖 − 𝑓𝑖−1
𝑖=𝑛
𝑖=0 )

3600 ∗ 𝑛 
 

Where: MTBF = Mean Time Between Failures (hrs), si = time from origin datum for first observation 
within turbidity ith spike > 0.1NTU, fi-1 time from origin datum for final observation within (i-1th) 
turbidity spike > 0.1NTU(seconds)  

Equation 18 Mean time to recovery (MTTR) 

𝑀𝑇𝑇𝑅 =  
∑ (𝑓𝑖  − 𝑠𝑖
𝑖=𝑛
𝑖=0 )

3600 ∗ 𝑛 
 

Where: MTTR = Mean Time To Recovery (hrs), si = time from origin datum for first observation within 
turbidity ith spike > 0.1NTU, fi time from origin datum for final observation within (ith) turbidity spike > 
0.1NTU(seconds)  

In order to facilitate differential diagnosis of operational filtration issues a number of 

relevant variables were derived from the time-stamped observations from other signals 

(see Table 2). Head loss was normalised against a standardised temperature (10°C) 

and flow in order to provide a more useful comparison of media condition using the 

method described by Logsdon et al. (2002). As head loss is strongly correlated with 

the number of hours in service this effect was removed by fitting a second-order linear 

regression model to describe head loss within each filter run in terms of the volume of 

water filtered since the last wash (Equation 19). Prior to fitting the model, outlying head 

loss observations more than 2 standard deviations from the within-run mean were 

removed. An illustrative example of a fitted model is shown in Figure 4. Average r-

squared values for the head loss models in the four filters were 0.98, 0.96, 0.93 and 

0.99 in filters A-D respectively. The coefficients for these head loss models were then 

extracted and used as explanatory features in the diagnostic models. The model 

intercept, used to estimate normalised clean bed head loss, was converted to a z-

score within the group of runs for each filter for use in diagnostic modelling of multiple 

filters. The slope coefficients were used to characterise head loss accumulation and 

change in rate during the run. 

Equation 19 Normalised head loss 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑 𝐻𝑒𝑎𝑑 𝐿𝑜𝑠𝑠 =  𝛽0 + 𝛽1𝑣 + 𝛽2𝑣
2 +  휀 

Where: v = volume filtered since wash, 𝛽𝑖 = regression coefficient as identified by minimising sum of 
squared residuals,  ε = error 
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Figure 4 Illustrative example of a linear model relating normalised head loss to volume 

of water treated. 

Useful information from the potential explanatory variables was then extracted using 

a classification algorithm. An implementation of the CART algorithm was applied to 

build simple explanatory classification models of the conditions associated with “HIGH” 

>0.1 NTU and “OK” ≤ 0.1 NTU filtrate (Breiman et al., 1984). CART applies recursive 

binary partitioning to split a multi-dimensional predictor space of P distinct predictor 

variables X1, X2,…,Xp into J distinct non-overlapping P dimensional rectangular 

regions R1,R2,…,RJ with an assigned classification in the response variable for each 

region. The data is split on the point of an explanatory variable which minimises “risk” 

calculated from the loss adjusted Gini purity. The Gini index is a measure of class 

imbalance (Equation 20). Due to the underlying public health objective of water 

treatment false negative classifications are more undesirable than false positives. 

Therefore, a loss matrix was applied during model training which weighted the penalty 

of false negatives by a factor of 10 giving the loss adjusted Gini purity. Portioning is 

then carried out such that the location s on the predictor Xj is selected recursively such 

that the loss adjusted Gini purity is maximised. At each step, all possible locations for  

s on all P predictor variables is assessed and the point with the maximum value for 

loss adjusted Gini purity is selected. Regions are partitioned recursively until the 



 

32 

number of observations in each R is less than 20, otherwise the splitting would result 

in a terminal node of fewer than 7 observations.  

Equation 20 Standard Gini index for node purity 

𝐺 =   ∑ �̂�𝑚𝑘(1 − �̂�𝑚𝑘),

𝐾

𝑘=1

 

Where:  

�̂�
𝑚𝑘

 = proportion of observations in the mth region that are from the kth class 

In order to simply and effectively describe the underlying data the size of the 

classification model tree needs to be restricted. The extent to which the model is 

pruned is determined by the complexity parameter which is the cost assigned to each 

additional terminal node. The smallest tree that minimises the sum of the loss adjusted 

Gini purity and complexity cost is then selected. The value of the complexity parameter 

was tuned using 10-fold cross validation using the area under the receiver operating 

characteristic (ROC) curve to assess model fit and select the best value. The 

performance of the final model was tested by applying the model to 20 percent of the 

data retained for testing by comparing the predicted and observed classes.  

The CART algorithm was used to review a period of filter operation and characterise 

the occurrence of elevated turbidity in order to aid understanding of past filter 

performance. A classification tree model was trained for each filter each week where 

the probability of exceeding 0.1 NTU was greater than 1 in 1000, which is equivalent 

to a single 30 second measurement in 20.16 hours. Failure rates below this level are 

of less concern for public health, and less predictable, as error in measurement and 

data systems is likely to contribute a greater proportion of failing measurements as the 

total failure rate decreases. The approach was then tested again over each monthly 

period looking at all of the filters in the bank in order to explore more general 

operational issues common between filters over an extended period. 
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Table 2. Predictive features for CART diagnostic model. 

Explanatory 

variable 

Description 

Hours In 

Run 

The time (hours) elapsed between the start of the filter run and the 

time at which turbidity is observed. Performance issues can often be 

linked to issues during the ripening or breakthrough phases of the 

filter cycle. If failure is more likely later in the run it may indicate that 

breakthrough is occurring, in which case shortening the filter run 

could reduce water quality risk. If turbidity is high early in the run it 

may indicate that the effectiveness of pre-treatment should be 

investigated. 

Flow Trend A two-hour average flow (l/s) to the filter bank captures the hydraulic 

loading to the treatment system. If high hydraulic loading is 

predictive of high turbidity it may indicate that a filter or process 

stage is hydraulically overloaded. 

Max Bank 

Flow 

Increase 

The maximum filter bank flow (l/s) increase over 30 minutes during 

previous 90 minutes. This captures increases in hydraulic loading to 

the whole system. Rapid changes in flow through the treatment 

process can cause control and performance challenges. If rapid flow 

changes are predictive of high turbidity, then this may indicate that 

control philosophies should be modified to reflect the sensitivity to 

flow rate changes. 

Bank Flow 

Proportion 

The proportion of total flow to a filter bank treated by an individual 

filter indicates if the distribution of flow between filters is associated 

with performance. If the proportion of flow treated is predictive of 

high turbidity it may indicate that a filter is overloaded and that the 

hydraulic control should be adapted to equalise loading between 

filters or to reduce loading to a filter with a specific condition issue. 

Flow Shock The difference between the instantaneous rate of flow and the 

average over the run (l/s) captures periods of additional hydraulic 
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loading such as those during washing of another filter. Hydraulic 

shocking causes deposits to shear from filter media and break 

through a filter bed. If hydraulic shocking is predictive of high 

turbidity, improvements to hydraulic control of the bed may improve 

water quality risk. 

Clarified 

Turbidity 

Trend 

An average clarified turbidity  since the start of the run provides an 

indication of the solids loading. Turbidity in the filter influent is 

indicative of solids loading. If high solids loading is resulting in high 

turbidity, it may indicate that improvements to the performance of 

pre-treatment processes may reduce water quality risk. 

Clarified 

Turbidity 

Spike 

The maximum difference between 30-minute average clarified 

turbidity and “Clarified Turbidity Trend” experienced since the start 

of the run to capture shock solids loading. In some processes, 

inconsistency in the quality of clarified water can be caused by poor 

control de-sludging or other cyclic control effects. If short duration 

turbidity spikes in the influent water are correlated with high turbidity 

in the filtered water then it may indicate that improved control of 

upstream processes may reduce water quality risk. 

Temperature Water temperature is known to affect particle separation and filter 

washing. If poor performance is correlated with high temperature, it 

may indicate that the media is not being effectively cleaned when 

backwash viscosity is reduced. If poor filter performance is 

correlated with low temperature, it may indicate that low collision 

rates and collision energy is inhibiting treatment performance. 

Temperature was measured in the raw water inlet. 

Clean Bed 

Head Loss 

Head loss at the start of the run normalised for flow and temperature 

as indicated by the intercept of the head loss model Equation 19. 

Normalised clean bed head loss is a good indicator of the 

effectiveness of filter washing and of media loss. If low clean bed 

head loss is correlated with high turbidity it may indicate that media 

loss should be checked. If elevated filter effluent turbidity is 
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associated with high clean bed head loss then it may indicate that 

filter backwash performance may need investigating. 

Scaled 

Clean Bed 

Head Loss 

The within filter z score of “Clean Bed Head Loss” used to capture 

variation in post-wash media condition rather than differences 

between filters. Clean bed head loss may not be directly comparable 

between filters either due to physical differences between filters or 

sensor calibration. It is possible therefore to scale clean bed head 

loss estimates to indicate the variation in this parameter within the 

range seen for an individual filter. This may provide a more effective 

predictor of elevated turbidity. 

Head loss 

Coefficient 1 

The growth m/m3 of normalised head loss over the course of the 

filter run indicates the rate at which hydraulic resistance 

accumulates within the bed. The linear coefficient indicates the rate 

of head loss accumulation with volume of water treated. High rates 

of normalised head loss accumulation may indicate higher solids 

loading. 

Head loss 

Coefficient 2 

The change in rate of hydraulic resistance accumulation with volume 

filtered over the course of a filter run is symptomatic of the 

distribution of deposited solids within a filter bed. If breakthrough is 

associated with a negative quadratic term, then this may indicate 

that the rate of head loss accumulation is declining, and solids might 

be breaking through the filter.  

2.4 Results 

2.4.1 Filtration performance data 

An overview of the turbidity data for the four filters assessed is presented in time series 

and cumulative distribution format (Figure 5). The time series indicates higher turbidity 

and therefore worse performance at the start and end of the year. The cumulative 

distribution indicates that filters A and D are the best and worst performers, 

respectively (Figure 5). To provide a more detailed view for comparison, data for every 

10th week was selected and plotted both as a time series (Figure 6) and a cumulative 

distribution (Figure 7). In week 1, it can be seen that turbidity from filters B-D 
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deteriorates rapidly during the filter run and exhibits several turbidity spikes throughout 

the run, with the data for cumulative distribution of turbidity clearly indicating the worst 

performance for filter D. Improved performance can be seen through weeks 11 and 21 

where there was lower turbidity. By week 31, turbidity spiking was only evident for filter 

C. No large turbidity spikes were evident during week 41. During week 51 turbidity 

appeared to deteriorate during the run for filter D. These examples illustrate variation 

in turbidity profiles and distributions in filters with inconsistent performance. 
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Figure 5 Filtrate turbidity data for 2015 plotted as a time series (A) and cumulative distribution (B). For clarity, part A has been included 

at larger size in the supplementary materials (7.1A.2). Target value of 0.1 NTU is indicated by orange line. 
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Figure 6 Turbidity time series for selected weeks to demonstrate variation in filter performance. Target value of 0.1 NTU is indicated by 

orange line. 
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Figure 7 Cumulative turbidity distributions for selected weeks to demonstrate variation in filter performance. Target value of 0.1 NTU 

is indicated by orange line. 
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2.4.2 Assessment of performance metrics 

A number of summary statistics including mean, median, standard deviation, 90th, 

95th and 99th percentiles, were calculated using the filtrate turbidity data for each 

week of the 2015 period (Figure 8). Similarly, values returned by the TRID and TRIJ 

metrics at the 90th, 95th and 99th percentile have been compared for the same data 

(Figure 8). Superficially, there is a broad consensus in the performance metrics which 

show typically poor performance at the start of the year, which improves mid-year 

before deteriorating at the end of the year. However, Spearman’s rank correlations 

between metric scores illustrate the varying levels of agreement (Table 3). The TRIJ 

metric at all percentiles shows greater agreement with the mean than the TRID. 

However, the standard deviation is more strongly associated with the TRID than the 

TRIJ. Though both the TRIJ and TRID show a strong relationship between the values 

returned for different percentiles, greater consistency between metrics applied at 

different percentiles is shown by the TRIJ metric than the TRID. Only moderate 

correlations between TRID and TRIJ scores are apparent indicating diverging 

perspectives on filtration performance. Using the same data, the failure rate, mean 

time between failure and mean time to recovery based on a filter achieving the best 

practice target of 0.1 NTU are shown in Figure 9. The failure rate shows a pattern 

similar to the traditional performance metrics, with performance improving during the 

first part of the year before declining slightly at the end. The number of hours that the 

filter operates, on average, before exceeding 0.1 NTU clearly shows variation in the 

reliability of different filters (Figure 9 B). Filter A is shown to be most consistently 

reliable and filter D is shown to have periods of both good and poor reliability. For 

much of the year, however, filters B and C exhibit a turbidity spike greater than 0.1 

NTU at least once every two days. The average duration in hours of turbidity spikes, 

illustrative of process resilience, indicates that turbidity spikes are typically less than 

half an hour in duration (Figure 9 C). However, this is not the case for filter D at the 

start of the year, or occasionally in filter A, which both exhibit periods above 0.1 NTU 

lasting over an hour. The expression of performance in terms of rates and time is more 

intuitively comparable than values derived from weighted quotients of percentiles of 

the turbidity distribution. 
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Figure 8 Values returned by performance statistics. The points corresponding to the 

six selected weeks are circled. Each sub-plot is reproduced at a larger size in the 

supplementary materials (7.1A.3). 
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Table 3 Spearman’s rank correlation coefficient between performance statistics 
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MEAN 1.00 0.81 0.63 0.90 0.85 0.74 0.52 0.49 0.46 0.97 0.98 0.97 

MEDIAN 0.81 1.00 0.20 0.55 0.47 0.33 0.03 -0.01 -0.03 0.85 0.82 0.74 

STDEV 0.63 0.20 1.00 0.82 0.89 0.96 0.92 0.93 0.94 0.51 0.55 0.66 

90th PCTL 
(T90) 

0.90 0.55 0.82 1.00 0.98 0.88 0.79 0.75 0.70 0.81 0.83 0.88 

95th PCTL 
(T95) 

0.85 0.47 0.89 0.98 1.00 0.94 0.85 0.84 0.79 0.75 0.77 0.84 

99th PCTL 
(T99) 

0.74 0.33 0.96 0.88 0.94 1.00 0.86 0.87 0.91 0.63 0.67 0.77 

TRI90D 0.52 0.03 0.92 0.79 0.85 0.86 1.00 0.98 0.92 0.39 0.42 0.53 

TRI95D 0.49 -0.01 0.93 0.75 0.84 0.87 0.98 1.00 0.95 0.36 0.40 0.5 

TRI99D 0.46 -0.03 0.94 0.70 0.79 0.91 0.92 0.95 1.00 0.34 0.38 0.51 

TRI90J 0.97 0.85 0.51 0.81 0.75 0.63 0.39 0.36 0.34 1.00 1.00 0.96 

TRI95J 0.98 0.82 0.55 0.83 0.77 0.67 0.42 0.40 0.38 1.00 1.00 0.97 

TRI99J 0.97 0.74 0.66 0.88 0.84 0.77 0.53 0.50 0.51 0.96 0.97 1.00 
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Figure 9 Performance assessment based on a binary classification of turbidity. The points corresponding to the six selected weeks 

are circled 

 





 

45 

2.4.3 Filter performance diagnosis 

Diagnosis of the cause of poor filtration performance is key to managing and reducing 

water quality risk. In order to demonstrate the effectiveness of classification trees, an 

example of a weekly model for Filter D Week 21 is shown in Figure 10. Each circular 

node describes a split in the data describing filter operation. The first split divides 

observations into those which are associated with a hydraulic shock, whereby the 

instantaneous flow rate was greater than 1.2 times the mean flow for the filter over the 

run. Such conditions may have resulted in the shearing of flocs and deposits within 

the bed.It was this point that most effectively split the turbidity observations in the 

training data into those which were greater than or less than 0.1 NTU. Each 

rectangular leaf node describes the performance of the filter given the particular 

conditions as described by the nodes above. Three lines of text in the leaf node 

describe the probability of a “HIGH” (>0.1 NTU) turbidity reading, the complimentary 

probability of “OK” turbidity and the overall probability over the period of interest that 

those conditions would be observed. Based on the diagnostic model presented in 

Figure 10 the priority actions to manage filtered water turbidity would be to reduce the 

hydraulic shocking or run length. The simplest short-term intervention would be to 

reduce filter run time to less than 42 hours. However, to avoid hydraulic shocking and 

improve water efficiency, modifications to hydraulic control would be beneficial. The 

filters use inlet penstocks and a hydraulic step to control flow split between filters. 

Outlet flow control for the filters is modulated to maintain a level set point in the 

individual filter using a Proportional-Integral-Derivative (PID) control loop. An interim 

risk reduction would be to adjust parameters such that the volume of the tank was 

used to buffer the rate of flow change. Ultimately the hydraulic control philosophy of 

the filters is unsatisfactory and would benefit from modification such that the flow from 

all the filters was adjusted to maintain a level in the common inlet channel and equal 

flow across filters in service.   
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Figure 10 Example classification tree model for Filter D Week 21 

 



 

47 

The outputs from the fitted weekly models showed that they provided a highly accurate 

description of the conditions associated with correct classification for >75% of 

observations in the worst performing model and average accuracy between 94% and 

99% depending on the filter (Table 4). Average true positive rates for high turbidity 

values were greater than 91% for all filters. The classification tree approach is not 

limited to informing on week to week operation of individual filters. An additional 

categorical variable indicating the specific filter was added to the model and clean bed 

head loss was scaled for each of the filters using a z score. 

Table 4 Summary of weekly models for individual filters performance 

Filter Count  
(weeks) 

accuracy 
(min,  ave, max) 

sensitivity  
(min, ave, max) 

specificity  
(min, ave, max) 

Filter A 18 0.91, 0.99, 1 0.74, 0.93, 1 0.91, 0.99, 1 

Filter B 32 0.8, 0.96, 1 0.47, 0.91, 1 0.75, 0.95, 1 

Filter C 42 0.76, 0.97, 1 0.56, 0.91, 1 0.71, 0.97, 1 

Filter D 35 0.81, 0.94, 1 0.81, 0.96, 1 0.78, 0.92, 1 

We can see that the monthly models typically have good accuracy >0.75, however 

model sensitivity (from the true positive rate) was lower in some of the months that 

experienced better filter performance (Table 5). In July, only 55% of high observations 

were explained by the model however, the failure rate was only 0.1%. The 

classification tree model for the month of January was plotted to provide an example 

(Figure 11). This shows that those filters treating more than 24% of the flow to the 

bank had a 0.48 probability of producing “HIGH” turbidity water after 15 hours, 

indicating that earlier washing was required at this hydraulic loading. At the case study 

WTW, splitting of the flow to the filters was controlled by an upwards penstock at the 

inlet to each filter box, while outlet flow is controlled to maintain a constant level within 

the filter. There was a 0.28 probability of high turbidity in the first hour and 20 minutes, 

suggesting an undesirably long ripening period. Between 1.3 and 15 hours into a run, 

filter D had a 0.19 probability of producing “HIGH” turbidity water if it had experienced 

a spike in clarified water turbidity of greater than 0.12 NTU above the trend. 

Classification trees such as those demonstrated here can effectively identify and 

clearly communicate the conditions associated with poor filtration performance. This 

can aid the identification of activities to manage filtered water quality. On the basis of 

the diagnostic model presented in Figure 11 there are multiple performance issues 

which would benefit from the following priority actions: 
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• High turbidity is associated with unequal hydraulic loading.  

o In this system the hydraulic loading to the filters can be modified by: 

▪ Adjusting the set-points of the inlet penstocks. 

▪ Upgrading the hydraulic control philosophy. 

• High ripening turbidity: 

o Investigate backwashing. Residual turbidity within the filter at the end of 

the backwash cycle may indicate insufficient rinsing of deposits from the 

bed.  

o Reduce the rate of flow change at the start of a run. Known as a “slow 

start”, a low initial filtration rate can improve the filter coefficient during 

the ripening phase. 

o Consider investing in a run-to-waste so that poor quality initial water 

does not enter supply. 

• Spike loadings of turbidity in the clarified water appear to be linked with high 

turbidity from filter D.  

o Further investigation into the condition of filter D including media cores 

and backwash observation would be recommended. 

o Investigation into the cause of elevated clarified water turbidity is 

recommended. 
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Figure 11 Example classification tree model filter bank in January 2015 
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Table 5 Summary of monthly models for individual filters performance 

Month >0.1 NTU % accuracy sensitivity specificity 

Jan 15.00 0.75 0.96 0.70 

Feb 7.10 0.85 0.81 0.86 

Mar 2.60 0.94 0.93 0.94 

Apr 1.50 0.96 0.74 0.96 

May 0.80 0.99 0.84 0.99 

Jun 2.90 0.95 0.87 0.96 

Jul 0.10 1.00 0.55 1.00 

Aug 0.30 1.00 0.89 1.00 

Sep 0.20 0.99 0.95 0.99 

Nov 1.70 0.98 0.85 0.98 

Dec 2.40 0.92 0.81 0.92 

2.5 Discussion 

The cyclic operation and dynamic characteristics of filtration typically produce a 

fluctuating turbidity trend from which a relative comparison of performance may 

not be visually intuitive (Figure 5 and Figure 6). To aid clearer comparison, 

turbidity data are often plotted as a cumulative distribution, though information is 

lost describing the time and operational context (Figure 5). The underlying 

processes giving rise to filtrate turbidity vary as do properties of the resultant 

distributions (Figure 6 and Figure 7). An appropriate method for the quantification 

of performance through the aggregation of this data is important for the effective 

management of the treatment process which requires the effective comparison 

of performance over time and between filters in order to direct preventative 

maintenance. 

2.5.1 Performance assessment 

Though widely used, the average turbidity (mean or median) is not the most 

appropriate property of the distribution upon which to compare filter performance 

(Figure 8 A, B). This is because unless a filter is suffering acute and prolonged 

periods of poor performance, average turbidity is likely to be below 0.2 NTU. 

Without visibility of the underlying distribution, it is not clear if differences in mean 

turbidity arise from turbidity spikes of concern or bias at the lower end of the 

measurement range. For example, average turbidity of 0.05 NTU from one 

system or period of operation cannot consistently be assumed to represent lower 
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risk than turbidity of 0.07 NTU from another. The insensitivity of the mean and 

median statistics are demonstrated when comparing the performance of filters B 

and C during weeks 31 and 41, where both statistics fail to capture the significant 

spiking which occurs in the filtrate turbidity of filter C during week 31 (Figure 6 

and Figure 7). The median and mean are sensitive, however, to the comparatively 

higher turbidity recorded during normal operation in filter B which, with the 

limitations of the measurement, hold little useful information and are likely to arise 

from measurement error. 

The standard deviation of turbidity (Figure 8 C) is generally effective and 

appropriate for comparing the variation in the right tailed distributions of filtrate 

turbidity during inconsistent performance. However, the statistic may not always 

appropriately compare distributions with varying kurtosis. It is common to select 

a high percentile value with which to compare performance (Figure 8 D, E, F). As 

turbidity time series exhibit inconsistent skewness and kurtosis between groups 

and over time, comparison of a single percentile value will not be a consistent 

basis for comparison (Figure 7). Two distributions, one with a short fat tail and 

another with a long thin tail may return an equal 95th percentile but reflect quite 

different turbidity risk. A process may completely fail for 4% of the period without 

impacting on the performance as measured by the 95th percentile. The choice of 

a high percentile (T90 - T99) affects the relative assessment of performance 

between filters B and C during week 1 (Figure 8 D, E, F). The 90th and 95th 

percentiles for filter B are greater than those of filter C, however, the 99th 

percentile for filter C is greater than filter B. There remains no clear empirical or 

theoretical link that supports the assessment of overall performance on the basis 

of a single percentile value. 

Turbidity robustness indices have developed from the TRIE with additional terms 

and weighting procedures but fall short of addressing distortions arising from 

variation in tail shape. The relative performance of filters as described by the 

TRID (Li and Huck, 2008) and TRIJ (Hartshorn et al., 2014) metrics are illustrated 

in Figure 8 (G-L). The first term of the TRI metrics takes the quotient of two 

percentiles in a manner analogous to the uniformity coefficient applied to filter 
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media (Logsdon et al., 2002). Such an approach may function when comparing 

similarly shaped distributions, but is not reliable when the skewness and kurtosis 

of the underlying distributions are inconsistent. As a lower median turbidity 

(denominator) will result in a larger quotient there is an unjustified penalty for 

better average turbidity given the same high percentile value. The weakness of 

the TRID in this regard is clear when comparing week 1 (Figure 8 G-I) where filter 

D has a TRI90D less than for filters B and C which is clearly counter intuitive upon 

examination of the time series and distributions (Figure 6 and Figure 7). The 

second term common to the TRI metrics takes the median and divides it by the 

goal turbidity, typically between 0.1 and 0.3 NTU. Assuming a consistent target 

turbidity, this term does not serve to usefully differentiate performance any more 

than taking the median. The differentiating elements of the original TRIE metric 

could therefore be simplified to T90/T50 + T50 which, given the limitations of 

using percentiles, is unlikely to be the best approach for comparing performance. 

Though the additional procedures for weighting terms implemented in the TRID 

metric remove some cases where nonsense TRIE values would be returned, the 

examples identified demonstrate that the method is fallible. Though the TRIJ 

introduces a simpler and more stable method for weighting terms, the use of 

arbitrary percentile values continues to exhibit an influence on the relative 

assessment of performance between filters with turbidity distributions of different 

shape (Figure 8 J-L). 

A more appropriate approach is to apply best practice guidance which indicates 

that turbidity greater than 0.1 NTU is indicative of a filtration performance issue 

(EPA, 1998). Breaching this limit can be considered as “failure”, such a binary 

approach is appropriate given uncertainties in the relationship between turbidity 

and water quality risk, allowing a simple and effective way to incorporate 

performance comparison on the basis of time. The failure rate against a goal of 

0.1 NTU is a good metric for filtration performance as it is understandable, 

comparable, insensitive to measurement error and easily applied (Figure 9 A). 

For example, in week 1 filter D spent almost twice as much time over 0.1 NTU 

than filter B. The reliability of a filtration process can be compared by contrasting 

the average duration of acceptable performance between turbidity spikes 
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(Equation 17). The performance of filters spiking more frequently can be 

described as being less reliable. The MTBF shows that filter A typically appears 

to be more reliable than the other filters throughout the year, with a longer 

average interval between turbidity spikes (Figure 9 B). Poor performance may be 

a result of frequent spikes in filtrate turbidity, or less frequent but more extended 

periods of poor performance, the causes of which are likely to be functionally 

different and therefore of interest in the management of the process. Insight in 

this regard can be gained by examining the interval between turbidity events. 

However, it should be acknowledged that as high turbidity events are likely to 

cluster, the mean time between failures is an indicator only. The resilience of the 

performance of a filter can be compared by contrasting the average duration of 

turbidity spikes observed (Equation 18). Filters which on average return to 

acceptable performance in a shorter time can be considered to be more resilient. 

Filter D can be seen to be the least resilient early in the year with turbidity spikes 

lasting on average over an hour (Figure 9 C). 

The alternative measures of filtration performance described offer a sensible and 

intuitive approach to characterising the aspects of performance which are 

effectively measured using turbidity. The main advantage of these approaches is 

that they do not depend on consistent skewness of the turbidity distribution to be 

comparable. Furthermore, when applying the failure rate (MTBF and MTTR) there 

is no reliance on an implicit assumption that risk is a consistent linear function of 

turbidity. There is merely an assumption that turbidity above 0.1 NTU is 

consistently indicative of greater risk than turbidity less than 0.1 NTU. 

Assessment of filter performance on the basis of turbidity could be further 

improved by the effective definition of a risk function for turbidity. 

2.5.2 Diagnosis 

In order to effectively manage filtration performance, an understanding of the 

causes of poor performance is required. Diagnosis of filtration issues is typically 

achieved through interpretation of turbidity time series and normalised starting 

head loss. Approaches to the interpretation of turbidity trends over the period of 

a filter run are well described and have been used to characterise a number of 
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filtration issues (Logsdon et al., 2002). However, these methods are manual, time 

consuming and subjective which can restrict their application. Through 

automation of the analysis, such interpretation can be applied much more broadly 

to understanding marginal treatment performance concerns. Addressing such 

performance issues in individual treatment stages by preventative maintenance, 

the likelihood of acute compound treatment failures can be reduced 

(Venkatasubramanian et al., 2003a).  In this research the assessment of filtration 

performance as “HIGH” if >0.1 or “OK” if ≤ 0.1 NTU facilitates the framing of 

diagnosis of these issues as a machine learning classification problem, where 

other sources of process data are used to build explanatory models. The CART 

algorithm allows the training of simple and interpretable classification tree models 

which effectively describe the conditions which are associated with greater risk 

of poor filtration performance. These models can be readily used to review the 

operation and control of filtration processes. The classification and regression 

tree algorithm provides an easily interpretable output for non-linear processes 

which are affected by outlying observations, conditions which challenge linear 

diagnostic models (James et al., 2013; Sotomayor and Odloak, 2005). 

The common operational causes of poor filtration performance such as hydraulic 

balancing, surging, ineffective backwashing, excessively long filter runs and 

ineffective pre-treatment are well known (Logsdon et al., 2002). Explanatory 

features describing these issues can be calculated from typical operational 

monitoring signals at a WTWs (Table 2). Supplying these features to the 

algorithm, rather than raw data trends, results in more interpretable models which 

are readily translated into remedial actions. As an example, it was evident that 

high turbidity from filter D during week 21 occurred with an 80% probability during 

times of hydraulic shock of more than 19.3% later than 36.9 hours into the filter 

run (Figure 10). After 42.4 hours, a smaller hydraulic shock of only 10% was 

associated with a 52% chance of turbidity spiking above 0.1 NTU. Flow increases 

are known to cause additional shear, increasing the rate of detachment of 

particles from the media, with the effect growing more pronounced later in the run 

(Cleasby, Williamson and Baumann, 1963; Han, Fitzpatrick and Wetherill, 

2009a). From this, it is possible to infer that filter performance could be improved 
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at this time by improving flow distribution or shortening the filter run. The high 

accuracy, sensitivity (true positive rate) and specificity (true negative rate) of the 

models tested provides confidence that amelioration of the conditions suggested 

by the model are likely to improve performance (Table 4). 

In January, across the filter bank, poor performance occurred in a number of 

circumstances (Figure 11). Typically, there was high turbidity in the first 1.3 hours 

of the filter run. A number of issues have been associated with extended ripening 

periods, these include over-washing, low solids in the clarified water, low 

temperature, hydraulic overloading and ineffective particle destabilisation 

(Logsdon et al., 2002; Suthaker, Smith and Stanley, 1998; Tobiason and Melia, 

1988). Reducing the initial rate of filtration is a typical process intervention in such 

circumstances, and more modern filters typically have a run to waste facility 

(Logsdon et al., 2002). Flow distribution to the individual filters was clearly 

important later in the run with those treating more flow exhibiting greater 

probability of breakthrough later in the run. Balancing flows to the four filters is 

likely to improve the performance. Filter D was more likely to produce high 

turbidity water during normal filter operation after the ripening period particularly 

in the event of a sudden turbidity loading from a clarification issue. Further 

investigation indicated that flows to filter D were higher than those to the other 

three filters making it more vulnerable to fluctuations in clarified water quality. The 

simple tree model shown in Figure 11 describes conditions associated with 96% 

of the elevated turbidity observations during January, clearly identifying 

operational opportunities for improving performance. The monthly models were 

successful at describing challenge conditions for the bank of filters with accuracy 

and sensitivity typically over 80%, consistently demonstrating the potential for 

useful insight for process management (Table 5). 

Though the methodology discussed has been shown to identify a range of issues 

related to poor performance, certain types of process fault may not be apparent 

using this approach. For example, long-term changes to filter characteristics 

which occur uniformly across filters. This includes media erosion which typically 

takes place over years and so is not likely to be captured. Rapid changes, such 
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as sudden loss of media or change in backwash performance which impact on 

performance should be indicated by the influence of normalised clean bed head 

loss in the diagnostic model. 

Other investigations focussed on other processes have developed and employed 

more sophisticated approaches to fault diagnosis and adaptive model based 

control (Venkatasubramanian et al., 2003a; Kim et al., 2013; Foscoliano et al., 

2016; Tidriri et al., 2016). Despite the additional capabilities of many such 

historical data driven control and diagnostic systems described in the literature 

there remains an implementation gap. By-definition, such methods are likely to 

be implemented through integration of software with existing assets and control 

systems. Interaction with existing proprietary control systems is awkward or costly 

by design. An inherently simpler tree-based method as described can flexibly 

facilitate operators and engineers to deliver performance improvements in many 

distributed assets with considerably lower barriers to implementation. 

2.6 Conclusions 

It is the conclusion of this investigation that: 

• Simple performance metrics which describe the likelihood, frequency and 

duration of turbidity spikes using compliance rate, mean time between 

failures and mean time to recovery provide an appropriate and effective 

indication of filter performance, avoiding spurious scoring and 

comparisons arising from current methods.  

• The diagnosis of operational causes of elevated filtrate turbidity were 

framed as a machine learning classification problem which is a more 

efficient and scalable approach than traditional manual interpretation of 

turbidity time series. The CART algorithm is demonstrated to be an 

effective diagnostic method generating highly accurate models describing 

conditions associated with elevated filtrate turbidity. Weekly models for 

individual filters and monthly models across the whole filter bank typically 

described conditions associated with elevated turbidity with accuracy over 

90%.  
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• By engineering and using operationally relevant predictor variables these 

diagnostic models were intuitive to interpret and translate into operational 

and preventative maintenance decisions.  

• A weekly model for an individual filter was shown to clearly identify and 

communicate that elevated turbidity was largely associated with hydraulic 

loads greater than 1.2 times the within run average after 36.8 hours of 

operation or hydraulic shocks greater than 1.1 times the within run average 

after 42.4 hours of operation. Identifying these conditions clearly indicates 

that that filter run times or hydraulic load fluctuations late in the run should 

be reduced. A monthly model describing performance across the filter 

bank identified that high turbidity occurred during the ripening of all filters 

and that turbidity breakthrough was an issue after 15 hours except where 

filters were hydraulically underloaded compared to their neighbours. 

Furthermore, Filter D exhibited elevated turbidity earlier in the run during 

clarified turbidity spikes. Such conditions indicate that flow balancing, and 

the optimisation of pre-treatment and backwashing should be investigated 

to deliver performance improvements.  

• The methods described can be readily applied to inform operational and 

preventative maintenance decisions. 
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3 Online zeta potential measurement for maintaining 

optimal coagulation conditions in low turbidity surface 

water 

3.1 Abstract 

Zeta potential is an established tool for observing and informing charge-neutralisation 

conditions required for effective coagulation of pathogens and natural organic matter 

(NOM). Theory and practice has established that contaminant minimisation should 

occur within a range of zeta potentials close to the iso-electric point, but the factors 

controlling the boundaries of this region are not well understood. Variation in sensitivity 

to zeta potential window was observed and modelled using on-line monitoring data 

from a full-scale water treatment works (WTW). Residual charge of only ±5 mV was 

shown to result in deterioration in performance of clarification and filtration processes 

suggesting that online measurement of zeta potential can provide a sensitive measure 

of coagulation performance. Explanatory models and simulation indicated that the size 

of the optimal zeta potential window varied with temperature, flow rate, turbidity, NOM 

concentration and pH. Supplementary jar testing suggested that, depending on 

conditions, performance deterioration with slight changes of zeta potential were driven 

by changes in secondary mechanisms including collision rate, adsorption and floc 

strength. These results provide a basis for greater understanding and improved 

operation of non-ideal reactors and more sensitive control of coagulation processes. 

This may potentially enable the more effective and economic operation of coagulation 

systems in a charge neutralisation regime with potential for reducing capital costs, 

chemical use and sludge.  

3.2 Introduction 

The effective particle destabilisation by coagulation-flocculation is critical for 

successful removal of particles, pathogen and natural organic matter (NOM) removal 

in conventional clarification-filtration water treatment processes used in most large 

water supply systems (Huck et al., 2001; Lechevallier et al., 1981). Failure to 

effectively remove particles and dissolved organic matter can result in excessive 

consumption of chlorine and shielding of micro-organisms during disinfection, as well 

as increased potential for disinfection by-product (DBP) formation (LeChevallier, 

Evans and Seidler, 1981; Golea et al., 2017). The behaviour of colloidal particles is 
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governed by attractive and repulsive forces. Particles are stable in natural waters 

predominantly as a result of their hydrophilic nature and from electrostatic repulsion 

(Bratby, 2016). Interaction between the hydrated surfaces of hydrophilic colloids and 

the consequential aggregation is inhibited by the layer of water molecules. Attractive 

van der Waals forces are driven by the properties of the colloid as accounted for by 

the Hamaker constant. Repulsive forces are a product of surface charge and ionic 

properties of the aqueous phase. The accumulation of counter-ions in two layers, at 

the surface and in a diffuse layer of the aqueous phase in proximity to a charged 

particle gives rise to electrostatic stability. Colloids can be stable in water through 

retaining surface charge or hydration. Counter ions held fixed at the colloid surface 

are known as the Stern layer. The thickness of this layer is defined as the Stern plane 

and is the distance from the colloid of ½ the radius of the counter ion. Ions outside the 

Stern plane but still co-ordinated by colloidal charge make up the diffuse layer. Due to 

the difficulty in directly measuring the potential at the Stern plane, the potential at the 

shear plane between Stern and diffuse layers, known as the zeta potential, is used 

instead (Bratby, 2016). The net effect of van der Waals attraction and double later 

repulsion forces are described by DLVO (Derjaguin and Landau, Verwey and 

Overbeek) theory (Derjaguin and Landau, 1941; Verwey, 1947).   

Coagulants destabilise charged colloids by compressing the double layer of counter 

ions, adsorbing onto the surface of colloids or enmeshing colloids in precipitate. After 

dosing, traditional trivalent aluminium and iron salts transition from free ions to 

insoluble metal hydroxide precipitates which are more effectively adsorbed at the 

colloid surface (Bratby, 2016). Due to the complexity and difficulty in observing 

interactions between coagulant hydrolysis products and ligands within natural waters, 

a quantitative description of coagulant demand based on first principles which is 

applicable in practice remains elusive (Davis and Edwards, 2014; Ratnaweera and 

Fettig, 2015). Approaches to coagulation and flocculation can be broadly categorised 

in two ways: 1) sweep flocculation; and 2) charge neutralisation. In sweep flocculation, 

a higher pH is maintained to promote the precipitation of the metal salt, increasing the 

rate of particle collisions and resulting in entrapment of particles and colloid within 

metal hydroxide precipitates (Hendricks, 2006). Alongside this, adsorption of dissolved 

compounds onto the solid precipitate also occurs. The charge-neutralisation regime 

operates at a lower pH than sweep flocculation and are conditions where the minimum 
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amount of metal salt are added which can sufficiently reduce the net charge on colloids 

and particles to minimise repulsive forces and promote aggregation. However, this is 

an oversimplification because coagulant-colloid interactions are influenced by: the 

character and surface properties of the contaminant colloids, the extent of hydrolysis 

of the coagulant, and the concentrations of both contaminant colloid and coagulant. At 

intermediate pH it is possible for either regime to dominate depending on the coagulant 

concentration. It is also possible that over-dosing of cationic coagulants can result in 

surface charge reversal and the re-stabilisation of colloidal particles (Bratby, 2016). 

Flocculation, the aggregation of destabilised particles, is also vital for the effective 

performance of water treatment processes. Flocculation is the net product of collision, 

attachment, entrapment, detachment, shear, erosion, and settlement processes.  

The objective for water utilities is to identify and maintain optimal coagulation & 

flocculation conditions which enable downstream separation processes to remove 

contaminants to acceptable levels, whilst minimising unnecessary chemical use and 

sludge-handling as environmental conditions change. It is therefore advantageous to 

operate coagulation processes in the charge neutralisation regime, particularly for 

water sources of low alkalinity. Another important aspect to consider for low turbidity 

waters sources is that the floc formation process can be slow, particularly at low 

temperatures (< 5°C), making water treatment more sensitive to small changes in 

coagulant dose (Xiao et al., 2008a). Low colloid concentrations characterised by low 

turbidity may not have sufficient collision opportunities to produce aggregates from 

particles even when completely destabilised (Stumm and Morgan, 1996). The 

coagulant dose required is dynamic and dependent upon the prevailing characteristics 

of the raw water alkalinity, contaminant particles and NOM (Sharp et al., 2006). Such 

changes in water quality are caused by the increased mobility of terrestrial dissolved 

organic carbon (DOC), extreme weather events, catchment change, reservoir turnover 

and algal blooms. Manipulation of coagulant dose is the primary way by which water 

treatment operatives respond to changing raw water quality.  

Determination of the optimal dose for the prevailing raw water quality has historically 

been achieved through empirical testing using the jar test procedure. Here, source 

water samples are coagulated on a bench-top mixing device using a range of 

coagulant and pH conditions to determine the most appropriate chemical doses to 

apply for any given water. Dissatisfaction with this method arises because it can be 
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slow, reactive, inaccurate and a poor representation of the hydraulic conditions 

present in real treatment systems. It is therefore typical to rely on subjective visual floc 

sizing methods to compare coagulation success which can be problematic in the case 

of low turbidity waters as there may not be a visible floc (Brink et al., 1988). The optimal 

size of floc for dissolved air flotation processes is 10 -  30µm (Edzwald, 1995), a size 

which is smaller than can be effectively resolved by the naked eye. To overcome the 

limitations of jar testing, investigators have sought to optimise and control coagulation 

through empirically evaluating treatment systems using parameters such as turbidity 

and UV absorbance. These parameters can be measured on-line and be used to 

develop control systems (feed-forward and feedback) that link to the coagulant dose. 

While these tools have greatly improved the ability to respond to changes in water 

quality, they do not directly measure the effectiveness of the coagulation process. For 

example, an increase in the UV absorbance of water may not increase the coagulant 

demand of the water and such monitors are unable to detect NOM compounds that do 

not absorb UV light.  

For coagulation processes operating in a charge-neutralisation dominated regime, 

electro-kinetic measurements of the dosed water can provide information describing 

the success of colloidal destabilisation (Black and Willems, 1961; Pilipovich et al., 

1958). The streaming current monitor is a well-established measurement technique 

successfully applied for feedback control of charge-neutralisation coagulation in many 

water treatment systems (Dentel and Kingery, 1988; Jefferson et al., 2004).  Current 

generated by the transient attachment of charged particles to surfaces within a 

reciprocating piston is linearly related to the zeta potential of that system (Dentel and 

Kingery, 1988). The main limitations of streaming current application for control are 

that the coating and abrasion of sensor surfaces, changes in particle size and a 

change in the ionic strength can cause instrumental drift and occasional erratic 

performance (Barron et al., 1994). This instrumental drift can be managed with regular 

instrument maintenance and cleaning, meaning that feedback control is still possible. 

Interpreting streaming current readings and using this to understand coagulation 

performance is challenging as there is no consistent scale. Therefore, such a system 

requires external validation in order to confirm that the streaming current value is 

optimal.  
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Electrophoretic determination of zeta potential is frequently carried out by laser 

Doppler electrophoresis at a constant 20˚C (Tucker et al., 2015). Unlike the streaming 

current instruments, electrophoretic measurements do not depend on moving 

mechanical measurement surfaces. As a result, it offers the potential for greater 

sensitivity in charge measurement than streaming current monitors. In addition, 

electrophoretic determination of zeta potential has the advantage of having a 

consistently meaningful mV scale and is an established bench top monitor used for 

understanding coagulation performance of water treatment (Black and Willems, 1961).  

The key long-held concerns identified with the use of zeta potential as a measure of 

coagulation success are that there is no single value which is universally effective for 

aggregation and that an optimal zeta potential value must be obtained experimentally, 

typically on the basis of the lowest residual turbidity (Bratby, 2016; Hendricks, 2006; 

O’Melia, 1969).  Previous investigations at bench and pilot scale have identified 

optimal windows for zeta potential within which performance variation is independent 

of variation in charge but the location and size of these windows are system dependent 

(Jefferson et al., 2004). Typically, a zeta potential window between -10 and +5 mV has 

been observed to apply for  charge neutralisation coagulation for NOM laden water 

sources (Sharp et al., 2005). However, the range of effective coagulant dose 

comprising the destabilisation zone is known to reduce with lower colloid 

concentrations (Stumm and Morgan, 1996). 

There is a paradox in optimising coagulation using electrophoretic measurements. 

Zeta potential is derived from measurements of the electrophoretic mobility which is a 

function of particle charge. Particle systems that approach net neutral surface charge 

will therefore exhibit reduced electrophoretic mobility relative to random movement. 

Where the objective of coagulation is to neutralise the charge of colloidal particles to 

minimise inhibition of particle interaction then measurements in this region will have 

relatively large error and be less sensitive. Conversely in systems where coagulant is 

added in excess of charge neutralisation to promote the enmeshment of particles 

within a sweep floc the quality of electrophoretic measurements will be better, but the 

measurements won’t be of value for understanding the dominant mechanism of 

coagulation (Xiao, Zhang and Lee, 2008b). For zeta potential measurements to be of 

value for informing and optimising coagulation performance the charge neutralisation 

mechanism must be predominant (Bratby, 2016). 
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In recent years, instrument manufacturers have developed an on-line sampling system 

for zeta potential, allowing for a much higher frequency of measurement and more 

efficient data collection. This provides greater opportunity to understand and optimise 

treatment systems, potentially enabling improved performance from imperfect 

reactors. The aim of this work was to demonstrate how comparatively small changes 

in the zeta potential within previously identified operational windows could impact the 

downstream water quality at a full-scale water treatment works (WTWs). The work 

then modelled online data from a full scale trial to understand how the effective 

operational window for zeta potential varied according to prevailing conditions. 

Additional jar testing of the two sources at varying temperature and mixing conditions 

at an optimal coagulant dose provided contextual information to understand the 

constraints of this approach. 

3.3 Methods 

3.3.1 Study site 

The WTWs used in this study was a conventional 34 mega litres per day (Ml/d) plant 

treating water from two upland reservoirs (Sources A & B) in central southern 

Scotland. Coagulation is achieved using 18% Al2O3 poly-aluminium chloride solution 

(PACl) at 40% basicity without pH correction at typical doses in the region of 1 - 1.6 

mg/L as Al. Exact doses could not be reliably determined for the period of the 

investigation as the rate of coagulant delivery was affected by the driving head in the 

coagulant storage tank and recorded coagulant doses rates were based on flow tests 

from a measurement vessel at relatively low driving head. Duty-standby coagulant 

storage tanks, pumps and lines dose the PACl into the inlet pipe which then enters a 

convoluted chamber where water recovered from the wash water settlement tanks is 

returned. The flow splits into one of three flocculation lanes (with approximately 5-10 

minutes retention) before passing into a dissolved air flotation (DAF) stage and 

combining in a single clarified water channel. Water is then filtered by one of eight 

rapid gravity filters before disinfection with chlorine and pH correction. The study site 

was chosen because improvements to the performance of physical treatment 

processes were required. The known performance constraints at the case study site 

include inadequate flocculation time, hydraulic overloading of the DAF process, and 

seasonally poor filtration in winter.  Online zeta potential measurements of coagulated 



 

69 

water were collected using a Malvern Zetasizer WT. Additional on-line instrumentation 

was used for collecting data for turbidity, pH, temperature, colour and UV254 

absorbance. Online UV254 absorbance data were collected using ABB AV410 & AV420 

online DOC monitors which provide a turbidity corrected UV254 absorbance reading by 

reference to absorbance at 405nm. 

3.3.2 Data preparation & management 

Data from on-line instrumentation was extracted from the control system between 

October 2016 and April 2018. This was achieved through the manual transfer of 

SCADA historian files to a separate PC via a mobile USB drive. Control system files 

were then converted to text before they were combined with data logged from 

additional trial instruments in a PostgreSQL 9.5 database (PostgreSQL Global 

Development Group, 2016). A data processing diagram is included in supplementary 

materials (Figure_Apx 15). Further data analysis was conducted using R software, 

primarily using the tidyverse packages for data manipulation and Mixed Generalised 

Additive Model Computation Vehicle (MGCV) packages for generalised additive 

modelling (CRAN, 2013; Wickham, 2017; Wood, 2012). Implausible and extreme data 

values were removed by imposing plausible limits from visual analysis of the data. For 

example, pH values >14 were indicative of sensor or signal error and so were 

removed. Time indexes for data series were shifted relative to the raw water series 

data set in proportion to the estimated water residence time in each of the processes 

(coagulation: 3 minutes; clarification: 20 minutes; filtration: 1 hour).  Water quality 

signals taken at different frequencies (between 30 – 300 seconds) were then averaged 

at consistent three-hourly intervals. Outliers were removed using a Hampel filter 

calculated over a rolling window of 13 observations (+/- 18 hours).  The Hampel filter 

was configured to replace the seventh value of each window with the median if the 

median absolute deviation (MAD) exceeded two standard deviations. The data set 

was then split into a training and test set. The first 12 months of the data were allocated 

for model training and the remaining data were used for model assessment. Single 

missing values were interpolated by carrying the last observation forward. Longer 

stretches of missing data were interpolated with an automated random forest algorithm 

based process which was  applied separately to the training and test sets to avoid 

leakage of information from the test data into the training data (Stekhoven, 2013). 

Periods of interpolated data are indicated in Figure 12. Further pre-processing 
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including power transformations and calculation of principal components used the 

caret package (Max et al., 2011). 

3.3.3 Statistical modelling 

The purpose of this investigation was to improve understanding of how the 

performance of treatment processes were affected by change in zeta potential and to 

understand if the effective operational window for a full-scale treatment system varied 

with the prevailing conditions. To do this, regression models were fitted using data 

describing treatment conditions to explain variation in treated water quality. Variation 

in treated water quality was measured by clarified UV absorbance, clarified water 

turbidity, filtered water turbidity, and filtered water aluminium. Variables characterising 

treatment conditions used in the predictive models were raw water turbidity, raw water 

UV absorbance, raw water pH, water temperature, raw water flow, return water 

turbidity, return water flow, filter run time, coagulated water pH and coagulated water 

zeta potential. 

Correlations between predictor variables can result in unstable regression models and 

this multicollinearity can cause errors resulting in unstable predictions and inference 

errors. To address observed multicollinearity and instability during model selection the 

predictor variables were pre-processed. All parameters for pre-processing were 

calculated on the training set alone and then later used to process the test data for 

model performance assessment. Predictor variables were first transformed using a 

Yeo-Johnson power transformation which is similar to a Box-Cox transformation but is 

applicable to negative numbers with lambda fitted by maximum likelihood (Equation 

21) (Yeo and Johnson, 2000).  

Equation 21 Yeo-Johnson transformation 

𝑦𝑖
(𝜆) =

{
 
 

 
 ((𝑦𝑖 + 1)

𝜆)/𝜆

𝑙𝑜𝑔(𝑦𝑖 + 1)

−[(−𝑦𝑖 + 1)
(2−𝜆) − 1]/(2 − 𝜆)

−𝑙𝑜𝑔(−𝑦𝑖 + 1)

𝑖𝑓 𝜆 ≠ 0, 𝑦 ≥ 0

𝑖𝑓 𝜆 = 0, 𝑦 ≥ 0
𝑖𝑓 𝜆 ≠ 2, 𝑦 < 0
𝑖𝑓 𝜆 = 2, 𝑦 < 0

 

Where: 𝜆 = a power transformation identified by maximum likelihood. 

The resulting power transformed variables were scaled between 0 and 1 and then 

principal components were computed to explain 90% of the variance. Principal 

components analysis (PCA) is a linear transformation which produces a set of 
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orthogonal standardised variables in a new coordinate system which explain 

progressively decreasing proportions of variation in the original data. Further details 

explaining the calculation of principal components can be found in James et al. (2013). 

Where possible it is preferred to use simple and familiar modelling approaches. 

However, in this investigation a modelling approach appropriate for observational 

studies of non-linear, autocorrelated processes with colinear variables was required. 

The advantage of using online instrumentation from a live WTWs was the large 

amount of data could be collected, and the results from the investigation could be 

rapidly applicable in practice. This came at the cost of experimental flexibility and the 

ability to collect independent data. Water treatment processes are complex and non-

linear. However, the inherent assumption when using a linear model is that the 

relationship between the dependent and independent variables can be linearised 

through use of transformations and or polynomials. Where a linear approximation of a 

non-linear system results in errors which are not random (i.e., they have a pattern) the 

assumptions of Ordinary Least Squares (OLS) regression modelling are violated and 

parameter estimates are likely to be unreliable.  

In this investigation generalised additive mixed models (GAMMs) were used to 

understand water treatment performance in the context of varying operational 

conditions, including zeta potential. GAMMs combine generalised additive models and 

mixed effects models to allow effective non-parametric, non-linear modelling of data 

with inherent dependency structures. First it is helpful to start with the definition of an 

OLS model that describes a linear relationship between X & Y shown in Equation 22 

and on the assumption that residuals from the model are independent and normally 

distributed (Equation 23). 

Equation 22 General form of a linear regression model  

𝑌𝑖 = 𝛼 + 𝛽𝑥𝑖 + 휀𝑖 

Where: Yi = Value of the response variable, α = intercept β = slope coefficient ε = Error 

Equation 23 Error structure for OLS regression model 

휀𝑖~𝑁(0, 𝜎
2) 

Where: 𝜎 = Standard deviation  N(0, 𝜎2) = Independently normally distributed with a mean of 0 and 
a variance of 𝜎2 
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The underlying processes, generating values measured by online instruments at 

WTWs, violate assumptions of independence, meaning that the use of ordinary least 

squares (OLS) regression models resulted were not appropriate. A serial dependence 

structure in this data means that use of OLS would result in correlated residuals that 

would have increased the risk of incorrectly concluding that relationships occurred 

when they do not (Zuur, 2009). Serial dependence was controlled for using a mixed 

modelling approach with the assumption of an autoregressive error structure of order 

1 (AR-1). Using this approach, the residual at time s as a function of the residual at s-

1 and noise can be modelled as Equation 24 and therefore have the correlation 

structure shown in Equation 25. 

Equation 24 AR-1 error structure 

휀𝑠 = 𝜌ε𝑠−1 + η𝑠 

Where: ε = error,  ρ =  autocorrelation coefficient,  s = time s,  η = error (assumes independent & 
normally distributed) 

Equation 25 AR-1 correlation structure 

𝑐𝑜𝑟(휀𝑠 , 휀𝑡 )  =  {
1

𝜌|𝑡−𝑠|
𝑖𝑓 𝑠 =  𝑡

𝑒𝑙𝑠𝑒
 

Where: t = time t 

Generalised additive models (GAMs) are generalised linear models using a linear 

predictor which is the sum of smooth functions fitted to the independent variables. The 

general form for a GAM is shown in Equation 26 (Hastie and Tibshirani, 1986). GAMs 

were selected because they are broadly applicable, require few assumptions about 

the nature of the modelled relationship and are extendable to a mixed modelling 

approach (Zuur, 2009).  

Equation 26 Generalised form for a GAM 

𝑦𝑖 = 𝛼 + 𝑓1(𝑋𝑖1) + 𝑓2(𝑋𝑖2) + ⋯+ 𝑓𝑝(𝑋𝑖𝑝) + 휀𝑖 

Where: 𝑦𝑖  = is the value of the dependent variable (y) at index (i), 𝛼 = the model intercept, 𝑓1= 
smooth function 1, 𝑋𝑖1= the ith value of the first independent variable, p = denotes an index of 
smooth functions and independent variables, 휀𝑖  = model error between fitted & observed values of y 
at index i. 
 

A wide range of smoothing functions can be used within generalised additive models 

and these functions are most intuitively understood as piecewise regressions. This 



 

73 

means that the space relating dependent and independent variables is broken down 

into subsections for which a local polynomial linear function is approximated and a 

smoothing term is then produced from the combination of these local linear functions. 

A more involved explanation of the thin plate and tensor interaction smoothing 

functions used can be found in  Wood (2017). 

Residuals from the generalised additive regression models exhibited significant 

correlation, therefore a mixed effect extension of GAMs known as generalised additive 

mixed modelling (GAMM) was used. GAMs and GAMMs were estimated using the 

MGCV package in R (Wood, 2012). All of the GAMMs used in this investigation used 

an AR-1 error structure and therefore can be described using the general form shown 

in Equation 27 which combines the general form of a GAM (Equation 26) with AR-1 

errors (Equation 24) and therefore have the correlation structure shown in Equation 

25. 

Equation 27 Generalised form for a GAMM (AR1)    

𝑦𝑖 = 𝛼 + 𝑓1(𝑋𝑖1) + 𝑓2(𝑋𝑖2) + ⋯+ 𝑓𝑝(𝑋𝑖𝑝) + 휀𝑖𝑠 

휀𝑖𝑠 = 𝜌휀𝑖𝑠−1 + 𝜂𝑖𝑠 

Where: 𝑦𝑖  = is the value of the dependent variable (y) at index (i), 𝛼 = the model intercept, 𝑓1= 
smooth function 1, 𝑋𝑖1= the ith value of the first independent variable, p = denotes an index of 
smooth functions and independent variables, 휀𝑖𝑠 = model error between fitted & observed values of 
y at index I and time s., ρ =  autocorrelation coefficient, η = error which is independent & normally 
distributed 

Each of the GAMMs was fitted according to the following procedure (Figure_Apx 16)  

• The cleaned data was split into a training and test set, with data collected during 

the first year used for training and data collected subsequently used for model 

testing.  

o Three hourly average values for relative UV absorbance, clarified water 

turbidity, filtered water turbidity, filtered water aluminium were used as 

dependent variables.  

o Three hourly averages for zeta potential, coagulated water pH, flow, 

temperature, raw water UV absorbance, raw water turbidity, raw water 

pH and filter run time were used. 

• After Yeo-Johnson transformation and scaling, principal components explaining 

90% of the variation in the explanatory variables were calculated. 
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• Turbidity and residual aluminium dependent variables were natural log 

transformed. 

• GAMMs with an AR-1 error structure were fit using all of the principal 

components and all two-way interactions.  

• Residuals were checked for autocorrelation. 

• Performance of the models was assessed using the hold-out test data for 

observations taken after the training data. 

3.3.4 Jar-testing 

Bulk raw water samples from Source A were collected in 25L high-density 

polyethylene (HDPE) containers from the WTW in Scotland and transported by vehicle 

overnight to the laboratory at Cranfield University without temperature control. Raw 

water samples were then stored at 5(+/- 3) ̊ C in a walk-in refrigerator. Half the samples 

were removed from the cold room several hours prior to testing and analysis to allow 

them to reach room temperature, the other half were analysed direct from the cold 

room maintaining the low temperature with an ice bath. All jar testing was conducted 

on the water within three days of sampling. A sample of the PACl coagulant was taken 

from the WTW at the same time as the water samples and stored in a 250 mL HDPE 

bottle for transport.  

Jar testing was conducted on samples of water from Sources A & B using PACl without 

pH correction (procedure as used at the WTW). An initial set of tests was conducted 

to identify the coagulant dose required to achieve a zeta potential of 0 mV for each 

water source. This set of jar tests was conducted in 1L cylindrical beakers using a PB 

900 6 impeller variable speed jar tester with 76 x 25 mm flat paddle impellers. 1L of 

raw water was added to each of six jars. These jars were then stirred at 200 rpm during 

the rapid mix phase, where coagulant was added at increasing concentration. The 

concentration was increased by 0.2 mg/l increments. PACl was added to each jar 

using a micropipette. Once all of the jars were dosed with coagulant, the mixing was 

continued for a further 10 seconds before the mixing speed was dropped to 20 rpm. 

An aliquot from each jar was then immediately extracted using a syringe rinsed with 

DI water, before analysis for zeta potential using a Malvern nanosizer. The coagulant 

dose and resultant zeta potential was recorded and plotted in order to identify the 
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coagulant dose required to achieve a zeta potential of 0 mV by interpolation, this dose 

(1mg/l for source A, 2.1 mg/l for source B) was then used for all subsequent jar tests.  

Subsequent jar tests for floc size analysis were conducted one at a time using a single 

cylindrical jar and stirrer of a two paddle PB-980 series jar tester. Sample volumes, 

jars and paddle dimensions remained consistent with the first set of jars. Floc size was 

monitored over the jar test using a Malvern Mastersizer 2000. The sample was drawn 

through the optical cell of the Mastersizer by a peristaltic pump using 5 mm ID tubing 

at a flow rate of 1.5 L/hr. Repeated jar tests were then conducted to examine the effect 

of temperature and mixing conditions in different waters whilst the coagulant dose 

remained fixed at the dose required to achieve neutral zeta potential. Triplicate jar 

tests were completed with a full factorial 3x2 design. Variables investigated were: 

• temperature: 5 and 20 ˚C (maintained with an ice bath or at room 

temperature),  

• Slow stir speed: 20 and 50 rpm,  

• With & without a rapid mix: (10 seconds at 200rpm).  

3.3.5 Analysis of jar test data 

The jar testing experiments conducted required the repeated measurement of floc-

size within the same suspension which would result in strong serial dependence 

between residuals. Particle collisions and aggregations within a suspension have a 

random component and jar-testing has non-random sources of error which cannot be 

adequately eliminated or measured. This means that the floc growth observed under 

controlled conditions in a single jar is one outcome out of the distribution of outcomes 

which would be observed if the test conditions were replicated infinitely. For example, 

random Brownian motion will influence the floc growth rate in a jar test as will the non-

random location along the radius of a stirred jar at which the coagulant enters the 

water. These and other influences will impact the precipitation of the micro-floc and 

the rate of early collisions and therefore the rate of aggregation. Consecutive 

observations of any growth process are also not independent with the floc size 

observed at one time point being dependent in part on the size of the floc at the 

previous time point. For this reason floc size data was modelled by comparing discrete 

time points at five minute intervals.  For each time point a linear regression model of 
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the form shown in Equation 28 including interactions between all experimental 

variables was fit. Interactions were removed sequentially if not significant and models 

presented in standard regression tables including coefficient estimates, standard 

errors, observations and performance statistics. 

Equation 28 Equation for linear model of D50 floc size for jar test data 

𝐷50 = 𝛼 + 𝛽𝑇𝑇 + 𝛽𝑅𝑅 + 𝛽𝐹𝐹 + 𝛽𝑇𝑅𝑇𝑅 + 𝛽𝑇𝐹𝑇𝐹 + 𝛽𝑅𝐹𝑅𝐹 + 𝛽𝑇𝑅𝐹𝑇𝑅𝐹 + 휀 

Where: D50 = median floc diameter, T = Temperature included as a categorical variable either LOW 
(7.5°C ± 2) or HIGH (19.5°C), R = Rapid mix included as a categorical variable indicating if a 200rpm 
rapid mix for 10 seconds was used ,F = Flocculant mixing speed included as a categorical variable 
indicating if the flocculant mixing speed was 20 or 50rpm 

3.4 Results & Discussion 

3.4.1 Summary of operational data 

Source A was from a deep upland reservoir and was of low turbidity (x̄ = 0.9 NTU, 

95th%ile = 2.86 NTU) and low total organic carbon (TOC) (x̄ = 3.57 mg/l,  95th%ile = 

4.17 mg/l) but high specific ultra violet absorbance (SUVA  = UV254abs/ TOC) (x̄ = 4.8 

L/mg/m,  95th%ile =5.7 L/mg/m)  (Table_Apx 1). The shallower source B had higher 

solids from turbidity (x̄ = 1.55, 95th%ile = 2.76), colour (x̄ = 42, 95th%ile =54) and TOC 

(x̄ = 6.6, 95th%ile =8.2) concentrations and similar SUVA (x̄ = 4.7 L/mg/m, 95th%ile 

=5.3 L/mg/m) (Table_Apx 1). Originally designed to receive a 50-50 contribution of 

sources, the WTW tends to operate with slightly more of source A in the summer to 

reduce sludge production and reduce taste and odour issues. It is operational practice, 

during the winter, to blend the two sources more equally in order to improve the 

formation of flocs. Over the period of the investigation there was an increase in the 

concentration of UV absorbing organic compounds in the raw water as well as a 

general trend of increasing coagulated water zeta potential, going from -4 to +2 mV, 

and increasing pH from 6.3 to 6.7 (Figure 12). Increasing UV absorbance in the raw 

water and changes in the coagulation pH observed over the period of investigation 

were indicative of underlying changes to the coagulation regime at the case study site.  
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Figure 12 Change in the water quality variables over the study period. Red points show 

interpolated values. Data was divided into training and test data as indicated by 

background colour on plots. Vertical black lines indicate the period covered in the short 

term example used in Figure 13. For reference larger sized versions for each sub-plot 

are included in the supplementary materials (Individual water quality trends). 
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3.4.2 Short term example of sensitivity to zeta potential change 

At certain points during the experimental period, the coagulation process appeared 

very sensitive to changes in zeta potential. For example, over a six-day period the 

coagulant dose was changed four times, resulting in changes in the zeta potential 

between 0 and -6 mV (Figure 13A). In turn, there were also changes in downstream 

water quality. As the zeta potential went from -6 mV to approaching neutral charge, 

there was a decrease in the clarified UV absorbance in the water (Figure 13B). A 

similar correlation was seen for the clarified turbidity and the aluminium in the filtered 

water over the study period (Figure 13B). The reduction in zeta potential between -6 

and -1 mV corresponds to an observable drop of 2 UV absorbance units (m-1 or cm-1) 

and the reduction of combined filtered turbidity from 0.12 to 0.06 (NTU).  With three-

hourly averaging, a quadratic linear model relating zeta potential to clarified UV254 

absorbance explained 96% (p<2.2x10-16) of the variation in clarified water UV 

absorbance. Testing of the residuals failed to demonstrate that there was no serial 

correlation in the residuals of this model (Durbin-Watson test 1.927, p = 0.292), 

suggesting that significance of p values would not be accurate. Though as 

autocorrelation at a single timestep was, for practical purposes, small (r = 0.035) it is 

reasonable to assume a significant relationship.   

This example illustrates the value of online measurement of zeta potential, as opposed 

to bench-top measurements. This was because at charge-neutralisation zeta 

potential, the relative variance of the values observed is high (Figure_Apx 32). Zeta 

potential is derived from measurements of electrophoretic mobility. Therefore, at 

particle charges approaching zero charge the movement of charged particles reduces 

and therefore error in the measurement of that movement becomes larger in 

comparison.  By taking frequent and repeated measurements of conditions, the 

precision of measurement approaching charge neutralisation conditions can be 

improved by averaging. This helps to distinguish the true signal from the noise of 

random measurement errors. The main confounding factor in this example is that no 

base is currently added to control pH independently of the coagulant dose. With 

additional suppression of the pH resulting from a higher dose of the coagulant it is 

possible that this may have resulted in a relative increase in the formation of coagulant 

species of higher charge resulting in a higher zeta potential value. However, as the 

coagulant used was a pre-hydrolysed PACl the speciation of hydrolysis products was 
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expected to be relatively insensitive to small changes in pH compared to alum. The 

slight drop in coagulation pH from 6.75 to 6.65 as a response to the increased 

coagulant dose was correlated with zeta potential and the downstream water quality 

measurements. This collinearity between covariates complicates the attribution of 

variance in downstream water quality to the zeta potential achieved in coagulation.  

Though there was evidently a drop in pH (from 6.75 to 6.65) with increasing coagulant 

pump stroke (60 to 69%), clarification performance approaches a plateau at a higher 

pH (pH 6.6) than would typically be considered optimal for charge-neutralisation with 

an alum-based coagulant (pH 6.1) (Bratby, 2016). Investigators have also observed 

that the pH of minimum solubility of PACl is typically higher than that of alum and that 

low temperature increases the pH at which minimum solubility occurs (Pernitsky and 

Edzwald, 2003).    

Collinearities are inherent in studies observing working treatment process which 

cannot be experimentally manipulated, and in this example it is not possible to reliably 

resolve pH and zeta potential effects. Robustly drawing more general conclusions 

requires analysis of more data and appropriate modelling techniques to resolve the 

effects.  
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Figure 13 A short-term example of water quality change with zeta potential. Time series in part A show the changing conditions over 

time with coagulant dose alterations indicated by vertical lines. Part B shows three-hourly average data is then plotted with zeta 

potential on the x-axis and different water quality variables on the y axis. A fitted line shows the expected value of each variable based 

on a quadratic least squares linear model, the shaded region indicates the standard error. Other treatment conditions during this period 

were: Coagulated water flow 393 l/s, raw water turbidity: 1.2 NTU; colour: 45 °Hazen; temperature: 3.7°C. 
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3.4.3 Longer-term impact of varying zeta potential in context 

When the data was considered and aggregated over a longer period, there were still 

apparent relationships between zeta potential and water quality parameters over the 

range of temperature and flow conditions experienced during the trial (Figure 14). 

Linear and quadratic least-squares regression lines illustrate the relationship between 

zeta potential between -6 to +4 mV and treatment performance as indicated by the 

proportional removal of UV254 absorbance (Figure 14 A), the clarified turbidity (Figure 

14 B), residual aluminium (Figure 14 C) and combined filtered water turbidity (Figure 

14 D). Significance figures and r squared (R2) values are not quoted as these linear 

models do not effectively capture the serial dependence of measures or other 

important effects (such as temperature), rendering these statistics unreliable. Relative 

UV254abs removal in clarification appears to be greatest at a zeta potential between 

-1 & 0 mV, with apparent performance deteriorating exponentially with positive and 

negative zeta potential. As the zeta potential approached 0 mV, the removal of UV254 

absorbance increased to a range between 45 and 80%. As the zeta potential became 

more positive, removal decreased to below 50% at +4 mV. Changes in clarified 

turbidity and residual aluminium reduced on average as the zeta potential approached 

zero and deteriorated in quality between 0 - 6 mV.  

The relationships between zeta potential and downstream water quality variables were 

apparently affected by temperature and flow (Figure 14). An association with 

temperature was more clearly observable for the quality of clarified water than filtered 

water, with warmer temperatures resulting in improved organic matter removal and 

lower clarified water turbidity. The influence of temperature on process performance 

is not straightforward in this study because it is operational practice that the blend of 

water sources is adjusted seasonally such that the contribution of source B is greater 

at lower temperatures. Given that this was an observational study and confounding 

variables could not be experimentally controlled, statistical modelling was required to 

reliably estimate the effect of different environmental and operational variables.   
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Figure 14 Downstream water quality observed over the zeta potential range seen in this 

study.  

Panel A shows the relative removal of UV254 absorbing material; B shows the clarified turbidity; C 
shows the residual aluminium in the filtered water, and; D shows the filtered turbidity. Temperature 
is indicated by the colour of the data points and plant flow is indicated by the size of the data points. 
The expected value of y from a quadratic linear model y = zeta + zeta^2 +E is indicated by the blue 
line in each plot with standard errors indicated by the shaded region. To further clarify the influence 
of small changes in zeta potential over this region each sub plot is reproduced at a larger size in 
Figure_Apx 32,Figure_Apx 33,Figure_Apx 34 & Figure_Apx 35 An alternative presentation of the data 
using boxplots of y over the range of zeta potentials observed are also plotted in Figure_Apx 36. 
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3.4.4 GAMM Models explaining downstream water quality 

PC-GAMMS with all two-way interactions were fit relating principal components of raw 

water quality variables to the downstream water quality variables. These models are 

presented in Table 6. Pairwise dot plots and correlations between original explanatory 

variables and principal components are shown in supplementary materials (7.1B.6). 

Plots of the smooth functions of the models identified in Table 6 are presented in 

supplementary materials (7.1B.7). 

The models provided a good explanation of Clarified UV absorbance (r2 = 0.91) and 

reasonable explanation of filtered water Aluminium residuals (r2 = 0.58) but relatively 

poor explanation of turbidity in the clarified and treated water (r2 <0.2) over the training 

set (Table 7). More complex interaction structures failed to improve the explanatory 

power. Median absolute percentage error (MAPE) of the model fits indicate that 

typically the models explaining clarified turbidity, UV254 absorbance and combined 

and filtered water turbidity had small errors of 2-13% for training data 4 -30 % 

depending on test set. Training set MAPE for residual aluminium was higher (53% 

training, 75-187% in depending on test set) but the Root Mean Squared Error of 0.01 

mg/l Al for training data and < 0.03 mg/l Al for test data suggests that the model is still 

potentially informative. As the residual aluminium levels were typically low, 

measurement error is likely to have influenced the data and provided an additional 

challenge to defining an effective model. 

The reduced model performance between coagulated and filtered water is likely due 

to additional variance associated with the condition and control of the filters during the 

investigation period which were less effectively captured in the independent variables 

used to build the models. The case study WTW was known to have issues with filter 

washing performance and hydraulic control (Upton et al., 2017). Poor model fitting and 

predictive performance of the clarified water turbidity when compared to UV 

absorbance is potentially attributable to a more complicated mechanism controlling 

the variation in turbidity or measurement interference. Clarified water turbidity values 

did appear to demonstrate some relationship with sample flow rate which had some 

reliability issues. UV instrumentation was installed for the purpose of this investigation 

whereas clarified water turbidity instruments were pre-existing instruments linked to 

the WTW control system and telemetry alarms. 
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Table 6 PC GAMM regression table showing model coefficients and (standard errors) 

Summary of PC-GAMMs 

 Downstream water quality models 

 loge Clarified 
Turbidity (NTU) 

Clarified UV254 
(abs/m) 

loge Filtered 
Turbidity (NTU) 

loge Filtered 
Al (mg/l) 

 (1) (2) (3) (4) 

X(Intercept) -0.116*** 6.690*** -2.834*** -5.766*** 

 (0.029) (0.016) (0.040) (0.050) 

S(PC1) -0.030** -0.146 0.116* -0.431*** 

 (0.013) (0.102) (0.061) (0.048) 

S(PC2) 0.058*** 0.131*** 0.009 -0.134*** 

 (0.012) (0.021) (0.021) (0.049) 

S(PC3) -0.006 0.057*** 0.022*** 0.204*** 

 (0.004) (0.020) (0.008) (0.028) 

S(PC4) -0.014*** -0.059*** -0.019* -0.088*** 

 (0.005) (0.011) (0.010) (0.033) 

S(PC5) 0.010** 0.082*** -0.018 0.042 

 (0.005) (0.011) (0.029) (0.035) 

S(PC6) 0.007** 0.034 0.018*** 0.121*** 

 (0.003) (0.034) (0.006) (0.022) 

Ti(PC1,PC2) -0.063 -0.416 0.070 0.509 

 (0.187) (0.949) (0.399) (0.849) 

Ti(PC1,PC3) -0.048 1.111*** 0.459*** 2.105*** 

 (0.049) (0.226) (0.173) (0.385) 

Ti(PC1,PC4) -0.035 -0.655*** 0.079 0.220 

 (0.094) (0.240) (0.188) (0.680) 

Ti(PC1,PC5) 0.182 -0.032 -0.027 -0.545 

 (0.183) (0.492) (0.196) (0.661) 
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Ti(PC1,PC6) -0.127** 1.076*** 0.158 0.941*** 

 (0.056) (0.266) (0.099) (0.365) 

Ti(PC2,PC3) -0.253*** 0.002 0.152 0.039 

 (0.057) (0.355) (0.116) (0.463) 
     

Ti(PC2,PC4) -0.267** 2.151*** 0.044 0.220 

 (0.119) (0.408) (0.164) (0.578) 

Ti(PC2,PC5) 0.121 -0.282 0.457* 0.217 

 (0.226) (0.434) (0.249) (0.630) 

Ti(PC2,PC6) 0.033 0.158 -0.077 0.584 

 (0.073) (0.383) (0.103) (0.410) 

Ti(PC3,PC4) -0.245*** -0.075 0.014 -0.013 

 (0.068) (0.389) (0.116) (0.565) 

Ti(PC3,PC5) -0.065 0.577* -0.169 -0.141 

 (0.084) (0.332) (0.108) (0.538) 

Ti(PC3,PC6) -0.072** 0.581*** -0.051 0.433 

 (0.031) (0.218) (0.078) (0.455) 

Ti(PC4,PC5) -0.007 0.587*** 0.011 0.373 

 (0.085) (0.219) (0.155) (0.568) 

Ti(PC4,PC6) -0.045 0.946** -0.056 0.330 

 (0.048) (0.456) (0.092) (0.394) 

Ti(PC5,PC6) -0.073 -1.108*** -0.190* -0.655 

 (0.048) (0.283) (0.114) (0.472) 

Observations 2,911 2,911 2,911 2,911 

Log Likelihood 5,070.551 1,812.073 3,000.303 -1,308.570 

Akaike Inf. 
Crit. 

-10,021.100 -3,504.145 -5,880.606 2,737.139 

Bayesian Inf. 
Crit. 

-9,662.526 -3,145.570 -5,522.031 3,095.714 

Note: *p<0.1**p<0.05***p<0.01 
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Table 7 Summary table of model performance summary statistics on training set and 4 periods of test data. Error statistics include root 

mean squared error (RMSE), r2 (RSQ) and median absolute percentage error (MAPE). 

 

 

Training & test set model performance statistics 

 Model   Training set   Test set 1   Test set 2   Test set 3   Test set 4 

 Error 
Structure 

  RMSE RSQ MAPE   RMSE RSQ MAPE   RMSE RSQ MAPE   RMSE RSQ MAPE   RMSE RSQ MAPE 

Clarified Turbidity 
(NTU) 

AR1   0.16 0.07 13  0.15 0.21 12  0.42 0.49 31  0.29 0.45 17  0.12 0.81 14 

Clarified UV254 
(abs/m) 

AR1   0.17 0.91 2  0.72 0.63 6  0.64 0.51 5  1.92 0.18 11  0.54 0.78 4 

Filtered water Al 
(mg/l) 

AR1   0.01 0.58 53  0.01 0.19 76  0.02 0.44 86  0.03 0.06 75  0.00 0.03 187 

Combined filtered 
turbidity (NTU) 

AR1   0.03 0.17 13  0.02 0.16 16  0.02 0.07 16  0.03 0 33  0.01 0.38 30 
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Figure 15 Observed and predicted values of downstream water quality variables using PC-GAMMs. A: clarified turbidity, B: UV254 

absorbance, C combined filtered turbidity, D bottom right filtered water aluminium. Series are split into training data and test data 1-4.
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When the models from the first year’s data were applied to the test set, the 

performance was varied between the different models and the period of operation over 

which conditions were predicted. The test data was split into four parts as changing 

operational practice resulted in variation in predictive performance (Figure 15).  

Conditions during the first test set 1, shaded green, were most similar to those seen 

during the training period in blue. 

GAMMs predicting clarified turbidity, filtered water turbidity and the relative removal of 

UV absorbing species showed relatively good performance in terms of MAPE at 16% 

or below, but could account for only one fifth of the variance in turbidity in the clarified 

or filtered water over this period. The r2 of the GAMM predicting clarified UV 

absorbance was comparatively good at 0.63 (Table 7).  

During test set two, the blend of water sources changed, with an increased proportion 

of source B (55%) than was observed during the model training period, and the 

temperature was consistently low (<4 °C). The zeta potential was increasingly positive 

over this period potentially indicating coagulant overdose, whilst the coagulation pH at 

6.6, was higher than during the training period. Prediction performance for clarified 

turbidity was poor during this period with an RMSE 0.42 NTU reflecting that the 

negative impact of re-stabilisation was not adequately captured in the predictive 

model. Similarly predicted filtered water aluminium was lower than that observed 

RMSE 0.02. Prediction errors of clarified UV254 absorbance remained low during this 

period (MAPE 5%) but the r2 (0.51) was also reduced.  

Test set three covers an extended period where supernatant return to the head of 

works was suspended. There were no equivalent conditions which were encountered 

during the first year of the investigation during which the model was trained. This is 

reflected in the poor r2 values (0.45 clarified turbidity, 0.18 clarified UVabs, 0.06 

residual Aluminium and 0 filtered water turbidity). There is an apparent impact from 

the recycle flow which could be estimated over a certain range of flows and conditions 

within the training data but this did not extend well to flows stopping altogether. The 

poor predictive performance is illustrative of some of the challenges inherent in 

building predictive models for automatic coagulation control. Conditions in test set four 

had deviated so far from those observed during model training that the modelled 
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relationship between coagulation conditions and treatment performance was no longer 

applicable. 

Test set four covers the period after the supernatant return flow was restored, five 

months after the last measurement used to fit the GAMM models During test period 

four, the coagulation pH (6.6 - 6.7) and contribution of source B (55%) was higher than 

at any point during the period used to fit the model.  However, prediction performance 

was good indicating the models were approximating the performance of the treatment 

processes reasonably well during this time (RMSE: 0.12 NTU clarified, 0.01 NTU 

filtered, 0.00 mg/l filtered Al and 0.54 UV254 abs/m Table 7).  

Broadly, in terms of explanatory and predictive performance, the models relating 

coagulation conditions to clarified water UV absorbance appears to be useful and of 

interest. Uncontrolled sources of variance within the filters and instrument issues mean 

that modelling of the turbidity or filtered water aluminium data was not on the whole 

effective or useful. A further challenge to predictive performance was an underlying 

change in the chemistry and operational regime of the process between the training 

and test periods. The test period was characterised by higher pH in the raw (pH 7.2) 

and coagulated water (pH 6.6), higher UV absorbance (15-18 abs/m) in the raw water, 

a typically positive zeta potential and periods with interrupted supernatant return. For 

much of the test period, the blend of water treated was different to that treated during 

the training period. This meant that the colloid concentration, as inferred from the water 

UV absorbance and turbidity, were higher in the test period than much of the training 

period. Greater colloid concentrations are likely to have resulted in a wider operational 

zeta potential window, and variations in particle separation performance arising in 

downstream processes are likely to have been more significant. It appears that the 

coagulation regime at this WTW varies in the extent to which it relies on charge 

neutralisation and adsorption regimes and there was a shift towards reliance on 

adsorption during the test period which could not be effectively modelled using the 

training data.  

A further development of this investigation as it progressed, was that when it became 

clear that the process was sensitive to relatively small drops in zeta potential, to values 

below -3 mV, the operation of the plant was changed to maintain a zeta potential above 

-3 mV after January 2017 (Figure 12). Goodheart’s law suggests that when a measure 
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becomes a target it ceases to become a good measure. Improved operational practice 

in the light of this new information reduced the amount of variance in coagulation 

performance, reducing the opportunity to model the influence of variation in zeta 

potential.   

3.4.5 Simulations from GAMM models explaining treatment performance 

Where GAMM models of the process could be shown to provide a good explanation 

of the treatment system they were then used to isolate and present the effects of 

interest. Model simulations of different water quality and operational conditions were 

used to aid interpretation and facilitate inference about relationships between 

coagulation and the performance of the case study WTW. Simulations were conducted 

to illustrate the influence of zeta potential and coagulation pH on downstream water 

quality under different conditions observed within the training period for the 

coagulation models. The modelled relationship between of zeta potential (-6 and +3) 

and clarified UVabs is presented over a 5x2 matrix of conditions in (Figure 16). The 

thicker line in the middle shows the predicted mean value with the shaded area 

denoting the 95% confidence interval. On this basis conditions with non-overlapping 

confidence intervals are observed to have a statistically significant difference in 

performance. Varying pH is presented at 6.2 and 6.5 as different colours. Temperature 

0.4 temperature (4°C and 14°C), flow (350 & 380 l/s), raw UV (12 & 15 abs/m) turbidity 

(0.8 & 1.2 NTU) are presented as a matrix of sub-plots A:P. Flow and temperature 

conditions vary between the columns and colloid concentrations and composition 

varies between the rows.  

At lower raw UV254 absorbance (12 abs/m) and a pH of 6.5 if the temperature is low 

(4°C) or the flow is high (380 l/s) there was a significant reduction in clarified UV254 

as zeta potential increases over the range of -6 to 2 mV (Figure 16: A,C,D,I,K &L). 

This suggests when primary colloid concentrations are low, and the pH is high, 

adsorption and enmeshment mechanisms are important and the increasing dose 

associated with increasing zeta potential is resulting in improved treatment 

performance as a result of an elevated collision rate. At pH 6.5 and a temperature of 

14°C and a flow rate of 350 l/s there appears to be no significant variation in clarified 

UV absorbance over the zeta potential range observed for any of the variations in 

colloid concentrations (Figure 16: B,F,J,H). This suggests that with longer flocculation 
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times and higher temperatures, coagulation performance is no longer collision-limited 

and does not benefit from additional coagulant particles. At the lower pH of 6.2 and 

lower raw water UV254 concentrations (12 abs/m), change in clarified water UV254 

absorbance over the range of zeta potentials observed was not typically significant. At 

pH 6.2 reduction in clarified UV254 between -6 and 3 mV occurred either at relatively 

higher raw water UV254 and turbidity (15 abs/m & 1.2 NTU) (Figure 16: M,N,O&P) or 

at high UV254 and high temperature (Figure 16: F &H). This would suggest that an 

increased coagulant to NOM ratio, captured by the change in zeta potential, improved 

floc strength or improved adsorption in a way that was in some way moderated by 

temperature. Previous investigators have observed improved floc strength with an 

increased coagulant to NOM ratio (Sharp et al., 2006). Some patterns in mean clarified 

UV absorbance indicated a potential relationship between zeta potential and treated 

water quality when the water was colder (4°C) and primary colloid concentrations were 

lower (UV 12 abs/m). However, sparsity of the data under these conditions led to large 

confidence intervals and therefore the trend was not significant (Figure 16: A, I and K). 

This was a key draw-back of completing the investigation on a live WTW, where 

conditions anticipated to cause treatment issues were not readily captured. Variation 

in zeta potential between -6 and +3 mV was not observed to significantly change the 

performance of charge neutralisation coagulation on a consistent basis but variation 

in treatment performance in this region appears to be correlated with likely changes in 

alternative adsorption and enmeshment mechanisms within the charge neutralisation 

window.  

Variation in clarified and filtered water turbidity over the range of zeta potentials 

observed is presented in Figure_Apx 49 and Figure_Apx 50 but no statistically 

significant relationship was observed. This may have been as a result of a combination 

of poor data quality for the clarified filter model and the mis-specification of the model. 

It is likely that this could indicate variation in treated water turbidity resulting from small 

changes in zeta potential were relatively insignificant when compared to other causes 

of variation within this system.  

Variation in filtered water aluminium is presented  in Figure 17. Under most conditions 

there was an apparent trend in reduced residual aluminium with increased zeta 

potential, however under most conditions presented this trend was slight with the 

average remaining <10µg/l over the range observed. When the water was cold (4°C) 
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increased residual aluminium in the filtered water at negative zeta potentials was most 

apparent, though expected average values remained < 15µg/l.  

 

 

Figure 16 Simulation results from PC-GAMM model showing mean and 95% confidence 

interval predictions for clarified UV (abs/m) over a range of zeta potentials (-6 to +3) at 

pH 6.2 & 6.5 at different temperature (4°C & 14°C), flow (350 & 380 l/s), raw UV (12 & 15 

abs/m) turbidity (0.8 & 1.2 NTU) other variables were held constant supernatant return 

flow (15 l/s) supernatant turbidity (3.5 NTU) filter run time (30 hrs).  
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Figure 17 Simulation results from PC-GAMM model showing mean and 95% confidence 

interval predictions for filtered water residual aluminium (mg/l) over a range of zeta 

potentials (-6 to +3) at pH 6.2 & 6.5 at different temperature (4°C & 14°C), flow (350 & 

380 l/s), raw UV (12 & 15 abs/m) turbidity (0.8 & 1.2 NTU) other variables were held 

constant supernatant return flow (15 l/s) supernatant turbidity (3.5 NTU) filter run time 

(30 hrs) 

.
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3.4.6 Jar testing to understand influence of temperature and mixing 

conditions at optimal dose 

Modelling of WTW performance indicated that temperature, collision rate, 

hydraulic loading and shear were important factors in understanding the effective 

operational window for zeta potential of a given water treatment system. Jar 

testing of the two source waters at different temperatures and mixing conditions 

with a consistent dose showed the importance of mixing on effective floc 

formation at WTW A. Coagulation and flocculation testing of the two water 

sources showed that the influence of temperature and mixing on flocculation 

performance, as measured by D50 floc size, was contingent on the raw water 

being treated. Literature suggests that a floc size between 10 to 30 µm is required 

for effective DAF operation (Edzwald, 1995). Flocculation performance for the 

lower turbidity and DOC source A varied with temperature and mixing conditions 

but for source B, flocculation varied with mixing conditions but not temperature.  

The mean and range of D50 floc sizes changed over time during the jar tests 

(Figure 18).  At high temperatures and a floc speed of 20 RPM the floc formed 

from source A floc continued to grow for 15 minutes stabilising at 40 µm with or 

without rapid mixing. At high temperatures and a floc speed of 50 RPM, floc 

growth had stopped after 10 minutes, plateauing at a D50 size of 24µm when the 

rapid-mix was deployed. Without the rapid mix, floc size reached 15µm. This 

suggests that a looser floc structure formed when the water temperature was 

higher which was weaker and growth was shear limited. Flocculation of source A 

at low temperatures was faster at a higher flocculant mixing speed of 50 RPM, 

reaching 24µm in 10 minutes. At 20 RPM with no rapid mix, floc formation was 

slower but ultimately reached the D50 of 26µm after 14 minutes. If an initial rapid 

mix had been used, the final floc size was larger at 33µm. This suggests that flocs 

from source A at low temperature were sensitive to both collision rate and shear 

limitations to floc growth.  

Source B showed more rapid floc growth compared to source A, growing to 

between 28-60µm in 8 minutes for all conditions tested. This was likely to result 

from the greater collision rate in a system with greater numbers of primary, 
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coagulant and precipitate particles. Limited mixing resulted in the largest flocs 

from source B at all temperature conditions (60-67 µm). At 50 rpm, the D50 for 

flocs formed in source B typically remained below 40µm. The reduced size of 

flocs at a higher mixing rate indicates that growth was shear limited under all 

temperature conditions. 

The results of linear regression models relating floc size to temperature and 

mixing conditions show that for source A, low temperature resulted in a 

significantly reduced floc size (p < 0.01) at all time points with the D50 estimated 

to be between 11-19 µm smaller at 7.5 °C than at 19.5 °C depending on the 

flocculation time (Table 8). Source B, however, showed no significant impact of 

temperature on floc size (Table 9). Previous investigations into the impact of 

temperature on coagulation & flocculation processes have reported smaller floc 

and worse performance at lower temperatures (Fitzpatrick, Fradin and Gregory, 

2004; Morris and Knocke, 1984; Xiao et al., 2008a). These studies have studied 

the flocculation of synthetic kaolin suspensions and have suggested that 

temperature effects most significantly impact upon enmeshment mechanisms of 

aggregation (Morris and Knocke, 1984). Studies have also shown that pre-

hydrolysed coagulants such as PACl are less sensitive to low temperatures than 

traditional hydrolysing metal salts (Fitzpatrick et al., 2004; Jiang and Graham, 

Graham and Harward, 1996; Van Benschoten and Edzwald, 1990). This would 

suggest that treatment of source A is more reliant on bridging and enmeshment 

mechanisms and, for that reason, is more sensitive to temperature whereas 

treatment of source B can be achieved effectively with charge – neutralisation 

alone. 

Effective rapid mixing is commonly regarded as essential for the effective 

operation of coagulation (Bratby, 2016). However, Edzwald (2013) concluded 

that rapid mixing was not necessary for sweep flocculation but was required for 

effective charge neutralisation. This has been questioned by other investigators 

who have observed that sweep flocculation and enhanced coagulation could be 

optimised at low mixing energy regimes (Vadasarukkai and Gagnon, 2015). 

Rapid mixing did not appear to provide a significant overall benefit to the 
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flocculation in jar tests of source A using flocculation times of  5, 10 and 15 

minutes (Table 8, models 1-3). However, there was significant (p <0.05) but slight 

benefit associated with rapid mixing at 20 minutes floc time, increasing floc size 

by 3.4 µm (13%). This small increase may be associated with more effective 

dispersal or stronger floc structural characteristics initiated in the initial high shear 

environment. Rapid mixing appeared to result in reduced floc size in jar tests of 

source B water, with a 9µm reduction (p<0.05) in floc size after 15 minutes 

flocculation time when rapid mixing was deployed (Table 9). This may indicate 

that rapid mixing for ten second at 200 RPM within a jar test may have resulted 

in some irreversible floc breakage on exposure to increased shear rates for floc 

formed from source B. This may indicate that the relatively high DOC of source 

B resulted in a weaker floc structure. Relatively high NOM concentration and 

NOM to coagulant ratio has been previously demonstrated to increase the fragility 

of flocs (Jarvis, et al., 2005; Jarvis  et al., 2005).  

An increase in jar test flocculant mixing speed from 20 to 50 rpm was associated 

with significantly (p<0.01) reduced floc size for flocculation times of ten minutes 

or greater in source A and source B. After 10 minutes, an increase in flocculant 

mixing from 20 to 50 RPM was associated with a 15µm reduction in the D50 floc 

size. The impact of mixing on flocs from source A was more complicated as it 

was contingent upon temperature. At 7.5 °C after 10 minutes flocculation at 50 

RPM this was associated with flocs 9 µm larger than those seen at 20 rpm. 

However, after 20 minutes the 50 RPM mixing regime was associated with flocs 

1µm smaller than at 20 RPM. This indicates that at low temperatures more mixing 

of source A earlier in the flocculation process provided some benefit from a higher 

collision rate, but later contributed to shear-limiting of floc size. At higher 

temperatures for source A, and all temperatures for source B, the increased 

mixing rate was not observed to provide a benefit earlier in flocculation and was 

only associated with greater shear limiting of floc size. Overall, the greater 

variation in floc size seen for source B was likely to arise from the greater growth 

potential associated with higher solids in combination with a greater sensitivity to 

shear between 20-50 RPM.  
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Figure 18 D50 floc growth data for different temperatures at different flocculant 

mixing speeds and with and without rapid mixing. Thick lines show median value 

of the D50 floc across all replicates with shaded areas showing range of observed 

D50 values. Individual floc growth curves under different jar test conditions are 

shown in Figure_Apx 51.  
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Table 8 Linear models of D50 floc size for jar tests of source A. Coefficient 

estimates are shown with standard errors in brackets. 

 Dependent variable: D50 (µm) 

 Floc size at time intervals in jar test at fixed dose 

 5 minutes 10 minutes 15 minutes 20 minutes 

 (1) (2) (3) (4) 

LOW (7.5°C ± 2) 
-7.665*** 
(1.141) 

-17.511*** 
(2.135) 

-15.932*** 
(2.260) 

-11.754*** 
(2.118) 

Rapid mix 
-1.359 
(1.611) 

1.683  

(1.512) 

2.315  

(1.600) 

3.428** 
(1.500) 

50 RPM floc mixing 
-1.330 
(1.611) 

-11.118*** 
(2.135) 

-18.109*** 
(2.260) 

-19.047*** 
(2.118) 

Rapid mix:50 RPM floc 
mixing 

5.084** 
(2.275) 

   

LOW (7.5°C ± 2):50 
RPM floc mixing 

 19.879*** 
(3.016) 

21.641*** 
(3.192) 

18.325*** 
(2.992) 

Constant 
14.833*** 
(1.273) 

30.525*** 
(1.738) 

37.526*** 
(1.839) 

37.828*** 
(1.724) 

Observations 26 26 26 26 

R2 0.725 0.771 0.785 0.804 

Adjusted R2 0.672 0.728 0.744 0.767 

Residual Std. Error (df = 
21) 

2.892 3.833 4.057 3.802 

F Statistic (df = 4; 21) 13.814*** 17.701*** 19.203*** 21.562*** 

Note: *p<0.1,**p<0.05***p<0.01 
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Table 9 Linear models of D50 floc size for jar tests of source B. Coefficient 

estimates are shown with standard errors in brackets. 

 Dependent variable: D50 (µm) 

 Floc size at time intervals in jar test at fixed dose 

 5 minutes 10 minutes 15 minutes 

 (1) (2) (3) 

LOW (7.5°C ± 2) -4.387 (2.891) -0.866 (3.879) -0.282 (3.458) 

Rapid mix -2.123 (2.875) -7.419* (3.858) -9.238** (3.439) 

50 RPM floc mixing 4.570 (2.891) 
-14.884*** 
(3.879) 

-15.401*** 
(3.458) 

Constant 
31.168*** 
(2.938) 

55.347*** (3.943) 56.445*** (3.515) 

Observations 26 26 26 

R2 0.206 0.456 0.552 

Adjusted R2 0.098 0.382 0.491 

Residual Std. Error (df = 
22) 

7.330 9.836 8.769 

F Statistic (df = 3; 22) 1.905 6.140*** 9.034*** 

Note: *p**p***p<0.01 

 

3.4.7 Implications for process scientists and engineers 

At the case study WTW of the sensitivity of treatment to slight changes in zeta 

potential were observed and a specific short-term example has been presented, 

where a target zeta potential of 0 mV would be optimal for removal of DOC and 

a small deviation from that to -5mV resulted in deterioration in treated water 

quality. As pH was not independently controlled, the mechanism driving this 

performance change could not be identified. It could not be ruled out that changes 

in NOM structure occurred over the pH change observed and the resulting 

influence on adsorption and steric effects were responsible for changes in the 
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treatment performance. Conformations of humic acids have been observed to 

change with pH, resulting in an increase in adsorption sites, and therefore 

exerting a greater coagulant demand at higher pH (Davis and Edwards, 2014; 

Stumm and Morgan, 1996).  

Rapid deterioration in treatment performance as zeta potential becomes positive 

has also been observed and is associated with transition from charge 

neutralisation to colloidal re-stabilisation (Stumm and O’Melia, 1968). Similarly, a 

narrower window for destabilisation with decreasing coagulant and colloid 

concentration is a well established phenomenon (Stumm and O’Melia, 1968). 

This explanation was not sufficient to explain the variation in treatment 

performance observed at the case study WTW. Presenting data over the period 

of the investigation showed that as zeta potential deviated from 0 mV 

deterioration in treated water quality was more likely. However, this deterioration 

was inconsistent and moderated by other factors including temperature and flow. 

Prior to this work, the challenge has been to understand what controls the size of 

the operational window for zeta potential and how this can be manipulated to 

improve the robustness of treatment (Jefferson et al., 2004). This investigation 

has demonstrated that online zeta potential measurement and appropriate 

modelling techniques can be used to quantify how the effective operational 

window changes with prevailing conditions for a specific treatment system. This 

allows not only dose optimisation but identification of alternative mixing strategies 

to overcome treatment constraints. 

It is typically understood that the minimum effective coagulant dose is determined 

stoichiometrically by the coagulant demand of NOM (Stumm and O’Melia, 1968). 

However, it is likely that the case study system was at times collision limited. In 

practical terms this means that floc size is constrained by too low a concentration 

of particles resulting in too few opportunities for the agglomeration of particles 

within the available retention time of the flocculator. Under collision limited 

conditions, increased concentrations of NOM have been associated with a 

reduction in the minimum effective coagulant dose as precipitated organic matter 

improves the collision rate (Shin, Spinette and O’Melia, 2008). It is therefore 



 

102 

possible that zeta potential variation, within what has previously been observed 

as the stable operational window, is caused by the collision rate from additional 

precipitated polymeric aluminium hydroxide and aluminium-NOM particles. If this 

is the case, the online zeta potential analyser is providing information which 

enables the optimisation of coagulation within a collision limited system by 

allowing an increase in the collision rate up until the boundary of the re-

stabilisation zone is reached. Essentially this involves dosing beyond the point 

required by pure charge-neutralisation coagulation and increasing the number of 

particles with coagulant particles and additional precipitation of dissolved organic 

matter. Up until the point of zero charge there is a trade-off between collisions, 

adsorption and operational cost. At doses beyond the iso-electric point there is a 

trade-off between collision rate, treatment cost and re-stabilisation. Online zeta 

potential has been shown to be an informative operational aid for navigating this 

region.  

Examining the marginal deterioration of flocculation rate of a low turbidity water 

at zeta potentials near 0 mV in a jar test is problematic. Not only are the 

incremental increases in coagulant concentration small, the region of interest for 

optimising charge-neutralisation coagulation systems is where the measurement 

error for electrophoretic mobility is greatest. However, the advantage of online 

measurement of zeta potential in this instance was in the collection of a much 

greater amount of data allowing an average to be taken of several samples and, 

with appropriate modelling of the treatment system, a more sensitive and 

informative measure of coagulation performance to be derived.  

Jar testing provided some further evidence that variation in coagulation-

flocculation performance was not controlled by dose alone. Under apparently 

collision limited conditions faster flocculant mixing increased the growth of flocs 

but ultimately resulted in shear-limiting of floc size. This is likely to mean that the 

optimal mixing regime would be contingent upon the quality of water treated and 

the retention time within the flocculation tanks. The data from jar testing also 

supports observations from the modelling of the full-scale process showing that 

the combination of low temperature, low particle concentration and limited 
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flocculation had the potential to negatively affect the performance of flocculation. 

This has been previously shown to affect the performance of downstream 

separation processes (Morris and Knocke, 1984).  

In the well mixed batch reactor conditions of the jar test, the growth of floc in 

source A was extended to as long as 20 minutes at cold temperatures under 

optimal charge conditions. This exceeded the available process time at the case 

study WTW. The jar testing results clearly reflect the justification for the 

operational decision to increase the proportion of source B during the winter due 

to the poor floc formation in source A which results in higher clarified water 

turbidity. However, jar tests also indicate that though benefits from the higher 

collision rate can be gained from using more of source B there is an apparent 

trade-off against solids loading and floc strength. Using more source B would 

result in a greater solids load of weaker floc and greater potential for shear in the 

DAF. These observations identify the potential opportunities to explore the use of 

polymer to improve floc strength during conditions of low coagulant: NOM ratios 

as well as nucleating particles to overcome collision limiting when treating low 

colloid concentrations at low temperatures.  

It is likely that there are more complex physical mechanisms (collision and shear 

rates) driving turbidity variation in clarified water than can be measured by UV 

absorbance (a turbidity corrected measurement), which is likely to be more 

dependent upon adsorption mechanisms. This may explain why modelling of 

turbidity was less successful than clarified UV254 absorbance. The turbidity 

adjusted UV254 absorbance measurement would be sensitive to the adsorption 

of dissolved aromatic organic matter and would be less sensitive to the resultant 

particles. Turbidity measurements would be affected to a greater extent by 

primary particles, coagulant particles, precipitated NOM-coagulant complex 

particles and the fragmentation of flocs. 

This investigation suggests that where there is an operational requirement to 

overcome complex raw water challenges, or other process constraints, zeta 

potential can provide a valuable source of data to aid understanding of 

coagulation performance within a nominally charge-neutralisation regime. Bench 
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scale methods for optimization, such as jar testing, are time consuming and slow. 

Jar testing in a small completely stirred tank reactor can also be a poor 

representation of the hydraulics and shear forces at play in full scale treatment 

systems where the combination of non-ideal plug flow and stirred tank reactors 

may be present. The methods presented in this paper suggest that process 

modelling using online zeta potential may allow treatment plants to be more 

productive and adapt operations to meet challenges from changing raw water 

quality without building additional process capacity. Furthermore, in systems with 

low turbidity, the large number of replicate measurements that the online 

instrument provides allows greater precision when optimising charge 

neutralisation in collision limited low particle systems which exhibit greater 

sensitivity to changes in coagulation conditions.  

3.5 Conclusions 

• Online zeta potential enables increased frequency of monitoring of 

coagulation allowing improved precision which can facilitate operational 

insights when compared to bench testing for charge-neutralisation 

coagulation of low turbidity water sources.  

• Online monitoring of zeta potential has shown that under certain conditions 

changing coagulant dose with resulting zeta potential suppression of 

between -4 to 0 mV can have a material impact on WTW performance and 

treated water quality. Though the methods used in this investigation could 

not confirm the mechanism driving this performance change, modelling of 

full scale and jar test data indicate that depending on prevailing conditions 

likely performance benefits resulted from increased collision rate, 

increased adsorption or improved floc strength.  

• WTWs with shorter process residence times which experience colder 

waters and relatively low raw water particle concentration are likely to 

exhibit performance which is less robust in response to variation in zeta 

potential achieved in coagulation than other treatment systems. The 

improved precision of charge measurements provided by online zeta 
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potential measurements may facilitate greater coagulation efficiency in the 

charge neutralisation window. It is likely that this would be achieved 

through supplementary adsorption and bridging mechanisms. Improved 

precision (through averaging multiple measurements) of online monitoring 

compared to bench-top instruments would more effectively enable 

operators to prevent re-stabilisation.  

• The sensitivity to zeta potential and the effective operational window for 

treatment and coagulant dose appears contingent upon collision rate. It is 

likely that this will have implications on the relative costs and benefits 

associated with using different charge measurements for optimising 

treatment. In treatment systems which are more robust to sub-optimal 

coagulation conditions streaming current is likely to be adequate, whereas 

in more sensitive systems the greater precision and interpretability of 

online zeta potential measurements are likely to provide an additional 

benefit. 

• Using a PCA-GAMM model to relate online zeta potential measurements 

with other online quality and operational control measurements can enable 

the identification of the effective operational zeta potential window for a 

treatment system with a given prevailing water quality, operational 

constraints and treatment goals. This is particularly the case where 

conditions and constraints vary such that the optimal treatment strategy 

may change between charge-neutralisation and sweep-flocculation. 
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4 Improving the performance of sand filters with 

constrained up-wash rates using low-density expanded 

clay media. 

4.1 Abstract 

Rapid gravity sand filters (RGF) form the final barrier to particles and pathogenic 

micro-organisms in many large municipal water supply systems. Many RGFs are in 

operation that were designed before advances in filtration theory and practice that 

occurred during the 1980s and 1990s, or have been built intentionally with design 

limitations. Previous investigations and fullscale application of expanded 

aluminosilicate (FiltraliteTM) as a replacement for sand have demonstrated potential to 

improve the performance of deep-bed filters, particularly in RGFs with poorly designed 

cleaning systems.  

This research investigated the application of aluminosilicate media of a much smaller 

size grade than has been previously researched. Pilot scale filtration trials were 

undertaken at two water treatment works in Scotland comparing different 

aluminosilicate media configurations with conventional media arrangements. The 

results showed that filtration performance gains and the mechanisms driving them 

were contingent on filter design and influent solids loading conditions. Pilot trials 

showed that a fine dual Filtralite bed (0.5-1 mm & 0.8-1.6 mm) with a porosity that was 

26% greater than the equivalent grade of sand anthracite delayed particle 

breakthrough by more than 50%.  

The availability of finer aluminosilicate grades of media combined with improved 

understanding of its application broadens the range of conditions where switching 

media from sand to aluminosilicate can economically deliver water quality and 

performance improvements in existing filters. Pilot trials showed that depending on the 

solids loading conditions, filter type and backwash system the processes driving 

improved performance varied. Much of the performance gain associated with use of 

Filtralite was associated with the improved removal of deposits during backwash. The 

expansion for the low-density media rather than the greater porosity and surface 

roughness, a result consistent with what has been published previously.  
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These findings can be applied to many of the RGFs currently in operation in the UK. 

In many cases, these performance gains can be achieved at a fraction of the cost of 

upgrading backwash systems and hydraulic control regimes. Such a replacement 

strategy would allow many older filter structures and supporting mechanical and 

electrical components to be adapted to meet the increasing demands of more stringent 

water quality standards and deteriorating raw water quality. 

4.2 Introduction 

Rapid gravity filtration (RGF) is a batch process where water is passed through a fixed 

bed of granular media, traditionally silica sand, providing a large surface area and void-

space for the collection of flocculated colloidal and precipitated solids. After a period 

of operation, the accumulated solids are backwashed from the bed, recovering the 

surface area and voids for attachment of particles during the next run. If not effectively 

backwashed, deposits accumulate within the filter, resulting in a deterioration in media 

condition and performance (Van Staden and Haarhoff, 2011). Deposits retained within 

the media bed increase interstitial velocity and shear, as well as lowering attachment 

efficiency, reducing filtration performance. Retained deposits can also, in some 

applications, be used to increase attachment efficiency reducing the ripening period. 

Hydraulic shock, overloading of solids and inadequate pre-treatment can cause the 

release of accumulated solids into treated water, a process known as breakthrough. 

Breakthrough of particles from filters has been associated with increased 

concentrations of microorganisms in filtered water and supply systems (Hendricks, 

2006; Huck et al., 2002b). Ineffective clearing of deposits from the media voids 

reduces the solids handling capacity of the filter and over time can lead to operational 

issues such as mud-balling and wormholes. Reduction in filter run times can result in 

a cycle of hydraulic overloading of filter wash water systems, deteriorating recycle 

water quality and increasing public health risk and/or the emergency discharge of 

wash water to the environment (Huck et al., 2001; Mann et al., 2007).  

Filter washes typically progress in stages to: 1) dislodge accumulated solids from the 

surface of media grains; 2) transport dislodged solids out of the filter box; and 3) re-

grade the media bed to ensure hydraulic efficiency. First, air is passed through the 

bed to agitate the media grains and dislodge deposits, in what is known as the air 

scour. More modern filters backwash with a combination of air and water. The 
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promotion of maximum shear conditions, known as “collapse pulse” backwashing are 

well established, with the combination of air and water at between 25 and 50% of the 

minimum fluidisation velocity (Vmf) having been demonstrated to be most effective 

(Amirtharajah, 1993). Following the air-scour or combined phase, a rinse is applied to 

transport dislodged solids into the dirty wash-water collector. Critically, for this 

investigation there are two potentially limiting processes in the performance of a back- 

wash: the removal of deposits from media grains, the transport of deposits from the 

filter by rinsing. It should be noted that in experimental methods Amirtharajah uses a 

high-rate rinse capable of 20-25% bed expansion to transport dislodged solids from 

the bed (Ambergey et al., 2003; Amirtharajah et al., 1990).  Effective backwashing is 

crucial for filter operation and is affected by media density, size, friability, voidage and 

water temperature (Fitzpatrick, 1998). The type of backwashing is typically dependent 

on the type of rapid filter media design, which can be broadly characterised into three 

types: 

1. Traditional mono-media filters: Traditionally rapid filters used a fine sand with 

an effective size (10th percentile of the grain diameter distribution) of 0.5 - 0.6 

mm and a bed depth of 1 m or less.  Some of these systems wash at a rate 

below fluidisation, others are washed to expand the bed by more than 20%. 

Broadly speaking, operation of filters in the US typically use higher wash rates 

than those used in Europe (Beverly, 2005; Hendricks, 2006; Brandt et al., 

2016). Many of these filters now use a separate air-scour that has been retro-

fitted into older filters. The high surface area of small media grains means that 

good quality water can be produced from a relatively shallow bed. However, the 

hydraulic and solids loading capacity of these filters is much lower than later 

designs. 

2. Deep bed mono-media filters: These filters use a single larger grade media 

with a typical effective size greater than 0.95 mm used in a deep bed depth of 

1 m or greater to compensate for the reduced surface area of the larger media 

(Beverly, 2005). Coarse media has greater hydraulic efficiency. This 

configuration is less likely to blind than finer sand by more efficiently collecting 

solids through the depth profile of the bed. However, the reduced collision rate 

leads to a shallow wave front of accumulated deposits within the bed, hence 

the requirement for a deeper filter bed. In addition, polymer is frequently applied 
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in order to  retain fine floc and prevent early breakthrough of particles. Most 

deep-bed filters are washed with a combination of air and water to induce 

collapse-pulse conditions which allow effective cleaning of media grains. 

However, there is considerable divergence in how these filters are cleaned with 

respect to the fluidisation achieved during backwash, with some systems 

designed to expand the bed and others rinsing at a sub-fluidisation velocity with 

or without supplementary surface washing.  

3. Dual and multimedia filters: These filters exploit the density difference 

between two or more media materials of different particle size and density. 

Larger and low density media is retained at the top of the bed above a layer, or 

layers, of finer higher density media. Such filters allow for more effective and 

efficient particle capture in the filter bed. Dual media filters rely on effective bed 

expansion beyond the fluidisation velocity and the difference in settlement rates 

of the media to re-grade the filter in order to maintain the hydraulic efficiency of 

the filter (Beverly, 2005; Hendricks, 2006).  

RGFs are generally large, expensive, and long-lived concrete structures and many of 

the RGFs operating today were designed and built several decades ago when water 

quality standards were lower. Many filters in operation today pre-date the advances 

that have been made, such as the use of deep bed coarse media filtration and 

collapse-pulse backwashing. Furthermore, changes in raw water quality have placed 

filtration processes under increased pressure. For example, the concentration of 

natural organic matter (NOM) in surface waters has increased in northern Europe and 

America over the last decades (Pagano, Bida and Kenny, 2014). The precipitation and 

flocculation of these materials in water treatment results in increased solids loading, 

challenging the performance of filters which were designed and built before the water 

quality had changed (Eikebrokk, Vogt and Liltved, 2004; Jarvis et al., 2005a). The 

increased NOM content in flocs also weakens them, making them more difficult to 

remove during clarification and filtration (Jarvis et al. 2005). The shearing and 

breakthrough of weaker NOM flocks limits the solids handling capacity of a filter 

compared to denser and stronger mineral floc, however, this can be mitigated with the 

use of polymers (Rebhun, Fuhrer and Adin, 1984). However, the use of polymer on 

filters which are ineffectively backwashed can exacerbate deteriorating filter condition 

and performance through the formation of mud balls (Logsdon et al., 2002). 
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To satisfy changing requirements and realise the full life of civil assets, it is not 

uncommon for older filters to be modified or upgraded to overcome limitations of the 

original design. One type of upgrade, the conversion of mono media filters with a 

fluidising backwash into dual media filters using anthracite to increase the solids 

handling capacity is well established. Such upgrades typically require not only 

replacement of the media, but also an increase in the up-flow velocity of the wash 

water to re-grade the dual media bed.  Addressing the constraints in the availability 

and delivery of backwash water can be a considerable capital cost. The central 

rationale of this work was to therefore demonstrate how and where low-density media 

can be used to improve water quality and avoid the requirement for large capital 

expenditure to upgrade RGF backwash facilities. 

There are several media alternatives to sand for use in RGFs including: anthracite, 

garnet, crushed glass, pumice, quartz, slate, polystyrene and expanded 

aluminosilicate (Davies-Colley and Wheatley, 2012; Schöntag and Sens, 2015; 

Suthaker, Smith and Stanley, 1995). Increasing solids loading capacity in a filter by 

adding a layer of pumice or anthracite to a mono-media sand filter is a long established 

method for improving the robustness of a filter(Ives, 1970). Aluminosilicate media 

offers an advantages over these materials because of its reduced friability and 

increased porosity (Davies, 2012). The most common aluminosilicate product on the 

market is known by the commercial name Filtralite. The use of Filtralite as a filter 

material for drinking water applications was pioneered in the late 1990s and is now 

well established (Eikebrokk and Saltnes, 2001). Typically, Filtralite media with a 

particle diameter >0.8 mm have been used in water treatment to improve the hydraulic 

loading and solids handling capacity of deep bed filters. Filtralite has been used 

effectively to improve the hydraulic efficiency of roughing filters using a fine 0.6-1.2 

mm sand and anthracite media to be replaced by larger Filtralite media whilst retaining 

the same wash rate (Mikol et al., 2007). Lower density media, including Filtralite, has 

also been reported to wash more effectively than sand reducing wash frequency 

(Bayley et al., 2006).  Though more effective washing has been observed during 

comparisons at consistent backwash conditions, improvements in filtration 

performance due to Filtralite have been attributed primarily to increased porosity, 

favourable shape and surface characteristics and  consequently the support of biofilm 

within the media (Bayley et al., 2006; Mikol et al., 2007; Saltnes, Eikebrokk and 
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Ødegaard, 2002).  As previous published investigations involving Filtralite have used 

media > 0.8 mm in diameter, filtered water turbidity results have not been 

advantageous compared to conventional fine sand filters in media beds ≤1 m deep 

(Mikol et al., 2007; Saltnes et al., 2002). Fundamental filtration theory indicates that 

the greater porosity will result in lower particle capture efficiency (Rajagopalan and 

Tien, 1976; Tufenkji and Elimelech, 2004). As a consequence, following investigators 

have paired Filtralite with finer and lower porosity media which also has higher density 

(Cescon et al., 2016; Davies and Wheatley, 2012).  In recent years, a finer Filtralite 

grade (0.5-1 mm) with lower porosity has become available making it more appropriate 

for use in older filters that are of relatively shallow bed depth (<1 m) and require greater 

collection efficiency to maintain water quality.  

The benefit of using Filtralite in sufficiently deep filters with backwash systems capable 

of delivering combined air and water collapse-pulse backwashing and rinse rates 

greater than 45 m/h is well established. In these conditions it is possible to replace 

coarse sand (≥ 0.85-1.7 mm) with a dual media of Filtralite HC (0.8-1.6 mm) and 

Filtralite NC (1.5-2.5 mm). In these ideal conditions performance benefits in terms of 

hydraulic efficiency and solids handling capacity have been attributed to additional 

voidage from larger, irregularly shaped media with greater porosity and lower 

sphericity (Mikol et al., 2007). These ideal conditions are not replicable in many 

existing filters with performance challenges. Though the advantages of Filtralite in 

terms of backwash performance have been observed previously, these investigations 

have compared the performance of Filtralite to sand over an extended period with 

consistent backwash conditions and concluded that further research was required to 

identify the mechanisms enabling the advantages associated with Filtralite (Bayley et 

al., 2006; Mikol et al., 2007). The aims of this work were therefore to further understand 

water quality improvement associated with replacement of sand with Filtralite in the 

context of legacy constraints in the design of backwash systems and new finer grades 

of Filtralite. 

4.3 Materials and methods 

4.3.1 Study sites 

Pilot scale investigations were undertaken at two surface WTWs (A and B) in Scotland, 

with full scale trials following at WTW A: 
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4.3.2 WTW A: DAF - Dual Media RGF 

WTW A treats a blend of two surface water sources by coagulation with poly-

aluminium chloride (PACl), dissolved air flotation (DAF), and RGFs. The RGFs at this 

works had originally been designed to use a 0.5 to 1 mm diameter sand media. During 

a previous upgrade the media had been changed to a combination of 0.6 - 1.2 mm 

sand and pumice (original size unknown). The filters are washed by a separate air and 

water wash. The backwash pumps can deliver an up-flow velocity of 23 m/hr, which is 

insufficient to effectively re-grade the sand-pumice media resulting in a largely mixed 

bed. The air scour rate is 20 m/hr. Seasonal water quality issues arise at low 

temperature due to hydraulic overload of flocculation and flotation stages. To improve 

performance, the source water blend is changed seasonally; this results in changes to 

the clarified water quality throughout the year (Table 11). Poor flocculation 

performance when the water is cold, and floc carry-over in combination with hydraulic 

shocking of the filter bed has been associated with premature turbidity breakthrough 

during the winter and Cryptosporidium detections.  

4.3.3 WTW B Direct filtration 

WTW B is a direct filtration plant coagulating with alum and flocculating with a cationic 

polymer. The filters comprise a BSS 10/18 (0.85-1.7 mm) coarse mono media sand 

filter at a depth of 1000 mm. These filters are washed with air (55 m/hr), then combined 

air (55 m/hr) and water (7 m/hr, approximately 13% of the D90 vmf at 15°C) for 10 

minutes. The large grade of sand media and the low water rise rate allows an extended 

combined air and water wash during which water spills into the launder with minimal 

media loss. This is followed by a rinse with an upwash velocity of 17 m/hr for 5 minutes 

which is not high enough to fluidize the bed. The up wash is supplemented by a 

concurrent surface wash. This type of deep-bed coarse sand filter was popular in the 

1990s, during a period of considerable investment in water treatment in the UK.  

4.3.4 Pilot plant 

The pilot plant consisted of three 3 m high columns with an internal diameter of 150 

mm. The columns were operated in parallel. Flow to each filter was supplied by a 

common sample line. This was fed from the clarified water during trials at WTW A and 

from the flocculated water during trials at WTW B. An independent in-line peristaltic 

pump for each column provided flow control & additional driving head. All pumps and 
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valves were operated manually. A schematic of the pilot filter arrangement for each 

filter is shown in Figure 19.  An air compressor with mass flow meter provided air-

scour and a pump provided backwash water. Filtration tests were carried out using 

configurations of sand, Filtralite and anthracite media (Figure 20 and below for further 

descriptions). The physical properties of the media used in the trial are shown in Table 

10 and particle size distributions from sieve testing are shown in Figure_Apx 53 (British 

Standards Institution, 1989).  

 

Figure 19 Schematic of filtration pilot plant for a single filter column. 
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Figure 20. Summary of media trial configurations. 
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Table 10. Summary of the key physical properties of media tested in pilot trials. 

Material Sizes / 
Grade 
Tested  

 

(mm) 

Effective 
size 
(D10) 

 

(mm) 

D90 

(mm) 

Uniformity 
coefficient 
(D60/D10) 

 

Density  

 

 

(kg/m3) 

Porosity 

Sand 0.5-1.0 0.63 0.9 1.27 26501 0.432 

Sand 0.85-1.7 1.01 1.74 1.363 26501 0.432 

Filtralite 
HC 

0.5-1.0 0.523 0.95 1.463 18001 0.551 

Anthracite 0.8-1.6 0.85-11  <1.51 14001 0.52 

Filtralite 
NC 

0.8-1.6 0.983 1.46 1.343 12601 0.611 

 

 1. Suppliers data 
2. Textbook value (Crittenden et al., 2012) 
3. Sieve testing 

4.3.5 Media trials 

4.3.5.1 Pilot trials at WTW A: (DAF - Dual Media RGF) 

Pilot scale trials at WTW A compared a column with 700 mm filter sand (0.5-1 mm, 

2650 kg/m3) below 300 mm of anthracite (0.8-1.6 mm, 1400 kg/m3) to a filter column 

containing 700 mm of Filtralite HC (0.5-1 mm, 1800 kg/m3) below 300 mm of Filtralite 

NC (0.8-1.6 mm, 1260 kg/m3). Both media beds were supported by a 100 mm layer of 

gravel (10 mm). Feed water was sourced from the clarified water channel. 

Performance of the media was compared at hydraulic loading rates between 4.5 m/hr 

and 6 m/hr and with backwashes at 17, 23, 27 and 34 m/hr. Selected runs were 

repeated in an attempt to capture deteriorating condition effects inherent in sub optimal 

backwash trials. The trials presented for WTW A took place between January and 

August at water temperatures ranging from 4 to 16 °C. The conventional and test filter 

columns were operated in parallel at the same time on the same feed water. The air 

scour was maintained at 20 m/hr for all washes to reflect the conditions at full scale. 

The blend of the two sources treated at WTW A varied marginally over the course of 

the pilot trial, with a slight increase in the raw water turbidity and colour during winter 

when there was an increase in the proportion of Source B to half of the flow (Table 

11). This resulted in a slightly higher turbidity in the clarified water going onto the filters 
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during winter, with an average of 0.7 NTU compared to 0.6 and 0.5 NTU in spring and 

summer.  

Table 11. Averages for WTW A water quality over the pilot study period based on 

different seasonal blends 

Blend Source A: Source 
B 

WTW Flow 
(l/s) 

Clarified 
turbidity 
(NTU) 

Raw water 
turbidity 
(NTU) 

Raw 
colour 
(Hazen)  

Spring Blend 55:45 381 0.6 0.9 32.1  

Summer Blend 60:40 367 0.5 1.0 33.6  

Winter Blend 50:50  363 0.7 1.2 37.6 

 

4.3.5.2 Full scale trials at WTW A: DAF - Dual Media RGF 

On the basis of successful pilot trials at WTW A, full-scale trials of lower-density media 

were initiated at the site. Data was extracted from the control system describing the 

performance of the trial filter containing a bed of Filtralite HC 0.5-1 mm (700 mm) and 

Anthracite 0.8-1.6 mm (300 mm) and a neighbouring filter containing the old media an 

ungraded mixture of 14/25 sand & pumice of unknown size at a total depth of 1m. Both 

filters were backwashed at the maximum available rate of 21 m/hr. Anthracite was 

chosen in preference to coarser grade Filtralite in order to minimise the risk of media 

loss, a fraction of Filtralite NC 0.8-1.6 is buoyant upon initial contact with water and 

can remain buoyant for several weeks. 

4.3.6 Pilot trials at WTW B Direct filtration 

Pilot column trials were conducted to compare the performance of a 1000 mm deep 

bed of 10/18 filter sand (0.85-1.7 mm 2650kg/m3) with a 1000 mm bed of low-density 

Filtralite (0.8-1.6 mm 1260kg/m3). A hydraulic loading rate of 4 m/hr was maintained 

for all the pilot tests matching that of the WTW. Sand was backwashed under 

conditions as far as possible approximating to those of the full-scale site. The 

combined wash phase combined air (55 m/hr) and water (7 m/hr) for 10 minutes. In 

addition to a combined air and water wash, WTWs B uses a surface wash to assist 

the transport of dislodged solids from the filter box; this operation could not be directly 

replicated using the pilot filter columns. As the pilot plant was not capable of simulating 
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a surface-wash the duration of the 17 m/hr rinse was doubled to 10 minutes in an 

attempt to correct for this effect.  

4.4 Data analysis 

Filter operation and filtered water quality was monitored and logged for each column 

using online monitors for turbidity, particle count, flow and differential pressure. This 

data was downloaded and stored within an SQLite database (Hipp, 2020). A run log, 

recording the details of each filter run including the start and end times and backwash 

conditions was kept and added as a table within the database.  

As pilot trials are time consuming to complete the acquisition of data is limited. 

Observations within the same filter run have inherent dependencies so aggregate 

measures of filter operation and performance of individual runs required for realistic 

estimates of modelling error.  

Normalised clean bed head loss (NCBHL), a widely applied indicator of filter backwash 

performance, was calculated using the procedure described in Logsdon et al. (2002) 

to the mean of values measured in the first hour of operation after backwashing 

(Equation 29). Volume normalised head loss (VNHL) applies this approach over the 

whole run after dividing by the volume of water treated in units of empty bed volumes 

(EBV) (Equation 30). VNHL was used as a metric of hydraulic performance, with lower 

values indicative of greater distribution of deposits over the profile of the bed. The 

effective run productivity, or breakthrough, was defined for pilot trials at WTW A, as 

the empty bed volume after which the particle counts consistently increased by more 

than 10% in a 4 hour period.  

Equation 29. Flow normalised head loss:  

𝐻𝐹 = 𝐻𝑄𝑇 (
𝑄𝑁
𝑄
) 

Where: Hf = flow normalised head loss (m), HQT= measured head loss at flow rate Q and 
temperature, T (°C), QN= flow rate used as standard for normalization (m/hr), Q = measured flow 
rate (m3/m2/h) 

𝐻𝑁 = 𝐻𝐹 (
µ𝑇
µ
) 

Where: HN = flow and temperature normalised head loss (m), µT = absolute viscosity of water at the 
normalised (standardized) temperature (kg/m/s), µ - absolute viscosity of water at the mean weekly 
water temperature (kg/m/s) 
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Equation 30. Volume normalised head loss (VNHL): 

 

𝑉𝑁𝐻𝐿 =
∑ (

𝐻𝑁𝑖 − 𝐶𝐵𝐻𝐿
𝑉𝑖

)𝑛
𝑖=1

𝑛
 

Where: HNi = flow and temperature normalised head loss at observation  (m), CBHL = Clean bed head 
loss (m), Vi = Volume filtered at observation I (EBV), n = Number of observations 

As the performance of the filters during pilot trials at WTW A varied depending on the 

seasonal blend of water. Linear mixed models were used to correct for within blend 

dependency and maximise the statistical power of the analysis of the whole period. 

Model identification was performed according to the method set out in Zuur (2009). 

Additional ordinary least squares (OLS) regression models using data from only the 

most challenging winter period at WTW A were undertaken. Models were fitted to the 

three performance variables using the explanatory fixed effect variables describing 

media bed type and wash-rate. In the experiments media performance in pilot trials at 

WTWA were compared at a range of wash rates which were practically relevant to the 

application of the low density material in existing filters and the objectives of the 

research. In response to criticism of the original version of this thesis additional data 

analysis was performed with wash rates normalised for minimum fluidisation velocity. 

Therefore, wash rate was modelled as an explanatory variable in two ways in separate 

models: firstly as an absolute value of the filtration velocity (m/hr) and secondly relative 

to the minimum fluidisation velocity of the lower layer of media. The minimum 

backwash velocity required to achieve fluidisation (Vmf) was calculated using the 

procedure of Wen & Yu as described Logsdon et al. (2002) shown in Equation 31 and 

Equation 32.  It should be recognised that correcting for density, after the fact, rather 

than in the experimental design, introduced collinearity into the statistical models as 

media choice was correlated with wash-rate after correction for density. These 

collinearities were checked using the variance inflation factor (VIF). VIF values 

between 3-3.5 for individual seasonal blends and 2 across all pilot runs between flow 

normalised wash rate and media were considered to be acceptably low and no further 

correction was made. 
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Equation 31. Calculation of velocity of minimum fluidisation Vmf (Logsdon et al., 2002) 

𝑉𝑚𝑓 = 
µ

𝜌𝑑𝑒𝑞
(33.72  +  0.0408𝐺𝑎)0.5  −

33.7µ

𝜌𝑑𝑒𝑞
  

Where: Vmf = minimum velocity required to fluidise the bed (m/hr), µ = absolute viscosity (kg/m/s),ρ 
= mass density of fluid (kg/m3) 

Equation 32. Calculation of Galileo number (Logsdon et al., 2002) 

𝐺𝑎 =  
𝑑𝑒𝑞

2𝜌(𝜌𝑠 − 𝜌)𝑔

µ2
 

Where: g = acceleration due to gravity (m/s2), µ = absolute viscosity (kg/m/s),ρ = mass density of 
fluid (kg/m3), ρs = mass density of media grains (kg/m3), deq = equivalent diameter of the filter (90th 
percentile used) 

Pilot trials at WTW A aimed to understand the comparative performance of media 

under a range of backwash rates. Trials took place across different seasons with the 

pilot columns treating a different blend of water in each season. This meant that 

performance of the media varied across the seasons in a way that was not the original 

focus of the experiments. To efficiently and reliably model data across all seasons a 

mixed effects model was used. Mixed effects models allow the analysis of a 

phenomenon of interest across data collected amongst different groups (Zuur, 2009). 

In this case the phenomenon of interest was the impact of wash rate on the 

performance of two media but the characteristics of the water treated changed over 

the period of the trial meaning that there were correlations between the blend treated 

and the performance of the filter columns. The errors from an ordinary least squares 

regression model fit to all of the data would not be independent. This can be avoided 

by aggregating the data within the test condition across the different groups, however 

by doing this, lots of the information is lost. It is also possible to fit individual models 

within each of the groups, however this results in a large number of models and given 

there are comparatively few data points within each group the uncertainty of each 

model would be high. A normal OLS model has only fixed effects such as the intercept 

and slope which the modelling procedure estimates. It is possible to specify a more 

complicated fixed effects model which included the grouping factor as a fixed effect, 

but where there is an interaction between the grouping variable and another fixed 

effect of interest this would need to be captured in the model increasing the number 

of parameters and the complexity of interpreting them. Mixed effects modelling allows 

the inclusion of a random intercept and or slope for each group and therefore the 
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estimation of the fixed effects of interest across all observations. Each of the three 

performance variables; bed volumes at breakthrough,  

One particular performance characteristic, volume filtered at breakthrough, was an 

issue particularly during treatment of the winter blend but not the others. To effectively 

understand and communicate the differential performance of media and the impact of 

backwashing during this critical period additional modelling was carried out. The 

volume filtered at breakthrough during treatment of the winter blend only was also 

modelled using ordinary least squares regression. 

Data was analysed using the R statistical programming environment. Mixed effects 

models were fitted with the lme4 package (Bates et al., 2017; R Core Team, 2015). 

Plots and tables were generated using the ggplot2 and stargazer packages (Hlavac, 

2015; Wickham, 2010). Code used for the analysis is included at 

(https://github.com/APU2/CH4-FILTRALITE ).  

4.5 Results and discussion 

4.5.1 Pilot trials 1: Sand-anthracite filter with insufficient backwash 

(WTW A) 

4.5.1.1 Effective run volume 

On average, across filter runs where particle breakthrough was observed, Filtralite 

media delayed breakthrough by 74 empty bed volumes (EBVs) when compared to the 

conventional sand and anthracite filter (Figure 21, Table 12 model 1). This represented 

a 57 % increase in run length or an additional 12 hours at a filtration rate of 6 m/hr, 

when compared to the sand and anthracite filter. While Filtralite HC 0.5-1 mm has 26 

% greater porosity than sand, this difference does not appear to explain the delay to 

breakthrough observed. Breakthrough of particles was primarily associated with 

treatment of the winter blend and was less frequently observed for either media during 

the spring and summer blends. This led to censoring of the data as the volume filtered 

at breakthrough was only captured when breakthrough took place. Pilot runs which 

were stopped after several days due to head loss, rather than quality deterioration 

were not included in the models of breakthrough. As filter runs where breakthrough 

did not occur were more common for Filtralite the benefit of using Filtralite, in terms of 

delaying breakthrough, is likely underestimated though this is of limited practical 

https://github.com/APU2/CH4-FILTRALITE
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importance as head loss would limit run duration. When treating the winter blend 

particle breakthrough was observed in 18/19 pilot runs of the sand anthracite media 

and in 12/16 of the Filtralite pilot runs. When treating the summer blend particle 

breakthrough was observed in 12/22 sand pilot runs and 1/24 Filtralite pilot runs. 

Though only a 0.2 NTU difference between seasons in the average turbidity of the 

clarified water was observed in online measurements, visual inspection of grab-

samples showed the presence of larger (sludge blanket knockdown, solids load not 

quantified) particles. Larger particles are typically less effectively represented by 

turbidity which is a surface area driven measurement (Anderson, 2005). It is also likely 

that the floc formed during treatment of the winter blend would be weaker as a result 

of increased TOC and lower temperature (Bache and Gregory, 2010). Greater delay 

to breakthrough with increasing wash rate was apparent for both media. For Filtralite 

the volume treated at breakthrough increased from 143 to 213 EBVs (equivalent to 23 

to 36 hrs run time at 6 m/hr)  as the backwash rate increased from 17  to 34 m/hr. 

Equivalent figures for the sand filter were 68 and 137 (equivalent to 11 to 23 hrs run 

time at 6 m/hr)  EBV (Table 13 model 1). When the backwash rate was normalised to 

the Vmf there was an apparent convergence between media in the expected volume 

treated at breakthrough where relative wash rates were equal (Figure 22). 

When data for observed breakthrough was analysed using a linear mixed model, using 

the blend of water treated as a random effect, there was a significant difference in the 

volume of water treated at breakthrough and the media used (p<0.01) of approximately 

74 EBVs, while the wash rate had no significant impact. The absence of a significant 

relationship between absolute wash rate and breakthrough would support the 

hypothesis that the performance benefit associated with the use of Filtralite was a 

result of collector characteristics rather than wash performance. However, the 

relationship is somewhat more complicated than we can see that during treatment of 

the winter blend there is a clear relationship between wash rate and breakthrough 

(Figure 21). During treatment of the spring and summer blends it is likely that 

breakthrough was not observed due to a relatively low solids load and a stronger floc. 

A simplified mass balance of a filtration process shows that the quality of filtered water 

will deteriorate if the solids load exceeds the available capacity of a filter to contain it 

(Equation 33 & Equation 34). The available capacity of a filter bed is reduced by any 

residual deposits which remain after a backwash. This may not be an issue if the solids 
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load is less than the residual solids handling capacity of an incompletely cleaned filter 

and such conditions are likely to have occurred during treatment of the summer blend.  

Using the same mixed modelling approach and normalising wash rate for the density 

of the lower layer of media using Vmf the estimated effect of the media choice reduced 

to 25.8 EBVs and the difference was no longer significant (p = >0.1, 95% CI -17.4 – 

69.1). However, there was a significant (p = <0.01, 95% CI 7.6 – 43.4) relationship 

between the normalised wash rate and EBVs to breakthrough, independent of the 

media type (Table 12, model 2). The absence of any statistically significant (p > 0.1) 

effect of media on breakthrough associated with scaling wash rate to the fluidisation 

velocity (of the lower layer) provides some indication that the improved transport and 

removal of deposited solids from an expanded media bed was the key factor in the 

filtration performance improvement in this application rather than the shape or void 

characteristics of the media. For example, during treatment of the higher solids loading 

in the winter blend, it was hypothesised that there was an accumulation of solids in the 

lower layers of the filter. If these layers are not effectively expanded during backwash, 

the media will be poorly cleaned resulting in accumulation of solids and an earlier 

onset of breakthrough. The use of the lower density Filtralite media was able to 

mitigate this problem through greater bed expansion (and cleaning) during the 

backwash. It is likely that, over time, the condition of an unexpanded bed would 

deteriorate such that even at reduced solids loading rate a greater difference in 

performance would still become apparent. However, the nature of experimental design 

where the wash conditions were varied between runs to avoid potential influence of 

experimental treatments correlating with environmental conditions meant that such 

cumulative inter-run effects were not captured. 

Equation 33. Simplified mass balance for rapid gravity filter run 

𝑀𝑜𝑢𝑡 = 𝑀𝑖𝑛 ∗ (1 − 𝜂)  + {
𝑀𝑒     𝑀𝑒  >  0
  0         𝑀𝑒  <  0 

 

Where: Mout = Effluent mass of solids during a filter run (kg), Min = Influent mass of solids during a 
filter run (kg), Me = Excess solids (kg), η = Filtration efficiency 

Equation 34. Definition of excess solids load 

𝑀𝑒 = 𝑆𝑐𝑏  − 𝑀𝑟 −  𝑀𝑖𝑛 ∗ 𝜂  

Where:  Min = Influent mass of solids during a filter run (kg), Scb = Available solids storage capacity of 
a clean filter bed (kg), Mr =  Residual solids not removed during backwash, η = Filtration efficiency 



 

128 

As the breakthrough performance during treatment of the winter blend was clearly 

different and did not have the impact of censoring that occurred during treatment of 

the spring and summer blends additional modelling of the data collected during this 

period was performed. Ordinary least squares regression modelling of breakthrough 

time for all filter runs as a function of media type and wash rate (m/hr) during the winter 

period alone indicated that, during this period, an increase in 1m/hr in wash rate 

resulted in an additional 4.1 EBVs in filter run prior to breakthrough for both media. No 

significant interaction was observed between wash rate and media indicating that the 

relative benefits of increasing wash rates were consistent between media.  During 

treatment of the winter blend alone Filtralite was associated with a significant 76.3 EBV 

(p < 0.01) increase in filter run volume (Table 13, model 1). As with the mixed models, 

normalising the wash rate by the Vmf of the media served to remove any significant (p 

> 0.1) performance effect associated with media choice (Table 13, model 2). When 

modelling only the high solids winter blend, increasing wash rate was associated with 

a significant (p < 0.01) increase in the effective filter run volume irrespective of 

normalisation for media density (Table 13, model 1 and 2). Modelling of breakthrough 

performance during the treatment of the winter blend alone indicates that delay to 

breakthrough was driven by more effective removal of deposits during backwash. For 

this reason under backwash rate constrained conditions at sufficiently high solids 

loading the lower density of Filtralite effectively extended the effective run time when 

compared to sand. 
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Figure 21. Empty bed volumes filtered at start of particle breakthrough plotted against high rate backwash rate for the two media across 

of each of the seasonal blends. Lines indicate linear model fit with shaded area showing standard error of expected value. Censored 

runs (where the pilot run was ended before breakthrough started) are shown as triangles and excluded from model fitting. 
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Figure 22. Empty bed volumes filtered at start of particle breakthrough plotted against the ratio of high rate backwash rate to minimum 

fluidisation velocity for the two media across of each of the seasonal blends. Lines indicate linear model fit with shaded area showing 

standard error of expected value. Censored runs where the pilot run was ended before breakthrough started are shown as triangles 

and not used to fit linear OLS regression model. 
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Table 12. Linear mixed-effects models relating backwash (BW) rate and media to filter 

column performance, across all seasonal blends, in terms of: bed volumes before 

breakthrough (BT), Normalised Clean Bed Head Loss (NCBHL), Volume Normalised 

Head Loss (VNHL). Coefficient estimates are shown with 95% confidence intervals in 

brackets. 

 Dependent variables : Particle breakthrough, Normalised Clean Bed Head Loss 
& Volume Normalised Head Loss 

 BT (Hrs) 
RI&S 

BT (Hrs) 
RI 

NCBHL (m) 
RI 

NCBHL 
(m) 
RI 

VNHL 
(mm/bv) 
RI 

VNHL 
(mm/bv) 
RI&S 

 (1) (2) (3) (4) (5) (6) 

BW rate (m/hr) 0.6  -0.005***  0.05*  

 (-4.8, 6.1)  (-0.01, -
0.004) 

 (-0.01, 0.1)  

BW rate/ Vmf  25.5***  -0.1***  0.004 

  (7.6, 43.4)  (-0.1, -
0.05) 

 (-0.8, 0.8) 

Media = Filtralite 73.6*** 25.8 -0.03*** -0.02 5.6*** 3.3*** 

 (49.3, 98.0) 
(-17.4, 
69.1) 

(-0.05, -
0.02) 

(-0.1, 
0.02) 

(3.8, 7.5) (2.6, 4.0) 

BW rate/ Vmf: Media 
= Filtralite 

   0.03***   

    (0.01, 
0.04) 

  

BW rate: Media = 
Flitralite 

    -0.1**  

     (-0.2, -0.02)  

Constant 130.4 116.4** 0.5*** 0.5*** 2.0*** 3.4*** 

 (-70.4, 
331.3) 

(22.7, 
210.0) 

(0.4, 0.5) (0.4, 0.5) (0.5, 3.6) (2.3, 4.5) 

Observations 60 60 106 106 106 106 

Log Likelihood -306.7 -307.7 206.4 205.3 -171.8 -159.7 

Akaike Inf. Crit. 627.5 625.4 -402.9 -398.6 355.5 333.3 

Note: *p<0.1; **p<0.05; ***p<0.01 

Table 13. Ordinary least-squares regression models relating breakthrough of particles 

to media and wash-rate conditions. Censored filter runs where breakthrough did not 

occur were excluded. Coefficient estimates are shown with 95% confidence intervals in 

brackets. 

 Dependent variable: Particle breakthrough 
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 OLS 
 (1) (2) 

Media = FL 76.3*** -3.8 
 (54.7, 97.9) (-43.9, 36.4) 

BW rate (m/hr) 4.1***  

 (2.5, 5.6)  

BW rate/ Vmf  35.6*** 
  (21.2, 50.0) 

Constant -2.2 38.4** 
 (-50.1, 45.8) (4.2, 72.6) 

Observations 30 30 

R2 0.7 0.7 

Adjusted R2 0.7 0.7 

Residual Std. Error (df = 27) 29.6 30.1 

F Statistic (df = 2; 27) 38.5*** 36.8*** 

Note: *p<0.1; **p<0.05; ***p<0.01 
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4.5.1.2 Normalised clean bed head loss 

Analysis of normalised clean bed head loss (NCBHL) further supports the assertion 

that the main performance gains observed during pilot trials at WTW A were due to 

the more effective transportation of deposits from the bed facilitated by expansion of 

the lower layer of Filtralite media when compared to the sand equivalent during the 

backwashing.  Figure 23 shows that during treatment of the higher solids winter blend, 

across all backwash rates, the clean bed head loss for the Filtralite was approximately 

0.02 m lower for the Filtralite media than it was for the sand anthracite. However, 

during treatment of the spring blend the difference in CBHL between media increases 

with increasing wash rate, below a rinse rate of 20 m/hr there appears to be no 

difference. During treatment of the summer blend difference in CBHL decreases with 

increasing wash rate, at rinse rates above 25 m/hr there appears to be marginal 

difference between media. After adjusting for media density and expressing the wash 

rate in relation to the velocity of minimum fluidisation (vmf) clean bed head losses for 

Filtralite are equivalent or higher for the Filtralite than for the sand anthracite media 

(Figure 24). For the spring and summer blends, at wash rates approximately double 

the vmf of both media, which corresponds to the lowest wash rates (17 m/hr) for the 

Filtralite and the highest wash rates (34 m/hr) for sand - anthracite, Filtralite exhibits 

higher clean bed head loss by approximately 0.05 m. During treatment of the winter 

blend and backwashing at a rate approximately 2.5 times the vmf, both media exhibit 

similar levels of head loss. These results both indicate that increased wash rates 

reduced the starting head loss of filters for both media. For any given wash-rate lower 

head loss was observed from the Filtralite media. Though clean bed head loss is 

commonly used to indicate media cleanliness this appears to be somewhat more 

complicated when comparing dual media at velocities which achieve less than a 

complete re-grade. Variations in the particle size distribution over the profile of the bed 

due to changes in the depth of the transition layer appear to have a greater impact on 

the Filtralite media than sand-anthracite, this is illustrated by wider standard errors 

(Figure 23 & Figure 24).    

Linear mixed models relating NCBHL to wash rate and media type showed that 

increasing the wash rate significantly (p <0.01) reduced the normalised starting head 

loss. For example, the expected NCBHL on average across all treated blends for sand 



 

134 

anthracite was 0.415 m  at 17 m/hr wash rate, while this decreased to 0.33 at a wash 

rate of 34 m/hr.  Whereas for Filtralite the expected NCBHL on average across all 

blends was 0.385 m at a wash rate of 17 m/hr dropping to 0.3 m at 34 m/hr. This was 

further evidence for the more effective back washing and media regrading that was 

achievable for the lower density media (Table 12, models 3 and 4).  As seen for particle 

breakthrough, the media type had a significant (p <0.01) impact on head loss when 

the wash rate was expressed in absolute terms but this effect was not significant (p > 

0.1) when wash rate was normalised for the Vmf of the lower media layer bed (Table 

12, models 3 and 4).  There was a significant (p < 0.01)  interaction between media 

type and Vmf normalised wash rate with the NCBHL of sand reducing by an additional 

-0.03m for each increase in wash rate equivalent to the vmf  (Table 12, models 3 and 

4). However, it should be noted that the high normalised backwash rates (>2.5) were 

only achievable for the Filtralite media and the very highest normalised backwash 

rates resulted in the lowest head loss. The case of treatment of the winter blend 

resulted in a different pattern, with convergence of the NCBHL at a scaled backwash 

rate of 2.5. It was only during the treatment of the winter blend that the wash rate for 

sand was regularly more than double the velocity of minimum fluidisation.  

The sand/anthracite filter had a consistently lower head loss accumulation rate across 

the trial period between 2.1 and 4.8 mm/EBV, while the Filtralite filter had a higher and 

more variable head loss accumulation between 4.2 and 11 mm/EBV (Figure 26). The 

higher head loss accumulation rate observed in the Filtralite bed would have led to 

shorter run times than sand-anthracite when treating the summer blend (Figure_Apx 

65). However, in practical terms, the key performance constraint was the breakthrough 

of particles during treatment of the winter blend as this would limit the filter run time 

the most 
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Figure 23. Normalised clean bed head loss plotted against backwash rate for the two media across of each of the seasonal blends. 

Lines indicate linear model fit with shaded area showing standard error of expected value.  
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Figure 24. Normalised clean bed head loss plotted against the ratio of high rate backwash rate to minimum fluidisation velocity for the 

two media across of each of the seasonal blends. Lines indicate linear model fit with shaded area showing standard error of expected 

value. 
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4.5.1.3 Volume normalised head loss rate 

It is in contrast to previous investigations which involved comparison of larger grades 

of Filtralite to sand anthracite that the Volume Normalised Head Loss Rate (VNHLR) 

from the Filtralite bed was higher than that for sand during treatment of each of the 

blends and across all wash rates (Figure 26). Previous trials using the larger grades 

have reported lower rates of head loss to sand and anthracite (Davies, 2012; Mikol et 

al., 2007; Saltnes et al., 2002). There was no strong or consistent relationship between 

backwash rate and VNHL apparent during treatment of any of the seasonal blends 

with or without normalising wash rate to the Vmf (Figure 25,Figure 26). The higher rate 

of head loss accumulation by Filtralite, of 6.6 mm/EBV on average compared to 3.27 

mm/EBV for sand anthracite, was not consistent with arguments suggesting that 

improved performance of this media was being driven by higher media porosity. The 

difference in average VNHL between the two media was greatest during treatment of 

the summer blend (sand 3.34 mm/EBV, Filtralite 7.65 mm/EBV), this may indicate that 

higher head loss may in part be driven by additional biofilm formation on the Filtralite 

media. 

Linear mixed models relating VNHL to media and backwash rate suggest that VNHL 

was significantly (p <0.1) higher than seen for the sand (Table 12, models 5&6). The 

significant (p < 0.05) interaction between absolute backwash rate and media shows 

that as the backwash rate increased, the difference between head loss accumulation 

rates of the two media decreased (Table 12, model 5;Figure 25). This may indicate 

that a more complete re-grading of the Filtralite media may be the reason for the lower 

hydraulic performance of Filtralite relative to sand. After normalising the wash rate for 

the Vmf of the lower layer, the main effect of using Filtralite was still estimated to 

significantly (p < 0.01) increase the rate of head loss accumulation by 3.3 mm/EBV. 

There was, however, no longer a significant interaction between media choice and 

head loss accumulation rate (p > 0.1), further indicating that size sorting of the media 

was an important factor in driving the higher head loss. 
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Figure 25. Average of the Volume Normalised Head Loss Rate (VNHLR) (mm/EBV) plotted against backwash rate for the two media 

across of each of the seasonal blends. Lines indicate linear model fit with shaded area showing standard error of expected value. 



 

139 

 

Figure 26 Average of the Volume Normalised Head Loss Rate (VNHLR) (mm/EBV) plotted against the ratio of high rate backwash rate 

to minimum fluidisation velocity for the two media across of each of the seasonal blends. Lines indicate linear model fit with shaded 

area showing standard error of expected value. 
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4.5.1.4 Summary of pilot trials at WTWA 

The results presented thus far show that where backwash rates are constrained and 

solids loading is sufficiently high there are potential performance gains associated with 

the replacement of sand with Filtralite. Considerable advantage was shown, in terms 

of delayed breakthrough and media cleanliness at a given wash-rate, associated with 

the use of Filtralite dual media compared to sand and anthracite where the lower layer 

is 0.5-1 mm and the upper layer is between 0.8 and 1.6 mm. The fact that, when wash-

rates were normalised against minimum fluidisation velocity, there appeared to be no 

difference in the time to breakthrough between media suggests that the improved 

performance was driven by improved washing, rather than the primary particle 

properties of the clean beds. This is supported by the clean bed head loss which was 

lower at each wash rate for the Filtralite media, but if the wash rates were normalised 

for the vmf the clean bed head loss was the same as, or higher than, that of the sand 

– anthracite for the grades tested.  

However, the advantages of delayed breakthrough and lower initial head loss did 

come at the cost of increased loss of head during the filter run. Though it was the 

conclusion of the investigators that the performance advantage was likely due to the 

improved washing of the lower density media there are other candidate mechanisms. 

Greater porosity could provide additional volume for solids to be deposited. Particle 

characteristics, such as low sphericity or smaller effective size could improve the 

particle collection efficiency of the media. Poor re-grading performance could result in 

a low porosity interface region between the media layers resulting in a high localised 

particle collection efficiency and high head-loss. Greater size sorting of the lower 

density media could result in a smaller effective size improving particle collection 

efficiency, but reducing hydraulic efficiency. Six candidate characteristics which could 

contribute to a performance advantage are summarised in Table 14 and the outcome 

in terms of the assessed performance metrics which would be expected if each of the 

characteristics was driving the performance benefit is compared to the observed 

outcome. Though it is possible that all the characteristics identified could contribute to 

some extent to the observed performance none, apart from lower media density 

resulting in improved filter washing, are consistent with the observed results. 
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Table 14. Summary of observed and expected outcomes if different media 

characteristics were responsible for driving performance. The colour of text indicates 

if the expected result for a potential mechanism is consistent with the observed results 

(Red =  inconsistent with experimental observations, Green = consistent with 

experimental observations, orange =  neither consistent or inconsistent with 

experimental observations.  

Potential mechanisms Time to BT CBHL VNHL 

Observed in pilot trials 
at WTW A 

Strongly significant 
increase with wash 
rate for winter 
blend.  

Strongly 
significant 
decrease with 
wash rate 

Weak & 
inconsistent 
relationship 
with wash rate 

Porosity responsible for 
performance 

No  significant 
relationship with 
wash rate. 

No  significant 
relationship 
with wash 
rate. 

No  significant 
relationship 
with wash rate. 

Particle shape 
responsible for 
performance 

No  significant 
relationship with 
wash rate. 

No  significant 
relationship 
with wash 
rate. 

No  significant 
relationship 
with wash rate. 

Lower effective size. 
responsible for 
performance 

No  significant 
relationship with 
wash rate. 

No  significant 
relationship 
with wash 
rate. 

No  significant 
relationship 
with wash rate. 

Low porosity interface 
layer responsible for 
performance 

Decreases with 
wash rate 

Decreases 
with wash rate 

Decreases with 
wash rate 

Size sorting of lower 
layer responsible for 
performance 

Increases with 
wash rate 

Increases with 
wash rate 

Increases with 
wash rate 

Lower density (resulting 
in improved washing) 
responsible for 
performance 

Increases with 
wash rate 

Decreases 
with wash rate 

No significant 
relationship 
with wash rate. 
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4.5.2 Full scale trial: Sand-anthracite filter with insufficient backwash 

After the pilot trials, the low-density media was trialled at full scale at WTW A. A dual 

media filter consisting of Filtralite HC (700 mm deep, media size 0.5-1 mm) below 

anthracite (300 mm and 0.8-1.6 mm) replaced a single sand-pumice filter at WTW A. 

This was a slightly different configuration to the pilot testing that was conducted. 

Filtralite NC has a low density and porous structure which entrains air and this results 

in buoyancy of a fraction of the material upon initial contact with water. Over time, with 

soaking, the effective density of a Filtralite NC particle approaches that of anthracite 

(Eikebrokk and Saltnes, 2001).  As pilot trials indicated that the main performance 

advantage from new media at WTWA was the effective cleaning of the lower 

(previously sand) layer anthracite was selected for use instead of Filtralite NC of the 

same size to minimise any risk associated with media loss and reduce the time and 

cost associated with media replacement. 

During the full-scale trial the performance of the new media was compared to the 

performance of a neighbouring bed which retained the previous sand (0.6-1.2 mm) 

and pumice (unknown mm) media. The performance was initially trialled during 

treatment of the winter blend which has historically challenged filtration performance 

and progressed in four phases. First the filters were operated with the same hydraulic 

loading rate and backwashed on a time at between 21 and 37 hours, run times were 

reduced as plant performance deteriorated towards the end of the year. During phase 

2 the filter run time for the trial media was extended up to 48 hours whilst the 

comparison filter run time remained between 20 – 25 hours. In the third phase 

backwashing was initiated at the same time whilst the hydraulic loading rate on the 

trial filter was increased by 20%. During phase 4 the new filter media continued to be 

operated at a higher hydraulic loading rate as the raw water blends were changed until 

the media in the comparison filter was replaced in August 2018.  The performance 

improvement associated with using Filtralite - anthracite is summarised with run 

statistics including mean flow, max head loss, run time, the 95 percentile turbidity (95 

%ile), mean turbidity and unit filter run volume (UFRV) (Figure 27, Table_Apx 4). 

Through phases 1-3 the water temperature dropped and this was accompanied by 

increasing turbidity in the clarified water (Figure 27 K &L) this period has been 

historically associated with poor filter performance and repeated low level detections 
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of Cryptosporidium. Reduced pre-treatment performance due to short flocculation 

times and shallow dissolved air flotation tanks is a known issue at this WTW. 

Use of the lower density media resulted in a improvements in UFRV during key periods 

of operational challenge without elevated turbidity (Figure 27 A-D &J). During phase 2 

the average UFRV for the Filtralite anthracite (141 EBVs) bed was 72% greater than 

that for the pre-existing media (83 EBVs). The turbidity observed during phase 2 from 

the trial bed (mean of run means 0.04, mean of run 95th %iles 0.09 NTU) was typically 

equivalent to the comparison filter (mean of run means 0.04, mean of run 95th %iles 

0.10 NTU). During phase 3 the trial media produced an additional 16 empty bed 

volumes of water whilst producing lower turbidity water with an average mean run 

turbidity of 0.03 NTU compared to 0.05 for the old media. The extent of turbidity spiking 

was also reduced with the 95th percentile for each filter run averaging at 0.04 NTU 

compared to 0.13 NTU for the older media. Through phase 4 as the water temperature 

increased and the blend of water treated was changed and the solids loading onto the 

filters reduced the productivity of the low-density media remained higher but no benefit 

in terms of run-average turbidity was observed. The lower density media did appear 

to consistency reduce the extent of turbidity spiking, for each of the three trial phases 

the mean of the 95th%ile filter run turbidity was lower for the Filtralite trial (P1 0.04, P2 

0.09, P3 0.04, P4 0.05) than for the pre-existing media (P1 0.06, P2 0.10, P3 0.13, P4 

0.07). Broadly the quality benefits observed at full scale were in line with that observed 

during pilot trials. 

During the early weeks of the full scale alternative media trial, elevated ripening phase 

turbidity was apparent for the low density bed when compared to the pre-existing sand 

anthracite but the difference reduced as the trial progressed (Figure 27 E). The 

turbidity of the first four bed volumes of each filter run was, on average 0.18 for the 

trial media and 0.04 for the pre-existing media during phase 1 but this reduced to a 

0.03 NTU difference by phase 3.  The relatively high ripening turbidity of the new trial 

media during the initial stages of the trial could have been due to the release of fine 

particles and the chemical and biological conditioning of media particles over this 

period. It is likely that slightly higher ripening turbidity observed for the trial media 

compared to the sand in phase 4 of the trial is likely due to reduced packing density 

from greater bed expansion and relative backwash efficiency. The normalised clean 

bed head -loss for the new media increased from 0.04 m to 0.2 m over the trial period 
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with the most rapid increase taking place over the first 6 weeks and a slower rate of 

increase thereafter (Figure 27 G). The NCBHL observed in the pre-existing media 

varied considerably with temperature over the trial period. Over the trial period 

between November and March the NCBHL for the pre-existing media decreased from 

0.3 to 0.2 m, indicative of improved backwash performance, over a period with 

declining water temperature from 11°C to 2°C and therefore increasing backwash bed 

expansion (Figure 27 G). There is no temperature adjustment of the backwash rate at 

WTW A.  Over the trial period presented the Volume Normalised Head Loss (VNHL), 

as defined in Equation 30, exhibit different behaviour for the trial media but both mirror 

the trend observed in (Figure 27 H & G). VNHL for the trial media exhibits a rapid 

decline from 11 mm/EBV early in phase 1 to averaging 4 mm/EBV in phase 3. It is 

likely that this is due to the increasing loss of media fines from the bed during the 

backwash as the water cools. A useful observation from the full-scale trial, particularly 

in that it deviates from what was observed in pilot scale testing, is that the VNHL for 

the trial media (3.3 mm/EBV) was lower than the pre-existing media (6.8 mm/EBV) 

during phase 4. This indicates that over time deposits accumulating between washes 

in the conventional media could potentially lead to poorer hydraulic performance over 

the summer. It is likely that the presence of this deposited material did lead to more 

effective particle capture and lower average filtered water turbidity at the end of phase 

3 during July (Figure 27, C). The occasional breakthrough of this material did also lead 

to more spikes being observed in filtered water turbidity meaning that on average 

during phase 3 the 95th percentile turbidity for each run the pre-existing media was 

higher (0.07 NTU) than the low density trial media (0.05 NTU).  
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Figure 27. Comparison of filter run summary statistics between filter 6 with the trial media and filter 7 with the pre-existing media during the full-

scale trial at WTW A. Plots compare: A- run time (hours), B- filtration rate (m/hr), C- average turbidity (NTU), D- 95th percentile turbidity (NTU), E- 

ripening turbidity summarised by 95th percentile turbidity during first 4 bed volumes of the run (NTU), F- terminal turbidity summarised by average 

turbidity during final hour of run (NTU), G-Normalised Clean Bed Head Loss (m), H- Volume Normalised Head Loss (mm/EBV), I- Terminal Normalised 

Head Loss (m), J- Unit Filter Run Volume (m3/m2/run).  
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Overlayed filter run turbidity profiles from the full-scale trial filter using Filtralite-

anthracite are shown in comparison to the neighbouring filter using the pre-

existing 14/25 filter sand (0.6-1 mm) and pumice (Figure 28).  The treated water 

turbidity is shown for the Filtralite - anthracite filter treating an additional 20% flow 

(4 m/hr compared to 3.3 m/hr) compared to the existing sand-pumice filter (Figure 

28a) and an extended filter run of up to 48 hours for the Filtralite - anthracite filter 

bed (Figure 28b). The turbidity spikes which can be seen in the filter profile for 

both types of media were associated with hydraulic shocking consistent with that 

seen in previous investigations (Glasgow and Wheatley, 1998; Han et al., 2009a; 

Huck et al., 2001). Despite greater hydraulic loading the Filtralite - anthracite can 

be seen to reduce the extent and delay the onset of turbidity spiking in the trial 

filter in response to these flow surges. 

This case study demonstrates the useful application of a low-density media to 

improve filtration performance by mitigating design constraints with the existing 

process. The 0.5-1 mm Filtralite HC & 0.8-1.6 mm anthracite could be more 

effectively backwashed at the available wash rate (21 m/hr). Ineffective cleaning 

of the pre-existing 0.6-1.2 mm sand & pumice (unknown size) media resulted in 

the retention of deposits between filter washes. Variation in the condition of the 

pre-existing media due to poor washing led to elevated clean bed head loss and 

breakthrough of particles. The low density dual media configuration prevented 

elevated solids in the clarified water during cold temperatures from breaking 

through. As a result of this trial, the replacement of the media in all the filters at 

the WTWs has now been completed based on the successful trial. The effective 

performance recovery of the media during the filter backwash means that filter 

run times are no longer constrained during cold water conditions, reducing the 

volume of backwash water produced, meaning that the backwash water system 

is no longer hydraulically overloaded. In order to manage Cryptosporidium risk 

daily sampling of the final water at WTW A has been conducted since 2015. 

Between 2015 and 2018 there were on average 2.5 Cryptosporidium  detections 

(low level) each year. At the time of re-writing (Feb 2021) there has only been 1 

Cryptosporidium detection (low-level & associated with a specific coagulant 
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dosing issue) in the final water with continued daily sampling since the media 

replacement was completed. 

 

 

Figure 28. Overlaid filter run turbidity profiles from multiple runs during full scale 

trial of low density media at WTW A. Performance of trial filter  using Filtralite HC 

0.5-1 mm & Anthracite 0.8-1.6 mm is contrasted to its immediate neighbour  which 

continued to use the previous 14/25 silica sand and pumice media. a) comparison 

of the performance of the two filters during phase 3 when the trial filter 6 is treating 

20 % more flow than filter 7 but filter run times were set to 24 hrs. b) comparison 

of the performance during phase 2 at equal flow but when the run duration for filter 

6 was extended. 
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4.5.3 Pilot trials 2: Direct coarse mono-media filter with combined air 

& water phase and sub-fluidising rinse 

Further pilot trials were conducted at WTW B to assess the potential replacement 

of coarse sand in a deep-bed non-fluidising mono-media sand filter with a similar-

sized lower-density media which would effectively fluidise at the backwash rate 

delivered in these filters (17 m/hr). These pilot trials were conducted during 

August and September when water temperature was at its highest and therefore 

bed expansion would be at its lowest. Filtration rates were maintained at 4 m/hr 

throughout. Turbidity profiles of pilot trials comparing the performance of sand to 

Filtralite showed that the lower density Filtralite media reliably produced 

acceptable quality water for more than 36 hours whilst the sand media frequently 

failed to produce water of acceptable quality and at most managed to produce 

water of acceptable quality for 24 hours (Figure 29). Analysis of variance for mean 

filter performance in the 24th hour (92-96 empty bed volumes) of operation 

showed turbidity for the Filtralite column (0.05 NTU) was on average 0.66 NTU 

less than the sand column (0.72 NTU) (0.05 NTU) (one-way ANOVA, p= 3x10-4). 

In addition to the apparent quality benefits the hydraulic performance of the 

Filtralite in the pilot trials was considerably better than sand. The more effective 

recovery of void space in the media resulted in consistently lower head loss 

accumulation as well as lower CBHL (Figure 30). Head loss for the Filtralite 

(1.19m) during the 24th hour was on average 1.54 m less than the sand (2.73 m) 

(one-way ANOVA, p= 3x10-8). On average the CBHL for Filtralite was 0.2m 

compared to 0.5m for sand. Average VNHL for the Filtralite bed was 10.5 

mm/EBV compared to 22.6 mm/EBV for sand. The performance of sand within 

the pilot column was considerably worse than the performance of the full-scale 

filters at WTWB which at the time were treating the same feed water to below 0.1 

NTU at a hydraulic loading rate of 3.6 m/hr for 22 hours. Though the backwash 

rates used in the pilot plant replicated those used on the full-scale filters transport 

of solids from the bed at full scale was supported with a surface wash which was 

not effectively replicated in the pilot column. Despite using a larger volume of 

rinse water (to compensate for the lack of a surface wash in the pilot columns 
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which was used in the full scale filter), backwash performance of the sand media 

was insufficient to maintain consistent filtration performance.  

Despite backwashing of the Filtralite mono-media filter using separate air and 

water wash phases (compared to air & water used for the sand) and a reduced 

volume of wash water Filtralite was able to operate at a UFRV (to 0.1 NTU) of 

>150 m3/m2 (min 152, avg 180 m3/m2) typically double or more than that of either 

the sand column (<80 m3/m2) or the filters on the full-scale plant (80 m3/m2), which 

could take advantage of the cross-wash facility. The Degremont Aquazur V Filter 

applies a combined air and water backwash to promote a collapse pulse condition 

during the filter wash and a surface wash to clear dirt from above the media. 

Considering the observations seen in the pilot trials with the fine-grained HC 

Filtralite materials, it was likely that increases of 100 % or more in the solids 

handling capacity of the larger Filtralite media grades was not solely attributable 

to a 40 % relative increase in primary porosity compared to sand. Differences in 

the recoverable porosity due to the increased efficiency of washing of the primary 

filter was assumed to contribute to this performance improvement. It has been 

shown previously that filters using a combination of air and water generate 

greater turbulence which is effective for dislodging solids from media grains 

(Amirtharajah, 1993). This additional turbulence, however, is likely to reduce the 

efficiency of transport of dislodged solid through the water column and into the 

launder (Han et al., 2009b). Effective expansion of a lower density media not only 

prevents re-capture of floc dislodged during the air scour & collapse-pulse phase, 

but also increases the vertical velocity of the water column in the freeboard area 

of the filter increasing the speed of transport of dislodged solids into the backwash 

channel.  

There are two key engineering arguments against the expansion of a coarse sand 

filter during the rinse phase of a wash. Firstly, the wash rate required is very high 

which increases energy costs and limits the maximum plan area of a filter for a 

given size of WTW. The second is that expansion of the bed will re-grade the 

media such that the smallest grains will rise to the top of the bed reducing the 

hydraulic efficiency of the bed and lead to high head loss. These arguments do 
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not appear to apply to the conversion of sand filters to Filtralite media. The lower 

density of Filtralite means that expansion occurs at much lower rise rates making 

bed expansion practical and economical in large filters.  Secondly, head losses 

after expansion of Filtralite remain lower than the equivalent grade of sand which 

has not been fluidised during the backwash (Figure 30). This is at least partially 

attributable to the higher porosity of the filter media.  However, it may be worth 

considering the role of an apparent variation in density between Filtralite particles 

in preventing size-sorting as apparent differences in density were visually 

observed, but not quantified, in this investigation. Tailored experiments will be of 

value to ascertain if variance in particle density is reducing the size sorting of 

Filtralite during the backwash.  If so, this is a property which could be exploited 

further to engineer more ideal deep-bed mono-media materials. By mixing media 

materials of the same particle size distribution, but with an advantageous density 

difference, it could be possible to retain the benefits of bed-expansion during the 

rinse whilst reducing the hydraulic disadvantages associated with size-sorting. 

Pilot trials indicated that it was possible to overcome limitations to the washing of 

deep bed coarse non-fluidising sand filters such as those at WTW B, which 

typically have an upwash rate of 14 to 18 m/hr. Pilot trials have shown that though 

operating with only a separate air and water wash, the Filtralite could be 

recovered more effectively with the available air and water rates than can be 

achieved by the combined air and water washing of sand.  However, previous 

investigators have concluded that, over the medium to long term, filters require 

backwashing with combined air and water in order to maintain the condition of 

the media bed (Chipps et al., 1995). In order to effectively switch from a coarse 

sand non-fluidising bed to a fluidising low density Filtralite bed, some operational 

changes to the back wash would be required. In the example of WTWB it would 

no longer be possible to operate with extended combined air and water wash 

phase (i.e. with water spilling over weirs / launders during the combined phase) 

or a concurrent rinse and surface wash as this would risk excessive loss of the 

low-density media.   
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Figure 29. Turbidity profiles for pilot trials at WTW B.  The hourly average turbidity 

values for pilot filter runs are plotted comparing filtered water quality from the 

sand and Filtralite media. Consistently lower turbidity and delayed breakthrough 

is apparent from the Filtralite media. 
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Figure 30. Head loss profiles for pilot trials at WTW B. The hourly average 

differential pressure values for pilot filter runs are plotted comparing hydraulic 

performance of the sand and Filtralite media. Consistently lower head loss is 

apparent from the Filtralite media. 

4.6 Discussion 

The results of the investigation presented in this paper go some way to explaining 

the driving mechanisms for performance benefit in certain circumstances. It is 

however likely that the driving mechanism for performance benefits from Filtralite 

in comparison to sand are contingent on three broad scenarios of which the 

results presented in this investigation are relevant to the third: 

1. Under conditions where wash performance is not a constraint and Filtralite 

replaces sand of equal size and depth fundamental filtration theory 

indicates that a higher porosity media will have a lower particle capture 

efficiency reducing the potential for blinding (Rajagopalan and Tien, 1976). 

Where there is sufficient depth to maintain the same quality hydraulic and 

solids handling benefits are likely available due to the increased voidage 
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and more efficient storage across the depth of the bed. Further benefits 

may be available due to shape characteristics. 

2. In conditions where the wash performance is effective for the grade of 

sand used in addition to the benefits in scenario 1 additional hydraulic and 

solids handling benefits are available if the lower density Filtralite allows 

the effective use of a larger media or dual media configuration which would 

not be effectively washed if conventional sand was used. Mikol et al (2007) 

show, that replacement of a fine (0.6-1.2 mm) sand and anthracite (1.7-

2.5 mm) media in a roughing filter with a dual media combination of (0.8-

1.6 and 1.5-2.5 mm) improved hydraulic performance with a rinse of 3.75 

EBVs at 45 m/hr. Implicitly described is a filter with a hydraulic 

performance issue arising from blinding of the fine sand which has been 

overcome by the use of a larger Filtralite media, and for which an 

equivalent increase in the size of the sand would have compromised the 

re-grading of sand and anthracite layers at the available wash rate. 

3. In conditions where the existing backwash facilities are inadequate and 

are limiting the performance of sand it is possible to deliver operational 

and water quality benefits from using material of lower density which can 

be more effectively washed at the available backwash rate. 

The observations from pilot trials in this are broadly in line with brief observations 

from previously conducted pilot trials that Filtralite can be used as other low 

density media are to improve performance of filters with sub-optimal backwashing 

(Bayley et al., 2006; Mörgeli and Ives, 1979). However, the use of Filtralite is not 

as widespread as the backwash design issues which it can be used to mitigate. 

Given the tendency for many fluidising filters in the UK to be designed to achieve 

bed expansion of less than 4%, and the widescale occurrence of non-fluidising 

coarse mono-media filters (including those without a supplementary surface 

wash), the application of lower density filter media offers the opportunity to 

improve the performance a large-number of filters in the UK.  Reported 

unfavourable water quality resulting from using coarse media in relatively shallow 

(<1m) filter beds that are common to many UK mono-media filters (depths below 
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800 mm) has likely in the past contributed the limited use of Filtralite (Davies and 

Wheatley, 2012; Kawamura, 1999). With a growing range of alternative Filtralite 

products, of different grades and density, and an improved understanding of the 

mechanisms that drive performance gains from low density media it is now 

possible to specify a low-density media solution to a broader range of filtration 

issues.  

In the presented research, pilot and full-scale trials have demonstrated the 

successful exploitation of the lower density of Filtralite to deliver operational and 

water quality benefits for filters where the combination of existing media and 

backwash systems were limiting filtration performance. The first pilot and full-

scale trials (WTWA) illustrate the effective application of a dual media including 

1800 kg/m3 Filtralite HC 0.5-1 mm rather than sand of equivalent size. Improved 

backwashing of the lower density media allowed the filters to operate with an 

extended run time by delaying the breakthrough of solids during the critical 

operational period with seasonally high solids load. We can deduce, from the fact 

that head loss accumulation was greater for the Filtralite than for the sand 

throughout this trial, that the mechanism driving this improvement was not the 

greater reported voidage of Filtralite. The observation that the performance gains 

of the Filtralite, in comparison to sand, reduced at higher backwash rates 

suggests that this was a result of the relatively effective backwash of filtralite at 

lower backwash rates. 

The second (WTWB) demonstrates the conversion of a sand filter that was not 

effectively fluidised during the rinse into one that could be fluidised and more 

effectively rinsed while using the same wash rate. Performance gains were seen 

with respect to increased filter run time while achieving a similar or better filtered 

water quality. These improvements were based on exploiting the density 

difference between two granular media materials that resulted in improved 

cleaning and grading of media during the filter backwash given the pre-existing 

constraints of the backwash system.  

The trials conducted in this investigation indicate that low density media is likely 

to be worth considering as a solution to the following operational challenges: 
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• Where solids loading leads to premature filter breakthrough or rapid head 

loss development in an existing fine sand filter. If run times or water quality 

risk are impacted and backwash rates are insufficient to re-grade a sand-

anthracite filter, use of a fine grade of Filtralite may allow conversion of a 

filter into an effective dual media filter without upgrading the backwash 

system. 

• Where inadequate backwash flow has resulted in ineffective regrading of 

a sand-anthracite filter bed, use of Filtralite will afford opportunities for 

improvements in water quality. 

• Filters consisting of a deep layer of a coarse media that have backwash 

rates that do not enable full fluidisation rinse-rates would also benefit from 

conversion to a lower density media which will expand with the available 

backwash rates. Those filters that have a large distance to transport 

dislodged solids (in other words with a deep free board) and without a 

surface wash would particularly benefit such an upgrade.  

• In circumstances where shorter filter run times has caused hydraulic 

overloading of the wash water system causing an increased risk of 

environmental pollution or excessive process water losses. 

If the drivers for considering an alternative media are one of those listed, it is then 

necessary to identify the key design constraints which impact the selection of a 

media replacement. These have been identified as: the availability of driving 

head; hydraulic and solids loading; the rise rate that can be achieved by the 

backwash pump and wash water pipework; the maximum water temperature; and 

the height of the launder from the filter floor(Beverly, 2005; Logsdon et al., 2002). 

In many cases the cost and complication associated with increasing the wash 

rate to achieve an equivalent level of performance will be considerable. There 

can be economic, environmental and water quality advantages to the use of low-

density media, but the relative importance of these advantages is likely to be site 

specific. In systems where it is possible just to install a new pump in order to 

improve performance with greater bed expansion, the economics of replacing all 
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of the media may not be advantageous. However, when upgrading ageing filters, 

built decades ago, there are many hidden costs associated with increasing the 

backwash rate. Firstly, it may not be possible to source enough backwash water. 

It is not uncommon to source wash water directly from the filtered water channel, 

and depending on the filtration area per filter, the number of filters and the size of 

the sand, the backwash rate can exceed the plant flow. In such cases, where 

additional large concrete tanks need to be built to store the backwash water, 

replacement of the media becomes a relatively low cost option. Similarly, the 

pipework, underdrain and power supplies to a WTW may be insufficient to allow 

the additional pumping required to achieve greater expansion of the sand. Where 

media replacement is required and conducted at the end of the sand filter’s 

operational life, the filter upgrade to low density media can be achieved at a 

fraction of the cost of realising the same or lower levels of performance from 

conventional media through improved washing. 

Improving media expansion within a filter bed by switching to a lower density 

media is not without risk and the greatest risk is that of media loss over the weir. 

Dry Filtralite NC (0.8-1.6 mm) has a reported mean density of 1280 kg/m3. 

However, the variance in grain size and density is such that before the material 

is fully saturated there is a buoyant fraction. Careful material handling and 

additional preparation of this media is required for effective use at full scale. The 

risk of media loss in some of the applications described can be reduced by using 

anthracite in combination with the higher density Filtralite NC, as demonstrated 

during the full-scale trial at WTW A. If bed expansion or depth is to be increased 

it is necessary to have adequate freeboard between the surface of the media and 

the launder. Many older filters use a nozzle with slits larger than the diameter of 

the media grain.  Such nozzles require a support media which retains the filtration 

media to prevent it from passing through the nozzle. In many cases these older 

nozzles can be replaced with ones that have a greater number of finer slits, which 

retain the media whilst maintaining similar head loss characteristics without the 

need for support media. Therefore, the depth gained can be used for expanding 

the bed with the secondary advantage of increasing the driving head.  
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4.7 Conclusions 

• Mono-media 0.5-1 mm or 0.6-1.2 mm sand filters backwashed at >22 m/hr 

in order to achieve <5% bed expansion can be successfully converted to 

dual media filters with extended run times by using the combination of 

Filtralite HC (0.5-1 mm) and either Filtralite NC or Anthracite (0.8-1.6 mm) 

without requirement for upgrades to backwash provision. 

• Under backwash constrained conditions 17-34 m/hr Filtralite (HC 

1800kg/m3 at  0.5-1 mm) in combination with lower density Filtralite (NC 

0.8-1.6 mm) or Anthracite (0.8-1.6 mm) can be used to improve the solids 

handling capacity of a sand-anthracite bed of an equivalent grade. 

• Deep-bed coarse non-fluidising 10/18 sand (0.85-1.7 mm) filters with rinse 

rates in the region of 15-18 m/hr can be converted to fluidising mono-

media filters with greater solids handling capacity using Filtralite NC (0.8-

1.6 mm). This is particularly advantageous if there is no surface wash 

facility. 

• More effective washing of a Filtralite media relative to sand for a given 

grain size and wash rate enables Filtralite to more effectively recover its 

primary porosity and accept a greater solids loading, delaying 

breakthrough of turbidity.  

• The improved wash performance achieved by switching to Filtralite media 

was shown to mitigate the water quality risk associated with sub-optimal 

hydraulic control of a rapid gravity filter and the premature breakthrough 

of weak NOM floc in full scale trials. 

• The improved understanding of the mechanisms driving the comparative 

performance advantage associated with using Filtralite can allow 

municipal water suppliers to more effectively exploit the material to 

economically improve the filtration performance of filters with outmoded 

design. 
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5 Management Chapter: Economic assessment of 

replacing sand filter media with a low density 

equivalent at Scottish Water drinking water treatment 

works  

5.1 Executive summary 

The effective capture and retention of particles and pathogens within filters is 

crucial to the provision of safe compliant drinking water and the stable and 

economic operation of potable water distribution networks. Media filters are the 

final physical barrier in most large water supply systems. Poor performance of 

filters can lead to increased risk of customer exposure to pathogens, the increase 

in the formation of disinfection by-products, customer complaints over the 

aesthetic quality of drinking water and operational costs associated with the 

management of solids deposited within the distribution network. An extensive 

programme of assessment of water treatment works (WTWs) design in Scottish 

Water has identified the inadequate washing of granular media filters as a 

common problem, which is limiting performance and is likely to impact water 

quality compliance. A desk-top review indicated that 28 out of 41 WTWs 

assessed would be suitable for media replacement using low density 

aluminosilicate media to improve filter washing. The low-density media used in 

this analysis was an expanded aluminosilicate material branded as Filtralite. 

Scottish Water can exploit the physical properties of the material to mitigate 

widespread design constraints across the filtration asset base and economically 

deliver a step-change in filtration performance across the relevant treatment 

works. The material has been tested at pilot and full scale (see chapter 4) and 

understanding of its application is now approaching a stage where it can be 

applied in a structured programme of work. Upgrading the wash systems in these 

treatment plants is likely to cost in excess of £ 30.79 million. This document 

illustrates how Scottish Water can avoid such a large investment in assets which 

are typically between 20 to 50 years old. By replacing the existing media at the 

end of its operational life with low-density media, costly and complicated 

upgrades to the backwash systems can be avoided. Replacement of existing 
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media with alternative materials across the 28 sites was estimated to cost in the 

region of £ 6.43 million compared to £ 5.79 million for like-for-like media 

replacement only. However, the lower density media will avoid the projected 

requirement for £ 30.79 million investment in upgrading the wash systems which 

would be required to achieve the equivalent performance from the current 

conventional media design. Low-density media replacement projects are 

relatively simple and low risk interventions which can make big improvements to 

the performance of filters as demonstrated at pilot and full-scale trials WTW 

(Chapter 4). This work does not claim to deliver fully developed designs for media 

upgrade projects but rather takes a high-level view of the likely interventions and 

indicative costs for each site identified from the capability assessment data as 

being appropriate for this kind of intervention. This current analysis covers ~ 40% 

of the relevant asset base indicating that the potential scope of the application of 

low-density media is likely to be larger than that indicated in this document. 

5.2 Materials and methods 

The raw data used in this report was collected as part of a programme of 

surveys and design assessments of Scottish Water WTWs conducted by the 

Scottish Water asset capability team. A series of design and cost calculations 

were applied to the collated raw data from the surveys in order to assess the 

strategic application of low density media to overcome the issue of poor RGF 

bed expansion.  

5.2.1 Key design calculations 

The analysis relied on some standard hydraulic design calculations for media. 

Clean bed head loss was estimated using the Ergun method in Equation 35 

(Ergun & Orning, 1949 in Crittenden et al., 2012). The bed expansion achieved 

for a specific backwash rate was calculated using an adaptation of the Ergun 

equation in Equation 36 (Akgiray and Saatçi, 2001). Clean bed head loss and 

bed expansion estimates used the media effective size modelled at 4°C and 

15°C. 
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Equation 35 Ergun equation for head loss  

ℎ𝐿 = 𝑘𝑉
(1 − Φ)2

Φ3

𝜇𝐿𝑣

𝜌𝑤𝑔𝑑2
+ 𝑘𝐼

1 − Φ

Φ3

𝐿𝑣2

𝑔𝑑
 

where; ℎ𝐿 = head loss (m) , kV = head loss coefficient due to viscous forces, Φ = porosity, kI = 
head loss coefficient due to inertial forces, 𝑣 = superficial velocity (m/s), L =  depth of filter bed 
(m), g = acceleration due to gravity (m/s2), d = grain diameter (m), ρw =  fluid density (kg/m3) ; µ 
= dynamic viscosity (×10-3 kg/m∙s). 
 

Equation 36 Backwash bed expansion calculation 

휀 =  √𝑋 + (𝑋2 + 𝑌3)
1
2

3

+ √𝑋 − (𝑋2 + 𝑌3)1/2
3

 

 

𝑋 =  
𝜇𝑣

2𝑔(𝜌𝑝 − 𝜌𝑤)𝑑
2
(𝑘𝑉 =

𝑘𝐼𝜌𝑤𝑣𝑑

𝜇
) 

 

𝑌 = 
𝑘𝑉𝜇𝑣

3𝑔(𝜌𝑝 − 𝜌𝑤)𝑑
2

 

Where: X = backwash calculation factor, dimensionless, Y = backwash calculation factor, 
dimensionless, ρp = particle density kg/m3 

5.2.2 Media properties 

Design calculations require assumptions about the properties of the media 

material and the size distribution within a given grade of filter media. Assumptions 

used for the different media properties included in this analysis are shown in 

Table 15. Viscous and inertial head loss coefficients were estimated to minimise 

the sum of squared error between predicted expansion and observed expansion 

as reported by supplier’s information. Values for the Ergun coefficients are 

presented in  Table 16. 
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Table 15 Media material properties 

      
Diameter (mm) Supplier  

reported CBHL  
(m/m at 15°C) 

Backwash 
velocity for expansion 

(m/hr at 15°C) 

Material  Density
* 

Porosity
* 

Sphericity
* 

Size range 
(mm)* 

Grade* D5* D10* D60
** 

D90* D95
* 

5 
m/hr* 

10 
m/hr* 

20%* 5%* 0* 

Sand 2650 0.43 0.89 0.5-1 16/30 0.5 0.63 0.76 0.95 1 0.23 0.46 42 25 20 

Sand 2650 0.43 0.89 0.6-1.2 14/25 0.6 0.74 1 1.1 1.18 0.19 0.36 45 26 20 

Sand 2650 0.43 0.89 0.85-1.7 10/18 0.85 0.9 1.2 1.6 1.7 0.1 0.2 76 48 37 

Sand 2650 0.43 0.89 1.0-2.0 8/16 1 1.16 1.6 1.9 2 0.08 0.16 84 53 40 

Sand 2650 0.43 0.89 1.2-2.8 6/14 1.18 1.425 1.9 2.7 2.8 0.04 0.08 124 83 59 

Filtralite HC 1800 0.55 0.78 0.5-1 0.5-1 0.4 0.52 0.76 0.95 1 0.275 0.55 23 13 8 

Filtralite HC 1800 0.55 0.55 0.8-1.6 0.8-1.6 0.8 0.98 1.31 1.46 1.6 0.15 0.28 42 23 12 

Filtralite NC 1260 0.6 0.78 0.8-1.6 0.8-1.6 0.8 0.98 1.31 1.46 1.6 0.1 0.2 26 15 7 

Filtralite NC 1200 0.61 0.78 1.5-2.5 1.5-2.5 1.5 1.525 2.1 1.85 2.5 0.05 0.1 43 26 17 

Filtralite MC 1400 0.55 0.78 0.8-1.6 0.8-1.6 0.8 0.98 1.31 1.46 1.6 0.11 0.22 38 23 15 

Anthracite 1400 0.5 0.78 0.60 - 1.18 11 0.6 0.7 1.1 0.8 1.18 0.15 0.32 21 14 11 

Anthracite 1400 0.5 0.78 0.60 - 1.40 12 0.6 0.725 1.2 0.875 1.4 0.11 0.25 24 15 13 

Anthracite 1400 0.5 0.78 0.80 - 1.60 14 0.8 0.925 1.4 1.15 1.6 0.06 0.12 37 24 19 

Anthracite 1400 0.5 0.78 0.85 - 1.60 15 0.85 0.975 1.4 1.175 1.6 0.05 0.09 44 29 23 

Anthracite 1400 0.5 0.78 1.18 - 2.50 21 1.18 1.36 2 1.7 2.5 0.035 0.07 55 36 28 

Anthracite 1400 0.5 0.78 1.40 - 2.50 22 1.4 1.525 2.1 1.85 2.5 0.015 0.03 76 49 38 

*Information from supplier (SAINT GOBAIN, 2021; WESTERN CARBONS, 2010) 
**sieve tests 
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Table 16 Fitted values for viscous and inertial coefficients 

Material Size range (mm) kv Ki 

Sand 0.5-1 140 0.5 

Sand 0.6-1.2 190 0.1 
Sand 0.85-1.7 135 0.9 

Sand 1.0-2.0 205 0.9 
Sand 1.2-2.8 175 0.9 

Filtralite HC 0.5-1 200 0.1 

Filtralite HC 0.8-1.6 390 0.1 

Filtralite NC 0.8-1.6 280 0.1 
Filtralite NC 1.5-2.5 335 0.1 

Filtralite MC 0.8-1.6 210 0.1 
Anthracite 0.60 - 1.18 120 2.2 

Anthracite 0.60 - 1.40 130 0.1 
Anthracite 0.80 - 1.60 130 0.4 

Anthracite 0.85 - 1.60 115 0.5 
Anthracite 1.18 - 2.50 185 0.3 

Anthracite 1.40 - 2.50 175 0.1 

 

5.2.3 Cost estimation 

Scottish Water purchases capital maintenance services through a supply framework 

where contractors have to apply to become a contractor providing a certain type of 

service. As part of this application unit cost data for different services need to be 

submitted. This data includes detail such as the price £/m3 of filter media supply and 

installation based on various sizes of WTW (Table 17). It also includes prices per £/m2 

for repairs and modifications to filter floors and a £/m price for repairs and modifications 

to pipework, these costs are summarised in Table 18. Using dimension data for the 

filters at each WTW, collected during the design assessments, and multiplying it by 

the unit cost for a given refurbishment or media, costs for most of the elements were 

estimated. Additional costs associated with building backwash tanks and replacing 

pumps were estimated by building simple cost curves between the size of tanks and 

pumps and the line item cost from previous backwash upgrade projects (Equation 37, 

Equation 38). Replacement pumps were sized to deliver the required wash rate to 

achieve 10% bed expansion for mono-media filters and 15% for dual media filters. 
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New backwash tanks were sized to hold 10 empty bed volumes (EBVs) to allow for 

two consecutive washes. 

Equation 37 Backwash pump replacement cost curve used for estimation 

 

£𝑝𝑢𝑚𝑝 =  72258 + 259324 ∗ 𝐾𝑤𝑝𝑢𝑚𝑝 + 41922 ∗ 𝐾𝑤𝑝𝑢𝑚𝑝
2  

Where: £𝑝𝑢𝑚𝑝= pump cost (£), 𝐾𝑤𝑝𝑢𝑚𝑝 = power output of pump 

Equation 38 Backwash tank construction cost curve used for estimation 

£𝑡𝑎𝑛𝑘 =  100092 + 76124 ∗ 𝑀𝐿𝑡𝑎𝑛𝑘 + 63744 ∗ 𝑀𝐿𝑡𝑎𝑛𝑘
2  

Where: £tank = tank construction cost (£), MLtank = volume of tank required (Ml) 

Table 17 Unit costs for media replacement used for cost estimation 

MediaType WTW size  
(Ml/d >)  

Cost supply and install new 
(£/m3) 

Cost dispose old (£/m3) 

Anthracite 0 502 42 

Sand 0 564 42 

Support 0 472 42 

Anthracite 1 425 42 

Sand 1 356 42 

Support 1 266 42 

Anthracite 5 409 36 

Sand 5 326 36 

Support 5 236 36 

Anthracite 10 392 36 

Sand 10 310 36 

Support 10 220 36 

Anthracite 25 380 36 

Sand 25 288 36 

Support 25 198 36 

Anthracite 50 380 36 

Sand 50 288 36 

Support 50 198 36 
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Table 18 Unit prices for filter refurbishment cost estimation 

WTW size 
(Ml/d >) 

Replace nozzles 
(£/m3) 

Repair/replace 
pipework (£/m) 

Repair floor 
(£/m2) 

Replace floor 
(£/m2) 

0 122 1780 96 1340 

1 120 1780 96 1340 

5 120 1780 96 1319 

10 120 1780 96 1319 

25 120 1780 96 1118 

50 120 1780 96 1118 

 

5.3 Overview of filtration systems within Scottish Water 

Design assessment data for 41 conventional WTWs were analysed and grouped 

according to physical treatment stage (Table 19). Primary filters were defined as those 

which constitute the first stage of filtration and are used to remove particles from 

flocculated or clarified water. Of the sites 44% of primary filters were preceded by 

dissolved air flotation, 14% were direct filtration sites and the remainder used a 

settlement process before filtration. A range of sand and anthracite media were used 

in primary filters in Scottish Water with bed depths between 0.5 and 2 m (Figure 31). 

Approximately half of the sites were using a 0.5-1 mm sand, 15% were using 0.6-1.2 

mm sand with the remainder using larger. A quarter of sites were using an anthracite 

layer in combination with sand. 

Table 19 Tabulated count of WTWs by filtration and clarification types across assessed 

sites.  

Filter Actiflo DAF1 Flat bottom 
clarifier 

Hopper 
bottom 
clarifier 

Direct filtration 
(no 
clarification) 

Rapid gravity 
filter (RGF)1 

2 16 9 4 5 

Pressure filter  1 1 2 1 

1 Includes CoCo DAF systems 
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Figure 31 Filter media material profiles for assessed filters. 
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5.4 Filter backwash systems 

When considering the backwash rates achieved for primary filters at each of the 

assessed WTWs, at 20 of the WTWs filters were washed at rates between 20 - 30 

m/hr and 10 were washed between 10 - 20 m/hr (Table 20). Two sites did not achieve 

an upwash rate of more than 10 m/hr. For conventional media these wash rates are 

very low and are frequently insufficient to expand a sand filter bed or re-grade a 

multimedia filter. The volume of wash water used, normalised to the volume of the 

media bed, is an important factor affecting the performance of filter washes and is 

illustrated in Table 20. Here, 11 sites used less than two empty bed volumes of water 

during a filter wash.  

Table 20 Tabulated count of WTWs by back-wash rates and volumes 

Wash Type High-rate wash (m/hr) Wash volume (EBVs) 

<2 2-3 3-5 5+ 

Combined A&W 10-20 2 0 3 2 

20-30 0 0 0 1 

30+ 0 1 1 3 

Separate A&W <10 2 0 0 0 

10-20 2 0 1 0 

20-30 4 9 6 0 

30+ 1 0 2 1 

 

Insufficient backwash volume can be either an operational issue or a design constraint. 

For some systems the volume of water used in the wash exceeds the volume of the 

available storage. This indicates that the backwash tank is being re-filled during the 

backwash and the wash volume limiting factor is the flow balance between the water 

pumped out and the rate at which the tank is filled from the backwash water channel. 

Given that the volume of the backwash tank is not always the limiting factor for the 

availability of wash water, some broad assumptions, detailed below, were made in 

order to inform on a flow balance from which an estimate of the potential volume of 

water available to backwash a filter could be made. The water treatment design 

assessments collected data on the chemical dosing of the backwash water. This 

information was used to inform assumptions regarding the proportion of the filtered 

water flow which could be diverted to the backwash pumps.  
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• For sites which drew water prior to the dosing of chlorine for disinfection it was 

assumed that 30% of the flow could be diverted to feed the backwash tank or 

pumps and this was proposed to limit the impact of large flow changes on 

disinfection control.  

• If the flow to the backwash tank was diverted between the chlorine dosing point 

and the pH correction dosing point it was assumed that 60% of the flow could 

be diverted to fill the backwash tank or pumps. This larger variation is 

acceptable as some instability in pH control can be buffered out in the clear 

water tank. If the wash-water was drawn after pH correction it was assumed 

that all of the flow could be diverted to the backwash pumps as there would be 

no likely impact on final water quality.  

To better show the design constraints limiting wash water volume the number of 

WTWs with different stored and available wash water volumes (normalised to EBV) 

are summarised in Table 21. Six sites had serious constraints on the availability of 

wash water under normal operating conditions having less than three bed volumes of 

water available for backwashing. A further four sites were at risk of having insufficient 

water available water for backwashing with between three and six bed volumes of 

water available for backwashing under normal operation. 

Table 21 Tabulated count of WTWs by wash water storage volumes and estimated 

available volumes based on flow balance. 

Tank volume (EBVs) Available wash volume based on observed flow balance (EBVs) 

<3 3-6 6+ 

<3 6 1 3 

3-6 NA 3 5 

6+ NA NA 23 

 

Based on the recorded values for upwash rates and using Equation 36, estimates for 

bed expansion for the D10 (10th percentile by diameter) media grain size at each of 

the assessed sites were calculated using Equation 36 and summarised in Table 22. 

At 15°C 12 were estimated to expand less than 1% and a further 10 had an estimated 

expansion between 1 and 5%.  
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Table 22 Summary of bed expansion during high-rate rinse for different filter types 

Wash Type Bed Type Bed expansion during high-rate wash at 15°C 

<1 % 1-5 % 5-10 % 10-15 % 15-20 % 20+ % 

Combined A&W Dual Media 0 1 3 0 0 2 

Mono Media 7 0 0 0 0 0 

Separate A&W Dual Media 4 1 1 0 1 1 

Mono Media 5 8 5 2 0 0 

 

5.5 Potential solutions to design constraints 

Based on the review of the engineering constraints from design reviews, three main 

design constraints with potential water quality risk relevant to the effective application 

of low-density media were observed: 

• Expansion: if bed expansion of >5% was not achieved at 15 °C. Effective expansion 

of a media bed is required to consistently remove deposits from the media during the 

wash and maintain consistently high performance from a filter and avoid the risk of 

breakthrough. Replacing sand with a material of a lower density improves the bed 

expansion for a given backwash flow improving the removal of solids from the bed and 

reducing water quality risk.  

• Re-grade: for dual media filters if the bed expansion did not exceed at 10% at 15°C. 

Where dual medias were not effectively expanded the re-grading of the 2 layers of 

media becomes less effective This results in higher head losses and lower solids 

handling capacity of these media. Replacing sand with a material of a lower density 

improves the bed expansion for a given backwash flow improving the re-grade of the 

media layers. 

• Backwash volume: if less than 4 empty bed volumes of backwash water were 

available for backwashing. In cases where the balance of flows and wash water 

storage constrain the volume of water available to back wash filters, reducing media 

density can reduce the flow of backwash water required increasing the total volume 

available. This allows for more effective transport of deposits from the bed into the 

dirty wash water collection systems. Furthermore, in many instances the greater 

expansion of the low density media results in a more efficient wash and requires a 

lower volume of water in total.  
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5.5.1 Modelling wash-system upgrade scenarios 

The conventional approach used to consistently achieve good filtration performance 

where the backwash system is inadequate is to upgrade the backwash system. It is 

possible to increase the rate at which water is delivered to wash the media by replacing 

the backwash pumps and, if necessary, pipework. It is also possible to construct new 

larger tanks in which to store backwash water allowing sufficient volumes of water to 

be passed through the bed during a wash. The upgrades required in order to achieve 

effective washing of the existing media were modelled in order to provide a baseline 

to compare the application of low-density media. Sites were identified for potential 

investment if they exhibited one or more of the design constraints detailed in sections 

5.5 .  

Several WTWs in the Scottish Water region were built without provision for dedicated 

backwash water tanks. In these cases wash water is provided from the filtered water 

channel or tank configuration which preferentially draws in filtered water. Depending 

on the number and size of the filters the flow of backwash water can exceed the flow 

of water through the plant constraining the volume of wash water that can be delivered. 

Any increase in the flow of water delivered during the backwash would in-these 

circumstances reduce the available volume of wash water. In order to model the costs 

associated with upgrading the wash the following assumptions were applied: 

1. Where an increase in backwash rate was required, this would necessitate the 

purchase of new pumps. Given the age of most of the backwash pumps and 

the requirement to maintain a duty duty standby configuration it was 

considered that replacement of the existing pumps was most likely in most 

cases.  

2. If upwash rate increases > 50% new wash water pipework and valves will be 

required to deliver and drain the backwash water and extensive changes to 

the filter floor will be required. Larger increases in wash rate would result in 

the hydraulic overloading of the existing pipe work and underdrain system 

which could lead to an unacceptable risk of serious damage to the filter. 

Damage to the filter under such circumstances could increase water supply 

risk. 
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3. If the available wash water volume at the increased backwash flow is < 4 

empty bed volumes a new backwash tank was considered to be needed. 

Where the additional upgrade was likely to limit the available wash water it 

was assessed that additional storage would be required. 

According to these broad rules the numbers of sites which would require different 

levels of upgrade are as follows: 7 sites were anticipated to require a new backwash 

water storage tank, 12 sites needed new wash-water pipework and 24 sites needed 

new backwash pumps. These outcomes, based on the assumptions above, were 

then fed into the indicative cost models described in section 5.2.3 to estimate the 

cost for each upgrade option. 

Table 23 Tabulated numbers of WTWs identified for backwash upgrade 

Bed 
expansion 

Re-grade Extra clean BW 
storage required  
(< 4 EBVs available) 

Clean BW storage 
adequate 
( > 4 EBVs 
available) 

< 5% Dual media  
(ineffective re-grade at < 10 % ) 

2 4 

< 5% Mono-media 3 17 

> 5% Dual media  
(ineffective re-grade at  5-10 % 
expansion) 

0 4 

>5% Mono-media or effective re-grade (no 
backwash rate increase required) 

2 0 

 

5.5.2 Use of low-density media 

The alternative to the cost, complication and disruption of upgrading backwash tanks 

proposed in this chapter is to select a size and grade of media which is appropriate to 

the backwash system currently in place. Expanded aluminosilicate has a lower density 

than sand meaning that the equivalent sized grain can be backwashed at a lower wash 

rate as demonstrated through pilot trials documented in chapter 4. Anthracite, pumice 

and carbon media also have a low density but are more friable (Humby and Fitzpatrick, 

1996). Filtralite exhibits low density, friability and some advantageous surface and 

shape characteristics which lead to higher porosity (Davies and Wheatley, 2012). The 

mechanisms driving potential performance gains from using Filtralite are discussed in 

more detail in chapter 4. But in summary the benefits are: 
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• Filtralite of with a particle size of 0.8-1.6 mm or greater exhibit improved solids 

handling capacity and lower head loss compared to equivalent graded sand 

due to increases in porosity relative to comparable grades of sand (Cescon et 

al., 2016; Davies and Wheatley, 2012; Eikebrokk and Saltnes, 2001; Mikol et 

al., 2007). Filtralite grades 0.5-1 mm (only the high density 1700 kg/m3 type is 

available at this size) were observed in pilot trials not to exhibit this benefit. 

• Due to its lower density, a Filtralite media bed will exhibit greater bed expansion 

than the equivalent sized bed of sand for a given wash rate. This allows 

deposited material to be more effectively and efficiently transported from the 

bed (Bayley et al., 2006). 

Most of the filters used by Scottish Water have a bed depth of 1m or less (Figure 31). 

Bed depths of a metre or less, when used as a final particle barrier, typically require a 

relatively fine media for consistently effective particle capture. Converting to a media 

of larger size while retaining the same depth of media, would likely decrease the 

efficiency of particle capture and be associated with an increased water quality risk. 

As most of the filters in Scottish Water use a filter media with an effective size of 0.64 

mm at a depth of 1m or less, the appropriate replacement Filtralite bed is likely, in 

most cases to include the use of the finer grade Filtralite (HC 0.5-1 mm) material. Pilot 

trials of Filtralite HC 0.5-1 mm (Chapter 4) have demonstrated higher head loss from 

this material than an equivalent grade of sand.  It is likely, therefore, that in most cases 

that the benefits of using Filtralite will be gained by the improvement to filter 

backwashing when using a lower density media for most Scottish Water filters.  

The availability of a greater range of grades of sand, anthracite and expanded 

aluminosilicate has increased the number of available media options for any 

replacement project. The estimated backwash velocities required to achieve 5 and 

25% bed expansion for different filter media materials and potential combinations in 

dual media filters are presented in the supplementary materials (Table_Apx 5).  

Variation in the relative depths of the different media layers can be used to manage 

the hydraulic properties of the bed. A greater depth of the finer media will increase 

surface area for particle collection whereas a greater depth of the larger media on top 

will increase the solids handling capacity.  



 

177 

The application of all potential candidate media and all plausible dual media 

combinations was modelled for all the sites requiring upgrade. The candidate media 

solution which is most likely to be appropriate was identified using Equation 35 and 

Equation 36 considering the varying physical properties of the different media 

materials and grades. Data gathered during site capability assessments was used as 

input data for these models. In order to contain the greater bed expansion of low-

density media and the greater surface area of dual media filters using the same filter 

box, options to change the bed depth by factors of 0.4, 0.6, 0.8, 1 &1.2 of the original 

depth were considered. For each of the candidate media replacement solutions, bed 

expansion head loss and bed depth to grain diameter ratio (L/d ratio) was calculated. 

Not all of the candidate media interventions were acceptable and the following criteria 

were used to classify the candidate media solutions into those which should be 

discounted and those which could be considered further.  

• For mono media beds, the minimum bed expansion at the maximum 

temperature should be greater than 10%. Expansion less than this would not 

likely deliver the expected performance improvements.   

• For dual media filters, both media layers should be expanded by > 15% at 15 

°C to achieve re-grade all year round.  

• The L/d ratio should be greater than 1000 to provide adequate surface area 

for particle collection and less than 1800 to avoid excessive head loss. L/d 

ratios smaller or larger than this range are unlikely to provide acceptable 

water quality or hydraulic performance.   

Based on these criteria there were 4 sites where the backwash rate was so low that 

replacement of the media alone would probably not provide sufficient performance 

improvement. However, for the remaining 28 sites identified as having inadequate 

backwash systems it was possible to identify a low-density media replacement solution 

which will improve filtration performance and avoid the cost and complexity of a major 

upgrade project. Of all the viable alternatives, the most promising media replacement 

scenario was selected for indicative costing purposes on the basis of the data available 

and in the absence of a detailed assessment for each site by applying the following 

rules sequentially: 

• If a dual media option is possible it is preferable unless there is a backwash 

availability constraint to be considered. 
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• Where there is a backwash availability reason to invest, the upwash rate 

required for expansion should be less than the current backwash rate. This 

limits solutions to those filters which do not require the provision of additional 

back wash water storage. 

• For each potential media combination and bed depth, the ratio of layer depths 

is selected to give a L/d ratio as close to 1200 as possible. This rule of thumb 

is commonly used to balance particle capture performance and head loss. 

• Media solutions increasing estimated clean bed head loss by more than 20% 

were excluded except for the special case of Newmore, at which a retrofitted 

pre-treatment stage means that a much smaller grade of media than is 

currently used is now appropriate. The driving head available is limited which 

excludes potential solutions that may result in reduced run times due to the 

limited availability of driving head. 

• Where possible, the media bed depth should be kept as close to the current 

depth as possible. Large changes in media depth are likely to result in 

additional cost and complexity, adapting the hydraulic arrangement of the filter 

which have not been included in this analysis. 

• The solution incorporating media with smallest effective size was preferable in 

order to maximise surface area for collection and provide the highest quality 

filtered water. 

• Where wash volume availability is a reason to invest, the media offering the 

greatest reduction in effective backwash flow was assumed to be preferable. 

• The solution with lowest clean bed head loss was selected.  

Indicative alternative media replacement solutions identified for each site according to 

these rules are illustrated in Figure 32 which shows that 12 sites with mono-media 

sand filters could be up-graded to dual media filters and more effective re-grading is 

likely to occur in 11 existing dual media filters. There are 5 further filters where it was 

anticipated that the backwash rate would not be sufficient to re-grade even a low-

density dual media filter but that a mono media design with improved wash 

performance could be identified.  
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Figure 32 Current and likely replacement media designs based on selection process 

 

5.5.3 Cost modelling 

High level cost estimates have been calculated for the alternative solutions to the 

filtration design constraints observed across the filtration asset base. Conventional 

media replacement costs can be estimated from framework cost information produced 

by suppliers in the application process to join the Scottish water purchasing 

framework. Based on comparative quotes for conventional and low-density media 

proposed as part of the Rosebery (WTW A) upgrade (Chapter 4), the additional costs 
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associated with alternative materials can be factored in. Filtralite NC costs £16 more 

than anthracite per m3 of media and Filtralite HC costs £166.21 more than sand per 

m3 (Figure 32). Alternative media on average is estimated to cost in the region of 21% 

more than like for like media replacement only. 

The data upon which to base estimates of the costs of upgrading the wash systems 

are limited. However, based on project cost summaries from previous capital schemes 

upgrading water treatment works at Scottish Water it has been possible to generate 

cost curves for pumps and tanks. Wash water pipework replacement costs were 

estimated on a £1780 per m framework price for pipework and valve repair (Filtec, 

2014). Filter floor and nozzle replacement costs per m2 were also included. These 

costs are aggregated with framework contractor prices for testing, commissioning and 

handover. Three levels of wash system upgrade were estimated: 

• Pump replacement costs were estimated for sites requiring > 10% increase in 

backwash flow. 

• Pipework and valve replacement costs were added for sites requiring > 50% 

increase in backwash flow. 

• Tank construction costs were added for sites where the upwash rate 

increases were projected to leave < 4 empty bed volumes of usable backwash 

water storage. 

Additional costs such as control integration, MCC replacement, pump lifting equipment 

were not included in the cost estimates and, as such, cost estimates are conservative.  

A comparison of the projected costs of media replacement and wash system 

replacement show that replacement of media with a lower density alternative is likely 

to be a lower cost alternative than upgrading wash systems at 27 out of 28 sites (Figure 

33, Table 24). Like-for-like media replacement projects are estimated to be between 

£21,000 and £2,000,000 depending on the size of the site. Wash system upgrades 

are projected to cost between £75,000 and £12M based on the cost models.   



 

181 

 

Figure 33 Comparison of modelled costs for the upgrade scenarios at selected WTWs.   
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Table 24 Summary of cost modelling outputs by site 

Site Replace 
media 
with same 
(£) 

Upgrade 
backwash 
(£) 

Upgrade 
backwash and 
replace media 
with same (£) 

Low 
density 
media (£) 

Saving (£) 

BALMORE 2,049,070 10,346,697 12,395,767 2,101,040 10,294,727 

GLENFARG 392,253 7,058,778 7,451,030 396,106 7,054,924 

TURRET 322,489 2,808,806 3,131,295 385,572 2,745,723 

CARRON.VALLEY 346,400 2,638,892 2,985,293 321,134 2,664,159 

CAMPHILL 119,133 1,251,064 1,370,197 149,711 1,220,486 

GLENCORSE 451,896 1,087,368 1,539,264 540,741 998,523 

TURRIFF 132,797 671,899 804,696 149,485 655,211 

DAER 498,980 787,964 1,286,944 649,754 637,190 

BLACK.ESK 92,783 570,618 663,401 112,773 550,628 

MANNOFIELD 233,705 577,175 810,880 307,610 503,270 

CASTLE.MOFFAT 106,350 454,067 560,417 118,438 441,978 

AFTON 81,597 403,927 485,524 99,354 386,170 

PATESHILL 117,723 417,067 534,790 150,250 384,540 

ROBERTON 63,489 329,279 392,768 69,812 322,957 

NEWMORE 43,168 305,815 348,983 40,211 308,772 

LOCHINVAR 46,871 214,833 261,704 54,604 207,100 

EELA 28,989 163,020 192,008 33,429 158,580 

LOMOND.HILLS 108,988 139,908 248,896 128,301 120,596 

PERTH 180,357 110,471 290,828 207,243 83,584 

PENWHAPPLE 80,403 93,388 173,791 95,476 78,315 

SANDY.LOCH 38,981 53,821 92,802 42,935 49,867 

KETTLETON 41,543 54,351 95,894 46,470 49,423 

HOPES 67,620 53,182 120,801 73,769 47,032 

PORT.CHARLOTTE 16,898 42,664 59,563 17,109 42,454 

ARDRISHAIG 31,314 45,618 76,932 36,406 40,526 

HERRICKS 19,752 41,516 61,268 21,594 39,674 

WINTERHOPE 24,768 41,971 66,739 28,162 38,577 

KIRBISTER 48,285 27,317 75,602 53,288 22,314 
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5.6 Discussion 

Inadequate bed expansion during the backwash has been shown to be a particular 

challenge for Scottish WTWs. The inability to effectively remove dirt from the filter bed 

can result in a vicious cycle of performance decline. Dirt retained within the media 

causes excessive head loss and premature breakthrough of turbidity, resulting in a 

reduction in filter run times. Shorter run times result in higher hydraulic loading on 

sludge treatment systems which in turn can reduce the solids removal performance 

potentially leading to higher loads of solids in the return water. Pilot and full-scale trials 

shown have demonstrated that the additional bed expansion that can be achieved by 

low density media leaves the bed cleaner (Chapter 4).  

The high level WTW design analysis and high-level cost modelling demonstrate a clear 

case for an extensive programme of filter media changes to mitigate the design 

constraints of existing filter backwash systems. Achieving improvements to filter 

performance through wash system upgrades is inherently complicated and risky. Head 

loss within pipework increases in proportion to the velocity squared, therefore 

increases in rise rate within the filter box will be associated with large increases in 

head loss across the filter nozzles, under drain and pipework. This increase in head 

loss can have implications beyond the sizing of the backwash pump required. The 

backwash pumps typically represent the largest draw of power on conventional 

filtration works in Scotland. Significant upgrading of the backwash pumps may require 

a new power supply. In remote areas this may mean considerable costs in upgrading 

the power supply system. This increased demand for power may mean that the 

emergency generator is insufficient. Increased head losses in the under-drain will 

increase stress on the filter floor potentially reducing operational life through failure of 

the filter floor. The ability to source sufficient backwash water is also a constraint. If 

insufficient storage of backwash water is provided, such as where the backwash is 

sourced from (such as the filtered water channel or chlorine contact tank), increasing 

the backwash flow increases the disruption to the disinfection process. Such 

circumstances can create a chlorine or base dosing control challenge leading to 

instability in the chlorine contact time that can be achieved in disinfection. 
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Switching media is not without risk. However, this risk is primarily associated with the 

replacement rate of the filtration material. There is an initial risk associated with loss 

of the lowest density expanded clay (Filtralite NC) during the first backwash. When 

dry, Filtralite NC has a buoyant fraction. With soaking, this fraction is much reduced, 

however, it will not be eliminated entirely and strategies to collect and manage this 

material need to be developed (Chapter 4). In some instances, this may mean that 

media retention plates need to be fitted in order to prevent carry-over of media during 

the rinse or additional flow control measures to limit the expansion of media during the 

winter. This will need to be assessed on an individual site-by-site basis. However, with 

careful design and validation of flow rates and expansion curves it is relatively simple 

and cheap to understand and manage this risk. 

In order to present a relatively clear high-level view, over a heterogeneous asset base, 

this report has presented low density media and backwash upgrades as a 

dichotomous choice. In reality, for some sites, the best solution may be low density 

media replacement in combination with relatively minor upgrades to the pumping and 

control of backwash water. This choice will depend on design constraints which are 

specific to the individual site.  

 

5.7 Conclusions 

• The high-rate filter backwash at 22 of 41 conventional WTWs was insufficient 

to expand the media by 5% at 15°C, a further two sites would achieve 

expansion of between 5-10%.  

• Six sites had less than 3 empty bed volumes of water available for filter 

backwashing.  

• Design constraints in the filters or backwash systems likely to impact treatment 

performance could be over were identified at 28 of 41 WTWs surveyed. 

• Replacing sand with lower density Filtralite media provides a comparatively low-

cost solution for Scottish Water to overcome legacy design constraints at 27 

WTWs out of the 41 surveyed. 

• The backwash rate at a further 4 WTWs is below a rate at which Filtralite would 

be consistently expanded at 15°C.  
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• Use of lower density media has the potential to avoid a large number of high 

risk, expensive and disruptive backwash improvement projects and may 

contribute to the realisation of the full design life of up to 2/3 of existing rapid 

gravity filtration assets in Scottish Water. 
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6 Discussion 

The initial aim of this research was to identify how Scottish Water could achieve 

a filtered water turbidity target of <0.1 NTU. In some ways the technical means to 

achieve this aim already existed, and this area of the research can be viewed as 

an implementation gap rather than a knowledge gap. This is because the 

available body of research and practice demonstrates that with: effective pre-

treatment; appropriate solids loading; good practice in process unit design; 

monitoring with sufficiently sensitive turbidity meters and particle counters; timely 

and appropriate maintenance; and effective operation, delivering filtered water 

turbidity of less than 0.1 NTU is readily achievable. This would, however, ignore 

the constraints within which Scottish Water and other municipal water suppliers 

operate. Municipal water suppliers need to provide safe and acceptable drinking 

water at a cost which is affordable and perceived to represent good value. This 

means that water companies are, to a certain extent, constrained by the value of 

the existing assets used to supply water.  

This research is focussed on the implicit rather than explicit elements of the 

research question and could, more clearly be stated as: How can Scottish Water 

efficiently deliver filtered water turbidity of <0.1NTU within the constraints of 

existing assets? To that end this investigation has developed the application of a 

suite of approaches to improve performance from existing depth filtration assets, 

these include metrics, algorithms, methods, measurements and materials. 

With filters of different design that have different pre-treatment processes and 

face different water quality challenges, it was evident that no one solution would 

deliver on the project aims within the implicit constraints. Neither was it 

appropriate to exhaustively address all aspects of filter design, operation, and 

maintenance. Instead, the project required focus on research areas which both 

provided opportunity to both develop new knowledge and the potential to improve 

performance across many diverse filter assets.  

From a practical perspective, the knowledge generated in this thesis could be 

applied to improve seven categories of filter operation (Figure 34). Initial work 
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described in chapter 2 focussed on improving the efficiency of assessment and 

diagnosis of filtration performance using operational online monitoring data 

through the development of effective metrics and efficient diagnostic modelling 

methods. These metrics can help determine and identify the cause of filtration 

issues. Once identified, the solutions to the issue are commonly well developed. 

For example, operational and maintenance practice for the majority of issues are 

well established (Logsdon et al., 2002).  Modern design practice has solutions 

which minimise risk from interacting issues of hydraulic loading and shocking, 

while the effects of ineffective backwashing and optimal conditions for 

backwashing are also well described in the literature (Ambergey et al., 2003; 

Amburgey, 2005; Crittenden et al., 2012; Glasgow and Wheatley, 1998; Han et 

al., 2009a; Hendricks, 2006). However, these improvements can be complicated 

and disruptive to retrofit into existing treatment processes and may not provide 

good value for money for assets with limited remaining life. 

There were two key areas in which there was a lack of consensus both in practice 

and in academic opinion which provided opportunity for a novel contribution. 

Specifically, design for a backwash rinse rate that expanded the media has not 

been consistently practiced, and reported values for the optimal zeta potential 

window for charge-neutralisation coagulation vary (Bratby, 2016; Hendricks, 

2006; Jefferson et al., 2004; O’Melia, 1969). In addition, newly available 

technologies or products have become available that had the potential to resolve 

filtration challenges in ways that have not been previously possible. The main 

contributions to knowledge have been focused on three areas: filtration 

performance assessment and diagnosis; the use of novel online particle charge 

measurement technologies for optimising the preparation of water prior to 

filtration; and the application of newly available grades of low-density media 

materials to mitigate legacy filter design constraints.  
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Figure 34 Overview of filtration performance issue types and solutions. Blue boxes indicate operation and maintenance activities 

and costs. Orange indicates potentially costly upgrades to civil and mechanical components. Green boxes indicate where this 

project has developed potential opportunities to mitigate risks with lower cost interventions. Green lines indicate areas in which 

there are potential opportunities to improve 

 



 

190 

 

6.1 Filtration performance metrics and diagnostics 

A water treatment plant consists of multiple barriers, each potentially made up of 

several unit processes. A water utility may have hundreds of water treatment 

plants and assets to manage. The automation of many water treatment processes 

has reduced the labour force available for operation but has hugely increased the 

amount of available data describing process performance. As such,  there is often 

insufficient operator time to review all of the operational data produced. 

Appropriate systems and methods are required to efficiently convert this data into 

actionable information to aid process operation and management. Chapter 2 of 

this thesis presents a justifiable and efficient methodology for the assessment 

and diagnosis of rapid gravity filtration performance issues. By making it simpler 

and easier to identify and diagnose performance, relatively minor issues within 

individual process units can be identified, prioritised and managed. This reduces 

the risk of a compound failure of microbiological barriers that could lead to harm 

to public health. 

6.1.1 Context of work 

Investigators have previously described the application of systematic methods for 

collecting and analysing filter performance data using traditional summary 

statistics (Logsdon et al., 2002). Previous investigators have sought to move 

beyond the use of traditional summary statistics and develop specific metrics for 

the managing the performance of filters using turbidity trends (Hartshorn et al., 

2014; Huck and Coffey, 2004; Li and Huck, 2008). Systematic trials of these 

approaches, shown in chapter 2, identified inconsistent and counter-productive 

results driven by inconsistently shaped distributions of turbidity data.  

In order to effectively manage filtration performance, an understanding of the 

causes of poor performance is required. Diagnosis of filtration issues are 

traditionally achieved through time consuming and subjective manual 

interpretation of turbidity trends (Logsdon et al., 2002). Framing the diagnosis of 

filtration issues as a classification problem was used in this thesis to increase the 
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efficiency of the process such that it can be applied more extensively to under-

stand marginal treatment performance concerns. This enables the management 

of occasional small spikes in filtered water turbidity, rather than retrospectively 

identify the cause of a water quality failure. The classification and regression tree 

(CART) algorithm, when used with calculated variables generated from other 

relevant and meaningful online measurements (describing water quality & 

physical conditions summarised in Table 2), was demonstrated to facilitate fitting 

of simple and interpretable classification tree models to operation of filtration. 

Better understanding and management of marginal performance issues in 

individual process stages can reduce the likelihood of acute compound failures 

(Venkatasubramanian et al., 2003a).  

6.1.2 Contribution to knowledge and practice 

In the absence of a consistent function relating turbidity to risk, using turbidity as 

an indicator rather than a quantitative measure of filtration performance is a more 

reliable approach when the limitations of the measurement and its relationship 

with risk are considered. Turbidity observations above a limit of 0.1 NTU can be 

considered as “failure” of the filter. The failure rate against a goal of 0.1 NTU was 

deemed to be a good metric for filtration performance as it is understandable, 

comparable, insensitive to measurement error and easily applied. The reliability 

of a filtration process can be compared by contrasting the average time between 

turbidity spikes. The performance of filters spiking more frequently can be 

described as less reliable. The resilience of the performance of a filter can be 

compared by contrasting the average duration of turbidity spikes. Filters which on 

average return to acceptable performance in a shorter time period can be 

considered more resilient.  

The alternative measures of filtration performance developed and described in 

Chapter 2 offer a sensible and intuitive approach to characterising the aspects of 

performance which are effectively measured using turbidity. Furthermore, when 

applying the failure rate, Mean Time Between Failures (MTBF) and Mean Time 

To Recovery (MTTR) there is no reliance on an implicit assumption that risk is a 

consistent linear function of turbidity. There is merely an assumption that turbidity 
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above 0.1 NTU is consistently indicative of a greater risk than turbidity less than 

0.1 NTU. Assessment of filter performance on the basis of turbidity could be 

further improved by a process for the effective definition of a risk function for 

turbidity. Recent investigations have demonstrated that the impact of elevated 

turbidity on disinfection performance is subject to the type of turbidity causing 

materials present (Farrell et al., 2018; Léziart et al., 2019). 

The operational performance and diagnosis methodology demonstrated in 

Chapter 2 has been shown to identify a range of operational issues related to 

poor performance. It can condense several years of process data into an 

interpretable tree diagram. These diagnostic models can be used as evidence 

during the review of operational set points, alarm and limit values, as well as for 

adjusting set-points or for focussing further investigations required to support 

additional maintenance or investment.  

The novel methods developed in this research were incorporated into 

demonstration software which supported the management of performance and 

diagnosis of filtration issues at a case study WTW. Development of this software 

was demonstrated at the American Water Works Water Quality & Technology 

Conference 2015; the International Water Association particle separation 

conference 2016 and in a Chemical Engineering Journal paper (Upton, Jarvis 

and Jefferson, 2015, 2016; Upton et al., 2017). 

6.1.3 Limitations 

Whilst the described approach was useful, it was limited to the management of 

filtration issues for those factors where useful data was collected and stored. The 

approach is less effective for longer term issues affecting the condition of filters. 

For example, in the case of a blocked lateral, the approach described would 

identify if a particular filter was more likely to produce high turbidity water than 

others, suggesting a condition issue, but would not identify the specific fault. In 

addition, design constraints are less likely to be effectively captured by using 

operational data. It is also comparatively simple and cheap to demonstrate a 

concept using a case-study set of data. The implementation of a stable system 
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which takes inconsistent and incomplete data from hundreds of different 

inconsistent systems will be a significant challenge to address.  

To implement such monitoring and diagnostic system outside of a proprietary 

SCADA system is challenging. Interaction with existing proprietary control 

systems is awkward or costly by design. Typically, only relatively few key 

performance trends are communicated to corporate telemetry systems. Large 

scale uptake of such methods are only likely to be implementable when large 

amounts of process monitoring data are routinely extracted from local control 

systems and stored accessibly in a standardised format. With growing security 

concerns associated with control systems for critical infrastructure, the appetite 

for innovation in this area became more constrained over the course of this 

project. However, when the security concerns are resolved the application of such 

systems will become easier and more likely. Realistically this is likely to require 

the separation of monitoring and control. 

6.2 On-line zeta potential measurement for coagulation 

optimisation 

The sub-optimal preparation of water for filtration is a key cause of poor process 

performance (Huck et al., 2001; Logsdon et al., 2002). On-line monitoring of zeta 

potential has only been available in the last few years and provides a unique 

opportunity to improve operation of clarification and filtration processes (Smith et 

al., 2019). Research presented in Chapter 3 developed methods for analysing 

online zeta potential data to improve understanding of how to optimally operate 

non-ideal coagulation-flocculation processes for the treatment of low turbidity 

water. This enabled optimal preparation of water for filtration, reducing the risks 

of turbidity breakthrough into final treated water.  

6.2.1 Context of work 

Electro-kinetic measurements of dosed water have long been established for 

describing the success of colloidal destabilisation (Pilipovich et al., 1958; Black 

et al., 1961; Jefferson et al., 2004; Sharp et al., 2005). More recent investigations 

have extended these observations to on-line measurement at full scale WTWs 
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(Black and Willems, 1961; Jefferson et al., 2004; Pilipovich et al., 1958; Sharp et 

al., 2005; Smith et al., 2019). However, concerns with the application of zeta 

potential centre around questions of consistency between systems and over time 

(Bratby, 2016; Hendricks, 2006; O’Melia, 1969). For zeta potential measurements 

to be of value for informing and optimising coagulation performance the charge 

neutralisation mechanism must be predominant (Bratby, 2016). Previous 

investigations at bench and pilot scale have identified optimal windows for zeta 

potential within which performance variation is independent of variation in charge, 

but the location and size of these windows are system dependent (Jeffereson et 

al., 2004). It is known that the range of effective coagulant dose comprising the 

destabilisation zone reduces with lower colloid concentrations (Stumm and 

Morgan, 1996), making application of zeta potential to low turbidity water sources 

more challenging. 

There is an inherent sensitivity challenge in optimising coagulation using 

electrophoretic measurements, particularly with systems with lower colloid 

concentrations. Zeta potential is derived from measurements of the 

electrophoretic mobility which is a function of particle charge. Particle systems 

that approach net neutral surface charge will therefore exhibit reduced 

electrophoretic mobility relative to random movement. Where the objective of 

coagulation is to neutralise the charge of colloidal particles to minimise inhibition 

of particle interaction then measurements in this region will have relatively large 

error and be less sensitive than measurements of a particle system with a strong 

charge. Online measurement of zeta potential provides a new opportunity, by 

taking the average of numerous measurements, to increasing measurement 

sensitivity within the region for charge-neutralisation coagulation. 

6.2.2 Contribution to knowledge and practice 

By combining online measurement of zeta potential with appropriate statistical 

modelling and supplementary jar testing this investigation was able to identify 

variations in treatment performance within zeta potential ranges of between -5 & 

0 mV. To the author’s knowledge, this is the first time that changes in treatment 

performance related to zeta potential have been seen within a region where 
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performance was considered independent of zeta potential. Though the 

mechanism driving this performance change could not be proven, modelling of 

full scale and jar test data indicated that, depending on prevailing conditions, 

likely performance benefits resulted from increased collision rate, increased 

adsorption and/or improved floc strength. This has improved understanding of 

how coagulation-flocculation systems challenged by multiple process constraints 

and changing raw water quality can be most effectively operated and optimised.  

The use of online zeta potential simplifies the modelling and optimisation of 

coagulation in isolation from other sources of variance. This opens up greater 

opportunities for understanding and optimising treatment systems which are 

characterised by autocorrelated processes, multicollinearity in process variables 

and constraints on experimental manipulation (from monitoring of an operational 

WTWs). However, investigations have confirmed that neutralisation of charge 

alone does not always guarantee optimisation of a treatment process and further 

measurements of particle systems are required in order to ensure optimal floc 

aggregation. 

The approaches demonstrated can enable specification of the effective 

operational zeta potential window for the prevailing conditions within a specific 

treatment system. This was shown to be of particular use for collision-, 

adsorption- or shear-limited systems. Where floc size is constrained by too low a 

concentration of particles resulting in too few opportunities for the agglomeration 

of particles within the available retention time of the flocculator, the methods 

presented indicated how coagulation conditions could be optimised to improve 

the collision rate without triggering re-stabilisation. Similarly, for systems in which 

floc formation is limited by a low coagulant to NOM ratio, modelling of online zeta 

potential data appeared to enable the optimisation of floc strength and or 

adsorption with additional coagulant dose whilst avoiding re-stabilisation. 

6.2.3 Limitations 

Lack of independent pH control in coagulation, and conducting trials within an 

operational WTWs, prevented the use of controlled experiments to demonstrate 

the application of online zeta potential and therefore limited the confidence with 
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which observations could be attributed to specific mechanisms. While the 

investigation demonstrated how the dose of coagulant could be optimised using 

online zeta potential, other approaches to improve the performance of 

coagulation-flocculation in non-ideal reactors were not explored. It is possible that 

the use of flocculation aids, including nucleating particles and/or polymers would 

result in more consistently effective performance over the range of treatment 

issues observed. 

6.3 Expanded aluminosilicate in shallow RGFs 

Most of the filters operating in Scotland today were constructed more than 30 

years ago during which time raw water quality, performance expectations and 

design best practice have changed. The concrete components of an RGF have 

a typical asset life of 60 years whilst the filtration media is normally replaced within 

20 years, meaning that there are likely to be at least two opportunities in the life 

of any filter to re-consider if the media in use is the most appropriate.  

6.3.1 Context of work 

Several investigations in the last 50 years have developed knowledge of, and 

practice for, the backwashing of granular media filters (Ambergey et al., 2003; 

Amirtharajah, 1971, 1984, 1993; Chipps et al., 1995; Fitzpatrick 1993; Ginn and 

Amirtharajah, 1992; Logsdon et al., 2002). These investigations have developed 

understanding of the key requirements of an effective backwash. These are to 

impart sufficient turbulence to detach deposits from media grains and effective 

transport of the detached grains from the filter into the wash water system. Best 

practice for filter washing involves the expansion of the media by more than 10% 

(Ambergey et al., 2003). However, many filters in the UK have been designed 

with a rinse rate which is at a fluidisation or sub-fluidisation rate that does not 

enable this level of expansion (Beverly, 2005; Brandt et al., 2016; Hendricks, 

2006). Several previous investigations have exploited media with lower density 

to improve performance of filters with sub-optimal backwashing (Bayley et al., 

2006; Mörgeli and Ives, 1979). In addition, the concentration of natural organic 

matter (NOM) in surface waters has increased in northern Europe and America 

over recent decades, further challenging the performance of filters which were 
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designed and built before the water quality had changed (Eikebrokk et al., 2004; 

Jarvis et al., 2005a; Pagano et al., 2014).  

Previous investigations and several case studies have documented successful 

applications of coarser low density Filtralite media in deep bed filters ≥1m 

(Eikebrokk and Saltnes, 2001; Mikol et al., 2007). However, investigators have 

observed treated water quality concerns for its use as a media replacement in 

fine sand filters with shallower bed depth (Davies and Wheatley, 2012; Saltnes 

et al., 2002).  Where treatment benefits have been observed using Filtralite for 

depth filtration in drinking water, the performance gains have been associated 

with the media’s additional porosity, surface and shape characteristics (Cescon 

et al., 2016; Davies and Wheatley, 2012). 

6.3.2 Contribution to knowledge and practice 

This investigation demonstrated the effective application of 0.5-1 mm expanded 

aluminosilicate (Filtralite HC) and 0.8-1.6 mm expanded aluminosilicate Filtralite 

(NC) or Anthracite media within a 1m deep filter as a replacement for a fine sand 

(0.5-1 mm) and anthracite (0.8-1.6 mm) media which was not effectively 

expanded during the backwash. To the author’s knowledge, this is the first time 

that such a configuration has been researched and applied at pilot and full scale. 

This work showed that the use of the lower density media delayed breakthrough 

and reduced clean bed head loss when compared to sand-anthracite filters of 

equivalent size at backwash rates typical of those used in many UK filtration 

plants. This showed that design constraints leading to increased solids loading 

and poor backwash performance could be effectively mitigated by replacing fine 

sand with Filtralite, addressing an issue common to many filters in the UK. Similar 

outcomes could be achieved with comparatively costly upgrades to the backwash 

system. 

Pilot trials showed that, when comparing dual media Filtralite beds (0.5-1 mm & 

0.8-1.6 mm), after normalising for the minimum fluidisation velocity, there was no 

residual performance advantage in terms of delayed breakthrough or clean bed-

head loss associated with using Filtralite. This suggests that in finer-media 

configurations, the mechanism leading to benefits from the use of Filtralite is 



 

198 

different to those previously attributed for the coarse media. Previous 

investigators have identified increased surface roughness and porosity as likely 

causes for the improved performance (Mikol et al., 2007; Mitrouli et al., 2009). In 

finer media applications, the performance advantage arises from the lower 

density material achieving additional bed expansion at rinse rates which are 

sufficient only to fluidise sand. In other words, the Filtralite filters are more 

effectively cleaned during the backwash.   

The evidence presented in Chapter 4 has now been exploited to improve water 

quality in Scottish Water at three WTWs, where the sand media has been 

replaced by Filtralite. Improved understanding of the mechanisms that drive 

performance gains from low density media has enabled its application to a greater 

range of scenarios. From the research presented here, expanded aluminosilicate 

is worth considering when mono media sand filters are overloaded with solids, 

inadequate backwash bed expansion is limiting recovery of media void space or 

short filter run times are resulting in poor performance from backwash systems. 

Based on the experience gained through this and previous investigations a 

summary of the likely media options for a range of scenarios are summarised in 

Table 25.  
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Table 25 Matrix of potential Filtralite media replacement options for given 

situations. 

 High rate backwash, m3/m2/hr 

Current 
media  

15-21 21-27 27-35 35+ 

Coarse sand  

(D10 >0.8 
mm) 

Filtralite NC 
0.8-1.6 mm 

Filtralite NC 
0.8-1.6 mm 

Filtralite MC 
(Medium 
Density) 0.8-
1.6 mm** 

Filtralite 
mono-multi 
(HC 0.8-1.6 
mm & NC 
1.5-2.5 mm)** 

Filtralite mono-multi fine (HC 
0.5-1 mm & NC 0.8-1.6 mm). 

Or Filtralite – Anthracite (HC 
0.5-1 mm & Anthracite 0.8-
1.6 mm). 

Filtralite HC 
0.8-1.6 mm** 

Fine sand  

(D10 <0.6 
mm) 

Filtralite HC 
0.5-1 mm 

Filtralite mono-multi fine (HC 
0.5-1 mm & NC 0.8-1.6 mm) 

Not tested 

Fine sand - 
anthracite  

Filtralite 
mono-multi 
fine (HC 0.5-
1 mm & NC 
0.8-1.6 mm) * 

* Longer term performance needs testing 

** not trialled in this investigation 

HC = High density Crushed, NC = Normal density Crushed 

 

6.3.3 Limitations 

The primary limitation of this research was that during the main pilot trials at 

WTWA, backwash rate was adjusted, and the backwash time was kept constant 

this meant that the total volume of backwash water used was not constant across 

backwash rates. The transport of solids from the filter during the backwash rinse 

is critical for an effective backwash. Failure to adequately control for backwash 

volumes whilst changing other backwash conditions could result in 

misunderstanding due to the misattribution of an effect. This failure to keep equal 

wash volumes does not affect the comparison between the media at absolute 

wash rates because during these trials the same backwash protocol was applied 
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to both media at the same time. However, during a subsequent re-analysis of the 

data, performance of two media were compared after normalising wash rate for 

the minimum-fluidisation velocity and were found to operate similarly. In this 

comparison, it was possible that the lack of a significant difference between the 

performance of Filtralite-anthracite and sand-anthracite filters could have been 

attributed to the additional volume of water used to rinse the sand-anthracite or 

the fact that expansion was roughly equivalent. 

6.4 Summary 

The metrics, algorithms, methods, instruments and materials developed and 

investigated in this research are summarised in Table 26. These approaches 

have been developed to support the delivery of consistently low turbidity in filtered 

water. 
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Table 26 Summary of approaches developed in this project to help achieve filtered water turbidity of less than 0.1 NTU. 

Approach Objective met Application for improving filtered water quality How this could be of benefit 
to the broader water industry 

Turbidity 
performance 
metrics 

Failure rate, 
Mean Time 
Between 
Failures 
(MTBF), 
Mean Time 
To Recovery 
(MTTR) 
relative to a 
target of 0.1 
NTU 

(Chapter 2) 

1. Develop novel 
methods for 
assessment of 
filtration 
performance and 
diagnosis of the 
potential causes of 
operational issues 
associated with 
rapid gravity filters 
using online data to 
improve the 
management of 
preventative 
maintenance 
activities. 

Chapter 2 presents robust and simple 
assessments of filtration performance which 
avoids pitfalls associated with comparing average 
or percentile values, which require the inherent 
assumption that risk is a consistent function of 
turbidity. The metrics developed enable the 
management of individual process units within a 
multiple barrier system. 

The failure rate will identify filter systems which 
most commonly supply water with turbidity >0.1 
NTU. 

MTTF will detect systems which produce water > 
0.1 NTU frequently, even if only for a relatively 
short period. 

MTTR will detect systems which continue to 
operate at turbidity >0.1 NTU for extended 
periods, even if relatively infrequently. 

These approaches could be 
used by the broader water 
industry to improve the 
quality of water supplied to 
customers and deliver 
increasingly challenging 
improvements in water 
quality compliance. By 
improving the efficiency with 
which slight or short periods 
of deterioration in water 
quality from individual 
process units are managed 
the risk of failure of can be 
reduced.  

CART 
algorithm for 
efficient 
filtration 
diagnostics 

(Chapter 2) 

The application of relatively intuitive statistical 
learning models capable of rapidly and simply 
identifying and characterising operational 
conditions most likely to be associated with 
elevated filter turbidity has been developed. This 
speeds up the identification and exclusion of 
potential root causes of filtration issues. This can 
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enable investigation of sub-optimal performance 
to be carried out for more marginal performance 
issues. Efficiently identifying and resolving 
marginal issues enables management of 
individual treatment units within a multiple barrier 
system, reducing the risk of compound failures.  

Online 
measurement 
of Zeta 
potential and 
modelling of 
the 
performance 
window 

(Chapter 3) 

2. Develop methods 
for modelling and 
optimising upstream 
coagulation using 
online zeta potential 
measurement. 

By combining comparatively high frequency 
measurement of charge conditions afforded by 
online instrumentation, and appropriate statistical 
techniques, treatment sensitivity to slight 
variations in coagulation conditions can be 
resolved and modelled. The approach 
demonstrated allows the specification of an 
effective operational window for zeta potential 
within a treatment system for a given set of 
prevailing water quality conditions. This approach 
will enable the optimisation of treatment systems 
with design limitations or challenging raw water 
conditions. In turn, this allows for secondary 
mechanisms to occur within the charge 
neutralisation zone. This tool will enable more 
consistent preparation of water for filtration, 
reducing the risk of producing water with elevated 
turbidity. 

This approach can be used 
by the water industry to 
optimise the preparation of 
water for filtration and 
disinfection within the 
constraints of existing 
assets. This could inform 
operational changes to meet 
increasing performance 
expectations and increasing 
water quality challenges. 

Alternative 
low-density 
media for fine 
sand filters. 
Chapter 4. 

3.Understand the 
potential application 
of novel filter media 
within Scottish 
Water. 

Filtralite has been used extensively and 
successfully in coarse deep-bed filter applications. 
Pilot and full-scale trials of Filtralite media at 
grades smaller than those previously researched 
have demonstrated the effective application of the 

This understanding enables 
mitigation of water quality 
risks in hundreds of filters 
with legacy backwash design 
constraints at a fraction of 
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alternative media in fine sand filters with 
ineffective backwash systems. Pilot trials showed 
that for fine media (0.5-1 mm), backwashed at 
rates commonly used in the UK, the benefit of 
using Filtralite was primarily associated with 
improved backwash performance in conditions 
which did not clean sand effectively. It was also 
demonstrated that it is possible to convert many 
of these currently mono-media filters to dual 
media filters, improving the solids handling 
capacity. 

the cost of upgrading the 
backwash systems to meet 
design best practice. This 
approach will enable the 
improved operation of 
existing filters across the UK 
and reduce water quality risk. 
This may potentially allow 
existing treatment assets to 
meet higher performance 
expectations and realise their 
original design life, improving 
value for customers. 
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7 Conclusions 

The key conclusions with regards to objective 1, the development of novel 

methods for the performance assessment and diagnosis of filter operation from 

online data are:  

1. As there is no clear consistent relationship between turbidity and risk 

or solids concentration in the region of interest below 1 NTU simple 

performance metrics which describe the frequency and duration of 

turbidity spikes using compliance rate, mean time between failures and 

mean time to recovery provide a more appropriate and effective 

indication of filter performance, avoiding spurious scoring and 

comparisons arising from current methods.  

2. The diagnosis of operational causes of elevated filtrate turbidity can be 

framed as a machine learning classification problem for a more efficient 

and scalable approach to performance investigation than traditional 

manual interpretation of turbidity time series. The CART algorithm was 

demonstrated to be an effective and interpretable diagnostic method 

generating highly accurate and communicable models describing 

conditions associated with elevated filtrate turbidity and can applied to 

inform operational and preventative maintenance decisions. This is 

particularly useful for showing the interaction of filtration challenges 

such as low temperature, solids overloading from floc-carry-over and 

hydraulic surging that have been shown in combination to cause poor 

filtered water quality. 

The key conclusions with regards to the development of methods for the 

modelling and optimising coagulation using online zeta potential measurement 

3. Online zeta potential can be a valuable measurement for 

understanding and maintaining optimal coagulation conditions in the 

face of changing raw water conditions. The additional sensitivity, 

gained by multiple measurements enables online monitoring of zeta 

potential to show that even a small residual charge of a few mV can 

have a significant impact on the performance of downstream 
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processes in a low turbidity treatment system which does not use an 

additional polymer as a flocculant aid. 

4. WTWs with shorter process contact times, colder waters and relatively 

low raw water particle concentration are likely to exhibit performance 

which is less robust in response to variation in zeta potential achieved 

in coagulation and are therefore likely to benefit from investment in 

online zeta potential. 

5. The sensitivity to zeta potential and the effective operational window 

for treatment and coagulant dose appears contingent upon collision 

rate. It is likely that this will have implications on the relative costs and 

benefits associated with using different charge measurements for 

optimising treatment. In more robust systems streaming current is likely 

to be adequate, whereas in more sensitive systems the greater 

precision and interpretability of online zeta potential measurements are 

likely to provide an additional benefit. 

6. Using a PCA-GAMM model to relate online zeta potential 

measurements with other online quality and operational control 

measurements can enable the identification of the effective operational 

zeta potential window for a treatment system with a given prevailing 

water quality, operational constraints and treatment goals. This is 

particularly the case where conditions and constraints vary such that 

the optimal treatment strategy may change between charge-

neutralisation and sweep-flocculation. 

7. Where this additional control provides the opportunity to consistently 

operate WTWs treating low turbidity water in a charge-neutralisation, 

rather than sweep flocculation, regime there is potential for reduced 

chemical use and metal sludge production. 

The key conclusions regarding the application of aluminosilicate filter media 

within Scottish Water are: 

8. The improved media cleaning achieved through additional expansion 

of a lower density aluminosilicate media (Filtralite) relative to sand for 

a given grain size and wash rate enables the media to more effectively 
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recover its primary porosity. This contributes to additional solids 

loading capacity, delaying the breakthrough of turbidity. Switching to 

an appropriate grade of Filtralite can allow poorly expanded sand filters 

to maintain good performance in the face of increasing raw water solids 

load. 

9. The improved wash performance achieved by switching to Filtralite 

media was shown to mitigate the water quality risk associated with sub-

optimal hydraulic control of a rapid gravity filter and the premature 

breakthrough of weak NOM floc. 

10. This improved understanding of the mechanisms driving the 

comparative performance advantage associated with using Filtralite 

can allow municipal water suppliers to more effectively exploit the 

material to economically improve the filtration performance of filters 

with outmoded design. 

11. Mono-media 0.5-1 mm or 0.6-1.2 mm sand filters backwashed at >22 

m/hr in order to achieve <5% bed expansion can be successfully 

converted to dual media filters with extended run times by using the 

combination of Filtralite HC (0.5-1 mm) and either Filtralite NC or 

Anthracite (0.8-1.6 mm) without requirement for upgrades to backwash 

provision. 

12. Deep-bed coarse non-fluidising 10/18 sand (0.85-1.7 mm) filters with 

rinse rates in the region of 15-18 m/hr can be converted to fluidising 

mono-media filters with greater solids handling capacity using Filtralite 

NC (0.8-1.6 mm). This is particularly advantageous if there is no 

surface (or cross) wash facility. 

7.1 Further work 

This investigation has developed knowledge of particle aggregation and filtration 

systems which, with further investigation, may provide opportunities to improve 

the performance of conventional coagulation–clarification–filtration processes. 
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• It was evident that particle charge is only part of the story in determining 

the performance of aggregation and separation processes. 

Improvements to the techniques available for monitoring and 

measuring the size and shape of water treatment flocs in situ are 

required to capture and manage the influence of mixing shear rate and 

collision rate effects in order to maintain optimal process performance.  

• Application of the zeta potential modelling approach described in 

Chapter 3 to a broader range of controlled conditions at pilot scale 

would test the generalisability of the approach and provide greater 

evidence as to the mechanisms involved. 

• Previous investigations have demonstrated the benefit of using larger 

and more porous Filtralite media of sufficient depth to improve the 

solids handling capacity of filters. This investigation has shown the 

benefit of using Filtralite to achieve filter performance in shallower filter 

systems where sand is not adequately expanded. There is a further 

class of filters (sand or sand-anthracite) which are currently washed 

effectively but that may have insufficient depth or receive inappropriate 

floc characteristics to enable conversion to a Filtralite of a larger size 

grade. In such situations, pilot testing the combination of fine sand (0.5-

1 or 0.6-1.2 mm) with Filtralite HC (0.8-1.6 mm) and Filtralite NC (1.5-

2.5 mm) may provide a means to increase solids handling capacity 

whilst maintaining the resilience of particle capture. 

• Pilot-scale trials of filtration have allowed the more effective gathering 

of evidence to support the application of alternative media to overcome 

process constraints in existing filters allowing a step-change in 

performance across many WTWs. It is possible that a pilot-scale 

coagulation-flocculation system with variable coagulant, pH, polymer, 

rapid mixing, flocculant mixing, and process time would enable the 

development of interventions to overcome limitations in the 

performance of existing coagulation–flocculation assets. 

Instrumentation allowing the measurement of floc size would allow 

more effective optimisation of existing coagulation systems than that 
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which can realistically be achieved online or with jar testing alone. The 

solutions identified would likely be lower cost than building additional 

process units to achieve improvements in treatment performance. 

Furthermore, fitting such a pilot-plant with online zeta potential 

instrumentation, streaming current monitors and UV absorbance 

instrumentation would allow a useful assessment and development of 

the most appropriate coagulation control solutions for different water 

types and dynamic challenges.  

• Deep bed-coarse media filters are capable of high filtration rates. There 

is an inherent trade-off in the washing of these deep bed filters between 

expansion for particle removal during backwash and in maintaining the 

hydraulic efficiency of the bed by preventing size sorting of media 

grains. Unquantified observations during this investigation suggested 

that variation in density between Filtralite media grains may act to 

prevent size sorting during fluidisation. Further testing of this 

observation may identify if deliberate exploitation of variation in density 

between media grains of equal size can be used to engineer more ideal 

media distribution in filters that might potentially enable higher filtration 

rates. 
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APPENDICES 

Appendix A Supplementary materials for chapter 2 

A.1 Data flow diagram 

 

Figure_Apx 1 Data flow diagram for Chapter 2 

A.2 Turbidity time series 
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Figure_Apx 2 Turbidity time series for individual filters in 2015 
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A.3 Filter performance metrics 

Below the sub-plots of Figure 8 are reproduced at larger scale 

 

Figure_Apx 3 Enlargement of figure Figure 8 A weekly turbidity mean values 
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Figure_Apx 4 Enlargement of figure Figure 8 B weekly turbidity median values 



 

219 

 

Figure_Apx 5 Enlargement of figure Figure 8 C weekly turbidity standard deviation 
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Figure_Apx 6 Enlargement of figure Figure 8 D weekly turbidity 90th percentile 

values 
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Figure_Apx 7 Enlargement of figure Figure 8 E weekly turbidity 95th percentile 

values 
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Figure_Apx 8 Enlargement of figure Figure 8 F weekly turbidity 99th percentile 

values 
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Figure_Apx 9 Enlargement of figure Figure 8 G weekly turbidity TRI90D values 
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Figure_Apx 10 Enlargement of figure Figure 8 H weekly turbidity TRI95D values 
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Figure_Apx 11 Enlargement of figure Figure 8 I weekly turbidity TRI99D values 
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Figure_Apx 12 Enlargement of figure Figure 8 J weekly turbidity TRI90J values 
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Figure_Apx 13 Enlargement of figure Figure 8 K weekly turbidity TRI95J values 
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Figure_Apx 14 Enlargement of figure Figure 8 L weekly turbidity TRI99J values 

 



 

229 

Appendix B Supplementary materials for chapter 3 

B.1 Data processing & modelling diagrams 

 

Figure_Apx 15 Data processing diagram for on-line data from case study WTW 
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Figure_Apx 16 Data modelling and analysis process for PC-GAMM models and 

simulations 
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B.2 Raw water quality 

Table_Apx 1 Summary of raw water quality data 

Source Determinand mean 5th %ile 
25 th 

%ile 
75 th 

%ile 
95 th %ile n 

 

Source A 
Absorbance 
UV/cm 

0.17 0.15 0.15 0.18 0.2 74 

Source B 
Absorbance 
UV/cm 

0.29 0.23 0.26 0.33 0.35 74 

Source A 
Colour mg/l 
Pt/Co 

24.5 20 22 26 30 74 

Source B 
Colour mg/l 
Pt/Co 

41.54 28.65 37 48 54.35 74 

Source A 
Hydrogen Ion 
pH value 

7.28 6.98 7.2 7.4 7.62 17 

Source B 
Hydrogen Ion 
pH value 

7.51 7.3 7.5 7.6 7.64 17 

Source A 
SUVA 
L/mg/m 

4.81 3.94 4.5 5.08 5.68 74 

Source B 
SUVA 
L/mg/m 

4.7 3.35 4.2 4.79 5.28 74 

Source A 
Total Organic 
Carbon mgC/l 

3.57 3 3.3 3.88 4.17 74 

Source B 
Total Organic 
Carbon mgC/l 

6.6 5.1 5.8 7.3 8.2 74 

Source A Turbidity NTU 0.9 0.4 0.5 0.9 2.86 65 

Source B Turbidity NTU 1.55 0.9 1.1 1.8 2.76 65 
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B.3 Individual water quality trends 

 

 

Figure_Apx 17 Enlargement of figure Figure 12 A three-hourly mean turbidity in clarified 

water  
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Figure_Apx 18 Enlargement of figure Figure 12 B three-hourly mean UV254 absorbance 

in clarified water 
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Figure_Apx 19 Enlargement of figure Figure 12 C three-hourly mean pH in coagulated 

water  
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Figure_Apx 20 Enlargement of figure Figure 12 D three-hourly flow of coagulated water 
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Figure_Apx 21 Enlargement of figure Figure 12 E three-hourly mean Aluminium in 

filtered water 
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Figure_Apx 22 Enlargement of figure Figure 12 F three-hourly mean turbidity in filtered 

water  
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Figure_Apx 23 Enlargement of figure Figure 12 G three-hourly mean filter run time 
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Figure_Apx 24 Enlargement of figure Figure 12 H three-hourly mean proportion flow 

from source B 
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Figure_Apx 25 Enlargement of figure Figure 12 I three-hourly mean colour in raw water 
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Figure_Apx 26 Enlargement of figure Figure 12 J three-hourly mean pH in raw water  
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Figure_Apx 27 Enlargement of figure Figure 12 K three-hourly mean turbidity in raw 

water  
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Figure_Apx 28 Enlargement of figure Figure 12 L three-hourly mean UV254 absorbance 

in raw water  

 



 

244 

 

Figure_Apx 29 Enlargement of figure Figure 12 M three-hourly mean flow of recycled 

water  

 



 

245 

 

Figure_Apx 30 Enlargement of figure Figure 12 N three-hourly mean turbidity in 

recycled water  
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Figure_Apx 31 Enlargement of figure Figure 12 O three-hourly mean zeta potential of 

coagulated water 
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B.4 Relative variance of zeta potential measurements approaching 

0mV| 

 

Figure_Apx 32 Relative variance of zeta potential measurements is shown to increase 

approaching zero.  Online zeta potential takes repeated measurements of a single 

physical sample to reduce measurement error. This plot illustrates the increase in the 

standard deviation of repeat measurements for a single sample as the mean zeta 

potential approaches zero. 
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B.5 Treated water quality over the range of zeta potentials observed 

 

Figure_Apx 33 Relative change in UV absorbance between raw and clarified water over 

the range of zeta potentials observed. Temperature is indicated by colour and plant 

flow is indicated by point size. 
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Figure_Apx 34 Clarified water turbidity over the range of zeta potentials observed. 

Temperature is indicated by colour and plant flow is indicated by point size. 
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Figure_Apx 35 Filtered water aluminium residual over the range of zeta potentials 

observed. Temperature is indicated by colour and plant flow is indicated by point size. 



 

251 

 

Figure_Apx 36 Filtered water turbidity over the range of zeta potentials observed. 

Temperature is indicated by colour and plant flow is indicated by point size. 
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Figure_Apx 37 Downstream water quality observed over the zeta potential range seen 

in this study presented as boxplots for clarity. Panel A shows the relative removal of 

UV254 absorbing material; B shows the clarified turbidity; C shows the residual 

aluminium in the filtered water, and; D shows the filtered water turbidity. 
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B.6 Relationships between predictor variables used in modelling of 

online data 

 

Figure_Apx 38 Pairwise dot plots & correlation coefficients between predictor variables 

in training data 
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Figure_Apx 39 Pairwise dot plots and correlation coefficients between predictor 

variables and principal components 

 

B.7 Presentation of PC-GAMMs 

Plots included in this section are shown to illustrate the shape of the principal 

component smoothers identified in Table 6 PC GAMM regression table. They are 

presented to visualise the shape of the model and for confirming model validity, the 

scale in this instance is not directly meaningful but is consistent across all plots of the 

same model. These are not intended to allow the reader to interpret the key 

relationships between dependent and independent variables. Simulations from the 

model are shown in section 3.4.5 to aid interpretation of the key phenomena of interest.  

Each of the PC-GAMMs has 21 smooth functions which to save paper have been 

plotted on a single page. Two types of plot are included in the presentation of each 

model:   
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1. The main effect smooths are plotted with the principal component on the x axis 

and the scaled independent variable on the y axis, the solid line shows the 

shape of the estimated smooth function with standard errors indicated by the 

dashed lines.  The y axis label identifies the smooth and the estimated degrees 

of freedom. Smooths which are insufficiently explanatory of the dependent 

variable are penalised to a flat line. On the two dimensional plots points show 

residuals (which can be checked for patterns to identify poor model 

specification).  

2. For the interactions between smooths the smooth is identified above the plot 

and the relevant principal components are labelled on the x & y axis. The scaled 

dependent variable surface is projected in two dimensions onto the shaded and 

contoured area red is high yellow is low. 
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Figure_Apx 40 Presentation of GAMM smooth effects showing the marginal 

contribution of principal components to the additive linear predictor of clarified water 

turbidity over the training period 2016/10/20 to 2017/10/20. 
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Figure_Apx 41 Presentation of GAMM smooth effects showing the marginal 

contribution of principal components to the additive linear predictor of clarified water 

UV absorbance over the training period 2016/10/20 to 2017/10/20. 
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Figure_Apx 42Presentation of GAMM smooth effects showing the marginal 

contribution of principal components to the additive linear predictor of filtered water 

turbidity over the training period 2016/10/20 to 2017/10/20. 
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Figure_Apx 43 Presentation of GAMM smooth effects showing the marginal 

contribution of principal components to the additive linear predictor of filtered water 

aluminium over the training period 2016/10/20 to 2017/10/20. 
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B.8 Additional diagnostic plots for GAMMs 

 

 

Figure_Apx 44 Plot relating principal components to PC-GAMM residuals to identify 

relationships 
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Figure_Apx 45 Model diagnostic plots for PC-GAMM model of clarified UV absorbance 



 

262 

 

Figure_Apx 46 Model diagnostic plots for PC-GAMM model of clarified turbidity 
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Figure_Apx 47 Model diagnostic plots for PC-GAMM model of filtered water turbidity 
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Figure_Apx 48 Model diagnostic plots for PC-GAMM model of filtered water aluminium residual 
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B.9 Additional simulation plots for models treated water turbidity. 

 

 

Figure_Apx 49 Simulation results from PC-GAMM model showing mean and 95% 

confidence interval predictions for clarified water turbidity (NTU) over a range of zeta 

potentials (-6 to +3) at pH 6.2 & 6.5 at different temperature (4°C & 14°C), flow (350 & 

380 l/s), raw UV (12 & 15 abs/m) turbidity (0.8 & 1.2 NTU) other variables were held 

constant supernatant return flow (15 l/s) supernatant turbidity (3.5 NTU) filter run time 

(30 hrs). 
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Figure_Apx 50 Simulation results from PC-GAMM model showing mean and 95% 

confidence interval predictions for filtered water turbidity (NTU) over a range of zeta 

potentials (-6 to +3) at pH 6.2 & 6.5 at different temperature (4°C & 14°C), flow (350 & 

380 l/s), raw UV (12 & 15 abs/m) turbidity (0.8 & 1.2 NTU) other variables were held 

constant supernatant return flow (15 l/s) supernatant turbidity (3.5 NTU) filter run time 

(30 hrs). 
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B.10 Floc growth curves in jar tests 

 

Figure_Apx 51 Floc size over time during jar tests of Source A & Source B waters under different temperature and mixing conditions 
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Appendix C Supplementary materials for chapter 4 

C.1 Data flow diagram for Chapter 4 

 

Figure_Apx 52 Data flow diagram for Chapter 4 

C.2 Media properties 

 

Figure_Apx 53 Particle size distributions from sieve analysis for media used in pilot 

trials. Sieve testing conducted as per British standard 1796:1 (British Standards 

Institution, 1989). 
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C.3 Summary tables of pilot run data 

Table_Apx 2 Aggregated summary statistics for pilot filter run conditions.  

Table shows the aggregated results for pilot runs by condition. Unit filter run volume (UFRV) is the 
empty bed volume of water treated during the trial run. Breakthrough (BT) is the volume of water 
treated in empty bed volumes (EBV) at particle breakthrough (counts consistently increased by more 
than 10% in a 4 hour period). Normalised clean bed head loss (NCBHL) is the flow and temperature 
normalised starting head loss. Volume normalised head loss is the average rate of head loss 
accumulation (mm/EBV). The number of replicate runs under each condition are recorded and well 
as the number of runs which are censored in that they are ended before breakthrough is observed.  

Media Blend 
Upwash 
rate 
(m/hr) 

UFRV (EBV)  
mean (min – max) 

BT (EBV) 
Mean (min – 
max) 

NCBHL 
(m) 
Mean 
(min – 
max) 

VNHL 
(mm/EBV) 
Mean 
(min – 
max) 

No. 
Runs 

Censored 

A - SA Spring 17 
255.51 (235.98 - 
270.45) 

162.09 (107.54 - 
235.98) 

0.39 (0.36 
- 0.42) 

3.63 (2.63 
- 4.8) 

3 1 

B - FL Spring 17 
262.73 (243.02 - 
279.31) 

208.25 (104.81 - 
279.31) 

0.4 (0.36 - 
0.47) 

6.99 (5.28 
- 9.15) 

3 1 

A - SA Spring 23 
276.61 (173.51 - 
357.98) 

164.2 (76.6 - 
318.49) 

0.34 (0.32 
- 0.36) 

2.58 (2.33 
- 3.38) 

5 1 

B - FL Spring 23 
271.55 (174.81 - 
359.26) 

222.88 (148.6 - 
312.3) 

0.32 (0.28 
- 0.35) 

5.81 (4.89 
- 8.03) 

5 3 

A - SA Spring 28 
249.94 (156.96 - 
391.16) 

98.7 (96.88 - 
100.62) 

0.32 (0.32 
- 0.33) 

2.75 (2.09 
- 3.45) 

4 0 

B - FL Spring 28 
257.94 (165.39 - 
404.31) 

198.32 (165.39 - 
215.08) 

0.31 (0.27 
- 0.36) 

5.25 (4.34 
- 6.21) 

4 2 

A - SA Spring 34 
381.93 (381.93 - 
381.93) 

263.93 (263.93 - 
263.93) 

0.3 (0.3 - 
0.3) 

4.5 (4.5 - 
4.5) 

1 0 

B - FL Spring 34 
401.26 (401.26 - 
401.26) 

401.26 (401.26 - 
401.26) 

0.26 (0.26 
- 0.26) 

7.06 (7.06 
- 7.06) 

1 1 

A - SA Summer 17 
342.62 (279.52 - 
419.83) 

279.07 (153.68 - 
419.83) 

0.42 (0.39 
- 0.49) 

3.49 (3.02 
- 4.08) 

5 1 

B - FL Summer 17 
343.65 (288.14 - 
410.9) 

339.4 (288.14 - 
410.9) 

0.35 (0.31 
- 0.39) 

7.11 (5.6 - 
8.99) 

6 5 

A - SA Summer 20 
391.07 (391.07 - 
391.07) 

309.78 (309.78 - 
309.78) 

0.36 (0.36 
- 0.36) 

3.76 (3.76 
- 3.76) 

1 0 

B - FL Summer 20 
394.17 (394.17 - 
394.17) 

394.17 (394.17 - 
394.17) 

0.33 (0.33 
- 0.33) 

7.55 (7.55 
- 7.55) 

1 1 

A - SA Summer 23 
312.1 (191.04 - 
396.07) 

263.17 (133.96 - 
390.66) 

0.36 (0.34 
- 0.39) 

3.2 (2.53 - 
4.02) 

13 6 

B - FL Summer 23 
312.17 (197.53 - 
395.81) 

312.17 (197.53 - 
395.81) 

0.34 (0.29 
- 0.47) 

7.55 (5.27 
- 11.01) 

13 13 

A - SA Summer 28 
230.09 (202.85 - 
257.33) 

230.09 (202.85 - 
257.33) 

0.32 (0.31 
- 0.33) 

3.59 (2.99 
- 4.2) 

2 2 



 

270 

B - FL Summer 28 
233.76 (206.63 - 
260.88) 

233.76 (206.63 - 
260.88) 

0.35 (0.34 
- 0.36) 

9.41 (8.98 
- 9.84) 

2 2 

A - SA Summer 34 
237.14 (237.14 - 
237.14) 

237.14 (237.14 - 
237.14) 

0.31 (0.31 
- 0.31) 

3.64 (3.64 
- 3.64) 

1 1 

B - FL Summer 34 
257.41 (234.06 - 
280.76) 

257.41 (234.06 - 
280.76) 

0.28 (0.27 
- 0.29) 

8.19 (6.9 - 
9.49) 

2 2 

A - SA Winter 17 
218.93 (139.06 - 
282.12) 

58.85 (55.99 - 
60.75) 

0.37 (0.36 
- 0.38) 

2.89 (2.63 
- 3.27) 

3 0 

B - FL Winter 17 
260.37 (242.13 - 
278.61) 

115.56 (89.2 - 
141.92) 

0.3 (0.27 - 
0.33) 

5.54 (4.97 
- 6.11) 

2 0 

A - SA Winter 23 
215.71 (158.78 - 
251.51) 

125.95 (103.94 - 
158.78) 

0.32 (0.31 
- 0.32) 

3.06 (2.7 - 
3.7) 

4 1 

B - FL Winter 23 
212.56 (167.14 - 
248.6) 

198.06 (167.14 - 
221.93) 

0.26 (0.25 
- 0.27) 

6.49 (5.42 
- 8.22) 

3 2 

A - SA Winter 28 
359.02 (359.02 - 
359.02) 

112.97 (112.97 - 
112.97) 

0.31 (0.31 
- 0.31) 

4.4 (4.4 - 
4.4) 

1 0 

B - FL Winter 28 
367.84 (367.84 - 
367.84) 

210.34 (210.34 - 
210.34) 

0.28 (0.28 
- 0.28) 

7.02 (7.02 
- 7.02) 

1 0 

A - SA Winter 34 
275.82 (195.1 - 
320.09) 

131.4 (97.69 - 
195.71) 

0.3 (0.28 - 
0.31) 

3.5 (2.44 - 
4.67) 

11 0 

B - FL Winter 34 
289.36 (268.94 - 
331.19) 

224.81 (187 - 
279.98) 

0.24 (0.23 
- 0.26) 

5.05 (4.24 
- 6.05) 

10 2 

 

Table_Apx 3 Summary statistics for individual pilot filter runs 

Start 
Date 

Run ID Blend 
BW rate 
(m/hr) 

Media 
UFRV 
(EBV) 

BT 
(EBV) 

NCBHL 
(m) 

VNHL 
(m) 

Censored 

2017-02-
06 

17_FEBB Winter 34 A - SA 272 168 0.28 3.97 FALSE 

2017-02-
06 

17_FEBB Winter 34 B - FL 280 280 0.24 5.51 TRUE 

2017-02-
08 

17_FEBC Winter 34 A - SA 320 119 0.3 3.37 FALSE 

2017-02-
08 

17_FEBC Winter 34 B - FL 331 253 0.25 4.72 FALSE 

2017-02-
11 

17_FEBD Winter 34 A - SA 267 125 0.3 3.22 FALSE 

2017-02-
11 

17_FEBD Winter 34 B - FL 276 276 0.26 4.7 TRUE 

2017-02-
13 

17_FEBE Winter 34 A - SA 264 108 0.31 2.75 FALSE 

2017-02-
13 

17_FEBE Winter 34 B - FL 269 190 0.24 4.3 FALSE 
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2017-02-
15 

17_FEBF Winter 34 A - SA 276 120 0.3 2.77 FALSE 

2017-02-
15 

17_FEBF Winter 34 B - FL 282 203 0.24 4.24 FALSE 

2017-02-
22 

17_FEBJ Winter 34 A - SA 300 102 0.3 3.14 FALSE 

2017-02-
22 

17_FEBJ Winter 34 B - FL 299 187 0.23 4.55 FALSE 

2017-02-
24 

17_FEBK Winter 34 A - SA 195 101 0.29 2.44 FALSE 

2017-02-
24 

17_FEBK Winter 34 B - FL 280 188 0.24 4.62 FALSE 

2017-03-
01 

17_MARA Winter 17 A - SA 139 61 0.38 2.63 FALSE 

2017-03-
02 

17_MARB Winter 17 A - SA 282 60 0.36 2.78 FALSE 

2017-03-
02 

17_MARB Winter 17 B - FL 279 142 0.27 4.97 FALSE 

2017-03-
04 

17_MARC Winter 23 A - SA 252 104 0.32 2.7 FALSE 

2017-03-
04 

17_MARC Winter 23 B - FL 249 205 0.26 5.42 FALSE 

2017-03-
06 

17_MARD Winter 34 A - SA 293 196 0.29 4.67 FALSE 

2017-03-
09 

17_MARE Winter 34 A - SA 265 165 0.3 4.17 FALSE 

2017-03-
09 

17_MARE Winter 34 B - FL 269 202 0.24 6.05 FALSE 

2017-03-
11 

17_MARF Winter 23 A - SA 231 121 0.32 3.05 FALSE 

2017-03-
13 

17_MARG Winter 23 A - SA 221 120 0.31 2.79 FALSE 

2017-03-
13 

17_MARG Winter 23 B - FL 222 222 0.27 5.84 TRUE 

2017-03-
15 

17_MARH Winter 34 A - SA 269 98 0.29 3.9 FALSE 

2017-03-
15 

17_MARH Winter 34 B - FL 281 208 0.24 5.87 FALSE 

2017-03-
17 

17_MARI Winter 34 A - SA 314 144 0.29 4.15 FALSE 

2017-03-
17 

17_MARI Winter 34 B - FL 326 260 0.25 5.92 FALSE 

2017-03-
20 

17_MARJ Winter 28 A - SA 359 113 0.31 4.4 FALSE 

2017-03-
20 

17_MARJ Winter 28 B - FL 368 210 0.28 7.02 FALSE 
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2017-03-
23 

17_MARK Winter 17 A - SA 236 56 0.38 3.27 FALSE 

2017-03-
23 

17_MARK Winter 17 B - FL 242 89 0.33 6.11 FALSE 

2017-03-
25 

17_MARL Winter 23 A - SA 159 159 0.32 3.7 TRUE 

2017-03-
25 

17_MARL Winter 23 B - FL 167 167 0.25 8.22 TRUE 

2017-03-
27 

17_MARM Spring 28 A - SA 252 101 0.33 3.21 FALSE 

2017-03-
27 

17_MARM Spring 28 B - FL 253 215 0.3 6.21 FALSE 

2017-03-
29 

17_MARN Spring 23 A - SA 174 109 0.34 2.46 FALSE 

2017-03-
29 

17_MARN Spring 23 B - FL 175 175 0.28 5.12 TRUE 

2017-04-
04 

17_APRA Spring 17 A - SA 260 108 0.42 3.48 FALSE 

2017-04-
04 

17_APRA Spring 17 B - FL 266 241 0.37 6.53 FALSE 

2017-04-
06 

17_APRC Spring 34 A - SA 382 264 0.3 4.5 FALSE 

2017-04-
06 

17_APRC Spring 34 B - FL 401 401 0.26 7.06 TRUE 

2017-04-
10 

17_APRD Spring 28 A - SA 157 98 0.32 2.09 FALSE 

2017-04-
10 

17_APRD Spring 28 B - FL 165 165 0.29 4.34 TRUE 

2017-04-
11 

17_APRE Spring 28 A - SA 199 97 0.33 2.23 FALSE 

2017-04-
11 

17_APRE Spring 28 B - FL 209 209 0.27 4.49 TRUE 

2017-04-
17 

17_APRI Spring 23 A - SA 318 318 0.32 2.35 TRUE 

2017-04-
17 

17_APRI Spring 23 B - FL 327 149 0.32 4.89 FALSE 

2017-04-
19 

17_APRJ Spring 17 A - SA 236 236 0.39 2.63 TRUE 

2017-04-
19 

17_APRJ Spring 17 B - FL 243 105 0.36 5.28 FALSE 

2017-05-
01 

17_MAYA Spring 28 A - SA 391 99 0.32 3.45 FALSE 

2017-05-
01 

17_MAYA Spring 28 B - FL 404 204 0.36 5.95 FALSE 

2017-05-
06 

17_MAYC Spring 17 A - SA 270 143 0.36 4.8 FALSE 
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2017-05-
06 

17_MAYC Spring 17 B - FL 279 279 0.47 9.15 TRUE 

2017-05-
17 

17_MAYG Spring 23 A - SA 228 82 0.36 2.39 FALSE 

2017-05-
17 

17_MAYG Spring 23 B - FL 185 230 NA NaN TRUE 

2017-05-
19 

17_MAYH Spring 23 A - SA 358 77 0.34 2.33 FALSE 

2017-05-
19 

17_MAYH Spring 23 B - FL 359 248 0.33 5.18 FALSE 

2017-05-
21 

17_MAYI Spring 23 A - SA 305 235 0.33 3.38 FALSE 

2017-05-
21 

17_MAYI Spring 23 B - FL 312 312 0.35 8.03 TRUE 

2017-06-
13 

17_JUNB Summer 23 A - SA 191 134 0.34 2.53 FALSE 

2017-06-
13 

17_JUNB Summer 23 B - FL 198 198 0.47 11.01 TRUE 

2017-06-
14 

17_JUNC Summer 17 A - SA 280 154 0.41 3.12 FALSE 

2017-06-
14 

17_JUNC Summer 17 B - FL 288 288 0.33 5.6 TRUE 

2017-06-
16 

17_JUND Summer 23 A - SA 316 191 0.36 2.77 FALSE 

2017-06-
16 

17_JUND Summer 23 B - FL 327 327 0.29 5.29 TRUE 

2017-06-
18 

17_JUNE Summer 34 B - FL 281 281 0.29 6.9 TRUE 

2017-06-
20 

17_JUNF Summer 17 A - SA 333 290 0.39 3.89 FALSE 

2017-06-
20 

17_JUNF Summer 17 B - FL 352 326 0.31 7.04 FALSE 

2017-06-
23 

17_JUNG Summer 17 B - FL 341 341 0.36 8.77 TRUE 

2017-06-
26 

17_JUNH Summer 28 A - SA 257 257 0.31 2.99 TRUE 

2017-06-
26 

17_JUNH Summer 28 B - FL 261 261 0.34 8.98 TRUE 

2017-06-
28 

17_JUNI Summer 20 A - SA 391 310 0.36 3.76 FALSE 

2017-06-
28 

17_JUNI Summer 20 B - FL 394 394 0.33 7.55 TRUE 

2017-07-
01 

17_JULA Summer 23 A - SA 304 304 0.37 3.62 TRUE 

2017-07-
01 

17_JULA Summer 23 B - FL 306 306 0.35 7.25 TRUE 



 

274 

2017-07-
07 

17_JULC Summer 28 A - SA 203 203 0.33 4.2 TRUE 

2017-07-
07 

17_JULC Summer 28 B - FL 207 207 0.36 9.84 TRUE 

2017-07-
18 

17_JULD Summer 34 A - SA 237 237 0.31 3.64 TRUE 

2017-07-
18 

17_JULD Summer 34 B - FL 234 234 0.27 9.49 TRUE 

2017-07-
20 

17_JULE Summer 17 A - SA 420 420 0.4 4.08 TRUE 

2017-07-
20 

17_JULE Summer 17 B - FL 411 411 0.37 8.99 TRUE 

2017-07-
23 

17_JULF Summer 23 A - SA 250 250 0.36 3.01 TRUE 

2017-07-
23 

17_JULF Summer 23 B - FL 248 248 0.34 7.4 TRUE 

2017-07-
25 

17_JULG Summer 23 A - SA 272 272 0.36 2.8 TRUE 

2017-07-
25 

17_JULG Summer 23 B - FL 268 268 0.31 7.08 TRUE 

2017-07-
27 

17_JULH Summer 17 A - SA 346 266 0.49 3.31 FALSE 

2017-07-
27 

17_JULH Summer 17 B - FL 341 341 0.39 6.33 TRUE 

2017-07-
29 

17_JULI Summer 17 A - SA 334 266 0.42 3.02 FALSE 

2017-07-
29 

17_JULI Summer 17 B - FL 328 328 0.37 5.96 TRUE 

2017-07-
31 

17_JULK Summer 23 A - SA 375 249 0.38 2.84 FALSE 

2017-07-
31 

17_JULK Summer 23 B - FL 360 360 0.32 5.27 TRUE 

2017-08-
02 

17_AUGA Summer 23 A - SA 391 391 0.35 3.63 TRUE 

2017-08-
02 

17_AUGA Summer 23 B - FL 396 396 0.29 8.2 TRUE 

2017-08-
06 

17_AUGB Summer 23 A - SA 330 330 0.35 4.02 TRUE 

2017-08-
06 

17_AUGB Summer 23 B - FL 334 334 0.37 9.64 TRUE 

2017-08-
09 

17_AUGC Summer 23 A - SA 371 371 0.36 4 TRUE 

2017-08-
09 

17_AUGC Summer 23 B - FL 373 373 0.33 8.01 TRUE 

2017-08-
14 

17_AUGD Summer 23 A - SA 396 242 0.39 3.2 FALSE 
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2017-08-
14 

17_AUGD Summer 23 B - FL 389 389 0.35 7.39 TRUE 

2017-08-
17 

17_AUGE Summer 23 A - SA 300 256 0.37 2.97 FALSE 

2017-08-
17 

17_AUGE Summer 23 B - FL 299 299 0.32 7.46 TRUE 

2017-08-
19 

17_AUGF Summer 23 A - SA 324 237 0.36 3.21 FALSE 

2017-08-
19 

17_AUGF Summer 23 B - FL 323 323 0.32 7.42 TRUE 

2017-08-
21 

17_AUGG Summer 23 A - SA 238 195 0.37 2.99 FALSE 

2017-08-
21 

17_AUGG Summer 23 B - FL 238 238 0.31 6.68 TRUE 
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C.4 Turbidity profiles for filter runs divided by backwash rate & feed water.  

Replication of individual facets from profiles plotted for pilot trials at WTW A shown below but not labelled. 

 

Figure_Apx 54 Comparison of turbidity profiles from pilot trials at WTW A. Media bed of Filtralite HC 0.5-1 mm & Filtralite NC 0.8-1.6 

mm is compared to Sand 0.5-1 mm and Anthracite 0.8-1.6 mm at backwash rates of 17,23,28 & 34 m/hr over three seasons  
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Figure_Apx 55 Enlargement of figure Figure_Apx 53 A turbidity profiles for pilot filter trials of the spring blend backwashed at 17 m/hr 
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Figure_Apx 56 Enlargement of figure Figure_Apx 53 B turbidity profiles for pilot filter trials of the spring blend backwashed at 23 m/hr 
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Figure_Apx 57 Enlargement of figure Figure_Apx 53 C turbidity profiles for pilot filter trials of the spring blend backwashed at 28 m/hr 
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Figure_Apx 58 Enlargement of figure Figure_Apx 53 D turbidity profiles for pilot filter trials of the spring blend backwashed at 34 m/hr 
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Figure_Apx 59 Enlargement of figure Figure_Apx 53 E turbidity profiles for pilot filter trials of the summer blend backwashed at 17 m/hr 
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Figure_Apx 60 Enlargement of figure Figure_Apx 53 F turbidity profiles for pilot filter trials of the summer blend backwashed at 23 m/hr 
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Enlargement of figure Figure_Apx 53 G turbidity profiles for pilot filter trials of the summer blend backwashed at 28 m/hr 
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Enlargement of figure Figure_Apx 53 H turbidity profiles for pilot filter trials of the summer blend backwashed at 34 m/hr 
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Figure_Apx 61 Enlargement of figure Figure_Apx 53 I turbidity profiles for pilot filter trials of the winter blend backwashed at 17 m/hr 
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Figure_Apx 62 Enlargement of figure Figure_Apx 53 J turbidity profiles for pilot filter trials of the winter blend backwashed at 23 m/hr 
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Figure_Apx 63 Enlargement of figure Figure_Apx 53 K turbidity profiles for pilot filter trials of the winter blend backwashed at 28 m/hr 



 

288 

 

Figure_Apx 64 Enlargement of figure Figure_Apx 53 L turbidity profiles for pilot filter trials of the winter blend backwashed at 34 m/hr 
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C.5 Head loss profiles for filter runs divided by backwash rate & feed water. 

Replication of individual facets from profiles plotted for pilot trials at WTW A shown below but not labelled.

 

Figure_Apx 65 Comparison of head loss profiles from pilot trials at WTW A. Media bed of Filtralite HC 0.5-1 mm & Filtralite NC 0.8-1.6 

mm is compared to Sand 0.5-1 mm and Anthracite 0.8-1.6 mm at backwash rates of 17,23,28 & 34 m/hr over three seasons. 
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Figure_Apx 66 Enlargement of figure Figure_Apx 64 A head loss profiles for pilot filter trials of the spring blend backwashed at 17 m/hr 
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Figure_Apx 67 Enlargement of figure Figure_Apx 64 B head loss profiles for pilot filter trials of the spring blend backwashed at 23 m/hr 
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Figure_Apx 68 Enlargement of figure Figure_Apx 64 C head loss profiles for pilot filter trials of the spring blend backwashed at 28 m/hr 
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Figure_Apx 69 Enlargement of figure Figure_Apx 64 D head loss profiles for pilot filter trials of the spring blend backwashed at 34 m/hr 
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Figure_Apx 70 Enlargement of figure Figure_Apx 64 E head loss profiles for pilot filter trials of the summer blend backwashed at 17 

m/hr 
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Figure_Apx 71 Enlargement of figure Figure_Apx 64 F head loss profiles for pilot filter trials of the summer blend backwashed at 28 

m/hr 
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Figure_Apx 72 Enlargement of figure Figure_Apx 64 G head loss profiles for pilot filter trials of the summer blend backwashed at 28 

m/hr 
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Figure_Apx 73 Enlargement of figure Figure_Apx 64 H head loss profiles for pilot filter trials of the summer blend backwashed at 34 

m/hr 
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Figure_Apx 74 Enlargement of figure Figure_Apx 64 I head loss profiles for pilot filter trials of the winter blend backwashed at 17 m/hr 
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Figure_Apx 75 Enlargement of figure Figure_Apx 64 J head loss profiles for pilot filter trials of the winter blend backwashed at 23 m/hr 
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Figure_Apx 76 Enlargement of figure Figure_Apx 64 K head loss profiles for pilot filter trials of the winter blend backwashed at 28 m/hr 
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Figure_Apx 77 Enlargement of figure Figure_Apx 64 L head loss profiles for pilot filter trials of the winter blend backwashed at 34 m/hr 
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C.6 Summary data for full scale trials of Filtralite – anthracite media at WTWA 

Table_Apx 4 Summary table of performance of Filtralite (0.5-1 mm) – anthracite (0.8-1.6 mm) media in comparison to neighbouring 

filter containing sand (0.6-1.2 mm) and pumice (unknown). Values presented as mean (min – max). 

Summary of performance during full scale trial 

signal Phase 1 Phase 2 Phase 3 Phase 4 

Phase 1 Filtralite - 
Anthracite 

Phase 1 Sand 
- Pumice 

Phase 2 Filtralite - 
Anthracite 

Phase 2 Sand 
- Pumice 

Phase 3 Filtralite - 
Anthracite 

Phase 3 Sand 
- Pumice 

Phase 4 Filtralite - 
Anthracite 

Phase 4 Sand 
- Pumice 

Clarified turbidity (NTU) 0.7 (0.65-0.78) 0.69 (0.65-
0.79) 

0.77 (0.72-0.83) 0.77 (0.71-
0.85) 

0.86 (0.72-0.99) 0.86 (0.75-1) 0.59 (0.24-1.18) 0.58 (0.24-
1.13) 

Filtration rate 
(m3/m2/hr) 

3.2 (2.92-4.31) 3.28 (3-3.82) 3.34 (3.08-4.23) 3.35 (3.15-
3.59) 

3.96 (3.51-4.25) 3.3 (2.89-
3.59) 

4.83 (3.94-5.96) 3.54 (2.98-
4.71) 

NCBHL (m) 0.07 (0.04-0.11) 0.28 (0.23-
0.32) 

0.12 (0.09-0.14) 0.25 (0.21-
0.27) 

0.13 (0.12-0.15) 0.2 (0.16-
0.25) 

0.16 (0.13-0.34) 0.22 (0.13-
0.34) 

Run time (hrs) 30.27 (20.82-
36.76) 

30.37 (22.79-
35.77) 

42.41 (34.08-
47.97) 

24.69 (20.48-
47.75) 

22.28 (19.42-
43.79) 

21.78 (17.8-
24.38) 

28.22 (14.33-
39.78) 

29.56 (14.43-
43.83) 

Temp (C) 9.38 (6.98-11.12) 9.41 (7-11.13) 5.21 (3.79-6.91) 5.38 (3.7-
6.94) 

3.05 (1.89-4.96) 3.05 (1.89-
4.96) 

8.21 (1.07-15.15) 8.3 (1.07-
15.15) 

Terminal NHL (m) 0.87 (0.56-1.35) 0.75 (0.5-0.9) 1.25 (1.02-1.48) 0.58 (0.53-
0.64) 

0.5 (0.42-0.59) 0.54 (0.37-
0.63) 

0.6 (0.39-0.8) 0.69 (0.47-
0.97) 

Turbidity 95thpctile 
(NTU) 

0.04 (0.03-0.05) 0.05 (0.03-
0.14) 

0.09 (0.03-0.24) 0.1 (0.05-
0.19) 

0.04 (0.03-0.1) 0.13 (0.04-
0.26) 

0.05 (0.03-0.25) 0.07 (0.02-
0.42) 

Turbidity 95thpctile first 
4 EBVs (NTU) 

0.18 (0.03-0.6) 0.04 (0.02-
0.07) 

0.09 (0.04-0.16) 0.05 (0.04-
0.12) 

0.1 (0.04-0.29) 0.07 (0.04-
0.17) 

0.06 (0.03-0.14) 0.04 (0.03-
0.15) 

Turbidity mean (NTU) 0.03 (0.03-0.04) 0.03 (0.02-
0.07) 

0.04 (0.03-0.06) 0.04 (0.03-
0.07) 

0.03 (0.02-0.05) 0.05 (0.03-
0.1) 

0.04 (0.03-0.08) 0.04 (0.02-
0.13) 

Turbidity mean last 
hour (NTU) 

0.03 (0.03-0.04) 0.04 (0.01-
0.12) 

0.14 (0.03-0.48) 0.08 (0.05-
0.17) 

0.03 (0.02-0.07) 0.1 (0.03-
0.32) 

0.05 (0.02-0.17) 0.05 (0.02-
0.32) 

UFRV (m3/m2/run) 96.45 (64.14-
117.98) 

99.3 (71.59-
119.61) 

140.9 (119.46-
157.22) 

82.59 (73.41-
157.89) 

88.08 (78.89-
175.53) 

71.71 (59.23-
79.9) 

136.12 (64.45-
181.43) 

104.24 (50.6-
158.56) 

VNHL (mm/EBV) 8.08 (5.66-11.08) 5.54 (4.5-
6.57) 

6.58 (5.09-7.48) 4.99 (3.61-
6.5) 

4 (2.87-5.58) 6.54 (4.06-
13.93) 

3.35 (1.45-9.52) 6.89 (4.13-
13.09) 
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Appendix D Supplementary materials for Chapter 5 

Table_Apx 5 Estimated velocities to achieve fluidisation and bed expansion based 

on media properties at 15°C. Minimum fluidisation velocities for the 60th & 90th 

percentile grain size shown, where a dual media is presented the highest 

fluidisation velocity of the two media is provided. Expansion is estimated based 

on the 10th percentile grain size. For brevity dual media are assumed to have two 

layers of equal depth. Expansion of individual media layers was assumed to be 

independent and additive. 

Media Bed material & size (mm) Vmf D60 
(m/hr) 

Vmf D90 
(m/hr) 

V 5% D10  
Expansion 
(m/hr) 

V 20% D10 
Expansion 
(m/hr) 

Dual Anthracite 0.60 - 1.18 Filtralite NC 0.8-1.6 8 10 16 23 
Dual Anthracite 0.60 - 1.18 Filtralite NC 1.5-2.5 15 12 17 28 
Dual Anthracite 0.60 - 1.40 Filtralite NC 0.8-1.6 10 10 16 24 
Dual Anthracite 0.60 - 1.40 Filtralite NC 1.5-2.5 15 12 18 32 
Dual Anthracite 0.80 - 1.60 Filtralite NC 0.8-1.6 14 10 20 29 
Dual Anthracite 0.80 - 1.60 Filtralite NC 1.5-2.5 15 12 27 39 
Dual Anthracite 0.85 - 1.60 Filtralite NC 0.8-1.6 14 10 20 32 
Dual Anthracite 0.85 - 1.60 Filtralite NC 1.5-2.5 15 12 29 42 
Dual Anthracite 1.18 - 2.50 Filtralite NC 1.5-2.5 25 19 32 47 
Dual Anthracite 1.40 - 2.50 Filtralite NC 1.5-2.5 27 22 33 52 
Dual Filtralite HC 0.5-1 Anthracite 0.60 - 1.40 10 13 15 23 
Dual Filtralite HC 0.5-1 Anthracite 0.80 - 1.60 14 13 17 28 
Dual Filtralite HC 0.5-1 Anthracite 0.85 - 1.60 14 13 17 30 
Dual Filtralite HC 0.5-1 Anthracite 1.18 - 2.50 25 19 17 32 
Dual Filtralite HC 0.5-1 Anthracite 1.40 - 2.50 27 22 17 33 
Dual Filtralite HC 0.5-1 Filtralite MC 0.8-1.6 12 15 17 28 
Dual Filtralite HC 0.5-1 Filtralite NC 0.8-1.6 8 13 16 23 
Dual Filtralite HC 0.5-1 Filtralite NC 1.5-2.5 15 13 17 30 
Dual Filtralite HC 0.8-1.6 Anthracite 1.18 - 2.50 25 28 31 47 
Dual Filtralite HC 0.8-1.6 Anthracite 1.40 - 2.50 27 28 32 53 
Dual Filtralite HC 0.8-1.6 Filtralite NC 1.5-2.5 23 28 28 40 
Dual Filtralite MC 0.8-1.6 Filtralite NC 1.5-2.5 15 15 27 39 
Dual Filtralite NC 0.8-1.6 Filtralite NC 1.5-2.5 15 12 20 31 
Dual Sand 0.5-1 Anthracite 0.60 - 1.40 17 26 18 31 
Dual Sand 0.5-1 Anthracite 0.80 - 1.60 17 26 25 40 
Dual Sand 0.5-1 Anthracite 0.85 - 1.60 17 26 28 44 
Dual Sand 0.5-1 Anthracite 1.18 - 2.50 25 26 31 49 
Dual Sand 0.5-1 Anthracite 1.40 - 2.50 27 26 31 57 
Dual Sand 0.5-1 Filtralite HC 0.8-1.6 23 28 26 41 
Dual Sand 0.5-1 Filtralite MC 0.8-1.6 17 26 25 39 
Dual Sand 0.5-1 Filtralite NC 0.8-1.6 17 26 20 30 
Dual Sand 0.5-1 Filtralite NC 1.5-2.5 17 26 28 42 
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Dual Sand 0.6-1.2 Anthracite 0.60 - 1.40 28 33 18 31 
Dual Sand 0.6-1.2 Anthracite 0.80 - 1.60 28 33 25 40 
Dual Sand 0.6-1.2 Anthracite 0.85 - 1.60 28 33 28 45 
Dual Sand 0.6-1.2 Anthracite 1.18 - 2.50 28 33 31 51 
Dual Sand 0.6-1.2 Anthracite 1.40 - 2.50 28 33 33 59 
Dual Sand 0.6-1.2 Filtralite HC 0.8-1.6 28 33 27 42 
Dual Sand 0.6-1.2 Filtralite MC 0.8-1.6 28 33 26 40 
Dual Sand 0.6-1.2 Filtralite NC 0.8-1.6 28 33 20 31 
Dual Sand 0.6-1.2 Filtralite NC 1.5-2.5 28 33 28 42 
Dual Sand 0.85-1.7 Anthracite 1.18 - 2.50 38 59 42 65 
Dual Sand 0.85-1.7 Anthracite 1.40 - 2.50 38 59 49 77 
Dual Sand 0.85-1.7 Filtralite NC 1.5-2.5 38 59 33 52 
Dual Sand 1.0-2.0 Anthracite 1.18 - 2.50 59 74 43 67 
Dual Sand 1.0-2.0 Anthracite 1.40 - 2.50 59 74 52 81 
Dual Sand 1.0-2.0 Filtralite NC 1.5-2.5 59 74 33 53 
Mono Anthracite 0.60 - 1.18 5 9 14 21 
Mono Anthracite 0.60 - 1.40 10 6 15 24 
Mono Anthracite 0.80 - 1.60 14 10 24 37 
Mono Anthracite 0.85 - 1.60 14 10 30 45 
Mono Anthracite 1.18 - 2.50 25 19 37 56 
Mono Anthracite 1.40 - 2.50 27 22 50 77 
Mono Filtralite HC 0.5-1 8 13 15 22 
Mono Filtralite HC 0.8-1.6 23 28 27 40 
Mono Filtralite MC 0.8-1.6 12 15 25 37 
Mono Filtralite NC 0.8-1.6 8 10 17 25 
Mono Filtralite NC 1.5-2.5 15 12 29 41 
Mono Sand 0.5-1 17 26 25 43 
Mono Sand 0.6-1.2 28 33 26 45 
Mono Sand 0.85-1.7 38 59 49 77 
Mono Sand 1.0-2.0 59 74 54 85 
Mono Sand 1.2-2.8 74 109 84 125 

 

 

 


