
 
 

CRANFIELD UNIVERSITY 

 

 

Grant Campbell 

 

THE APPLICATION OF DIGITAL SOIL MAPPING TO IMPROVE THE 

RESOLUTION OF NATIONAL SOIL PROPERTIES ACROSS GREAT 

BRITAIN 

 

 

School of Water, Energy and Environment (SWEE) 

 

Ph.D. 

Academic Year: 2018-2019 

 

Supervisors: R. Corstanje and J.A. Hannam (Cranfield University)  

 H.I.J. Black and A. Lilly (The James Hutton Institute) 

 

October 2018  

 

 

 

 

 

 

© Cranfield University 2018. All rights reserved. No part of this publication may be 

reproduced without the written permission of the copyright owner.



i 
 

ABSTRACT 

Many countries have created soil maps to illustrate the variety of soil properties and support 

how soils can be used. Traditional soil mapping by field survey and interpretation has been 

the most recognised form of soil mapping for many years and an effective way to capture a 

variable soil landscape. Such maps have enabled scientists and stakeholders to improve their 

understanding of relationships between soils and other landscape factors such as geology 

and land cover. However, with the amount of soil information growing and technology 

improving, Digital Soil Mapping (DSM) has been developed as an alternative approach to 

generate soil property predictions and to produce finer resolution soils data. Currently, DSM 

produces maps based on training of models with observed soils data and environmental 

covariates and then releases these to stakeholders to evaluate their utility. This PhD has taken 

a different approach by addressing stakeholder needs at the beginning of the process.  

The overall aim of this PhD was to improve the spatial resolution of soil properties across 

Great Britain (GB), as informed by stakeholders. Three main aims were identified. The first 

assessed what current soils data and information stakeholders currently use, and what 

improvements they want to see from future soil-related products. The second aim, using 

information from the questionnaire survey and a comparison of laboratory and analytical 

methods, is to develop DSM which could be applied across the whole of GB. This was done 

by comparing two modelling approaches: Boosted Regression Trees (BRTs) and Multivariate 

Adaptive Regression Splines (MARS) for mapping soil properties (loss-on-ignition, texture and 

pH) across two pilot areas. The characteristics of MARS and BRT models at both training and 

deployment stages are examined. The third outcome investigated how well the soil properties 

mapped across GB, building on the development of DSM in the pilot areas and whether they 

reflect expert pedological knowledge. This section also focusses on how suitable an 

independent validation dataset is at evaluating soil property predictions. 
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This PhD has shown that stakeholders are aware of what soils data and information they are 

using and could clearly express what is needed to improve current maps. Wider use of soil 

information by non-soil experts would be improved by increasing data accessibility and user-

friendly supporting materials. Fundamentally, most stakeholders require finer resolution than 

what is currently available which identifies an opportunity for DSM to fill some of this gap.  

To address these gaps and develop DSM across GB, this PhD focussed on mapping soil 

properties that were directly comparable across Scotland and England & Wales and also key 

to many stakeholder information needs. After investigation of laboratory and analytical 

methods from the two national soil surveys of Scotland and England & Wales, soil loss on 

ignition, soil texture and soil pH were chosen for developing DSM for GB. 

From the development of DSM, results showed that MARS models produced better statistical 

performances than BRTs for predicting soil properties within a training environment. However, 

when MARS models are deployed to larger areas, they extrapolate beyond their means and 

BRTs performed better. This is because MARS models perform more consistently when many 

variables are required. Furthermore, MARS models struggle with overfitting and missing data 

which subsequently leads to incorrect and unfeasible pedological relationships between soil 

properties. BRT models, despite not performing as well statistically, produce more consistent 

relationships between pedology and mapped soil properties. This is because BRT models 

introduce randomness in the boosting which reduces overfitting and improves the predictive 

performance. BRTs have shown to be more consistent in the mapping outputs than MARS 

because regressing to the mean is more favourable when most data matches up with one 

another. However, this does not necessarily mean that the full range of soils in these areas 

were being captured by the BRT model. This led to scaling up from the pilot areas to modelling 

soil properties across GB using a single regional BRT model and evaluating its performance. 

BRT modelling results for GB at 2D and 3D predict well for pH and LOI but less so for texture. 

Going forward, more data are required to produce more consistent modelling outputs 

especially for areas across GB where soil properties are not currently being predicted well. 
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The GB modelling results also highlighted a poor performance of the model against an 

independent validation dataset. This is because the original data for both GB training and 

validation datasets were analysed and collected for different purposes. These datasets were 

taken at different time periods under a different sampling design. Furthermore, the data for 

both training and validation GB datasets were collected at different scales.  

At present, these first versions of soil property DSM maps for GB have produced variable 

results. However, this exercise has shown that the development of reliable DSM maps would 

benefit from interaction between pedologists, modellers and stakeholders to ensure that 

mapped outputs are of sufficient quality at adequate finer resolution and can be usable. Such 

DSM maps, alongside management recommendations, will help to address many global 

challenges associated to soils. However, DSM is not the panacea for all mapping needs. Until 

such time that DSM fully develops into DSA and adequately incorporates the breadth of 

information available in traditional soil maps, mapping from field survey and observation will 

continue to be necessary for stakeholders. 

 

Keywords: Digital Soil Mapping, stakeholders, soil properties, finer resolution, pedology, 

Boosted Regression Trees (BRTs), Multivariate Adaptive Regressive Splines (MARS), Great 

Britain, validation  
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1 INTRODUCTION AND LITERATURE REVIEW 

1.1. Introduction 

Many countries have created soil maps to determine the variety of soil types (Bouma, 1989). 

In the mid-1880s, Russian scientist Vasily Dokuchaev proposed that the variation in soil type 

could be explained by factors such as parent material, climate, topography and time for soil 

formation. Several scientists subsequently implemented Dokuchaev’s approach, most notably 

Hans Jenny (1941), who developed a mathematical equation to describe soil formation and 

define the spatial characteristics of soils (Textbox 1). It is the influential work of these 

pedological scientists that is now being adapted to address a growing demand for spatial soils 

information (Campbell et al, 2017; Grealish et al, 2015). This approach is relevant for this PhD 

as it explores the application of soil formation principles to modelling and mapping soils across 

Great Britain (GB). 

 

 

 

 

 

 

 

Textbox 1: Hans Jenny’s equation for soil formation. 

GB has two national soil surveys which have collected and mapped soils: The Soil Survey of 

England and Wales and the Soil Survey of Scotland. These extensive datasets are an ideal 

opportunity to explore and develop spatial modelling and mapping of soils. However, there is 

s= f (cl, o, r, p, t) 

Where s = soil 

f= a function of 

cl = climate, 

o =organisms, 

r = relief, 

p= parent material 

t = time 
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a need from stakeholders to provide unified GB soil maps (Mayr et al, 2006).  There are also 

scientific and technical challenges to address in unifying soils data across the border, which 

these surveys provide an opportunity to explore. 

1.1.1. Why do we map soils? 

Soil maps are graphical representations of information about the spatial distribution of soil 

features (Yaalon, 1989). The earliest of these soil maps were produced in the 19th century to 

reflect agricultural-related activities. These were designed to map out areas where soil 

attributes had associated relationships with land use (Brevik et al, 2016).  It is important that 

soils are mapped across different landscapes because there are many things humans and 

plants require which are reliant on soil e.g. agriculture, food and water (Yaalon, 1989; Blum, 

2005). Soils are variable in 2D and 3D and are dynamic within the natural environment. There 

are known factors which interact alongside soils (e.g. land cover, geology, topography) (Brevik 

et al, 2016).  Therefore, mapping soils are useful to provide a synthesis of a complex system 

which can be hard to describe and predict. 

At present, most current maps are not appropriate enough for their required use (Brevik et al, 

2016). Primarily, the scale of certain maps may not be appropriate depending on what 

information people require. The accuracy of current maps is variable and does not provide a 

quantitative output of how accurate the map is. Overall current maps are reasonable at 2D 

scale but fail to consider the dynamic nature of soils at 3D scales. This is a critical omission 

as soils and their associated properties change over 2D and 3D scales. Some soil maps may 

also have large gaps in coverage across areas. This is hugely dependent on where data has 

been collected, as some areas across a landscape have more data collected than others. 

1.1.2. How do we map soils? 

Traditional soil mapping is the most recognised way in which a soil landscape is captured 

(Scull et al, 2003). This involves making observations of soils and associated rock type often 

with the aid of aerial photographs. Observations based upon the surveyor’s expert knowledge 
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are recorded to determine where to make inspections (Hudson, 1992). Soil profile pits and 

auger borings provide information of changes in soils across landscapes at 2D and 3D scales. 

These are used to produce and map descriptions of the chemical, biological and physical 

analyses of soil types.  

Soils can be mapped at detailed scales (e.g. 1:10,000) to illustrate soil patterns in individual 

fields. However, soils can also be mapped across smaller scales (e.g. 1:500,000) to provide 

a general understanding of the soils across a country, continent or at global scales (FAO, 

2018).  In GB, soil maps are available at 1:250,000 scale, which are widely used for policy and 

decision-making at national level. Only a quarter of England and Wales is covered by finer 

scale maps (1:50,000 and 1:25,000) and very few at the scale of 1:10,000 (Mayr et al, 2006). 

Brevik et al, (2016) provide a historical and present-day review of traditional soil mapping and 

Rossiter (2005) highlights the importance of mapping soils by creating a resource inventory. 

Most soil maps were originally created from soil surveys (Soil Survey Staff, 1993; Hartemink 

et al, 2013). In many cases, these soil maps are often the most useful way to access soil 

information (Valentine et al, 1981) but they vary in consistency and quality, with a great variety 

in soil classifications used and little validation of mapping accuracy. Such maps cannot provide 

detail on specific sites (Rossiter, 2005; Brevik et al, 2016) and lack exact georeferencing 

(Dobos et al, 2006; Jones et al, 2005). In addition, these map units were generalised to reflect 

information that soil mappers could interpret from base maps and field observations 

(Simonson, 1952). A significant amount of uncertainty is based around traditional maps from 

soil surveys. Identifying uncertainty from traditional maps is challenging as often these reflect 

mental pedological models developed by individual surveyors which are mainly subjective 

(Hudson, 1992). This means that many factors cannot be measured, and interpretations made 

are done using the surveyor’s expert knowledge (Jones et al, 2005; Hudson, 1992). Traditional 

soils mapping is expensive, time-consuming to carry out and relies on dwindling expert 

knowledge. Therefore, many researchers are investigating alternatives to estimate soil 

attributes (Scull et al, 2003; McBratney et al, 2003). 
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1.2. Moving from traditional mapping to predicted techniques 

As geospatial technologies and scientific understanding improved, tools such as 

Geographical Information Systems (GIS), remote sensing, Global Positional Systems (GPS) 

and spatial statistics have greatly altered how soils have been mapped (Scull et al, 2003; 

McBratney et al, 2003). Increases in spatial information and tools have provided an 

opportunity to produce digital maps at finer resolutions and use larger amounts of spatial 

data from soil surveys (Brevik et al, 2016). The introduction of computers has led to 

increased opportunities to digitise and digitally manipulate soil data and maps and many 

traditional maps have now been digitised (Tomlinson, 1978). However, these have no 

statistical basis and as a result are not a digital soil map per se (Minasny and McBratney, 

2016).  

1.2.1. Pedometrics 

Developments in computing technology have led to new statistical approaches being 

generated, making predictions of soil possible at unsampled locations (Mora Vallejo, 2008). 

This method is defined as pedometrics, which ‘deals with uncertainty in soil models that are 

due to deterministic or stochastic variation, vagueness and lack of knowledge of soil properties 

and processes’ (McBratney et al, 2000). A way of predicting soil properties is utilising 

geostatistics by interpolating soil properties from large numbers of observations collected over 

small areas (Goovaerts, 1999). Geostatistical models such as regression kriging (Voltz and 

Webster, 1990; Keskin and Grunwald, 2018) focus on extending to large areas where there 

are many spatial variations. Theoretically, geostatistical approaches are an advantage over 

data mining methods because their soil predictions integrate both correlations with the 

predictor variables and the spatial correlation between soil observations (Dobos et al, 2006).  

Geostatistics were developed on densely sampled areas from field data (Hengl, 2006; 

McBratney et al, 2003; Minasny and McBratney, 2010). This information has been useful in 

developing geostatistics as soil properties vary over space. This spatial dependence can be 
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quantified using variograms (Minasny and McBratney, 2010; McBratney and Gruijter, 1992). 

Variograms are models fitted to observed soil properties and these models can be used to 

express kriging weights and make a spatial prediction using kriging methods (McBratney and 

Gruijter, 1992). Various forms of kriging have been developed to map soil properties. As 

technology has increased over time, kriging has been updated using detailed environmental 

covariates derived from satellite imagery and Digital Terrain Models (DTMs). Pedometrics has 

used further techniques such as fuzzy set theory (e.g. McBratney and Odeh, 1997; Odeh et 

al, 1994; de Menezes et al, 2013) based on expert knowledge or terrain attribute clustering.  

1.2.2. Digital Soil Mapping 

Maps produced by kriging or other statistical-based approaches are an advancement on 

traditional mapping, as they provide quantitative understanding and new data can be updated 

on a regular basis. However, these approaches rarely take pedological understanding into 

account. Therefore, Digital Soil Mapping (DSM) has been developed to generate predictions 

of soil properties at unsampled locations by manipulating GIS data and considering Jenny’s 

soil forming factors. This is based on the SCORPAN methodology which has developed 

Jenny’s soil formation equation (Textbox 2; McBratney et al, 2003; Lorenzetti et al, 2015).  

DSM can be defined as ‘the creation and population of spatial soil information systems by 

numerical models…inferring the spatial and temporal variations of soil types and soil 

properties…from soil observation and knowledge and related environmental variables’ 

(McBratney et al, 2003; Lagacherie, 2007).  
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Textbox 2: SCORPAN equation for DSM (McBratney et al, 2003) 

DSM utilises measured soils data or surveyed information and relates these to available 

covariate data such as climate, land cover, relief and parent material. This is used to develop 

and apply models to predict soil properties in 2D and 3D (Behrens and Scholten, 2006; Dobos 

et al, 2006; Balkovic et al, 2013). DSM can also be referred to as predictive soil mapping and 

soil-landscape modelling in the literature (Scull et al, 2003), and has been summarised by 

Carré et al, (2007), (see Figure 1.1). DSM is mainly focussed on a range of mathematical 

techniques based on discovering, from a training dataset, relationships between the predictor 

variables and the predicted variable (Dobos et al, 2006; Crivelenti, et al, 2009). The most 

frequently used models by the DSM community centre around multiple regression models 

(e.g. Moore et al, 1993; Odeh et al, 1994), classification trees (Hastie et al, 2001) and neural 

networks (Behrens, 2005).  

Sc= f (s, c, o, r, p, a, n) + e 

Where  

Sc = the soil class or attribute to be modelled,  

f= function 

s= refers to existing soil information,  

c = climatic condition at the site,  

o = organisms, 

r =local relief,  

p = parent materials,  

a =soil age,  

n= spatial topology or spatial relationship  

and e = associated error  
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Figure 1.1: Digital Soil Assessment (including digital soil mapping) flow diagram (Carré et al, 

2007) 
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1.2.3. DSM Critique 

Scale is an important factor to consider when critiquing DSM. Scale is defined by Levin (1992) 

as ‘the measuring tool through which a landscape may be viewed or perceived’. In DSM 

context, scale is regarded as ‘the physical dimension of a phenomenon or process in space 

expressed in spatial units (pixel resolution and window size)’ (Cavazzi et al, 2013). Detailed 

reviews of scale can be found in work by Lam and Quattrochi (1992) and Goodchild and 

Quattrochi (1997); highlighting scale in four ways: cartographical, geographical, operational 

and spatial resolution. The issue of resolution and scale are important aspects in mapping. As 

Lam and Quattrochi (1992) argue, more than a single scale of observation may exist, thereby 

requiring measurement at several levels of resolution. This is particularly necessary due to a 

shift towards mapping soil functions, which will incorporate different resolutions and scales of 

data. 

There has been a rapid evolution from traditional soils mapping to DSM over the past decade 

or so due to an ever-increasing need for accurate, reliable and quantified soil information 

(McBratney et al, 2003; Bui and Moran, 2003; Grunwald, 2009; Shi et al, 2009). McBratney et 

al, (2003) conducted a comprehensive literature review of DSM and these methods are now 

widely used in the soil science community. 

Many authors have noted that DSM is an efficient way to update soils data based on improved 

resolution and understanding for mapping soil properties such as carbon, pH and texture (Scull 

et al, 2003; Hudson, 1992). DSM is useful in producing finer resolution outputs and can be 

linked to other global environmental datasets (Hengl et al, 2017). DSM is also noted as being 

less expensive than traditional soils surveying (Carré et al, 2007). However, this is assuming 

that field data are readily available for predictions. A major advantage of DSM is that it has 

huge capabilities of deriving uncertainties for predicted outcomes, allowing for errors to be 

tracked throughout the whole process: thereby producing increased quantitative 

understanding of soil variability as a level of precision (Carré et al, 2007; Scull et al, 2003). 
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DSM can be utilised alongside GIS support to provide improved accuracy assessments 

(Dobos et al, 2006; Sanchez et al, 2009). 

However, there are known disadvantages to using DSM. A major weakness is that DSM is 

only as good as the input data used to develop the models for predictions. Currently, DSM is 

heavily reliant on legacy data from traditional soil survey with measurements, in some regions, 

which may be decades old (McBratney et al, 2003). Most DSM statistical methods are limited 

by the number of soils that can be mapped at once, while some processes can be hard to 

represent by available environmental variables (Brus et al, 2011). Successful DSM depends 

on the number of soil data points and environmental data layers. In areas where there is a 

lack of data, producing accurate maps with DSM has been challenging (Stoorvogel et al, 2009; 

Kempen et al, 2012).  Ultimately, traditional field surveys and data collection will still be 

required to generate the basic data for DSM. However, different ways are needed to reduce 

the expense of field surveys. Alternative approaches have been suggested to characterise 

and measure soils in the field (e.g. remote sensing, digital data capture, in-field measurement 

of properties and processes and sensors) (Scull et al, 2003). 

Uncertainty in DSM presents unique challenges (Brus et al, 2011). All maps, including DSM 

maps, are not 100% error free; and multiple error sources can be found (Heuvelink, 1998). 

These problems could potentially be magnified, so the final predictions and maps could 

contain large associated errors (Nelson et al, 2011). DSM is dependent on the statistical 

relationships between soil observations and environmental covariates at a range of locations. 

Most errors exist in the following: 

• measurements in soil profiles.  

• digitising of soil outlines on base maps.  

• entering incorrect data into databases. 

• classification of soil types and properties.  

• generalisation of the overall sampled area. 



10 
 

• Interpreting or deriving connections between variables and soil properties (Heuvelink, 

2014). 

Understanding uncertainty in DSM is crucial as errors in decision-making can lead to serious 

consequences for all (Brus et al, 2011; Heuvelink, 2014). DSM produces quantifiable errors 

which can be explored to investigate where the main uncertainties lie. However, both digital 

soil maps and conventional maps produced previously contain errors, and are generally not 

validated (Grunwald, 2009; Brus et al, 2011).  

Finally, DSM, in terms of its performance compared with traditional soil mapping is generally 

assumed to be an improvement. However, this is not always the case (Kempen et al, 2012; 

Bishop et al, 2001). Quite often, DSM maps provide poorer outputs than traditional maps. This 

is dependent on available data found in areas being investigated and the associated 

resolution. This has led to moving away from mapping specific soil properties to mapping 

associated functions. 

1.2.4. Moving to Digital Soil Assessment (DSA) 

Carré et al (2007) proposed moving beyond DSM to Digital Soil Assessment (DSA) (Figure 

1.1), which involves integrating measured soils data with other datasets to produce ‘functional’ 

information more likely to be used by stakeholders e.g. agricultural land classification. DSA 

aims to provide a more dynamic understanding and mapping at both 2D and 3D scales. Many 

of these are ‘functional’ soil maps as they use information and data which influence functions 

such as agriculture and food production, environmental regulation and climate change (Blum, 

2005). Such example maps include Land Capability for Agriculture (LCA) and the Hydrology 

of Soil Types (HOST) (Mayr et al, 2006; Boorman et al, 1995). However, functional maps 

require a lot of data, are difficult to deploy across larger areas and are problematic at 

understanding how the soil data or properties was converted into soil functional related 

information (Mayr et al, 2006).   

Behrens and Scholten (2006) and Bouma et al (2012) reviewed the state of DSM in Germany 

and Holland. Both studies highlight an increasing demand for high-resolution maps to gain an 
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improved understanding of environmental protection and land management issues. Mayr et al 

(2006) investigated methods of predicting soil functions within landscapes using available data 

and models in Great Britain. The main conclusions focus on acquiring more data than is 

currently available. Furthermore, there is an over-reliance on soil process models which 

provides difficulties when applied across different landscapes. DSM has the potential to 

overcome some of these constraints by considering the relationships between observed soil 

properties and other environmental covariates to improve the knowledge and understanding 

of soils areas.  

In the future, DSA can be developed to improve DSM further as failing to do so could mean 

many digital soil maps become unusable (Finke, 2012). DSM can be useful in helping 

stakeholders make more informed decisions regarding policy and decision making, but it is 

vital that communicating this information is translated into usable materials which address 

specific stakeholder issues. Therefore, it is important that the requirements of end users of 

DSM maps are considered when developing new DSM products and when soil scientists are 

required to evaluate outputs (Finke, 2012). 

Some global initiatives have been set up to enable new digital soil maps of the world to be 

produced using state-of-the-art approaches, responding to stakeholders needs for improved 

information on soils e.g. how much carbon is stored in soils or the pH of soil and suitability for 

agricultural purposes (Sanchez et al, 2009; Arrouays et al, 2014). An example of this is 

GlobalSoilMap.net (GSM) (GlobalSoilMap, 2011a, GlobalSoilMap, 2011b) which aims to 

investigate and understand the coverage of soil property data both at a 2D and 3D perspective 

at a much finer resolution than is currently available at present. There have already been many 

GlobalSoilMap products produced for regions and countries including Australia (e.g. Malone 

et al, 2014; Liddicoat et al, 2014; Searle, 2014), USA (e.g. Odgers et al, 2014), and France 

(Ciampalini et al, 2014; Vaysse et al, 2014).  
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1.3. Rationale of this work 

Currently, DSM produces maps based on training of models with observed soils data and 

environmental covariates which is then released to stakeholders for them to consult and 

evaluate their utility. This PhD has approached this differently by addressing stakeholder 

needs at the beginning of the process. This is important to produce improved maps at finer 

resolution which match stakeholder expectations. It will be critical for stakeholders and the 

DSM community to consider outputs based on the modelling alongside relationships between 

soil properties and the underlying pedology. At present, limited work has been done to 

investigate approaches and consequences of carrying out DSM across different regions 

particularly when using different soils data sources with associated differences in 

methodologies. Furthermore, DSM uses a range of different models, but there has been little 

evaluation of which appropriate model(s) is best to be used. Within this PhD, there is an 

opportunity to explore these issues, particularly for GB where little DSM has been done across 

a national scale. Within GB, there were two distinct national soil surveys (Soil Survey of 

England and Wales and Soil Survey of Scotland), each with its own sampling and analytical 

approaches. Using data from both surveys, it would be useful to investigate whether there are 

appropriate ways to merge cross border soil properties and covariates for national scale DSM.  

1.3.1. Principal aim 

The main aim of this thesis is: 

• to improve the spatial mapping and resolution of selected soil properties across GB 

informed by stakeholders.  

1.3.2. Objectives 

• The first objective is to explore what soils related data and information stakeholders 

currently use, and what desired improvements they want to see in soil information.   

• The second objective is to develop DSM for GB, investigating how soil properties are 

mapped and modelled. This will involve using two recursive partition modelling 
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approaches across two pilot areas, with a view to comparing how both models work 

during model training and when deployed to wider areas. 

• The third objective is to examine the DSM outputs across GB in relation to traditional 

mapping and a pedological understanding of the nature and distribution of soil and 

soil properties. It will also evaluate the suitability of an independent validation dataset 

on evaluating predictions of soil properties.  

1.3.3. PhD chapter structure 

After reviewing the current state of DSM in the academic literature and explained the 

knowledge gaps which this PhD plans to investigate, an outline is presented below, describing 

the content and structure of subsequent chapters. 

• Chapter 2 reports on outcomes obtained from a questionnaire survey of non-soil 

science stakeholder needs across the UK and mainland Europe. This was to 

understand what soils data stakeholders currently use in their work or research, what 

issues they have whilst working with current data, and what improvements they would 

like to see to help support future work. This addresses objective one. 

• Chapter 3 focusses on the collation, preparation and harmonisation of spatial soil 

property data required to support DSM across GB. Sampling and laboratory methods 

for key soil properties were investigated and compared, exploring the differences 

between methods and determination of harmonisation, if required. The requirements 

for data transformation are also discussed. This addresses part of objective two.  

• Chapter 4 develops the DSM methodology for GB across two pilot areas: the north 

east Midland Valley in Scotland, and an area of west England and eastern Wales. DSM 

modelling and mapping of soil properties is explored using Boosted Regression Trees 

(BRTs) and Multivariate Adaptive and Regression Splines (MARS) models to compare 

the model performance during training and assess how the predicted maps of soil 

properties generated from the deployment of the models compares with other 

published soil maps. This also addresses part of objective two. 
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• Chapter 5 investigates DSM when applied to GB based on findings from Chapter 4. 

This section focuses on each stage of the DSM methodology; how well soil properties 

are mapped across GB and evaluating whether they reflect the pedological 

understanding of the nature and distribution of soils found in these areas. Residuals 

from an independent validation dataset were examined to evaluate how well each soil 

property is predicted across GB. This addresses objective three of the PhD thesis. 

• Chapter 6 assesses the performance of DSM has done for mapping and modelling soil 

properties across GB, exploring the lessons learnt. The outcomes of the stakeholder 

survey in Chapter 2 are revisited and there is a discussion on whether results from 

DSM in GB could meet the stakeholder needs for finer resolution soil property maps in 

the future. The chapter also considers how we might move from DSM to Digital Soil 

Assessment. 
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2 ARE EXISTING SOILS DATA MEETING THE NEEDS 

OF STAKEHOLDERS IN EUROPE? AN ANALYSIS OF 

PRACTICAL USE FROM POLICY TO FIELD  

Abstract 

Soils form a major component of the natural system and their functions underpin many key 

ecosystem goods and services. The fundamental importance of soils in the environment 

means that many different organisations and stakeholders make extensive use of soils data 

and information in their everyday working practices. For many reasons, stakeholders are not 

always aware that they are reliant upon soil data and information to support their activities. 

Various reviews of stakeholder needs and how soil information could be improved have been 

carried out in recent years. However, to date, there has been little consideration of user needs 

from a non-expert perspective. The aim of this study was to explore the use of explicit and 

hidden soil information in different organisations across Europe and gain a better 

understanding of improvements needed in soil data and information to assist in practical use 

by non-expert stakeholders. An online questionnaire was used to investigate different uses of 

soils data and information with 310 responses obtained from 77 organisations across Europe. 

Results illustrate the widespread use of soil data and information across diverse organisations 

within Europe, particularly spatial products and soil functional assessments and tools. A wide 

range of improvements were expressed with a prevalence for finer scale resolution, trends 

over time, future scenarios, improved accuracy, non-technical supporting information and 

better capacity to use GIS. An underlying message is that existing legacy soils data need to 

be supplemented by new up-to-date data to meet stakeholder needs and information gaps.   
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2.1. Introduction 

Soils form a major component of our natural environment, performing an array of essential 

functions that underpin key ecosystem goods and services which plants and animals rely on 

(Costanza et al, 1997; Smith et al, 2015). The significance of soils within the environment has 

meant that stakeholders must use a wide variety of soils data and information in their decision 

making.  

The concept of soil functions was first conceived during the early 1950s and has since been 

widely adopted in national and regional policy (Blum, 2005). From the mid-1900s onwards, 

soils functional aspects have been incorporated into assessment tools such as maps and 

models that assist decision makers across a wide range of soil-related issues from land use, 

cropping practises, protection of water bodies, and restoration of habitats to climate regulation. 

For instance, many assessments around agricultural productivity, such as the Land Capability 

for Agriculture in Scotland (Bibby et al, 1988) and laterally, the CAPRI model (Britz and Witzke, 

2014), are based on soil maps. However, functional assessments have since extended across 

many other issues such as groundwater vulnerability (Environment Agency, 2013; Harter and 

Walker, 2001).  

When exploring what needs to be improved in terms of soils data and information, it is 

important to understand the contemporary needs of stakeholders particularly where soils data 

and information may be implicit or part of an underlying model or assessment tool. There are 

various reviews of stakeholder needs and how these levels of information could be improved 

which have been carried out in recent years (Black et al, 2012, Prager and McKee, 2014, 

Valentine et al, 1981, Grealish et al, 2015, Omuto et al, 2013, GS Soil, 2010, Panagos et al, 

2012).  However, these reviews have generally assumed that stakeholders have some 

knowledge of soils or are fully aware that they are using soils data and information. The aim 

of this study is to understand soils data and information stakeholders’ needs across Europe 

from a non-expert perspective. 
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Jones et al (2005) reviewed soils resources and information use across Europe and 

determined that these are traditionally associated through the function of food and fibre 

production, with increasing applications to other issues such as climate change and water 

resource management (Blum, 2005; Grealish et al, 2015, Haines-Young, 2012). Soil maps, 

data and information are used in many sectors besides soil science, such as farming, 

hydrology, land degradation, policy and environmental modelling (Valentine et al, 1981, 

Mather, 1988, GS Soil, 2010, Hallett et al, 2011, Omuto et al, 2013, Prager and McKee, 2014). 

Most soil information users indicated that key soil attributes are readily available (Wood and 

Auricht, 2011). However, improvements in a range of soil properties such as soil moisture, 

toxicity, biology and carbon are required (Auricht, 2004, Grealish et al, 2015).  

Furthermore, engineering properties such as subsidence and corrosion are also of interest 

(Pritchard et al, 2015). These types of information are available but awareness of data 

accessibility and where to find them remains challenging. Information needs are also specific 

to stakeholder requirements and the spatial resolution of the undertaking. Black et al (2012) 

consulted a wide range of stakeholders in developing the Soil Monitoring Action Plan for 

Scotland with further consultation taking place with farmers and local authorities by Prager 

and McKee, (2014). Key improvements mentioned were finer spatial resolution, soil trends, 

soil biological and physical indicators and the extent of sealing. 

The FAO (2012) identify three major challenges in addressing soil information availability. The 

first of these focusses on the importance of soil protection, particularly to the global modelling 

community as it will help mitigate and adapt to issues such as climate change and food 

security. A second consideration is soil monitoring, focusing on improving global soil data at 

finer scale resolution. The third examines advancing Digital Soil Mapping (DSM) and Digital 

Soil Assessment (DSA) techniques. DSM and DSA offers potential to map soil properties at 

detailed and broad scales (McBratney et al, 2003; Behrens and Scholten, 2006; Carré et al, 

2007). However, it is not clear how any of these challenges reflect the needs of stakeholders, 
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and difficulties remain around integrating the capability of models and the envisioned users of 

this data.  

Stakeholder interaction and participation should be considered from the outset, and this is 

very rarely done (Reed, 2008).  Studies by Bouma (2012) and Black et al (2012) highlighted 

that end-users were often not aware that they were using soils data and information so could 

not easily communicate further needs. It is therefore not straightforward to assume what the 

needs of envisioned users of ‘new’ soil information are, where this information is embedded 

in derived tools. A survey of non-expert users was designed to investigate their current needs 

and perceived gaps in their ability to deliver in their work activities. This information is vital in 

addressing how new soil tools and products, such as DSM and DSA, might (or might not) meet 

the stakeholder requirements and the likelihood of such products being of practical use. The 

aim is therefore to investigate what soils assessments and tools stakeholders currently use 

and what improvements, if any are required for future soil products/information sets. 

2.2. Methodology 

A detailed questionnaire was carried out to consider the range of soils data and information 

currently being used across Europe with a focus on explicit and hidden soils information being 

used by non-expert stakeholders: non-experts are people who use soils information or data in 

their everyday work but who are not expected to be academically trained soil scientists  

(Appendix 1).  

The questionnaire was compiled using the web-based survey programme Qualtrics (Qualtrics, 

2018: http://www.qualtrics.com/). In addressing the different uses of soils data and 

information, it was considered important to address functions of soils and contact stakeholders 

with close connections in and around these functions. Therefore, stakeholders were identified 

in order to be representative of the primary functions of soils (FAO, 2015: 

http://www.fao.org/resources/infographics/infographics-details/en/c/284478/) including 

biomass production, cultural heritage, regulating, biodiversity/habitats and infrastructure. A list 

http://www.qualtrics.com/
http://www.fao.org/resources/infographics/infographics-details/en/c/284478/
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of organisations across Europe, with named soil contacts, was draw up by accessing 

published materials, on-line searches and personal knowledge. The remit and primary 

activities of these organisations corresponded well with at least one of the soil functions and 

provided coverage across the soil functions. Stakeholders were based around commercial 

organisations, learned societies, non-governmental organisations (NGOs), local authorities 

and government organisations. A total of 98 organisations were contacted across 22 countries 

in Europe. Of these, 34 organisations can be considered trans-European in their activities i.e. 

no specific alignment with any one region or country. A pilot study of the questionnaire was 

conducted with staff at The James Hutton Institute (Aberdeen) and the Scottish Government’s 

ethics committee; the questionnaire incorporated amendments following relevant feedback. 

The survey was carried out from July to August 2015 and was made accessible to 

stakeholders through an anonymous online link.  

2.3. Questionnaire Results 

2.3.1. What sectors use soils information?  

There were 310 individual responses to the questionnaire from 77 out of the 98 organisations 

contacted and, from this, 93% of stakeholders said that they handled information about soil in 

their work.  

Stakeholders were asked to identify what best describes the activities of their organisation. 

Stakeholders could tick more than one option for this question to obtain a broader 

understanding of activities associated with individual organisations. The top three activities 

were agriculture, research organisations (universities, institutes etc.) and conservation (Figure 

2.1). Stakeholders who ticked ‘other’ ranged from people who worked in landscape 

photography, archaeology and oil and gas services. This shows that there is a wide array of 

stakeholders who have an interest in soils data and information and who may use certain tools 

and assessments related to activities within their organisation.  
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Figure 2.1: Range of organisations and the percentage of responses to the questionnaire  

(numbers for each are noted for each activity. This was to get an understanding as to the 

variety of organisations people worked for. N.B. Stakeholders could tick more than one option 

for this question. 

2.3.2. Tools and assessments and awareness of embedded soils information  

Stakeholders were encouraged to tick as many boxes as possible in terms of what tools and 

assessments they use in their work. These assessments are grouped by related soil functions. 

Most responses came from people who related to agricultural production and conservation of 

habitats and biodiversity. Respondents were asked about how aware they were that many of 

the assessments had soils information embedded within them, with 87% saying that they were 

‘aware’.  
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In relation to ‘Biomass Production’, it was found that the two main tools predominantly used 

were agricultural land evaluation and fertiliser/pesticide usage assessments. In terms of 

assessments grouped under ‘Infrastructure’, it is the extraction of raw materials such as clay, 

sand and silt, followed by assessment of the impacts of soils on assets such as pipes and 

electric cables. Nitrate Vulnerable Zones (NVZs) were found to be the main assessment tool 

used by stakeholders closely associated with ‘Environmental Regulation’ with soil erosion and 

diffuse pollution to water following closely behind. 

Habitat suitability maps and land restoration assessments were the most commonly used 

assessments by stakeholders related to ‘Habitats and Biodiversity’. 

The number of stakeholders requesting information on fundamental soil properties from the 

questionnaire was relatively high. Soil chemistry (primary contaminants) and other properties 

including soil acidity, alkalinity and carbon had the highest demand and application (Figure 

2.2). Several other assessments which were not listed in the survey were also used by 

stakeholders including soil climate zones to identify nutrient demands of crops and grasslands.  
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Figure 2.2: Tools and assessments and percentages used by respondents. These are broken 

up into their closest related function. 
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2.3.3. Sources of information, licencing and spatial importance 

Respondents were asked to identify what sources they used to acquire soil information 

required for their work.  The use of maps in either paper or digital format is the most prolific 

with 78% of respondents using them while 65% of respondents use Geographical Information 

Systems (GIS).  Other sources consisted of social media websites and discussions with 

knowledge transfer exchange with stakeholders (11% of respondents).  

Overall, most stakeholders found most sources that they used either ‘very useful’ or ‘useful’. 

95% found the use of maps, expert knowledge and field and laboratory analysis to be either 

‘useful’ or ‘very useful’. However, 11% reported that GIS systems were ‘not very useful’ or ‘not 

useful’ (Figure 2.3). 
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Figure 2.3: How stakeholders rated usefulness of sources. Outer circle represents the 

percentage of stakeholders who rated 'very useful'. Inner circle represents those who rated 

'not very useful'. 
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When asked whether their organisation paid for licenced use of soils information, 49% said 

that their organisation did, 30% said 'no' and 21% said that they 'didn’t know'. 

Respondents were asked to assess the importance of spatial soils information for wider 

applications and end-user groups and as a result, an overwhelming 98% of the respondents 

said that this was ‘very important’ or ‘important’. Previously, it was noted that 93% handled 

information about soil as part of their work. This extra 5% illustrates that those respondents 

who do not use or acknowledge soil as part of their work still see the importance of spatial soil 

information for wider applications and end-user groups. 

2.3.4. Requested improvements to soil information and data 

Improvements to soil data and information were a key issue addressed in this questionnaire. 

Respondents were asked what they would like to see improved in relation to the information 

they already use, and this has been summarised in Figure 2.4. Improvements were grouped 

post-survey to ease interpretation under four main themes: ‘Uncertainty’, ‘Scale and 

Coverage’, ‘Metadata’ and ‘Fundamental Data’. 59% of stakeholders wanted soil information 

at a much finer resolution to what they currently use (Figure 2.4). Although not explicitly 

specified, many current national scale soil maps (particularly in GB) are at a resolution which 

is too coarse for in-field management of soils and to allow integration with other spatial 

datasets. With regards to ‘Uncertainty’, respondents wanted improved accuracy and credibility 

of data sources. With regards to ‘Scale and Coverage’, as well as wanting information at finer 

scale resolution, respondents wanted to see improvements in co-ordinates of geographical 

locations (i.e. data in a format which they can georeference). With respect to ‘Metadata’ 

issues, respondents requested improvements in the availability of associated documentation 

related to the data. Finally, under the category of ‘Fundamental Data’, respondents wished to 

see improvements with trends over time and contemporary data.  Respondents were then 

asked specifically if they would be interested in using any new information that might arise 

from improvements in spatial resolution/scale and uncertainty. From Table 2.1, it can be noted 

that there is a positive response to improvements regarding both issues. Other notable 



33 
 

requirements ranged from improving map and data interpretations, and the ability to use 

multiple datasets or assessments.  

 

Figure 2.4: Improvement recommendations by the stakeholders 

 

Issue Yes No Total responses 

Spatial resolution/scale 209 36 245 

Summary of uncertainty/error 

values 

159 57 216 

Other (please specify) 10 7 17 

 

Table 2.1: Would you be interested in any new information arising from an improvement in 

spatial resolution/scale or summary of uncertainty/error values. 
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There was a space at the end of the questionnaire for respondents to add any extra information 

that might be useful. The main themes that came out from the additional responses were 

opportunities to increase knowledge transfer between research and policy makers and the 

importance of education and training, which are vital in terms of increasing soil understanding.  

2.3.5. Relationships between organisations and desired improvements 

One of the main objectives of this study was to establish from the questionnaire what desired 

improvements were linked to the activities of stakeholders. To achieve this, responses were 

cross tabulated between activities of the organisations and the desired improvements the 

stakeholders had requested. This was undertaken using the Qualtrics software. The cross 

tabulations were then used to create heat maps using R Statistics software version 1.1 (R 

Core Team, 2013: https://www.r-bloggers.com/citing-r-or-sas/) (Figure 2.5). The legend 

indicates how the shading relates to the number of people who answered responses to both 

questions i.e. the darker the colour then the greater the correspondence between activities 

within that specific organisation and the requested improvements.  From this it can be noted 

that, improvements in finer/scale resolution are being requested most by stakeholders whose 

activities revolve around agriculture or research but consistently needed across all 

organisational activity groups. Trends over time are also particularly related to those working 

in agriculture and research but also sought by stakeholders in conservation and 

national/federal or governmental agencies. 

Using the same data, the crosstabs were converted into percentages to explore needs within 

activity groups. For most organisations (Figure 2.6), finer scale resolution and, associated, 

improved data accuracy predominated individual organisational user needs. Some 

organisations identified quite specific needs. In the finance/insurance category, these include 

improvements in contemporary data, finer scale resolution, improved coverage and 

methodology in how the data was generated. In the water sector, understanding soil 

classification and non-(expert) user summaries were identified as relatively high needs. 

https://www.r-bloggers.com/citing-r-or-sas/
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Figure 2.5: Heat map showing the cross tabulation of responses (n) between the activities of 

an organisation and suggested improvements in soil related information. The darker the colour 

indicates a greater number of responses. 
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Figure 2.6: Heat map showing the cross tabulation of responses (%) between the activities of 

an organisation and suggested improvements in soil-related information. The darker the colour 

indicates a greater percentage of responses by each organisation. 
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2.4. Discussion 

It is encouraging that many responses from this questionnaire were obtained from non-expert 

stakeholders across substantially different organisations. Many diverse sectors are using, 

wish to use or access soils information on a regular basis to support day-to-day work practices. 

Moreover, this survey demonstrates that soils data and information are widely used in a range 

of tools and assessments and are often integrated with other data sources such as historical 

data on climate and vegetation (e.g. where soil climate zones were used to establish nutrient 

demand for crops and grassland for regional animal manure management).  

The survey responses also identified that there are barriers to accessing and using appropriate 

soil data. Overall, stakeholders find difficulties obtaining and collecting information for projects 

which are under licence or where they must pay for the use of it. Payment for use of data is 

particularly dependent on organisations procurement procedures and that different 

organisations are willing to pay varying amounts to obtain certain data for their work or projects 

(Montanarella and Vargas, 2012; Diafas et al, 2013). It is unclear how much these constitute 

a significant barrier to the use of soil information, as payment was not identified as one of the 

required key improvements from the questionnaire.  However, improving accessibility would 

clearly benefit non-experts. Alongside this, there is a clear need to address technical 

understanding with needs identified for knowledge transfer between research and policy, 

education and training, improving associated supporting information, understanding soil 

classifications and non-expert user information. A need for more technical knowledge may 

well reflect a lack of soils in school and university level education. The level of responses 

suggests that there is demand (and opportunity) for soils training opportunities focussed on 

non-experts and practical applications. In parallel, there is also a clear need for increased skill 

capacity in GIS within organisations using spatial soil data and information. Without this, it is 

difficult to see how new spatial soil products, which are predominately GIS in nature, can be 

widely adopted for practical use. 
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Stakeholders used a variety of information sources and of these, it was notable that a high 

proportion of people found GIS to be the least useful source of information even though a high 

proportion of stakeholders use or want to use spatial information and that GIS is a widely used 

spatial information platform. This may be due to constraints around technical ability, 

accessibility to GIS software (although open-source GIS software is available e.g. QGIS) or 

could allude to a more fundamental problem with the GIS medium being inadequate for the 

assessments undertaken by the respondents.  

Other sources of information that were mentioned ranged from the use of social media sites 

like Twitter, academic journal articles and discussions with other stakeholders. Although not 

used widely at present, social media does now present real and widespread opportunities to 

communicate with and inform non-experts. Interestingly, most people found field and 

laboratory analyses to be ‘very useful’ or ‘useful’ alongside maps, whether in paper or digital 

format, and expert knowledge. Reasons could be that stakeholders are utilising ‘tacit 

knowledge’ from field experts who acquired this information in the first place, thus using it as 

a validation tool (Hudson, 1992) and they are familiar enough with handling field and lab 

results. This may also reflect issues discussed about constraints with technical understanding 

and GIS skills limiting use of other soil data and information sources.   

The questionnaire also indicated widespread requirements for information on future scenarios 

and trends over time. There is a significant amount of legacy soils data available but much of 

this is over 30 years old. There is however an underlying requirement for new information on 

soils to be able to determine current trends in soil properties and functions and to support 

modelling of future scenarios based on current conditions. Legacy data, on its own, cannot 

meet current user needs. 

This survey indicates that several soil properties including texture (sand, clay and silt), 

contaminants, bulk density, pH and carbon have widespread use. These should be a priority 

in making more accessible and useable by addressing the needs for non-expert supporting 

materials, finer spatial resolution, trends over time etc. However, there are also other soil 
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properties to be considered. Many of the answers in the questionnaire reflect instances where 

soil properties underpin soil functional assessments and tools. In such instances, the 

relevance of individual soil properties is ‘hidden’ to the user and therefore the need for 

information on individual soil properties may not be fully expressed. This is a potential pit-fall 

to be recognised in any future assessments of stakeholder needs. Table 2.2 illustrates the soil 

properties used to derive these assessments using information gathered from previous 

documentation and literature (e.g. GlobalSoilMap, 2011a, GlobalSoilMap, 2011b, Mayr et al, 

2006). This can be used in post-hoc identification of ‘hidden’ soil properties in questionnaires, 

when exploring needs for soil functional assessments and in ensuring that all necessary soil 

properties are being considered in the improvement of existing mapping or development of 

new modelling and mapping, such as DSM and DSA (c.f. Mayr et al, (2006). Expressing the 

links between soil properties and soil functions can also be used as a tool in raising 

stakeholders’ awareness of the wider range of soil properties which underpin the soil functional 

assessments and tools that they use regularly. 
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Biomass 
Production 
 

Agricultural land evaluation 
  

✔ ✔ ✔ ✔ 
 

✔ ✔ ✔ 

Biofuel potential 
 

✔ 
      

✔  

Crop Suitability models  
       

✔ ✔ ✔ 

Drainage systems  
 

✔ 
      

✔  

Fertiliser and pesticide usage ✔ ✔ ✔ ✔ ✔ ✔ ✔ 
 

✔  

 

Irrigation requirements 

 
 

✔ 

      
 

✔ 

  

Land Suitability for Forestry 
 

✔ ✔ ✔ ✔ ✔ 
   

 

(Micro) nutrient concentration 
 

✔ 
       

 

Soil borne diseases and/or pests           

Soil pathogens 
          

Drought risk assessments 
 

✔ 
      

✔  

Environmental 
Regulation 

Climate change models ✔ ✔ 
     

✔ ✔ ✔ 

Erosion risk assessments ✔ 
 

✔ ✔ ✔ ✔ 
  

✔  

Flood risk maps 
 

✔ ✔ ✔ ✔ ✔ 
  

✔  

 Hydrology of Soil 
  

✔ ✔ ✔ ✔ 
  

✔  

Leaching risk maps 
 

✔ 
    

✔ 
  

 

Nutrient Vulnerable Zones  
 

✔ 
      

✔  

Pesticide safety assessment 
 

✔ 
       

 

Pollutants in soil 
 

✔ 
    

✔ 
 

✔  

Reclamation of contaminated land 
 

✔ 
       

 

Runoff potential 
 

✔ 
    

✔ 
 

✔  

Sludge acceptance potential 
 

✔ 
    

✔ 
  

 

Soil erosion  ✔ ✔ ✔ ✔ ✔     

Diffuse pollution to w aters 
        ✔  

Fundamental Soil 
Properties 

Nutrient cycling 
 

✔ 
    

✔ 
  

 

Soil acidity/alkalinity levels  ✔     ✔    

Soil carbon/organic carbon ✔       ✔  ✔ 

Soil chemistry  ✔     ✔    

Soil moisture ✔      ✔ ✔ ✔ ✔ 

Soil temperature 
      ✔    

Habitats and 
Biodiversity 

Habitat suitability maps 
        

✔  

Land reclamation 
  

✔ ✔ ✔ ✔ 
   

 

Land use change modelling 
         

 

 Pollen counts 
         

 

Protection of animal species 
         

 

Recreational space 
         

 

Infrastructure Extraction of raw  materials  ✔ 
 

✔ ✔ ✔ ✔ 
  

✔  

Infrastructure assessment  
  

✔ ✔ ✔ ✔ 
   

 

Land Suitability for Housing 
  

✔ ✔ ✔ ✔ 
   

 

 

Table 2.2: Soil assessments against probable soil properties mapped as future work. Table 

adapted from: GlobalSoilMap (2011a, 2011b) and Mayr et al, (2006).
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Most stakeholders stated, from the questionnaire, that they require information at finer spatial 

scale/ resolution than is currently being offered. An obvious focus for future work is to deliver 

finer spatial scale in the key soil properties identified by the stakeholders (i.e. bulk density, soil 

contaminants, pH, texture and carbon). However, one assumption is that finer spatial scale 

will lead to improved data and subsequent assessments. This may not be the case since scale 

is a complex parameter which is dependent on context and application (Goodchild, 1997, Wu 

and Li, 2009). Supported and promoted by FAO (FAO, 2018: http://www.fao.org/global-soil-

partnership/pillars-action/4-information-and-data/en/), DSM is a major opportunity to generate 

soil property information at finer spatial scale than existing products, with the benefit of 

characterising properties of  accuracy and precision (Goodchild and Quattrochi, 2013).  Such 

predicted soil property products can then be used to make significant advances in modelling 

and mapping the soil functional assessments which are widely used by diverse stakeholders 

and organisations. However, it is imperative that such approaches are matched with field 

assessments to critically evaluate and validate the accuracy of predicting soil properties at 

finer spatial resolution using existing (generally legacy) data. 

2.5. Conclusions 

The questionnaire was designed to understand how soils data and information are being used 

by non-expert stakeholders for a range of purposes. The responses indicate that stakeholders 

are generally aware of the utility of soil data and soil functional assessments for their work 

however they may not be aware of the full range of soil properties underlying soil functional 

assessments. Stakeholders identified that better and wider use of existing (and future) soil 

information by non-experts could be enabled by improvements in data access and user-

friendly supporting materials. Many stakeholders require finer spatial resolution than is 

currently offered, contemporary information on soils and trends over time for soil functions as 

well as properties. Established soil modelling such as the global initiatives in DSM and DSA 

can address some of these needs. However, a clear message from stakeholders is that 

http://www.fao.org/global-soil-partnership/pillars-action/4-information-and-data/en/
http://www.fao.org/global-soil-partnership/pillars-action/4-information-and-data/en/
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existing legacy soils data needs to be supplemented by new up-to-date soil data which is fit 

for current and future uses. Requirements for contemporary data demand investments in new 

and novel monitoring and sampling at enough spatial resolution and frequency to enable 

assessments of the range of soil functions. These will, in turn, be used to deliver and shape a 

wide range of multi-organisational activities and policies. A question remains as to how long 

we can rely on legacy soil data to make decisions today and into the future? 
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3 DSM PREPARATION AND DATA COLLECTION  

3.1. A need for harmonised soil property datasets for GB 

There were two national soil survey organisations collecting and mapping soil property data 

in Great Britain (GB); the Soil Survey of Scotland and the Soil Survey of England and Wales. 

With a move towards greater access to soils data (e.g. Global Soil Partnership, 2018; Omuto 

et al, 2013; Campbell et al, 2017; Hengl et al, 2017; Lawley et al, 2014) and increasing 

requests for cross-border datasets (Lilly, pers com, 2018), there is a clear need to provide 

unified soil property datasets. These unified datasets will be important for stakeholders and 

users especially in terms of dealing with key environmental challenges such as water resource 

management and the contribution of soil organic carbon data to the Global Soil Partnership 

(Campbell et al, 2017). 

There are several challenges faced when attempting to harmonise the two GB soil datasets. 

Although the national soil maps have been produced at a common scale (1:250,000), there 

are some differences in how the map units were constructed and named. There are also 

differences in soil taxonomy between Scotland and England and Wales. Although both have 

a dataset containing ‘representative profiles’ collected with the intention to characterise the 

soil mapping and taxonomic units and datasets which have objective, grid samples collected 

to provide a statistical assessment of soil characteristics (National Soil Inventories), the 

sampling frame and grid size vary slightly between the two datasets along with the overall 

sampling depth. However, there is sufficient commonality within both to form a GB dataset. 

Finally, the laboratory and analytical methods to measure the various soil properties differ 

between the two datasets reflecting the characteristics of the soils and the specific  soil 

property data that was required. The following sections describe the key datasets used in this 

study, considering the steps achieved to produce a harmonised dataset and the resulting GB 

soil property dataset. 
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3.2. Soil datasets 

3.2.1. England and Wales  

The soil property data for England and Wales were derived from the National Soils Inventory 

(NSI) and the Land Information System (LandIS) datasets (Hallett et al, 2017) which contains 

the representative profiles. For the NSI, 5662 sites were sampled across a regular 5 km grid 

square. Topsoil samples were collected, and soil profiles were described over the whole of 

England and Wales. The 5 km grid was based on the Ordnance Survey grid intersections but 

was offset by 1 km north and 1 km east to avoid sampling points falling on edges of published 

1:25,000 scale maps. Urban areas and water bodies were not sampled, but all other locations 

with soil were sampled. At each site, 25 soil auger samples were taken at 4m intervals over a 

20 x 20 m square centred on the grid intersection. The cores were then bulked to give a total 

of approximately 1 kg of moist soil for each site. The first round of sampling took place between 

1978 and 1983. The LandIS representative soil profiles (‘soil pits’) were sampled to 

characterise the soil series mapped in England and Wales and sampling took place from 1935 

and finished around 2000. There are over 11,000 soil pit site locations found in LandIS, 

comprising of over 47,000 horizons. Only associated data connected to the soil pit site 

locations was used. Georeferenced soil profile pits were excavated to 1.2 m depth where 

possible, described and samples taken from each soil horizon identified. 

3.2.2. Scotland  

The soil property data for Scotland also includes a National Soil Inventory and representative 

profiles as well as samples taken to characterise field scale experiments. The first National 

Soil Inventory of Scotland (NSIS1) took place between 1978 and 1988 (Lilly et al, 2010) and 

was based on a 5 km grid over the whole of Scotland (excluding the Orkney Islands). Soil 

profile descriptions and site information were collected at each Ordnance Survey 5 km grid 

intersection and samples were collected from each soil horizon (to a depth of around 80 cm 

where possible, and, at times, to 100 cm) at all 10 km intersects with soil and at some 5 km 
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intersections. The soil at 721 10 km grid intersects were sampled, with 66 locations having no 

soil (the points were found to be in lochs or rivers, built up areas or on solid rock).  

Between 2007 and 2009, there was a partial resampling of original NSIS (NSIS 2007-9) (Lilly 

et al, 2011). This was to investigate possible changes in soil properties, to compare sampling 

methods and to measure and assess new soil attributes as soil quality indicators. A total of 

183 soil profiles were relocated on the 20 km grid, sampled and described.  

The representative soil profiles of Scotland, collected to characterise soil map and taxonomic 

units, have data collected from the 1930s to present. These georeferenced soil profiles were 

excavated to around 1m (though some are deeper) and each major soil horizon was sampled. 

There are nearly 15,000 soil profiles in the Scottish Soils Database, over 7,000 of which are 

not part of the Inventory or from closely spaced grid and transect surveys which have 

accompanying analytical data. These 7,000 soil profiles are the main training dataset for 

Scotland. 

3.3. Soil properties 

The GlobalSoilMap.net (GSM) project was established with the aim of generating a new digital 

soil map of the world using state-of-the-art technologies for soil mapping and predicting soil 

properties (Sanchez et al, 2009). A standard approach to predict soil properties at depth for 

GSM was established. Currently, as part of the GSM criteria, twelve soil properties are 

predicted at each location (GlobalSoilMap, 2011a; GlobalSoilMap, 2011b). Of the twelve 

properties, five were selected to test the application of DSM techniques across GB. These 

are: loss on ignition (LOI), pH in water and soil texture (sand, clay and silt). These all hold 

agronomic significance and were also amongst the key properties identified by the 

stakeholders in the questionnaire survey in Chapter 2 (Campbell et al, 2017). 
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3.3.1. Organic Carbon/ Loss on Ignition (LOI) 

Carbon was one of the main properties that the questionnaire survey showed was important 

for stakeholders (Campbell et al, 2017). There are different methods used to determine 

carbon documented in the literature such as Walkley Black (Defra, 2011), CHN analysers 

(Chapman et al, 2013) or by using Loss on Ignition. 

Findings from Chapman et al, (2013) and Lilly et al, (2015) showed a difference in carbon 

measurements when the original NSIS samples were using a CHN elemental analyser. They 

found that the original values were 11.5% greater than the reanalysed archive sample. No 

such change was noted when the samples were reanalysed for LOI suggesting that the 

change was due to the analysers returning different values. LOI is also sensitive to different 

analytical methods, most importantly, the ignition temperature.  

A range of ignition temperatures and durations are commonly used to determine LOI 

(Hoogsteen et al, 2015; Ball, 1964; Abella and Zimmer, 2007; Konen et al, 2002). For soils in 

England and Wales, temperatures used were at 850°C (Avery and Bascomb, 1982) and for 

Scotland, 900°C (Macaulay Institute for Soil Research, 1971). It has been noted by Ball 

(1964) that ignition temperatures at 375°C give different LOI values than those from ignition 

at 850°C, where there is the likelihood of structural water loss. However, there is also a 

significant risk of incomplete combustion at 375°C (Hoogsteen et al, 2015). Though, the 

lower temperatures are appropriate for soils with carbonates present. 

The LOI values were found to be comparable between Scottish and England and Wales 

datasets. Thus, for the purposes of this study, LOI data from the representative profiles for 

England and Wales which were determined by combustion at 850°C (Hallett et al, 2017; 

Avery and Bascomb, 1982) and from the representative profiles for Scotland which were 

determined by combustion at 900°C (Macaulay Institute for Soil Research, 1971) were used. 

3.3.2. pH (H2O) 

The questionnaire survey showed that soil pH was the second most important soil property for 

stakeholders (Campbell et al, 2017). Soil pH is a common measurement performed in soil 
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chemical analyses (Davies et al, 1971), however, there are many different methods used 

throughout the world (Minasny and McBratney, 2011; Miller and Kissel, 2010; Kissel et al, 

2009).  These techniques and values will vary depending on the type of solution used and the 

ratio of soil to solution used (Minasny and McBratney, 2011). Two of the most common 

measures of soil pH used by the two GB Survey organisations are in a solution of soil and 

water and in a solution of soil, water and calcium chloride (CaCl2). 

In Scotland, the pH of water is measured on an air-dried soil to water ratio of 1:3 (Macaulay 

Institute for Soil Research, 1971) and for measuring the pH of CaCl2, 0.01M CaCl2 is added 

to the suspension. In England and Wales, measurements are made on a soil to water ratio of 

1:2.5 and for measuring the pH of CaCl2, 0.01M CaCl2 is added to the suspension (Avery and 

Bascomb, 1979). More detailed information on the methods used is found in Appendix 2). 

From Figure 3.1, pH data from Scotland and England and Wales can be seen to overlap with 

one another thereby suggesting that there is no systematic bias for soil pH despite the slightly 

different methods used across both datasets. As pH in water is part of the GlobalSoilMap.net 

criteria, this was another reason for including it in the GB modelling. 
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Figure 3.1: Overlaid relationships between pH in water and calcium chloride. The red markers 

indicate values from England and Wales (EW) dataset, and the blue markers represent values 

from the Scottish data (SCO). 

 

3.3.3. Particle Size Distribution (PSD) 

For England and Wales, Particle Size Distribution (PSD) was derived using the pipette method 

which involves the disaggregation of soil particles with hydrogen peroxide (Avery and 

Bascomb, 1979). This determination, however, has not been made for samples with organic 

carbon content greater than 15%, as these were classified as organic soils. In contrast, PSD 

in Scotland was measured using the hydrometer method. However, different particle size 

classes have been used in Scotland in comparison to England and Wales. In England and 

Wales, the particle size classes were predominantly based on the British Soil Texture 

Classification (BSTC) (Avery, 1973) although some data were in the USDA particle size 
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classes. In Scotland, particle size classes mainly followed the United States Department of 

Agriculture (USDA) size classes (USDA, 1978). The primary difference between the BSTC 

and the USDA classes is the cut off used between the silt and sand fractions. The USDA 

particle size classes are ((<2 (clay), 2-50 (silt), 50-2000 (sand) in µm)) and for BSTC they are 

((<2 (clay), 2-60 (silt), 60-2000 (sand) µm).  

Initially, two different approaches were investigated for harmonisation of the particle size data. 

The first used a curve fitting approach (Nemes et al, (1999) and the second method involved 

developing regression equations (Minasny and McBratney, 2001). Further information on the 

comparison of harmonisation methods can be found in Appendix 2 but they are briefly outlined 

below. 

The curve fitting approach (Nemes et al,1999) used data from the National Soil Inventory of 

Scotland 2007-9 (NSIS 2007-9) dataset as the proportion of particles in both USDA and BSTC 

particle size classes had been measured. A test data set from 300 mineral soil horizons was 

extracted from the main dataset, cumulative proportions were calculated, and the particle size 

classes converted to a log scale. The data were then plotted as particle size class against 

cumulative percentage. The hope was that a single curve could be used to estimate the 

proportion of particles in the 2-60 and 60-2000 µm size range, however, the test dataset 

showed that the curves have a wide range of shapes (Figure 3.2) meaning that each individual 

particle size dataset would have to be individually modelled making this impractical and time 

consuming. 
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Figure 3.2: Example curve shape fits for example particle size classes 

 

A second approach based on regression equations to predict the proportion of particles in the 

2-60 and 60-2000 µm size range. The Scottish NSIS dataset (2007-9) contains particle size 

measurements in the following categories: <2, 2-6, 6-20,20-200, 200-2000, 20-2000, 2-20, 2-

50, 2-60, 20-60,60-200, 200-600, 600-2000, 60-2000, 50-100, 100-250, 250-500, 500-1000, 

125-200, 50-2000,1000-2000 µm, that is, both USDA and BSTC. These data were used to 

explore regression methods to predict the proportion of particles in the 2-60 and 60-2000 µm 

size range for Scotland and England and Wales.    

The most successful regression equation used the proportion of particles in the 20-50 and 50-

2000 µm (Table 3.1, R2= 0.99). When the residuals were plotted, the majority were between 

+1 and -1 meaning that there is a very strong linear relationship (Figure 3.3) 

n= 680 b Standard error 

Intercept 
 

1.82 0.17 

CLASS 20 – 50 
 

-0.2 0.01 

CLASS 50 – 2000 
 

0.974 0.00 

R= 0.99 R²= 0.99 Adjusted R²= 0.99 

Table 3.1: Best regression analysis found from PSD classes for Scotland 
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Figure 3.3: Graphed residuals found from PSD classes for Scotland.  

 

When this regression was applied to England and Wales USDA data however, there was a 

large under prediction of the sand content up to 10%. This was attributed to the narrower 

range of silt and clay contents found in Scottish soils compared to those in England and Wales. 

Therefore, it was deemed to be inappropriate to apply the correction factor to the England and 

Wales USDA dataset.  

A comparison between 161 measurements of both USDA and BSTC sand contents from the 

NSIS Scottish data showed an average of 3.6% difference in sand content which is within 

quoted experimental error (Dane and Topp, 1976, p283). As a result, BSTC and USDA 

classifications were deemed to be sufficiently similar across both Scotland and England and 

Wales with respect to potential errors in DSM modelling. Thus, no corrections were applied to 

the England and Wales or Scottish USDA particle size class data. 
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3.4. Covariates used for DSM 

3.4.1. Soils (S) 

Although national soil maps have been produced at a common scale (1:250,000) covering 

both Scotland and England and Wales (Soil Survey of Scotland Staff, 1981, Hallett et al, 2017) 

there are some differences in how the map units were constructed and named as well as 

differences in soil taxonomy. 

The National Soil Map (NATMAP) of England and Wales is a digitised version of published 

1:250,000 scale maps (Hallett et al, 2017). This is based on published soil maps produced at 

various scales and on reconnaissance mapping of unsurveyed areas. The legend is based on 

the soil associations identified by the most frequently occurring soil series or major soil sub 

group and by the arrangement of additional environmental information (Hallett et al, 2017). 

The map units are further distinguished by number codes and by dominant soil sub groups.  

For this work, the dominant major soil group was used for DSM development and the soil 

polygons were preserved as a covariate. 

The 1:250,000 National Soil Map of Scotland is a digitised version of a series of 7 paper maps 

published in 1981 (Soil Survey of Scotland Staff, 1981) derived from a combination of new soil 

survey work undertaken between 1978 and 1981 and an interpretation of existing detailed 

mapping completed over a 30-year period prior to 1978. The soil map units can be described 

as soil 'complexes' and are based on repeating landforms found across Scotland which 

comprise one or more specific soil types. The landforms are further subdivided based on the 

geological parent material. For the DSM, information on the spatial distribution of the Major 

Soil Subgroup and soil association was used as covariates. The Major Soil Group in England 

and Wales is the equivalent of the Major Soil Subgroup in Scotland. Both datasets were 

converted to raster format and then resampled to 100 m resolution. 
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3.4.2. Climate (C) 

Global climate data was collected from World Climate, (World Climate, 2016; 

http://www.worldclim.org/), a global climate data website which provides free climate data for 

GIS and modelling purposes (Hijmans et al, 2005). Six of the climate datasets are commonly 

used in DSM and these were selected for use in this study (BioClim, 2016, 

http://www.worldclim.org/bioclim).  The scales for these in their original form are at around 

1km2 grid scales and found in raster form. 

The six parameters were: 

• BIO1 – Annual Mean Temperature 

• BIO2 – Mean Diurnal Range 

• BIO3 – Isothermality 

• BIO4 – Temperature Seasonality 

• BIO12 – Annual Precipitation 

• BIO15 – Precipitation Seasonality 

3.4.3. Organisms (O) 

Within GB, vegetation communities are a dominant soil forming factor. Therefore, because of 

this, land cover maps were used to represent the organisms soil forming factor. Land cover 

map (LCM2000) dataset is held by the Centre of Ecology and Hydrology CEH) and is derived 

from a classification of scenes from satellite image data covering GB. LCM2000 is categorised 

using classification from the Joint Nature Conservation Committee (JNCC) Broad Habitats, 

encompassing the full range of habitats across GB and Northern Ireland. LCM2000 was 

produced in both raster and vector formats at varying levels of detail and spatial resolution.  

Other datasets that were considered for use were the Land Cover Map (LCM1990) and Land 

Cover Map (LCM2007) also from the Centre of Ecology and Hydrology (CEH). The Land Cover 

for Scotland 1988 (LCS88) dataset based at the James Hutton Institute was also considered 

along with the European CORINE dataset found from the Joint Research Council. However, 

http://www.worldclim.org/
http://www.worldclim.org/bioclim
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after investigations, the subclasses from LCM2000 were the solitary dataset used for all DSM 

work in this PhD because it covers the whole of GB. This dataset was converted to a raster 

format and then resampled to 100 m resolution. 

3.4.4. Relief (R) 

Several Digital Terrain Models (DTMs) were tested to ascertain the most effective for use in 

DSM of GB. To investigate which DTM is best to use for the whole of GB, the 25 m DTM from 

the Joint Research Centre (JRC) as well as 5 m and 50 m DTMs from the Ordnance Survey 

(OS) were investigated. 

The 5 m DTM was obtained by a triangulated irregular network method. This was achieved by 

editing the mass points and breaklines or by automated techniques within a photogrammetric 

environment (Ordnance Survey, 2016a). The accuracy level of the 5 m DTM was found to be 

at 2 m root mean square error (RMSE). The 25 m DTM was obtained by an Advanced 

Spaceborne Thermal Emission Reflection Radiometer Global Digital Elevation Model (ASTER 

GDEM) and Shuttle Radar Topography Mission (SRTM) (Dufourmont, et al, 2014). The 

accuracy level of the 25 m DTM was found to be at 7 m root mean square error (RMSE).  The 

accuracy level of the 50 m DTM was obtained by a triangulated irregular network method. This 

was achieved by editing the mass points and breaklines or by automated techniques within a 

photogrammetric environment (Ordnance Survey, 2016b). The accuracy level of the 50 m 

DTM was found to be at 4m root mean square error (RMSE). 

Some other data was used for relief investigations. The CEH 1:50,000 digital river network 

dataset of Great Britain was produced as part of a long term project within the Institute of 

Hydrology between the mid-1970s and the late 1990s (Moore et al, 2000; 

https://catalogue.ceh.ac.uk/documents/7d5e42b6-7729-46c8-99e9-f9e4efddde1d). This 

dataset is constructed from source maps along with line work from rivers, lakes and estuaries 

to construct the river networks.   

https://catalogue.ceh.ac.uk/documents/7d5e42b6-7729-46c8-99e9-f9e4efddde1d
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The high-water line for GB can be accessed from the Boundary-Line file on the Ordnance 

Survey Open Data source page (Ordnance Survey, 2016c). The external bounding line of the 

Boundary-Line dataset is digitised by aligning low water springs to the extent of the sea.  

Catchment boundaries form part of the Integrated Hydrological Units (IHU) dataset for the UK 

(Centre for Ecology and Hydrology, 2016) were also utilised. The Hydrometric Areas are the 

coarsest units of the IHU in terms of spatial resolution. Figure 3.4 illustrates a flow chart for 

the process for DTM investigations. 

A variety of approaches and criteria were undertaken to understand what is contained within 

the DTMs. These involved calculating the number of sinks or depressions found in the DTMs 

and conducting difference maps by taking a hydrologically correct DTM (i.e. filling in all the 

depressions) and subtracting it from the original DTM to investigate how hydrologically correct 

the DTMs are and to how consistent they are at illustrating characteristics of the relief. 

 

Figure 3.4: DTM preparation process 

Two sink fill analyses methods: Planchon and Darboux (2001) and Wang and Liu were carried 

out for GB to investigate which method is more reliable at determining relief parameters and 

to examine which is better operationally. Planchon and Darboux (2001) use an algorithm which 

involves filling in depressions with a layer of water and then removing excess water. This 

method is perceived to be versatile as the depressions are replaced with a horizontal or 

sloping surface. Compared with other methods, the Planchon and Darboux method represents 



60 
 

increased consistency (Planchon and Darboux, 2001) as the algorithm is designed for 

analyzing the storage capacity of the soil and therefore, no attempt is made to determine the 

flow directions in the depressions. The other approach utilised is by Wang and Liu (2006) in 

which they utilise an algorithm to classify and fill surface depressions in DTMs. The original 

method has been improved to allow the creation of hydrologically rigorous elevation models. 

This means that it preserves a slope along the flow path of the DTM as well as filling in the 

depressions across the landscape. This is achieved by creating a minimum elevation 

difference between grid cells. Wang and Liu (2006) method is based on a novel concept of 

spill elevation and the least-cost search technique for each grid cell. This method is useful in 

identifying surface depressions, assigning flow directions and delineates watershed 

boundaries with one batch of processing. 

The findings from the sink analyses along with the number of sinks found for each DTM for 

GB are found in Table 3.3. What can be highlighted from this is that the 50 m DTM produced 

the fewest number of sinks and the 5 m DTM obtained the most.  It can also be noted that the 

DTM which produced the least difference output map between the filled DTM and the original 

DTM was at 50 m with the largest being at 5 m.  This means that the 50 m DTM can be 

assumed as the most consistent DTM to use. Although, the DTMs at 5 m scale and 20 m scale 

obtained more sinks, these may not be accounted for in terms of just water bodies (e.g. lakes 

and reservoirs). The sink analysis might have assumed that some of the sinks were being 

categorised as quarries or small depressions, thereby giving higher residual differences than 

might have been anticipated. Superimposing a river network on top of the original DTM is 

inappropriate for this work as when trialled it introduced large anomalies due to the low grid 

resolution of the DTM at 50 m and the high drainage density in some parts of GB.  
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DTM technique used GB 

 Number of Sinks 

5 m 244570 

25 m 16092 

50 m 79923 

 Difference maps 

5 m 0 – 245.62 

25 m 0 – 298.34 

50 m 0 – 176.23 

 Sink filling method (50 m DTM) 

Planchon and Darboux (2001) 0 – 176.08 

Wang Liu (2006) 0 – 324.44 

 

Table 3.2: DTM analyses for GB 

 

The terrain attributes from the 50 m DTM were derived using System for Automated 

Geoscientific Analyses (SAGA) GIS. This is a free GIS package which can be downloaded. 

The version used for these analyses was SAGA 2.3.0 (Conrad et al, 2015). The DTM was 

then used to derive 14 terrain attributes (Table 3.3) which were then resampled to 100 m grid 

scale in connection with Global Soil Map specifications. 

Terrain parameters 

Analytical Hillshading (AH) Catchment Area 

Slope Topographic Wetness Index (TWI) 

Aspect LS Factor (LSFact) 

Plan Curvature Channel Network Base Level (CNBL) 

Profile curvature Channel Network Distance 

Convergence Index (CI) Valley depth (VD) 

Closed Depressions Relative slope position (RSP) 

 

Table 3 3: List of terrain parameters obtained from sink analyses methods in SAGA GIS. 
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These terrain attributes are significant with respect to soil-landscape relationships as they 

have an influence on the control and distribution of physical, chemical and biological soil 

properties. The basic terrain analysis also considers Channel Network, Drainage Basins and 

Channel Density. Previous studies have illustrated that altering pixel sizes in computing terrain 

attributes used in DSM analysis (Smith et al, 2006), the importance of neighbourhood size 

(Zhu et al, 2001) and a combination of pixel and neighbourhood alterations (Roecker et al, 

2008) have an influence on how useful a DTM can be.  

Finally, it can be noted that the Planchon and Darboux (2001) method derived the least 

difference from the original DTM from the filled sinks compared to Wang Liu (2006) method 

and therefore this approach is used in this PhD study for obtaining subsequent relief 

parameters in SAGA GIS based upon the 50 m DTM. 

3.4.5. Parent Material (P) 

Geological information used for the DSM assessments have been obtained from the British 

Geological Survey (BGS). The DiGMapGB-250 dataset comprises geological map data at 

1:250,000 scale but only provides bedrock information; there is no superficial, mass movement 

or artificial theme available onshore at this scale. Thus, it does not consider glacial deposits 

or recent sedimentary deposits such as alluvium or peat. This dataset was converted to raster 

format and then resampled to 100 m resolution. 

3.4.6. Landscape Position (N) 

Two landscape approaches were considered for DSM modelling: Hammond Landscape 

classification and the Soil and Terrain (SOTER) database.  

The Hammond classification was created by the American Edwin H. Hammond, who originally 

classified landforms across the United States. His method of determining landform units is 

achieved by examining landforms within a square window of 6 x 6 miles on a 1:250,000 scale 

topographic map. From this, three elements are identified: slope, local relief and profile type. 
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These factors are categorised, and landform units are defined through combinations of these 

elements (Hrvatin and Perko, 2009).  

The first part of the classification is slope unit which is defined by calculating the percentage 

of an area for each window which had a slope less than 8% (Hrvatin and Perko, 2009). This 

is categorised into 4 levels: 

• Above 80% gently sloping terrain 

• 50-80% gently sloping terrain 

• 20-50% gently sloping terrain 

• Below 20% gently sloping terrain 

The second part of the classification is determined by local relief which is the difference 

between the maximum and minimum elevation (Hrvatin and Perko, 2009). This is categorised 

into 6 levels. 

• 1: 0 – 30 m  

• 2: 30 – 90 m 

• 3: 90 – 150 m  

• 4: 150 – 300 m 

• 5: 300 – 900 m 

• 6: 900 – 1500 m 

The final element of Hammond’s classification focusses on profile type. This is categorised 

into 4 levels by calculating the percentage of gently sloping terrain lying below or above the 

window’s average elevation (Hrvatin and Perko, 2009).  

• > 75% of gently sloping terrain lying in lowland areas. 

• 50-75% of gently sloping terrain lying in lowland areas. 

• 50-75% of gently sloping terrain lying in upland areas. 

• > 75% of gently sloping terrain lying in upland areas. 
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By combining these three features, landform units are defined and set out on a grid. Hammond 

presented the classification results through boundaries between the landform units defined 

subjectively by edges of plains, low mountains, and large relief forms. As a result, the map is 

coarse in nature and highly subjective (Hrvatin and Perko, 2009). 

The Soil and Terrain SOTER methodology is based on terrain and associated lithology. The 

classifications for the four terrain layers are described below (Figure 3.5). 

 

Figure 3.5: SOTER process from Dobos et al, (2010). 

 

The SOTER modified classification scheme for acquiring a continuous slope layer is calculated 

from the slope function and uses the average maximum technique (Burrough, 1986). This is 

then classified into 7 SOTER slope class categories. The Relief Intensity (RI) classification is 

the difference in altitude between the highest and lowest points within a specified distance. 

The focal range of the relief is calculated and then reclassified into four RI SOTER classes. 

The use of a DTM makes it possible to derive an artificial drainage network which 
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characterises the landscape. Dobos et al, (2005) refer to this as Potential Drainage Density 

(PDD). The flow direction and accumulation are obtained, and drainage is then derived from 

flow accumulation. As a result, the PDD is derived from focal sum modelling of the drainage 

based on the relief in the area. PDD values obtained from this are reclassified into 2 SOTER 

classes. Hypsometry (elevation) is land elevation based in relation to sea level and can be 

computed into 10 classes.  These 4 components (slope, RI, PDD and hypsometry) are then 

combined to get final SOTER Landform Type (Dobos et al, 2010).  

Both Hammond and the Soil Terrain Database (SOTER) are landscape map units which are 

derived from the DTM and used in this PhD project. These datasets were both converted to 

raster format and then resampled to 100 m resolution. 

Thus, after reviewing and testing the suitability of various covariates as input datasets to 

develop a DSM model for GB, the following were selected (Table 3.4). 
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Covariate used Original Scale Resampled to 100 m? 

Dominant Major Soil sub group 
(Scotland) (S) 

1:250,000 Y 

Dominant Major Soil Group 
(England and Wales) (S) 

1:250,000 Y 

Annual Mean Temperature (AMT) 1 km2 Y 

Annual Precipitation (AP) 1 km2 Y 

Isothermality (ISO) 1 km2 Y 

Mean Diurnal Range (MDR) 1 km2 Y 

Seasonal Precipitation (SP) 1 km2 Y 

Seasonal Temperature (ST) 1 km2 Y 

Land Cover Map (LCM2000) (O) 1 km Y 

Aspect (R) 100 m Y* 

Slope (R) 100 m Y* 

Analytical Hillshading (R) 100 m Y* 

Convergence Index (R) 100 m Y* 

Longitudinal Curvature (R) 100 m Y* 

Cross Sectional Curvature (R) 100 m Y* 

Land-Slope Factor (R) 100 m Y* 

Topographic Wetness Index (R) 100 m Y* 

Relative Slope Position (R) 100 m Y* 

Valley Depth to Channel Network 
(R) 

100 m Y* 

Channel Network to Base Level (R) 100 m Y* 

ROCK (P) 1:250,000 Y* 

SOTER (N) 100 m Y* 

HAMMOND (N) 100 m Y* 

 

Table 3.4: Main covariates used for DSM development work carried out in Chapter 4.  

*created from 50 m DTM and resampled to 100 m. 
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4 EVALUATION OF TWO MODEL TYPOLOGIES AND 

THEIR BEHAVIOUR IN GENERATING SOIL 

PROPERTY PREDICTIONS: STUDIES FROM PILOT 

AREAS ACROSS GB 

Abstract 

Digital Soil Mapping (DSM) applies observed field data to a range of statistical models and 

covariates to produce mapping outputs. To quantify soil patterns associated within areas, 

modelling methods are applied. When considering which model to use in DSM, it is 

fundamental to investigate the model performance during training and development phases. 

The input data and how models behave are fundamentally important to modelling soil 

properties.  

This chapter explores two critical components of DSM model development: model 

performance and model extrapolation to generate predictions at unsampled locations. This 

study compares Boosted Regression Trees (BRTs) and Multivariate Adaptive Regression 

Splines (MARS) models for mapping loss-on-ignition (LOI), soil pH and texture at 2D and 3D 

across two comparable GB pilot areas. These areas were selected based on having similar 

soil types, relief, land cover and land use. Modelling of these soil properties was focussed at 

six standard depth intervals, using GlobalSoilMap.net criteria. DSM maps were generated 

across the pilot areas at 100 m resolution. The main factors influencing the spatial distribution 

of these soil properties for all depths for both MARS and BRT models were soil maps, bedrock 

geology, land cover map, topographic wetness index and land classification classes. Our 

results suggest that MARS models produce better model performances than BRTs for 

predicting soil properties within the training data across the pilot areas at training level. 

However, when you deploy MARS models to areas beyond the training environment, they 
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extrapolate outside the suitable environment and as a result produce soil property values 

which do not make sense. BRT models, despite not being as strong statistically in a training 

capacity, are more consistent in illustrating relationships between soil properties and 

associated pedology. Future research will focus on improving the predictions of these soil 

properties to fully encapsulate the range of soils across GB. 

4.1. Introduction  

Digital Soil Mapping (DSM) has been discussed as a popular approach for producing improved 

soil property maps at finer resolution. This methodology uses observed field data and 

associated environmental covariates and a range of mathematical models to predict soil 

properties (Dobos et al, 2006; Behrens and Scholten, 2006). DSM has become useful because 

of increased costs of conducting soil surveys and a dwindling number of surveyor’s who have 

the necessary expert knowledge (McBratney et al, 2003; Hudson, 1992).  DSM has many 

advantages especially its efficiency at mapping and modelling soil properties and its ability to 

quantify the associated uncertainties (McBratney et al, 2003; Carré et al, 2007; Hudson, 1992, 

Minasny and McBratney, 2016). To quantify these soil properties, modelling methods—

defined as ‘the use of mathematical equations to simulate and predict real events and 

processes’ (Grunwald, 2009) – are applied. These are created by developing statistical 

relationships between observed data and covariates (often indicated as model ‘training’) and 

applying these to generate predictions at unsampled locations (often represented as model 

‘deployment’).  

Grunwald (2009) conducted an exhaustive meta-analysis of models used in DSM, focusing 

on the range of mathematical models employed across a variety of geographical regions at 

various scales. The selection of models varies but generally two types of modelling typology 

are used. The first category of models is based on recursively partioning the predictor space 

(e.g. Classification Regression Trees (CART) (Breiman, 1984), Random Forests (RFs) 

(Breiman, 2001) and cubist regression model methods (Kuhn et al, 2012)). These models can 
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capture complex interaction structures in a dataset and combine trees by ensemble methods 

to reduce the associated variance (Hastie et al, 2009; Nussbaum et al, 2018).  A second group 

of models are regressive in nature, where the established relationship is linear (e.g. multiple 

regression (Hastie et al, 2009), partial least squares regression (PLSR) (Viscarra Rossel and 

Behrens, 2010) and neural networks (Behrens et al, 2005)). Certain mathematical models 

have characteristics which affect their performance. For instance, recursive partitioning 

models tend to overfit and regression-based models tend to be less effective where there are 

complex relationships present.  

When assessing which appropriate model should be used in DSM, the model with the best 

performance parameters obtained during training is usually used. However, several 

considerations which affect model performance need to be evaluated. The first of these refers 

to the observed data for modelling soil properties. Observed data is usually represented by a 

soil core or representative profile which contains associated soil characteristics. As the model 

being used will be at a specific scale, how it applies to covariates with different grid scales will 

contribute to how well it performs. Furthermore, this will be dependent on location (Cavazzi et 

al, 2013) and is discussed extensively elsewhere (Leempoel et al, 2015; Pain, 2005; 

Thompson et al, 2001). 

Model performance is assessed through cross-validation, either by retaining a random section 

of the data for validation, or by using a truly independent validation dataset. In all cases, the 

validation is affected by the scale of both the covariates and the validation dataset. These are 

known to be associated to the data model which will contribute to experiencing uncertainty 

and have been explored by others previously (Cavazzi et al, 2013; Corstanje et al, 2008).  

A second aspect to consider when assessing model performance is when the models are 

applied to a grid of covariates i.e. moving from model training to model deployment. During 

this stage, the model typology is important as its behaviour under deployment is entirely 

dependent on the characteristics.  
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In this chapter, two crucial components of DSM model development are explored: i) model 

performance under training circumstances and ii) model deployment where the model is used 

to generate predictions at unsampled locations. This is done using two model types: one using 

a recursive partitioning approach (Boosted Regression Trees (BRTs)) and another which 

characterizes a regression-based methodology (Multivariate Adaptive Regression Splines 

(MARS)). The model performance and behaviour are illustrated during training phase and 

during model deployment. A hypothesis to this research is that good model performance at 

training level cannot be taken as an assurance of good model performance when deployed to 

unsampled locations.  

This study will focus on comparing MARS and BRT models across two pilot areas in Scotland 

and England and Wales.  Soils data found in these pilot areas are held by the successor 

Institutions of the Soil Survey of Scotland and Soil Survey of England and Wales (Lilly et al, 

2010; Hallett et al, 2017). Both national Soil Surveys collected ‘representative profiles’ to 

characterize soil mapping and taxonomic units. Furthermore, profile datasets from both 

Surveys have objective, grid samples collected to provide a statistical assessment of soil 

characteristics (National Soil Inventories). These data sources accompanied with associated 

sampling and methodologies provide a unique opportunity to test BRTs and MARS modelling 

performance with the same covariates in comparable soil-land use environments. This helped 

to test which DSM method is best at predicting soil properties. Outcomes from this will reflect 

some of the issues of producing consistent DSM across larger or even global scale situations. 

4.2. Models used 

4.2.1. Boosted Regression Trees (BRTs) 

One of the most commonly used modelling approaches for predicting soil properties are 

Classification and Regression based systems. Classification and Regression Trees (CART) 

are a rule-based method that generates a binary tree through ‘recursive partitioning’, a splitting 

process which creates a series of decision trees based on the predictor variables (Breiman et 
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al, 1984; Prasad et al, 2006).  Breiman et al, (1984) illustrate that since the 1980s, statisticians 

have developed CART providing new features such as Random Forests (RFs) and Boosted 

Regression Trees (BRTs) (Sutton, 2005).  

BRTs are statistical models which create multiple boot-strapped regression trees without 

pruning and averaging the outputs (Elith et al, 2008). The boosting associated with BRT 

models refers to improving the accuracy of models by taking an average of many rules 

associated with variables. This will increase the performance of a classifier and produce low 

error rates (Bauer and Kohavi, 1999; Hastie et al, 2009). BRTs uses two algorithms: one which 

utilises regression trees from the classification and regression tree (decision tree) and the 

other involves building the boosting and combining the models (Elith et al, 2008).  

In the first algorithm, the tree-based models partition the predictor space using a series of 

rules to identify areas where similar relationships between predictors lie. A constant is 

assigned to each area and regression trees are fitted using the mean response for 

observations in the area being investigated. This is assuming that the associated errors are 

normally distributed (Elith et al, 2008). The predictor variables in a dataset are split by a binary 

approach which are split further for the best model fit to be achieved. This is repeated many 

times until the prediction error is minimized (Hastie et al, 2009).  

Compared to Random Forests, BRTs are more likely to be robust against over-fitting due to 

using randomly selected subsamples to fit the data at each segment (Friedman, 2002; Hastie 

et al, 2009). Another advantage of using BRTs is that a higher predictive accuracy and better 

interpretation of the relationships between variables is achieved (Friedman, 1991). There is 

however an overemphasis on categorical variables in comparison with continuous variables 

(Prasad et al, 2006).  

4.2.2. Multivariate Adaptive Regression Splines (MARS) 

The second most commonly used approaches in DSM modelling are those that are 

regression-based i.e. partial least square regression (PLSR) or multiple regression (Grunwald, 
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2009). Multivariate Adaptive Regression Splines (MARS) models are an example of this. 

MARS have become a popular choice in data mining because these models do not assume 

any type of relationship (e.g. linear, logarithmic) between the dependent and independent 

variables (Friedman, 1991). MARS models construct a relationship from a set of coefficients 

and basis functions which are determined from a regression of the data. Basis functions are 

known by two-sided truncated functions for linear or nonlinear expansion which show 

relationships between response and predictor variables (Friedman, 1991). These basis 

functions are known as (t-x) + and (x-t) + where t refers to parts of the linear regression which 

are determined from the data (Hastie et al, 2009).  

MARS models choose a weighted sum from a set of basis functions that span all values from 

each predictor in a dataset. The algorithm then examines the input space and predictor values 

alongside interactions between variables. During this process, an accumulated number of 

basis functions are added to help maximize an overall goodness-of-fit. As a result, MARS 

determines the most important independent variables and significant interactions (Hastie et 

al, 2009).  

However, one difficulty arising from MARS models is how sensitive they are at extrapolating 

relationships from the basis functions (Prasad et al, 2006). However, Nawar et al, (2015) argue 

that MARS models are more robust at predicting soil properties than other models such as 

Partial Least Square Regression (PLSR).  MARS models are flexible in fitting complex, non-

linear relationships and investigating the interactions and effects of certain variables, thus 

increasing model performance, something which PLSR does not do (Ghasemi et al, 2013). 

MARS is known to be better at estimating all soil properties than PLSR as it overcomes 

deviations that occur between predicted values and measured soil values at higher ranges 

(Prasad et al, 2006).  
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4.3. Study Areas 

The two pilot study areas used are situated in the north eastern part of the Midland Valley 

(SCO), and west England and eastern Wales (EW) (Figure 4.1). These two areas were 

selected as they contain similar characteristics in terms of soil types, landscapes, land cover 

and land use (Veronesi et al, 2014). 

 

Figure 4.1: Location of the SCO and EW test areas a) with soil profile locations used for 

example pH training data in blue (b) and (c). 

The SCO pilot area has a size of 5,384km2 and covers the land between the Highland 

Boundary Fault in the north and the Forth Estuary in the south and from the North Sea in the 

east to River Earn in the west. Major population centres found in this area are Dundee, Perth 

and Kirkcaldy. The SCO area is comparable to the landscape units identified for stratification 

of Scotland’s landscape by Scottish Natural Heritage (SNH, 2002). Within the SCO area, there 

is a variety of contrasting soil types ranging from brown earths, humus-iron podzols, non-

calcareous gleys and peaty soils (blanket and basin peats, peaty gleys and peaty podzols). 
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The most extensive land cover types found in SCO constitute coniferous woodland, arable 

and improved grassland (Fuller et al, 2000). 

The EW pilot area encompasses an area of 13,948km2 between the major population centres 

of Liverpool, Birmingham and Shrewsbury. There is also a variety of soils ranging from podzols 

on sandy parent materials, slowly permeable or seasonally waterlogged clay rich soils to 

freely draining loamy soils. The most extensive land cover types in EW are arable, coniferous 

woodland and mountain, heath and bogs (Fuller et al, 2000). 

4.4. Datasets  

For the EW pilot area, the representative soil profiles were used for training the models. These 

representative profiles were sampled to characterise the soil series mapped in England and 

Wales which were collected from 1935 to around 2000 (Hallett et al, 2017). For the SCO pilot 

area, the representative profiles in the Scottish Soils Database of the Soil Survey of Scotland 

were used. The main horizons of representative profiles were sampled, and the samples 

analysed to determine a range of soil properties. The soil properties selected for modelling in 

both study areas were loss-on-ignition (LOI) (as an indicator for soil organic carbon), soil pH 

and texture. These properties were chosen based on a survey of stakeholder needs (Campbell 

et al, 2017) and as they were determined by similar laboratory methods (Macaulay Institute 

for Soil Research, 1971; Avery and Bascomb, 1982). The numbers of samples available for 

each soil property, for each pilot area, at depth, are shown below (Table 4.1). 
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Soil 
property 

GSM depth 
range (cm) 

Number 
of 
samples 

(SCO) 

Mean SD Observed 
Range 

Number of 
Samples 
(EW) 

Mean SD Observed 
range 

LOI 0-5 949 21.87 25.09 0.43 – 100.00 936 9.91 9.17 2.74– 88.43 
 5-15 948 15.98 17.84 0.45 – 96.81 917 8.22 5.56 2.61– 66.80 

 15-30 941 9.28 10.99 0.25 – 95.81 839 6.08 4.64 0.00– 79.15 

 30-60 929 5.56 8.46 0.31 – 99.79 585 4.21 5.96 0.00– 99.15 

 60-100 829 4.21 7.54 0.21 – 99.44 228 4.12 6.00 0.00– 66.04 

 100-200 361 3.33 2.45 0.35 – 21.63 74 4.83 8.68 0.94– 66.01 

pH 0-5 949 5.44 1.02 3.30 – 8.58 1096 5.96 1.00 2.34 – 8.36 

 5-15 948 5.47 0.99 3.30 – 8.58  1095 6.01 0.98 3.12 – 8.75 

 15-30 932 5.56 0.90 3.42 – 8.26 1092 6.17 0.99 3.32 – 8.56 

 30-60 920 5.70 0.85 3.42 – 8.36 1063 6.40 1.05 2.74 – 8.75 

 60-100 829 5.85 0.85 3.23 – 8.74 1063 6.79 1.17 2.26 – 9.02 

 100-200 361 6.03 0.92 2.84 – 8.63 371 6.77 1.10 4.08 – 8.75 

Sand 0-5 892 53.43 16.53 0.00 – 100.00 1020 36.70 23.70 0.00 – 93.14 

 5-15 892 53.68 16.62 0.00 – 100.00 1019 36.86 23.84 0.00 – 94.65 

 15-30 890 55.29 17.11 0.00 – 100.00 1013 37.11 24.55 0.00 – 96.96 

 30-60 879 58.90 18.93 0.00 – 100.00 987 36.45 26.52 0.00 – 96.78 

 60-100 781 60.19 20.39 0.00 – 100.00 902 36.04 29.09 0.00 – 99.41 

 100-200 325 62.25 22.83 0.00 – 99.22 347 39.00 31.35 0.00– 100.00 

Silt 0-5 892 28.82 12.22 0.00 – 84.97 1020 38.49 17.24 3.00 – 80.74 
 5-15 892 28.69 12.15 0.00 – 78.00 1019 38.30 17.27 2.76 – 80.16 

 15-30 890 27.65 12.02 0.00 – 78.07 1013 37.77 17.49 0.03 – 83.09 

 30-60 879 25.28 12.57 0.00 – 77.61 987 36.56 18.07 1.63 – 81.50 

 60-100 781 24.50 13.41 0.00 – 80.83 902 35.94 19.48 0.17 – 87.53 

 100-200 325 23.86 15.14 0.00 – 71.31 347 35.47 21.94 0.00 – 98.71 

Clay 0-5 892 13.61 8.05 0.00 – 41.97 1020 24.88 14.33 0.00 – 89.00 

 5-15 892 13.83 8.03 0.00 – 44.96 1019 24.92 14.32 0.13 – 89.00 

 15-30 890 14.54 8.50 0.00 – 48.86  1013 25.14 15.16 0.59 – 89.00 

 30-60 879 14.69 9.53 0.00 – 57.77 987 16.69 26.98 1.04 – 89.00 

 60-100 781 14.71 9.89 0.00 – 47.89 902 28.11 17.36 0.06 – 89.00 

 100-200 325 13.31 10.11 0.00 – 48.99 347 25.83 17.31 0.00 – 97.43 

Table 4.1: Sample size and summary statistics for each modelled soil property at depth 

specified by GlobalSoilMap for the SCO and EW pilot areas. 

4.4.1. Comparison of Laboratory and Analytical Methods 

As this study has utilised soil property data obtained by a range of laboratory methods 

obtained from two different soil surveys, it was necessary to establish what was required to 

produce a unified soil dataset before modelling and mapping in the SCO and EW pilot areas.  

LOI was measured using ignition at 850°C for 30mins for the representative profiles for 

England and Wales (Hallett et al, 2017; Avery and Bascomb, 1982) and at 900°C on the 
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representative profiles for Scotland (Macaulay Institute for Soil Research, 1971). Findings 

from Chapman et al, (2013) illustrated that LOI was a more consistent measurement of soil 

carbon for Scottish soils than the determination of carbon concentration. As a result, the 

England and Wales data was examined to assess compatibility. These data were originally 

presented as carbon concentration data. However, by applying a formula (LOI = 0.5 / OC) a 

unified dataset of LOI was developed for both datasets.  

In Scotland, the pH of water is measured on a soil to water ratio of 1:3 (Macaulay Institute for 

Soil Research, 1971) and for measuring the pH of CaCl2, 0.01M CaCl2 is added to the 

suspension. In England and Wales, measurements are made on a soil to water ratio of 1:2.5 

and for measuring the pH of CaCl2, 0.01M CaCl2 is added to the suspension (Avery and 

Bascomb, 1979). The pH data from Scotland and England and Wales were noted to overlap 

suggesting no systematic bias for soil pH despite the different methods used across Scotland 

and England and Wales.  

Particle size distribution (PSD) in the England and Wales dataset was derived using the pipette 

method. This involves breaking up soil particles with hydrogen peroxide (Avery and Bascomb, 

1979). PSD samples with organic carbon content greater than 15% were not determined as 

these are classified as organic soils. PSD in Scotland was measured using the hydrometer 

technique (Macaulay Institute for Soil Research, 1971). Different particle size classes are used 

in Scotland than in the England and Wales. In England and Wales, particle size measurements 

are based on the British Soil Texture Classification (BSTC) whereas in Scotland, texture 

classes are measured using the United States Department of Agriculture (USDA) 

classification. The primary difference is the cut off used between the silt and sand fractions 

where the USDA particle size distribution is (<2 (clay), 2-50 (silt), 50-2000 (sand in microns) 

and BSTC is <2 (clay), 2-60 (silt), 60-2000 (sand µm). From comparison work done, BSTC 

and USDA classifications were found to be sufficiently similar across both Scotland and 

England and Wales. The differences between USDA and BSTC sand and silt showed an 

average of 3.6% difference which is within quoted experimental error (Dane and Topp, 1976, 
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p283). Thus, no corrections were applied to either England and Wales or Scottish USDA 

particle size class data. Therefore, there is an assumption that BSTC and USDA PSD are 

comparable in both EW and SCO pilot areas.  

4.4.2. Environmental Covariates  

To estimate soil properties at unsampled locations across the SCO and EW pilot areas, 24 

grids of environmental covariates were derived based on the SCORPAN methodology 

(McBratney et al, (2003)). These environmental covariates included:  

• Scotland: soil maps containing dominant major soil sub group (MSSG) (Hutton) and 

for England and Wales: major soil group (MSG) (LandIS). Both datasets are 

produced on a spatial scale of 1:250,000. MSSG and MSG are on the same level of 

classification in the soil hierarchies for Scotland and England and Wales and so are 

directly comparable. 

• Climate variables for both pilot areas including Annual Precipitation (AP), Annual 

Mean Temperature (AMT), Isothermality (ISO), Mean Diurnal Range (MDR), 

Seasonal Precipitation (SP) and Seasonal Temperature (ST). These are available 

from www.worldclimate.org  (World Climate, 2016) 

• Land Cover Map 2000: (Fuller et al, 2000). This is available from: 

https://www.ceh.ac.uk/services/land-cover-map-2000  

• A 50m Digital Terrain Model (DTM) created by Ordnance Survey and constructed 

from the 1:50,000 topographic maps. From this, 12 derivatives were created and 

obtained using SAGA GIS (Conrad et al, 2015). These were Aspect, Slope, 

Analytical Hillshading, Convergence Index, Longitudinal Curvature, Cross Sectional 

Curvature, Land-Slope Factor, Topographical Wetness Index, Relative Slope 

Position, Valley Depth, Valley Depth to Channel Network, Channel Network Base 

Level. 50m DTM is available from: https://www.ordnancesurvey.co.uk/business-and-

government/products/terrain-50.html (OS Terrain 50, 2018)  

http://www.worldclimate.org/
https://www.ceh.ac.uk/services/land-cover-map-2000
https://www.ordnancesurvey.co.uk/business-and-government/products/terrain-50.html
https://www.ordnancesurvey.co.uk/business-and-government/products/terrain-50.html
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• Digital Geological Map of Bedrock (DigMap250; ROCKS): from the British Geological 

Survey at a scale of 1:250,000. This is available from: (BGS, 2018) 

http://www.bgs.ac.uk/products/digitalmaps/digmapgb_250.html  

• SOTER (World Soil and Terrain Digital Database) based on two primary soil 

formation phenomena: terrain and lithology. The classifications for the four terrain 

layers (slope, relief intensity, potential drainage density and hypsometry) are 

described in Dobos et al, (2010). These four components are then combined to get 

final SOTER Landform Type.  

• Hammond Land Classification: information based on slope, local relief and profile 

type (Hrvatin and Perko, 2009).   

Each covariate raster was resampled to a common resolution and extent of 100 m.  

4.5. Modelling and mapping of soil properties  

The variation of soil properties was modelled and mapped and modelled in 2D and 3D across 

the SCO and EW pilot areas. Firstly, depth functions were fitted for the representative soil 

profiles located in these pilot areas using an equal area mass preserving spline for each soil 

property (Bishop et al, 2001; Malone et al, 2009) at six standard soil depths (0-5, 5-15, 15-30, 

30-60, 60-100, 100-200 cm), as defined by GlobalSoilMap.net specifications (GSM) 

(GlobalSoilMap, 2011) (Table 4.1). To produce these, R packages ‘GSIF’ (Hengl et al, 2017), 

‘aqp’ (Beaudette et al, 2018), ‘plyr’ (Wickham, 2016) and ‘sp’ (Pebesma and Bivand, 2005) (R 

Core Team, 2013) were used. These datasets were inserted into ArcMap 10.2.1 and point 

shapefiles were created for each of the soil properties at specific GlobalSoilMap.net depth 

intervals across the whole of Scotland and England and Wales. These point shapefiles were 

then clipped to the SCO and EW pilot areas and sampled for each depth alongside a list of 

covariates. These datasets were saved as text files and implemented into R to be tested using 

BRT and MARS models.  

http://www.bgs.ac.uk/products/digitalmaps/digmapgb_250.html
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After removal of null values and samples within 100 m of each other, the representative profile 

data was used for training the MARS and BRT models for the SCO and EW pilot areas. For 

MARS models, the ‘earth’ (Millborrow, 2017) and ‘epiR’ (Stevenson, 2015) packages were 

used. For the BRT models, ‘dismo’ (Hijmans et al, 2011) and ‘gbm’ (Ridgeway, 2017) 

packages were used. Statistical indices (e.g. R2, RMSE) were recorded alongside predicted 

data range and observed data range.  

After evaluating the performance of the training datasets, this data was applied to a 

deployment dataset created using ‘rgdal’ (Bivand et al, 2015), ‘raster’ (Hijmans, 2016) and ‘sp’ 

packages (Pebesma et al, 2018). This produced a stack of rasters in a table with each column 

representing a given covariate at 100 m resolution alongside predicted soil property values. 

These were used to generate raster maps within the SCO and EW pilot areas. The 

construction of these maps was generated at 100 m resolution, using ‘raster’ (Hijmans and 

Etten, 2013) package, saved as a TIF file and then transported into ArcMap 10.2.1. The R 

code used for this can be found in Appendix 7.  

4.6. Results and Discussion 

4.6.1. Main influencing covariates 

The main covariates which influence predicting soil LOI, pH and texture properties across both 

pilot areas and at all depth were the soil types (MSSG and MSG), bedrock geology (ROCKS), 

land cover map (LCM2000), topographic wetness index (TWI), SOTER and Hammond. For 

both models, this was done by firstly determining which covariates are continuous or 

categorical. Then the models were run to assess the optimal performance of each. As a result, 

both BRT and MARS models determined how important each covariate is in influencing soil 

properties across the pilot areas in 2D and 3D. 
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4.6.2. BRT and MARS model comparisons 

For LOI in both SCO and EW pilot areas, overall, the MARS model was better at predicting 

LOI values than the BRT model within the training dataset (see Tables 4.2 and 4.3). The R2 is 

better for MARS than BRT at many depths and the RMSE is lower. In the SCO pilot area at 0-

5 cm depth the BRT model produces a better R2 than the MARS model (0.70 for BRT 

compared to 0.64 for MARS). However, despite this, MARS have a better overall model 

performance with R2 values which range from 0.53 to 0.76 in comparison to values for BRT 

R2 values 0.38 to 0.70. Similar model performances are evident for EW where MARS has a 

better model performance with R2 values ranging from 0.54 to 0.94 in comparison to values 

for BRT R2 values 0.13 to 0.47. RMSE values are also lower for the MARS model (range from 

2.20 to 5.18) in comparison to BRT model (range from 4.34 to 7.39). The BRT model did not 

work well for depths below 30-60 cm for the EW pilot area due to a lack of variability in the 

dataset reflecting sparse and low value data at depth. In the subsoil there are much lower 

values of LOI (unless the soil is a peat). In the deployment table for EW, for example, there 

are near to or zero values in the observed LOI ranges which, despite a change in the model 

parameters, presented modelling issues so N/A values were recorded. 

For pH in both the SCO and EW pilot areas, the models produced different results compared 

with LOI. There is agreement that the MARS model provides better predictions than the BRT 

model, but it is not as obvious as with the LOI results. For instance, in SCO pilot area, BRT 

models produce better R2 values in the upper depths (0-5, 5-15, 15-30 cm). However, in 

general, the R2 values between the models are very similar for both pilot areas. The R2 for 

both models are around 0.50 at most depths and RMSE values range from 0.69 to 1.00. 

For sand, silt and clay in both pilot areas, the results for the BRT and MARS models are 

similar. In the SCO pilot area, BRT models produce a better R2 for sand at most depths but 

produce much higher RMSE in comparison to MARS. For Silt, the R2 is similar for both MARS 

and BRT but comparable to sand at all depths, with the RMSE higher for BRT than it is for 

MARS. Clay likewise showed similar results with EW pilot area results for SCO. Overall, the 
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RMSE for the texture components is higher for BRT than it is for MARS. However, unlike the 

SCO pilot area, the clay component does produce higher RMSE at depths below 30 cm for 

MARS than it does for BRT.  
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 LOI pH Sand Silt Clay 

 MARS BRT MARS BRT MARS BRT MARS BRT MARS BRT 

Depth 

(cm) 
R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE 

0-5 0.64 

 

15.06 

 

0.70 

 

14.54 

 

0.60 

 

0.65 

 

0.64 

 

0.63 

 

0.61 

 

10.3 

 

0.65 

 

10.24 

 

0.59 

 

7.81 

 

0.59 

 

8.23 

 

0.51 

 

5.66 

 

0.47 

 

6.21 

 

5-15 0.70 

 

9.81 

 

0.66 

 

11.54 

 

0.60 

 

0.62 

 

0.66 

 

0.59 

 

0.64 

 

9.99 

 

0.67 

 

9.38 

 

0.60 

 

7.68 

 

0.61 

 

8.07 

 

0.49 

 

5.72 

 

0.50 

 

5.96 

 

15-30 0.73 

 

5.76 

 

0.52 

 

8.45 

 

0.61 

 

0.56 

 

0.63 

 

0.57 

 

0.61 

 

10.64 

 

0.62 

 

11.06 

 

0.60 

 

7.58 

 

0.60 

 

7.99 

 

0.52 

 

5.92 

 

0.48 6.49 

30-60 0.73 

 

4.38 

 

0.38 

 

7.33 

 

0.60 

 

0.54 

 

0.59 

 

0.57 

 

0.60 

 

12.04 

 

0.59 

 

12.61 

 

0.55 

 

8.40 

 

0.56 

 

8.78 

 

0.52 

 

6.59 

 

0.49 

 

7.15 

 

60-100 0.76 

 

3.68 

 

0.46 

 

6.42 

 

0.57 

 

0.56 

 

0.54 

 

0.61 

 

0.51 

 

14.23 

 

0.56 

 

14.27 

 

0.52 

 

9.33 

 

0.54 

 

9.68 

 

0.44 

 

7.39 

 

0.46 

 

7.78 

 

100-200 0.54 

 

1.66 

 

0.51 

 

1.98 

 

0.40 

 

0.72 

 

0.52 

 

0.75 

 

0.47 

 

16.68 

 

0.57 

 

17.62 

 

0.40 

 

11.75 

 

0.51 

 

12.55 

 

0.48 

 

7.32 

 

0.51 

 

8.22 

 

 

Table 4.2:  Results from BRT and MARS modelling for predicting soil properties in SCO pilot area at GSM specified depths.  
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 LOI pH Sand Silt Clay 

 MARS BRT MARS BRT MARS BRT MARS BRT MARS BRT 

Depth 

(cm) 

R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE 

0-5 0.68 

 

5.18 

 

0.47 

 

7.39 

 

0.52 

 

0.70 

 

0.51 

 

0.73 

 

0.72 

 

12.62 

 

0.73 

 

12.73 

 

0.73 

 

8.91 

 

0.73 

 

9.17 

 

0.63 

 

8.68 

 

0.62 

 

9.49 

 

5-15 0.52 

 

3.83 

 

0.36 

 

4.63 

 

0.53 

 

0.67 

 

0.53 

 

0.71 

 

0.74 

 

12.21 

 

0.73 

 

12.75 

 

0.74 

 

8.86 

 

0.74 

 

9.10 

 

0.64 

 

8.63 

 

0.62 

 

9.24 

 

15-30 0.54 

 

3.16 

 

0.29 

 

4.34 

 

0.54 

 

0.68 

 

0.52 

 

0.72 

 

0.69 

 

13.77 

 

0.72 

 

13.43 

 

0.74 

 

8.91 

 

0.73 

 

9.34 

 

0.59 

 

9.70 

 

0.60 

 

10.05 

 

30-60 0.72 

 

3.17 

 

0.14 

 

5.82 

 

0.58 

 

0.68 

 

0.57 

 

0.71 

 

0.67 

 

15.32 

 

0.68 

 

15.30 

 

0.71 

 

9.79 

 

0.70 

 

10.14 

 

0.54 

 

11.32 

 

0.59 

 

11.09 

 

60-100 0.88 

 

3.11 

 

N/A N/A 0.26 

 

1.00 

 

0.28 

 

1.08 

 

0.62 

 

18.03 

 

0.65 17.95 

 

0.64 

 

11.73 

 

0.64 

 

12.06 

 

0.55 

 

11.60 

 

0.57 

 

12.12 

 

100-200 0.94 

 

2.21 

 

N/A N/A 0.63 

 

0.67 

 

0.60 

 

0.81 0.59 

 

20.03 

 

0.67 

 

19.74 

 

0.68 

 

12.35 

 

0.69 

 

13.59 

 

0.59 

 

11.14 

 

0.52 

 

13.65 

 

 

Table 4.3: Results from BRT and MARS modelling for predicting soil properties in EW pilot area at GSM specified depths. 
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4.6.3. Mapping outputs for MARS and BRT models  

From the R2 and RMSE values and in terms of our understanding between observed predicted 

values, MARS is the better model to use and subsequently deploy to training data for LOI to 

a larger area. However, for pH and texture, both models are comparable for both MARS and 

BRT for both the SCO and EW pilot areas. A concordance correlation coefficient was 

undertaken on the training data for both pilot areas to see how powerful the BRT and MARS 

models are. From Table 4.4, it can be noted that MARS models consistently have better 

correlation coefficients for all soil properties than BRT outputs across both SCO and EW pilot 

areas and at all depths. However, when deploying the data, the MARS models produce 

unrealistic values. This is because they are extrapolated beyond the range of values in the 

training dataset, which is characteristic of the MARS modelling approach (Friedman, 1991).  

For example, in some of the maps (e.g. LOI at 5-15 cm; Figure 4.2a and Figure 4.2b) there 

are extremely high positive values (above 100%, depicted in orange) and extremely high 

negative values (less than 0%, depicted in black) which are clearly not possible. This is due 

to the MARS model predicting many overlapping splines that creates excess noise. This 

results in the model failing to decipher appropriate values in an area that it should have 

knowledge of dealing with better from the training data. There is also a boundary effect which 

is more profound in the MARS maps than the BRT maps. This is due to the influence of more 

organic soils being found in these areas and reflecting the change in land use to semi-natural.  
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 (a)                                                   (b) 

 

 

 

 

  

 

  

 

 

 

 

Figure 4.2: Mapped outputs from MARS models for LOI at 5-15 cm in pilot areas: a) SCO and 

b) EW 
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a) 

Depth LOI pH Sand Silt Clay 

 MARS BRT MARS BRT MARS BRT MARS BRT MARS BRT 

0-5 0.75 0.67 0.69 0.64 0.77 0.71 0.75 0.64 0.64 0.51 

5-15 0.75 0,63 0.71 0.69 0.77 0.73 0.73 0.68 0.64 0.56 

15-30 0.78 0.53 0.71 0.64 0.73 0.73 0.75 0.62 0.66 0.51 

30-60 0.71 0.42 0.69 0.60 0.76 0.63 0.74 0.61 0.66 0.53 

60-100 0.64 0.22 0.64 0.55 0.63 0.61 0.74 0.62 0.62 0.46 

100-200 0.61 0.41 0.65 0.44 0.65 0.55 0.63 0.38 0.58 0.43 

 

b) 

Depth LOI pH Sand Silt Clay 

 MARS BRT MARS BRT MARS BRT MARS BRT MARS BRT 

0-5 0.81 0.43 0.68 0.58 0.83 0.82 0.85 0.83 0.77 0.69 

5-15 0.69 0.31 0.69 0.58 0.85 0.81 0.85 0.82 0.78 0.68 

15-30 0.70 0.18 0.69 0.59 0.81 0.80 0.85 0.83 0.74 0.65 

30-60 0.83 0.04 0.73 0.63 0.80 0.77 0.83 0.79 0.70 0.65 

60-100 0.86 n/a 0.42 0.18 0.76 0.75 0.78 0.78 0.71 0.62 

100-200 0.97 n/a 0.77 0.50 0.74 0.68 0.81 0.69 0.74 0.41 

 

Table 4.4: Concordance correlation coefficient for a) SCO and b) EW pilot areas based on 

BRT and MARS modelling across all depths. 

In contrast, the trained BRT models produce a lower R2 value on average for each soil property 

at depth. However, when these models are deployed to a larger area, the values predicted in 

these areas and fit within an anticipated range (Figure 4.3a and 4.3b). To compare with what 

has been illustrated above, LOI at 5-15 cm, mapped from BRTs for the SCO pilot area show 

higher LOI values in the west, on the north boundary of the pilot area and lower LOI content 

further to the east and the coastline. For the EW pilot area, the highest LOI values can be 

found in the west of the pilot area and lower LOI values are situated towards the north and 

east. 
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The characteristic of the MARS model allows it to create models which initially over fit. 

However, these are later pruned using either a forwards or backwards stepwise cross 

validation to remove basis functions which are not required for the final model. The splitting 

rules are based on continuous smooth functions (Freidman et al, 1991). Furthermore, the 

MARS model could be creating relationships between variables which do not take place (e.g. 

calcareous soils on non-calcareous bedrock) or explain the changes or occurrences of specific 

soil properties in certain areas (e.g. Silt at 30-60 cm in Figure 4.4a and 4.4b and associated 

soil maps in Figure 4.7a and 4.7b).  

 

(a)       (b) 

 

 

Figure 4.3: Mapped outputs from BRT models for LOI at 5-15 cm for pilot areas: a) SCO and 

b) EW. 
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 (a)      (b) 

 

 

 

 

 

 

  

 

 

  

 

 

Figure 4.4: Mapped outputs from MARS models for silt at 30-60 cm for pilot areas a) SCO and 

b) EW. 
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MARS models are particularly suited to conditions which require many variables, particularly 

where there is non-linearity, multi-collinearity and a high degree of interaction amongst 

predictors (Hastie et al, 2009). However, MARS models have a susceptibility to overfitting 

(even with the pruning) and has issues in dealing with no/missing data. This has been 

illustrated with the LOI data particularly in the EW pilot area (Figure 4.3b). This generally is 

why MARS models work well in a training context because there is a tendency to over-fit. As 

a result, the statistical indices are improved as MARS models are usually based on statistical 

relationships between the covariates and the soil property being measured. This over-fitting 

may develop relationships which are not sensible from a pedological basis. For example, in 

some cases, there are strong dependencies on covariates leading to unusual spatial 

structures in deployment maps using MARS models, notably for LOI and silt (Figures 4.3a, 

4.3b, 4.4a and 4.4b). These are strongly based on local relationships which have been trained 

effectively but, when deployed, can become unstable. This is undoubtedly a major reason for 

the unusual structures in some of the maps illustrated in this experiment. 

The extrapolation procedures for MARS models produce extreme values (very high or low 

values) in many of the properties, particularly for LOI (Figure 4.3a and 4.3b) and particle size 

(e.g. silt and clay) (Figure 4.4a, 4.4b and Figure 4.5a and 4.5b). Therefore, because of the 

outcomes of this research, MARS models are not suitable for modelling and mapping the soil 

properties in this instance. There are also striped artefacts in some of the mapping outputs 

which has been influenced as a result of MARS modelling e.g. Figure 4.5b. This is largely as 

a result of coarser climatic data (precipitation and temperature) which has been resampled at 

much finer scale.  
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(a)        (b)  

 

 

 

 

 

 

 

 

 

   

 

Figure 4.5: Mapped outputs from MARS models for clay at 100-200 cm for pilot areas a) SCO 

and b) EW. 
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In contrast, the BRT model represents the effect of each predictor after accounting for effects 

by other predictors. The related input data is weighted in subsequent trees. These are applied 

where data which has been poorly modelled by previous trees has a higher probability of being 

selected in the new tree.  This sequential method is the boosted part of the regression tree 

meaning that new data has a chance of being included in a new tree (Breiman et al, 1984; 

Bauer and Kohavi, 1999). This differs from other models such as random forests as the data 

has an equal probability of being selected for the next tree. Splitting rules are based on binary 

splits on successive predictor variables. 

BRTs introduce stochasticity in the boosting which improves the predictive performance and 

reduces overfitting the data. This effect has translated to a better performance in the mapping 

of the deployment data because regressing to the mean favours the predictive space where 

much of the data are consistent with one another (i.e. there are non-extreme values being 

picked up for all soil properties investigated). However, this does not necessarily capture the 

extreme values as well as one might anticipate. For instance, when investigating the BRT 

predicted range for pH (e.g. at 15-30 cm, Figure 4.6a and 4.6b) it can be seen that for both 

the SCO and EW pilot area there is a narrow range varying from acidic peat soils (around pH 

value of 4.00) to more alkaline soils (pH values above 6.50 and 7.00) (see Appendix 3a and 

3b). This means that the full range of values for soil properties may not be being picked up in 

these areas based on information from the soil maps (Figure 4.7a and 4.7b).  Going forward, 

partioning of these distinct soil environments or modelling them separately may improve the 

predictive performance.  
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(a)        (b)  

  

 

 

 

 

 

 

  

 

 

 

 

Figure 4.6: Mapped outputs from BRT models for pH at 15-30 cm in pilot areas: a) SCO and 

b) EW 

 

 

 

  

 

 

 

 



99 
 

(a) SCO                                                         (b) EW 

     

 

 

 

  

 

  

   

 

 

 

Figure 4.7: Major soil sub group map for the SCO pilot area a) and Major soil group map for 

the EW pilot area (b). 
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There is an assumption that the soil-landscape characteristics which have been found in these 

areas from both BRT and MARS models will be similar elsewhere. Another issue is indeed 

whether the correct model is used for these areas. For this study BRTs and MARS models 

have been assessed, however, there are many more models in the literature that could have 

considered. The main reason BRTs and MARS models were chosen is that it was thought that 

models would be good not only at training but also being applied more widely. Going forward, 

it will be crucial to make sure that whichever model(s) are chosen for predicting soil properties 

is predicting across all the feature space. 

Future work will be needed in terms of masking out particular soils and features (water bodies, 

urban/unsurveyed areas) that are problematic for modelling or which simply do not exist 

beyond certain depths (e.g. ranker soils). To gain an increased understanding of how BRT 

models’ model and map soil properties, it would be useful to scale up to the whole of GB to 

see if similar outcomes from this study are consistent at all depths on a much wider scale 

spatially and at depth. 

4.7. Conclusions 

This paper has explored the comparison between two recursive partitioning modelling 

methods; BRTs and MARS, on two pilot areas as part of the DSM development for future 

wider scale GB mapping. The results suggest that MARS models produce better model 

performances than BRTs for training and predicting soil properties. However, when predictions 

from MARS models are deployed, they extrapolate beyond the appropriate range of values of 

the property which is being predicted. This is because MARS models are suited to situations 

where many variables are required. Furthermore, MARS models struggle to deal with 

overfitting and missing data. As has been illustrated in the results and discussion, this over-

fitting has led to relationships which do not make sense pedologically.  

Conversely, BRT models are seen to be more consistent pedologically in terms of mapping 

soil properties. This is because these models represent the effect of each predictor after 
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accounting for effects by other predictors. BRTs also introduce randomness in the boosting 

which improves the predictive performance and thereby reduces overfitting. As a result, BRTs 

have given a more consistent performance in the mapping deployment outputs because 

regressing to the mean favours the predictive space where the most data match up with one 

another. However, this does not necessarily mean the full range of soils in these areas has 

been captured. Future research will focus on refining the predictions of these soil properties 

to fully encapsulate the full range of soils across GB. 
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5 MODELLING SOIL PROPERTIES FOR GREAT 

BRITAIN USING BOOSTED REGRESSION TREES  

Abstract 

Improving the resolution of soil property maps is a major requirement requested by 

stakeholders. However, communicating this information is a challenge due to outdated 

methods and inconsistencies with previous techniques. Digital Soil Mapping (DSM) has been 

promoted as a useful approach to address these issues. DSM is usually achieved by 

evaluating model statistics. However, it is also important to critically evaluate the mapping 

outputs to investigate whether these soil properties are being modelled effectively and whether 

they reflect pedological understanding.  

This chapter predicts and maps loss-on-ignition (LOI), soil pH and texture across Great Britain 

(GB) using Boosted Regression Tree (BRT) models at 100 m resolution for specified depth 

intervals. Results reflect that BRT models work well across GB for predicting soil pH and LOI 

but perform poorly for texture properties.  

This chapter also examines whether an independent validation dataset is useful in evaluating 

soil property predictions in comparison to modelled outputs. Results show inconsistencies 

across both training and independent validation datasets. Thus, future work should focus on 

intensively mapping or collecting more data from areas where there is sparse information to 

help produce improved maps and reduce the associated uncertainty. 

 

5.1. Introduction  

There is a growing demand to produce improved soil property maps for Great Britain (GB). At 

present, there are only a few unified datasets that cover GB (Reed, 2008; Campbell et al, 

2017). Stakeholders have stated that they require improved soil information at finer resolution 
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with associated metadata (Campbell et al, 2017; Sanchez et al, 2009). Despite the many 

efforts to generate new global or regional soil property maps, these are currently too coarse 

for many stakeholders, such as land managers, to make informed decisions at field or 

catchment scales (Grunwald et al, 2011; Sanchez et al, 2009; Reed, 2008, Hengl et al, 2017). 

However, soil property information is sometimes not available due to a lack of resources or 

foci of historical mapping programmes. As a result, alternative approaches, such as Digital 

Soil Mapping (DSM) have been developed to help improve the resolution and provide the new 

data (McBratney et al, 2003; Scull et al, 2003). 

The focus of DSM is to utilise available soils data by developing statistical models alongside 

associated environmental covariates to produce new spatial predictions of soil properties 

(Dobos et al, 2006; Behrens and Scholten, 2006). DSM helps deal with the increased cost of 

traditional soil mapping and declining number of soil surveyors (McBratney et al, 2003; 

Hudson, 1992).  

DSM has many useful advantages particularly in improving the quantitative understanding of 

soil variability (Scull et al, 2003; McBratney et al, 2003; Carré et al, 2007) by taking account 

of associated uncertainties in predicted soil properties that cannot be achieved through 

traditional soil mapping (McBratney et al, 2003; Carré et al, 2007; Hudson, 1992, Minasny and 

McBratney, 2016). There have been many examples of new soil property maps created by 

DSM at a range of scales (e.g. Hengl et al, 2017; Poggio and Gimona 2017; Minasny and 

McBratney, 2010; Minasny et al, 2010; Malone et al, 2009; Adhikari et al, 2014; Ballabio et al, 

2014). However, many of these studies fail to address a critical component of DSM, which is 

to evaluate the outputs from the DSM models against what is expected based on expert 

pedological understanding.   

In DSM there are generally three evaluation methods: i) model performance evaluated by 

statistical indices using cross-validation and independent validation (Piikki and Söderström, in 

press; Brus et al, 2013) ii) comparison of the statistics with other models and resulting maps 

(Nussbaum et al, 2018) and iii) how well the mapped outputs reflect expert knowledge of the 
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spatial distribution of soil properties by pedologists and soil surveyors (Hudson, 1992; Reuter 

et al, 2008). The latter of these evaluation approaches has only been explored sporadically in 

DSM studies with few having used an observed, independent validation dataset to evaluate 

model outputs. 

In this chapter, DSM predictions of soil properties at a national scale will be evaluated 

statistically against an independent validation dataset and in relation to expert pedological 

understanding. These soil properties – loss-on-ignition (as a proxy for soil organic carbon), pH 

and texture – were chosen based on a survey of stakeholder needs (Campbell et al, 2017) 

and to comply with Global Soil Map specifications (GlobalSoilMap, 2011). 

5.2. Materials and Methods 

5.2.1. GB soils 

GB comprises of Scotland, England and Wales.  Scotland has a large variety of soils which 

are mainly organic (Histosols), waterlogged (Stagnosols) or leached (Podzols) in nature 

(Figure 5.1). In Northern England, the main soil types are Stagnosols and Cambisols, with 

Histosols being found in upland areas. Central, eastern and south eastern England are 

characterised by Luvisols, Cambisols, Stagnosols and Leptosols. South west England and 

south west Wales are dominated by Cambisols. Podzols and Histosols are common in upland 

parts of Wales (Figure 5.1).  
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Figure 5.1: Map of the WRB (2006) Soil Reference Groups in GB. 

5.3. Description of the datasets 

For this study, the ‘training’ dataset used to develop the models for the predicted soil properties 

were the representative soil profiles collected by the respective National Soil Survey 

organisations and now held by Cranfield University and The James Hutton Institute. The 

independent ‘validation’ dataset comprises a combination of National Soil Inventory (NSI) and 

National Soil Inventory for Scotland (NSIS) samples.  
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5.3.1. Training Data 

The soil property data used in this study were derived from analyses of soil horizon samples 

from representative profiles held in the Scottish Soils Database and in the LandIS database 

for England and Wales (Hallett et al, 2017). These were collected during national soil survey 

mapping programmes and the profiles were selected by the soil surveyors as they typified soil 

series. In England and Wales sampling took place primarily between the 1970s and 1980s 

while in Scotland sampling mainly took place between the 1960s and late 1980s. In addition, 

the National Soil Inventory of Scotland (NSIS 1978-88) dataset (Lilly et al, 2010) was also 

used, where there were few representative profiles (for example in the north and west). Those 

Inventory profiles that were subsequently resampled in the 2007-09 resampling programme 

in Scotland were excluded. In total, around 11,000 soil profiles have been sampled in Scotland 

giving over 54,000 individual samples. In England and Wales, samples were collected from 

over 11,000 soil profiles. For this study, between 12,361 and 14,156 profiles were selected 

from across GB. This is fewer than the total number of profiles available as not all profiles in 

the respective databases had a full complement of the soil properties being modelled over all 

depths. 

5.3.2. Validation Data 

An Independent validation dataset was obtained from regular grid sampling programmes. For 

England and Wales, the National Soil Inventory (NSI) topsoil (0-15 cm) dataset was used as 

a validation dataset. The NSI comprised 5662 sites sampled at 5 km Ordnance Survey grid 

intersections. For Scotland, data was obtained from the NSIS 2007-9 dataset, which was a 

partial resampling of original NSIS 1978-88 and took place between 2007 and 2009 (Lilly et 

al, 2011). This dataset comprised 183 sites on a 20 km grid and included samples taken from 

0-15 cm depths using a soil auger. These were collected based on the same protocols as the 

NSI (Lilly et al, 2011). To create a unified GB soil validation dataset of topsoil properties, data 

from the NSIS 2007-9 auger samples (0-15 cm) were combined with the NSI data from the 0-



112 
 

15 cm samples, giving a total of between 4985 and 5769 validation points across GB 

depending on the soil property. 

5.3.3. Environmental Covariates 

Based on previous DSM development work (Campbell et al, in prep), 8 covariates were used 

to represent the SCORPAN factors (Table 5.1). The ‘S’ soil component was taken as the 

dominant major soil subgroup in Scotland and the major soil group in England and Wales, as 

shown on the national 1:250,000 scale soil maps. Each dataset has different original scales 

which are shown in Table 5.1. and all were resampled onto a 100 m raster grid. 

Dominant Major Soil Subgroup (Scotland) (1:250,000) 

Major soil group (England and Wales) (1:250,000) 

Land Cover Map 2000 (1km grid) 

Topographic Wetness Index (based on 50m DTM) 

Cross Sectional Curvature (based on 50m DTM), 

Valley Depth to Channel Network (based on 50m DTM) 

Convergence Index (based on 50m DTM) 

Bedrock Geology (1:250,000) 

Soil and Terrain dataset (SOTER) (based on 50m DTM) 

 

Table 5.1: Covariates used for modelling of soil properties for GB representing different 

SCORPAN factors. 

5.4. Mapping and modelling Methodology 

Depth functions were fitted to the representative soil profile training datasets for each soil 

property (LOI, pH, sand, silt and clay) using an equal area mass preserving spline at six 

standard soil depth intervals (0-5, 5-15, 15-30, 30-60, 60-100, 100-200 cm) produced from 

GlobalSoilMap.net (GSM) specifications (Bishop et al, (2001); Malone et al, (2009); 

GlobalSoilMap, (2011); Hartemink  et al, 2010)). To produce these, R statistics package and 

principally ‘GSIF’ (Hengl et al, 2017), ‘aqp’ (Beaudette and Roudier, 2018), ‘plyr’ (Wickham, 
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2016) and ‘sp’ (Pebesma et al, 2018) packages (R Core Team, 2013) were used. These 

datasets were imported into ArcMap 10.2.1 and point shapefiles were created for each soil 

property at the six standard GSM soil depth intervals across GB. Covariates are converted to 

rasters at 100 m resolution and sampled to provide a set of values for each location of a 

sampled soil profile in ArcMap 10.2.1. These datasets were saved as text files and imported 

into R.  

After data cleaning (e.g. removing any null values and soils that were sampled within 100 m 

of each other), the representative profile training data was used to develop boosted regression 

tree (BRT) models to identify relationships between the soil properties and covariates.  For 

the BRT models, ‘dismo’ (Hijmans, 2017) and ‘gbm’ (Ridgeway, 2017) packages were used 

(R Core Team, 2013). A ten-fold cross validation was used to evaluate the model performance 

and statistics (R2, RMSE, mean, standard deviation, observed and predicted range) for each 

soil property were calculated. After developing the model using the training datasets, the 

model was applied to the covariate deployment dataset to predict soil properties at the 

specified depths on a 100 m grid across GB. This was created using R packages ‘rgdal’ 

(Bivand, 2018), ‘raster’ (Hijmans, 2016) and ‘sp’ (Pebesma et al, 2018) and produced 

predicted soil property values at the specified depths across the whole of GB. The resultant 

soil property maps were generated at 100 m resolution, using ‘raster’ (Hijmans, 2016) 

package, saved as a TIFF file and then imported into ArcMap 10.2.1.  

The ‘raw’ predicted map was post-processed by masking urban and unsurveyed areas, rock 

dominated areas, major coastal features, man-made or disturbed soils, raw gley soils, lakes, 

rivers and other water bodies. Rankers (or Lithomorphic soils) were predicted to a maximum 

depth of 40 cm as this is the typical maximum depth observed for these soils.   

For model evaluation using an independent dataset, R2 and RMSE values were produced by 

correlating the predicted outputs produced from the BRT model and observed values from the 

independent validation dataset. This independent validation dataset was only available for one 

depth (topsoil at 0-15 cm) for GB. Residuals were calculated from the cross- validation and 
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the independent datasets and mapped outputs were used to compare where soil properties 

are being over- or under-predicted across GB. The R code used for this can be adapted from 

similar work achieved in Chapter 4 (Appendix 7). 

5.5. Results  

5.5.1. BRT model performance 

Table 5.2 presents BRT model performance statistics for each soil property at depth. The 

model performance for pH shows R2 values from 0.56 at 0-5 cm to 0.31 at 60-100 cm. The 

RMSE values for pH range from 0.81 at 0-5 cm to 0.99 at 60-100 cm. The predicted BRT 

model ranges compare well overall to the observed data; however, the BRT model does not 

predict the pH of very acidic soils well (notably those with a pH < 3.72) or the pH of calcareous 

soils with pH > 8.33 (at 100-200 cm depth). Table 5.2 indicates observed soil pH values 

ranging from 2.00 to 9.59. There are very few examples of these samples at extreme low or 

high pH meaning that these values could represent specific location factors such as waste 

sites or methodological errors.  For LOI, the model produces lower R2 and higher RMSE values 

than for pH (ranging from 0.51 at 0-5 cm depth to 0.31 at 60-100 cm with RMSE values range 

from 19.42 at 0-5 cm to 11.30 at 100-200 cm depth). The BRT model predicts LOI well for the 

first four depths. However, beyond 60 cm depth the model fails to predict over the full observed 

range. The model performance of predicted sand content ranges from R2 values of 0.53 at 0-

5 cm depth to 0.35 at 100-200 cm. RMSE values range from 15.61 at 0-5 cm to 22.68 at 100-

200 cm. Predictions of silt content vary with R2 values ranging from 0.45 at 0-5 cm to 0.25 at 

100-200 cm depth and RMSE values between 10.97 at 15-30 cm depth and 15.05 at 100-200 

cm. The BRT model does not predict silt proportions greater than 70%. When predicting clay 

content, R2 values range from 0.50 with a value of 9.11 RMSE at 0-5 cm depth to 0.38 at 100-

200 cm with RMSE at 12.98. The BRT model fails to predict clay content greater than 66%. 
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Soil  
Property 
 

Depths 
(cm) 

R2 RMSE Mean SD Observed 
Range 

Predicted 
Range 

Samples 
(n) 

pH 0-5 0.56 0.81 5.64 1.22 2.00 – 9.58 3.72 – 7.88 13929 

 5-15 0.56 0.79 5.67 1.21 2.19 – 9.56 3.78 – 7.85 13918 

 15-30 0.55 0.75 5.80 1.19 3.01 – 9.57 3.82 – 8.04 13780 

 30-60 0.55 0.77 5.96 1.18 2.66 – 9.59 4.09 – 8.26 13269 

 60-100 0.31 0.99 6.12 1.20 2.23 – 9.58 4.51 – 7.72 11788 

 100-200 0.48 0.86 6.18 1.20 2.17 – 9.49 4.54 – 8.33 5332 

LOI 0-5 0.51 19.42 24.58 27.73 0.28 – 100.00 6.06 – 94.20 12146 

 5-15 0.50 16.81 20.10 23.84 0.27 – 100.00 1.98 – 98.39 12093 

 15-30 0.43 14.58 13.66 19.23 0.16 – 100.00 5.33 – 90.93 11689 

 30-60 0.35 13.61 8.88 16.64 0.09 – 100.00 5.35 – 75.57 10057 

 60-100 0.31 13.16 6.77 15.12 0.06 – 100.00 5.34 – 54.01 7650 

 100-200 0.32 11.30 4.71 11.33 0.14 – 100.00 3.72- 47.26 3551 

Sand 0-5 0.53 15.61 48.16 23.20 0.00 – 100.00 6.06 – 100.00 11754 

 5-15 0.50 15.96 48.30 23.19 0.00 – 100.00 6.65 – 100.00 11743 

 15-30 0.50 16.00 48.97 23.70 0.00 – 100.00 0.30 – 100.00 11625 

 30-60 0.48 17.54 50.43 25.36 0.00 – 100.00 7.65 – 100.00 11207 

 60-100 0.38 19.28 51.52 27.31 0.00 – 100.00 9.34 – 100.00 9931 

 100-200 0.35 22.68 55.52 28.08 0.00 – 100.00 3.38 – 93.38 4619 

Silt 0-5 0.45 11.43 32.44 15.43 0.00 – 91.94 0.00 – 68.80 11754 

 5-15 0.41 11.71 32.31 15.29 0.00 – 90.94 0.00 – 64.74 11743 

 15-30 0.39 10.97 31.54 15.27 0.00 – 90.02 0.00 – 70.06 11625 

 30-60 0.38 12.17 29.84 15.58 0.00 – 84.62 0.00 – 67.18 11207 

 60-100 0.37 13.14 28.63 16.50 0.00 – 100.00 0.00 – 67.18 9931 

 100-200 0.25 15.05 26.45 17.07 0.00 – 100.00 9.64 – 55.43 4619 

Clay 0-5 0.50 9.11 17.17 13.61 0.00 – 94.00 0.00 – 56.76 11754 

 5-15 0.50 9.46 17.50 13.92 0.00 – 94.00 0.00 – 58.23 11743 

 15-30 0.46 9.57 18.14 14.36 0.00 – 94.00 0.00 – 66.38 11625 

 30-60 0.48 10.85 19.07 15.67 0.00 – 94.00 0.28 – 52.43 11207 

 60-100 0.48 11.75 19.61 16.54 0.00 – 94.35 1.39 – 54.09 9931 

 100-200 0.38 12.98 17.85 16.23 0.00 – 98.95 2.76 – 44.25 4619 

Table 5.2: Statistics for all soil properties predicted by BRT modelling for GB. 

 

5.5.2. Predicted maps of soil properties 

From the map of pH at 0-5 cm produced from BRT models, it can be noted that predicted 

acidic pH values of 4.5 or less are found mainly in the uplands of northern and southern 

Scotland and in north and central England (Figure 5.2a). This distribution is also seen for 

predicted pH at lower depths down to 30-60 cm. When compared to a map of residuals for pH 

at the same depth (Figure 5.2b), it is shown to be underpredicted across much of GB, 

particularly in the eastern Scotland and much of England and Wales.  
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a)                                           b) 

 

Figure 5.2: GB map of a) pH at 0-5 cm using BRT model and b) corresponding residual map. 

 

The LOI maps show that greater values at 0-5 cm depths are found in northern and southern 

Scotland and central England (around 50-60%) with lesser values located in the south and 

east of England (less than 10%) (Figure 5.3a). This distribution is consistent for all depths 

down to 30-60 cm and below 60 cm where the BRT model has predicted LOI values around 

20% or less for much of GB (see Appendix 4). The residual maps for all depths (Figure 5.3b), 

show LOI is shown to be overpredicting across much of Scotland and sporadically throughout 

England and Wales, However, this becomes less at lower depths (see Appendix 4). 
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a)                                           b) 

 

Figure 5.3: GB map of a) LOI at 0-5 cm using BRT model and b) corresponding residual map. 

 

Maps of sand content (at 0-5 cm, Figure 5.4a) illustrate larger values being predicted in the 

north and west Scotland (around 65-80%) and smaller values being predicted in the southern 

and eastern England (25-50%) and is consistent at all depths. When comparing mapped sand 

residuals at 0-5 cm (Figure 5.4b), it can be noted that sand is overpredicted across much of 

GB, although there is a slight underprediction in the far south of England and small areas of 

Wales. 
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a)                                           b) 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4: GB map of a) sand at 0-5 cm using BRT model and b) corresponding residual 

map. 

 

The maps of predicted silt content for GB show contents in south eastern England and parts 

of Wales at around 50-60% with the least silt values (less than 30%) being found across 

Scotland notably in the far north and west (Figure 5.5a). This trend remains constant for all 

depths down the soil profile. The residual map of silt content for GB at 0-5 cm shows silt to be 

overpredicted across much of the country, particularly in eastern Scotland but sporadically 

across much of south England and southern Wales (Figure 5.5b). 
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a)                                           b) 

  

Figure 5.5: GB map of a) silt at 0-5 cm using BRT model and b) corresponding residual map. 

 

 

The maps of clay content show greater predicted values in the south of England, particularly 

in the east and south west (around 35% and above) with the smallest predicted clay values 

across much of Scotland (<25%) (Figure 5.6a). This trend is consistent for all depths, however, 

in Scotland there is a slight increase in predicted clay content at lower depths. When compared 

to the map of residuals at 0-5 cm (Figure 5.6b), clay is underpredicted across much of eastern 

Scotland and much of England and Wales. 
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a)                                           b) 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 5.6: GB map of a) clay at 0-5 cm using BRT model and b) corresponding residual map. 

 

 

5.5.3. Independent validation and residual maps 

Table 5.3 shows the independent validation of predicted soil properties taken at 0-15 cm for 

all soil properties across the whole of GB. These results indicate poorer R2 values than 

those obtained using the cross-validation during the training of the BRT models, particularly 

sand, silt and clay (0.18 or lower). The RMSE is high for most of the soil property values 

particularly texture properties. 

 

 



121 
 

 

Soil property validation results 

Soil 

property 

R2 RMSE Mean SD Observed 

Range 

Predicted 

Range 

Samples (n) 

pH 0.16 1.25 5.38 1.11 3.10 – 9.20 3.99 – 8.04 5347 

LOI 0.17 16.65 32.60 16.32 1.54 – 98.90 8.25 – 95.90 5355 

Sand 0.04 24.72 45.27 20.21 4.85 – 94.41 10.73 – 85.79 4630 

Silt 0.03 17.81 41.68 10.10 0.10 – 86.96 10.89 – 68.14 4630 

Clay 0.02 14.69 27.03 13.57 1.86 – 63.13 2.53 – 57.60 4630 

 

Table 5.3: Model predictions validated with an independent validation dataset for soil 

properties at 0-15 cm. 

 

The residual output map for pH from the independent validation dataset (Figure 5.7) shows 

some spatial structure across GB. pH is being overpredicted across much of eastern 

England and underpredicting across much of Wales. However, in Scotland, there seems to 

be little structure as pH is being over and underpredicted. LOI is shown to be overpredicted 

across parts of western Wales and England. However, on whole, LOI seems to be predicted 

reasonably well across England and Wales as seen from the independent validation dataset 

(Figure 5.8). This same output shows little spatial structure in LOI predictions across 

Scotland. Sand content is shown to be overpredicted across much of eastern England and 

underpredicted across much of Wales. In Scotland, there again seems to be little structure 

although sand is underpredicted in eastern areas (Figure 5.9). Silt content is shown to be 

overpredicted across much of western England, Wales and across much of Scotland 

particularly in the east and south. Silt is underpredicted in parts of eastern England (Figure 

5.10) and clay is overpredicted across much of Scotland when compared to the independent 

validation dataset. In England and Wales, the pattern is similar with clay shown to be 

underpredicted in the far south east. However, on the whole clay is still being overpredicted 

across much of England and Wales (Figure 5.11). 
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Figure 5.7: Residual map from GB independent validation dataset at 0-15 cm for pH 
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Figure 5.8: Residual map from GB independent validation dataset at 0-15 cm for LOI 
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Figure 5.9: Residual map from GB independent validation dataset at 0-15 cm for Sand 
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Figure 5.10: Residual map from GB independent validation dataset at 0-15 cm for Silt 
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Figure 5.11: Residual map from GB independent validation dataset at 0-15 cm for clay 

5.6. Discussion  

5.6.1. Independent validation  

The independent validation dataset showed significantly poorer R2 values for all soil properties 

than when trained on the BRT model. LOI and pH performed badly (R2 values 0.17 and 0.16 

respectively) and texture performed even worse (R2 between 0.04 and 0.06). However, 
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previous work (Nussbaum et al, 2018) has shown that models only account for a moderate 

part of the variance in the validation data for texture and pH (around 0.25 mean square error; 

for GB, pH showed a RMSE of 1.25). Many other studies have also independently validated 

DSM against pH and other soil properties at multiple depths and reported poor R2 values 

ranging from 0.1 to. 0.48 (Mulder et al, 2016) and negative to 0.75 (Vaysse and Lagacherie, 

2015). These results are similar with this modelling work for GB (between 0.02 and 0.04 for 

sand, silt and clay to 0.17 for LOI).  

Piikki and Söderström (2017) presented validation results on the Digital Soil Map of Sweden 

at many scales using a large validation dataset of soil analyses at farm scale. Predicted clay 

content error was reported to be less than 8% in 75% of the validation samples, while for sand 

it was 13%. The authors illustrate that larger scale predictions are difficult to validate on small 

scale farm measurements because there may be different processes which account for soil 

variability at these scales (e.g. geology and climate at national level). Other issues such as 

local farm management will affect changes in soil properties at farm scale. In comparison to 

the GB work, raster predictions were obtained at 100 m based on coarse scale national 

covariate data and against an independent dataset which focusses on a sample taken at a 

specific point in the landscape.  

In order to improve mapping and modelling across GB, there is a need to collect more data 

from areas where only sparse information is available. This would enable more consistent 

modelling at regional scale. It is important to recognise that the training and validation datasets 

used in this GB study were collected and analysed at different times and used as novel 

independent comparisons. However, changes in some soil properties have been recorded 

across GB during this time (e.g. Chapman et al, 2015, Lilly and Baggaley, 2013, Bell et al, 

2011, Bellamy et al, 2005, Reynolds et al, 2013) reflecting pollution recovery, climate change 

and land management changes (Kirk et al, 2010; Bell et al, 2011). These changes would be 

reflected in these independent datasets and as a result would influence the evaluation of the 

outcome of the training and validation. Therefore, uncertainties in the maps could reflect 
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changes in soil properties rather than poor model performance. An alternative would be to use 

a sub-set of the same time period data sets for training and validation, but this has its own 

issues as this subset is no longer independent.  

5.6.2. Pedological evaluation  

The model performance statistics of the BRT models show the strength of the statistical 

relationship between the soil properties and covariates but when these are mapped a further 

evaluation of the model output can be achieved by comparing spatial patterns of soil properties 

with our understanding of how soils vary in different parts of GB. Therefore, it is important to 

evaluate these GB soil property maps and see if they reflect pedological knowledge spatially 

and at depth in addition to the model performance statistics. 

In the north of Scotland, we would expect topsoil pH values between 3 and 5 associated with 

Histosols and histic Podzols and Gleysols. The predicted pH values obtained from the BRT 

model in these areas are between 4 and 5 which is within the expected range given the 

dominant soil types in these areas. Some Cambisols and Leptosols in south eastern England 

are calcareous with corresponding alkaline pH because they are formed on calcareous parent 

material (limestone and chalk). The BRT model predicted soils in these areas with a pH value 

of greater than 7.5 which matches with pedological understanding.  There are some known 

calcareous soils found in coastal areas across Scotland, however, that are not predicted by 

the BRT model. These soils are not extensive in Scotland and thus are not well represented 

in the training dataset. Hengl et al (2017) produced global gridded soil properties (including 

pH) predicted from random forest and gradient boosting modelling approaches. Cross 

validation showed the ensemble models explained between 83% variation of pH with an 

overall average of 61%. These are an improvement on the results of the modelling for GB 

soils. However, the pH was still being overestimated in specific areas (e.g.  in the rainforests 

of Tasmania, Australia (Hengl et al, 2017) and have limited ground observations to validate 

the predictions in these areas. Other studies such as Reuter et al, (2008) used regression 

kriging for mapping soil pH on a European scale. This study showed satisfactory R2 values 
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(between 0.4 and 0.5) which are comparable to this study for GB. The authors also provide 

useful commentary on pedological understanding across Europe.  They observed more acidic 

pH values in granitic-based areas in Portugal and north Spain and in shallow soils across 

Scandinavia. This is also noted for northern Scotland too, similar to what has been noted in 

this study. More alkaline based pH values were concentrated in Mediterranean countries (e.g. 

south of France and Italy) due to calcareous parent material and in south eastern England, 

again, similar to what has been found from this study.  

As expected, LOI values are greatest in the north of Scotland where the main soil types are 

Histosols and histic Podzols and Gleysols and in Northern England reflecting where Histosols 

and histic Stagnosols are known to be present. Although some areas of Histosols in North 

Wales do not have high predicted LOI. Lesser LOI values at depth match expected values for 

the mineral horizons of Podzols and Gleysols. Histosols are classified as having an organic 

horizon equal to or greater than 40 cm. As a result, we would expect to observe large LOI 

values at depth (e.g. at 30-60 cm) in Histosols. In the predicted maps, this is observed for only 

some of the areas containing Histosols in north and West Scotland (Appendix 4). In upland 

areas in Wales, LOI values diminish after 30 cm, where we would expect to see deeper peats 

(Histosols). There are some observed values of 70% for LOI at 60-100 cm, this is not being 

predicted in the mapping outputs at 60-100 cm (see Appendix 4 and 5). Podzols and Histic 

Gleysols have peaty surface soils and large LOI values in the topsoil (0-30 cm) and values will 

decrease in the underlying mineral horizons. Therefore, a reduction in LOI values at depths 

beyond 30 cm would be expected in these areas. This is shown in the predicted LOI at depths 

greater than 30 cm for the areas of Podzols in Scotland (Appendix 4). Comparable work was 

undertaken by Poggio and Gimona (2014) modelling soil organic carbon in 3D comparing 

regression kriging and depth function methods. Depth function modelling showed better 

performances of predicting soil organic carbon than regression kriging (R2 = 0.60). This is 

more consistent than the results found in this study. However, the authors (Poggio and 



130 
 

Gimona, 2014) incorporated additional covariates such as MODIS (Moderate Resolution 

Imaging Spectroradiometer) data into the model.   

For textural properties across GB, the BRT model was used to predict sand, silt and clay 

independently of each other and of the organic matter concentration as expressed through 

LOI. As a result, this has given an over prediction of soil particle size classes in areas 

dominated by organic surface horizons. One way to improve the modelling is to analyse soil 

particle size (sand, silt and clay) of the mineral fraction only. Poggio and Gimona (2017) 

masked pixels with greater probability of having organic soils and therefore only predicted soil 

particle size classes where there was a likelihood of mineral soils occurring. Results were in 

good agreement with values at validation locations. More importantly, their results produce 

better texture outputs than in this study albeit at coarser resolution (250 m). Another way to 

improve the modelling would be retrospectively rescale the sand, silt and clay using predicted 

LOI. 

5.6.3. Effect of time on soil properties 

As different datasets are being used across different time periods, it is important to understand 

how this may affect soil properties and the implications for using data for model training and 

validation. The NSIS and NSI have both been resampled once. For soil pH, both surveys 

indicated an increase in soil pH (Kirk et al, 2010, Black, pers comm, 2019). For LOI, both 

surveys recorded changes in soil organic matter (SOM) and soil organic carbon (SOC) content 

relating to different soil types, with significant losses from both surveys in arable soils. For 

Scottish soils, the carbon stock showed no change (Chapman et al, 2015) though carbon 

concentrations declined in both arable and improved grassland sites. Texture is unlikely to 

have changed over time but at present no one has assessed these changes in great detail. 

Other surveys across GB such as Reynolds et al (2013), found that soils from 1978 to 2007 

showed significant increases in pH across all land uses, which is consistent with reduction in 

acid rain (Kirk et al, 2010). Reynolds et al (2013) also noted changes in topsoil carbon 

concentration, with consistent declines in arable soils. The changes in SOC may reflect 
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fluctuations in nitrogen deposition (Tipping et al, 2017) while management and climate change 

will also be factors in soil carbon variations (Bell et al, 2011). 

Overall, these results indicate that the use of legacy data in DSM adds to the uncertainty when 

mapping for current uses. 

5.7. Conclusions 

This chapter has critically evaluated soil property predictions using cross validation and an 

independent validation dataset. The models have shown that cross GB modelling can be 

accomplished using the two national surveys. The BRT model performance indicates that soil 

pH and LOI are being predicted reasonably across GB and (mostly) at depth with texture 

predicted less well. A likely reason for this is the large range of data which has been used for 

both LOI and pH in comparison with texture. There is also a good array of covariates which 

can be used alongside the observed soil property data. Poor performance of the model against 

an independent validation dataset may be a consequence of the original data for both GB 

datasets being collected and analysed at different time periods and the data for both training 

and validation GB datasets being collected at different scales. Future work should therefore 

focus on collecting more data from areas where there is sparse information to produce more 

consistent modelling outputs. Furthermore, validation of the models will require increased 

expert knowledge to ensure that these and subsequent mapping outputs are both reliable and 

ultimately useful in the future. 

Predictions of soil property outputs (soil LOI (as a proxy for soil organic carbon), pH and 

texture) across GB have been evaluated in relation to expert pedological understanding. The 

BRT models have produced reasonable statistical indices for predicting pH and illustrate 

strong pedological relationships between soils across GB and at depth. LOI is also shown to 

be predicting well across GB overall. However, at depths beyond 60 cm, the BRT model fails 

to predict large LOI values where we would expect to find deep organic horizons associated 

with peat soils (Histosols). Therefore, new data will be required to address this. The BRT 
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model has failed to predict texture properties well since the model was used to predict each 

particle size class over the whole of GB including those areas dominated by organic surface 

horizons. This is an issue of ignoring other properties in soils, namely organic matter. To 

improve the modelling in future, an analysis of soil particle size (sand, silt and clay) using the 

mineral fraction only or by retrospectively rescaling sand, silt and clay using predicted LOI 

could be considered.  

At present, these first versions of soil property DSM maps for GB are variable in terms of 

whether they can be used by stakeholders. However, these outputs have shown that 

developing reliable DSM maps in future would benefit from increased interaction between 

pedologists, modellers and stakeholders to produce usable mapping outputs of sufficient 

quality at finer resolution. 
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6 DISCUSSION 

6.1. Revisit of aims and objectives 

The main aim of this work was to improve the spatial resolution of soil properties across GB 

as informed by stakeholders to help aid future decision making, planning and policy 

development. 

The first objective explored the soils-related information and data stakeholders currently use 

in their everyday working activities, and the desired improvements they would like to see from 

future work. From the survey results, it was noted that wider use of existing (and likely future) 

soil information by non-experts could be enhanced by improving data accessibility and 

increasing user-friendly supporting materials. Stakeholders also appreciated the need for 

fundamental soil properties such as soil chemistry, texture and carbon. Most stakeholders 

required finer spatial resolution of soils information than what is currently available to them. 

Finally, stakeholders wanted to gain more information on contemporary soils information and 

trends over time as well as improved subsequent functional maps and models derived from 

the soil properties.  

The second stage of this thesis focussed on developing DSM for GB, investigating how soil 

properties are mapped and modelled. Soil properties of loss-on-ignition, pH and soil texture 

were chosen from the questionnaire survey and an assessment of laboratory and analytical 

techniques across Scotland and England and Wales. It was noted that during model training 

of the soil properties in two pilot areas, MARS produced better performances than BRT in both 

pilot areas. However, when MARS is deployed, it failed to predict soil properties beyond the 

values of the training dataset. Therefore, MARS models cannot be used for modelling and 

mapping soil properties across GB. On the other hand, the BRT models, which had poorer 

correlations within the training dataset, produce more consistent outputs for mapping the soil 
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properties and better represent existing pedological knowledge. This led to BRT models being 

used for predicting soil properties across GB.   

The third objective of this thesis examined DSM by mapping the soil properties across GB, 

investigating how well they mapped based on pedological understanding. This work also 

focussed on how suitable an independent validation dataset is for evaluating soil property 

predictions. The results illustrated that BRT models work reasonably across GB for pH and 

LOI but less so for texture properties. Furthermore, modelling and mapping soil properties 

across GB has provided inconsistent outcomes about whether an independent validation 

dataset is best to use to confirm if soil property outputs have been mapped effectively or not. 

Therefore, the results from the GB mapping only partially answer what the third objective set 

out to achieve. 

6.2. Overview of the DSM process 

What this thesis does differently from a range of academic papers is analyse the available 

methods and modelling approaches rather than be motivated by personal preferences of 

applying specific model types. A decision framework needs to be designed so that the 

stakeholder can be guided through the process and make an assured choice based on various 

stages of the DSM process. An example of a methodology which could be implemented is the 

recently published Soil Organic Carbon Mapping Cookbook (Yigini et al, 2018). Model results 

are associated with uncertainty, but these will become of interest to a range of stakeholders.  

Throughout this PhD, it has been important to thoroughly investigate and evaluate each stage 

of the DSM process (Figure 6.1). There must be an understanding of where the input datasets 

and associated covariates have been collected and sourced from, and what work is required 

to make these useable. This is a potential challenge for soils data across GB, as some of soil 

properties have:  
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• Differing laboratory and analytical techniques.  

• Been collected by different sampling strategies.   

• Been collected over different time scales.  

From this, it is important to use the training dataset (a snapshot of the whole area based on 

observed soil data points) as a basis for development and application of the specific model of 

choice considering the results of cross validation. The models based on a training dataset can 

then be deployed to a much larger area (e.g. 100 x 100 m grid) to provide the full landscape 

characteristics. It is fundamental to investigate the predictions from the training dataset and 

compare this with an independent validation dataset. Within the DSM community, there are 

generally three types of evaluation (Finke 2011):  

• Model performance, evaluated by a range of statistical indices (R2, RMSE etc.).  

• Comparing the statistical indices with other models and resultant maps from other 

studies. 

• How well the mapped outputs reflect expert knowledge and mental models produced 

by pedologists and soil surveyors (Hudson, 1992).  

The latter of these evaluation approaches has not been explored enough in DSM academic 

literature, yet findings have been discussed in work by Vaysse and Lagacherie (2015), 

Stoorvogel et al, (2009) and Brus et al, (2011). These evaluation methods are important in 

telling us whether deploying a global model across a large area is effective for mapping soil 

properties or if different models are needed for unique soils. There are few studies where an 

independent validation dataset (completely independent from the training data) has been used 

to evaluate the model outputs (Piikki and Soderstrom, 2017). 
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Figure 6.1: DSM process flow chart 

 

As a result, from this DSM process, stakeholders will benefit from an evolution in the selection 

of the most appropriate DSM or modelling approach (Finke, 2011). This evolution may consist 

of: 

• A decision framework development for choosing appropriate DSM methods in 

large extent projects which require some standardisation in quality measures of 

some DSM products. 

• The increased application of ensemble DSM methods to make better predictions 

with narrower uncertainty bands. 

• Decision support systems such as Bayesian Belief Networks (BBNs) can be filled 

with results of multiple concurrent modelling studies (e.g. Taalab et al, 2015).  
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This way it is important to engage stakeholders at every stage of the DSM process, so they 

can get an informed understanding of how the soil properties have been obtained and whether 

they match up with pedological expectations. 

6.3. Stakeholder interests and challenges of GB mapping 

In terms of maximising the usage of soils data and information, it was important to understand 

the range of stakeholder needs. Therefore, it was encouraging that many non-expert 

stakeholders across a range of different organisations answered the questionnaire survey in 

Chapter 2. The main outcomes from the survey illustrated that there is a requirement for up-

to-date, finer scale resolution soils data and information (Campbell et al, 2017). Therefore, 

new soil property maps at finer scale resolutions need to be improved on what is currently 

available.  

At present, there are different datasets being utilized from various soil surveys and soil 

taxonomic maps across GB from Scotland and England and Wales and many are hosted by 

the UK Soil Observatory (UKSO). It is important, therefore, to develop methods in which the 

soil property datasets across different surveys can be made comparable for GB on a national 

scale; as Chapter 3 has investigated using two national soil survey datasets. A major reason 

for this is that a range of different stakeholders could make more effective use of these maps 

for GB-wide applications, e.g. insurance, construction and governmental organisations. These 

were some of the lesser-known stakeholders and organisations (i.e. without a direct 

association with soil science) which answered the questionnaire in Chapter 2.  

Digital Soil Mapping (DSM) is proposed as an appropriate toolkit for producing improved 

resolution soil property maps. A fundamental feature that was found from the questionnaire 

survey in Chapter 2 highlighted that many stakeholders are still requesting fundamental soil 

property data. Furthermore, from a critical evaluation of laboratory and analytical techniques 

in Chapter 3, the DSM modelling was developed across GB using a comparison between two 

recursive partitioning modelling approaches (BRTs and MARS models) for pH, texture and 
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LOI to improve the resolution of national soils data. In this process, it is important to evaluate 

the modelling performance on the outputs based from deployment of the models as well as at 

the training phase.  

From the analyses of soil properties in the pilot study areas in Chapter 4, it was found that 

MARS models produced a higher R2 and lower RSME in a training dataset than BRT models 

for most of the soil properties, at many of the recorded depths. However, although MARS 

models worked better in a training capacity, when deployed to predict properties at unknown 

sites, they tended to predict beyond the observed range of values, as illustrated by the mapped 

outputs in Chapter 4. On the other hand, despite showing weaker statistical indices in the 

training, the BRT models predicted outputs that were more consistent pedologically when 

mapped in a wider context. Yet this does not necessarily mean that the full range of soils in 

these areas was being captured by the model. This led to scaling up from the pilot areas to 

modelling soil properties across GB using a single regional BRT models and evaluating its 

performance. 

The GB modelling results, as illustrated in Chapter 5, predict pH and LOI reasonably well, and 

texture not well at all. One major issue is reflected in whether an independent validation 

dataset provides an appropriate evaluation of model performance. This is because the residual 

maps from training and validation soil property datasets have produced inconsistent results 

(see Chapter 5). Therefore, whilst it is acknowledged that stakeholders want to see improved 

finer scale resolution soil property maps across GB, from the development work done in this 

PhD it is difficult to say at present whether all requirements for stakeholders have been 

achieved; and further work still needs to be done to improve on these first versions of predicted 

soil property maps for GB. Maps of the predicted topsoil soil properties match reasonably well 

in terms of what we would expect from associated pedology, particularly for pH. However, for 

values further down the soil profile, the relationships between predicted soil property values 

and associated pedology becomes dissimilar. This is predominantly due to the number of soil 

profile points that are found in specific areas, as there are fewer samples at depth within the 

soil profile databases. Going forward, it would be much more effective to concentrate on areas 
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where there is little data coverage and focusing on more extensive mapping in these areas 

and collecting more data in the process. In areas where we do have enough information, 

perhaps utilising other covariates such as MODIS may be an option. Furthermore, conducting 

feature space analyses would evaluate if the training dataset is representative of the overall 

covariate space that is used for mapping the whole of GB.  

6.4. BRT model comparison in the test areas 

In Chapter 4, it was shown that the BRT models predicted outputs were more consistent in 

pedological terms than MARS models. Thus, a single BRT modelling approach was used to 

model soil properties across GB with the model performance evaluated in Chapter 5. Table 

6.1 reports the model performance for pH at 0-5cm for both test areas using the BRT 

approach solely within the test areas compared to a single BRT model for GB. The BRT 

model produced better results for the SCO test area compared with GB predictions (R2 = 

0.64 compared with 0.56; RMSE = 0.63 compared with 0.81). However, the opposite is 

shown for the EW test area where the R2 was lower in the pilot area compared to GB 

modelling though RMSE is lower (R2 = 0.51 compared to 0.56). The predicted ranges were 

similar for the SCO test area in comparison to GB but the predicted range for GB modelling 

was greater than that of the modelling of EW test area. The mapping outputs for pH at 0-5 

cm across the SCO test areas shows more acidic pH soils being found in the west and more 

alkaline soils being found in the east and north. However, although both the pH mapping 

outputs are different to another, the residual maps produced for the SCO test area are 

reasonably similar (Figures 6.2a, 6.2b, 6.3a and 6.3b). The same can be said for the EW test 

area (Fig 6.4a and Fig 6.4b) where the majority of acidic pH soils is in the north, but the 

maps have produced different outputs when compared with one another. A reason for this 

might be the different covariates that are being used in each model and whether the most 

appropriate covariates are being considered in the BRT model. Furthermore, the GB model 
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is likely to be skewed by the Scottish data which is a logical explanation to why the BRT 

model does not work as well in areas of England and Wales. 

pH at 0-5cm  R2 RMSE Predicted Range 

SCO 0.64 0.63 3.83 – 7.18 

EW  0.51 0.73 4.25 – 7.32 

GB  0.56 0.81 3.72 – 7.88 

 

Table 6.1: Comparison of two independent pilot areas (SCO & EW) with GB modelling results 

for pH 

 

a) SCO pilot area BRT modelling                      b) SCO pilot area from GB BRT modelling 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.2: Comparison of pH for SCO area at 0-5cm for a) pilot area modelling and b) GB 

BRT modelling 
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a) SCO pilot area BRT modelling                      b) SCO pilot area from GB BRT modelling 

  

 

Figure 6.3: Comparison of pH residuals for SCO area at 0-5cm for a) pilot area modelling and 

b) GB BRT modelling 
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a) EW pilot area BRT modelling                        b) EW pilot area from GB BRT modelling 

 

 

 

 

 

 

 

           

 

 

 

Figure 6.4: Comparison of pH for EW area at 0-5cm for a) pilot area modelling and b) GB BRT 

modelling 
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a) EW pilot area BRT modelling                        b) EW pilot area from GB BRT modelling 

 

 

Figure 6.5: Comparison of pH residuals for SCO area at 0-5cm for a) pilot area modelling and 

b) GB BRT modelling
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6.5. Relevance of results to develop functional mapping 

The questionnaire survey indicated that several soil properties including texture (sand, clay 

and silt), pH and carbon/LOI have widespread use for stakeholders (Campbell et al, 2017). It 

was also noted that these soil properties should be made more accessible for addressing the 

needs of stakeholders, notably by providing supporting materials to enable data interpretation 

by non-experts, finer spatial resolution, and indication of trends over time. Many of the tools 

and assessments utilised by stakeholders in the questionnaire reflect instances where soil 

properties are used as part of known soil functional assessments and tools, or as individual 

soil properties.  

It is important to understand what soil properties are used to derive these assessments, using 

information gathered from previous work (GlobalSoilMap, 2011a, GlobalSoilMap, 2011b, Mayr 

et al, 2006). This is particularly important when understanding the needs for future soil 

functional assessments, and in ensuring that all essential soil properties are considered for 

improving existing - or developing new - modelling and mapping approaches (Mayr et al, 

2006). In the survey, most stakeholders currently used soil property - only assessments 

utilising information such as soil chemistry and soil carbon. However, others used a range of 

current functional based assessments which are derived in part from or based upon soil 

property information. Such examples of models used are Nitrate Vulnerable Zones (NVZs) 

and agricultural land evaluation-based assessments. These assessments, along with many 

others, have used inputs such as soil texture and pH as well as factors such as land use, 

topography, soil depth and climate as well as known soil map units (Mayr et al, 2006). Other 

models such as the Hydrology of Soil Types (HOST) utilise soils in a different way by 

distinguishing them based on the parent material and the hydrological characteristics of soils 

(Gagkas and Lilly, in press). The HOST model is a classification scheme based on national 

UK soils maps which have been developed using expert knowledge to link hydrology factors 

with mental models of pathways of flow through the soil profile.  
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It is crucial to understand what soil properties are used to derive these assessments and what 

are considered the most important for stakeholders, as these models can be utilised in raising 

awareness of the range of soil properties which can help to underpin the soil functional 

assessments. This would help notably in making more informed land management decisions 

and shaping new related policies. At present, there is a consensus for new sets of models to 

overcome the limitations of existing models which are either too static or too complex and to 

deal with future scenarios (Mayr et al, 2006). Therefore, it is useful for soil functional models 

to be simplified for them to run on currently available soil property datasets and be operational 

to run spatially. This may be addressed through either adaptation of current models already 

being used, or the development of new soil functions models based on first principles (Mayr 

et al, 2006; Lawley et al, 2014). Models or predictive tools are needed for a range of soil 

functions with notable improvements required for particularly biological habitat (e.g. functional 

aspects of soil biodiversity) (Blum, 2005). 

Improving accessibility of data would certainly benefit non-soil science experts. The UKSO is 

trying to do this by providing a platform of UK soil datasets from a variety of institutions such 

as BGS, CEH, The James Hutton Institute and Cranfield University. Furthermore, there is a 

clear need to address the technical understanding of soils-related data, particularly for 

knowledge transfer between research and policy, education and training, improving 

associated supporting information, understanding soil classifications and non-expert user 

information. A need for more technical knowledge is important because expert judgement will 

always contain a measure of bias reflecting both knowledge gaps and inherent natural 

variation, which are difficult to separate (Taalab et al, 2015) 

The level of responses within the questionnaire survey suggests that there is demand (and 

potential) for training opportunities focussed on non-experts and practical applications within 

soils. Education and training for the modern soil scientist can be improved by developing and 

delivering short courses which focus on specific knowledge and understanding certain skillsets 

(Grunwald et al, 2011). This will help to provide opportunities for a range of organisations to 

be actively involved in advancing DSM and modelling. There are several DSM training 
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workshops which have been set up over the last few years such as ones hosted by 

International Soil Reference and Information Centre (ISRIC) which shows that support for this 

is increasing. It should also be important for stakeholders and people working with soils data 

to gain increased knowledge and understanding working with Geographical Information 

Systems (GIS) using spatial soil data and information.  Without this, it is difficult to see how 

new spatial soil products, which are predominately GIS in nature, can be widely adopted for 

practical use. Rossiter (2018) states that in the future no IT restrictions will influence what can 

be computed. The development of DSM has been concurrent with a rise in computer power 

(Minasny and McBratney, 2016), and this has led to a large response in the production of 

products (e.g. GlobalSoilMap) from a range of countries. Tools such as Google Earth Engine 

has useful in performing all tasks in DSM in one single operation (Padarian et al, 2015). 

6.6. Future soil-functional mapping for GB? 

Over the last 30 years, DSM has been noted as a credible approach in helping to improve 

information originally gathered from traditional soil surveying methods. However, DSM should 

not be the endpoint to completely meet stakeholder needs. DSM can be used as a basis for 

assessing functions of the soil, critical for all stakeholders. This is known as Digital Soil 

Assessment (DSA) and is made up of two main processes: a soil attribute spatial system, and 

an evaluation of soil functions and threats to soils (Carré et al, 2007a). Global BRT models 

perform well for predicting pH across much of GB but not as well for the other soil properties, 

therefore, stakeholder needs have only been partially met. Going forward, a stronger 

pedological understanding is needed within DSM to improve the quality of soil maps for a 

range of stakeholders to gain maximum benefit from them. However, the difficulty with this is 

incorporating expert knowledge into the evaluation of GB mapping outputs. This has been 

done to a certain degree by Taalab et al, (2015) and Angelini et al, (2017) and an approach 

such as this should be utilised far more in similar instances. As the functions of soils represent 
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various ecological and socio-economical roles of soils, these factors also need to be 

considered in an assessment processes need to be considered (Haines-Young et al, 2011).  

For subsequent DSA outputs to be accepted and utilised, certain issues need to be addressed. 

The first is to consider whether an assessment or risk map can be used depending on the 

output uncertainties (Greiner et al, 2018). Secondly, it is crucial to acknowledge the uncertainty 

for stakeholders who eventually want to use these maps. As some authors argue, to make 

decisions, (even if a map presents high uncertainties across the landscape) it may provide a 

good starting point to encourage discussions amongst stakeholders (Carré et al, 2007a; Reed, 

2008). A work flow for DSM has been produced in this research (Figure 6.1) and it will be 

important for the DSM community to be aware of the end-user requirements and tailor their 

products accordingly (Reed, 2008; Campbell et al, 2017; Carré et al, 2007a). End-users would 

need to be educated in the use of these information products and its associated uncertainty 

(Grunwald et al, 2011; Greiner et al, 2018). The information generated by DSM needs to be 

useable to bring appreciable benefits to many stakeholders across a range of different fields. 

The modern soil scientist should be able to access and manipulate a range of data to represent 

soil and other environmental covariates (Grunwald et al, 2011). 

Both Carré et al, (2007a) and Finke (2011) have framed their approach to DSA in the context 

of the European Commission’s Soil Thematic Strategy, which is the most developed multi-

national approach to soil security and wider environmental sustainability to date. Finke (2011) 

extends the thinking of DSA by highlighting some important factors to consider: 

• There is a need to improve modelling approaches in DSM areas. 

• The considerable data demands currently are not being met in global-scale models. 

• The economic costs associated with various threats to soil and current challenges to 

effective mapping. 

• The profitable use of uncertainty in risk-associated DSA involving stakeholders, 

researchers and policy makers. 

• The applicable quality criteria for DSM and DSA products.  
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The future of DSA is reliant on an agreement on:  

• The minimum number of datasets required for master soil properties. 

• Map constructions at a range of scales focussing on the finest resolution possible and 

suitable. 

• The greatest achievable mapping extent(s) (Finke, 2011).  

In the context of GB, there is a consensus towards focussing on improving ecosystem services 

within DEFRA and other government agencies as well as other ranges of stakeholders (Mayr 

et al, 2006). The principal user groups are typically associated with agricultural and policy-

makers whose main task is to minimise the effects of soil threats such as soil degradation, to 

preserve and maintain soil health, and to improve food security and household livelihoods 

(Haines-Young et al, 2012). Other users include research and modelling communities, farming 

associations, environmental management services and non-governmental organisations; and 

feedback should be encouraged from stakeholders, with appropriate quality standards 

developed for the incorporation of such information (Sanchez et al, 2009). 

It is important to address the idea of what is good enough for the stakeholders but also coupled 

with what is deemed an appropriate mapped output by the pedologists and the DSM 

community. DSM is evolving from a science-driven procedure towards a user-driven process 

(Carré et al, 2007b), and this is reflected by an increase in DSM projects from small research 

areas towards regional, national and continental extents (Hartemink and McBratney, 2008; 

Panagos, 2017). Recently, Sanchez et al, (2009) revealed the GlobalSoilMap.net project, 

which is looking to produce a fine resolution 3D grid of soil properties similar to the outputs of 

this thesis.  

Quantification of, and dealing with, uncertainty becomes increasingly relevant both in DSM 

and DSA (Table 6.2). The rich variety in DSM approaches being used (as well as measures 

to assess the soil prediction quality) is huge and needs standardization (Grunwald, 2009; 

Heuvelink et al, 2007).  
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Quality related to In DSM-context expressed as 
Grain size/scale Positional quality: 

• Effective map scale 

• Location and width of boundaries 

Input Errors Analytical quality (measurement errors) 

• Measurement approach  

• Object uncertainty (matrix extraction), 
(sub) sampled volume, interferents, 
non-homogeneity, storage life 

Completeness/need for inference Data saturation 

Semantic correctness Accuracy: 
• Thematic maps 

• Single-value maps 
Currency Quality of legacy data 
Logical consistency Errors due to: 

• Generalisation 
• Harmonisation 

Lineage Errors in integration of heterogeneous data 
due to variation in: 

• Positional quality 

• Measurement error 

• Currency 

Table 6.2: Quality aspects of digital soil maps and model studies (Finke, 2011). 

 

6.7. Further work 

Going forward, it will be crucial to evaluate the costs of gathering more data in certain areas 

against the benefit of mathematical models improving the mapping outputs. This trade-off is 

critical for the stakeholders and due to the large scale of projects like GSM, interactions with 

end-users should be kept at the forefront of discussions (Reed, 2008). This leads to the 

community asking questions on how useful DSM will be in the first instance which will dictate 

how important and relevant DSM is rather than honing the emphasis on trying to produce the 

best-looking DSM for a property that might not be required. However, this can be difficult as 

current soil maps may not be useful in their present state, or different people will have 

differing opinions on certain aspects.  As this thesis has shown, it is important to focus on 

the mathematical outputs of certain models and assess how easily soil properties or 

functions of the soil can be mapped. In essence, there is still a lot of trial and error within 
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DSM to create quality-controlled mapping outputs which stakeholders would be comfortable 

using.  At present, there is a great deal of global activity focussed on creating quantitative 

predictive models and associated digital maps of soil properties and soil functions (Banwart 

2011). Ultimately, how useful these models are will depend on the confidence that 

stakeholders have in the information which is presented in these maps and models. One 

aspect that needs to be addressed is how best to communicate data uncertainty effectively 

(Richter et al, 2011). Although improving both availability and spatial resolution of soil maps 

will be useful and is a requirement of stakeholders, to the benefit of soil science and decision 

making in policy and land management. the issues of conveying uncertainty still remain a 

challenge.  

Many users see this uncertainty as ‘errors’ in the data and can be become suspicious of 

using new information. Since traditional soil mapping and land evaluation are largely 

deterministic with a single outcome for a specific set of input data, it is likely stakeholders are 

less aware of existing uncertainties in either the data or boundaries. A DSM approach allows 

uncertainties to be propagated and visualised throughout. Therefore, in land evaluation tools 

using soils data, a user can see uncertainties associated with decision making for different 

options for a specified area of land or to further explore whether predicted soil properties are 

within expected or potential management ranges. This uncertainty information allows 

additional insight into the likely suitability of the land which hopefully will lead to more 

informed stakeholder decisions. The relevance of the uncertainties in decision making will be 

dependent on the decisions people face and there is further work required to understand 

different stakeholders’ perceptions and uses of uncertainty in decision making (Fischhoff and 

Davis, 2014).  

Currently, these GB soil property maps produced as first version outputs from this work are 

variable in terms of whether they can be used by stakeholders. Additional discussions with 

stakeholders, pedometricians and modellers is required to ascertain the suitability of these 

maps for developing soil functional work in the future.  
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Appendix 1 – Hidden Soils Information 

Questionnaire 

 

This appendix contains the questionnaire that was sent out to stakeholders to 

consider the range of soils data and information currently being used across Europe 

with a focus on explicit and hidden soils information being used by non-expert 

stakeholders. Outcomes from this can be found in Chapter 2 of the PhD thesis.   

 

Dear Respondent,  

My name is Grant Campbell and I am doing my PhD with Cranfield University and the James 

Hutton Institute. My project is investigating the importance of soil information (maps, data etc.) 

for decision-making, planning and policy development. I would be grateful if you could 

complete this short questionnaire in as much detail as possible as the results from the 

questionnaire will help formulate what information about the soil is useful and needed by the 

community. It will contribute to identifying what characteristics about the soil I intend to map 

in subsequent PhD work. The information collected will be confidential, completely 

anonymous, and only the aggregate (average or total) results will be reported for my PhD and 

in any subsequent scientific publications. It will be retained for the duration of the PhD and 

stored according to UK data protection regulations.      If you would like any more information 

about the study, please do not hesitate to contact me on g.a.campbell@cranfield.ac.uk  or at 

Grant.Campbell@hutton.ac.uk .  The questionnaire should take no longer than 5-10 minutes 

to complete. You are free to miss out any question or to exit the questionnaire at any time. In 

most cases, you can answer more than one option (i.e. tick all that apply) as I hope to cover 

as much detail as possible about the use and effectiveness of information on soil. Thank you. 

 

mailto:g.a.campbell@cranfield.ac.uk
mailto:Grant.Campbell@hutton.ac.uk
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Please tick this box to acknowledge that you consent to the information you have given to be 

used for the purpose of the study. 

❑ I consent to the information being used 

Q1 Do you use any information on soil as part of your work? 

 Yes 

 No 
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Q2 Which of the following best describes the activities of your organisation? Tick all that 

apply. 

❑ Agriculture 

❑ Conservation 

❑ Construction 

❑ Environmental Consultancy 

❑ Environmental Advocacy (e.g. NGO's) 

❑ Estate or reserve management 

❑ Finance/ insurance 

❑ Forestry/ woodland 

❑ International Agency 

❑ Landscape design 

❑ Local Authority/ Councils 

❑ Local Community (e.g. allotment associations) 

❑ National/Federal Government Department or Agency 

❑ Planning 

❑ Research organisation (university, institutes etc) 

❑ Waste management 

❑ Water industry 

❑ Other (please specify ____________________ 
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Q3 Do you use any of the following information for your project(s)? 

❑ Agricultural land evaluation 

❑ Biofuel potential 

❑ Climate change models 

❑ Crop Suitability maps/models 

❑ Drainage requirements 

❑ Drainage systems (e.g. SUDS) 

❑ Drought risk assessments 

❑ Erosion risk assessments 

❑ Extraction of raw materials (peat, sands, gravels, clays etc.) 

❑ Fertiliser and pesticide usage 

❑ Flood risk maps 

❑ Habitat suitability 

❑ Hydrology of Soil (e.g. HOST) 

❑ Infrastructure assessment (pipes/electric cables etc. 

❑ Irrigation requirements 

❑ Land reclamation/restoration 

❑ Land Suitability for Forestry 

❑ Land Suitability for Housing 

❑ Land use change modelling 

❑ Leaching risk maps 

❑ Micronutrient levels 

❑ Nutrient Vulnerable Zones (e.g. Nitrate Vulnerable Zones (NVZs) 

❑ Nutrient cycling 

❑ Pesticide safety assessment 

❑ Pollen counts 

❑ Pollutant in soil 
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❑ Protection of animal species 

❑ Reclamation of contaminated land 

❑ Recreational space (e.g. green space, allotments) 

❑ Recycling waste to land 

❑ Runoff potential 

❑ Sludge acceptance 

❑ Soil acidity/alkalinity levels 

❑ Soil borne diseases and/or pests 

❑ Soil carbon/organic carbon 

❑ Soil chemistry 

❑ Soil erosion 

❑ Soil moisture 

❑ Soil pathogens 

❑ Soil temperature 

❑ Water pollution 

❑ Other (please specify) ____________________ 
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Q4 Of the following sectors, which are the most relevant to your work? 

❑ Agricultural production 

❑ Biofuel production 

❑ Building/ infrastructure 

❑ Climate change mitigation 

❑ Conservation of habitats and biodiversity 

❑ Contaminated land 

❑ Cultural heritage or archaeology 

❑ Environmental Impact Assessments 

❑ Extraction of raw materials (e.g. peat, sands, gravels, clays) 

❑ Flood regulation 

❑ Forestry production 

❑ Land use planning 

❑ Pests and diseases 

❑ Recreation (e.g. amenity woodland, tourism) 

❑ Recycling organic waste to land 

❑ Water supply and/or quality 

❑ Other (please specify) ____________________ 

 

Q5 Are you aware that the information you may use in your work has soils information 

embedded within it? 

 Yes, I was aware 

 No, I was not aware 

 I was not sure 
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Q6 What source(s) do you use to acquire the information you need? 

❑ Books/reports 

❑ Databases 

❑ Expert knowledge 

❑ Field analyses 

❑ Geographical Information Systems (GIS) 

❑ Maps (paper or digital) 

❑ Websites 

❑ Other (please specify ____________________ 

 



168 
 

Q7 How accurate or useful do you find the available information for your purposes? 

 Not very useful Not useful Useful Very useful 

Books/reports 
        

Databases 
        

Expert Knowledge 
        

Field analyses 
        

Geographical 

Information 

Systems (GIS) 

        

Maps (paper or 

digital) 
        

Websites 
        

Other (please 

specify) 
        

 

 

  



169 
 

Q8 Does your organisation pay for the licence use of any of the information you have 

identified? 

 Yes 

 No 

 Don't Know 

 

Q9 In your own opinion, what improvements could be made to make the information you use 

already more effective? 

❑ Associated documentation made available 

❑ Contemporary data 

❑ Co-ordinates of the geographical locations 

❑ Finer scale/resolution 

❑ Geographic projection 

❑ Greater coverage of the map 

❑ Improved accuracy/credibility of data sources 

❑ Meta data information 

❑ Methodology for data generation 

❑ Pixel/polygon-based information 

❑ Predicting change to drivers (e.g. climate change) 

❑ Relaxation of copyright 

❑ Summary interpretation for non-scientific users 

❑ Summaries of uncertainty/error values 

❑ Trends over time 

❑ Understanding/ additional information to help with soil classification scheme 

❑ Other (please specify) ____________________ 
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Q10 Would you be interested in using any new information that might arise from an 

improvement in... 

 Yes No 

Spatial resolution/scale 
    

Summary of uncertainty/error 

values 
    

Other (please specify) 
    

 

 

Q11 How would you rate the importance of spatial soil information for wider applications and 

end users? 

 Very important 

 Important 

 Not important 

 Not very important 
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Q12 Is there any other information you wish to add that has not been discussed in the 

survey? 
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Appendix 2 – Harmonisation methods 

This appendix contains additional information on the harmonisation methods and 

techniques attempted for LOI, pH and texture which were used in this PhD.   

 

LOI/OC 

Various techniques have been used for calculating soil organic carbon (OC). The Walkley 

Black method (WB) has been the most documented as it was one of the earliest ways of 

obtaining OC data (DEFRA, 2011). The soil organic carbon is oxidised by reacting 

potassium dichromate (K2Cr2O7) in sulphuric acid (H2SO4). In England and Wales, soil 

organic carbon was measured by a modified WB method for the original samples which was 

carried out in 1978-1983 (Kalembasa & Jenkinson 1973; DEFRA, 2011). Sampling was 

restricted to the uppermost part of the soil. 

In the laboratory, the contents were placed in a furnace at 850°C for 30mins. After ignition, 

the basin and contents are cooled in desiccator and reweighed. If the soil was calcareous, it 

was heated at 950°C for 2 hours to complete decompose the carbonates. LOI values (gkg-1) 

have been converted to OC by the following equation (DEFRA, 2011) 

OC = 0.5 × LOI 

For Scotland, soil organic carbon and LOI were measured (Macaulay Institute for Soil 

Research, 1971). Between 5 and 10g of 2mm air-dry soil was added to a crucible and 

weighed. These samples were then placed in an oven at 105°C for around 3 hours. The 

crucible and its contents were then removed, cooled and weighed. These samples were then 

placed in a muffle furnace and heated to between 800-900°C for around 2 hours. After 

cooling, these samples are then transferred to a desiccator, cooled and weighed again.  
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pH (H2O) 

In Scotland, the pH of water is measured on a soil to water ratio of 1:3 (Macaulay Institute for 

Soil Research, 1971). After the soil and water have been mixed together, the solution is left to 

stand for 4 hours and the pH is recorded using an electrode probe. For measuring the pH of 

CaCl2, 5 cm3 of 0.01M CaCl2 is added to a suspension where the mixture is shaken and left 

for a couple of hours before reading the pH. In England and Wales, measurements are made 

with 1:2.5 w/v suspensions in water and in 0.01M CaCl2 (Avery and Bascomb, 1979). For 

mineral soils of <2mm mineral air-dry soil, 10g air-dry soil is added to a 50ml beaker. 25ml 

distilled water is then added to the beaker from which the contents are stirred and left for 10 

minutes before the pH is recorded. To measure pH in calcium chloride values, 2ml 0.125M 

CaCl2 was added to solution by pipette to reach effective concentration by 0.01M CaCl2. This 

was then stirred, and the pH was measured and recorded using an electrode probe. 

Particle Size Distribution  

Fitted curves to Cumulative Particle Size Distributions 

Different particle size classes have been used in Scotland in comparison to England and 

Wales. In England and Wales, the particle size classes were predominantly based on the 

British Soil Texture Classification (BSTC) (Avery and Bascomb, 1979) although some data 

were in the USDA particle size classes. In Scotland, particle size classes mainly followed the 

United States Department of Agriculture (USDA) size classes (USDA, 1978). The primary 

difference between the BSTC and the USDA classes is the cut off used between the silt and 

sand fractions. The USDA particle size classes are ((<2 (clay), 2-50 (silt), 50-2000 (sand) in 

µm)) and for BSTC they are ((<2 (clay), 2-60 (silt), 60-2000 (sand) µm).  

The first potential harmonisation method that was investigated was curve fitting and 

interpolation (Nemes et al, 1999). The data used in the investigation were derived from the 

National Soil Inventory of Scotland as a wide range of particle size classes had been 

determined using laser diffraction including both USDA and BSTC particle size classes so 
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provide an opportunity to investigate the possibility of converting PSD from USDA to BSTC 

(as majority of E&W data as BSTC).  The data were split into the following fractions: <=2, 

6.3, 20, 63, 200, 630 and 200 microns, summed together to make up to 100% and then 

divided by 1000 to change these measurements from micrometres to millimetres.  The log 

measurement of the fractions to the base 2 was then calculated. A selection of these 

cumulative curves is illustrated in the graph below (Figure 2.1) 

 

 

 

 

 

 

 

 

 

Figure 2.1: PSD cumulative curves for 30 of the 300 NSIS particle size data investigated.  

What is evident from the graph above is that the shapes of the curves are very different and 

are determined by the distribution of the size ranges. Some of the samples measured have 

considerably larger sand contents and some will conversely see large average clay and silt 

contents. This mirrors similar results found by Nemes et al, (1999). Furthermore, for the 

Scotland data, due to the complexity of PSDs, there was no single equation that fitted the 

data from which the particles in the size range 2-60 µm could be predicted to align the 

Scottish data with that of England and Wales. Thus, if this approach was to be used, specific 

equations would need to be derived for a specific sample and that would be very time 

consuming to achieve. 
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Appendix 3 – BRT modelling results for soil 

properties in SCOT pilot area 

This appendix contains additional statistical information on the soil properties used 

for BRT modelling at the SCOT test area which can be found in Chapter 4 of the PhD.   

 

a) 

LOI Depths  R2 RMSE Mean SD Observed LOI 

range 

Model LOI range Samples 

(n)  
0-5 
 

0.61 16.48 21.87 25.09 0.43 – 100.00 8.92 – 76.80 949 

 5-15 
 

0.58 12.60 15.98 17.84 0.45 – 96.81 10.02 – 55.81 
 

948 

 15-30 
 

0.54 8.25 9.28 10.99 0.25 – 95.81 5.85 – 36.11 
 

941 

 30-60 

 

0.48 6.71 5.56 8.46 0.31 – 99.79 2.22 – 29.33 929 

 60-100 
 

0.29 6.95 4.21 7.54 0.22 – 99.44 3.02 – 13.40 
 

829 

 100-200 0.49
  

2.01 3.33 2.45 0.35 – 21.63 2.59 – 5.80 361 

 

 

b) 

pH Depths  R2 RMSE Mean SD Observed PH 
range 

Model PH range Samples (n) 

 
0-5 0.57 0.69 5.44 1.02 3.30 – 8.58 3.92 – 7.10 949 

 5-15 0.58 0.66 5.47 0.99 3.30 – 8.58  4.03 – 7.30 948 

 15-30 0.56 0.62 5.56 0.90 3.42 – 8.26 4.34 – 6.90 932 

 30-60 
 

0.54 0.60 5.70 0.85 3.42 – 8.36 4.64 – 7.20 920 

 60-100 
 

0.50 0.63 5.85 0.85 3.23 – 8.74 4.82 – 7.10  829 

 100-200 0.53 

 

0.71 6.03 0.92 2.84 – 8.63 5.23– 6.90  361 
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c) 

Sand Depths  R2 RMSE Mean SD Observed 

Sand range 

Model Sand 

range 

Samples (n) 

 
0-5 0.64 10.40 53.43 16.53 0.00 – 100.00 16.08 – 94.43 892 

 5-15 0.66 10.00 53.68 16.62 0.00 – 100.00 13.32 – 97.77 892 

 15-30 0.63 
 

10.79 55.29 17.11 0.00 – 100.00 13.56 – 95.76 890 

 30-60 
 

0.56 13.16 58.90 18.93 0.00 – 100.00 17.88 – 90.18 879 

 60-100 0.55 
 

14.36 
 

60.19 20.39 0.00 – 100.00 17.23 – 89.62 
 

781 

 100-200 0.63 

 

15.56 62.25 22.83 0.00 – 99.22 23.77 – 91.75 325 

 

d) 

Silt Depths  R2 RMSE Mean SD Observed Silt 
range 

Model Silt range Samples (n) 

 
0-5 0.58 

 
8.34 28.82 12.22 0.00 – 84.97 6.99 – 55.80 

 
892 

 5-15 0.59 8.19 28.69 12.15 0.00 – 78.00 6.09 – 55.95 892 

 15-30 0.58 8.09 27.65 12.02 0.00 – 78.07 5.18 – 55.29 890 

 30-60 0.55 

 

8.33 25.28 12.57 0.00 – 77.61 6.08 – 54.30 879 

 60-100 
 

0.53 9.77 24.50 13.41 0.00 – 80.83 8.35 – 51.90 781 

 100-200 0.50 12.62 23.86 15.14 0.00 – 71.31 15.15 – 36.84 325 

 

e) 

Clay Depths  R2 RMSE Mean SD Observed Clay 
range 

Model Clay 
range 

Samples (n) 

 
0-5 0.44 6.31 13.61 8.05 0.00 – 41.97 5.30 – 26.23 892 

 5-15 0.48 6.03 13.83 8.03 0.00 – 44.96 4.51 – 29.06 892 

 15-30 0.49 6.37 14.54 8.50 0.00 – 48.86  3.71 – 31.08 890 

 30-60 0.48 

 

7.22 14.69 9.53 0.00 – 57.77 4.06 – 31.77 879 

 60-100 
 

0.46 7.81 14.71 9.89 0.00 – 47.89 5.54 – 27.68 781 

 100-200 0.51 8.32 13.31 10.11 0.00 – 48.99 8.34 – 20.67 
 

325 
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Appendix 4 – BRT modelling results for soil 

properties in EW pilot area 

This appendix contains additional statistical information on the soil properties used 

for BRT modelling at the EW test area which can be found in Chapter 4 of the PhD.   

 

a) 

LOI Depths R2 RMSE Mean SD Observed LOI 

Range 

Model LOI 

range 

Samples (n) 

 
0-5 0.47 7.39 9.91 9.17 2.74 – 88.43 8.29 – 28.58 936 

 5-15 0.36 4.63 8.22 5.56 2.61 – 66.80 6.64 – 23.14 917 

 15-30 0.29 4.34 6.08 4.64 0.00 – 79.15 5.64 – 10.06 839 

 30-60 
 

0.14 5.82 4.21 5.96 0.00 – 99.15 3.93 – 6.96 585 

 60-100 
 

N/A N/A 4.12 6.00 0.00 – 66.04 N/A 228 

 100-200 N/A N/A 4.83 8.68 0.94 – 66.01 N/A 74 

 

b) 

pH Depths R2 RMSE Mean SD Observed pH 
Range 

Model pH range Samples 
(n)  

0-5 0.51 
  

0.73 
  

5.96 1.00 2.34 – 8.36 4.25 – 7.36 1096 

 5-15 0.53  
  

0.71 
  

6.01 0.98 3.12 – 8.75 4.25 – 7.36 1095 

 15-30 0.52  
  

0.72 
  

6.17 0.99 3.32 – 8.56 4.56 – 7.43 1092 

 30-60 

 

0.57  

  

0.71  

  

6.40 1.05 2.74 – 8.75 4.64 – 7.98 1063 

 60-100 
 

0.28 1.08  
  

6.79 1.17 2.26 – 9.02 5.92 – 7.27 1063 

 100-200 0.60 
  

0.81 
  

6.77 1.10 4.08 – 8.75 5.56 – 7.62 371 
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c) 

Sand Depths R2 RMSE Mean SD Observed Sand 
Range 

Model Sand 
range 

Samples 
(n)  

0-5 0.73 12.73 36.70 23.70 0.00 – 93.14 9.51 – 76.82 1020 

 5-15 0.73 12.75 36.86 23.84 0.00 – 94.65 9.39 – 76.10 1019 

 15-30 0.72 13.44 37.11 24.55 0.00 – 96.96 8.77 – 77.64 1013 

 30-60 
 

0.68 15.30 36.45 26.52 0.00 – 96.78 9.30 – 80.59 987 

 60-100 
 

0.65 17.95 36.04 29.09 0.00 – 99.41 10.70 – 79.98 902 

 100-200 0.67 19.74 39.00 31.35 0.00 – 100.00 17.48 – 69.83 347 

 

 

d) 

Silt Depths R2 RMSE Mean SD Observed Silt 
Range 

Model Silt 
range 

Samples 
(n)  

0-5 0.73 9.17 38.49 17.24 3.00 – 80.74 14.29 – 66.70 1020 

 5-15 0.74 9.10 38.30 17.27 2.76 – 80.16 12.78 – 67.06 1019 

 15-30 0.73 9.34 37.77 17.49 0.03 – 83.09 12.60 – 66.31 1013 

 30-60 

 

0.70 10.14 36.56 18.07 1.63 – 81.50 12.30 – 66.09 987 

 60-100 
 

0.64 12.06 35.94 19.48 0.17 – 87.53 11.95 – 62.71 902 

 100-200 
 

0.69 13.59 35.47 21.94 0.00 – 98.71 13.63 – 61.89 347 

 

e) 

Clay Depths R2 RMSE Mean SD Observed Clay 
Range 

Model Clay 
range 

Samples 
(n)  

0-5 0.62 9.49 24.88 14.33 0.00 – 89.00 14.76 – 52.11 1020 

 5-15 0.62 9.24 24.92 14.32 0.13 – 89.00 14.25 – 52.44 1019 

 15-30 0.60 10.05 25.14 15.16 0.59 – 89.00 13.60 – 52.37 1013 

 30-60 

 

0.59 11.09 16.69 26.98 1.04 – 89.00 12.01 – 53.87 987 

 60-100 
 

0.57 12.12 28.11 17.36 0.06 – 89.00 12.38 – 52.33 902 

 100-200 0.52 13.65 25.83 17.31 0.00 – 97.43 14.83 – 43.15 347 
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Appendix 5 – LOI maps created by a) Boosted 

Regression Trees and b) associated residual maps 

at depth 

This appendix contains maps of LOI at depth for GB along with associated residual 

maps. Information on the interpretation of this can be found in Chapter 5. 

0-5 cm 

a)                                           b) 
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5-15 cm 

a)        b)  

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



181 
 

15-30 cm 

a)        b) 
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30-60 cm 

a)        b) 
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60-100 cm 

a)       b) 
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Appendix 6 – Number of LOI observations at 60-100 

cm depth 

This appendix contains a graph of LOI observations at 60-100cm depth. Information 

on this can be found in Chapter 5. 
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Appendix 7 – R Code 

This appendix contains the R code used in this PhD research. 

Heat map Chapter 2 

dat1<-read.csv ("D:/Trial Grants.csv", sep=",") 

dat1 

str(dat1) 

row. names(dat1) <-dat1$Activity 

row. names(dat1) 

dat1<-dat1[,2:12] 

dat1_matrix<-data. matrix(dat1) 

dat1_matrix 

a<-colorRampPalette (c ("white", "blue")) (100) 

library(gplots) 

CLS<-c ('Associated Documentation’, ‘Contemporary Data', 'Co-ordinate locations', 'Finer 

Scale resolution', 'Geographic projection', 'Improved coverage’,'Improve data source 

accuracy', 'Metadata’, 'Data Generation Methodology', 'Pixel/polygon’, 'Driver changes', 

‘Copyright’, ‘Non-users summary’, ‘uncertainty’, ‘Trends over time’, ‘Understanding soil 

classification’) 

RWS<-c ('Agriculture', 'Conservation’, 'Construction', 'Environmental Consultancy', 

'Environmental Regulator', 'Estate management’, 'Finance/insurance', 'Forestry', 

'International Agency', 'Landscape design’, 'Local Authority', 'Local community', ‘National Fed 

Govt’,’ Planning’, ’Research’, ‘Waste’, ‘Water’, ‘Other’) 
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heatmap.2(dat1_matrix, dendrogram = "none", Rowv = FALSE, Colv = FALSE, 

trace="none”, density.info="none”, col=a, key=TRUE, margins=c (14,14), keysize=1.0, key. 

xlab="“, key. title="“, labRow=RWS, labCol=CLS) 

Creating splines 

library (GSIF) 

library(aqp) 

library(plyr) 

library(sp) 

str(data) 

depths(data)<-PRFL_NGR~ FIELD_SMPL_TOP + FIELD_SMPL_BTTM 

class(data) 

fittedsandadj2<-mpspline (data, "sandadj2", lam = 0.1, d = t (c (0,5,15,30,60,100,200)), vlow 

= 0, vhigh = 100, show. progress=TRUE) 

fitstndsandadj2<- data. frame (fittedsandadj2$var.std, fittedsandadj2$idcol) 

MARS Script Chapter 4 e.g. SCO test area 

#The packages needed for this script are: 

library(earth) 

library(epiR) 

#This loads your data 

grant_data <- read.csv (file = 

"M:/Test_Areas_for_Modelling/Test_Areas/Fife/NEMV_newest_modelling/Silt_NEMV_100_2

00_GC1.csv", sep = ",", header = TRUE) 

str(grant_data) 
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#Here we set soil property measurement to a vector... 

Silt_100_200<- grant_data$Silt_100_200 

#and then remove it from the rest of the data 

grant_data["Silt_100_200"] <- NULL 

#The following 9 lines of code are for ensuring that the variables are categorical 

grant_data$soilsassoc <- as. factor(grant_data$soilsassoc) 

grant_data$soilsmssg <- as. factor(grant_data$soilsmssg) 

grant_data$LCM2000 <- as. factor(grant_data$LCM2000) 

grant_data$ROCK <- as. factor(grant_data$ROCK) 

grant_data$HAM <- as. factor(grant_data$HAM) 

grant_data$SOTER <- as. factor(grant_data$SOTER) 

grant_MARS <- earth (x = grant_data, y = Silt_100_200) 

#This plots some kind of model summary 

plot(grant_MARS) 

#Here the fitted values are extracted from the model 

MARS_fitted <- as. vector(grant_MARS$fitted.values) 

#This plots the observed values against fitted values 

plot (Silt_100_200, MARS_fitted, abline (0, 1)) 

grant_data_df<-data. frame (grant_data, MARS_fitted) 

grant_data_df$MARS_fitted <- ifelse (grant_data_df$MARS_fitted < 0, 0, 

grant_data_df$MARS_fitted) 

### SOME SUMMARY STATISTICS ### 

#R2 
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cor (MARS_fitted, Silt_100_200) 2̂ 

#RMSE 

sqrt (mean ((MARS_fitted - Silt_100_200) 2̂)) 

#Bias 

mean (MARS_fitted - Silt_100_200) 

#compute the CCC 

ccc <- epi.ccc (Silt_100_200, MARS_fitted, ci = "z-transform", conf. level = 0.95) 

#Extract the estimate of CCC 

ccc <- ccc$rho.c$est 

BRT Script Chapter 4 e.g. SCO test area 

library(dismo) 

library(gbm) 

grant_data <- read.csv (file = 

"M:/Test_Areas_for_Modelling/Test_Areas/Fife/NEMV_newest_modelling/Clay_NEMV_100_

200_GC1.csv", sep = ",", header = TRUE) 

str(grant_data) 

grant_data$soilsassoc <- as. factor(grant_data$soilsassoc) 

grant_data$LCM2000 <- as. factor(grant_data$LCM2000) 

grant_data$ROCK <- as. factor(grant_data$ROCK) 

grant_data$HAM <- as. factor(grant_data$HAM) 

grant_data$SOTER <- as. factor(grant_data$SOTER) 

Clay_100_200<- gbm. step (data=grant_data, gbm.x = 2:26, family = 'gaussian', gbm. y = 1, 

tree. complexity = 5, learning. rate = 0.001, bag. fraction = 0.5) 
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names (Clay_100_200) 

summary (Clay_100_200) 

grant_predict<- predict.gbm (Clay_100_200, n. trees = 1550) 

hist(grant_predict) 

range(grant_predict) 

training<-data. frame (grant_predict, grant_data) 

### SOME SUMMARY STATISTICS ### 

plot (training$Clay_100_200, training$grant_predict) 

abline (0,1) 

#R2 

cor (training$Clay_100_200, training$grant_predict) 2̂ 

#RMSE 

sqrt (mean ((training$grant_predict - training$Clay_100_200) 2̂)) 

library(epiR) 

#compute the CCC 

ccc <- epi.ccc (training$Clay_100_200, training$grant_predict, ci = "z-transform", conf. level 

= 0.95) 

#Extract the estimate of CCC 

ccc <- ccc$rho.c$est 

Stacking rasters (creating deployment) 

library(rgdal) 

library(raster) 

library(sp) 



190 
 

a<-raster("soilsassoc.tif") 

b<-raster("soilsmssg.tif") 

c<-raster("AMT.tif") 

d<-raster("AP.tif") 

e<-raster("ISO.tif") 

f<-raster("MDR.tif") 

g<-raster("SP.tif") 

h<-raster("ST.tif") 

i<-raster("LCM2000.tif") 

j<-raster("LCS88.tif") 

k<-raster("Aspect.tif") 

l<-raster("Slope.tif") 

m<-raster("AH.tif") 

n<-raster("CI.tif") 

o<-raster("LongC.tif") 

p<-raster("XSCurve.tif") 

q<-raster("LSFact.tif") 

r<-raster("TWI.tif") 

s<-raster("RSP.tif") 

t<-raster("VD.tif") 

u<-raster("VDCN.tif") 

v<-raster("CNBL.tif") 
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w<-raster("ROCK.tif") 

x<-raster("HAM.tif") 

y<-raster("SOTER.tif") 

ca<-crop (a, a) 

cb<-crop (b, b) 

cc<-crop (c, c) 

cd<-crop (d, d) 

ce<-crop (e, e) 

cf<-crop (f, f) 

cg<-crop (g, g) 

ch<-crop (h, h) 

ci<-crop (i, i) 

cj<-crop (j, j) 

ck<-crop (k, k) 

cl<-crop (l, l) 

cm<-crop (m, m) 

cn<-crop (n, n) 

co<-crop (o, o) 

cp<-crop (p, p) 

cq<-crop (q, q) 

cr<-crop (r, r) 

cs<-crop (s, s) 
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ct<-crop (t, t) 

cu<-crop (u, u) 

cv<-crop (v, v) 

cw<-crop (w, w) 

cx<-crop (x, x) 

cy<-crop (y, y) 

com<-

ca+cb+cc+cd+ce+cf+cg+ch+ci+cj+ck+cl+cm+cn+co+cp+cq+cr+cs+ct+cu+cv+cw+cx+cy 

cca<-crop (ca, com) 

ccb<-crop (cb, com) 

ccc<-crop (cc, com) 

ccd<-crop (cd, com) 

cce<-crop (ce, com) 

ccf<-crop (cf, com) 

ccg<-crop (cg, com) 

cch<-crop (ch, com) 

cci<-crop (ci, com) 

ccj<-crop (cj, com) 

cck<-crop (ck, com) 

ccl<-crop (cl, com) 

ccm<-crop (cm, com) 

ccn<-crop (cn, com) 

cco<-crop (co, com) 



193 
 

ccp<-crop (cp, com) 

ccq<-crop (cq, com) 

ccr<-crop (cr, com) 

ccs<-crop (cs, com) 

cct<-crop (ct, com) 

ccu<-crop (cu, com) 

ccv<-crop (cv, com) 

ccw<-crop (cw, com) 

ccx<-crop (cx, com) 

ccy<-crop (cy, com) 

stack_rstrs = stack (cca, ccb, ccc, ccd, cce, ccf, ccg, cch, cci, ccj, cck, ccl, ccm, ccn, cco, 

ccp, ccq, ccr, ccs, cct, ccu, ccv, ccw ,ccx ,ccy,  bands = NULL, native = FALSE, RAT = 

FALSE, quick = TRUE) 

values<-rasterToPoints (stack_rstrs, fun= NULL, spatial =TRUE) 

values.df<-as.data. frame(values) 

values.df. naomit<-na. omit(values.df) 

deployment<-data. frame (values.df. naomit) 

deployment$soilsassoc <- as. factor(deployment$soilsassoc) 

deployment$soilsmssg <- as. factor(deployment$soilsmssg) 

deployment$AMT <- as. integer(deployment$AMT) 

deployment$AP <- as. integer(deployment$AP) 

deployment$ISO <- as. integer(deployment$ISO) 

deployment$MDR <- as. integer(deployment$MDR) 
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deployment$SP <- as. integer(deployment$SP) 

deployment$ST <- as. integer(deployment$ST) 

deployment$LCM2000 <- as. factor(deployment$LCM2000) 

deployment$LCS88 <- as. factor(deployment$LCS88) 

deployment$ROCK <- as. factor(deployment$ROCK) 

deployment$HAM <- as. factor(deployment$HAM) 

deployment$SOTER <- as. factor(deployment$SOTER) 

deployment$x <- as. integer(deployment$x) 

deployment$y <- as. integer(deployment$y) 

str(deployment) 

str(grant_data_df) 

View(grant_data_df) 

write. table (values.df. naomit, "Covariates_NEMV_22052017.txt", sep="\t", col. names=NA) 

Using training data on deployment area (extrapolation) 

grant_prediction <- predict (grant_MARS, newdata = deployment, type="response") 

##create a dataframe from the predictions 

pred_gcdf<-as.data. frame(grant_prediction) 

str(pred_gcdf) 

View(pred_gcdf) 

#add xy coordinates to preddf 

##Create xy coordinates 

xy<-cbind (deployment$x, deployment$y) 
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formapping<-cbind (xy, pred_gcdf) 

 

colnames(formapping)<-c("x","y","grant_MARS") 

str(formapping) 

Create raster map 

library(raster) 

coordinates(formapping)<- ~ x+y 

gridded(formapping)<-TRUE 

grant_MARS<-raster(formapping) 

writeRaster (grant_MARS, filename="Clay_100_200_NEMV.tif", format="GTiff", 

datatype="FLT4S”) 
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A B S T R A C T

Soils form a major component of the natural system and their functions underpin many key ecosystem goods and
services. The fundamental importance of soils in the environment means that many different organisations and
stakeholders make extensive use of soils data and information in their everyday working practices. For many
reasons, stakeholders are not always aware that they are reliant upon soil data and information to support their
activities. Various reviews of stakeholder needs and how soil information could be improved have been carried
out in recent years. However, to date, there has been little consideration of user needs from a non-expert per-
spective. The aim of this study was to explore the use of explicit and hidden soil information in different or-
ganisations across Europe and gain a better understanding of improvements needed in soil data and information
to assist in practical use by non-expert stakeholders. An on-line questionnaire was used to investigate different
uses of soils data and information with 310 responses obtained from 77 organisations across Europe. Results
illustrate the widespread use of soil data and information across diverse organisations within Europe, particu-
larly spatial products and soil functional assessments and tools. A wide range of improvements were expressed
with a prevalence for finer scale resolution, trends over time, future scenarios, improved accuracy, non-technical
supporting information and better capacity to use GIS. An underlying message is that existing legacy soils data
need to be supplemented by new up-to-date data to meet stakeholder needs and information gaps.

1. Introduction

Soils form a major component of our natural environment on Earth,
performing an array of essential functions that underpin key ecosystem
goods and services which we rely on (Costanza et al., 1997; Smith et al.,
2015). The significance of soils within the environment has meant that
stakeholders have to use a wide variety of soils data and information in
their decision making.

The concept of soil functions was first conceived during the early
1950s and has since been widely adopted in national and regional
policy (Blum, 2005). From the mid-1900s onwards, soils functional
aspects have been incorporated into assessment tools such as maps and
models that assist decision makers across a wide range of soil-related
issues from land use, cropping practises, protection of water bodies, and
restoration of habitats to climate regulation. For instance, many early
assessments around agricultural productivity, such as the Land Cap-
ability for Scotland (Bibby et al., 1982) and laterally, the CAPRI model
(Britz and Witzke, 2014), are based on soil maps. However, functional
assessments have since extended across many other issues such as

groundwater vulnerability (Environment Agency, 2013; Harter and
Walker, 2001).

When exploring what needs to be improved in terms of soils data
and information, we need to understand the contemporary needs of
stakeholders particularly where soils data and information may be
implicit or part of an underlying model or assessment tool. There are
various reviews of stakeholder needs and how these levels of informa-
tion could be improved which have been carried out in recent years
(Black et al., 2012; Prager et al., 2014; McKee, 2014; Valentine et al.,
1981; Grealish et al., 2015; Omuto et al., 2013; Houšková et al., 2010;
Panagos et al., 2012). However, these reviews have generally assumed
that stakeholders have some knowledge of soils or are fully aware that
they are using soils data and information. The aim of this study is to
understand soils data and information stakeholders’ needs across
Europe from a non-expert perspective.

Jones et al. (2005) reviewed soils resources and information use
across Europe and determined that these are traditionally associated
through the function of food and fibre production, with increasing
applications to other issues such as climate change and water resource
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management (Blum, 2005; Grealish et al., 2015; Haines-Young, 2011).
Soil maps, data and information are used in many sectors besides soil
science, such as farming, hydrology, land degradation, policy and en-
vironmental modelling (Valentine et al., 1981; Mather, 1988; Houšková
et al., 2010; Hallett et al., 2011; Omuto et al., 2013; Prager et al., 2014).
The majority of soil information users indicated that key soil attributes
are readily available (Wood and Auricht, 2011). However, improve-
ments in a range of soil properties such as soil moisture, toxicity,
biology and carbon are required (Auricht, 2004; Grealish et al., 2015).

Furthermore, engineering properties such as subsidence and corro-
sion are also of interest (Pritchard et al., 2015). These types of in-
formation are available but awareness of data accessibility and where to
find them remains challenging. Information needs are also specific to
stakeholder requirements and the spatial resolution of the undertaking.
Black et al. (2012) consulted a wide range of stakeholders in developing
the Soil Monitoring Action Plan for Scotland with further consultation
taking place with farmers and local authorities by Prager and McKee,
(2014). Key improvements mentioned were finer spatial resolution, soil
trends, soil biological and physical indicators and sealing.

The FAO (2012) identify three major challenges in addressing soil
information availability. The first of these focusses on the importance of
soil protection, particularly to the global modelling community as it
will help mitigate and adapt to issues such as climate change and food
security. A second consideration is soil monitoring, focusing on im-
proving global soil data at finer scale resolution. The third looks at
advancing Digital Soil Mapping (DSM) and Digital Soil Assessment
(DSA) techniques. DSM and DSA offers potential to map soil properties
at detailed and broad scales (McBratney et al., 2003; Behrens and
Scholten, 2006; Carré et al., 2007; Hartemink et al., 2008). However, it
is not clear how any of these challenges reflect the needs of stake-
holders, and difficulties remain around integrating the capability of
models and the envisioned users of this data.

Stakeholder interaction and participation should be considered from
the outset, and this is very rarely done (Reed, 2008). Studies by Bouma
et al. (2012) and Black et al. (2012) highlighted that end-users were
often not aware that they were using soils data and information so
could not easily communicate further needs. It is therefore not
straightforward to assume what the needs of envisioned users of ‘new’
soil information are, in particular where this information is embedded
in derived tools. Here we planned a survey of non-expert users to in-
vestigate their current needs and perceived gaps in their ability to de-
liver in their work activities. This information is vital in addressing how
new soil tools and products, such as DSM and DSA, might (or might not)
meet the stakeholder requirements and the likelihood of such products
being of practical use. Our aim is therefore to investigate what soils
assessments and tools stakeholders currently use and what improve-
ments, if any, required for future soil products/information sets.

2. Methodology

A detailed questionnaire was carried out to consider the range of
soils data and information currently being used across Europe with a
focus on explicit and hidden soils information being used by non-expert
stakeholders: non-experts being people who use soils information or
data in their everyday work but who are not expected to be academi-
cally trained soil scientists.

The questionnaire was compiled using the web-based survey pro-
gramme Qualtrics (http://www.qualtrics.com/). In addressing the dif-
ferent uses of soils data and information, we considered it important to
address functions of soils and contact stakeholders with close connec-
tions in and around these functions. Therefore, stakeholders were
identified in order to be representative of the primary functions of soils

(http://www.fao.org/resources/infographics/infographics-details/en/
c/284478/) including biomass production, cultural heritage, reg-
ulating, biodiversity/habitats and infrastructure. A list of organisations
across Europe, with named soil contacts, was drawn up by accessing
published materials, on-line searches and personal knowledge. The
remit and primary activities of these organisations corresponded well
with at least one of the soil functions and provided coverage across the
soil functions. Stakeholders were based around commercial organisa-
tions, learned societies, non-governmental organisations (NGOs), local
authorities and government organisations. A total of 98 organisations
were contacted across 22 countries in Europe. Of these, 34 organisa-
tions can be considered trans-European in their activities i.e. no specific
alignment with any one region or country. A pilot study of the ques-
tionnaire was conducted with staff at The James Hutton Institute
(Aberdeen) and the Scottish Government’s ethics committee; the
questionnaire incorporated amendments following relevant feedback.
The survey was carried out from July to August 2015 and was made
accessible to stakeholders through an anonymous online link.

3. Questionnaire results

3.1. What sectors use soils information?

There were 310 individual responses to the questionnaire from 77
out of the 98 organisations we contacted and, from this, 93% of sta-
keholders said that they handled information about soil in their work.

Stakeholders were asked to identify what best describes the activ-
ities of their organisation. Stakeholders could tick more than one option
for this question in order to obtain a broader understanding of activities
associated with individual organisations. The top three activities were
agriculture, research organisations (universities, institutes etc.) and
conservation (Fig. 1). Stakeholders who ticked ‘other’ ranged from
people who worked in landscape photography, archaeology and oil and
gas services. This shows that there is a wide array of stakeholders who
have an interest in soils data and information and who may use certain
tools and assessments related to activities within their organisation.

Fig. 1. Range and type of organisations and the percentage of responses to the ques-
tionnaire.
This was to get an understanding as to the variety of organisations people worked for. n.b.
Stakeholders could tick more than one option for this question.
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3.2. Tools and assessments and awareness of embedded soils information

Stakeholders were encouraged to tick as many boxes as possible in
terms of what tools and assessments they use in their work. These as-
sessments are grouped by related soil functions. Most responses came
from people who were connected with agricultural production and
conservation of habitats and biodiversity. Respondents were asked
about how aware they were that many of the assessments had soils
information embedded within them, with 87% saying that they were
‘aware’.

In relation to ‘Biomass Production’, it was found that the two main
tools predominantly used were agricultural land evaluation and ferti-
liser/pesticide usage assessments. In terms of assessments grouped
under ‘Infrastructure’, it is the extraction of raw materials such as clay,
sand and silt, followed by assessment of the impacts of soils on assets
such as pipes and electric cables. Nitrate Vulnerable Zones (NVZs) were
found to be the main assessment tool used by stakeholders closely as-
sociated with ‘Environmental Regulation’ with soil erosion and diffuse
pollution to water following closely behind.

Habitat suitability maps and land restoration assessments were the

Fig. 2. Tools and assessments used and percentages
used by respondents. These are broken up into their
closest related soil function.
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most commonly used assessments by stakeholders related to ‘Habitats
and Biodiversity’.

The number of stakeholders requesting information on fundamental
soil properties from the questionnaire was relatively high. Soil chem-
istry (primary contaminants) and other properties including soil
acidity, alkalinity and carbon had the highest demand and application
(Fig. 2). A number of other assessments which were not listed in the
survey were also used by stakeholders including soil climate zones to
identify nutrient demands of crops and grasslands.

3.3. Sources of information, licencing and spatial importance

Respondents were asked to identify what sources they used to ac-
quire soil information required for their work. The use of maps in either
paper or digital format is the most prolific with 78% of respondents
using them while 65% of respondents use Geographical Information
Systems (GIS). Other sources consisted of social media websites and
discussions with knowledge transfer exchange with stakeholders (11%
of respondents).

On the whole, most stakeholders found most sources that they used
either ‘very useful’ or ‘useful’. 95% found the use of maps, expert
knowledge and field and laboratory analysis to be either ‘useful’ or ‘very
useful’. However, 11% reported that GIS systems were ‘not very useful’ or
‘not useful’ (Fig. 3).

When asked whether or not their organisation paid for licenced use
of soils information, 49% said that their organisation did, 30% said ‘no'
and 21% said that they ‘didn’t know'.

Respondents were asked to assess the importance of spatial soils
information for wider applications and end-user groups and as a result
of this, an overwhelming 98% of the respondents said that this was ‘very
important’ or ‘important’. Previously, we saw that 93% handled in-
formation about soil as part of their work. This extra 5% illustrates that
those respondents who do not use, or acknowledge soil as part of their
work still see the importance of spatial soil information for wider ap-
plications and end-user groups.

3.4. Requested improvements to soil information and data

Improvements to soil data and information were a key issue ad-
dressed in this questionnaire. Respondents were asked what they would
like to see improved in relation to the information they already use and
this has been summarised in Fig. 4. We grouped improvements post-
survey to ease interpretation under four main themes: ‘Uncertainty’,
‘Scale and Coverage’, ‘Metadata’ and ‘Fundamental Data’. Most stake-
holders wanted soil information at a much finer resolution or scale to
what they currently use. With regards to ‘Uncertainty’, respondents
wanted improved accuracy and credibility of data sources. With regards
to ‘Scale and Coverage’, as well as wanting information at finer scale
resolution, respondents wanted to see improvements in co-ordinates of
geographical locations (i.e. data in a format which they can geor-
eference). With respect to ‘Metadata’ issues, respondents requested
improvements in the availability of associated documentation related to
the data. Finally, under the category of ‘Fundamental Data’, we see that
respondents wish to see improvements with trends over time and con-
temporary data. Respondents were then asked specifically if they would
be interested in using any new information that might arise from im-
provements in spatial resolution/scale and uncertainty. From Table 1,
we can see that there is a positive response to improvements regarding
both of these issues. Other notable requirements ranged from improving
map and data interpretations, and the ability to use multiple datasets or
assessments.

There was a space at the end of the questionnaire for respondents to
add any extra information that might be useful. The main themes that
came out from the additional responses were opportunities to increase
knowledge transfer between research and policy makers and also the
importance of education and training, which are vital in terms of in-
creasing soil understanding.

3.5. Relationships between organisations and desired improvements

One of the main objectives of this study was to establish from the
questionnaire what desired improvements were linked to the activities
of particular activities. To achieve this, responses were cross tabulations
between activities of the organisations and the desired improvements
the stakeholders had requested. This was undertaken using the
Qualtrics software. The cross tabulations were then used to create heat
maps using R Statistics software (https://www.r-bloggers.com/citing-r-
or-sas/) (Fig. 5). The legend indicates how the shading relates to the
number of people who answered responses to both of these questions
i.e. the darker the colour then the greater the correspondence between
activities within that specific organisation and the requested improve-
ments. From this we can see, improvements in finer/scale resolution are
being requested most by stakeholders whose activities revolve around
agriculture or research but consistently needed across all organisational
activity groups. Trends over time are also particularly related to those
working in agriculture and research but also sought by stakeholders in
conservation and national/federal or governmental agencies.

Using the same data, we converted the crosstabs into percentages to
explore needs within activity groups. For the majority of organisations

Fig. 3. How stakeholders rated usefulness of sources. Outer circle represents the per-
centage of stakeholders who rated ‘very useful’. Inner circle represents those who rated
‘not very useful’.
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(Fig. 6), finer scale resolution and, associated, improved data accuracy
predominated individual organisational user needs. Some organisations
identified quite specific needs. In the finance/insurance category, these
include improvements in contemporary data, finer scale resolution,
improved coverage and methodology in how the data was generated. In
the water sector, understanding soil classification and non-(expert) user
summaries were identified as relatively high needs.

4. Discussion

It is encouraging that we were able to obtain a large number of
responses from non-expert stakeholders across substantially different
organisations. It is clear that many diverse sectors are using, wish to use
or access soils information on a regular basis to support day-to-day
work practices. Moreover, our survey demonstrates that soils data and

information are widely used in a range tools and assessments and are
often integrated with other data sources such as historical data on cli-
mate and vegetation (e.g. where soil climate zones were used to es-
tablish nutrient demand for crops and grassland for regional animal
manure management).

The survey responses also identified that there are barriers to ac-
cessing and using appropriate soil data. Overall, it would seem that
stakeholders find difficulties obtaining and collecting information for
projects which are under licence or where they have to pay for the use
of it. Payment for use of data is particularly dependent on organisations
procurement procedures and that different organisations are willing to
pay varying amounts in order to obtain certain data for their work or
projects (Montanarella and Vargas, 2012; Diafas et al., 2013). It is
unclear how much this constituents a significant barrier to the use of
soil information, as payment was not identified as one of the key im-
provements from the questionnaire. However, improving accessibility
would clearly benefit non-experts. Alongside this, there is a clear need
to address technical understanding with needs identified for knowledge
transfer between research and policy, education and training, im-
proving associated supporting information, understanding soil classifi-
cations and non-expert user information. A need for more technical
knowledge may well reflect a lack of soils in school and university level
education. The level of responses suggests that there is demand (and
opportunity) for soils training opportunities focussed on non-experts
and practical applications. In parallel, there is also a clear need for

Fig. 4. Improvement recommendations by the sta-
keholders.

Table 1
Would you be interesting in any new information arising from an improvement in spatial
resolution/scale or summary of uncertainty/error values.

Issue Yes No Total responses

Spatial resolution/scale 209 36 245
Summary of uncertainty/error values 159 57 216
Other (please specify) 10 7 17

G.A. Campbell et al. Land Use Policy 69 (2017) 211–223

215



increased skill capacity in GIS within organisations using spatial soil
data and information. Without this, it is difficult to see how new spatial
soil products, which are predominately GIS in nature, can be widely
adopted for practical use.

Stakeholders used a variety of information sources and of these, it
was notable that a high proportion of people found GIS to be the least
useful source of information even though a high proportion of stake-
holders use or want to use spatial information and that GIS is a widely
used spatial information platform. This may be due to constraints
around technical ability, accessibility to GIS software (although open-
source GIS software is available e.g. QGIS), or could allude to a more
fundamental problem with the GIS medium being inadequate for the
assessments undertaken by the respondents.

Other sources of information that were mentioned ranged from the
use of social media sites like Twitter, academic journal articles and
discussions with other stakeholders. Although not used widely at pre-
sent, social media does now present real and widespread opportunities
to communicate with and inform non-experts. Interestingly, most
people found field and laboratory analyses to be ‘very useful’ or ‘useful’

alongside maps, whether in paper or digital format, and expert
knowledge. Reasons could be that stakeholders are utilising ‘tacit
knowledge’ from field experts who acquired this information in the first
place, thus using it as a validation tool (Hudson, 1992) and they are
sufficient familiar with handling field and lab results. This may also
reflect issues discussed about constraints with technical understanding
and GIS skills limiting use of other soil data and information sources.

The questionnaire also indicated widespread requirements for in-
formation on future scenarios and trends over time. There is a sig-
nificant amount of legacy soils data available but much of this is at over
30 years old which could be used more to explore future scenarios and
trends over time. There is however an underlying requirement for new
information on soils to be able to determine current trends in soil
properties and functions and to support modelling of future scenarios
based on current conditions. Legacy data, on its own, cannot meet
current user needs.

Our survey indicates that a number of soil properties including
texture (sand, clay and silt), contaminants, bulk density, pH and carbon
have widespread use. These should be a priority in making more

Fig. 5. Heat map showing the cross tabulation of
responses (N) between the activities of an organisa-
tion and suggested improvements in soil related in-
formation. The darker the colour indicates a greater
number of responses.
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accessible and useable by addressing the needs for non-expert sup-
porting materials, finer spatial resolution, trends over time etc.
However, there are also other soil properties to be considered. Many of
the answers in the questionnaire reflect instances where soil properties
underpin soil functional assessments and tools. In such instances, the
relevance of individual soil properties is “hidden” to the user and
therefore the need for information on individual soil properties may not
be fully expressed. This is a potential pit-fall to be recognised in any
future assessments of stakeholder needs. Table 2 illustrates the soil
properties used to derive these assessments using information gathered
from previous documentation and literature (e.g. GlobalSoilMap,
2011a,b; Mayr et al., 2006). This can be used in post-hoc identification
of “hidden” soil properties in questionnaires, in particular when ex-
ploring needs for soil functional assessments and in ensuring that all
necessary soil properties are being considered in the improvement of
existing mapping or development of new modelling and mapping, such
as DSM and DSA (c.f. Mayr et al. (2006). Expressing the links between
soil properties and soil functions can also be used as a tool in raising
stakeholders’ awareness of the wider range of soil properties which
underpin the soil functional assessments and tools that they use reg-
ularly.

Most stakeholders stated, from the questionnaire, that they require
information at finer spatial scale/resolution than what is currently
being offered. An obvious focus for future work is to deliver finer spatial
scale in the key soil properties identified by the stakeholders (i.e. bulk
density, soil contaminants, pH, texture and carbon). However, one as-
sumption is that finer spatial scale will lead to improved data and
subsequent assessments. This may not be the case since scale is a
complex parameter which is dependent on context and application
(Goodchild, 1997; Wu and Li, 2009). Supported and promoted by FAO
(http://www.fao.org/global-soil-partnership/pillars-action/4-
information-and-data/en/), DSM is a major opportunity to gain soil
property information at finer spatial scale than existing products, with
the benefit of characterising accuracy and precision properties (Cavazzi
et al., 2013). Such predicted soil property products can then be used to
make significant advances in modelling and mapping the soil functional
assessments which are widely used by diverse stakeholders and orga-
nisations. However, it is imperative that such approaches are matched
with field assessments to critically evaluate and validate the accuracy of
predicting soil properties at finer spatial resolution using existing
(generally legacy) data.

Fig. 6. Heat map showing the cross tabulation of
responses (%) between the activities of an organisa-
tion and suggested improvements in soil related in-
formation. The darker the colour indicates a greater
percentage of responses by each organisation.
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5. Conclusions

The questionnaire was designed to understand how soils data and
information are being used by non-expert stakeholders for a range of
purposes. The responses indicate that stakeholders are generally aware
of the utility of soil data and soil functional assessments for their work
however they may not be aware of the full range of soil properties
underlying soil functional assessments. Stakeholders identified that
better and wider use of existing (and future) soil information by non-
experts could be enabled by improvements in data access and user-
friendly supporting materials. The majority of stakeholders require
finer spatial resolution than is currently offered, contemporary

information on soils and trends over time for soil functions as well as
properties. Established soil modelling such as the global initiatives in
DSM and DSA can address some of these needs. However, a clear
message from stakeholders is that existing legacy soils data needs to be
supplemented by new up-to-date soil data which is fit for current and
future uses. Requirements for contemporary data demand investments
in new and novel monitoring and sampling at sufficient spatial re-
solution and frequency to enable assessments of the range of soil
functions. These will, in turn, be used deliver and shape a wide range of
multi-organisational activities and policies. A question still remains on
how long we can rely on legacy soil data to make decisions today and
into the future?

Table 2
Soil assessments mentioned in the questionnaire measured against probable soil properties that will be mapped as future work. Table adapted from: GlobalSoilMap (2011a, 2011b) and
Mayr et al. (2006).

Related Soil Function Assessments Organic
carbon

pH Clay Silt Sand Coarse
Fragments

ECEC Bulk density
(whole soil)

Available Water
capacity

Bulk Density
(fine earth)

Biomass Production Agricultural land
evaluation

✓ ✓ ✓ ✓ ✓ ✓ ✓

Biofuel potential ✓ ✓
Crop Suitability models ✓ ✓ ✓
Drainage systems ✓ ✓
Fertiliser and pesticide
usage

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Irrigation requirements ✓ ✓

Land Suitability for
Forestry

✓ ✓ ✓ ✓ ✓

(Micro) nutrient
concentration

✓

Soil borne diseases and/
or pests
Soil pathogens
Drought risk assessments ✓ ✓

Environmental
Regulation

Climate change models ✓ ✓ ✓ ✓ ✓
Erosion risk assessments ✓ ✓ ✓ ✓ ✓ ✓
Flood risk maps ✓ ✓ ✓ ✓ ✓ ✓
Hydrology of Soil ✓ ✓ ✓ ✓ ✓
Leaching risk maps ✓ ✓
Nutrient Vulnerable
Zones

✓ ✓

Pesticide safety
assessment

✓

Pollutants in soil ✓ ✓ ✓
Reclamation of
contaminated land

✓

Runoff potential ✓ ✓ ✓
Sludge acceptance
potential

✓ ✓

Soil erosion ✓ ✓ ✓ ✓ ✓
Diffuse pollution to
waters

✓

Fundamental Soil
Properties

Nutrient cycling ✓ ✓
Soil acidity/alkalinity
levels

✓ ✓

Soil carbon/organic
carbon

✓ ✓ ✓

Soil chemistry ✓ ✓
Soil moisture ✓ ✓ ✓ ✓ ✓
Soil temperature ✓

Habitats and
Biodiversity

Habitat suitability maps ✓
Land reclamation/
restoration

✓ ✓ ✓ ✓

Land use change
modelling
Pollen counts
Protection of animal
species
Recreational space

Infrastructure Extraction of raw
materials

✓ ✓ ✓ ✓ ✓ ✓

Infrastructure assessment ✓ ✓ ✓ ✓

Land Suitability for
Housing

✓ ✓ ✓ ✓
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