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A B S T R A C T   

Two-phase flow regime identification is an essential transdisciplinary topic that spans digital signal processing, 
artificial intelligence, chemical engineering, and energy. Multiphase flow systems significantly impact pipeline 
safety, heat transfer, and pressure drop; therefore, precisely identifying the governing flow regime is crucial for 
effective modeling and design. However, it is challenging due to the geometrical complexity of flow regimes in 
multiphase flow. With the advances in sensor measurement and machine learning, applying non-destructive tests 
and self-supervised learning to practical industrial problems has become technically feasible and cost-effective. 
This study applies a weak-supervised learning-based two-phase flow regime identification solution using a non- 
destructive tests ultrasonic sensor in an S-shape riser experimental bed by proposing a self-supervised feature 
extraction algorithm. The proposed self-supervised feature extraction algorithm reduces time/labor consumption 
and human error in data annotation using SSL, which provides full supervision without manual annotation. The 
self-supervised feature extraction algorithm uses a bottlenecked neural network and encoder-decoder structure to 
extract compact features. The self-supervised feature extraction algorithm performance is evaluated using an 
established convolutional neural network-based classifier. The source data was collected from a 10 × 50 m riser 
experimental rig. The dataset is made available to the community as part of this study. The performance of the 
approach is comparable with state-of-the-art methods and is also the first successful attempt to apply self- 
supervised learning to multiphase flow regime ultrasonic signal identification. This study achieved 98.84%, 
0.000663, 0.00312, and 7.71 × 105 in accuracy, root mean square error, categorical cross-entropy, and model 
complexity, respectively. The practical experiment justifies the robustness, fairness, and practicability in the 
practical application environment. The proposed self-supervised feature extraction brings new approaches and 
inspirations for the feature extraction step in identifying a two-phase flow regime, and it will be beneficial to 
generalize this study in different riser shapes in the future.   

1. Introduction 

Multiphase flow is a term used to describe the flow of two or more 
fluid phases, such as gas and liquid, within a single pipeline or vessel 

(Nazeer et al., 2022). These systems are ubiquitous in various industrial 
processes, such as oil and gas production, chemical processing, and 
nuclear reactors, and pose several challenges in terms of modeling and 
design (Balachandar et al., 2020; Lube et al., 2020; Roshani et al., 2021; 

* Corresponding author. 
E-mail addresses: neil.kuang@cranfield.ac.uk (B. Kuang), g.nnabuife@alumni2015.cranfield.ac.uk (S.G. Nnabuife), j.f.whidborne@cranfield.ac.uk 

(J.F. Whidborne), junjie.zhao@cranfield.ac.uk (J. Zhao), k.w.jenkins@cranfield.ac.uk (K. Jenkins).   
1 ORCID 0000-0003-1828-7663.  
2 ORCID 0000-0002-4050-5375.  
3 ORCID 0000-0002-6310-8946.  
4 ORCID 0000-0002-6644-5278.  
5 ORCID 0000-0002-1791-6061.  
6 ORCID 0009-0006-4618-5786. 

Contents lists available at ScienceDirect 

Expert Systems With Applications 

journal homepage: www.elsevier.com/locate/eswa 

https://doi.org/10.1016/j.eswa.2023.121414 
Received 28 March 2023; Received in revised form 15 August 2023; Accepted 30 August 2023   

mailto:neil.kuang@cranfield.ac.uk
mailto:g.nnabuife@alumni2015.cranfield.ac.uk
mailto:j.f.whidborne@cranfield.ac.uk
mailto:junjie.zhao@cranfield.ac.uk
mailto:k.w.jenkins@cranfield.ac.uk
www.sciencedirect.com/science/journal/,DanaInfo=cris.cranfield.ac.uk,SSL+09574174
https://extranet.cranfield.ac.uk/locate/,DanaInfo=www.elsevier.com,SSL+eswa
https://extranet.cranfield.ac.uk/10.1016/,DanaInfo=doi.org,SSL+j.eswa.2023.121414
https://extranet.cranfield.ac.uk/10.1016/,DanaInfo=doi.org,SSL+j.eswa.2023.121414
https://extranet.cranfield.ac.uk/10.1016/,DanaInfo=doi.org,SSL+j.eswa.2023.121414
https://extranet.cranfield.ac.uk/licenses/by/4.0/,DanaInfo=creativecommons.org+


Expert Systems With Applications 236 (2024) 121414

2

Shi et al., 2021). Two-phase flow, a specific type of multiphase flow, 
refers to the simultaneous flow of two immiscible fluids, such as gas and 
liquid (Nazeer et al., 2022). Identifying the two-phase flow regime is 
essential for predicting system behavior, optimizing performance, and 
avoiding potential hazards. For example, it affects heat transfer, pres-
sure drop, system stability, and other key parameters. In recent years, 
there has been a growing interest in developing novel techniques and 
methods for two-phase flow regime identification, leveraging advances 
in sensor measurement and machine learning (Hammad et al., 2021; Z. 
Lin et al., 2020; Shen & Hibiki, 2021; H. Xu et al., 2022). 

Multiphase flow is common in under-sea reservoirs for offshore oil 
and gas production (Nnabuife et al., 2022). Pipeline-riser systems are 
usually used to transport the fluids to offshore facilities. However, this 
process can be complicated because of slugging, which is characterized 
by large-amplitude pressure instabilities that can pose a significant 
safety risk to pipeline operations. Slugging is typically caused by low 
multiphase flow rates in pipeline risers, and accurately identifying 
multiphase flow regimes and their correlations with flow parameters is 
essential for maintaining pipeline safety (Nnabuife et al., 2022). Previ-
ous research has explored various methods for addressing this issue, but 
the complexity of multiphase flow regimes in pipeline-riser systems has 
limited these methods. In this study, we propose a novel self-supervised 
learning (SSL) approach for identifying two-phase flow regimes using 
ultrasonic signals, which we believe can improve current methods and 
reduce the risk of pipeline instability and failure. 

Flow regime identification is essential for multiphase flow systems 
modeling and design. However, it is complicated because of the move-
ment of different phases like gas, liquid, and solid particles (Holland & 
Bragg, 1995). In pipeline-riser systems, it is especially difficult because 
of the distinctive geometrical complexity of the flow regimes, which is 
influenced by multiphase interactions, pipeline configuration, flow 
properties, and operating conditions. Understanding the inner correla-
tions between multiphase flow regimes and flow parameters is impor-
tant to the pipeline-riser system (Buscher, 2019; Gupta et al., 2022). 
Flow regime refers to the patterns of the two phases flowing through the 
pipeline, impacting the safety, heat transfer, and pressure drops 
(Holland & Bragg, 1995). Machine learning has shown promising 
achievements in flow regime identification, providing faster and more 
accurate alternatives than traditional methods (Z. Lin et al., 2020; Q. Xu 
et al., 2021). 

Considering the geometrical complexity of the flow regimes in 
multiphase flow, precisely identifying the governing flow regime is 
difficult (Nnabuife, Pilario, et al., 2019). According to Zhang et al. 
(2020), the stages of automatic recognition commonly include data 
acquisition, feature extraction, and machine learning classification. 
Feature extraction can be generally grouped into the heuristic and 
metaheuristic approaches (Arif et al., 2015). Heuristic approaches rely 
on iterative algorithms or techniques that aim to find a satisfactory so-
lution to a problem without guaranteeing optimality. The typical heu-
ristic approaches include sequential forward selection, randomized and 
enumeration-based algorithms, scatter criterion, symmetric uncertainty, 
fast correlation-based filter, minimal-redundancy-maximal-relevance, 
non-dominated sorting genetic algorithms, and neural network-based 
deep learning (Arif et al., 2015). Metaheuristic approaches aim to 
explore search spaces and find optimal or near-optimal solutions by 
iteratively improving candidate solutions. The typical metaheuristic 
approaches include genetic algorithms, simulated annealing, artificial 
bee colony, nearest neighbor, multi-cluster feature selection, and 
axiomatic fuzzy set (Arif et al., 2015). Power spectral density (Nnabuife, 
Pilario, et al., 2019), discrete wavelet transform (Abbagoni & Yeung, 
2016), empirical mode decomposition, and statistical features are a few 
of the methods applied in previous studies for feature extraction, which 
is selected depending on the specific type of sensor used to acquire the 
data (Hanus et al., 2018). The essence of feature extraction in signal 
processing is to transform raw input signals into a more compact and 
representative set of features that capture the relevant information for 

further analysis or classification tasks (T. Pan et al., 2020). Dimensional 
reduction approaches, like principal components analysis (Nnabuife, 
Pilario, et al., 2019; Q. Xu et al., 2020) and kernel principal components 
analysis, can be used for further processing and analysis since these 
features could be highly dimensional and highly cross-correlated. 
Finally, many machine-learning techniques have been reported to 
have satisfactory performance for the classification process, including 
support vector machines, artificial neural networks (Hanus et al., 2018), 
and gradient-boosted trees (Z. Lin et al., 2020). 

Advances in sensor technology, data science, and artificial intelli-
gence (AI) make the two-phase flow identification increasingly prac-
tical, real-time, and efficient (Huang et al., 2002). Since the success of 
ImageNet in 2012, AI solutions have made an increasingly significant 
difference in various industrial products (Bécue et al., 2021; Tsang & 
Lee, 2022). However, most AI solutions apply supervised learning, 
which requires substantial human effort and cost to provide sufficient 
annotations (Swan et al., 2021; Tsai & Chang, 2021; Villalobos et al., 
2022). Furthermore, manual annotation introduces human error (Swan 
et al., 2021). Therefore, adopting self-supervised or unsupervised AI 
solutions can reduce human labor and time costs. State-of-the-art AI 
solutions for flow regime identification utilize supervised learning, in 
which manual annotation is essential. This study explores the feasibility 
of SSL in feature extraction for the two-phase flow regime identification, 
which can significantly reduce human error, effort, and time when 
conducting manual annotation. A benchmark (Kuang et al., 2021; 
Nnabuife, Kuang, Rana, et al., 2021; Nnabuife, Kuang, Whidborne, et al., 
2021a, 2021b; Nnabuife, Pilario, et al., 2019; Nnabuife, Whidborne, 
et al., 2019) for flow regime identification is used to verify the effec-
tiveness of the proposed self-supervised feature extraction (SSFE) 
algorithm. 

Machine learning methods can be divided into two categories, su-
pervised learning and weak-supervised learning (S. J. Pan & Yang, 
2010). Supervised learning depends on the difference between annota-
tions and predictions (Jiang et al., 2020). However, precise annotations 
for practical problems are challenging. 

The research question is, “Can self-supervised learning overcome 
time, labor, and human error challenges in manual data annotation in 
two-phase flow regime identification using a non-destructive testing 
ultrasonic sensor while keeping an accurate and competitive perfor-
mance?” The motivation behind this study stems from the importance 
and significant impact of two-phase flow regime systems on pipeline 
safety, heat transfer, and pressure drop. However, the geometrical 
complexity of flow regimes brings considerable challenges to precisely 
identifying the two-phase flow regime. The motivation is further driven 
by the advancements in sensor measurement and machine learning 
techniques. The study recognizes the technical feasibility and cost- 
effectiveness of applying non-destructive tests and self-supervised 
learning to practical industrial problems. Therefore, this study targets 
to reduce time, labor, and human error associated with manual data 
annotation while keeping an accurate and competitive performance. 

The contributions of this study are summarized as follows. (i) This 
study proposes an innovative Self-Supervised Feature Extraction (SSFE) 
algorithm that reduces the time, labor, and potential human error 
through self-supervision while achieving comparable performance to 
state-of-the-art methods. (ii) To promote research and collaboration, 
this study generates a new self-supervised features (SSFs) dataset7 and 
makes it available to the community (Kuang, 2023). (iii) As far as the 
authors are aware, this study is the first successful application of Self- 
supervised Learning (SSL) to two-phase flow regime identification 
with an ultrasonic sensor, providing valuable insights for future research 
and practical implementation. The proposed SSFE algorithm has the 

7 The self-supervised features (SSFs) dataset is made available to the com-
munity, which can be accessed at: https://doi.org/10.17862/cranfield.rd.222 
41530.v1. 
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potential to significantly advance the understanding of two-phase flow 
and improve industrial process design and optimization. 

The structure of this paper as follows. Section 2 discusses related 
works from two aspects. Section 3 describes the methodology used in 
this study, which includes riser experiments to collect the source signals, 
dataset configuration, feature extraction based on SSL, and signal clas-
sification based on convolutional neural networks (CNN). Section 4 
depicts the experimental design of this study. Section 5 discusses the 
results of self-supervised feature and flow regime signal classification. 
Finally, conclusions and future works are summarized in Section 6. 

2. Related works 

This section discusses related study from two aspects additional to 
the research questions and contributions mentioned in Section 1. The 
first aspect focuses on the concept applied in this study, self-supervised 
learning (SSL). An explanation about using SSL by comparing various 
weak-supervised learning approaches is conducted. The second aspect 
focuses on the task, the proposed feature extraction solution. A com-
parison among different feature extraction methods in existing solutions 
highlights the necessity of SSL-based feature extraction. 

Weak-supervised learning overcomes the challenge by reducing 
manual intervention. Weak-supervised learning consists of coarse su-
pervision, incomplete supervision, noise supervision, and self- 
supervision (Qian et al., 2019; Zhou, 2018). Coarse supervision uses a 
coarse annotation for rough supervision (like bonding box and target 
labels) (Hashmi et al., 2022). Incomplete supervision only labels a part 
of the samples or domains (Zhou, 2018). Noise supervision contains 
misannotations (Q. Li et al., 2020). Self-supervised learning, where 
models learn from intrinsic structures and patterns in data without 
manual labeling, has shown great success recently in natural language 
processing through models like BERT (Y. Li et al., 2021) and GPT (W. Lin 
et al., 2021) for language modeling. Similarly, self-supervised ap-
proaches have achieved state-of-the-art results in computer vision tasks 
like image classification (Reed et al., 2021) using transformations and 
augmentations as supervisory signals. The promise of self-supervision 
across domains motivates the exploration of its potential for multi-
phase flow applications. The high cost of supervised learning is the key 
motivation to explore the possibility of weak-supervised learning. 
However, incomplete supervision is difficult for flow regime identifi-
cation because of the high similarity between different flow regime 
signals. Thus, SSL becomes a very attractive option. 

The feature extraction in the related study can be broadly divided 
into traditional non-data-driven solutions and supervised learning so-
lutions. Traditional non-data-driven solutions like principal component 
analysis (Nnabuife, Pilario, et al., 2019) or ideal low-pass filter (Kuang 

et al., 2021; Nnabuife, Kuang, Rana, et al., 2021; Nnabuife, Kuang, 
Whidborne, et al., 2021a, 2021b) have been applied for multiphase flow 
characterization using extracted statistical features. However, these 
hand-crafted features are limited in handling complex flow dynamics. 
More recently, (Tan et al., 2021) proposed using sparse batch normali-
zation convolutional neural network for ultrasonic signal feature 
learning in a gas–liquid stratified flow. They showed improved flow 
pattern recognition accuracy compared to statistical features. However, 
their supervised autoencoder model requires large labeled data clusters 
to train properly. Supervised learning solutions usually use a 1D con-
volutional neural network model with front layers for automatic feature 
extraction from ultrasonic signals and back layers for flow regime 
classification. Their model achieved approximately 95–95% testing ac-
curacy on classifying bubble, slug, and annular flows. However, a key 
limitation is the need for a large annotated dataset to train the super-
vised model, which can be impractical to obtain for new fluid conditions 
and flow loops (Kuang et al., 2021; Nnabuife, Kuang, Rana, et al., 2021; 
Nnabuife, Kuang, Whidborne, et al., 2021b, 2021a). Furthermore, the 
supervised learning solutions bring high model complexity because of 
the high compression ratio from the input signals to output classes. 
Kuang et al. (2022) systematically discuss the model complexity with 
different neural network designs. 

Ultrasonic sensors have become widely used for non-intrusive 
characterization and measurement of multiphase flows across domains 
like oil and gas, nuclear, and chemical engineering. Their popularity 
stems from their ability to penetrate optically opaque mixtures and 
provide spatiotemporal information on velocity and phase profiles 
(Murai et al., 2010). Based on the limitations of existing traditional non- 
data-driven and supervised feature extraction methods for multiphase 
flows, the key objectives of the proposed SSFE are to 1) develop a 
customized self-supervised learning approach for ultrasonic signal 
feature extraction that does not require manual labels and 2) demon-
strate its efficacy in improving flow regime classification accuracy. The 
novelty lies in harnessing self-supervision to exploit the rich information 
contained in ultrasonic measurements as an alternative supervisory 
signal. 

3. Method 

The overall process of this study is illustrated in Fig. 1 and consists of 
four steps, riser experiment, dataset construction, feature extraction, 
and signal classification. In the 1st step, the riser experiment refers to the 
original ultrasonic signal collection step, which used a noninvasive 
Doppler ultrasound sensor to collect ultrasound signals from an S-sha-
ped riser (see Section 3.1). In the 2nd step, the dataset configuration step 
reconfigures the rise signals into two independent sub-datasets, the 

Fig. 1. The overall process of this study.  
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feature extraction dataset and the classification dataset (see Section 3.2). 
In the 3rd step, the feature extraction step proposes an SSFE algorithm 
following an encoder-decoder structure. The SSFE algorithm is trained 
using the feature extraction dataset (see Section 3.3). In the 4th step, the 
self-supervised feature extractor achieves the self-supervised features 
(SSF) from the classification dataset. In the signal classification step, a 
CNN-based classifier is applied, which is used to verify the feasibility of 
the proposed SSFE and the achieved SSF (see Section 3.4). 

3.1. The riser experiments 

The source data used in this study comes from water-air two-phase 
flow experiments in an S-shape riser performed at the Process Systems 
Engineering Laboratory at Cranfield University. This source data has 
been extensively used in many related studies (Kuang et al., 2022; 
Nnabuife, Kuang, Rana, et al., 2021; Nnabuife, Kuang, Whidborne, et al., 
2021a, 2021b; Nnabuife, Pilario, et al., 2019; Nnabuife, Sharma, et al., 
2021; Roxas II et al., 2022), which justifies the data on validity, accu-
racy, and reliability. 

The riser experiment is conducted on an S-shaped riser test platform 
with a height of 11 m and a length of 50 m, which can transport 
140–1,400 cubic meters of water or oil per hour, and the air supply 
capacity/velocity can reach 40 m per second. The compressor of the 
riser test platform can provide a maximum of 20 barg. The two-phase 
flow test riser consists of three parts, the standpipe, the ultrasonic 
sensor, and the signal processing unit. Fig. 2(a) and (b) refer to the 
photos of the two-phase flow test riser, and Fig. 3 refers to a schematic 
diagram. The riser experiments used a 2-inch S-shaped riser system with 

Fig. 2. The photos of the two-phase flow test riser.  

Fig. 3. The schematic diagram of the S-shape riser.  Fig. 4. The flow regime diagram.  

Table 1 
The records of the riser experiments.  

Flow 
regime 
annotation 

Record file Ultrasonic signal recording point 

1 2 … 
… 

1,300,000 

1 5Air1.5Water 0.068359 −0.400391 … 
… 

−0.756836 

… … … … … 
120Air5Water 0.849609 0.214844 … 

… 
1.672363  

2 4Air3Water 2.478027 2.370605 … 
… 

1.948242 

… … … … … 
200Air4.5Water 1.643066 1.130371 … 

… 
1.557617  

3 10Air3.5Water 1.342773 1.308594 … 
… 

1.513672 

… … … … … 
300Air3.5Water 2.211914 1.818848 … 

… 
2.255859  

4 70Air0.1Water −0.822754 −0.881348 … 
… 

0.124512 

… … … … … 
300Air1.5Water 0.075684 −0.107422 … 

… 
0.617676  
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an internal diameter of 54.8 mm. The S-shaped pipeline system can be 
divided into five parts according to the direction, a 40-meter-long hor-
izontal pipeline, a 5.5-meter vertical rising pipeline, a 1.5-meter 
downcomer pipeline, a 5.7-meter vertical rising pipeline (ultrasonic 
sensors are installed here), and 3.5 m of horizontal piping (a choke valve 
is installed here as a two-phase flow separator) (Nnabuife, Pilario, et al., 
2019). 

The riser experiment controls the flow regime in the S-shaped riser 
by changing the input of gas and liquid (air and water). The ultrasonic 
sensor measures the ultrasonic signal from the different two-phase flows 
in the S-shape riser. The corresponding flow regime is annotated ac-
cording to the flow regime diagram (see Fig. 4). One hundred and 
twenty-five riser experiments were conducted to obtain the source data, 
covering four flow regimes, annular flow, churn flow, slug flow, and 
bubbly flow. The duration of each experiment is the same, which has 
approached the maximum capability of the riser bench with the safety 
requirements. The data records for the experiments are 1.3 million re-
cord points, far beyond the minimum record length for flow regime 
identification (this has been fully demonstrated in the study (Nnabuife, 
Kuang, Whidborne, et al., 2021a)). The records of the riser experiments 
are shown in Table 1, the first column refers to the flow regime anno-
tation, and columns 2 to 1,300,001 are the recording points. 

3.2. Dataset configuration 

The data construction aims to prepare the datasets for the following 
deep learning procedures. The datasets used in feature extraction and 
signal classification are named the “feature extraction dataset” and the 
“classification dataset” in this study. The feature extraction dataset and 
the classification dataset are both configured using the process of Al-
gorithm 1 and the source data from the riser experiment. Notably, 
feature extraction and signal classification are independent deep 
learning processes, so information leakage does not exist between the 
processes. Algorithm 1 contains a random shuffle, which makes the final 
feature extraction and classification datasets different datasets. 

Algorithm 1 implements three functions. Firstly, Algorithm 1 divides 
every single experimental record into multiple short signal segments 
using the twin-window feature extraction algorithm (Nnabuife, Kuang, 
Whidborne, et al., 2021a) to achieve the effect of data enhancement. 
Kuang et al. (2022), Kuang, Nnabuife, et al. (2021), and Nnabuife, 
Kuang, Whidborne, et al. (2021b, 2021a) have shown that the infor-
mation in a single experimental record from the riser experiments is 
more redundant than necessary for detecting the flow regime. Secondly, 
Algorithm 1 uses the fast Fourier transformation (FFT) algorithm to 
transfer the divided short signal segments from the time domain to the 
frequency domain. Kuang, Nnabuife, et al. (2021), and Nnabuife, Kuang, 
Whidborne, et al. (2021a) claim that the frequency domain trans-
formation makes the flow regime characteristics too obvious. Thirdly, 
Algorithm 1 randomly distributes different flow regimes in the dataset 
through random shuffling. The random shuffle avoids the clustering of 
categories because the source data records adjacently for the same flow 
regime (Nnabuife, Pilario, et al., 2019; Nnabuife, Whidborne, et al., 
2019). The air–water ratio in the riser experiments was adjusted from 
the minimum to the maximum, so a similar air–liquid ratio groups the 
adjacent records. However, such group patterns violate the robustness 
and generalizability requirement of the learning process. Fourthly, Al-
gorithm 1 further divides the augmented short signal segments into the 
training, testing, and verification sets according to the ratio of 70%, 
15%, and 15%. 

The pseudo-code is shown in Algorithm 1. The input R represents the 
overall riser experiment record (the source signal), a 2D matrix with a 
dimension of 125 × 1,300,000. The rx represents a single experimental 
record (a single row in R), and the x subscript refers to the experiment 
index (the row index). The first digit of rx is the flow regime annotation, 
and the riser experiment uses the continue integers (1, 2, 3, and 4) to 
represent the four flow regimes (annular, churn, slug, and bubbly flow), 

respectively. Parameters lwindow, lstep, and lsignal refer to the window 
length, step length of the window shift, and signal length of a single 
experimental record, respectively. The output X represents the short 
signal segment converted to the frequency domain, and Y represents the 
corresponding flow regime annotation. The output annotation adopts 
the one-hot encoding method, and 1, 2, 3, and 4 are encoded as [1,0,0,0], 
[0,1,0,0], [0,0,1,0], and [0,0,0,1], respectively. One-hot encoding turns 
the multi-class classification into multiple binary classifications, which 
can avoid the gradient confusion caused by intermediate values between 
the adjacent integers. The subscripts of X and Y refer to the training set, 
testing set, and validation set. The training set is used for model training, 
the testing set supports the training process to overcome overfitting and 
underfitting, and the validation set does not participate in the training 
process. Here is a detailed description of the algorithm:  

(1) R is firstly divided into L and S. The L refers to the annotation 
corresponding to rx (L = [l1, l2, ..., l125]), and S represents the 
experimental signal corresponding to rx (S = [s1, s2, ..., s125]).  

(2) Find the numbers of the four flow regimes from L and save them 
in rg1, rg2, rg3, and rg4, respectively.  

(3) Shuffle rg1, rg2, rg3, and rg4 to get (rg1
′, rg2

′, rg3
′, and rg4

′). The 
air–water change in the riser experiment changes gradually, and 
the shuffle can increase the robustness in terms of input diversity.  

(4) Divide (rg1
′, rg2

′, rg3
′, and rg4

′) into three parts according to the 
70%, 15%, and 15% ratio, respectively. Then, combine all the 
first parts into the training set, all the second parts into the testing 
set, and all the third parts into the validation set. Notably, the 
operation here is only the number recorded by the riser.  

(5) Iterate over each riser record in the training set, testing set, and 
validation set.  

(6) Read the annotations and source records from the corresponding 
riser experiment, and save them as lcurr and scurr.  

(7) Round the ratio of lrecord to lwindow to obtain the number of short 
signals (windows) divided into a single experimental record.  

(8) Traverse each short signal that has been segmented.  
(9) Convert the short signals from the time domain to the frequency 

domain using the FFT algorithm.  
(10) Save the training, testing, and validation sets.   

Algorithm 1: Dataset configuration 

Inputs: R = [r1, r2, ..., r125].  
lwindow, lstep, and lsignal. 

Outputs: Xtrain, Ytrain, Xtest , Ytest , Xvalid, Yvalid.  

1 R→(L, S); 
2 (rg1, rg2, rg3, rg4) ← where L = 1, 2, 3,4, respectively; 
3 (rg1

′, rg2
′, rg3

′, rg4
′)←shuffle (rg1, rg2, rg3, rg4); 

4 divide & concatenate→(rgtrain , rgtest , rgvalid); 
5 for rgi in (rgtrain , rgtest , rgvalid): 
6 lcurr = L[rgi], scurr = S[rgi]; 
7 nwindow = [(lsignal − lwindow)/lstep]; 
8 for i in range (nwindow) :

9 sseg = scurr [i × lstep, i × lstep + lwindow ], fseg ← FFT(sseg); 
10 According to (rgtrain, rgtest , rgvalid):  

Save fseg to corresponding Xtrain, Xtest , or Xvalid;  
Save lcurr to corresponding Ytrain, Ytest , or Yvalid.  

The outcome of dataset configuration is a feature extraction dataset and 
a classification dataset. Both datasets are 2D matrices with a dimension 
of 125 × nwindow × (lwindow/2 + 1). The first column contains the flow 
regime annotation, and the frequency domain signal segment is between 
the second and the last columns. The overall dataset contains samples 
ndata = [125 × nwindow]. Thus, the training set contains ntrain =

[ndata × 70%] samples, the testing set contains ntest = [ndata × 15%] sam-
ples and the validation set contains nvalid = [ndata − ntrain − ntest ] samples. 
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3.3. Feature extraction 

Feature extraction is essential in performing deep learning-based 
classification tasks, usually known as feature engineering (Reid Turner 
et al., 1999). A superior feature extraction should have three charac-
teristics: Firstly, it can reduce the dimension. Secondly, improve the 
learnability for the following classification tasks. Thirdly, keep valid 
information while excluding invalid information regarding the classifi-
cation task. The feature extraction dataset and the classification dataset 
contain a large input dimension because the FFT in Algorithm 1 keeps 
the same output length as the lwindow to avoid the necessary information 
loss. Nnabuife, Kuang, Whidborne, et al. (2021b, 2021a) have justified 
that a significant dimension change of the FFT input–output can 
significantly influence classification performance. 

This study proposes a fully convolutional network and encoder- 
decoder-based SSFE algorithm with a U-Net-formed structure. A U-Net 
structure is an effective neural network widely used in many advanced 
studies (Reid Turner et al., 1999). The input and output are Xtrain, Xtest , 
and Xvalid in Algorithm 1. The SSFE takes the input as the output to 
implement the self-supervision-based feature extraction. Notably, the 
Ytrain, Ytest , and Yvalid are not used in the SSFE process. Thus, the proposed 
SSFE does not require any annotation or human intervention. The 
feature extracted by the self-supervised feature extractor is the output of 
the encoder part, and each one-dimensional input is converted into a 
compact 2D feature with a dimension of 64 × 64. 

Figs. 5 and 6 show the network structure and the specific layouts of 
each module in the network of the proposed SSFE algorithm, respec-
tively. The SSFE algorithm consists of four modules, the input/output 
module, convolutional downsampling module (ConvDown), convolu-
tional normalization module (ConvNorm), and convolutional upsam-
pling module (ConvUp). The input/output module provides the input 

and output interfaces for the overall SSFE to connect with Xtrain, Xtest , 
and Xvalid in the feature extraction dataset. The convolutional down-
sampling module (see Fig. 6(a)) accordingly consists of a zero-padding 
layer, a one-dimensional (1D) convolution layer, a LeakyReLU activa-
tion layer, a batch normalization (BN) layer, and an average pooling 
layer. The zero-padding layer fills two zeros at both ends of the input. 
The convolution kernel is a vector with a length of five, and the depth 
increases to avoid a significant information loss between the input and 
output tensors of a module. Notably, the tensor dimension remains the 
same between the module input and output of the convolution layer. The 
downsampling layer uses two as the stride length, and the output tensor 
has half the input length. The dimension expansion layer in the convo-
lution normalization module converts the 1D input into a 2D tensor by 
expanding a new dimension at the end, corresponding to the depth of the 
2D tensor (see Fig. 6(b)). Both the zero-padding layer and the convo-
lution layer shift to the 2D version. The padding layer fills a zero edge 
surrounding the 2D tensor, and the convolution kernel applies the size of 
3 × 3. The convolutional normalization layer normalizes the output 
using a sigmoid activation. The convolutional normalization layer is 
used in the outputs of the SSFE and the overall neural network. The 
normalization layer normalizes the extracted features and the overall 
neural network output between zero and one. The squeeze layer con-
verts the normalized tensors back into a 1D tensor by eliminating the 
expanded depth (because the expanded depth equals one). The con-
volutional upsampling module is equivalent to an inverse process of the 
convolutional downsampling module (see Fig. 6(c)). The convolutional 
upsampling module constructs a bypass highway of the gradient prop-
agation between the shallow and deep networks through the element- 
wised add operation, which is similar to the bypass channel in the 
ResidualNet (Z. Zhang et al., 2021) and widely used in many studies 
(Marcinkiewicz et al., 2019; Qiu et al., 2021). The convolutional 

Fig. 5. The network structure of the proposed SSFE.  

Fig. 6. The specific layouts of each module in the network of the proposed SSFE.  
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upsampling module then adopts an upsampling layer, and the size 
doubles and depth decreases to maintain the overall information. The 
lower part of Fig. 5 further depicts an example of dimension changes 
throughout the neural network. At the same time, the specific values 
adopt the condition of the experimental group (see Section 4.1 for the 
details of the experimental and control groups). It can be found that the 
input is a 1D tensor of 16,384 × 1 (the left black bracket), and the output 
of the feature extractor is a 2D tensor of 64 × 64 (the middle orange 
bracket). 

3.4. Signal classification 

The flow regime classification applies supervised learning, which 
aims to evaluate the performance of the achieved SSFs from the pro-
posed SSFE. The flow regime supervision is the one-hot annotations in 
the classification dataset (see Section 3.2). The flow regime classifier 
utilizes a CNN-formed classifier, a proven effective flow regime classifier 
in Nnabuife, Kuang, Whidborne, et al. (2021b). The CNN classifier is not 
the focus of this study, so this study does not extend the discussion of the 
CNN classifier. The CNN classifier aims to implement two functions. 
Firstly, this study used the well-proved CNN-based flow regime classifier 
to evaluate the effectiveness of the proposed SSFE and achieved SSF, 
which can significantly strengthen the reliability of the evaluation re-
sults. Secondly, this study evaluates the improvement in computational 
complexity by comparing the proposed and the state-of-the-art CNN 
classifiers, which can justify the advance and necessity of the proposed 
SSFE. This can also improve the feasibility of implementing an 
embedded device and the real-time performance of the solution. 

The classifier in this study applies a CNN-based structure (see Fig. 7). 
The convolution part compresses the SSF into a 1D vector and then uses 
the fully connected layer to analyze the high-level information in the 
compressed 1D vector. The number of parameters indicates the 
computational complexity of the neural network (Kuang et al., 2022). 
The classifier contains four convolutional layers and three fully con-
nected layers, corresponding to about 50,000 parameters. Kuang et al. 

(2022) systematically studied the relation among the parameter 
amount, model complexity, and classification performance. The number 
of parameters for the flow regime classifier in this study is lower than the 
lowest case in Neshatpour et al. (2018) and Radev et al. (2022). Section 
4.2 has a detailed discussion of the number. Fig. 7 shows the neural 
network layout of the CNN-based flow regime classifier, and the Conv-
Down module shares the same architecture as in Fig. 6. 

4. Experiments 

The experiments can be divided into two parts, the riser experiments 
and the signal processing experiments. The riser experiment in this study 
uses ultrasonic non-destructive testing sensors and Continuous Wave 
Doppler Ultrasound (CWDU) signal processing software to record the 
time-domain Doppler flow regime signals (Nnabuife, Pilario, et al., 
2019). The signal processing experiments concentrate on the signal 
processing of the ultrasonic signals from the riser experiments. The 
signal processing in this study can be two steps, the SSL-based feature 
extraction, and the CNN-based classification. The dataset construction 
and frequency domain transformation use Python-based NumPy and 
Panda libraries. All neural networks are implemented using the GPU 
version of TensorFlow 2.1.16 (Abadi et al., 2016) on Linux 
Ubuntu18.04, and the visualization uses the matplotlib library. The 
hardware is Lenovo Thinkstation, which has 32 GB memory, Core i7- 
7700 CPU, and NVIDIA RTX 1080. 

This study separately employs one experimental experiment of the 
experimental group (ex) and seven control experiments of the control 
group (ctr) to test the proposed SSFE algorithm. The ctr is set for the 
window length (lwindow) and window moving step ratio (rs/w) in the self- 
supervised feature extractor. Table 2 shows the experimental settings for 
the ex and ctr groups. The value of lwindow is obtained using Equation (1), 
and the number of self-supervised features (nSSF) is obtained by Equation 
(2). Parameter lwindow determines the length of the experimental riser 
data segmented in one feature extraction, which refers to the overall 
amount of information used in one feature extraction. The value rs/w 

Fig. 7. The CNN-based flow regime classifier.  

Table 2 
The experimental settings for the experimental and control groups.  

Group Index lWindow rs/w lstep nSSF dSSF rTr/Te/Va 

experiment  ex 65,536 1/4 16,384 9,418 64 × 64 70% 
/ 
15% 
/ 
15%  

control ctr-A ctr-Aa 16,384 1/4 4,096 39,125 64 × 64  
ctr-Ab 32,768 1/4 8,192 19,250 64 × 64  
ctr-Ac 131,072 1/4 32,768 4,375 64 × 64  

ctr-B ctr-Ba 65,536 1/2 32,768 4,625 64 × 64  
ctr-Bb 65,536 1/8 4,096 18,750 64 × 64  

ctr-C ctr-Ca 65,536 1/4 16,384 9,418 32 × 32  
ctr-Cb 65,536 1/4 16,384 9,418 128 × 128   
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indicates the step length (lstep) regarding the window length (lwindow), 
which refers to the overlap ratio of adjacent windows. The control group 
A (ctr-A) and ex study the effect of lwindow, which adopts 1/4, 1/2, 1, and 
2 times of lwindow of the experimental group (ex), respectively. It is 
noteworthy that lwindow determines the overall information amount in 
not only one sample but also the real-time performance of the solution. 
For example, ctr-Ac means that it requires twice the length of lsignal as the 
experimental group, and its real-time performance is also lower. Control 
group B (ctr-B) studies the rs/w. A larger value of rs/w refers to a higher 
overlapping ratio between adjacent windows. When increasing the 
number of samples, it also brings the increasing risk of similarity among 
samples. The control group C (ctr-C) studies the compression rate of the 
proposed SSFE, that is, the dimensions of the output SSF (dSSF). A larger 
value of dSSF refers to a lower compression rate and more information 
the SSF can contain. However, a large value of dSSF is opposite to 
dimension reduction and information compression for feature extrac-
tion, and a large SSF means that the complexity of the classifier also 
becomes high. 

The ex and ctr refer to the experimental and control groups. rTr/Te/Va 

refers to the ratio of training, testing, and validation set. 

lstep = lwindow × rS/W (1)  

nSSF =

[
lsignal − lwindow

lstep

]

(2)  

4.1. SSFE experiments 

The SSFE algorithm extracts each frequency-domain signal in Section 
3.2 into 2D self-supervised features (SSFs). The loss function for SSL is 
the mean square error (MSE) (see Eq. (3)). This study further applies the 
root mean square error (RMSE) and mean absolute error (MAE) as 
additional loss function supervision (see Eqs. (4) and (5)). In Eqs. (3), 
(4), and (5), ỹ and y are the corresponding predictions and annotation 
values, and ỹi and yi are the i-th predictions value and true value, n is the 
number of yi in y. RMSE is more sensitive to single outliers in the 
summation than MAE. 

MSE(y, ỹ) =
1
n

× Σn−1
i=0

(

yi − ỹi

)2

(3)  

RMSE(y, ỹ) =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
MSE(y, ỹ)

√
=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
n

×
∑n−1

i=0

(

yi − ỹi

)2
√

(4)  

MAE(y, ỹ) =
1
n

× Σn−1
i=0

⃒
⃒
⃒
⃒yi − ỹi

⃒
⃒
⃒
⃒ (5) 

Table 3 lists the hyperparameters of the SSFE experiments. The 
training, testing, and validation sample numbers are 6648, 1423, and 
1429, respectively. The batch size is based on the hardware capability 
used in this study. Theoretically, a larger batch can better represent the 
distribution of the overall dataset. The maximum training epoch is set to 
500, but the callback condition can be triggered when testing loss 
continuously increases over ten epochs. When the callback condition is 

triggered, the training is stopped to prevent overfitting, and the model 
from ten epochs ago is saved. The reason for choosing RMSE and MAE as 
additional evaluation metrics is to avoid overfitting the model to the loss 
function (MSE). Equations (3) and (4) have pointed out the difference in 
calculation principles between MSE and MAPE. The model has reached 
the best convergence point. Adam is a very stable optimizer widely used 
in similar research (Kuang et al., 2021, 2022; Nnabuife, Kuang, Rana, 
et al., 2021; Nnabuife, Kuang, Whidborne, et al., 2021b, 2021a). 

4.2. Flow regime classification experiments 

Table 4 lists the hyperparameters for the flow regime classification 
experiments. The training, testing, and validation set use 70%, 15%, and 
15% of the classification dataset configured in Section 3.2, respectively. 
Notably, although the subset division ratios in Table 3 and Table 4 are 
the same, they are not the same dataset (see discussion in Section 3.2). 
The batch size uses 128 samples per batch instead of 32 samples per 
batch in SSFE, which indicates that feature extraction can reduce the 
required computational cost. If the source data is used directly, 32 
samples per batch have reached the hardware limitation applied in this 
study, while feature extraction increases the number of samples in each 
batch by four times. The more samples per batch, the better it can 
represent the specific distribution of the dataset, and the available 
computational cost limits the sample number per batch. Especially 
considering the potential onboard situation, the computational cost and 
energy consumption are very limited. An excellent feature extraction 
algorithm dramatically improves the embeddability and real-time per-
formance of flow regime classification solutions. 

CCE, RMSE, MSE, and MAE refer to categorical cross-entropy, root 
mean square error, and mean absolute error, respectively. 

The data for flow regime classification are SSFs achieved from Sec-
tion 4.1. The flow regime classification task is a multi-classification. 
Since the one-hot encoding is used, the training loss function uses cat-
egorical cross-entropy (see Eq. (6)). This study adopted Accuracy, 
RMSE, and MAE as evaluation metrics (see Eqs. (4) and (5)). The 
mathematical properties of RMSE and MAE have been described in 
Section 4.1. Compared with the feature extraction experiments, Accu-
racy is a new evaluation metric. Accuracy is a very intuitive evaluation 
criterion, and its value range is a percentage from 0% to 100%. The 
classifier’s output uses a SoftMax activation function (see Eq. (7)), which 
limits the sum of all outputs to one, and a single output represents the 
possibility of the corresponding category. The lower the cross entropy 
value, the closer the output probability distribution is to the ground 
truth. The Accuracy selects the category corresponding to the largest 
output node as the predicted class, while the Accuracy is not very sen-
sitive to the predicted value. In Eqs. (6) and (7), CCE, log, softmax, and e 
refer to the categorical cross-entropy loss function, logarithm, SoftMax 
activation function, and exponent, respectively. 

CCE(y, ỹ) = −
1
n
Σn

i=1

(

yi × log
(

ỹi

)

+ (1 − yi) × log
(

1 − ỹi

) )

(6)  

Table 3 
The hyperparameters of the SSFE experiments.  

Hyperparameter Setting 

Training, testing, and validation set 
ratio 

70%, 15%, and 15% 

Batch size 32 samples 
Maximum training epoch 500 epochs 
Callback condition Continue testing loss increase over 10 

epochs 
Loss function MSE 
Evaluation metric RMSE and MAE 
Optimizer Adam from TensorFlow  

Table 4 
The hyperparameters for the flow regime classification experiments.  

Hyperparameter Setting 

Training, testing, and validation set 
ratio 

70%, 15%, and 15% 

Batch size 128 samples 
Maximum training epoch 5000 epochs 
Callback condition Continue testing loss increase over 100 

epochs 
Loss function CCE 
Evaluation metric Accuracy, RMSE, MSE, and MAE 
Optimizer Adam from TensorFlow  
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Table 5 
The values of MSE, RMSE, and MAE in the training, testing, and validation sets.  

Metrics loss (MSE) RMSE MAE 

Unit 10−5 10−2 10−3 

Subset 
Index 

Train Test Valid Train Test Valid Train Test Valid 

ex  1.50  1.50  11.64  0.39  0.39  1.08  2.10  2.10  2.15 
ctr-Aa  4.85  4.85  51.78  0.70  0.70  2.28  3.60  3.60  4.10 
ctr-Ab  27.15  27.15  46.80  1.65  1.65  2.16  3.00  3.00  3.27 
ctr-Ac  0.82  0.80  11.88  0.29  0.28  1.09  1.60  1.60  2.31 
ctr-Ba  2.90  2.85  18.74  0.54  0.53  1.37  3.60  3.50  3.56 
ctr-Bb  1.48  1.49  11.70  0.38  0.39  1.08  2.03  2.04  2.15 
ctr-Ca  1.58  1.56  16.29  0.40  0.39  1.28  2.10  2.10  2.18 
ctr-Cb  310.00  310.00  319.52  5.56  5.56  5.65  5.10  5.10  5.21  

Fig. 8. The loss, RMSE, and MAE curves of the self-supervised training for SSFE.  
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softmax(x) =
1

1 + ex (7)  

5. Results and discussion 

The results are divided into two parts for discussion. Section 4.1 
discusses the results of the proposed SSFE algorithms. The results of the 
SSFE algorithm are discussed using the experimental group (ex) and the 
control groups (ctr) in Section 4. Section 5.2 further utilizes the flow 
regime classification to evaluate the performance of self-supervised 
features (SSFs). The experimental results are also compared between 
the experimental group and the control groups, and further comparison 
to the related advanced studies is made to verify the novelty of this 
study. 

5.1. Self-supervised feature 

Table 5 lists the MSE, RMSE, and MAE values in the training, testing, 
and validation sets. Table 5 characterizes the degree of information loss 
after the proposed SSFE algorithm. The original data of the riser 
experiment contains important irrelevant noise information. After the 
frequency domain transformation, the relevant flow regime information 
is concentrated in the low-frequency band, while the irrelevant noise is 
concentrated in the high-frequency band. Choosing a proper filter is 
challenging, significantly impacting the remaining relevant information 
and filtering out irrelevant information. Kuang, Nnabuife, et al. (2021), 
Nnabuife, Kuang, Rana, et al. (2021), and Nnabuife, Kuang, Whidborne, 
et al. (2021b, 2021a) use the low-pass filter to directly segment the 
frequency band, which lacks flexibility for various inputs. SSL realizes 
the filter functionality through an encoder-decoder design. Notably, in 
the frequency domain, the low-frequency bands have a higher value 
than the high-frequency bands, and their impact on the loss function is 
also higher. lwindow of the ctr-Aa, ctr-Ab, ctr-Ac, and ex gradually in-
creases, and ex obtains a loss much lower than ctr-Aa and ctr-Ab. How-
ever, although ctr-Ac obtains the lowest values on the training and 
testing sets, its validation loss is higher than the ex. Besides, SSFE also 
compresses the input while filtering out irrelevant information. Exces-
sive compression can also cause relevant information to be lost. The 
length of the ctr-Ac input signal is 131,072, while the dSSF is 64 × 64, and 
the compression rate is 32 times. However, the values in Table 5 can 
only represent the ability of SSFE to encode and decode signals, and the 
performance of the proposed SSFE algorithm requires further evaluation 
by the flow regime classification experiments in Section 5.2. 

Fig. 8 illustrates the loss, RMSE, and MAE curves of the self- 
supervised training for SSFE. It can be found that the initial declines 
of the curves are rapid, and then they step into a slow learning process. 
Fig. 8(a), (c), and (e) are complete curves of loss, RMSE, and MAE, and 
Fig. 8(b), (d), and (f) is the enlarged curves between the No.0 and 
No.100 epoch. The increase in the loss curve indicates overfitting, which 
means that the generalization ability of the trained model has declined. 
However, determining the overfitting is a difficult problem because the 

training curve also has many local fluctuations with random gradient 
descent. For example, in Fig. 8, the learning curve seems flat since the 
No.100 epoch, while its trend is actually still slowly declining. There-
fore, a callback condition is set in Section 4.1, which guarantees that the 
best model can be preserved when overfitting is sure to be detected. 
Fig. 8(b), (d), and (f) show that RMSE and MAE enter the slow learning 
condition later than MSE (loss). The RMSE and MAE curves start to be 
flattening at around the No.80 to 100 epoch, while the MSE is about the 
No.50 epoch. Besides, the RMSE is more sensitive to outliers during the 
accumulation (Σ), so RMSE’s volatility in the testing set is stronger than 
in the MAE. In Fig. 8, the sharp fluctuations and spikes of the verification 
curve at the early stage of SSL can eliminate the potential risk of in-
formation leakage from the training set to the testing set. The values of 
the validation set in Table 5 differ significantly from the training and 
testing sets, which can also eliminate the risk of information leakage 
from the training set to the validation set. 

The self-supervised feature extractor (SSFE) extracts the configured 
data in Section 3.2 to 2D SSFs. The loss function used for achieving SSFE 
is a mean square error (MSE) (see Equation (3)). This study further 
applies root mean square error (RMSE) and mean absolute error (MAE) 
as different evaluation metrics (see Eqs. (4) and (5)). Fig. 8(a), (b), and 
(c) illustrate the MSE, RMSE, and MAE curves. MSE becomes smoother 
than the RMSE and MAE curves, so utilizing MSE as the loss function can 
improve the convergence closer to the global minimum. Although Fig. 8 
(b) and (c) seem similar, the RMSE is more sensitive to singular values 
than MAE. Notably, MSE, RMSE, and MAE refer to the function names; ̃y 
and y refer to the predicted and real values, respectively; ỹi and yi refer 
to the ith predicted value and real value, respectively; and n refers to the 
number of ỹi in ỹ. 

Fig. A.1 in the Appendix shows some random visualization examples 
of the achieved self-supervised features (SSFs) from the validation set. 
Each row in Fig. A.1 is associated with a flow regime, corresponding to 
annotations 1, 2, 3, and 4 in Section 3.2. Notably, although Fig. A.1 
visualizes self-supervised features, the SSFs are essentially compressed 
2D matrixes that guarantee the minimum loss between SSFE’s inputs 
and outputs. Quantitative interpretation of these 2D matrixes relates to 
another significant topic named interpretable artificial intelligence, 
while it is not the focus of this study and this manuscript does not further 
discuss. These SSFs correspond to the extension of the one-dimensional 
input through the convolutions in the SSFE’s encoder part, so the visu-
alized results appear as an obvious pattern of vertical stripes. This study 
is the first successful attempt to use an SSL strategy in the feature 
extraction of two-phase flow ultrasound signals. The compression pro-
cess of feature extraction inevitably leads to information loss due to the 
data volume reduction. Compared with artificial features, self- 
supervised features can continuously encode and compress the fea-
tures of the original signal through the average poolings in the neural 
network. The average pooling does not simply discard any input data but 
integrates it into the next layers. Section 5.2 uses a typical flow regime 
classification network to verify the performance of the proposed SSFE. 

Table 6 
The experimental results of CCE, Accuracy, RMSE, and MAE of experimental and control groups.  

Metric Loss (CCE) Accuracy RMSE MAE 

Unit 10−2 % 10−3 10−2 

Index Train Test Valid Train Test Valid Train Test Valid Train Test Valid 

ex  4.52  8.05  6.07  98.50  97.34  98.05  7.68  10.44  9.55  1.49  1.94  1.68 
ctr-Aa  13.07  20.78  18.54  94.85  92.15  92.70  13.64  17.11  16.20  3.92  4.94  4.58 
ctr-Ab  7.55  12.44  13.38  97.34  95.42  95.50  10.05  13.02  13.36  2.34  2.87  2.94 
ctr-Ac  1.72  2.80  4.04  99.52  98.96  98.09  4.32  6.22  7.88  0.66  0.81  1.21 
ctr-Ba  7.71  15.19  10.80  97.44  93.38  95.12  10.06  15.14  12.45  2.41  3.87  2.92 
ctr-Bb  1.98  2.42  3.12  99.23  99.01  98.84  5.21  5.90  6.63  0.63  0.63  0.74 
ctr-Ca  7.79  8.46  6.08  96.87  96.98  97.69  10.40  10.91  9.43  2.35  2.27  1.88 
ctr-Cb  2.30  8.46  5.56  99.47  97.19  98.25  4.82  10.51  8.30  0.90  1.87  1.26  
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Fig. 9. The box and whiskers diagrams of experiment groups (ex) and control group (ctr) results. (a), (b), (c), and (d) refer to the box and whiskers diagrams of loss 
(CCE), Accuracy, RMSE, and MAE values in Table 6, respectively. Blue dash lines and solid orange lines indicate the mean and median values. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 10. The loss (CCE), accuracy, RMSE, and MAE curves for the training set and testing set.  
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5.2. Flow regime classification 

This study focuses on studying the potentiality and performance of 
SSL in the flow regime feature extraction with a competitive flow regime 
classification performance. Therefore, this study does not excavate the 
maximum performance of the proposed SSFE through parameter tuning, 
which may vary slightly in further implementation depending on the 
specific situation. This study explores the impact of different SSFE al-
gorithm settings on the flow regime classification through the experi-
mental group (ex) and the control groups (ctr). 

Table 6 compares the experimental group (ex) and the control group 
(ctr) on the four metrics. Except for ctr-Ab, ctr-Ac, and ctr-Ba, the vali-
dation accuracies have reached more than 98%. When lwindow goes to 
65,536, the validation accuracy of ctr-Bb achieves the highest among all 
experiments. This shows that increasing the nSSF for the SSL process can 
improve the flow regime classification accuracy to a certain extent. 
From ctr-Ba (4,625 samples) to the ex (9,418 samples), the validation 
accuracy increased by 2.93%. However, from the ex (9,418) to ctr-Bb 
(18,750), the validation accuracy only improves by 0.79%. However, 
although ctr-Ab and ctr-Ac have much higher sample sizes than other 
experiments, their validation accuracies are still low. This shows that the 

lwindow significantly influences the flow regime classification perfor-
mance, and ctr-A also corroborated this situation. However, the lwindow of 
ctr-Ac is twice that of the ex, while an accuracy improvement is only 
0.04%. This shows that the effect of further improving lwindow is no longer 
significant. ctr-C shows that increasing the dSSF can increase the flow 
regime classification performance, but this also reduces the information 
compression ability of feature extraction and increase the computing 
power requirements of the classification. 

Fig. 9 applies box and whiskers diagrams to illustrate the value dis-
tribution of the four metrics among training, testing, and validation sets. 
The diagram are generated using the boxplot function of the Matplotlib 
library, and the parameters apply the default settings. The median and 
mean values are close to the minimums in loss (Fig. 9(a)), RMSE (Fig. 9 
(c)), and MAE (Fig. 9(d)), while the median and mean accuracies are 
close to the maximums in Fig. 9(b). The box position corresponding to 
the whiskers is close to the highest performance, which indicates the 
overall experiment optimization is in the correct direction to achieve 
convergence. The quartiles show the testing and validation results have 
more extensive data distribution and variability than the training 
results. 

This study uses training curves and confusion matrices to evaluate 

Fig. 11. The normalized confusion matrixes in the testing set and validation set. (a) and (b) refers to the normalized confusion matrixes in the testing set and 
validation set, respectively. 

Table 7 
The flow regime classification performance of the achieved self-supervised feature in recent studies, the representative experiments in the baseline studies, and this 
study.  

Metric CCE Accuracy RMSE MSE MAE Complexity  

Unit       

Solution  10−2 % 10−2 10−3 10−2 105 

Recent studies (Nnabuife, Pilario, et al., 2019) n/a  84.60 n/a n/a n/a n/a  
(Nnabuife, Sharma, et al., 2021) 6.84  96.80 n/a n/a n/a n/a  
(Nnabuife, Kuang, Whidborne, et al., 2021a) n/a  96.35 12.61 0.0159 n/a n/a  
(Nnabuife, Kuang, Whidborne, et al., 2021b) 12.87  96.94 n/a n/a n/a n/a  

Baseline studies (Kuang et al., 2021) 1.32  99.54 4.12 0.0017 n/a n/a  
Ex. No. 7 in (Kuang et al., 2022) n/a  98.06 15.17 0.0230 n/a 171.10  
Ex. No. 11 in (Kuang et al., 2022) n/a  93.06 21.56 0.0465 n/a 1.18  

Our Our ctr-Aa 18.54  92.70 16.20 1.62 4.58 7.71  
Our ctr-Ab 13.38  95.50 13.36 1.34 2.94 7.71  
Our ctr-Ac 4.04  98.09 7.88 6.21 1.21 7.71  
Our ctr-Ba 10.80  95.12 12.45 15.50 2.92 7.71  
Our ctr-Bb 3.12  98.84 6.63 4.40 0.74 7.71  
Our ctr-Ca 6.08  97.69 9.43 8.89 1.88 4.53  
Our ctr-Cb 5.56  98.25 8.30 6.89 1.26 8.46  
Our ex 6.07  98.05 9.55 9.12 1.68 7.71  
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the flow regime classification results. Fig. 9(a), (b), (c), and (d) show the 
loss (CCE), accuracy, RMSE, and MAE curves for the training set and 
testing set, respectively. The overall curves show a trend of rapid 
learning and then slow convergence. In the initial rapid learning phase, 
the testing curves all show violent fluctuations, which indicates that the 
testing and validation sets are not highly consistent in feature distribu-
tion. A significant challenge in dataset construction (Section 3.2) is the 
information leakage between training, testing, and validation sets, 
which can cause the feature distributions among training, testing, and 
validation sets to be highly consistent. A highly consistent feature dis-
tribution leads to a nearly consistent training trend across the training 
curves. However, the apparent difference between the training and 
testing curves in Fig. 10 can eliminate the potential risk of information 
leakage for unreliable testing and validation results. Regarding the 
callback condition in Section 4.2, Fig. 10 shows the convergence of the 
model training results using green dashed lines and values. The sharp 
fluctuation of the RMSE curves (Fig. 10(c)) comes from the influence of 
individual outliers in the accumulation process (Σ). Therefore, although 
the four criteria in Table 6 and Fig. 10 all show good numerical results, 
they can only refer to the overall performance. 

This study demonstrates the performance of each flow regime on test 
and validation sets using confusion matrices (see Fig. 11). The annota-
tions (“1″, ”2″, “3″, and ”4″) represent annular, churn, slug, and bubbly 
flow regimes, respectively. The proposed SSF achieves the highest Ac-
curacy for the annular flow regime and the lowest Accuracy for the 
churn and slug flow regimes. However, the single-category Accuracy is 
higher than 97% in all four flow regimes. It is noteworthy that the false- 
positive rate is mainly concentrated on the annular flow regime, which 
also means that the overall classifier has a very slight data skew to the 
annular flow. At the same time, the trend is only 1–2%. 

Table 7 utilizes six metrics to compare the ex and ctrs experiments in 
this study to the recent studies and the representative experiments in 
baseline studies. Three criteria restrict the baseline selected in this 
study. First, the baseline study must apply the same dataset as in this 
study because of the comparability. Second, the baseline study must 
contain systematic experiments design and evaluation metrics to pro-
vide a comprehensive investigation. Third, the baseline study must be 
peer-reviewed and accessible for technical details. Table 7 only archives 
the validation results. Although Kuang et al. (2022) do not claim to be a 
baseline, it meets all three baseline selection criteria. Furthermore, 
Kuang et al. (2022) systematically studied the parameter quantity 
among various classifiers, which provided an essential approach to 
evaluating the model complexity. 

Table 7 shows that the proposed SSFE algorithm has achieved 
competitive performance to the supervised learning algorithms in recent 
studies and baseline studies. ctr-Aa (with the lowest Accuracy) also 
surpassed the results in Nnabuife, Pilario, et al. (2019), while the ex and 
ctr-Bb achieved better performance than Nnabuife, Kuang, Whidborne, 
et al. (2021b, 2021a), Nnabuife, Pilario, et al. (2019), and Nnabuife, 
Sharma, et al. (2021) and the experiment No. 11 in Kuang et al., (2022). 
The ex is only 0.01% different from the Accuracy of experiment No. 7 in 
Kuang et al. (2022) and 1.49% different from Kuang et al. (2021). The 

complexity of the experiment No. 7 in Kuang et al. (2022) is 22 times 
that of the ex. Although Kuang et al. (2021) does not mention its 
complexity, according to the discussion in Kuang et al. (2022), the 
complexity of Kuang et al. (2021) classifier is very high (Kuang et al., 
2022). Besides, this study uses SSL, which has a lower supervision level 
and minimum annotation requirements. Without supervision, this study 
has achieved very competitive flow classification results (with a differ-
ence of less than 1.5% of the accuracy difference and a very low clas-
sifier complexity). The proposed solution intentionally focused on 
exploring an unsupervised approach, aiming to address the challenge 
without relying on supervision. This approach allows for greater flexi-
bility and potential scalability in real-world applications where labeled 
data might be limited or costly. The novelty and potential advantages of 
an unsupervised solution in terms of reduced dependency on labeled 
data is the significant contribution of this study. 

This study further conducts the nonparametric statistical analysis to 
evaluate the competitiveness of the proposed solution, and the process 
follows the tutorial from Derrac et al. (2011). The specific method 
applied is the Sign test of the Pairwise comparisons. This study applies 
three hypothesis standards to nonparametric statistical analysis of 
competitiveness, which are named maxcapability, 75 %capability, and 
mincapability. The maxcapability refers to “the proposed solution defeats 
the maximum capability compared to recent and baseline studies.” The 
75 %capability refers to “the proposed solution exceeding 75% of the 
maximum capability compared to recent and baseline studies.”, which is 
calculated through Equation (8). The mincapability refers to “the pro-
posed solution achieving the minimum capability compared to recent 
and baseline studies.” Considering the recent studies and baseline 
studies are all selected from recent and advanced studies, this study 
defines the competitiveness with the Null Hypothesis and Alternative 
Hypothesis. The alternative hypothesis refers to “if any of the ctr or ex 
results defeat the hypothesis standards, the proposed solution achieves 
the competitive performance.”, while the Null Hypothesis is otherwise. 
Table 8 depicts the number of Our experiments that reach the Alternative 
Hypothesis. For example, the value of Nalter of Accuracy of 75 %capability 
is 6, which means six experiments reached the 75 %capability hypoth-
esis. According to the critical values in Derrac et al. (2011), if Nalter is not 
less than 7, the proposed solution is significant for the two-tailed sign 
test at α = 0.05. Table 8 first shows that the proposed solution is not 
significant for maxcapability. So, the proposed solution does not defeat 
the highest achievement in recent and baseline studies. Second, the 
proposed solution shows significance in terms of MSE and Complexity 
for 75 %capability. So, the proposed solution achieves 75% performance 
in terms of the MSE and Complexity compared to the recent and baseline 
studies. Third, the proposed solution shows significance in terms of all 
metrics for mincapability. So, the proposed solution achieves better 
performance than the minimum capability compared to the recent and 
baseline studies. Therefore, the proposed solution achieves competitive 
performance compared to advanced studies. 

75%capability = 75% × (|maxcapability

− mincapability| ) + {maxcapability, mincapability}min (8) 

Table 8 
The number of Our experiments that reach the Alternative Hypothesis (max-capability, 75%-capability, and min-capability).  

Metric 
Hypothesis 

CCE Accuracy RMSE MSE MAE Complexity 

maxcapability 1.32×10−2 99.54% 4.12×10−2 1.7×10−3 n/a 1.18×105 

Nalter 0 0 0 0 n/a 0 
75 %capability 4.2075×10−2 95.805% 8.49×10−2 12.9×10−3 n/a 43.58×105 

Nalter 2 6 3 7 n/a 8 
mincapability 12.87×10−2 84.60% 21.6×10−2 46.5×10−3 n/a 171.10×105 

Nalter 6 8 8 8 n/a 8 

Nalter refers to the number of Our experiments that reach the Alternative Hypothesis.  

B. Kuang et al.                                                                                                                                                                                                                                  



Expert Systems With Applications 236 (2024) 121414

14

6. Conclusion and future work 

This study demonstrates the feasibility and advantages of SSL for 
ultrasonic signal processing in flow regime identification. By leveraging 
the benefits of SSL, this study bypasses manual annotation for the 
feature extraction step, which can effectively save time/labor costs and 
avoid human error. It makes this approach an attractive option for 
practical engineering problems that lack sufficient annotations. This 
study discussed the feasibility and advantage of SSL for flow regime 
identification using ultrasonic signals through a pipeline of riser ex-
periments, dataset construction, feature extraction, and signal classifi-
cation. This study proposes a self-supervised feature extraction (SSFE) 
algorithm to extract the self-supervised features (SSFs), and SSFs are 
opened to the community. A CNN-based classifier is then applied to 
evaluate the SSFE performance systematically. Our study shows that an 
SSFE algorithm significantly improves feature extraction and achieves 
competitive performance in flow regime classification. In terms of the 
results, the evaluation metrics, including Accuracy, CCE, RMSE, MSE, 
MAE, and individual Accuracy of each flow regime, are reported. The 
results show that the SSFs achieved an accuracy of 98.84%, CCE of 
0.00312, RMSE of 0.00663, MSE of 0.00044, and MAE of 0.00074, and 
individual accuracies of each flow regime were above 97%. 

However, some limitations exist in the proposed study. First, the 
proposed solution has a restricted number of riser experiments and 
experimental settings. The practical experiment requires a costly 
compressor, riser system, and experiment site, which is challenging for 
individual teams to obtain data from a wide variety of riser shapes and 
gas–liquid ratios. Increased access to diverse datasets can support 

further research and enable cross-cooperation among different groups, 
which can help overcome the limitations faced by individual research 
teams. Second, the proposed solution did not implement a complete self- 
supervision solution for flow regime identification. Although the pro-
posed solution executes self-supervision in the feature extraction step, 
the overall flow regime classification still applies supervised learning. 
However, a complete self-supervision solution can bypass manual 
intervention entirely. 

Future works can explore the model transfer capability of ultrasonic 
signals across various riser shapes, such as vertical or horizontal risers. 
Techniques like transfer learning and multi-domain adaptation (MDA) 
could be employed to investigate the applicability and performance of 
existing models trained on S-shaped risers to these different configura-
tions. This study suggests that more diverse and comprehensive datasets 
should be made available to the community for two-phase flow regime 
classification. This includes datasets encompassing a wide range of 
gas–liquid ratios, flow rates, and various pipe geometries. Access to such 
datasets would enable researchers to conduct extensive testing and 
comparison of different classification models, facilitating the develop-
ment of more accurate and robust solutions. Furthermore, it would be 
intriguing to investigate other self-supervised learning (SSL) techniques, 
such as contrastive learning or generative models, for flow regime 
identification tasks. Contrastive learning can facilitate the learning of 
meaningful representations by contrasting positive and negative sam-
ples, while generative models can capture the underlying data distri-
bution. These approaches hold promise in enhancing ultrasonic signal 
processing and classification by providing additional insights and 
improved performance. 

Fig. 12. Some random visualization examples of the achieved self-supervised features (SSFs) from the validation set in the proposed SSFs dataset 1 (Kuang, 2023).  
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