

CRANFIELD UNIVERSITY

DEWI H. BUDIARTI

DEVELOPMENT OF MODEL FREE

FLIGHT CONTROL SYSTEM USING

DEEP DETERMINISTIC POLICY GRADIENT (DDPG)

CRANFIELD UNIVERSITY

SCHOOL OF AEROSPACE

PhD Thesis

Academic Year: 2015 - 2019

Supervisor: Prof Antonios Tsourdos

Associate Supervisor: Dr. Hyo-Sang Shin

September 2019

CRANFIELD UNIVERSITY

CRANFIELD UNIVERSITY

SCHOOL OF AEROSPACE

PhD Thesis

Academic Year 2015 - 2019

Dewi H. Budiarti

DEVELOPMENT OF MODEL FREE FLIGHT CONTROL SYSTEM

USING DEEP DETERMINISTIC POLICY GRADIENT (DDPG)

Supervisor: Prof Antonios Tsourdos

Associate Supervisor: Dr. Hyo-Sang Shin

September 2019

This thesis is submitted in partial fulfilment of the requirements for

the degree of PhD

© Cranfield University 2019. All rights reserved. No part of this

publication may be reproduced without the written permission of the

copyright owner.

i

ABSTRACT

Developing a flight control system for a complete 6 degree-of-freedom for an air

vehicle remains a huge task that requires time and effort to gather all the

necessary data. This thesis proposes the use of reinforcement learning to

develop a policy for a flight control system of an air vehicle. This method is

designed to be independent of a model but it does require a set of samples for

the reinforcement learning agent to learn from.

A novel reinforcement learning method called Deep Deterministic Policy Gradient

(DDPG) is applied to counter the problem with large and continuous space in a

flight control. However, applying the DDPG for multiple action is often difficult.

Too many possibilities can hinder the reinforcement learning agent from

converging its learning process.

This thesis proposes a learning strategy that helps shape the way the learning

agent learns with multiple actions. It also shows that the final policy for flight

control can be extracted and applied immediately for a flight control system.

Keywords:

reinforcement learning, flight control, deep deterministic policy gradient, learning

strategy

iii

ACKNOWLEDGEMENTS

All praise belongs to Allah Subhanahu wa Ta’ala, who is All Knowing and All

Seeing. Laa Ilaha illallah Muhammad Rasulullah. I bear witness that there is no

God but Allah and that Muhammad is His messenger. It is He and only He that I

run to for every hardship and it is due to Him that I achieve what I have achieve

today.

I thank Allah for the chance to pursue knowledge under the guidance of Prof

Antonios Tsourdos and Dr. Hyo-Sang Shin. Their supervision and patience has

broadened my horizon to the topics that I am pursuing. I extend my gratitude to

both of them and also Dr. Chang-Hun Lee for all his help and discussion.

I want to thank my husband, Supriana Suwanda, for his love, motivation and

support. Without you, this adventure would less likely enter my mind. My lovely

children, Mikaila and Gabriel. Mikaila, you have grown into a mature young adult.

It amazes me how much you’ve grown, both inside and out. In syaa Allah you will

grow into a sholehah. Gabriel, you have learned so much and I see more and

more of yourself every day. In syaa Allah you will grow into a sholeh gentleman

indeed.

Thank you to RISTEK-Pro who has sponsored me to pursue a higher education

and to the institution where I work at, Agency for the Assessment and Application

of Technology (BPPT).

v

TABLE OF CONTENTS

ABSTRACT ... i

ACKNOWLEDGEMENTS... iii

LIST OF FIGURES .. vii

LIST OF TABLES ... x

LIST OF EQUATIONS .. xi

LIST OF ABBREVIATIONS .. xiv

1 INTRODUCTION ... 1

1.1 Background ... 1

1.2 Research Objectives ... 5

1.3 Thesis Overview and Contributions .. 5

2 LITERATURE REVIEW ... 9

2.1 Introduction ... 9

2.2 Early Works Utilizing Reinforcement Learning .. 12

2.3 Reinforcement Learning in Large and Continuous Space 13

2.4 Reinforcement Learning in Stochastic State Space 17

2.5 Conclusion .. 19

3 THEORY/METHODOLOGY .. 22

3.1 Introduction ... 22

3.2 Reinforcement Learning .. 24

3.3 Deterministic Policy Gradient .. 25

3.4 Deep Deterministic Policy Gradient .. 26

3.5 Formulating The Reward Function .. 29

3.6 Learning Strategy.. 30

3.7 Conclusion .. 33

4 DETERMINING THE OBJECTIVE OF THE RL AGENT 35

4.1 Introduction ... 35

4.2 Determining the State ... 35

4.3 Model for Data Generation .. 36

4.4 Reward Function I ... 36

4.5 Reward Function II .. 41

4.6 Reward Function III ... 44

4.7 Conclusion .. 49

5 DEVELOPING FLIGHT CONTROL IN LONGITUDINAL MODE USING

DDPG WITH SINGLE ACTION .. 51

5.1 Introduction ... 51

5.2 Generating Samples ... 52

5.3 Learning Strategy.. 54

5.4 Pitch Angle Control ... 57

5.5 Validation .. 65

5.6 Conclusion .. 67

vi

6 DEVELOPING FLIGHT CONTROL IN LONGITUDINAL MODE USING

DDPG IN VARIATING OPERATION CONDITION ... 69

6.1 Introduction ... 69

6.2 Generating Sample ... 70

6.3 Varying Velocity .. 71

6.3.1 Training Strategy .. 71

6.3.2 Velocity Variation (𝒔 = [𝒒 𝜽𝒆𝒓𝒓]) ... 72

6.3.3 Velocity Variation (𝒔 = [𝒒 𝑬𝒓𝒓𝜽 𝑽]) ... 78

6.4 Varying Altitude ... 86

6.4.1 Training Strategy .. 86

6.5 Conclusion .. 93

7 DEVELOPING FLIGHT CONTROL IN LATERAL-DIRECTIONAL MODE

USING DDPG WITH DUAL ACTION ... 96

7.1 Introduction ... 96

7.2 Model .. 97

7.3 Learning Strategy.. 98

7.4 Result .. 103

7.5 Conclusion .. 114

8 DEVELOPING FLIGHT CONTROL FOR 6-DEGREE-OF-FREEDOM

USING DDPG WITH THREE ACTION ... 116

8.1 Introduction ... 116

8.2 Model .. 116

8.3 Learning Strategy.. 119

8.4 Result .. 125

8.5 Conclusion .. 139

9 CONCLUSION .. 141

9.1 Conclusion .. 141

9.2 Future Works .. 142

REFERENCES ... 145

vii

LIST OF FIGURES

Figure 1-1 Example of Unconventional UAV .. 1

Figure 1-2 Example of aircraft with changing wind axes 1

Figure 1-3 Example of aircrafts with unconventional control surface 2

Figure 1-4 Phases In Exploring DDPG for Flight Control 6

Figure 2-1 Application in two different domain [7] .. 9

Figure 2-2 Interaction between sub elements .. 10

Figure 2-3 Research Gap ... 12

Figure 2-4 Earlier work in continuous space ... 13

Figure 2-5 Q-function comparison [7] ... 14

Figure 2-6 Taxonomy of reinforcement learning algorithms 14

Figure 2-7 Architecture comparison [1] .. 16

Figure 2-8 The work flow of [22][21] .. 18

Figure 2-9 The work flow of DDPG .. 18

Figure 3-1 A Model-Free Reinforcement Learning Flow 22

Figure 3-2 Determining the Policy .. 23

Figure 3-3 Generating Samples for RL Agent Learning Process 23

Figure 3-4 Actor-Critic Method ... 26

Figure 3-5 DDPG Method ... 29

Figure 3-6 Policy Application After Training Process .. 32

Figure 4-1 The Total Reward Per Training Episode in Simulation 04.01 39

Figure 4-2 The Result of Test in Simulation 04.01 ... 40

Figure 4-3 The Total Reward Per Training Episode in Simulation 04.02 42

Figure 4-4 The Result of Test in Simulation 04.02 ... 43

Figure 4-5 Two Potential Performance with a Reference Trajectory 44

Figure 4-6 The Total Reward Per Training Episode in Simulation 04.03 46

Figure 4-7 The Result of Test in Simulation 04.03 ... 47

Figure 4-8 Two Potential Performance with the Same Reward Value 49

Figure 5-1 Diagram of Learning Process (Training Set I) 55

viii

Figure 5-2 Diagram of Learning Process (Training Set II) 55

Figure 5-3 The Total Reward Per Training Episode in Simulation 05.01 59

Figure 5-4 The Total Reward Per Training Episode in Simulation 05.01-- Zoom
 .. 60

Figure 5-5 Test Result in Simulation 05.01 .. 61

Figure 5-6 Qmax Changes in Simulation 05.01 .. 61

Figure 5-7 The Total Reward Per Training Episode in Simulation 05.02 62

Figure 5-8 The Total Reward Per Training Episode in Simulation 05.02-- Zoom
 .. 63

Figure 5-9 Test Result in Simulation 05.02 .. 64

Figure 5-10 Qmax Changes in Simulation 05.02 .. 64

Figure 5-11 Test Result in Simulation 05.03... 66

Figure 6-1 The Total Reward Per Training Episode in Simulation 06.01 74

Figure 6-2 FOC Test Episode Following Training in Simulation 06.01 75

Figure 6-3 VOC Test Episodes 1-4 Following Training in Simulation 06.01 76

Figure 6-4 VOC Test Episodes 5-6 Following Training in Simulation 06.01 77

Figure 6-5 Qmax Changes in Simulation 06.01 .. 78

Figure 6-6 The Total Reward Per Training Episode in Simulation 06.02 80

Figure 6-7 FOC Test Episode Following Training in Simulation 06.02 82

Figure 6-8 VOC Test Episode Following Training in Simulation 06.02 83

Figure 6-9 Qmax Changes in Simulation 06.02 .. 84

Figure 6-10 Comparison of FOC Training Set of Simulation 06.01 & 06.02 85

Figure 6-11 The Total Reward Per Training Episode in Simulation 06.03 88

Figure 6-12 FOC Test Episode Following Training in Simulation 06.03 90

Figure 6-13 VOC Test Episode Part 1 Following Training in Simulation 06.03. 91

Figure 6-14 VOC Test Episode Part 2 Following Training in Simulation 06.03. 92

Figure 6-15 Qmax Changes in Simulation 06.03 .. 93

Figure 7-1 The Training Set To Control The Roll Angle 102

Figure 7-2 The Training Set To Control The Yaw Angle 102

Figure 7-3 The Schematic For Simulation 07.01 and 07.02 104

ix

Figure 7-4 The Total Reward Per Training Episode in Simulation 07.01 105

Figure 7-5 Test Episode Following Training in Simulation 07.01 107

Figure 7-6 Qmax Changes in Simulation 07.01 .. 109

Figure 7-7 The Total Reward Per Episode for Simulation 07.02 111

Figure 7-8 Result of Simulation 07.02 .. 112

Figure 7-9 Qmax Changes in Validation of Simulation 07.02 113

Figure 8-1 The Training Set To Control The Roll Angle 123

Figure 8-2 Using Policy From Another Programme As The Initial Policy 125

Figure 8-3 The Total Reward and Qmax Per Episode in Training Set A 127

Figure 8-4 The Total Reward and Qmax Per Episode in Training Set B 128

Figure 8-5 Final Episode of Training Set A ... 130

Figure 8-6 Final Episode of Training Set B ... 130

Figure 8-7 Final Episode of Training Set C... 133

Figure 8-8 Final Episode of Training Set D... 133

Figure 8-9 The Total Reward and Qmax Per Episode in Training Set C 134

Figure 8-10 The Total Reward and Qmax Per Episode in Training Set D 135

Figure 8-11 The Total Reward and Qmax Per Episode in Policy Test 136

Figure 8-12 Test Episode For Single Attitude Control with The Final Policy
Network ... 137

Figure 8-13 Test Episode For Multiple Attitude Control with The Final Policy
Network ... 138

x

LIST OF TABLES

Table 2-1 Advantages and Disadvantages of DDPG 20

Table 4-1 Parameters of Missile .. 36

Table 4-2 Ornstein-Uhlenbeck Parameter for Simulation 04.01 37

Table 5-1 Parameters of Jetstream (J-3102) Aircraft 54

Table 5-2 A Learning Strategy for Longitudinal Mode 56

Table 5-3 Test Set for Application of Policy ... 56

Table 5-4 Ornstein-Uhlenbeck Parameter for Simulation 05.01 & 05.02 57

Table 6-1 Parameters of The Missile ... 70

Table 6-2 Training Set for FOC .. 71

Table 6-3 Training Set for VOC (Velocity Variation) 72

Table 6-4 Ornstein-Uhlenbeck Parameter for Simulation 06.01 72

Table 6-5 Ornstein-Uhlenbeck Parameter for Simulation 06.02 79

Table 6-6 Ornstein-Uhlenbeck Parameter for Simulation 06.03 86

Table 6-7 Training Set for VOC (Variating Altitude) 87

Table 7-1 Control Surface Limitation .. 98

Table 7-2 Parameters of UAS for Lateral-Directional Mode 98

Table 7-3 The Training Sequence for Lateral-Directional Mode 101

Table 7-4 Ornstein-Uhlenbeck Parameter for Simulation 07.01 103

Table 8-1 Parameters of UAS for 6-degree-of-freedom 118

Table 8-2 Control Surface Limitation .. 120

Table 8-3 Training Set A To Learn Control of Roll Angle 122

Table 8-4 Training Set B To Learn Control of Pitch Angle 124

Table 8-5 Ornstein-Uhlenbeck Parameter for Simulation 08.01 124

xi

LIST OF EQUATIONS

(2-1) .. 16

(2-2) .. 16

(3-1) .. 24

(3-2) .. 24

(3-3) .. 25

(3-4) .. 26

(3-5) .. 27

(3-6) .. 27

(3-7) .. 28

(3-8) .. 30

(3-9) .. 30

(4-1) .. 35

(4-2) .. 36

(4-3) .. 36

(4-4) .. 36

(4-5) .. 36

(4-6) .. 37

(4-7) .. 41

(4-8) .. 44

(4-9) .. 45

(4-10) .. 45

(4-11) .. 45

(5-1) .. 52

(5-2) .. 52

(5-3) .. 54

(5-4) .. 54

(5-5) .. 54

(5-6) .. 54

xii

(5-7) .. 57

(5-8) .. 57

(6-1) .. 73

(6-2) .. 79

(6-3) .. 86

(7-1) .. 97

(7-2) .. 97

(7-3) .. 97

(7-4) .. 97

(7-5) .. 97

(7-6) .. 97

(7-7) .. 97

(7-8) .. 97

(7-9) .. 98

(7-10) .. 99

(7-11) .. 99

(7-12) .. 99

(7-13) .. 99

(7-14) .. 99

(7-15) .. 100

(8-1) .. 117

(8-2) .. 117

(8-3) .. 117

(8-4) .. 117

(8-5) .. 117

(8-6) .. 117

(8-7) .. 117

(8-8) .. 117

(8-9) .. 117

xiii

(8-10) .. 117

(8-11) .. 117

(8-12) .. 117

(8-13) .. 117

(8-14) .. 118

(8-15) .. 118

(8-16) .. 118

(8-17) .. 118

(8-18) .. 119

(8-19) .. 120

(8-20) .. 120

xiv

LIST OF ABBREVIATIONS

BF

DPG

DQN

FOC

IT

LfD

LQR

MC

MDP

Q

RL

SARSA

TD

UAS

UAV

VOC

VTOL

𝑥𝑐𝑔

𝑥𝑐𝑝

Basis Function

Deterministic Policy Gradient

Deep Q Network

Fixed Operating Condition

Information Technology

Learn from Demonstration

Linear Quadratic Regulator

Monte Carlo

Markov Decision Process

Policy

Reinforcement Learning

State Action Reward (next) State (next) Action

Temporal Difference

Unmanned Aerial System

Unmanned Aerial Vehicle

Variating Operating Condition

Vertical Take-Off and Landing

Centre of gravity

Centre of pressure

1

1 INTRODUCTION

1.1 Background

In the last decade, there is a growing interest in developing a flight control system

with a limited dynamic model or even without a dynamic model altogether. The

development of unconventional designs in UAVs (Unmanned Aerial Vehicle)

such as multirotor or tailless fixed wing UAV (flying wing) makes it more enticing

because generating a dynamic model of it can be complex and cost too much.

Figure 1-1 Example of Unconventional UAV

Another interest for not using a dynamic model is the growing trend of developing

an aircraft with unusual flight envelope. These aircrafts can change their wind

axes during flight such as V-22 Osprey and fixed wing VTOL (Vertical Take-Off

and Landing) UAV.

Figure 1-2 Example of aircraft with changing wind axes

2

Also emerging are new aircraft that has an unusual flight envelope due to added

unconventional control surface such as thrust vectoring and additional propeller.

Thrust vectoring are commonly used to advance the manoeuvrability of a fighter

aircraft. While additional propeller are also known to be added to give a UAV a

VTOL capability without changing the wind axes of the aircraft.

Figure 1-3 Example of aircrafts with unconventional control surface

Reinforcement learning is a data based learning methodology [1]. The training,

learning, is performed by exploring the situation to develop awareness or a sense

of improved behaviour.

This method mimics the way an animal learns about its environment. It receives

a positive feedback when it gives the appropriate response to a situation and it

receives a negative feedback when it gives the inappropriate response instead.

This can eliminate most or even all of the time-consuming process to derive an

almost accurate dynamic model of an air vehicle.

An advantage to this method is that it might be able to stumble to the optimal

response to a situation instead of just finding the best response within a certain

limit defined for dynamic modelling.

Another aspect of reinforcement learning is that the control system may also be

more robust to changes of circumstance. Because of its ability to determine an

action based on the actions taken from other situation. In theory, this presents a

possibility of the system adjusting itself when a fault or a change in air vehicle

characteristic occurred. Therefore, not only could it control an aircraft in normal

condition, it can also adapt to certain changes occurring during flight.

3

However, a recurring problem has often occurred in previous studies due to the

nature of the flight data. This is essential, as the reinforcement learning trains

with it to develop the flight control system. The nature of the flight data is

continuous, high dimensional and sometimes stochastic. This applies to both the

attitude (state) of the air vehicle and the control surface (action).

Reinforcement learning works by mapping certain condition (state) with certain

action. It explores every state and every action and exploits the pairs that

generates the most reward [1]. Similar to that of animals, it explores its

environment by trial and error. Each lesson learned are stored so it determines

which area are safe, or even advantageous (food, water), and which area are to

be avoided (cliffs). Just like the animals, there are circumstances where it will

utilize its earned knowledge and there are circumstances where it will explore.

This is the advantage of reinforcement learning. It learns when to explore more

and when to exploit more. It learns to balances between exploration and

exploitation in each circumstance it faces.

In an aircraft, the state can be defined as the various flight variables and the

actions can be defined as the control surfaces available. When the state and/or

the action are continuous, then the number of mapping will grow exponentially.

This is what is called the “curse of dimensionality” problem[1].

This will make the learning process much more difficult and time consuming as it

needs to learn by exploring each and every one of them. Earlier works has shown

the reinforcement learning is applied in a conventional flight control development

that still uses a complete dynamic model.

There are also studies that started to use reinforcement learning for navigation in

soaring flight and for coordinating multiple UAV. Recent developments has seen

studies in trying to tackle the curse of dimensionality problem head on in order to

apply reinforcement learning to control the flight of an air vehicle.

One particular study is the development of deep learning sparked a study in Deep

Deterministic Policy Gradient in 2016 [2]. This method combines the deep Q

4

network (DQN) with Deterministic Policy Gradient (DPG). Presumably, this

method provides a solution for continuous and high dimensional space.

DQN has the advantage of solving problems with high-dimensional state space,

but it cannot handle continuous action spaces. By combining it with DPG, it can

solve problems with continuous action space as well. This method has been

applied for various simple and classic problems such as cart-pole swing-up and

legged locomotion[2]. It has also been applied for more complex tasks such as

controlling a biped robot[3][4], an autonomous car [5] and a quadrotor UAV [6],

Although recent studies on developing model-free flight control system for

quadrotors and fixed wing aircraft exist, the difference between aerial vehicles

characteristics are evident as shown in the work listed above. For fixed-wing 6-

degree-of-freedom vehicles, more variables are clearly required to be observed.

In addition, control surfaces characteristics vary between vehicles and affect the

operation of the aerial vehicles in different ways.

Research studies using DDPG method, cited previously, have shown advantages

for model-free control design but also challenges when handling multiple

variables and its effect on convergence behaviour. Hence a particular aspect of

the work in this thesis is to propose a learning strategy, within the DDPG remit,

assisting the RL to obtain sufficient knowledge about operational scenario in

lesser time.

This learning strategy is designed to pace the reinforcement learning agent to

step-by-step acquiring one skill after another to finally be able to control an aircraft

in flight. The skill here is to utilize the control surface of the air vehicle which

comprises of elevator, aileron and rudder.

This thesis will focus in developing a learning strategy that can be used as a a

baseline to train reinforcement learning to develop a flight control for a general

fixed wing aircraft.

5

1.2 Research Objectives

The main objective of this research is develop a learning strategy to train the

DDPG learning agent to control the flight performance of an air vehicle. The

specific objectives are as followed:

• Determining the most suitable reward function that can represent the best

performance of an air vehicle as the action with the best value of reward.

• Developing a learning strategy for a single action variable, which is the

elevator. This learning strategy is developed for a fixed operating condition

and a variating operating condition.

• Developing a learning strategy for dual action variable that can

accommodate the coupling nature of lateral mode and directional mode of

a fixed wing aircraft. The variables are aileron and rudder.

• Developing a learning strategy for reinforcement learning to be able to

control a full 6-degree-of freedom fixed wing aircraft with three action

variable which are elevator, aileron and rudder.

1.3 Thesis Overview and Contributions

This thesis consists of eight chapters. Chapter 2 consists of theory regarding

reinforcement learning in general, and reviews previous studies in reinforcement

learning for continuous and high-dimensional spaces. Chapter 3 will focus on

describing the Deep Deterministic Policy Gradient (DDPG) and the learning

strategy that is being developed.

Chapter 4 focuses in determining the most suitable reward function for the

DDPG. The flight control for the longitudinal mode of a missile is designed by

implementing DDPG with various reward function.

Chapters 5-7 consists of several study cases that utilize and assess the learning

strategies of DDPG agent to control the flight performance for certain conditions.

6

In these 3 chapters, the learning strategy is developed from a single action

variable to a three action variables, Figure 1-4.

Chapter 5 study case will be developing learning strategy for DDPG agent to

control the longitudinal mode of an aircraft with one available action (elevator).

The aircraft is a Jetstream 3102. Here the DDPG agent is expected to develop a

flight control system in a fixed operating condition and in variating operating

condition.

Figure 1-4 Phases In Exploring DDPG for Flight Control

Chapter 6 will delve in developing a learning strategy for DDPG agent in Variating

Operation Condition (VOC). For this case study, the air vehicle is a missile. The

aim is to control its longitudinal mode with one available action (elevator). The

VOC consists of variating airspeed and/or altitude.

Chapter 7 focuses on developing a learning strategy for the DDPG agent to

handle the coupling of the lateral mode and the directional mode of a conventional

fixed wing aircraft. The aircraft in this study case is a UAS (Unmanned Aerial

System) and it will have two action variables at its disposal (aileron and rudder).

Chapter 8 contains the learning strategy for the DDPG agent that will enable it to

control the dynamic of a full 6-degree-of-freedom aircraft. It has three action

variables at its disposal (elevator, aileron and rudder). Similar to Chapter 7, the

study case is a UAS.

7

Chapter 9 consists of the overall conclusion of this research regarding the

learning strategy and extracting the final policy network. It also consists of

possible future works that can be explored further.

The contribution of this research is to develop a learning strategy that will help to

shape an unsupervised machine learning process in developing a flight control

for an air vehicle. As are many other methods, DDPG has its own limitations,

specifically regarding to multiple action. Without certain help in the learning

process, it might not produce a suitable and usable final policy network.

9

2 LITERATURE REVIEW

2.1 Introduction

Reinforcement learning (RL) is a branch of machine learning that learns to map

situations to actions unsupervised [1]. According to Dr. Danko Nikolic from Max-

Planck Institute[44], the definition of machine learning is the science of getting

computers to act without being explicitly programmed but instead letting them

learn a few tricks on their own.

Another definition [7] states that RL is an algorithmic method for solving problems

in which actions (decisions) are applied to a system over an extended period of

time, in order to achieve a desired goal. Overall, RL mimics the way an animal

learn and adjust to its environment without any outside interference in how to

learn it.

Figure 2-1 Application in two different domain [7]

RL comprises of two elements, a learner and an environment. A learner is the

decision maker that decides which action to apply to a situation (state), monitor

how those actions changes the state of the environment and learns from it for

further decision making. Defined specifically for each cases, the RL has a list of

potential states (called state space) and a list of actions available at its disposal

10

(called action spaces). The nature of these spaces (discrete, continuous,

deterministic, stochastic, etc) will determine the method used to solve it.

The designation for these elements may vary depending on the field that it is used

for. An example, in the field of artificial intelligence, the learner is called an RL

agent. Its task is to learn how to behave optimally towards its environment by

interacting with it and monitoring the changes that happen because of it.

Another example is in automatic control. The learner is called the controller and

the environment is called a system. A controller receives output measurement

from a process and applies action to this process in order to make its behaviour

satisfy a certain requirement. A general description of the slight difference in

definition can be seen in Figure 2-1.

Figure 2-2 Interaction between sub elements

Aside from these 2 elements, there are also 4 sub elements of a RL system [1].

They are:

• a policy (𝑄), this sub element determines how the agent behaves towards

different states at any given time. The policy maps the states to specific

and suitable actions.

• a reward function(𝑟) is the sub element that gives numerical reward to the

state or state-action pair that occurs. For a given state, the agent makes a

move (an action) that result in a change in state. This reward shows how

far the resulting state is from the final goal.

11

• a value function (𝑉/𝑄) gives value to a string of state (V-function) or state-

action pairs (Q-function) by judging how close is the final state to the goal.

In other words, it compiles a string of rewards and compares the final state

with the final goal.

• model of the environment (optional)

The interactions between these sub elements can be described in Figure 2-2. In

this example, the RL controlled the attitude of an aircraft. Based on [1], there are

three class of methods to solve a RL problem, which are:

• Dynamic Programming

DP methods mathematically computes optimal policies, but require a

perfect model of the systems behaviour and the environment as an MDP

(Markov Decision Process). This method has a downside in that requires

a big computational expense[1]. Therefore, this method is often limited to

discrete space. It is not suitable to handle a system with large finite state

sets or high-dimensional state-space [8].

• Monte Carlo

MC methods do not require a priori knowledge of the environment’s

dynamics and are conceptually simple. It learns through samples that

represents interaction between action and any changes in the state.

However, the value estimates and policies changed only upon the

completion of an episode. This method has a known problem of

maintaining sufficient ‘exploration’.

• Temporal Difference

TD methods is a combination of both dynamic programming and monte

carlo. It can learn directly from only experience without a model and can

update estimates based in part on other estimates without waiting for an

outcome

However according to [7], dynamic programming is different from reinforcement

learning because of its requirement of a model. Dynamic programming requires

an exact model while reinforcement learning does not (model-free). Despite the

12

slight difference of definition, the objective in reinforcement learning is to gain the

optimal policy in order for the agent to control a system in the desired behaviour.

2.2 Early Works Utilizing Reinforcement Learning

Since 2000, researchers has explored the use reinforcement learning on

controlling various types of air vehicle, such as airship [9][10][11], quadcopter

[12][13], unmanned helicopter [14] and unmanned fixed wing [15]. Reinforcement

learning develops flight trajectory for navigating soaring flight [16] [17] and even

applied indirectly in attitude control[18].

A few examples of indirect application in attitude control includes determining the

optimal value in a classical flight control method using LQR [14] and 𝐻∞ [19].

Another example is producing the dynamic model of an air vehicle based on flight

data compiled when a human pilot flies the vehicle. Such cases were researched

for a quadrotor [20], and an unmanned helicopter [21][22].

Figure 2-3 Research Gap

However not many researches have been done to use reinforcement learning

entirely to develop a flight control[23][24][25]. This means using a reinforcement-

learning agent as an artificial intelligence that controls the air vehicle. Research

by [16] used a dynamic model and dynamic programming to control an air vehicle.

Other research didn’t use a model and therefore, used either Monte Carlo method

or Temporal Difference method[26][27].

13

Developing a policy to control an air vehicle always presents challenges due to

the nature of the state-action spaces. It is continuous and high dimensional. This

made the number of values very large when the agent has to explore and put

value to every possible state-action pair. This is known as the ‘curse of

dimensionality’.

2.3 Reinforcement Learning in Large and Continuous Space

It takes a very long time for the RL agent to find the most suitable value function

for every one of the possible state-action pairs. Each state-action pairs needs to

be visited often to determine its value. To tackle the ‘curse of dimensionality’,

earlier works started with using discretising [28] and Learn from Demonstration

(LfD).

Discretising method is a method that discretize both the state space and the

action space and is usually applied in combination with the Monte Carlo method.

This method, however, can only be applied for a small state space and action

space[28]. There is always a possibility that a state value might be overlook and

yet it may has significant influence on the system.

In LfD, the range of operation is confined and set by a previous flight

demonstration by a pilot. The RL agent is trained to copy the manoeuvre set by

a human pilot. This method negates the advantage of reinforcement learning,

which is to find the optimal flight control. By exploring various possibilities,

exploiting the best actions that has been discovered and maintaining a certain

amount of exploring every now and then, the learning agent is expected to

produce an optimal and robust flight control.

Figure 2-4 Earlier work in continuous space

14

Another method had started to emerge was by using a more compact-size Q-

function (policy). This is achieved by utilising state-dependent basis functions

(BFs) and discretising action space[7]. The state space is grouped into different

BFs (𝜙1, 𝜙2, … . , 𝜙𝑁). The Q-function is compacted by storing the values for each

BF-action pair. Figure 2-5 illustrates the difference in Q-function.

Figure 2-5 Q-function comparison [7]

Instead of storing Q-values of state and action pairs, it stores parameters 𝜃 with

pairs of BF and action. This is called function approximators. Applying function

approximator depends on:

- The algorithm used for the class of reinforcement learning method.

They are value iteration, policy iteration and policy search Figure 2-6.

- Type of approximators, parametric or nonparametric

Figure 2-6 Taxonomy of reinforcement learning algorithms

15

As described in chapter 1, an RL agent has two main task, which are exploring

its environment and learning from those experiences. In Figure 2-6, there is a

mention of off-line and on-line methods[7]. The difference between the two is

whether the behaviour policy and the target policy are separate policies or

not[29][30][31].

The behaviour policy is the policy that incites the random actions for the RL agent

to learn. The target policy or estimation policy is the policy that evaluates the

actions are taken by the behaviour policy. The result of the evaluation will be used

to update the behaviour policy periodically.

An offline method does not separate the behaviour policy and the target policy.

Therefore, the policy updates very quickly after each run. This method sometimes

also called off-policy. In the other hand, an on-line method does separate these

two policies, sometimes also called on-policy[1].

Researchers has explored many variations of method to approximate the Q-

function of a state. One of the examples is by using Gaussian process[11] [32].

This function approximator was applied for a Monte Carlo (MC) class method. As

the MC method can only be applied for a series of episodic tasks, the samples it

has were divided into several episodic tasks and its value estimation was

changed/updated after each episode is finished[1]. Another example of works

that uses function approximator to estimate the value function for a Monte Carlo

method is [33]

However, this method still poses a problem as it only tackles the problem of

continuous state space. The action space itself, still needs to be discretized for it

to work. Another alternative that seems promising is a Temporal Difference (TD)

method.

A popular online temporal difference method is SARSA. The name SARSA is

derived from the elements of data tuple that is used by the algorithm. They are

state, action, reward, (next) state, (next) action. SARSA is also most commonly

used for policy iteration. The value of Q-function in this method is updated as

follows:

16

𝑄(𝑠𝑡, 𝑎𝑡) ← 𝑄(𝑠𝑡, 𝑎𝑡) + 𝛼[𝑟𝑡 + 𝛾𝑄(𝑠𝑡+1, 𝑎𝑡+1) − 𝑄(𝑠𝑡, 𝑎𝑡)] (2-1)

Another popular TD method but is an offline one is Q-learning. One example of

the use of Q-learning is [22]. This method is most commonly used for value

iteration. The value of 𝑄 is updated with the new information according to this

formula:

𝑄(𝑠𝑡, 𝑎𝑡) ← 𝑄(𝑠𝑡, 𝑎𝑡) + 𝛼[𝑟𝑡 + 𝛾𝑚𝑎𝑥𝑎𝑄(𝑠𝑡+1, 𝑎) − 𝑄(𝑠𝑡, 𝑎𝑡)] (2-2)

The term between square brackets in equations (2-1) and (2-2) is the temporal

difference. It is the difference in estimates 𝑄-value between the updated one with

the current one. 𝛼 is the learning rate that is set between 0 and 1. Setting 𝛼 at 0

means that the values of 𝑄 are never updated, therefore it learned nothing. The

higher the setting of 𝛼 meant that the learning process can occur faster.

𝛾 is the discount factor, also set between 0 and 1. If the value of 𝛾 is nearer to 1

then the value of future rewards are much higher than the immediate rewards. In

other words, the learner aims for long-term rewards.

Figure 2-7 Architecture comparison [1]

An advantage in using online methods is a higher probability (guarantee) that the

policy will converge[29] albeit the exploration has to be annealed over time to

17

achieve it. Offline methods however, sometimes finds themselves diverging for

certain problems. However, when it does successfully converge, it happens faster

than an online method.

Another popular TD method is actor-critic method[34]. Here the memory

structures for the two policies are separated. One memory structure is allocated

for the policy that determines the action to choose and another is allocated for

the estimated value function that evaluates those actions.

Because of the separation between actor and critic function, this method require

minimal computation in order to choose an action. This is favourable for a

continuous action space. However, determining the actor policy should be done

with care as complete random actions may result in the RL agent not visiting the

important part of the state space[35].

2.4 Reinforcement Learning in Stochastic State Space

Another problem in using RL for flight control is the stochastic nature of the flight

data. To generate the policy for decision-making, the Markov Decision Process

(MDP) is used as a mathematical framework to model the decision-making

uncertainty [30].

However, in stochastic MDP, the next state is not deterministically given by the

current state and action[7]. This represents a problem for the model-free

reinforcement learning.

Previous works solved this problem by converting the stochastic problem into a

deterministic one. The method is called Pegasus method [36]. The same

researchers combined Pegasus method with MC method to develop a dynamic

model of an unmanned helicopter [21][22]. Then the flight control is developed

with conventional method based on this dynamic model. In this method, the RL

agent learned from samples (flight data) previously acquired by a pilot and

developed a model of the helicopter.

18

The drawback in this is that the model is based on a limited area of operation

done by the pilot. It did not explore the state-action outside of it, so it missed out

on finding other state-action pair that may have greater value function. Also, the

helicopter was not controlled by the reinforcement learning controller.

Figure 2-8 The work flow of [22][21]

However, recently develop method (2014) called Deep Deterministic Policy

Gradient (DDPG) [2] has shown to be able to solve a continuous, high-

dimensional and stochastic problem. This has been shown to solve several

simulated physics tasks such as cart-pole problem and mountain car.

Figure 2-9 The work flow of DDPG

19

This method combined Deterministic Policy Gradient (DPG) [31] with Deep Q

Network (DQN) [37]. The DPG method combines policy gradient and actor-critic

to develop deterministic policy based on samples from stochastic policy. While

the DQN can solve the continuous and high-dimensional observation spaces. By

combining the two, a policy network for a continuous and high-dimensional state

(observation) and action spaces can be developed.

This work focuses on developing a flight control of a full 6-degree-of-freedom air

vehicle using DDPG. Specifically, it will focus on developing a learning strategy

for the RL agent to develop an optimal and robust flight control.

Several works had use DDPG for controlling bicycle [38], bipedal walking[4] [39],

Quadrotor [40][41], and autonomous land vehicle [5]. Yet, these works did not

have as many state (observation) spaces and action spaces as an air vehicle.

Despite of the advantageous of DDPG, controlling a full 6-degree-of-freedom air

vehicle is not an easy feat [42]. The RL agent has to learn how to use the elevator

to control the longitudinal mode of the air vehicle. Then it also has to learn to

control both aileron and rudder simultaneously to control the lateral-directional

mode.

Aside from those fixed operating procedures, there is also the varying operating

condition. This would require the RL agent to learn to control the air vehicle when

there exist changes in its altitude or airspeed. These entire training goals requires

a learning strategy in order to develop the appropriate policy quickly. Without a

learning strategy, the RL agent can take a very long time to develop as it sorts

through every possible state and action.

2.5 Conclusion

As with any other methods, there is disadvantages along with the advantages in

using DDPG. Below is the list of both advantages and disadvantages of DDPG

method.

20

Table 2-1 Advantages and Disadvantages of DDPG

No. Advantages Disadvantages

1. DDPG can be applied for problems

with large and continuous state and

action spaces.

Difficulty to achieve convergence

in performance if there are more

than one action variable

2. The behaviour policy and the target

policy are separated. Exploring the

action spaces will not immediately

affect the behaviour policy.

A problem in eliminating chattering

in the action performance. An

adjustment in the reward function

only limits the range of the action

but not the chattering.

3. Optimisation in the learning process

is enhanced by learning using a

replay buffer.

This research proposes a learning strategy that guarantee the best policy will

represent the optimal performance of the air vehicle within a reasonable

development time. The next chapter will describe the methodology of deep

deterministic policy gradient and a general description of how to determine the

reward function and the learning strategy.

21

22

3 THEORY/METHODOLOGY

3.1 Introduction

The focus of this research is to generate a reinforcement learning policy that can

adequately control an air vehicle without the need to have its dynamic model. In

other words, utilizing reinforcement learning to generate a model-free flight

control. To achieve this, the reinforcement-learning (RL) agent needs to learn the

flight characteristic of the air vehicle by interacting with it. This interaction is

represented as samples of flight data, demonstrating how the attitude (state) of

the air vehicle changes due to changes in control surface (action) given by the

agent.

Figure 3-1 and Figure 3-2 below shows how an RL agent generally learn a policy

by using samples. The RL agent gives numerical value (reward) to each state-

action pair in regards to the desired state. Then the RL agent iterates the value

function(𝑣𝑡) from this reward until it can reach an optimal policy(𝑄𝑡).

Figure 3-1 A Model-Free Reinforcement Learning Flow

The flight data provides the attitude of the air vehicle that is being observed or

state(𝑠𝑡, 𝑠𝑡+1). It also provides the action(𝑎𝑡) that caused the change in those

states. A reward value is given to these sets of state and action (𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1) and

this will determine the value of the state-action pairing(𝑠𝑡, 𝑎𝑡). The RL agent then

compiles these value functions into a policy.

23

Figure 3-2 Determining the Policy

Figure 3-3 Generating Samples for RL Agent Learning Process

In the absence of flight data, the samples can be generated by simulation using

a dynamic model of the air vehicle. This dynamic model exist outside of the

learning process. First, a random action(𝑎𝑡) is generated and applied to an initial

state(𝑠𝑡). Then the dynamic model produced the appropriate resulting

state(𝑠𝑡+1). Once these three sets of data are available, then the RL agent can

24

generate the optimal policy as described in Figure 3-2. Figure 3-3 demonstrates

clearly that the RL agent still learns without the use of a dynamic model.

3.2 Reinforcement Learning

In reinforcement learning, the RL agent is interacting with the environment in

discrete timesteps. Here, the environment is the air vehicle. At each timestep 𝑡,

the RL agent receives an observation 𝑥𝑡, takes an action 𝑎𝑡 and receives a scalar

reward 𝑟𝑡 for the state-action pair. In this environment, it is assumed that:

1. the actions are real-valued 𝑎𝑡 ∈ ℝ𝑁

2. the environment is fully observable, therefore the initial state is the

observation, 𝑠𝑡 = 𝑥𝑡.

An RL agent’s behaviour is defined by a policy,𝜋, which maps states to a

probability distribution over the actions 𝜋: 𝑆 → 𝑃(𝐴). The environment, 𝐸, may

also be stochastic. We model it as a Markov decision process with a state space

𝑆, action space 𝐴 = ℝ𝑁, an intial state distribution 𝑝(𝑠1) , transition dynamics

𝑝(𝑠𝑡+1|𝑠𝑡, 𝑎𝑡), and reward function 𝑟(𝑠𝑡, 𝑎𝑡).

The return from a state is defined as the sum of discounted future reward 𝑅𝑡 =

∑ 𝛾(𝑖−𝑡)𝑟(𝑠𝑖, 𝑎𝑖)
𝑇
𝑖=𝑡 with a discounting factor 𝛾 ∈ [0,1]. This depends on the actions

chosen, therefore also depends on the policy 𝜋, which may be stochastic.

Mathematically, the goal in reinforcement learning is to learn a policy which

maximizes the expected return from the start distribution 𝐽 = 𝔼𝑟𝑖,𝑠𝑖~𝐸,𝑎𝑖~𝜋[𝑅1]. The

discounted state visitation distribution for a policy 𝜋 is denoted as 𝜌𝜋.

The action-value function describes the expected return after following policy 𝜋

by taking an action 𝑎𝑡 in state 𝑠𝑡 :

Q𝜋(𝑠𝑡, 𝑎𝑡) = 𝔼𝑟𝑖≥𝑡,𝑠𝑖>𝑡~𝐸,𝑎𝑖>𝑡~𝜋[𝑅𝑡|𝑠𝑡, 𝑎𝑡] (3-1)

Here the reinforcement learning uses the Bellman equation:

Q𝜋(𝑠𝑡, 𝑎𝑡) = 𝔼𝑟𝑡,𝑠𝑡+1~𝐸 [𝑟(𝑠𝑡, 𝑎𝑡) + 𝛾𝔼𝑎𝑡+1~𝜋[Q𝜋(𝑠𝑡+1, 𝑎𝑡+1)]] (3-2)

25

3.3 Deterministic Policy Gradient

In 2014, [31] proposed DPG to develop a deterministic policy from stochastic

samples. DPG stands for Deterministic Policy Gradient. It is a method that

combines the use of policy gradient and actor-critic algorithm, which are widely

used for reinforcement learning with continuous action spaces, by using policy

gradient algorithm to drive the stochastic behaviour policy to a deterministic target

policy.

For a deterministic target policy, the Bellman equation can described as a

function 𝜇: 𝑆 ← 𝐴:

Q𝜇(𝑠𝑡, 𝑎𝑡) = 𝔼𝑟𝑡,𝑠𝑡+1~𝐸[𝑟(𝑠𝑡, 𝑎𝑡) + 𝛾Q𝜇(𝑠𝑡+1, 𝜇(𝑠𝑡+1))] (3-3)

The expectation depends only on the environment. This means that it is possible

to learn 𝑄𝜇 off-policy, using transitions which are generated from a different

stochastic behaviour policy 𝛽.

Q-learning is the most commonly used off-policy algorithm and it uses the greedy

policy 𝜇(𝑠) = 𝑎𝑟𝑔 max
𝑎

𝑄(𝑠, 𝑎). However, Q-learning cannot be applied directly to

continuous action spaces because finding its greedy policy requires an

optimization of 𝑎𝑡 at every timestep. This optimization is too slow to be practical

with large, unconstrained function approximators and nontrivial action spaces.

Therefore, the off-policy algorithm uses actor-critic approach based on DPG

algorithm.

In this method, While the critic criticize the action based on the result.

The DPG algorithm applies a parameterized actor function 𝜇(𝑠|𝜃𝜇) which

specifies the current policy by deterministically mapping states to a specific

action. This means that the actor selects actions to apply on various initial states

or observations based on its current policy(𝜇) or stochastic behaviour policy.

Then the critic makes an estimate of the value function and updates the policy(𝑄)

or deterministic target policy. The critic 𝑄(𝑠, 𝑎) is learned using the Bellman

equation as in Q-learning.

26

The actor is updated by following the applying the chain rule to the expected

return from the start distribution 𝐽 with respect to the actor parameters:

∇𝜃𝜇𝐽 ≈ 𝔼𝑠𝑡~𝜌𝛽[∇𝜃𝜇Q(𝑠, 𝑎|𝜃𝑄)|𝑠=𝑠𝑡,𝑎=𝜇(𝑠𝑡|𝜃𝜇)]

 =𝔼𝑠𝑡~𝜌𝛽 [∇𝑎Q(𝑠, 𝑎|𝜃𝑄)|𝑠=𝑠𝑡,𝑎=𝜇(𝑠𝑡)∇𝜃𝜇
𝜇(𝑠𝑡|𝜃𝜇)|𝑠=𝑠𝑡

]

(3-4)

Figure 3-4 Actor-Critic Method

3.4 Deep Deterministic Policy Gradient

Deep Deterministic Policy Gradient is first introduced in 2015. This method

combined Deterministic Policy Gradient (DPG) with Deep Q network (DQN). In

2013, [37] showed how an RL agent produce a policy to control a system with a

high-dimensional observation states. This RL agent uses deep learning.

DDPG basically uses neural network function approximators (DQN) to learn in

large state and action space online. One challenge when using neural networks

for reinforcement learning is that most optimization algorithms assume that the

samples are independently and identically distributed. Obviously, when the

samples are generated from exploring sequentially in an environment this

27

assumption no longer holds. Additionally, to make efficient use of the hardware

optimizations, it is essential to learn in mini-batches, rather than online.

As in DQN, a replay buffer is used to address these issues. The replay buffer is

a finite sized cache ℛ. Transitions were sampled from the environment according

to the exploration policy and the tuple (𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑎𝑡+1) stored in the replay buffer.

When the replay buffer was full, the oldest samples were discarded. At each

timestep, the actor and critic are updated by sampling a minibatch uniformly from

the buffer. Because DDPG is an off-policy algorithm, the replay buffer can be

large, allowing the algorithm to benefit from learning across a set of uncorrelated

transitions.

Directly implementing Q learning with neural networks proved to be unstable in

many environments. Since the network 𝑄(𝑠, 𝑎|𝜃𝑄) being updated is also used in

calculating the target value, the 𝑄 update is prone to divergence. The solution is

to create a copy of the actor-critic networks 𝑄′(𝑠, 𝑎|𝜃𝑄′) and 𝜇′(𝑠|𝜃𝜇′) respectively,

that are used for calculating the target values. The weights of these target

networks are then updated by having them slowly track the learned network: 𝜃′ ←

𝜏𝜃 + (1 − 𝜏)𝜃′ with 𝜏 ≪ 1. This means that the target values are constrained to

change slowly, greatly improving the stability of learning. This simple change

moves the relatively unstable problem of learning the action-value function closer

to the case of supervised learning, a problem for which robust solutions exist.

Having both a target 𝜇′ and 𝑄′ is required to have stable targets 𝑦𝑖 in order to

consistently train the critic without divergence.

𝑦𝑖 = 𝑟𝑖 + 𝛾𝑄′(𝑠𝑖+1, 𝜇′(𝑠𝑖+1|𝜃𝜇′
)|𝜃𝑄′

) (3-5)

The critic is then updated by minimizing the loss:

𝐿 =
1

𝑁
∑ (𝑦𝑖 − 𝑄(𝑠𝑖, 𝑎𝑖|𝜃

𝑄))
2

𝑖

(3-6)

This may slow learning, since the target network delays the propagation of value

estimations. However, in practice we found this was greatly outweighed by the

stability of learning.

28

Algorithm 1[2]

To generalise the parameters across environments with different scales of state

values, these features are scaled by adapting a recent technique from deep

learning called batch normalization. This technique normalizes each dimension

across the samples in the minibatch to have unit mean and variance.

A major challenge of learning in continuous action spaces is exploration. An

advantage of DDPG, as is any other off-policy algorithms, is that the exploration

problem can be learned independently. An exploration policy 𝜇′ is constructed by

adding noise sampled from a noise process 𝑁 to actor policy.

𝜇′(𝑠𝑡) = 𝜇(𝑠𝑡|𝜃𝑡
𝜇

) + 𝑁 (3-7)

𝑁 is chosen to be an Ornstein-Uhlenbeck process.

29

Figure 3-5 DDPG Method

3.5 Formulating The Reward Function

The general process of reinforcement learning is that the agent learns through a

series of episodes. These episodes are called training episodes. At the end of

the training, the resulting policy is assumed to be the optimal policy and can be

applied in an air vehicle.

Two aspects need to be addressed to determine whether a policy is optimal and

can be applied in an air vehicle. One is that the return (total rewards) of the

training episodes converges as the number of episodes increases. This shows

that the RL agent has found an optimal policy that the RL agent will visit often.

However, this doesn’t mean that the performance of the air vehicle is as desired.

This leads to the second aspect, which is making sure that the best performance,

according to the RL agent, coincides with the best performance of the air vehicle

itself. With only the desired final state as a goal, the agent can find many ways to

achieve it. More than one flight performance can be considered suitable to

30

achieve the final state from the initial state. However, the RL agent will consider

the fastest way to achieve the goal is the best performance. Not the optimal one.

Therefore, this work proposed to define an optimal trajectory for the RL agent to

follow. This trajectory should be guarantee that the flight performance that is

desired. This trajectory started at the same value as the initial state, while the

changes in trajectory is defined as follows:

�̇�𝑟𝑒𝑓 = −2𝜉𝑟𝑒𝑓𝜔𝑛𝑟𝑒𝑓
𝜂𝑟𝑒𝑓 − 𝜔𝑛𝑟𝑒𝑓

2 (𝜂𝑟𝑒𝑓 − 𝜂𝑡) (3-8)

 �̇�𝑟𝑒𝑓 is defined as the flight attitude that intends to be controlled by the control

surface. In this work, �̇�𝑟𝑒𝑓can be the pitch angle (�̇�𝑟𝑒𝑓), the roll angle (�̇�𝑟𝑒𝑓) and

the yaw angle (�̇�𝑟𝑒𝑓). 𝜉𝑟𝑒𝑓 is a damping ratio of 1 and 𝜔𝑛𝑟𝑒𝑓
 is the natural

frequency of 2𝜋.

In RL, the reward function gives a numerical value to a state compared to the

final desired state. In order to compare the performance of each episode, the

possible reward values has to have the same limit that defines the best value.

Therefore, the reward function is defined as a negative value.

𝑅 = −𝑓(𝑆𝑡) (3-9)

More detail on this work is described in chapter 4.

3.6 Learning Strategy

In order to develop a reinforcement learning agent that can control an air vehicle

in 6-degree-of-freedom, this research is divided into three separate stages based

on the number of action variable involved.

1) For single action variable, the study case will involve training a

reinforcement learning agent to control the longitudinal mode of an air

vehicle. It focuses on controlling the pitch angle of the air vehicle.

2) For dual action variable, the study case will involve training a

reinforcement learning agent to control the lateral-directional mode of an

31

air vehicle. It is trained to control the roll angle, yaw angle and both roll-

yaw angle together.

3) The study case for training a reinforcement learning agent to control a 6-

degree-of-freedom will involve three action variables which are elevator,

aileron and rudder.

Designing the training steps for the first stages will consist of 2 main goals. They

are:

1) Learning how to use its control surface. This translate to learning how

much impact the changes in a control surface has on its overall state. the

RL agent is trained to utilize the elevator in both directions to reach its goal

to change the pitch angle.

2) Learning how to achieve certain attitude in different conditions (such as

different airspeed and altitude).

For the second goal of this stage, several simulations are run with different set of

variables for state or observation. These simulations will also have different layers

in the network.

For the second stage, there is a slightly different training strategy as it needs to:

1) Learning how to use 2 control surfaces. One (aileron) has slightly more

influence than the other (rudder).

2) Learning coordinate the movement of two different control surfaces. This

is due to the nature of the lateral and directional mode of an air vehicle are

usually coupled. But setting the RL agent to explore and find the perfect

combination on its own could take a long time as it presents a large

number of action possibilities.

Therefore, the RL agent is trained to first control the lateral mode and the

directional mode by its own. Then they are followed by a training series that

coordinated both control surface. This will ensure that the RL agent will find the

optimal policy in a relatively faster time.

Training the reinforcement agent for a complete 6-degree-of-freedom air vehicle

(stage 3) will focus on:

32

1) Learning how to use 3 control surfaces (elevator, aileron, and rudder).

2) Learning to coordinate the movement of three different control surfaces

with different degree of influence for different mode (longitudinal, lateral,

directional).

3) Extracting the resulting policy (network)

In longitudinal mode, the influence of aileron and rudder are very small compared

to the elevator. But in lateral-directional mode, the degree of influence is reversed.

Elevator movement has a small impact when the agent is trying to control its roll

angle but it has a large impact when it is trying to control the pitch angle. The

reinforcement learning agent has to developed its knowledge when moving in and

out of a certain flight mode.

Figure 3-6 Policy Application After Training Process

Extracting the policy (network) is also very important. Because unlike developing

an AI to control a robot, an air vehicle can’t go back up after it has crashed during

the first few episodes where it is trying to gain stability in the system. In order to

use this flight control, the reinforcement learning trains in a simulation or trains

using a recorded flight data. Then the result can be used or uploaded to an on-

board system of an air vehicle.

33

3.7 Conclusion

This chapter describes the way DDPG method works and how the programme is

adjusted to develop a DDPG agent that can control the flight of an air vehicle. It is

assumed to be a straight forward affair in adopting DDPG in flight control.

However, as the investigation progressed changes were made in the training

procedure and even in the way to define a policy is suitable or not. The following

chapters will explain these discoveries.

34

35

4 DETERMINING THE OBJECTIVE OF THE RL AGENT

4.1 Introduction

A major issue in using reinforcement learning in developing a flight control is “how

to formulate the reward function to best represent the way to control the aircraft?”.

As mentioned earlier in sub chapter 3.5, the reward function gives value to a pair

of state-action. The goal of the RL agent is to find the pair with the best value. In

the physical term, it would be to find the best action for each and every state.

The first step is to determine is the state to be observed by the RL agent. In the

aircraft system, the state represents the attitude of the aircraft. Therefore, the

determined flight variables to be observed (state) will be the ones that the RL

agent will look out for and use it for guidance to achieve its goal.

The second step is to find a common goal for each training episode. Each training

needs to have the same objective to achieve so that the result of each episode

can be compared to one another. For each and every initial state, the appropriate

action needs to be found, so that the final goal can be achieved from whatever

state it initially started.

4.2 Determining the State

For this chapter, the case study is to develop a flight control for the longitudinal

mode of a missile. The objective is to control the pitch angle (𝜃). So, pitch angle

should be one of the states to be observed, as it is the attitude variable, the RL

agent has to control.

However, just using the pitch angle as the state is not enough. In order for the RL

agent to control the pitch angle, it uses the elevator deflection (𝛿𝐸). Yet, the

elevator deflection doesn’t directly control the pitch angle. So there will be a gap

in the RL agent’s knowledge in how to achieve a pitch angle with a certain value.

𝑎 = [𝛿𝐸] (4-1)

36

Due to this reason, the pitch rate (𝑞) is added to the state. The pitch rate will

directly show the RL agent how each elevator deflection influenced the changes

in q and therefore, changes the pitch angle from its initial value. So at the start of

this investigation, the state to be observed is proposed as:

𝑠 = [𝑞 𝜃] (4-2)

4.3 Model for Data Generation

The model of missile that is used for the simulation is a nonlinear model from[43].

The longitudinal mode of the missile model can be seen as follows. Table 4-1

consists of the configuration of the missile and the aerodynamic data that

correlates to that configuration.

�̇� =
𝑄𝑆

𝑚

𝐶𝑧𝛼

𝑉
𝛼 + 𝑞 +

𝑄𝑆

𝑚

𝐶𝑧𝛿𝐸

𝑉
𝛿𝐸

(4-3)

�̇� =
𝑄𝑆𝑑

𝐼𝑦𝑦
(𝑋𝑐𝑝 − 𝑋𝑐𝑔)

𝐶𝑧𝛼

𝑑
𝛼 +

𝑄𝑆𝑑

𝐼𝑦𝑦

𝑑

2𝑉
𝐶𝑚𝑞𝑞 +

𝑄𝑆𝑑

𝐼𝑦𝑦
𝐶𝑚𝛿𝐸𝛿𝐸

(4-4)

�̇� = 𝑞 (4-5)

Table 4-1 Parameters of Missile

Mass : 200 kg Diameter (d): 0.3 m 𝑋𝑐𝑝 = 𝑋𝑐𝑔 + 𝑑 V : 300 m/s

Iyy : 450 𝑘𝑔. 𝑚2 𝑋𝑐𝑔 : 2.5 m 𝜌 : 1.21 kg/m

𝐶𝑧𝛼 : -6.0 𝐶𝑚𝛼 : -500.0 𝐶𝑧𝛿𝐸 : -0.1340 𝐶𝑚𝛿𝐸 : -26.180

4.4 Reward Function I

In the first method, the state is defined as (4-2). The reward function in this

method is defined as the square error between the desired pitch angle (𝜃𝑑) and

37

the current pitch angle (𝜃). The objective is for the RL agent to minimize this and

achieve the desired pitch angle (𝜃𝑑).

𝑟 = − (𝜃 − 𝜃𝑑)2 (4-6)

The desired pitch angle is a constant value throughout the entire timestep. The

error is squared so that it will eliminate the influence of positive or negative value

of the error and focuses solely on the difference itself.

For this case study, the number of layers for the network are respectively 300

and 500. The parameters for the noise factor in the actor policy is listed in Table

4-2

Table 4-2 Ornstein-Uhlenbeck Parameter for Simulation 04.01

𝜃𝑂𝑈 = 0.3 𝜎𝑂𝑈 = 0.075

Figure 4-2 showed that the RL agent failed to achieve the desired pitch angle

value even though the total reward per episode during the training process clearly

showed convergence, therefore indicating that the RL agent has learned the

system Figure 4-1.

However, the problem with this simulation is that by using the pitch angle (𝜃) as

one of the observed states, it means that the training set would have to train the

RL agent through all the initial pitch angle value and all the possible pitch angle

desired. This is ineffective. A solution for this problem is proposed in the next sub

chapter.

39

Figure 4-1 The Total Reward Per Training Episode in Simulation 04.01

40

Figure 4-2 The Result of Test in Simulation 04.01

41

4.5 Reward Function II

As described in the previous sub chapter, it is ineffective to train the RL agent

through all the values of the initial pitch angle and towards all the possible desired

pitch angle. To shorten this training process, a change is proposed in the state

definition. Instead of the pitch angle (𝜃), it should be the error of the pitch angle

itself (𝜃𝑒𝑟𝑟).

𝑠 = [𝑞 𝜃𝐸𝑟𝑟] (4-7)

With the same reward function as in (4-6), simulation 04.02 is done with the same

number of network layers and the same noise parameter.

The second method seems to produce a better result than the first method. But it

does produce a question whether or not the best performance has been reached.

As seen in the result, the bigger value of total reward does show a performance

with the quickest response to achieve the desired pitch angle. It doesn’t show the

best performance. It only shows the goal of the pitch angle. In this method, there

is always a possibility that a better performance can be produce after the best

one.

Also, a question in this method is whether the manoeuvre chosen by the RL agent

is possible with the limitations of the aircraft’s control surface deflection. In a

commercial flight, a pitch rate bigger than 280/𝑠 can exceed the structural

capability of the aircraft.

42

Figure 4-3 The Total Reward Per Training Episode in Simulation 04.02

43

Figure 4-4 The Result of Test in Simulation 04.02

44

4.6 Reward Function III

Based on the previous sub chapter, there is a problem regarding the performance

of the RL agent. There is no guarantee that the best performance produced is the

best performance overall. Nor is there any sort of measurement of how far away

is the resulting performance compared to the best performance.

 A solution to this particular question is to create an optimal trajectory for the RL

agent to follow. This defines the best performance as this optimal trajectory. It will

provide the RL agent with a benchmark for it to follow and/or to measure its

performance against. In other words, this provides a guarantee of what the best

performance looks like.

So, if 𝑦𝑟𝑒𝑓 is the optimal trajectory of the changes in pitch angle, then 𝑦 is the

current changes of pitch angle that the RL agent has executed. The reward

function is defined as follows.

𝑟 = −(𝑦 − 𝑦𝑟𝑒𝑓)
2
 (4-8)

The learning agent is learning to produce a performance result as close as

possible with the reference performance. The reward value of the best

performance can be very close to zero, as depicted the second performance in

Figure 4-5.

Figure 4-5 Two Potential Performance with a Reference Trajectory

45

This trajectory started at the same value as the initial state, while the changes in

trajectory is defined as follows:

�̇�𝑟𝑒𝑓 = −2𝜉𝑟𝑒𝑓𝜔𝑛𝑟𝑒𝑓
�̇�𝑟𝑒𝑓 − 𝜔𝑛𝑟𝑒𝑓

2 (𝜂0 − 𝜂𝑡) (4-9)

�̇�𝑟𝑒𝑓 is defined as the flight attitude that intends to be controlled by the control

surface. In this work, �̇�𝑟𝑒𝑓 can be the pitch angle (�̇�𝑟𝑒𝑓), the roll angle (𝜙𝑟𝑒𝑓) and

the yaw angle (�̇�𝑟𝑒𝑓). 𝜉𝑟𝑒𝑓 is a damping ratio of 1 and (𝜔𝑛𝑟𝑒𝑓
) is the natural

frequency of 2𝜋.

Figure 4-7 showed that the RL agent manage to follow the reference trajectory

that even though there is still a steady state error. The performance with the best

value in total reward in this method truly represents the desired performance

demanded from the aircraft.

However, there is also a disadvantage in only identifying the magnitude of the

error but not when it occurs. The same value of total reward can have two

significantly different performance results, as shown in Figure 4-8.

The first performance in Figure 4-8 is convergent while the second performance

is divergent. The first performance is the performance result that is desired.

Therefore, this reward function doesn’t suitably represent the relationship

between the reward value and the performance.

This problem can be easily tackled by the adding a time component 𝑊(𝑡). By

multiplying the squared error with 𝑊(𝑡), the total reward value would differ

between the first performance in Figure 4-8 and the second. This time component

will guarantee that divergent performance will result in a large negative reward

value.

𝑟 = − (𝜃 − 𝜃𝑑)2𝑊(𝑡)
(4-10)

𝑊(𝑡) = 0.01𝑛𝑆𝑡𝑒𝑝 (4-11)

46

Figure 4-6 The Total Reward Per Training Episode in Simulation 04.03

47

Figure 4-7 The Result of Test in Simulation 04.03

49

Figure 4-8 Two Potential Performance with the Same Reward Value

In these simulations, each second is divided into 10 nStep. By using equation

(4-11) as the time component, it will guarantee that the reward value will

negatively increase as it occurs further along the nStep. A constant value of 0.01

is multiplied to the time component to normalize the reward value.

4.7 Conclusion

Based on the result of Simulation 04.01, 04.02 and 04.03, in order for the best

value of total reward represents the desired performance of the aircraft, a

combination of state definition and reward function is required as follows.

𝑠 = [𝑞 𝜃𝐸𝑟𝑟]

𝑟 = −(𝑦 − 𝑦𝑟𝑒𝑓)
2

To guarantee which performance is the desired performance, an optimal

performance is predetermined (𝑦𝑟𝑒𝑓) for the RL agent to follow. To ensure that

the steady state error of the performance is minimized, adding a time component

as in equation (4-10).

50

51

5 DEVELOPING FLIGHT CONTROL IN LONGITUDINAL

MODE USING DDPG WITH SINGLE ACTION

This chapter focuses on how to apply DDPG method to develop a flight control

system. This is pursued by developing a training strategy for the RL agent to learn

how to control the longitudinal mode of an air vehicle. In this case study, the air

vehicle is a Jetstream J-3102 aircraft in a fixed operating condition.

This work will focus on how to judge the RL agent’s ability to follow the

performance goal at the end of the training session, instead of comparing the

result with other conventional method. Examples of conventional method in flight

control system development are model based PID [44][45] and backstepping [46]

or model-free iPID [47] and NIB-MFC [48]. Comparing these results might be

done in future works.

5.1 Introduction

One of the main issues in DDPG is determining the learning strategy that can

cover a certain range of flight envelope and doing it at a definite amount of

reasonable time. The problem with DDPG, if the range of possible states are too

large then the RL agent learning process will diverge and not be able to produce

a suitable policy. This learning strategy will be described in the next sub chapter.

Another issue in DDPG is determining the reward function that can best represent

the flight performance. The best value of reward function has to be equal, and

only equal, to the desired flight performance.

Based on the result of the previous chapter, the reward function that can best

represent the desired flight performance is by following a predetermined path of

flight. The desired performance in attitude change is defined as the changes

discussed in sub chapter 4.5. The change of attitude for the predetermined path

of pitch angle is defined as followed:

52

�̇�𝑟𝑒𝑓 = −2𝜉𝑟𝑒𝑓𝜔𝑛𝑟𝑒𝑓
�̇�𝑟𝑒𝑓 − 𝜔𝑛𝑟𝑒𝑓

2 (𝜃0 − 𝜃𝑡) (5-1)

𝜃0 is defined as the initial state of pitch angle and 𝜃𝑡 is defined the final goal of

the pitch angle. 𝜉𝑟𝑒𝑓 is a damping ratio of 1 and (𝜔𝑛𝑟𝑒𝑓
) is the natural frequency

of 2𝜋. This will guarantee that the best performance is the predetermined

flight attitude change.

The reward function is defined as the difference between the current state of pitch

angle with the current desired pitch angle. To ensure that the learning agent

minimized the difference as timestep 𝑡 increases, the reward function is also

multiplied by the timestep component.

𝜃𝑒𝑟𝑟 = (𝜃 − 𝜃𝑟𝑒𝑓)
2

∗ 0.01 ∗ 𝑛𝑆𝑡𝑒𝑝 (5-2)

5.2 Generating Samples

For this case study, the simulation is run for a Jetstream J-3102 aircraft. The goal

in this simulation is to control the pitch angle attitude of the aircraft. A desired

change in attitude (pitch angle) is predetermined from subchapter 5.1. This

path/trajectory showed the best way for the RL agent to change its initial pitch

angle attitude towards the desired pitch angle attitude.

The RL agent is trained through several episodes (300 - 1000 episodes) to learn

how to control the aircraft. The indicator for its success will be the stabilizing of

the total reward per episode (return) in which the value is negative and closest to

zero.

Another indicator is the stabilization of the 𝑄𝑚𝑎𝑥 value. This value shows the

changes done to the policy after certain episodes. The stabilizing of its value

showed that the changes becomes less and less. When the changes become

almost zero, then the policy is considered fully developed.

As stated in Chapter 0, the reinforcement-learning agent learned to determine the

best policy for a system by using experience, compiling correlations between the

53

state-action pairings and its rewards. In flight control, this experience is defined

as samples of flight data that shows the correlation between the initial state of the

air vehicle (𝑠𝑡), actions that was taken (𝑎𝑡), the state of the air vehicle after an

action has been taken (𝑠𝑡+1), and the reward of the action as it is correlated to

the final state (𝑟𝑡).

As described in subchapter 3.4, the algorithm for exploration are treated

separately from the learning algorithm. The samples are generated by DDPG

itself. It is generated by the exploration policy 𝜇′. To ensure randomness, the

actor policy is added by noise 𝒩 from Ornstein-Uhlenbeck process.

In this simulation the DDPG is connected to a model that can generate the

changes in state (𝑠𝑡+1) when a random action (𝑎𝑡) is applied to a given initial state

(𝑠𝑡). These data (𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1) are then given a reward value (𝑟).

For this case study, the state consists of two variables that are defined as the

difference between pitch angle and its desired pitch angle, known as 𝜃𝑒𝑟𝑟, and

pitch rate, 𝑞.

In DDPG method, the samples are generated by the exploration policy. This

policy is achieved by adding noise to the actor policy. The policy initiates an initial

state of the air vehicle and a random action (𝑠𝑡, 𝑎𝑡). Then using the model that is

outside of the DDPG method, the resulting state (𝑠𝑡+1) from applying the action

(𝑎𝑡) to the initial state (𝑠𝑡) is produced. These three variable fill out ¾ of the tuple

needed to determine the value function in DDPG learning agent.

The remaining ¼ of the tuple is the reward value (𝑟𝑡) that the action policy has

given based on the previous ¾ of the tuple (𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1). Based on the complete

tuple (𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1, 𝑟𝑡)., the RL agent updates its policy.

The action in this case study is defined as the elevator deflection (𝛿𝐸). The state

that is being observed are the pitch rate (𝑞) and the difference (𝜃𝐸𝑟𝑟) between

pitch angle (𝜃) and the desired pitch angle (𝜃𝑑), 𝑠 = [𝑞 𝜃𝐸𝑟𝑟].

 𝐸𝑟𝑟𝜃 is chosen with the idea that it can be a benchmark for the RL agent to

pursue the smallest value of it no matter the value of the desired pitch angle (𝜃𝑑).

54

The model of Jetstream (J-3102) in longitudinal mode are derived from [49]. The

linear equation of motion for the longitudinal mode of Jetstream (J-3102) are as

follows:

�̇� =
𝑄𝑆

𝑚

𝐶𝑙𝛼

𝑉
𝛼 + 𝑞 +

𝑄𝑆

𝑚

𝐶𝑙𝛿𝐸

𝑉
𝛿𝐸

(5-3)

�̇� =
𝑄𝑆𝑐

𝐼𝑦𝑦
𝐶𝑚𝛼𝛼 +

𝑄𝑆𝑐

𝐼𝑦𝑦

𝑐

2𝑉
𝐶𝑚𝑞𝑞 +

𝑄𝑆𝑐

𝐼𝑦𝑦
𝐶𝑚𝛿𝐸𝛿𝐸

(5-4)

�̇� = 𝑞 (5-5)

The parameters below consist of the flight configuration of Jetstream (J-3102)

and the aerodynamic configuration that correlates to the flight configuration.

Table 5-1 Parameters of Jetstream (J-3102) Aircraft

Mass = 6421 kg S= 25.08 𝑚2 V = 91.57 m/s 𝑋𝑐𝑔 = 0.28*c

Iyy = 35765 𝑘𝑔. 𝑚2 c = 1.72 m 𝜌 = 1.0193 kg/m 𝐶𝑚𝛼 = -0.993

𝐶𝑙𝛼 = -5.534 𝐶𝑙𝛿𝐸 = -0.3367 𝐶𝑚𝑞 = -15.96 𝐶𝑚𝛿𝐸 = -1.396

The dynamic pressure equation is:

𝑄 =
1

2
𝜌𝑉2

(5-6)

5.3 Learning Strategy

The learning strategy for flight control in longitudinal mode in fixed operating

condition focuses on exploring the capability of the action available to the RL

agent. This means the control surface available on the air vehicle to change its

attitude. For Jetstream J-3102, it is the elevator deflection.

In this case study, the RL agent is trained to familiarize itself with the possible

movement of the elevator which is upward and downward and limited to a certain

value of deflection. It is also trained to learn how each movement of the elevator

55

affects the attitude of the whole aircraft. Just like a young bird that learn to flap its

wings to its fullest or a baby that’s learning how much strength they can put on

their legs, the RL agent needs to learn how to use the elevator to control its pitch

angle attitude.

The RL agent is trained from two different initial conditions, which are negative

pitch and positive pitch. Then it is trained to achieve a pitch angle with a certain

value. This value is determined early on in the simulation. The RL agent is trained

not only to achieve the final pitch angle, it is also trained to do it by following the

desired predetermined trajectory/path.

Figure 5-1 Diagram of Learning Process (Training Set I)

Figure 5-2 Diagram of Learning Process (Training Set II)

The learning strategy consists of 2 set of training set. Training set I focuses on

exploring the downward elevator deflection and its impact on the pitch angle. The

initial pitch angle (𝜃0) is randomly chosen between 200 and 240. This range is

chosen at 50. A range larger than 60 will result in the learning process to diverge.

56

Table 5-2 A Learning Strategy for Longitudinal Mode

No

Training Set (Fixed Operating Condition)

Initial State (𝜃0) Command (𝜃𝑑)

01 𝑟𝑎𝑛𝑑𝑜𝑚 200 − 240 00

02 𝑟𝑎𝑛𝑑𝑜𝑚 200 − 240 300

03 𝑟𝑎𝑛𝑑𝑜𝑚 (−140) − (90) 00

04 𝑟𝑎𝑛𝑑𝑜𝑚 (−140) − (90) −200

Because one of the state defined is 𝜃𝑒𝑟𝑟, then the RL agent is assumed to learn

how to control the pitch angle based on how much difference there is from the

desired final pitch angle. Therefore, even though the learning strategy only covers

a certain portion of the possible pitch angle, the resulting policy will be able to

adapt to it, Figure 5-1.

Table 5-3 Test Set for Application of Policy

Test Episode

Test Set (Fixed Operating Condition)

Initial State (𝜃0) Command (𝜃𝑑)

01-04 𝑟𝑎𝑛𝑑𝑜𝑚 (−300) − (300) 𝑟𝑎𝑛𝑑𝑜𝑚 (−120) − (120)

Training set II focuses on exploring the upward elevator deflection and its impact

on the pitch angle. The initial pitch angle (𝜃0) is randomly chosen between −90

and −140, Figure 5-2. As with the first set of training, the RL agent will learn based

on 𝜃𝑒𝑟𝑟.

For each training set, the RL agent is given 300 episodes to converge its learning

process. At the end of the learning process, the RL agent is then tested to control

the pitch angle from a random initial pitch angle to a random desired pitch angle.

At this test, the RL agent doesn’t stop learning. The policy is still updated, even if

the changes are close to zero.

57

5.4 Pitch Angle Control

In this simulation, the number of layers for the network are respectively 350 and

350. This simulation will be focused on aircraft’s response in the first 3 seconds.

Each seconds will be divided into 300 timestep.

For the exploration policy, the Ornstein-Uhlenbeck parameter are:

Table 5-4 Ornstein-Uhlenbeck Parameter for Simulation 05.01 & 05.02

𝜃𝑂𝑈 = 0.4 𝜎𝑂𝑈 = 0.06

In this sub chapter, two simulations will be executed with two different reward

function. The reward function for simulation 05.01 is:

𝑅1 = − ∑ 𝜃𝐸𝑟𝑟
2

𝑛𝑆𝑡𝑒𝑝

𝑗

(5-7)

The reward function for simulation 05.02 is:

𝑅2 = − ∑ (𝜃𝐸𝑟𝑟
2) ∗ 0.01 ∗ 𝑛𝑆𝑡𝑒𝑝

𝑛𝑆𝑡𝑒𝑝

𝑗

(5-8)

The theory is that the result of simulation 05.02 should give better result than

simulation 05.01. The 𝑛𝑆𝑡𝑒𝑝 component should provide a guarantee that the

performance will definitely follow the desired trajectory/path as time increases.

The result of Simulation 05.01 can be seen in Figure 5-3,Figure 5-4, Figure 5-5.

and Figure 5-6. While the result of Simulation 05.02 can be seen in Figure

5-7,Figure 5-8,Figure 5-9, and Figure 5-10.

Both Figure 5-3 and Figure 5-7 show a value of total reward (return) per episode

that is converging as the time increases. This means that for both simulations,

the DDPG learning agent can find stability in the system and it can control the

aircraft. A closer look at the converging value of both simulations can be seen in

Figure 5-4 and Figure 5-8.

58

The 𝑄𝑚𝑎𝑥 graphs in Figure 5-6 and Figure 5-10 also showed that it stabilizes its value

in the range of 1 and (-1). This indicate that the policy created is stable enough

that it merits less changes to the policy after every episode.

However, the performance from the test episodes from both simulations do give

different result. Figure 5-5 shows that the RL agent manage to control the pitch

angle in 1 out of 4 test episodes. Test Episode 01 shows the best result of the

pitch angle changes follow the desired trajectory/path. In test episode 02, the

value of pitch rate is too high as the RL agent seems to go beyond the elevator

deflection limit. This suggests that this episode might be one of the exploration

episodes of the RL agent.

Test episodes 3 and 4 shows that the RL agent manage to change the pitch angle

by ‘generally’ follow the trajectory/path that is desired. However, the steady state

error of the pitch angle is more than 10. It is assumed that this problem can be

solved in Simulation 05.02, where the reward function includes the 𝑛𝑆𝑡𝑒𝑝

component.

Figure 5-9 shows the result of Simulation 05.02. It shows that 4 out of 4 test

episodes, the RL agent manage to control the pitch angle to ‘generally’ follow the

desired trajectory/path. The steady state error of all 4 test episodes are less than

10%. However, in test episode 2, the pitch rate is too big (more than 0.5 rad/s or

≈ 280/𝑠). This is unacceptable. This problem is assumed can be solved by

adding a component of pitch rate in the reward function.

59

Figure 5-3 The Total Reward Per Training Episode in Simulation 05.01

-600

-500

-400

-300

-200

-100

0

100

0 200 400 600 800 1000 1200 1400

To
ta

l R
ew

ar
d

s
P

er
 E

p
is

o
d

e
(R

et
u

rn
)

Episode

Total Rewards Per Episode (Return) Simulasi 05.01
Jetstream (J-3102)

60

Figure 5-4 The Total Reward Per Training Episode in Simulation 05.01-- Zoom

-10

-8

-6

-4

-2

0

2

0 200 400 600 800 1000 1200 1400

To
ta

l R
ew

ar
d

s
P

er
 E

p
is

o
d

e
(R

et
u

rn
)

Episode

Total Rewards Per Episode (Return) Simulasi 05.01
Jetstream (J-3102)

61

Figure 5-5 Test Result in Simulation 05.01

Figure 5-6 Qmax Changes in Simulation 05.01

-5

-3

-1

1

3

5

0 200 400 600 800 1000 1200 1400Q
m

ax

Episode

Qmax Per Episode for Simulation 05.01 Jetstream (J-3102)

62

Figure 5-7 The Total Reward Per Training Episode in Simulation 05.02

-1200

-1000

-800

-600

-400

-200

0

200

0 200 400 600 800 1000 1200 1400

To
ta

l R
ew

ar
d

Episode

Total Reward (Return) Per Episode Simulation 05.02
Jetstream Aircraft (J-3102)

63

Figure 5-8 The Total Reward Per Training Episode in Simulation 05.02-- Zoom

-100

-80

-60

-40

-20

0

20

40

0 200 400 600 800 1000 1200 1400

To
ta

l R
ew

ar
d

Episode

Total Reward (Return) Per Episode Simulation 05.02
Jetstream Aircraft (J-3102)

64

Figure 5-9 Test Result in Simulation 05.02

Figure 5-10 Qmax Changes in Simulation 05.02

-5

-3

-1

1

3

5

0 200 400 600 800 1000 1200 1400

To
ta

l R
ew

ar
d

Episode

Qmax Per Episode for Simulation 05.01
Jetstream Aircraft (J-3102)

65

5.5 Validation

In this sub chapter, the final policy network from the training process in Simulation

2 is extracted and applied as the policy network for another programme. This

programme uses the same external model to demonstrate how the RL agent

responded to different initial state.

This phase is designed to validate the resulting policy network and prove that

indeed the policy can provide the knowledge for the RL agent to act appropriately

for different state. The noise parameter in the actor policy is assumed zero,

therefore forcing the RL agent exploit policy already given to produce a response

instead of exploring for a new and possibly positive response.

Figure 5-11 shows how the RL agent uses an initial policy network that has been

through training process. It shows how the pitch angle is changed throughout the

time by following the desired path. At the end of 3 seconds, the pitch angles are

all stable on the desired value.

66

Figure 5-11 Test Result in Simulation 05.03

67

5.6 Conclusion

The investigation through several simulations that focuses on controlling the pitch

angle and the pitch rate shows that:

- the DDPG method can be used to develop a control system for the

longitudinal mode of an aircraft. In this case study, the aircraft is

Jetstream J-3102.

- adjusting the components in the reward function can apply a limitation

to the pitch angle and pitch rate response of the aircraft

- the final policy network is considered suitable when the value of 𝑄𝑚𝑎𝑥

during the test episodes are within the range of [-1,1].

- the policy network post training process can be extracted and used in

another programme and expected to give an appropriate response to

almost every state

69

6 DEVELOPING FLIGHT CONTROL IN LONGITUDINAL

MODE USING DDPG IN VARIATING OPERATION

CONDITION

This chapter focuses on developing a training strategy for the RL agent to learn

how to control the longitudinal mode of an air vehicle in variating operating

condition. The operating condition that are considered to be varied are velocity,

and altitude. In this case study, the air vehicle is a missile and the model is derived

from [43].

6.1 Introduction

One of the main issue in DDPG is determining the variables to be observed,

known as state. From Chapter 5, it is found that the state definition in a fixed

operating condition is 𝑠 = [𝜃𝑒𝑟𝑟 𝑞]. However, for a variating operating condition it

is unknown whether the same state definition is enough to control the pitch angle.

Therefore, in this chapter, a variety of state definition is simulated to train the

DDPG agent for:

- Velocity variation

- Altitude variation

In training for velocity variation, two definition of state is used. One is the state

definition already done in Chapter 5, where 𝑠 = [𝜃𝑒𝑟𝑟 𝑞]. Another state definition

is where the variable of velocity added, 𝑠 = [𝜃𝑒𝑟𝑟 𝑞 𝑉] . For altitude variation, one

simulation is done with the state definition is 𝑠 = [𝜃𝑒𝑟𝑟 𝑞].

The missile model used to generate the samples is described in the following sub

chapter. The specific training strategy for each varying operation condition will be

explained in each sub chapter that follows after.

70

6.2 Generating Sample

For this case study, the simulation is run for a Missile. The goal in this simulation

is to maintain control of the pitch angle attitude of the missile in variating operation

condition. The variating operating condition is achieved by variating the velocity

and/or altitude.

Similar to Chapter 5, the desired change in attitude (pitch angle) is predetermined

according to Equation (5-1). The desired performance will be for the RL agent to

follow this path/trajectory.

However, the indicator for success in the learning process will be the stabilizing

of the total reward per episode (return) on a value close to zero and the

stabilization of the 𝑄𝑚𝑎𝑥 value.

The model of the missile in longitudinal mode are derived from [43]. The linear

equation of motion of the longitudinal mode for the missile are the same as the

equation for the Jetstream aircraft in Chapter 5. However, for clarity, it is written

again below.

�̇� =
𝑄𝑆

𝑚

𝐶𝑧𝛼

𝑉
𝛼 + 𝑞 +

𝑄𝑆

𝑚

𝐶𝑧𝛿𝐸

𝑉
𝛿𝐸 (5-3)

�̇� =
𝑄𝑆𝑑

𝐼𝑦𝑦
(𝑋𝑐𝑝 − 𝑋𝑐𝑔)

𝐶𝑧𝛼

𝑑
𝛼 +

𝑄𝑆𝑑

𝐼𝑦𝑦

𝑑

2𝑉
𝐶𝑚𝑞𝑞 +

𝑄𝑆𝑑

𝐼𝑦𝑦
𝐶𝑚𝛿𝐸𝛿𝐸 (5-4)

�̇� = 𝑞 (5-5)

The parameters below consist of the flight configuration of the missile and the

aerodynamic configuration that correlates to the flight configuration.

Table 6-1 Parameters of The Missile

Mass : 200 kg Diameter (d): 0.3 m V : 300 m/s 𝑋𝑐𝑝 = 𝑋𝑐𝑔 + 𝑑

Iyy : 450 𝑘𝑔. 𝑚2 𝑋𝑐𝑔 : 2.5 m 𝜌 : 1.21 kg/m

𝐶𝑧𝛼 : -6.0 𝐶𝑚𝛼 : -500.0 𝐶𝑧𝛿𝐸 : -0.1340 𝐶𝑚𝛿𝐸 : -26.180

71

6.3 Varying Velocity

In this case study, two simulations are executed to explore the impact of adding

a condition that varies during the operation of the missile. Those two state

definitions are:

• 𝑠 = [𝑞 𝜃𝑒𝑟𝑟]

• 𝑠 = [𝑞 𝜃𝑒𝑟𝑟 𝑉]

It is assumed that the latter state definition will require more number of layers for

the input network than that of the first state definition.

6.3.1 Training Strategy

The learning strategy for flight control in longitudinal mode in variating operating

condition focuses on two things. One, that it explores the capability of the action

available to the RL agent. This means the control surface available on the air

vehicle to change its attitude, which is the elevator deflection. Two, it explores

how much the impact of its capability changes due to a variation of velocity.

Table 6-2 Training Set for FOC

No
Training Set (Fixed Operating Condition)

Initial State (𝜃0) Command (𝜃𝑑)

01 𝑟𝑎𝑛𝑑𝑜𝑚 200 − 240 00

02 𝑟𝑎𝑛𝑑𝑜𝑚 (−140) − (90) 00

03 𝑟𝑎𝑛𝑑𝑜𝑚 200 − 240 𝜃𝑑1 = 150, 𝜃𝑑2 = 00

04 𝑟𝑎𝑛𝑑𝑜𝑚 (−140) − (90) 𝜃𝑑1 = 00, 𝜃𝑑2 = 150

05 𝑟𝑎𝑛𝑑𝑜𝑚 200 − 240 𝜃𝑑1 = 150,𝜃𝑑2 = 50,𝜃𝑑3 = 300

The first focus is achieved by putting the RL agent through 5 sets of training in

fixed operating condition (FOC), Table 6-2. The second focus is achieved by

adding 3 sets of training in variating operating condition (VOC),Table 6-3. The RL

72

agent go through all of these training sets before a set of episodes is added at

the end to test the policy.

Table 6-3 Training Set for VOC (Velocity Variation)

No
Training Set

Initial State (𝜃0) Command (𝜃𝑑)

 240 00

06 𝑟𝑎𝑛𝑑𝑜𝑚 𝑉 = 10-60 m/s

07 𝑟𝑎𝑛𝑑𝑜𝑚 𝑉 = 260-310 m/s

08 𝑟𝑎𝑛𝑑𝑜𝑚 𝑉 = 360-410 m/s

In VOC training, the RL agent is pushed to control the pitch angle in a range of

varying velocity. For each set of VOC training, the range of velocity is 50 m/s. A

range larger than that will not result in the agent converging its learning process.

For both FOC training and VOC training, each set of training is given a range of

500 episodes. This means that the FFPG agent is given 500 episodes to learn

and produce a converging policy for each training set.

6.3.2 Velocity Variation (𝒔 = [𝒒 𝜽𝒆𝒓𝒓])

In Simulation 06.01, the number of layers for the network are respectively 300

and 500. As are the simulations in previous chapters, this simulation will focus on

the missile’s response in the first 3 seconds, specifically on the performance of

the pitch angle. Each seconds will be divided into 300 timestep.

For the exploration policy, the Ornstein-Uhlenbeck parameter are:

Table 6-4 Ornstein-Uhlenbeck Parameter for Simulation 06.01

𝜃𝑂𝑈 = 0.3 𝜎𝑂𝑈 = 0.075

The reward function for simulation 06.01 is:

73

𝑅1 = ∑ 𝜃𝐸𝑟𝑟
2

𝑛𝑆𝑡𝑒𝑝

𝑗
∗ 0.01 ∗ 𝑛𝑆𝑡𝑒𝑝

(6-1)

Because the test episodes were executed following the training episodes, the RL

agent is still updating its policy. Therefore, previous to this simulation, it is

assumed that the result should be that the RL agent will be able to still control the

pitch angle of the missile through different velocity.

Figure 6-1 shows that the value of the total reward (return) are converging as the

number of episodes grow, through the fixed operating condition training (episodes

1- 2500) and the variating operating condition training (episodes 2501-4000).

There are some spikes of big negative value during the variating operating

condition. These episodes happened as the RL agent enters a new training set

with a different velocity. Figure 6-5 supports this claim as it also shows spikes in

the changes of policy when those spikes in the total reward value occurs. It also

shows stabilization towards the end of the simulation as its value stayed between

1 and (-1).

Figure 6-2 shows the result of the test episodes at the end of the training

episodes. The policy is tested through different velocity condition and different

change in pitch angle. The result shows that the RL agent manage to follow the

desired trajectory/path of pitch angle change. Though the steady state error

differs.

Figure 6-3 and Figure 6-4 show the result of the test episode, performed at the

end of the training process. They show the result of test episodes for different

velocity. Test episodes (b) and (f) show how the DDPG agent control the pitch

angle of the aircraft for velocities that are trained in the previous training process.

However, test episodes (a), (c), (d) and (e) are all test episodes where the

velocities of the aircraft have different value than the ones being used for training.

This shows that the DDPG agent can make a response that is an interpolation

based on its training process.

74

Figure 6-1 The Total Reward Per Training Episode in Simulation 06.01

75

Figure 6-2 FOC Test Episode Following Training in Simulation 06.01

76

Figure 6-3 VOC Test Episodes 1-4 Following Training in Simulation 06.01

77

Figure 6-4 VOC Test Episodes 5-6 Following Training in Simulation 06.01

78

Figure 6-5 Qmax Changes in Simulation 06.01

Figure 6-5 shows the DDPG agent stabilizing to FOC training process followed

by its value spiked during the VOC training. However, the agent manages to find

stability again and it shows in its values during the test episodes (4000-4016).

6.3.3 Velocity Variation (𝒔 = [𝒒 𝑬𝒓𝒓𝜽 𝑽])

In Simulation 06.02, several hyper-parameters are kept similar to Simulation

06.01, such as the timestep (nStep) for each second and the reward function.

However, the number of layers for the network are different because it needs to

accommodate for the added number of state. In simulation 06.02, the number of

state is 3 which are pitch rate, the error in pitch angle and velocity (𝑠 =

[𝑞 𝜃𝑒𝑟𝑟 𝑉]). Therefore, the number of network layers are respectively 400 and

600.

Another difference is the number of episodes given to the DDPG agent to learn

a converging policy for each training set. Because the number of state is added,

then there are one more variable to be observed by the DDPG agent. This

79

included variations of velocity variable whilst tied with variations in pitch rate and

pitch angle. This means more episodes required to master one VOC training set.

For the FOC training set, the DDPG agent is given 500 episodes to learn. This is

the same as simulation 06.01. the reason behind this is that because for this

training set, the velocity is locked in one value only (300 m/s). This effectively

cuts down the variations possible in the velocity. Therefore, it is assumed that the

number of episodes that the DDPG agent needs to master each training set is

similar to that in simulation 06.01.

However, for the VOC training set, the DDPG agent is given 1000 episodes to

learn a converging policy. As stated in previous explanations, with more

variations due to the variating velocity, the number of episodes needed to master

a specific training process is assumed to larger.

For the exploration policy, the Ornstein-Uhlenbeck parameter are exactly the

same as in simulation 06.01:

Table 6-5 Ornstein-Uhlenbeck Parameter for Simulation 06.02

𝜃𝑂𝑈 = 0.3 𝜎𝑂𝑈 = 0.075

Due to its complexity as a result of the added definition of state, therefore, also

the added number of network layer, the reward function is simplified by

eliminating the timestep (nStep) component. In simulation 06.02, the reward

function for is:

𝑅1 = ∑ 𝜃𝐸𝑟𝑟
2

𝑛𝑆𝑡𝑒𝑝

𝑗

(6-2)

Simulation 06.02 is run through the training process described in Table 6-2 and

Table 6-3. The result of this simulation can be observed in Figure 6-6, Figure 6-7,

Figure 6-8 and Figure 6-9.

80

Figure 6-6 The Total Reward Per Training Episode in Simulation 06.02

81

In Figure 6-6, the total reward per episode shows convergence that are marked

by spikes in value in certain areas. Focusing on the FOC training set, Figure 6-10

shows a comparison between simulation 06.01 and 06.02 with the same range

of value. Here, it shows that the DDPG agent in both simulations converge its

total rewards value. Despite that, Simulation 06.02 does have more spikes in

value. This is assumed due to the difference in state definition. An exploration

might have different result as the velocity is observed therefore a slight change

in can affect the whole response.

The result of test episodes in Figure 6-7 shows that although the DDPG agent

‘generally’ followed the desired pitch angle change, the steady state error is

significant. It is assumed that this is due to the fact that the reward function has

no timestep (nStep) component. However, adding this component could

jeopardize the DDPG agent learning process. It could lead to divergence in the

total rewards per episode.

Specifically, for graph (d), it is assumed that this response coincides with the

episode where the DDPG agent is exploring instead of exploiting. It is advised to

separate the training program and the test programme to fully see the use of the

policy resulted from the training process.

Figure 6-8 displays the performance of the air vehicle as it is controlled by the

DDPG agent. The performance from the DDPG agent towards situations with

different velocity, after its training, shows that it has manage to generally follow

the desired path of pitch angle change. However, its steady state error suggests

that the absence of timestep (nStep) component is quite influential.

From Figure 6-9, it can be seen that there is quiet a big spike in the value of 𝑄𝑚𝑎𝑥

somewhere between episodes 3500 and 4500. This is the episode range in which

the DDPG agent trained for random velocity between 260 m/s and 310 m/s. This

also corresponds with the large negative value of total reward in Figure 6-6.

82

Figure 6-7 FOC Test Episode Following Training in Simulation 06.02

83

Figure 6-8 VOC Test Episode Following Training in Simulation 06.02

84

Figure 6-9 Qmax Changes in Simulation 06.02

This spike in value through this one training set can be incited by the existence

of an already formed policy for velocity 300 m/s. The selected area of this policy

is quiet extensive as it is trained for FOC in this velocity alone. Therefore, DDPG

agent has to adjust and update quiet significantly the policy surrounding the policy

for 300 m/s velocity. Hence, the changes in the value of 𝑄𝑚𝑎𝑥 is quiet extensive.

A further look into VOC training set for random velocity between 10- 60 m/s and

between 360 m/s – 410 m/s shows a spike in value early on its training episodes

(episode 2500s and 4500s) before settling and stabilizing towards the end of the

training set. In these area, the policy value is zero as it is not yet being filled and

given value. Changes in this area are compared to the initial value, which is zero.

Based on simulations 06.01 and 06.02, the result of the training for simulation

06.01 is more preferable. Adding the number of state will impact not only the

number of layers but also the number of episodes for training and the formulation

of reward function. For this case study, it is recommended to not change the state

definition for VOC training.

85

Figure 6-10 Comparison of FOC Training Set of Simulation 06.01 & 06.02

86

6.4 Varying Altitude

Based on the conclusion in the previous sub chapter, the simulation performed

for this case study has the state definition: 𝑠 = [𝜃𝑒𝑟𝑟 𝑞]. Here the DDPG agent is

trained to control the pitch angle of an air vehicle in fixed operating condition

(FOC) and variating operation condition (VOC). In this case, the variation is the

altitude of the air vehicle.

6.4.1 Training Strategy

As with sub chapter 6.3.1, the learning strategy for this case study focuses on

two things. One, exploring the capability of the action available to the RL agent

and two, exploring how much the impact of its capability changes due to a

variation of altitude.

The number of layers for the network are respectively 300 and 500. As are the

simulations in previous sub chapters, this simulation will focus on the missile’s

response in the first 3 seconds, specifically on the performance of the pitch angle.

Each seconds will be divided into 300 timestep.

For the exploration policy, the Ornstein-Uhlenbeck parameter are:

Table 6-6 Ornstein-Uhlenbeck Parameter for Simulation 06.03

𝜃𝑂𝑈 = 0.3 𝜎𝑂𝑈 = 0.075

The reward function for simulation 06.03 contains the timestep (𝑛𝑆𝑡𝑒𝑝)

component. It is expected that the existence of this component will guarantee the

convergence of the flight performance carried out by the DDPG agent is:

𝑅1 = ∑ 𝜃𝐸𝑟𝑟
2

𝑛𝑆𝑡𝑒𝑝

𝑗
∗ 0.01 ∗ 𝑛𝑆𝑡𝑒𝑝

(6-3)

87

Because the test episodes were executed following the training episodes, the RL

agent is still updating its policy. Therefore, previous to this simulation, it is

assumed that the result should be that the RL agent will be able to still control the

pitch angle of the missile through different altitude.

The first focus is achieved by putting the RL agent through 5 sets of training in

fixed operating condition (FOC), Table 6-2. The second focus is achieved by

adding 6 sets of training in variating operating condition (VOC),Table 6-7. The RL

agent go through all of these training sets before a set of episodes is added at

the end to test the policy.

Table 6-7 Training Set for VOC (Variating Altitude)

For this VOC training, the RL agent is pushed to control the pitch angle in a

various samples of varying altitude. These samples have an altitude range of 200

meters. A range larger than that will not result in the agent converging its learning

process. However, to cover the wide range of altitude, the training samples are

taken from different altitude in a range between sea level and 8500 meters. Based

on previous chapters and sub chapter, the DDPG agent is expected to be able to

interpolate for altitudes not used in training.

For each training set, the DDPG agent is given 500 episodes to converge its

learning process.

No Initial State (𝜽0) Command (𝜽𝑑)

 240 00

06 𝑟𝑎𝑛𝑑𝑜𝑚 𝜌 = 1.225 – 1.2133 𝑘𝑔 𝑚3⁄ (0 m – 200 m)

07 𝑟𝑎𝑛𝑑𝑜𝑚 𝜌 = 1.0846 – 1.0633 𝑘𝑔 𝑚3⁄ (1250 m – 1450 m)

08 𝑟𝑎𝑛𝑑𝑜𝑚 𝜌 = 1.0065 – 0,9864 𝑘𝑔 𝑚3⁄ (2000 m – 2200 m)

09 𝑟𝑎𝑛𝑑𝑜𝑚 𝜌 = 0.8191 – 0.8020 𝑘𝑔 𝑚3⁄ (4000 m – 4200 m)

10 𝑟𝑎𝑛𝑑𝑜𝑚 𝜌 = 0.7364 – 0.7203 𝑘𝑔 𝑚3⁄ (5000 m – 5200 m)

11 𝑟𝑎𝑛𝑑𝑜𝑚 𝜌 = 0.5252 – 0.5130 𝑘𝑔 𝑚3⁄ (8000 m – 8200 m)

88

Figure 6-11 The Total Reward Per Training Episode in Simulation 06.03

89

For this VOC training, the RL agent is pushed to control the pitch angle in a

various samples of varying altitude. These samples have an altitude range of 200

meters. A range larger than that will not result in the agent converging its learning

process. The agent is given 500 episodes to converge its learning process in

each range.

Figure 6-11 shows that the DDPG agent has manage to learn and produce a

suitable policy after VOC and FOC training. The test episodes’ numbers 5501

through 5516, except for 5507 and 5508, shows that the DDPG agent can utilize

its final policy to control the flight performance of an air vehicle. This can be seen

in Figure 6-12,Figure 6-13 and Figure 6-14. Test episode 5507 and 5508 are test

episodes where the DDPG agent has to control the air vehicle through three

different changes of pitch angle s, which it hasn’t trained for. Therefore, the result

is not good.

The performance of the DDPG agent in controlling the air vehicle in Figure 6-12,

shows undesirable result in (c) form episode 5504. This is suspected due to the

DDPG agent exploring instead of exploiting its policy. Even the steady state error

in (d) shows a significant value.

Performance result in VOC shows desirable responses for various altitude

condition. The timestep component in the reward function almost guarantee the

convergence of the flight performance with minimal steady state error in VOC test

episodes.

Figure 6-15 shows the value of 𝑄𝑚𝑎𝑥 which exceed the range [-1,1] in the last

training set, which is a training set for altitude condition of 8000 – 8200 meters.

This can be an indicator that the DDPG agent is unable to learn effectively to

control the air vehicle. This altitude might be beyond the flight envelope of the air

vehicle.

This is indicated by the value of 𝑄𝑚𝑎𝑥 during the test episodes (the insert graph

in Figure 6-15). It shows that the values are within the acceptable range of [-1,1].

A further testing should be done using the policy to test the altitude condition

above 8000 meter.

90

Figure 6-12 FOC Test Episode Following Training in Simulation 06.03

91

Figure 6-13 VOC Test Episode Part 1 Following Training in Simulation 06.03

92

Figure 6-14 VOC Test Episode Part 2 Following Training in Simulation 06.03

93

Figure 6-15 Qmax Changes in Simulation 06.03

6.5 Conclusion

Through the investigation in chapter 6, where the DDPG agent is trained to

control the air vehicle in several variating operating condition, several conclusions

are showed as follows.

By comparing the result of simulation 06.01 and 06.02 where both DDPG agent

are trained for variations in velocity, it is concluded that:

- Adding another state to observe for this purpose is not recommended.

As this is adding a complication to the ultimate goal of learning towards

convergence. The DDPG agent itself can manage to add velocity to its

observations implicitly with better result.

- It is recommended also to use different altitude for VOC training

purposes and FOC training. Changing or updating an already

established area of policy network can cost time towards convergence.

Further investigation through simulation 06.03 shows that:

94

- The DDPG agent can adapt to variations of altitude and velocity without

having its state definition adjusted.

- A further investigation should be performed to confirm that the spike of

𝑄𝑚𝑎𝑥 value and total rewards during the last training set is due to the

limitation of the air vehicle itself.

A general recommendation is that the program to train the DDPG agent for FOC

and VOC is separated. The final policy from the FOC training programme can be

extracted and used as the initial policy in VOC training programme. This can cut

down the run time of the programme and minimize having to do the whole

programme all over again when a mistake occurs somewhere in the training or

test programme.

95

96

7 DEVELOPING FLIGHT CONTROL IN LATERAL-

DIRECTIONAL MODE USING DDPG WITH DUAL

ACTION

This chapter focuses on developing a training strategy for the RL agent to learn

how to control the lateral-directional mode of an air vehicle. This is a problem

because for this purpose, the DDPG method needs to use two action variables.

They are aileron and rudder. In this case study, the operating condition is fixed.

The air vehicle for this case study is an unmanned aerial vehicle.

7.1 Introduction

Another issue in DDPG is the use of more than one action variable. The use of

more than one action variable increases the chance of the RL agent to not

converge on its learning process.

Previous works that applies DDPG for a control problem has used it for one action

only, such as [50].The author of this work only use the steering wheel as the

action to control an autonomous land vehicle using DDPG. For a simulation using

two actions, the authors use ACER.

In [51], a Model-driven Deep Deterministic Policy Gradient (MDDPG) is utilized

to develop a control policy for a system with 6 dimension of action. This method

basically made the search for optimal policy easier by not starting its knowledge

of the system from zero. The goal was to minimize the amount of training needed

and avoiding actions that may result in undesirable performance.

[4] uses only DDPG to control a bi-pedal walking robot using 4-dimension action.

But it is unclear exactly how the researchers did this.

In this chapter, it is proposed that just by customizing the learning strategy, the

DDPG method can develop a policy that can control the lateral-directional mode

97

of an aircraft. For this case study, a UAS (Unmanned Aerial System) model from

[52] is used.

7.2 Model

The model of Unmanned Aerial System (UAS) that is used for the simulation is

derived from [52]. The nonlinear equation of motion for the lateral-directional

mode of UAS are as follows:

�̇� = −𝑢𝑟 + 𝑤𝑝 + 𝑔 sin 𝜙 cos 𝜃 +
𝑄𝑆𝐶𝑌

𝑚
 (7-1)

�̇� =
𝐼𝑥𝑧

𝐼𝑥𝑥

(�̇� + 𝑝𝑞) −
𝐼𝑧𝑧 − 𝐼𝑦𝑦

𝐼𝑥𝑥
𝑞𝑟 +

𝑄𝑆𝑏𝐶𝑙

𝐼𝑥𝑥
 (7-2)

�̇� = −
𝐼𝑥𝑧

𝐼𝑧𝑧

(�̇� − 𝑞𝑟) −
𝐼𝑦𝑦 − 𝐼𝑥𝑥

𝐼𝑧𝑧
𝑝𝑞 +

𝑄𝑆𝑏𝐶𝑛

𝐼𝑧𝑧
 (7-3)

�̇� = 𝑝 + 𝑞 sin 𝜙 tan 𝜃 + 𝑟 cos 𝜙 tan 𝜃
(7-4)

�̇� = 𝑞 sin 𝜙 sec 𝜃 + 𝑟 cos 𝜙 sec 𝜃
(7-5)

The side force coefficient (𝐶𝑌), the rolling moment coefficient (𝐶𝑙) and the yawing

moment coefficient (𝐶𝑛) are determined by the following equations. Table 7-2

consists of the parameters of the UAS and the aerodynamic data that correlates

to its configuration.

𝐶𝑌 = 𝐶𝑌,𝛽𝛽 + (𝐶𝑌,𝑝𝑝 + 𝐶𝑌,𝑟𝑟) (
𝑏

2𝑉
) + 𝐶𝑌,𝛿𝑅𝛿𝑅 (7-6)

𝐶𝑙 = 𝐶𝑙,𝛽𝛽 + (𝐶𝑙,𝑝𝑝 + 𝐶𝑙,𝑟𝑟) (
𝑏

2𝑉
) + 𝐶𝑙,𝛿𝑅𝛿𝑅 + 𝐶𝑙,𝛿𝐴𝛿𝐴 + (𝑥𝑐𝑔 − 𝑥𝑐𝑔,𝑟𝑒𝑓)𝐶𝑌 (

𝑐

𝑏
) sin 𝛼 (7-7)

𝐶𝑛 = 𝐶𝑛,𝛽𝛽 + (𝐶𝑛,𝑝𝑝 + 𝐶𝑛,𝑟𝑟) (
𝑏

2𝑉
) + 𝐶𝑛,𝛿𝑅𝛿𝑅 + 𝐶𝑛,𝛿𝐴𝛿𝐴 + (𝑥𝑐𝑔 − 𝑥𝑐𝑔,𝑟𝑒𝑓)𝐶𝑌 (

𝑐

𝑏
) cos 𝛼 (7-8)

98

The maximum and minimum deflection of the control surface of the UAS is

described in Table 7-1.

Table 7-1 Control Surface Limitation

Aileron deflection limit ±210

Rudder deflection limit ±100

Table 7-2 Parameters of UAS for Lateral-Directional Mode

m = 12.5 kg c = 0.2 m V = 20 m/s 𝜌 = 1.21 kg/m

b = 3 m S = 0.6 𝑚2

𝐼𝑥𝑥 = 1.446 𝑘𝑔. 𝑚2 𝐼𝑦𝑦 = 1.181 𝑘𝑔. 𝑚2 𝐼𝑧𝑧 = 2.269 𝑘𝑔. 𝑚2 𝐼𝑥𝑧 = 0.1 𝑘𝑔. 𝑚2

𝑋𝑐𝑔 = 0.564 m 𝑋𝑐𝑔,𝑟𝑒𝑓 = 0.512 m 𝐶𝑙,𝛿𝐴 = 0.2549 𝐶𝑛,𝛿𝐴 = 0.0

𝐶𝑌,𝛽 = -0.6328 𝐶𝑌,𝑝 = -0.0520 𝐶𝑌,𝑟 = 0.2609 𝐶𝑌,𝛿𝑅 = 0.3236

𝐶𝑙,𝛽 = -0.1195 𝐶𝑙,𝑝 = -0.5796 𝐶𝑙,𝑟 = 0.1898 𝐶𝑙,𝛿𝑅 = 0.0439

𝐶𝑛,𝛽 = 0.1151 𝐶𝑛,𝑝 = -0.0730 𝐶𝑛,𝑟 = -0.0901 𝐶𝑛,𝛿𝑅 = -0.1041

7.3 Learning Strategy

In this case study, the RL agent observed the error between the aircraft’s roll and

yaw angle with the desired roll and yaw angle, (𝜙𝐸𝑟𝑟 and 𝜓𝐸𝑟𝑟). However, the

agent also needs to observe the roll rate (𝑝) and yaw rate (𝑟). It needs to see how

to achieve its goal by controlling the angle rate. The state,𝑠𝑡, is defined as follows.

𝑠𝑡 = [𝑝 𝜙𝐸𝑟𝑟 𝑟 𝜓𝐸𝑟𝑟] (7-9)

99

Based on Chapter 4, the reward function that can best represent the desired flight

performance is by following a predetermined path of flight. The error in roll angle

and yaw angle are defined as follows.

𝜙𝐸𝑟𝑟 = 𝜙 − 𝜙𝑟𝑒𝑓 (7-10)

𝜓𝐸𝑟𝑟 = 𝜓 − 𝜓𝑟𝑒𝑓 (7-11)

The desired changes in roll angle and yaw angle can be seen in the following

equations.

�̇�𝑟𝑒𝑓 = −2𝜉𝑟𝑒𝑓𝜔𝑛𝑟𝑒𝑓
�̇�𝑟𝑒𝑓 − 𝜔𝑛𝑟𝑒𝑓

2 (𝜙0 − 𝜙𝑡) (7-12)

�̇�𝑟𝑒𝑓 = −2𝜉𝑟𝑒𝑓𝜔𝑛𝑟𝑒𝑓
�̇�𝑟𝑒𝑓 − 𝜔𝑛𝑟𝑒𝑓

2 (𝜓0 − 𝜓𝑡) (7-13)

𝜙0 is defined as the initial state of roll angle and 𝜙𝑡 is defined as the final goal of

the roll angle. 𝜓0 is defined as the initial state of yaw angle and 𝜓𝑡 is defined as

the final goal of the yaw angle. 𝜉𝑟𝑒𝑓 is a damping ratio of 1 and (𝜔𝑛𝑟𝑒𝑓
) is the

natural frequency of 2𝜋.

The reward function defined in the following equation.

𝑅 = − ∑ {−(𝜙𝐸𝑟𝑟
2) − (𝜓𝐸𝑟𝑟

2)} ∗ 0.01 ∗ 𝑛𝑆𝑡𝑒𝑝
𝑛𝑆𝑡𝑒𝑝

𝑗

(7-14)

The reward function is multiplied by a timestep component to ensure that the

steady state error in roll and yaw angle are the smallest towards the end.

Aside from the definition of the reward function, there are two things that are

important in this case study. They are:

- the definition of the action space

- the learning strategy

The action, 𝑎𝑡, is defined as a vector that consists of aileron deflection and rudder

deflection. So, the action is considered a single action but with a larger number

of possibilities as it contains possible variations of two variables.

100

𝑎𝑡 = [(𝛿𝐴 𝛿𝑅)] (7-15)

In determining the learning strategy, there is a problem with letting the RL agent

loose to find its own way to balance the use of aileron and rudder. There are a

large number of action possibilities that can be taken. This is added to the large

number of possibilities of the state of the aircraft itself. The RL agent has to learn

to control the roll angle and the yaw angle of the aircraft.

In this, an approach is made similar to that of a child learning how to use a pair

of spoon and fork to eat. In a child’s development, they first learn to use only the

spoon to eat. Once they mastered the spoon then the fork is introduced. The child

began to learn to coordinate with both spoon and fork to eat.

In learning how to control the lateral-directional mode, the RL agent is first trained

how to control the roll angle. This training set is divided into two parts. In the first

part, the rudder deflection is considered is considered zero. The RL agent has to

learn to control the roll angle only with aileron. This will push the RL agent to a

total reward value that converges to a best performance with only the use of the

aileron.

Then in the second part of the training set, the rudder is added and the RL agent

started to coordinate the use of both aileron and rudder to control the roll angle.

This should be able to produce a converging learning process easily because the

RL agent has already found the suitable policy for zero rudder deflection. How

this training set works is visually explained in Figure 7-1.

 The training set to learn how to control the roll angle is followed by another

training set that trains the RL agent to learn how to control the yaw angle (Figure

7-2). As is the training for controlling the roll angle, the RL agent has to learn to

control the yaw angle by using rudder deflection only. Then it is followed by

learning to control it using both aileron and rudder deflection.

101

Table 7-3 The Training Sequence for Lateral-Directional Mode

102

Figure 7-1 The Training Set To Control The Roll Angle

Figure 7-2 The Training Set To Control The Yaw Angle

Table 7-3 Shows the training sequence for this simulation and which part uses only

one action that varies and which part has to coordinate with two actions. Each

training set provides an overall of 1000 episodes for the RL agent to master its

training. 2/3 of those episodes are used for learning to coordinate two actions. It Is

assumed that controlling a roll or a yaw angle by coordinating two different actions

takes longer to learn.

103

7.4 Result

In this chapter, two simulations are executed. The first simulation consists of the

training process of the RL agent and the testing episode following the end of the

training process. The training process applied the learning strategy to train the

RL agent to learn to control the lateral-directional mode of the aircraft. The test

episode following it will be to test the resulting policy.

However, there is a chance that during the testing episode, the RL agent might

not respond in the best possible action. This is due to the fact that the RL agent

often times explores a new or untried action for certain situation. That is why the

second simulation needs to be performed.

The second simulation will use the final policy from the first simulation and applied

it to another programme with the same aircraft model. However, the noise that is

added to the action policy is assumed non-existent. The Ornstein-Uhlenbeck

parameter are assumed zero. Therefore, the RL agent won’t be exploring

anymore and just exploiting the initial policy.

For the second simulation, the number of layers for the network must be the same

between the first simulation and the second. This is because the final policy saved

is in the form of a network. In this investigation the number of layers for the

network are respectively 500 and 600.

For the exploration policy in the first simulation, the Ornstein-Uhlenbeck

parameter are:

Table 7-4 Ornstein-Uhlenbeck Parameter for Simulation 07.01

𝜃𝑂𝑈 = 0.2 𝜎𝑂𝑈 = 0.05

Figure 7-3 shows how the final policy from simulation 07.01 is extracted and

applied as the initial policy in simulation 07.02. In simulation 07.02, there is no

more training process for the RL agent. The RL agent simply responded to the

initial condition (state) and initiate an action based on the initial policy that is no

longer empty.

104

(i) Simulation 07.01 (ii) Simulation 07.02

Figure 7-3 The Schematic For Simulation 07.01 and 07.02

105

Figure 7-4 The Total Reward Per Training Episode in Simulation 07.01

-4000

-3500

-3000

-2500

-2000

-1500

-1000

-500

0

500

0 1000 2000 3000 4000 5000 6000

To
ta

l R
ew

ar
d

s

Episode

Total Rewards Per Episode For Simulation 07.01 (UAS)

107

Figure 7-5 Test Episode Following Training in Simulation 07.01

108

The result of simulation 07.01 can be seen in Figure 7-4, Figure 7-5 and Figure

7-6. The total reward value in Figure 7-4 shows that the RL agent has manage to

converge even though there are instances where the exploring episode has

deviated so far from the desired response. This can be attributed to the small

parameters of the noise parameters that led the RL agent to explore extremely

throughout the learning process instead of clustered together throughout the

earlier episodes.

For the test episode in simulation 07.01, the only changes made is the value of

desired yaw angle (𝜓𝑑). Figure 7-5 shows that the RL agent seems to be

following the desired path of change in yaw angle. However, the response

initiated by the RL agent doesn’t overlap perfectly with the desired path. It has

given a steady state error of about ±10%. There is a possibility that this value

doesn’t represent the value of the RL agent exploiting its already developed

policy. There is a possibility that this is a value where the RL agent are actually

exploring other possibility for this initial state.

Despite the result of the episode following the training episodes, the value of

𝑄𝑚𝑎𝑥 in Figure 7-6, shows that it is trying to find its stability inside the value range

of ±0.2. This shows that the final policy resulted from simulation 07.01 is suitable

enough to be applied for the purpose of controlling the system.

Based on this investigation into applying DDPG for flight control, if the value of

𝑄𝑚𝑎𝑥 towards the end of the training process is maintained at the range of ±1.0,

then the resulting policy is suitable enough to control the system.

109

Figure 7-6 Qmax Changes in Simulation 07.01

110

The result of Simulation 07.02 can be seen in Figure 7-7, Figure 7-8 and Figure

7-9. Figure 7-7 shows that the initial policy used in the simulation is no longer

empty (zero). This is shown by the value of total reward that are already close to

zero. The response that this reward value represents can be seen in Figure 7-8.

Episodes 1-3 tries to test the policy by attempting to change just one angle, either

the roll angle or the yaw angle. However, the result shows a less than stellar

performance. This is due the coupling nature of lateral-directional mode in an

aircraft. Any movement of the aileron will inflict the roll angle and the yaw angle.

Therefore, it shows in Figure 7-8 graph (a) and (b). There’s a slight change in

yaw angle, but the RL agent manage to control it and stabilize the yaw angle

albeit with a steady state error. Vice versa for the rudder. The same principal

applies to changes in yaw angle only, as seen in graph (c).

The response for the changes in roll angle in graph (b) and yaw angle in graph

(c) might be more exactly like the desired path of change if the final policy is

allowed to train some more with both control surface not limited except for the

capability of the aircraft.

Figure 7-8 in graph (d) shows how the RL agent response to a change in both the

roll angle and the yaw angle. It shows that the RL agent manage to generally

follow the desired path. The 𝑄𝑚𝑎𝑥 in Figure 7-9 shows that during the whole test

in simulation 07.02, the value doesn’t change much.

It takes roughly 48 hours in a common desktop to train an RL agent to learn to

control the lateral-directional of an aircraft.

111

Figure 7-7 The Total Reward Per Episode for Simulation 07.02

-3

-2.5

-2

-1.5

-1

-0.5

0

0 1 2 3 4 5 6 7

To
ta

l R
ew

ar
d

s

Episode

Total Rewards Per Validation Episode for Simulation 07.01

112

Figure 7-8 Result of Simulation 07.02

113

Figure 7-9 Qmax Changes in Validation of Simulation 07.02

114

7.5 Conclusion

Based on the results of simulations 07.01 and 07.02, it is proven that the by

following the learning strategy described in sub chapter 7.3, the RL agent can

learn how to utilise two control surface with coupling nature to control the lateral-

directional of the aircraft

Also, by seeing the result of simulation 07.02, it is also confirming that the final

policy network can be extracted and used as the initial policy in another program

with the same aircraft model. This is important as in real situations the RL agent

can be trained off board an aircraft and the final policy can be put on board once

it is deemed suitable.

115

116

8 DEVELOPING FLIGHT CONTROL FOR 6-DEGREE-OF-

FREEDOM USING DDPG WITH THREE ACTION

8.1 Introduction

This chapter focuses on developing a training strategy for the RL agent to learn

how to control the full 6 degree of freedom of an air vehicle. This is a problem

because in this case study, there are three action variables, which made the

number of possible action combination increased exponentially. The action

variables are the elevator, aileron and rudder.

The learning strategy in Chapter 7 works by first limiting the range of possible

action by locking one action equals to zero. Then when the RL agent has

mastered the use of one action, the locked action is unlocked and given the

chance to explore.

Applying this strategy to this case study resulted in the RL agent failing to learn

to control system. This is shown in the result of the total rewards per episode that

doesn’t converge. It failed to learn to control the longitudinal mode of the air

vehicle once it masters the lateral-directional mode. Vice versa, if it learns to

control the longitudinal mode of the air vehicle, then it will fail to learn to control

the lateral-directional mode.

So, for this case study, a new learning strategy has to be develop to unofficially

guide the RL agent through its learning process. In this case study, the operating

condition is fixed. The air vehicle for this case study is an unmanned aerial

vehicle.

8.2 Model

The model of UAS that is used for the simulation is a nonlinear model from[52].

The full 6-degree-of-freedom of the UAS model can be seen in the following 9

equations.

117

�̇� = 𝑣𝑟 − 𝑤𝑞 − 𝑔 sin 𝜃 +
𝑄𝑆𝐶𝑥

𝑚

(8-1)

�̇� = −𝑢𝑟 + 𝑤𝑝 + 𝑔 𝑠𝑖𝑛 𝜙 𝑐𝑜𝑠 𝜃 +
𝑄𝑆𝐶𝑌

𝑚

(8-2)

�̇� = −𝑣𝑝 + 𝑢𝑞 + 𝑔 cos 𝜙 cos 𝜃 +
𝑄𝑆𝐶𝑍

𝑚

(8-3)

�̇� =
𝐼𝑥𝑧

𝐼𝑥𝑥

(�̇� + 𝑝𝑞) −
𝐼𝑧𝑧 − 𝐼𝑦𝑦

𝐼𝑥𝑥
𝑞𝑟 +

𝑄𝑆𝑏𝐶𝑙

𝐼𝑥𝑥

(8-4)

�̇� = −
𝐼𝑥𝑧

𝐼𝑦𝑦

(𝑝2 − 𝑟2) −
𝐼𝑥𝑥 − 𝐼𝑧𝑧

𝐼𝑦𝑦
𝑝𝑟 +

𝑄𝑆𝑐𝐶𝑚

𝐼𝑦𝑦

(8-5)

�̇� = −
𝐼𝑥𝑧

𝐼𝑧𝑧

(�̇� − 𝑞𝑟) −
𝐼𝑦𝑦 − 𝐼𝑥𝑥

𝐼𝑧𝑧
𝑝𝑞 +

𝑄𝑆𝑏𝐶𝑛

𝐼𝑧𝑧

(8-6)

�̇� = 𝑝 + 𝑞 𝑠𝑖𝑛 𝜙 𝑡𝑎𝑛 𝜃 + 𝑟 𝑐𝑜𝑠 𝜙 𝑡𝑎𝑛 𝜃 (8-7)

�̇� = 𝑞 cos 𝜙 + 𝑟 sin 𝜙 (8-8)

�̇� = 𝑞 𝑠𝑖𝑛 𝜙 𝑠𝑒𝑐 𝜃 + 𝑟 𝑐𝑜𝑠 𝜙 𝑠𝑒𝑐 𝜃 (8-9)

The aerodynamic force coefficients (𝐶𝑋 , 𝐶𝑌, 𝐶𝑍) and the aerodynamic moment

coefficients (𝐶𝑙 , 𝐶𝑚, 𝐶𝑛) can be seen in the equations below.

𝐶𝑋 = −𝐶𝐷 cos 𝛼 + 𝐶𝐿 sin 𝛼 (8-10)

𝐶𝑌 = 𝐶𝑌,𝛽𝛽 + (𝐶𝑌,𝑝𝑝 + 𝐶𝑌,𝑟𝑟) (
𝑏

2𝑉
) + 𝐶𝑌,𝛿𝑅𝛿𝑅

(8-11)

𝐶𝑍 = −𝐶𝐷 sin 𝛼 − 𝐶𝐿 cos 𝛼 (8-12)

𝐶𝑙 = 𝐶𝑙,𝛽𝛽 + (𝐶𝑙,𝑝𝑝 + 𝐶𝑙,𝑟𝑟) (
𝑏

2𝑉
) + 𝐶𝑙,𝛿𝑅𝛿𝑅 + 𝐶𝑙,𝛿𝐴𝛿𝐴

+ (𝑥𝑐𝑔 − 𝑥𝑐𝑔,𝑟𝑒𝑓)𝐶𝑌 (
𝑐

𝑏
) 𝑠𝑖𝑛 𝛼

(8-13)

118

𝐶𝑚 = 𝐶𝑚,𝑢𝑢 + 𝐶𝑚,𝛼𝛼 + (𝐶𝑚,�̇��̇� + 𝐶𝑚,𝑞𝑞) (
𝑐

2𝑉
) + 𝐶𝑚,𝛿𝐸𝛿𝐸

+ (𝑥𝑐𝑔 − 𝑥𝑐𝑔,𝑟𝑒𝑓)(𝐶𝐿 𝑐𝑜𝑠 𝛼 + 𝐶𝐷 𝑠𝑖𝑛 𝛼)

(8-14)

𝐶𝑛 = 𝐶𝑛,𝛽𝛽 + (𝐶𝑛,𝑝𝑝 + 𝐶𝑛,𝑟𝑟) (
𝑏

2𝑉
) + 𝐶𝑛,𝛿𝑅𝛿𝑅 + 𝐶𝑛,𝛿𝐴𝛿𝐴

+ (𝑥𝑐𝑔 − 𝑥𝑐𝑔,𝑟𝑒𝑓)𝐶𝑌 (
𝑐

𝑏
) 𝑐𝑜𝑠 𝛼

(8-15)

The drag coefficient (𝐶𝐷) and the lift coefficient (𝐶𝐿) equations are as follows.

𝐶𝐷 = 𝐶𝐷,𝛼𝛼 (8-16)

𝐶𝐿 = 𝐶𝐿,𝑢𝑢 + 𝐶𝐿,𝛼𝛼 + 𝐶𝐿,𝑞𝑞 (
𝑏

2𝑉
) + 𝐶𝐿,𝛿𝐸𝛿𝐸

(8-17)

Table 8-1 Parameters of UAS for 6-degree-of-freedom

m = 12.5 kg c = 0.2 m V = 20 m/s 𝜌 = 1.21 kg/m

b = 3 m S = 0.6 𝑚2

𝐼𝑥𝑥 = 1.446 𝑘𝑔. 𝑚2 𝐼𝑦𝑦 = 1.181 𝑘𝑔. 𝑚2 𝐼𝑧𝑧 = 2.269 𝑘𝑔. 𝑚2 𝐼𝑥𝑧 = 0.1 𝑘𝑔. 𝑚2

𝑋𝑐𝑔 = 0.564 m 𝑋𝑐𝑔,𝑟𝑒𝑓 = 0.512 m

𝐶𝐿,𝛼 = 5.5138 𝐶𝐿,𝑞 = 7.4673 𝐶𝐿,𝑢 = 0.0024 𝐶𝐿,𝛿𝐸 = 0.2649

𝐶𝑚,𝑞 = -22.5924 𝐶𝑚,𝛿𝐸 = -1.1893 𝐶𝑚,𝑢 = 0.0003 𝐶𝑚,�̇� = -4.1034

𝐶𝑚,𝛼 = −1.6510 𝐶𝐷,𝑎 = 0.2188 𝐶𝑙,𝛿𝐴 = 0.2549 𝐶𝑛,𝛿𝐴 = 0.0

𝐶𝑙,𝛽 = -0.1195 𝐶𝑙,𝑝 = -0.5796 𝐶𝑙,𝑟 = 0.1898 𝐶𝑙,𝛿𝑅 = 0.0439

𝐶𝑛,𝛽 = 0.1151 𝐶𝑛,𝑝 = -0.0730 𝐶𝑛,𝑟 = -0.0901 𝐶𝑛,𝛿𝑅 = -0.1041

119

8.3 Learning Strategy

In this case study, the RL agent has to be able to learn to control the roll 𝜙, pitch

𝜃 and yaw angle 𝜓 using three control surfaces which are elevator, aileron and

rudder. Therefore, the definition of state and action is as followed.

The state being observed are the error between the aircraft’s roll, pitch and yaw

angle with the desired roll, pitch and yaw angle, (𝜙𝐸𝑟𝑟 , 𝜃𝐸𝑟𝑟 and 𝜓𝐸𝑟𝑟). In

addition, the agent also needs to observe the roll rate (𝑝), pitch rate (𝑞) and yaw

rate (𝑟). It needs to see how to achieve its goal by controlling the angle rate. The

state,𝑠𝑡, is defined as follows.

𝑠𝑡 = [𝑝 𝜙𝐸𝑟𝑟 𝑟 𝜓𝐸𝑟𝑟 𝑞 𝜃𝐸𝑟𝑟] (8-18)

Based on Chapter 4, the reward function that can best represent the desired flight

performance is by following a predetermined path of flight. The error in roll angle

and yaw angle are the same as defined in Chapter 7.

𝜙𝐸𝑟𝑟 = 𝜙 − 𝜙𝑟𝑒𝑓

𝜓𝐸𝑟𝑟 = 𝜓 − 𝜓𝑟𝑒𝑓

The error in pitch angle are the same as defined in Chapter 5.

𝜃𝐸𝑟𝑟 = 𝜃 − 𝜃𝑟𝑒𝑓

The equation desired changes in roll angle and yaw angle are the same as the

one in Chapter 7. The equation for the desired changes in pitch angle is the same

as in Chapter 5. Those equations are written again below.

�̇�𝑟𝑒𝑓 = −2𝜉𝑟𝑒𝑓𝜔𝑛𝑟𝑒𝑓
�̇�𝑟𝑒𝑓 − 𝜔𝑛𝑟𝑒𝑓

2 (𝜙0 − 𝜙𝑡)

�̇�𝑟𝑒𝑓 = −2𝜉𝑟𝑒𝑓𝜔𝑛𝑟𝑒𝑓
�̇�𝑟𝑒𝑓 − 𝜔𝑛𝑟𝑒𝑓

2 (𝜓0 − 𝜓𝑡)

�̇�𝑟𝑒𝑓 = −2𝜉𝑟𝑒𝑓𝜔𝑛𝑟𝑒𝑓
�̇�𝑟𝑒𝑓 − 𝜔𝑛𝑟𝑒𝑓

2 (𝜗0 − 𝜃𝑡)

𝜙0 is defined as the initial state of roll angle and 𝜙𝑡 is defined as the final goal of

the roll angle. 𝜓0 is defined as the initial state of yaw angle and 𝜓𝑡 is defined as

120

the final goal of the yaw angle. 𝜃0 is defined as the initial state of pitch angle and

𝜃𝑡 is defined as the final goal of the pitch angle. 𝜉𝑟𝑒𝑓 is a damping ratio of 1 and

(𝜔𝑛𝑟𝑒𝑓
) is the natural frequency of 2𝜋.

The reward function defined in the following equation.

𝑅 = − ∑ {−(𝜙𝐸𝑟𝑟
2) − (𝜓𝐸𝑟𝑟

2) − (𝜃𝐸𝑟𝑟
2)} ∗ 0.01 ∗ 𝑛𝑆𝑡𝑒𝑝

𝑛𝑆𝑡𝑒𝑝

𝑗

(8-19)

Again, the reward function is multiplied by a timestep component to ensure that

the steady state error in roll, pitch and yaw angle are the smallest towards the

end.

The action, 𝑎𝑡, is defined as a vector that consists of aileron deflection, elevator

deflection and rudder deflection. So, the action is considered a single action but

with a larger number of possibilities as it contains possible variations of three

variables.

𝑎𝑡 = [(𝛿𝐴 𝛿𝑅 𝛿𝐸)] (8-20)

The limitation of the control surface deflection is determined as follow.

Table 8-2 Control Surface Limitation

Aileron deflection limit ±210

Rudder deflection limit ±100

Elevator deflection limit ±250

In determining the learning strategy, another problem has occurred while moving

on from the learning strategy of controlling the lateral-directional mode. The same

concept cannot be directly applied to the d DoF system. This is because the

amount of possible combination of actions has greatly increased.

Another aspect is that even though in conventional flight control design, the

longitudinal mode is usually handled separately to the lateral-directional mode,

there is however an influence that crosses between the two. Therefore, when

121

learning to control one mode, all three actions must engage/active from the start

of learning.

This case study proposes an approach by applying the way a child learns to

stand/walk. When they first learn to stand, they needed their hands to lean on

other surfaces to have balance. Then as they started to master how to stand, they

started to walk with both hands still stretched for balance. Much further and they

would start to keep their hands by their side. However, the hands will always

function to maintain balance, because if a person loses one of the hands, it will

impact how they try to stand.

In learning how to control the aircraft in a 6 DoF system, the learning strategy is

divided into three training set. Each training set will train the RL agent to learn to

control its one mode, either it is longitudinal/lateral/directional, while still

maintaining the stability of the other modes.

In each of the training set, no control surface is left with zero deflection. However,

certain limitation is put on one or two of the control surfaces, depending on the

flight mode its currently trying to control. This is done so the RL agent will have

a less number of possible combination of action and therefore incited a faster

convergence.

This is also done to avoid the RL agent from having to re-learn and repopulate its

policy network. This will happen, for example, when the RL agent has to learn to

control the roll angle whilst the elevator and rudder are locked and unable to

operate. When they are unlocked, then the policy would have to be adjusted

again as the pairing of state-action suddenly grew and the RL agent has to re-

learn to control the roll angle with all control surfaces operating.

However, if the RL agent already learning from the beginning how to control the

roll angle with all control surfaces operating, albeit with some range limitation,

then the RL agent don’t have to work twice and the range limitation will help

converge the learning process faster. Table 8-3 and Table 8-4 shows how the

training is executed.

122

 Table 8-3 Training Set A To Learn Control of Roll Angle

Further explained, in training set A, the RL agent learns how to control the roll

angle. In the first 300 training episode, the agent is given a full range of the aileron

deflection. This means in the range between −210 to +210. However, the range

of rudder deflection and elevator deflection is limited.

The rudder deflection is limited in a range of 𝜒𝑅 = ±30. The elevator deflection is

limited to a range of 𝜒𝐸 = ±80. These two control surfaces are important because

it is needed to control any movement in yaw and pitch angel due to movement in

roll angle. However, it is limited so that the RL agent can converge swiftly.

The purpose of giving the RL agent the availability to utilize a small part of the

other two control surfaces is not to explore in them. That will be done in the other

part of the training. The rudder deflection is explored during the second 300

episodes and the elevator deflection is explored during the third 300 episodes.

In training set B, the RL agent learns how to control the pitch angle. In the first

300 training episode (episodes 1801-2100), the agent is given a full range of the

elevator deflection. This means in the range between −250 to +250. However,

the range of rudder deflection and aileron deflection is limited. The rudder

deflection is limited in a range of 𝜒𝑅 = ±30. The aileron deflection is limited to a

range of 𝜒𝐴 = ±50.

123

Figure 8-1 The Training Set To Control The Roll Angle

124

Table 8-4 Training Set B To Learn Control of Pitch Angle

Similar with training set A, in training set C, the RL agent learns how to control

the yaw angle. In the first 300 training episode (episodes 3601-3900), the agent

is given a full range of the rudder deflection. This means in the range between

−80 to +80. However, the range of elevator deflection and aileron deflection is

limited. The elevator deflection is limited in a range of 𝜒𝐸 = ±80. The aileron

deflection is limited to a range of 𝜒𝐴 = ±50.

In this case study, the number of layers for the network are respectively 1400 and

1500. All the simulations will focus on the aircraft’s response in the first 3 seconds

and each second will be divided into 300 timestep (nStep). For the exploration

policy, the Ornstein-Uhlenbeck parameter are:

Table 8-5 Ornstein-Uhlenbeck Parameter for Simulation 08.01

𝜃𝑂𝑈 = 0.3 𝜎𝑂𝑈 = 0.05

Running the whole programme with three control surface requires a lot of

computer memory and processor capability. To lessen the load and to made

trouble shooting more easily, the training programme is divided into 4

programmes. These programmes consists of:

- Training set A, to learn to control the lateral mode

- Training set B, to learn to control the longitudinal mode

- Training set C, to learn to control the directional mode

125

- Training set D, to learn to control by coordinating between all 3 control

surfaces.

8.4 Result

In the simulation to train the RL agent to control the 6 degree-of-freedom of an

aircraft, the training session is divided into 4 separate programs. This is because

it takes a lot of memory power and processor to run the training all at once. So, it

is decided to separate the training program. Each final policy network from the

previous program becomes the initial policy for the next training program.

The first three program trains the RL agent to focus on controlling the roll angle

(training set A), pitch angle (training set B) and the yaw angle (training set C). In

the fourth program, the RL agent is trained to utilize the whole range of the 3

control surfaces. Figure 8-2 describes how the policy network from a training

programme is extracted and used as the initial policy network in another training

programme.

Figure 8-2 Using Policy From Another Programme As The Initial Policy

The following figures shows the result for each training program and the resulting

response of the RL agent towards the initial state.

127

Figure 8-3 The Total Reward and Qmax Per Episode in Training Set A

128

Figure 8-4 The Total Reward and Qmax Per Episode in Training Set B

129

Figure 8-3 and Figure 8-4 shows that the RL agent’s learning process through

training set A and B have gone successful. This is shown with the converging of

the total reward value for each episode in the training set. Training set A was

designed to train to control the roll angle and training set B was designed to train

to control the pitch angle. Judging from the value of 𝑄𝑚𝑎𝑥 on training set A, it

shows the value in the last 200 episodes are between -1 and 1, which previous

simulations show that the final policy is suitable.

The result performance of training set A in Figure 8-5 shows that although the roll

angle manages to follow the desired trajectory, the response itself is oscillating.

This could be attributed to the fact that it is still exploring the possible actions.

In Figure 8-6, the RL agent has manage to control the pitch angle response to

generally follow the desired path of change. The response does give a large

steady state error. This result is considered acceptable at the moment as it is not

the final policy that will be used.

Figure 8-9 shows that although the total rewards value shows convergence, the

value of 𝑄𝑚𝑎𝑥 is barely 1. This shows in the performance result in Figure 8-7,

where the angles of pitch roll and yaw all diverge even though the yaw angle

generally follow the desired path first before diverging.

Now, the resulting policy from training set C is still used for the initial policy in

training set D. This is with an assumption that the RL agent will continue to learn

to control the whole system in training set D. It is expected that the response of

the RL agent to control the roll angle, yaw angle and the pitch angle can be

improved during training set D. In training set D, the RL agent is trained to control

the roll, yaw and pitch angle using the full range of all 3 control surfaces.

Figure 8-10 shows that the total reward value of the training episodes steadily

close to zero. The value of 𝑄𝑚𝑎𝑥 also shows that its value slowly and steadily

comes down to zero. This should suggest that the final policy network is ready to

be used for 6 degree-of-freedom control.

130

Figure 8-5 Final Episode of Training Set A

Figure 8-6 Final Episode of Training Set B

131

In Figure 8-8 shows a sampling episode towards the end of training set D. It

shows that although the RL agent manage to control the pitch, roll and yaw angle

to ‘generally’ follow the desired trajectory, it is not exactly following it.

Figure 8-11, Figure 8-12, and Figure 8-13 shows the result of the testing phase.

This is the phase where the extracted final policy network from training set D is

applied in a new program. This second program has no noise component in its

actor policy.

There are 5 episodes for testing the final policy network. The first three tested the

policy for single attitude control. The last tested for multiple attitude control. Figure

8-11 shows that the total reward value of the test episodes starts to decline from

episode 4. In episode 5, the value plummets even more. Yet, the 𝑄𝑚𝑎𝑥 value

shows a spike of value change for episode 5, even though it is relatively small.

Figure 8-12 shows how the RL agent controlled the roll angle (a), pitch angle (b)

and yaw angle (c) separately, while also maintain the other respective angles.

Figures (a) and (b) shows that the RL agent manage to achieve the desired roll

angle and pitch angle while still maintaining the other angles to not diverge.

However, in figure (c), the RL agent has a hard time following the desired yaw

angle trajectory. Despite the fact that it still manages to control the other angles

to not diverge.

Figure 8-13 shows the RL agent trying to control multiple attitude angles of the

air vehicle. In both figures, where the RL agent tries to change the roll-yaw angle

(d) and where the RL agent tries to change the roll-pitch-yaw angles (e), the yaw

angle is not giving the best performance. This might be due to the policy resulted

from training set C that is less than stellar. A solution is proposed to do the

training set C again with adjusted hyper-parameter, in order to make the policy

result for yaw control more suitable.

133

Figure 8-7 Final Episode of Training Set C

Figure 8-8 Final Episode of Training Set D

134

Figure 8-9 The Total Reward and Qmax Per Episode in Training Set C

135

Figure 8-10 The Total Reward and Qmax Per Episode in Training Set D

136

Figure 8-11 The Total Reward and Qmax Per Episode in Policy Test

137

Figure 8-12 Test Episode For Single Attitude Control with The Final Policy Network

138

Figure 8-13 Test Episode For Multiple Attitude Control with The Final Policy Network

139

8.5 Conclusion

Based on the simulation done in this chapter, it shows that the RL agent can

develop a policy network to control an air vehicle in 6 degree-of-freedom using

all three control surfaces. By using all the control surface at each training process

and also limited the range of the secondary control surface, the RL agent can

converge it learning process to control an air vehicle with multiple control

surfaces. Therefore, DDPG method can be used to obtain a policy network to

control an air vehicle.

it shows that the policy network can be extracted and use as the initial policy

network in another programme or another training programme. This advantage

can be utilized to optimize the learning process. By dissecting the learning

process into several training set, trouble in the learning process can be identified

quickly and can be dealt with without having to redo the whole learning process.

This saves time and effort.

141

9 CONCLUSION

This chapter consists of the research conclusion and the future works that can be

seen on the horizon following this thesis.

9.1 Conclusion

Based on this research, it is possible to shape the learning process of the

reinforcement learning agent using the deep deterministic policy gradient

method. For this purpose, there are two aspects that is essential in shaping the

learning process of a DDPG agent. They are:

- Guaranteeing the response in controlling the system, in this case an air

vehicle.

- Developing the learning process of the agent by designing the training

strategy in order to achieve the desired knowledge and skill

Based on the investigations in chapters 4 and 5, the way to guarantee the

response of the RL agent in controlling a system is by:

- Determining the state definition, which consists of variables to observe and

control. These variables would determine the number of network layers

needed for the learning process. Excessive variable can lead to a growing

number of layers and the time and computer memory to executed on.

- Defining the desired path to follow in order to control a variable/variables

of the system. Here the variable that is being controlled is the pitch angle

(longitudinal mode). It is easier for the system to learn to follow a desired

path instead of finding its own path without knowing the limitations of the

air vehicle itself.

- Determining the reward function that is representative so that the most

desired performance equals the highest reward.

Learning from simulations in chapters 6, 7 and 8, it is clear that the learning

strategy for controlling an air vehicle are comprised to these:

142

- For variating operating condition, the state definition shouldn’t be added

or changed. The DDPG agent itself will implicitly consider it in its policy.

- To handle dual action with coupling nature, the strategy is to first learn the

use of its most dominant action. The secondary action is confined to zero.

Once the total reward is stabilized then the secondary action is released

and variated alongside the dominant one.

- To handle multiple actions that have some level of influence in one

another, the training strategy is to learn the effects of one action at the

time. But re-learning the value of a pair of state-action1 with action2 cost

time and may also cost convergence. Therefore, during training for one

action, the other actions are not locked in zero value. Instead, they are

given a small range to move, so that throughout the training process, the

RL agent is accustomed to work with multiple actions.

Also, a conclusion of this research is that the final policy network post-training

process can be extracted and used in another program. This is similar to

removing a pilot from training in a simulator to a real air vehicle. The policy is

considered suitable when it is tested and gives a value of 𝑄𝑚𝑎𝑥 between [-1,1].

The work of this thesis shows that shaping the learning process of a RL is

essential in developing a 6-degree-of-freedom flight control system. This is an

important stepping stone for incorporating RL in the flight control system

development.

9.2 Future Works

For future works, this work should be developed further to also control the action

profile given to system, as it currently still shows damaging chattering. A method

can also be developed to determine the number of layers for the neural network

so that it can eliminate the trial-and-error phase of determining the appropriate

number of layers.

Another possible future work is to investigate and explore the possibility of

applying a final policy network from a certain air vehicle to a different air vehicle

143

within the same flight envelope. If this is possible, it can shed a lot of time to

develop a control system for a newly develop air vehicle.

Further advanced work will be of investigating the use of DDPG method to

develop fault tolerant flight control. An adjustment needs to be made to the DDPG

method so as to allow a small room to update its policy following a fault

occurrence and yet not so big a room that it would explore its policy during flight.

144

145

REFERENCES

1. Sutton RRS., Barto AGA., Book a B. Reinforcement Learning : An

Introduction. 1998; Available at: DOI:10.1109/TNN.1998.712192

2. Lillicrap TP., Hunt JJ., Pritzel A., Heess N., Erez T., Tassa Y., et al.

Continuous control with deep reinforcement learning. 2015; Available at:

DOI:10.1561/2200000006

3. B CL., B AGL., B MJN. Implementation of Deep Deterministic Policy

Gradients for Controlling Dynamic. Springer International Publishing; 2018.

276–287 p. Available at: DOI:10.1007/978-3-319-95972-6

4. Kumar A., Paul N., Omkar SN. Bipedal Walking Robot using Deep

Deterministic Policy Gradient. 2018; Available at: DOI:arXiv:1807.05924v2

5. Kardell S., Kuosku M. Autonomous vehicle control via deep reinforcement

learning Master’s thesis in Systems, Control and Mechatronics. 2017;

6. Koch W., Mancuso R., West R., Bestavros A. Reinforcement Learning for

UAV Attitude Control. : 1–13.

7. Busoniu L., Babuska R., De Schutter B., Ernst D. Dynamic programming

and reinforcement learning in Large and Continuos Space. Reinforcement

Learning and Dynamic Programming using Function Approximators.

Automation. CRC Press Taylor & Francis Group; 2011. pp. 1–270.

Available at: DOI:10.1515/9781400821334.toc

8. Si J., Barto A., Powell W., Wunsch D. Handbook of Learning and

Approximate Dynamic Programming. 2004.

9. Nie C., Zhu M., Zheng Z., Wu Z. Model-free control for stratospheric airship

based on reinforcement learning. Chinese Control Conference, CCC. 2016;

2016-Augus: 10702–10707. Available at:

DOI:10.1109/ChiCC.2016.7555054

10. Daskiran O., Huff B., Dogan A. Low Speed Airship Control using

Reinforcement Learning and Expert Demonstrations. AIAA Atmospheric

146

Flight Mechanics Conference. 2017; (January): 1–35. Available at:

DOI:10.2514/6.2017-0934

11. Rottmann A., Plagemann C., Hilgers P., Burgard W. Autonomous blimp

control using model-free reinforcement learning in a continuous state and

action space. IEEE International Conference on Intelligent Robots and

Systems. 2007; : 1895–1900. Available at:

DOI:10.1109/IROS.2007.4399531

12. Junell J., Kampen E Van., Visser C De., Chu Q. Reinforcement Learning

Applied to a Quadrotor Guidance Law in Autonomous Flight. 2015;

(January): 1–13.

13. Han J-H., Lee D-K., Lee J-S., Chung S-J. Teaching micro air vehicles how

to fly as we teach babies how to walk. Journal of Intelligent Material

Systems and Structures. 2013; 24(8): 936–944. Available at:

DOI:10.1177/1045389X13478270

14. Lee D., Choi M., Bang H. Model-free LQ Control control for unmanned

helicopters using reinforcement learning. The 5th International Conference

on Automation, Robotics and Applications. 2011; (6): 19–22. Available at:

DOI:10.1109/ICARA.2011.6144849

15. Zhu Y., Mottaghi R., Kolve E., Lim JJ., Gupta A., Fei-Fei L., et al. Target-

driven Visual Navigation in Indoor Scenes using Deep Reinforcement

Learning. 1609.05143V1. 2016; Available at:

http://arxiv.org/abs/1609.05143

16. Wharington J. Autonomous Control of Soaring Aircraft by Reinforcement

Learning. Doctoral Thesis. 1998; (November): 22–53.

17. Woodbury T., Dunn C., Valasek J. Autonomous Soaring Using

Reinforcement Learning for Trajectory Generation. 52nd Aerospace

Sciences Meeting. 2014; (January): 13–17. Available at:

DOI:doi:10.2514/6.2014-0990

18. Lee DJLDJ., Bang HBH. Reinforcement learning based neuro-control

147

systems for an unmanned helicopter. Control Automation and Systems

(ICCAS), 2010 International Conference on. 2010; (2): 2537–2540.

19. Kim JH., Lewis FL. Model-free H??? control design for unknown linear

discrete-time systems via Q-learning with LMI. Automatica. 2010; 46(8):

1320–1326. Available at: DOI:10.1016/j.automatica.2010.05.002

20. Hoffmann G., Jang JS., Tomlin CJ. Multi-Agent X4-Flyer Testbed Control

Design: Integral Sliding Mode vs. Reinforcement Learning. International

Conference on Intelligent Robots and Systems. 2005; : 468–473.

21. Ng AY., Kim HJ., Jordan MI., Sastry S. Autonomous helicopter flight via

Reinforcement Learning. 2003;

22. Ng AY., Coates A., Diel M., Ganapathi V., Schulte J., Tse B., et al.

Autonomous inverted helicopter flight via reinforcement earning. Springer

Tracts in Advanced Robotics. 2006; 21: 363–372. Available at:

DOI:10.1007/11552246_35

23. Koch W. Flight Controller Synthesis Via Deep Reinforcement Learning.

Boston University; 2019. Available at: http://arxiv.org/abs/1909.06493

24. Morrison S., Fisher A., Zambetta F. Towards Intelligent Aircraft Through

Deep Reinforcement Learning. 10th International Micro-Air Vehicles

Conference. Melbourne; 2018. pp. 1–8. Available at:

http://www.imavs.org/papers/2018/IMAV_2018_paper_52.pdf

25. Kroezen D. Online Reinforcement Learning for Flight Control. TU Delft. TU

Delft; 2019.

26. Zhou Y., Kampen E Van., Chu QP. Incremental Approximate Dynamic

Programming for Nonlinear Flight Control Design. Proceedings of the 3rd

CEAS EuroGNC. Toulouse; 2015. pp. 1–18.

27. Bhatnagar S., Panigrahi JR. Actor-critic algorithms for hierarchical Markov

decision processes. Automatica. 2006; 42(4): 637–644. Available at:

DOI:10.1016/j.automatica.2005.12.010

148

28. Al-Tamimi A., Lewis FL., Abu-Khalaf M. Model-free Q-learning designs for

linear discrete-time zero-sum games with application to H-infinity control.

Automatica. 2007; 43(3): 473–481. Available at:

DOI:10.1016/j.automatica.2006.09.019

29. Seijen H Van., Hasselt H Van., Whiteson S., Wiering M. A Theoretical and

Empirical Analysis of Expected Sarsa.

30. Feldbrugge RL. Using Reinforcement Learning to Make Optimal Use of

Available Power and Improving Overall Speed of a Solar-Powered Boat.

University of Groningen; 2010.

31. Silver D., Lever G., Heess N., Degris T., Wierstra D., Riedmiller M.

Deterministic Policy Gradient Algorithms. Proc. of the 31st International

Conference on Machine Learning. 2014; : 387–395. Available at:

http://jmlr.org/proceedings/papers/v32/silver14.html

32. Ko J., Klein DJ., Fox D., Haehnel D. Gaussian Processes and

Reinforcement Learning for Identification and Control of an Autonomous

Blimp. 2007; (April): 10–14.

33. Faust A., Palunko I., Cruz P., Fierro R., Tapia L. Automated aerial

suspended cargo delivery through reinforcement learning. Artificial

Intelligence. 2017; 247: 381–398. Available at:

DOI:10.1016/j.artint.2014.11.009

34. Konda VR., Tsitsiklis JN. Actor-Critic Algorithms. Proceedings of Advances

in Neural Information Processing Systems. 2000; 12: 1008–1014.

35. Crites RH., Barto AG. An Actor/Critic Algorithm That is Equivalent to Q-

learning. Proceedings of the 7th International Conference on Neural

Information Processing Systems. 1994; (1983): 401–408. Available at:

http://dl.acm.org/citation.cfm?id=2998687.2998737

36. Ng AY., Jordan M. PEGASUS: A Policy Search Method for Large MDPs

and POMDPs. Uncertainty in Artificial Intelligence Proceedings. 2000. pp.

406–415.

149

37. Mnih V., Kavukcuoglu K., Silver D., Graves A., Antonoglou I., Wierstra D.,

et al. Playing Atari with Deep Reinforcement Learning. 2013; : 1–9.

Available at: DOI:10.1038/nature14236

38. Tuyen LP., Chung TC. Controlling bicycle using deep deterministic policy

gradient algorithm. 2017 14th International Conference on Ubiquitous

Robots and Ambient Intelligence, URAI 2017. 2017; : 413–417. Available

at: DOI:10.1109/URAI.2017.7992765

39. Decayeux T. Autonomous Docking of a Quadrotor on a Moving Platform.

2016.

40. Bansal S., Akametalu AK., Jiang FJ., Laine F., Tomlin CJ. Learning

Quadrotor Dynamics Using Neural Network for Flight Control. 55th IEEE

Conference on Decision and Control. 2016; (0931843). Available at:

DOI:10.1109/CDC.2016.7798978

41. Hwangbo J., Sa I., Siegwart R., Hutter M. Control of a Quadrotor with

Reinforcement Learning. 2017; 2(4): 2096–2103. Available at:

DOI:10.1109/LRA.2017.2720851

42. Xu D., Hui Z., Liu Y., Chen G. Morphing control of a new bionic morphing

UAV with deep reinforcement learning. Aerospace Science and

Technology. Elsevier Masson SAS; 2019; 92: 232–243. Available at:

DOI:10.1016/j.ast.2019.05.058

43. Chang-Hun L. Lecture Notes 0n Nonlinear Controls for Aerospace System.

44. Sanchez E., Becerra H., Velez CM. Combining fuzzy and PID control for

an unmanned helicopter. NAFIPS 2005 - 2005 Annual Meeting of the North

American Fuzzy Information Processing Society. 2005; : 235–240.

Available at: DOI:10.1109/NAFIPS.2005.1548540

45. Salih AL., Moghavvemi M., Mohamed HAF., Gaeid KS. Flight PID controller

design for a UAV quadrotor. Scientific Research and Essays. 2010; 5(23):

3660–3667. Available at:

http://www.academicjournals.org/SRE%5Cnhttp://www.researchgate.net/

150

publication/230633819_Flight_PID_Controller_Design_for_a_UAV_Quadr

otor/file/d912f511361f422fdd.pdf

46. Bouabdallah S., Siegwart R. Backstepping and Sliding-mode Techniques

Applied to an Indoor Micro Quadrotor. Proceedings - IEEE International

Conference on Robotics and Automation. 2005; 2005(April): 2247–2252.

Available at: DOI:10.1109/ROBOT.2005.1570447

47. Chand AN., Kawanishi M., Narikiyo T. Non-Linear Model-free Control of

Flapping Wing Flying Robot using iPID. IEEE International Conference on

Robotics and Automation. 2016; : 2930–2937. Available at:

DOI:10.1109/ICRA.2016.7487458

48. Younes Y Al., Drak A., Noura H., Rabhi A., Hajjaji A El. Robust Model-Free

Control Applied to a Quadrotor UAV. Journal of Intelligent and Robotic

Systems: Theory and Applications. 2016; : 1–16. Available at:

DOI:10.1007/s10846-016-0351-2

49. Yusuf S., Lone M., Cooke A., Lawson N. Regressor time-shifting to identify

longitudinal stability and control derivatives of the Jetstream 3102.

Aerospace Science and Technology. Elsevier Masson SAS; 2017; 69:

218–225. Available at: DOI:10.1016/j.ast.2017.06.003

50. Kardell S., Kuosku M. Autonomous vehicle control via deep reinforcement

learning. 2017; : 73.

51. Xu J., Hou Z., Wang W., Xu B., Zhang K., Chen K. Feedback Deep

Deterministic Policy Gradient with Fuzzy Reward for Robotic Multiple Peg-

in-hole Assembly Tasks. IEEE Transactions on Industrial Informatics.

IEEE; 2018; PP(c): 1. Available at: DOI:10.1109/TII.2018.2868859

52. Hong J-H. Lecture Notes on Model Building for UAS.

151

Website:

53. https://emerj.com/ai-glossary-terms/what-is-machine-learning/ visited on

13 March 2019

https://emerj.com/ai-glossary-terms/what-is-machine-learning/

