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Nonlinear Systems using a Closed-Loop Output
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Abstract—Trajectory inference is a hard problem when states
measurements are noisy and if there is no high-fidelity model
available for estimation; this may arise into high-variance and
biased estimates results. This paper proposes a physics informed
trajectory inference of a class of nonlinear systems. The approach
combines the advantages of state and parameter estimation
algorithms to infer the trajectory that follows the nonlinear
system using online noisy state measurements. The algorithm is
composed of a parallel estimated model constructed in terms of
a low-pass filter parameterization. The estimated model defines
a physics informed model that infers the trajectory of the real
nonlinear system with noise attenuation capabilities. The parame-
ters of the estimated model are updated by a closed-loop output
error identification algorithm which uses the estimated states
instead of the noisy measurements to avoid biased estimation.
Stability and convergence of the proposed technique is assessed
using Lyapunov stability theory. Simulations studies are carried
out under different scenarios to verify the effectiveness of the
proposed inference algorithm.

Index Terms—Physics informed, inference, state parameteri-
zation, output error, nonlinear systems

I. INTRODUCTION

In recent years, physics informed models (PIMs) [1] have

become popular in several data driven algorithms for regres-

sion [2] and trajectory inference [3] of nonlinear systems.

The key idea is to incorporate a high-fidelity model [4], [5]

in the learning step as a guidance for parameters’ updating,

stabilization, and robustness. PIMs are also known as model-

based algorithms [6] and can be used for other purposes

such as: control policies design [7], gain tuning [8], and state

observer models [9].

Physics informed neural networks (PINN) [1] are capable

to incorporate the physics informed model as a regularization

term to prevent large weights and fast convergence. However,

normalized parameters are required to guarantee stable results

of the PINN model which is a strong assumption for high

dimensional systems with many parameters. This issue can be

solved using series-parallel/parallel recurrent neural networks

(RNN) [10], [11] which assume that the nonlinear system can

be written as the sum of a multi-layer perceptron network

and a stable linear dynamics. The main issue of this kind

of networks is that weights convergence is not guaranteed
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and remain oscillating in bounded intervals and hence, this

kind of RNN structures do not serve as a physics informed

model. However, one of the main issues of any PIM is

the assumption of parameters’ knowledge. On the one hand,

knowledge of the parameters ensures high accurate results in

the regression/inference task. Conversely, biased parameters

reduce the accuracy results and, in the worst case, may lead

to instability of the complete network.

Kalman filter [12], [13] and its variants can be regarded

as a kind of PIM which aim to infer the complete state

of a given system using measurements of its output and an

estimated model whose structure matches with the real system

model under the same parameters and the Gaussian distributed

noise assumption [14]–[16]. Despite this assumption provides

robustness against modelling error [17], [18], a bad prior

model could cause a fast divergence of the algorithm [19].

Novel techniques such has the EKFnet [20] combines neural

networks capabilities and Kalman filter to estimate the best

process and measurement noise covariance pair from the real

measurement data. Nevertheless, this network may fit a large

modelling error which produces a posterior estimation with

high variance and hence, the accuracy of the estimated state

will be poor.

In view of the above, it is mandatory to estimate the param-

eters of the nonlinear system to construct the PIM [21]. There

exists an extensive literature for parameter identification [22],

[23] based on least-squares (LS) and gradient-type rules and

their variants [24]–[27]. The key idea to guarantee parameter

estimates convergence is the fulfilment of a persistent of

excitation (PE) condition [28]. However, if the measurements

of the signals associated to the nonlinear system are noisy then

biased estimates are obtained [29]. Therefore, there exists a

trade-off between parameters and state estimation algorithms.

Whilst state estimation algorithms require accurate parameters

to infer the trajectory with high accuracy, the identification

algorithm requires noise-free states measurements to avoid

biased parameters estimates.

Some recent studies use closed-loop input (CLIE) [30],

[31] and closed-loop output error (CLOE) techniques [32]–

[34] for parameter estimation of robot manipulators [35], [36].

The idea behind these techniques is similar to the series-

parallel/parallel RNN models where an estimated model of

the real system is constructed; whose parameters are updated

by an identification algorithm based on a LS or gradient rules

of either the input error or output error of the estimated and

real system. However, the CLOE algorithm requires well-tuned
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filters to obtain smooth states measurements, otherwise biased

estimates will be obtained [37]. Furthermore, the scope of

the CLIE algorithm is limited to linear systems and for a

small class of nonlinear Euler-Lagrange systems with constant

inertia matrix [38].

Inspired by the above comments, this paper reports a physics

informed algorithm that is able to infer the trajectory of

an unknown nonlinear system using a closed-loop output

error technique and online data. Here it is assumed that the

nonlinear system is already controlled and cannot be modified;

in addition, we only have access to states measurements.

Nevertheless, some scenarios are considered where the control

gain and desired trajectory/destination are available.

In contrast to classical state estimation algorithms that

deals directly with the differential equation of the nonlinear

system model, the proposed approach works with a state

parameterization of the solution of the differential equation.

This parameterization helps to construct a physics informed

model that combines the advantages of state and parameter

estimation algorithms to obtain an accurate trajectory infer-

ence. The contributions of this work with respect to previous

developments for trajectory inference of nonlinear systems are

the following:

• A novel physics informed model based on a new pa-

rameterization of the solution of the nonlinear system

differential equation.

• Noise attenuation and parameter estimates convergence

are simultaneously guaranteed under the fulfilment of a

persistent of excitation (PE) condition.

• The algorithm can be easily extended for recurrent neural

networks schemes which provides of robustness and

stability in the weights’ calculations.

• If we have access to the control input design, then the

approach can be modified into an identification algorithm

that can guarantee parameter estimates convergence to

their real values under the fulfilment of a persistent of

excitation (PE) condition.

• The proposed physics informed algorithm is supported

by a rigorous stability proof, which proves that all the

signals in the nonlinear closed-loop system are bounded

under a non-zero approximation error.

The paper outline is as follows: Section II presents the

problem formulation. Section III defines the state parame-

terization for the class of nonlinear systems used in this

paper. Section IV presents the inference algorithm with tra-

jectory incorporation. Section V gives some extensions of

the proposed inference algorithm in recurrent neural networks

and identification schemes. Section VI reports the simulation

studies using a four dimensional F-16 aircraft dynamics. The

conclusions are presented in Section VII.

Throughout this paper, N, R, R
+, R

n, R
n×m denote

the spaces of natural numbers, real numbers, positive real

numbers, real n-vectors, and real n×m-matrices, respectively;

In ∈ R
n×n denotes an identity matrix; λmin(A) and λmax(A)

denotes the minimum and maximum eigenvalues of matrix

A, respectively; ⊗ and vec(A) defines the Kronecker product

and the matrix stretch, the norms ‖A‖ =
√
λmax(A⊤A) and

‖x‖ stand for the induced matrix and vector Euclidean norms,

respectively; where x ∈ R
n, A,B ∈ R

n×n and n,m ∈ N.

II. PROBLEM FORMULATION AND PRELIMINARIES

Consider the following continuous-time nonlinear system

ẋ = f(x) + g(x)u, x(t0) = x0,

z = x+ ω, ω ∼ N (0, R),
(1)

where x ∈ R
n denotes the state vector, u ∈ R

m is the control

input, z ∈ R
n is a linear measurement model, ω ∈ R

n defines

noise drawn from a Gaussian distribution with mean zero and

covariance R = R⊤ > 0 ∈ R
n×n, f(x) ∈ R

n is the drift

dynamics, and g(x) ∈ R
n×m is the input dynamics. This

kind of nonlinear systems are common in many mechanical,

electrical, and hydraulic systems where the input u is linear

with respect to g(x) [39].

Assumption 1: Noisy state measurements are available from

sensors. The control input structure and the desired trajectory

can be known or unknown. These scenarios are discussed in

future sections.

Assumption 2: The parameters of f(x) and g(x) are un-

known. However, the structures of f(x) and g(x) are known.

Assumption 2 is used to parameterize linearly the nonlinear

terms as a product of a matrix of basis functions φ(x) com-

posed of known nonlinear terms and a vector θ of unknown

parameters. For this purpose the next strong assumption is

required

Assumption 3: The functions f(x) and g(x) are locally

Lipschitz and can be approximated by a set of basis functions

as it is stated in the Weierstrass higher-order approximation

theorem [40].

Consider that we have a complete set of basis functions

{φ(x), ϕ(x)} associated to the nonlinear system structure such

that f(x) and g(x) can be exactly represented by

f(x) = φ⊤(x)θ,
g(x)u = ϕ⊤(x, u)ϑ,

(2)

where θ ∈ R
p1 and ϑ ∈ R

p2 are matrices composed of

the unknown constant parameters; φ(x) : Rn → R
p1×n and

ϕ(x, u) : Rn×R
m → R

p2×n are basis functions of (1). Hence,

the nonlinear system (1) can be equivalently written as

ẋ = Φ⊤(x, u)Θ, (3)

where Θ =

[
θ

ϑ

]
∈ R

p, Φ(x, u) =

[
φ(x)

ϕ(x, u)

]
∈ R

p×n, p =

p1 + p2.

Assumption 4: The control input u ∈ R
m stabilizes the

nonlinear system (1) and ensures tracking of the desired

reference xd ∈ R
d.

Consider an estimated model of (1) of the form

ẏ = f̂(y) + ĝ(y)v, y(t0) = x0,

w = y,
(4)

where y ∈ R
n is the state of the estimated model, v ∈ R

m is

the control input which has the same structure as the control

input u, w ∈ R
n is the output of the reference model, f̂(y) ∈
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R
n and ĝ(y) ∈ R

n×m are approximations of f and g which

satisfy the following parameterizations

f̂(y) = φ⊤(y)θ̂,

ĝ(y)v = ϕ⊤(y, v)ϑ̂,
(5)

where θ̂ ∈ R
p1 and ϑ̂ ∈ R

p2 are the estimation matrices of

θ and ϑ, respectively. The estimated model has two main

objectives: 1) to construct a physics informed model that

allows to infer the trajectory for a given input, and 2) attenuate

noise from sensor measurements of the system states. Hence,

the estimated model is written as

ẏ = Φ⊤(y, v)Θ̂, (6)

where Θ̂ =

[
θ̂

ϑ̂

]
∈ R

p, Φ(y, v) =

[
φ(y)

ϕ(y, v)

]
∈ R

p×n.

Parameter estimates convergence is guaranteed if the vector

of basis functions Φ(x, u) verifies the following persistent

of excitation condition which is equivalent to the uniform

complete observability (UCO) lemma [41].

Lemma 1: [42] The matrix Φ(x, u) is said to be persistent

exciting in the time interval [t : t+ T ] if there exists positive

constants β0, β1, T > 0 such that the following holds for any

time instance t

β0I ≤ S1 =

∫ t+T

t

Φ(x, u)Φ⊤(x, u)dτ ≤ β1I. (7)

However, Assumption 1 establishes that we only have access

to states measurements and knowledge of the control structure

which may not necessarily fulfil the PE condition (7). To solve

this issue an external excitation signal τ ∈ R
n is added to the

noisy states measurements, i.e.,

xτ := z + τ, (8)

such that the next PE condition (7) is satisfied. Without loss of

generality xτ is the output of the following nonlinear system

ẋτ = f(xτ ) + g(xτ )uτ , (9)

where uτ ∈ R
m is the new control input which takes into

account the excitation signal τ . The design of uτ is discussed

in future sections.

Define the output error between the nonlinear system states

xτ and the estimated model states y as

e := xτ − y. (10)

Notice that if y = x+ τ , then the error is reduced to e = ω

which means that only the noise measurement is preserved.

This fact is equivalent to the innovation term in Kalman filter

algorithms. The error dynamics between (9) and (4) is

ė = Φ⊤(xτ , uτ )Θ− Φ⊤(y, v)Θ̂

= (Φ(xτ , uτ )− Φ(y, v))⊤Θ− Φ⊤(y, v)Θ̃. (11)

Fig. 1 depicts the general block diagram of the proposed

physics-informed algorithm. The algorithm is composed of

two main elements: an estimated model (6) for trajectory

estimation and an identification algorithm which updates the

parameters of the estimated model using the output error (10).

The main aim of the proposed approach is to estimate the

parameters and trajectory of the nonlinear system such that

both the parametric error Θ̃ = Θ̂ − Θ and the identification

error e = xτ − y converge to zero.

 
 
 
 
 
 
 
 
 
 
 
 

Physics-Informed Trajectory Inference Algorithm

Nonlinear System

Estimated model

Identification
Algorithm

Fig. 1. Physics-Informed Trajectory Inference Algorithm block scheme

III. STATE PARAMETERIZATION

Fig. 1 shows that the identification algorithm uses the

output error e to estimate the parameters Θ̂. However, the

error dynamics (11) does not offer a direct way to relate the

identification error e with the parametric error Θ̃. Furthermore,

if the error dynamics (11) is used then the identification

algorithm depends on ė instead of e.

This section aims to develop a state parameterization which

relates directly e with Θ̃. To achieve this goal and inspired in

[43], [44], the nonlinear system (9) can be equivalently written

as

ẋτ = −Λxτ +Φ⊤(xτ , uτ )Θ + Λxτ , (12)

where Λ = λI ∈ R
n×n and λ > 0. The additional term

Λxτ is used to obtain a linear system with input-to-state

stability which is helpful to obtain a closed-form solution of

the differential equation. The solution of (12) is

xτ (t) =e−Λ(t−t0)xτ (t0) +

∫ t

t0

eλ(s−t)Φ⊤(xτ (s), uτ (s))dsΘ

+ Λ

∫ t

t0

eΛ(s−t)xτ (s)ds.

Define

h(xτ ) :=

∫ t

t0

eλ(s−t)Φ(xτ (s), uτ (s))ds

l(xτ ) :=

∫ t

t0

eΛ(s−t)xτ (s)ds.

Then the solution of (1) is equivalently written as

xτ (t) = e−Λ(t−t0)xτ (t0) + h⊤(xτ )Θ + Λl(xτ ). (13)

The terms h(xτ ) and l(xτ ) can be easily computed by the

following low-pass filters

ḣ(xτ ) = −λh(xτ ) + Φ(xτ , uτ ), h(xτ (t0)) = 0,

l̇(xτ ) = −Λl(xτ ) + xτ , l(xτ (t0)) = 0.
(14)
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Let Φτ (x, u) = Φ(xτ , uτ ). Notice that

‖h(xτ )‖ ≤

∫ t

t0

∥∥∥eλ(s−t)
∥∥∥ · ‖Φτ (x, u)‖ ds

≤




t∫

t0

e2λ(s−t)ds




1

2



t∫

t0

Φτ (x, u)Φ
⊤
τ (x, u)ds




1

2

.

The second integral can be written as a sum of N = t−t0
T −1

time-windows as
t∫

t0

Φτ (x, u)Φ
⊤
τ (x, u)ds =

N∑

κ=0

a+T∫

a

Φτ (x, u)Φ
⊤
τ (x, u)ds,

where a = t0+κT . Notice that the above integral is equivalent

to N times the PE condition (7). So, the low-pass filter h(xτ )
is bounded by

√
β0N

2λ
≤ ‖h(xτ )‖ ≤

√
β1N

2λ
. (15)

The estimated model can also be written in terms of this

new parameterization as

y(t) = e−Λ(t−t0)xτ (t0) + h⊤(y)Θ̂ + Λl(y) (16)

Hence, the identification error verifies

e = h⊤(xτ )Θ− h⊤(y)Θ̂ + Λ[l(xτ )− l(y)]

= −h⊤(y)Θ̃ + ε, (17)

where ε = [h(xτ )− h(y)]⊤Θ+ Λ[l(xτ )− l(y)] is a bounded

approximation error, i.e., 0 ≤ ‖ε‖ ≤ ε̄, which decreases as

y → xτ and ε̄ is the upper bound of ε. Whilst the parame-

terization (11) requires to compute the time-derivative of the

states xτ , the parameterization (14) only needs measurements

of the states and the output of the low-pass filters (14).

Theorem 1 establishes the uniform ultimate boundedness

(UUB) [42] of the identification error e and boundedness of the

parameter estimates Θ̂ as long as the PE condition is fulfilled.

Theorem 1: Consider the identification error (17). Assume

that the low-pass filter h(y) in (14) is PE. If the parameter

estimates Θ̂ are updated as

˙̃
Θ =

˙̂
Θ = Γh(y)e (18)

where Γ ∈ R
p×p is a positive definite gain matrix, then the

following statements are verified

1) The identification error e is UUB with a practical bound

given by ǫ = (β1

β0

+ 1)ε̄.

2) The parametric error Θ̃ is UUB with a practical bound

given by µ = 2λ
β0N

√
β1N
2λ ε̄, and hence Θ̂ remain

bounded.

Proof: Consider the next Lyapunov function

V =
1

2
tr{Θ̃⊤Γ−1Θ̃}. (19)

The time-derivative of (19) along the system trajectories

(18) is

V̇ = tr{Θ̃⊤Γ−1 ˙̃Θ}

= −tr{Θ̃⊤h(y)h⊤(y)Θ̃− Θ̃⊤h(y)ε}

≤ −λ2
min(h(y))‖Θ̃‖2 + λmax(h(y))‖ε‖‖Θ̃‖

V̇ is negative definite if

‖Θ̃‖ >
λmax(h(y))

λ2
min(h(y))

‖ε‖

‖Θ̃‖ >
2λ

β0N

√
β1N

2λ
ε̄ ≡ µ.

(20)

The bound (20) connects the convergence-time with the

parametric error Θ̃. On the one hand, large number of time-

windows N under the PE excitation condition fulfilment (7)

ensures the parametric error Θ̃ converges to a bounded set Sµ

of radius µ, i.e., ‖Θ̃‖ ≤ µ and hence the trajectories are UUB.

From the identification error (17) we have that

‖e‖ ≤ ‖Θ̃‖‖h(y)‖+ ‖ε‖

≤

(
β1

β0
+ 1

)
ε̄

(21)

The above result is consistent to the proposed parameteri-

zation since the identification error e is directly related to the

error of the low-pass filters h(·) and l(·). In addition, the term
β1

β0

gives the highest upper bound of the identification error e.

The smallest upper bound is given by ‖e‖ ≤ 2ε̄ since β0 ≤ β1.

This completes the first part of the proof.

The update rule (18) can be expressed as

vec(
˙̃
Θ) = (In ⊗ Γh(y))e. (22)

By using this notation, it is possible to express the update

rule (18) as the following linear time-variant (LTV) system

ξ̇(t) = B(t)u(t)
ζ(t) = C(t)ξ(t),

(23)

where B(t) = In ⊗ Γh(y) ∈ R
np×n, C(t) = In ⊗ h⊤(y) ∈

R
n×np, ξ(t) = vec(Θ̃) ∈ R

np, and ζ(t) = e(t) − ε(t).
The above LTV model matches with the update rule (18)

under the output feedback u(t) = ζ(t) + ε(t). Since ζ, e,

and h(y) are bounded and h(y) is PE, then by the uniform

complete observability (UCO) lemma [41] we can conclude

that boundedness of e and ζ ensures boundedness of the

parametric error Θ̃ and consequently Θ̂ is also bounded.

The time-derivative of (19) can be written as

V̇ ≤ −λ2
min(h(y))‖Θ̃‖2 + λmax(h(y))‖ε‖‖Θ̃‖

≤ −
λmin(Γ)β0N

λ
V +

√
λmax(Γ)β1N

λ
V ε̄

= −αV + βV 1/2

where α = λmin(Γ)β0N
λ and β =

√
λmax(Γ)β1N

λ ε̄. Notice that

the equation is in fact a Bernoulli differential equation which

has the following solution

V (t) =

(
β

α
+

(√
V (t0)−

β

α

)
e−

1

2
α(t−t0)

)2

. (24)

The above result is consistent with the result of the first part

of the proof. On the one hand, if the approximation error ε

is large, then the convergence time will be fast because the

radius µ of the set Sµ is large. On the other hand, for small

approximation error ε the algorithm requires more time to

converge into the bounded set Sµ. Furthermore, convergence
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depends in the richness of the PE signal. Notice that if ε ≡ 0,

then an exponential stable solution is obtained with a decay

factor of α. This completes the second part of the proof.

From the results of Theorem 1 it follows that the error

dynamics in (11) is also bounded because the regressor matrix

Φ is bounded by construction and the parametric error Θ̃ is

bounded, and hence, ė is also bounded. Furthermore, since e

is bounded and xτ is bounded, then it follows that the state

measurement y is also bounded.

Notice that the update rule (18) uses the estimated states y

instead of the noisy measurements xτ to construct the set of

basis functions h(y). This implies that the parameter estimates

are not biased. In addition, the PE signal τ is also considered

as a probing noise which attenuates the effect of the noise ω.

The estimated trajectory x̂ ∈ R
n can be easily extracted by

subtracting the PE signal τ of the estimated model states y,

that is,

x̂ = y − τ. (25)

The previous formulation uses a complete set of basis

functions such that the nonlinear functions f(xτ ) and g(xτ )
are well-defined. However, as it is stated in the Weierstrass

higher-order approximation theorem, it is possible to find a

complete independent basis set {φ(xτ ), ϕ(xτ )} such that the

nonlinear functions can be uniformly approximated by

f(xτ ) = φ⊤(xτ )θ + εf
g(xτ )uτ = ϕ⊤(xτ , uτ )ϑ+ εg,

(26)

where εf ∈ R
n and εg ∈ R

n define approximation errors

which are assumed to be bounded, i.e., 0 < ‖εf‖ ≤ ε̄f and

0 < ‖εg‖ ≤ ε̄g . Therefore, the approximation error is modified

to ε = εf + εguτ + [h(xτ )− h(y)]⊤Θ−Λ[l(xτ )− l(y)]. The

results of Theorem 1 hold for this case.

IV. TRAJECTORY INCORPORATION

The previous section addresses the general form of the

proposed trajectory inference algorithm. However, the de-

sired trajectory/destination is hidden within the control input.

Both the control input and the trajectory xd can be either

known or unknown which can benefit the algorithm with

more information. Therefore, in this section three cases for

trajectory incorporation are considered: i) known control gain

and trajectory, ii) unknown control gain and known trajectory,

and iii) unknown control gain and trajectory.

A. Known control gain and trajectory

For sake of simplicity, assume that the control input of (9)

and (4) have the following linear structure

uτ = −K(xτ − xd − τ − ω),
v = −K(y − xd − τ).

(27)

where K ∈ R
m×n is a stabilizing control gain and xd ∈ R

n

is a desired trajectory.

Remark 1: The control input uτ can be designed with

different structures and not necessarily a linear form. In

general, controllers of the form uτ = −Kw(xτ , x
d, τ, ω) can

be used in this approach, where w(x̃) = w(xτ , x
d, τ, ω) is an

error dependent function and K is the control gain.

Fig. 2 depicts the proposed inference algorithm for known

control gain and trajectory. For this case, the control input

v of the estimated model is used for the design of the

basis functions vector Φ(y, v). It is important to highlight

that knowledge of the control gain and destination helps to

constraint the possible solutions of the inference algorithm to

ensure bounded parameter estimates convergence.

Nonlinear System Control input 

Filters 

Estimated model Control input 

Update rule 

Basis functions 

Nonlinear System

Estimated System
Identification Algorithm

Fig. 2. Physics-Informed Trajectory Inference Algorithm block scheme for
known control gain and trajectory

B. Unknown control gain and known trajectory

If the control gain K is unknown, then the control input

v cannot be constructed. Nevertheless, it is possible to avoid

v and use the desired trajectory xd as input. The nonlinear

dynamics (9) under the control input (27) yields the following

nonlinear system

ẋτ = f(xτ )− g(xτ )Kxτ + g(xτ )K(xd + τ + ω)
= F (xτ ) +G(xτ )(x

d + τ + ω),
(28)

where F (xτ ) = f(xτ ) − g(xτ )Kxτ ∈ R
n and G(xτ ) =

g(xτ )K ∈ R
n×n. Both F (xτ ) and G(xτ ) are locally Lipschitz

and can be linearly parametrized as

F (xτ ) = ψ⊤
F (xτ )ρ,

G(xτ )(x
d + τ + ω) = ψ⊤

G(xτ , x
d + τ + ω)̺

(29)

where ρ ∈ R
p3 and ̺ ∈ R

p4 are the new parameters, ψF (xτ ) :
R

n → R
p3×n and ψG(xτ , x

d + τ + ω) : Rn × R
n → R

p4×n

are matrices of basis functions. Define Ξ = [ρ⊤, ̺⊤]⊤ ∈ R
pξ

as the new vector of parameters and Ψ(xτ , x
d + τ + ω) =[

ψF (xτ )
ψG(xτ , x

d + τ + ω)

]
∈ R

pξ×n the new vector of basis

functions, where pξ = p3 + p4. It follows that

ẋτ = Ψ⊤(xτ , x
d + τ + ω)Ξ. (30)

The new estimated model is

ẏ = F̂ (y) + Ĝ(y)(xd + τ) = Ψ⊤(y, xd + τ)Ξ̂. (31)

where Ξ̂ ∈ R
pξ are estimates of Ξ. The state parameterizations

of (30) and (31) are given by

xτ (t) = e−Λ(t−t0)xτ (t0) +H⊤(xτ )Ξ + Λl(xτ )

y(t) = e−Λ(t−t0)xτ (t0) +H⊤(y)Ξ̂ + Λl(y)
(32)
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where H(xτ ), H(y) ∈ R
pξ×n are computed with the following

low-pass filters

Ḣ(xτ ) = −λH(xτ ) + Ψ(xτ , x
d + τ + ω),

Ḣ(y) = −λH(y) + Ψ(y, xd + τ), H(y(t0)) = 0.
(33)

The identification error between the state parameterizations

(32) is given by

e = H⊤(xτ )Ξ−H⊤(y)Ξ̂ + Λ[l(xτ )− l(y)]

= −H⊤(y)Ξ̃ + εH , (34)

where Ξ̃ = Ξ̂ − Ξ ∈ R
pξ defines the parametric error and

εH = [H(xτ )−H(y)]⊤Ξ+Λ[l(xτ )−l(y)] ∈ R
n is a bounded

approximation error, i.e., 0 < ‖εH‖ ≤ ε̄H .

Fig. 3 depicts the proposed inference algorithm under the

imposed constraints. Notice that the estimated model uses the

desired reference with excitation as input to construct the basis

function vector Ψ(y, xd+ τ). The other blocks of the diagram

remain the same as the previous diagram in Fig. 2.

Nonlinear System 

Filters 

Estimated model 

Update rule 

Basis functions 

Nonlinear System

Estimated System

Identification Algorithm

Fig. 3. Physics-Informed Trajectory Inference Algorithm block scheme for
unknown control gain and known trajectory

C. Unknown control gain and trajectory

For this case both the control gain K and desired trajectory

xd are unknown, so we cannot use the previous parameteri-

zation for the inference algorithm design. To deal with this

issue, consider the following new parameterization of (28)

Fx(xτ ) = F (xτ ) +G(xτ )x
d = ψ⊤

H(x)σ, (35)

where σ ∈ R
p5 is a matrix of parameters and ψH(x) :

R
n → R

p5×n is a vector of basis functions. In this new

parametrization the destination is within the parameters σ.

Remark 2: The desired trajectory/destination must be con-

stant to guarantee parameter convergence. Otherwise, time-

varying parameters will be obtained which prevents the infer-

ence algorithm to construct the physics informed model.

Then the nonlinear system is simplified to

ẋτ = Fx(xτ ) +G(xτ )(τ + ω). (36)

Notice that only the excitation signal τ and the noise ω

are used as input of the nonlinear system (36). The nonlinear

system (36) is rewritten as

ẋτ = Ω⊤(xτ , τ + ω)Σ, (37)

where Σ =

[
σ

̺

]
∈ R

pσ , Ω =

[
ψH(xτ )

ψG(xτ )(τ + ω)

]
∈ R

pσ×n

are the parameters and basis functions associated to unknown

gain and trajectory scenario; with pσ = p4+p5. The estimated

model under the new parameterization (37) is

ẏ = Ω⊤(y, τ)Σ̂, (38)

where Σ̂ ∈ R
pσ is the vector of parameter estimates of Σ. The

state-parameterization of both (37) and (38) are

xτ (t) = e−λ(t−t0)xτ (t0) + T⊤(xτ )Σ + Λl(xτ ),

y(t) = e−λ(t−t0)xτ (t0) + T⊤(y)Σ̂ + Λl(y).
(39)

where T (xτ ) and T (y) are computed by the following low-

pass filters

Ṫ (xτ ) = −λT (xτ ) + Ω(xτ , τ + ω),

Ṫ (y) = −λT (y) + Ω(y, τ), T (y(t0)) = 0.
(40)

The identification error between (39) satisfies the following

equation

e = T⊤(xτ )Σ− T⊤(y)Σ̂ + Λ[l(xτ )− l(y)]

= −T⊤(y)Σ̃ + εT , (41)

where Σ̃ = Σ̂ − Σ ∈ R
pσ is the parametric error vector

and εT = [T (xτ ) − T (y)]⊤Σ + Λ[l(xτ ) − l(y)] ∈ R
n is an

approximation error.

Fig. 4 depicts the inference algorithm diagram. In this

diagram only measurements of the noisy states of the non-

linear system are available. Here the basis functions use the

excitation signal τ and the states of the estimated model y to

construct the identification algorithm.

Nonlinear System 

Filters 

Estimated model 

Update rule 

Basis functions 

Nonlinear System

Estimated System

Identification Algorithm

Fig. 4. Physics-Informed Trajectory Inference Algorithm block scheme for
unknown control gain and trajectory

Theorem 1 holds for either the identification error (34) or

(41), where the parameter estimates Ξ̂ or Σ̂ are updated instead

of Θ̂. In both cases, the vector of basis functions Ψ(xτ , x
d+τ)

and Ω(xτ , τ) verify the PE condition (7) under the adequate

matrix of basis functions.
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V. PHYSICS INFORMED EXTENSIONS

In the previous section we deal with the trajectory inference

problem using only states measurements and knowledge of

the nonlinear dynamic model structure. In those cases we

parametrize the nonlinear model as a product of a regressor

matrix composed of nonlinear terms and a vector of param-

eters. These formulations are too conservative due to the

structure knowledge assumption. In this section, we vanish

this structure assumption by constructing a physics informed

recurrent neural network, which uses a matrix of parameters

and a vector of basis functions composed of the nonlinear

terms of the nonlinear model. This slightly modification allows

the inference model to have a linear combination of the basis

functions that enhance the trajectory inference precision. In

addition, if we have access to the control input then we can

design an identification algorithm to estimate accurately the

parameters of the nonlinear model.

A. Physics Informed Recurrent Neural Network

Notice that the proposed physics informed formulation can

be regarded as a continuous-time parallel recurrent neural net-

work (RNN) without hidden layers [45]. That is, the nonlinear

function can be expressed as

ẋτ = W⊤Φw(xτ , uτ ) (42)

where W ∈ R
pw×n is a matrix of parameters or weights, and

Φw(x, u) : Rn × R
m → R

pw is a vector of basis functions.

Both (9) and (42) are equivalent and they differ in how the

linear parameterization is constructed.

The PIM has the next structure

ẏ = Ŵ⊤Φw(y, v), (43)

where Ŵ ∈ R
pw×n is a matrix of parameter estimates of W .

The state parameterizations of (42) and (43) are given by

xτ (t) = e−Λ(t−t0)xτ (t0) +W⊤hw(xτ ) + Λl(xτ ),

y(t) = e−Λ(t−t0)xτ (t0) + Ŵ⊤hw(y) + Λl(y),
(44)

where hw(y) ∈ R
pw can be easily computed as

ḣw(y) = −λhw(y) + Φw(y, v). (45)

The identification error between the parameterizations in

(44) is

e = W⊤hw(xτ ) + Λl(xτ )− Ŵ⊤hw(y) + Λl(y)

= −W̃⊤hw(y) + εw, (46)

where W̃ = Ŵ − W ∈ R
pw×n defines the parametric error

matrix and εw = W⊤[hw(xτ )−hw(y)]+Λ[l(xτ )−l(y)] ∈ R
n

is the approximation error. Theorem 1 holds if the weights are

updated as

Ẇ = Γhw(y)e
⊤. (47)

Notice that each weight of matrix W defines a linear

combination of basis functions and thus, some weights are

zero because there are basis functions that do not contribute

in one or more dimensions. However, (47) estimates all

pw × n weights of the network since it is not possible to

set some weights to zero without compromising the stability

of the RNN. Fig. 5 shows the general diagram of the physics

informed RNN.

Filter  

Filter  

RNN

Fig. 5. Physics informed Recurrent Neural Network scheme

B. Identification of real parameter estimates

The previous approaches guarantee parameter estimates

convergence under the fulfilment of a PE condition. However,

the final estimates do not converge to their real values due to

the addition of the PE signal in the states measurements output.

In other words, if the PE signal is added directly to the output

measurements then the amplitude of the PE signal increases

or decreases the real parameter values; in consequence, the in-

ference algorithm estimates different parameters that behaves

similar to the real ones such that the output of the estimated

model matches with the real system output.

To overcome this issue, and following standard identifi-

cation algorithm techniques [46]–[48], we need to add the

PE signal in the control input rather than in the output

measurements. This implies, that we are enable to control the

real system. In addition, by adding the PE signal in the real

system’s control input avoids the amplification/attenuation of

the real parameter values.

Nonlinear System Control input 

Filters 

Estimated model Control input 

Update rule 

Basis functions 

Nonlinear System

Estimated System
Identification Algorithm

Fig. 6. Physics-Informed Diagram for Parameter Identification

For this case, we work with the nonlinear system (1) instead

of (8). Then, the control input u and v have the next structure

u = −K(z − xd) + τ,

v = −K(y − xd) + τ.
(48)
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Notice that in contrast to previous approaches, we have

access to the control input such that the controller is fed by

the noisy states measurements.

Since we are able to control the real nonlinear system, then

the desired trajectory is known in advance. So, the inference

algorithm is reduced to an identification problem with filtering

capabilities. Fig. 6 depicts the block diagram of the physics-

informed algorithm for parameter identification purposes.

VI. SIMULATION STUDIES

The effectiveness of the proposed approach is assessed in a

F-16 aircraft model [49], [50]. The full roll-yaw dynamics of

a F-16 aircraft in stability axis are

β̇ =
Yβ

V
β +

Yr

V
rs +

g cos θ0
V

φ− rs,

φ̇ =
cos γ0
cos θ0

ps +
sin γ0
cos θ0

rs,

ṗs =Lββ + Lpps + Lrrs + Lδa0
(δa + f1(φ, β, ps, rs))

+ Lδr0
(δr + f2(φ, β, ps, rs))

ṙs =Nββ +Npps +Nrrs +Nδa0
(δa + f1(φ, β, ps, rs))

+Nδr0
(δr + f2(φ, β, ps, rs)),

where φ, β, ps and rs represent the roll angle, the sideslip, and

the stability axis roll and yaw rates, respectively; θ0 denotes

the trimmed pitch angle, γ0 is the trimmed flight path angle,

V is the true airspeed, g is the gravitational constant, and

δa, δr are aileron and rudder control. The functions f1(·) and

f2(·) represent nonlinear functions in terms of the roll angle,

the sideslip, and the stability axis roll and yaw rates. In these

experiments, a lateral/directional F-16 model flying at sea level

with an airspeed of 502 ft/s and an angle of attack α = 2.11◦

is used. The model can be written compactly as the following

nonlinear system

ẋ = Ax+Bu+ f(x) + g(x)u,

where

A =




−0.322 0.064 0.0364 −0.9917
0 0 1 0.0393

−30.6490 0 −3.6784 0.6646
8.5395 0 −0.0254 −0.4764


 ,

B =




0 0
0 0

−0.7331 0.1315
−0.0319 −0.062


 , x =




β

φ

ps
rs


 , u =

[
δa
δr

]
,

f(x) =




0
0

0.7e−
x2
1

2·1.52 + 0.075 cos(0.1x3 − 1.5) sin(0.1x4)

0.7e−
x2
1

2·1.52 + 0.01 cos(0.1x3 − 1.5) sin(0.1x4)




g(x) =




0 0
0 0

0.7e−
x2
1

2·1.52 0

0 0.7e−
x2
1

2·1.52



.

Gaussian noise with mean zero and covariance R = 0.1I
is added at the output measurements to model sensor noise.

The desired trajectory for the roll state φd is given by a square

waveform trajectory of amplitude 1 and frequency 0.1 Hz, the

desired trajectory of the other states are set to zero, that is,

[βd, pds , r
d
s ] = [0, 0, 0] and hence xd = [βd, φd, pds , r

d
s ]

⊤. In

addition, the low-pass filter G(s) = 30
s+30 is used to smooth

the roll trajectory.

Assume that the F-16 aircraft dynamics is controlled by a

liner quadratic regulator (LQR) [6] using the next control gain

K =

[
36.0977 −98.2690 −94.5559 −20.8372
2.2735 19.2498 19.1944 −91.8249

]
.

Five cases of the physics-informed inference algorithm will

be considered: Case A: Known control gain and trajectory,

Case B: Unknown control gain and known trajectory, Case

C: Unknown control gain and trajectory, Case D: Parallel

Recurrent Neural Network, and Case E: System Identifica-

tion. The number of parameters for each case are different

but straightforward to determine since the structure of the

nonlinear model is known in advance. For Cases A,B,C and E,

the number of parameters is equal to the number of different

non-zero coefficients associated to each basis functions. For

Case D, the number of parameters is equal to the number

of different basis functions times the number of dimensions

of the nonlinear system. So, the number of parameters for

case A: Θ ∈ R
22, case B: Ξ ∈ R

26, case C: Ω ∈ R
26, case

D: W ∈ R
12×4, and case E: Θ ∈ R

22. In consequence the

regressor matrices have the following dimensions Φ ∈ R
22×4,

Ψ ∈ R
26×4, Ω ∈ R

26×4, Φw ∈ R
12, and Φ ∈ R

22×4.

The PE signal τ is designed as an exponential sinusoidal

function with different frequencies. On the other hand, the PE

condition (7) cannot be established in practice because they

need to verify the positive definiteness of the integral of the

product of basis functions in a time window [t : t + T ] for

all time t. To overcome this issue, consider the next weighted

scalar PE condition

βw1
≤

∫ t+T

t

w⊤Π(s)Π⊤(s)wds ≤ βw2
, (49)

where Π(·) ∈ R
pπ×n is any matrix or vector (for case D) of

basis functions with pπ parameters, w = 1√
pπ

~1pπ
is a weight

vector, ~1pπ
=

[
1 · · · 1

]⊤
∈ R

pπ , and βw1
, βw2

, T > 0.

Fig. 7 exhibits the fulfilment of the weighted PE condition in

a time t = 50 s and T = 5s.

Note that in addition to verifying the weighted PE condition

(49), some peculiarities can also be observed. For cases B and

C we need to estimate more parameters in comparison to case

A which translates into a weighted sum of quadratic excitation

signals τ . This fact can be clearly observed in the amplitude

of the weighted PE condition. Similar results can be observed

for case D because the number of basis functions of the RNN

increases n times. On the other hand, case E exhibits a clear

attenuation of the PE amplitude since the excitation signal τ is

not affected by the control gain K as it is stated in the control

input v in (48).

The gain Γ of the update rule and Λ of the low pass

filter are manually tuned until the best performance of the
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Fig. 7. Weighted scalar PE condition results

TABLE I
GAINS FOR THE UPDATE RULE AND LOW-PASS FILTER

Gains

Case λ Γ

A 500 2000I22

B 20 500I26

C 20 500I26

D 500 2000I12

E 500 diag{500, 500, 500, 500, 500, 500, 50000,
500, 5000, 5000, 500, 500, 500, 500, 500,

500, 500, 500, 500, 500, 500, 500}

algorithm is achieved. However, a strong relation between

the gain Γ, Λ and the excitation signal τ is observed. The

filter’s gain λ must be selected large enough such that the

high frequencies of the excitation signal τ are not attenuated to

guarantee parameter convergence. However, large gains λ and

Γ can cause oscillations at the estimated states. Conversely,

small values for Γ and λ causes parameter estimates drifting

and state estimates with high variance and bias. The final gain

values for each case are summarized on Table I.

The trajectory inference and parameter estimates conver-

gence of each case are exhibited in Fig. 8. The figures show

an accurate trajectory inference with noise attenuation for

either known and unknown references. On the other hand,

convergence of the parameter estimates is achieved in all cases.

However, cases A, B, C, and D do not converge to their real

values. Notice that for cases B and C the magnitude of the

estimates is bigger because the values of the control gain

K are incorporated in the estimates Ξ̂ and Σ̂, respectively.

Case D exhibits good trajectory inference with good noise

attenuation; furthermore, the weights of the net converge and

remain bounded. The parameter estimates of case E converge

to almost their real values and noise attenuation is exhibited in

the output of the estimated model y. The approximation error

results ‖ε‖ are Case A: 0.0755, Case B: 0.107, Case C: 0.153,

Case D: 0.0707, and Case E: 0.0477. The results highlight the

consistence of the proposed methodology, that is, the more we

know about the nonlinear system structure, input, and states

then the approximation error will be small. Conversely, the

less we know implies that the approximation error will be

large. The RNN case demonstrates that if the number of basis

functions are increased, then we are able to obtain a better

approximation and robustness against modelling uncertainty.

Furthermore, if the PE signal is added at the control input

rather than the output measurements, then the approximation

error is notably decreased.

Table II presents the final estimates values of case E and

their respective parametric error percentage. Since the states

measurements x of the real system are corrupted with noise,

then the parameter estimates are UUB as it is stated in

Theorem 1 and hence, the parameter estimates converge to

their near real values.

(a) Trajectory inference: Case A
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(b) Parameter estimates Θ̂
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(e) Trajectory Inference: Case C
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(g) Trajectory Inference: Case D (h) Parameter estimates Ŵ

(i) Trajectory Inference: Case E
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Fig. 8. Physics-informed results

The norms of the identification error ‖e‖ and the approxima-

tion error ‖ε‖ are computed to verify the theoretical bounds of

Theorem 1. The upper-bound βw2
= 13, 800 and lower bound

βw1
= 2, 000 are obtained from the complete weighted PE
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TABLE II
PARAMETER IDENTIFICATION RESULTS

Real
parameter
value Θi

Estimate
value Θ̂i

Parametric
error Θ̃i

Percentage

error |Θ̃i|
(%)

-0.322 -0.3324 0.0104 3.2303
0.064 0.0652 -0.0012 1.8838

0.0364 0.0362 0.0002 0.5229
-0.9917 -1.0147 0.0230 2.3175

1 0.9997 0.0003 0.0295
0.0393 0.0391 0.0002 0.455
-30.649 -28.7241 -1.9249 6.2805
-3.6784 -3.6743 -0.0041 0.1107
0.6646 0.4432 0.2214 33.3158
8.5395 8.4799 0.0596 0.6984
-0.0254 -0.0193 -0.0061 23.8192
-0.4764 -0.6825 0.2061 43.252
-0.7331 -0.7365 0.0034 0.4635
0.1315 0.1153 0.0162 12.3504
-0.0319 -0.0318 -0.0001 0.4651
-0.062 -0.0607 -0.0013 2.1263

0.7 0.689 -0.011 1.5714
0.075 0.072 -0.003 4
0.7 0.688 -0.012 1.7143

0.01 0.0091 -0.0009 9
0.7 0.691 -0.009 1.2857
0.7 0.685 - 0.015 2.1429

plot of Fig. 7(e). We need to scale the parametric error by

the number of parameters pπ to recover the effect of the real

bounds of the initial PE condition (7). Consider N = 1 time-

windows and pπ = 22. The numerical results are: ‖e‖ = 0.1,

‖ε‖ = 0.0477, ‖Θ̃‖ = 1.95. The above results are consistent

to the theoretical upper bounds (21) and (20), that is, ‖e‖ ≤

(
βw2

βw1

+1)ε̄ ≈ 0.3713 and ‖Θ̃‖ ≤ 2λ
βw1

N

√
βw2

N

2λ ε̄pπ ≈ 1.9206.

If we consider more time-windows N this inequality is more

strict and difficult to guarantee if the excitation signal τ is not

rich enough.

A. Comparisons and Robustness

An extended Kalman Filter (EKF) is used to exhibit the

sensitivity of state estimators under model uncertainty. Notice

that data-driven methods cannot be used for a fair comparison

study since most of them are off-line, whilst the proposed

approach is on-line. On the other hand, other on-line ap-

proaches such as Gaussian processes need access to the control

input using mechanisms inspired in reinforcement learning

architectures, e.g., exploration strategies.

Two different scenarios are used to test the EKF: 1) an

approximate nonlinear model without control input measure-

ments, and 2) an approximate nonlinear model with control

input measurements. The results are shown in Fig. 9. Some

(a) Without control measurements (b) With control measurements

Fig. 9. State estimation results using Extended Kalman filter

interesting results are obtained; the first evident result is that

the EKF without control measurements (EKFwc) exhibits

better results than the EKF with control (EKFc). Here,

the modelling error associated to the input dynamics affects

the accuracy of the estimates. However, the model without

control suffers of adaptability to new references. On the other

hand, the EKF with control gives a notion of the hidden

reference which can be useful for adaptation to new references.

However, it lacks of accuracy in the estimates due to the

modelling error.

The estimation error for both approaches are ‖eEKFwc
‖ =

0.2439 and ‖eEKF c
‖ = 3.401. Recall that the estimation error

of the proposed approach is ‖e‖ = 0.1 for Case E. Here,

we can observe the reliability and robustness of the proposed

approach in comparison to the EKF results. The merits of the

approach can be summarized as follows: i) accurate trajectory

inference is obtained without any prior knowledge of the sys-

tem’s parameters, ii) the complete set of basis functions give

stability to the approach without applying any linearization or

data-driven methods, and iii) the robustness of the approach

depends on the set of basis functions which can incorporate

different non-linear functions that are capable to compensate

model uncertainty and disturbances.

VII. CONCLUSIONS

This work reports a physics informed trajectory inference

algorithm for a class of nonlinear systems. It combines the

advantages of state and parameter estimation algorithms in one

simple architecture based on the construction of an estimated

model and the design of two low-pass filters. The algorithm

exhibits an equivalence to parallel recurrent neural networks

and can be expanded for different cases depending of the

available information of the control gain, the desired trajectory,

and the set of basis functions. In addition, the approach can

be used for pure identification purposes. Stability and conver-

gence of the inference algorithm is assessed using Lyapunov

stability theory. Simulation studies are carried out to verify the

effectiveness of the approach under different scenarios. The

results show that the algorithm infers the trajectory with high

accuracy and noise attenuation. Furthermore, the parameter

estimates converge and are UUB. For identification purposes,

the parameter estimates have good precision results which can

be improved by modifying the gains of the update rule.

Further work focuses on the design of a self-learning model

for non-parametric basis functions inference and time-varying

parameters. Furthermore, the design of PE signals is still

an open challenge which is crucial for parameter estimates

convergence in finite time.
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