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i 

ABSTRACT 

Developing a flight control system for a complete 6 degree-of-freedom for an air 

vehicle remains a huge task that requires time and effort to gather all the 

necessary data. This thesis proposes the use of reinforcement learning to 

develop a policy for a flight control system of an air vehicle. This method is 

designed to be independent of a model but it does require a set of samples for 

the reinforcement learning agent to learn from.  

A novel reinforcement learning method called Deep Deterministic Policy Gradient 

(DDPG) is applied to counter the problem with large and continuous space in a 

flight control. However, applying the DDPG for multiple action is often difficult. 

Too many possibilities can hinder the reinforcement learning agent from 

converging its learning process.  

This thesis proposes a learning strategy that helps shape the way the learning 

agent learns with multiple actions. It also shows that the final policy for flight 

control can be extracted and applied immediately for a flight control system. 
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1 INTRODUCTION 

1.1 Background  

In the last decade, there is a growing interest in developing a flight control system 

with a limited dynamic model or even without a dynamic model altogether. The 

development of unconventional designs in UAVs (Unmanned Aerial Vehicle) 

such as multirotor or tailless fixed wing UAV (flying wing) makes it more enticing 

because generating a dynamic model of it can be complex and cost too much.  

 

Figure 1-1 Example of Unconventional UAV 

Another interest for not using a dynamic model is the growing trend of developing 

an aircraft with unusual flight envelope. These aircrafts can change their wind 

axes during flight such as V-22 Osprey and fixed wing VTOL (Vertical Take-Off 

and Landing) UAV.  

 

Figure 1-2 Example of aircraft with changing wind axes 
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Also emerging are new aircraft that has an unusual flight envelope due to added 

unconventional control surface such as thrust vectoring and additional propeller. 

Thrust vectoring are commonly used to advance the manoeuvrability of a fighter 

aircraft. While additional propeller are also known to be added to give a UAV a 

VTOL capability without changing the wind axes of the aircraft.  

 

Figure 1-3 Example of aircrafts with unconventional control surface 

Reinforcement learning is a data based learning methodology [1]. The training, 

learning, is performed by exploring the situation to develop awareness or a sense 

of improved behaviour.   

This method mimics the way an animal learns about its environment.  It receives 

a positive feedback when it gives the appropriate response to a situation and it 

receives a negative feedback when it gives the inappropriate response instead. 

This can eliminate most or even all of the time-consuming process to derive an 

almost accurate dynamic model of an air vehicle.  

An advantage to this method is that it might be able to stumble to the optimal 

response to a situation instead of just finding the best response within a certain 

limit defined for dynamic modelling.  

Another aspect of reinforcement learning is that the control system may also be 

more robust to changes of circumstance. Because of its ability to determine an 

action based on the actions taken from other situation. In theory, this presents a 

possibility of the system adjusting itself when a fault or a change in air vehicle 

characteristic occurred. Therefore, not only could it control an aircraft in normal 

condition, it can also adapt to certain changes occurring during flight.  
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However, a recurring problem has often occurred in previous studies due to the 

nature of the flight data. This is essential, as the reinforcement learning trains 

with it to develop the flight control system. The nature of the flight data is 

continuous, high dimensional and sometimes stochastic. This applies to both the 

attitude (state) of the air vehicle and the control surface (action). 

Reinforcement learning works by mapping certain condition (state) with certain 

action. It explores every state and every action and exploits the pairs that 

generates the most reward [1]. Similar to that of animals, it explores its 

environment by trial and error. Each lesson learned are stored so it determines 

which area are safe, or even advantageous (food, water), and which area are to 

be avoided (cliffs). Just like the animals, there are circumstances where it will 

utilize its earned knowledge and there are circumstances where it will explore.  

This is the advantage of reinforcement learning. It learns when to explore more 

and when to exploit more. It learns to balances between exploration and 

exploitation in each circumstance it faces. 

In an aircraft, the state can be defined as the various flight variables and the 

actions can be defined as the control surfaces available. When the state and/or 

the action are continuous, then the number of mapping will grow exponentially. 

This is what is called the “curse of dimensionality” problem[1]. 

This will make the learning process much more difficult and time consuming as it 

needs to learn by exploring each and every one of them. Earlier works has shown 

the reinforcement learning is applied in a conventional flight control development 

that still uses a complete dynamic model. 

There are also studies that started to use reinforcement learning for navigation in 

soaring flight and for coordinating multiple UAV. Recent developments has seen 

studies in trying to tackle the curse of dimensionality problem head on in order to 

apply reinforcement learning to control the flight of an air vehicle.    

One particular study is the development of deep learning sparked a study in Deep 

Deterministic Policy Gradient in 2016 [2]. This method combines the deep Q 
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network (DQN) with Deterministic Policy Gradient (DPG). Presumably, this 

method provides a solution for continuous and high dimensional space.  

DQN has the advantage of solving problems with high-dimensional state space, 

but it cannot handle continuous action spaces. By combining it with DPG, it can 

solve problems with continuous action space as well. This method has been 

applied for various simple and classic problems such as cart-pole swing-up and 

legged locomotion[2]. It has also been applied for more complex tasks such as 

controlling a biped robot[3][4], an autonomous car [5] and a quadrotor UAV [6], 

Although recent studies on developing model-free flight control system for 

quadrotors and fixed wing aircraft exist, the difference between aerial vehicles 

characteristics are evident as shown in the work listed above. For fixed-wing 6-

degree-of-freedom vehicles, more variables are clearly required to be observed.  

In addition, control surfaces characteristics vary between vehicles and affect the 

operation of the aerial vehicles in different ways.  

Research studies using DDPG method, cited previously, have shown advantages 

for model-free control design but also challenges when handling multiple 

variables and its effect on convergence behaviour. Hence a particular aspect of 

the work in this thesis is to propose a learning strategy, within the DDPG remit, 

assisting the RL to obtain sufficient knowledge about operational scenario in 

lesser time.    

This learning strategy is designed to pace the reinforcement learning agent to 

step-by-step acquiring one skill after another to finally be able to control an aircraft 

in flight. The skill here is to utilize the control surface of the air vehicle which 

comprises of elevator, aileron and rudder. 

This thesis will focus in developing a learning strategy that can be used as a a 

baseline to train reinforcement learning to develop a flight control for a general 

fixed wing aircraft. 
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1.2 Research Objectives  

The main objective of this research is develop a learning strategy to train the 

DDPG learning agent to control the flight performance of an air vehicle. The 

specific objectives are as followed: 

• Determining the most suitable reward function that can represent the best 

performance of an air vehicle as the action with the best value of reward. 

• Developing a learning strategy for a single action variable, which is the 

elevator. This learning strategy is developed for a fixed operating condition 

and a variating operating condition. 

• Developing a learning strategy for dual action variable that can 

accommodate the coupling nature of lateral mode and directional mode of 

a fixed wing aircraft. The variables are aileron and rudder. 

• Developing a learning strategy for reinforcement learning to be able to 

control a full 6-degree-of freedom fixed wing aircraft with three action 

variable which are elevator, aileron and rudder. 

 

1.3 Thesis Overview and Contributions  

This thesis consists of eight chapters. Chapter 2 consists of theory regarding 

reinforcement learning in general, and reviews previous studies in reinforcement 

learning for continuous and high-dimensional spaces. Chapter 3 will focus on 

describing the Deep Deterministic Policy Gradient (DDPG) and the learning 

strategy that is being developed.  

Chapter 4 focuses in determining the most suitable reward function for the 

DDPG. The flight control for the longitudinal mode of a missile is designed by 

implementing DDPG with various reward function.  

Chapters 5-7 consists of several study cases that utilize and assess the learning 

strategies of DDPG agent to control the flight performance for certain conditions. 
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In these 3 chapters, the learning strategy is developed from a single action 

variable to a three action variables, Figure 1-4. 

Chapter 5 study case will be developing learning strategy for DDPG agent to 

control the longitudinal mode of an aircraft with one available action (elevator). 

The aircraft is a Jetstream 3102. Here the DDPG agent is expected to develop a 

flight control system in a fixed operating condition and in variating operating 

condition.  

 

Figure 1-4 Phases In Exploring DDPG for Flight Control 

Chapter 6 will delve in developing a learning strategy for DDPG agent in Variating 

Operation Condition (VOC). For this case study, the air vehicle is a missile. The 

aim is to control its longitudinal mode with one available action (elevator). The 

VOC consists of variating airspeed and/or altitude. 

Chapter 7 focuses on developing a learning strategy for the DDPG agent to 

handle the coupling of the lateral mode and the directional mode of a conventional 

fixed wing aircraft. The aircraft in this study case is a UAS (Unmanned Aerial 

System) and it will have two action variables at its disposal (aileron and rudder).   

Chapter 8 contains the learning strategy for the DDPG agent that will enable it to 

control the dynamic of a full 6-degree-of-freedom aircraft. It has three action 

variables at its disposal (elevator, aileron and rudder).  Similar to Chapter 7, the 

study case is a UAS.  
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Chapter 9 consists of the overall conclusion of this research regarding the 

learning strategy and extracting the final policy network. It also consists of 

possible future works that can be explored further. 

The contribution of this research is to develop a learning strategy that will help to 

shape an unsupervised machine learning process in developing a flight control 

for an air vehicle. As are many other methods, DDPG has its own limitations, 

specifically regarding to multiple action. Without certain help in the learning 

process, it might not produce a suitable and usable final policy network.
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2 LITERATURE REVIEW 

2.1 Introduction 

Reinforcement learning (RL) is a branch of machine learning that learns to map 

situations to actions unsupervised [1]. According to Dr. Danko Nikolic from Max-

Planck Institute[44], the definition of machine learning is the science of getting 

computers to act without being explicitly programmed but instead letting them 

learn a few tricks on their own.  

Another definition [7] states that RL is an algorithmic method for solving problems 

in which actions (decisions) are applied to a system over an extended period of 

time, in order to achieve a desired goal. Overall, RL mimics the way an animal 

learn and adjust to its environment without any outside interference in how to 

learn it. 

 

Figure 2-1 Application in two different domain [7] 

RL comprises of two elements, a learner and an environment. A learner is the 

decision maker that decides which action to apply to a situation (state), monitor 

how those actions changes the state of the environment and learns from it for 

further decision making. Defined specifically for each cases, the RL has a list of 

potential states (called state space) and a list of actions available at its disposal 



 

10 

(called action spaces).  The nature of these spaces (discrete, continuous, 

deterministic, stochastic, etc) will determine the method used to solve it. 

The designation for these elements may vary depending on the field that it is used 

for. An example, in the field of artificial intelligence, the learner is called an RL 

agent. Its task is to learn how to behave optimally towards its environment by 

interacting with it and monitoring the changes that happen because of it.  

Another example is in automatic control. The learner is called the controller and 

the environment is called a system.  A controller receives output measurement 

from a process and applies action to this process in order to make its behaviour 

satisfy a certain requirement. A general description of the slight difference in 

definition can be seen in Figure 2-1. 

 

Figure 2-2 Interaction between sub elements 

Aside from these 2 elements, there are also 4 sub elements of a RL system [1]. 

They are: 

• a policy (𝑄), this sub element determines how the agent behaves towards 

different states at any given time. The policy maps the states to specific 

and suitable actions. 

• a reward function(𝑟) is the sub element that gives numerical reward to the 

state or state-action pair that occurs. For a given state, the agent makes a 

move (an action) that result in a change in state. This reward shows how 

far the resulting state is from the final goal.  
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• a value function (𝑉/𝑄) gives value to a string of state (V-function) or state-

action pairs (Q-function) by judging how close is the final state to the goal. 

In other words, it compiles a string of rewards and compares the final state 

with the final goal. 

• model of the environment (optional) 

The interactions between these sub elements can be described in Figure 2-2. In 

this example, the RL controlled the attitude of an aircraft. Based on [1], there are 

three class of methods to solve a RL problem, which are: 

• Dynamic Programming 

DP methods mathematically computes optimal policies, but require a 

perfect model of the systems behaviour and the environment as an MDP 

(Markov Decision Process). This method has a downside in that requires 

a big computational expense[1]. Therefore, this method is often limited to 

discrete space. It is not suitable to handle a system with large finite state 

sets or high-dimensional state-space [8].   

• Monte Carlo 

MC methods do not require a priori knowledge of the environment’s 

dynamics and are conceptually simple. It learns through samples that 

represents interaction between action and any changes in the state. 

However, the value estimates and policies changed only upon the 

completion of an episode. This method has a known problem of 

maintaining sufficient ‘exploration’. 

• Temporal Difference 

TD methods is a combination of both dynamic programming and monte 

carlo. It can learn directly from only experience without a model and can 

update estimates based in part on other estimates without waiting for an 

outcome 

However according to [7], dynamic programming is different from reinforcement 

learning because of its requirement of a model. Dynamic programming requires 

an exact model while reinforcement learning does not (model-free). Despite the 
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slight difference of definition, the objective in reinforcement learning is to gain the 

optimal policy in order for the agent to control a system in the desired behaviour.  

 

2.2 Early Works Utilizing Reinforcement Learning 

Since 2000, researchers has explored the use reinforcement learning on 

controlling various types of air vehicle, such as airship [9][10][11], quadcopter 

[12][13], unmanned helicopter [14] and unmanned fixed wing [15]. Reinforcement 

learning develops flight trajectory for navigating soaring flight [16] [17] and even 

applied indirectly in attitude control[18].  

A few examples of indirect application in attitude control includes determining the 

optimal value in a classical flight control method using LQR [14] and 𝐻∞ [19]. 

Another example is producing the dynamic model of an air vehicle based on flight 

data compiled when a human pilot flies the vehicle. Such cases were researched 

for a quadrotor [20], and an unmanned helicopter [21][22]. 

 

Figure 2-3 Research Gap 

However not many researches have been done to use reinforcement learning 

entirely to develop a flight control[23][24][25]. This means using a reinforcement-

learning agent as an artificial intelligence that controls the air vehicle. Research 

by [16] used a dynamic model and dynamic programming to control an air vehicle. 

Other research didn’t use a model and therefore, used either Monte Carlo method 

or Temporal Difference method[26][27]. 
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Developing a policy to control an air vehicle always presents challenges due to 

the nature of the state-action spaces. It is continuous and high dimensional. This 

made the number of values very large when the agent has to explore and put 

value to every possible state-action pair. This is known as the ‘curse of 

dimensionality’.  

 

2.3 Reinforcement Learning in Large and Continuous Space 

It takes a very long time for the RL agent to find the most suitable value function 

for every one of the possible state-action pairs. Each state-action pairs needs to 

be visited often to determine its value. To tackle the ‘curse of dimensionality’, 

earlier works started with using discretising [28] and Learn from Demonstration 

(LfD). 

Discretising method is a method that discretize both the state space and the 

action space and is usually applied in combination with the Monte Carlo method. 

This method, however, can only be applied for a small state space and action 

space[28]. There is always a possibility that a state value might be overlook and 

yet it may has significant influence on the system. 

In LfD, the range of operation is confined and set by a previous flight 

demonstration by a pilot. The RL agent is trained to copy the manoeuvre set by 

a human pilot. This method negates the advantage of reinforcement learning, 

which is to find the optimal flight control. By exploring various possibilities, 

exploiting the best actions that has been discovered and maintaining a certain 

amount of exploring every now and then, the learning agent is expected to 

produce an optimal and robust flight control. 

 

Figure 2-4 Earlier work in continuous space 
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Another method had started to emerge was by using a more compact-size Q-

function (policy). This is achieved by utilising state-dependent basis functions 

(BFs) and discretising action space[7]. The state space is grouped into different 

BFs (𝜙1, 𝜙2, … . , 𝜙𝑁 ). The Q-function is compacted by storing the values for each 

BF-action pair.  Figure 2-5 illustrates the difference in Q-function.  

 

Figure 2-5 Q-function comparison [7] 

Instead of storing Q-values of state and action pairs, it stores parameters 𝜃 with 

pairs of BF and action. This is called function approximators. Applying function 

approximator depends on: 

- The algorithm used for the class of reinforcement learning method. 

They are value iteration, policy iteration and policy search Figure 2-6. 

- Type of approximators, parametric or nonparametric 

 

Figure 2-6 Taxonomy of reinforcement learning algorithms 
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As described in chapter 1, an RL agent has two main task, which are exploring 

its environment and learning from those experiences. In Figure 2-6, there is a 

mention of off-line and on-line methods[7]. The difference between the two is 

whether the behaviour policy and the target policy are separate policies or 

not[29][30][31].  

The behaviour policy is the policy that incites the random actions for the RL agent 

to learn. The target policy or estimation policy is the policy that evaluates the 

actions are taken by the behaviour policy. The result of the evaluation will be used 

to update the behaviour policy periodically.  

An offline method does not separate the behaviour policy and the target policy. 

Therefore, the policy updates very quickly after each run. This method sometimes 

also called off-policy. In the other hand, an on-line method does separate these 

two policies, sometimes also called on-policy[1]. 

Researchers has explored many variations of method to approximate the Q-

function of a state. One of the examples is by using Gaussian process[11] [32]. 

This function approximator was applied for a Monte Carlo (MC) class method. As 

the MC method can only be applied for a series of episodic tasks, the samples it 

has were divided into several episodic tasks and its value estimation was 

changed/updated after each episode is finished[1]. Another example of works 

that uses function approximator to estimate the value function for a Monte Carlo 

method is [33] 

However, this method still poses a problem as it only tackles the problem of 

continuous state space. The action space itself, still needs to be discretized for it 

to work. Another alternative that seems promising is a Temporal Difference (TD) 

method.  

A popular online temporal difference method is SARSA. The name SARSA is 

derived from the elements of data tuple that is used by the algorithm. They are 

state, action, reward, (next) state, (next) action. SARSA is also most commonly 

used for policy iteration. The value of Q-function in this method is updated as 

follows: 
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𝑄(𝑠𝑡, 𝑎𝑡) ← 𝑄(𝑠𝑡, 𝑎𝑡) + 𝛼[𝑟𝑡 + 𝛾𝑄(𝑠𝑡+1, 𝑎𝑡+1) − 𝑄(𝑠𝑡, 𝑎𝑡)] (2-1) 

Another popular TD method but is an offline one is Q-learning. One example of 

the use of Q-learning is [22]. This method is most commonly used for value 

iteration. The value of 𝑄 is updated with the new information according to this 

formula: 

𝑄(𝑠𝑡, 𝑎𝑡) ← 𝑄(𝑠𝑡, 𝑎𝑡) + 𝛼[𝑟𝑡 + 𝛾𝑚𝑎𝑥𝑎𝑄(𝑠𝑡+1, 𝑎) − 𝑄(𝑠𝑡, 𝑎𝑡)] (2-2) 

The term between square brackets in equations (2-1) and (2-2) is the temporal 

difference. It is the difference in estimates 𝑄-value between the updated one with 

the current one. 𝛼 is the learning rate that is set between 0 and 1. Setting 𝛼 at 0 

means that the values of 𝑄 are never updated, therefore it learned nothing. The 

higher the setting of 𝛼 meant that the learning process can occur faster. 

𝛾 is the discount factor, also set between 0 and 1. If the value of 𝛾 is nearer to 1 

then the value of future rewards are much higher than the immediate rewards. In 

other words, the learner aims for long-term rewards. 

 

Figure 2-7 Architecture comparison [1] 

An advantage in using online methods is a higher probability (guarantee) that the 

policy will converge[29] albeit the exploration has to be annealed over time to 
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achieve it. Offline methods however, sometimes finds themselves diverging for 

certain problems. However, when it does successfully converge, it happens faster 

than an online method.  

Another popular TD method is actor-critic method[34]. Here the memory 

structures for the two policies are separated. One memory structure is allocated 

for the policy that determines the action to choose and another is allocated for 

the estimated value function that evaluates those actions.  

Because of the separation between actor and critic function, this method require 

minimal computation in order to choose an action. This is favourable for a 

continuous action space. However, determining the actor policy should be done 

with care as complete random actions may result in the RL agent not visiting the 

important part of the state space[35]. 

 

2.4 Reinforcement Learning in Stochastic State Space 

Another problem in using RL for flight control is the stochastic nature of the flight 

data. To generate the policy for decision-making, the Markov Decision Process 

(MDP) is used as a mathematical framework to model the decision-making 

uncertainty [30].  

However, in stochastic MDP, the next state is not deterministically given by the 

current state and action[7]. This represents a problem for the model-free 

reinforcement learning.  

Previous works solved this problem by converting the stochastic problem into a 

deterministic one. The method is called Pegasus method [36]. The same 

researchers combined Pegasus method  with MC method to develop a dynamic 

model of an unmanned helicopter [21][22]. Then the flight control is developed 

with conventional method based on this dynamic model. In this method, the RL 

agent learned from samples (flight data) previously acquired by a pilot and 

developed a model of the helicopter.  
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The drawback in this is that the model is based on a limited area of operation 

done by the pilot. It did not explore the state-action outside of it, so it missed out 

on finding other state-action pair that may have greater value function. Also, the 

helicopter was not controlled by the reinforcement learning controller. 

 

Figure 2-8 The work flow of [22][21]  

However, recently develop method (2014) called Deep Deterministic Policy 

Gradient (DDPG) [2] has shown to be able to solve a continuous, high-

dimensional and stochastic problem. This has been shown to solve several 

simulated physics tasks such as cart-pole problem and mountain car. 

 

Figure 2-9 The work flow of DDPG  
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This method combined Deterministic Policy Gradient (DPG)  [31] with Deep Q 

Network (DQN) [37]. The DPG method combines policy gradient and actor-critic 

to develop deterministic policy based on samples from stochastic policy. While 

the DQN can solve the continuous and high-dimensional observation spaces. By 

combining the two, a policy network for a continuous and high-dimensional state 

(observation) and action spaces can be developed.  

This work focuses on developing a flight control of a full 6-degree-of-freedom air 

vehicle using DDPG. Specifically, it will focus on developing a learning strategy 

for the RL agent to develop an optimal and robust flight control. 

Several works had  use DDPG for controlling bicycle [38], bipedal walking[4] [39], 

Quadrotor [40][41], and autonomous land vehicle [5]. Yet, these works did not 

have as many state (observation) spaces and action spaces as an air vehicle. 

Despite of the advantageous of DDPG, controlling a full 6-degree-of-freedom air 

vehicle is not an easy feat [42]. The RL agent has to learn how to use the elevator 

to control the longitudinal mode of the air vehicle. Then it also has to learn to 

control both aileron and rudder simultaneously to control the lateral-directional 

mode.   

Aside from those fixed operating procedures, there is also the varying operating 

condition. This would require the RL agent to learn to control the air vehicle when 

there exist changes in its altitude or airspeed. These entire training goals requires 

a learning strategy in order to develop the appropriate policy quickly. Without a 

learning strategy, the RL agent can take a very long time to develop as it sorts 

through every possible state and action.   

 

2.5 Conclusion 

As with any other methods, there is disadvantages along with the advantages in 

using DDPG. Below is the list of both advantages and disadvantages of DDPG 

method. 
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Table 2-1 Advantages and Disadvantages of DDPG 

No. Advantages Disadvantages 

1. DDPG can be applied for problems 

with large and continuous state and 

action spaces. 

Difficulty to achieve convergence 

in performance if there are more 

than one action variable 

2. The behaviour policy and the target 

policy are separated. Exploring the 

action spaces will not immediately 

affect the behaviour policy.  

A problem in eliminating chattering 

in the action performance. An 

adjustment in the reward function 

only limits the range of the action 

but not the chattering. 

3. Optimisation in the learning process 

is enhanced by learning using a 

replay buffer. 

 

This research proposes a learning strategy that guarantee the best policy will 

represent the optimal performance of the air vehicle within a reasonable 

development time. The next chapter will describe the methodology of deep 

deterministic policy gradient and a general description of how to determine the 

reward function and the learning strategy. 
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3 THEORY/METHODOLOGY 

3.1 Introduction 

The focus of this research is to generate a reinforcement learning policy that can 

adequately control an air vehicle without the need to have its dynamic model. In 

other words, utilizing reinforcement learning to generate a model-free flight 

control. To achieve this, the reinforcement-learning (RL) agent needs to learn the 

flight characteristic of the air vehicle by interacting with it. This interaction is 

represented as samples of flight data, demonstrating how the attitude (state) of 

the air vehicle changes due to changes in control surface (action) given by the 

agent.  

Figure 3-1 and Figure 3-2 below shows how an RL agent generally learn a policy 

by using samples. The RL agent gives numerical value (reward) to each state-

action pair in regards to the desired state. Then the RL agent iterates the value 

function(𝑣𝑡) from this reward until it can reach an optimal policy(𝑄𝑡).  

 

Figure 3-1 A Model-Free Reinforcement Learning Flow 

The flight data provides the attitude of the air vehicle that is being observed or 

state(𝑠𝑡, 𝑠𝑡+1 ). It also provides the action(𝑎𝑡) that caused the change in those 

states. A reward value is given to these sets of state and action (𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1 ) and 

this will determine the value of the state-action pairing(𝑠𝑡, 𝑎𝑡 ). The RL agent then 

compiles these value functions into a policy.  
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Figure 3-2 Determining the Policy 

 

Figure 3-3 Generating Samples for RL Agent Learning Process 

In the absence of flight data, the samples can be generated by simulation using 

a dynamic model of the air vehicle. This dynamic model exist outside of the 

learning process. First, a random action(𝑎𝑡) is generated and applied to an initial 

state(𝑠𝑡). Then the dynamic model produced the appropriate resulting 

state(𝑠𝑡+1 ). Once these three sets of data are available, then the RL agent can 
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generate the optimal policy as described in Figure 3-2. Figure 3-3 demonstrates 

clearly that the RL agent still learns without the use of a dynamic model.  

 

3.2 Reinforcement Learning 

In reinforcement learning, the RL agent is interacting with the environment in 

discrete timesteps. Here, the environment is the air vehicle. At each timestep 𝑡, 

the RL agent receives an observation 𝑥𝑡, takes an action 𝑎𝑡 and receives a scalar 

reward 𝑟𝑡 for the state-action pair. In this environment, it is assumed that:  

1. the actions are real-valued 𝑎𝑡 ∈ ℝ𝑁  

2. the environment is fully observable, therefore the initial state is the 

observation, 𝑠𝑡 = 𝑥𝑡. 

An RL agent’s behaviour is defined by a policy,𝜋, which maps states to a 

probability distribution over the actions 𝜋: 𝑆 → 𝑃(𝐴). The environment, 𝐸, may 

also be stochastic. We model it as a Markov decision process with a state space 

𝑆, action space 𝐴 = ℝ𝑁, an intial state distribution 𝑝(𝑠1) , transition dynamics 

𝑝(𝑠𝑡+1|𝑠𝑡, 𝑎𝑡), and reward function 𝑟(𝑠𝑡, 𝑎𝑡). 

The return from a state is defined as the sum of discounted future reward 𝑅𝑡 =

∑ 𝛾(𝑖−𝑡)𝑟(𝑠𝑖, 𝑎𝑖)
𝑇
𝑖=𝑡  with a discounting factor 𝛾 ∈ [0,1]. This depends on the actions 

chosen, therefore also depends on the policy 𝜋, which may be stochastic. 

Mathematically, the goal in reinforcement learning is to learn a policy which 

maximizes the expected return from the start distribution 𝐽 =  𝔼𝑟𝑖,𝑠𝑖~𝐸,𝑎𝑖~𝜋[𝑅1]. The 

discounted state visitation distribution for a policy 𝜋 is denoted as 𝜌𝜋. 

The action-value function describes the expected return after following policy 𝜋 

by taking an action 𝑎𝑡 in state 𝑠𝑡 : 

Q𝜋(𝑠𝑡, 𝑎𝑡) = 𝔼𝑟𝑖≥𝑡,𝑠𝑖>𝑡~𝐸,𝑎𝑖>𝑡~𝜋[𝑅𝑡|𝑠𝑡, 𝑎𝑡] (3-1) 

Here the reinforcement learning uses the Bellman equation: 

Q𝜋(𝑠𝑡, 𝑎𝑡) = 𝔼𝑟𝑡,𝑠𝑡+1~𝐸 [𝑟(𝑠𝑡, 𝑎𝑡) + 𝛾𝔼𝑎𝑡+1~𝜋[Q𝜋(𝑠𝑡+1, 𝑎𝑡+1)]] (3-2) 
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3.3 Deterministic Policy Gradient  

In 2014, [31] proposed DPG to develop a deterministic policy from stochastic 

samples. DPG stands for Deterministic Policy Gradient. It is a method that 

combines the use of policy gradient and actor-critic algorithm, which are widely 

used for reinforcement learning with continuous action spaces, by using policy 

gradient algorithm to drive the stochastic behaviour policy to a deterministic target 

policy. 

For a deterministic target policy, the Bellman equation can described as a 

function 𝜇: 𝑆 ← 𝐴: 

Q𝜇(𝑠𝑡, 𝑎𝑡) = 𝔼𝑟𝑡,𝑠𝑡+1~𝐸[𝑟(𝑠𝑡, 𝑎𝑡) + 𝛾Q𝜇(𝑠𝑡+1, 𝜇(𝑠𝑡+1))] (3-3) 

The expectation depends only on the environment. This means that it is possible 

to learn 𝑄𝜇 off-policy, using transitions which are generated from a different 

stochastic behaviour policy 𝛽.  

Q-learning is the most commonly used off-policy algorithm and it uses the greedy 

policy 𝜇(𝑠) = 𝑎𝑟𝑔 max
𝑎

𝑄(𝑠, 𝑎). However, Q-learning cannot be applied directly to 

continuous action spaces because finding its greedy policy requires an 

optimization of 𝑎𝑡 at every timestep. This optimization is too slow to be practical 

with large, unconstrained function approximators and nontrivial action spaces. 

Therefore, the off-policy algorithm uses actor-critic approach based on DPG 

algorithm.  

In this method, While the critic criticize the action based on the result.  

The DPG algorithm applies a parameterized actor function 𝜇(𝑠|𝜃𝜇) which 

specifies the current policy by deterministically mapping states to a specific 

action. This means that the actor selects actions to apply on various initial states 

or observations based on its current policy(𝜇) or stochastic behaviour policy. 

Then the critic makes an estimate of the value function and updates the policy(𝑄) 

or deterministic target policy. The critic 𝑄(𝑠, 𝑎) is learned using the Bellman 

equation as in Q-learning. 
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The actor is updated by following the applying the chain rule to the expected 

return from the start distribution 𝐽 with respect to the actor parameters: 

∇𝜃𝜇𝐽 ≈ 𝔼𝑠𝑡~𝜌𝛽[∇𝜃𝜇Q(𝑠, 𝑎|𝜃𝑄)|𝑠=𝑠𝑡,𝑎=𝜇(𝑠𝑡|𝜃𝜇)] 

                                =𝔼𝑠𝑡~𝜌𝛽 [∇𝑎Q(𝑠, 𝑎|𝜃𝑄)|𝑠=𝑠𝑡,𝑎=𝜇(𝑠𝑡)∇𝜃𝜇
𝜇(𝑠𝑡|𝜃𝜇)|𝑠=𝑠𝑡

] 

(3-4) 

 

Figure 3-4 Actor-Critic Method 

 

3.4 Deep Deterministic Policy Gradient 

Deep Deterministic Policy Gradient is first introduced in 2015. This method 

combined Deterministic Policy Gradient (DPG) with Deep Q network (DQN). In 

2013, [37] showed how an RL agent produce a policy to control a system with a 

high-dimensional observation states. This RL agent uses deep learning.  

DDPG basically uses neural network function approximators (DQN) to learn in 

large state and action space online. One challenge when using neural networks 

for reinforcement learning is that most optimization algorithms assume that the 

samples are independently and identically distributed. Obviously, when the 

samples are generated from exploring sequentially in an environment this 
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assumption no longer holds. Additionally, to make efficient use of the hardware 

optimizations, it is essential to learn in mini-batches, rather than online.  

As in DQN, a replay buffer is used to address these issues. The replay buffer is 

a finite sized cache ℛ. Transitions were sampled from the environment according 

to the exploration policy and the tuple (𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑎𝑡+1) stored in the replay buffer. 

When the replay buffer was full, the oldest samples were discarded. At each 

timestep, the actor and critic are updated by sampling a minibatch uniformly from 

the buffer. Because DDPG is an off-policy algorithm, the replay buffer can be 

large, allowing the algorithm to benefit from learning across a set of uncorrelated 

transitions. 

Directly implementing Q learning with neural networks proved to be unstable in 

many environments. Since the network 𝑄(𝑠, 𝑎|𝜃𝑄) being updated is also used in 

calculating the target value, the 𝑄 update is prone to divergence. The solution is 

to create a copy of the actor-critic networks 𝑄′(𝑠, 𝑎|𝜃𝑄′) and 𝜇′(𝑠|𝜃𝜇′) respectively, 

that are used for calculating the target values. The weights of these target 

networks are then updated by having them slowly track the learned network: 𝜃′ ←

𝜏𝜃 + (1 − 𝜏)𝜃′ with 𝜏 ≪ 1. This means that the target values are constrained to 

change slowly, greatly improving the stability of learning. This simple change 

moves the relatively unstable problem of learning the action-value function closer 

to the case of supervised learning, a problem for which robust solutions exist. 

Having both a target 𝜇′ and 𝑄′ is required to have stable targets 𝑦𝑖 in order to 

consistently train the critic without divergence.  

𝑦𝑖 = 𝑟𝑖 + 𝛾𝑄′(𝑠𝑖+1, 𝜇′(𝑠𝑖+1|𝜃𝜇′
)|𝜃𝑄′

) (3-5) 

The critic is then updated by minimizing the loss: 

𝐿 =  
1

𝑁
∑ (𝑦𝑖 − 𝑄(𝑠𝑖, 𝑎𝑖|𝜃

𝑄))
2

𝑖
 

(3-6) 

This may slow learning, since the target network delays the propagation of value 

estimations. However, in practice we found this was greatly outweighed by the 

stability of learning. 



 

28 

Algorithm 1[2] 

 

 

To generalise the parameters across environments with different scales of state 

values, these features are scaled by adapting a recent technique from deep 

learning called batch normalization. This technique normalizes each dimension 

across the samples in the minibatch to have unit mean and variance.  

A major challenge of learning in continuous action spaces is exploration. An 

advantage of DDPG, as is any other off-policy algorithms, is that the exploration 

problem can be learned independently. An exploration policy 𝜇′ is constructed by 

adding noise sampled from a noise process 𝑁 to actor policy. 

𝜇′(𝑠𝑡) = 𝜇(𝑠𝑡|𝜃𝑡
𝜇

) +  𝑁 (3-7) 

𝑁 is chosen to be an Ornstein-Uhlenbeck process.  
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Figure 3-5 DDPG Method 

 

3.5 Formulating The Reward Function   

The general process of reinforcement learning is that the agent learns through a 

series of episodes. These episodes are called training episodes. At the end of 

the training, the resulting policy is assumed to be the optimal policy and can be 

applied in an air vehicle. 

Two aspects need to be addressed to determine whether a policy is optimal and 

can be applied in an air vehicle. One is that the return (total rewards) of the 

training episodes converges as the number of episodes increases. This shows 

that the RL agent has found an optimal policy that the RL agent will visit often. 

However, this doesn’t mean that the performance of the air vehicle is as desired. 

This leads to the second aspect, which is making sure that the best performance, 

according to the RL agent, coincides with the best performance of the air vehicle 

itself. With only the desired final state as a goal, the agent can find many ways to 

achieve it. More than one flight performance can be considered suitable to 
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achieve the final state from the initial state. However, the RL agent will consider 

the fastest way to achieve the goal is the best performance. Not the optimal one.  

Therefore, this work proposed to define an optimal trajectory for the RL agent to 

follow. This trajectory should be guarantee that the flight performance that is 

desired. This trajectory started at the same value as the initial state, while the 

changes in trajectory is defined as follows: 

�̇�𝑟𝑒𝑓 = −2𝜉𝑟𝑒𝑓𝜔𝑛𝑟𝑒𝑓
𝜂𝑟𝑒𝑓 − 𝜔𝑛𝑟𝑒𝑓

2 (𝜂𝑟𝑒𝑓 − 𝜂𝑡) (3-8) 

 �̇�𝑟𝑒𝑓 is defined as the flight attitude that intends to be controlled by the control 

surface. In this work,  �̇�𝑟𝑒𝑓can be the pitch angle (�̇�𝑟𝑒𝑓), the roll angle (�̇�𝑟𝑒𝑓) and 

the yaw angle (�̇�𝑟𝑒𝑓). 𝜉𝑟𝑒𝑓 is a damping ratio of 1 and 𝜔𝑛𝑟𝑒𝑓
 is the natural 

frequency of 2𝜋. 

In RL, the reward function gives a numerical value to a state compared to the 

final desired state. In order to compare the performance of each episode, the 

possible reward values has to have the same limit that defines the best value.  

Therefore, the reward function is defined as a negative value.  

𝑅 = −𝑓(𝑆𝑡) (3-9) 

More detail on this work is described in chapter 4. 

 

3.6 Learning Strategy 

In order to develop a reinforcement learning agent that can control an air vehicle 

in 6-degree-of-freedom, this research is divided into three separate stages based 

on the number of action variable involved.  

1) For single action variable, the study case will involve training a 

reinforcement learning agent to control the longitudinal mode of an air 

vehicle. It focuses on controlling the pitch angle of the air vehicle. 

2) For dual action variable, the study case will involve training a 

reinforcement learning agent to control the lateral-directional mode of an 
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air vehicle. It is trained to control the roll angle, yaw angle and both roll-

yaw angle together.  

3) The study case for training a reinforcement learning agent to control a 6-

degree-of-freedom will involve three action variables which are elevator, 

aileron and rudder.  

Designing the training steps for the first stages will consist of 2 main goals. They 

are: 

1) Learning how to use its control surface. This translate to learning how 

much impact the changes in a control surface has on its overall state. the 

RL agent is trained to utilize the elevator in both directions to reach its goal 

to change the pitch angle. 

2) Learning how to achieve certain attitude in different conditions (such as 

different airspeed and altitude). 

For the second goal of this stage, several simulations are run with different set of 

variables for state or observation. These simulations will also have different layers 

in the network.  

For the second stage, there is a slightly different training strategy as it needs to: 

1) Learning how to use 2 control surfaces. One (aileron) has slightly more 

influence than the other (rudder). 

2) Learning coordinate the movement of two different control surfaces. This 

is due to the nature of the lateral and directional mode of an air vehicle are 

usually coupled. But setting the RL agent to explore and find the perfect 

combination on its own could take a long time as it presents a large 

number of action possibilities.  

Therefore, the RL agent is trained to first control the lateral mode and the 

directional mode by its own. Then they are followed by a training series that 

coordinated both control surface. This will ensure that the RL agent will find the 

optimal policy in a relatively faster time.  

Training the reinforcement agent for a complete 6-degree-of-freedom air vehicle 

(stage 3) will focus on: 
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1) Learning how to use 3 control surfaces (elevator, aileron, and rudder). 

2) Learning to coordinate the movement of three different control surfaces 

with different degree of influence for different mode (longitudinal, lateral, 

directional). 

3) Extracting the resulting policy (network)  

In longitudinal mode, the influence of aileron and rudder are very small compared 

to the elevator. But in lateral-directional mode, the degree of influence is reversed. 

Elevator movement has a small impact when the agent is trying to control its roll 

angle but it has a large impact when it is trying to control the pitch angle. The 

reinforcement learning agent has to developed its knowledge when moving in and 

out of a certain flight mode.  

 

Figure 3-6 Policy Application After Training Process 

Extracting the policy (network) is also very important. Because unlike developing 

an AI to control a robot, an air vehicle can’t go back up after it has crashed during 

the first few episodes where it is trying to gain stability in the system. In order to 

use this flight control, the reinforcement learning trains in a simulation or trains 

using a recorded flight data. Then the result can be used or uploaded to an on-

board system of an air vehicle.  
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3.7 Conclusion 

This chapter describes the way DDPG method works and how the programme is 

adjusted to develop a DDPG agent that can control the flight of an air vehicle. It is 

assumed to be a straight forward affair in adopting DDPG in flight control.  

However, as the investigation progressed changes were made in the training 

procedure and even in the way to define a policy is suitable or not. The following 

chapters will explain these discoveries.  
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4 DETERMINING THE OBJECTIVE OF THE RL AGENT 

4.1 Introduction 

A major issue in using reinforcement learning in developing a flight control is “how 

to formulate the reward function to best represent the way to control the aircraft?”. 

As mentioned earlier in sub chapter 3.5, the reward function gives value to a pair 

of state-action. The goal of the RL agent is to find the pair with the best value. In 

the physical term, it would be to find the best action for each and every state.  

The first step is to determine is the state to be observed by the RL agent. In the 

aircraft system, the state represents the attitude of the aircraft. Therefore, the 

determined flight variables to be observed (state) will be the ones that the RL 

agent will look out for and use it for guidance to achieve its goal. 

The second step is to find a common goal for each training episode. Each training 

needs to have the same objective to achieve so that the result of each episode 

can be compared to one another. For each and every initial state, the appropriate 

action needs to be found, so that the final goal can be achieved from whatever 

state it initially started.  

 

4.2 Determining the State 

For this chapter, the case study is to develop a flight control for the longitudinal 

mode of a missile. The objective is to control the pitch angle (𝜃). So, pitch angle 

should be one of the states to be observed, as it is the attitude variable, the RL 

agent has to control. 

However, just using the pitch angle as the state is not enough. In order for the RL 

agent to control the pitch angle, it uses the elevator deflection (𝛿𝐸). Yet, the 

elevator deflection doesn’t directly control the pitch angle. So there will be a gap 

in the RL agent’s knowledge in how to achieve a pitch angle with a certain value.  

𝑎 = [𝛿𝐸] (4-1) 
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Due to this reason, the pitch rate (𝑞) is added to the state. The pitch rate will 

directly show the RL agent how each elevator deflection influenced the changes 

in q and therefore, changes the pitch angle from its initial value. So at the start of 

this investigation, the state to be observed is proposed as:  

𝑠 = [𝑞 𝜃] (4-2) 

 

4.3 Model for Data Generation 

The model of missile that is used for the simulation is a nonlinear model from[43]. 

The longitudinal mode of the missile model can be seen as follows.   Table 4-1 

consists of the configuration of the missile and the aerodynamic data that 

correlates to that configuration. 

�̇� =
𝑄𝑆

𝑚

𝐶𝑧𝛼

𝑉
𝛼 + 𝑞 +

𝑄𝑆

𝑚

𝐶𝑧𝛿𝐸

𝑉
𝛿𝐸 

(4-3) 

�̇� =
𝑄𝑆𝑑

𝐼𝑦𝑦
(𝑋𝑐𝑝 − 𝑋𝑐𝑔)

𝐶𝑧𝛼

𝑑
𝛼 +

𝑄𝑆𝑑

𝐼𝑦𝑦

𝑑

2𝑉
𝐶𝑚𝑞𝑞 +

𝑄𝑆𝑑

𝐼𝑦𝑦
𝐶𝑚𝛿𝐸𝛿𝐸 

(4-4) 

�̇� = 𝑞 (4-5) 

Table 4-1 Parameters of Missile 

Mass : 200 kg Diameter (d): 0.3 m 𝑋𝑐𝑝 = 𝑋𝑐𝑔 + 𝑑 V : 300 m/s 

Iyy : 450 𝑘𝑔. 𝑚2 𝑋𝑐𝑔 : 2.5 m 𝜌 :  1.21 kg/m  

𝐶𝑧𝛼 : -6.0 𝐶𝑚𝛼 : -500.0 𝐶𝑧𝛿𝐸 : -0.1340 𝐶𝑚𝛿𝐸 : -26.180 

 

4.4 Reward Function I  

In the first method, the state is defined as (4-2). The reward function in this 

method is defined as the square error between the desired pitch angle (𝜃𝑑) and 
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the current pitch angle (𝜃). The objective is for the RL agent to minimize this and 

achieve the desired pitch angle (𝜃𝑑).  

𝑟 = − (𝜃 − 𝜃𝑑)2 (4-6) 

The desired pitch angle is a constant value throughout the entire timestep. The 

error is squared so that it will eliminate the influence of positive or negative value 

of the error and focuses solely on the difference itself. 

For this case study, the number of layers for the network are respectively 300 

and 500. The parameters for the noise factor in the actor policy is listed in Table 

4-2 

Table 4-2 Ornstein-Uhlenbeck Parameter for Simulation 04.01 

𝜃𝑂𝑈 = 0.3 𝜎𝑂𝑈 = 0.075 

 

Figure 4-2 showed that the RL agent failed to achieve the desired pitch angle 

value even though the total reward per episode during the training process clearly 

showed convergence, therefore indicating that the RL agent has learned the 

system Figure 4-1. 

However, the problem with this simulation is that by using the pitch angle (𝜃) as 

one of the observed states, it means that the training set would have to train the 

RL agent through all the initial pitch angle value and all the possible pitch angle   

desired. This is ineffective. A solution for this problem is proposed in the next sub 

chapter.
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Figure 4-1 The Total Reward Per Training Episode in Simulation 04.01 



 

40 

 

Figure 4-2 The Result of Test in Simulation 04.01 
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4.5 Reward Function II 

As described in the previous sub chapter, it is ineffective to train the RL agent 

through all the values of the initial pitch angle and towards all the possible desired 

pitch angle. To shorten this training process, a change is proposed in the state 

definition. Instead of the pitch angle (𝜃), it should be the error of the pitch angle 

itself (𝜃𝑒𝑟𝑟).  

𝑠 = [𝑞 𝜃𝐸𝑟𝑟] (4-7) 

With the same reward function as in (4-6), simulation 04.02 is done with the same 

number of network layers and the same noise parameter.  

The second method seems to produce a better result than the first method. But it 

does produce a question whether or not the best performance has been reached. 

As seen in the result, the bigger value of total reward does show a performance 

with the quickest response to achieve the desired pitch angle. It doesn’t show the 

best performance. It only shows the goal of the pitch angle. In this method, there 

is always a possibility that a better performance can be produce after the best 

one. 

Also, a question in this method is whether the manoeuvre chosen by the RL agent 

is possible with the limitations of the aircraft’s control surface deflection. In a 

commercial flight, a pitch rate bigger than 280/𝑠 can exceed the structural 

capability of the aircraft.  
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Figure 4-3 The Total Reward Per Training Episode in Simulation 04.02 
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Figure 4-4 The Result of Test in Simulation 04.02 
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4.6 Reward Function III 

Based on the previous sub chapter, there is a problem regarding the performance 

of the RL agent. There is no guarantee that the best performance produced is the 

best performance overall. Nor is there any sort of measurement of how far away 

is the resulting performance compared to the best performance.  

 A solution to this particular question is to create an optimal trajectory for the RL 

agent to follow. This defines the best performance as this optimal trajectory. It will 

provide the RL agent with a benchmark for it to follow and/or to measure its 

performance against. In other words, this provides a guarantee of what the best 

performance looks like.  

So, if 𝑦𝑟𝑒𝑓  is the optimal trajectory of the changes in pitch angle, then 𝑦 is the 

current changes of pitch angle that the RL agent has executed. The reward 

function is defined as follows. 

𝑟 =  −(𝑦 − 𝑦𝑟𝑒𝑓)
2
 (4-8) 

The learning agent is learning to produce a performance result as close as 

possible with the reference performance. The reward value of the best 

performance can be very close to zero, as depicted the second performance in 

Figure 4-5. 

 

Figure 4-5 Two Potential Performance with a Reference Trajectory 
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This trajectory started at the same value as the initial state, while the changes in 

trajectory is defined as follows: 

�̇�𝑟𝑒𝑓 = −2𝜉𝑟𝑒𝑓𝜔𝑛𝑟𝑒𝑓
�̇�𝑟𝑒𝑓 − 𝜔𝑛𝑟𝑒𝑓

2 (𝜂0 − 𝜂𝑡) (4-9) 

�̇�𝑟𝑒𝑓 is defined as the flight attitude that intends to be controlled by the control 

surface. In this work, �̇�𝑟𝑒𝑓 can be the pitch angle (�̇�𝑟𝑒𝑓), the roll angle (𝜙𝑟𝑒𝑓) and 

the yaw angle (�̇�𝑟𝑒𝑓). 𝜉𝑟𝑒𝑓 is a damping ratio of 1 and (𝜔𝑛𝑟𝑒𝑓
) is the natural 

frequency of 2𝜋.  

Figure 4-7 showed that the RL agent manage to follow the reference trajectory 

that even though there is still a steady state error. The performance with the best 

value in total reward in this method truly represents the desired performance 

demanded from the aircraft. 

However, there is also a disadvantage in only identifying the magnitude of the 

error but not when it occurs. The same value of total reward can have two 

significantly different performance results, as shown in Figure 4-8. 

The first performance in Figure 4-8 is convergent while the second performance 

is divergent. The first performance is the performance result that is desired. 

Therefore, this reward function doesn’t suitably represent the relationship 

between the reward value and the performance.  

This problem can be easily tackled by the adding a time component 𝑊(𝑡). By 

multiplying the squared error with 𝑊(𝑡), the total reward value would differ 

between the first performance in Figure 4-8 and the second. This time component 

will guarantee that divergent performance will result in a large negative reward 

value.  

 

𝑟 = − (𝜃 − 𝜃𝑑)2𝑊(𝑡) 
(4-10) 

𝑊(𝑡) = 0.01𝑛𝑆𝑡𝑒𝑝 (4-11) 
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Figure 4-6 The Total Reward Per Training Episode in Simulation 04.03 
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Figure 4-7 The Result of Test in Simulation 04.03
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Figure 4-8 Two Potential Performance with the Same Reward Value 

 

In these simulations, each second is divided into 10 nStep. By using equation 

(4-11) as the time component, it will guarantee that the reward value will 

negatively increase as it occurs further along the nStep. A constant value of 0.01 

is multiplied to the time component to normalize the reward value. 

 

4.7 Conclusion  

Based on the result of Simulation 04.01, 04.02 and 04.03, in order for the best 

value of total reward represents the desired performance of the aircraft, a 

combination of state definition and reward function is required as follows. 

𝑠 = [𝑞 𝜃𝐸𝑟𝑟] 

𝑟 =  −(𝑦 − 𝑦𝑟𝑒𝑓)
2
 

To guarantee which performance is the desired performance, an optimal 

performance is predetermined (𝑦𝑟𝑒𝑓) for the RL agent to follow. To ensure that 

the steady state error of the performance is minimized, adding a time component 

as in equation (4-10). 
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5 DEVELOPING FLIGHT CONTROL IN LONGITUDINAL 

MODE USING DDPG WITH SINGLE ACTION 

 

This chapter focuses on how to apply DDPG method to develop a flight control 

system. This is pursued by developing a training strategy for the RL agent to learn 

how to control the longitudinal mode of an air vehicle. In this case study, the air 

vehicle is a Jetstream J-3102 aircraft in a fixed operating condition. 

This work will focus on how to judge the RL agent’s ability to follow the 

performance goal at the end of the training session, instead of comparing the 

result with other conventional method. Examples of conventional method in flight 

control system development are model based PID [44][45] and backstepping [46] 

or model-free iPID [47] and NIB-MFC [48]. Comparing these results might be 

done in future works.  

 

5.1 Introduction 

One of the main issues in DDPG is determining the learning strategy that can 

cover a certain range of flight envelope and doing it at a definite amount of 

reasonable time. The problem with DDPG, if the range of possible states are too 

large then the RL agent learning process will diverge and not be able to produce 

a suitable policy. This learning strategy will be described in the next sub chapter. 

Another issue in DDPG is determining the reward function that can best represent 

the flight performance. The best value of reward function has to be equal, and 

only equal, to the desired flight performance.  

Based on the result of the previous chapter, the reward function that can best 

represent the desired flight performance is by following a predetermined path of 

flight. The desired performance in attitude change is defined as the changes 

discussed in sub chapter 4.5. The change of attitude for the predetermined path 

of pitch angle is defined as followed:  
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�̇�𝑟𝑒𝑓 = −2𝜉𝑟𝑒𝑓𝜔𝑛𝑟𝑒𝑓
�̇�𝑟𝑒𝑓 − 𝜔𝑛𝑟𝑒𝑓

2 (𝜃0 − 𝜃𝑡) (5-1) 

𝜃0 is defined as the initial state of pitch angle and 𝜃𝑡 is defined the final goal of 

the pitch angle. 𝜉𝑟𝑒𝑓 is a damping ratio of 1 and (𝜔𝑛𝑟𝑒𝑓
) is the natural frequency 

of 2𝜋. This will guarantee that the best performance is the predetermined 

flight attitude change. 

The reward function is defined as the difference between the current state of pitch 

angle with the current desired pitch angle. To ensure that the learning agent 

minimized the difference as timestep 𝑡 increases, the reward function is also 

multiplied by the timestep component.  

𝜃𝑒𝑟𝑟 = (𝜃 − 𝜃𝑟𝑒𝑓)
2

∗ 0.01 ∗ 𝑛𝑆𝑡𝑒𝑝 (5-2) 

 

5.2 Generating Samples 

For this case study, the simulation is run for a Jetstream J-3102 aircraft. The goal 

in this simulation is to control the pitch angle attitude of the aircraft. A desired 

change in attitude (pitch angle) is predetermined from subchapter 5.1. This 

path/trajectory showed the best way for the RL agent to change its initial pitch 

angle attitude towards the desired pitch angle attitude. 

The RL agent is trained through several episodes (300 - 1000 episodes) to learn 

how to control the aircraft. The indicator for its success will be the stabilizing of 

the total reward per episode (return) in which the value is negative and closest to 

zero.  

Another indicator is the stabilization of the 𝑄𝑚𝑎𝑥 value. This value shows the 

changes done to the policy after certain episodes. The stabilizing of its value 

showed that the changes becomes less and less. When the changes become 

almost zero, then the policy is considered fully developed. 

As stated in Chapter 0, the reinforcement-learning agent learned to determine the 

best policy for a system by using experience, compiling correlations between the 
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state-action pairings and its rewards. In flight control, this experience is defined 

as samples of flight data that shows the correlation between the initial state of the 

air vehicle (𝑠𝑡), actions that was taken (𝑎𝑡), the state of the air vehicle after an 

action has been taken (𝑠𝑡+1), and the reward of the action as it is correlated to 

the final state (𝑟𝑡).  

As described in subchapter 3.4, the algorithm for exploration are treated 

separately from the learning algorithm. The samples are generated by DDPG 

itself. It is generated by the exploration policy 𝜇′. To ensure randomness, the 

actor policy is added by noise 𝒩 from Ornstein-Uhlenbeck process.  

In this simulation the DDPG is connected to a model that can generate the 

changes in state (𝑠𝑡+1) when a random action (𝑎𝑡) is applied to a given initial state 

(𝑠𝑡).  These data (𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1)  are then given a reward value (𝑟).  

For this case study, the state consists of two variables that are defined as the 

difference between pitch angle and its desired pitch angle, known as 𝜃𝑒𝑟𝑟, and 

pitch rate, 𝑞.  

In DDPG method, the samples are generated by the exploration policy. This 

policy is achieved by adding noise to the actor policy. The policy initiates an initial 

state of the air vehicle and a random action (𝑠𝑡, 𝑎𝑡). Then using the model that is 

outside of the DDPG method, the resulting state (𝑠𝑡+1) from applying the action 

(𝑎𝑡) to the initial state (𝑠𝑡) is produced. These three variable fill out ¾ of the tuple 

needed to determine the value function in DDPG learning agent.  

The remaining ¼ of the tuple is the reward value (𝑟𝑡) that the action policy has 

given based on the previous ¾ of the tuple (𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1). Based on the complete 

tuple (𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1, 𝑟𝑡)., the RL agent updates its policy.  

The action in this case study is defined as the elevator deflection (𝛿𝐸). The state 

that is being observed are the pitch rate (𝑞) and the difference (𝜃𝐸𝑟𝑟) between 

pitch angle (𝜃) and the desired pitch angle (𝜃𝑑), 𝑠 =  [𝑞  𝜃𝐸𝑟𝑟]. 

 𝐸𝑟𝑟𝜃 is chosen with the idea that it can be a benchmark for the RL agent to 

pursue the smallest value of it no matter the value of the desired pitch angle (𝜃𝑑). 
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The model of Jetstream (J-3102) in longitudinal mode are derived from [49]. The 

linear equation of motion for the longitudinal mode of Jetstream (J-3102) are as 

follows: 

�̇� =
𝑄𝑆

𝑚

𝐶𝑙𝛼

𝑉
𝛼 + 𝑞 +

𝑄𝑆

𝑚

𝐶𝑙𝛿𝐸

𝑉
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(5-3) 

�̇� =
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(5-4) 

�̇� = 𝑞 (5-5) 

The parameters below consist of the flight configuration of Jetstream (J-3102) 

and the aerodynamic configuration that correlates to the flight configuration. 

Table 5-1 Parameters of Jetstream (J-3102) Aircraft 

Mass = 6421 kg S= 25.08 𝑚2 V = 91.57 m/s 𝑋𝑐𝑔 = 0.28*c 

Iyy = 35765 𝑘𝑔. 𝑚2 c = 1.72 m 𝜌 =  1.0193 kg/m 𝐶𝑚𝛼 = -0.993 

𝐶𝑙𝛼 = -5.534 𝐶𝑙𝛿𝐸 = -0.3367 𝐶𝑚𝑞 = -15.96 𝐶𝑚𝛿𝐸 = -1.396 

The dynamic pressure equation is: 

𝑄 =
1

2
𝜌𝑉2 

(5-6) 

5.3 Learning Strategy  

The learning strategy for flight control in longitudinal mode in fixed operating 

condition focuses on exploring the capability of the action available to the RL 

agent. This means the control surface available on the air vehicle to change its 

attitude. For Jetstream J-3102, it is the elevator deflection.  

In this case study, the RL agent is trained to familiarize itself with the possible 

movement of the elevator which is upward and downward and limited to a certain 

value of deflection. It is also trained to learn how each movement of the elevator 
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affects the attitude of the whole aircraft. Just like a young bird that learn to flap its 

wings to its fullest or a baby that’s learning how much strength they can put on 

their legs, the RL agent needs to learn how to use the elevator to control its pitch 

angle attitude. 

The RL agent is trained from two different initial conditions, which are negative 

pitch and positive pitch. Then it is trained to achieve a pitch angle with a certain 

value. This value is determined early on in the simulation. The RL agent is trained 

not only to achieve the final pitch angle, it is also trained to do it by following the 

desired predetermined trajectory/path.  

 

Figure 5-1 Diagram of Learning Process (Training Set I) 

 

Figure 5-2 Diagram of Learning Process (Training Set II) 

The learning strategy consists of 2 set of training set. Training set I focuses on 

exploring the downward elevator deflection and its impact on the pitch angle. The 

initial pitch angle (𝜃0) is randomly chosen between 200 and 240. This range is 

chosen at 50. A range larger than 60 will result in the learning process to diverge.  
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Table 5-2 A Learning Strategy for Longitudinal Mode 

No 

Training Set (Fixed Operating Condition) 

Initial State (𝜃0) Command (𝜃𝑑) 

01  𝑟𝑎𝑛𝑑𝑜𝑚 200 − 240 00 

02  𝑟𝑎𝑛𝑑𝑜𝑚 200 − 240 300 

03  𝑟𝑎𝑛𝑑𝑜𝑚 (−140) − (90) 00 

04  𝑟𝑎𝑛𝑑𝑜𝑚 (−140) − (90) −200 

Because one of the state defined is 𝜃𝑒𝑟𝑟, then the RL agent is assumed to learn 

how to control the pitch angle based on how much difference there is from the 

desired final pitch angle. Therefore, even though the learning strategy only covers 

a certain portion of the possible pitch angle, the resulting policy will be able to 

adapt to it, Figure 5-1. 

Table 5-3 Test Set for Application of Policy 

Test Episode 

Test Set (Fixed Operating Condition) 

Initial State (𝜃0) Command (𝜃𝑑) 

01-04  𝑟𝑎𝑛𝑑𝑜𝑚 (−300) − (300)  𝑟𝑎𝑛𝑑𝑜𝑚 (−120) − (120)  

Training set II focuses on exploring the upward elevator deflection and its impact 

on the pitch angle. The initial pitch angle (𝜃0) is randomly chosen between −90 

and −140, Figure 5-2. As with the first set of training, the RL agent will learn based 

on 𝜃𝑒𝑟𝑟.  

For each training set, the RL agent is given 300 episodes to converge its learning 

process. At the end of the learning process, the RL agent is then tested to control 

the pitch angle from a random initial pitch angle to a random desired pitch angle. 

At this test, the RL agent doesn’t stop learning. The policy is still updated, even if 

the changes are close to zero. 
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5.4 Pitch Angle Control 

In this simulation, the number of layers for the network are respectively 350 and 

350. This simulation will be focused on aircraft’s response in the first 3 seconds. 

Each seconds will be divided into 300 timestep.  

For the exploration policy, the Ornstein-Uhlenbeck parameter are: 

Table 5-4 Ornstein-Uhlenbeck Parameter for Simulation 05.01 & 05.02 

𝜃𝑂𝑈 = 0.4 𝜎𝑂𝑈 = 0.06 

In this sub chapter, two simulations will be executed with two different reward 

function. The reward function for simulation 05.01 is: 

𝑅1 =  − ∑ 𝜃𝐸𝑟𝑟
2

𝑛𝑆𝑡𝑒𝑝

𝑗
 

(5-7) 

The reward function for simulation 05.02 is: 

𝑅2 =  − ∑ (𝜃𝐸𝑟𝑟
2) ∗ 0.01 ∗ 𝑛𝑆𝑡𝑒𝑝

𝑛𝑆𝑡𝑒𝑝

𝑗
 

(5-8) 

The theory is that the result of simulation 05.02 should give better result than 

simulation 05.01. The 𝑛𝑆𝑡𝑒𝑝 component should provide a guarantee that the 

performance will definitely follow the desired trajectory/path as time increases. 

The result of Simulation 05.01 can be seen in Figure 5-3,Figure 5-4, Figure 5-5. 

and Figure 5-6. While the result of Simulation 05.02 can be seen in Figure 

5-7,Figure 5-8,Figure 5-9, and Figure 5-10. 

Both Figure 5-3 and Figure 5-7 show a value of total reward (return) per episode 

that is converging as the time increases. This means that for both simulations, 

the DDPG learning agent can find stability in the system and it can control the 

aircraft. A closer look at the converging value of both simulations can be seen in 

Figure 5-4 and Figure 5-8.  
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The 𝑄𝑚𝑎𝑥 graphs in Figure 5-6 and Figure 5-10 also showed that it stabilizes its value 

in the range of 1 and (-1). This indicate that the policy created is stable enough 

that it merits less changes to the policy after every episode.   

However, the performance from the test episodes from both simulations do give 

different result. Figure 5-5 shows that the RL agent manage to control the pitch 

angle in 1 out of 4 test episodes. Test Episode 01 shows the best result of the 

pitch angle changes follow the desired trajectory/path. In test episode 02, the 

value of pitch rate is too high as the RL agent seems to go beyond the elevator 

deflection limit. This suggests that this episode might be one of the exploration 

episodes of the RL agent. 

Test episodes 3 and 4 shows that the RL agent manage to change the pitch angle 

by ‘generally’ follow the trajectory/path that is desired. However, the steady state 

error of the pitch angle is more than 10. It is assumed that this problem can be 

solved in Simulation 05.02, where the reward function includes the 𝑛𝑆𝑡𝑒𝑝 

component.    

Figure 5-9 shows the result of Simulation 05.02. It shows that 4 out of 4 test 

episodes, the RL agent manage to control the pitch angle to ‘generally’ follow the 

desired trajectory/path. The steady state error of all 4 test episodes are less than 

10%. However, in test episode 2, the pitch rate is too big (more than 0.5 rad/s or 

≈ 280/𝑠). This is unacceptable. This problem is assumed can be solved by 

adding a component of pitch rate in the reward function.
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Figure 5-3 The Total Reward Per Training Episode in Simulation 05.01 
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Figure 5-4 The Total Reward Per Training Episode in Simulation 05.01-- Zoom 
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Figure 5-5 Test Result in Simulation 05.01 

 

Figure 5-6 Qmax Changes in Simulation 05.01 
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Figure 5-7 The Total Reward Per Training Episode in Simulation 05.02 
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Figure 5-8 The Total Reward Per Training Episode in Simulation 05.02-- Zoom 
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Figure 5-9 Test Result in Simulation 05.02 

 

Figure 5-10 Qmax Changes in Simulation 05.02 
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5.5 Validation 

In this sub chapter, the final policy network from the training process in Simulation 

2 is extracted and applied as the policy network for another programme. This 

programme uses the same external model to demonstrate how the RL agent 

responded to different initial state. 

This phase is designed to validate the resulting policy network and prove that 

indeed the policy can provide the knowledge for the RL agent to act appropriately 

for different state. The noise parameter in the actor policy is assumed zero, 

therefore forcing the RL agent exploit policy already given to produce a response 

instead of exploring for a new and possibly positive response.  

Figure 5-11 shows how the RL agent uses an initial policy network that has been 

through training process. It shows how the pitch angle is changed throughout the 

time by following the desired path. At the end of 3 seconds, the pitch angles are 

all stable on the desired value. 
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Figure 5-11 Test Result in Simulation 05.03
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5.6 Conclusion 

The investigation through several simulations that focuses on controlling the pitch 

angle and the pitch rate shows that: 

- the DDPG method can be used to develop a control system for the 

longitudinal mode of an aircraft. In this case study, the aircraft is 

Jetstream J-3102.  

- adjusting the components in the reward function can apply a limitation 

to the pitch angle and pitch rate response of the aircraft 

- the final policy network is considered suitable when the value of 𝑄𝑚𝑎𝑥 

during the test episodes are within the range of [-1,1]. 

- the policy network post training process can be extracted and used in 

another programme and expected to give an appropriate response to 

almost every state 
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6 DEVELOPING FLIGHT CONTROL IN LONGITUDINAL 

MODE USING DDPG IN VARIATING OPERATION 

CONDITION 

 

This chapter focuses on developing a training strategy for the RL agent to learn 

how to control the longitudinal mode of an air vehicle in variating operating 

condition. The operating condition that are considered to be varied are velocity, 

and altitude. In this case study, the air vehicle is a missile and the model is derived 

from [43]. 

 

6.1 Introduction 

One of the main issue in DDPG is determining the variables to be observed, 

known as state. From Chapter 5, it is found that the state definition in a fixed 

operating condition is 𝑠 = [𝜃𝑒𝑟𝑟  𝑞]. However, for a variating operating condition it 

is unknown whether the same state definition is enough to control the pitch angle.  

Therefore, in this chapter, a variety of state definition is simulated to train the 

DDPG agent for: 

- Velocity variation 

- Altitude variation 

In training for velocity variation, two definition of state is used. One is the state 

definition already done in Chapter 5, where 𝑠 = [𝜃𝑒𝑟𝑟  𝑞]. Another state definition 

is where the variable of velocity added, 𝑠 = [𝜃𝑒𝑟𝑟  𝑞  𝑉] . For altitude variation, one 

simulation is done with the state definition is 𝑠 = [𝜃𝑒𝑟𝑟  𝑞]. 

The missile model used to generate the samples is described in the following sub 

chapter. The specific training strategy for each varying operation condition will be 

explained in each sub chapter that follows after. 
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6.2 Generating Sample 

For this case study, the simulation is run for a Missile. The goal in this simulation 

is to maintain control of the pitch angle attitude of the missile in variating operation 

condition. The variating operating condition is achieved by variating the velocity 

and/or altitude.  

Similar to Chapter 5, the desired change in attitude (pitch angle) is predetermined 

according to Equation (5-1). The desired performance will be for the RL agent to 

follow this path/trajectory. 

However, the indicator for success in the learning process will be the stabilizing 

of the total reward per episode (return) on a value close to zero and the 

stabilization of the 𝑄𝑚𝑎𝑥 value.  

The model of the missile in longitudinal mode are derived from [43]. The linear 

equation of motion of the longitudinal mode for the missile are the same as the 

equation for the Jetstream aircraft in Chapter 5. However, for clarity, it is written 

again below.  

�̇� =
𝑄𝑆

𝑚

𝐶𝑧𝛼

𝑉
𝛼 + 𝑞 +

𝑄𝑆

𝑚

𝐶𝑧𝛿𝐸

𝑉
𝛿𝐸 (5-3) 

�̇� =
𝑄𝑆𝑑

𝐼𝑦𝑦
(𝑋𝑐𝑝 − 𝑋𝑐𝑔)

𝐶𝑧𝛼

𝑑
𝛼 +

𝑄𝑆𝑑

𝐼𝑦𝑦

𝑑

2𝑉
𝐶𝑚𝑞𝑞 +

𝑄𝑆𝑑

𝐼𝑦𝑦
𝐶𝑚𝛿𝐸𝛿𝐸 (5-4) 

�̇� = 𝑞 (5-5) 

The parameters below consist of the flight configuration of the missile and the 

aerodynamic configuration that correlates to the flight configuration. 

Table 6-1 Parameters of The Missile 

Mass : 200 kg Diameter (d): 0.3 m V : 300 m/s 𝑋𝑐𝑝 = 𝑋𝑐𝑔 + 𝑑 

Iyy : 450 𝑘𝑔. 𝑚2 𝑋𝑐𝑔 : 2.5 m 𝜌 :  1.21 kg/m 
 

𝐶𝑧𝛼 : -6.0 𝐶𝑚𝛼 : -500.0 𝐶𝑧𝛿𝐸 : -0.1340 𝐶𝑚𝛿𝐸 : -26.180 
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6.3 Varying Velocity 

In this case study, two simulations are executed to explore the impact of adding 

a condition that varies during the operation of the missile. Those two state 

definitions are: 

• 𝑠 = [𝑞  𝜃𝑒𝑟𝑟] 

• 𝑠 = [𝑞  𝜃𝑒𝑟𝑟  𝑉] 

It is assumed that the latter state definition will require more number of layers for 

the input network than that of the first state definition.  

 

6.3.1 Training Strategy 

The learning strategy for flight control in longitudinal mode in variating operating 

condition focuses on two things. One, that it explores the capability of the action 

available to the RL agent. This means the control surface available on the air 

vehicle to change its attitude, which is the elevator deflection. Two, it explores 

how much the impact of its capability changes due to a variation of velocity.  

Table 6-2 Training Set for FOC 

No 
Training Set (Fixed Operating Condition) 

Initial State (𝜃0) Command (𝜃𝑑) 

01  𝑟𝑎𝑛𝑑𝑜𝑚 200 − 240 00 

02  𝑟𝑎𝑛𝑑𝑜𝑚 (−140) − (90) 00 

03  𝑟𝑎𝑛𝑑𝑜𝑚 200 − 240 𝜃𝑑1 = 150, 𝜃𝑑2 = 00 

04  𝑟𝑎𝑛𝑑𝑜𝑚 (−140) − (90) 𝜃𝑑1 = 00, 𝜃𝑑2 = 150 

05  𝑟𝑎𝑛𝑑𝑜𝑚 200 − 240 𝜃𝑑1 = 150,𝜃𝑑2 = 50,𝜃𝑑3 = 300 

 

The first focus is achieved by putting the RL agent through 5 sets of training in 

fixed operating condition (FOC), Table 6-2. The second focus is achieved by 

adding 3 sets of training in variating operating condition (VOC),Table 6-3. The RL 



 

72 

agent go through all of these training sets before a set of episodes is added at 

the end to test the policy. 

Table 6-3 Training Set for VOC (Velocity Variation) 

No 
Training Set 

Initial State (𝜃0) Command (𝜃𝑑) 

 240 00 

06  𝑟𝑎𝑛𝑑𝑜𝑚  𝑉 = 10-60 m/s 

07 𝑟𝑎𝑛𝑑𝑜𝑚  𝑉 = 260-310 m/s 

08 𝑟𝑎𝑛𝑑𝑜𝑚  𝑉 = 360-410 m/s 

 

In VOC training, the RL agent is pushed to control the pitch angle in a range of 

varying velocity. For each set of VOC training, the range of velocity is 50 m/s. A 

range larger than that will not result in the agent converging its learning process.  

For both FOC training and VOC training, each set of training is given a range of 

500 episodes. This means that the FFPG agent is given 500 episodes to learn 

and produce a converging policy for each training set.   

 

6.3.2 Velocity Variation (𝒔 = [𝒒  𝜽𝒆𝒓𝒓]) 

In Simulation 06.01, the number of layers for the network are respectively 300 

and 500. As are the simulations in previous chapters, this simulation will focus on 

the missile’s response in the first 3 seconds, specifically on the performance of 

the pitch angle. Each seconds will be divided into 300 timestep. 

For the exploration policy, the Ornstein-Uhlenbeck parameter are: 

Table 6-4 Ornstein-Uhlenbeck Parameter for Simulation 06.01 

𝜃𝑂𝑈 = 0.3 𝜎𝑂𝑈 = 0.075 

The reward function for simulation 06.01 is: 
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𝑅1 =  ∑ 𝜃𝐸𝑟𝑟
2

𝑛𝑆𝑡𝑒𝑝

𝑗
∗ 0.01 ∗ 𝑛𝑆𝑡𝑒𝑝 

(6-1) 

Because the test episodes were executed following the training episodes, the RL 

agent is still updating its policy. Therefore, previous to this simulation, it is 

assumed that the result should be that the RL agent will be able to still control the 

pitch angle of the missile through different velocity. 

Figure 6-1 shows that the value of the total reward (return) are converging as the 

number of episodes grow, through the fixed operating condition training (episodes 

1- 2500) and the variating operating condition training (episodes 2501-4000).  

There are some spikes of big negative value during the variating operating 

condition. These episodes happened as the RL agent enters a new training set 

with a different velocity. Figure 6-5 supports this claim as it also shows spikes in 

the changes of policy when those spikes in the total reward value occurs. It also 

shows stabilization towards the end of the simulation as its value stayed between 

1 and (-1).   

Figure 6-2 shows the result of the test episodes at the end of the training 

episodes. The policy is tested through different velocity condition and different 

change in pitch angle. The result shows that the RL agent manage to follow the 

desired trajectory/path of pitch angle change. Though the steady state error 

differs. 

Figure 6-3 and Figure 6-4 show the result of the test episode, performed at the 

end of the training process.  They show the result of test episodes for different 

velocity.  Test episodes (b) and (f) show how the DDPG agent control the  pitch 

angle of the aircraft for velocities that are trained in the previous training process.  

However, test episodes (a), (c), (d) and (e) are all test episodes where the 

velocities of the aircraft have different value than the ones being used for training. 

This shows that the DDPG agent can make a response that is an interpolation 

based on its training process.  
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Figure 6-1 The Total Reward Per Training Episode in Simulation 06.01 
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Figure 6-2 FOC Test Episode Following Training in Simulation 06.01  
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Figure 6-3 VOC Test Episodes 1-4 Following Training in Simulation 06.01  
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Figure 6-4 VOC Test Episodes 5-6 Following Training in Simulation 06.01 
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Figure 6-5 Qmax Changes in Simulation 06.01 

 

Figure 6-5 shows the DDPG agent stabilizing to FOC training process followed 

by its value spiked during the VOC training. However, the agent manages to find 

stability again and it shows in its values during the test episodes (4000-4016). 

 

6.3.3 Velocity Variation (𝒔 = [𝒒  𝑬𝒓𝒓𝜽  𝑽]) 

In Simulation 06.02, several hyper-parameters are kept similar to Simulation 

06.01, such as the timestep (nStep) for each second and the reward function.  

However, the number of layers for the network are different because it needs to 

accommodate for the added number of state. In simulation 06.02, the number of 

state is 3 which are pitch rate, the error in pitch angle and velocity (𝑠 =

[𝑞  𝜃𝑒𝑟𝑟  𝑉]). Therefore, the number of network layers are respectively 400 and 

600.  

Another difference is the number of episodes given to the DDPG agent to learn 

a converging policy for each training set. Because the number of state is added, 

then there are one more variable to be observed by the DDPG agent. This 
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included variations of velocity variable whilst tied with variations in pitch rate and 

pitch angle. This means more episodes required to master one VOC training set.  

For the FOC training set, the DDPG agent is given 500 episodes to learn. This is 

the same as simulation 06.01. the reason behind this is that because for this 

training set, the velocity is locked in one value only (300 m/s). This effectively 

cuts down the variations possible in the velocity. Therefore, it is assumed that the 

number of episodes that the DDPG agent needs to master each training set is 

similar to that in simulation 06.01.  

However, for the VOC training set, the DDPG agent is given 1000 episodes to 

learn a converging policy. As stated in previous explanations, with more 

variations due to the variating velocity, the number of episodes needed to master 

a specific training process is assumed to larger.  

For the exploration policy, the Ornstein-Uhlenbeck parameter are exactly the 

same as in simulation 06.01: 

Table 6-5 Ornstein-Uhlenbeck Parameter for Simulation 06.02 

𝜃𝑂𝑈 = 0.3 𝜎𝑂𝑈 = 0.075 

Due to its complexity as a result of the added definition of state, therefore, also 

the added number of network layer, the reward function is simplified by 

eliminating the timestep (nStep) component. In simulation 06.02, the reward 

function for is: 

𝑅1 =  ∑ 𝜃𝐸𝑟𝑟
2

𝑛𝑆𝑡𝑒𝑝

𝑗
 

(6-2) 

Simulation 06.02 is run through the training process described in Table 6-2 and 

Table 6-3. The result of this simulation can be observed in Figure 6-6, Figure 6-7, 

Figure 6-8 and Figure 6-9. 
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Figure 6-6 The Total Reward Per Training Episode in Simulation 06.02 
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In Figure 6-6, the total reward per episode shows convergence that are marked 

by spikes in value in certain areas. Focusing on the FOC training set, Figure 6-10 

shows a comparison between simulation 06.01 and 06.02 with the same range 

of value. Here, it shows that the DDPG agent in both simulations converge its 

total rewards value. Despite that, Simulation 06.02 does have more spikes in 

value. This is assumed due to the difference in state definition. An exploration 

might have different result as the velocity is observed therefore a slight change 

in can affect the whole response.  

The result of test episodes in Figure 6-7 shows that although the DDPG agent 

‘generally’ followed the desired pitch angle change, the steady state error is 

significant. It is assumed that this is due to the fact that the reward function has 

no timestep (nStep) component. However, adding this component could 

jeopardize the DDPG agent learning process. It could lead to divergence in the 

total rewards per episode. 

Specifically, for graph (d), it is assumed that this response coincides with the 

episode where the DDPG agent is exploring instead of exploiting. It is advised to 

separate the training program and the test programme to fully see the use of the 

policy resulted from the training process. 

Figure 6-8 displays the performance of the air vehicle as it is controlled by the 

DDPG agent. The performance from the DDPG agent towards situations with 

different velocity, after its training, shows that it has manage to generally follow 

the desired path of pitch angle change. However, its steady state error suggests 

that the absence of timestep (nStep) component is quite influential. 

From Figure 6-9, it can be seen that there is quiet a big spike in the value of 𝑄𝑚𝑎𝑥 

somewhere between episodes 3500 and 4500. This is the episode range in which 

the DDPG agent trained for random velocity between 260 m/s and 310 m/s. This 

also corresponds with the large negative value of total reward in Figure 6-6.  
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Figure 6-7 FOC Test Episode Following Training in Simulation 06.02 
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Figure 6-8 VOC Test Episode Following Training in Simulation 06.02 



 

84 

 

Figure 6-9 Qmax Changes in Simulation 06.02 

 

This spike in value through this one training set can be incited by the existence 

of an already formed policy for velocity 300 m/s. The selected area of this policy 

is quiet extensive as it is trained for FOC in this velocity alone. Therefore, DDPG 

agent has to adjust and update quiet significantly the policy surrounding the policy 

for 300 m/s velocity. Hence, the changes in the value of 𝑄𝑚𝑎𝑥 is quiet extensive.  

A further look into VOC training set for random velocity between 10- 60 m/s and 

between 360 m/s – 410 m/s shows a spike in value early on its training episodes 

(episode 2500s and 4500s) before settling and stabilizing towards the end of the 

training set. In these area, the policy value is zero as it is not yet being filled and 

given value. Changes in this area are compared to the initial value, which is zero. 

Based on simulations 06.01 and 06.02, the result of the training for simulation 

06.01 is more preferable. Adding the number of state will impact not only the 

number of layers but also the number of episodes for training and the formulation 

of reward function. For this case study, it is recommended to not change the state 

definition for VOC training. 
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Figure 6-10 Comparison of FOC Training Set of Simulation 06.01 & 06.02 
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6.4 Varying Altitude 

Based on the conclusion in the previous sub chapter, the simulation performed 

for this case study has the state definition: 𝑠 = [𝜃𝑒𝑟𝑟  𝑞]. Here the DDPG agent is 

trained to control the pitch angle of an air vehicle in fixed operating condition 

(FOC) and variating operation condition (VOC). In this case, the variation is the 

altitude of the air vehicle. 

 

6.4.1 Training Strategy 

As with sub chapter 6.3.1, the learning strategy for this case study focuses on 

two things. One, exploring the capability of the action available to the RL agent 

and two, exploring how much the impact of its capability changes due to a 

variation of altitude.  

The number of layers for the network are respectively 300 and 500. As are the 

simulations in previous sub chapters, this simulation will focus on the missile’s 

response in the first 3 seconds, specifically on the performance of the pitch angle. 

Each seconds will be divided into 300 timestep. 

For the exploration policy, the Ornstein-Uhlenbeck parameter are: 

Table 6-6 Ornstein-Uhlenbeck Parameter for Simulation 06.03 

𝜃𝑂𝑈 = 0.3 𝜎𝑂𝑈 = 0.075 

 

The reward function for simulation 06.03 contains the timestep (𝑛𝑆𝑡𝑒𝑝) 

component. It is expected that the existence of this component will guarantee the 

convergence of the flight performance carried out by the DDPG agent is: 

𝑅1 =  ∑ 𝜃𝐸𝑟𝑟
2

𝑛𝑆𝑡𝑒𝑝

𝑗
∗ 0.01 ∗ 𝑛𝑆𝑡𝑒𝑝 

(6-3) 
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Because the test episodes were executed following the training episodes, the RL 

agent is still updating its policy. Therefore, previous to this simulation, it is 

assumed that the result should be that the RL agent will be able to still control the 

pitch angle of the missile through different altitude. 

The first focus is achieved by putting the RL agent through 5 sets of training in 

fixed operating condition (FOC), Table 6-2. The second focus is achieved by 

adding 6 sets of training in variating operating condition (VOC),Table 6-7. The RL 

agent go through all of these training sets before a set of episodes is added at 

the end to test the policy. 

Table 6-7 Training Set for VOC (Variating Altitude) 

 

 

  

 

 

 

 

 

For this VOC training, the RL agent is pushed to control the pitch angle in a 

various samples of varying altitude. These samples have an altitude range of 200 

meters. A range larger than that will not result in the agent converging its learning 

process. However, to cover the wide range of altitude, the training samples are 

taken from different altitude in a range between sea level and 8500 meters. Based 

on previous chapters and sub chapter, the DDPG agent is expected to be able to 

interpolate for altitudes not used in training.  

For each training set, the DDPG agent is given 500 episodes to converge its 

learning process.  

No Initial State (𝜽0) Command (𝜽𝑑) 

 240 00 

06  𝑟𝑎𝑛𝑑𝑜𝑚  𝜌 = 1.225 – 1.2133 𝑘𝑔 𝑚3⁄   (0 m – 200 m) 

07  𝑟𝑎𝑛𝑑𝑜𝑚  𝜌 = 1.0846 – 1.0633 𝑘𝑔 𝑚3⁄  (1250 m – 1450 m) 

08  𝑟𝑎𝑛𝑑𝑜𝑚  𝜌 = 1.0065 – 0,9864 𝑘𝑔 𝑚3⁄  (2000 m – 2200 m) 

09  𝑟𝑎𝑛𝑑𝑜𝑚  𝜌 = 0.8191 – 0.8020 𝑘𝑔 𝑚3⁄  (4000 m – 4200 m) 

10  𝑟𝑎𝑛𝑑𝑜𝑚  𝜌 = 0.7364 – 0.7203 𝑘𝑔 𝑚3⁄  (5000 m – 5200 m) 

11  𝑟𝑎𝑛𝑑𝑜𝑚  𝜌 = 0.5252 – 0.5130 𝑘𝑔 𝑚3⁄  (8000 m – 8200 m) 
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Figure 6-11 The Total Reward Per Training Episode in Simulation 06.03 
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For this VOC training, the RL agent is pushed to control the pitch angle in a 

various samples of varying altitude. These samples have an altitude range of 200 

meters. A range larger than that will not result in the agent converging its learning 

process. The agent is given 500 episodes to converge its learning process in 

each range. 

Figure 6-11 shows that the DDPG agent has manage to learn and produce a 

suitable policy after VOC and FOC training. The test episodes’ numbers 5501 

through 5516, except for 5507 and 5508, shows that the DDPG agent can utilize 

its final policy to control the flight performance of an air vehicle. This can be seen 

in Figure 6-12,Figure 6-13 and Figure 6-14. Test episode 5507 and 5508 are test 

episodes where the DDPG agent has to control the air vehicle through three 

different changes of pitch angle s, which it hasn’t trained for. Therefore, the result 

is not good.  

The performance of the DDPG agent in controlling the air vehicle in Figure 6-12, 

shows undesirable result in (c) form episode 5504. This is suspected due to the 

DDPG agent exploring instead of exploiting its policy.  Even the steady state error 

in (d) shows a significant value.  

Performance result in VOC shows desirable responses for various altitude 

condition. The timestep component in the reward function almost guarantee the 

convergence of the flight performance with minimal steady state error in VOC test 

episodes. 

Figure 6-15 shows the value of 𝑄𝑚𝑎𝑥 which exceed the range [-1,1] in the last 

training set, which is a training set for altitude condition of 8000 – 8200 meters. 

This can be an indicator that the DDPG agent is unable to learn effectively to 

control the air vehicle. This altitude might be beyond the flight envelope of the air 

vehicle.  

This is indicated by the value of 𝑄𝑚𝑎𝑥  during the test episodes (the insert graph 

in Figure 6-15).  It shows that the values are within the acceptable range of [-1,1]. 

A further testing should be done using the policy to test the altitude condition 

above 8000 meter.
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Figure 6-12 FOC Test Episode Following Training in Simulation 06.03 
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Figure 6-13 VOC Test Episode Part 1 Following Training in Simulation 06.03 
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Figure 6-14 VOC Test Episode Part 2 Following Training in Simulation 06.03 
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Figure 6-15 Qmax Changes in Simulation 06.03 

 

6.5 Conclusion 

Through the investigation in chapter 6, where the DDPG agent is trained to 

control the air vehicle in several variating operating condition, several conclusions 

are showed as follows. 

By comparing the result of simulation 06.01 and 06.02 where both DDPG agent 

are trained for variations in velocity, it is concluded that: 

- Adding another state to observe for this purpose is not recommended. 

As this is adding a complication to the ultimate goal of learning towards 

convergence. The DDPG agent itself can manage to add velocity to its 

observations implicitly with better result. 

- It is recommended also to use different altitude for VOC training 

purposes and FOC training. Changing or updating an already 

established area of policy network can cost time towards convergence. 

 

Further investigation through simulation 06.03 shows that: 
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- The DDPG agent can adapt to variations of altitude and velocity without 

having its state definition adjusted.  

- A further investigation should be performed to confirm that the spike of 

𝑄𝑚𝑎𝑥 value and total rewards during the last training set is due to the 

limitation of the air vehicle itself.   

A general recommendation is that the program to train the DDPG agent for FOC 

and VOC is separated. The final policy from the FOC training programme can be 

extracted and used as the initial policy in VOC training programme. This can cut 

down the run time of the programme and minimize having to do the whole 

programme all over again when a mistake occurs somewhere in the training or 

test programme.  
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7 DEVELOPING FLIGHT CONTROL IN LATERAL-

DIRECTIONAL MODE USING DDPG WITH DUAL 

ACTION 

 

This chapter focuses on developing a training strategy for the RL agent to learn 

how to control the lateral-directional mode of an air vehicle. This is a problem 

because for this purpose, the DDPG method needs to use two action variables. 

They are aileron and rudder. In this case study, the operating condition is fixed. 

The air vehicle for this case study is an unmanned aerial vehicle. 

 

7.1 Introduction  

Another issue in DDPG is the use of more than one action variable. The use of 

more than one action variable increases the chance of the RL agent to not 

converge on its learning process.  

Previous works that applies DDPG for a control problem has used it for one action 

only, such as [50].The author of this work only use the steering wheel as the 

action to control an autonomous land vehicle using DDPG. For a simulation using 

two actions, the authors use ACER. 

In [51], a Model-driven Deep Deterministic Policy Gradient (MDDPG) is utilized 

to develop a control policy for a system with 6 dimension of action. This method 

basically made the search for optimal policy easier by not starting its knowledge 

of the system from zero. The goal was to minimize the amount of training needed 

and avoiding actions that may result in undesirable performance. 

[4] uses only DDPG to control a bi-pedal walking robot using 4-dimension action. 

But it is unclear exactly how the researchers did this.  

In this chapter, it is proposed that just by customizing the learning strategy, the 

DDPG method can develop a policy that can control the lateral-directional mode 
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of an aircraft. For this case study, a UAS (Unmanned Aerial System) model from 

[52] is used.  

  

7.2 Model 

The model of Unmanned Aerial System (UAS) that is used for the simulation is 

derived from [52]. The nonlinear equation of motion for the lateral-directional 

mode of UAS are as follows: 

�̇� = −𝑢𝑟 + 𝑤𝑝 + 𝑔 sin 𝜙 cos 𝜃 +
𝑄𝑆𝐶𝑌

𝑚
 (7-1) 

�̇� =
𝐼𝑥𝑧

𝐼𝑥𝑥

(�̇� + 𝑝𝑞) −
𝐼𝑧𝑧 − 𝐼𝑦𝑦

𝐼𝑥𝑥
𝑞𝑟 +

𝑄𝑆𝑏𝐶𝑙

𝐼𝑥𝑥
  (7-2) 

�̇� = −
𝐼𝑥𝑧

𝐼𝑧𝑧

(�̇� − 𝑞𝑟) −
𝐼𝑦𝑦 − 𝐼𝑥𝑥

𝐼𝑧𝑧
𝑝𝑞 +

𝑄𝑆𝑏𝐶𝑛

𝐼𝑧𝑧
  (7-3) 

�̇� = 𝑝 + 𝑞 sin 𝜙 tan 𝜃 + 𝑟 cos 𝜙 tan 𝜃 
(7-4) 

�̇� = 𝑞 sin 𝜙 sec 𝜃 + 𝑟 cos 𝜙 sec 𝜃 
(7-5) 

The side force coefficient (𝐶𝑌), the rolling moment coefficient (𝐶𝑙) and the yawing 

moment coefficient (𝐶𝑛) are determined by the following equations. Table 7-2 

consists of the parameters of the UAS and the aerodynamic data that correlates 

to its configuration. 

𝐶𝑌 = 𝐶𝑌,𝛽𝛽 + (𝐶𝑌,𝑝𝑝 + 𝐶𝑌,𝑟𝑟) (
𝑏

2𝑉
) + 𝐶𝑌,𝛿𝑅𝛿𝑅 (7-6) 

𝐶𝑙 = 𝐶𝑙,𝛽𝛽 + (𝐶𝑙,𝑝𝑝 + 𝐶𝑙,𝑟𝑟) (
𝑏

2𝑉
) + 𝐶𝑙,𝛿𝑅𝛿𝑅 + 𝐶𝑙,𝛿𝐴𝛿𝐴 + (𝑥𝑐𝑔 − 𝑥𝑐𝑔,𝑟𝑒𝑓)𝐶𝑌 (

𝑐

𝑏
) sin 𝛼 (7-7) 

𝐶𝑛 = 𝐶𝑛,𝛽𝛽 + (𝐶𝑛,𝑝𝑝 + 𝐶𝑛,𝑟𝑟) (
𝑏

2𝑉
) + 𝐶𝑛,𝛿𝑅𝛿𝑅 + 𝐶𝑛,𝛿𝐴𝛿𝐴 + (𝑥𝑐𝑔 − 𝑥𝑐𝑔,𝑟𝑒𝑓)𝐶𝑌 (

𝑐

𝑏
) cos 𝛼 (7-8) 
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The maximum and minimum deflection of the control surface of the UAS is 

described in Table 7-1.  

Table 7-1 Control Surface Limitation 

Aileron deflection limit ±210 

Rudder deflection limit ±100 

 

Table 7-2 Parameters of UAS for Lateral-Directional Mode 

m = 12.5 kg c = 0.2 m V = 20 m/s 𝜌 =  1.21 kg/m 

b = 3 m S = 0.6 𝑚2   

𝐼𝑥𝑥 = 1.446 𝑘𝑔. 𝑚2 𝐼𝑦𝑦 = 1.181 𝑘𝑔. 𝑚2 𝐼𝑧𝑧 = 2.269 𝑘𝑔. 𝑚2 𝐼𝑥𝑧 = 0.1 𝑘𝑔. 𝑚2 

𝑋𝑐𝑔 = 0.564 m 𝑋𝑐𝑔,𝑟𝑒𝑓 = 0.512 m 𝐶𝑙,𝛿𝐴 = 0.2549 𝐶𝑛,𝛿𝐴 = 0.0 

𝐶𝑌,𝛽 = -0.6328 𝐶𝑌,𝑝 = -0.0520 𝐶𝑌,𝑟 = 0.2609 𝐶𝑌,𝛿𝑅 = 0.3236 

𝐶𝑙,𝛽 = -0.1195 𝐶𝑙,𝑝 = -0.5796 𝐶𝑙,𝑟 = 0.1898 𝐶𝑙,𝛿𝑅 = 0.0439 

𝐶𝑛,𝛽 = 0.1151 𝐶𝑛,𝑝 = -0.0730 𝐶𝑛,𝑟 = -0.0901 𝐶𝑛,𝛿𝑅 = -0.1041 

 

7.3 Learning Strategy 

In this case study, the RL agent observed the error between the aircraft’s roll and 

yaw angle with the desired roll and yaw angle, ( 𝜙𝐸𝑟𝑟 and  𝜓𝐸𝑟𝑟). However, the 

agent also needs to observe the roll rate (𝑝) and yaw rate (𝑟). It needs to see how 

to achieve its goal by controlling the angle rate. The state,𝑠𝑡, is defined as follows. 

𝑠𝑡 = [𝑝 𝜙𝐸𝑟𝑟 𝑟 𝜓𝐸𝑟𝑟] (7-9) 



 

99 

Based on Chapter 4, the reward function that can best represent the desired flight 

performance is by following a predetermined path of flight. The error in roll angle 

and yaw angle are defined as follows. 

𝜙𝐸𝑟𝑟 = 𝜙 − 𝜙𝑟𝑒𝑓 (7-10) 

𝜓𝐸𝑟𝑟 = 𝜓 − 𝜓𝑟𝑒𝑓 (7-11) 

The desired changes in roll angle and yaw angle can be seen in the following 

equations. 

�̇�𝑟𝑒𝑓 = −2𝜉𝑟𝑒𝑓𝜔𝑛𝑟𝑒𝑓
�̇�𝑟𝑒𝑓 − 𝜔𝑛𝑟𝑒𝑓

2 (𝜙0 − 𝜙𝑡) (7-12) 

�̇�𝑟𝑒𝑓 = −2𝜉𝑟𝑒𝑓𝜔𝑛𝑟𝑒𝑓
�̇�𝑟𝑒𝑓 − 𝜔𝑛𝑟𝑒𝑓

2 (𝜓0 − 𝜓𝑡) (7-13) 

𝜙0 is defined as the initial state of roll angle and 𝜙𝑡 is defined as the final goal of 

the roll angle. 𝜓0 is defined as the initial state of yaw angle and 𝜓𝑡 is defined as 

the final goal of the yaw angle.  𝜉𝑟𝑒𝑓 is a damping ratio of 1 and (𝜔𝑛𝑟𝑒𝑓
) is the 

natural frequency of 2𝜋. 

The reward function defined in the following equation.  

𝑅 =  − ∑ {−(𝜙𝐸𝑟𝑟
2) − (𝜓𝐸𝑟𝑟

2)} ∗ 0.01 ∗ 𝑛𝑆𝑡𝑒𝑝
𝑛𝑆𝑡𝑒𝑝

𝑗
 

(7-14) 

The reward function is multiplied by a timestep component to ensure that the 

steady state error in roll and yaw angle are the smallest towards the end.  

Aside from the definition of the reward function, there are two things that are 

important in this case study. They are: 

- the definition of the action space 

- the learning strategy 

The action, 𝑎𝑡, is defined as a vector that consists of aileron deflection and rudder 

deflection. So, the action is considered a single action but with a larger number 

of possibilities as it contains possible variations of two variables.  
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𝑎𝑡 = [(𝛿𝐴 𝛿𝑅)] (7-15) 

In determining the learning strategy, there is a problem with letting the RL agent 

loose to find its own way to balance the use of aileron and rudder. There are a 

large number of action possibilities that can be taken. This is added to the large 

number of possibilities of the state of the aircraft itself. The RL agent has to learn 

to control the roll angle and the yaw angle of the aircraft.  

In this, an approach is made similar to that of a child learning how to use a pair 

of spoon and fork to eat. In a child’s development, they first learn to use only the 

spoon to eat. Once they mastered the spoon then the fork is introduced. The child 

began to learn to coordinate with both spoon and fork to eat. 

In learning how to control the lateral-directional mode, the RL agent is first trained 

how to control the roll angle. This training set is divided into two parts. In the first 

part, the rudder deflection is considered is considered zero. The RL agent has to 

learn to control the roll angle only with aileron. This will push the RL agent to a 

total reward value that converges to a best performance with only the use of the 

aileron. 

Then in the second part of the training set, the rudder is added and the RL agent 

started to coordinate the use of both aileron and rudder to control the roll angle. 

This should be able to produce a converging learning process easily because the 

RL agent has already found the suitable policy for zero rudder deflection. How 

this training set works is visually explained in Figure 7-1. 

 The training set to learn how to control the roll angle is followed by another 

training set that trains the RL agent to learn how to control the yaw angle (Figure 

7-2). As is the training for controlling the roll angle, the RL agent has to learn to 

control the yaw angle by using rudder deflection only. Then it is followed by 

learning to control it using both aileron and rudder deflection. 
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Table 7-3 The Training Sequence for Lateral-Directional Mode 
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Figure 7-1 The Training Set To Control The Roll Angle 

            

Figure 7-2 The Training Set To Control The Yaw Angle 

Table 7-3 Shows the training sequence for this simulation and which part uses only 

one action that varies and which part has to coordinate with two actions. Each 

training set provides an overall of 1000 episodes for the RL agent to master its 

training. 2/3 of those episodes are used for learning to coordinate two actions. It Is 

assumed that controlling a roll or a yaw angle by coordinating two different actions 

takes longer to learn. 
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7.4 Result 

In this chapter, two simulations are executed. The first simulation consists of the 

training process of the RL agent and the testing episode following the end of the 

training process. The training process applied the learning strategy to train the 

RL agent to learn to control the lateral-directional mode of the aircraft. The test 

episode following it will be to test the resulting policy.  

However, there is a chance that during the testing episode, the RL agent might 

not respond in the best possible action. This is due to the fact that the RL agent 

often times explores a new or untried action for certain situation. That is why the 

second simulation needs to be performed. 

The second simulation will use the final policy from the first simulation and applied 

it to another programme with the same aircraft model. However, the noise that is 

added to the action policy is assumed non-existent. The Ornstein-Uhlenbeck 

parameter are assumed zero. Therefore, the RL agent won’t be exploring 

anymore and just exploiting the initial policy.  

For the second simulation, the number of layers for the network must be the same 

between the first simulation and the second. This is because the final policy saved 

is in the form of a network. In this investigation the number of layers for the 

network are respectively 500 and 600.  

For the exploration policy in the first simulation, the Ornstein-Uhlenbeck 

parameter are: 

Table 7-4 Ornstein-Uhlenbeck Parameter for Simulation 07.01 

𝜃𝑂𝑈 = 0.2 𝜎𝑂𝑈 = 0.05 

Figure 7-3 shows how the final policy from simulation 07.01 is extracted and 

applied as the initial policy in simulation 07.02. In simulation 07.02, there is no 

more training process for the RL agent. The RL agent simply responded to the 

initial condition (state) and initiate an action based on the initial policy that is no 

longer empty.
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(i) Simulation 07.01        (ii)  Simulation 07.02 

 

Figure 7-3 The Schematic For Simulation 07.01 and 07.02
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Figure 7-4 The Total Reward Per Training Episode in Simulation 07.01
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Figure 7-5 Test Episode Following Training in Simulation 07.01
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The result of simulation 07.01 can be seen in Figure 7-4, Figure 7-5 and Figure 

7-6. The total reward value in Figure 7-4 shows that the RL agent has manage to 

converge even though there are instances where the exploring episode has 

deviated so far from the desired response. This can be attributed to the small 

parameters of the noise parameters that led the RL agent to explore extremely 

throughout the learning process instead of clustered together throughout the 

earlier episodes. 

For the test episode in simulation 07.01, the only changes made is the value of 

desired yaw angle (𝜓𝑑).  Figure 7-5 shows that the RL agent seems to be 

following the desired path of change in yaw angle. However, the response 

initiated by the RL agent doesn’t overlap perfectly with the desired path. It has 

given a steady state error of about ±10%.  There is a possibility that this value 

doesn’t represent the value of the RL agent exploiting its already developed 

policy. There is a possibility that this is a value where the RL agent are actually 

exploring other possibility for this initial state. 

Despite the result of the episode following the training  episodes, the  value of 

𝑄𝑚𝑎𝑥 in Figure 7-6, shows that it is trying to find its stability inside the value range 

of ±0.2. This shows that the final policy resulted from simulation 07.01 is suitable 

enough to be applied for the purpose of controlling the system.   

Based on this investigation into applying DDPG for flight control, if the value of 

𝑄𝑚𝑎𝑥 towards the end of the training process is maintained at the range of ±1.0, 

then the resulting policy is suitable enough to control the system. 
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Figure 7-6 Qmax Changes in Simulation 07.01 
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The result of Simulation 07.02 can be seen in  Figure 7-7, Figure 7-8 and Figure 

7-9.  Figure 7-7 shows that the initial policy used in the simulation is no longer 

empty (zero). This is shown by the value of total reward that are already close to 

zero.  The response that this reward value represents can be seen in Figure 7-8.  

Episodes 1-3 tries to test the policy by attempting to change just one angle, either 

the roll angle or the yaw angle.  However, the result shows a less than stellar 

performance. This is due the coupling nature of lateral-directional mode in an 

aircraft. Any movement of the aileron will inflict the roll angle and the yaw angle. 

Therefore, it shows in  Figure 7-8 graph (a) and (b). There’s a slight change in 

yaw angle, but the RL agent manage to control it and stabilize the yaw angle 

albeit with a steady state error. Vice versa for the rudder. The same principal 

applies to changes in yaw angle only, as seen in graph (c).  

The response for the changes in roll angle in graph (b) and yaw angle in graph 

(c) might be more exactly like the desired path of change if the final policy is 

allowed to train some more with both control surface not limited except for the 

capability of the aircraft. 

Figure 7-8 in graph (d) shows how the RL agent response to a change in both the 

roll angle and the yaw angle. It shows that the RL agent manage to generally 

follow the desired path.  The 𝑄𝑚𝑎𝑥 in Figure 7-9 shows that during the whole test 

in simulation 07.02, the value doesn’t change much. 

It takes roughly 48 hours in a common desktop to train an RL agent to learn to 

control the lateral-directional of an aircraft.



 

111 

 

Figure 7-7 The Total Reward Per Episode for Simulation 07.02 
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Figure 7-8 Result of Simulation 07.02
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Figure 7-9 Qmax Changes in Validation of Simulation 07.02 
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7.5 Conclusion 

Based on the results of simulations 07.01 and 07.02, it is proven that the by 

following the learning strategy described in sub chapter 7.3, the RL agent can 

learn how to utilise two control surface with coupling nature to control the lateral-

directional of the aircraft 

Also, by seeing the result of simulation 07.02, it is also confirming that the final 

policy network can be extracted and used as the initial policy in another program 

with the same aircraft model. This is important as in real situations the RL agent 

can be trained off board an aircraft and the final policy can be put on board once 

it is deemed suitable. 
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8 DEVELOPING FLIGHT CONTROL FOR 6-DEGREE-OF-

FREEDOM USING DDPG WITH THREE ACTION 

 

8.1 Introduction 

This chapter focuses on developing a training strategy for the RL agent to learn 

how to control the full 6 degree of freedom of an air vehicle. This is a problem 

because in this case study, there are three action variables, which made the 

number of possible action combination increased exponentially. The action 

variables are the elevator, aileron and rudder. 

The learning strategy in Chapter 7 works by first limiting the range of possible 

action by locking one action equals to zero. Then when the RL agent has 

mastered the use of one action, the locked action is unlocked and given the 

chance to explore.  

Applying this strategy to this case study resulted in the RL agent failing to learn 

to control system. This is shown in the result of the total rewards per episode that 

doesn’t converge. It failed to learn to control the longitudinal mode of the air 

vehicle once it masters the lateral-directional mode. Vice versa, if it learns to 

control the longitudinal mode of the air vehicle, then it will fail to learn to control 

the lateral-directional mode.  

So, for this case study, a new learning strategy has to be develop to unofficially 

guide the RL agent through its learning process. In this case study, the operating 

condition is fixed. The air vehicle for this case study is an unmanned aerial 

vehicle. 

 

8.2 Model 

The model of UAS that is used for the simulation is a nonlinear model from[52]. 

The full 6-degree-of-freedom of the UAS model can be seen in the following 9 

equations.  
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�̇� = 𝑣𝑟 − 𝑤𝑞 − 𝑔 sin 𝜃 +
𝑄𝑆𝐶𝑥

𝑚
 

(8-1) 

�̇� = −𝑢𝑟 + 𝑤𝑝 + 𝑔 𝑠𝑖𝑛 𝜙 𝑐𝑜𝑠 𝜃 +
𝑄𝑆𝐶𝑌

𝑚
 

(8-2) 

�̇� = −𝑣𝑝 + 𝑢𝑞 + 𝑔 cos 𝜙 cos 𝜃 +
𝑄𝑆𝐶𝑍

𝑚
 

(8-3) 

�̇� =
𝐼𝑥𝑧

𝐼𝑥𝑥

(�̇� + 𝑝𝑞) −
𝐼𝑧𝑧 − 𝐼𝑦𝑦

𝐼𝑥𝑥
𝑞𝑟 +

𝑄𝑆𝑏𝐶𝑙

𝐼𝑥𝑥
 

(8-4) 

�̇� = −
𝐼𝑥𝑧

𝐼𝑦𝑦

(𝑝2 − 𝑟2) −
𝐼𝑥𝑥 − 𝐼𝑧𝑧

𝐼𝑦𝑦
𝑝𝑟 +

𝑄𝑆𝑐𝐶𝑚

𝐼𝑦𝑦
 

(8-5) 

�̇� = −
𝐼𝑥𝑧

𝐼𝑧𝑧

(�̇� − 𝑞𝑟) −
𝐼𝑦𝑦 − 𝐼𝑥𝑥

𝐼𝑧𝑧
𝑝𝑞 +

𝑄𝑆𝑏𝐶𝑛

𝐼𝑧𝑧
 

(8-6) 

�̇� = 𝑝 + 𝑞 𝑠𝑖𝑛 𝜙 𝑡𝑎𝑛 𝜃 + 𝑟 𝑐𝑜𝑠 𝜙 𝑡𝑎𝑛 𝜃 (8-7) 

�̇� = 𝑞 cos 𝜙 + 𝑟 sin 𝜙 (8-8) 

�̇� = 𝑞 𝑠𝑖𝑛 𝜙 𝑠𝑒𝑐 𝜃 + 𝑟 𝑐𝑜𝑠 𝜙 𝑠𝑒𝑐 𝜃 (8-9) 

The aerodynamic force coefficients (𝐶𝑋 , 𝐶𝑌, 𝐶𝑍) and the aerodynamic moment 

coefficients (𝐶𝑙 , 𝐶𝑚, 𝐶𝑛) can be seen in the equations below. 

𝐶𝑋 = −𝐶𝐷 cos 𝛼 + 𝐶𝐿 sin 𝛼 (8-10) 

𝐶𝑌 = 𝐶𝑌,𝛽𝛽 + (𝐶𝑌,𝑝𝑝 + 𝐶𝑌,𝑟𝑟) (
𝑏

2𝑉
) + 𝐶𝑌,𝛿𝑅𝛿𝑅 

(8-11) 

𝐶𝑍 = −𝐶𝐷 sin 𝛼 − 𝐶𝐿 cos 𝛼 (8-12) 

𝐶𝑙 = 𝐶𝑙,𝛽𝛽 + (𝐶𝑙,𝑝𝑝 + 𝐶𝑙,𝑟𝑟) (
𝑏

2𝑉
) + 𝐶𝑙,𝛿𝑅𝛿𝑅 + 𝐶𝑙,𝛿𝐴𝛿𝐴

+ (𝑥𝑐𝑔 − 𝑥𝑐𝑔,𝑟𝑒𝑓)𝐶𝑌 (
𝑐

𝑏
) 𝑠𝑖𝑛 𝛼 

(8-13) 
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𝐶𝑚 = 𝐶𝑚,𝑢𝑢 + 𝐶𝑚,𝛼𝛼 + (𝐶𝑚,�̇��̇� + 𝐶𝑚,𝑞𝑞) (
𝑐

2𝑉
) + 𝐶𝑚,𝛿𝐸𝛿𝐸

+ (𝑥𝑐𝑔 − 𝑥𝑐𝑔,𝑟𝑒𝑓)(𝐶𝐿 𝑐𝑜𝑠 𝛼 + 𝐶𝐷 𝑠𝑖𝑛 𝛼) 

(8-14) 

𝐶𝑛 = 𝐶𝑛,𝛽𝛽 + (𝐶𝑛,𝑝𝑝 + 𝐶𝑛,𝑟𝑟) (
𝑏

2𝑉
) + 𝐶𝑛,𝛿𝑅𝛿𝑅 + 𝐶𝑛,𝛿𝐴𝛿𝐴

+ (𝑥𝑐𝑔 − 𝑥𝑐𝑔,𝑟𝑒𝑓)𝐶𝑌 (
𝑐

𝑏
) 𝑐𝑜𝑠 𝛼 

(8-15) 

The drag coefficient (𝐶𝐷) and the lift coefficient (𝐶𝐿) equations are as follows. 

𝐶𝐷 = 𝐶𝐷,𝛼𝛼 (8-16) 

𝐶𝐿 = 𝐶𝐿,𝑢𝑢 + 𝐶𝐿,𝛼𝛼 + 𝐶𝐿,𝑞𝑞 (
𝑏

2𝑉
) + 𝐶𝐿,𝛿𝐸𝛿𝐸 

(8-17) 

Table 8-1 Parameters of UAS for 6-degree-of-freedom 

m = 12.5 kg c = 0.2 m V = 20 m/s 𝜌 =  1.21 kg/m 

b = 3 m S = 0.6 𝑚2   

𝐼𝑥𝑥 = 1.446 𝑘𝑔. 𝑚2 𝐼𝑦𝑦 = 1.181 𝑘𝑔. 𝑚2 𝐼𝑧𝑧 = 2.269 𝑘𝑔. 𝑚2 𝐼𝑥𝑧 = 0.1 𝑘𝑔. 𝑚2 

𝑋𝑐𝑔 = 0.564 m 𝑋𝑐𝑔,𝑟𝑒𝑓 = 0.512 m   

𝐶𝐿,𝛼 = 5.5138 𝐶𝐿,𝑞 = 7.4673 𝐶𝐿,𝑢 = 0.0024 𝐶𝐿,𝛿𝐸 = 0.2649 

𝐶𝑚,𝑞 = -22.5924 𝐶𝑚,𝛿𝐸 = -1.1893 𝐶𝑚,𝑢 = 0.0003 𝐶𝑚,�̇� = -4.1034 

𝐶𝑚,𝛼 = −1.6510 𝐶𝐷,𝑎 = 0.2188 𝐶𝑙,𝛿𝐴 = 0.2549 𝐶𝑛,𝛿𝐴 = 0.0 

𝐶𝑙,𝛽 = -0.1195 𝐶𝑙,𝑝 = -0.5796 𝐶𝑙,𝑟 = 0.1898 𝐶𝑙,𝛿𝑅 = 0.0439 

𝐶𝑛,𝛽 = 0.1151 𝐶𝑛,𝑝 = -0.0730 𝐶𝑛,𝑟 = -0.0901 𝐶𝑛,𝛿𝑅 = -0.1041 
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8.3 Learning Strategy 

In this case study, the RL agent has to be able to learn to control the roll 𝜙, pitch 

𝜃 and yaw angle 𝜓 using three control surfaces which are elevator, aileron and 

rudder. Therefore, the definition of state and action is as followed. 

The state being observed are the error between the aircraft’s roll, pitch and yaw 

angle with the desired roll, pitch and yaw angle, ( 𝜙𝐸𝑟𝑟 , 𝜃𝐸𝑟𝑟 and  𝜓𝐸𝑟𝑟). In 

addition, the agent also needs to observe the roll rate (𝑝), pitch rate (𝑞) and yaw 

rate (𝑟). It needs to see how to achieve its goal by controlling the angle rate. The 

state,𝑠𝑡, is defined as follows. 

𝑠𝑡 = [𝑝 𝜙𝐸𝑟𝑟 𝑟 𝜓𝐸𝑟𝑟    𝑞 𝜃𝐸𝑟𝑟 ] (8-18) 

Based on Chapter 4, the reward function that can best represent the desired flight 

performance is by following a predetermined path of flight. The error in roll angle 

and yaw angle are the same as defined in Chapter 7. 

𝜙𝐸𝑟𝑟 = 𝜙 − 𝜙𝑟𝑒𝑓 

𝜓𝐸𝑟𝑟 = 𝜓 − 𝜓𝑟𝑒𝑓 

The error in pitch angle are the same as defined in Chapter 5. 

𝜃𝐸𝑟𝑟 = 𝜃 − 𝜃𝑟𝑒𝑓 

The equation desired changes in roll angle and yaw angle are the same as the 

one in Chapter 7. The equation for the desired changes in pitch angle is the same 

as in Chapter 5. Those equations are written again below. 

�̇�𝑟𝑒𝑓 = −2𝜉𝑟𝑒𝑓𝜔𝑛𝑟𝑒𝑓
�̇�𝑟𝑒𝑓 − 𝜔𝑛𝑟𝑒𝑓

2 (𝜙0 − 𝜙𝑡) 

�̇�𝑟𝑒𝑓 = −2𝜉𝑟𝑒𝑓𝜔𝑛𝑟𝑒𝑓
�̇�𝑟𝑒𝑓 − 𝜔𝑛𝑟𝑒𝑓

2 (𝜓0 − 𝜓𝑡) 

�̇�𝑟𝑒𝑓 = −2𝜉𝑟𝑒𝑓𝜔𝑛𝑟𝑒𝑓
�̇�𝑟𝑒𝑓 − 𝜔𝑛𝑟𝑒𝑓

2 (𝜗0 − 𝜃𝑡) 

𝜙0 is defined as the initial state of roll angle and 𝜙𝑡 is defined as the final goal of 

the roll angle. 𝜓0 is defined as the initial state of yaw angle and 𝜓𝑡 is defined as 
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the final goal of the yaw angle. 𝜃0 is defined as the initial state of pitch angle and 

𝜃𝑡 is defined as the final goal of the pitch angle. 𝜉𝑟𝑒𝑓 is a damping ratio of 1 and 

(𝜔𝑛𝑟𝑒𝑓
) is the natural frequency of 2𝜋. 

The reward function defined in the following equation.  

𝑅 =  − ∑ {−(𝜙𝐸𝑟𝑟
2) − (𝜓𝐸𝑟𝑟

2) − (𝜃𝐸𝑟𝑟
2)} ∗ 0.01 ∗ 𝑛𝑆𝑡𝑒𝑝

𝑛𝑆𝑡𝑒𝑝

𝑗
 

(8-19) 

Again, the reward function is multiplied by a timestep component to ensure that 

the steady state error in roll, pitch and yaw angle are the smallest towards the 

end.  

The action, 𝑎𝑡, is defined as a vector that consists of aileron deflection, elevator 

deflection and rudder deflection. So, the action is considered a single action but 

with a larger number of possibilities as it contains possible variations of three 

variables.  

𝑎𝑡 = [(𝛿𝐴 𝛿𝑅    𝛿𝐸)] (8-20) 

The limitation of the control surface deflection is determined as follow. 

Table 8-2 Control Surface Limitation 

Aileron deflection limit ±210 

Rudder deflection limit ±100 

Elevator deflection limit ±250 

In determining the learning strategy, another problem has occurred while moving 

on from the learning strategy of controlling the lateral-directional mode. The same 

concept cannot be directly applied to the d DoF system. This is because the 

amount of possible combination of actions has greatly increased.  

Another aspect is that even though in conventional flight control design, the 

longitudinal mode is usually handled separately to the lateral-directional mode, 

there is however an influence that crosses between the two. Therefore, when 
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learning to control one mode, all three actions must engage/active from the start 

of learning.  

This case study proposes an approach by applying the way a child learns to 

stand/walk. When they first learn to stand, they needed their hands to lean on 

other surfaces to have balance. Then as they started to master how to stand, they 

started to walk with both hands still stretched for balance. Much further and they 

would start to keep their hands by their side. However, the hands will always 

function to maintain balance, because if a person loses one of the hands, it will 

impact how they try to stand.  

In learning how to control the aircraft in a 6 DoF system, the learning strategy is 

divided into three training set. Each training set will train the RL agent to learn to 

control its one mode, either it is longitudinal/lateral/directional, while still 

maintaining the stability of the other modes. 

In each of the training set, no control surface is left with zero deflection. However, 

certain limitation is put on one or two of the control surfaces, depending on the 

flight mode its currently trying to control.  This is done so the RL agent will have 

a less number of possible combination of action and therefore incited a faster 

convergence.  

This is also done to avoid the RL agent from having to re-learn and repopulate its 

policy network. This will happen, for example, when the RL agent has to learn to 

control the roll angle whilst the elevator and rudder are locked and unable to 

operate. When they are unlocked, then the policy would have to be adjusted 

again as the pairing of state-action suddenly grew and the RL agent has to re-

learn to control the roll angle with all control surfaces operating. 

However, if the RL agent already learning from the beginning how to control the 

roll angle with all control surfaces operating, albeit with some range limitation, 

then the RL agent don’t have to work twice and the range limitation will help 

converge the learning process faster. Table 8-3 and Table 8-4 shows how the 

training is executed. 
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 Table 8-3 Training Set A To Learn Control of Roll Angle 

 

Further explained, in training set A, the RL agent learns how to control the roll 

angle. In the first 300 training episode, the agent is given a full range of the aileron 

deflection. This means in the range between −210 to +210. However, the range 

of rudder deflection and elevator deflection is limited.  

The rudder deflection is limited in a range of 𝜒𝑅 = ±30. The elevator deflection is 

limited to a range of 𝜒𝐸 = ±80. These two control surfaces are important because 

it is needed to control any movement in yaw and pitch angel due to movement in 

roll angle. However, it is limited so that the RL agent can converge swiftly. 

The purpose of giving the RL agent the availability to utilize a small part of the 

other two control surfaces is not to explore in them. That will be done in the other 

part of the training. The rudder deflection is explored during the second 300 

episodes and the elevator deflection is explored during the third 300 episodes.  

In training set B, the RL agent learns how to control the pitch angle. In the first 

300 training episode (episodes 1801-2100), the agent is given a full range of the 

elevator deflection. This means in the range between −250 to +250. However, 

the range of rudder deflection and aileron deflection is limited. The rudder 

deflection is limited in a range of 𝜒𝑅 = ±30. The aileron deflection is limited to a 

range of 𝜒𝐴 = ±50. 
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Figure 8-1 The Training Set To Control The Roll Angle 
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Table 8-4 Training Set B To Learn Control of Pitch Angle 

 

Similar with training set A, in training set C, the RL agent learns how to control 

the yaw angle. In the first 300 training episode (episodes 3601-3900), the agent 

is given a full range of the rudder deflection. This means in the range between 

−80 to +80. However, the range of elevator deflection and aileron deflection is 

limited. The elevator deflection is limited in a range of 𝜒𝐸 = ±80. The aileron 

deflection is limited to a range of 𝜒𝐴 = ±50. 

In this case study, the number of layers for the network are respectively 1400 and 

1500. All the simulations will focus on the aircraft’s response in the first 3 seconds 

and each second will be divided into 300 timestep (nStep). For the exploration 

policy, the Ornstein-Uhlenbeck parameter are: 

Table 8-5 Ornstein-Uhlenbeck Parameter for Simulation 08.01 

𝜃𝑂𝑈 = 0.3 𝜎𝑂𝑈 = 0.05 

Running the whole programme with three control surface requires a lot of 

computer memory and processor capability. To lessen the load and to made 

trouble shooting more easily, the training programme is divided into 4 

programmes. These programmes consists of: 

- Training set A, to learn to control the lateral mode 

- Training set B, to learn to control the longitudinal mode 

- Training set C, to learn to control the directional mode 
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- Training set D, to learn to control by coordinating between all 3 control 

surfaces. 

 

8.4 Result 

In the simulation to train the RL agent to control the 6 degree-of-freedom of an 

aircraft, the training session is divided into 4 separate programs. This is because 

it takes a lot of memory power and processor to run the training all at once. So, it 

is decided to separate the training program. Each final policy network from the 

previous program becomes the initial policy for the next training program. 

The first three program trains the RL agent to focus on controlling the roll angle 

(training set A), pitch angle (training set B) and the yaw angle (training set C). In 

the fourth program, the RL agent is trained to utilize the whole range of the 3 

control surfaces. Figure 8-2 describes how the policy network from a training 

programme is extracted and used as the initial policy network in another training 

programme. 

        
 

Figure 8-2 Using Policy From Another Programme As The Initial Policy 

 

The following figures shows the result for each training program and the resulting 

response of the RL agent towards the initial state.
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Figure 8-3 The Total Reward and Qmax Per Episode in Training Set A 
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Figure 8-4 The Total Reward and Qmax Per Episode in Training Set B 
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Figure 8-3 and Figure 8-4 shows that the RL agent’s learning process through 

training set A and B have gone successful. This is shown with the converging of 

the total reward value for each episode in the training set. Training set A was 

designed to train to control the roll angle and training set B was designed to train 

to control the pitch angle. Judging from the value of 𝑄𝑚𝑎𝑥 on training set A, it 

shows the value in the last 200 episodes are between -1 and 1, which previous 

simulations show that the final policy is suitable. 

The result performance of training set A in Figure 8-5 shows that although the roll 

angle manages to follow the desired trajectory, the response itself is oscillating. 

This could be attributed to the fact that it is still exploring the possible actions. 

In Figure 8-6, the RL agent has manage to control the pitch angle response to 

generally follow the desired path of change. The response does give a large 

steady state error. This result is considered acceptable at the moment as it is not 

the final policy that will be used. 

Figure 8-9 shows that although the total rewards value shows convergence, the 

value of 𝑄𝑚𝑎𝑥 is barely 1. This shows in the performance result in Figure 8-7, 

where the angles of pitch roll and yaw all diverge even though the yaw angle 

generally follow the desired path first before diverging.  

Now, the resulting policy from training set C is still used for the initial policy in 

training set D. This is with an assumption that the RL agent will continue to learn 

to control the whole system in training set D. It is expected that the response of 

the RL agent to control the roll angle, yaw angle and the pitch angle can be 

improved during training set D. In training set D, the RL agent is trained to control 

the roll, yaw and pitch angle using the full range of all 3 control surfaces. 

Figure 8-10 shows that the total reward value of the training episodes steadily 

close to zero. The value of 𝑄𝑚𝑎𝑥 also shows that its value slowly and steadily 

comes down to zero. This should suggest that the final policy network is ready to 

be used for 6 degree-of-freedom control. 
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Figure 8-5 Final Episode of Training Set A 

 

 

Figure 8-6 Final Episode of Training Set B 
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In Figure 8-8 shows a sampling episode towards the end of training set D. It 

shows that although the RL agent manage to control the pitch, roll and yaw angle 

to ‘generally’ follow the desired trajectory, it is not exactly following it.  

Figure 8-11, Figure 8-12, and Figure 8-13 shows the result of the testing phase. 

This is the phase where the extracted final policy network from training set D is 

applied in a new program. This second program has no noise component in its 

actor policy. 

There are 5 episodes for testing the final policy network. The first three tested the 

policy for single attitude control. The last tested for multiple attitude control. Figure 

8-11 shows that the total reward value of the test episodes starts to decline from 

episode 4. In episode 5, the value plummets even more. Yet, the 𝑄𝑚𝑎𝑥 value 

shows a spike of value change for episode 5, even though it is relatively small. 

Figure 8-12 shows how the RL agent controlled the roll angle (a), pitch angle (b) 

and yaw angle (c) separately, while also maintain the other respective angles. 

Figures (a) and (b) shows that the RL agent manage to achieve the desired roll 

angle and pitch angle while still maintaining the other angles to not diverge. 

However, in figure (c), the RL agent has a hard time following the desired yaw 

angle trajectory. Despite the fact that it still manages to control the other angles 

to not diverge. 

Figure 8-13 shows the RL agent trying to control multiple attitude angles of the 

air vehicle. In both figures, where the RL agent tries to change the roll-yaw angle 

(d) and where the RL agent tries to change the roll-pitch-yaw angles (e), the yaw 

angle is not giving the best performance. This might be due to the policy resulted 

from training set C that is less than stellar.  A solution is proposed to do the 

training set C again with adjusted hyper-parameter, in order to make the policy 

result for yaw control more suitable.
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Figure 8-7 Final Episode of Training Set C 

 

 

Figure 8-8 Final Episode of Training Set D 
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Figure 8-9 The Total Reward and Qmax Per Episode in Training Set C 
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Figure 8-10 The Total Reward and Qmax Per Episode in Training Set D 
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Figure 8-11 The Total Reward and Qmax Per Episode in Policy Test 
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Figure 8-12 Test Episode For Single Attitude Control with The Final Policy Network 
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Figure 8-13 Test Episode For Multiple Attitude Control with The Final Policy Network 
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8.5 Conclusion 

Based on the simulation done in this chapter, it shows that the RL agent can 

develop a policy network to control an air vehicle in 6 degree-of-freedom using 

all three control surfaces. By using all the control surface at each training process 

and also limited the range of the secondary control surface, the RL agent can 

converge it learning process to control an air vehicle with multiple control 

surfaces. Therefore, DDPG method can be used to obtain a policy network to 

control an air vehicle. 

it shows that the policy network can be extracted and use as the initial policy 

network in another programme or another training programme. This advantage 

can be utilized to optimize the learning process. By dissecting the learning 

process into several training set, trouble in the learning process can be identified 

quickly and can be dealt with without having to redo the whole learning process. 

This saves time and effort.  
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9 CONCLUSION 

This chapter consists of the research conclusion and the future works that can be 

seen on the horizon following this thesis. 

 

9.1 Conclusion  

Based on this research, it is possible to shape the learning process of the 

reinforcement learning agent using the deep deterministic policy gradient 

method. For this purpose, there are two aspects that is essential in shaping the 

learning process of a DDPG agent. They are: 

- Guaranteeing the response in controlling the system, in this case an air 

vehicle. 

- Developing the learning process of the agent by designing the training 

strategy in order to achieve the desired knowledge and skill 

Based on the investigations in chapters 4 and 5, the way to guarantee the 

response of the RL agent in controlling a system is by: 

- Determining the state definition, which consists of variables to observe and 

control. These variables would determine the number of network layers 

needed for the learning process. Excessive variable can lead to a growing 

number of layers and the time and computer memory to executed on. 

- Defining the desired path to follow in order to control a variable/variables 

of the system. Here the variable that is being controlled is the pitch angle 

(longitudinal mode). It is easier for the system to learn to follow a desired 

path instead of finding its own path without knowing the limitations of the 

air vehicle itself. 

- Determining the reward function that is representative so that the most 

desired performance equals the highest reward. 

Learning from simulations in chapters 6, 7 and 8, it is clear that the learning 

strategy for controlling an air vehicle are comprised to these: 
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- For variating operating condition, the state definition shouldn’t be added 

or changed. The DDPG agent itself will implicitly consider it in its policy. 

- To handle dual action with coupling nature, the strategy is to first learn the 

use of its most dominant action. The secondary action is confined to zero. 

Once the total reward is stabilized then the secondary action is released 

and variated alongside the dominant one. 

- To handle multiple actions that have some level of influence in one 

another, the training strategy is to learn the effects of one action at the 

time. But re-learning the value of a pair of state-action1 with action2 cost 

time and may also cost convergence. Therefore, during training for one 

action, the other actions are not locked in zero value. Instead, they are 

given a small range to move, so that throughout the training process, the 

RL agent is accustomed to work with multiple actions. 

Also, a conclusion of this research is that the final policy network post-training 

process can be extracted and used in another program. This is similar to 

removing a pilot from training in a simulator to a real air vehicle. The policy is 

considered suitable when it is tested and gives a value of 𝑄𝑚𝑎𝑥 between [-1,1]. 

The work of this thesis shows that shaping the learning process of a RL is 

essential in developing a 6-degree-of-freedom flight control system. This is an 

important stepping stone for incorporating RL in the flight control system 

development.  

 

9.2 Future Works 

For future works, this work should be developed further to also control the action 

profile given to system, as it currently still shows damaging chattering. A method 

can also be developed to determine the number of layers for the neural network 

so that it can eliminate the trial-and-error phase of determining the appropriate 

number of layers.   

Another possible future work is to investigate and explore the possibility of 

applying a final policy network from a certain air vehicle to a different air vehicle 
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within the same flight envelope. If this is possible, it can shed a lot of time to 

develop a control system for a newly develop air vehicle.  

Further advanced work will be of investigating the use of DDPG method to 

develop fault tolerant flight control. An adjustment needs to be made to the DDPG 

method so as to allow a small room to update its policy following a fault 

occurrence and yet not so big a room that it would explore its policy during flight. 
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